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Abstract 

Spinal and back deformities can lead to pain and discomfort, disrupting productivity, and may 

require prolonged treatment. The conventional method of assessing and monitoring tile de- 

formity using radiographs has known radiation hazards. An alternative approach for monitor- 

ing the deformity is to base the assessment on the shape of back surface. Though three- 

dimensional data acquisition methods exist, techniques to extract relevant information for 

clinical use have not been widely developed. 

Thi's thesis presents the content and progression of research into automated analysis and visu- 

alization of three-dimensional laser scans of the human back. Using mathematical shape 

analysis, methods have been developed to compute stable curvature of the back surface and to 

detect the anatomic landmarks from the curvature maps. Compared with manual palpation, the 

landmarks have been detected to within accuracy of 1.15mm and precision of 0.8111m. Based 

on the detected spinous process landmarks, the back midline which is the closest surface ap- 

proximation of the spine, has been derived using constrained polynomial fitting and statistical 

techniques. Three-dimensional geometric measurements based on the midline were then corn- 

puted to quantify the deformity. Visualization plays a crucial role in back shape analysis since 
it enables the exploration of back deformities without the need for physical manipulation of 

the subject. In the third phase, various visualization techniques have been developed, namely, 

continuous and discrete colour maps, contour maps and three-dimensional views. In the last 

phase of the research, a software system has been developed for automating the tasks involved 

in analysing, visualizing and quantifying of the back shape. 

The novel aspects of this research lie in the development of effective noise smoothing meth- 

ods for stable curvature computation; improved shape analysis and landmark detection algo- 

rithm; effective techniques for visualizing the shape of the back; derivation of the back mid- 
line using constrained polynomials and computation of three-dimensional surface measure- 

ments. 
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Introduction 

1. Introduction 

1.1. Background 

Spinal deforrnity or curvature can lead to pain and discomfort of the individual involved, dis- 

rupting productivity; and may require expensive and prolonged treatment. The human spine 

can exhibit three types of spinal curvature, namely, scoliosis, kyphosis and lordosis. Scoliosis 

refers to a curvature of the spine in the frontal plane and is associated with rotations of the 

vertebrae, alterations in the rib cage and often results in corresponding deformity of the trunk 

surface. Kyphosis refers to the outward curvature of the thoracic spine in the sagittal plane 

and lordosis refers to the inward curvature of the lumbar spine in the sagittal plane (see Sec- 

tion 2.4). The normal spine always exhibits a small degree of both kyphotic and lordotic cur- 

vatUrcs; scoliosis on the other hand, is always abnormal. However, mild non-structural scoliO- 

sis may pose no real health threat to the patient and thus may require no treatment other than 

monitoring for progression. In over 80% of the cases, the cause is unknown, the so-called 
idiopathic scohosis (SRS, 2000). The surface manifestations of scoliosis typically include 

shoulder height difference, rib prommens, scapula asymmetry, pelvic asymmetry, a skin fold 

on the side of the concavity and twisted trunk (see Section 2.4.1.3). The surface deformity is 

usually more important to the patient and family, and is what frequently motivates them to 

seek treatment (Mahood et al, 1995). 

Although spinal deformities such as scoliosis are generally thought to be associated with back 

pain, the strength of this associated is not well understood. Many studies have reported equal 

incidence of back pain and mortality in the general population and in people with spinal de- 

formitics (Lawrence, 1969; Branthwaite, 1986; Ettinger et al, 1992; Virta and Ronnernaa, 

1993; Cordover, 1997; Mayo, 1994). On the other hand, other studies have found higher inci- 

denec ol'back pain among subjects with structural and postural defon-nities than in the general 

population (Ross ct al, 1987; Bowen, 1995; Cockkerill et al, 2000). In a resent study 

(Weinstein ct al, 2003), a 50-year follow-up of 117 patients diagnosed with scoliosis in ado- 

lescence revealed that the incidence of back pain in untreated scoliotic patients was twice that 

of62 normal volunteers of similar age. Similar results were reported by Mayo et al (1994) in 

a 10-ycar follow-up study involving 1,476 scoliosis subjects compared with 1,755 volunteers 
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without scoliosis. These studies suggest that in the long term, back pain is responsible for a 

considerable amount of disability in scoliosis subjects. 

The costs associated with back pain in general are huge. In the UK, the NHS expenditure has 

bccn cstimated to be E265-083 million, comprising 0.7-0.9% of the total expenditure in 

1995 (Klabcr Moffett et a], 1995). In another study, the direct health care cost of back pain in 

1998 was estimated to be f 1632 million of which about 35% relates to services provided in 

the private sector and thus is most likely paid for directly by patients and their families (Ma- 

niadakisa and Gray, 2000). This study also estimated the costs of informal care and the pro- 

duction losses related to back pain, which totalled f-10,668 million. Back pain is thus one of 

the most costly conditions and research that help identify, prevent or treat the condition is of 

utmost importance to society. 

1.1.1. Screening for Spinal Deformities 

In common with many conditions, if a spinal deformity is detected in its early stages, there is 

likelihood that an effective preventive treatment may be administered. The higher incidence 

of scoliosis in the adolescent population has prompted several screening studies to be under- 

taken in many countries (Viviani et al, 1984; Burwell, 1990; Brernberg, 1986; Dickson, 1980; 

Pin 1985, Wilincr, 1984a, 1984b; 1999; Morais, 1995; Grossman, 1995). The purpose of these 

screening programs is to detect the deformity early enough to allow effective preventive ac- 

tions to be taken. While some of these studies demonstrate benefits in screening programs, 

others question the effectiveness of such programs. To date, there is no consensus as to the 

effectiveness of routine screening for spinal deformities. In 1996, the British Scoliosis Society 

produced the following recommendations concerning scoliosis screening programs (Burwell, 

1989). 

The Natural History Committee of the British Scollosis Society is unanimous in the 

opinion that screening for scoliosis should continue as (a) an epidemiological study, 

also involving (b) case finding. 

H. It should still not be a national policy, at present, to screen children routinely 

throughout the UK. 

111. More data are required. 

771 
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IV. National screening may be possible after further investigation 

Recently, the National Screening Committee (NSQ of the UK advised that "the Introduction 

of screening should not be recommended" (NSC, 2005). Similar recommendations have been 

made by the U. S. Preventive Services Task Force (USPSTF) which grades its recommenda- 

tions as (A, B, C, D, or 1) and the quality of the overall evidence for a service as (good, fair, 

poor). The recommendations of the USPSTF regarding scoliosis screening are as follows 

(USPSTF, 2004): 

The USPSTF did not find good evidence that screening asymptornatic adolescents de- 

tects idiopathic scoliosis at an earlier stage than detection without screening. The ac- 

curacy of the most common screening test-the forward bending test with or without a 

scoliometer-in identifying adolescents with idiopathic scoliosis is variable, and there 

is evidence of poor follow-up of adolescents with idiopathic scoliosis who are identi- 

fied in community screening programs. 

The USPSTF found fair evidence that treatment of idiopathic scoliosis during adoles- 

cence leads to health benefits (decreased pain and disability) in only a small propor- 

tion of people. Most cases detected through screcning will not progress to a clinically 

significant form of scollosis. Scoliosis needing aggressive treatment, such as surgery, 

is likely to be detected without screening. 

The USPSTF found fair evidence that treatment of adolescents with idiopathic scolio- 

sis detected through screening leads to moderate harms, including unnecessary brace 

wear and unnecessary referral for specialty care. As a result, the USPSTF concluded 

that the harms of screening adolescents for idiopathic scoliosis exceed the potential 

benefits. 

As the above quotations demonstrate, the main arguments against routine screening for spinal 

deformities can be summarised as (i) lower accuracies of current measurements methods, 

leading to false detections, unnecessary brace wear and referrals; and (ii) discomfort to pa- 

tients especially with tactile measurement devices like the Scoliometer (see Section 3.3.1). 

With the development of more accurate, fast, automated and non-contact measurements sYs- 

terns, it is likely that there will continue to be interest in routine mass screening for spinal de- 

formities. 

1 
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1.2. Rationale for the Research 

The conventional method for diagnosing spinal deformities is to acquire a full length radio- 

graphic image of the spine, from which the magnitude of the curvature is measured, usually 

by the Cobb method (see Section 2.4.1.7). However, there arc problems with the conventional 

approach. First, the use of radiographs carries accumulating risks of radiation exposure over 

the patient's lifetime, especially if there is the need to monitor the deformity for possible pro- 

gression over an extended period. In particular, since scoliosis have high incidence in adoles- 

cents; continuous exposure of young subjects to radiation risks for the purpose of monitoring 

is undesirable. Second, scollosis Is a three-dimensional deformity and the Cobb angle alone 

does not provide complete description of the condition. It is an angle obtained from a two- 

dimensional radiographic image of the spine which does not take into account vertebral rota- 

tion. Three dimensional measurements are therefore required. Moreover, various studies have 

shown wide variations in measurement of the Cobb angle (up to 1W ) (Goldberg et al, 1988; 

Morrissy et a], 1990). 

An alternative approach for monitoring the deformity is to base the assessment oil the shape 

of the back surface. Since deformity of the spine will almost certainly result in corresponding 
deformity of the trunk surface, this approach should work well for a large proportion of tile 

population. Surface measurement has been the subject of research in the past few decades. 

Various imaging modalities have been proposed to address the problem and various surface 

measurements have been derived. These surface measurements methods have been discussed 

in Chapter 3. All these methods have been compared to the radiographic 'gold standard'- 
Cobb angle-yielding moderate correlations, and with many authors concluding that, the fre- 

quency of radiographs could be reduced. From the literature, it appears that no single surface 

measurement has been consistently related to the Cobb angle. 

The main problem with the surface measurements systems that have been developed so far is 

that the measurements are susceptible to posture changes during data capture, which largely 

account for the lower accuracies obtained (see Chapter 3). In practice, patients arc often 
brought into standardised positioning pads or other fixing elements in ail attempt to standard- 
isc posture during data capture. However, in the case of deformities, this procedure may actu- 

ally result in modification of the deformity being measured (Frobin et al, 1983). A free natural 

position of the patient is therefore required for proper acquisition of patient data. Moreover, to 

improve the accuracy of the results, processing techniques should be able to effectively mini- 
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mise the effect of random errors arising from the mobile and flexible nature of the human 

body. 

For a mathematical analysis of the back shape, accurate and high resolution three dimensional 

coordinates of the back are required. Most of the imaging methods that have been developed 

can only yield 3D coordinates indirectly after further processing. As a result, these systems 

are slow, less accurate and/or have low resolution. Recent advances in technology have now 

enabled simultaneous acquisition of 3D coordinates and colour image data of objects. Three- 

dimensional laser scanning can directly yield high density data of the back surface at high 

rates, with high accuracies, achieving the result in almost real time (see Section 3.3.5). This 

makes the technique fast, reliable and non-Invasive, and thus a natural method for acquiring 
3D data of the surface of the back. 

Though 3D data acquisition methods exist, techniques to extract relevant information for 

clinical use have not been widely developed. To convert the 3D point data to useful informa- 

tion for assessment of back deformities requires continuous research and development of 

methods and algorithms for interpretation and modelling. This investigation addresses this 

need and focuses on the development of processing techniques to extract useful Information 
for assessment of spinal and back deformities. 

1.3. Research Objectives and Methodology 

The overall objective of this investigation is to develop methods to extract useful information 

from three-dimensional data of the back surface to enable quantification of the deformity. 

This information is required for assessment of spinal and back deformities, monitoring the 

deformity for progression and auditing effectiveness of treatment methods. The specific ob- 

jectivcs are: 

0 Detection of anatomic landmarks of the back using mathematical shape analysis. 

Derivation of the back midline and computation of three dimensional surface meas- 

urements to quantify the deformity. 

Development of methods for visualizing and exploring back deformities. 

Development of a software system to automate the tasks involved in back shape analy- 

sis. 
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1.3.1. Detection of Anatomic Landmarks of the Back 

Certain features of the normal human spine project to form bump or dimples on the back sur- 

face, especially the spinous processes (see Section 2.3). Some of these bony landmarks can be 

seen or at least palpated. Spinal deformity such as scollosis will almost certainly result in cor- 

responding deformity of back the surface. This phase of the investigation focuses on detection 

of these bony landmarks of the back using shape analysis. Successful detection of these land- 

marks will allow the derivation of the back midline and computation of surface measurements 

to quantify the deformity. The objective of this phase is to develop a method to detect the 

landmarks using mathematical shape analysis. An important property of surface shape (or sur- 

face curvature) is that it is invariant under rigid-body trans formations such as rotation and 

translation. This implies that the measurements will be less dependent on patient positioning 

during data capture, and thereby improve the accuracy of the results. 

1.3.2. Midline Derivation and Surface Measurements 

The midline of the back represents the closest surface approximation of the underling spine. 

With the successful detection of the spinous process landmarks, the nildline can be derived by 

fitting a smooth curve. Surrace measurements can then be computed based on the midline. As 

already pointed out, the Cobb angle alone does not account for the three-dimensional nature 

of the deformity. The Scoliosis Research Society (SRS) in the USA has developed a terminol- 

ogy for three-dimensional description of scoliosis. This phase of the investigation builds upon 

this work and derives surface measurements consisting of distances, angles, areas and vol- 

umes. 

1.3.3. Development of Visualization Tools 

Visualization constitutes an important aspect of the assessment of spinal and back deformi- 

ties. Effective visualization tools will enable exploratory examination of the extent of the de- 

formity and allow changes to be tracked over time. The effect of treatment methods such as 
bracing or surgery can also be explored using effective visualization tools without the need 
for physical manipulation of the patient with the problem The objective of this phase of the 

investigation is to develop effective visualization tools to aid the assessment process. 
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1.3.4. Development of Automated System 

Tile last objective of the research is to automate as much as possible the tasks involved in 

back shape analysis. Such a system could be deployed at the centre of the efficient manage- 

ment ofpatient data, where patient images, radiographs, back shape measurements, together 

with other relevant clinical data could be combined and used for decision making. An auto- 

mated system could be applied to workforce or population screening. At risk people can be 

identified and appropriate correction can be given. Patients with progressive spinal curvature 

can be examined at regular intervals to determine the degree and timing of intervention re- 

quired. 

1.4. Scope of the Investigation 

This investigation was not intended to comment extensively upon the nature, cause or treat- 

ment of spinal deformities but was to focus on the measurement problem. Only relevant back- 

ground information has been given in Chapter 2 to lay the foundation for the study. Neither 

was it the aim of this investigation to develop a new surface data acquisition system. Several 

systems have already been developed for acquiring back surface data (see Chapter 3). Recent 

advances in technology have now enabled direct acquisition of three dimensional coordinates 

of objects at high rates and with high accuracies. The main focus of this investigation is to 

develop methods for extracting useful measurements for the assessment of spinal and back 

deformities, as outlined in Section 1.3. 

1.5. Structure of the Thesis 

This thesis is organised into seven chapters. Chapter I introduces the background, motiva- 

tions, objectives and methodology of this investigation. 

Chapter 2 gives a general background to three-dimensional spinal and back dcfon-nities. Be- 

ginning with the basic anatomy of the spine and the vertebrae, the anatomic landmarks of the 

back arc described. The detection of these landmarks is one of the objectives of this work. 

Background to the three types of spinal curvatures (i. e. scollosis, kyphosis and lordosis) is 

given; including possible actiology, statistics, conventional assessment and treatment options. 

Finally, three-dimensional description of spinal deformities based on the terminology of the 

Scollosis Research Society (SRS) is described. 
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Chapter 3 describes the fundamental surface measurements systems that have been developed 

for back shape assessment. The motivations for assessing spinal deformities from the shape of 

the back are outlined and various surface measurement methods that have been developed in 

past few decades are reviewed. These include tactile devices (such as the Scolionicter), moir6 

topography, structured light methods, phase measuring methods and three-dimensional scan- 

ning systems. The Minolta laser scanner which has been used for data acquisition is also dis- 

cussed. 

Chapter 4 discusses the mathematical foundation ofthe shape analysis techniques used In this 

study. The concept of surface curvature is discussed, including the various measures of cur- 

vaturc and methods used to compute them. The Least Squares method has been used cxten- 

sively in this study, consequently, the basic principles are discussed, including the applica- 

tions to which the method has been committed in this study, namely, surface fitting, curve fit- 

ting and coordinate transformation. 

Chapter 5 covers three aspects of this research, namely, error reduction, curvature visualiza- 

tion and implementation issues. Error reduction constitutes a crucial aspect since all n1cas- 

urcmcnts contain errors which are propagated to any derived quantities. The problem of errors 
is addressed through scanner calibration and empirical techniques to estimate the nature of the 

errors and to determine an effective method for reducing their effect. Since visualization plays 

an important role in back shape analysis, a major part of this chapter is devoted to developing 

methods for visualizing the shape of the back. Lastly, major implementation and design issues 

regarding data structures and conversion, choice of development tools and system design are 

addressed in this chapter. 

Chapter 6 focuses on the detection of anatomic landmarks of the back, derivation of the mid- 
line and computation of surface measurements. A mathematical method Is developed to detect 

the landmarks from curvature inaps and the results arc compared with palpation. Based on the 

detected landmarks, the back midlinc is derived using constrained polynomial fitting via the 

Least Squares method. Surface measurements arc then computed and the relationships among 

them analysed via correlation. 

Chapter 7 surnmarises the contributions of this research, the conclusions drawn and recorn- 

mendations for further work. 



Three-Dimensional Spinal and Back Deformities 

2. Three-Dimensional Spinal and Back Deformities 

2.1. Introduction 

This chapter provides general background to spinal and back deformities. Beginning with the 

basic anatomy of the spine, the visual and palpable landmarks of the back are described. 

These landmarks are of a particular interest since they are the parts of the spine that generally 

protrude to the surface of the back forming bumps or dimples. The three curvatures of the 

spine, namely, scoliosis, kyphosis and lordosis are described, with background information on 

their definition, aetiology, treatment options and incidence statistics. The conventional ap- 

proach for assessing spinal deformities based on physical examination and radiographs is also 

described. The traditional approach of describing scoliosis as a lateral spinal curvature does 

not provide complete description of the three-dimensional nature of the deformity. Based on 

the ten-ninology developed by the Scoliosis Research Society, we discuss three-dimensional 

measurements that can serve as alternative or complementary quantification for spinal and 

back deformities. 

2.2. Basic Anatomy of the Spine 

The human spine is a flexible column made up of a series of bones called vertebrae that sup- 

port the entire upper body. The spinal column is divided into five regions of vertebra: cervi- 

cal, thoracic, lumbar, sacrum and coccyx (Figure 2.1). There are 7 vertebrae in the cervical 

region, 12 thoracic vertebrae, 5 lumbar vertebrae, 5 in the sacrum (fused) and 4 in the coccYx. 

Thus, there are a total of 33 vertebrae in the spine. Each vertebra is distinguished by using a 

combination of a letter that describes the spinal region and a number that describes its loca- 

tion within that region. For example, C7 is the seventh cervical vertebra, T4 is the fourth tho- 

racic vertebra and L5 is the fifth lumbar vertebra. The sacrum is simply referred to as SI and 

the coccyx is not abbreviated or numbered. Inter-vertebra] disks separate the individual verte- 

brae enabling spinal articulation and also act as dynamic shock absorbers. 
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Figure 2.1: Anatomic regions of the spine. Illustration was prepared based on original images 

from Arai & Read (2005) 

Table 2.1 summarises the divisions of the spine, body area and naming conventions. 

Table 2.1: Regions of the spine 

Spine Region No. of Vertebrae Body Area Abbreviation 

Cervical 7 Neck Cl -C7 
Thoracic 12 Upper Back (Chest) TI - T12 

Lumbar 5 Low Back LI - L5 

Sacrum 5 (fused) Pelvis SI-S5 

Coccyx 4 Tailbone None 

Anterior view 
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2.2.1. Anatomy of a Typical Vertebra 

Features of a typical vertebra include the vertebral body, pedicles, transverse processes, lami- 

nae, articular processes and spinous process, which serve, among other functions, for the at- 

tachment of muscles and ligaments (Figure 2.2). The vertebral body is the large anterior part 

of the vertebra which acts to support the weight of the human frame. The pedicles are short, 

thick and rounded bones that attach to the posterior and lateral aspects of the vertebral body 

(Gray, 1918). The laminae are continuous with the pedicle; they are flattened from anterior to 

posterior and form the broad posterior portion of the vertebral arch. The transverse processes 

project laterally from the junction of pedicle and lamina; serving as muscle attachment sites. 

The spinous processes are midline structures that project posteriory from the laminae towards 

the surface. The spinous processes are of a particular interest since they are the parts of the 

spine that generally protrude to the surface of the back forming small convex bumps. These 

bumps are often visible on the back surface or in the very least can be located by palpation. 

Figure 2.2 shows C7 which typically has a large spinous process. 

Vertebral body 

Vertebu 

Transverse process 
Spinous process 

proceSS 

Figure 2.2: A typical thoracic vertebra (a) axial or overhead view (b) lateral or side view. illustration pre- 

pared based on original images taken from Bridwell (2001 b) 

The size, shape and direction of the spinous processes vary from one region of the spinal col- 

umn to the next (Gray, 1918). A spinous process may also normally deviate to the left or right 

of the midline, and this may be a cause of confusion in clinical examination (Cramer & 
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Darby, 2005). Thus, a deviated spinous process may not be necessarily associated with a frac- 

ture of the spinous process or malposition of the entire vertebra. The cervical vertebrae are 

smaller in size when compared to other spinal vertebrae. Some cervical vertebrae are named: 

atlas (CI), axis (C2), vertebra prommens (C7). The thoracic vertebrae increase in size from 

TI through T12; and are characterised by small pedicles, long spinous processes, and rela- 

tivcly large inter-vertebra] foramen. The rib cage isjoined to the thoracic vertebrae. The lum- 

bar vertebrae graduate in size from LI through L5 and are the largest in the spine. They bear 

much of the body's weight and related biomechanical stress. The pedicles are longer and 

wider than thoracic vertebra and the spinous processes are horizontal and more squared in 

shape. The sacrurn is triangular, been formed by 5 fused vertebrae. The coecyx results from 

the fusion of the four coccygeal vertebrae; it may be a single bone or the first coccygcal ver- 

tebra may be separated from the other three. Coccygeal vertebrae are reduced in complexity, 

having no pedicles, laminae or spines. 

2.3. Surface Anatomy of the Back 

2.3.1. Visual Landmarks of the Back 

The subcutaneous parts of the spine arc the apices of the spinous processes. These are distin- 

guishablc at the bottom of a furrow which runs down the middle line of the back from the ex- 

ternal occipital protuberance (EOP) to the middle of the sacrurn. The furrow is shallow in the 

lower cervical region and deepest in the lumbar region, widening inferiorly to form a triangle 

with a line connecting the posterior superior iliac spines (PSISs), forming the base above and 

the gluteal cleft forming the apex of the triangle below. The PSISs are visible as a pair of 

dimples (denoted in thesis as LPSIS and RPSIS respectively) located about 3cm lateral to the 

midline at the level of the S2 spinous tubercle (Cramer & Darby, 2005). 

Several bony landmarks are usually visible (see Figure 2.3). The spinous process of C7 is 

usually visible in the lower cervical region. In 60-70% of the population, the sPinous process 

of C7 is the most prominent while the spinous process of TI is more prominent in the other 
30-49% (Cramer & Darby, 2005). When the patient's head is flexed, the spinous process of 
C6 is usually visible as well. The other cervical spinous processes are usually sunken. In the 

thoracic region the furrow is shallow and during stooping disappears, and then the spinous 

processes appear more or less visible. In the lumbar region the furrow is deep and spinous 

processes are frequently Indicated by little pits or depressions, especially when the muscles in 
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the loins are well-developed. In the sacral region the furrow is shallower, presenting a flat- 

tencd area which ends below at the most prominent part of the dorsal surface of the sacrum. 

Extemal occipital protuberanCE 

C7 spinous process 

Tl spinous process 

Trapezius muscle 

Median furrow 

Latissimus dorsi muscle 

Erector spinae muscl- 

Posterior superior iliac spine 

Gluteal cleft 

Gluteal fold 

Figure 2.3: Visible landmarks of the back (Cramer & Darby, 2005) 

Besides bony landmarks, several muscles are commonly visible in the back region. The trape- 

zius is a large, flat, triangular muscle that originates in the midline from the EOP to the 

spinous process of T12 and inserts laterally onto the spine of the scapula. The latissimus dOrsi 

extends from the region of the iliac crest to the posterior border of the axilla and forming the 

lateral border of the lower thoracic portion of the back. Between the trapezius medially and 

latissimus dorsi laterally, the inferior angle of the scapula may be seen at approximately the 

level of T7 spinous process. The erector spinae muscles form two large longitudinal masses 
in the lumber region that extends approximately 10 cm laterally from the midline. 
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2.3.2. Palpable Landmarks of the Back 

The following structures are not usually visible, but can be located by palpation (see Figure 

2.4). The spinous process of the C2 is the first readily palpable bone in the posterior midline 

below the EOP; the second being C7. The spinous process of C6 is usually palpable with full 

flexion of the neck. The other cervical spinous processes are generally more difficult to pal- 

pate. In the thoracic region, TI is the third palpable spinous process. The spinous process of 

T4 is located at the extreme convexity of the thoracic kyphosis and is usually the most promi- 

nent spinous process below the root of the neck. The spinous processes of T9 and T 10 are of- 

ten palpably closer together; and the spinous process of T12 is roughly located between the 

level of the inferior angle of the scapula and the superior margin of the iliac crest. In the lum- 

bosacral region, the spinous processes are horizontal and more squared in shape. The spinous 

processes of L4 and L5 are shorter than other spinous processes and difficult to palpate. The 

last palpable bone is the tip of the coccyx which can be found in the gluteal cleft approxi- 

mately I cm posterior to the anus. 

Ext 
p 

Inferior angle 
of Scapula 

T12 

L4 

Posterior superior 
iliac spine 

S2s 
tut 

Coccyx 

Figure 2.41: Palpable landmarks of the back (Cramer & Darby, 2005) 
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2.4. Curvatures of the Spine 

There are three types of spinal curvatures, namely, scoliosis, kyphosis and lordosis. Scollosis 

refers to a lateral curvature in the frontal plane; kyphosis refers to the outward curvature of 

tile thoracic spine in the sagittal plane; and lordosis refers to the inward curvature of the lum- 

bar spine in the sagittal plane (SRS, 2000). Scoliosis is always abnormal, although mild, non- 

structural scoliosis may pose no real health threat to the patient and may require no treatment 

other than monitoring for progression. The normal spine always exhibits a small degree of 

both kyphotic and lordotic curvature. Exaggeration of the kyphotic curve results in what is 

known as hunchback. Exaggeration of the lordotic curve is often called swayback. These three 

types of spinal curvature are further discussed in the following sections. 

2.4.1. Scollosis 

Scoliosis, in its simplest definition, refers to a lateral curvature of the spine in the frontal 

plane. Typically, scoliosis will exhibit either a single or double structural curve and will be 

accompanied by compensatory curves above and below the structural curves to maintain the 

general position of the individual (Figure 2.5). 

Compensalory 
curve 

Structural 
curve 

Compensatory 
curve 

(a) Single curve 

Compensatory 
curve 

Structural 
curve 

Structural 
curve 

Compensatory 
curve 

(b) Double curve 

Figure 2.5: A single and double scoliotic curves with compensatory curves 

This simple definition of scoliosis does not provide a complete description of the deformity. 

For this reason, the Scoliosis Research Society (SRS) in the USA developed a three- 
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dimensional terminology of scoliosis covering the geometrical properties of the vertebrae and 

the spine (Stokes, 1994). This is discussed in Section 2.5. 

2.4.1.1. Developmental Anomalies of the Vertebrae 

Due to the complicated nature of the developmental processes of the vertebrae, various 

anomalies can occur. Although many of these anomalies do not pose any health problems and 

arc never detected, some of them can have a profound impact on the health of the individual 

(Gregory et a], 2005). Scoliosis may result from morphological deformation of the vertebrae 
during development. Hermivcrtebra or vertebral wedging is the situation where only one half 

of the vertebral body develops resulting in a wedge-shaped vertebra, causing the spine to 

curve laterally at the side of the defect. Failure of vertebral fon-nation can be partial or com- 

plete (Figure 2.6). Block vertebra or congenital bar represents a non-segillentation of the 

somitcs and results in the fusion of two adjacent vertebrae to form a single vertebra twice as 
high than non-nal. 

Cýd ýO 
LED- 

CýM_ 
cn-ý 0 

00 

CEP 
partial 

unilateral 
failure of 
formation 

(wedge vertebrae) 

CfO)-O"PI 

CO-E-o. 0 00 
qýýn 
14EýD complete 

unilateral 
failure of 
formation 

(hernivertebra) 

CA-0-0-tD 
CýFO-OýD 

00 
bilateral 
failure of 

segmentation 
(block vertebra) 

Figure 2.6: Congenital vertebral anomalies contributing to scoliosis (Richardson, 2000) 
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2.4.1.2. Vertebral Rotation and Rib Cage Distortion 

Structural scoliosis is a deformity that is characterised by both lateral curvature and vertebral 

rotation (McAlister and Shackelford, 1975). As the deformity progresses, the vertebrae and 

spinous processes rotate toward the concavity of the curve. On the concave side of the curve, 

the ribs are close together. On the convex side, they are widely separated. As the vertebral 

bodies rotate, the spinous processes deviate more and more to the concave side and the ribs 

follow the rotation of the vertebrae (Figure 2.7). The posterior ribs on the convex side are 

pushed posteriory, causing the characteristic rib hump seen in thoracic scoliosis. The anterior 

ribs on the concave side are pushed anteriorly (Richardson, 2000). 

spinous process 
deviated to 

concave side 

lamina thinner and r, b pushed ve(tebrdi candl posteriorly narrower on and thoracic 
convex side cage narrowed 

vertebral body 
distorted toward 

convex side 

rib pushed 
laterally 

and anteriorly 

Convex side 

Concave side 

Figure 2.7: Vertebral rotation and rib distortion (Richardson, 2000) 

2.4.1.3. Surface Deformity Caused by Scoliosis 

The skeletal distortions caused by scoliosis will almost certainly result in the deformity of the 

trunk surface. The surface deformity typically include shoulder asymmetry, rib hump, scapula 

asymmetry, pelvic asymmetry, a skin fold on the side of the concavity and a subtle twisting of 

the trunk (Mahood et al, 1995). In Figure 2.8, we observe various surface deformities caused 

by scohosis: twisting of the whole trunk toward the side of the concavity; head not centred 

over trunk; right shoulder higher than the left; left pelvis higher than the right; vertebra rota- 

tion causing rib cage distortion and the rib hump. The surface deformity enables surface as- 

sessment to be carried out. The cosmetic deformity of the trunk surface is actually more im- 
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portant to the patient and family, and is what frequently motivates them to seek treatment 

(Mahood et a], 1995). 

ad not centred over trunk 

ioulder height difference 

One scapula more 
prominent 

Scoliosis with double 
curves 

, isted trunk with skin fold 
n the side of concavity 

Jnequal gaps between 
arms and trunk 

One higher and more 
prominent 

(b) Scoliosis showing surface deformities 

Spinous process. deviated to concavity side 

Rib pushed 
posteriory 

Rib pushed 
anteriory 

Concave Convex 
side 

(c) Rib hump - skeletal deformity 

Figure 2.8: Skeletal and surface deformity in scoliosis. Illustration is based on original Images taken from 

(Wasserman, 1992; Dennis, 2003) 

2.4.1.4. Aetiology and Classification of Scoliosis 

Clinically, there are two main types of scoliosis, namely, so-uctural and non-sti-lictural (or 

functional) scoliosis (McAlister and Shackelford, 1975). Non-structural scoliosis is mild, non- 

progressive and correctable by ipsilateral bending. It is a temporary, changing curve caused 
by some underlying condition such as leg length difference (LLD), muscle spasm or inflam- 

matory conditions such as appendicitis. In structural scoliosis, the vertebrae undergo morpho- 
logical changes such as wedging and rotations. Based on its aetiology, structural scoliosis has 

been classified as idiopathic, congenital or associated with miscellaneous conditions includ- 

II. -I 

(a) Scoliosis showing surticu deluimities 

(d) Rib hump surface deformity 
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ing developmental, neuromuscular and turnoural causes (McAlister and Shackelford, 1975). 

The cause of idiopathic scollosis remains unknown but it is thought to be associated with 

many factors including those just named. Idiopathic scoliosis is the most common type and 

accounts for more than 80% of the cases (SRS, 2000). It has been classified into three types 

based on the age of onset, namely, iqlantile, juvenile and adolescent. Infantile idiopathic sco- 

liosis occurs in children less than 3 years and juvenile occurs between the age of 3 and 10. 

Adolescent idiopathic scoliosis is the most common type and occurs after the age of 10. Idio- 

pathic scoliosis has also been classified based on the location of the apex of the curve, 

namely, thoracic, thora-lumbar and lumber scoliosis. Moreover, the pattern of the scoliotic 

curve has also been used as a basis of classification: single curve, double curve and triple 

curve. Other classification schemes appear in the literature (Cruickshank et al, 1989; Lenke Ct 

al, 200 1; Poncet et al, 200 1 ). 

2.4.1.5. Treatment of Scoliosis 

When scoliosis is mild, non-structural and poses no real health threat to the patient, it may 

require no treatment other than monitoring for progression. For structural scollosis that re- 

quires treatment, a number of options are available. One option is bracing where the patient 

wears a rigid brace which exerts pressure on one side of the body in an attempt to correct the 

del'ormity. Bracing is normally prescribed when the patient is still growing and the scoliOSis 

has the tendency of progressing. An example of a brace is the Milwaukee brace which has a 

neck ring and is worn to correct any curve in the spine (Figure 2.9). Another example is Tho- 

racolumbosacral orthosis which fits under the arm and around the rib cage, lower back, hips, 

and is typically worn to correct curves whose apex is at or below the eighth thoracic vertebra 

(I loward et a], 1998). In cases where leg length difference (LLD) is the underlying cause of 

functional scoliosis, it may be corrected simply by shoe raise in the shorter leg (Baylis et al, 

1988; Zabjek ct a], 200 1). The final alternative, but more severe option is to intervene with 

spinal surgery to arrest progression of the deformity and where possible to straighten the 

curve without injury to the spinal chord. Many surgical techniques exist; the main procedure 

being correction, stabilization, and fusion of the curve. 
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Figure 2.9. Milwaukee brace, worn after spinal fusion to hold the spine in place (SAUK, 2000) 

2.4.1.6. Scoliosis Statistics 

According to the US National Institute of Arthritis and Musculoskeletal and Skin Diseases 

(NIAMS), of every 1,000 children, 3 to 5 develop spinal curves that are considered large 

enough to require treatment (NIAMS, 2001). Adolescent idiopathic scoliosis (AIS) is the 

more common type accounting for more than 80% of scoliosis cases. Table 2.2 shows scolio- 

sis statistics over a period of six years taken from the UK National Episode Statistics. The 

mean number of scoliosis episodes from 1998-2004 was 2371. Out of this total, about 90% 

required hospital admission. These statistics also confirm that females are more likely to de- 

velop scoliosis than males. 

