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Abstract 

This research investigates on the use of digital photoelasticity in biomedical sensing 
applications with a particular emphasis on assessment of diabetic foot ulceration. One of 
the main causes of foot ulceration in diabetic patients is excessive pressure at the sole of 
the foot, which involves vertical as well as shear forces. Precise role of these forces in 
predisposing the foot to ulceration is not very well understood, however, a general 
consensus is that the combined effect of vertical and shear forces is much more harmful 
than the vertical force alone. Whilst the vertical force can be measured relatively easily, it 
is difficult to decouple the shear force from the combined force, which is considered to be 
of more clinical relevance in assessment of diabetic foot ulceration. The major 
impediment in achieving this objective is lack of suitable shear force measuring devices 
and limitation of the existing systems that can simulate the actual conditions of foot 
loading. In this research a photoelastic material has been used to develop a prototype- 
sensing device, which develops coloured fringes due to foot loading. Intelligent image 
processing techniques have been employed to analyse and obtain relevant load 
information from these fringes. 

The research surveys the existing sensing devices that are commonly used in diabetic foot 
clinics. It highlights the need for a new sensor design that can be used for pressure- 
induced pathologies. To meet these requirements and develop a sensor based on the 
principle of photoelasticity, conventional techniques of RGB photoelasticity and Phase- 
shifting methods have been fully investigated. This led to identify suitable optical 
elements for the system design and applicability of these techniques for the intended 
application. This resulted in devising an experimental setup that can provide coloured 
image of foot per se actual conditions of foot loading. However, the conventional 
technique of stress analysis cannot be directly applied in the present case, since the 
photoelastic effect is induced due to the material deformation as opposed to the usual 
component loading in photoelastic experiments with coatings. Also, in the current 
application the applied load has to be estimated from the fringe patterns (i. e. inverse 
problem) under varying environmental conditions with different loading situations for 
each subject. As it is difficult to develop analytical models under these conditions and the 
related inverse might have infinite number of solutions, the use of neural networks has 
been proposed to overcome these complexities. The network has been trained with direct 
image data which provides input load information under controlled experimental 
conditions of vertical as well as shear forces. The prototype sensor also provides 
qualitative whole-field data of the actual foot loading, which can be used for quick 
differentiation of foot with or without callus. This may also find use in haptics, pattern 
recognition and other biomedical sensing applications such as pressure sore assessment 
for disabled subjects or patients with numbness. With further enhancement in image 
processing technique this can be developed into a clinically viable system capable of 
providing complete foot analysis from early stage detection to prevention of ulceration. 
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Introduction 

Chapter 1 Introduction 

1.1 Background 
Pressure induced tissue anomaly is of crucial clinical importance in many pathological 

investigations. This includes pressure sore identification in older and disabled subjects 

with neuropathic impairment; such as numbness in the case of patients with leprosy or 

diabetic patients at the risk of developing foot ulceration. Whilst simple pressure sore 

identification at the contact interface is relatively easy, measurement and visualisation of 

the causation forces are of vital clinical importance. As walking involves tissue shearing 

it has been argued that the shear forces may have more damaging effect than the vertical 

force alone in the growth of foot ulceration in diabetic patients. However, measurement 

of the shear force at the plantar surface is considered to be a major impediment in 

understating its precise role due to the limitations of current measurement technologies. 

Commercially available pressure pads just provide foot pressure and some research based 

shear sensors which are in fact displacement sensors providing only discrete 

measurements and ignore the effect of the vertical loading. Therefore, there is a need to 

develop a sensor that can sense the actual condition of foot loading by providing the 

whole field visualisation and quantification of the loading conditions. This research aims 

at developing a prototype sensor based on photoelasticity for measurement of shear force 

and early detection of diabetic foot ulceration. Historically, photoelasticity has been used 

for experimental stress analysis, however, due to special characteristics of the 

photoelastic materials to provide whole field visualisation of the stress field led to 

consider the use of this material for biomedical sensing application in this research. This 

chapter starts with the role of plantar pressure in foot ulceration and is followed by 

problems in measuring interface forces. The chapter also reviews the existing sensors, 

their limitations and outlines the need for developing a whole field sensor for stress 

visualisation. Finally, the aims and objectives of the research are discussed. The research 
implements digital photoelasticity as a sensing technique for early detection of foot 

ulceration. A 'principle demonstrator' using photoelasticity in clinical sensing 
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applications was built and coupled with artificial intelligence to measure the vertical and 

shear force under a controlled environment and provide qualitative loading condition of 
the foot. 

1.2 Role of Plantar Pressure in Foot Ulceration 

The foot experiences mechanical stresses during the normal gait due to combined vertical 

and shear forces ranging from 250-270 kPa and 70-80 kPa respectively (Hosein and Lord 

2000a; 2000b). Both vertical and shear loading have an adverse affect on diabetic feet 

and are considered as important factors in foot ulceration besides neuropathy and 
ischaemia. The literature in Appendix-I provides detail on diabetes and its complications. 
The vertical load acts normal to skin surface thus physiologically and anatomically 

stressing the heavily loaded regions such as those overlying bony prominences. The shear 
force acts tangential to the foot surface causing bunching and stretching of tissues but its 

effect has not been well studied; mainly due to limitations of existing technology. 

Periodic exposure to high stresses on the foot together with callus, tissue damage and loss 

of sensitivity leads to traumatic complications. Shear is found to increase the stresses in 

the area ahead of the direction of shear forces. Model analysis of the effect of such forces 

on skin and soft tissue revealed changes in stress distribution in the superficial layer of 

tissues (Zhang et al. 1994). It is important to develop measurement systems of high 

accuracy in order to understand the role of vertical and shear forces and help support 

systems reducing the chances of ulcer development by pressure redistribution and blood 

flow control (Bader et al. 2005). The heterogeneous nature of the body can affect clinical 

measurements not only between different subjects but even within a given subject. For 

instance, in the context of foot pressure; measurements can vary if the subject's posture is 

changed as it would redistribute the pressure to different regions under the foot. The 

tissue properties and variation in thickness under different bony prominences account for 

variance in pressure measurement between different subjects. Thus, the reliability of 

measurement systems and parameters measured like pressure and peak pressure points 

are affected by a number of hard to control-for factors. 
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1.2.1 Vertical Loading at Plantar Interface and Its Measurement 

Vertical loads are prominent under areas of previous ulceration, bony prominences and 
callus zones and are regarded as major risk factors leading to ulceration. The vertical load 

affects the blood flow, plantar tissue thickness and deteriorates properties of soft tissues 
under plantar area. Stresses induced by vertical load are higher in barefoot gait than shod 

gait as shoes provide a cushioning effect. Peak pressures points have been reported 

mostly under bony structures of the first or second metatarsal heads. Hosein and Lord 

(2000a, 2000b) recorded maximum pressure of 273 kPa under the second metatarsal in a 

neuropathic group and 228 kPa under the second and third metatarsal for normals, using 

the F-Scan measurement system (Section 1.2.1.3). In addition to body weight and tissue 

properties, speed of walking is also considered to alter pressure values. It increases 

pressure under the heel and shifts the load medially under the forefoot (Rosenblaum et al. 

1994). Perry et al (2002) have reported maximum pressure at the first and second 

metatarsal heads with value of (I 89±64) kPa and minimum at toe area with (80±36) kPa 

in a group of 12 neuropathic subjects. Maximum pressure to be present under the lateral 

foot of (279±102) kPa and (230±81.9) kPa under the first metatarsal head has also been 

reported in 50 diabetic subjects (Payne et al. 2001). In a study to evaluate critical level of 

plantar pressure for identifying the risk to ulceration, peak pressure was found to be 

(831±247) kPa (Armstrong et al. 1998). Authors also concluded there is no optimal cut- 

off because higher the peak pressure, higher is the commensurate risk. The assigned 

value of 700 kPa as cut off gave a balanced sensitivity and specificity in a study of 219 

patients with and without neuropathy. 

Vertical load measuring devices have been developed extensively and can be categorised 
as in-shoe or external sensors and can be further categorised as footprint or cumulative 

output sensors. 

1.2.1.1 Pedobarograph Based Sensor 

A pedobargraph based sensor is an external barefoot measurement device based on the 

principle of change in refractive index of glass due to pressure loading, which alters the 
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critical angle of internal reflection and leads to scattering of light. The system has mostly 
been used for research studies and for comparison with other systems like EMED, F-Scan 

(Quaney et al. 1995; Kumar et al. 2005). It comprises of a thin mat of deformable 

material with fine patterns avoiding any local pressure redistribution that might occur 

when using foam sheets. A glass plate is edge lit and a mirror is used to project image 

onto the camera. The pressure from the mat is converted to light intensity patterns from 

the scattered light and calibrated to the applied load. The system requires calibration 

using weights and the results show that a cell of 100 MM2 can gives an average pressure 

which is nearly 60-70% of the peak value. The averaging depends not only on the cell 

size but also on swing of the peak and sharpness of the peak. Results for this technique 

can be as good as 93% of true peak (Lord 1997). 

1.2.1.2 EMED Pedar System 

The EMED Pedar is a commercial in-shoe capacitance based sensor. The sensor is based 

on the principle that there is change in capacitance due to change in the distance between 

two conducting wires separated by a dielectric material. The measurement of capacitance 

change is correlated to the applied force. The Pedar insoles are 2 mm. thick and consist of 
99 transducers with capability of measuring up to frequencies of 1000 Hz, Figure 1.1 

shows the actual system and the pressure patterns generated. These systems are found to 

exhibit a good linearity and low errors especially under high loads. Another advantage is 

accessible calibration of individual sensor, making it useful for clinical applications by 

establishing a baseline for measurements (Finch 1999). The sensor is reported prone to 

damage under higher loads. Pedar systems have been used in various clinical trials for 

evaluation of repeatability of the total contact casts (Harstell et al. 2001) and effect of 
different prosthetic foot designs on the patterns of the plantar pressure (Hayden et al. 
2000). 

4 



Introduction 

Foot Unit (Insoles) Waist Unit 

Figure 1-1: EMED Pedar (Finch 1999) a capacitance based system 

1.2.1.3 F-Scan 

The F-Scan system is another in-shoe measurement device that has been used in 

numerous research and clinical based studies for pressure evaluation and efficiency of 

insoles. The system has been implemented in dynamic monitoring of plantar pressure 

with respect to time. It is composed of ultra thin pressure sensitive, resistive based links 

embedded in Mylar coating insole (Randolph et al. 2000), Figure 1.2. The sensor utilises 

force-sensitive resistive film in form of matrix as sensor element. The base unit 

comprises of 960 cells with insole thickness of 0.18 mm. Non-linearity claimed by 

manufacturers is of 5% with sensitivity of ±4 kPa but higher non-linearity has been 

reported with hysterisis of 10% (Nicolopoulos et al. 2000). The system requires easy 

calibration process of loading individual sensor insole with complete bodyweight. An 

incompressible base for accommodating insole in shoe is obtained by using semi-rigid 

plastazote inset into flexible Poron. The sensor is reported to require 60-90 sec of 

conditioning prior to measurement, due to viscoelastic recovery from the period of rest 

(Hosein and Lord 2000a). 
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Figure 1-2: F-Scan measurement system and pressure patterns (Tekscan@) 

Errors in measurement of pressure have been reported from 7% to as high as 24% at 

higher loads (Nicolopoulos et a]. 2000). The sensor has been evaluated under different 

calibration techniques and reported to be sensitive to the method of calibration. Tests for 

hysterisis showed preconditioning effect making static calibration difficult, thus requiring 

dynamic calibration of system at 0.5 Hz. Maximum hysterisis was 18.3% at 1000 N 

attributed to viscoelastic property of Poron backing rather than the sensor itself. High 

repeatability was shown with small error of 0.3% but output to input error of 44% was 

shown. The sensor was also found to be prone to bending as evaluated by analysing a 

single cell element. Randolph et al (2000) reported sensor to be reliable in management 

of patient for prevention of ulceration. Overall the sensor has been reported to be efficient 

and reliable if calibrated with some standard reference like force plate. 

1.2.1.4 Parotec System 

The Parotec system is an in-shoe pressure measurement device designed to measure 

pressure due to both vertical and shear component (Chesnin et al. 2000). The sensor 

comprises of 3 mm insoles with 24 sensor areas. The design consists of micro-sensor 

under constrained hydrocell with an incompressible fluid sealed in a polyurethane packet, 
Figure 1.3. The fluid packet deflects only at top and bottom surfaces. The micro-sensor 
has a balanced bridges circuit etched on silicone membrane that deflects into an 

evacuated chamber on application of load. The system has a sensitivity of 2.5 kPa with 
load limit of 625 kPa, repeatability of ±0.4%, accuracy of ±2% with maximum measuring 

6 



Introduction 

frequency 300 Hz. The sensor was developed for measurement of centre of pressure 
during gait and proved to be efficient with multiple trails. 

I 

Figure 1-3: Parotec system (Metitur@ 2004), an in-shoe measurement device 

1.2.1.5 Interferometer based Sensor 

Interferometry is a well established high resolution technique for measurement of surface 

deformation by analysing patterns generated by superimposition of two light beams. A 

sensor was developed based on the above principle where a laser beam is directed 

through an optically clear material and interferograrn is generated between reflected 

beams from top and bottom surface of plate (Hughes et al. 2000). Any change in 

interferograrn due to deformation of one of the surface is analysed. The analysis was 

carried out using Fourier Transform for interpretation of fringes. 

Selection of the optical plate is critical and for the selected material no more than 4 

wavelengths of laser (He-Ne) interfere should occur at maximum load. Hughes et a] 

(2000) used perspex and best results were achieved after sampling the material 1000 

times. The pressure range of sensor is 1-1000 kPa with low hysterisis. Collimated beam 

of laser of 145 mm diameter from 0.5mm was produced using specific lens arrangement. 
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1.2.2 Limitations of Pressure Measuring Devices 

The evaluation of vertical loading is important in determination of pressure distribution 

and peak pressures over the plantar surface of the foot. Peak pressure points help in 

determination of exact points for mounting shear force measurement sensors and support 

systems for pressure redistribution. One of the limitations of measuring devices is the 

lack of standardisation in measurement. For instance, the value and the point of 

maximum peak pressure generally vary due to inconsistency in selection of the area 

under consideration. Sensor resolution defines output values, as high resolution is capable 

of triggering more number of sensors elements under same area when compared to low 

resolution sensor. Other factors adding to the complications in measurement are 
heterogeneous nature of skin and anatomy of the foot. For instance, the repeated foot 

loading by same subject can lead to different results due to change in posture. The effect 

of individual's anatomy on measurement of pressure interface has been reported to be 

subtle (Bader et al. 2005). The heterogeneous structure of body determines amount of 
loading under particular body part depending upon the amount of subcutaneous tissue and 

weight supported there. The above factors also limit the shear measuring devices in the 

same way. 

1.2.3 Shear Loading at Plantar Interface and Its Measurement 

The forces acting in the plane of the foot are referred to as shear forces. The internal 

compression experienced by the soft tissues causing damage is the resultant of both 

vertical and shear forces. The application of shear further increases the stress in direction 

of force due to compression of tissues. It has been argued that shear forces may have a 

crucial role in the causation of foot ulceration, however, measurement of the shear forces 

has been an elusive goal (Cavanagh et al. 2000) The direction of shear is another 
important factor to be considered. As per the law of friction, shear forces can act 

potentially at the regions of high plantar pressure. 

The maximum shear in walking adults is reported to be up to 45% of the maximum 

vertical at the same site. Patients with prior ulceration history were found with maximum 
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shear force of 72.7 kPa under the first metatarsal using a magneto resistive transducer 
(Hosein and Lord 2000b). Use of nylon sock was found to reduce the frictional force and 
thus lowered the maximum shear to 57.6 kPa. Maximum shear in Normals with and 
without nylon hose was recorded under third metatarsal as 86.5 kPa and 70.4 kPa. From 

the recordings of shear and pressure under foot, shear is known to be distributed more 
laterally than pressure. Another study reported maximum shear to be under lateral 

metatarsals Le third and fourth of about (33 ± 9) kPa (Perry et al. 2002). They also 

reported a higher degree of stretching of adjacent tissues than bunching due to shear. The 

values of shear reported were comparable to those reported earlier at the average of 33 
kPa without socks (Tappin and Robertson 1991). On the contrary another study showed 
consistent increase in shear with socks (45 kPa) when compared to without socks (33.75 
kPa) (Hosein et al. 1992). In a study conducted to determine the shear modulus of tissues 

using MR elastography, it was reported that shear modulus changed from 8 kPa to 12 kPa 
from a load of 100 N to 200 N (Weaver et al. 2005) under the heel pads. It is of vital 
importance to understand the mechanical properties of tissue and distribution of forces 

under the foot to help alleviate high pressures that leads to foot ulceration. 

As discussed earlier shear sensing is an important consideration in assessment of diabetic 

foot ulceration, however only a few sensors have been reported for shear measurement. 
The following section describes a few well known shear sensors. 

1.2.3.1 Magneto Resistive Shear Transducer 

A magneto resistive transducer is based on principle of change in resistance under the 
influence of magnetic field (Tappin et al. 1980). It consists of a semi-conductor coil 
mounted on a stainless steel disc as shown in Figure 1.4. The disc couples to another steel 
disc (with a small magnet mounted on it) through a groove. The purpose of the groove is 

to provide a sliding guide for uni-directional mechanism. A layer of silicone is 

sandwiched between the two plates and the displacement of semi-conductor in the 

magnetic field causes change in resistance proportional to the applied force. The sensor 
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was later modified to bi-axial for measuring shear in orthogonal directions. The resultant 

shear was calculated from vector addition of the longitudinal and transverse vectors. 

Magnet 

Stainless steel 
discs 

Silicon rubber 

Coil 

Figure 1-4: Magneto resistive based bi-axial shear transducer, (b) schematic diagram of placement of 

steel discs and silicon rubber 

The full scale deflection range is ±0.6 mm with a design range of ±50 N, which 

corresponds to 250 kPa of shear per 200 mm. Quasi-static calibration at 0.1 Hz is 

required with ±30 N sinusoidal shear input (Hosein et al. 1992). From the working 

principle it appears that sensor measures displacement rather than shear. 

1.2.3.2 Opto-electronic Shear Transducer 

A prototype miniature shear sensing transducer was developed using photodiodes and 

laser capable of measuring shear force uni-directionally (Lebar et a]. 1996). The sensor 

was based on the principle that the current increases linearly with the optical power of the 

incoming light source, as the photodiode produces a current proportional to the spectral 

intensity of the light received. Electro-optical light source of 660 nm and photodiode 

solar cell were used for fast response, easy adaptability and low cost. The amount of light 

received by photodiode was controlled by displacement of a wedge shaped mount. The 

displacement is the response of applied shear force which is mechanically resisted by 

spring mechanism shown. Sensor displacement is limited to 0.5 mm to provide relatively 
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stiff sensor and yet allowing adequate light control. This requires matching of wedge 
shape and spring stiffness; wedge controls amount of light being transmitted and 

sufficient spring stiffness allows shear measurement within specified displacement of 0.5 

mm. Rectangular flat spring with stiffness of 340 N/mm was selected depending on 

maximum load that would be applied during gait by an average subject. This sensor is 

again based on the principle of displacement. 

1.2.3.3 Three Dimensional Displacement Sensor 

Warren-Forward and their group designed a sensor in 1992, named four coil triaxial 

sensor (Urry 1999), one excitation coil and three sensing coils. The three sensing coils are 

arranged in circular layout and separated by excitation coil at the top by silicone rubber. 
Application of load alters position of excitation coil which induces voltage change in 

sensing coils corresponding to oriental displacement in three directions. Rubber is chosen 
for its specific elastic and mechanical characteristics but has the disadvantage of 
introducing non-linearity to the sensor. Also the sensor has many electro-mechanical 

components that make it prone to failure. 

1.2.4 Limitations of Shear Measuring Devices 

Besides the anatomical factors discussed in section 2.2.2, the shear force measurements 
are limited due to complexity of the force itself when compared to vertical force. The 

major disadvantage of the shear force sensors is that they all are displacement based 

sensors thus the calibrated output is related solely to the displacement; actual condition of 
loading (vertical as well as shear) is ignored by these devices. For instance in a magneto 
resistive transducers, for two different vertical loads two different shear forces would be 

required to induce the same displacement. But since the sensor is based on amount of 
displacement induced the shear output will be same. The same fact holds true for other 
displacement based shear transducers. Thus, there is a need for developing a system that 
can not only consider vertical load during shear measurement but also present the whole 
field view of stress patterns at foot the interface. 
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1.3 Need for a New Technology 

The sensors described in the preceding section have had the merits of being efficient, 

easy to use and have a moderate measuring range. However, demerits include complexity 
in design and electronics, calibration requirement and no direct visual output. As far as 

shear measurement is concerned, prior knowledge of peak pressure points is required to 

install them at appropriate positions and most of them are displacement sensors ignoring 

the effect of vertical force to determine shear forces. With bi-axial transducers it is 

difficult to mount the sensor at sites of edges because area of high pressure being too 

close to edge of inlay. Also high pressure regions with close proximity would hinder 

mounting of more than one or two sensors, such as four metatarsals. Thus a sensor should 
be designed which can measure the actual condition of foot loading with the possibility 

that forces could be separated and visualised under different loading conditions. This 

research is aimed at developing a photoelasticity based sensor to overcome the above 

mentioned limitations of the existing technology and finally be used to develop a system 
for early detection of foot ulceration from the fringe patterns induced under foot loading. 

Photoelastic materials when loaded with internal or external forces, exhibits fringe 

patterns representing the stress. This phenomenon of photoelastic materials can be 

exploited in developing sensors suitable for different applications. The low cost and 
dynamic response from photoelastic material can be extended to any sensing applications 
if coupled with appropriate classifier algorithms. Intelligent techniques need to be 

devised to extract and analyse the photoelastic data that can be used to calibrate against 

any desired outputs. Previously sensors have been developed for specific industrial 

applications like torque and bending load determination (Chung 1998; Noroozi et al. 
2003). 

However, the attempts to use photoelastic effect for determining diabetic foot loading 

have been limited to vertical forces and discrete sensing in the foot regions (Acran and 
Brull 1976; Rhodes et al. 1988). In most cases research has been confined to greyscale 

photoelasticity with empirical relations between some statistical fringe parameter and the 

load. The use of sole statistical parameter limits the accuracy, repeatability and the 
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tolerance of the system. This research takes photoelasticity a step further towards 

developing a system for diabetic foot measurements. 

1.4 Aims and Objectives 

Use of photoelasticity can be advantageous for sensing applications since it can exhibit 

actual conditions of loading in terms of providing pressure patterns, load evaluation and 
direction of shear force. When compared to the existing sensors photoelasticity based 

sensor can provide direct visual output of high pressure points. The discussions so far 

have underlined that both vertical and shear forces acting at plantar interface were 
detrimental and were the risk factors to foot ulceration. The presence of shear forces 

further damage deep tissues through compression and stretching. Determination of shear 
force and its direction are important to understand its effect on foot ulceration and this 

may also lead to better design of orthopaedic footwear. 

The aim of the project is to develop a portable shear sensing device based on 

photoelasticity for biomedical applications. The final sensor would provide qualitative 

and quantitative load information. The objectives of this research are: 

* to design a sensor with appropriately selected photoelastic material and 

components 

* to develop a prototype shear sensor that can be used for detennining shear 
force at the plantar interface in diabetic subjects 

* to obtain qualitative information from the visual output of the sensor 

e to develop a classifier methodology that can be used to predict foot ulceration 

at an early stage 
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1.5 Preview 

The research presented in this thesis includes study of currently available technology in 

vertical and shear force measurement and exploring the use of digital photoelasticity for 

biomedical sensing. Appropriate selection of modulus of photoelastic material is very 
important. The amount of shear force applied combined with the modulus and optical 

properties of material determine the extent to which fringes will be generated. Chapter 2 

presents the basic physics of photoelasticity and various elements included in the 

application. The available photoelastic stress analysis techniques were revisited and 

enhanced for force measurement. Chapter 3 provides a detailed design and description of 

experimental rigs used in the research. Chapter 4 is exclusively devoted to use of 

conventional photoelastic techniques of RGB (Red, Green & Blue) calibration and phase 

shifting methods as applied to unconventional loading scenarios. The drawbacks 

experienced in conventional photoelastic techniques in force measurement were 

overcome by incorporating neural networks for inverse analysis of photoelastic data in 

Chapter 5. The photoelasticity based sensor would aid to immediate recognition of area 

of higher stresses from visual inspection of fringes. Foot regions with callus and hard 

tissues will generate different fringe patterns when compared to soft areas. Chapter 6 

presents implementation of neural networks for decoupling vertical as well as shear 
forces including the case study for qualitative whole field image analysis of foot loading. 

The research methodology involves digital image acquisition of photoelastic fringes 

using flatbed scanner and specifically designed experimental setups. The prototype 

sensor is based on an external platform for barefoot analysis using reflection 

photoelasticity. Finally Chapter 7 concludes with research achievements and future 

research directions and potentials. 
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Chapter 2 Literature Review 

2.1 Introduction 

The need for a new system based on photoelastic principle for shear measurement in 

diabetic foot was discussed in the first Chapter. This Chapter provides details on 

photoelasticity; its basics, definitions, optical elements, material properties, light sources 

and image acquisition systems. Later sections discuss the major photoelastic techniques 

followed by its applications in sensing for industrial and clinical environment. 

2.2 Principle of Photoelasticity 

Photoelasticity is an optical technique for experimental stress analysis for solving 

engineering problems. It is based on the principle of temporary birefringence i. e. double 

refractive index, possessed by some non-crystalline transparent materials. Under state of 

external or internal stress the material exhibits birefringence characteristics, which splits 

the incident light into two components travelling at different speed. At emergence the two 

beams are out of phase and the difference in phase is dependent on the value of stress at 

that point. The greater the stress, the higher is the birefringence and hence relative 

retardation between the two resulting light components. This retardation or the temporary 

state of double refraction of photoelastic materials is used for stress analysis. The 

technique can be implemented in either transmission or reflection mode depending upon 

the application requirement. This research implements photoelasticity in reflection mode 
due to the application requirement where transmission is not optional. 

