Heathland creation on improved grassland using sulphur: is there a conflict between optimal application rates for plant and invertebrate communities?

A. Diaz 1, I.D. Green 1, A. Uzal 1, D. Evans 1 and P. Buckland 2.

1 The Centre for Conservation Ecology 2 The Centre for Environmental Archaeology
The School of Conservation Sciences, Bournemouth University, Wallisdown, Poole, Dorset, BH12 5BB, UK.

Introduction
In the last 200 years the area of lowland Britain covered by heath has greatly declined. The reasons for this decline are many, but one of the principle causes has been the ‘improvement’ of heathland soils for agricultural use. Such conversions require radical alteration of soil chemistry, e.g. an increase in the pH and nutrient status of the soil. Restoration of heathland vegetation on improved soils requires equally radical treatment, such as stripping the surface layer of the soil away or using acidifying soil amendments such as elemental sulphur (S0). While S0 amendment is effective in controlling mesotrophic grasses and establishing heathland vegetation, the effects on the invertebrate community have not been established.

Materials and methods
A block of thirty 3 x 3 m plots was set up in 2000 on pasture improved from heathland ca. 50 years ago. Restoration of heathland on these plots was mediated through the application of an acidifying amendment, S0. Sulphur pellets (Brimstone 90™) were applied to the plots at rates of 0, 900, 1,800, 2,400 or 3,600 kg ha-1. Treatments were allocated to each plot on a random basis and each was replicated 6 times. During June 2005, the vegetation volume, plant species diversity, and area covered by mesotrophic grass on each plot was recorded. Soils (top 15 cm) and invertebrates (pitfall trapping) were also sampled from the plots at this time.

Results
• S0 amendment significantly lowered soil pH (Fig. 1; H = 25.5, P < 0.001) and the cover of mesotrophic grasses (Fig 1), but this was significant only for L. perenne (H = 22.5, P < 0.001).
• There was also a significant decrease in vegetation volume (Fig. 1; H = 21.1, P < 0.001), plant diversity (H = 14.4, P = 0.006 ) and plant species richness (H = 16.0, P = 0.003) as a result of S0 amendment.
• There was a significant decrease in the abundance of Colembola (H = 12.1, P = 0.017), Gastropoda (H = 16.1, P = 0.003), Hymenoptera (H = 14.2, P = 0.007) and Orthoptera (H = 19.8, P = 0.001) due to S0 amendment (Fig. 2).
• Abundance of Coleoptera, Dermaptera, Hemiptera, Diptera, Arachnida, Oligochaete, Isopoda and Thysanoptera were not affected.
• For the affected groups, significant negative correlations were found between abundance and % bare earth. Positive correlations were found between abundance and vegetation volume and soil pH (Table 1).

Discussion and conclusions
• Competition from mesotrophic grasses is a major limiting factor in the restoration of heathland. The largest S0 treatment rate was the most successful in controlling these grasses and this treatment rate has been successful in restoring Calluna vulgaris in another experiment on the same site.
• The abundance of most invertebrate groups was not affected by S0 treatment, suggesting that they were not avoiding treated areas.
• Decreased abundance of Hymenoptera, Gastropoda & Orthoptera appeared to be related to the avoidance of areas with decreased vegetation volume and increased bare earth caused by the S0 amendments, whilst partial correlations suggested that Colembola were affected by the increased soil acidity.
• The ecological consequences of the decrease in some invertebrate groups resulting from the amendment of soil with S0 at effective restoration rates are not clear, but important ecosystem processes such as litter decomposition and nutrient recycling may be affected by reduced numbers of Colembola.