I 1201 I 



Three-Dimensional Spinal and Back Deformities 

Table 2.2: Scoliosis statistics (Source: Hospital Episode Statistics, 1998-2004, Department of Health, UK) 

Year 98-99 99-00 00-01 01-02 02-0 03-04 Mean 

Hospital consultant episode 2110 2307 2259 2129 2559 2866 2017 

Percentage of hospital adm. (Ivo) 91 92 91 91 89 8 88 90 

Percentage of Males 33 33 33 32 32 34 33 

Percentage of Females 67 67 67 68 68 66 67 

Percentage emergency adm. (%) 7 7 8 7 11 6 8 

Waiting list 61 68 63 67 63 62 64 

Mean waiting time (days) 163 165 173 185 186 154 171 

Mean length of stay (days) I1 10 11 11 10 10 11 

Percentage of age group 0- 14 35 35 32 37 37 44 37 

Percentage of age group 15-59 (%) 47 46 46 43 42 37 44 

Percentage of age group 60-74 10 11 13 11 11 10 11 

Percentage of age group 75+ 8 8 9 9 8 9 
- 

9 

Mean age (years) 31 32 33 31 30 2 9 31 

2.4.1.7. Conventional Assessment of Scoliosis 

The conventional approach for assessment of scoliosis usually begins with physical examina- 

tion followed by radiographic assessment if required. Physician examination will typically 

include palpating the back surface or the trunk in attempt to assess the extent of the deformity 

or asymmetry of the back. The examiner will typically look for physical indications such as 

uneven shoulders or hips, humpback, or prominent hip. The patient is often instructed to bend 

forward at the waist, with arms extended forward (Adam's forward bending test) which em- 

phasises asymmetry of thoracic promInence or rib hump (Figure 2.1 Oa). The rib hump is typi- 

cally measured using the Scollometer (see Section 3.3.1.1) while the patient is in Adam's 

forward bending pose. Any discrepancy in the lengths of the two legs is also measured, usu- 

ally with a tape. To obtain a general alignment of the spine, a plumb line is sometimes 

'dropped' from the C7 vertebra and is allowed to hang below the buttocks (Figure 2.1 Ob). In 

the case of scoliosis, the line will normally not hang between the buttocks, indicating a curved 

spine. 
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401, 

Figure 2.10: (a) Patient in Adam's forward bending position (b) Plumb line used to measure spinal align- 

ment. Illustration based on original images from (Allrefer, 2006) 

The patient's ability to perform a range of motion such as flexion, extension, bending, and 

rotation movements is also usually assessed. In addition to testing reflexes, any symptoms 

experienced by the patient such as back pain, numbness, extremity weakness, muscle spasm, 

etc, are also recorded. These factors are taken into account in deciding whether or not the pa- 

tient requires further assessment. If the patient requires further examination, radiographic as- 

sessment is carried out. Two parameters are typically measured from the radiographs, namely, 

the angle of curvature and vertebral rotation, which are discussed below. 

Angle of Curvature 

The most commonly used method for measuring the angle of curvature of the spine is that 

proposed by Cobb (Cobb, 1949). To measure the Cobb angle, one must first decide which 

vertebrae are the end-vertebrae of the curve. These end-vertebrae are the vertebrae at the up- 

per and lower limits of the curve which tilt most severely toward the concavity of the curve. 

Once these vertebrae have been selected, lines are then drawn along the upper endplate of the 

upper body and along the lower endplate of the lower body as shown in Figure 2.1 Ia. The 

Cobb angle is then the angle between these two lines. The Cobb angle thus depends on the 

subjective selection of the end vertebrae bodies, which may account for the variation in its 

measurement (see Section 3.2.3). Another method, proposed by Ferguson (1930), for estimat- 
ing the angle of curvature measures the angle between lines drawn from the centroids of the 

end vertebrae to the centroid of the apical vertebra or disc (Figure 2.11 b). 
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upperend F7 vertebra r--i 
Forguson 

angle 

1--1 

r--1 (a) Cobb angle 
(b) Forguson angle 

Figure 2.11: Curvature angle measurement on a radiograph (a) Cobb method (b) Ferguson method 

To examine the geometric relationship between the Cobb and Ferguson angles, we approxi- 

mate the spine by a smooth curve passing through the centroids of the vertebra bodies. For 

simplicity, let this approximating curve be a simple circular curve. From Figure 2.12, it is 

trivial to show that the Cobb angle (a ) is twice the magnitude of the Ferguson angle (j6), 

that is, a=2,6. 

a 
It. Ferguson angle 

13 

p 

Cobb angle 

U 

R 

Figure 2.12: Relationship between Cobb and Ferguson angles 

However, this relationship only holds if the spine can be approximated by a circular arc. Pre- 

vious studies of actual spinal curves found the ratio between Cobb and Ferguson angles to be 

approximately 1.35-1.38 (Robinson et al, 1983; Stokes et al, 1993). This confirms that a 
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simple circular curve is inadequate approximation of the spinal curve. In Section 6.6, we use 

constrained polynomials to derive improved approximation of the back midline. 

Vertebral rotation 

As mentioned earlier, structural scoliosis is characterised by not only lateral curvature of the 

spine but also rotation of the vertebrae. The measurement of vertebral rotation thus provides a 

complementary means for assessing scoliotic deformity. However, since the radiograph is a 

two-dimensional projection of the spine with limited intensity, the measurement of vertebra 

rotation is generally difficult. One of the earliest methods for estimating vertebral rotation 

was developed by Nash and Moe (1969), who based their measurements on the position of the 

pcdicles relative to the vertebral body line. The pedicles are two short, thick processes, which 

project backward, one on either side, from the upper part of the vertebral body, which can be 

seen on the radiographs (see Figure 2.2). When the spine is straight, the pedicles are projected 

symmetrically onto the radiographs. As the vertebra rotates, the pedicle on the convex side of 

the curve moves towards the concave side of the curve whiles the pedicle on the concave side 

of the curve disappears (Figure 2.13). 

Pedicle on 
Convex side 

Grade 0 No assymmetry 

Migrates within Grade I first segment 
Early torsion 

Pedicle on 
Concave side 

No asymmetry 

May start disappearing 
Early torsion 

Migrates to 
Grade 11 second segment 

Migrates to middle 
Grade III segment 

Grade IV Migrates past middle 
to concave side 

Gradually disappearing 

Not visible 

Not visible 

Figure 2.13: Nash and Moe method for measurement of vertebral rotation (Nash and Moe, 1969) 
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Nash and Moe used this movement of the pedicles to categonse the rotation of the vertebrae 

into five grades, namely, grade 0, grades I through IV, and assi of rotation to degrees 

each category (Table 2.3). _4 

Table 2.3: Rotation assigned to each category in Nash and Nloe method 

Grade 0 1 11 111 IV 
Rotation 0* 5*-10* 15"-30" 35040" >500 

Other methods for measurement of vertebral rotation from radiographs include those pro- 

posed by Cobb (1948) who graded the vertebral rotations based on the dislocation of the 

spinous processes in relation to the vertebral body. Modifications to the Nash and Moe's 

method have also been suggested (Drerup, 1984). 

2.4.1.8. Kyphosis and Lordosis 

Kyphosis refers to an outward curvature of the thoracic spine in the sagittal plane which can 

result in a noticeable round back or hunchback deformity (Figure 2.14). The term is usually 

used to describe an exaggerated curve. The Scoliosis Research Society defines kyphosis as a 

curvature of the spine measuring 450 or greater on a radiograph (SRS, 2000). The normal 

spine typically has thoracic kyphosis of 20-450. When the kyphosis is less than the normal 

range, it is called hypoAyphosis; and when it is greater than the non-nal range, it's called hy- 

perkyphosis or simply kyphosis. 

Kyphosis Angle 
2045* 

0 
eb 

Kyphosis Angle 
<45* 

(a) Normal spine (b) Kyphotic spine (exaggerated curve) 

Figure 2.14: Normal and kyphotic spines, kyphosis angle measured bv Cobb method 
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Postural kyphosis is the most common type and represents an exaggerated, but flexible, in- 

crease of the natural curve of the spine. This usually becomes noticeable during adolescence 

and it's more common among girls than boys and rarely causes pain. The condition is not as- 

sociated with vertebral abnormality and the defon-nity is completely correctable by change in 

posture. Congenital kyphosis is secondary to congenital vertebral abnormality such as failure 

of formation, failure of segmentation or a combination of both. Structural kyphosis is associ- 

ated with other conditions such as Scheuen-nann's disease, neuromuscular conditions, mye- 

lomeningocele, trauma, metabolic problems, skeletal dysplasias, etc. (McAllister, 1975). 

Lordosis is the opposite of kyphosis and refers to an inward curvature of the lumbar spine in 

the sagittal plane producing what is known as the swayback (Figure 2.15). The term lordosis 

is used when the curve is exaggerated. Hyperlordosis is a lordosis greater than the normal 

range; and hypolordosis a lordosis less than the normal range. Lordosis tends to make the but- 

tocks appear more prominent. Causes of lordosis include conditions such as congenital, neu- 

romuscular, spondylolisthesis, skeletal diasplasia (McAllister, 1975). 

Lorclosis angle 
Lordosis angle 

Figure 2.15: Normal and lordotic spine, lordosis angle measured by Cobb method 

2.4.1.9. Statistics 

Table 2.4 gives hospitalization statistics for kyphosis and lordosis taken from UK National 

Hospital Episode Statistics over the 1998-2004 periods. These statistics indicate kyphosis and 

lordosis affect only a small percentage of the population. Generally, an increase in thoracic 
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kyphosis and a decrease in lumbar lordosis occur with advancing age and are more pro- 

nounced in females. The mean age is just over 45 with 54% been females. Subjects with 

grcater lumbar lordosis generally have greater thoracic kyphosis and vice versa. 

Table 2.4: Kyphosis and lordosis statistics (Source: Hospital Episode Statistics, 1998-2004, Department of 
Health, UK) 

Year 98-99 99-00 00-01 01-02 02-03 03-04 Mean 

Hospital consultant episodes 248 257 219 229 256 217 238 

Percentage of hospital adm. (%) 91 94 94 87 93 89 91 

Percentage ofMales (%) 46 48 45 43 47 46 46 

Percentage of Females (%) 54 52 55 57 53 54 54 

Percentage of emergency adin. 17 14 12 16 18 16 16 

Waiting list (%) 58 68 65 61 60 58 62 

Mean waiting time (days) 175 136 159 137 134 155 

Mean length of stay (days) 11 12 13 12 13 12 12 

Percentage of age group 0- 14 16 11 11 15 9 14 13 

Percentage of age group 15-59 46 46 48 48 52 48 48 

Percentage of age group 60-74 17 22 26 12 18 16 19 

Percentage of age group 75+ (%) 21 21 15 25 20 22 21 

Mean age (years) 45 49 49 46 48 47 47 

2.4.1.10. Treatment Options 

Treatment methods are similar to those for scoliosis, namely, observation, bracing and sur- 

gery. Observation and repeated examinations arc often carried out for curves that measure 

less than 60 degrees on a radiograph. Progression of the curve depends upon the amount of 

skeletal maturity of the patient; progression slows down or stops after the pat, ent reaches Pu- 

berty. Bracing is generally suggested from the time the problem is identified until the end of 

spinal growth and maturation. For cases that cannot be managed non-surgically, spinal in- 

strumcntation and fusion are alternatives. Several different types of surgery are available to 

both straighten the spinal curve and relieve the patient's pain. 
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2.5. Three-dimensional Geometric Description of Spinal Deformities 

The traditional definition of scoliosis as a lateral spinal curvature does not provide adequate 

description of the three-dimensional nature of the del'ormity. For the purpose of research and 

diagnosis, a more complete description is required. The SRS has developed three-dimensional 

geometric terminology of the spine which provides the basis for dcriving surface measure- 

merits. In this thesis, we build on this terminology to derive various surface measurements for 

the back midlinc. 

2.5.1. Basic Vertebra Definitions 

A vei-lehra centroicl is defined by SRS as the mid point of a vertebral body and is defined as 

the point halfway between the centres of the two endplates of a vertebra. Verfebro bo(ývline is 

the 3-D curved line that passes through the cciltroids of tile vertebral bodies. Apictil verlebiw 

or disc is the most laterally deviated vertebra or disc in a scollosis curve i. e. the vertebra that 

has tile grcatcst y coordinate in the global coordinate systern. Ali eml vertehl-ti is the ccphalad 

and caudal vertebrae that bound a scoliosis curve, as seen in the frontal projection. Cq)h(II(I(I 

en(I verfebra is the first vertebra in the cephalad direction from a curve apex whose superior 

surface is angled maximally toward the concavity of tile curve, as measured in tile posterior- 

anterior spinal prQjection. Ctmdcid end vertebra is the first vertebra in the caudad direction 

from a curve apex whose inferior surface is angled maximally toward the concavity of tile 

curve, as measured in the posterior-anterior spinal projection. 

2.5.2. Coordinate Systems 

A cartesian coordinate system is defined uniquely by the origin, and the directions of two 

axes, with the third axis perpendicular to them. The SRS places the origin at the centre of the 

superior endplate of SI and uses the rýghl-htmdetl coortlinalesystem in which X signifies an- 

terior, Y signifies left, and Z signifies the cephalad direction. The global and spinal axis sys- 

tenis should have the origin at Sl and with sagittal plane defined by the pelvis, the anterior 

superior iliac spines (ASIS) defining the transverse global (Y) direction. The other principal 
directions are aligned either with gravity (global system), or with spinal landmarks. In this 

investigation, we use the le ji-handed cow-dintile sYslem and define four coordinate systems as 
follows (Figure 2.16): 

I 
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Local coordinate system. A vertebra-based coordinate system with the origin at the 

centroid of the vertebra] body, Y-axis passing through the centres of the upper and 
lower endplates, and X-axis Is parallel to a line joining similar landmarks on the bases 

of the right and left pedicles. This coordinate system is denoted in this thesis 

as XLYLZL 
. : ýj 

Regional coordinate system. A curve based reference system with the Y-axis passing 

through the end vertebrae of a curve, denoted as XRYRZR' 

Spinal coordinate system. A reference system for the entire spine which has its origin 

at S 1, the Y-axis passing through C7, and the X-axis parallel to the line connecting the 

PSISs. This system is denoted as Xý)ýZ. ý 

Global coordinate system. Conventional anatomic gra\,, ty-hased ams system, with the 

origin at SI, the Y-axis is vertical (gravity line) and the XY-axis parallel to the line 

connecting the PSISs. This system is denoted as X 
GYGZG -A 

YR 

YL 

A 

XL 

ZR 

(a) Local (vertebral) (b) Regional (curve) 

7 

XR 

Sl 
ZG 

---*XS 

zS 

(c) Spinal (spine) 

Figure 2.16: Coordinate systems used for scoliosis desci 

yc 
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2.5.3. Regional and Global Planes 

The plane which best accommodates the vertebrae in a specified region of the spine is known 

as the bestfit plane. The vertical plane which shows the greatest spinal curvature by a speci- 

fied method (e. g. Cobb) when a specified part of the spine is projected onto it is known as 

plane of maximum curvature. Similarly, the vertical plane with the minimum spinal curvature 

is known as plane of minimum curvature. The conventional global planes of the body are fol- 

lows (Figure 2.17): 

0 Frontal or coronal plane (global XY-planc) 

0 Sagittal or lateral plane (global YZ-plane) 

* Transverse or axial plane (global XZ-plane) 

Sagittal plane 

Frontal plane A 

ansverse plane 

Figure 2.17: Global planes of the body (adapted from Bridwell, 2001 a) 

2.5.4. Spinal Measurements 

The spinal measurements consist of linear, angular, area and volume measurements and have 

been grouped under two-dimensional (31D) and three-dimensional (2D) measurements. The 

3D measurements are derived in 3D space, for example, 3D spinal length and volume of spi- 

nal bounding box. The 2D measurements are performed in 2D space defined by a specified 

plane of the body i. e. frontal, sagittal or transverse. The following is a summary of the relc- 

vant measurements derived in this investigation. 

II-I- ---I 
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3D Spinal Measurements 

9 3Dspinal length. The 3D length of the spine or a specified region of the spine. 

0 Volume. The volume of the 3D bounding box of the spine. 

Frontal Plane Measurements 

Two-dimensional spinal length in frontal plane. 
b"rontal plane balance. The distance in the frontal plane between C7 vertebra and the 

global Y-axis (Figure 2.1 8c). 

" I-rontal plane angular balance. The angle between spinal y-axis and global Y-axis in 

the frontal plane (Figure 2.18c). 

" Spinal lateral deviation. The distance of the most laterally deviated vertebra from the 

spinal y-axis (Figure 2.18a). 

" Spinal lateral width. The width of projected extent of the spine in the frontal plane 

(Figure 2.18d). 

" Maximum lateral deviation. The distance of the most laterally deviated vertebra from 

the global Y-axis (Figure 2.18b). 

"A ngle qfbestfit plane with sagittal plane. The angle between the best fit plane and the 

global YZ plane. 

" Cobb angle. The angle of curvature of the spine in the frontal plane measured by Cobb 

method (see Section 2.4.1.7). 

" Perguson angle. The angle of curvature of the spine in the frontal plane measured by 

Ferguson method (see Section 2.4.1.7). 

" Projected area of the spine in the frontal plane (see Section 2.5.5). 

31 1 
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Balance 

C7 
YG 

C7 YG 

A 

C7 YG C7 

Most deviated 
Most deviated 

vertebra from 
vertebra from 

global Y-axis 
spinal Y-axis 

Angular 

balance 

S1 S11 

m 

(a) Spinal lateral deviation (b) Maximum lateral deviated 

nm S1 

Q , M; --) N* 
(c) Frontal plane balance 

Figure 2.18: Spinal measurements in the frontal plane 

Sagittal Plane Measurements 

" 2D spinal length in sagittal plane. 

" Sagittal plane balance. The distance in the sagittal plane between C7 vertebra and 

global Y-axis. 

" Sagittal plane angular balance. The angle between the spinal Y-axis and the vertical 
from the global Y-axis in the sagittal plane. 

" Sagittalspinal deviation. The distance of the most laterally deviated vertebra from the 

spinal Y-axis in the sagittal plane. 

" Sagiffal spinal width. The width of projected extent of the spine in the Sagittal plane. 

" Saginal maximum deviation. The distance of the most laterally deviated vertebra from 

the global Y-axis in the sagittal plane. 

"A ngle of best fit line with frontal plane. The angle between the best fit plane and the 

global XY plane. 

" Kyphosis angle by Cobb or Ferguson method (Section 2.4.1.7). 

" Lordosis angle by Cobb or Ferguson method (Section 2.4.1.7). 

" Projected area of the spine in the sagittal plane (Section 2.5.5). 

Transverse Plane Measuremena 

2D Spinal Length in transverse plane 

Projected area of the spine in the transverse plane 

1321 1 

(d) Spinal lateral width 
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2.5.5. Area and Volume Measurements 

The area measurements refer to the area enclosed by the spinal curve and the spinal axis de- 

fined by the end vertebrae (C7 and SI) in a specIfied plane (e. g. in frontal plane). Figure 

2.19a shows the area enclosed by the spine in the global frontal plane of the body. For a per- 

fectly straight spine, the area in the frontal plane will be zero. The volume measurement refers 

to the volume of the 3D bounding box of the spine, as shown in Figure 2.19b. For a perfect 

spine, the volume of the bounding box also should be zero. 
ý ýIj 

C7 

Area 

/ 

pinal axis 

Area 2 

'otal Area- 
aI +Area 2 

(a) Area in frontal plane 
(b) Volume of spinal envelope 

Figure 2.19: Area and volume measurements 

2.5.6. Surface Measurements 

In the computation of all surface measurements, the following general assumption is made- 

the location or centroid of each vertebra may be adequately approximated by the projection of 

its spinous process on the surface of the back. With this assumption, the following statements 

can be made: 

The vertebral body line can be approximated by the back nildlinc connecting the 

spinous process landmarks detected on the surface of the back. 

The orientation of each vertebra can be approximated by the normal vector to the sur- 

face at the spinous process landmark of that vertebra. 
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0 Surface coordinate systems arc defined similarly to the spinal coordinate systems, us- 

ing the left-handed system in which the positive +Z-axis points outwards the scrccn, 

+X points to the right direction and +Y the up direction. The only difference is that 

vertebra centres are approximated by their spinous processes landmark locations as 

detected on the surface. Thus, three surface coordinate systems arc defined as follows: 

o Local system. A coordinate system defined at an arbitrary point (P,, ) on the 

back surface (such as at a spinous process) with origin at P, Z-axis as the 

nonnal at P,, and XZ-plane defined by the tangent plane at P,,. 

o Spinalsystem. A coordinate system based on the entire spine (approximated by 

the midlinc). Origin at SI spinous process landmark, Y axis passing through 

C7 landmark, and X axis parallel to the line connecting the left and right PSIS 

landmarks. 

o Global system. A reference system formed by the three global planes of the 

body, same as defined in Section 2.5.2. 

2.5.7. Pelvis Orientations 

The relevant measurements with respect to the pelvis arc the three orientation angles, namely, 

pelvic obliquity (rotation about global Z-axis), pelvic tilt or inclination (rotation about global 

Y-axis) and pelvic rotation (rotation about global X-axis). These are illustrated in Figure 2.20, 

in which XGYGZG represent the global axes of the body (see Sections 2.5.2 and 2.5.3). 

YG 

XG 

Figure 2.20: Orientation angles of the pelvis 
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Approximate orientations for the pelvis may be computed based on locations of the left and 

right PSIS landmarks. In Figure 2.21, XYZ represent the axes of the global coordinate sys- 

tem. The rotation angles can be computed by using the set of Equations 2.1. 

RI =tan 
(ýV) 

Rv = tan-' 
( dz ) 

Rx = tan 
(dz) 

A dx dy 

where R, R)., Rz are the rotation angles about the three global axes and A, dy, dz are the dif- 

1'erences in the coordinates of the left and right PSIS landmarks. 

y 
t 

LPSIS RPSIS 

R,, 
X 

-Rý 

z 
t 

LPSIS RPSIS 

I 
I < 

Ry 

(b) RcAatoov atxi4it Y-axis 

z 
t 

LPSIS RPSIS 

y 
Rx 

(c) Rotation about X-mxis 
111) ROLItion about Z-11XIS 

Figure 2.21: Computation of pelvis orientations based on PSIS landmarks 

2.6. Chapter Summary 

This chapter has described relevant background to spinal and back defon-nities. The basic 

anatomy oftlic spine was discussed, including the visual and palpable landmarks of the back 

were dISCLIsscd. These landmarks are of particular interest in this investigation since the suc- 

ccss ol'any SUfface analysis techniques to a large extent depends on them. The three curva- 

tures ofthe spine, namely, scoliosis, kyphosis and lordosis were discussed. In the last section 

ofthe chapter, it was noted the traditional approach of quantifying spinal deformities by the 

Cobb angle alone does not take into account the three-dimensional nature of the deformity. 

Budding oil tile terminology of the SRS, more surface measurements were derived, which 

have been implemented in Chapter 6. 

The next chapter discusses tile fundamental methods that have been developed for acquisition 

ol'back surflacc data 
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3. Surface Measurement Methods for the 
Assessment of Spinal and Back Deformities 

3.1. Introduction 

This chapter discusses the fundamental surface measurement methods that have been devel- 

oped for assessment of back deformities. In the past few decades, various surface measure- 

ment system and imaging modalities have been proposed. These range from tactile devices 

(such as the Scoliometer), non-contact structured light methods (such as moird fringe topog- 

raphy, phase measuring methods, rasterstereography) to three-dimensional scanning systems 
(such as the ISIS). For each method, the underlying theory is briefly outlined and its applica- 

tion to back shape measurement is discussed including the main limitations. Recent advances 
in hardware and software technology have now enabled fast and accurate acquisition of both 

image and coordinates. The last section discusses three-dimensional laser scanners and their 

application to back shape measurement. The Minolta laser scanner, which has been used for 

data collection in this investigation, is also discussed. 

3.2. Why Surface Measurement? 

There are three primary reasons for assessing spinal deformities from surface measurements; 

these are discussed in this section. 

3.2.1. Risk of Multiple Radiation Exposure 

The obvious drawback of radiographic assessment is the radiation hazards associated with 

exposure to radiographs. Although the dangers of radiation hazards have been reduced by 

modern techniques, repeated exposures can still carry accumulating risk over the patient's 
lifetime, especially if follow-up is extended over a longer period of time. During the assess- 

ment of spinal deformities, it is often required to monitor a patient at regular intervals over a 

period of time, to assess progression of the condition or even to assess the effect of treatment 

methods. In such cases, it is clearly undesirable (in some cases unacceptable) to take full spi- 

nal radiographs of the patient frequently for monitoring purposes, especially in teenage girls 
in whom scoliosis has a high incidence. It is therefore desirable to explore surface methods 
for the assessment and monitoring of spinal deformities. 
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3.2.2. Cosmetic Deformity of the Back Surface 

Structural deformity of the spine such as scoliosis will almost certainly result in correspond- 

ing deformity of the back or trunk surface (see Section 2.4.1.3). Studies indicate that it is the 

cosmetic deformity of the trunk surface which is more important to the patient and family, 

and is what frequently motivates them to seek treatment (Mahood et a], 1995). The patient is 

most aware of the visible deformity of their body such as the rib hump and may seek treat- 

ment for these reasons or because they are uncertain about the nature and prognosis of their 

condition. Clinically, the back or trunk surface is important not only because of its cosmetic 

relevance, but also because it is the interface for some treatment methods such as bracing. As- 

sessment methods should therefore allow the quantification of the surface deformity in addi- 

tion to the spinal deformity. 

3.2.3. Need for Three-Dimensional Measurements 

One problem with the measurement of the Cobb angle is that it is obtained from a two- 

dimensional, low resolution radiographic image of the spine. Consequently, it is usually diffi- 

cult to measure the Cobb angle in a consistent manner. In fact, studies have shown significant 

variations in measurement of the Cobb angle-inter-observer variation is approximately 7-90 

at 95%, confidence interval while intra-observer variation is about 4-5" (Goldberg et al, 1988; 

Morrissy et al, 1990). Clearly, there is the need for a more objective and automated measure- 

ment techniques. Second, the Cobb angle alone does not provide a complete description of the 

three-dimensional nature of the deformity. More complete geometric descriptors (such as 

those discussed in Section 2.5) are needed to fully quantify the entire deformity. Radiography 

can offer three-dimensional information only if at least two radiographs are acquired. How- 

ever, this option will only worsen the radiation problem. Three-dimensional surface meas- 

urements methods will allow the derivation of alternative or complementary geometric de- 

scriptors. 

T-38-[ 
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3.3. Surface Measurements Methods 

in the past few decades, a number of surface measurement methods have been developed and 

applied to back shape assessment. These methods have evolved from simple tactile devices 

(such as Scoliometer), to non-contact methods such as rnoir6 fringe topography, structured 
light methods, and 3D laser scanning. In this section, the fundamental surface data acquisition 

methods are reviewed and their application to back shape assessment is discussed. 

3.3.1. Tactile Measurement Devices 

These are simple, usually handheld, devices that are used to directly estimate the magnitude 

of the deformity by placing the instrument on the back of' the subject. Various instruments 

have been developed for measuring various aspects ofthc deformity. For example, the Scoll- 

ometcr and the Formulator Body Contour Tracer (FBCT) are simple devices used to estimate 

directly the asymmetry of the back; while the Debrunncr Kyphonicter is used to measure the 
kyphosjs angle (Debrunner, 1972). The Scoliometer and thc FBCT are discussed further in the 
following sub-scclions. 

3.3.1.1. Scoliometer 

The Scollomctcr (also known as inclinometer) is a simple tactile device developed to directly 

measure what is ten-ned the Angle of Trunk Inclination (ATI). The ATI is defined by the SRS 

as the angle between the horizontal and the plane across the back at the greatest elevation ofa 

rib prominence or lumbar prominence, as measured by an inclinometer or Scoliorneter (SRS, 

1980). The ATI is usually measured with the patient in Adam's forward bending position 
(Figure 3.1 ). 



Surface Measurement Methods for the Assessment of Spinal and Back Deformities 

(a) ATI definition 

Figure 3.1: ATI definition and measurement by the Scoliometer 

Dangerfield (I 992a) extended this simple concept and recorded the ATI at each vertebral po- 

sition and plotted the results as a graph of ATI against vertebral position. The graph repre- 

sents the magnitude of scoliosis along the length of the spine. ATI measurements were taken 

with the patient in standing and prone positions as well, allowing a multi-level ATI map to be 

constructed and stored in patient records. Figure 3.2 shows a typical ATI map for a scoliosis 

patient. 

Vertebral 
Position 

ATI Reading 
Degrees 

Figure 3.2: A typical ATI map for a scoliosis patient (Dangerfield, 1992a) 

1T 4-0 T- 

(b) ATI Measurement by Scohcw , tý -i 
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3.3.1.2. Formulator Body Contour Tracer 

Another tactile device developed by Burwell et al (1983) known as Formulator Body Contour 

Tracer (FBCT) allowed a more accurate recording of the cross-sectional profiles of the back 

surface. The FBCT consists of a simple matrix of rods that are placed parallel to the coronal 

plane across the surface of the back (usually in the forward bending position). The rods as- 

sume the profile of the back as shown in Figure 3.3. To use the FBCT, the spinous processes 

arc first palpated and marked with markers. The FGCT is then placed on the back of the sub- 
ject in Adams's forward bending pose with its central rod coinciding with tile spinous process 

marker. The rods are then allowed to fall under gravity to assume the contour of tile back and 

then locked by tightening a winged nut on their housing and removed from the patient. 

Figure 3.3: Use of FBCT to measure the back profile of a subject (Burwell et at, 1983) 

The resulting cross-sectional profile of the FBCT is then transferred onto paper by tracing out 

the edges of the rods (Figure 3.4). A linear measurement known as Trunk Asymmetry Score 

(TAS) is calculated by sub-diving each half of the contour profile into five sections and 

measuring the distance from the contour to a datum line. The differences between correspond- 

ing left and right distances are summed, ten-ned Crude Trunk Asymmetry Scores (CTAS). 

For comparison of different subjects, the CTAS values are standardised to a mean trunk di- 

ameter of the study group, giving Standardised Trunk Asymmetry Score (STAS). 
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5432 

Tracing of contour of 
child's back 
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line 

el 

Right Rib Hump 
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Io12345 

Datum 
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Lateral chest diameter 

Figure 3.4: Measurement of Trunk Asymmetry Score (TAS) from FBCTprofile (Burwell ct A, 1983) 

The main problem with tactile measurement devices is obvious: discomfort to the subject. If 

the subject is a patient under treatment, tactile measurement may even cause pain. Moreover, 

contact of the device with the back may cause the subject to become tense or flinch, resulting 

in a change of body posture which can affect the measurement (Pearson, 1996). There is also 

the issue of hygiene and safety which may have to be addressed in the case of contact meas- 

urement. In general, tactile devices are less accurate, laborious and time-consuming. For these 

reasons, non-contact measurements methods are preferred. In the following sections, non- 

contact optical methods are discussed, namely, moir6 topography, structured light approaches, 

phase-measuring methods and 3D scanning systems. 

3.3.2. MoirL& Topography 

Moir6 topography is one of the earliest non-contact optical techniques which gained wide- 

spread clinical use in the assessment of the back shape. For example, researchers at Salisbury 

District Hospital have used moird topography in routine clinical analysis of the back shape for 

over fifteen years. A moird topograph (or topogram) provides a contour map which can be 

easily understood by a human observer. Figure 3.5 shows typical examples of moird topog- 

raphs of scoliosis patients. The asymmetry of the shape of the back can be easily observed 
from these fringes. 
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Figure 3.5: Examples of Nloirý topograms of scoliosis patients 

3.3.2.1. Principle of Moir6 

The term moir6 is used to describe interference fringes created by the superimposition oftwo 

or more geometric patterns. When two gratings are superimposed, moir6 fringes are created as 

a result of the patterns having a difference in line spacing either in pitch or in line orientation. 

Depending on what type of geometric patterns is used and how they are combined, the moird 

fringes may assume various meanings. This review is restricted to moir6 fringes produced by 

the superposition of two periodic alternating line-space patterns, i. e. linear gratings. Figure 

3.6 shows examples of the formation of moir6 fringes by superimposing two identical grat- 

ings, with one at an angle to the vertical. Moird fringes are observed occurring perpendicu- 

larly to the normal. As the angular displacement of the second grating is increased, more 

fringes are created. 

Al 
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Figure 3.6: Formation of moirk fringes showing the effect of superimposition of two gratings with increas- 

ing orientation 

In practice, moird fringes can be created by one of two basic techniques, narnely, projection 

moird and the shadow moird. With the projection moird method, a grating is projected onto 

the object and the resulting shadow is viewed through a second grating of equal pitch. The 

interference of the projected grating with the reference grating causes moir6 fringes to be 

formed on the object. With the shadow method, a grating is projected onto an object by a 

point light source and observed through the grating. The interference of the grating with its 

shadow produces moird effects. The shadow moird techniques is the most common approach 

used, and thus is discussed further. 

3.3.2.2. Shadow Moir6 Principle 

Figure 3.7 illustrates the basic principle of the shadow moird method. An equally spaced 

plane grating is projected onto an object by a point light source and observed through the 

grating by a camera. The resulting moird pattern represents a contour line system showing 

equal depth from the grating if the light source and the observing point lie on a plane parallel 

to the grating. 

I"! 
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Grating 

Object 

zo L 
I 

Light 
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Camera 

Figure 3.7: Typical configuration for shadow moirk 

The height of the n th fringe (Z. ) from the reference grating is given by Equation 3.1, which 

has been derived elsewhere (Takasaki, 1970; Takasaki, 198 1 ). 