The incident light is polarised in nature and falls perpendicular to the optic axis of the 

material to induce the photoelastic effect. Figure 2.1 shows isochromatic fringe patterns 

generated in a section of a stressed model seen through a configured polariscope. The 

whole-field view of stress patterns is represented in form of coloured fringes under white 
light. The fringes are designated by a number N, called Fringe Order. 
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Figure 2-1: Photoelastic fringe patterns (isochromatics) generated in a section of a stressed model 

The conventional photoelastic applications involve determining regions of high stress and 

value of stress-strain in different regions. 

The analytical relation used to find the principal strain difference in reflection 

photoclasticity is given by Equation (2.1 ). 

Nf 
C2 ý 

2t 
(2.1) 

Where, c, - E, is the principal strain difference, N is the fringe order, f is the fringe value, 

t is the thickness of the photoelastic material. The relation can be modified to represent 

principal stress difference as shown in Equation 2.2. 

a] -U2 ýNfE (2.2) 
2t(l+v) 

Where, E is the modulus of elasticity of the material and v is the Poisson's ratio. 

The sensitivity of a photoelastic material is represented by its strain optic coefficient, K 

and Equation (2.1) can be modified to include the K parameter as in Equation (2.3). 

C2 --ý 
NA 
2Kt 

(2.3) 
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Where, A is the wavelength of the light source. 

Whether the fringe patterns represent principal stress or strain difference depends on the 

mathematical relation used to determine the values. Henceforth, the term 'stress' will be 

used as the parameters under evaluation. 

2.3 Photoelastic Fringes 

The photoelastic fringes generated are designated either as isoclinics or isochromatics. As 

a model is loaded from zero stress condition, the fringes start to appear and propagate 
from the point of application of load. Depending on the configuration of polariscope, 

either both isoclinics and isochromatics can be seen or only isochromatics can be 

visualised. This section describes the type of fringes with their properties in accordance 

to the type of light source used. 

2.3.1 Isoclinic Fringes 

The isoclinics show the direction of principal stresses in a stressed model and always 

appear black irrespective of type of light source used as shown in Figure 2.2(a) with a 

monochromatic light and Figure 2.2(b) with a white light. It is important to note that the 

isoclinics in these figures show only those points on the model whose principal stress 

axes coincide with the axes of polariser and analyser. However, different optical 

orientation of polariser and analyser is required to generate a whole field view of 
isoclinics. 
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Figure 2-2: (a) A stressed C-shaped model under monochromatic light, (b) under white light for 

plane polariscope configuration 

Isoclinic fringes do not propagate or move with increase in load unless a high 

deformation of material occurs. Isoclinics are dependent on the orientation of optical 

elements i. e. the polariser and the analyser. 

2.3.2 Isochromatic Fringes 

The principal stress difference is shown by isochromatic fringes. Isochromatic fringes 

would appear black when illuminated with a monochromatic light, Figure 2.2(a) and 

coloured with white light, Figure 2.2(b). Under monochromatic light source the 

isochromatics are designated by integral fringe orders only i. e. a black fringe will 

represent an integral fringe order (0 or I or 2 or 3 ... ). New isochromatic fringes appear 

with increase in load and thus in order to determine integral fringe order at a point under 

monochromatic light source, it would be required to count the number of fringes that 

passed the point of interest during increase of load. To determine fractional fringe orders 

advanced techniques are required like Tardy's Compensation as will be discussed later in 

this chapter. However, under white light the complete fringe order can be determined 

from the colour of the fringe. 
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2.4 Optical Elements in Photoelasticity 

A configured arrangement of optical elements is required to visualise the fringes 

generated in a photoelastic material. A polariscope is an instrument required to bring the 

two emerging light beams, which are out of phase due to stress in the photoelastic 

material, into the same plane to form visual photoelastic fringes. There are two type of 
basic polariscopes (plane and circular) depending upon the type of information to be 

visualised. A plane polariscope helps visualise both isoclinic fringes and isochromatic 

fringes and a circular polariscope eliminates the isoclinics and thus revealing only stress 
information. A polariscope has two main elements as described below. 

2.4.1 Linear Polariser 

The basic component of a polariscope is a linear polariser. Light beams from a common 
light source such as light bulbs or sun vibrate in all possible directions; a linear polariser 
filters it into beams that vibrate only in the direction of the axis of polariser. Two linear 

polarisers can be coupled together to fonn a plane polariscope. 

2.4.2 Quarter Wave Plate 

A quarter-wave plate is a form of retarder of known thickness that splits the incident 

linearly polarised light into two beams. It provides the incident beam a quarter shift in 

wavelength on emergence, thus converts a linearly polarised light into a circularly 

polarised light. Quarter-wave plates have two axes, slow and fast, with different 

refractive indices that accomplishes the quarter shift (Edmund Optics 2004). Insertion of 

quarter-wave plates to a plane polariscope alters the configuration to a circular 

polariscope. 

2.4.3 Plane Polariscope Configuration 

A Plane polariscope arrangement is made by using two linear polarisers kept crossed to 

each other. Plane polariscope is the simplest configuration that shows the stress 
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information. Figure 2.3(a) shows a schematic setup for a plane polariscope and Figure 

2.3(b) shows the fringe patterns generated for a circular disc under diametral 

compression. Equation (2.4) represents the intensity relation for a plane polariscope 

configuration. 

I, sin 2 20 sin '- 
6 (2.4) 
2 

Where, IP is the output intensity, I,, is the input intensity, 0 is the isoclinic angle and o5 

is the retardation at any point of interest. 

Since the elements are kept crossed to each other the configuration is called dark-field 

setup. The photoelastic information generated has both isoclinic and isochromatic fringes 

as indicated in Figure 2.3(b). The fringe visualisation under monochromatic light is 

different from that under a white light (discussed in section 2.6.2). 

Compressive load 

Photoelastic7el 

Polariser 
axis 

Anaýy er axis A 

Reference axis 

Isochromatics 
Light source 

(Olsoclinics 

Figure 2-3: (a) Plane polariscope setup, (b) Fringe patterns generated with the setup under 

monochromatic light 

2.4.4 Circular Polariscope Configuration 

The fringe information from a plane polariscope has both isoclinic and isochromatic data 

overlapping each other. A Circular polariscope eliminates the isoclinic fringes using 

quarter wave plates and thus facilitates the stress analysis. There are different 

arrangements used for circular polariscope setup, the most commonly used has I" quarter 
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wave plates at 450 to the polariser and 2 nd plate at 135' to reference polariser axis. The 

Equations (2.5) & (2.6) correspond to the intensity relation for a dark and a light field 

circular polariscope. 

Id 
a sin 

2 45 
(2.5) 

2 

I, Iý COS2 
15 

(2.6) 
2 

Where, I. and I, are the output intensities for a dark and light field configuration, a 
is 

the input intensity and 6 is the retardation at the point of interest. 

Figure 2.4(a) shows the schematic setup for a dark-field circular polariscope and Figure 

2.4(b) shows the fringes generated from the corresponding circular polariscope setup with 

designated fringe orders. 

Compressive load 

Pholoelastictod I 

Sý 
ý4' 
S 

Polariser axis 

Analyser axis 
Reference axis 

'l, ochroniatic, Light source 

Figure 2-4: (a) Dark-riled circular polariscope setup, (b) Isochromatic fringe patterns under 

monochromatic light 

2.4.5 Determining Complete Fringe Order 

The basic configuration of a plane or circular polariscope only reveals integral fringe 

orders (0,1,2 ... ) corresponding to points with direction of stress coinciding with the axes 

of polariser and analyser. In order to determine the complete fringe order at other points; 

several rotations of optical elements are required. Tardy's compensation is one of the 

techniques for determining the complete fringe order in point based analysis (Ramesh 
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2000). For instance, to determine complete fringe order at point 'C' in Figure 2.4(b), the 
first step would be to align the polariscope so that principle stress direction at the point of 
interest coincide with the axis of polariscope, for this a plane polariscope configuration is 

set and both polariser and analyser are rotated together until an isoclinic fringe passes 

through the point of interest. The second step involves the rotation of analYser alone to 

move an integral fringe order towards the point of interest and the direction of rotation 
determines whether a higher or a lower fringe order moves. Finally, by measuring the 

angle of rotation and its direction complete fringe order, N at the point of interest is 

calculated by using Equation 2.7. 

N=n±r (2.7) 

Where, N is the fringe order at the point of interest, n is the moving integral fringe order, 

r is the fractional fringe order detennined by the angle of rotation (r=a/ 180 ); a is the 

angle of rotation. 

2.5 Photoelastic Material Properties 

A photoelastic material can be used in two different ways for stress analysis either as a 

model or as a coating. Models are implemented more often in transmission mode and 

coatings in reflection mode. For reflection mode the photoelastic material is glued to the 

test part and the strain is transferred from the test part to the coating. A configured 

polariscope is used for visualisation and analysis. The type of coating material used is 

application dependent and some of the parameters that affect the selection of the coating 

are discussed below. 

2.5.1 Strain Optic Co-eff icient 

Strain optic coefficient is an optical property of photoelastic materials and represents the 

sensitivity of the material to strain. It is designated by the letter K and is a dimensionless 
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quantity. The value of K needs to be recalibrated for the type of photoelastic material 

used in a set of experiments (Chapter 3section 3.3.1). The strain optic coefficient is 

assumed to be independent of the wavelength of light source used. Higher the value of K, 

more sensitive the material is and thus less strain is required to induce fringe patterns. 

2.5.2 Modulus of Elasticity 

The sensitivity of photoelastic materials (K) to the applied strain is found directly 

proportional to its modulus of elasticity (E) i. e. as the sensitivity increases so does the 

modulus of elasticity. Thus materials with higher modulus of elasticity require less 

amount of strain to induce fringe patterns. However, for high modulus materials the 

amount of force required to induce the strain will also be high. The above factors may 

limit photoelastic applications, for instance, applications where a photoelastic material 

with low modulus and high sensitivity is required. 

2.5.3 Thickness of Material 

The thickness (t) of photoelastic material is another important parameter since increase in 

thickness increases the sensitivity of coating. On the other hand, when photoelastic 

material is used as a model, the fringe response is independent of the thickness. The 

thickness, however, will affect the sensitivity of photoelastic models that are used as 

sensing medium and load unconventionally. 

2.6 Light Sources in Photoelasticity 

The type of light source used in photoelastic experiments depends on the application and 
the accuracy required and can range from a monochromatic to a custom made RGB light 

source (Yoneyama et al. 1998; Umezaki and Kodama 2000). This section explains two 

commonly used light sources in digital photoelasticity. 
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2.6.1 Monochromatic Light Source 

A Monochromatic light refers to the light specific to a particular wavelength. The fringe 

patterns generated always appears in greyscale under monochromatic light. The most 

commonly adopted monochromatic light source in photoelasticity is a low pressure 

sodium vapour lamp (also called SOX). An SOX emits a constant yellow light at a 

wavelength (A) of 589 mri with a high intensity. This type of light source is used for both 

point based techniques as well as phase shifting for whole-field analysis. Figure 2.5(a) & 

2.5(b) shows the images of a disc under diametral compression obtained using a custom 

made LED (yellow-589 nm) light source used in this research (Chapter 3 section 3.4). 

Figure 2-5: Disc under diametral compression (a) Plane, (b) Circular polariscope with specifically 

designed LED light source (k=589) 

Monochromatic light sources provided high quality images and are also ideal for 

comparison purposes as they serve as a reference light source. The cost of using a 

monochromatic light source like SOX is high and the setup tends to be bulky. With the 

advent of modern technology and better image acquisition systems, white light sources 

are widely used in photoelasticity due to the economical reasons and portability. 

2.6.2 White Light Source 

A White light source is the most inexpensive form of light source that can be used in 

photoelasticity. It has been used both in calibration based techniques (Ajovalasit et al 

1995a; Ramesh 2000; Quiroga et a]. 2002a) and phase-shifting (Patterson and Wang 

1998; Ramesh 2000; Hobbs et a]. 2003; Lesniak 2004). 

24 



Literature Review 

While using white light the isochromatic fringe patterns will appear coloured except for 

the zero fringe order (no stress), which is black, this facilities quick manual analysis. The 

coloured representation of stress fields led to the advent of Look up Table (LUT) based 

photoelastic techniques like Three Fringe Photoelasticity. The Table 2-1 provides a part 

of isochromatic characteristic (colour code) till fringe order 2 under a white light 

(Zandman et al. 1997; Ramesh 2000). The visualisation of colours may vary with 
different white light sources but the basic sequence of colour remains the same under any 

white light. The use of white light in photoelastic research has extensivelY been reported 

(Gotoh et al. 1996; Quiroga and Botella 2001; Quiroga et al. 2002a) including techniques 

like three fringe photoelasticity (Ajovalasit et al. 1995a; Ramesh and Deshmukh 1996) 

and in phase shifting (Ajovalasit et al. 1995b; Patterson et al. 1996; Ramesh and Mangal 

1997; Acquisto et al. 2002). 

Table 2-1: Isochromatic characteristic chart using compact fluorescent light 

Colour 

Relative 

Retardation (45 nm) 

Fringe order 
(N) 

Black 0 0 

Grey 160 0.28 

White 260 0.45 

Pale Yellow 350 0.60 

Orange 460 0.79 

Dull Red 520 0.90 

Purple 577 1.0 

Deep Blue 620 1.06 

Blue Green 700 1.20 

Green Yellow 800 1.38 

Orange 940 1.62 

Red 1050 1.81 

Purple 1150 2 
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The fringe order values tabulated against the colour in Table 2-1 can be compared to the 

sequence of colours in the disc model in Figure 2.6, illuminated by a compact fluorescent 

tube. The optical elements (polarisers, quarter wave plates) were placed directly in front 

of light source and camera as experiment must be carried out using polarised light to 

visualise the fringes. 

Figure 2-6: Disc under diametral compression (a) fringes with a plane polariscope, (b) fringes with a 

circular polariscope 

White light sources with a high spectral response not only provide better LUTs but also 

high quality images for phase wrapping and unwrapping used in phase shifting (Ng et al. 

2003). 

2.7 Image Acquisition Systems 

The image acquisition system is one of the main components of digital photoelasticity, as 

any analysis or computation can only be done after an image has been acquired. The 

imaging systems range from greyscale cameras to high end RGB cameras. This section 
describes some of the conventional imaging devices and their advantages and 

disadvantages. 
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2.7.1 Greyscale Imaging 

The image acquired from a monochromatic light source provides integral fringe orders 

(0,1,2 ... ) and can be used both for a point based analysis or phase shifting. Figure 2.7 

shows an image acquired using a greyscale camera with the model illuminated using a 

polarised monochromatic light source. 

Figure 2-7: (a) Dark field and (b) Bright field images of disc under diametral compression acquired 

using greyscale camera under monochromatic light source (Ramesh 2000) 

A greyscale camera needs to be coupled with a frame grabber to display the image for 

further analysis on a computer. The image from a monochromatic light and a greyscale 

camera cannot be used for colour coding (LUT) technique. 

2.7.2 RGB Imaging 

An RGB camera refers to a computer controlled CCD chip integrated camera with an 

RGB image output with in-built colour filters. The image resolution of a CCD chip can 

range from I to II Mega pixels or even higher as the technology develops thus providing 

a finer spatial resolution. However, higher the resolution more expensive is the camera. 

Low cost commercial camcorders can be an alternative to RGB cameras, as used in three 

fringe photoelasticity (Ramesh and Deshmukh 1996). Digital camcorders can provide up 

to IM resolution with 30 frames per second. The images acquired in Figure 2.6 were 

acquired using a commercial digital camera (SP 500, Olympus). Use of commercial 
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digital cameras and camcorders for look up table (LUT) based calibration in 

photoelasticity is limited due to the difficulty of maintaining camera settings (zoom, 

aperture, shutter speed) during calibration and analysis. However, by using a camera 

control package, full control over digital cameras can be achieved and thus overcome the 

above limitations with by product of higher resolution. 

It is worth mentioning that the individual image planes of an image acquired using RGB 

camera can be approximated as filtered images from different monochromatic light 

sources (Ramesh 2000; Ng et al. 2003). However, most of the literature has emphasised 

on using only the Green plane image due to better contrast compared to Red or Blue 

plane. Figure 2.8 shows an RGB image with isolated image planes of R, G and B from a 

white light. The quality of individual planes is low compared to an image from a 

monochromatic light but at the cost of accuracy the system becomes efficient and 

portable. 

Figure 2-8: An RGB photoelastic image with isolated R, G and B planes for individual image plane 

comparison in terms of spectral response 

The determined wavelength of Green plane (551.9 nm) was found to be closest to the 

ideal wavelength of green (546.1 nm) (Gonzalez and Woods 1993) which is another 

reason for using green plane image for analysis in phase shifting. The Red (598.1 nm 

against ideal 700 nm) and Blue (445.7 nm against ideal 435.8 nm) plane wavelengths 
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(Ramesh and Deshmukh 1997; Ramesh and Mangal 1997; Ramesh 2000) are relatively 

far from ideal. In evaluation of equivalent wavelength from R-G-B planes of the image, 

the type of CCD camera and the light source used play an important role, as colour 

response is dependent on the emitted light and camera filters. 

In this research two different image acquisition systems were used; a commercial digital 

camera (SP500, Olympus) and a scanner based system, described in Chapter 3. In the 
imaging system based on a commercial digital camera, it was found that the Red plane 
image had a higher spectral response and thus would generate higher quality phasemap 
during phase shifting. And since spectral response of the light source is also responsible 
for the quality of individual image planes, Red plane wavelength was determined for this 

research experiments (Chapter 3 Section 3.3.2). The closest match to ideal wavelength 

should not matter as the determined wavelength of image plane is used for calculations. 

The photoelastic principle and elements studied so far combined with the image 

acquisition system led to the advent of digital photoelasticity. The section below 

discusses some of the well known photoelastic techniques followed by applications of 

photoelasticity in sensing. 

2.8 Photoelastic Techniques 

Digital imaging is the basic requirement in modem photoelastic experiments and all the 

photoelastic techniques use digital imaging including three fringe photoelasticity 
(Ajovalasit et al. 1995; Ramesh 2000; Jones and Wang 2003), phase shifting, multi- 

wavelength techniques (Hu 1999; Chen et al. 2001). These techniques can be categorised 
by the number of images required for analysis. 

Single image analysis technique use only one image and manipulates data from all the 

three image planes i. e. Red, Green and Blue. As this requires only one image, the 
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processing is much faster and makes the analysis dynamic in nature. Some of the 

techniques using single image are discussed below. 

2.8.1 Look Up Table Based Technique 

The isochromatic characteristic table presented in section 2.6.2 is a way of qualitatively 

analysing coloured photoelastic fringes. In order to derive qualitative information (stress) 

from the colours it is important to record the colour information in detail. A systematic 

calibration is required in order to record the colour information against a unique fringe 

order to form a LUT. The technique was developed by Ajovalasit (1995a) and is also 

known as three fringe photoelasticity (TFP). The colours tend to merge beyond fringe 

order 3 with conventional white light, thus limiting the technique to a maximum of third 

fringe order. However, the technique is simple in providing isochromatic information of 

complete fringe order, N upto to 3. TFP exploits the fact of colour sequence to generate a 

LUT with colour information against fringe order. During analysis the RGB triplet value 

of a test point is compared to the LUT values and fringe order is determined to perform 

stress analysis using Equations 2.1 to 2.3. 

A number of modification and improvements have been added to the technique 

(Ajovalasit et al. 1995a; Yoneyama and Takashi 1998; Ramesh 2000; Quiroga and 

Botella 2001) over the period of time. A detailed description of the techniques is 

presented here. 

2.8.1.1 Calibration Procedure 

The calibration procedure involves subjecting a beam of known dimensions to four point 

bending load. The four point bending load generates uniform stress patterns in the mid 

section of the beam along the x-axis and a linear variation of stress along the y-axis of the 

model. The model is illuminated with a white light and visualised under a circular 

polariscope configuration. Following the general colour code from Table 2-1, appropriate 

bending load can be applied to induce just the fringe order required (for instance 1,2 or 

3 ... ). Since the stress distribution is known along different axes and induced fringe order 

30 



Literature Review 

is known, an RGB image is acquired. Images are acquired under different bending loads 

to incorporate different fringe orders and to account for the variation in fringe gradient 

(Ramesh 2000). 

RGB triplet data is extracted along axis of linear variation in fringe order and the process 
is repeated for 30-40 lines to average the results and remove any noise. The fringe order 

at each pixel is calculated following the linear relation from Equation 2.8. 

Ni =N 
I 
n 

(2.8) 

Where, N is the ffinge order induced, Ni is the fringe order required at the pixel of interest, i 

is the pixel number and n is the total number of pixels in the selected line. 

The extracted RGB triplet values and the detennined fringe orders are coupled to form a 

database or LUT that has colour information against fringe order. This LUT can then later be 

used for analysis of test images with unknown stress fields. Generally more than one LUT is 

prepared to account for different fringe gradients; 0-1 for low, 0-2 for medium and 0-3 for 

high fringe gradient. 

The above procedure may vary depending on the accuracy of results and the processing of 
images required, however, the basic procedure and the data extraction remains the same. The 

procedure followed in this research is explained in Chapter 4 section 4.2.1. However, there 

are two important factors that may affect the measurement accuracy for LUT based 

technique; the geometric and chromatic parameters (Quiroga and Botella 2001). The 

geometric parameters include the camera aperture and distance between the model and 

the camera. The camera aperture determines the amount of light falling on the CCD 

which can cause a variation in the colour information. The varying distance between the 

camera and the model affects the intensity of the light falling on the model. The 

chromatic parameters include the thickness of model, the RGB response of camera filters 

and the emission spectrum of light source. The chromatic parameters are hard to control 
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as they are linked to the hardware, thus it is advised to focus on controlling the geometric 

parameters and compensate wherever possible. 

2.8.1.2 Analysis of Test Images 

The final LUT is prepared which can be used for analysing the test images. During the 

analysis, it is possible that the RGB triplet value of the point under consideration may not 

be available in the database. To account for this, a search is carried out to find the closest 

match of RGB triplet using the least square method using Equation 2.9. 

e=(R, -R. 
)2 + (G, - G,. )2 +(B, -B. 

)2 (2.9) 

Where, e is the error, (RGB). are the measured RGB triplet values at the test point and 

(RGB), are the stored RGB triplet values in the LUT. 

The triplet value with minimum error is selected and corresponding fringe order is 

assigned, which can be used to find the stress difference. The technique has been 

implemented and modified by many researchers (Ajovalasit et al. 1995a; Ajovalasit et al. 
1995b). The circular polariscope setup implemented in this technique uses quarter wave 

plates that are designed for a specific wavelength only. Such plates are efficient for stress 

analysis using monochromatic light source, but they introduce errors with white light. Since 

white light is composed of a wide range of wavelengths, use of conventional quarter wave 

plate is incapable of introducing a 'quarter shift' to all the wavelengths, thus introducing 

errors in calculations. Ajovalasit accounted for quarter plate error and suggested that 

calibration be carried out at isoclinics of 22.50 in dark field polariscope setup. Ramesh 

and Deshmukh (1996) accounted for fringe gradient by preparing 3 tables (0-1,0-2 and 
0-3 fringe order) instead of just one. In order to minimise the noise they used RGB triplet 

obtained from the difference of dark and light field in the image. Quiroga et al. (2002) 

modified the standard Euclidean cost function with an improved regularised algorithm, 

which had two terms one maintaining the minimum Euclidean distance and the other for 

piecewise continuity of isochromatics. The light source was replaced by a discrete 
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fluorescent lamp giving an advantage of higher modulation of RGB signals over the 

conventional white light. 

2.8.1.3 Factors Influencing the LUT 

Besides the above mentioned issues there are some factors that influence the accuracy of a 

system based on the colour code calibration: 

1. Geometric Variations: Research has shown that both the chromatic and geometric 

parameters influence the accuracy of technique (Quiroga and Botella 2001). The 

geometric parameters can, however, be controlled in the following way: 

a. rgb: Implementing rgb instead of RGB to account for the non-uniformity 

of the light illumination. The rgb are computed by normalising the RGB 

triplet values. 'Ibough they account for the geometric variations to some 

extent but generate erroneous results at low fringe orders due to noise 

amplification (Ajovalasit et al. 1995a; Ramesh 2000; Quiroga, et al. 2002b). 

b. Background subtraction: The background subtraction can help in overcoming 

geometric variations of non-uniform illumination to some level. A base image 

under 'zero load' is subtracted from each image under analysis and also 
during the calibration procedure; although background subtraction may not be 

an ideal approach if the model defori-nation is high (Ramesh 2000). 

11. Resolution: Since all the possible RGB triplet values against the fringe order cannot 
be obtained and stored in the database, the following points need to be considered 
during database creation: 

a. Bit-depth: Most digital cameras support only 8-bit (0-255) image acquisition 

per channel'. If the calibration database is built using a higher bit value like 

1 R, G and B channels 
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10-bits (0-1023) per image plane, the minimum error search can be improved 

as the resolution is much higher (Ramesh 2000). 

b. Image size: Another approach is to calibrate at a higher pixel resolution (say 4 

Mega pixel) and perforrn the analysis at a lower resolution (say 2 Mega 

pixel). Calibrating at 4 Mega pixels will include more values of RGB triplets 

and thus minimising the errors. 

c. Calibration database: Building more than one calibration database will 
account for not only the resolution issue but also for the varying fringe 

gradient. It is also important to note that the calibration is performed on a 
linear fringe variation but in many cases the test specimen will have non- 
linear stress distribution and a different ffinge gradient. Therefore, more than 

one calibration database is necessary. 
d. Dark and lightfield. The calibration database can be built for both light field 

and dark field polariscope setup, thus further minimising the errors in the 

final results. But this approach makes the system less dynamic in nature as it 

requires two images with different optical orientation (Ramesh 2000). 

e. Light intensity: Selecting the appropriate light intensity is important for the 

quality of image acquired, but care must be taken to avoid saturation of RGB 

planes with too high intensity, so that the colour information is not lost 

(Ramesh 2000). 

It is important to account for the above factors in order to build a robust and accurate 

calibration database. Care must also be taken for the camera setting which includes 

appropriate zoom, focus and the aperture. The whole procedure is rather complex and needs a 

controlled environment. The technique is limited to a maximum of third ffinge order with a 

conventional white light source due to low contrast at higher fringe orders (Ramesh 2000; 

Quiroga et al. 2002a; 2002b). The RGB signals tend to attenuate beyond the third fringe 

order, making it difficult to employ this technique but can be extended to higher ffinge 

orders if a high spectral response light source is used and robust algorithms for fringe 

tracking (Quiroga et al. 2002a; 2002b) are implemented. A range of algorithms and 
techniques have been proposed and implemented to eliminate or reduce these errors; 
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normalised RGB values (Ajovalasit et al. 1998), subtraction of dark and bright field 

images (Ramesh and Deshmukh 1996; Ramesh 2000), B-spline curves for smoothing the 

results (Govindarajan 1997). 