Z� nL 
(D /p- 

where: 

n is the fringe order 

p is the pitch of the grating 

L is the distance of the light source and the camera from the grating plane 

D is distance between the camera and the light source 

The separation between the n and n-I fringes is given by Equation 3.2: 

AZ = 
npL (n - I)pL 

, n=0,1,2... (3.2) D-np D-(n-I)p 

it is obvious from Equation 3.2 that the distance between two neighbouring fringes is not con- 

stant but gradually increases with the distance to the scrccn. This rate of increase is different 

for various instruments, and this gives problems for comparing results from various systems. 
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3.3.2.3. Application of Moir6 to Back Shape Measurement 

Although moir6 topographs encode information about the asymmetry of the back in a form 

that is easily recognizable by clinicians, accurate quantitative information is not readily avail- 

able. Several authors have analysed moird topograms using various techniques in an attempt 

to quantify back shape defon-nity based on the fringes (Benoni & Willner, 1983; Moreland et 

al, 1983; Stokes et al, 1989). QuantItative analysis of moird fringes typically involves com- 

parison of corresponding left and right fringes, and derivation of some quantitative angular 

and/or linear measures. 

Stokes et al ( 1989) analysed moird topographs of scoliosis patients by constructing lines tan- 

gentially across corresponding fringes on each side of the back midline (Figure 3.8). The ob- 

jective of this study was to determine the extent to which moird topographs and rasterstereo- 

graphy (Section 3.3.3.2) could be used to detect the presence, magnitude, side and anatomic 
level of spinal deformity. The angle between each line and the horizontal was measured and 

termed 'moird fringe angles'. Each angle was interpreted as a measure of both side-to-side 

asymmetry and sagittal curvature. The vertical height position of each fringe angle was meas- 

ured relative to skin marks attached to each patient at levels TI and L5 spinous processes. 
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Figure 3.8: Analysis of moirk topograms by Stoke et al (1989). Double tangent lines are drawn for corre- 

sponding contours and the angles between these contours and the horizontal measured. 
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Landmark Detection and Surface Measurements 

be restricted to those regions by applying a two-level thresholding to isolate regions of high 

positive and negative curvatures. We define high curvature regions as those regions with cur- 

vature outside user-defined standard deviations from the mean or median (Figure 6.2). 
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p ive ositive 
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It 
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SID threshold 3 

-5 -4 -3 -2 -1 012345 

Standard Deviation 

Figure 6.2: Search regions defined by 3 standard deviations from the median 

The standard deviation threshold can be adjusted to detect landmarks of specific regions of 

the back. Figure 6.3 shows application of the two-level thresholding discussed above. The 

threshold is set to 0.002 standard deviations from the median in (a) and 0.005 standard devia- 

tions from the median (b). The median is used instead of the mean because it is less suscepti- 

ble to outliers. In (a) the threshold is narrow, and thus more regions are detected whiles the 

larger threshold in (b) detects a few regions. 
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The moir6 fringe angles were then plotted as a function of the vertebral lcvcl of the back at 

which they were measured and compared with graphs of 'back surface rotation' determined 

from rasterstereography (see Section 3.3.3.2) and axial rotation of' the vertebrae measured 

from radiographs (see Section 2.4.1.7), with the radiographic measurements used as the stan- 

dard for comparison. 

From their results, the presence or absence of scoliosis and the number of curves were cor- 

rectly identified in 68% of the patients (mean Cobb 24', range 5-61 '). In 22'/0 of the patients, 

there were missed curves or false positives by both surface methods (mean Cobb 14', range 

0-420). In the other 10% (mean Cobb 8', range 5-11 '), both surface methods gave incorrect 

results. Other authors have analysed moir6 topographs using varying techniques and have re- 

portcd similar large numbers of false positive findings (Suzuki et al, 1981; Armstrong et al, 

1982; Willner, 1982; Moreland, 1983). 

3.3.2.4. Problems with Moird Topography 

MoIr6 topography is a simple, low cost data acquisition method that encodes asymmetry in- 

formation in a form directly recognisable to clinicians. Asymmetries In back shape, tor exam- 

pie, are often obvious from the fringe pattern and direct observation of the moir6 topograms 

has been used widely for assessing back asymmetry (Swain et al, 1992). However, the moir6 

technique has a number of problems which makes it unsuitable for objective back shape 

measurements. 

The major problem with moir6 topography is that the formation of the moir6 fringes not only 

depends on shape of the body, but also on the patient positioning. The fringes are highly sus- 

ceptible to the patient posture such that minor posture changes can alter the appearance of the 

fringes. Thus a direct inspection of moird fringes may be misleading, as has been confirmed 
in several studies. In practice, to control patient posture, patients are often brought into stan- 

dardised positioning pads or other fixing elements. However, in the case of the measurement 

of deformities, this procedure may actually result in further modification of the natural body 

posture (Frobin et al, 1983). 

A second major problem with the moir6 method is the difficulty in automating the detection 

of the fringes. Several authors have attempted to automate the technique and have reported a 

number of problems that make automation dI I licult (I licrholzcr ct al, 1983; Kawarnura, 1983; 
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Moran et al, 1998; Windischbauer, 1983; Yatagai and Idesawa, 1982). Pearson (1996) sum- 

marised the problems associated with automated processing of moird topograms as follows: 

0 Directional ambiguity. Difficulty in determining the sign of the contour interval with- 

out a priori knowledge of the surface. This directional ambiguity is sometimes known 

as the 'hills or valleys' problem, i. e. there are many surface shapes which give the 

same fringe pattern. 

0 Poor contrast. The presence of primary fringes on the object, and the grating through 

which the object is viewed cause low contrast in the fringe patterns in a moird topog- 

raph, particularly at the shoulders, which limits automatic fringe detection. 

Systematic noise. Automated processing of moir6 topographs involves the processing 

of the two-dimensional image to extract edges or intensity peaks. However, the grat- 

ing itself presents local intensity peaks and sharp intensity edges which must be fil- 

tcred out to enable accurate and reliable detection of fringe centres, edges, or phase. These 

problems limit the method as an affective method for back shape analysis. 

3.3.3. Structured Light Projection Methods 

Structured light methods for surface measurements are based on the projection of light pattern 

onto the patient's back and imaging the resulting pattem. Various structured light patterns are 

possible, however, transverse line pattern appear to have been used more successfully. Figure 

3.9 shows a simple grating that might be projected to produce a line pattem. When this grat- 
ing is projected unto the surface of an object and imaged, the deformity of the object's surface 

causes the raster profiles to be distorted. The resulting image can then be processed to derive 

shape information of the object measured. 

48 1 
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Figure 3.9: A simple grating for line raster projection 

To demonstrate the principles of structured light projection systems, two systems are dis- 

cussed, namely, the systems developed by Frobin et al (1991,1993,1988) and Pearson 

(1996). These systems were deployed in routine clinical Measurements, and have been the 

basis for various studies, thus it is appropriate to discuss them further. 

3.3.3.1. Principle of Line Raster Projection: Pearson System 

Figure 3.10 shows the raster projection system developed by Pearson (1996). The patient 

stands on a foot-plate in a vertical frame. The raster pattern Is projected onto the surface to be 

measured by a light source and an image is acquired by a camera angularly offset from the 

projector. The camera and projector are mounted with the optical centres of their lenses 

aligned vertically. The image acquired by the camera is transferred via a frame grabber into 

the memory of the computer 

I-II 
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Figure 3.10: Line raster projection system (Pearson, 1996) 

The raster pattern will be deformed according to the deformation of the surface, and this can 

be processed to derive three-dimensional coordinates of the back surface. The surface con- 

struction methods often rely on measuring the position of structured light markers on the ob- 

ject and comparing them with the position that a marker would have on some physical or con- 

ceptual reference plane. Triangulation based upon these two positions yields three- 

dimensional coordinates for the structured light markers on the object. 

Reference 

Dp 

tv 

Figure 3.11: OPtical geometry of Pearson system (Pearson, 1996) 
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The optical geometry of Pearson system is shown in Figure 3.11. A fringe from the projector 

at P strikes an element of the back surface at S and is imaged by the camera at A'. The XY 

plane is the plane of the image and the Z-axis points out of the image towards the camera. 

The position of the fringe as it falls on the reference plane is recorded in the image plane of 

the camera at 13'. The distance between the two fringe locations A' and 13' is measured in 

terms of pixels to be AX' and can be converted into absolute distance (AX) using scaling in- 

formation at the reference plane. Then from similar triangles, ABS and CPS, the Z coordinate 

(Zs) of the surface element at S is given by Equation 3.3. 

zý, 
- 

Lý. Z, 
=: Z, = 

lý AX 
(3.3) 

AX Dp Dp + AX 

Figure 3.12 shows actual back image acquired with Pearson system with the reconstructed 

SUrfacc. 

Figure 3.12: Back image and 3D reconstruction from line raster projection (Pearson, 1996) 

The accuracy with which the system measured depth (z coordinate) was determined by mak- 

ing a series of measurements to planes positioned at different depths from the scanner, and 

was reported to be 0.87mm. The reference frame was positioned at a mean distance of 

2340mm from the camera and projector. From the reconstructed back surface, the locations of 

the vertebrae are estimated manually and two measurements are determined, namely, angle of 

trunk inclination (ATI) and trunk asymmetry score (TAS). 

I Sit 

(b) Three-dimensional surface reconstruction I 
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3.3.3.2. Rasterstereography 

Rasterstereography is a structurcd light projection method developed by Frobin and Hierhol- 

zer (1981,1983,1988). The method was originally based on photographic film which was 
digitised by scanning. It was later adapted for automated imaging using a CCD camera and 

produced as a clinical system. The optical configuration is essentially similar to the Pearson 

system and thus will not be repeated here. Rather, we focus on the data analysis techniques 

developed by the authors to derive relevant information for asymmetry analysis of the back 

surface, based on shape analysis of the horizontal profiles produced from rasterstereograpby 
data. 

In Hierholzer (1985) and Drerup & Hierholzer (1985,1987), the authors discuss a method of 

back shape analysis based on asymmetry of the horizontal profiles produced from raster- 

stcreography. The symmetry point of each horizontal profile is defined by a point which di- 

vides the profile into two halves with minimum lateral asymmetry with respect to the surface 

curvature at that point. The so-called symmetry line is then derived by connecting the symme- 

try points of all the horizontal profiles (see Figure 3.13). 

It- 
____. 

-_ 

" . 

. 

V 
Figure 3.13: Horizontal profiles and the symmetry line (Drerup & Hierholzcr, 1994) 

Detailed discussion of the shape analysis method used by these authors is postponed until the 

introduction of curvature analysis. In Chapter 6, the shape analysis method of Drerup & Hier- 

holzer (1985,1987) is compared with the method developed in this investigation. 
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3.3.4. Phase Measuring Methods 

Structured light pattern projected on the surface of an object like the human body encodes in- 

formation about the shape of the object which can be extracted by geometrically analysing the 

light pattern. An alternative method for extracting shape information is to regard the light pat- 

tern as a periodic sinusoidal signal which is modulated by the surface of the object. Figure 

3.14 shows how a structured pattern is modified as it falls on a curved surface. The amount 

and direction of the modification depends on the roughness of the surface. In signal process- 

ing terms, the light signal has been phase modulated by the surface. This modulated signal 

encodes shape information of the surface which can be extracted by recovering the original 

signal, a process known as demodulation. It can be shown that if the incident light on the sur- 
face is periodic as shown in Figure 3.14(b), then there will be a phase shift proportional to the 

height change at the point of interest. If the phase shift can be measured, the height change 

can be calculated. The mathematical formulation of a modulated signal image is given by 

Equation 3.4 (Halioua, 1989): 

I(x, y) = A(x, y)+ B(x, y)o(x, y) (3.4) 

where I(x, y) is the intensity of the pixel, A(x, y) is the background intensity, O(x, y) is the 

phase signal and B(x, y)IA(x, y) is the fringe contrast. Equation 3.4 must be evaluated in 

order to obtain shape information of the object's surface. 

Flat 
surface Structured Light 

Camera 

- 'D - 

(a) Modulation of structured light by curved surface 

A 

C 
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LL 

(b) Light intensity on flat surface 

b. 

Figure 3.14: Phase measurement methods: modulation of structured light by a curved surface 
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Two main methods arc used for phase extraction, namely, phase stepping profilometry (PSP) 

and FoLiner transform profilometry (FTP). Phase stepping solves for the three unknowns in 

Fquation 3.4 by taking at least three images, with the projection grating moved between im- 

age capture by a fraction of its period, known as the step size. The step size will typically 

have Iour values (0,90,180,270), giving four images. The phase of each pixel in the image 

can then be calculated using pixel values from all four images. The resulting phase values are 

wrapped, i. e. in the range ±7E, so a further processing is required for unwrapping which is 

probably the most difficult part of the algorithm. 

Fourier transform analysis requires only one image and relies on the calculation of the Fourier 

transtlorm of the modulated signal image, which can be obtained by the Fast Fourier Trans- 

form algorithm (FFT) (Sorensen et al, 1987). A series of filters arc applied to the FT image to 

remove negative frequency components, dc component (average signal) and any noise and 

harmonics in the positive spectrum (Pearson, 1996 for detail description of algorithm). After 

filtering, the inverse Fourier transform is then applied to the image, yielding both real and 

imaginary parts. The phase of the light pattern for each pixel is then calculated to be the angle 

between the real and imaginary parts, giving phase map, or phase image. Again unwrapping is 

required which can be followed by conversion to depth coordinates for surface reconstruction. 

The literature reveals little about the application of phase measuring profilometry to the 

MeZISUrement of the back shape. Pearson (1996) applied the method to back shape measure- 

ment and reported the following shortcomings: 

e The main limitation of PSP is the number of images required and the consequent data 

acquisition time. If the subject moved between image capture, this can introduce sig- 

niticant crrors. 

0 Perhaps the most significant shortcoming of FTP is that if the fringe pattern is not full 

field in the image then a number of problems can arise. Unlike PSP, FTP cannot per- 

Forin phase extraction on single pixels: it requires a continuous, rectangular sub-image 

area, making it difficult to reconstruct the shape of the entire back using the method. 

The FTP requires a considerable level of expertise and experience in filtering in the 

Fourier domain, making it very difficult to design filters that will work across a broad 

range ol'surfaces. 
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Lastly, FTP requires the computation of both a forward and inverse FOUricr transibrin 

which can be cornputationally expensive for low spcc cornputus. 

3.3.5. Three-dimensional Scanning Systems 

optical scanning systems are devices which use controlled angular deflection of an incoming 
beam, plane or other pattern of structured light. Scanning systems typically consist of a earn- 

cra and a structured light. Mirrors mounted on galvanometers are used to control the dcllec- 

tion of the beam. The light source used for optical scanners is often a laser which produces a 
horizontal beam or spot on the subject. The reflected light from the subjcct is then imaged by 

a camera mounted orthogonally or angularly offset from the incoming beam. Consideration of 

the triangle fon-ncd by camera, projector and object yields three-dimensional coordinates For 

the structured light markers on the object. 

An early and widely used optical scanning system for measuring human back shape in a clini- 

cal environment is the ISIS (integrated Shape Imaging System) (Turricr-Sillith, 1988). The 

ISIS system used structured white light projector and a low cost 625-line television carnera. 
The configuration of ISIS system was different frorn that used in modern scanners. Tile cam- 

era and projector were mounted in a fixed relationship within a unit and tile entire unit was 

then made to swing about a horizontal axis in order to complete a scan. The scanning was 

completed within 2 seconds with approximately 3mm accuracy in all three axes. 

Recent advances in hardware and technology have now enabled fast and accurate acquisition 

of three-dimensional coordinates of objects. Modern laser scanners can acquire data with 

higher accuracy (in order of fractions of millimetres) and at a high rate (thousands ot'points 

per second), achieving the results in near real time. These scanners have now become more 

portable and may be used stationary in a fixed position or as mobile system on tripods or 

similar stands for close and mid-range applications. In addition to the 3D coordinate data, 

most scanners deliver RGB colour image for the scanned object thus allowing texture map- 

ping for 3D visualization. In the following sections, the basi I ic configuration and operational 

principles of 3D laser scanners are discussed. 
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0 Lastly, FTP requires the computation of both a forward and inverse Fourier transform 

which can be computationally expensive for low spec computers. 

3.3.5. Three-dimensional Scanning Systems 

Optical scanning systems are devices which use controlled angular deflection of an incoming 

beam, plane or other pattern of structured light. Scanning systems typically consist of a earn- 

cra and a structured light. Mirrors mounted on galvanometers are used to control the deflec- 

tion of the beam. The light source used for optical scanners is often a laser which produces a 

horizontal beam or spot on the subject. The reflected light from the subject is then imaged by 

a camera mounted orthogonally or angularly offset from the incoming beam. Consideration of 

the triangle fori-ned by camera, projector and object yields three-dimensional coordinates for 

the structured light markers on the object. 

An early and widely used optical scanning systern for measuring human back shape ill a clini- 

cal environment is the ISIS (Integrated Shape Imaging Systern) (Turner- Sm i th, 1988). The 

ISIS system used structured white light projector and a low cost 625-line television camera. 

Tile configuration of ISIS system was different frorn that used ill modern scanners. The earn- 

era and projector were mounted in a fixed relationship within a unit and the entire unit was 

then made to swing about a horizontal axis in order to complete a scan. Tile scanning was 

completed within 2 seconds with approximately 3mm accuracy in all three axes. 

Recent advances in hardware and technology have now enabled fast and accurate acquisition 

of three-dimensional coordinates of objects. Modern laser scanners can acquire data with 

higher accuracy (in order of fractions of millinictres) and at a high rate (thousands ot'points 

per second), achieving the results in near real time. These scanners have now become more 

portable and may be used stationary in a fixed position or as mobile system on tripods or 

similar stands for close and mid-range applications. In addition to the 3D coordinate data, 

most scanners deliver RGB colour image for the scanned object thus allowing texture map- 

ping for 3D visualization. In the following sections, the basic configuration and operational 

principles of 3D laser scanners are discussed. 
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3.3.5.1. Basic Principle of 3D Laser Scanners 

In general, 3D laser systems can be divided into two groups, namely, monocular and binocu- 

lar systems (Wang ct a], 2002). The monocular approach is based on the propagation of light 

(also called runging scanners); while the binocular systems are based on the triangulation 

methods. 

3.3.5.2. Ranging Scanners 

There are two approaches used by ranging scanners, namely, time offlight and phase com- 

pat-ison (see Figure 3.15). With the time of flight approach, a laser pulse is sent to the object 

and the time it takes for the signal to travel to the object and back is recorded by the receiver 

sensor. This time interval multiplied by the speed of light and divided by 2 gives the distance 

from the laser head to the object. The 3D coordinates of the scanned point can then be COM- 

puted if the position of the laser head is known in coordinated space, together with the scan 

angle of the laser mirror. Scanners use small rotating device for the angular reflection of the 
beam. The resolution and accuracy of time-of-flight scanners is quite limited: typical standard 
deviation is of the order of a few millimctres. 

With the phase comparison approach, the transmitted laser beam is modulated by a harmonic 

wave and the distance is derived using the phase difference between the transmitted and re- 
ceivcd wave (see Section 3.3.4). Since a well defined returning signal is needed, scanners us- 
ing the phase comparison method may also have a reduced range and tend to produce more 

wrong or dropped points (Wang et al, 2002). 

m 

Figure 3.15: Time of flight laser scanner (adapted from Wang et al, 2002) 
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3.3.5.3. Triangulation Scanners 

There are two types of triangulation scanners, namely, those that use single camera volulion 

and those that use double cameras solution (Figure 3.16). The single camera scanner consists 

of a transmitting device, which sends a laser beam from one end of a mechanical base onto 

the object, and a CCD camera at the other end of the base which detects the laser bcarn from 

the object. Consideration of the resulting triangle formed by the laser projector, the camera 

and the object yields the 3D coordinates of the scanned surface. The double camera solution 

is a variation of the triangulation principle which uses two CCD cameras at each end of the 

measurement base. A separate projector transmits the laser spot or bean] onto the object to be 

scanned. The projection may consist of a moving light spot or line, of moving stripe patterns, 

or of a static arbitrary pattern. The geometric solution is the same as with the one camera 

principle, thus resulting in the similar accuracy characteristics. Triangulating laser scanners 

typically have a higher resolution and accuracy than ranging scanners: typical accuracies are 

of the order of fraction of millimetres, thus making them ideal for scanning small objects or 

over short distances. 

CCD 
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Base 

ct 
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4D 

Figure 3.16: Triangulation scanners (adapted from Wang et al, 2002) 

3.3.5.4. Application of 3D Laser Scanning to Back Shape Analysis 

As discussed in the preceding sections, 3D laser scanners allow accurate and fast acquisition 

of three-dimensional data of objects. Thus the problem of data acquisition has been solved to 

a satisfactory level. However, methods to extract relevant information for objective analysis 

of the back shape have not been widely developed. From the literature, it appears that a few 
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studies have attempted to derive objective measurements from laser data for back shape 

, an, alysis. 

An interesting application of 3D laser scanning to back shape analysis, in the context of this 

study, is presented in Jaremko et al (2002b). In this paper, the authors acquired 3D coordi- 

natcs of' the entire torso and generated contours at lOmm vertical separation for the torso 

model. Various indices that described asymmetry of the torso were then computed based on 

these contours and compared with radiographic measurements. Indices computed for each 

cross-scctional torso contour are summarised as follows (Figure 3.17): 

Back surface rotation (BSR). The BSR in each contour was computed as the orienta- 

tion of the dual tangent line joining the most posterior points (T, and T, ) left and right 

ofthe contour centroid (BSR is o, in Figure 3.17a). 

0 Principal axis orientation (PAX). The orientation of the principal axes of inertia of 

each contour with respect to the PSIS reference axis (0, in Figure 3.17b). 

0 Rib hump was computed as the difference in distance from left and right tangent 

points to PSIS rcl'crencc axis (dj. -dR in Figure 3.1 7c). 

0 Fnvelop indices. For each contour, the left-right difference between the lateral dis- 

tance from the centroid to the outer envelop was computed. The left-right difference in 

aspect ratio was also computed as dAPIdLat for each half-area. 

I fall'-area indices. Differences in geometric properties of the left and right halves of 

each cross-section were assessed. These measurements included differences in left and 

right lialf-arcas; antero-posterior and lateral asymmetry of half-centroid locations 

(, /X(' and Z,., - z, in Figure 3.17d); orientation of the line joining the half-centroids 

and lcl't-right asymmetry of moments of inertia measured antcro-posteriory and later- 

ally. 

0 Torso centroid line. The line connecting the centroid of the contours. 
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Figure 3.17: Index calculation by Jaremko et al (2002b). (a) 0, is PAX orientation; 0, is the BSR; 0, is the 

difference between BSR and PAX; Rib hump is computed as dL - '111 (b) Aantero-posterior (dXC) and 

lateral ( Zi L VS' Z(R ) asymmetry; 0 is the angle of rotation of line joining the half-centroids; dAP/dI, at is 

the aspect ratio for each half-area, F, is the hypothetical unit-force applied inward at each half-centroid. 

Correlation of surface each index with the Cobb angle was computed and stepwise regression 

was used to estimate the Cobb angle from selected torso indices. From their results, some of 

the indices developed correlated quite well to the Cobb angle (correlation up to 0.9). The 

Cobb angle was best estimated by patient age group, rib hunip and left-right variation in un- 

braced patients and by centroid lateral deviation in braced patients. A regression model ap- 

plied estimated the Cobb angle from the torso indices within 50 in 65% of patients and 10" in 

8 (r--0.91+6.1 ). 

In other studies by the same authors (Jeremko et al, 2001,2002c), genetic and neural network 

algorithms were used to estimate the Cobb angle from the indices computed from contours of 

the torso of 48 scoliosis patients. The Cobb angle was estimated to within 5(' in two-thirds of' 

the patients and to within 10(' in six-sevenths of 48 scoliosis patients. 
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3.3.6. Minolta VI-900 Scanner 

As discussed in the Chapter 1, this investigation focuses on development of techniques to ex- 

tract relevant measurements for the assessment of spinal and back deformities. In order to 

carry out this task, accurate and high resolution three dimensional data of the back are re- 

quired. These requirements make the 3D laser scanner the obvious choice for data acquisition. 
Although, the other methods discussed earlier can indirectly yield three-dimensional coordi- 

natcs of the back surface through further processing, 3D scanning is fast, more accurate and 

non-invasive method that simultaneously gives coordinates data as well as colour image. The 

main disadvantage associated with the use of 3D laser scanners is that of cost (the Minolta 

scanner used in this study cost around E25,000). However, many hospitals and organisations 
do purchase laser scanners for a wide range of applications including medical, architectural, 

and man Li fact uri ng purposes. For this investigation, Minolta VI-900 laser scanner was used 

for data capture due to its availability and the fact that it fulfilled the accuracy requirements. 
This section discusses the principal features of the VI-900 scanner. 

3.3.6.1. Operating Principle 

Tile operation of VI-900 is based on laser triangulation principle and consists of a transmit- 

ting device which scnds a horizontal laser beam onto the subject and a CCD camera which 

detects the reflected laser beam from the subject (Figure 3.18). The object is scanned by a 

plane of laser light coming from the VI-900's source aperture. The laser beam is swept across 

the field of view by a mirror, rotated by a galvanometer. The reflected light from the object is 

captured by the CCD camera. The three-dimensional coordinates of the object are then de- 

rived firom the resulting triangulation. The entire object is completed in 0.3 seconds in fast 

mode, and 0.5 seconds in colour mode and 2.5 seconds in fine mode. Complete 3D digitiza- 

tion of objects can be accomplished by connecting a synchronised rotary platform, taking 

multiple scans by rotating the platform using a user-definable angular step (e. g. 45' or 90'), 

and registering the views to form a complete 3D model. 
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Figure 3.18: Operating principle of Minolta VI-900 laser scanner 

The scanner is equipped with three interchangeable lenses for variable scanning volumes, 

namely, tele lens (focal length 25mm), medium lens (focal length 14mm) and wide lens (focal 

length 8mm). The accuracy is thus dependent on the scanned area-Table 3.1 summarises the 

accuracy associated with each lens type in fine mode. 

Table 3.11: Accuracy of VI-900 for each lens type in millimetres (fine mode) 

Lens Type x v z 
Tele 0.22 0.16 0.10 
Middle 0.38 0.31 0.20 
Wide 1.40 1.04 0.40 

3.3.6.2. Coordinate System 

with the VI-900 scanner, three dimensional coordinates are defined using right-handed Carte- 

sian coordinates system, the origin of which is set at the centre of the light-receiving lens of 

the CCD camera. The +Z direction refers to the direction facing the front side along the opti- 

cal axis, +Y direction refers to the upward direction and +X direction refers to the direction 

facing the right, when viewed from the back ofthe light-receiving section (see Figure 3.19). 

The Z-coordinates of the scanned object are therefore always negative. 

----I 

Scanner-Subject distance: 0.6-2.5m 
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v 

Figure 3.19: Coordinate system used by Minolta VI-900 

3.3.6.3. Output Data and Export Formats 

The output from the scanner is a set of XYZ Cartesian coordinates of the back surface (in mil- 

limetres) and an RGB colour image. Typically, the scanner is able to produce over 80,000 

points on the back surface in normal resolution mode. The Minolta software offers some basic 

functions to visualize and edit the output data to a satisfactory level. For example, the actual 

number of points measured can be sub-sampled to the required size. Functions such as image 

registration and filling of holes in the surface are also available. The point data are visualized 

as a polygonal mesh, and can be exported to supported file formats such as ASCII, TXT or 

DXF for further processing. 

3.3.6.4. Laser Safety Issues 

The VI-900 scanner uses Class-2 laser with a maximum wavelength of 690nm. According to 

the Health and Safety Manual produced by the US National Institute of Environmental Health 

Sciences, Laser Class 2 is safe in operation: 

Class 11 - denotes low power visible lasers or laser systems which because of the nor- 

mal human aversion responses (<0.25s), do not normally present a hazard but may 

present some potential for hazard if viewed directly for extended periods of time (like 

many conventional light sources) (Health and Safety Manual, Chapter 9). 

Minolta VI-900 has been used for scanning various parts of the human body, including the 

breasts (Langmack et al, 2000) and the face and head (Boehnen & Flynn, 2005). 

I 



Surface Measurement Methods for the Assessment of Spinal and Back Deformities 

3.4. Chapter Summary 

This chapter has described the surface measurement systems that have been developed for 

back shape analysis. For each method, the underlying theory was briefly outlined and its ap- 

plication to back shape measurement was discussed by reporting the work ot'otlicrs. The IIIIIi- 

tations of each method as well as the main advantages were pointed where appropriate. 

It is evident from the discussion that the problem of surface data acquisition has now been 

solved to a satisfactory level. However, techniques to extract relevant information for assess- 

ment of spinal and back deformities have not been widely developed. To convert the 3D point 

data to useful information requires continuous research and development of methods and al- 

gorithms for interpretation and modelling. This investigation addresses this need and attempts 

to develop processing techniques to extract useful information for the assessment back dc- 

formities. 

The next chapter provides the mathematical foundation for the shape analysis technIques that 

have been applied to back shape analysis in this investigation. 
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4. Mathematical Basis For Back Shape Analysis 

4.1. Introduction 

This chapter presents the mathematical basis for the shape analysis techniques that have been 

developed in this research for back shape assessment. Unlike many Industrial and real world 

objects, the human back is a relatively smooth surface, that is, there arc no crisp features on 

the surface of the back. This precludes the application of conventional feature detection tech- 

niques to back shape analysis. The approach adopted in this study is to apply mathematical 

analysis of surface shape or curvature. This comprises fitting a smooth mathematical surface 

to each point and its local neighbourhood and analysing the approximating surface to obtain 

knowledge about the surface shape at that point. The concept of the curvature of two- 

dimensional curves is first introduced and gencralised into the third dimension. Various 

measures of surface curvature that have been proposed in various applications of differential 

geometry are then discussed, including their computational methods. The method of Least 

Squares has been used as the basis for various tasks, including surface fitting for curvature 

computation and landmarks extraction; polynomial fitting for derivation of the spinal curves; 

and coordinate transformation for comparing back surfaces. Consequently, the basic princi- 

pies of Least Squares are discussed, including the practical applications to which the method 

has been committed. 

4.2. Curvature Analysis 

4.2.1. Curvature of Curves in the Plane 

Curvature is a two-dimensional property of a curve and intuitively measures the deviation of 

the curve from a straight line at the point of interest (Thomas, 1972; Gray, 1997; O'Neill, 

1996). Figure 4.1 shows a curve passing through a point P; N is the normal (or perpendicular) 

vector to the curve at P. The curvature of the curve at P represents the rate of change of direc- 

tion of the curve at P. A circle passing through P with radius R is called the osculating circle 

or circle of curvature if the circle lies on the concave side of the curve and shares a common 

tangent line with the curve at point P. This circle makes the greatest possible contact with the 

curve at P. The radius of the osculating circle is called the radius qj'curvature and is inversely 

proportional to the curve's curvature: 
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2; r K= 
ao) 

= dS 2; rR R 
(4.1) 

Thus, the smaller the radius of curvature, the more the curve deviates from a straight line and 

the greater its curvature. As the radius of curvature approaches infinity, the circle approaches 

a straight line and its curvature approaches zero. 

Y 

Osculating circle 

N 

8. ' 

LP 

x 

Figure 4.1: Curvature of a curve 

Curvature is closely related to the second derivative and can be expressed in terms of deriva- 

tives as in Equation 4.2 (Thomas, 1972). Consequently, the second derivative is sometimes 

used as approximation of the curvature although this assumption is only valid when the nor- 

mal coincides with the Z-axis. 

x d22 y1d 
(1+(d Id )2 yx 

Sign of Curvature 

(4.2) 

Figure 4.2 describes curvature sign convention used in this thesis. The nonnal vectors to the 

curve are shown at regular intervals along the curve. Where the curve is flat, the normals are 

all parallel to each other, and the curvature of the curve is zero at these locations. Where the 

curve is convex, the normals diverge and the curvature is marked as positive; and where the 

curve is concave, the vectors converge and the curvature is negative. 

r1 66 11 
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Positive 
Curvature 

A 

/0"* Anticline 
Negative 
Curvature. 

"A 

Syncline 

Zero 
Curvaiure 

Flat 

Figure 4.2 Sign of curvature (adapted from Roberts, 2001) 

4.2.2. Curvature on a Surface 

The two dimensional concept of curvature can be extended into the third dimension. The 

point P now lies on a smooth surface shown in Figure 4.3, and we specify the orientation of S 

at P with the normal vector N. Intersecting the surface with a vertical plane that contains P 

and N produces a curve (a) whose normal curvature at P can be calculated. The normal cur- 

vature of S at P in the direction of T can be specified as: 

a- (0) = xý, (T)N 

N 

(a) 

(4.3) 

(b) 

Figure 4.3: Curvature at a point P on a surface (a) shows a normal curvature on the surface S at P (b) 

shows the principal curvatures and directions T, and T2 

This curvature xý, (T) is only for a single curve on S and does not completely define the curva- 

ture of the surface at P. by rotating the plane section about normal N, we can construct an in- 
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finite number of planes which intersect the surface resulting in in infinite number of curva- 

tures. From this infinite set, the maximum and minimum curvatures are called pl-incil)tll cur- 

vaiurew and their corresponding tangent vectors are called princilml tfirectimis. The principal 

curvatures are the most useful subset of normal curvatures. Let the principal curvatures and 
directions be denoted by A-,, Aý, and T,, T, respectively, then the flollowing Mal I onship, 

known as Euler's Theorem, holds for any normal curvature: 

/C/' ") = KI I, Cos I 
(ý + K/ I, sill 1 

(5 (4.4) 

where T, = T, cos 5+T, sin 5 and -z < tY < 7r is the angle between the plane of the curve of 

the nornial section and the plane of the first principal curve of the normal section. 

If the surface is defined by the equation z= F(x,. v) , then the following general relationship 

holds for the curvature of a curve of any normal section at a point on the surface (Kepr, 

1994): 

Fý, COS2 a+2 cos a cos 13 + CC3S2 
K" 

- (4.5) 
COS 6j, 

ý2 
+ F- 

12+I 

where c5 is the angle between the normal to the surface at tile given point and tile scctlollal 

plane; a and )6 arc the angles which the tangent of the CUrve of the normal section at the 

point makes with the X and Y axes respectively. Equation 4.5 allows the determination ol'the 

curvature of the curve of arbitrary normal section at a point on the surlace. 

The principal curvatures can be combined in different ways to define various shape properties 

of the surface. First, the average of the two principal curvatures at a point on a surface is 
known as the mean curvature (Ký,, ) (Equation 4.6). The Gaussian curvature (A-, ) is dcl-med as 

the product of the principal curvatures (Equation 4.7). 

II 
2 

X'p ICI, ) (4.6) 

I h: 2 
pp (4.7) 

The mean curvature has the sign of predominant curvature and thus can be used to distinguish 

more concave regions from more convex regions. Gaussian curvature highlights ncgativc sur- 
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face curvature that occurs at hyperbolic patches since these patches occur where only one 

principal curvature is negative. Together, the mean and Gaussian curvatures can be used to 

distinguish different shape types as surnmarised in Figure 4.4. 

Figure 4.4: Shape classification based on curvature (adapted from Roberts, 2001). 

4.2.3. Curvature Computation Methods 

Various methods have been proposed in the literature for computing surface curvature de- 

pending on the data representation: point clouds, surface meshes or voxel data. A practical 

comparison of some of these methods has been given by Flynn & Jain (1989), Garland & 

Heckbert (1997), Krsek et al (1998) and Surazhsky et al (2003). Without loss of generality, 

methods for calculating surface curvature may be categorised as follows: 

0 Surface fitting methods 

o Curve fitting methods 

0 Discrete curvature methods 

169! 
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4.2.3.1. Surface Fitting Methods 

Surface fitting methods fit some analytic surface to the data and compute curvature from tile 

approximating surface. Quadrics are usually used for approximation as most of tile local Sur- 
faces to be recovered can be adequately approximated with quadrics. The simplest approach 

to obtain an approximating surface is by solving an over-deternii tied system of linear equa- 
tions (Hamann, 1993; Krsek et al, 1998; Stokely & Wu, 1992). Non-linear methods generally 
fit higher order surfaces, usually quadrics. Sinha & Bes] (1990) also present another non- 
linear method based on B-splincs. The most common approach is to fit a second order quadric 

surface of the form -z = F(x, y) to the data and estimate the coefficients by the Least Squares 

method. A more general case of the quadric fitting is described by Douros & Buxton (2002) 

in which a generic quadric of the forrn F(x, 
ly, z) =0 is fitted locally to the data, with a] I three 

dimensions given equal importance. However, this increases the number ofcoefficicnts to be 

estimated and the number of points required to solve the Least Squares problem. An altcrila- 
tivc approach is the use of parametric representation: x= x(u, v), y= y(u, v), z= z(14, v) which 
is often preferred in differential geometry; but in practice, it introduces additional problem of' 
finding the surface parameters, which can be non-trivial in some cases. 

4.2.3.2. Curve Fifting Approach 

These methods fit a family of curves lying in planar sections around each point and deduce 

the curvature of the surface from the curves. Martin (1998) developed a circle fitting method 

which selects point triplets, fits circles to these triplets, compute tile curvature of each circle 

and estimate the normal curvature from corresponding curvature of the circles. The principal 

curvatures and directions are then estimated using Euler's Theorem in a Least Squares SOILI- 
tion. Tookey and Ball (1997) extend this method using five instead ofthrec points; but their 

method is only applicable to data on a regular grid. Tang and Medioni (1999) developed a 

method to determine the sign of Gaussian curvature and principal directions frorn noisy data 

based on tensor voting theory of Medioni. Taubin (1995) developed a method that uses a 

symmetric matrix with the eigenvectors as the principal directions an(] cIgcnvalues that are 

related by a homogenous linear transformation to the principal directions. This matrix is esti- 

mated for each vertex pairs that share a common edge in a triangular mesh. An interesting pa- 

per by Page et al (2002) extends the methods of Tang, Mediom and Taubm by employing a 
geodesic ncighbourhood to improve curvature estimation and a voting scheme sirmlar to the 
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tensor voting theory. Their method, known as normal vector voting. also results in robust 

classification of surface orientation to account for curvature singulantics at creases and cor- 

ners, and a robust estimation of both principal curvatures and directions. 

4.2.3.3. Discrete Curvature Methods 

These methods are only applicable to triangulated surfaces and are based on polyhedral Met- 

rics. The discrete Gaussian curvature of a vertex in a triangulation is defined as the area- 

weighted angular deficit with respect to the sum of angles of the neighbouring triangles (Bor- 

relli et al, 2003). 

27r - 2ý 0, 

1/3 A 

where: 

A 

is the sum of the areas of adjacent triangles or faces 

is the angle deficit at a vertex calculated as the sum of the angles 

(4.8) 

Similarly, the discrete mean curvature of an edge e in a triangulation is half the angle between 

the normals of the faces adjacent to the edge e. The mean curvature of a portion (K. ) of the 

triangulated surface is given by Equation 4.9. 

I m(e) 
1/3 A 

where: 

7 ifeisconvex 

m(e) =0 if e isplane 

-Y if e is convex 

e, is an edge of a vertex 

m(e) is the curvature function of an edge 

)/ is the angle between the surface nonnals of the adjacent faces sharing the edge eý 

(4.9) 
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4 

is sum of the area of adjacent triangles or faces 

From the mean and Gaussian curvatures estimates, tile principal curvatures can be estimated, 
but not principal directions. 

4.2.3.4. Selected Method for Curvature Computation 

A comparison of representatives of these methods has been carried out by Krsek ct al (1998) 

and Surazhsky ct al (2003). Their results indicate that quadric surface fitting method is tile 

optimal method for curvature computation from point data. The circle fitting method is the 

fastest but more susceptible to noise and the discrete method is a quick method when the data 

is already triangulated. In our implementation, we have therefore adopted quadric surface fit- 

ting by Least Squares solution for curvature computation, the details ol'which arc discussed in 

the next section. 

4.2.4. Curvature Computation by Quadric Surface Fitting 

The basic idea is to fit a quadric of tile form z= F(x, Y) It)c', IIIY to tile Points. The nictliod 

usually consists of the following s1cps: 

0 For each point (P, ) )a neighbourhood of points is selected, 

9 The normal to the surface is then estImated by locally approximallng the data by a 
plane using the Least Squares method. 

The points in the ncighbourhood are transfornied onto an orthogonal basis w1th the 

origin as P,, and +z along the normal. 

0A second order quadratic surface of the form is then fittcd onto the points. 

0 Curvatures are then computed from the parameters of the fitted surface. 

The second order quadric fitted is of the forrn shown in Equation (4.10): 

zý F(x, v) = aX2 +h V2 + cXY + d. -V + eY +. /' = 

where (a, b, c,, d, e, f) arc the c0cfficlents of the quadric surface and (. Y, y, z) are the coordl- 

natcs of the set of points. At least 6 equations arc required to solve lor the 6 unknown coeffi- 
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cients. We define neighbourhood for each point using a 3x3 window of pixels which covers a 

region of 36MM2 square millimetres on the back surface (see Section 5.4.3 for justification of 

this). Using a 3x3 window gives 9 equations, the solution of which is obtained by the Least 

Squares method discussed in Section 4.3. With the coefficients obtained, various shape pa- 

rameters, can be calculated from the approximating surface using standard formulae from dif- 

ferential geometry. 

Mean and Gaussian Curvatures 

As discussed in Kepr (1994), if z= F(x, y) is a surface in three-dimensional space, then the 

Gaussian (xý) and mean (K-ý) curvatures may be calculated by Equations 4.11 and 4.12 re- 

spectively: 

Fý, Fý,, -, Fý 
Klý 

(, Fý2 + F, 2+ 1)2 
(4.11) 

K. ý1 (4.12) 
2 (fiý + F, 2+ I)Y2 

1 

where fý,, FIý_, FYY, F,,,, are the partial derivatives which from Equation 4.10 are given by: 

F =2ax+cy+d x 
F, = 2by + cx +e 
Fýx = 2a (4.13) 

= 2b 

fýI, =C 

Principal Curvatures and Directions 

The maximum and minimum principal curvatures can be obtained from Equations 4.14 and 

4.15 as follows (Gray, 1997): 

'ýýax = /C 
m+ 

FKý --Ký 
(4.14) 
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K. i. ý K. - 
J- 

Absolute and Difference Curvatures 

Other measures of a surface curvature are absolute curvature and difference between the prm- 

cipal curvatures. The difference curvature can highlight regions with large difference between 

the maximum and minimum curvatures. 

, ýýb., ý-- 
I 
'Cmax 

I+ I 
'<'min 

1 

'Coff = 
I/C... I- IK-i- 1 

Curvedness and Shape Index 

Koenderink et al (1992) proposed alternative measures for surface curvature, namely, shape 

index which describes the type of surface and curvedness which measures the degree of the 

curvature. These can be computed from Equations 4.18 and 4.19 respectively. 

2 
tan- 

'Cinin + 'Cmax 

;7 'ýýnin - /Cmax 

2- 2 + 
in 

im + 
Tldx n 

22 (4.19) 

Profile Curvature 

Intersecting the surface with a normal plane in the direction of the steepest gradient defines a 

curvature measure known as profile curvature (Equation 4.20). This curvature is a measure of 

the rate of change of gradient in the maximum gradient direction and has been used for de- 

lincating faults in terrain analysis (Wood, 1996). 

= 
f� lý F� Iý, F, F� 

(4.20) 
+ Fý2 + lýI +13 

Tangential curvature 

The tangential curvature is obtained by intersecting the surface with a non-nal plane section in 

the direction perpendicular to the gradient (Wood, 1996). 

7A 
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FýI F, 2 -2 fý 
ý 
fýlý + Fý 

ý 
F, 2 

(4.21) 
F, 2 

++ fý2 +1 F, '( 

Plan Curvature 

The plan curvature represents the curvature of the contour created by intersecting the surface 

horizontally with the XY plane. This curvature measure however is not normal, and although 

it is used in some disciplines (e. g. Terrain Analysis), the plan curvature values are not well 

constrained and consequently very large values can occur at the culmination of ridges and 

valleys (Roberts, 2001). 

F" 'Fý2 -2 Fý,, F, Fý, + Fý, F, 2 
(4.22) 

Aý2 'Fý 

4.2.5. Normal Vector and Gradient 

A normal vector to a surface at the point of interest is useful parameter that measures of the 

orientation of the surface at that point. In Section 6.7.2, the normal vector is used to approxi- 

mate orientations of spinous process landmarks in order to compute back surface rotation. 

The normal vector at a point (x,,, y,, ) on a surface -- = F(x,, v) is given by: 

F yo) 
(x�, y�) (4.23) 

x 
(X", 

where /ý, and F, are the partial derivatives of F evaluated at the point (x,,,, v, O). 

If the surface is defined implicitly in the form F(. ic,, v, -) = 0, then the unit normal vector is 

given by Equation 4.24 (VF denotes the gradient): 

VF 
,2 

ý 71ýý+F+F 
(4.24) 

The gradient is a first-order differential operator that maps functions to vector fields. It is a 

generalization of the ordinary derivative, and as such conveys information about the rate of 

change of a function relative to small variations in its independent variables. We consider an 
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n-dimensional Euclidean space with orthogonal coordinates x', -v2, --., x"aIId correspond Ing 

unit vectors The gradient (VF ) of the function F(Xl, X2,..., X") is defined to be 

the vector field given by the partial first order derivatives: 

VF 
aF 

u 
()X, 

For a surface Z= F(x, y) in 3D space, the gradient is defined by a plane tangent to a surface 

at any given point. The direction of the gradient VF (known as aspect) is the direction of 

steepest ascent, while the magnitude is the rate of change (known as slope) ill that direction. 

Geometrically, the gradient magnitude, given by Equation 4.25 describes the steepness of' the 
hill z=F(x, y)at the point on the hill located at(x, y, F(x, 

_v)); while the aspect (Equation 

4.26) is the direction of the projection of the surface normal at the point of interest onto the 

XY plane. 

LY 9L G= IIVFII + (4.25) 9x 

A=tan 11 Wliýy I 

L OFlax I 

4.3. Least Squares Method 

(4.26) 

No measurement is ever exact, that is, every measurement contains errors. This is a funda- 

mental and universally accepted fact. To illustrate this, consider the process of obtaining the 
distance between two points A and B on the ground with a steel tape. If this measurement 

process is repeated several times, it is very unlikely one will obtain exactly the sarric results. 
The variability of repeated measurements under similar conditions is an inherent quality of' 

any measurement process (Wolf and Ghilani, 1997). This shows that the true value of a meas- 

urcd quantity is never known; hence, the exact amounts of the errors present in a set of mcas- 

urements are unknown. In other words, every measurement process is a ranilon? process (or 

stochastic process) and the results of the measurements arc themselves random variables. 
Consequently, in statistics, the general approach adopted is to collect more data than is neces- 

sary (i. e. redundant data) and find a means to arrive at a unique solution. One such method is 
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Least Squares which, in this investigation, has been used as the basis for various tasks, 

namely: 

* Surface fitting for curvature computation and landmarks extraction 

0 Polynomial fitting for derivation of the back midline 

9 Coordinate transformation for the purposes of surface comparison 

This section discusses the principles of the Least Squares method and the various applications 

to which it has been committed in this investigation. 

4.3.1. Functional and Stochastic Models 

In the measurement sciences, direct observations are rarely used as the required information. 

Instead, they are used to derive or compute other useful information such as lengths, angles, 

areas and volumes. The mathematical model used in the computational effort is typically 

composed of two parts: afunctional model and a stochastic model (Anderson and Mikhail, 

1998). The functional model describes the geometric or physical characteristics of the prob- 

Icni while the stochastic model describes the statistical properties of the elements involved in 

the functional model. 

For example, suppose we are interested in the shape of a triangle. By measuring two of its an- 

gles, the triangle's shape will be uniquely determined. However, if one decides to measure all 

three internal angles, any attempt to construct a unique triangle will reveal inconsistencies in 

the measured angles. In this instance, the functional model is that the sum of the three angles 

must be 180. Since every measurement contains random errors, if the all three angles are used 

in the functional model, it is very unlikely that their sum will equal 180. Consequently, to ob- 

tain a unique triangle, we need both the functional model-surn of internal angles equals 180; 

and the stochastic mode I-stati stical properties of the measured angles. In many cases, the 

measurement process is carried out by the same device, applying the same principle and under 

similar environmental conditions; so the measurements can be treated as having equal preci- 

sion. In other cases, the measurements will be correlated and of unequal precision. Such sta- 

tistical information is important and should be taken into account when deriving the required 

infiormation. This introduces us to the concepts of datafilting or adjustment and the method 

of Least Squares. 
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4.3.2. Least Squares Criterion 

We have emphasised the need for redundant measurements to account I-or the existence of, 

random errors. However, when redundant measurements are acquired, the Functional model 

will rarely be satisfied. Therefore, a means must be found to arrive at a set of values Ilor the 

unknown parameters that are unique and consistent with the mathematical model. This proc- 

ess is known as data adjustment or estimation. The central idea is that of adjusting the meas- 

urements to make them consistent with the model, leading to the uniqueness of the estimated 

unknown parameters. Several techniques could be applied, but the Least Squares method is 

the simplest and can be conveniently constrained to follow the mathematical model. The 

method dates back to the Gen-nan mathematician Gauss who stated: "but of all principles ours 

is the most simple; by others we would be led into the most complicated calculations" (Gauss, 

1809, cited in Roussecuw, 2003). 

To derive the basic Least Squares criterion, let L be the vector of measurements and V be the 

vector of residuals which when added to L yields a set of new estimates i which is consis- 

tent with the functional model. Thus, we have: 

i=L+V 

The statistical or stochastic properties of the measurements are expressed by weight matrix 

W ). Using these variables, the general form of the Least Squares criterion is given by (MIk- 

hail, 1976; Anderson and Mikhail, 1998): 

VTWV 

--> minimum (4.27) 

The function 0 is a scalar whose minimum is obtained by equating its partial derivatives to 

zero. if the measurements are uncorrelated, W will be a diagonal matrix, and Equation 4.27 

will simplify to: 

v12ý wtv 
2 

+vv v2 +-. -+ vv v2 -> minimum (4.28) 22nn 

Equation 4.28 states that the sum of the weighted squares of the residuals is a minimum. I fthe 

measurements are both uncorrelated and equal precision (i. e. W=I), 0 becomes: 
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n 
v2=v2 +v 2 +... +v 

2 

--> minimum (4.29) 
12 

Equation 4.29 seeks the least sum qI'squares of the residuals, hence the name 'least squares'. 

4.3-3. Least Squares Solution 

There are various techniques for solving Least Squares problems. In this section, we discuss 

one of the most common methods, namely, solution by parametric equations, which is char- 

acterised by the following properties (Anderson and Mikhail, 1998): 

0 Each equation includes both the measurements and parameters (derived quantities) 

The number of equations equals the number of measurements 

9 Each equation contains only one measurement with a coefficient of I 

With these properties, the system of equations takes the following general form: 

a, Ix, +a, 2X, =11 +VI 

U'l x1 +011XI +. -. +a, 
p 

X1 = 
12 + V22 

(4.30) 

anlXj +a, x, +--. +anlxl ý 
'n + Vý 

where 

vi, v, ---, v, are the residuals for the n measurements 

I, ý,, ---, ý are the constant terms for n equation which will usually contain the measurements 

x, , x, ---, x1' are the p unknown parameters 

a,, 9 al2l**,, anl, arc numerical coefficients of the parameters 

In a matrix form, we have: 

AXL+V 
(nxp) ( px I (nxl ) (n-l) 

(4.31) 

where A is known as the design matrix, X is the vector of parameters and L is the vector of the 

measurements and V is the vector of residuals associated with the measurements. 
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... a a a x 12 ln )I i 

... a 0 a X 
, ýn ,1 , 

a aa x 
,,,, ,, _ 

n- - 

The Least Squares criterion is: 

O=VTWV 
--ý minimum 

Substituting V from Equation 4.3 1, we have: 

Oý(AX-L)"W(AX-L) 

=A 
TXTWAX 

-A 
TXTWL 

_ LTWAX + L! 'WL (4.32) 

=A 
TXTWAX 

-2 
CWAX +LT WI 

For 0 to be minimum, c9o/OX must be zero, thus: 

ao = 2X"A"WA - 2L! 'WI- =0 ax 

(A TWA)X 

= A"WL (4.33) 

The set of equations (4.33) is known as normal equations from which the solution vector is 

obtained as: 

X= (A TWA) 
-'A 

T WL (4.34) 

With X computed, the residual vector may be computed as: 

V= AX -L (4.35) 

and the Least Squares estimates of the measurements are computed as: 

i=L+V (4.36) 
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4.3.4. Precision of the Estimated Parameters 

The precision of the estimated parameters is given by the cofactor matrix (Q., ) which can be 

obtained by applying a basic principle of error propagation (see Appendix E): 

QV, 
V = JX1. QLL jT = (A"WA)-'A'WQLLWA(A TWA)-l (4.37) 

AT 

Noting that W= Q-', we have: 

Q, v, v = (A TWA)- 'A TWW-1 WA (A TWA)-] 

Q,, c, v = (A TWA)-l (4.38) 

To obtain the covariance matrix for the estimated parameters, an estimate of the variance of 

the random error (known as reference variance) is required. This can be computed from Equa- 

tion 4.39: 

VTWV VTWV 

n-p r 
(439) 

in which r is the degrees of freedom obtained as the difference between the number of meas- 

urements (n) and number of parameters (p); and V is the vector of residuals obtained from 

Equation 4.35. The covariance matnx of the estimated parameters is given by Equation 4.40: 

2 (4.40) 
, V. v ý (To 

Similarly, precision information for the estimated measurements can be computed from Equa- 

tion 4.41: 

TW )- TT 
ii, = a2Qii Qjj=A(A A 'A =AQ,, A and 

4.3.5. Goodness of Fit 

Analysis of the goodness of fit is an important step in the Least Squares solution. The good- 

ness of fit describes how well the measurements conform to the mathematical model; in other 

words, how best the model fit the original data. The most common techniques used to assess 

the goodness of fit are discussed in this section. 
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4.3.5.1. Residual Analysis 

The first step in evaluating the goodness of the fit is to analyse the distribution of tile residu- 

als. Assuming the model fitted to the data is correct, the residuals approximate the random 

errors. If the residuals appear to have a random distribution, it generally suggests that tile 

model fits the data well. On the other hand, if the residuals show a systematic pattern, it is a 

good sign that the model fits the data poorly. 

4.3.5.2. Goodness of Fit Statistics 

Goodness-of-fit statistics are numerical measures that describe how well the measurements 

conform to the mathematical model. Let y be the measurements, T be the mean and ý be the 

Least Squares estimates which are consistent with mathematical model. The following good- 

ness-of-fit statistics are commonly used: 

0 Sum of squared errors (SSE) measures the combined deviation of the independent 

variables from the fit, and is computed by simply summing the individual deviations. 

SSE w. (v - 57)2 (4.42) 

Due to cancellation effect of positive and negative deviations, the SSE is generally not 
a good measure of the goodness-of-fit. 

R-square statistic measures how successful the fit is In explaining tile variation of tile 
data. It is also called the coefficient of deten-nination. R-square is defined as tile ratio 

of the sum of squares of the regression (SSR) and the total sum of squares (SSE): 

R-Squared =I- 
SSE 

(4.43) SSR 

nn 
Z(_ -f)2 SSE =E(, _ jý)2 where SSR and W1 

R-square takes a value between 0 and 1, with a value closer to I indicating a better I- it. 
If the number of parameters in the mathematical model Is increased, R-square might 
increase although the fit may not improve. To avoid this Situation, the adjusted R- 

square statistic is used. 

1821 
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Adjusted R-square uses the R-square statistic and adjusts it based on the degrees of 
freedom. The adjusted R-square statistic takes a value less than or equal to 1, with a 

value closer to I indicating a better fit. 

Adjusted R-Square =I- 
SSE(n - 1) (4.44) 
SSR(p - 1) 

0 Root mean squared error, also known as standard error of the fit is defined as: 

RMSE - 
FSSE 

(4.45) ýn-p 

A RMSE value closer to 0 indicates a better fit. 

4.3.5.3. Confidence and Prediction Intervals 

In addition to residuals analysis and goodness-of-fit statistics, confidence intervals can be cal- 

culatcd for the estimated parameters, reference variance and the fitted function. Confidence 

intervals are useful in statistical analysis as they give the range within which the unknown 

true value of the population is expected to lie at a certain confidence level. 

In Equation 4.39, an estimate of the reference variance (variance of the random error) is used 

in order to compute the covariance matrix. We can now construct a confidence interval for the 

reference variance using the Z' distribution. The two-tailed (I - a)I 00% confidence interval 

fo r 
2, is 

given by: U. 

ýIýI 
2 

ao < (4.46) 

2 
If the reference variance is incorrect or the mathematical model is inadequate, then Or6 will 

typically fall outside this interval. Several reasons may account for the failure of (702, such as 

inadequacy or incorrect formulation of the mathematical model; failure to linearise non-linear 

system of equations; failure to eliminate any significant systematic or gross errors from meas- 

urements. In such cases, the model and the computation process will have to be revisited. 

Using the t-distribution, we can also construct confidence intervals for estimated parameters 
of the fitted function. The 0- ce)l 00% confidence interval for the parameters is given by 

Equation 4.47: 

II, 'I 
- 

----i 
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(4.47) 

where X is the vector of estimated parameters, is a vector of standard deviations of' the 

estimated parameters, obtained from the diagonal elements from the covariance matrix ofthe 

parameters. The width of these confidence intervals is a measure of the overall quality ofthc 

fit. 

Similarly, the confidence interval for the fitted function itself at a particular value x,, is given 

by Equation 4.48: 

2 

JTV 

V (4.48) 

where i,,, is the vector of the Least Squares estimates of the measurements evaluated at x,, 

and J, is defined as a row vector of the Jacobian of the fitted function with respect to the pa- 

rameters and evaluated at a specified predictor x,,. 

We can also calculate the so-called prediction interval tor a future measurements Y,, given a 

particular value x(,. The (I -a)100% prediction interval for a future observation Y, ) at the 

value x, is given by Equation 4.49: 

N 
FC2 

7'", 
1) 

'x,, ± t,, 
ý12 )+j CýV. vj (4.49) 

where all variables have their usual meanings. 

4.3.6. Least Squares Solution of Non-Linear Systems 

When the system of equations being dealt with is non-linear, the equations may be lincariscd 

by approximating with a first-ordcr Taylor series, after which linear Least Squares methods 

can be applied. Let f be a non-linear function involving a set of independent variablesx, Y, 

then the Taylor series approximation of f is given by (Abramowitz and Stegun, 1972): 

f (x, y) = j'(x�, + 
(of /'x)() 

A+d.. + -. -+ dx 
2 

(4.50) 
dy + -ýv ++ (ýv + Ril 

2n! 

RA 
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where x,, and y,, are approximations of x and y; f(. yy0) Is the function evaluated at xo, yo; 

k is the reminder tenri, known as Lagrange remainder; and dy and C4ý arc the corrections to 

the initial approximations. As more terms are included, a more exact approximation is ob- 

tained. However, as the order of each successive term increases, its contribution to the overall 

expression diminishes. In practice, only the first-order terms are often used, and Equation 

4.50 reduces to: 

f=f (x, y) =f (-x, 
) , yo) +ý 

ýf-) 
dx +_ (4.51) dv 

ax 0 CY 0 

The only unknowns in the Taylor's approximation are the corrections dx and dy which must 

be applied to the initial approximations to obtain the computed quantitles. Thus, the Least 

Squares solution must be iterated to yield accurate results. The process of the Least Squares 

solution of a non-linear system can be summarised as follows: 

Determine the Taylor series approximation for the equations 

Deterrmne the initial approximations for the unknowns 

Use the Least Squares method to solve for the corrections to the unknowns 

Apply the corrections to the initial approximations 

Repeat steps 1-4 until the corrections become negligible 

4.3.7. Applications of Least Squares 

This section discusses the various applications to which the Least Squares method has been 

committed in this study, namely, curve fitting, surface fitting and coordinate transformation. 

4.3.7.1. Polynomial Fifting 

Polynomial curve fitting is a common problem in statistical data analysis. The problem con- 

sists of finding the best-fit curve to a given set of points by minimizing the surn of the squares 

of the residuals of the points from the curve (Figure 4.5). 
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yy 

x 

x 

Figure 4.5: Fitting a polynomial to a set of points (adapted from Weisstein, 2002) 

The actual residuals are the perpendicular deviations from the fittcd curve (Figure 4.6). 1 low- 

ever, in practice, the vertical offsets from the polynomial (or surface) are often minimised in- 

stead of the perpendicular offsets. There are several reasons for this choice. First, the fitting 

function is conveniently expressed in terms of the independent variable x which estimates y 

for a given x. This allows uncertainties of the data points along the X and Y axes to be incor- 

porated in a simple manner (Weisstein, 2002). Moreover, using vertical deviations in a much 

simply fitting function for the fitting parameters than would be obtained using a fit based on 

perpendicular deviations. Generally, the difference between vertical and perpendicular fits is 

quite negligible for a reasonable number of noisy data points. 

y y 

S 

S 

x- --------------------- x 

(a) Vertical offsets (b) Perpendicular offsets 

Figure 4.6: Vertical versus perpendicular offsets (adapted from Weiss(ein, 2002) 

To derive the Least Squares solution, consider the general form of a polynomial of degree m: 

Px) =a,, + a, x+a, x'+ --- + ax' (4.52) 

where a, a, -- -a. are the coefficients. 

I a& II 

(a) First degree polynomial (b) Second degree polynomial 
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Given n number of points, one equation is written for each point; thus a total of n equations 

are written for the points: 

yl = a() + aix] + axl 
2 

+-.. +a X, "' 
2 

Y2 = UO + aIX1 + a1X2 ++ax, " 
(4.53) 

ao + a, x, + ax +... +a x, " 

Equation 4.53 can be represented concisely in a matrix form: 

2 yl xI xi ... X1 a() 

Y2 x2x2... X", a 
2 => Y= AX (4.54) 

Yý 

where A is the design matrix, Y is the vector of measurements and X the vector of parameters. 

Adding residuals, Equation 4.54 can be written in a form for Least Squares solution, from 

which the solution vector can be obtained as in Equation 4.34. If the covariance (or weight) 

matrix is known, it can be incorporated into the solution. Precision quantities for the fitting 

parameters can be evaluated from the co-factor matrix discussed in Section 4.3.4. 

4.3.7.2. Surface Fifting 

Surface fitting is accomplished in a similar manner as polynomial fitting, the only difference 

being that we are now dealing with a function of more than one independent variable 

z =. I'(x, y). To derive the Least Squares solution, consider the implicit form of the second 

degree quadric surface given in Equation 4.55: 

z=F(x, y)=aX2 +b ýY2 + cxy + dx + oýv +. f (4.55) 

whcrc a, b, (-, d, e,. f arc the cocfficients. 

For n number of points, we have the following equations: 

z, = ax, 
2+ by 12+C. 

X yl + dy, + ey, +, f 
2 

Y2 +, V Z2 = aX2 +b2 cx-l 2+ dv, + eY2 + (4.56) 

22 

avý, + by,, + clcjý + cyý 
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In matrix form, we have: 

ZI X1 
-Z, X2 

x 

j, 1 X]Yi Xi yl 
Y2 XIYI X, Y' 

yll x" v', 

Z= AX (4.57) 

Adding residuals, Equation 4.57 can be written the general form for the Least Squares solu- 

tion 

Z+V=AX 

The solution vector and precision information are obtained as usual. 

In Section 4.2.4, a plane is fitted to the local neighbourhood ot'points as part of the curvature 

computation process. The Least Squares solution is the same as discussed above, cxcCpt that 

the equation of a plane (given by Equation 4.58) is used in formulating the I nicar system. 

z =ax+ by+ c 

4.3.7.3. Coordinate Transformation 

(4.58) 

Coordinate transformation refers to the conversion of data from one coordinatc system into 

another coordinate system. This operation is required for comparing two or more surfaces. In 

back shape analysis, surface comparison is required for various purposes, for example, tile 

detection of changes in patients back shape, either taken at different times or from diffierent 

patients during the course of treatment. In Section 6.3, we also apply coordinate transforma- 

tion in order to compare landmarks detected from curvature maps with palpation. 

In this section, we discuss a mathematical model for Cartesian coordinate conversion based 

on a 7-parameter similarity trans fon-nat ion, which preserves angles and changes all distances 

in the same ratio (Anderson and Mikhail, 1998). This transformation model requires at least 

three points whose coordinates are known in both coordinate systems. 
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To develop the transformation model, let S, (XI, Y,, Z, ) and S, (Xý, K,, Z, ) be two surfaces de- 

fined in two independent coordinate systems. Transforming S, into S, system involves the 

following steps: 

9 Creating a common origin for the two systems (translation) 

0 Making the reference axes of the two systems parallel (rotation) 

e Making equal dimensions in the two coordinate systems (scaling) 

In other words, the transformation involves 7 parameters-three rotations to align the coordi- 

nate axes, three translations to make a common origin, and one scale factor to ensure equal 

dimensions in both reference systems (see Figure 4.7). 

Y2 

Y, 

*X2 

Z2 

6ý Ty 

Y2 
1ý 

zi 

Y2 

Y, 

X2 

2 

Z2 

X1 
S=ý 

L, 
0-b. 

Tz 

Tx 
Z, 

Z2 

(a) Translation (b) Rotation (c) Uniform scaling 

Figure 4.7: 7-parameter 3D similarity coordinate transformation 

Thus, the transformation can be expressed by the following model: 

xi X2 TV 
Y, SR y2 + T, (4.59) 

-Zi - -Z, - _TZ- 

In Equation 4.59, S is the scale factor, TTT are the translat, ons about Xi, Yj and Z, axes 
IV I )' Iz 

respectively, and R is the rotation matrix which is built from individual rotations (t), O and 

ýc about X2, Y2 and Z2 axes respectively. The rotation matrix R represents the combined indi- 

vidual rotations about their respective axes. When rotating about the X-axis, the X coordinate 

remains constant while the Y and Z coordinates are transformed. Similarly, when rotating 
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about the X and Y axes, the respective X and Y coordinates remain constant. Thus the three 

rotation matrices are as follows: 

00 COS(O) 0 sin(o) COS(Aý) -Sill(ýC) 0 

cos(ct)) -sin(o)) R, 010 R- sin(ýc) COS(A7) 0 (4.60) 

sin(co) cos(co) sin(o) 0 COS(O)- 00 1- 

These individual rotation matrices about the axes can be combined to obtain a single rotation 

matrix. The elements of R, shown in Equation 4.61, depends on the order in which the rota- 

tions are combined 

r, 2 rl 3 

r, r2 
2 'ý) 3 

ý31 ý32 ý13 

For rotation about X, Y and Z in that ordcr wc havc: 

r,, ý COS(O) COS(IC) 
rl 2= sin((o) sln(o) cos(K) - cos((o) sin(K) 
r 13 = cos(ct)) sin(o) cos(1c) + sin(m) sin(A: ) 

fýj = cos(o) s in (, v) 
r, = sin(co) sin(o) sin(K) + COS(O)) COS(A) 

1ý3 = cos((o) sin(o) sin(/c) - sin((t)) cos(A-) 

ý, I= -sin(to) 
ý3 2= sin(co) cos(o) 
ý3 3= cos((O) cos(o) 

For rotation about Z, Y and X (R,,. 
- 
) we have: 

r,, = COS(O) COS(IC) 
rl 2=- cos(o) sin(K) 
rl 3= sin(o) 
/ý, = cos((t)) sin(/c) + sin(a)) sin(O) cos(, v) 

r, = cos((o) cos(/c) - sin(co) sin(O) sin(A: ) 

1ý1 3= - sin(ro) cos(o) 

sin(o)) sin(ic) - cos(a)) sin(O) cos(, v) 
sin(o)) cos(ic) + cos(et)) sin(O) sin(K) 

ý13 cos(ro) COS(O) 

(4.61) 
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Equation 4.59 can now be expanded to obtain the following set of equations: 

X, =S(r,, X, +r, 2)ý +r�Z, )+T, 

Y, =S(týjý +r�Y, +r�Z, )+T� (4.62) 
Z, = S(r, X, + r, 1ý, + r�Z, ) + Tz 

Equations 4.62 involve seven unknown parameters ( S, w, O, v, T'V, T,, T, ), thus seven equa- 

tions are required for a unique solution. Each point yields three equations, hence a minimum 

of 3 points are required whose coordinates are known in both systems (called common points 

or control points). Since three points gives 9 equations (more than required), a least squares 

solution is sought which minimises the sum of the squared residuals. 

Equations 4.62 are non-linear in the unknown parameters, and must therefore be linearised by 

using Taylor's approximation. Applying the method described in Section 4.3.6 leads to the 

following linearised equations: 

X, = (X, )� + (X, )� dS + (X�)() dw + (XO)() d0 + (Xj(, dK + 
(XT, ). dT, 

Y, = (Yý)() + (Ys)(, dS + (Y�, )� da) + (YO)() d0 + (Y, )� CIK + (YT, )� dT� (4.63) 

Zi = (Z, )() + (Z, )() dS + (Z�)(, dco + (Z0)0 do + (Z, )o dK + (Z�)� dTz 

where subscript 0 means evaluated at the approximations and Xj ý Y, Zi are the partial deriva- 

tives with respective to the jth transformation parameter (S, o), 0, x-, Tv, Tv, Tz). 