2.8.2 Tri-Colour Based Technique 

The tricolour image techniques overcome the coloured based LUT drawbacks by 

implementing specifically designed light sources (Yoneyama et al. 1998; Umezaki and 

Kodama 2000). An approach was developed by Yoneyama et al. (1998) by treating all the 

three planes of coloured image as monochromatic images. A special light source was 
designed for this purpose by combining mercury light for blue and green and a halogen 

light for red. Interference filters and dichroic mirrors were used to achieve this and the 

intensity of each light source was controlled by using a neutral density filter depending 

upon the spectral response of the camera. Non-linear equations were developed for 

evaluation of isochromatic and isoclinic parameters and the validity of this technique was 

proven with the computer generated data and the experimental data. However, the 

technique failed to obtain isochromatic at points of isoclinic interactions and at points 

where R-G-B intensities tend to be equal. The setup was rather complex due to the 

involvement of two light sources, filters and the mirror arrangement. 

2.8.3. Phase Shifting Technique 

A large number of techniques use more than one image for higher accuracy and in order 
to extract both isochromatic and isoclinic data, hence are called mulit-image techniques. 
Even the colour code based calibration techniques have been reported to use two images, 

dark and bright field and combines the LUTs to achieve higher accuracy (Ramesh 2000). 

Phase shifting is the most promising multi-image technique providing both isoclinic and 
isochromatic information. 

Phase-Shifting was introduced by Hecker and Morche in 1986 (Ramesh 2000) and is 

considered to be the most accurate technique for full field analysis. Patterson and others 

continued the work of Hecker and Morche and significantly contributed towards further 
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development of this technique (Patterson and Wang 1991; Buckberry and Towers 1996; 

Patterson et a]. 1996; Patterson and Wang 1998; Patterson 2002; Hobbs et al. 2003; 

Ajovalasit et al. 2007). Phase-shifting technique is based on acquisition of phase stepped 

images of photoelastic model at different orientation of the optical elements (Ramesh and 

Ganapathy 1996; Ramesh 2000). Figure 2.9 shows six phase stepped images obtained 

from a disc under diametral compression with I" polariser and quarter wave plate at 

TrAand37c/4 respectively and Table 2-2 listing the orientation of 2 nd polariser and 

quarter wave plate. It is important to note that the configurations in the table show one of 

the many possible combinations of optical elements to obtain the phase stepped images. 

Table 2-2: Optical arrangement for phase stepped images 

Image Second Quarter Wave Plate Analyser 

1 0 7c/4 

2 0 37c/4 

3 0 0 

4 7r/4 7c/4 

5 7E/ 2 7c/ 2 

6 37c/4 37c/4 

Figure 2-9: Six phase stepped images for phase-shifting technique acquired in reflection mode for a 

disc under diametral compression 
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The intensity equations for these images are used for determination of isochromatics and 

isoclinics as given by Equations 2.10 and 2.11. 

0=I tan -1 ( 
i5 _13 

(2.10) 
2 '4 '6 

= tan-'( 
14 -16 

cos20(i, -i, ) 

Where, 0 is the isoclinic value, J is the retardation (isochromatic value) and i, are the 

intensity representation of phase stepped images, n is an integer (1,2... 6) 

The results obtained from the Equations 2.10 and 2.11 have retardation in the range of 

-7c to it radians and the isoclinic in the range -7c/4 to7r/4 radians. For the results to 

be represented in form of an image, the value of isoclinics and isochromatics needs to be 

converted from radians to digital form (0-255) and also the ambiguity of +/- sign needs to 

be removed for the isochromatics. Figure 2.10 shows the isoclinics and isochromatics 

represented in form of an image. 

n 

Figure 2-10: Phasemap (a) Isoclinics between - )T /4 to )T / 4, (b) Isochromatic phasemap between 0 

- )T 

Further algorithms (Asundi and Sajan 1997; Su et a]. 1997; Asundi 1998; Kihara 2003) 

are required for phase unwrapping of the isochromatic data obtained. 

37 



Literature Review 

As seen in Figure 2.10 the errors are prominent at the point of loading and would be 

difficult to unwrap. These errors can be suppressed to some extent by a precise loading 

mechanism. Some of the errors are unavoidable due to isoclinic-isochromatic interactions 

as isoclinics are indeterminate at the points where retardation is a multiple of A. Isoclinic 

values also act as noise at the points where the retardation values are very close to 0, 

7r, 27r and are multiples of 7c (Ramesh 2000). However, a multi -wavelength light source 

or step loading can be used to determine isoclinic values in the erroneous zones (Ramesh 

and Tamrakar 2000; Villa et al. 2004). 

Figure 2.11 plots the fractional fringe order along the horizontal diameter 'm-n' of the 

disc, the fractional fringe order can be unwrapped to achieve the complete fringe order N. 

Adding fractional fringes order in Figure 2.11, the mid-point 'P' of the disc gives N to be 

3.7. 
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Figure 2-11: The determined fractional fringe order along horizontal diameter of the disc 

The technique was initially limited to due static nature of the systems in collecting six 
images one by one, later a novel instrument was designed by Patterson and Wang (1998) 

for simultaneous acquisition of four phase-stepped images using four digital cameras. 

Using this setup dynamic operation of the whole process was possible, however, one 

major disadvantage was that the setup was bulky. A modification to this design was mde 
(Hobbs et al. 2003) using a beam-splitter to create four images on the same CCD chip. 
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Further improvements were made and a new instrument was developed which is 

commercially available as pelidoscope (Lesniak et al. 2004) that uses a simple convex 
lens split into four and glued back with a small gap between the four pieces. Thus each 

part of lens acted as a separate imaging element and different optical arrangement of 

polariser and quarter wave plate were set for each part. The instrument was capable of 
focusing four phase stepped images on a single CCD. 

2.9 Application of Photoelasticity in Sensing 

Perception of something and its translation into meaningful results is defined as sensing, 

since a photoelastic material when stressed causes an optical retardation, this property of 

material has been used in many sensing applications. Applications include robotic 

grippers, slip sensors, industrial sensors, and medical sensors to name a few. In sensing 

applications the fringe patterns induced in the material may need to be analysed in a 
different way than the conventional photoelastic techniques such as phase-shifting, TFP 

or any other stress analysing method. In sensing the main objective is detennination of 

applied load or some other triggering parameter. Some of the applications where 

photoelasticity has been used for sensing are discussed here justifying the use of 

photoelasticity in this research. 

2.9.1 Industrial Applications 

Photoelastic sensors have been used in a range of applications, from robotic grippers to 

bending load and torque sensors (Hopkins et al. 1991; Saad et al. 1994; Chung 1998; 

Eghtedari and Morgan 1998; Noroozi et al. 2003). Some sensors based on photoelastic 

effect have been developed for robotic applications to complement the sensing deficit. 

Industrial robots require sensory information to undertake intelligent decisions regarding 

the manipulation of the objects in an industrial environment to be adaptable. This 

information is delivered by an array of sensors on the robot gripper providing information 

on slip, temperature, force or some other stimulating parameters. Due to the high 
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resolution and quick response photoelastic materials have been used as slip sensing 
devices, although the techniques used may varied in terms of analysing the photoelastic 

outputs; visual (Eghtedari and Morgan 1998; Hopkins et al. 1991), signal (Dubey and 
Crowder 2006). The visual techniques used image subtraction algorithms between 

successive images and a threshold to detect slip. The value of threshold is important, if 

set too low, it may amplify the noise and if set too high, small slip may not be detected. 

The same principle of threshold is applied to manipulate the signals for slip and force 

detection. On a signal based sensors a wide range of techniques have been implemented 

to achieve discernable slip detection for preventive measures to avoid the slipping or 
falling of an object. However, due to the lack of analytical relationship between the force 

and the fringes and complications involved due to the slip causing shearing effect, most 

of the research has been limited to numerical analysis and signal processing techniques. 

Compared to other slip sensors, photoelasticity based sensors can provide both visual and 

signal output for slip and force, making it a more viable tool for robotic applications. 
Studies have also been conducted to investigate mechanical and optical properties of the 

material (Eghtedari et al. 1993; Cameron et al. 1998) for optimal design of the sensor. 

2.9.2 Biomedical Applications 

An early attempt to discover the potential of photoelastic materials for screening diabetic 

foot in force determination was by Arcan and Brull (1976) as shown in Figure 2.12. The 

proposed technique used independent hemispherical-end shaped plungers to load the 

photoelastic material through foot. The induced fringe patterns appeared as concentric 

circles in greyscale as working with monochromatic light source. Prior calibration was 

required for the diameter of fringe against the applied load. The range and sensitivity of 

the device was dependent on the material's optical and mechanical properties and plunger 

head diameter. Due to the setup and loading constraints, only vertical load could be 

determined. 
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4 Foot Loading 

Guide for Plunger 

Plunger Head 
Photoelastic Model 
Support Material 

0@@04 
Fringe Patterns Generated 

Figure 2-12: Photoelasticity based vertical load measurement technique by Arcan and Brull (1976) 

An alternative was later developed by Rhodes et a]. (1988) for whole field view of 

vertical force using 2.8 mm thick photoelastic material glued to a plexiglass, loaded by 

the foot through a grooved mat. The grooved mat provided an intervention to introduce 

discontinuities in x-y plane loading. Figure 2.13 shows the fringe patterns induced during 

the foot loading in the system. The system was calibrated with intensity against the load, 

black colour for zero load and white for maximum load. The system was limited to 

determination of vertical force and had a small dynamic range. 

High 
Regic 

Relatively 
Low Stress 
Regions 

Figure 2-13: Photoelasticity based vertical load measurement technique by Rhodes et al. (1988) 

However, only one cycle of colour gradient i. e. black-white can be used in this technique 

due to repetitive nature of fringes as colour swings from black to white and again back to 
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black and so on. The system cannot be claimed as a whole field device in determining 

vertical force or stress as the photoelastic effect propagates through the material along x- 

axis i. e. surface plane of the material due to the unconventional loading. In order words 

the fringe patterns below a region (for instance a cm away from Is' metatarsal head) do 

not represent the vertical load above. 

Gefen et a]. (2001) integrated a carefully selected photoelastic material with magnetic 

resonance imaging (MRI) technique to measure the mechanical properties of plantar soft 

tissues and obtain load-displacement curves in diabetic subjects. Figure 2.14 shows the 

schematic representation of the implemented method. The measurements and foot 

loading was in supine state. 

Foot Loading 

Indenter Pin 

Photoelastic 
Model 

(Top View) 
Induced Fringes 

Figure 2-14: Tissue stiffness measurement integrated with photoelastic sensing of force (Gefen et al. 

2001) 

The tissue deflection was measured through MRI scan and the load was determined 

through the photoelastic effect. The principle for determining the vertical load was same 

as developed by Arcan and Brull (1976) through the indentation of the material. 

Besides applications in the assessment of the diabetic foot, photoelastic materials have 

also been used for biomedical sensing including development of a fibre optic catheter-tip 
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(Dario et al. 1987). The following section describes the techniques employed to analyse 

photoelastic fringe information for the above applications. 

2.9.3 Analysis of Photoelastic Information 

For sensing applications the photoelastic fringes are analysed mostly through non- 

conventional photoelastic techniques to extract the relevant information. The technique 

used for analysis is application dependent. The following section describes the three most 

commonly employed techniques to analyse the photoelastic data with their relative 

advantages and disadvantages. 

2.9.3.1 Signal Processing 

Signal processing technique involves the use of intensity data from a photoelastic 

material coupled to a receiver, which records the change in intensity levels due to the 

material stress level. Figure 2.15 shows an ideal intensity response, where intensity has 

been normalised between 0 and 1. Applications (Dario et al. 1987; Dubey and Crowder 

2006) that require development of low cost compact sensing devices use signal 

processing technique. The photoelastic model is loaded and polarised light is passed 

through the material. At the receiver end it has a phase shift that alters the intensity of the 
light received corresponding to the level of stress in the material. A prior calibration of 

change in intensity against a desired parameter (voltage) is used to determine the load 

value. The setup requirements are light source, receiver, model, polariser and signal 
filtering (amplification in some cases). In an attempt to achieve continuous signals during 

slip Dubey and Crowder (2006) found that placing a metallic strip on the front contact 

surface of the model induced vibrations between the two contacting surfaces. The sensors 
incorporating signal processing techniques are low cost but limited to a low dynamic 

range due to sinusoidal nature of the intensity curve (Figure 2.15). 
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Figure 2-15: An ideal intensity variation in photoelastic model with increasing load 

Gradual tracking of the sinusoidal curve is required from zero load onwards to increase 

the load measuring range of sensor. The technique is simple yet efficient and sensitivity 

can be controlled by choosing a photoelastic material with appropriate mechanical and 

optical properties. 

2.9.3.2 Image Processing 

Acquiring images of fringe patterns can reveal more information than mere one- 

dimensional signals. As in some applications signal information may not be adequate and 

visual patterns are required, for instance robot grippers (Eghtedari and Morgan 1998; 

Hopkins et al. 1991; Eghtedari et al. 1993) intending to determine the position and the 

slip of object, medical applications (Arcan and Brull 1976; Rhodes et al. 1988; Gefen et 

al. 2001) where pressure prints are useful. The measurable range of sensor will still be 

limited if only one gradient cycle of black-white intensity is used; for instance by Rhodes 

(1988). However, using coloured fringe patterns would increase the measurement range 

as sinusoidal nature of intensity curve is no longer an issue. The technique does require 

more computational power and analysing as the fringes can be complicated but using 

images could yield higher accuracy and wider range than greyscale analysis. 
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2.9.3.3 Intelligent Processing 

Artificial intelligence has been successfully used in numerous applications of medical, 

industrial, weather forecasting, robotics to name a few. Certain applications where there 

is no analytical relation between the input and the desired output can require a non-linear 

relation to be developed; techniques like neural networks, fuzzy logic, neurofuzzy, 

genetic algorithms are extensively used in such cases. Many photoelastic sensing 

applications have incorporated artificial intelligence to derive meaningful results. In case 

of neural network implementation it is important that relevant and sufficient data is 

extracted and fed for a more generalised network. Chung (1998) used neural networks to 

analYse photoelastic fringe patterns to build a torque measuring device. An RGB image 

was acquired and intensity data from a section was used to train and test the neural 

network. Figure 2.16 shows the different intensity profiles (input) used to train the 

network. Since the data from fringe patterns can be significantly more than required, 

only a relevant section of image was used. The input dimensionality ranged from 32-96, 

which could have been avoided using Principal Component Analysis (PCA). 

Figure 2-16: Different input parameters extracted from the fringe patterns for training of neural 

networks 

On the same principle Noroozi et al. (2003) attempted inverse photoelastic analysis using 

neural networks to determine the bending load. A tensile testing machine was used to 

apply bending load on a photoelastic beam and the fringe order was determined at known 

points which would act as input parameters for the neural network. However, finite 

element analysis was integrated in the technique to generate training data, thus the system 

relied on input from theoretical calculations and did not use direct image data. 

During analysis of fringe patterns under unknown loads, the fringe order at predefined 

points needs to be determined using photoelasticity to be fed as input to the neural 

45 



Literature Review 

network. The technique gave an error of 4% but required prior knowledge of 

photoelasticity to determine the fringe order at input points during actual implementation 

of the system. 

The drawbacks of Chung (1998) and Noroozi et al. (2003) have been overcome in this 

research by directly feeding relevant image data to the neural network. Principal 

component analysis was performed to keep the input dimensionality low unlike Chung 

(1998). Low input dimensionality requires lesser training time and yields a more 

generalised network. Chapter 5 gives a detailed account of enhancements applied to 
implement the neural network for analysing photoelastic images for inverse analysis. 

2.10 Summary 

This chapter gave a detailed description of basic physics of photoelasticity, the 

definitions and terminology used in photoelasticity, the optical elements required and 

review of various techniques in the field of photoelasticity. Finally the chapter gave an 

overview of photoelasticity being used in sensing applications. Based on the literature 

review of photoelasticity and photoelastic materials used in sensing applications it was 
justified to use photoelasticity in this research. However, in order to use photoelasticity 
for sensing applications various elements of this technique would need to be identified 

and tailored to suit the application requirements. In the following chapter the selection of 

material and the design of experimental rigs is presented. 
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Chapter 3 Experimental Methods 

3.1 Introduction 

The previous chapter provided a detailed description on the basics of photoelasticity. The 

Chapter described two major photoelastic techniques; LUT based calibration and phase 

shifting. This chapter provides details on the suitability of the material properties as 

required for sensing applications, selection of appropriate material and calibration 

required for selected material. In order to use photoelasticity for sensing, appropriate 

elements of this technique needs to be identified and tailored to suit the requirement. 
Finally, the designs of various experimental setups used in this research are discussed. 

3.2 Material Preparation for Sensing 

In preparation for the sensing plate a photoelastic material was glued to a support surface 

(polycarbonate sheet) but was treated as a photoelastic model. During selection of the 

material it is treated as coating (due to the fact that change in thickness changes the 

behaviour of the material), however, during loading and analysis it is treated as a model 
because the stress-strain is not transferred from the glued surface (polycarbonate) rather 

the load is applied to the coating surface. 

Due to the above facts it is required that a careful selection of the material properties is 

made to provide sufficient fringes under the controlled loading environment. Finally, a 

sensing plate is prepared from the selected material to form a part of final prototype 

sensor. 

3.2.1 Load Direction 

In conventional photoelastic analysis load is applied in the plane of photoelastic material, 
however, in this research the direction of applied load was perpendicular to the surface of 
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the material. Due to the above fact, appropriate selection of material properties needs 

careful considerations. The photoelastic effect deteriorates under such conditions of 

loading especially with a low modulus material as required here, since the photoelastic 

effect is generated due to material deformation in z-plane. In this research the 

photoelastic effect is induced due to a vertical force on the surface of a photoelastic 

material added by a shear force, which means that the direct photoelastic relationship 

cannot be used. 

3.2.2 Material Properties 

The strain optic co-efficient, the modulus and the thickness of a photoelastic material 

must be carefully chosen for sensing applications as they contribute to the sensitivity of 

the material. Figure 3.1 shows a 3-dimensional plot illustrating the effect of thickness and 

strain optic coefficient on the sensitivity of material. 

Thickness of material plays a vital role as increase in thickness increases the sensitivity of 

material. For major stress analysis applications selection of material is dependent on the 

48 



Experimental Methods 

modulus of the test object and the amount of stress-strain expected. For instance, if 

analysing a machine part with expected low stress-strain values, the photoelastic coating 

used should have a high modulus and high strain optic co-efficient. However, for this 

research the material was desired to have a high strain optic co-efficient with a low 

modulus of elasticity to facilitate foot loading. 

3.2.3 Material Selection 

The availability of photoelastic materials is described in terms of strain optic co-efficient 

of the materials. Higher the strain optic co-efficient higher is the sensitivity of material, 

as can be seen in Figure 3.1 a material with low thickness but high K could be more 

sensitivity than a material with thrice as much of thickness but lower K. 

The experiments conducted in this research used three types of photoelastic materials 2 

and narrowed down to one for the final sensor design. The properties of the materials are 

listed in Table 3-1. The first two materials were available in the form of flat sheets and 

the third in liquid form. 

Table 3-1: Photoelastic material properties used for experimentation 

Material' K Modulus of Elasticity GPa (E) Poisson's ratio v 

PS-1 0.15 2.5 0.38 

PS-4 0.009 0.004 0.50 

PS-6 0.0006 0.0007 0.50 

Sheets of different thickness were casted. from PS-6 during this research to evaluate its 

sensitivity and efficiency for the research; however the material proved to be unsuitable 
for the experimental needs. PS-6 had a low modulus as required but the sensitivity was 
too low to induce sufficient fringe patterns under the controlled vertical and shear load 

range in the experiments. Figure I in Appendix-11 shows the casting setup and some of 

the casting prepared using liquid PS-6. 

2 Vishay Measurements Groups 
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PS-1 sheets on the other hand had high sensitivity but also high modulus of elasticity, 

thus unsuitable for the experimental loading required here. The available photoelastic 

materials exhibited a direct relation between the strain optic co-efficient and the modulus 

of elasticity, in order words the materials that had high sensitivity to strain also had high 

values of E and materials with low value of E had low sensitivity to strain thus not 

entirely ideal for the experimental needs of this research. A balance between K and E led 

to selection of PS-4, proving the best suitable material for building the sensing plate from 

the available list of materials. A PS-4 sheet with 3 mm thickness has low modulus of 

elasticity and sufficiently high sensitivity. The number of fringes induced increase with 
increase in thickness, however since the photoelastic effect travels through the entire 

thickness and also the loading was unconventional the fringes patterns tend to fade. This 

loss of colour information was less prominent with 3 mm, thickness compared to any 
lower or higher thickness. Thus a PS-4 sheet with 3 mm. thickness was considered the 

best suited for sensing plate. These different materials were used in the following set of 

experiments: 

1. PS-1: A sheet of 3 mm. thickness used to cut two models, a C-shaped and a Disc 

(Section 3.2.4). Implemented in the experiments for determining image plane 

wavelength (Section 3.3.2) and developing and testing of neural network based 

methodology (Chapter 5). 

2. PS-4: Used for calibrating K value of the material and building the sensing plate 

for final experimentation in Chapter 6. 

3.2.3 Sensing Plate 

The selected PS-4 material was used to build a sensing plate, the arrangements of various 
components to design the sensing module are shown in Figure 3.2. A3 mm thick PS-4 

photoelastic sheet was glued to a 15 mm thick polycarbonate sheet using a clear adhesive 
of matching elasticity. The top surface was coated with a reflective paint with appropriate 
elastic properties to provide a reflective backing. 
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12 Reflective coating 

Photoelastic model 

7- 12 Adhesive (0ear) 

Polycarbonate 

Figure 3-2: The components of the sensing module prepared from PS-4 photoelastic sheet 

The polycarbonate sheet served as a strong support for the low modulus photoelastic 

sheet for loading. It is important to make sure that the polycarbonate support sheet is not 
birefringent in nature as that can lead to unwanted fringe patterns. Figure 3.3 shows the 

actual sensing plate with reflective coating on the top of photoelastic material glued to a 

15 mm thick polycarbonate sheet. 

Reflective Coating Photoelastic Material (underneath) 

Figure 3-3: The final sensing plate prepared using PS-4 photoelastic material glued to a non- 

birefringent polycarbonate of 15 mm thickness as transparent support material 

The polycarbonate sheet was finally mounted on the experimental rigs; design description 

provided later in this Chapter. 
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3.2.4 Photoelastic Models 

Two models were cut from PS-I sheet of 3 mm thickness, required for conducting 

experiments with conventional photoelasticity, image plane wavelength calibration and 

photoelastic inverse analysis. Figure 3.4 and Figure 3.5 show a C-shaped model and a 

disc with a dimensional sketch respectively. 

90 

Thickness=3 
Units in mm 

Figure 3-4: (a) A C-shaped model from PS-I sheet, (b) the dimensional sketch of the model 

The C- shaped model was used in Chapter 4 while evaluating the conventional 

photoelastic experiments to develop a modified technique for noise removal based on 

simple filtering. Also used in Chapter 5 for developing a neural network based 

methodology for photoelastic inverse analysis. 

Units in mm 

Figure 3-5: (a) A Disc model, (b) the schematic diagram with dimensions 

52 



Experimental Methods 

The disc model was used in experiments for determining image plane wavelength for a 

commercial digital camera used in this research and the conventional photoelastic 

experiments conducted in Chapter 4. 

3.3 Material Calibration 

Recalling Equations 2.1 to 2.3 it is evident that the only detennined photoelastic 

parameter during analysis is N, the fringe order and the rest are constants. This section 
describes the calibration procedure followed for K and image plane wavelength 

evaluation. 

3.3.1 Calibrating Strain Optic Co-efficient 

Strain optic co-efficient (K) as discussed in Chapter 2 is one of the critical parameters in 

photoelastic experiments. In fact, K is the only constant relating to the optical property of 

the material, thus crucial in stress calculations. The influence of K on the material 

selection i. e. the mathematical relation of K with strain is given by Equation 3.1. The 

value of K provided by the manufacturer is the nominal value and material recalibration 

is required to verify any change in the constant, as may occur over a period of time. 

NA 
2t(I + v)E 

(3.1) 

Where, N is the recorded fringe order, A is the averaged wavelength of the white light, t 

is the material thickness, e is the strain and v is the Poisson's ratio. 

The calibration technique to be followed can vary depending on the modulus of the 

photoelastic material, for instance high modulus materials (such as PS-1) are calibrated 

using cantilever beam under bending load (Zandman et al. 1997; Ramesh 2000; 

Measurement Group 2004). In the above case, PS-I (high modulus material) is glued to a 
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reflective aluminium beam and subjected to deflection with known strain value. Since 

expected value of Kis high (-0.15) for PS-1 material, a small value of strain is sufficient 
to induce measurable fringes thus deflection of beam required is in the range of 0.1-1 

nun. On the other hand, for low modulus materials (PS-4) the conventional calibration 
technique of cantilever is not useful because the low sensitivity of material does not 

generate enough fringes even at higher deflection of 3-5 mm. Thus, to calibrate low 

modulus materials, imposed curvature method (Zandman et al. 1997) is used as shown in 

Figure 3.6. 

The standard calibration procedure involves the following steps: 
Gluing a thin layer of photoelastic material with reflecting backing (designated by 

1) to a material (designated by 2) with known mechanical properties (typically a 

medium modulus thick material). 

Bend the material (2) to a known curvature to induce strain, the strain then get 

transferred from material (2) to specimen (1). Calculate strain (e) at the edge of 

the material using Equation 3.2 

h 
e=- 

R 
(3.2) 

* Record the fringe order (N) at pre-defined points on the specimen (1) to evaluate 

K from Equation 3.1. 

Figure 3.6(a) shows a schematic diagram illustrating the technique and Figure 3.6(b) 

shows a section of the actual image with the induced fringes. 
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NN 

Figure 3-6: Calibration of PS-4 photoelastic material (a) the schematic diagram of imposed curvature 

technique, (b) section of the material with actual induced fringes 

Following the calibration procedure and substituting the variables (h 4 mm and R 156.4 

mm) the strain v was calculated as 0.025575. The next step was recording fringe order at 

3 different points (1,2,3) as shown in Figure 3.6(b). 