The partial derivative terms are: 

xs 
ax 

r,, X. 

-I 
+ rl2y2 + r, 3Z2 as 

ax 
o 

a (t) 
ax 

xo= "I =S [- sin(o) cos(Ic)X, + sin(o) sin(ic))ý + cos(O)Z, 
ao 

x A- 

U 

=Slr, 2X2 -r,, 
Z--, ] 

OK 

XTV 
U 
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OY 
YS =a= 'ý' IX 22+ 

r2l 
22 

Y-1 + r-13Z-, 

= 

OY 

= -SIý31X' + ý12rl + ý3A I 
0 (t) - 

a Y, 

YO -=S [sin((o) cos(o) cos(ýc)x, - sin(ro) cos(o) sin(K)j, 2+ sin((o) sin(O)z, 00 

Y, 
ýyl 

= 
SPýA 

0 Ic 

YTI 
ay, 

a Ty 

ZS = C3Z1 
- = r3, X-2 + ýl2)ýI + ýIA1 
as 

Z� 

= 
ýZ , = S[Iý, X, + r� Y, + r�Z, 1 
(3 oi 

ze Z J_, 
=S[-cos(oi)cos(O)cos(K)X., +cos«t»cos(0)siii(A7)Y, -cos«o)sin(0)Z, ] 

ao 

ZK ý 

Z 

-1 - ý 
SV32 X-' 

(3 K 

ZT = 

az, 

, a T;., 

Adding residuals, simplifying and rearranging, Equations 4.63 call be represented ill tile gcll- 

eral matrix notation for the Least Squares solution: 

(XS)(, (x. ), (XO)(, 
(YS)() (Y")() (YO)() 

vs), (Z�), (ZO), 

dS 
d(t) 

100 do 
(Y, )() 010 dK 

K), 001- (ITV 
dT� 
dT7 

-(X, ). V, 
= 

-(YI)() + v, 

(Z, )� VZ 
(4.64) 

Each common point contributes 3 equations corresponding to the three rows of the coell-l- 

cients to matrices A, L and V. Thus, if there are n number of common points, the l'ollowing 

matrix equation results: 

AX=L+V 
(3n-7)(7ý1) (3n- I) (3n-1) 

(4.65) 
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Since the unknowns in the linearised equations are corrections to the parameters, the Least 

Squares solution must be iterated till the corrections are negligible. Once the solution has 

reached satisfactory convergence, the latest approximations for the unknowns are the values 

for the transformation parameters. In this study, we formulate a test for convergence based on 

the combined root mean squared error of the fit: 

RAISE -F 
SSE 

ý3n-7 (4.66) 

If the RMSE is less than a predefined limit, then the solution has converged successfully (in 

this study, we use a limit of IX 10-7) 
. The estimated transformation parameters can then be 

used to transform any coordinates in S, system into S, system using Equation 4.62. 

4.4. Chapter Summary 

This chapter presented the mathematical foundation of the shape analysis techniques applied 

in this study. The concept of surface curvature, the various curvature measures and the com- 

PLItational methods were discussed. The Least Squares method was also discussed because it 

underlies many of the data analysis methods used in subsequent chapters. The Least Squares 

model represents a simple but effective method for analysing measurements with normally 

distributed errors, especially if the solution is properly constrained. The practical applications 

to which the Least Squares method has been committed In this investigation were also dis- 

cussed, including polynomial fitting, surface fitting and coordinate transformation. Having 

laid down the relevant mathematical foundation, the next chapters present the shape analysis 

and visualization methods developed in this investigation. 

A crucial aspect of any form of data interpretation and analysis is how to deal with the pres- 

cnce of errors in the data. Every measurement process contains random errors, and if the 

measurements are to be useful, the methods of interpretation should properly account for 

these errors. The next chapter presents the techniques that have been used in this investigation 

to determine nature of these errors and the methods used to effectively reduce their effect. 
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5. Error Reduction, Curvature Computation and 

Visualization 

5.1. Introduction 

This chapter presents three aspects of this research, namely, error reduction, curvature visU- 

alization and implementation issues. In Chapter 4, it was noted that all measurements have 

inherent errors and that these errors will be propagated to derived quantities. Unlike many in- 

dustrial objects, human subjects are mobile and flexible, leading to further complications. It is 

simply difficult, if not impossible, to ensure that the human body remains in a static position 

for the time required to scan (maximum of 2.5 seconds in fine niode, see Section 3.3.6). 

Moreover, curvature computation depends upon second derivatives which cillphasisc random 

errors in the original data. Further still, the curvature quantities arc not tile final results- 

surface measurements are to be derived from them. Consequently, effiective reduction ofthc 

errors in the original measurements constitutes a crucial component in back shape analysis. In 

Section 5.2, this issue is addressed through scanner calibration and empirical noise smoothing 

operations to ensure stable curvature computation. 

Section 5.3 focuses on development of methods for effective visualization of tile back shape. 

The objective here is to provide diagnostic visual tools that will enable tile exploration of' 

back deformities without the need for physical manipulation ofthe subject, A number of visu- 

alization techniques are explored, including continuous colour scales, discrete colour scales, 

contour maps and three-dimensional views. 

The chapter concludes with addressing the major implementation and design issues regarding 

data structures and conversion, choice of development tools and system design. Tile software 

system which has been developed is the only platform used for testing, visualizing and con- 

ducting all the experiments in this investigation. 
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5.2. Error Assessment and Reduction 

In Section 4.3, it was discussed that every measurement contains errors, i. e., every measure- 

ment process is a random process and that the results of the measurements are themselves 

random variables. Due to the existence of errors, before the original measurements can be 

utilised, they must be processed to account for the errors. Accounting for existence of errors 

in measurements involves two main steps (Wolf and Ghilani, 1997), namely: 

Performing statistical analysis of the measurements to assess the amount and distribu- 

tion of the errors to determine whether or not the errors are within acceptable limits. 

This is a crucial step since the errors will be propagated to any quantities derived from 

the original measurements, if proper steps are not taken to reduce their effects. 

If the errors are within acceptable limits, adjusting and redistributing them so that they 

conform to the required mathematical model. 

In Section 4.3, the Least Squares method was presented as a useful method for adjusting the 

measurements to make them conform to the mathematical model. In this section, the errors 

themselves arc addressed. First, the sources and nature of the errors are deterinined. Then 

various experiments are conducted in attempt to estimate the distribution of the errors and to 

find a method to minimise their effect. 

5.2.1. Sources and Classification of Errors 

Errors in any measurement process stem from four main sources, namely: 

Insirumental. These are caused by imperfections in the construction of the measuring 

instrument. Instrumental errors are usually systematic and can be eliminated from the 

measurements. 

Environmental. These are errors caused by the variations in environmental conditions 

during the measurement process which may have significant effect on the Measure- 

ment. These include changing environmental conditions such as, variations in atmos- 

pheric pressure, temperature, humidity, etc. 

Personal. These crrors are due to limitations in human senses in using the measuring 

device (such as ability to perfectly level the instrument) as well as crrors caused by the 

carelessness or mistakes of the human operator. 
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Object movement. These are errors caused by movement of a mobile and/or flexible 

object like the human body during data capture. Object movement can be rigid (i. e. 

whole body movement), non-rigid (e. g. stretching) or a combination of both. In rigid- 
body movement, the whole body moves equally in the form of rotation or translation 

or a combination of both. This will typically manifest in the measurements as statisti- 

cally large error if the movement is significant. With non-rigid movement difrerent 

parts of the body move differently. An example is movement of tile head during data 

capture which can cause unequal skin movement in other parts of the body. With a 

mobile and flexible object like the human body, these random movements are difficult 

to control, and processing techniques must cope with them. 

Without loss of generality, measurement errors, irrespective of their source can be classified 

under three headings, namely, gross, systematic and random errors. 

Gross errors. These are statistically large errors that must be detected and removed 
from the measurements. Errors caused by mistakes and carelessness of' the human op- 

erator as well as significant whole-body movement will typically Call Linder this catc- 

gory. Since gross errors are largely due to the imperfections ol'thc individual operat- 

ing the instrument, one way to reduce them is to ensure great care when operating the 

instrument. This implies that the instrument should be operated according to the 

manufacturer's guidelines, such as, ensuring that the object-scanner distance does not 

exceed 2.6m. 

Syslemafic errors. These errors follow some known physical laws and thus are pre- 
dictable. Errors caused by device imperfections and some known environmental con- 
ditions will normally fall under this category. These errors usually follow a systematic 

pattern, and if the measurements are repeated under the similar conditions, tile Sallie 

pattern will be repeated. If known, these errors must be eliminated from the measure- 

ments before any used can be made of them. We address systematic errors through a 

calibration process in which the scanned data of regular standard objects arc compared 

with their known measurements (see Section 5.2.2). This also allows us to verify tile 

nominal accuracy of the instrument specified by the manufacturer. 

0 Random errors. These are the errors that remain after all gross and systematic errors 
have been removed from the measurements. They are generally small in magnitude 
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and caused by factors that are impossible to control, such as unknown environmental 

variations and non-rigid skin movement during data capture. Random errors generally 

do not follow any exact physical laws and thus must be dealt with by the mathematical 

theory of probability. Since it is impossible to perfectly control all the elements in- 

volved both in the construction and operation of the instrument, there will always be 

random errors in the measurements. We deal with random errors in the software envi- 

ronment using error reduction methods such as smoothing. A further reason to reduce 

the effect of random errors is that the curvature quantities that are to be computed 

from the original data depend upon second derivatives (see Sections 5.2.1 and 5.2.4). 

Consequently the results are quite susceptible to noise in the original data; and yet, the 

curvature quantities are not the final results, further measurements such as lengths, 

angles and areas are to be derived from them (see Chapter 6). 

5.2.2. Calibration of the Laser Scanner 

The purpose of the calibration experiment is two-fold, namely: 

To detennine whether there are any significant systematic errors or drift in the meas- 

urements obtained with the Minolta laser scanner (VI-900) 

To verify the accuracy with which point data are measured, as reported by the instru- 

ment manufacturer (Minolta Corporation). 

To perform the above tasks, two standard geometric objects were designed and manufactured 

to within a precision of 0.1 mm. Both objects were made of wood, with brownish colour, spe- 

cifically chosen to imitate the skin colour of the subjects scanned. The scanner and the ob- 

jects were mounted on a level platform at a height of 1.3m from a horizontal floor and with 

scanner-object distance set to 1.6metres, the distance typically used for scanning human sub- 

jects. Various phases of the objects were then scanned and the distances shown in Figure 5.1 

were measured in each coordinate axis and compared with the known distances. 
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Figure 5.1: Geometric objects used for scanner calibration 

LY2 

Table 5.1 gives the differences between the measured and the known distances. The RMS 

values for the measurements in each axis were computed as 0.5 1 mm in X, 0.45 in Y and 0.29 

in Z. These RMS values represent the average deviation of the measured from the known dis- 

tances and compare quiet well with the calibration data received from Minolta (see Table 

3.1). These results indicate that there are no significant systematic errors or bias associated 

with the laser scanner if it is operated according to the manufacturer's guidelines. 

In the above experiment, scanning was performed in fine mode which took up to 2.5 seconds 

to complete. The scan time can be reduced to 0.3 seconds in fast mode, but this will also de- 

grade the accuracy obtainable. For scanning of human subjects, the highest accuracy is re- 

quired for curvature analysis. On the other hand, a problem with human subjects is maintain- 

ing static posture for the duration of the scan: posture changes can introduce random errors in 

the measurement. However, as the next section demonstrates, the effects of these random er- 

rors can be reduced via smoothing operations in the software environment. Consequently, to 

maintain the highest achievable accuracy, the human subjects examined in this study were 

scanned in fine mode. 

r- 1 99 11 



Error Reduction, Curvature Computation and Visualization 

Table 5.1: Results of calibration of the laser scanner (measurements are in millimetres) 

Line Standard Measured IDifference I 

LX1 50.00 50.4518 1 0.45181 
LX2 50.20 49.9871 -0.21291 
LX3 50.78 49.9871 -0.79291 
LX4 200.65 199.9957 -0.65431 
LX5 99.71 100.0869 0.37691 
LX6 199.84 200.1651 0.3251 
LY1 102.85 - 102.5414 1 

-0.3086 
LY2 140.52 140.72631 0.2063 
LY3 199.36 199-8137 0.4537 
LY4 101.35 100.9010 -0.44901 
LY5 60.20 60.7412 0.5412 
LY6 200.58 199.9782 -0.6018 
LZ1 50.20 50.5620: 0.3620 

LZ2 
- 

50.78 50.5278 -0.25221 
IZ 3 49.40 49.6710 0.2710 

LZ4 49.6 1 49.8910 0.2310 

LZ5 50.62 50.9189T 0.2989 

5.2.3. Noise Smoothing 

As already pointed out, random errors will still remain in the measurements even after known 

systematic errors have been eliminated. These random errors must now be dealt with in the 

software environment using smoothing methods. The problem of reducing the effect of errors 

(or noise) in image data is a fundamental problem in image processing. The difficultY lies in 

identifying which features in the data or image are genuine and which are due to errors or 

noise. The main idea behind many smoothing methods is to replace the erroneous pixels with 

some values derived from the local neighbourhood of that pixel. Thus, the general assumption 
is that local variations of pixel values in the image will be gradual so that pixels that are sig- 

nificantly different from their neighbours can often be attributed to noise. The drawback of 

smoothing, of course, is that sharp variations in pixel values (called edges) that are genuine 

are smoothed as well. Thus, minimal smoothing should be applied since over smoothing can 

actually modify the curvature being computed. 

Various linear and non-linear methods have been proposed in the literature for reducing noise 

in image data. The effectiveness of any smoothing method however depends on the nature of 

the noise being dealt with. Linear smoothing methods such as simple averaging and Gaussian 

smoothing are found to perform well on images with uniform or Gaussian noise, while non- 

L- 1 100 1 



Error Reduction, Curvature Computation and Visualization 

linear methods such as median filtering can be used to effectively reduce impulse noise (also 

called salt-and-pepper noise) (Gauge, 1998; Pratt, 2001). Other non-linear methods such as 

anisotropic diffusions (Perona et al, 1994; Weickert, 1997) and adaptive smoothing (Saint- 

Marc et al, 199 1) apply successive smoothing filters that are functions of the local gradient. 

The general idea of these smoothing methods is to vary the size and shape ofthe smoothing 

operators based on the local gradient in an attempt to preserve sharp variations or edges in the 

images which are often required for visual and automatic image analysis. I lowever both algo- 

rithms are iterative and have some drawbacks, such as difficulty in selecting the edge- 

stopping functions and predicting their convergence behaviour. 

Given that various smoothing methods could be applied, two questions naturally arise, 

namely: 

" What method should be used to smooth our data? 

" How much smoothing should be applied? 

Since the effectiveness of any smoothing method depends on the nature of tile noise, Ifthe 

underlying distribution of the errors is known, an appropriate smoothing method illay be de- 

vised. Thus, we address the first issue by performing empirical estimation oftlic distribution 

of errors or noise in our data. This is achieved by comparing actual laser data of' a smooth ma- 

chined cylinder with an ideal cylinder with the same dimensions. Tile second issue of tile 

limit of the smoothing is important since over smoothing can result in a modification of, tile 

true curvature of the back surface. We address this issue by empirical approach-by compar- 

ing the curvature of the actual scanned data of the cylinder cornputed with increasing amount 

of smoothing with the true curvature of the cylinder. 

5.2.4. Estimating the Error Distribution 

To estimate the distribution of noise in our data, we compared the actual scanned data of a 

smooth machined cylinder of a known radius with Its ideal cylinder data generated with tile 

same radius, position and orientation. The difference between the actual and ideal datascts 

gives an image containing the noise data, the histogram of which approximates tile distribil- 

lon of noise in the data. Figure 5.2 shows tile cylinder used flor the experiment. A smooth t* II 

white cylinder with 63nim radius and 200mm height was chosen. The distance between tile 

scanner and cylinder was set to 1.6m, the average distance used fior scanning hurnan sub. iccts. 
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The cylinder was mounted on a platform with equal height as that of the scanner's tripod and 

both were levelled using a handheld spirit level. Twenty scans of the cylinder were then taken 

without disturbing the experimental setup. 

I 1ý '--im 

Figure 5.2: A cylinder used for the experiment 

5.2.4.1. Analysis of Cylinder Data 

The ideal data of the cylinder was generated using the same dimensions and orientation of the 

actual cylinder. The twenty datasets of the cylinder were interpolated onto a common grid 

with 0.5mm spacing and the mean dataset was computed by taking the arithmetic average on 

pixel by pixel basis. For comparison purposes, both the scanned and the ideal datasets were 

again interpolated onto a common grid with 0.5mm spacing. The error datasct was computed 

by subtracting the ideal dataset from the mean scanned dataset on pixel by pixel basis. To 

avoid the influence of boundary errors at the edges of the cylinder during data capture, a patch 

of 80 by 80 pixels of the noise data taken from the centre of the cylinder was analysed instead 

of the entire data (see Figure 5.3). The rationale behind this is that, near the edges of the cyl- 

inder, the geometric configurations of the points will be distorted due to the steep slope, and 

this could affect the accuracy of the derived coordinates. Thus, the errors at the edges of the 

cylinder WOUld not be representative of the distribution of the random errors. 
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I 
Diarneler: 63mm 

I 

Figure 5.3: Patch of cylinder analysed: 80 by 80 pixels 

The histogram of the noise data represents the distribution of the errors. The histogram was 

calculated by grouping the individual pixels of noise data into 500 bins, and counting the 

number of pixels failing within each bin. A Gaussian function was then fittcd to the histogram 

using the method of Least Squares. The estimated parameters of the Gaussian function are 

shown in Table 5.2 together with their confidence intervals at 950N, confidence level. The 

mean was estimated to be 0.0029±0.0046i-nm and tile standard deviation was 

0.4705±0.0079niiii. 

Table 5.2: Estimated parameters of Gaussian rifting 

Coefficients (95% confidence interval) Value Lower Bound Upper Bound 

Mean 0.0029 0.0006 0.0052 
Standard deviation (a) 0.4705 0.4626 0.4784 

The goodness-of-fit statistics presented in Table 5.3 show that the fitted Gaussian function 

describes the noise distribution quite well. The suin of squared errors (SSE) which represents 

the total deviation of the noise data and the fitted function is less than 3.0, while the root 

mcan square error (RSME), which represents the standard error of' the entire fit is less than 

0,1. In conclusion, the results of this experiment show that the noise distribution is adequately 

approximated by a Gaussian distribution with standard deviation 0.471nill and mean 

0.003mm, indicating that Gaussian smoothing will be appropriate for our data. 
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Table 5.3: Goodness of fit statistics for Gaussian fitting 

Goodness of Fit Statistics Value 
Sum of Squared Error (SSE) 2.9817 
Root Mean Square Error (RMSE) 0.0547 
R-Square 0.9683 

. 
A. djusted R-Square 0.96821 

Figure 5.4 shows a graphical display of the non-nalised histogram with the Gaussian fit super- 
imposed. 
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RMSE: 0.0547 

Figure 5.4: Noise distribution of cylinder data approximated by a Gaussian with standard deviation 

0.19mm and mean 0.001mm 

5.2.5. Gaussian Smoothing 

The experimental results obtained in the previous section indicate that the errors in our data 

are approximately normally distributed and thus Gaussian smoothing will be optimal method 
for reducing the effect of the errors. In fact, Gaussian smoothing has a number of features that 

makes it a suitable choice for reducing nornially distributed noise. The Gaussian function dc- 

creases monotonically from the central peak, thus giving higher weight to the central pixel. 
Moreover, the Gaussian is completely separable which makes its computationally efficient for 

I 
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large images like our data. Thus a 2D convolution can be performed by first convolving with 

ID Gaussian in the X direction, and then convolving with another ID Gaussian ill the Y direc- 

tion (Equalion 5.1). For a Gaussian filter with dimensions in xin, 21) convolution I-C(jUjres 

in 2 operations per pixel. However, using the separable filters can reduce this to 2n? opera- 

tions per pixel. 

G(x, y) exp 
X2 +Y2 

exp 
x, 

)* 

exp Y2 
22 2; Tcy 2 cy. 

I= 

2za 2cy- 2(T2 

Another useffil property of Gaussian filters is that the conVOILItion of a Gaussian vvIIII itself' is 

anotilcr Gaussian. This implies that smoothing an image with a small 6,1LISS1,111 filter several 

17 
-iaLISSIMI. ThC Fourier trans- times is equivalent to smoothing the same ii-nage with a larger ( 

form of a Gaussian with standard deviation u is another Gaussian with standard deviation 

a= 1/2; Tor and amplitude A= Nr2zWý (Gauge, 1998). Thus for large images, Gaussian filler- 

mg can be efficiently implemented using the Fast Fourier Transform algorithin. 

5.2.6. Design of the Gaussian Filter 

From Equation 5.1, the 2D continuous Gaussian function has one parameter that must be 

specified, namely, the standard deviation (o7 ). Due to the symmetric nature of the Gaussian, 

the standard deviation is the same in both X and Y directions, i. e. (T = (7,1, = t7), . The standard 

deviation parameter controls how quickly the Gaussian approaches zero (see Figure 5.5). This 

implies that different amounts of smoothing can be obtained by varying the standard dcvia- 

tion-a small a will produces a function which quickly approaches zero, and can be imple- 

mentcd using a small discrete filter; a large cy- produces a function which slowly approaches 

zero. In other words, a higher standard deviation will result in greater amount of' smoothing 

and vice versa. The issue of how much smoothing should be applied is addressed empirically 

in section 5.2.7. 
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Figure 5.5: 1D Gaussian function with varying standard deviations 

Once the appropriate standard deviation is chosen for the continuous Gaussian function, a 

discrete version must be derived in order to apply it to discrete images. We sample the con- 

tinuous function by integrating it over the square pixels using the 2mm pixel size of the target 

data. Figure 5.6 shows an example of a 2D continuous Gaussian with 0.5 standard deviation 

sampled by a 5x5 discrete filter in Equation 5.2. This discrete filter can now be applied to the 

images using standard convolution methods (see Pratt, 200 1 ). 
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0.4 

0.3 

r, 

Figure 5.6: A continuous Gaussian with or = 0.5 
, sampled by 5x5 discrete filter 

0 0 0.81 0 0 

0 0.0113 0.0837 0.0113 0 
0.0002 0.0837 0.6197 0.0837 0.0002 (5.2) 

0 0.0113 0.0837 0.0113 0 
0 0 0.81 0 0 

5.2.7. Estimating Optimal Smoothing 

This section addresses the second issue of the limit of smoothing. This is an important issue 

because smoothing has a basic drawback-true variations in the image, especially sharp 

variations (edges and creases) are also smoothed to some extent. Consequently, minimal 

smoothing should applied to avoid smoothing out true surface variations. Fortunately, the 

human back surface does not exhibit sharp variations in shape so the efl'cct of carefully con- 

trolled smoothing should be minimal. 

Since the amount of smoothing achievable with a Gaussian filter is directly proportional to 

the standard deviation parameter, the problem resolves into determining the standard devia- 

tion value for optimal smoothing. This issue is addressed by comparing tile curvature com- 

puted from the scanned data of the cylinder with increasing smoothing with the true curvature 
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of the ideal cylinder. The scanned dataset of the cylinder was smoothed with a Gaussian filter 

with standard deviation ranging from 0 to 10 and the mean curvature was computed at each 

point within the 80x8O pixels patch of the cylinder (as used in Section 5.2.4). At each smooth- 
ing level, the mean and standard deviation of the curvature values of all the pixels were com- 

putcd. The results of this experiment are presented in Figure 5.7 which shows a plot of the 

computed mean curvature and standard deviation of the error at each smoothing level com- 

pared to the true curvature. The true curvature of the perfect cylinder is 0.016mm and is con- 

stant everywhere on the cylinder-the minimum principal curvature is zero, while the maxi- 

mum principal curvature is constant. Because of errors in the scanned data, the computed 

mean curvature of the cylinder is not constant, but variable over the smoothing range. It can 
be observed that as the standard deviation of the smoothing filter increases, the computed 

mean curvature approaches the true value asymptotically. The standard deviation of the error 

before smoothing commenced is 0.6894mm, which decreases towards zero with increasing 

smoothing. At a smoothing level of about a=2.85, the mean curvature has approached the 

true value to within 10% of the error, which gives a general indication of error limits for op- 

timal smoothing. 
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Figure 5.7: Comparison of computed curvature with true curvature of cylinder with increasing smooth- 

ing 
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The results of the above experiment show that if we smooth the back data with a Gaussian of 

standard deviation of at least 2.85, the curvature values can be estimated up to within I O'Yo of 

the total error. The basic assumption here is that the distribution of errors ill tile scanned data 

of the back will be similar to that of the cylinder data given similar measurement conditions. 

Unfortunately, the true curvature of the back surface is unknown at any point, so similar ex- 

pcriment cannot be performed on back shape data. Instead, we assessed tile effect ol'sinooth- 

ing on curvature difference between certain landmarks of (lie back and their local neighbOLir- 

hoods. This is an important step since successful detection of these landmarks depends oil suf- 

ficient curvature differences between the landmarks and their local neighbourhood (see Sec- 

tion 6.2). Three landmarks of the back were chosen for this experiment, namely, seventh cer- 

vical vertebra (C7) and the left and right posterior superior iliac spines (PSIS). I-lie scanned 

data of one subject was smoothed with standard deviation ranging from 0 to 10, and tile mean 

and Gaussian curvatures were computed. The locations of the landmarks were extracted from 

the curvature maps. For each landmark, the absolute difference in curvature between tile 

landmark and its 3x3 neighbourhood was computed at each smoothing level. 'File results of' 

this experiment are presented Figure 5.8 and Figure 5.9. It can be observed that as tile 

smoothing standard deviation increases, both the mean and Gaussian curvature difflerences 

decrease toward zero for all the landmarks. Beyond u=5.5, the absolute curvature differclicc 

for C7 landmark effectively tends to zero ( ý, z IxI 0_' for the mean curvature and ZIX 1()-6 110 r 

the Gaussian curvature), thus making it difficult to accurately detect the landmark. It also ap- 

pears from both figures that the curvature differences begin to stabilise afler a smoothing 

level of about a=2.0. After further experiments with other curvature maps and landmarks, 

c=1.5-3.5 was selected as optimal smoothing range for our data. All datasets analysed and 

visualized in this thesis are smoothed with a =2.25, which gives good results both nullicri- 

cally and visually. 
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Figure 5.8: Effect of smoothing on Mean curvature difference for C7, LPSIS, and RPSIS 
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5.3. Visualization of the Back Shape 

In this section, we explore various methods for visualizing the shape of the back. Visualiza- 

tion plays an important role in back shape analysis as it enables the exploration of the extent 

and changes of back deformities. The effect of treatment methods such as bracing or surgery 

can be explored using effective visualization tools without the need for physical manipulation 

of the patient with the problem. The main objective here is to provide diagnostic visual tools 

to aid the assessment of back deformities. To this end we explore a number of visualization 

methods, namely, continuous colour scales, discrete colour scales, contours and three- 

dimensional views. 

5.3.1. Visualization Pipeline 

The data visualization process is usually represented by a pipeline which consists of two main 

steps, namely, encoding and decoding, as depicted in Figure 5.10 (WOnsche, 2004). The data 

encoding step describes the process of converting the data into some visual attributes to be 

displayed on the output medium (computer screen or paper), and often involves operations 

such as transformations, mapping and rendering. The decoding part describes the perception 

and cognition of the visual information by the human subject. 

Visual attnbLiteS 
encoding decoding 

=visualization =v1slial 11114-1pi"Intion 

Scientific --lo data mapping dislAay Image(s) piwaololl cog-, 111, )n Mental 
data set transformahon Image 

Figure 5.10: The visualization pipeline (adapted from Wfinsche, 2004) 

It is important to note that visualization is not an end in itself, but a step in the decision- 

making process. Consequently, visualization is only effective if the decoding process (percep- 

tion and cognition) can be performed correctly and efficiently (WOnsche, 2004). Accurate 

perception implies that the data quantities and relationships conveyed by the visualization re- 

flect the original data. To achieve this requirement, the visualization should preserve the order 

of the data values being visualized, preserve distances between values, group related values 

and separate unrelated ones. Efficiency of information perception implies that maximum 
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amount of information is perceived in minimal time, i. e. the visualization should maximise 
information absorption whiles minimizing the cost of interaction. To achieve this require- 

ment, the visualization should be intuitive, easy to read and understandable. Perceptual and 

psychological aspects of colour should also be taken into account. 

5.3-2. Colour Scales 

Colour scales are effective and commonly used method for visualizing scalar data. Colour 

scales are well suited to give an overall impression of the distribution of the scalar field, al- 

though exact quantitative information cannot be perceived accurately. Moreover, the effec- 

tiveness of colour mapping depends on the colour scale used and on perceptual issues. 

Levkowitz (1997) summarises the following desirable properties of a colour scale: 

Colours should be perceived as preserving the order of the scalar values they repre- 

sent. 

Colours should convey the distances between values they represent and should associ- 

ate related values and separate unrelated values. 

* Colours should be continuous for a continuous value range. 

Colour scales are particularly effective for visualizing surface curvature where the objective is 

to highlight important shape variation on the surface. Seidenberg et al (1992) found that a 

useful colour scale for curvature visualization is one that satisfies the following criteria: 

0 Equal changes in curvature values should be indicated by equal change in colour. This 

implies use of a perceptually unifon-n colour space. 

There should be enough colours in the scale to detect important curvature variations. 

0 The middle and the two end colours must be unique since they represent flat, concave 

or convex areas which should be easily distinguishable. 

Colour scales should be used consistently. This will allow the frequent user to learn 

from experience and be able to associate certain colours with certain curvature values. 

The first criterion of Seidenberg et al (1992) implies that a set of colours from a perceptually 

a uniform colour space is required. A colour space is perceptually uniform if a small change 

at one point in the space is approximately equally perceptible across the entire space. In other 

words, any two points with a certain distance apart in one part of the space should be percep- 
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tually the same as two other points with the same distance apart in another part of the space. 

The RGB (Red-Green-Blue) colour space, which is used by monitors and many display de- 

vices, is perceptually non-unifort-n. Interpolating a linear colour scale from a non-uniform 

colour space (such as the RGB space) may result in two adjacent colours in one part of the 

scale being perceptually different from two adjacent colours in other part of the scale. The 

problem of finding a uniform colour space, however, is a difficult one, and has been the sub- 

ject of much research since the origin of colour science. A major advance was made by the 

CIE (Commission Internationale de I'Eclairage) in 1976 with the development of the CIELAB 

and CIELUV colour spaces, both of which were defined based on the non-uniform XYZ col- 

our space defined by the CIE in 1931 (see Appendix D for description of these colour spaces). 

These two colour spaces are nearly uniform and have been accepted as the standard model for 

colour conversion (creating a perfectly uniform colour space is still problematic). For our col- 

our scale, we perform the interpolation in the CIELAB space to ensure perceptual 1.1111l'ormity. 

Thus, the original RGB colours must be transformed into CIELA13 for interpolation, and then 

transformed back into RGB for display. 

5.3.3. Colour Scale Creation 

To demonstrate the process of creating the colour scales, we use Blue-Grcen-Red scale in 

which blue represents low values, green represents middle values and red represents high val- 

ues. To introduce more colour variations, we add cyan and yellow, making it a four-scgment 

scale: Blue- Cyan- Green- Yellow-Red. The path taken by this scale is illustrated by the bold 

line in the normalised RGB space shown in Figure 5.11. 
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Figure 5.11: Blue-Cyan-Green-Vellow-Red colour scale 
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The process of creating the colour scale can be surnmarised as follows: 

e Transform the RGB values for Red, Yellow, Green, Cyan and Blue from RGB space 

through XYZ space to CIELAB. The transformation is accomplished by using the set 

of equations given in Appendix D. 

Interpolate the required number of coiours linearly in the CIELAB space. A total of 

256 colours are interpolated for the entire scale, with equal number of colours in each 

segment (i. e. 64 for a four-segment scale). 

Transforrn the interpolated colours from CIELAB space through XYZ space back to 

RGB space. This transfortnation is accomplished by the set of equations given in Ap- 

pendix D. 

A colour look-up table (LUT) is then created with all possible colours in the scale and 

an index associated with each RGB triplets (Figure 5.12). For each pixel in the image, 

the rendering algorithm calculates the colour index associated with the pixel's value, 
looks it up from the LUT and renders the pixel using this colour. 

Index Rod Green Blue 

0 245 0 0 

245 0 0 

2 245 0 0 

3 247 0 0 

4 247 8 0 

5 247 21 0 

255 0 0 255 

14, 

0 

Figure 5.12: RGB look-up table for the colour scale 

5.3.4. Data Classification and Colour Mapping 

The colour scale is limited to a maximum of 256 colours-the maximum number of colours 

that can be displayed for each RGB component on a monitor. The datasets to be visualized on 

the other hand typically contain over 36,000 pixels. To map the colour scale to the dataset, the 

data have to be classified or partitioned into the required number of available colours. In this 
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section we explore various classification methods and contrast enhancement techniques in 

order to maximise the visual contrast of the resulting images. 

5.3.4.1. Equal Interval Classification 

A simple method of mapping the colour scale to the curvaturc data is to partition dic dala tis- 

ing a fixed interval-each class occupies an equal interval along the number line (Figure 

5.13). Thus, this method is identical to creating a grouped- frequency table or histogram of the 

data. Let Z in and Z,,,.,, be the minimum and maximum data values, and n be the number of 

classes, then the class interval () is calculated by Equation 5.3: 

'equal - 

Zmax 
- 

Zmin 

n 
(5.3) 

To associate the colour map, the first and last colours in the scale are assigned to the first and 

last classes respectively, while all other classes are distributed linearly to the rest of the col- 

ours (Figure 5.13). 

Zmon Z.. 

Data 
Class 1 Class 2 Class 3 

... Class 256 

Colour Scale 
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Co 
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Figure 5.13: Equal interval classification and colour mapping 

Figure 5.14 shows colour mapping based on equal interval classification for the mean and 

Gaussian curvatures of a male subject (Subject 1: age 30, weight 70kg, height 170cm, BMI 

24). See Table C-7 in Appendix C for information on subjects who participated in this study. 