The fringe order was found to be 1.5585 averaged from 30 experiments to minimise the 

error. Finally, with the evaluated strain and experimentally recorded fringe order N, K 

was determined to be 0.0 11679 using Equation 3.1. The determined K was different from 

the manufacturer's quoted value of (0.009) by 0.002679. This is significant from the 

accuracy point of view for photoelastic experiments. The above experimentation can also 

be performed with a monochromatic light source to determine fringe order at the point of 

interests but would require Tardy's compensation method (Zandman et a]. 1997) as 

discussed in Chapter 2 Section 2.4.5. 

3.3.2 Image Plane Wavelength 

As discussed in Chapter 2 Section 2.8.3, while using white light for phase shifting an 

individual plane images from an RGB acquired image can be approximated to represent 

filtered images. Since a commercial digital camera (Olympus SP 50OUZ) was used as 

image acquisition system (Section 3.5.4) for phase shifting it is mandatory to determine 
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the image plane wavelength for this plane with higher spectral response. The Red image 

plane exhibited the highest spectral response as compared to the Green and Blue planes 

as seen in Figure 3.7. 

Figure 3-7: An RGB image with corresponding R, G and B planes respectively acquired by Olympus 

SP500 

Equation 3.3 is used for determining the wavelength of an image plane from the RGB 

image with the prior knowledge off (fringe stress value). The f however, must be known 

under both reference light source and the image plane with white light. 

fr 
(3.3) 

where, ki is determined the wavelength of the image plane i, fi is the fringe stress value 

from the image plane (R, G or B), f. is the fringe stress value under the reference light 

source and A,. is the wavelength of the reference light source (yellow 589 nm, custom 

designed in this research - Section 3.4). The next step is to determine f under the 

reference light source and for image plane from an RGB image, which is done in the 

following way: 
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To determine the fringe stress value (f) a relation between f, load P and N is required. 

Applying Bousinesque's solution to a disc under diametral compression through the 

centre of the disc, the relation to represent this is given by Equation 3.4 (Ramesh 2000). 

8p 

)EDN 
(3.4) 

Where, f is the fringe stress value to be determined, P is the compressive load, D is the 

diameter of disc, N is the fringe order at the centre of the disc. 

Due to the type of loading and geometry of the model, the direction of principal stresses 

is so aligned that the isoclinic are at zero degrees at the centre of the disc under the basic 

configuration of a dark-field polariscope. Thus the only parameter required is N which is 

determined using Tardy's compensation method (Zandman et a]. 1997; Ramesh 2000). 

As the point of interest may not have an integral fringe order, the Tardy's compensation 

method is used to determine fringe order N at the point of interest by rotation of the 

polariscope elements. 

Figure 3-8: Tardy's compensation (a) non-integral fringe order at IPni' (b) integral fringe order at 

IN' after rotation of polariscope (circular polariscope configuration) 

Figure 3.8(a) shows the fringe patterns for a disc under diametral compression and Figure 

3.8(b) represents the fringes obtained from Tardy's compensation method when the 

analyser was rotated by an angle of 82.5 degrees to make pass an integral fringe order 

from point 'Pi'. The determined fringe order was found to be 2.458. 
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The same procedure was repeated with different loads and N was determined at the centre 

of disc for each load using Tardy's compensation method. Plotting N against P gives a 

line with the slope representingf. Figure 3.9 and 3.10 shows the graph plotted between N 

and P with monochromatic reference light source and R-plane image. 
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Figure 3-9: Fringe stress value plots with monochromatic light source 
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Figure 3-10: Fringe stress value plot for R-plane of RGB image (Olympus, SP500) 
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Equations 3.5 and 3.6 were derived using linear fits on the graphs plotted above and the 

corresponding fringe stress value with monochromatic (f, ) and R-plane (fi) image were 

determined from the slope of the line to be 59.95 and 60.726 respectively. 

f(x) = 59.952x - 4.471 

f(y) = 60.726y-0.7065 
(3.5) 

(3.6) 

Substituting the values of f from Equations 3.5 and 3.6 in Equation 3.3, the equivalent 

wavelength for the R-plane image was evaluated to be 596.6 nm. This wavelength must 
be used for phase shifting experiments in evaluating the principal stress difference when 

using SP500, Olympus camera as imaging device. 

3.4 Design of a Custom Light Source 

The custom fabrication of light source was done in order to achieve a portable and low 

cost light equivalent to an SOX in terms of wavelength. However, the spectral response 

of a light source using LEDs would not be as sharp as that for SOX due to a wide range 

of wavelengths emitted by LEDs. From the data sheet provided by the supplier the LEDs 

emitted light between the wavelengths of 5 85 nm to 595 nm. Figure 3.11 (a) shows the 

actual LED's mounted on a printed circuit board and Figure 3.11 (b) shows the circuit 
design. 
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Figure 3-11: (a) LED based light source, (b) the circuit diagram custom designed to substitute an 

SOX light source 

The black region in Figure 3.11 (b) is where copper was retained as seen in Figure 3.1 ](a) 

to act as conductor for current. The LEDs were driven by a l2v DC supply and for 

optimal design they were coupled together both in series and in parallel. Resistors of 120 

Ohms were connected in series with each LED to control the amount of current being 

passed through. The custom made LEDs were used not only as a reference light source 

for previous section but also for phase shifting experiments. 

3.5 Experimental Rigs & Image Acquisition Systems 

A number of experiments were conducted in this research and almost each of them 

required a different setup either in terms of loading or image acquisition. For instance, 

different loading mechanisms were required for different models and different lighting 

and image acquisition system were required for different photoelastic techniques. The 

various loading mechanisms and experimental setups designed and constructed in this 

research are discussed in this section. Finally, a system was designed using a flatbed 

scanner to provide high quality images and portability to the system. 
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3.5.1 Loading Mechanism for C- Shaped Model 

In order to apply bending load to the C-shaped model a precise mechanism was designed, 

providing an accurate measure the deflection at free ends of the model. The mechanism 

comprised of a bending fixture as shown in Figure 3.12, which can accommodate a C- 

shaped photoelastic model and bending load can be applied to the free end of the model. 

The fixture had two precision micrometers attached at each end to ensure equal deflection 

of the model at both ends. 

Figure 3-12: The loading mechanism for C-shaped model, illustrating photoelastic fringe patterns 

induced from deflection at free ends causing stress in material 

To hold the model in plane of loading and avoid any displacements at high deflections, 

two adjustable screw brackets (B I& B2) were provided on the sides. The brackets were 

carefully mounted as in not to load the model. The image in Figure 3.12 was illuminated 

with polarised light and acquired using a digital camera (Olympus, SP500) with 

separately mounted optical elements. 

The designed loading mechanism was used for RGB calibration experiments in Chapter 4 

and in Chapter 5 for developing neural network based methodology for inverse analysis 

of photoelastic fringes. 
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3.5.2 Loading Mechanism for Disc Model 

A simple mechanism was designed for loading the disc model with diametral 

compression. Figure 3.13(a) shows the setup and Figure 3.13(b) shows the actual fringes 

obtained during experimentation. 

Compression Load 

Aluminiurn push-rod with platform 

-oading Fixture 

Disc Model 

kluminium Butt Actual Fringe Patterns 

Figure 3-13: (a) The loading mechanism for disc model, (b) actual fringes from experimentation 

An Aluminium push rod with loading platform passes through the fixture to apply point 

load on the disc. To achieve symmetrical loading at both ends, an identical Aluminiurn 

butt was provided at the other end. Sufficient gap was given between the loading 

platform and the fixture top to take higher loads. The dimensional diagram of the setup is 

shown in Appendix-11. 

3.5.3 Loading Mechanism for Sensing Plate 

The sensing plate built using PS-4 photoelastic material (Section 3.2.3) was loaded under 

vertical and shear forces with specifically designed indenter. Figure 3.14 shows the four- 

head indenter in contact with the sensing plate for vertical and shear loading. 
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Figure 3-14: Indenter loading the sensing plate through four hemispherical head indenters 

The indenter platform was made using Aluminium and polycarbonate was chosen as the 

material for indenter heads. The polycarbonate heads exhibited high frictional 

characteristics with the coated photoelastic model to avoid slipping during shear loading. 

The vertical load is introduced by flat-weights and shear load is introduced by a cord with 

hook-weight combination attached to the screw passing over a pulley. The complete 

assembly of loading and image acquisition is described in Section 3.5.5. 

3.5.4 Image Acquisition System for Phase Shifting 

An experimental setup design with image acquisition that used a compact fluorescent 

tube as light source and a digital camera is described below. The system incorporated the 

loading mechanism described in the previous section. Figure 3.15 shows a 2D drawing of 

the design in its side view. 
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Figure 3-15: A schematic sketch of experimental rig designed and fabricated with partial mirror for 

phase shifting experiments 

The setup was used for phase shifting experiments with white light and custom designed 

monochromatic light source. Figure 3.16 shows the exploded view of the actual setup; the 

top and loading mechanism has been removed for illustration. 
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Figure 3-16: An exploded view of actual setup with partial mirror and mounted loading mechanism 
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In an effort to develop a standard experimental apparatus for photoelastic experiments it 

is important that experimental constraints of image acquisition system are maintained so 

that the experiments have repeatability. The aperture of the camera, focus, the level of 

zoom, specimen-camera distance are some of the parameters that need to be standardised. 

To achieve the above, the camera was controlled using a commercial software package 

that provides full control over the camera remotely, this not only standardised the 

experimental setup but also helped automate the process of image acquisition. 

3.5.5 Scanner Based Image Acquisition System 

One of the main aims of this research was to develop a clinically viable sensing system 

for biomedical applications requiring minimum maintenance. A commercial flatbed 

scanner (Epson 1660, Photo- Perfection) was used for image acquisition providing a 

compact and a portable system which requires no separate light source or camera. Figure 

3.17 shows the actual system with mounted sensing plate and indenter loading 

mechanism. 

weiL, Ilt. ", 

Nylon Cord Vertical 
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(for shear 
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Scanner 

Figure 3-17: Scanner based sýsteni Nýitli mounted . ertical and shear loading mechanism 

The setup requires only one set of linear polariser and quarter wave plate as opposed to 

the previous experimental setup based on a partial mirror. The polariser and quarter wave 

plate were directly placed on the scanner bed. However, this setup can only be used for 
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LUT based technique and not phase shifting unless the model is small, under stress 
frozen condition and transparency unit of scanner is incorporated (Ng et a]. 2003). 

3.5.6 Digital Camera 

The scanner based system provides portability and convenience of combined light source 

and image acquisition system, however it cannot be used for certain experiments where 

optical elements (polariser, quarter wave plates) needs to be mounted separately. For such 

experiments a digital camera (Olympus, SP500) with high image resolution of 6M was 

used and the optical elements were mounted separately for both light source and camera. 
Figure 3.18(a) shows the camera with the optical element assembly (Figure 3.18(b)) 

mounted on the camera lens. 

Figure 3-18: (a) Digital Camera used in the experimentation, (b) optical mountings with independent 

rotation of polariser and quarter wave plate 

The optical mount provides an advantage of independent rotation of each optical element, 
i. e. the polariser can be rotation independently from the quarter wave plate and visa 

versa. This feature is useful in phase shifting experiments where a number of images 
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need to be collected at different orientation of the optical elements. Experiments like 

phase shifting and look up table technique also require certain experimental constraints to 
be maintained during the experimentation for instance, distance between the camera and 
the test object, camera aperture, shutter speed etc. The above was achieved using a 

camera control software package (Sabsik 2005) that not only maintains the camera 

settings but also provides image acquisition control from a computer. The technical 

specifications for the camera are given in Appendix-H. 

3.6 Summary 

This Chapter provided information on the material selection for sensing application as 

required in this research. The most appropriate material was chosen from the available 
list of material depending upon their mechanical and optical properties. The Chapter also 

provided a detailed description of different loading mechanisms and experimental rigs 

used for conducting conventional and non-conventional photoelastic experiments. The 

final system was built using a flatbed scanner, mounted with specifically designed 

sensing plate to be used as prototype sensors for controlled experimentation in Chapter 6. 

The next Chapter discusses the experiments conducted with conventional photoelastic 

techniques, leading to the contributions made to the current techniques and limitation of 

the techniques for unconventional experiments like sensing. 
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Chapter 4 Results Using Conventional Photoelasticity 

4.1 Introduction 

This chapter describes the implementation of photoelasticity under the conventional as 

well as unconventional loading. The first two sections include implementation of LUT 

based calibration technique discussed in Chapter 3 and the two major contributions made 

to this technique. Later sections evaluate the use of conventional photoelastic techniques 

under unconventional loading situations to evaluate their efficacy in sensing applications. 
The loading is unconventional in the sense that a low modulus photoelastic material is 

deformed by surface loading to induce photoelastic effect which is atypical of 

conventional methods. Both LUT based calibration and phase shifting techniques have 

been used to study the characteristics of patterns obtained under vertical and shear 
loadings. The results obtained under these conditions are discussed with their limitations 

when used for sensing applications. Finally a case study has been conducted to analyse 

the foot image and conclusions drawn from this have been presented. 

4.2 Fringe Analysis Using Look-Up Table Technique 

In this research mainly two different white light sources were used, compact fluorescent 

light and cold cathode tube. This section compares the LUT based calibration technique 

using conventional white light source with scanner based system as implemented in this 

research. The colour response may vary with the type of white light but the basic 

sequence of colour is same. However, as suggested in literature a high quality spectral 

response light source is almost a mandatory requirement to obtain a better calibration 
database and accurate results. 

As explained in Chapter 2 that colour calibration technique (TFP) requires generation of 

a LUT and extracting fringe order to form a database. This however requires careful 

considerations on various aspects of the experimental procedure including the selection 
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of components and setup design. This section describes calibration procedure used in this 

research for fringe order demodulation. 

4.2.1 Calibration Procedure 

The loading mechanism design in Chapter 3 section 3.5.1 was used for loading of a C- 

Shaped model (section 2.3.4) with high precision. The conventional techniques use four 

point bending load (Ramesh 2000) for calibration and LUT preparation however, in this 

research a C-Shaped model as shown in Figure 4.1 was used for the ease of loading 

compared to four point bending load. 

Figure 4-1: Photoelastic fringe patterns induced in a C-shaped model loaded using a fixture for 

preparation of LUT 

The setup was illuminated with polarised light and image acquired using a digital camera. 

The optical components were separately mounted (dark-field circular polariscope setup) 

on the light source and the camera (section 3.5.6) to facilitate easy orientation of the 

model with respect to the light and the camera to minimise any reflection and ghost 

images. A compact fluorescent tube was used as light source in this experiment. 

The loading generates patterns of uniform stress distribution along 'a-b' and linear stress 

distribution along 'c-d' as seen in the region of interest (ROI) in Figure 4.1. The step by 

step calibration procedure followed involved the following 7 steps: 
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1. Bending load: Appropriate bending load was applied to the model to induce a 
known fringe order (N) against the fringe colour. The fringe order is available from 

the standard isochromatic colour characteristics (Table 2-1). 

2. Data acquisition: An RGB image of the fringe pattems generated was stored and a 

region of interest (ROI) was extracted using a high resolution digýtal camera. 

3. Filtering: The region of interest was filtered using median filtering to remove 

electronic noise and smooth the image, as the CCD is highly sensitive to intensity 

changes. 

4. Extracting RGB triplet values: A calibration line 'c-d' (Figure 4.1) was selected in 

the ROI with linear stress distribution and RGB triplet values were recorded. The line 

was selected with the start point at the neutral axis with zero fringe order (black 

fringe) and the end point at fringe order N. 

5. Fringe order: The fringe orders along line 'c-d' were calculated by linear scaling 

using Equation 2.8. 

6. Steps 4 and 5 were repeated for 50 transverse lines and the averaged results were 

saved in calibration database (this helps in further noise removal and making the 

calibration table robust). 

7. Steps I to 6 were repeated with different values of maximum 
fringe order (N) by 

changing the bending load. For analysis up to third fringe order, three different 

calibration databases were built ranging from fringe orders 0-1,0-2 and 0-3. The 

number of calibration tables required depends on the maxinlIm' 
fringe order expected 

in the test model. 
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4.2.2 Analysis 

The test was conducted on a disc under diametral compression, loaded using the setup 

explained in Chapter 3 section 3.5.2. Figure 4.2(a) shows the image of disc under 

compression, the regions of fringe order higher than 3 are near the points of loading. 

Since the results are limited to maximum of third fringe order in TFP, these regions were 

masked as shown in Figure 4.2(b). 
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0 
0 

X co-ordinates 
Figure 4-2: (a) Photoelastic image of disc under diametral compression, (b) high stress zones masked 

The conventional technique for analysis compares the RGB triplet value at the test point with 

the RGB triplets stored in the LUT to find the closest match using Equation 2.9. Despite the 

light source used, the system would be liable to errors due to the colour mismatch and would 

require some sort of fringe order tracking (Ajovalasit et a]. 1995a; 1995b; Quiroga et a]. 
2002a; 2002b) to accurately demodulate the isochromatics. These techniques require 

complicated algorithms and are tedious to apply, with only 2D results and not whole 
field. A simpler technique was proposed and implemented in this research based on 

median filtering to eliminate all the errors, whilst maintaining the original values of 

correctly determined fringe orders, to reduce the errors developed in the TFP analysis. 

In order to demonstrate the efficiency of median filtering based noise removal the whole 
field analysis of the test specimen was conducted. During analysis it is most likely that 

the errors could be distributed over the entire field and significant in certain zones of 
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specimen which would require careful consideration. Figure 4.3 shows a 3D plot of 

results obtained from LUT based technique over the entire disc from Figure 4.2(b). 
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Figure 4-3: 3-D plot of results from LUT based technique using Euclidean cost function 

U 

From the above figure it is evident that some fringe tracking algorithm would be required 

to accurately demodulate all the fringe orders. Method based on median filtering 

proposed in this research is described below. 

4.2.2.1 Noise Removal by Median Filtering 

The technique is based on filtering of the results obtained from Euclidean cost function 

using a median filter, followed by a simple correction threshold to retain the correctly 

demodulated fringe orders from the Euclidean function. A flowchart illustrating the 

procedure of the technique is shown in Figure 4.4. 
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Figure 4-4: A flowchart illustrating step by step procedure for median filtering based noise removal 

in TFP 

The initial results from Euclidean distance from Figure 4.3 are passed to the median filter 

with a small kernel of size 8 to eliminate sparsely distributed errors. Figure 4.5 shows the 

continuity in fringe order after applying the median filtering. 
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Figure 4-5: Results after median filtering on original Euclidean function results 

However, there are two drawbacks; first, the original values of fringe order even at point 

of correct demodulation have been changed, secondly the dense error zones are still not 

eliminated. In order to overcome the first drawback, a difference 'error term' between the 

actual results from TFP and the median filtered results is obtained as shown in Figure 4.6. 

This represents the difference value at each pixel point. The pixels that were originally 
demodulated correctly would have changed slightly by median filtering compared to the 

erroneous pixel points. 
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Figure 4-6: The error term obtained from difference of Euclidean function and median filtered 

results 

Now an appropriate threshold is applied to the 'error term' and the values are reversed if 

it is above the threshold (0.5) otherwise set to zero as shown in Figure 4.7. 
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Figure 4-7: 'Modified error term' after threshold and reversal 

When this 'modified error term' is added to the actual Euclidean function results, the 

correctly demodulated pixel points are retained as value of pixel at that point in modified 

term is zero and the median filtering is only applied to erroneous points as can be seen in 

Figure 4.8. 

The process can be repeated with different thresholds (0.1,0.2,0.3,0.4,0.5) and would 

eliminate all sparse errors. Using more than one threshold is not detrimental to the results 

as the correct fringe orders are not altered irrespective of the value of the threshold used. 
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Figure 4-8: Fringe order achieved after eliminating spare errors 

The second drawback of big clusters of errors 'a' &W can be eliminated by repeating 

the whole process with a larger kernel size on the new results obtained in Figure 4.8. 

Figure 4.9 shows the 'Final' results achieved where both sparse and densely packed 

errors are eliminated when compared to the actual Euclidean function results in Figure 

4.3. 
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Figures 4.10 (a) compares the 'Original Euclidean function' and the 'Final' results for 

line 'c-d' in Figure 4.2(b), and as can be seen only circled section of the results from TFP 

is modified, clearly illustrating the efficacy of the technique to eliminate the peak errors 

whilst preserving the originally demodulated correct fringe orders. Figure 4.10(b) 

compares the Final and the theoretical results, both the curves tend to follow the same 

function and very close to each other with minimum errors. 
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Figure 4-10: Comparison (a) Euclidean function and Final results, (b) Theoretical and Final results 
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The technique successfully eliminated the errors that were sparely distributed as well as 
densely packed. The disadvantage is that the non-zero fringe orders lying at edge of the 

model cannot be successfully corrected if required. The errors can be minimised 
following two different filtering procedures as done here. Additional padding at the 

model edges can further help reduce loss of information at the edges. The zones of 
densely packed errors would not be eliminated completely using this technique. A 

variable filter size, repeated filtering and error reversal would reduce the errors to a great 

extent. Overall, the technique is simpler at the cost of a little less accuracy where errors 

are densely packed but highly advantageous to eliminate sparse errors for N: 53. To resolve 
the issue of higher fringe order demodulation, a commercially available flatbed scanner was 

used to produce a high quality image and LUT as discussed in the next section. 

4.3 Fringe Demodulation using Scanner 

For applications that require demodulation of higher fringe orders require light source with a 
higher spectral response and algorithms for fringe tracking and error correction. It was found 

in this research that implementing scanner as a digital polariscope with a modified error term 

can provide a portable and inexpensive device for photoelastic analysis up to fringe order 
five. Implementing scanner also eliminates the need for complicated experimental setup; 

camera and light source, whilst providing a high spectral response. The RGB spectrum for 

scanner light source is shown in Figure 2 in Appendix-II. 

This section compares results obtained from conventional white light (Compact fluorescent 

tube) with scanner based system for higher fringe demodulation. A well-diffused high-power 

compact fluorescent light source with uniform illumination was used for comparison 

purpose. Table 4-1 show the two light sources and the respective image acquisition systems 

used. 
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Table 4-1 Light sources used for demodulation comparison 

Setup Light source Image Acquisition Blun-dnation 

I Fluorescent Lamp Olympus SP 500 Diffused Fluorescent Lamp 

2 Scanner-integrated Scanner-integrated Cold Cathode Fluorescent 

Lamp 

4.3.1 Comparing RGB Signal Response 

The spectral response of a light source for LUT based photoelastic analysis can be evaluated 

to some extent by the RGB response of calibration fringe patterns. This section compares the 

RGB signal response for the compact fluorescent tube and the cold cathode tube (scanner). 

Figure 4.11 shows the ROI from the model under a bending load and the adjacent plot shows 

the RGB signals along the calibration line for the Huorescent diffused light, maximum N 

possible was 4. The RGB signals extended over a considerable range of 0-255, but tend to 

attenuate with the increasing fringe order making it difficult to identify the RGB triplets. 
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Figure 4- 11: (a) Fringe patterns acquired under fluorescent light source, (b) RGB signal response 

As discussed earlier, to overcome the problem of RGB signal attenuation a scanner can 

provide high image quality with low RGB signal attenuation. Figure 4.12 shows the image 
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acquired using the scanner. It can be seen that the image quality is better than the 

conventional setup. The adjacent figure plots the RGB signal profile across the calibration 
line 'a-b'. 
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Figure 4-12: (a) Fringe patterns acquired using scanner, (b) RGB signal response 

Figures 4.11 and 4.12 clearly show that a scanner can demodulate higher fringe orders and 

thus provide better LUT as compared to the conventional light sources due to low signal 

attenuation. This gives a significant advantage for LUT based analysis to achieve higher 

fringe orders with such a simple approach. A careful visual inspection of the plot in Figure 

4.12 shows that the blue intensity signal is attenuating more rapidly as compared to red and 

green signals. However, a custom made scanner, with appropriate light source can easily 

overcome this problem. Although high RGB signals are provided by the scanner but the 

ambiguity of correct fringe order due to the colour repetition still needs to be addressed. A 

robust algorithm to keep a track on fringe order by incorporating information from previously 

demodulated points is required to account for the above ambiguity (Ajovalasit et a]. 1995a; 

Quiroga et al. 2002b). 

4.3.2 LUT Resolution 

Another reported limitation of LUT based calibration technique is low resolution and low bit 

value of image acquisition systems. In order to generate an accurate and robust LUT it is 

essential that the cameras with higher resolution and higher bit value should be used, which 

adds to the cost and effort. The scanner system however, does not require any of the above 
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and is still capable of providing up to 48-bit images. A 48-bit image has 16-bits for each 

available channel of R, G and B thus providing 65536 unique values per channel over 256 

possible values from RGB cameras. 

The maximum possible resolution to acquire an image will be 2848x2136 pixels with a 6M 

pixel camera, but the maximum permissible data points along the calibration line will be 

limited to a much lower value (200-400 pixels) due to the practical difficulties of framing 

such a small region. In order to achieve higher resolution on the calibration line, it would be 

required to place the camera close to the model whilst maintaining the illumination. It is 

worth mentioning that the above procedure to frame the calibration line with very high 

resolution is not trivial and most experimental setups are incapable of doing so. Alternatively, 

one can use higher optical magnification and then frame the desired area of interest, which 
increases the distance between model, light and camera. The digital camera used here 

achieved a fringe resolution of 2e-2 (0.02) compared to 4.5e-3 (0.0045) from of the scanner 
for maximum fringe order of 4; the fringe resolution is calculated by dividing the maximum 

produced fiinge order by the number of pixels along the calibration line. Since scanner 

resolution is specified as pixels per inch, increasing the size of model increases the number of 

effective pixels in the ROL More importantly, from these data points there were no 

repetitiong'of RGB triplets thus all of them had a unique value providing a unique ffinge 

order of up to 5. 