Although there are 256 colours in scale, the legend for each map displays only 12 colours 

linearly sampled from the colour scale for clarity. As can be seen, equal interval classification 

results in very poor contrast and fails to highlight important shape variations in the curvature 

maps. The Gaussian curvature map particularly has a very poor contrast. 
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(b) Gaussian Curvature 
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Figure 5.14: Mapping of colour scale to curvature maps using equal interval classification (Subject 1) 

The histogram of the Gaussian curvature map shown in Figure 5.15 explains why equal- 

interval classification results in a poor contrast image. As indicated by the histogram, the ma- 

jority of the curvature values cluster around 0. To be precise, 35,835 out of the total of 36,868 

pixels have curvature values within the interval _ 1.98X 1 0-3_ 1 . 38x 10-3 which is indicated by 

the long bar in the figure. This high frequency has been actually scaled down in the figure to 

make the lower frequencies visible. Since the back surface is relatively smooth with no sharp 

discontinuities or edges, it is evident from the histogram that pixels within this curvature 

range represent actual curvature range of the back shape while pixels outside the range repre- 

sent extreme or erroneous curvatures at the boundaries. Equal interval classification has been 

affected by these outliers, resulting in the majority of actual back shape pixels being placed in 

only a few classes. Thus equal interval classification fails to respect the statistical distribution 

of the dataset. 
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Figure 5.15: Histogram of Gaussian curvature map, high frequencies scaled to reveal lower frequencies 

The visual contrast of equal interval classification may be improved by employing standard 

contrast enhancement techniques such as linear or non-linear stretching techniques. Contrast 

enhancement operations seek to improve the visual appearance of images by amplifying local 

variations among classes of pixels in the image. These are discussed in the next sections. 

5.3.4.2. Linear Contrast Stretch 

if the region of interest lies within a known range Z,,,, ... Zhigh I there is no need to display pix- 

els lying outside this range. Pixels with values lower than the Z, can be assigned to tile be- 

ginning of the colour scale (C,, ) and pixels with values above Zl,,, hcan be assigned to tile end 

of the colour scale (C,,,, ). All pixels with values within that range are then linearly distrib- 

uted. This has the effect of amplifying the variations between adjacent pixels thereby cillialic- 

ing contrast within the target region and effectively reducing contrast outside the region to 

zero. By adjusting ZIO. and Zhighin Equation 5.4, low contrast details in different Curvature 

regions of the image can be explored interactively. 
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C, = C, + (i 
-Z low) 

C255 
- 

CO 
(5.4) (Z 

9 -Z 
Ow 

Another method for defining the particular region to enhance is to cut off extreme pixels by 

considering the statistical distribution of the entire image. if we define extreme values as 

those pixels outside certain standard deviations from the mean or median (say n standard de- 

viations), then all pixels outside the interval Z± na are mapped to the beginning and end of 

the colour scale while pixels within that range are stretched linearly between the end colours 

(see Figure 5.16). This allows the colour scale to avoid the extreme values. The standard de- 

viation multiplier (n ) can be adjusted to produce various degree of contrast enbancement. 

Outhers 
(negative) (I 

-2 C H 
Outliers 

(positive) 

Ll--- ! 
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Classes: 111 
cx Gr 2cr 301 zmw 

11617181 

Figure 5.16: Standard deviation stretch, 8 classes 

Figure 5.17 shows application of standard deviation stretch to the mean and Gaussian curva- 

turc maps after equal interval classification. A standard deviation threshold of n=0.5 was 

used for the mean curvature while a threshold of n=0.1 was used for the Gaussian. The 

inean curvature now shows a considerable visual contrast improvement whiles the Gaussian 

shows only a slight improvement. A higher threshold (n > 0.5 ) showed no contrast for the 

Gaussian map-highlighting the effect of outliers on equal interval classification. These re- 

sults demonstrate that equal interval classification and standard deviation stretch are only 

well-suited to normally distributed data where the mean can serve as a useful dividing point, 

enabling contrast of values above and below it. However, since the mean is easily affected by 

F- 1 118 -ii:: 
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extreme values (outliers), this method will perform poorly with data that contain outliers or 

data with skewed distributions. 

Mean 
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Figure 5.17: Standard deviation stretch applied to the mean and Gaussian curvature maps with equal 
interval classification (Subject 1) 

5.3.4.3. Histogram Equallsation 

Linear stretch techniques produce uniform contrast enhancement throughout the image, and 

thus can still be affected by outliers, as demonstrated in previous section. Non-linear, non- 

uniform enhancement such as histogram equalization is sometimes required to reveal subtle 

variations in the image. Histogram equalization allows tile pixels values to be redistributed so 

that histogram of the enhanced image becomes uniform or follows some other distribution 

(Figure 5.18) (Pratt, 2001). 

rI 
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Figure 5.18: Histogram equalization 

Let 11(p) be the histogram of the input image in the range [Pmin 
1 pmax ], The objective is to 

find a monotonic increasing function q= T(p) such that the histogram of the output image 

G(q) approaches (for example) a uniform distribution over the output range [qmin, qa, ]. Since 

T is monotonic function, we have: 

ii 
G(qi) H(p, ), where q, = T(pi) (5.5) 

The summation on the right represents the cumulative histogram of the discrete input image. 

For a continuous distribution, the desired transformation is derived as: 

qi = T(p) = 
q,,.,, 

nm 
qnin f H(s)ds + qmin (5.6) 

P- 

The discrete approximation of Equation 5.6 is given by: 

q,,,.. -qi q, = T(p) min H(pi) +q"". (5.7) 
n 

Figure 5.19 shows application of histogram equalization to the mean and Gaussian curvature 

maps based on equal interval classification. The mean curvature now reveals more variations 

in the shape of the back: various landmarks are now visible--C7, midline region, lower back 

dimples, scapular areas, etc. The Gaussian curvature still suffers from poor contrast-global 

histogram equalization has failed to effectively improve contrast in the presence of extreme 

outliers. 
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Figure 5.19: Mean and Gaussian curvature maps with histogram equalization (Stjl)ject 1) 

Figure 5.20 and Figure 5.21 shows the empirical cumulative distribution functions of the 

mean and Gaussian curvature maps before and after histogram equalization. Global histogram 

equalization has been able to linearise the cumulative histogram for the mean curvature result- 

ing in higher contrast. However, it failed to effectively linearise the cumulative distribution 

function of the Gaussian map, evidently due to presence of extreme values. Perhaps tile Gaus- 

sian map could still be improved by localising the equalization process, an approach known as 

adaptive histogram equalization (Pratt, 2001). However, adaptive histogram equalization 

comes with high computational cost which makes it problematic for creating on-the-fly visu- 

alizations for large datasets; thus we investigate other methods for data classification. 
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Figure 5.20: Cumulative distribution functions of mean and Gaussian maps before histogram equaliza- 
tion 
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Figure 5.21: Cumulative distribution functions of mean and Gaussian maps after histogram equalization 

5.3.4.4. Nested Means Classification 

The nested means classification method, originally proposed by Scripter (1970), works by 

Successively placing class breaks at the means of sub-sets of the data. First, the mean of the 

entire dataset is calculated and a class break is placed at this value. This separates the data 

into two classes-data values above and below the mean. Each class is further partitioned by 

calculating the means of the values within these two categories, and inserting class breaks at 

each of those two points-resulting in four classes. One more level of means will result in 

eight classes. The process can be repeated to create more classes-the number of resulting 

classes will always be 2"', where m is the number of means used to divide the data. Thus the 

number of classes will be from the set 12,4,8,16,32,64,128,2561. An illustration of 8- 

class map using ncstcd means method is shown in Figure 5.22. The subscripts attached to the 

means indicate the iteration level and the number of means computed. For example, at the 

first iteration, one mean is computed (X,, ); at the second iteration two means are computed 

(X"I, X22 ), and so on. 
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Figure 5.22: Nested means classification: 3 levels resulting in 8 classes 

Figure 5.23 shows application of nested means classification to the mean and Gaussian maps. 

There is a considerable improvement in contrast compared to tile equal interval classification 

method; thus this method could be a compromise for skewed data. 
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Figure 5.23: Colour mapping by nested means classification (Subject 1) 

The cumulative distribution function of the nested means method is shown in Figure 5.24. 

The graph is more linear indicating a better classification than equal interval. 
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Figure 5.24: Cumulative distribution functions for nested means classification 

5.3.4.5. Quantile Classification 

Quantiles arc points taken at regular intervals from the cumulative distribution function of a 

random variable. Quantiles divide ordered data into q essentially equal-sized subsets-the 

quantiles are the data values marking the boundaries between consecutive classes. For a finite 

population of size N, the k-th q-quantile is that value of X, sayx,, which corresponds to a 

cumulative frequency of N klq (Kenney and Keeping, 1962) (see Figure 5.25). Some quan- 

tiles are given special names, for example: 4-quantiles are called quartiles, 5-quantiles are 

quintiles, 10-quantiles are deciles and 100-quantiles are percentiles (some people regard the 

minimum and maximum quantiles as the Oth and I 00th percentiles respectively). 
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Figure 5.25: Quantiles and the normal cumulative frequency distribution 

There are various methods for estimating the quantiles. Let N be the size ol'a finite popula- 

tion, and let X1 9X2 9- x,, represent the ordered values of the sample population such that 

X 1: ýý X 2' ** :ýx, Then using the empirical distribution function with averaging, the k-th q- 

quantile can be estimated as follows: 

I 
(xi+xj,, ), g=O k-th quantile =2 (5.8) 

Xj+l g>0 

wherej is the integer part of Nk and g is the fractional part. 
q 

To implement quantile classification, the data is first sorted and the quantiles are computed 

according the total number of colours to be mapped (i. e. 256). To determine class mernber- 

ship for each data value, the sorted data are scanned, collecting class members until tile flurn- 

ber of members in each class is obtained. Figure 5.26 shows quantile classification applied to 

the mean and Gaussian curvature maps. Several landmarks are of the back are now clearly 

visible on both the mean and Gaussian curvature maps-including C7 and several spinous 

process landmarks, left and right PSIS landmarks, midline region, scapula landmarks and pel- 
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vis region. The Gaussian map which contains most extreme outliers is now properly classi- 

fied, demonstrating that quantiles are robust and less susceptible to outliers, and thus very 

useful for analysing data that have long tailed distributions and extreme values. 
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Figure 5.26: Quantile classification, 256 colours (Subject 1) 

The empirical cumulative frequency distribution functions for the quantile classification are 

shown in Figure 5.27. The linear nature of the graphs shows that quantile classification is 

more robust to outliers and thus no further enhancement is necessary. 
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Figure 5.27: Cumulative distribution functions for Quantile classification 
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5.3.4.6. Natural Breaks Classification 

The natural breaks method (also known as optimal classification) attempts to find grOLIPIlIgS 

and patterns inherent in the data by minimizing an objective measure of classification error. 

The algorithm was originally developed by Fisher (1958), while Jenks (1971) niodified and 

introduced it to cartographic map design (Slocum, 1999). Many cartographers have generally 

recognised only Jenks, and as a result, the method is often called 'Jenks optirnal method' in 

much of the cartographic literature. 

Fisher stated the problem as follows: "Given a set of arbitrary numbers, what is a practical 

procedure for grouping them so that the variance within groups is minimiscd? " This problem 

is a special case of multi -dimensional clustering techniques that partition data in an attempt to 

recover natural groupings present in the data (Jain and Dubes, 1988). 

Although the theoretical solution to this problem is straightforward, there arc difficulties as- 

sociated with finding a practical solution. The first issue is how to select a classification critc- 

rion that translates one's intuitive notion of a natural 'cluster' into some mathematical Forniu- 

lation. Since there is no a precise definition of a cluster, classification criteria are highly ap- 

plication dependent. The most common classification criterion is based oil the squared error 

criterion. With this criterion, the problem can be stated as follows. Let X be a finite set of' 

size N with each element (xý ) assigned a weight ( vy, ), then the problem is to classify or parti- 

tion the elements of X into n classes by minimizing the weighted sum ofthe squared deviation 

(D) in Equation 5.9: 

D=w1(x1 
2 

(5-9) 

where 7, is the weighted mean of those elements that are assigned to tile class to which ele- 

ment i is assigned. In the special case when all elements have equal weights, D is simply the 

sum of the squared deviations. Other approaches use the median as a measure ofccntral ten- 

dency and the associated absolute deviations about the class medians as a measure of the cla as- 

sification error (Slocum, 1999). 

Unfortunately, the number of all possible classifications becomes prohibitively high for large 

datasets-N = 100, n =7 will result in over 16 billion possible classifications to evaluate! 

Thus exhaustive evaluation of all possible partitions is not computationally feasible, even Im 

T-1 2-7 
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small datasets! Rather than consider all possible solutions, Fisher (1958) proved that any op- 

timal partition is simply the sum of optimal partitions of subsets of the data. Consequently, 

not every possible solution needs to be individually computed, provided suitable records are 

kept. Although this optimization speeds up the computation process, it is still very slow for 

practically large datasets. Consequently, in practice, the following approach is often adopted 

to arrive at a solution. Starting with an initial classification, data are moved from one class to 

another in an effort to improve the value of the criterion function. Thus, successive iteration 

in the classification process is just a perturbation of the previous classification, resulting in 

evaluation of only a small number of classes. Unfortunately, algorithms based on this tech- 

nique generally do not generally achieve a global minimum, but often converge to a local 

minimum, which may not be the optimal partition (Jain and Dubes, 1988). 

Jenks ( 197 1) modified the original algorithm of Fisher and developed a goodness fit statistic 

known as goodness of variance fit (GVF), which is calculated as: 

GOF=I- 
SSEc 
SSED 

(5.10) 

where SSD, ) is the sum of the squared deviations of the data elements from the mean of the 

entire dataset, and SSD(. is the sum of the squares of the deviations of the class members 

from their class mean. Jenks also provided improved implementation of the algorithm (Groop, 

1990; Robinson, 1995). 

The steps in computing the optimal classification of any dataset can be summarised as fol- 

lows: 

0 Sort the entire data. 

9 Compute the mean (or median) of the entire dataset and calculate the sum of the 

squares deviations (SSE,, ) of the observations from the mean 

Develop class boundaries for the first iteration, calculate the class means (or median), 

and calculate the sum of the squares of the deviation of each class member from its 

class mean (denote this by SSE, ). 

Compute the good of fit statIstic (GOF) which represents the sum of squared devia 

tions between the classes. 
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0 Repeat steps 2-4 until the GOF cannot be maximised further. 

Figure 5.28 shows application of the natural breaks classification method to the mean and 

Gaussian maps. A total number of 256 classes were computed for both maps using the sum of 

squares about the class means as the measure of classification error. Both maps show consid- 

erable contrast, although the effect of extreme outliers is still obvious frorn the Gaussian map, 
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Figure 5.28: Colour mapping by natural breaks classification (Subject 1) 

The cumulative frequency distribution functions of the natural breaks method shown in 

Figure 5.29 for the mean and Gaussian maps. The graphs arc almost linear, demonstrating that 

the method works quite well. The main problem with the method is the time taken for compu- 

tation. While all of the other methods took just a few fractions of' a second to compute, tile 

natural breaks method took several minutes on a typical modem computer (Pentlurn 4, 

2.4GHz, IG RAM). This severely reduced the performance of the system, and hence this 

method is not feasible for generating visualizations on-the-fly. 
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Figure 5.29: Cumulative distribution functions for natural breaks classification 

5.3.4.7. Summary of Classification Methods 

r ur In the preceding sections, we experimented with various classi ications for mapping colo 

scales to curvature maps. The effectiveness of each method was discussed by visual assess- 

merit of the resulting visualization. The main challenge in creating colour map to visualize the 

back shape lies in handling extreme values at the boundary of the dataset. The visualization 

results obtained from the preceding sections demonstrate that quantile classification is very 

robust to these extreme values. A further advantage of quantile classification is that the com- 

putation of quantiles is relatively simple and less computationally demanding task, compared 

with histogram equalization, nested means and natural break methods. For discrete data, 

quantile computation consists of sorting followed by equal internal classification of the sorted 

data. This implies that the visualizations can be generated on-the-fly and that various colour 

scales can be applied quickly to determine their effectiveness. 

More examples of back visualizations of the same subject based on quantile classification are 

given in Figure 5.30 (curvedncss and shape index) and Figure 5.31 (gradient and aspect). 

Figure 5.32 shows the mean and curvature maps of a second male subject (Subject 2: age 30, 

height 170cm, weight 76kg, BMI 24kg/rn2) based on quantile classification. And Figure 5.33 

shows the mean and Gaussian curvature maps of a female subject (Subject 3: age 27, height 

167cm, weight 58kg, BMI 21kg/M2). 

1 130 1 



Error Reduction, Curvature Computation and Visualization 

94% 

(a) Curvedness 

Cuovednest 

-091 -049 
-2 05E-2 -1.99E -2 
-`I, 49E -2 -1 47E -2 
. l. 26E .2 -1.25E -2 
-1, lE-2- IAE-2 
-0.9K .2- -0.9%. 2 
-0 9E -2 -0 89E .2 
-0.81E-j7 -0.81E-2 
-0.74E -2 -0 73E -2 
-0. G6E -2 -0.65E -2 
-0 5K .2 -0 57E 2 
-4.62E -3 -4.54E -3 
-253E-3--23E-3 

Shape Index 
0.99 . 0.87 
-049 -0ý 49 
-0.31 -0.30 
_U os _U os 
0.140.15 
& 29 0.29 
0.39_ 0,39 
047046 
0,54 0.54 
OM 0 so 
0.660,66 

0,73 
U 73 

0,83_0.84 

Figure 5.30: Curvedness and shape index maps of Subject I showing several anatomic regions of the back 
(see Section 4.2.4) 
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Figure 5.31: Gradient and aspect maps of Subject 1. Gradient describes steepest descent at each point on 
the surface while aspect describes the direction of this steepest descent (see Section 4.2.5) 
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Figure 5.32: Mean and Gaussian curvature maps by Quantile classification (Subject 9: male, age 30, 
height 175cm, weight 76kg, BMI 25kg/m2) 
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Figure 5.33: Mean and Gaussian curvature maps by Quantile classification (Subject 25: female, age 27, 
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5.3.5. Discrete Colour Scales 

The colour scales shown in the preceding sections arc perceptually continuous scales. Con- 

tinuous scales are useful for mapping continuous variables (such as surface shape of the hu- 

man back) as they preserve the continuity of the variable being mapped. Discrete colour 

scales limit the number of classes or colours to a few in order to create perceptually distinct 

boundaries between the classes. A discrete colour scale can sometimes highlight variations in 

the data which may not be visible from a smooth version. For example, in assessing the gen- 

eral asymmetry of the back shape, one may be interested in visually comparing corresponding 

regions at the lcft and right of the midline in the frontal plane to deten-nine whether one region 

is more prominent than the other. This task can easily be carried out on a discrete colour map 

than on a smooth version. 

Figure 5.34 shows the mean and Gaussian maps displayed with a discrete colour scale using 

the quantile classification method. The number of classes is restricted to 5 so that in the col- 

our scale, Blue represents convex regions, Green represents relatively flat regions and Reds 

represent concave regions. The classes now have distinct boundaries making it easier to visu- 

ally compare corresponding regions such as the lower tips of the left and right scapula on the 

Gaussian curvature map. 

Figure 5.34: Discrete colour scale with quantile classification, 5 classes (Subject 1) 
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5.3.6. Contour Maps 

Contours or isolines are lines of equal value. Contour maps are a natural extension to cololu 

mapping. When visualising a colour-mapped surface, the eye often separates similarly col- 

oured regions into distinct regions or classes. Contour maps effectively construct thest 

boundaries. Contours are commonly used to visualize various data such as terrain elevation, 

meteorological and medical data; thus many people are familiar with them. Contours are use- 
ful in back shape analysis, as they encode information about asymmetry of the back in a form 

that is readily recognizable by clinicians, as is evident from the wide applications of moird 

topography. It was discussed in Section 3.3.2.4 that one of the problems with moir6 topog- 

raphs is that the resulting contours are easily affected by rigid-body motion of the body during 

data capture. Since 3D laser scanning directly gives coordinates of the back surface, this is 

not a problem as contours can be interpolated relative to a reference plane such as the plane 
defined by the left and right PSIS landmarks. Another advantage is that contours with varying 
intervals can be generated on-the-fly to allow asymmetry analysis at varying levels of detail. 

5.3.6.1. Contouring Algorithms 

For a surface defined by z=f(x, y), a 2D contour can be expressed as a curve f(x, Y)=c 

separating two regions f (x, y) <e and f (x, y) > c, where c is the contour value. In three- 

dimensional space, contours are called isosurfaces which can be approximated by polygonal 

primitives. Various interpolation techniques can be used to compute contours depending on 

the particular data structure used. In the grid data structure shown in Figure 5.35, the pixel 

values shown represent the elevations of the surface at each point (i. e. z coordinate). A con- 

tour with value of 5 can be generated through the grid by linear interpolation along the edges 

and connecting the resulting points with a smooth line. 

01132 

3 

2 

9 

3 

Figure 5.35: Contour generation by linear interpolation through a 2D grid data structure 
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one approach for practical contour generation is the matching square algorithm (matching 

cube in 3D), which relies on the fact that a contour can pass through a pixel in only a finite 

number of ways (see Lorensen & Cline, 1987). A look-up table (LUT) which contains all the 

possible intersection of a contour line and each pixel is constructed (see Figure 5.36). A vcr- 

tex is considered inside a contour if its value is larger than the value of the contour line. Ver- 

tices with values less than the contour value are said to be outside the contour. For each pixel, 

the inside/outside state of each vertex is calculated. This data is used as input into the LUT to 

determine the topological state of the pixel, which is then used to calculate the contour loca- 

tion via interpolation. 

[I El 12 El 1ý KI IE El 
Case 0 Case 1 Case 2 Case 3 Case 4 Caso 5 Case 6 Case 7 

El El E2 ýý E 1: 2 El F-I 
Case 8 Caso 9 CasG 10 CasG 11 C3SG 12 Caso 13 Caso 14 Caso 15 

Figure 5.36: Matching square algorithm for contour generation in 2D 

5.3.6.2. Interpretation of Contours 

Figure 5.37 shows contour maps of the original back surface at different intervals: 3mrn in (a) 

and 5mm in (b). Useful information can be derived from these contours. Moving perpendicu- 

lar to the contours shows the rate of change of elevation of the back surface. Closely spaced 

contours indicate rapid change or steep slope, while widely spaced contours indicate slow 

change or gentle steep. For example, the shoulder regions display steep slope while the rela- 

tively flat lower back region display spaced contours in Figure 5.37. Valleys are Indicated by 

the contours forming a 'U' (or 'V') shape pointing uphill (as in the midline region), while 

ridges are indicated by the 'U' shape contours pointing downhill (as on the ridges on either 

side of the midline). Summits are indicated by contours forming concentric curves (as in the 

peak regions of the scapula), and depressions are indicated by circular contours with lines ra- 

diating from the centre. 
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(a) Contour interval = 3mm 

Figure 5.37: 2D contours of orginal back surface (Subject 

The space between contours can also be colour-filled to maximise contrast, as in Figure 5.38. 

(a) Contour interval = 115mm 

Figure 5.38: Contours with filled colours (Subject 1) 
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(a) Contour interval = 9mm 

(b) Contour interval = 5mm 
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5.3.7. Three Dimensional Views 

Three dimensional views allow real time exploration of the back shape, ability to zoom, rotate 

and focus on various aspects of the shape of the back in order to assess the extent of the de- 

formity. Issues such as the effect of bracing or surgery can also be explored without the need 

to physically manipulate the patient with the problem. Figure 5.39 shows sample 3D views (a) 

colour map of original surface (b) colour map with contours superimposed in 3D. 

V 

(a) 

Figure 5.39: 3D views of original surface with contours superimposed (Subject 1) 

5.4. Implementation Considerations 

The complete software developed consisted of more than 50,000 lines of program code that 

were distributed in over 500 program files. Clearly, implementation of this size required care- 

ful planning and application of the essential principles of software engineering. This section 

briefly discusses the major design issues regarding data structures and conversion, system dc- 

sign and development tools. 

5.4.1. Raw Data 

The output from the 3D laser scanner is a set of XYZ Cartesian coordinates of the back sur- 

face (in millimetres) and an RGB colour image. Typically, the scanner is able to produce over 

8o, 000 points on the back surface in normal resolution mode. The scanner comes with pro- 

prietor's software which offers some basic functions to visualize and edit tile output data. For 

example, the actual number of points measured can be sub-sampled to the desired size. In our 
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implementation, the point data from the scanner is exported into ASCII, TXT or DXF format 

which is then imported into the data structures used in our implementation (discussed below). 

5.4.2. Data Structures 

A data structure refers to the organization of data in a form suitable for computer processing. 
Two types of data structures have been used in the implementation, namely, vector data and 

raster grid. The reason for using both data structures is that some operations are more suited 

to the raster grid while others are suited to vector structure. For example, calculation of curva- 

tures by parabolic surface fitting is more efficiently carried out on the grid data structure, as 

they can be simplified by taking advantage of the grid configuration. On the other hand, op- 

erations such as curve fitting for midline derivation are more efficiently carried out on vector 

point data. The two data structures are discussed further below. 

5.4.2.1. Vector Data 

Points, lines and polygons are stored by explicitly referencing their coordinates in Cartesian 

space with a list of attributes (non-spatial data) describing them. Point arrays store each point 

as a row in the table, with positional and non-spatial attributes stored as fields. Lines are 

stored as strings of connected straight line segments defined by ordered sequence of their ver- 

tices. Polygons are stored as a closed loop of lines (Figure 5.40). 
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Figure 5.40: Vector data structure 
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A specific vector data structure template defined by the ESRI (Environmental Research Insti- 

tute) and known as Shapefile has been used in our implementation. The Shapefile data struc- 

ture has been proven to be efficient, robust and has been accepted as standard structure for 

spatial data in Geographic Information Systems (GIS) applications. Moreover, the author is 

completely familiar with this data structure. The Shapefile data structure consists of three 

separate files: a main file (. shp extension), an index file (. slix), and a database file (Allf). The 

main file contains a fixed-length file header followed by variable-length records. Each vari- 

able-length record is made up of a fixed-length record header followed by record describing a 

shape with a list of its vertices. In the index file, each record contains the offset of the corre- 

sponding main file record from the beginning of the main file. The database contains object 

attributes with one record per object, with one-to-one relationship between geometry and at- 

tributes. For a complete description of the Shapefile specification and data organization, tile 

reader is referred to (ESRI, 1998). 

5.4.2.2. Raster Grid 

The raster data structure consists of a rectangular grid or array ofpIxcls in which a row and 

column coordinates reference a particular location in the raster (Figure 5.41 ). Each pixel is 

associated with a value (iý. ) that determines what the pixel represents. For 2D images, 1), 

represents the colour value at that pixel location. For a general surface of the forn, 

z=f(x, y), iýrcpresents the z-coordinate at the given (x, 
_y) 

location. Given inforination 

about the size of the grid, and the scan order, the grid can be stored using two-dimensional 

arrays. The resolution of the raster data depends on its pixel size-the smaller the pixel size 

the higher the resolution and the larger the data size. Typically, in a raster data structure, the 

spatial coordinates are not explicitly stored, as the sequence of pixels provides an implicit 

spatial address, once the sequence of rows and columns (called scan or(lel-) is established. 

This configuration also allows a high amount of compression of raster data. 
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Figure 5.41 Raster grid: v, represents grey level in 2D images; for general surfaces of the form Z=f(x, Y), vi 

represents the z-coordinate at (x, y) location 

5.4.3. Conversion of Point to Raster Data 

Point vector data from the laser scanner is converted into raster data by simply superimposing 

a regular grid and interpolating the pixel value from nearby points. In Figure 5.42, each 

pixel's value is derived by interpolating over the points in the neighbourhood of that pixel. 

There are two considerations in designing the target raster grid, namely, interpolation method 

and pixel size (also known as raster period or resolution). These are described below. 

Y 

" 

----w 

Figure 5.42: Conversion of point data into raster grid 
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There are various methods for interpolating the value of the target pixel including nearest 

neighbour, linear, bilinear and bicubic (Burrough, 1998). The nearest neighbour method sim- 

ply selects the value of the nearest point, ignoring other neighbouring points. Nearest 

neighbour is thus computationally inexpensive, but not very accurate. Bilincar interpolation 

computes the average of the four points nearest to the target pixel, weighted by their dis- 

tances. Bicubic interpolation goes further and uses 16 nearest points, and thus achieves a 

smoother surface approximation. Thus we use bicubic interpolation in the conversion of point 

data to raster data. 

The pixel size or resolution of the raster was determined based on three cons iderat ions, 

namely, resolution of the original coordinate data, computational costs and tile landmarks to 

be derived. The resolution given by the scanner was less than Imm, producing over 80,000 

pixels per back surface. Processing all these pixels is quite a computationally dernanding task, 

especially since most of the shape analysis operations will have to be repeated for each pixel. 

On the other hand, preliminary investigation of some of the landmarks that are to be detected 

revealed that the landmarks occupied an area of approximately 36 square millimetres or more 

on the back surface. Thus, using a very small pixel size may not necessarily improve dctec- 

tion of these landmarks. With these considerations, the pixel size ofthe raster grid was fixed 

at 2mm, resulting in approximately 40,000 pixels per back surface. This choice seems optimal 

for our purpose-the surface representation is fairly accurate compared with original resolu- 

tion and the number of pixels to be processed is reduced by half. With a choice of 2mrn pixel 

size, an area of 36 square millimetres will be partitioned into 9 pixels. This is desirable as 

most of the shape analysis operations involve solving over-determined systems of equations 

that require less than 9 equations to yield unique solution. For example, the surface fitting al- 

gorithm developed in Section 4.3.7.2 requires at least 6 equations for unique solution while 

the coordinate transformation model developed in Section 4.3.7.3 requires at least 7 equa- 

tions, allowing a Least Squares solution to be sought. 

5.4.4. System Design 

The conceptual model of the system has been designed using in the unified modelling ]an- 

guage (UML). The UML is a language for specifying, visualizing, constructing, and docu- 

menting the artifacts of software systems, as well as for business modelling (OMG, 1999). 

The UML was used because of its solid semantics, notation definitions and its wide accep- 
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tance as a standard model for designing software systems. The UML comprises a number of 

graphical elements that are combined to form models that provide multiple views of a system. 

Figure 5.43 shows a simplified UML model of the back shape analysis system. The UML 

model captures the main components of the system and their relationships. Each class or 

block in the model represents a specific component in the system that has a set of properties 

and operations to perform. For clarity, the model has been simplified to present only the most 

important components, without listing their attributes and properties. The system is being de- 

signed as a generic application for back shape analysis and visualization which can be &- 

ployed on any standard computer. 

Figure 5.43: UMI, model of the Back Shape Analyzer system 
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5.4.5. Choice of Development Tools 

it is one of the objectives of this investigation to implement the methods developed practi- 

cally by developing a software system that will enable automation of back shape analysis and 

visualization. Such software can be adapted into a practical clinical system. Tile following 

factors were considered in the selection of appropriate development tools: 

The development tools should provide high level primitives and data structures so that 

the methods and algorithms could be quickly implemented. 

Familiarity with the development tools to enable fast learning curve. This allows onc 

to concentrate on the core research issues rather implementation issues, 

Combination of various tools should be used where appropriate to enable rapid 1111- 

plementation of these algorithms. 

After consideration of the above factors, the following tools were selected: 

Microsoft Visual Basic: This is as the rnain environment for developing the sollwarc. 

Visual Basic was designed to be easy to learn and use and allows rapid development 

of simple and fairly complex applications with graphical user interfilces ((; Ul). 

Microsoft Visual C++: One major problem with Visual Basic 6 is that it is slow III 

processing complex operations such as large matrix operations and solving complex 

systems of equations, as is involved in many image processing tasks and Least 

Squares solutions. Processing typical back shape data will involve manipulation of' 

over 40,000 points which will cause noticeable perl'orniance issues for Visual Basic. A 

compromise solution was found by developing dynamic link libraries (DLL) in C+ + 

(which is much more eflicient) to handle the complex processing lasks. These DLl. s 

were developed using Microsoft Component Object Model (COM) protocol which al- 

lowed them to be easily plugged-into Visual Basic. 

ArcGIS Engine: ArcGIS Engine consists of'COM-cornpatible library developed by tile 

ESRI for developing GIS applications. This library provides support 11or displaying 

ESRI's Shapefile and raster data structures, as well as set of' geometric mallipulatiOn 

functions. 
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Tile system has all the functionalities of modem GUI applications, such as zooming, panning 

and rotating 3D model of the back. Figure 5.44 shows the 2D main interface of the sysICnL 

More details of the software system and its full functionalities are given n in Appendix A. 
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Figure 5.44: Main system interface 2D 

5.5. Chapter Summary 

This chapter has discussed three aspects of' this study, namely, error reduction, curvature 

vistialization and implementation issues. The need for effective error reduction was empha- 

sised and addressed via scanner calibration and experimental analysis to estimate the nature 

and method I*or optimal error smoothing. With stable curvature maps computed, various tcCh- 

m(Itics were developed Im visualizing the shape of the back, including continuous and dis- 

crete colotir maps, contour maps and 3D views. The visualizations revealed several anatomic 

regions ol'the back which highlighted the shape of'the back, which will enable visual explors- 

tion ol'back deformities without the need for physical manipulation of the subject. Lastly, ma- 
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jor design and implementation issues regarding data structures, development tools and system 

design were addressed in the last part of the chapter. 
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6. Landmark Detection and Surface Measurements 

6.1. Introduction 

In Section 5.3, various techniques were developed for visualizing the shape of the back. The 

curvature maps revealed several landmarks of the back that were characterised by extreme 

curvature, including several spinous processes and the PSIS landmarks. The purpose of this 

chapter is to develop a method for detecting these landmarks, derive the midline and compute 

surface measurements. The landmark detection algorithm developed here consists of fitting 

constrained surfaces to the neigbbourhood of the landmarks and analysing the surfaces to de- 

termine their peaks and troughs. The detected landmarks are then used as the basis for deriv- 

ing the midline of the back and subsequent computation of the surface measurements dis- 

cussed in Section 2.5. 

6.2. Detection of Back Surface Landmarks 

As demonstrated in Section 5.3, the curvature maps reveal several landmarks of the back rep- 

resented as regions of high positive and negative curvature values. Figure 6.1 shows a 3D 

view of the Gaussian map with the curvature values scaled to emphasise high curvature re- 

gions, which appear visually as hills, valleys, ridges or dimples on the Gaussian map. The 

peaks or troughs of these regions represent local maxima or minima which can be estimated 

mathematically. The magnification of the region containing the C7 landmark on the Gaussian 

map shows that this region has a convex shape whose marked peak represents the C7 land- 

mark. It is obvious that if the local surface containing the C7 landmark is isolated, the land- 

mark represented by the peak point can be evaluated mathematically. Thus, a method to de- 

tect the landmarks consists of two main steps, namely: 

9 Searching for all convex and concave regions in the curvature maps 

e Analysing each mathematically regions to estimate their peak or troughs 

These two steps are discussed in detail. 