4.3.3 Modified Error Term 

Since all the possible RGB triplet values cannot be included in the LUT due to various 
factors including the sensitivity of CCD, material properties, and fringe gradient. The 

conventional method for ftinge demodulation in RGB calibration is achieved by the 
Euclidean cost function (Equation 2.9). Using commercially available white light source, the 

results can be quite erroneous even by the Euclidean approach, thus a robust algorithm is 

required to cope with this problem. The most common technique uses piecewise continuity to 
keep a track of the determined fringe orders. In order to evaluate LUT based approach it is 

important to visualise a 3-dimensional plot of RGB calibration curve from the database. 
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Figure 4.13 shows the plot of database up to fringe order of 4. A closer inspection reveals 
how tightly packed the database is. The 3-D curve with higher fringe orders gets even more 

complex and thus prone to errors. From the entire cube of RGB colour space, the database is 

limited only to a couple of lines which is why during the analysis the test point is usually not 

available within the database. The Figure 4.13 shows that the database is formed in the shape 

of helical rings close to each other and the stretching and bunching of the fringe gradient 
further drift the test point away from its corresponding match in the database making the 

system prone to errors. This can be explained by assuming the black dot as a test point under 

analysis (Figure 4.13). During the least square search the determined fringe order can be 

erroneously picked up from any of the closest helix rather than the original match. A light 

source with higher spectral response can provide demodulation of higher fringe orders but 

will need advanced algorithms to tackle the fringe order ambiguity due to the colour 

repetition. 
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Figure 4-13: A three dimensional plot of RGB triplet from the LUT database showing how closely 

packed is the database 

In this research the standard error term was modified to reduce errors and a simpler technique 

for error correction by using infori-nation from different colour spaces was developed. The 

conventional Euclidean function uses R, G and B comparison between the test point and 

the database, the proposed technique here implements H, (R-G), (G-B), (R-B) to be used 
for least square match. A modified equation with error function (el, ) involving H, (R-G), (G- 

B), (R-B) was used as represented by Equation 5.1 replacing Equation 2.9. 
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+ffq-Lj)I-I(CY. -B. )If +ff4-LpI--m-B. )If (4.1) 

where eh is the new error function, (R, G, B, H) are the stored colour values in the calibration 

table, i is the index in the calibration table, and (R,,,, G, ", B,,, H .. ) are the measured RGBH 

values. 

Since the hue component from HSV/HS13 images has the colour information, which 

represents the gradation of the colour within the visible spectrum of light, change in ffinge 

gradient or slight variation in light intensity does not change the original colour infori-nation 

but only the shade of the colour. Any change in R, G or B signals is minimised by the 

difference term rather than their absolute values. Thus choosing H, (R-G), (G-B) and (R-B) 

parameters helps in minimising the errors in determining the higher fringe orders. For these 

reasons H, (R-G), (G-B) and (R-B) become the appropriate parameters for the search. The 

benefit of using information from other colour space for fringe demodulation depends on the 

fringe order to be determined and was found to be better suited for achieving higher fringe 

orders with consistent result against stretching/bunching of the fringes. 

4.3.4 Output Comparison 

In order to test the validity of the proposed system, an analysis was performed for the 

problem of disc under diametral compression. Results obtained from the two systems 
(Fluorescent light and Scanner system) have been presented to demonstrate the advantage 

of scanner system. 

4.3.4.1 Fluorescent Tube 

The results are good up to fringe orders of 3, beyond this the merging of colours occur 

which cannot be resolved by this technique. Figure 4.14(a) shows the disc image taken 

under the diffused fluorescent light source and Figure 4.14(b) is the corresponding fringe 

order obtained by the RGB Euclidean approach. 

3 Hue-Saturation-ValuelIntensity 
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Figure 4-14: (a) Test image from fluorescent light, (b) fringe order determined by RGB match 

Figure 4.14 shows the demodulation for higher fringe orders using fluorescent light 

source and standard Euclidean function. The errors are far more due to the colour 

mismatch and require fringe tracking algorithms. The median filtering technique for noise 

removal proposed in previous section would not be sufficient as the errors are too dense 

and clustered. 
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Figure 4-15: Fringe order determined by the RGB match 

4.3.4.2 Scanner Based System 

The results using the scanner system with colour information from other colour spaces 

were found to be accurate compared to the previous results. Figure 4.16(a) shows the test 

image acquired using flatbed scanner. Line 'c-d' on the disc is analysed for fringe order. 
Using the modified error function eh for the closest match the errors were suppressed as 
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seen in Figure 4.16(b). The scattered errors could be further minimised if a plecewise 

continuity is used. 

5 

_0 

01 

n 

ý 117 6 

0 50 100 150 200 250 300 350 
Distance along line 'c-d' 

Figure 4-16: (a) Test image, (b) Fringe order determined by eh function 

To develop a robust system, a curve fitting approach was adopted and the errors were 
further suppressed. A cubic polynomial was fitted to the results (excluding the scattered 

points) to obtain an equation for determining the fringe order. The technique was used to 

minimise the errors for a line profile on the image, which was representative of the stress 

variation over the model, however, for any irregular stress variation to cover the entire 

image, the same technique can be applied by splitting the entire curve into ascending and 
descending trends and analysing them separately. 
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Figure 4-17: Comparison of theoretical and experimental fringe orders 
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Equation 4.2 represents the polynomial curve and Figure 4.17 shows the polynomial 

curve through the data points (thick/red line through the data points) and the blue line 

representing the theoretical results. Using this equation fringe orders can be accurately 

determined excluding the erroneous peaks in Figure 4.16(b). 

N= -(Z49e -8 
)X3 + (4.44e -5 

)X2 + (Z99e - 3)x + 0.5 (4.2) 

This equation can be used to find the fringe order at any point along line 'c-d' by 

substituting the pixel number of the point, fringe order being 0.5 at V and maximum at 

point V in the shown plot. 

As can be seen in Figure 4.17, a slight difference does exist between the theoretical (thin 

blue line) and the actual curve; this is inevitable due to difference in fringe gradient of the 

calibration LUT and the actual test specimen. The results validate our presumptions that 

the LUT based technique, being the fastest demodulation techniques, can be implemented 

effectively using a scanner. Since the experimental data is very close to the theoretical 

curve, the determined fringe order will be accurate. In the current implementation the 

minimum absolute error in the fringe order was found to be 8.15e-4 and maximum error 

was 0.041. 

Since calibration is done on linear data and the test data is non-linear, the RGB 

calibration system is subject to errors when compared to phase-shifting method. A better 

LUT can be developed if calibration is done using an arc-shaped model (Quiroga et al. 
2002a). The load is incremented in steps and data is collected from a section of image 

with uniform stress, the next loading-step represents the incremental fringe order. This 

means slow incremental steps can provide a better LUT; also better demodulation 

algorithms can cope with fringe gradient changes and make the systems less prone to 

errors. However, the results obtained using 16-bit channels were not significantly different 

from 8-bit channel results as suggested (Ramesh 2000). It was rather found that information 

from other colour spaces, better noise filtering algorithms and appropriate light source play 

an important role in accuracy of the technique. 
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4.3.5 Advantages of Scanner Based System 

Use of the flatbed scanner as a device for photoelastic fringe demodulation gave advantages 
in many aspects. First of all, it does not require a digital camera and can still provide 
resolution up to 10 Million pixels per square inch (3200 dpi). More importantly, a 6M digital 

camera is not capable of framing 2848 pixels across. the selected calibration line, whereas a 
scanner does not require any settings such as zoom, focus, aperture or shutter speed to 

generate sharp images with high clarity. The diffused light source scans over entire model 

with uniform illumination and as the scanning is performed at a close proximity, this makes 
the system insensitive to geometric variations. Further, there is no need to devise a new 

experimental setup and the whole process is simple and easy to implement with no 

experimental constraints. It is also insensitive to the surrounding light sources unlike the 

conventional techniques, which require great care in maintaining lighting conditions for the 
RGB calibration systems. Finally, due to the high spectral response of scanner, higher fhnge 

orders up to 5 can be demodulated without any special light source requirement and the 

system is portable, cost effective and highly efficient. The only drawback of this approach 
is the time required to scan the image. Image acquisition could be time consuming and 

can take up to several minutes if very high resolution is required, however the choice of 

resolution is user dependent. The scanner system can be used as an educational system for 

demonstrating the LUT based photoelastic analysis technique. 

4.4 Photoelasticity for Unconventional Loading 
This section considers the use of conventional photoelastic techniques of LUT based 

analysis and phase shifting under unconventional loading situations to evaluate their 

efficacy in sensing applications. A low modulus photoelastic material is deformed in z- 

plane to induce photoelastic effect. The results obtained under these conditions are 
discussed with their limitations when used for sensing. Finally a case study has been 

conducted to analyse a foot image and conclusions drawn from this have been presented. 
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4.4.1 Experiment Preparation 

The PS-4 photoelastic material (Table 3-1) has been used in these experiments, having 

low modulus which makes it ideally suited for the intended sensing application. The 

details of the experimental setup are described in Chapter 3 section 3.5.5 including the 

sensing element design and its layout (Section 3.2.3). For the intended sensing the 

photoelastic material was laid out horizontally in the form of a sensing plate to induce 

photoelastic effect when loaded. The sensing element was loaded under the vertical and 

shear forces with specifically designed indenter (Section 3.5.3). The fringe patterns 

obtained from loading the sensing plate with indenter heads and acquired using scanner 

based image acquisition system are shown in Figure 4.18. 

Due to the physics of the experimentation, the applied vertical load on the surface of 

photoelastic model would induce circular fringe patterns panning out from the point of 

loading. Under ideal conditions similar fringe patterns are generated for all the four 

indenter heads at a particular vertical load. However, even slightest uneven loading from 

the weights or mechanical flaws in the indenter design combined with high sensitivity of 

material leads to un-identical fringe patterns. 

Figure 4-18: Fringe patterns under (a) vertical load of 17.5 N and, (b) shear load of 15.2 N 
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Figures 4.18(a) and Figure 4.18(b) show the fringe patterns developed under the indenter 

heads for a vertical load of 17.5 N and a shear load of 15.2 N respectively. When shear 
load is introduced - the fringe patterns appeared different for the front two heads 

compared to the rear two heads, since the shear force was applied at a point and not on 

the plane. 

Even though the photoelastic material has been glued to the polycarbonate sheet and acts 

as coating but there is no transference of strain from the object to the coating as under 

conventional photoelastic experiments. Instead the photoelastic effect is induced due to 
deformation of material in z-plane, thus the photoelastic effect is appreciable even 

outside the point of indentation. It is this property of the photoelastic material to visually 

represent the effect of the load that makes it ideally suited for sensing and can be 

exploited for measuring vertical as well as shear forces. These images are representative 

of a whole-field sensor where the entire area covered can be mapped against the 

stimulating forces. 

4.4.2 Fringe Analysis using Look-Up Table Technique 

The modified LUT based calibration technique discussed and developed in the preceding 
section of the Chapter was used for determining complete fringe order for fringe patterns 
obtained under the vertical load. For the purpose of illustration only the fringe patterns 
under one indenter head (indenter 4) were analysed. Figure 4.19(a) shows the fringe 

patterns obtained under the vertical loading with determined fringe order along line a-b in 
Figure 4.19(b). 
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Figure 4-19: Fringe order determination under unconventional loading (a) fringes due to indenter 

loading, (b) fringe order plot for line a-b 

The fringes induced under the indenter head are not pronounced since the load was 

applied in an unconventional manner. Therefore, stress information cannot be extracted 

accurately from this region. Thus, the centre of patterns was masked due to stress 

concentration and limited fringe information under the indenter head. 

As can be seen the determined fringe order had limited accuracy in terms of maximum 

fringe order due to the following main reasons; 

1. The LUT based technique being less accurate compared to phase shifting. The 

accuracy of results is limited by the technique itself in addition to the type of light 

source and the image acquisition system used. 

2. The unconventional loading of surface deforms the material to a great extent 

thereby the colour chat of LUT that is prepared through conventional loading (C- 

shaped specimen) does not truly represent the colours being induced under such a 

deformation-, this compromises the accuracy of the results obtained. 

3. The fringe patterns generated under surface loading through the indenter are 
densely packed making the analysis more difficult and thus require alternative 

techniques for analysis. 
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However, the enhanced technique as developed (Grewal et a]. 2006) for demodulating 

fringe patterns through LUT based calibration technique was applied to minimise the 

errors. Figure 4.20 shows a polynomial fit achieved on the results from Figure 4.19(b), 

this significantly reduces the number of error points and a smooth gradual increase in 

fringe order can be achieved. 
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Figure 4-20: Complete fringe order determined by curve fitting 

The results obtained in Figure 4.20 can be integrated over a range of 00 - 360' to achieve 

fringe order for the entire ROL However, due to inherent limitations of RGB calibration 

technique coupled with densely packed fringe patterns (from unconventional loading) this 

technique cannot be relied upon for accurately demodulating the fringe patterns. 

4.4.3 Phase Shifting for Unconventional Loading 

To overcome the limitations of LUT technique in demodulation of densely packed fringes 

phase shifting was used. This study should show the capabilities of phase shifting and 

how far it can be implemented for load determination. The technique was applied only to 

the fringes induced from the vertical load, however, the results would lead to the 
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conclusion that if the technique is useful for vertical loading it can be equally applied for 

the fringes induced from shear forces. 

4.4.3.1 Phase Map 

For phase shifting the fringe patterns under the indenter head W were acquired using the 

experimental setup based on partial mirror (Chapter 3 section 3.5.3) using fluorescent 

tube as light source. In order to determine the whole field fringe order for the entire ROI, 

phase stepped images were acquired at six different optical arrangement of circular 

polariscope listed in Table 2-2 and are shown in Figure 4.21. 

Figure 4-21: Six phase stepped images acquired under white light for optical arrangement of 

elements as tabulated in Table 3.2, reflections of light source and glare due to partial mirror can be 

observed 

The central region of the fringe pattern has the highly stressed zone, however as can be 

seen, the photoelastic effect in this region is the least due to the indenter head pressing in 

the z-plane of model. 
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The experiment revealed that the images acquired under white light were of low contrast 
due to presence of a partial mirror in the design of experimental setup and the rotation of 

optical elements caused glare and ghost images of the light source; causing a significant 
loss in image quality. However, the effect was found to be less prominent with the use of 

custom designed monochromatic light (Chapter 3 section 3.4. ). Figure 4.22 shows six 
images from the monochromatic light which gave better fringe patterns in terms of image 

quality and contrast compared to white light. 

Figure 4-22: Phase stepped images acquired using partial mirror setup under monochromatic light of 

589 nm 

Using Equations 2.9 & 2.10 (Chapter 2), the phasemap for isoclinics and isochromatics 

was obtained as shown in Figure 4.23 and 4.24. The isoclinics were influenced by the 

model geometry, the point of application of load and the relative retardation as a result of 

the applied load. 
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Figure 4-23: Isoclinic phasemap using monochromatic light with orientation 

The isoclinic and isochromatic phasemap obtained appear to be elliptical in shape as 

opposed to expected circular shape, this can be attributed to the errors induced from the 

alignment of the optical elements during phase stepping. A fully controlled precise 

workbench is required to conduct this experiment to minimise this error, however, the 

effect will persist if the initial image under the load itself is elliptical due to 

unsymmetrical loading. 
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Figure 4-24: Phasemap for isochromatics with reversed zones and high error zones, (a) white light, 

(b) monochromatic light 

The phase map obtained under monochromatic light source in Figure 4.24 is of higher 

quality than white light. However, as opposed to the expected phase map of radially 
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(inwards) increasing fractional fringe order both phase maps had a reversed fractional 

fringe order at some locations and erroneous output elsewhere. This has been also 

reported in the literature (Ramesh 2000) for some models like disc with a hole. Therefore, 

to investigate this problem the experiment was repeated with different orientation of the 

optical elements. 

The unexpected behaviour of the phase map was found due to; 

1. The ambiguity in determination of the isoclinic as it falls in the range of 

-z/4 to z/4, thus it can represent either direction of a, or q2. 

2. Equation 3.10, is sensitive to fast or slow axis of the model, for which 

results can be erroneous and in certain zones phasernap can appear 

reversed. 

These drawbacks were overcome by using the modified Equation 4.3 for determination of 
isochromatics, this Equation is insensitive to fast or slow axis of the model. 

e, 
i -i )2 

tan' 
( 

=53=)+(4 =-'6)2 

(I 
1- 

'2 ) 
(4.3) 

The limitation of using Equation 4.3 is that the fringe order can only range between 0 to 
0.5 if the positive square root is used or 0.5 to I if the negative is used rather than 0 to 1. 

Therefore, the advantage of identifying the direction of fringe gradient from the Equation 

2.10 is lost, thus to achieve the complete fringe order the direction of fringe order is now 

required. For fringe patterns induced in these experiments the fringe order always 
increases radially from edge of the ROI towards the centre, thus complete fringe order 

can be obtained by phase unwrapping using an algorithm. 
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Figure 4.25(a) shows the phase map obtained using Equation 4.3 and Figure 4.25(b) is 

the fractional fringe order along line 'a-b' under a monochromatic light source. The spots 

appearing in Figure 4.25(a) are the reflections of LEDs used as monochromatic light 

source. 
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Figure 4-25: (a) Phasemap obtained under monochromatic light with partial mirror setup, (b) 

fractional fringe order along line a-b 

Figure 4.26 shows the results of the experiment repeated with a different load and 

without partial mirror to investigate if there was any considerable difference in the 

phasemap quality as this would eliminate the light source reflections. 
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Figure 4-26: (a) Phasemap obtained in reflection mode under monochromatic light without partial 

mirror setup, (b) fractional fringe order along a-b 
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The improvement in the quality of phasemap is evident, however, the stress field cannot 
be completely determined due to the direction of loading and highly stressed zone at the 

centre. 

4.4.3.2 Phase Unwrapping 

The phasemap obtained in the previous section requires unwrapping to obtain the 

complete fringe order. A robust algorithm is required that can unwrap the phasemap 

correctly following the integral fringe orders and the trend of fractional fringe order from 

the image. A code was written to achieve the unwrapping of Figure 4.26(a) and Figure 

4.27(a) shows the unwrapped phasemap obtained with Figure 4.27(b) showing the 

complete fringe order along the line 'c-d'. 
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Figure 4-27: (a) Unwrapped phasemap with complete fringe orde r achieved, (b) fringe order profile 

along c-d 

Since the stress at the centre of the fringe patterns is too high and fractional fringe order 

obtained from phase shifting is unreliable and erroneous in this zone, the complete fringe 

order cannot be accurately unwrapped as can be seen in the line profile in Figure 4.27(b). 

The determined complete fringe order from phasemap can be further used to determine 

the principal stress-strain difference using Equation 2.1 or 2.2, by substituting N and the 

determined values of A andffrorn section 3.3.1 and 3.3.2. Thus the whole field principal 

stress difference can be obtained. 
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4.5 Foot Image Analysis 

A case study of the foot induced fringe patterns was carried out to evaluate the use of 

photoelastic techniques on such complex fringe patterns and to investigate how far these 

techniques can be implemented in terms of quantitative measurements. Figure 4.28 shows 

a portion of fringe patterns obtained under the actual foot loading, which was subjected to 

phase shifting experiment by collecting six phase stepped images. 

Figure 4-28: (a) Fringe patterns under foot loading, (b) phasemap obtained of foot loading. 

The experimental rig from section 3.5.4 was used for foot loading of the sensing plate 

and the six phase stepped image acquired are shown in Figure 4.29. 
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Figure 4-29: Six phase stepped images acquired for foot loading of sensing plate using experimental 

setup equipped with partial mirror and monochromatic light source 

The isochromatic phasemap was obtained using Equations 2.10 and 2.11 and Figure 4.30 

shows the unwrapped phase map. Since the phase shifting experiments using this 

particular experimental rig gave better results using monochromatic light source as 

compared to white light, the former was used in the experiment. 

Figure 4-30: Isochromatic phase map obtained using phase shifting from foot loading of sensing plate 

The phasemap obtained had the same limitations as the one obtained in Figure 4.27(a) 

and for determining the complete fringe order further processing would be required. 

However, visual inspection of Figure 4.28 & 4.30 shows how complex and random the 

fringe patterns appear under the actual foot loading compared to the patterns with 
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controlled loading from indenter. The complexity also makes it difficult to unwrap the 

phasemap and would necessitate manual efforts. Figure 4.31(a) shows the fractional 

fringe order profile obtained along the line 'a-b' and Figure 4.31(b) shows the complete 
fringe order achieved along 'a-b' by unwrapping the data. 
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Figure 4-31: (a) Fractional fringe order, (b) Complete fringe order along line a-b 

The algorithm for unwrapping was same as the one developed for the preceding section. 

The complete fringe order for the entire phasemap image can be obtained, however, the 

process would be tedious and still inadequate to provide full stress information from the 

induced fringe patterns. If LUT based calibration technique was to be applied to the foot 

induced fringe patterns it would render similar results as obtained here. However, it 

would be difficult to obtain the complete stress field for the whole foot-, also the results 

would not be accurate due to inconsistent mapping of the RGB values between the model 

and the specimen due to the model deformation. 

4.6 Limitations of Conventional Techniques 

The results obtained from section 4.3 and 4.4 show that the conventional photoelastic 

stress analysis techniques can only determine principal stress-strain difference (maximum 

shear stress-strain) and all the six stress-strains (x, y, z strain and xy, xz, yz shear strains) 

cannot be determined using photoelasticity. Further for applications that require 
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unconventional loading like sensing, conventional photoelastic techniques have 

limitations in terms of determining the applied load. For loading conditions where 
deformations of unknown shape may occur or repeatability of the fringe patterns may not 

exist; under these circumstances of complex fringe patterns, mere determination of fringe 

order or stress-strain difference is not sufficient. This would require some intelligent 

processing of fringe patterns that could provide load information. 

4.7 Summary 

The main idea in this research is to use a photoelastic material as sensing medium and 
detennine the applied load which has induced the photoelastic effect. In the early sections 

of this chapter contributions were made to the conventional technique of LUT based 

photoelastic analysis. In the later sections conventional photoelastic techniques were 
tested on the fringe patterns obtained from surface loading of photoelastic material 
through a hemispherical head indenter. Both LUT based analysis and phase shifting could 

only provide fringe order thus limiting the results to principal stress difference. These 

techniques were also applied to the fringe patterns obtained from the actual foot loading 

and determination of the applied load was not possible due to the limitations of 

conventional photoelasticity. The results from the case study not only described the 
limitations but also identified the complexity of the problem. The results show that 

although fringe patterns may provide quantitative data in terms of photoelastic 
information but determination of load was not possible through either of these 

techniques. This requires that some intelligent image processing techniques be employed 
to achieve the whole field analysis and determination of load causing the photoelastic 

effect. 
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Chapter 5 Photoelastic Inverse Using Neural Networks 

5.1 Introduction 

In certain applications it is difficult to obtain an analytical relation between the fringe 

patterns and the triggering parameter. Under such circumstances empirical relations or 

even artificial intelligence may be required to develop a non-linear relation between the 
input and the output. With photoelastic materials as sensing mediums in determination of 
the applied load as triggering parameter this leads to inverse photoelastic problem where 
the developed image can be analysed for the input forces. However, there could be 

infinite number of possible solutions which cannot be obtained by conventional 

techniques. The conventional photoelastic techniques presented in the previous chapters 

are not applicable to the inverse problems as the requirement here is force extraction 

rather than stress analysis. This chapter presents neural networks based approach to solve 
this problem. The first few sections provide a brief description of neural network 

architecture used in this research followed by the construction, training and testing of the 

network implemented in this research. In order to generalise the force estimation from 

photoelastic images, a simple photoelastic model was considered for inverse analysis for 

which direct analytical relations exist between stress field and the applied load. 

The technique can be implemented for any generalised case involving complex fringe 

patterns under different loading conditions for analysis of the fringe pattern, which may 
find application in a variety of specialised areas including biomedical engineering and 

robotics. The presented technique uses image information from photoelastic fringes and 

overcomes the drawbacks of previously reported techniques of photoelastic inverse 

analysis using neural networks. A supervised network was trained to determine the force 

from direct photoelastic images. The methodology and implementation strategies of 

neural networks are presented in this chapter. 
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5.2 Photoelastic Inverse 

When a component or structural member is subjected to external loads the material Is 

stressed. Photoelastic techniques have been used to estimate the stress-strain level on 

such components by analysing the fringe patterns. However, there may be a certain class 

of application where photoelastic images need to be analysed to extract the loading 

conditions (Dubey et al. 2007); which is the inverse problem. Inverse problems are 
difficult to solve since there may be more than one possible solution for the same 

resulting effect. Consider the loading of a photoelastic material as shown in Figure 5.1 (a) 

by a normal force F and the resulting patterns, the same fringe patterns can be obtained 

by infinite number of forces acting at different angles (0,, ) as shown in Figure 5.1(b). 

Equations 5.1 & 5.2 describe the number of possible solutions for such conditions. 

F 

Figure 5-1: (a) Fringes due to a normal force (b) same fringe pattern with large number of forces 

1ý 
F 

n 

where, 1ý is equi-spaced forces for (i>]) 

F= (F, + F, + lý ........ Fjsin0� 

Where (i=1,2,3 ... n), n is an integer 

Oý = sin-1 (1) (6.2) 
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where, 0,, is the angle between the horizontal plane and the axis of forces. 

Tbus inverse problem cannot be solved by analytical methods for generalised loading 

conditions because it is difficult to develop relations between the information available 
(fringes) and the input (forces). Artificial neural networks may prove to be a useful too], 

since neural networks are well suited to develop non-linear functions between input and 

output (Bishop 1995; Patterson 1996). It is also known that neural networks can tolerate 

experimental changes (Noroozi et al. 2003), which are likely to occur in real systems. 

5.2.1 Experimental Procedure 

The aim of this chapter is to develop and a test neural network based methodology for 

determining the applied forces inducing the photoelastic effect. A simple C-Shaped 

photoelastic model (Chapter 3 section 3.2.4) was considered for experimentation and was 

subjected to bending load using the designed mechanism form Chapter 3 section 3.5.1 

from which precise deflection can be applied. The relation between the applied deflection 

and force was derived; the calculated force was used as target for training the neural 

network. 

The model was illuminated with a circular polarised light and the photoelastic effect was 

visualised through a digital camera (Olympus, SP500) mounted with optical elements 
(Chapter 3 section 3.5.6). Images of photoelastic fringe patterns were acquired and stored 
in a computer using camera control software (Sabsik 2005). The training data was 

extracted from the acquired images and used as input to the neural network. The 

presented technique is easy to implement, does not require extensive computation and 

can cope well within slight experimental variations. The technique just requires image 

acquisition, filtering and data extraction, which can then be fed to the neural network to 

provide load as output. The novelty of this technique is that the neural network is trained 

with direct image data from actual experiments which requires no prior calculations. The 

optimal network size was considerably small and system was generalised to analyse 

completely unseen data even at different camera settings. 
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5.3 Artificial Neural Network Based Analysis 

Artificial Neural networks are inspired by biological nervous system where elements are 

connected in parallel. The system can be trained through examples; input training sets are 
fed and the network learns the target. The connections (weights) between elements are 

modified with every training cycle to minimise the error between the desired target and 
the output of network. Figure 5.2 shows a block diagram of neural network learning 

principles. In the present case the network would be trained from direct image 

information of photoelastic fringes against the applied load to analyse the unseen image 

data. 

Targtt Load 

Photoelastic Image Data Neural Network Load 
Comparison 

> 
Weights Output Load 

Modifying 
Weights 

Figure 5-2: The basic structure of neural network for image analysis 

5.3.1 Network Architecture 

Besides the relevant input, the accuracy of the output is also dependent on the 

architecture of the network which is defined by the number of layers, number of neurons 
in each layer and the transfer functions used. A simple architecture of a single neuron 
connected to an input vector is shown in Figure 5.3. The element inputs are multiplied by 
individual weights and summed up; an additional scalar value (b) called bias can be 

added to the scalar product wp, which is then fed to a transfer function to produce an 
output. The input biased networks are found to be more efficient, than without biased 

networks as they can learn to feed some input to the transfer function even if all inputs 

are zero. 
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Figure 5-3: A schematic diagram representing a neuron connected to an input vector (P) and a 

transfer function via weights (w) 

Further, many neurons can be used to form a web of connections between the nodes and 

the input elements. The web of connections enables neural network to develop a non- 

linear relation between input and output as maybe required in some applications. 

Selection of transfer function is important as it affects the behaviour of the function. 

Figure 5.4 shows the two transfer functions used in the construction of network for this 

research. The tansig function (Figure 5.4a) generates output between -1 and I and was 

implemented for its ability to add non-linearity to the system which is required in this 

case. The tansig transfer function was used in neurons in hidden layer. The second 

transfer function used was 'purelin' used for output layer (Figure 5.4b) which generates 

output of any range, thus can be mapped for the desired load values. 

_/ 

Y1 H 
Figure 5-4: Transfer function (a) 'tansig', (b) 'purelin' used in construction of the neural network 
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Since more than one neuron is required for developing non-linear relations additional 

neurons might be required, the input (n) to the transfer function can be represented by 

Equation 5.3. 

n=W,, p, +b (5.3) 

Where, 

Wjj are the weight values as shown in Figure 5.3, pi is the input vector (i=l to R) 

The input n is fed to the transfer functions in Figure 5.4 for output a as shown by 

Equation 5.4. 

a =f (n) (5.4) 

The concept of one neuron connected to an input vector p with R elements is extended to 

form a multi layered network as shown in Figure 5.5. Here each element of input is 

connected separately to each neuron via weight matrix W. The number of neurons (S) can 
be different than the number of elements in the input vector (R). The mathematics 
involved in connecting each element to each neuron is seldom re-written, however, the 

network becomes capable of adapting to a high level of non-linearity of the system as is 

required in the present application. For implementation of the network standard functions 

from MatLABO Neural Network toolbox have been used. Two different training methods, 
'adapt and batch' are available, batch training mode was used in this research due to its 

high efficiency and necessity for type of input data (static) fed and the output required. 
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Figure 5-5: Structure of the multilayered neural network used for inverse photoelastic image analysis 
in determining the applied load from fringe patterns 

The size of the network is defined not only by the number of neurons and layers but also 
by the number of weights required to achieve the target output. The weights are 

categorised as input weights (connected to inputs), layer weights (connected to layers) 

and bias weights thus defined by the connection ends. Further, the initialisation of weighs 
is an important issue and is discussed in Section 5.4.2 in regard to the experiments 

conducted here. 

5.3.2 Selection of Neural Model 

A variety of neuron models are available to select from but the selection is application 
dependent (Grewal et al. 2006). Various other parameters need to be accounted for in 

selection of appropriate neuron model including the transfer function, learning function, 

learning rule (supervised or unsupervised) and the training technique. For linear 

classification perceptron neuron models with hard limit transfer function are sufficient. 
The output is limited to 0 or I due to the nature of transfer function and a wide range of 

outputs cannot be achieved. Here the training is performed using the adapt technique, 

where weights are adjusted after every single input, which cannot be used in this research 
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due to large amount of input data available and high computational times involved. 

Alternative to a perceptron is adaptive linear neuron, which is again limited to linear 

problems; however, output here can be of any value unlike 0 or I of the perceptron. Due 

to the limitations of the perceptron and adaptive neurons, in this research feedforward 

backpropagation network was implemented. 

5.4 Selection of Network Algorithm 

This research implemented use of feedforward backpropagation algorithm that uses 

gradient of the performance function or error to modify the weights and bias while 

training the network. The calculations are performed using chain rule (Hagan et al. 1996) 

and weights are adjusted in the direction of negative gradient i. e. opposite to the direction 

of the slope of performance function. The change in weights is described by Equation 

5.5. Thus the weights are adjusted in the direction in which performance function 

decreases most quickly. Several modifications have been made to the basic algorithm of 

backpropagation to optimise the technique for faster convergence. The techniques falling 

under improved algorithm are steepest descent, conjugate descent, quasi-Newton and 

Levenberg-Marquardt (Bishop 1995; Mathworks 2002). 

Xk+l -ý Xk - ak 9k (5.5) 

Where, Xk is the current weight vector, ak is the learning rate and 9k is the current 

gradient 

5.4.1 Constructing the Network 

In order to construct a backpropagation network four inputs are required (Equation 5.6) 

viz min-max of the input vector (1), the number and size of layers (2), the transfer 
functions (3) and the training function (4). The constructed network is represented by 
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Equation 5.6 and Figure 5.6 shows the optimised network achieved for inverse image 

analysis in this research. 

net = newff ([min(pn) max(pn)], [11,121, I'tansig', 'tansig', 'purelin'), 'trainlm') (5.6) 

1234 

Where, newff is the command for creating a feedforward network 

min(pn), max(pn) are the minimum and maximum values of input 

11,12 are the number of neurons in hidden layer 1&2 

tansig, tansig, purelin are the transfer functions used in each layer 

trainIm is the training algorithm used based on Levenberg-Marquardt 

optimisation algorithm 

Image Input (PCs) Hidden Layers 
I 

Tansig 
7 

output 
F-7q 

Purelin 

I 

3 
5 

7 

Figure 5-6: The optimised network configuration for the inverse photoelastic analysis 

Single hidden layered network was also tried but accurate results were obtained using 

two hidden layers. The selection for number of neurons in each hidden layer was 

optimised by experimenting with different possible configurations of the network (section 

5.6). 
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5.4.2 Initialising the Network 

One of the very important parameters for fast training a network and for efficient 

convergence is initiallsation of the weights and bias. By default, initialisation is done 

randomly when a network is created. The main problems with multi-layered neural 

networks using non-linear transfer function is the local minima; on an error surface there 

can be many local minima points besides one global minimum (Hagan et al. 1996). 

Figure 5.7(a) shows an example of error surface for a single-layered network (1,2,1) and 

Figure 5.7(b) shows a 2D view, with the red dot pointing to the global minima and white 

dots local minima. 

10 

& 
0 

w2(1,1) 15 15'uwl(1,1) 

10 
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0 

-5 
-5 10 15 

Figure 5-7: (a) 3D and (b) 2D representation of error surface, illustrating the effect of weight 

initialisation 

While training, the network can get trapped in one of the local minima instead of 

reaching global minimum error. For instance, the initialisation started from 'a' in Figure 

5.8(a) leads towards error point 'b' (out of plot) which is a local minima; on the other 

hand initialisation of weights from 'c' in Figure 5.8(b) leads to the global minima at V. 

The small circles are the iteration points during the network training. Since appropriate 

starting point is unknown it is reasonable to train the network a number of times with 

random initialisation which can help avoid a local minima. As it is impossible to confirm 

global minima in complex functions, training the network with different initialisation 

parameters and variables can lead towards the global minima. A random seed point is 
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given every time while initialising the weight matrix and bias to help reach close to the 

global minima and avoid local minima. 

a 

w1(1. ) 

Figure 5-8: Influence of choice of initial weights using 'Levenberg-Marquardt' algorithm (a) point a 

reaching to point b and (b) point c reaching to point d (Mathworks 2002) 

The number of iterations required to get to the local or global minima depends on the 

parameters like learning rate and training method. These examples were obtained with 

Levenberg-Marquardt algorithm and the graphs were generated while the network trains. 

Learning rate also affects the network response, too low rate can lead to convergence 

being stuck in local minima on the other hand higher learning rates can increase the 

convergence rate to a level that the system can become unstable and miss the global 

minima. 

5.5 Factors Influencing Network Performance 

Once the network is created, the next step is training the network with relevant data. The 

data being fed must be adequate and relevant; even though network learns to ignore 

irrelevant data through iterations still careful selection of the data is of vital importance. 

The following section discusses the data selection and extraction procedure, network 

parameters and the training techniques. 
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5.5.1 Input Data 

The model was subjected to a bending load and the induced fringes were acquired in 

form of digital images. An ROI was selected along the vertical arm of the specimen as 

shown in Figure 5.9. The input to the neural network was given as R intensity of line 'a- 

b' as shown in the Figure 5.9. The intensity plots for R, G and B planes tend to exhibit 

similar profile, thus training against any of the three would give similar results. 

Ten lines averaged 
to make one Input 

131 points on 
each Input Line 

Figure 5-9: (a) ROI in the model with fringe pattern, (b) loading conditions of the specimen 

In this research data reduction techniques were implemented to reduce input 
dimensionality, unlike (Chung 1998), which made the technique more efficient. To train 

the network it is essential that sufficient amount of training sets are provided. The fact 

that stress distribution along line 'b-c' is uniform facilitates extracting more than one 
input line from the same image. Inevitably noise is introduced due to multiple input 

extractions or if there was any uneven loading at the two ends. However, it has been 

reported that noisy data can help in better 'general isation' of the network (Freeman and 
Skapura 1992). Average R-intensity of 10 input lines was extracted along 'a-b' to make 

one input data line (131 points each) as shown in the figure. Similarly, 15 input data lines 

were extracted from each image under the load and the procedure was repeated for the 

successive loads. Figure 5.10 shows the 15 input intensity curves obtained at a deflection 

of 0.4 mm applied to the model, the noise induced can be seen in the plot. The main 

consideration in the selection of image data as direct input was to minimise the 
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computational effort of extracting features or other parameters for training. Noroozi 

(2003) implemented neural networks for inverse analysis of photoelastic data, but prior 
knowledge of Finite Element Analysis was required for training neural networks and 
knowledge of photoelasticity for testing the network. Additional noise generator was also 

used to introduce artificial noise to the network. During analysis the authors required 
determining N at different locations and feeding the fringe order to the neural network 
during testing. On the other hand Chung (1998) used direct image data but input 

dimensionality was considerably large (32-92) making the training more computationally 

expensive. Such an input range would require a network with more neurons. These 

limitations were overcome in the current implementation by using data reduction 

techniques. 

250 
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;,. 150 
CO) 

r 
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50 

Figure 5-10: A set of 15 input data lines (R intensity) extracted along line 'a-b' at a single value of 

deflection 

The deflection to the specimen was incremented in steps of 0.04 mm and recorded, later 

converted to applied force using Equation 5.7 to be set as target for training. 
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Ph2 hL S =_ 
ý+L 

(5.7) 
3E 

[11 

12 

1 

Where E is the modulus of elasticity of the model and Ii is the second moment of area of 
different sections of the model. 

Ten similar sets of experiments were performed with 25 load values (increasing and 
decreasing). Thus a total of 250 images were acquired. The neural network was trained 

with noisy data in order to make it robust against experimental variations that may occur 
during image acquisition e. g. changes in image orientation and scaling due to loading, 

lighting, reflections or camera settings. Generally, one load value would provide only one 
input data thus 250 input data sets from 250 images, but multi-input extraction gave 15 

input sets from each image. This increased the training data from 250 to 3750 and 
improved the robustness of the neural network. 

5.5.2 Conditioning of Input Data 

The data extracted from photoelastic images so far is enormous as each input line has 131 

points and would require large amount of training patterns with such input 

dimensionality. With such an input dimensionality the network also needs to be big and 
there is a threat of curse of input dimensionality (Bishop 1995). Thus data reduction 
technique of some sort is required; Principal Component Analysis (PCA) was used to 

reduce the dimensionality to a reasonable size. The flow chart in Figure 5.12 shows the 

complete procedure for implementation of the neural network for photoelastic fringe 

mapping system (Grewal and Dubey 2007). 
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Figure 5-11: The flow chart illustrating the process of inverse analysis; image acquisition, processing, 

data extraction, conditioning and neural network processing 

Since neural networks are found to be more efficient with normalised input (Mathworks 

2002), the input data and target were scaled by normalising so that the mean and standard 
deviation are within 0 and 1. The whole procedure shown above was automated in 

MatLABO from image processing to training and testing. 

5.5.3 Performance Function 

The error defined by performance function was set as the mean square error 'mse' 

between the target and the output of neural network. The value was set to an appropriate 

level (0.01) depending upon the accuracy required and as per output response of the 

network to avoid over-fitting. The weights and bias were modified as per gradient of 

performance function to minimise the error. The performance function was defined by 

Equation 5.8. 

In 
)2 mse = -1(t, - ai 

n j=1 
(5.8) 
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Where, n is the total number of target, t is the target desired and a is the neural network 
output. 

5.5.4 The Training Algorithm 

Selection of training algorithm is application dependent and requires experience, so does 

all the other parameters. To achieve fastest convergence and less computational time 
'Levenberg-Marquardt' training algorithm was adopted (Hagan and Menhaj 1994). 

Levenberg-Marquardt algorithm has been found more efficient as it interpolates between 

Gauss-Newton Algorithm and Gradient Descent Algorithm. This offers the fastest 

training algorithm for networks of moderate size and has a memory reduction feature 

when the training set is large. Other methods were tried but their slow response and lower 

accuracy led to adoption of Levenberg-Marquardt algorithm. 

5.5.5. Generalisation of the Network 

The idea of using neural network is to develop a system that can efficiently map input 

data on to the desired targets through some non linear functions. The network is expected 
to learn and produce output for unseen data. However, sometimes the network memorises 
instead of learning and thus over-fitting on input data. Larger networks tend to over-fit, 
thus keeping network to a reasonable size should be attempted. Two methods for 

improving generalisation. are resorted; regularisation and early stopping. Regularisation is 

referred to modification of performance function and early stopping involves sub 
dividing the data into three sets; training, validation and test data. In this research early 

stop was chosen over regularisation. as the latter requires an additional parameter to be 

carefully monitored and selected. In early stopping the validation data is the key. 

Research on quantifying cross validation (Prechelt 1998) criteria suggests that the 

modifications in validation technique can improve results slightly but at the cost of longer 

training times. The validation data was used in parallel to the training data and validation 

error was computed along with training error. The network training was stopped when 
validation error has increased more than a specified number of iterations. After early 
stopping the weights and bias automatically roll back to the point of minimum validation 
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error. Various other parameters are available that can be set to control the behaviour of 

training algorithm, like learning rate, number of iterations and the performance goal. 

5.6 Training the Network 

After careful selection of input data and network parameters, the next step was to train 

the network. The network trains by slowly modifying the weights in response to the 

performance function and learns from the input data sets. The input data was shuffled for 

efficient learning otherwise the network might memorise the last trained class of input 
data (Freeman and Skapura 1992; Patterson 1996); a separate code was written to shuffle 

the data. Figure 5.13 shows a plot of training cycles with training curve, validation curve 

and the goal to be achieved. The network training must be stopped when the error reaches 

a particular value of goal or if it does not fall any further, thus, the number of iterations 

were chosen accordingly. 
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Figure 5-12: The training behaviour of the network for photoelastic inverse analysis, the plot shows 

training and validation curve progressing against a set goal 
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The goal was set to 0.025 although different values of goal were used to reach to one 

optimised network. The performance for the network shown in Figure 5.13 reached 
0.0478 after 3500 iterations, the increasing distance between training and validation 

curves from the figure suggests that the training will stop in next few iterations, as a sign 

of early stop. 

The network was trained with different combination of neurons in the first and second 
hidden layers and with each combination the network was trained 30 times using 
different weights. The above procedure would make sure that the network is not stuck in 

local minima as 30 different networks have been checked every time, thus optimising the 
final network. In order to efficiently train the network the input dimensionality and the 

size of network was optimised. This was achieved by testing 49 different network size 

configurations for each input dimensionality and computing the error for 24 different test 
images. Table 5-1 shows a part of the tested network configurations with different input 

dimensions. The error computed for 24 different test images is listed in the table. It was 
found that the network gave consistent and accurate results when two hidden layers were 

used as compared to one; more than two hidden layers were found to be computationally 

overloading. 
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Table 5-1: Network optimisation and percentage error 

Input 

Dimensionality 

Neurons in 

Layer 1 

Neuronsin 

Layer 2 

% error 
24 test images 

% error 
23 test 

images 

5 4 3 5.56 4.18 

6 3 3 4.97 4.68 

7 3 5 4.20 2.78 

9 3 6 5.98 4.15 

10 3 4 6.67 2.93 

11 3 4 5.54 3.26 

12 3 4 9.08 3.49 

13 3 3 6.08 3.90 

14 5 5 5.23 5.08 

15 3 5 7.51 3.92 

16 3 3 6.53 5.08 

17 3 8 5.97 5.02 

18 4 3 5.70 5.67 

By comparing the input dimensionality and the network size, the network (7,3,5) was 
found to be the best choice. This means that the final network had input dimensionality of 
7 with 2 hidden layers, each with 3 and 5 neurons respectively. The average percentage 

error was found to be 4.20 and it further dropped to 2.78 when the initial load was 

eliminated from the analysis; since there was very little fringe information available at 

such a low deflection of 0.04 mm where the network did not learn efficiently. 
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5.7 Testing the Network Performance 

Once the network with minimum validation error is saved, it is ready to be tested with 

unseen data. After testing 24 test images the range of error was found to be between 4-9 

% for most of the networks as could be seen from Table 5-1. When the error falls in the 

same range for different networks, it is better to use network with fewer numbers of 

weights as they are more generalised. Once the optimal size of the network is achieved 

and the network is trained, the weights are saved and the test data can be fed without any 
further training. No further retraining of network is required for this setup and it can 

analyse any unseen test data. The network with 7 input dimensionality was found to be 

better suited and delivered accurate results with moderate sized network. The number of 

weights required were fewer and thus the network was better generalised. There were 25 

different loads and the network was tested for 24 loads (excluding the zero load). The 

network was unable to learn for one of the 24 loads and error was comparatively higher 

than other loads, the percentage error for 23 test loads is shown in Table 5-1 excluding 

the erroneous load. The test result for 10 random test load-images is plotted in Figure 

5.14, a comparison of ideal load value and neural network output is given. 
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Figure 5-13: Results plot for 10 different test images 
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Regression analysis on the training data and the test results are shown in Table 5-2. 

Under ideal conditions of perfect fit (neural network output should equal the desired 

target) the slope and correlation coefficient should be I between training and test data. 

Table 5-2: Regression analysis on training and test data 

Data Correlation 

coefficient 

Slope 

Training 0.993 
1 

0.985 
[-Test 0.999 i 0. 

Following the co-efficient values obtained from regression analysis and results shown in 

Figure 5.12, it can be concluded that the network performed considerably well in 

mapping the input photoelastic image data on to the applied bending load. 

5.8 Summary 

The conventional techniques of photoelasticity can only provide information on the 

principal stress difference for a stressed specimen and not the load applied, unless an 

analytical relation exists. However, when desired output is determination of the forces 

from the induced photoelastic effect, as may be required in various sensing applications, 

the conventional techniques have limitations. As the fringe patterns become more and 

more complex and different forces are applied from different directions on the specimen 
developing analytical relations between complex fringe patterns and combined forces 

become difficult. Under such situations where no analytical relations are available, neural 

networks can be implemented to learn from fringe patterns to extract the specified 
loading conditions. This chapter presented such an example of building a tolerant and 

generalised network capable of mapping photoelastic fringe data to extract the desired 

output load. The presented system overcame the demerits of previously published work 

and offered an enhanced technique for inverse photoelastic analysis using neural 
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networks. This technique can be further built up with more and diverse inputs to the 

network for a more generalised and complex problem under varying conditions of load. 
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Chapter 6 Force Visualisation and Measurement 

6.1 Introduction 
This chapter further develops the technique of artificial neural networks discussed in the 

preceding chapter for evaluation of different loading conditions viz vertical and shear 
forces by analysing the photoelastic fringe patterns induced in the sensing plate. The 

methodology is based on the inverse photoelastic technique, however, a generalised case 
is considered here, where normal as well as shear forces are applied to the sensing plate 

and images produced are analysed by taking into account the various parameters of the 
image. The main parameters considered were image intensity, geometric and statistical 

parameters and later combinations of these parameters was tried and results obtained in 

each case are discussed with their limitations. The last section of the chapter presents 

qualitative load visualisation from actual foot loading. 

6.2 The Loading Characteristics 

The experimentation for this chapter uses the developed photoelastic sensing plate and 

subjects it to known vertical and shear loads. Neural network based methodology 
developed in previous chapter is implemented to determine the triggering parameter (the 

applied forces) from the produced photoelastic fringes. Since the fringe patterns pan out 

on application of vertical load as seen in Figure 6.1(a), it is important to understand the 

effect of various parameters that govern the fringe panning through the indenter loading. 

The following parameters have direct bearing on the characteristics of the fringe patterns: 

1. Geometry of indenter: Fringes generated under a hemispherical head indenter 

would pan out to a different length compared to a flat head indenter. 

2. Diameter of indenter: Larger diameter indenter head would cause the fringes to 

propagate to a different length than a smaller diameter. 

125 



1 

Force Visualisation and Measurement 

3. Material properties: High modulus material used under indenter would generate 
higher fringe order and higher propagation of fringes. However, with too high 

modulus (2.5 GPa) such loading may not generate appreciable fringes as material 

straining may be insignificant. 

Further comparative study on the influence of the above parameters on the fringe patterns 
is given in Appendix-III. 

Two types of forces (vertical and shear) were applied to the photoelastic plate separately 

or in conjunction by the specially designed indenter (Chapter 3 section 3.5.3) and 

experimental setup discussed in section 3.5.5. The vertical force deforms the material and 
fringes propagate radially from the point of application of load in a symmetrical way. The 

fringe patterns appear as concentric circles of sequential colours when white light is used, 

as in these experiments. When shear force is applied in conjunction with the vertical 

force the fringe patterns smear in direction of application of force. Figure 6.1 shows the 

effect of vertical and shear force on the surface of photoelastic plate. 

Figure 6-1: The effect of vertical (23.4 N) and shear (19.13 N) forces on the surface of photoelastic 

model with hemispherical head indenter using scanner based system 

The co-efficient of friction was found to be 0.89 between the polycarbonate indenter 

heads and the photoelastic model with reflective paint, which was determined 
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experimentally. Co-efficient of friction helps in determining maximum amount of shear 
force that can be applied at a particular value of vertical force without slipping the 
indenter. This also ensures that for the intended sensing application the coefficient of 
friction would be sufficient so that appropriate level of shear force can be measured 

without slippage. Table 6-1 shows a part of the range of vertical and shear forces applied 

on the material for the following experiments. 

Table 6-1: Applied vertical loads with a range of shear loads 

Vertical force (N) 8.68 9.66 10.64 11.62 ....... 21.43 22.42 23.4 

Shear force (N) 1.47 1.47 1.47 1.47 1.47 1.47 1.47 

Shear force (N) 3.43 3.43 3.43 3.43 3.43 3.43 3.43 

Shear force (N) 5.39 5.39 5.39 5.39 5.39 5.39 5.39 

Shear force (N) 7.35 7.35 7.35 7.35 7.35 7.35 7.35 

Shear force (N) 9.32 9.32 9.32 9.32 9.32 

Shear force (N) 11.28 11.28 11.28 

Shear force (N) 13.24 13.24 13.24 

Shear force (N) 15.20 15.20 15.20 

Shear force (N) 17.16 17.16 17.16 

Shear force (N) 19.13 

The vertical load was incremented in steps of 100 gm starting from 500 gm. (excluding 

weight of indenter 385 gm) and the shear load was incremented in steps of 200 gm. The 

limiting value of shear at a particular vertical load was determined using Equation 6.1. 

S. X = 0.89vi (6.1) 

Where, S. is the maximum permitted shear load under the vertical load of V,. 

The vertical load was placed directly on the top surface of indenter while shear force was 

applied by a pulley-cord setup as shown in Figure 6.2. A nylon cord was used for 
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connecting indenter and the shear load. Figure 6.2(a) shows the top view of experimental 

rig and Figure 6.2(b) shows fringe patterns induced under all the four indenter heads from 

Top View of experimental rig 

Pulley 
(Shear L, 
Polariser 

Photoela 
(reflectiN 

Vertical 

Scanner 

Scanner 

Figure 6-2: (a) Top vie" ofthe scanner based experimental rig, (b) fringes induced under all the four 

indenter heads 

Figure 6.3 shows a series of fringe patterns obtained under a vertical load of 22.42 (N) for 

indenter head 4 and how the fringe patterns change when incremental shear force is 

introduced to the vertical force. 
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Figure 6-3: Fringe patterns obtained under vertical force of 22.42 N with incremental shear force in 

steps of 3.92 N from 3.43 N to 19.12 N 

6.2.1 Experimental Errors in Loading 

The photoelastic material used for sensing plate had a low modulus of elasticity of 0.004 

GPa and high strain optic co-efficient of 0.009. This combination makes it sensitive to 

even small changes in force, thus it was impossible to obtain identical fringe patterns 

under all the four indenter heads for a known vertical load as evident from Figure 6.2. 

These errors in loading can be determined by measuring the diameter (horizontally) of 
fringe patterns under all the four heads and repeating the experiment several times. In 

order to do that the images were converted to HSV plane for ease of image processing. 