I1 1" 1 



Landmark Detection and Surface Measurements 

Peak 

VOW 4wlb 
4fir 

r4lott 

'do* 
Left PSIS 

C7 

.., o. -- , 
, am 

AOW 10 -d 

Aft 

Figure 6.1: 3D View of Gaussian curvature map showing peak of region containing C7 landmark 

6.2.1. Searching for Local Convex and Concave Surfaces 

There are two basic surface types of interest, namely convex and concave regions. A local 

surface containing a landmark is defined using 3x3 pixels, which covers an area of 36 square 

millimetres on the back surface (see Section 5.4.3). To isolate convex and concave regions, 

the following simple rule is used in the search algorithm: 

Ký. > Ký convex region 

ic, < Ký concave region 
(6.1) 

where icjs the curvature of the central pixel and Ký is the curvature of the other pixels in the 

neighbourhood. This rule simply states that a convex region (or concave) is a region in which 

the central pixel's curvature is greater than (less than for concave) the curvature ol' all sur- 

rounding pixels in the neighbourhood. This criterion will return all convex and concave re- 

gions of the back, irrespective of whether or not they contain landmarks of interest. However, 

since the anatomic landmarks are usually characterised by higher curvatures, the search can 
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be restricted to those regions by applying a two-level thresholding to isolate regions of high 

positive and negative curvatures. We define high curvature regions as those regions with cur- 

vature Outside user-def mcd standard deviations from the mean or median (Figure 6-2). 
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Mean Extreme Extreme ý negative 
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tu 

ii 
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curvature 
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-4 -3 -2 -1 012345 
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Figure 6.2: Search regions defined by 3 standard deviations from the median 

The standard deviation threshold can be adjusted to detect landmarks of specific regions of 

the back. Figure 6.3 shows application of the two-level thresholding discussed above. The 

threshold is set to 0.002 standard deviations from the median in (a) and 0.005 standard devia- 

tions From the mcdian (b). The median is used instead of the mean because it is less suscePti- 

ble to outliers. In (a) the threshold is narrow, and thus more regions are detected whiles the 

larger threshold in (b) detects a flew regions. 
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Figure 6.3: Thresholding of Gaussian curvature map showing high curvature regions, threshold is set to 

(a) 0.002 standard deviations from the median (b) 0.005 standard deviations from the median 

6.2.2. Detection of Peaks and Troughs 

With the local convex and concave regions detected, their peaks or troughs can be evaluated 

mathematically. A simple method to detect the landmarks is to simply take the central pixel 

with the highest curvature value (see Figure 6.4a). This approach will however restrict the X 

and Y accuracy of the landmarks to be no higher than the resolution of the pixel size of the 

data (i. e. 2mm). To obtain a better estimate, we fit a second-order quadric to the local convex 

and concave regions using Equation 4.10 and the Least Squares method. The peaks and 

troughs of the approximating local surfaces are then estimated by examining the stationary or 

critical points on the surface. It is also important to properly constrain the surface fitting proc- 

ess so that the resulting surface passes through the centre pixel. This can be achieved by as- 

signing a higher weight to the central pixel in the Least Squares solution. We define a weight 

function based on the inverse square distance principle: the weight ofeach pixel ( viý' ) is in- 

versely proportional to the square of the distance (d ) of the pixel to the central pixel (Figure 

6.4b). This implies that pixels that are close to the central pixel will have higher weights than 
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those that are far. In Figure 6.4b, the weight of the central pixel is twice the weight of adja- 

cent pixels and approximately thrice the weight of diagonal pixels. 

wl, 

1 2mm 

2mm 0 

(a) 3x3 region containing landmark (b) Inverse distance weighting 

(6.2) 

Figure 6.4: Weight matrix based on the inverse square distance for a 30 window, pixel size is 2mm 

To deten-nine the peaks and troughs of the local surfaces, we examine the stationary (or criti- 

cal) points of the local surfaces. For a curve y=f (x) in two-dimensional space, the station- 

ary points are all points at which the first derivative of the function is zero (i. e. f '(x) =0) or 

undefined. There are three types of stationary points on a curve, namely, minimum, maximum 

and inflection point. Figure 6.5 summarises the properties of these three types of stationary 

points. 
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Figure 6.5: Stationary points on a curve (a) inflection point (b) local minimum (c) local maximum 

A stationary point x,, on a curve is a local minimum if f'(x) <0 for all x<x,, and f'(x) >0 

for all x>x, For a local maximum, f'(x) >0 for all x< x(, and f'(x) <0 for all x> x(, - An 

inflection point is a point at which the sign of the curvature of the curve changes. These are 

summarised in Equation 6.3. 
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f '(x) <0 x<x 0 
minimum point = f'(x) =0x= xý, 

f, (x»o X>X. 
f'(x)<0 x<x, 

) 

maximumpoint= f'(X)=o X=X, ) (6.3) 
f, (x»o X>X� 
f'(x)<0, f"(x»0 X<XO 

intlectionpoint= f'(x)=0,. f"(X)=0 X=X� 
f'(x»0, f"(x)<0 X>X� 

For a surface of the form z=f(x, y), the critical points occurs at all points where the gradi- 

ent (or the partial derivatives) is zero or undefined. The three types of the critIcal points on a 

surface are minimum, maximum and saddle points. A minimum (or maximum) point occurs at 

a point where the surface is locally below (or above) the height of the critical point, i. e. the 

function has a minimum (or maximum) in both x and y directions. With a saddle point, the 

surface has a local minimum in one direction and a local maximum in the other (see Figure 

6.6). 

Local Saddle point 
maxknurn 

.1 .3 

Figure 6.6; The critical points on a surface 

Now equating the partial derivatives of Equation 4.10 to zero yields the following: 
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x 
2bd - ce 2ae - dc (6.4) 0 c2- 4ab ' Y" 

c2 - 4ab 

The type of point can be determined using the second derivative test. Let the discriminant (D) 

be defined as D= FuFý,, - F,. Fý,, then the following hold: 

If D>0, Fr', >0 and F+F>0 the point is a local minimum Xv yy 91 

e If D<0, Fý,,, <0 and f,., + Fyy < 0, the point Is a local maximum 

0 If D<0, the point is a saddle point 

0 If D=0, then further tests needed 

Figure 6.7 shows the result of application of the algorithm to detect landmarks from the Gaus- 

sian curvature map (Subject 1). Several landmarks are detected, including C7, the left and 

right PSIS and several spinous process landmarks. The number of points detected depends on 

the standard deviation threshold: high threshold will detect fewer landmarks and vice versa. 

With no threshold, a total of 524 points are detected and at threshold of 0.002 standard devia- 

tions from the median, 219 points are detected. As the threshold increases, the search region 

becomes narrower and fewer points are detected; thus the threshold affects only the number 

of landmarks detected. This facility allows the user to experiment with different thresholds in 

real time for the purpose of landmark identification. 

It is important to note the detected landmarks in Figure 6.7 represent the peaks or troughs of 

all local convex and concave surfaces in the search region. Consequently, not all of the land- 

marks may represent bony landmarks of interest. The bony landmarks of the spine and back 

surface can easily be identified and labelled with the colour maps as the background. More- 

over, as already stated above, the standard deviation threshold can be adjusted to detect spe- 

cific bony landmarks which are usually characterised by extreme curvature values within their 

vicinity, as demonstrated in Figure 6.7b. 
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(b) Threshold = 0.003c, 219 landmarks detected 

Figure 6.7: Landmark detected from Gaussian curvature map at different standard deviation thresholds 

6.3. Comparison of Landmark Detection with Palpation 

In order to estimate the accuracy and precision oflandinarks detected from curvature maps, 

the results should be compared with some 'ground truth'. Ideally, comparison should be made 

with radiographs which establish the locations of the actual vertebrae. This will require full- 

length spinal radiographs and laser scan data from a number of subjects in order to carry out 

statistical comparison. However, in many cases, asking people to take full-length spinal ra- 

diographs for research purposes is unacceptable or undesirable. Moreover, radiographs only 

encode a two-dimensional view of the spine with low intensity resolution, which makes com- 

parison with 3D measurements difficult. Radiography can offer three-dimensional informa- 

tion only if at least two radiographs are acquired, as in CT scans. However, this option will 

only worsen the radiation problem. In view of these above problems, an alternative approach 

is to compare the results with palpation. Although palpation is error-prone and is expected to 

be less accurate than landmarks detected from the curvature maps, it can still give an indica- 

tion of the error limits of landmark detection and demonstrate the usefulness of the developed 

method. This option was thus chosen for validation purposes. 
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6.3.1. Subject Recruitment 

The subjects for the study were drawn from the staff and research students at Salisbury Dis- 

trict Hospital and Bournemouth University. Prior to the data collection process, an approval 

was obtained from the NHS Research Ethics Committee (REC) (a copy of the ethics accep- 

tance letter is attached in Appendix 13- 1). The basic principles of research ethics were adhered 

to during data collection. The principle of voluntary participation requires that people not be 

coerced into participating in the research. Also prospective participants must be fully in- 

formed about the procedures and risks involved in research and must give their informed con- 

sent to participate. In view of the these requirements, the recruitment process was done by 

means of poster and newsletter advertising asking for volunteers to contribute to the study. 

All volunteers were first given information about the study, intended purpose of the data and 

the scanning procedures including the need for undressing, positioning, the time required to 

complete the scan and safety issues. This information was given verbally and reinforced by 

printed material with questions invited at all stages. A copy of the information provided to 

participants is attached in Appendix B-2. At the conclusion of the information phase the sub- 

jects were asked if they wished to participate and their consent was recorded and signed by 

each party with the clear proviso that the subject could withdraw if they changed their mind 

(see Appendix B-3 for a copy of the consent form). To ensure anonymity of the participants, 

data collected for each person did not include any personal information such as name or ad- 

dress. In addition, all data files were saved under arbitrary names such as 'Subject V. 

The data collection was carried out in three rounds due to difficulty in recruiting volunteer 

subjects: in the first round, 12 volunteers were scanned, in the second round, 8 volunteers 

were scanned and 5 were scanned in the last round. In all, 25 'normal' subjects participated, 

consisting of 23 males and 2 females, all volunteers. Table 6.1 summarises the relevant in- 

formation about the subjects. 

Table 6.1: Information on subjects used for evaluation of landmark detection 

Statistic Age Height (cm) BMI (kg/m 2 
Min 24 167 58 21 
Max 48 202 107 28 
Range 24 35 9 8 
Mean 28 174 74 24 
Median 27 172 72 24 
St Deviation 5 7 2 
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6.3.2. Landmarks Selection 

Since palpation is error-prone, the landmarks used for the comparison should be easily palpa- 
ble with improved precision. The precision with which landmarks can be palpated on a sub- 
ject depends on factors such as the body mass index (BMI) of the subject and experience of 

the one performing the palpation. In other words, palpation, to a larger extent, is a subjective 

process. Consequently, it is it difficult to compare results from different subjects or even for 

different landmarks of the same person. In order to compare results of different subjects, it 

will be useful to be able to quantify palpation precision for the subjects. One way to achieve 

this is by palpating each subject several times and calculating standard deviation of the re- 

sults. However, this is unacceptable or undesirable as it would require subjects to be retained 

for extended time. To simplify these problems, a brief preliminary physical examination of 

one subject was conducted to determine which landmarks could be palpated with improved 

accuracy. From this preliminary examination, three landmarks were selected, namely, C7 and 

the left and right PSIS landmarks. The C7 is the most prominent spinous process in a large 

proportion of the population (z 60-70%, Cramer & Darby, 2005) while the PSIS landmarks 

are generally visible as a pair of dimples. SI could not be included in the study due to the fact 

that some of the subjects were uncomfortable with palpating the S1 landmark. C7 has as a 

convex shape while the PSIS dimples have concave shapes, thus at least both shape types 

were represented in the study. For the subjects examined, the C7 was found to be the most 

prominent landmark. 

6.3.3. Palpation and Data Acquisition 

The three selected landmarks (C7 and the PSISs) were palpated on all the subjects and 

marked with white circular dots by Dr Steve Crook who is involved in routine assessment of 

back deformities at Salisbury District Hospital. The shape and size of the markers were de- 

termined after several experiments with various maker shapes and sizes. Circular markers 

were chosen because it is easier to extract the location of their centres with improved accu- 

racy. The diameter of the dots used was 5mm--optimal diameter that could be accurately de- 

tected from the scanned data following preliminary investigations. The markers were glued 

onto the back surface by means of a medically approved gel JAC GEL). To permit compari- 

son of the markers and detected landmarks, four additional registration markers (denoted as 

G1, G2, G3, and G4) were also placed on selected landmarks for registration purpose, as 

shown in Figure 6.8. The transformation model developed in Section 4.3.7.3 requires at least 
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three common points with good geometric configuration for improved accuracy. Thus, the 

registration markers were chosen to be global to the back surface, with rectangular configura- 
tion. 

All I '" I- 
MW 

Figure 6.8: Landmarks used in experiment: C7, left and right PSIS; Cl-G4 are registration markers 

After subject preparation, two images were acquired for each subject, one with both the test 

and the registration markers and the other with only the registration markers. The first image 

was captured within 2.5 seconds after preparation and marker placement. The three test mark- 

ers were then carefully removed without disturbing the registration markers and the second 
image was taken. This allowed accurate registration and comparison of the two images to be 

carried out. 

6.3.4. Data Analysis 

In order to make the comparison, the locations of the makers and the registration points had to 

be extracted from the datasets. Due to random errors, it was difficult to accurately extract the 

locations of the makers from the raw datasets so both datasets were first smoothed with a 

Gaussian filter at u=2.25. The X and Y coordinates of the centres of the markers were then 

extracted from the first image and the coordinates of the registration markers (G I -G4) were 

also extracted from both images. For each subject, the mean, Gaussian and curvedness curva- 

ture maps were computed, and the landmarks were detected using the algorithm developed in 

Section 6.2. 
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To compare the landmarks detected from the curvature maps with the marker positions, it was 

necessarily to transform them into the same coordinate system using the registration points. 

For each subject, the two corresponding datasets were registered by transforming the second 

image into the coordinate system of the first image using the 7-parameter transformation 

model discussed in Section 4.3.7.3. The transformation was accomplished with a mean RMSE 

of 1.33xl 0-8 for all 25 subjects, which was very accurate. The details of the transfortnation 

process for each subject are given in Appendix C. 

The deviations between the marker positions and the transformed curvature landmarks were 

then computed by subtracting the later from the former. The results of this experiment are 

shown in Table 6.2 which gives the root mean squares (RMS) of the deviations between X 

and Y coordinates of the markers and their corresponding curvature positions. The RMS sta- 

tistic is calculated by first squaring the deviations, finding the mean of the squared deviations 

and taking the square root. For a random variable that has both positive and negative values, 

the RMS statistic (known as quadratic mean) is a useful statistics than the arithmetic mean. 

Table 6.2: Comparison of marker positions with curvature positions in the frontal plane, showing the 
RMS of deviations in X and Y (in millimetres) 

Gaussian Mean Curvedness 
AX AY m AY AX AY 

C7 0.8371 0.8823 0.8203 0.8802 0.8305 0.9810 
Left PSIS 1.3252 1.3991 1.3328 1.3957 1.7434 1.8424 
rRlgWtýýPSIS 1 0 ý5 E18 5 0.7196 0.7531 1.09221 1.7651 1.15761 

6.3.5. Discussion of the Results 

The RMS values given in Table 6.2 represent the average deviations between the markers and 

curvature positions, zero being a perfect match. Thus, an RMS value close to 0 indicates a 

better match. If one assumes the markers as the 'ground truth', then the RMS values give the 

accuracy of landmark detection compared to palpation. 

These results indicate that both X and Y accuracies were slightly higher for C7 than the PSIS 

landmarks. One possible explanation for this is that usually C7 has a large spinous process 

which produces relatively prominent peak on the back and thus could be seen and palpated 

with improved accuracy. The PSIS landmarks appear as a pair of dimples which have rcla- 

tively shallow depression, making palpation less accurate. Accuracy in X was also generally 

higher than accuracy in Y for all landmarks and curvature maps. Perhaps, this could be partly 
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attributed to factors such as a slight flexion of the neck which can induce skin movement in 

Y-axis more than in X. Breathing can also cause unequal skin movement in X-axis and Y- 

axis. Although patients were instructed to stand still and hold their breadth during data cap- 

ture, it is impossible to perfectly control all the factors involved. 

In comparing the accuracy obtained from the curvature maps, the mean RMS was for all three 

landmarks was 0.89 in X, 1.00 in Y for the Gaussian curvature map; 0.97 in X, 1.12 in Y for 

the mean curvature; and 1.45 in X, 1.33 in Y for the curvedness map. Thus, the accuracies of 

the curvature maps are comparable although the Gaussian curvature gave slightly more accu- 

rate match than the mean and curvedness maps. Moreover, there were slight but noticeable 
differences between RPSIS and LPSIS on the mean and Gaussian curvature maps compared 

to the curvedness map. However, no geometric explanation could be found for this, and more 

experiments with a larger sample size is required to make any conclusive inference. Combin- 

ing the results of all curvature maps, C7 landmark was detected with accuracy 0.83mm in X, 

0.91mm in Y; LPSIS with accuracy of 1.47 in X, 1.55 in Y and RPSIS with accuracy of 1.01 

in X, 0.99 in Y. Combining the RMS values for all three landmarks and curvature maps, the 

overall mean accuracy for landmark detection was approximately 1.10mm in X and 1.15mm 

in Y. 

These results were rather surprising given the reliability with which landmarks can be pal- 

pated. Preliminary investigation with one subject showed that palpation of the three land- 

marks (C7, LPSIS and RPSIS) was expected to be perfon-ned within a precision of approxi- 

mately 4 millimetres. However, it is important to note that the reported accuracy of landmark 

detection depends on the accuracy with which the two datasets were registered. The registra- 

tion model developed in Section 4.3.7.3 uses a scale factor to correct for unequal scaling in 

u ma the coordinate systems of the two datasets. And since post re changes appear to be the jor 

sources of random errors during data capture (see Section 6.4), accounting for scale changes 
is expected to improve registration. Moreover, the markers were extracted after smoothing 

operations which reduce random errors by Gaussian averaging of neighbouring pixels. Thus, 

the locations of the makers represent their average locations after smoothing, which could 

have contributed to the higher accuracy. 

The main limitation with this experiment is that the sample size was rather small (i. e. less 

than 30 subjects), with badly balanced gender ratio (only 2 females out of 25). Moreover, the 
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subjects did not include adolescents (minimum age 24) in whom scoliosis has higher inci- 

dence rates. Due to the nature of the experiment, it was very difficult recruiting volunteers, 

particularly female subjects. The experiment required subjects to undress their backs for the 

scan and it was necessarily to accurately palpate the landmarks and mark them with the white 

dots. All these procedures took approximately 3 minutes to complete. Although, a gown was 

provided to cover the front part of the body, even some of the male subjects felt uncomfort- 

able. This limited the experiment. Of the 25 subjects examined, 76% were within what is gen- 

erally considered as the normal weight range (BMI 21-25) while the other 24% were over- 

weight (BMI range 25-30). No significant differences in accuracy were observed between the 

two BMI groups, between the genders or between the three separate data collections on dif- 

ferent days and locations. However, this could be due to the smaller sample size, and further 

studies involving more subjects may indicate otherwise. Ignoring the sample size, the result 

does indicate that the method could work well with subjects classed as normal weight and 

overweight. 

6.4. Precison of Landmark Detection 

There are two important aspects of the quality of every measurements process, namely, accu- 

racy and precision. Accuracy refers to the closeness of a measured quantity to a known stan- 

dard (assumed or true value). Precision on the other hand describes consistency among meas- 

urements, i. e. it is a measure of the closeness of a set of repeated measurements to each other 

and is usually measured by the standard deviation. In the previous section, the accuracy of- 

landmark detection was assessed by comparison with palpation (which was used as bench- 

mark). To determine the precision of our landmark detection algorithm, one subject was 

scanned twenty times (Subject 1: age 30, weight 70kg, height 170cm, BMI 24). The subject 

moved freely between scans to ensure some variability in posture. The twenty datasets were 

smoothed with a Gaussian filter (a= 2.25 ), and the Gaussian curvature map was computed 

and the landmarks were detected according. Twenty landmarks consisting of several spinous 

processes including C7, SI and the left and right PSIS landmarks were then selected. Then 

using the transformation model developed in Section 4.3.7.3, all the datasets were trans- 

formed into the coordinate system of the first dataset and the coordinates of tile selected 

landmarks were compared. Table 6.3 gives the standard deviations of the transformed coordi- 

nates. 
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Table 6.3: Standard deviations of 20 landmarks detected from 20 Gaussian maps of Subject 1 

Point Std AX Std AY 
1 (C7) 0.2024 0.24AA 

2 0.7285 0.8223 
3 1.3401 1.2110 
4 0.5820 1.2102 
5 1.4166 0.8539 
6 0.6019 0.4336 
7 1.5527 1.3728 
8 0.8391 1.2000 
9 0.2035 0.6813 
10 0.5616 1.9298 
11 0.2032 0.4289 
12 0.1241 0.2766 
13 0.1939 0.2920 
14 0.2131 0.3983 
15 0.2790 0.6096 
16 0.2713 0.7156 
17 0.3763 0.7900 

18(sl) 0.7536 0.5147 
19(LPSIS) 0.7540 1.3332 
20(RPSIS) 0.39881 0.5304 

Mean 0.792ý 

The mean of' the standard deviations in Table 6.3 was calculated to be 0.58mm in X and 

0.79mm in Y. The highest precision was obtained for C7 i. e. 0.20mm and 0.24mm in X and Y 

respectively. Compared to these results, the accuracy obtained via comparison with palpation 

was quite high. 'rhis could be attributed to the fact that during the palpation experiment, the 

subjects remained in the same posture as much as possible between the two scans in order to 

maximise the registration accuracy. In the case of the precision environment, the subject 

movc(I freely between the twenty scans, introducing some variability in posture. Thus, it ap- 

pears (hat posture changes during data capture are the major source of random errors. 
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6.5. Comparison with the Work of Drerup, and Hierholzer 

The closest work relating to landmark detection from curvature maps of' tile back is that of' 
Drerup and Hierholzer (1985,1987). In Drerup and Ilierholzer (1985), tile authors used a (fit'- 
fcrent method to detect the C7 landmark using the Gaussian curvature map computed froin 

surface reconstruction of moird topographs. With their method, tile authors first estimate the 

C7 landmark by the pixel with the highest Gaussian curvature and improve this estimate by 

averaging all points within a defined neighbourhood of' C7. I'lie averaging is pcribrillcd by 

calculating the centroid of all points with Gaussian curvature above .1 defined threshold, 

weighted by the Gaussian curvature. The authors compared their results with palpation In- 

volving twenty subjects and reported the mean and standard deviation ol'the dit'llcrences be- 

tween radiographic and surface measurements as X( 1+2.5nini) and Y(I1 61nin). 

In order to compare their results with that obtained in this investigation, tile root 111can square 

deviation should be deduced. The arithmetic mean is not a good statistic for a random varl- 

able with positive and negative values, since they will cancel out yielding a value that is gcn- 

erally close to zero, which doesn't represent a perfleet match. Thc RMS can bc calculawd 

from the mean and standard deviation as follows: 

NFy2 ++ 2-52 ý 2.69mm 

V 
Fj7 

+ (T, 2+O. W = 6.09min 

In another paper (Drerup & I-lierholzer, 1987), the authors discuss an improve(] method for 

back shape analysis based on asymmetry of the horizontal profiles produced froill raster- 

stereography (see Section 3.3.3.2). From shape analysis of these profiles, tile so-called sylil- 

metry line is derived, which approximates the back midline. In order to detcrtnine the syni- 

metry line, a function of lateral asymmetry is defined in terms of' the local curvature at any 

point on the back surface. Consider a horizontal profile passing through a point 11 oil tile back 

surface such that P divides the profile into left and right parts. I-or each profile, a measure of 

asymmetry is calculated by comparing the curvature of'points lying symmetrically to tile lell 

and right of the symmetry point P using Equation 6.5, 

a= (H,, 
-H, )+(G' 

-2G 
2G2 cos 2c + G, ')12 (6.5) 1 1, R 
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where HL and HR are the mean curvatures of corresponding left and right points; G is the 

difference between the principal curvatures and --is the angle difference between the corre- 

sponding principal directions. 

The mean asymmetry for the entire profile is then calculated as in Equation 6.6. 

I 
adv 

sf 
(6.6) 

where s is the length of the integral which extends from P over the left part of the horizontal 

profile (excluding those parts not having a corresponding parts on the right). Figure 6.9 shows 

a typical example of the asymmetry function computed from the profiles of the back surface 

and its minima. 

:. 10, ... 

(a) Back suraface 
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(b) Asymmetry function 
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(c) Minima of assymetry 
function 

Figure 6.9: Typical back surface, the symmetry function and its minima (Drerup & Hierholzer, 1987) 

The minima of the asymmetry profiles are determined and the symmetry line is constructed 
by searching for a sequence of minima using a set of geometric constraints. Figure 6.9 (C) 

shows derived minima of the asymmetry function. Using the derived symmetry line as the ba- 

sis, four anatomic landmarks (C7, LPSIS, RPSIS and SI) were then estimated from the 

asymmetry function and compared with their corresponding radiographic positions. The accu- 

racy of landmark detection was determined using the mean and standard deviation of length 
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differences between radiographic and surface measurements, resulting in X (LPSIS-RPSIS): 

-1.5±6.0 mm; Y (C7-Mid-point of PSIS) 2.3±9.9 mm. The precision of the landmark local- 

ization from the asymmetry function was determined by repetitive measurements of the same 

subjects as 1.1min which is quite high. The accuracy results represent rather lower accuracy 

than that obtained in the previous study by the same authors. Perhaps, this could be attributed 

to the distances not being measured perfectly in X and Y axis, resulting in diagonal distances. 

In most cases, the line connecting the PSIS landmarks will not perfectly align with the X-axis 

of the global coordinate system. Consequently, without correction, the derived statistic may 

represent a diagonal distance which may contribute to the lower accuracy obtained. More- 

over, no attempt was made to correct for unequal scaling in the two coordinate systems. 

6.5.1. Concluding Remarks 

In comparing the landmark detection algorithm of Drerup & Hierholzer (1985,1997) with the 

algorithm developed in this investigation, the following concluding remarks can be made. 

Although a 3D surface can be constructed from the horizontal profiles of rastestercographic 

data, the shape analysis method used by Drerup and Hierholzer (1987) still is tied to the na- 

ture of the underlying profiles, leading to a more complicated and computationally expensive 

analysis. The authors derive a function that expresses the idea of asymmetry of the corre- 

sponding points along the horizontal profiles and aggregate the results over the entire surface. 

The method developed here exploits the curvature maps directly to detect the landmarks, and 

thus is simple and less computationally demanding. Moreover, our method detects landmarks 

for the entire surface, rather than only for certain regions of the back as the asymmetry func- 

tion of Drerup & Hierholzer (1987) reveal in Figure 6.9(c). This implies that not all detected 

points may be landmarks of interest in the case of our method. However, the standard devia- 

tion threshold can be altered to detect landmarks with most extreme curvature, which are 

typically the bony landmarks. Due to the simplicity of this approach, the operation can be per- 

formed on-the-fly, with different threshold values. 

The irnproved accuracy reported in this investigation can be attributed to several factors, in- 

cluding the following: 

Effective error smoothing. As discussed in Section 5.2, error smoothing is a critical 

aspect of curvature computation since the results are susceptible to random errors in 
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the original data. And since all measurements contain random errors, an effective 

method must be found to reduce these errors. To determine optimal method for our 

data, a number of experiments were conducted to estimate error distribution and to es- 

timate the amount of smoothing, leading to more stable results. 

Application of a rigorous registration algorithm. To compare surface data taken at dif- 

ferent times, accurate registration is crucial. In the case of the human back, registra- 

tion is further complicated by the flexible nature of the human body, which can cause 

unequal scaling. This implies that distances measured in one coordinate system will 

not necessarily be equal to corresponding distances in the other system. The registra- 

tion algorithm developed in Section 4.3.7.3 attempts to correct this by incorporating a 

scaling factor (uniform in all three axes), thereby improving the accuracy of the regis- 

tration. The algorithm can further be improved by incorporating non-uniform scaling, 

but this will introduce more parameters into the model. 

Evidently, the higher accuracy and resolution of the orIginal back shape data will have 

contributed to the overall accuracy of the results. The resolution of our raster data was 

2mm compared with 7.5mm resolution used by Drerup & Hierholzer (1987). 

Our landmark detection combines results from three curvature maps, namely, mean, 

Gaussian and curvedness maps. There are various measures of surface curvature and 

while each can be useful, combining the results from various curvature maps can Sig- 

nificantly improve the accuracy of landmark detection. 

The algorithm developed here is simple, straight forward, is based on direct mathe- 

matical analysis of the curvature maps and application of a weight matrix to constrain 

the least square solution, thereby leading to improved estimates. 
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6.6. Derivation of the Back Midline 

The back surface midline is defined by the projection of the spinous processes onto the back 

surface, and is thus the closest surface approximation of the vertebra body line. Accurate 

derivation of the midline therefore depends on accurate detection of the spinous process 

landmarks. In this study, we derive the midline by fitting a smooth curve through the detected 

spinous process landmarks via the usual method of constrained Least Squares. There are three 

things that require consideration: 

Selection of type of curve for approximating the midline 

Selection of spinous process landmarks to be used for derivation of the midline 

e Formulation of the weight function for constraining the fitting process 

6.6.1. Selection of Type of Fitting Curve 

There are a number of curves that may be used to approximate the midline including polyno- 

mials and trigonometric functions. Since most common types of frontal spinal curves encoun- 

tered are either a single, double or triple curves, it is proposed that a polynomial up to the 

fourth degree will be adequate to describe the midline. Figure 6.10 shows examples of poly- 

nomial functions of varying degrees-degree I corresponds to a straight line, degree 2 to a 

single curve, degree 3 to a double-curve and degree 4 to a triple curve. The required degree of 

polynomial to be fitted can be selected based on the general shape of the midline which can 

be obtained from the colour visualizations. The curve fitting process is first perfon-ned in the 

frontal plane to derive the 2D midline. To obtain a 3D curve, the resulting 2D curve is super- 

imposed on the smooth version of the original surface, and the Z-coordinate is interpolated 

from this surface. 
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Figure 6.10: Examples of polynomials of varying degrees 

6.6.2. Landmark Selection 

To derive the midline, a number of spinous processes should be selected from the landmarks 

detected in Section 6.2. Since it is computationally expensive to select the landmarks auto- 

matically by searching, the current implementation relies on the human operator to select the 

spinous processes using the mouse. These landmarks can easily be identified using the colour 

visualizations of the curvature maps as the background. The operator selects the landmarks by 

drawing an irregular polygon using the mouse around the points (Figure 6.11). To allow the 

curve fitting to be properly constrained, the selection should include the C7 and SI end 

points, which are usually detected. The PSIS landmarks are also required to compute the gen- 

cral alignment of the spine to the pelvis. 
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Figure 6.11: Landmark selection for midline derivation, polygon encloses selected landmarks 

6.6.3. Weight Function 

Since the Least Squares solution can be influenced by extreme or erroneous points that devi- 

ate considerably from the true curve, it is important to properly constrain the solution to en- 

sure robust results. Two factors affect the behaviour of the fitted curve, namely, the degree of 

the polynomial and the weight function. The curve degree determines the nature of the result- 

ing curve within the configuration of the selected points. The degree of the curve is deter- 

mined using the general shape of the midline but can be changed by the user. The weight 

function is used to constrain the Least Squares solution so that the resulting midline passes 

through the C7 and SI spinous processes which mark the spinal region of interest. This is 

achieved by assigning higher weights to these two end points and lower weights to all other 

participating points. We formulate the following weight function based on these considera- 

tions: 

0.45 for C7 and SI 
0 yn for all other points 

(6.7) 

The function in Equation 6.7 assigns much higher weights to C7 and S1 (90% of the weight) 

and the lower weights (remaining 10%) to the rest of the points. The motivation for assigning 

higher weight to C7 and SI is that they mark the end points of the spine and, and that C7 in 

197 



Landmark Detection and Surface Measurements 

particular can be detected with higher accuracy due to its prominent projection to the surface. 

This weight function constrains the Least Squares solution, making it less susceptible to the 

influence of extreme points, even if the selection polygon is widened to include points which 

are not on the spine. 

6.6.4. Implementation and Results 

To implement the above algorithms, a set of 30 landmarks were selected by drawing a po- 

lygonal region around the detected landmarks in the furrow of the back (as in Figure 6.11). 

Then using a third degree polynomial, the system of equations is developed using the general 

relation in Equation 6.8: 

f (x) = a32 + a2X 
2+a, 

x' + a, (6.8) 

With a total of 30 points and 4 coefficients to be estimated, there are 36 degrees of freedom. 

One equation is written for each pair of (x, y) data point and the weight matrix is formed. The 

solution is then obtained using the Least Squares method. Table 6.4 gives the estimated coef- 

ficients with their confidence intervals computed at 95% confidence level. 