Further images were segmented in H-plane and then the diameter of the outermost fringe 

was measured by the developed algorithm (Appendix-111). Measured diameter for all the 

four fringes under different indenter heads for 9 sets of experiments was averaged to get 

an ideal diameter. Percentage error for all the measured diameters was evaluated against 

the ideal diameter. Figure 6.4 shows the measured diameter for vertical load of 17.5 N 

with averaged diameter from the four indenters represented by the black-cross for each 

set of experiment. 
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Figure 6-4: The average fringe diameter under 4 indenter heads from 9 experiments, black line 

representing average diameter 

The fringe diameters are represented in pixels and for each experiment from 1-9, four 

diameters were recorded as represented by red, green, blue and cyan lines corresponding 

to fringe patterns under each indenter head. Following the above two conclusions were 
drawn first, the fringe patterns induced by the four indenter heads were not identical in 

terms of diameter (as red, green, blue and cyan lines are far apart), second-, the averaged 

diameter from four fringe patterns had a significant difference (black line) even though 

the vertical load was kept same for the repeated experiments. A statistical evaluation of 

error in loading and fringe generation was performed following the significant difference 

in statistical parameter in the fringe patterns. Table 6-2 shows averaged diameter for each 

experiment; in other words it represents the black line. 

Table 6-2: Average fringe diameter from 4 inclenters for 9 experiments 
145 1 142 1 144 1 139 ý 137 1 128 ý 141 ý 144.5 1 146] 

The fringe diameters in the table were averaged to obtain an ideal diameter D, the mean 

of 36 (4x9) fringe diameters. 

D= 140.05 
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Considering mean diameter (D) as an ideally expected fringe diameter under the vertical 
load of 17.5N, the mean percentage error in loading was calculated to be 2.57%. 

Following the same technique the average percentage error for all the vertical loads for 9 

experiments was found to be 2.56%. Thus the calculated error in input data would affect 

the accuracy of results by a minimum of 2.6% as this much of error has been added in the 

input at the outset inevitably. The various factors that may have led to unsymmetrical 
fringe patterns include uneven load transfer to unsymmetrical weights design and to 

slightest disorientation of the indenter while shear force was applied. 

6.2.2 Response to Vertical Loading 

As explained earlier the fringe patterns tend to pan out under the influence of vertical 
force, Figure 6.5 shows the influence of increasing vertical load on the diameter of fringe 

patterns obtained from 9 repeated experiments. 
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Figure 6-5: The influence of vertical load on measured diameter of fringe patterns 

Every point plotted in each data line in Figure 6.5 is averaged measured diameter from all 

the four fringe patterns under four indenter heads. It is evident that the plot of averaged 
diameter measured from 9 repeated experiments has significant differences. Data 

collected from experiment 6 seems to be out of place and can be attributed to the 
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measurement error or loading itself. Even if the data did fall in the range of the rest of the 

plot, still reliability in measurement of vertical load from the fringe diameter cannot be 

ensured. Using just one geometric parameter in determination of load from the fringe 

patterns may not be a reliable method, since material is too sensitive to this kind of 
loading and achieving identical fringe patterns under repeated loading is difficult. Thus a 

more reliable and high tolerant algorithm is required to extract load information, which 

can use maximum possible fringe infon-nation. In the following section the neural 

network approach as developed in Chapter 5 was used to determine vertical and shear 
force using various parameters extracted from the fringe patterns. 

6.3 Data Conditioning and Optimisation 

The fringe data acquired in form of images was used for training and testing of the neural 

network. Since an entire image cannot be used as input due to high input dimensionality, 

it is advisable to condition the data and optimise the dimensionality of the input being fed 

to the network as discussed earlier in Chapter 5. A large number of parameters were 

extracted from the fringe images that can be used as input to the network. A region of 
interest was selected encompassing fringe patterns and the following parameters were 

extracted; 

1. Mean pixel intensity 

2. Median value 
3. Standard deviation 

4. Kurtosis 

5. Skewness of data 

6. Horizontal radius- Horizontal stretch in fringe from point of load 

7. Vertical radius- Vertical stretch in fringe from point of load 

8. Pixel area of segmented ROI 

9. Intensity information from region of interest 
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The above parameters were fed in combination and individually to reach to an optimal 
input for network training. Principal component analysis (PCA) was used as data 

reduction technique in the following implementation. Since training data is limited by the 

number of experiments, it is important to narrow down to an optimal dimensionality 

through PCA whilst maintaining the subtle differences in the fringe patterns under the 

consecutive loads. 

6.4 Optimisation of the Selected Network 

A large number of networks were tested for the best possible results; the training method 

adopted was 'Levenberg-Marquardt' as it proved to be the most suitable for the type of 
data (fringe patterns) available for analysis. Both single layered and multi-layered 

architecture were used and the results were found to be accurate when a network with 

two hidden layers was used. 

Training data was accompanied by validation data to keep a check on network over- 
fitting or memorising. The network was initialised randomly 10 times under each layer 

configuration and 200 different layer configurations were tested. Testing network for a 
wide range of configurations becomes essential here due to the following two factors: 

1. The application requires 128 different numerical values as output from image 

data, as opposed to most of the applications where the desired output is 

classification of images in just 2-5 different bins. 

2. There is a subtle difference between consecutively loaded images. An image 

acquired under a particular value of vertical and shear load tends to be very 

similar to other images acquired under different vertical and shear load 

combinations. 
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Thus the data in this case is equivalent to classifying similar looking patterns into 128 

different groups, which makes the training harder. The following sections present data 

analysis using various image parameters viz statistical, geometric and intensity to obtain 
loading information from the sensing plate. Later a combination of these parameters was 
fed to the neural network to compare the results obtained under these circumstances. 

6.5 Data Analysis using Statistical Parameters 

The input training data used for the network was derived from the statistical analysis 

performed on the acquired images. Each image was stacked down to individual planes 

and intensity data from only one plane was used for statistical analysis. Since there is no 

considerable difference between fringe patterns in different planes (R, G& B) due to 

optics of the problem, the plane with highest contrast was considered for analysis. 
Different statistical parameters, Kurtosis, Skewness, Mean Pixel Intensity, Standard 

Deviation, Median (definition of these parameters is available in Appendix 111) were 

extracted and fed as input to the neural network to map the shear force. Figure 6.7 shows 
the optimal results that were achieved using statistical parameters as input to the network 

with 23 random test images. 
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The Figure 6.6 shows desired shear force compared to determined shear force at different 

vertical load values. Table 6-3 list the vertical forces at which each shear force was 

determined. The same vertical forces were used for all the following experiments. 

Table 6-3: Vertical force at which shear forces were determined in 23 test images 

Test Image 1 2 3 4 5 6 7 8 9 

Vertical 

Force (N) 

8.68 10.64 9.66 14.56 12.6 16.53 12.6 15.54 21.43 

Test Image 10 11 12 13 14 15 16 17 18 

Vertical 

Force (N) 

17.51 19.47 19.47 22.41 22.41 13.58 17.51 20.45 17.51 

Test Image 19 20 21 22 23 

Vertical 

Force (N) 

12.60 15.54 9.66 18.49 21.43 

The average percentage error found for 23 test images was 13.15% and for the entire load 

range (112 test images) was 13.45%. The results obtained were reasonable to continue 

using neural networks for force determination but were not accurate enough. As can be 

seen in the figure, for some test images the error is too high due to insufficient input data 

and training patterns. Many of the statistical parameters like mean pixel intensity and 

standard deviation did not show much variation with change in load values. 

6.6 Data Analysis using Geometrical Parameters 

As discussed earlier that the fringe patterns tend to pan out under the influence of vertical 
force and smear in the direction of shear force, thus measuring geometrical parameters 

could be a better approach that could lead to meaningful results. The measured 

parameters included segmented area from hue plane and radius measured in both 

horizontal and vertical axis since they are controlled by different forces. Horizontal 

radius being influenced mostly by the vertical load, whereas vertical radius is influenced 
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by the shear load which stretches the fringe patterns in direction of application of load 

starting from the point of loading. 

The network was trained with an input dimensionality of 8 contributed by the four area 

values corresponding to fringe patterns under each indenter head, two horizontal and two 

vertical radii measured for the bottom two fringe patterns as they happen to change more 

significantly under the influence of shear force. Figure 6.7 shows the results obtained 
from training the network with geometrical parameters and testing for shear load. The 

optimal network had a configuration of 18,2,5,1 ), where 8 is the input dimensionality, 2 

neurons in the first layer, 5 in the second and I is output dimensionality. The network is 

small and results are accurate with respect to the input provided. 
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Figure 6-7: Determined shear force using geometric parameters 

The percentage error was found to be 8.15 % for 23 test images and 11.4 % for entire 

range of loading (112 images). The results obtained were better than what were achieved 

with statistical parameters, since the geometrical parameters were influenced more 

significantly with the change in load. However, the accuracy desired was still not 

achieved and thus combined statistical and geometric data was tried for training the 

network. 
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6.7 Combined Statistical and Geometric Parameters 

Since encouraging results were obtained using statistical and geometric data, it was 

envisaged that error would reduce if the training data was combined from the two. Thus a 

network was constructed and trained with combined statistical and geometric data. The 

results obtained are shown in Figure 6.8. 
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Figure 6-8: Determined shear force using combined statistical and geometric data 

The results improved dramatically by almost 4% as the total averaged percentage error 
for the entire range was found to be 8.43% and 7.23% for 23 test images. 

To move a step further in an attempt to achieve higher accuracy the network was trained 

with intensity data extracted from load images. Since intensity information is the most 

abundant information and seemed most relevant in this case, the results were expected to 

improve. 

6.8 Analysis using Intensity Data 

The intensitY data available is massive for each image, however, using an entire or even a 

part of image directly for training would be huge (Grewal and Dubey 2007) which may 
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lead to dimensionality curse. The number of training patterns were also limited because 

of time constraint In collecting data and the computations required. Thus input data was 

collected from a region of interest and dimensionality was reduced using PCA. 

The training data was collected along a line profile across the vertical diameter of the 

image and reduced to a lower dimensionality of 20,15,10,8 and 6 to check how this 

would influence the results; and also to reach to an optimal size of the input. Figure 6.9 

shows the results obtained with input dimensionality of 15. 
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Figure 6-9: Determined shear force using intensity data 

The results gave an average error of 19% for the entire range and 13.3% for 23 test 

images thus a lower accuracy compared to the previously fed input of statistical or 

geometrical values. The reason why intensity data came out with such a low accuracy 

was that the input fed as intensity from a small region of interest would not be as relevant 

and crisp as features extracted from geometrical and statistical parameters. 

To improve results the entire image was considered for extracting input rather than just a 

region of interest or line of interest. The image was resized to a size of 7505 pixels and 
PCA was preformed to reduce the dimensionality to 20. Figure 6.10 shows the results 
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obtained with average error reduced to 5.1 % for entire range of loads and 5.35% for 23 

test images with network dimensions as 120,2,6,1 ). 
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Figure 6- 10: Determined shear force using intensity data from entire image 

Increasing input dimensionality to 25, the error increased to 5.99% which is marginally 

different however, the dimensionality of network increased dramatically to 125,6,5,1 ). It 

is therefore recommended to choose a smaller network (Grewal and Dubey 2007) over 

larger when results are comparable thus former network was set as optimal network. 

Results obtained using different input dimensionality (25,15) are shown in Appendix-111. 

However, in order to achieve even higher accuracy and tolerance a different methodology 

was adopted where an attempt was made to make the input more relevant. 

6.9 Modified Strategy 

The determination of shear force through different approaches like statistical parameters, 

geometric parameters and intensity data did provide clear indication for implementation 

139 

01 11111 
05 10 16 20 25 



Force Visualisation and Measurement 

of neural networks but the results desired were still not very accurate. A modified 

approach was adopted in order to improve the accuracy and efficiency of the system; a 

network (1) was set to determine vertical force from the image data using intensity 

information. For determination of shear force the data was fed to a different network (2) 

as a combination of previously tested parameters and the vertical force determined by the 

network (1). Following this approach the efficiency of network to map shear force is 

expected to improve since a relevant parameter (vertical load) is added to the input 

dimensionality. Also the networks would map both vertical and shear forces. 

6.9.1 Determination of Vertical Load 

In order to analyse the fringe patterns as accurately as possible both vertical and shear 

forces were determined frorn the same fringe patterns. This also, in fact, will be the actual 

situation when using this technique for sensing applications. A network trained from the 

intensity data extracted from image was tested for optimal results in vertical force 

determination. Since the desired number of targets were considerably fewer compared to 

the shear force, the network was trained efficiently and required less computational time. 

Figure 6.11 shows the results obtained for determination of vertical load from the fringe 

patterns. 
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Figure 6-11: Determination vertical force for 128 test images, the graph appears as steps as there was 

more than one shear force applied at each vertical load 
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The averaged percentage error for 128 test images was found to be 0.67%, thus giving an 

accurate value of the applied vertical load. The results plotted appear in stepped form 

with increasing length because at each vertical load different shear loads were applied 
(Table 7-1). In absence of shear load the graph would result as a straight line for each 

vertical load thus appearing as steps. The vertical load determined from the network can 

now be combined with other inputs (statistical, geometric, intensity) and fed to a new 

network for determination of shear load. 

6.9.2 Statistical and Geometrical Parameters with Vertical Input 

The network was trained with combined statistical and geometric parameters as input (as 

discussed in section 6.6) but an additional input parameter, the determined vertical load 

was added as another relevant input. Figure 6.12 shows the results obtained from the 

trained network tested over 23 test images. 

2C 

IE 

1E 

14 

ic 

-0 E 

E 

4 

Randomly chosen test images 
Figure 6-12: Determined Shear force using statistical, geometric and vertical input 

The error was reduced drastically from averaged 8% to 5.37% for the entire range of load 

and 3.86% for the 23 test Images as shown in the figure. The optimal network was found 

to have the configuration of 113,9,20,11 as input dimensionality, neurons in the first 

layer, neurons in the second layer and the output dimensionality respectively. However, if 
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the accuracy was compromised for 6.46% the network size could be reduced to 

113,2,9,1 ). 

6.9.3 Intensity with Vertical Input 

The determined vertical force input was added to the conditioned intensity data of input 

dimension 15 as 16 Ih input dimension and Figure 6.13 shows the results obtained. 
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Figure 6-13: Determined shear force using intensity data from entire image and vertical input 

The results obtained improved slightly from 5.1% error (section 7.7) to 5.08% but the 

network dimension increased from 120,2,6,1 ) to 1] 5,5,8,11, where the required number 

of weights for network training grew from 58 to 123. 

The addition of determined vertical force as input improved results significantly for the 

networks trained with statistical and geometrical input parameters and the error reduced 

dramatically (8% to 5%). However, for the network trained with intensity data there was 

no significant improvement in results (5.1% to 5%) with additional input of vertical 

force. This is because the intensity input was extracted considering the entire image, thus 

it is more likely to represent the whole image and addition of similar image information 
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(vertical force) is unlikely to change the results. On the other hand for statistical and 

geometric inputs the vertical force was found to be an important input as the other 

parameters do not represent whole image, thus the network trained with intensity data is 

an optimal and more efficient network. 

6.10 Results and Discussion 

The accurate results in determination of shear force from the fringe patterns were found 

in two networks, one trained with the combination of statistical and geometric parameters 

with determined vertical force and second trained with intensity data from the entire 
image. Both networks gave comparable results of 5.37% and 5.1% error respectively, 
however, the later was chosen to be the final network as it represented the image better. 

The training of the network in this case is easy and requires no feature extraction or 

specific processing of data. The image under analysis is just required to be selected and 

resized to appropriate dimensions. Data reduction via PCA is performed and results are 

stored as training data for the neural network. The optimal network after training is saved 

which can be tested with unseen data. 

Until now the determination of vertical and shear has been discussed in context of load 

and not stress because the load applied was point load and the aim was determination of 
the triggering parameter. However, for real sensing applications such as analysing the 
foot prints or pressure patterns of a loading, accurate determination of loading at pressure 

points and providing the whole-field load information may be of more relevance. This 

will require further investigation using intelligent techniques like neuro-fuzzy and 
knowledge based system to extract the loading information from these complex fringe 

patterns. However, an effort is made here to extract qualitative data from the foot print 
and a basic analysis is presented to extract the information from such images. 
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6.11 Qualitative Data from Foot Loaded Images 

Determination of quantitative information from foot image would require a lot more 

training patterns and much more sophisticated artificial intelligence techniques beyond 

the scope of the present research. However, in order to extract some meaningful 

qualitative data from different foot images, fringe patterns were acquired (scanner based 

system) and analysed. 

Three different sets of data were collected under low, medium and high foot loading and 

qualitative data analysis was conducted to compare the images under vertical and shear 
loading. In these experiments attempts have been made to keep the vertical force 

qualitatively controlled to low, medium and high ranges and the applied shear forces 

were corresponding to these ranges. Figure 6.14 shows the foot images under a low 

vertical load followed by a low shear load. The changes in fringe patterns are discernable 

as it can be seen that fringes tend to propagate in the direction of shear compared to the 

reference image under the vertical load. 
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Figure 6-14: Fringe patterns obtained under (a) low vertical load and (b) with low shear load 

introduced 
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When medium foot loading was applied to the sensing plate, similar fringe characteristics 

can be observed in Figure 6.15 under the vertical and shear loads, however, significant 

changes were visible compared to the previous low level of foot loading. 
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Figure 6-15: Fringe patterns obtained under (a) medium vertical load and (b) medium shear load 

introduced 

Under high foot loading it can also be seen (Figures 6.16) that new fringe patterns emerge 

under vertical as well as shear load, seen under the first metatarsal head and laterally 

along the metatarsals. Point of load (vertical) can also be extracted if fringes are carefully 

examined (Inset Figure 6.16). The black coloured fringes in the inset representing the 

4source point' (from where the fringes originate) is the point of vertical loading. 

Figure 6-16: Fringe patterns obtained under (a) high vertical load and (b) high shear load introduced 
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Studying the fringe patterns above it is evident that the fringe patterns are influenced 
differently under different loading conditions (vertical, shear, low, high) and would be 
different for different subjects. Since fringe patterns induced are also influenced by the 
loading element, soft tissues would generate different patterns compared to tissue with 
callus, thus intelligent processing would differentiate the foot likely to develop ulcers 
compared to normal subjects. 

The extraction of quantitative data would not be an easy task as the fringe patterns are 
complex and represent only the in-plane information due to the nature of the 

phenomenon. However, analysing the fringe patterns carefully and intelligently would 
lead to the development of a classifier which can serve as a predictor for diabetic foot 

ulceration. 

6.12 Summary 

This chapter focused on analysing the fringe patterns obtained under the vertical and 
shear loads in order to determine the load characteristics. Various strategies were adopted 
to refine the results by taking various image parameters for implementation. Since an 
image has enormous data in itself it cannot be used as a whole for training neural 
networks of moderate size. Thus a range of data were extracted from the images 
including statistical, geometric, intensity and fed as training data. A mix of input 

parameters were also tried to achieve the best possible network with desired accuracy. 
The network trained with combined data from statistical inputs, geometric parameters and 
previously determined vertical load gave accurate results. However, the network fed with 
intensity data from entire image also gave comparable results, due to the fact that the 
input was most relevant and input dimensionality was moderate. Thus the later network 
was chosen with the relevant input providing high tolerance. 

Following the fringe patterns induced under controlled loading, a set of data was 
collected from actual foot loading to extract qualitative information. The changing fringe 
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patterns under vertical and shear load gave qualitative data in terms of determining 

pressure points and regions of high stress. However, in order to get meaningful clinical 

results (in terms of ulceration) from foot images, system refinement would be required 

with sophisticated algorithms in conjunction with the medical history of the subjects 
forming a knowledge-based intelligent system. 
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Chapter 7 Conclusion and Future Directions 

7.1 Review 

The research presented in this thesis has been concerned with the use of digital 

photoclastic techniques for biomedical sensing applications. The research started with the 

need for a sensing device for pressure induced pathologies that could measure the actual 
conditions of loading; and thereby identifying the causation factors that could lead to the 

anomaly. The research has specific implications for early detection of diabetic foot 

ulceration by measurement of shear force under the sole of foot, however, the developed 

technique could equally be applied to other pressure induced anomalies as well as for 

tactile or haptic interface for man-machine interactions. The initial section of the thesis 
has presented the problems in foot pressure measurement, highlighting the need to sense 
the actual conditions of foot loading in standing or walking. A comprehensive survey has 

been conducted on various foot-prcssure measuring devices with their relative merits and 

applicability for clinical assessments. This led to the conclusion that photoelasticity may 
be a suitable technique to meet such requirements. Following this, elements of 

photoelasticity have been reassessed for sensing applications. Conventional photoelastic 
techniques have been investigated in the sensing context i. e. under unconventional 
loading situations. Enhancements to the existing techniques have been presented with the 

recommendations to use intelligent techniques to extract loading information from 

photoelastic images. This further led to the implementation of neural networks for load 

analysis taking into account the relevant image parameters for quantitative image 

analyses. A prototype device was developed capable of extracting qualitative information 

from fringes. This was coupled with artificial intelligence to measure applied vertical and 

shear forces and provided quantitative load information from fringe patterns under 

controlled experimental conditions. The developed sensor could provide quantitative load 
information and prediction towards foot ulceration if integrated with a knowledge base 

system. Following this, future research directions are given to develop an integrated 

methodology for designing a classifier for predicting foot ulceration at an early stage. 
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7.2 Research Achievements 
Pressure induced tissue anomaly is of crucial clinical importance in many pathological 
investigations, including pressure sore identification in neuropathic subjects with a high 

risk to foot ulceration. A number of devices have been developed to identify pressure 

points at foot-sole interface however, measurement of shear has always been a challenge 
due to the limitations of the existing technology and the measurement difficulties. Shear 

force is considered to have more damaging effect than the vertical force in ulceration due 

to the nature of force as it stretches and bunches the soft tissues. The first chapter 
discussed the problems associated with foot interface pressure measurement followed by 

comparing the existing foot-pressure measuring vertical and shear force devices and 

elucidates their merits and applicability for assessment of interface force measurement 

and role in diabetic foot ulceration. Most of the commercial sensors only measure 

pressure and only a few research based shear sensors are available which in fact, are 
displacement sensors that provide discrete measurement. The measurement of the actual 

condition of foot loading and visualisation of the whole-field is not possible with a single 

sensor and spcciFically it is difficult to isolate the role of each type of forces in causation 

and growth of ulceration. This set the research objectives to make use of digital 

photoclasticity for developing a biomedical sensing device. The unique properties of 

photoclastic materials to exhibit visual information under stress conditions can be 

exploited to develop such a potential sensing tool for foot load analysis. 

Chapter 2 dealt with the basic physics of photoelasticity, components and material 

properties. The current photoelastic techniques were discussed with their relative merits 

and demerits followed by application of photoclasticity in medical and industrial fields. 

Chapter 3 was focussed on selection of appropriate material properties and optical 

components to design and build the sensing plate. To develop a sensing tool based on 

photoclastic phenomenon various elements of the technique were identified and tailored 

to locate the best suitable material, components and techniques. The type of loading 

involved in this research was unconventional compared to the traditional photoelastic 

applications, thus the relations determining the material properties, thickness and other 

parameters required were not directly useful. After testing with materials of different 
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physical and optical propcrtics, the suitable material to develop the sensing plate was 
identified. 7bis further rcquircd selection of a light source and an image acquisition 
system as both were crucial for high quality fringes and both affect the portability of the 
sensor. The chapter also gave detailed description of various experimental setups used in 

this research. Since the fringe patterns induced under surface loading in reflection mode 
(as used for sensing applications) were of low quality (sharpness and colour) with high 

stress regions at the point of interests; this was due to the deformation of the material. 
Due to low modulus of elasticity of the material and out of plane loading the stress 
propagates less extensively which required high resolution image acquisition systems and 
sharp focus. A portable photoclastic experimentation system was built using a 
commercial flatbcd scanner providing a combined system with light source and imaging 
facility inbuilt into it. Another imaging system was developed as a part of this research 
using partial mirror and separate light sources. Ibis resulted in two different experimental 
setups using scanner and partial mirror and development of a photoelastic sensing plate, 
which is capable of generating load-imprint representing the actual condition of loading. 

Chapters 4 discussed in detail conventional photoelastic techniques under unconventional 
loading situations for sensing applications. A number of contributions were made to 

enhance the existing techniques (Grewal et al. 2006). The conventional photoelastic 

stress analysis techniques were tested with fringe patterns obtained from the experimental 
loading and their limitations were identified both for conventional and unconventional 
loading conditions. A simple yet enhanced RGB calibration technique was developed 

capable of noise removal and demodulating higher fringe orders. However the 

conventional techniques, though successful in the traditional way for demodulating fringe 

patterns, were inadequate in evaluating the actual load that triggered the phenomenon. 
Since there did not exist any direct relation between the principal stress difference and 
load for the specific loading conditions, the problem demanded a way of mapping the 
load on to the fringe patterns. 

Following the limitations of conventional techniques in load determination from 

photoelastic fringes patterns, a methodology based on artificial neural networks was 
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developed. Inverse analysis techniques were simplified by using neural networks and 
necessary modifications and improvements were made to the existing techniques and 
contributions were made in the field of inverse analysis of photoclastic image data 
(Dubey ct al. 2006; GrcwaI and Dubcy 2007). Different types of input parameters 
(statistical, geometric, intensity and combinations of these) were tested for training the 
neural networks to optimisc the performance in terms of accuracy of the system. Finally, 

a methodology was developed and used for vertical and shear force evaluation from the 
fringe patterns. A network trained with conditioned intensity data from the entire image 

gave the optimal results. In order to develop a system that can predict foot ulceration and 
diabetic condition of subjects, recommendations were provided to develop a classifier 
based on neural networks to be trained with medical data. The network could be fed with 
Specific information about the subject in regard to diabetic duration, glucose level, age, 
height and wcight. Such a trained network would prove to be a better classifier, however, 
it is envisaged that including more input parameters like gender, clinical history of the 
patients combined with photoclastic fringe patterns under a knowledge-based system 
(such as ncuro-fuzzy) would lead to the development of a complete classifier for early 
prediction of diabetic foot ulceration. 

7.3 Clinical Implementation 
The system under consideration is capable of determining shear as well as vertical force 

under controlled loading environment. Results discussed in the preceding chapter provide 
basis for clinical implementation of the system. In its present form, the system only 
Provides qualitative information under direct foot loading. It would require a significant 
computational effort to fully automate the data collection, processing and clinical 
presentation. A typical clinical testing procedure will require reasonable expertise of the 
physician to identify high stress regions, represented in the form of specific colours in 

photoelastic fringes. Ifigh visual acuity offered by the system provides the benefit of a 
visual stimulus to the patient and therefore, can potentially be used for educating the 
patient. Following the clinical test, the physician can recommend appropriate orthotic 
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interventions. It must be emphasised that this technique provides supplementary evidence 
of high risk foot and can be used as an adjunct to routine diagnostic techniques. 

From the clinical standpoint, the need for a more comprehensive system capable of 
intelligently predicting the risk category based on photoelastic fringes cannot be 

discounted. The scanner based system used in the current research should be modified to 
develop a platform based device with inbuilt capability to apply shear load. The 

preceding system is a simple, easy to use and a low cost device that can be used in 

smaller GP clinics, whereas the proposed system is appropriate for specialist diabetic foot 

centres for detailed investigation and research purposes. An appropriate measurement 

protocol that addresses the clinical issues such as tissue compliance, areas of loading and 

safety should be formulated with advice from podiatrist and diabetologist. Typically, the 

patient's foot will be placed on the measurement platform and shear load applied from an 

external slider mechanism resulting in baseline and shear data. The baseline data 

represents photoelastic patterns resulting only from vertical loading and shear data 

represents the effect of externally applied shear force on the plantar surface. 

7.3.1 Clinical Assessment Procedure 

The proposed system consists of a measurement platform where each subject applies foot 

pressure. This results in load application on the sensor plate and production of coloured 
fringes. Ideally, the sensing plate should be loaded with same vertical and shear loads for 

each subject. However, the vertical load varies in the subject population and hence, there 
is a requirement of vertical load compensation mechanism. The shear load can be induced 

through an independent slider mechanism for the sensing plate underneath the foot. Each 

subject applies load in seated position, with feet parallel to the ground. It is intended to 

assess the coloured fringes at a consistent value of vertical load during each investigation. 

Data is acquired through the flatbed scanner arrangement. 

Shear load is induced by sliding the sensing plate underneath the plantar surface to a 
known length, consistent for each subject. Two independent images are collected 
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representing the coloured fringes for vertical and shear load respectively. The acquired 

patterns under the vertical load act as reference and shear patterns act as change that has 

occurred from shear loading. There is a need for reference image (under vertical load) as 
for every subject the fringe patterns would be different even though the vertical load and 

shear load are same due to physical anatomy of the individual foot and varying tissue 

properties of each subject. Thus, keeping a reference image acts as a starting point to 

compare the latter acquired shear image. 

Artificial neural network can be trained with the two acquired photoelastic images along 

with a clinical history of the subject. Considering, the training data is acquired both from 

a neuropathic patient group and a control group, it is possible to determine the risk 

category of the subjects once the network is trained to optimum specifications. Training 

the network with sufficient data from a wide number of subjects provides a knowledge 

base relevant to a decision support system for use in GP clinics and specialist diabetic 

foot centrcs. During the test, the system requires two photoelastic images (each 

representing the affect of vertical load and shear load) and clinical history of the subject 

to determine the risk category of the patient. The system is not expected to replace the 

existing assessment techniques. 

7.4 Limitations and Future Research Directions 
Current research investigates the use of digital photoelasticity in biomedical sensing 

applications like foot ulceration. A simple scanner based system provides information of 

applied load and qualitative data represented as stress patterns. However, the following 

limitations were encountered and the future research directions are provided: 

1. The available photoelastic materials have limited physical and optical properties 

which limit the range of vertical and shear forces/stress that can be applied and 

measured. There is a need to investigate different photoelastic materials to 

achieve the best results. 
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2. Although the scanner based system is portable, it may not be appropriate for 
dynamic loading. A platform based system with small light sources such as LEDs 

and high speed cameras may be considered to make a real time system. 

3. The system can only be used as an external barefoot device due to limitations 
involved in image acquisition and the fact that measurements are done on a 
relatively rigid surface. 

4. Using artificial neural networks to analyse fringe patterns proved to be a 

successful approach and provided the desired output. However, the amount of 
training data was limited due to the time constraints. Using large training data is 

expected to improve the results. 

5.7be developed methodology of determining vertical and shear stresses under 

controlled environment cannot be directly applied to the foot image as the fringe 

patterns generated are very different in the two cases. However, training directly 

with the foot images would be a better option to proceed in that direction. 

6. Since the network training required actual image data, in real application 
involving diabetic subjects this may not be a practical proposition, hence the 

system would require enhancement in terms of data mining and forecasting 

system that can assess conditions of the foot by analysing only a limited number 

of images. 

The neural network based methodology developed for inverse analysis has shown 

encouraging results, however, at this point it is limited to loading in a controlled 
environment. Future recommendations include training patterns obtained from directly 

under the foot and determination of peak points of vertical and shear loads. 
Determination of peak shear stress points and actual fringe patterns from foot loading 
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would provide ideal training data for the artificial intelligence shell for developing an 
early detection system for foot ulceration. 

The system developed during this research can be used as a clinical device for qualitative 
analysis of foot prints, however, in order to develop a complete system capable of 
predicting foot ulceration at an early stage it will be important to consider fringe patterns 
from foot loading and medical history of subjects together. The collected information 

can then be conditioned to extract the most relevant data. The artificial intelligence 

technique of analysing the photoelastic data to understand the behaviour of fringe 

patterns under different loading conditions (through different tissue properties in different 

subjects) coupled with medical history of the subject should be capable of predicting the 

risk factor of the foot. The research presented in this thesis has shown that the technique 
has a strong potential for developing a clinical diagnostic tool for early detection of 
diabetic foot ulceration and thus reducing the chances of amputation, improving the 

quality of life and providing cost savings to the health services. 
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Appendix-I 

1. Diabetes Afellitus 
The body's inability to produce or utilize insulin, leading of excess of glucose is referred 
as diabetes mellitus. Insulin is a hormone secreted by pancreas that enables blood sugar 
to be absorbed by the body cells. High glucose levels in the body can have a detrimental 

effect on the nerves and the blood vessels causing long term complications related to 
heart, kidneys, vision, sensory loss, limb ulceration. About 230 million people worldwide 
are known to suffer from diabetes mellitus, adding 7 million every year and about 3 

millions deaths per year (International Diabetes Federation 2003a). Recent figures from 

the World Health Organisation indicate that the prevalence of diabetes mellitus is 

approaching two million in the UK and is continuing to rise (World Health Organisation 
2007). A significant proportion of this population will be at risk of developing diabetic 
foot complications with high surgical and treatment costs associated. Serious 

complications of diabetes mcllitus include ncuropathy (motor, sensory, autonomic) and 
ischaernia (peripheral vascular disease), which can lead to foot ulceration and infection 

and in extreme cases, amputation. Diabetic foot ulceration is a severe complication in 
diabetes mcilitus, caused by excessive pressure loading at the plantar interface in 

neuropathic subjects. To improve diagnosis and treatment the Royal College of General 
Practitioner's Guidelines (April 2002) for the Prevention and Management of Foot 
Problems, recommend that diabetic clinics adopt a routine screening for indicators of 
ulceration. The importance of this has been further emphasised in the Department of 
Health, National Service Framework for Diabetes: Standards (2003). Extensive work has 
been done for the treatment, detection and prevention of foot ulceration. A wide range of 
therapies have been developed for curing foot ulcers by medical treatments and 
mechanically unloading of the areas with excessive pressure. Over the years a number of 
devices to sense, measure and monitor the vertical pressure have been developed, 
however, the role of shear force could not be studied due to limitations of the existing 
tcchnology. 
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Types of Dlabetes 
Ilere are two main typcs of diabctes mellitus: 

Type-1: occurs due to the inability of pancreas to produce insulin required for 

glucose absorption causing an increase in glucose level. About 5-6% of the 
diabetic patients suffer from type-1. Subjects need regular injections of insulin for 

controlling the glucose level. This kind of diabetes is also referred to as insulin 
dependent. Type-I can be found in any age group but usually is prevalent in 

young adults and children (International Diabetes Federation 2003b). The beta 

cells of pancreas cease and there is no phase-I response which usually leads to 
immediate release of insulin on any intake of carbohydrates or proteins. These 

malfunctions lead to high swings of sugar level in body starving the body cells 
due to non-absorption of glucose (Bernstein 2003). 

2. Type-2: occurs due to the body's inability to respond to the insulin produced and 
is referred to as insulin independent type i. e. incapability of cells to absorb 

glucose. About 90% of diabetic patients suffer from type-2 and is commonly 
found in adult subjects (World Health Organisation 2004). Obesity has been 

linked to typc-2 diabetes as 90% of the patients are found to be over-weight and 
tend to produce higher levels of insulin. The fat building property of insulin 

further increases obesity (Bernstein 2003). Regular exercise, medication and diet 

control are found to be effective in its control. About 1.7 billion people are 

reported to be at the verge of weight related diseases like diabetes (International 

Diabetes Federation 2003c). Type-2 is usually detected by one of its 

complications like vision impairment or diabetic foot infections. 

Symptoms of Type-I are generally marked by excessive urine secretion, thirst, blurred 

vision, sudden weight loss, while for Type-2 diabetes such symptoms might be less 

marked (World Health Organisation 2004). Ibus in Type-2 later detection of the disease 

might end up with a prior existence of complications. The exact foot pathologies in foot 

ulcerations are unknown but some of the main known factors are neuropathy, ischaernia, 
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foot deformities, callus, high plantar pressures and repeated plantar loading. Ncuropathy 

along with poor blood circulations plays a major role in infections and ulcerations, 
however, how blood circulation is affected due to the plantar loading needs to be 
investigated to understand the precise role of plantar forces. 

2. Neuropathy 

Neuropathy is considered as a major risk factor leading to foot ulceration. It can lead to 

sensory loss, foot deformities, infection by damage to precipitation nerves causing dry 

cracked skin prone to infection (Bernstein 2003). Blood circulation is impaired by long 

term elevated sugar levels damaging not only the major arteries of leg but small arteries 

and capillaries too. This deteriorates the blood supply to damaged skin causing further 
damage and thus sensory loss to pain and heat (Bernstein 2003). Sensory loss can further 
leads to undiagnosed increasing pressures under the plantar foot. Increased pressure with 
repeated loading ultimately leads to tissue damage and foot ulceration. 

Neuropathy is found to affect nerves throughout the body, from toes, feet, legs to all the 

way up kidney, heart and eyes. Peripheral neuropathy (sensory) causes damage of feet 

nerves much before arms and hands causing numbness, loss of sensitivity and reflexes, 

muscle weakness etc (National Diabetes Information Clearinghouse 2002). 

3. Sensory Neuropathy 
Sensory neuropathy is often referred as peripheral neuropathy, resulting from the damage 

to peripheral nerves. This type of neuropathy can be painful or painless, however painless 
type is found to be associated with ulceration (Boulton et al. 1994). Absence of sensory 
response of the body to external forces on the skin surface leads to undetected high 
loadings. This leads to other diabetic complications like ulcerations, Charcot foot (foot 
joint disease) etc. It has been reported that plantar pressures otherwise regarded lower 
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than threshold may severely the affect foot, due to repetitive loading in absence of 
sensory response. 

4. Autonomic Neuropathy 
Autonomic nervous system controls the involuntary functions of the body like heart rate, 
blood pressure, perspiration, digestion, vision etc. Autonomic neuropathy affects the 

autonomic nerves. It has been well established that peripheral sympathetic dysfunction is 

present in diabetic foot ulcers (Boulton et al. 1994) that causes reduced sweating and thus 
dry skin (cracks) and is associated with high blood flow owing to arteriovenous shunting. 
711is might hinder body's response to hypoglycemia (low sugar level). Cracks and 
fissures developed serve as portals for bacteria causing foot infections. It may impede 

cardiovascular system, sometimes leading to fall in blood pressure due to insufficient 
blood supply in certain body parts. Researchers have proved loss of usual systematic tone 
leading to shunting and bypassing of capillary bed (Laing and Clwyd 1998). Autonomic 

ncuropathy may also hinder response to hypoglycernia. 

5. Motor Neuropathy 
Ibis involves weakness of foot muscles leading to imbalance of tendons, which further 

leads to high arched foot. Motor neuropathic subjects also tend to develop clawed foot 

which draws the fat pads underneath metatarsal heads impairing the cushioning effect. 
This leads to increased plantar pressures making tissues thicker and less flexible, 

contributing to limited joint mobility (Laing and Clwyd 1998). In another study authors 
found degree of joint immobility increases more with presence of neuropathy than the 
duration of diabetes (Viswanathan et a]. 2003). Neuropathic ulcerated groups are found to 
have less joint mobility than neuropathic subjects, which in turn hampers the shock 
absorption (Muller et al. 1989). Iligh shearing is reported with loss of joint moment by 

many researchers (Laing and Clwyd 1998). 
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Higher skin temperatures have also been associated with autonomic and sensory 
neuropathic group when compared to controls as increased blood flow due to 

arteriovenous shunts dissipates the heat as a result of higher metabolic rate. Relation of 
skin temperature and blood has been reported to be non-linear in nature. Archer reported 

temperature of33.50Cwith patients of sensory neuropathy against27.8oCof subjects 

without neuropathy (Boyko et a]. 2001). Contrary to the above findings Boyko et al 
(2001) found lower skin temperatures at all the sites for sensory neuropathic subjects as 
compared to without. Similar temperatures were found for both with and without 
autonomic neuropathy. 

6. Ischaemia 

Ischacmia is a vascular disease prevalent in diabetic group and is found to develop at a 

younger age. Peripheral ischaernia tends to alter elastic and compressive properties of 

soft tissues which in turn deteriorate the shock absorption properties (Pitei et al. 1999). 

Tissue thickness reduction makes the feet prone to damage by shear forces. Absence of 

callus is found in neuroischaernic group due to an increased blood flow, in contrast to 

neuropathic subjects. Although ischaernia is one of the major risk factors to foot 

ulceration, it alone cannot cause ulceration. 

7. Neuropathy in Lower Extremity 

The most common complication of Type-2 diabetes mellitus is neuropathy. It is a 

peripheral nerve disease related to malfunctioning of nerves. Complications leading from 

neuropathy together with excessive plantar loading increase the risk to ulceration. Studies 

have shown that the changes in tissue thickness and properties serve as a predictor for 

elevated plantar pressure (Boulton et al. 1994). Stiff tissues are found in regions of 

previous ulceration. A potential reason could be change of properties in soft tissue like 

elasticity and shock absorption due to peripheral ischaernia Le lack of blood supply (Pitei 
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ct al. 1999). Poor glycacmic control is linked to ncuropathy in an indirect way of 
damaging ncrvcs (American Diabetes Association 2004). 

8. Foot Ulceration 

Research has shown that metabolic disorders due to diabetes affect 2-5% of Europe 

population (NIcrza and Tcsfaye 2003) Foot ulceration is a major and potentially disabling 

complication, prevalent in more than 5-10% of diabetic patients. Understanding the 
pathophysiology of diabetic foot is significant in order to predict ulceration. Ulcer being 
traditionally considered as a result of vascular disease, peripheral neuropathy and 
infection is now also linked to factors like poor glycaemia and repeated stresses on the 
insensitive zones. Ncuropathic foot ulcers found on the plantar areas were reported with 
pressure values of (428.8±68.6) kPa in a group of 14 neuroischaernic and 18 neuropathic 
subjects (Pitci et a]. 1999). Maximum pressure values associated with neuroischaemic 
patients was found to be (757.6±135.9) kPa. The main factors considered to be associated 
with the foot ulceration are: 

" Peripheral ncuropathy 
" Peripheral vascular disease 

" Neuromuscular dysfunction 

" Iligh plantar pressures 
" Biomcchanical factors 

Peripheral neuropathy (PNP) is found in nearly 40% of diabetic patients (Merza and 
Tesfaye 2003) and is regarded as the strongest initiator for foot ulceration. It impairs foot 

sensitivity to react to high pressure, unlike in Normals where an individual tends to 

changes the position to relieve pain. Sensory neuropathy affecting more than one-third of 
elderly diabetic patients is found to cause reduction or complete loss of sensation to high 

pressures. 
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Peripheral vascular disease (PVD) alone is not considered to be harmful but when 
combined with PNP leads to ulceration and slow healing. Reduced transcutaneous 

oxygen tension has also been postulated as risk factor for ulceration (Merza and Tesfaye 
2003). 

Neuromuscular dysfunction has also been considered as one of the major risk factors in 
foot ulceration. It leads to malfunctioning of arterial walls with inadequate smooth 
muscular action. This prevents arterial wall's regular response of dilation and 

vasoconstriction to stimuli (Stein ct al. 2001). Endothelial dysfunction leading to 
impaired vasodilation caused by diabetes mellitus is another factor leading to neuropathy 
(Caselli ct al. 2003). 

Ifigh plantar pressures are also associated with foot ulcerations as the level of pressure 

significant depends on the type of patient. For patients with history of ulceration, even 

pressure considered to be low can be significantly harmful. High planter pressures have 

been recorded in all ncuropathic patients with history of ulcerations. Presence of callus 

also increases the plantar pressures on foot and aggravates ulceration as it restricts the 

pressure distribution and damages deeper soft tissues; removal of which have shown 

significant fall in pressures (Boulton et al. 1994) . Formation of callus has also been 

reported as a precursor to foot ulceration (Stein et al. 2001). 

Other biotnechanicalfactors like foot deformities cause limited joint motion and result in 

callus formation and thus leading to high pressures. Age, sex, smoking habits, race have 

also been associated with foot ulceration. In evaluation of determinant variables for peak 

pressures, Payne et al (2001) linked peak pressure for hallux with neuropathy and limited 

motion of the first mctatarsophalangeal joint. 
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9. Diabetic Foot Medical Treatment 
Basic diabetic foot trcatmcnt involves methods for quick healing and tissue formation. 

Adequate oxygen tension has been reported to be beneficial in wound control and healing 
(Kalani ct al. 2002). A number of techniques have been developed and implemented for 
diabetic foot treatment. Surgical and medical treatment methods aim at increasing tissue 
thickness, increasing the oxygen tension, accelerating wound healing process, surgical 
debridements, callus removal etc. Hyperbaric oxygen (HBO) techniques accelerates 
healing by increasing the amount of dissolved oxygen in plasma and aids in formation of 
new capillaries (Stein ct al. 2001; Kalani ct al. 2002). Hyaluronan therapy (Vazquez et al. 
2003) is a dressing technique that increases the granulation of tissues. Injecting methods 
include silicone and mcthyl nicotinate (Schie et al. 2002; Caselli et al. 2003). Surgical 

percutaneous includes lengthening of Achilles' tendon to reduce the risk to ulceration by 

altering peak pressures on weight bearing zones (Stein et al. 2001). 

The main disadvantages reported for the above treatment methods include requirement of 

skilled personnel and high installation for HBO method and need for booster injections to 
improve the subcutaneous tissue cushioning for silicone injection treatment. 

Pressure Redistribution under Foot 

Pressure redistribution at the plantar surface of diabetic foot alleviates the forces at peak 

pressure points. Pressure redistribution is achieved by using specially designed shoes and 

soles. Higher plantar pressures in diabetic patients than non-nal are found in barefoot 

when compared to shoes. Factors leading to high pressures are associated with body 

weight, soft tissue thickness, joint mobility, sensory ncuropathy and foot deformities. 

Fast walking speed has also been linked to increased plantar forces as this involves tissue 

shearing. Research suggest that the knowledge of above mentioned variables which lead 

to high pressures can aid in better direction of interventions against significant 

mechanisms (Payne et al. 2001). Intervention of certain gel and foam like materials also 
helps to reduce the peak pressures during the gait. Even sock interventions are known to 

reduce and redistribute the foot pressure to a great extent (Tappin and Robertson 1991; 
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Hosein et al. 1992). A recent research on modelling of foot socks and insoles combined 
with different frictional properties has revealed that the shear reduces to a greater extent 
if low coefficient of friction can be maintained between the foot and the sock and a high 

coefficient between the sock and the insole (Dai et al. 2006). 

Foot loading as discussed above is actually a combination of forces, mainly vertical and 
shear. The vertical force is the normal force acting on the plantar foot and shear on the 

other hand acts tangential to the surface. Shear force in conjunction with the vertical 
force has been found to be detrimental to soft tissues and exacerbates pressure loading. 
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10. Casting Setup for Photoelastic Materials 

The low modulus photoelastic materials required for specific experiments were required 

to be casted manually. The setup is Figure I was used for casting PS-6 material with 

different thickness. 

,. qasdng Plate (Hot Plate) 

The material (PS-6) had low modulus which was one of the requirements in this research 

but the sensitivity was too low and required considerably high load to induce fringe 

patterns. Some of the basic experiments conducted with the castings prepared led to the 

conclusions of unsuitability of PS-6 for this research. 

However, PS-4 was found to be appropriate for the experiments as it had low modulus 

(0.004 GPa) and high optical sensitivity (0.009). PS-4 was available in form of sheets so 

no further casting was required, but coating of reflective paint was done manually. 

cohe Rubber 

165 

Figure 1: Casting setup for Im% modulus photoclastic materials 



Appendices 

11. Dimensional Sketch of Disc Loading Mechanism 

The basic disc loading mechanism was fabricated using MDF (Medium Density 

Fibreboard) and load bearing platform (the push rod) was made from Aluminium. Figure 

2 shows the dimensions sketch of the loading mechanism. 

Figure 2: The Disc Loading setup (a) the side view, (b) the front view with dimensions in mm 

12. Digital Camera Specifications 

Olympus SP-500 UZ 

Resolution: 6 Mega pixels 

CCD: 1/2.5 inch colour 

Iniage Format: Jpeg, raw 

Focal Length: 6.3 nirn - 63 rnm 
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13. Spectral Response of CCFL 

The Scanner was equipped with a cold cathode fluorescent tube providing a high spectral 

response compared to a conventional white light source. Figure 3 shows the spectral 

response ol'a typical CCFL used as scanner light source. 

4, 

0 

Figure 3: Spectral response of light source used in scanner based system 
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Appendix-III 

14. Factors Influencing Fringe Response 

The behaviour offringe patterns is influenced not only by the amount of loading but also 
by the profile and geometry of the loading intender. Figure 4 show the profiles of two 

different intenders with diameter 13 mm and 16 mm and the corresponding fringe 

patterns obtained are shown in Figure 5. 

Figure 4: Indenter profiles of two hemispherical polyearbonate heads with diameter 13 mm and 16 
nim 

Figure 5: The p1mlotlastic I ringt, patterns obtained from I" o indenter heads N%ith different 
diameters, acquired using scanner based system 

The difference In fringe patterns is discernable to a high degree, the fringe patterns pan 

out to a greater extent when loaded with a narrow profiled intender as the area of contact 
is less and thus stress is more. 
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FIgUre 6 and 7 show similar comparison for a steel head (5 mm) with a polycarbonate 
head ( 10 nino. The steel head has a flat bottom compared to hemispherical head of 

polycarbonate. 

Figure 6: A comparison of a flat head steel intender and hemispherical head polycarbonate indenter 

Figure 7: Pho(oclastic fringe patterns obtained under steel and polycarbonate indenter heads 

The fringes are bunched together near the point of loading using hemispherical head as 

the area ofcontact is less than using tlat head. 

15. Diameter Estimation of Fringe Patterns 

Since the fi-Inge diameter changes under the influence of vertical as well as shear force, it 

is necessary to have some sort of measure ot'dianieter or the area of the fringes induced. 

An algorithin was written in MatLABO to measure the vertical diameter, horizontal 
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diameter and the area ofintereNt. The basic procedure involves converting images in HSV 

colour %pace and analy%ing H-plane images by image processing. Figure 8 shows a fringe 

image with corresponding 11-plane projection. 

Figure 8: An RGR photoclastic image from indenter loading and the corresponding H-plane used to 
determine fringe diameter 

The I I-plane image was segmented using optimal threshold to segment a particular colour 

range of' data from the image-, a further algorithm developed in MatLABO was used to 

de(ermine the defined parameters of diameter and area. Figure 9 shows the segmented 

image with measured horizontal and vertical distances. 

C-- 

Figure 9: Segmented images with measured vertical and horizontal span 
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16. Definition of Statistical Parameters 

In order to determine the applied forces from the fringe patterns it was necessary to 

measure some the parameters that showed variation on application of load. A list of such 

measured parameters and their definition is given below: 

Mean: The mean of an image is often referred to as the mean pixel intensity of image, 

i. e. the average intensity of image represented by a single value. The mathematical 

relation for 2-dimensional mean is: 
nm 

2: 1 (i, 

nm 
Where, M is the mean pixel intensity, n and m are the number of rows and columns in the 
image (size of image), I is intensity at point 

Standard Deviation: The standard deviation of data is the general spread of the data, the 

mathematical relation is given by: 

nm E(I(i, j)-M) 
i=I, J=l 

Where, S is standard deviation, M is the mean pixel intensity, nm is the size of image, I is 

intensity at point (ij) 

Median: The simple definition of median is the midpoint of the data and mathematical 

relation for median is step by step calculations as: 
1. Count the number of data elements 
2. Arrange them in ascending order 
3. Find the data value at the mid point 

Kurtosis: The kurtosis is the measure of how outlier-prone a distribution is or the 

measure of peakedness of distribution. 
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(. v - 
V 

Where, K, is kurtosis, S is standard deviation, M is the mean pixel intensity, x is data set 

and E, is the expected value of quantity t. 

Skewness: The skewness is defined as the measure of asymmetry of data around its mean 

and mathematical relation is: 

A 
E(x - M)' 

S4 

Where, S is standard deviation, M is the mean pixel intensity, x is data set and E, is the 

expected value of t. 

17. Analysing Intensity Data 

Figure 10 shows results obtained using conditioned intensity data from the entire image 

under indenter loading. The input dimensionality was set to 25. 

2C 

IC-1 

"M 

Figure 10: Determined shear force using intensity data of dimensionality 25 
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The error was found to be 5.99% and the network size of 125,6,5,1 ); the input 

dimensionality influences the results due to network size and amount of training data 

available. Since the data is extracted from image and entire image cannot be used as 

input, data reduction techniques like PCA must be used carefully as subtle differences 

in input can be lost. Optimal size of input dimensionality can be determined by hit 

and trial methods. Figure II shows results obtained using input dimensionality of 15. 

20 

Ir 
ic 

Figure 11: Determined shear force using intensity data of dimensionality 15 

The results obtained had an error of 5.9% for the entire range and 5.4% for 23 test images 

thus the results were comparable to the one obtained through input dimensionality of 25. 

The network size was found to be 115,5,8,11. 
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