Table 6-4: Coefficients of polynomial fit with 95% confidence interval 

Coefficients Value Lower Bound Upper Bound 
a3 6.50E-08 -1.504e-007 2.805e-007 
a2 0.0002624 0.0002404 0.0002845 
al -0.1012 -0.1127 -0.08978 
aO -19-3662 -2040 

The original data points, estimated data points, the residuals and the standard errors of the es- 

timates are presented in Table 6.5. A graphical display of the original data points and the fit- 

ted polynomial is also shown in Figure 6.12. 
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Table 6.5: Results of polynomial fitting with residuals and standard errors for estimated function 

Point ID 
Dependent 

x 
Independent 

y 
Fitted 

9 
Residuals 

Y- 9 
Std. Error of 

Function 
1 (C7) 248.3095 -27.3155 -27.3289 -0.0134 0.3089 

2 223.0072 -31.4910 -28.1714 3.3197 0.4905 
3 213.3047 -25.4633 -28.3902 -2.9269 0.6036 
4 185.1165 -31.1707 -28.7024 2.4683 0.8665 
5 163.8284 -27.7761 -28.6232 -0.8471 0.9859 
6 154.3444 -27.4559 -28.5018 -1.0459 1.0187 
7 145.5340 -25.5327 -28.3418 -2.8091 1.0389 
8 132.9475 -31.7454 -28.0350 3.7104 1.0523 
9 123.2559 -29.2698 -27.7365 1.5333 1.0518 
10 109.4590 -30.1864 -27.2188 2.9676 1.0375 
11 94.0342 -27.8143 -26.5121 1.3022 1.0072 
12 83.6663 -23.8020 -25.9619 -2.1599 0.9813 
13 68.7304 -23.4799 -25.0640 -1.5841 0.9407 
14 54.9722 -20.9829 -24.1280 -3.1452 0.9049 
15 8,6371 -19.1399 -20.2211 -1.0811 0.8532 
16 3.0370 -17.2374 -19.6713 -2.4338 0.8574 
17 -8.7872 -18.3971 -18.4563 -0-0592 0.8734 
18 -17.3884 -18.0269 -17.5267 0.5003 0.8904 
19 -26.6432 -19.4077 -16.4836 2.9241 0.9124 
20 -46.4601 -15.3812 -14.1023 1.2789 0.9663 
21 -60.1738 -12.6086 -12.3377 0.2708 1.0028 
22 -78.7045 -10.0200 -9.8037 0.2163 1.0416 
23 -88.0221 -7.1401 -8.4653 -1.3251 1.0534 

24 -97.5416 -8.2458 -7.0539 1.1919 1.0584 
25 -108.5884 -4.7365 -5.3607 -0.6242 1.0537 
26 -122.9544 -1.9416 -3.0709 -1.1293 1.0276 
27 -149.5413 -0.8307 1.4257 2.2564 0.9087 
28 - 71.1173 6.3585 5.3175 -1.0410 1 0.7354 
29 
- 

-182.7560 6.7317 7.5057 0.7740 1 0.6132 
YO (S 1) -218.2487 14.5617 14,5553 -0.0065 1 0.3092 
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Figure 6.12: Results of the polynomial fit 

6.6.5. Evaluating the Goodness of Fit 

To evaluate how well the chosen model (i. e. constrained polynomial) fits the data (the spinous 

process landmarks), the goodness of fit should be analysed. 

Residual Analysis 

The first step in evaluating the goodness of fit is to analyse the residual data which are ap- 

proximation of the random errors in the data. From Table 6.5, all the residuals lie within the 

range -3.4-3.7mm. The mean of the residuals is approximately 0.0827 and the standard de- 

viation is less 2mm. This lies within the pixel size of the original data, indicating the function 

r- 1 170 1 



Landmark Detection and Surface Measurements 

fits the data quite well. A plot of the residuals relative to the fit (represented by the vertical 

zero line) is shown in Figure 6.13. The residuals are randomly scattered about the fit (i. e. they 

do not show any significant skewed distribution), which indicates that the model describes the 

data well. 
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-150 . 

-200- 

-250 - 
-4 -2 024 

x 
Figure 6.13: Residual plot, error is measured in X-axis 

Goodness of Fit Statistics 

The goodness-of-fit statistics have been computed and presented in Table 6.6. The sum of 

squared errors (SSE) which represents the total deviation of the original data from the fit is 

0.39; and the root mean square error which represents the mean deviation of the original data 

values from the fit is only 0.12, indicating that the model fits the data well. Both R-square and 

adjusted R-square also indicate a good fit since they are approximately equal to 1. The refer- 

ence variance or the variance of the random error is also estimated as 0.0 15. 
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Table 6.6: Goodness of fit statistics for polynomial fitting 

Goodness of Fit Statistics Value 
Sum of Squared Error (SSE) 0.3870 
Root Mean Square Error (RMSE) 0.1220 
R-Square 0.9992 
ýdjusted R-Square 09991 
lReference Variance 0.0149 

Confidence Boundsfor the Fitted Function 

The standard errors for the fitted function are listed in the sixth column of Table 6.5. These 

values can be used to construct confidence bounds for the fitted function at a specified confl- 

dence level, using Equation 4.43. The confidence bounds captures the region within which the 

true values of the fitted function are expected to lie had there been no errors in the original 

measurements and had the function fitted the measurements perfectly well. Table 6.7 gives 

statistical summary of the computed standard errors for the fitted function. The mean standard 

error of the fitted function is 0.88, estimated within ±0.21 precision (standard deviation). This 

represents the average error in the estimated function, propagated from the errors in the origi- 

nal measurements. This value is small which is indicative of the fact that the model fits the 

data well. This also implies the propagated errors will have minimal effect in any linear, an- 

gular and area measurements computed from the derived midline. 

Table 6.7: Statistics of the residuals, and standard errors of fitted function 

Statistic Standard Error of fitted Function 
Minimum 0.3089 
Maximum 1.0584 
Mean 0,8815 
Median 0.9535 
Std Dev 1 0.2124 

Figure 6.14 shows a graphical display of the confidence bounds for the estimated function: (a) 

shows the confidence bounds constructed with the original standard error values and in (b) the 

standard errors used to construct the confidence intervals are scaled by a factor of 5 in order 

to make the graph visible. The confidence region is narrow at the end points (C7 and SI) due 

to the assignment of higher weights to these points. 
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(a) Confidence bounds - original values (b) Confidence bounds - scaled by a factor of 5 

Figure 6.14: Confidence bounds for fitted function (a) original values (b) scaled values 

6.6.6. Repeatability of the Goodness of Fit Statistics 

The goodness of fit statistics describes how well the model (i. e. constrained polynomials) fits 

the detected spinous processes. To assess the repeatability of the GOF statistics derived above 

and hence the suitability of constrained polynomials in describing the back midline, the proc- 

ess was applied to the same twenty five subjects used in the landmark validation experiment. 

The curvature maps of each subject were computed at a smoothing level of 2.25 and the 

landmarks were detected. For each subject, a number of spinous process landmarks were se- 

lected by drawing a polygonal region around the points. The selection always included the C7 
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and SI landmarks. A polynomial of the third degree was then f-itted to the selected landmarks, 

and the GOF statistics were computed. Table 6.8 gives the experimental results, together with 

statistical summary in the lower part of the table. The mean and standard deviation respec- 
tively represent the estimate and the precision of the GOF statistics for all 25 subjects. That is, 

the mean and standard deviations of the GOF statistics are: SSE (1.39±0.83), RMSE 

(0.23±0.06), R Squared (0.96±0.08) and Adjusted R Squared (0.95±0.09), all in millimetres. 
These statistics indicate that at least for the subjects examined, constrained polynomial fits the 

midline well. 

Table 6.8: Repeatability of goodness of fit statistics for twenty five subjects 

Subject SSE RMSE R Squared Adj. R Squared 
1 0.8534 0.1633 0.9897 0.9884 
2 3.6390 0.3671 0.6721 0.6217 
3 3.6351 0.3603 0.9555 0.9489 
4 1.4921 0.2194 0.8012 0.7747 
5 0.7128 0.1723 0.9927 0.9914 
6 0.4016 0.1198 0.9522 0.9451 
7 1.7391 0.2949 0.9626 0.9547 
8 1.3970 0.2318 0.9822 ' 0.9794 
9 1.0662 0.2201 0.9888 0.9867 

10 0.9642 0.2047 0.9871 0.9847 
11 1.0290 0.2327 0.9895 0.9871 
12 

_ 
0.8562 0.2123 0.9910 0.9891 

13 0.9770 0.2397 0.9928 0.9910 
14 0.9275 0.2053 0.9964 0.9958 
15 1.4550 

- 
0.2462 0.9836 0.9808 

16 1.4i 99 0.2602 0.9920 0.9905 
17 1.2862 0.2475 0.9926 0.9911 
18 1.16 0.2118 0.9884 0.9865 
19 1.55iý 0.2405 0.9883 0.9865 
20 1.1084 0.2065 0.9913 0.9899 
21 1.8277 0.2704 0.9702 0.9652 
22 0.3329 0.1203 0.9981 0.9978 
23 0.63121 0.1734 0.9920 0.9904 
24 0.5780 0.1901 0.9852 0.9812 
25 0.8649 0.1898 0.9950 0.9941 

Minimum 0.3329 0.1198 0.6721 0.6217 
Maximum 3.6390 0.3671 0.9981 0.9978 
Range 3.3061 0.2474 0.3260 0.3761 

an 1.2774 0.2240 0.9652 0.9597 
Std Deviation 0.8091 0.05901 0.07231 0,082ý 
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Figures 6.15 through 6.17 are more examples showing detected landmarks and derived mid- 

line superimposed on the Gaussian curvature maps for Subject 9 (male, BMI 25kni/m 2 ), Sub- 

ject 25 (female, lowest BMI in group) and Subject 2 (male, highest BM I 28km/m 2 in group). 
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Figure 6.15: Detected landmarks with derived midline superimposed on the Gaussian curvature map 
(Subject 9, BMI 25 k g/M2) 
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Figure 6.16: Detected landmarks with derived midline superimposed on the Causslan curvature map 
(Subject 25, fernale, lowest BMI 22kg/m2) 
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Figure 6.17: Detected landmarks with derived midline superimposed on the Gaussian curvature map 
(Subject 2, male, highest BMI 28kg/M2) 

6.7. Computation of Surface Measurements 

This section discusses the computational techniques used to derive the surface measurements 
based on the derived midline. These measurements were discussed in Section 2.5. 

6.7.1. Spinal Curves 

The back inidline could be made up of a single, double or even triple curve depending on the 

extent of the deformity. Figure 6.18 shows examples of a single-curve and double-curve mid- 
line. In order to simplify the calculation of surface measurements, we define a simple curve of 

the midline by using three points consisting of a combination of the following points: C7, SI, 

and the stationary points (derived in Section 6.2.2). For example, the single curve shown in 

Figure 6.18(a) is bounded by C7, the minimum point (PI) and the end point (S I). The double 

curve midline shown Figure 6.18(b) has two sub-curves: the upper sub-curve is defined by 

C7, the minimum point (PI) and the inflection point (1); while the lower sub-curve is defined 

by the inflection point (1), maximum point (P2) and S 1. A simple curve must always have one 
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and only one local minimum or maximum. These definitions allow us to evaluate the proper- 

ties of each individual curve as well as the entire midline. 

I- 1ý /v 
End Point (C7) End Point (C7) 

Curve Minimum (Pl) 

End Point (S1) 

V A- 

(a) Single curve 

Minimum (Pl) 
Upper 

sub-curve 

Inflection Point (1) 

------------------------- 

Maximum 
(P2) Lower 

A sub-curve 

End Point (SI) 
A 

(b) Double curve 

Figure 6.18: Definition of midline curves using stationary points 

6.7.2. Normal and Tangent Vectors 

Normal and tangent vectors are useful geometric shape descriptors which are required for the 

computation of various surface measurements. For example, the Cobb angle of a simple curve 

of the midline can be calculated as the angle between the normal vectors at the end points of 

the curve; while the Ferguson angle is the angle between the tangent vectors. The normal vec- 

tor (or simply the normal) is a vector that is perpendicular to a curve or surface (i. e. meet the 

curve or surface at right angle). A tangent vector is a vector that passes through a point on the 

curve, meeting the normal at right angle (Figure 6.19). 
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(a) Normal and tangent vectors to a curve 
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(b) Normal and tangent plane to a surface 

Figure 6.19: Normal and tangent to (a) a curve (b) a surface 

Aý 

Figure 6.19 shows non-nal and tangent to a curve and a surface. Let PO (xO, yo) be the point on 

the curve y =. f (x) shown in Figure 6.19(a), then the equations of the normal and tangent 

lines at P,, are given by Equation 6.9. 

tangent line: y=f (a) + f'(a)(x - a) 

non, nal line: y=f (a) +I (x - a) 
(6.9) 

f '(a) 

On a surface, the normal vector gives a measure of the orientation of the surface at that point. 

Let P(, (xo, yo) be on the surface z= F(x, y) shown in Figure 6.19(b); then the normal vector 

can be calculated using Equation 4.2.5. The surface has a non-vertical tangent plane at 

P, )(x,,, yo) with the following equation: 

f Y. ) + f, (x., yý, )(x - xo) +4 (yo, yo)(y - Yo) 

6.7.3. Angular Measurements 

The following methods are used to compute the angular measurements discussed in Section 

2.5. The angle between any two intersecting lines can be calculated using vector mathernatics. 

In Figure 6.20(a), the angle between the lines PP, and PP3 is given by the angle between 

their respective direction vectors a and b. 
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coso= - 
a, a2 + blb2 + CIC2 

222+ b2 + b2 ýa 
I' +bý Va 
I +b, ' +b' 222 

-XIIY2 -YIIZ2 -z, ) and b(b,, b2, b3) 2 where a(a,, a2, a3)' 
(x = (X3 

- XPY3 - YI I Z3 - ZI 

The angle between a line and a plane is defined by the orientation of the non-nal vector to the 

plane at the point of intersection. The angle between any two intersecting planes, known as 

'dihedral angle' is given by the dot product of their respective normal vectors. Let the normal 

vcctors of the planes shown in Figure 6.20(b), be a, =(a,, h, c, ) and a2= (a2 , c, ) respec- 

tively. Then, the dihedral angle can then be calculated using Equation 6.11. 

112 (X2J', 
' 

Z, ) 

a 

P, (x,,. '-,. z, ) 

0 
---- ---------------- 

Angle between two lines 

Figure 6.20: Angle between two intersecting (a) lines (b) planes 

6.7.4. Linear Measurements 

The linear distance between any two points and P, (X2'Y2'Zl) is calculated as the 

Euclidean distance between the points: 

j(x2 

- x, Y+ (y2 --y, y+ (z2 - -,, 
ý 

In two-dimension, the distance is obtained by simply setting the Z-dimcnsion to zero. To ob- 

tain the length of the midline, the entire curve is subdivided into n small segments and the 

length of the curve is approximated as the sum of the lengths of the resulting segments. For 

example, suppose we want to obtain the 2D length of the curve y =. I*(x) between x=a and 

X=b. We parameterise the entire curve by the arc length and approximate the length of the 

arc by the length of the chord PG shown in Figure 6.2 1. 
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Figure 6.21: Length of an arc 
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. 5y 

In Equation 6.14, as n --> oo, 8s approaches the value of the definite integral, thus for a dif- 

ferentiable function, the arc length is: 

b dy 
ds=f 1+ ; iýý dx 

6.7.5. Area and Volume Measurements 

The area enclosed by the midline about the spinal axis (C7-S I) is given by the sum of the ar- 

eas of the sub-curves about the spinal axis. The area of a curve under the 'X-axisq over an 

interval [a, b] is defined as the integral of the curve over that interval. The total area of the 

double curve shown in Figure 6.22 is the sum of the areas of the sub-curves, i. e., 

AT= A, + A2 . For the midline, the X-axis will be represented by the spinal axis, that is, the 

line connecting C7 and SI landmarks. 
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Figure 6.22: Area enclosed by a double curve midline 

Methods for approximating the integral include the Simpson's rule which approximates the 

integral of the function using quadratic polynomials (Abramowitz & Stegun, 1972). Let the 

value of the function f(x) be tabulated over the interval [a, b]at equally spaced points 

a=X, X, , x. =b and let h= (b - a) / n. Then the S'nipson's rule states 

that: 

bh 

Area = 
ff (x)dx 

3 
[f, +4(f +f3+---+f2ý-, )+2(. f2+f4+"'+. f2n-2)+fnj 

a 

The volume of the spinal bounding box is calculated using the straight- forward formula in 

Equation 6.16. 

Volume = Length x Width x Depth 

6.7.6. Implementation of the Surface Measurements 

Using the techniques discussed in the preceding sections, the surface measurements have been 

implemented based on the derived midline. Table 6.9 gives an example of the results of sur- 

face measurements computed for one subject with a mild curve (age 30, weight 70kg, height 

170cm, BMI 24). 
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Table 6.9: Results of spinal measurements computation for one subject. All angles are measured in de- 

grees, distances in millimetres, areas in square millimetres, and volumes in cube millimetres. 

Personal data Value 3D Measurements Value] 

Age 30 End vertebrae C7-S1 

Height 170cm Number of frontal plane curves 1 

Weight 70kg 3D spinal length 486 

Body mass index (BMI) 24kg/M2 Volume of spinal envelope 15249211 

Frontal Plane Measuremýnts Value Sagittal Plane Measurements Value 

2D spinal length in frontal plane 469.61 FD spinal length in sagittal plane 483.06 

Frontal plane balance (C7) 41.88 Sagittal plane balance (C7) 42.61 

Frontal plane angular balance (C7) 5.13' Sagittal plane angular balance (C7) 5.22* 

Spinal lateral deviation 14.4 Sagittal spinal deviation 25.44 

Spinal lateral width 43.26 Sagiftal spinal width 75.55 

Maximum lateral deviation 43.26 Sagittal maximum deviation 60.00 
Angle of best fit plane with sagiftal 

plane 5.13' Angle of best fit line with frontal plane 5.23* 

Maximum analytical Cobb angle 13.99* i Kyphosis angle by Cobb method 44.44* 

Maximum analytical Ferguson angle 7.04' Kyphosis angle by Ferguson method 30.57* 

Projected area in frontal plane 4492 Lordosis angle by Cobb method 43.76* 

Lordosis angle by Ferguson method 24.3* 

Projected area in sagittal plane 6202 

Figure 6.23 shows a graphical display of the derived midline curve in frontal plane (a) and in 

sagittal plane (b). The positions of the vertebrae were estimated by their spinous processes 
landmarks detected from the curvature maps. The line connecting the left and right PSIS 

landmarks is also shown. The curve in Figure 6.23(c) represents the back surface rotation 
(BSR, see Section 3-3.5.4) estimated by the orientation of the normal vector at each vertebral 
level. 

E11 11821 



Landmark Detection and Surface Measurements 

C:. 7 

TI 

12 

T-- 

T4 

75 

TE 

I- 

TE 

T9 

1:. 

Il 

'Z-' 2 

L2 

L5 

L4 

Figure 6.23: Midline curves for one subject (a) frontal plane (b) sagittal plane (c) back surface rotation 
(BSR) 

Figure 6.24 shows a display of the Gaussian curvature map with tile detected spinous process 

landmarks and the derived midline superimposed. In Figure 6.25, the 3D midline is superml- 

posed on the original surface of the back. 
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Figure 6.24: Gaussian curvature map with detected spinous process landmarks and the derived midline 

superimposed 

k 

Figure 6.25: Midline superimposed on original surface of the back 
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6.7.7. Correlation of the Surface Measurements 

To examine any linear relationships among the measurement, correlation analysis were per- 

formed. Correlation is a measure of the tendency of two random variables to vary together; 

the correlation coefficient indicates the strength and direction of the linear relationship be- 

tween the two random variables. The strength of the relationship is represented by the abso- 

lute value of the magnitude of the correlation coefficient (which typically ranges from -1 to 

+1); 0 meaning no correlation. The direction of the correlation describes how one variable 

varies in relation to the other. A positive correlation indicates that both random variables in- 

crease or decrease together, whilst negative correlation indicates that as one variable in- 

creases, the other decreases, and vice versa. 

The Pearson correlation coefficient, which is the most commonly used for data measured on 

the interval scale, is defined as follows. Let x and y be two random variables and (7, a, ) 

and be their mean and standard deviations respectively. Then Pearson correlation 

coefficient (r ) is defined as the product of the standardised scores of the two variables di- 

vided by the degrees of freedom (Equation 6.17). 

r= 
i (X-7). (Y-y) 

n-1 UX er-v 
(6.17) 

The standardised scores are dimensionless quantities derived by subtracting the mean and div- 

ing by the standard deviation, making the correlation independent on the original unit of the 

measurements. 

To carry out correlation analysis, the surface measurements were computed for the 25 sub- 

jects and Equation 6.17 was used to compute the Pearson correlation coefficient between each 

pair of surface measurement. Table 6.10 and Table 6.11 give the correlation matrix for the 

frontal plane and the sagittal plane measurements respectively, which list the correlation coef- 

ficients between all pairs of surface measurements. The correlation coefficient for any pair of 

surface measurements can be located by intersecting corresponding row and column of the 

tables. For example, the correction coefficient between frontal plane balance and spinal lateral 

width can be found by intersecting row 5 and column 8 in Table 6.10 to give r=0.780. The 

diagonal elements of the correlation matrices are all I because these are the correlations be- 
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tween each variable and itself The lower and upper triangular portions of are mirror images 

of each other. 

To provide qualitative description of the correlation results, we use the following classifica- 

tion for both positive and negative correlation: weak ± (0-0.39), moderate ± (0.40--0.69), 

and strong :L (0.70-1.0). With this classification, it can be observed that the surface Cobb 

angle correlates strongly with the Ferguson angle (r=0.944), the lateral deviation 

(r = 0.934 ), projected area in the frontal plane (r = 0.733 ); and moderately with the spinal 

lateral width (r = 0.630). All other measurements correlate weakly with the Cobb angle. In 

the frontal plane, both linear and angular balance correlate strongly with lateral width, maxi- 

mum lateral deviation and the angle of the best fit plane (r > 0.70 in all cases). Similar obser- 

vation can be made for corresponding measurements in the sagittal plane. The strongest corre- 

lations were observed between balance and the angle of best fit plane (r > 0.99 in all cases). 

It is important to note that the correlation between any pair of the measurements does not rep- 

resent the accuracy of the measurements, but rather the strength and direction of the relation- 

ship between them. Some of the measurements relate directly to each other and thus have 

strong correlation with each other; while other measurements have indirect or no relationship 

with each other, resulting in weak correlation. For example, there is a direct relationship be- 

twcen linear and angular balance in both frontal and sagittal planes, which is indicated a 

strong correlation between (i. e. r=0.997 in frontal plane and r=0.994 in the sagittal plane). 

There is also a strong correlation between the surface Cobb angle and the spinal lateral devia- 

tion: as the lateral deviation increases, the Cobb angle increases as well. On the other hand, 

weak negative correlation exists between 3D spinal length and many measurements in the 

frontal and sagittal plane. 

6.7.8. Concluding Remarks on Surface Measurements 

From a clinical perspective, the radiographic Cobb angle has been accepted as the gold stan- 

dard' for scoliosis assessment. However, as already pointed out in Sections 1.2 and 3.2, there 

are problems with the use of Cobb angle as the 'gold standard', namely, the wide variations in 

its measurements and the fact that it is obtained from a two-dimensional, low resolution ra- 

diograph which doesn't account for vertebral rotation. These issues make comparison with 

radiographs difficult. To facilitate radiographic comparison, an objective method should be 

use for the measurement of the Cobb angle, such as fitting a smooth curve to the spine and 
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measuring the Cobb angle based on the inflexion points of the curve, rather than the end ver- 

tebrae. 

Overall, this study has demonstrated that surface measurements can serve as alternative or 

complementary measurements for the assessment of back and spinal deformities. I-lowever, 

due to smaller sample size examined, conclusive inferences cannot be made. Further studies 

involving several subjects and body types are required to validate the surface measurements. 
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Landmark Detection and Surface Measurements 

6.8. Chapter Summary 

This chapter has presented three aspects of this research, namely, landmark detection, midline 
derivation and computation of surface measurements. 

The landmark detection algorithm developed is based on surface analysis of the curvature 

maps using constrained surface fitting. For validation, tile results were compared with palpa- 

tion and an accuracy of 1.10 mm in X and 1.1 5mm in Y was reported for three landmarks, 

assuming palpation results as the 'gold standard'. The precision (or repeatability) of landmark 

detection was determined by multiple scans of the same subject, and reported as 0.58rnm in X 

and 0.79mm in Y. 

Based on the detected landmarks, the midline of the back was derived using constrained poly- 

nomial fitting. The mean standard error of the fit was estimated as 0.23+0.06nim, demonstrat- 

ing suitability of constrained polynomial for the subjects examined. 

Using the derived midline, various surface measurements were computed and the linear rela- 

tionships among them were examined via correlation analysis. Several surface measurements 

correlated strongly with the Cobb angle (e. g. the lateral deviation, projected area in the frontal 

plane) while others correlated weakly. Comparison with radiographic data is still required to 

validate the usefulness of the surface measurements. 
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Conclusions and Further Work 

7.1. Introduction 

This thesis has presented the content and progression of research into automated shape analy- 

sis and visualization of the human back. This chapter summarises the conclusions drawn from 

the research, as well as recommendations for further research. 

7.2. Summary and Conclusions 

The study was organised into four phases, each with its specific objective as outlined in Chap- 

ter 1. Each of these objectives is revisited and the extent to which it has been met is discussed. 

7.2.1. Curvature Computation, Error Smoothing and Landmark Detection 

All surface measurements and analysis techniques pertaining to spinal deformities rely on the 

assumption that deformity of the spine will generally result in corresponding deformity of the 

back surface. The success of any surface measurements method, to a large extent, depends on 

the detectability of the bony landmarks that protrude to the surface of the back. In this re- 

search, methods have been developed to detect these landmarks using curvature analysis of 

three-dimensional laser scans of the back. 

A critical aspect of curvature computation is that the curvature values depend on second de- 

rivatives; consequently, they are susceptible to random errors in the original data. In the case 

of back shape analysis, the problem was further complicated by the mobile and flexible nature 

of human subjects which introduced subtle random errors during data capture, presenting a 

major challenge. The problem of errors was addressed through scanner calibration and noise 

smoothing operations. First, the scanner was calibrated to ensure there were no systematic 

errors or drifts in the scanned data. The results of the calibration closely matched the accuracy 

characteristics given by the manufacturer. Second, smoothing techniques were developed to 

reduce the effect of the remaining random. Two issues with error smoothing were identified, 

namely, selection of smoothing method and the amount of smoothing to apply. Since the ef- 

fectiveness of any smoothing method depends on the nature of the noise, a smoothing method 

was selected based on experimental estimate of the distribution of the random errors. This 
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was achieved by comparing actual laser data of a smooth machined cylinder with an ideal cyl- 
inder with the same dimension and orientation, resulting in a distribution which was well ap- 

proximated by a Gaussian with mean 0.003mm and standard deviation 0.47mm. The amount 

of smoothing was determined by comparing the curvature of the actual scanned data of the 

cylinder computed with increasing amount of smoothing with the true curvature of the cylin- 

der. From these experiments, an optimal smoothing range was found for the data that perinit- 

ted stable curvature computation and landmark detection. 

The landmark detection method developed consists of searching for all local convex and con- 

cave regions containing the landmarks, fitting surfaces to these regions and analysing the rc- 

sulting surfaces to deten-nine their peaks and troughs. A two-lcvel thresholding defined by 

standard deviation units from the median was used to restrict the search to higher curvature 

regions. The surface fitting was constrained using inverse square distance weightings for the 

points within the neighbourhood of the landmark. The peaks of the resulting local surfaces 

were then determined by analysing their critical points. The landmarks were detected from 

three curvature maps, namely, mean, Gaussian and curvcdness and the rcsults were averaged. 

Accuracy and precision are important aspects of any measurement process. Accuracy de- 

scribes the closeness of a measured quantity with its true value while precision describes tile 

repeatability of a set of measurements. The accuracy of the detected landmarks was assessed 

by comparison with palpation, due to the unavailability of radiographs. Assuming palpation 

as the standard, accuracies of approximately 1.10mm in X and 1.15mm in Y were obtained. 

Precision was assessed by scanning one subject twenty times, and comparing several land- 

marks detected from the datasets, producing 0.58mm in X and 0.79mm in Y. These results 

demonstrate that back surface landmarks can be detected with sufficient accuracy to allow 

assessment of spinal and back deformities. The improved accuracy reported in this study can 

be attributed to several factors, including effective error smoothing; rigorous registration al- 

gorithm for surface comparison; direct analysis of multiple curvature measures and con- 

strained least square solution. 
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7.2.2. Visualization of the Back Shape 

The second objective of this research was to develop methods for visualizing the shape of the 

back. The aim was to develop diagnostic tools for the visual assessment of back deformities. 

A number of visualization techniques were explored, namely, continuous and discrete colour 

scales, contour maps and three-dimensional views. The main challenge with the use of colour 

scales was how to map the colour scale to the curvature data to maximise visual contrast. 
Mapping or classification methods that were investigated included equal interval, linear and 

non-linear contrast stretching (i. e. histogram equalization), nested means, quantiles and natu- 

ral breaks classification. Due to the extreme values in the data (especially the Gaussian curva- 

ture map), histogram equalization failed to yield satisfactory results. Quantile classification 

was found to be more robust and less susceptible to outliers, resulting in visualizations with 

higher contrast. The visualizations revealed several landmarks and regions of the back which 

could be very useful for assessment of the back. 

Contour maps encode information about asymmetry of the back in a form that is readily rec- 

ognizable by clinicians, as is evident from the widespread use of moird topography. With the 

automated system, contour maps can be generated at varying intervals, allowing the user to 

compare corresponding contours at different levels of detail to assess asymmetry. The area 

and volume enclosed by corresponding contours can be calculated and displayed in a simple 

form. The three-dimensional views allow the user to explore the 3D shape of the back by ro- 

tating the surface. 

7.2.3. Midline Derivation and Surface Measurements 

A third objective of this research was to derive the back midline, which is the closest surface 

approximation to the spine, and to compute additional surface measurements to quantify the 

deformity. From the detected spinous process landmarks, the midline was derived using con- 

strained polynomial fitting via the method of Least Squares. Polynomials were used because 

of their simplicity and the fact that they can easily be constrained to follow the spinal model. 

To ensure the derived midline passed through the spinal end points (i. e. C7 and S 1), the curve 

fitting was constrained by assigning higher weights to these points. The suitability of con- 

strained polynomials was assessed by analysing the goodness of fit graphically and numeri- 

cally. The mean square error of the fit for twenty five subjects examined was computed as 

0.22+0.05mm, demonstrating the suitability of constrained polynomials for the subjects ex- 
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amined. With the midline derived, various surface measurements were computed, consisting 

of linear, angular, area measurements in frontal and sagittal planes, as well as 3D length and 

volume of the spinal bounding box. Back surface rotation was estimated by the orientations of 

the surface normals at the spinous process locations. Graphical displays of the midline were 

also given. 

7.2.4. Automated System 

The final objective of this research was to develop a software system to automate the tasks 

involved in analysing, visualization and monitoring back deformities. A software platform has 

been developed using various tools and the methods developed in this study have been real- 

ised by practical implementation. Tools have been developed for importing scanner data, per- 

forming smoothing operations, computing curvature maps, creating various visualizations, 

detecting the landmarks, deriving the back midline and computing the surface measurements. 

The system has all the ftinctionalities of modem GUI applications, such as zooming, panning 

and rotating the 3D model of the back. Graphical displays of the derived spine, results of the 

polynomial fitting including goodness of fit statistics and the various surface measurements 

are all given by the system. The software has been designed as a generic application for back 

shape analysis and visualization that can be installed on any standard computer. Most of the 

algorithms developed in this research have been implemented. The system can readily be de- 

ployed at the centre of efficient management of patient data, where patient images, radio- 

graphs, back shape measurements, together with other relevant clinical data could be com- 

bined and used for decision making. 

7.2.5. Concluding Remarks 

The novel aspects of this investigation can be summarised as follows: development of effec- 

tive smoothing methods for reduction of random errors for curvature computation; improved 

shape analysis and landmark detection algorithms; effective shape visualization techniques; 

derivation of the back midline using constrained polynomials and derivation of three- 

dimensional surface measurements. The shape analysis and visualization techniques devel- 

oped in this study, together with the software platforrn should facilitate the assessment and 

monitoring of back deformities, enable the effectiveness of treatment methods to be assessed, 

and comparison of back shape data to track changes and improve knowledge of skeletal- 

surface relationships. 
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7.3. Recommendations for Further Work 

7.3-1. Comparison with Radiographs 

One shortcoming of this study was the unavailability of radiographs for comparison. Since 

radiographs establish the true locations of the bony landmarks, it is important to compare the 

results obtained in this study with radiographic measurements. There are two key aspects that 

require further validation by radiographic measurements, namely, landmark detection and sur- 
face measurements. The landmark detection algorithm developed in this investigation was 

compared with palpation and an accuracy of less than 1.2mm was reported in both X and Y. 

However, since palpation is error prone, comparison with radiographic data will provide a 

useful validation. However, as already pointed out in Section 6.7.8, due to the low resolution 

and two-dimensional nature of radiographs, this is a difficult task. This was confirmed by 

Drerup and Hierholzer (1987) who compared their results with radiographs and reported 
lower accuracies than that obtained from previous comparison with palpation (see Section 

6.5). However, the experiment of Drerup and Hierholzer (1987) had one major limitation; 

namely, no attempt was made to correct for unequal scaling in both systems, which was 

shown to be a crucial factor in comparing data in different frame of reference. The transfor- 

mation model developed in Section 4.3.7.3 can be used to improve the registration process in 

a future radiographic comparison. The second aspect of the study that requires further valida- 

tion is the derived surface measurements. Due to the low tum-up of the volunteers, only 25 

subjects were examined, with badly-balanced gender ration. A longitudinal study involving 

more subjects is required to validate the methods developed in this study. Such a longitudinal 

study will also confirm the correlations observed among these measurements. 

7.3.2. Effect of Body Type on the Accuracy of Landmark Detection 

This investigation has demonstrated that back surface landmarks can be detected with an ac- 

curacy of approximately 1.2mm compared with palpation. In general, the detectability of back 

surface landmarks depends to a large extent, on the characteristics of the body types being 

examined. Body fat in overweight people can substantially conceal many of the landmarks, 

making their detectability more difficult. Consequently, it is important to assess landmark 

detectability using various body types and characteristics such as age, gender, height, weight 

and BMI. This will require a longitudinal study involving several subjects with different body 
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characteristics, which could not be carried out in this investigation due to lack of enough data 

and difficulty in recruiting subjects. 

7.3.3. Automated System 

As described earlier, the system developed in this research has the functionalities of modern 

GUI applications, and most of the algorithms developed have been implemented. The maiii 

areas of further work relating to the software system are as follows: 

Automated communication between the scanner and the software system. The current 
implementation relies on the user to export back shape data from the scanner in the 

form of XYZ coordinates into a text file. The text file is then imported into the system 

using the tools that have been developed. To facilitate automated processing, the sys- 

tem can be programmed to communicate directly with the scanner. Minolta exposes a 

set of software development interfaces that can be used to automate the communica- 

tion between VI-900 and the developed software. Consultation with Minolta also re- 

vealed that they are willing to corporate in the development of such a system. it is 

therefore recommended that this aspect of the system be carried, as it will facilitate 

further experimental studies such as those mentioned above. 

Patient database and decision support components. The system can be linked to a da- 

tabase system that stores patient data (e. g. history, radiographs, surface measurements, 

etc). A decision-support component can then be built to evaluate the different data of a 

subject to provide relevant information for clinical decision making. 

7.3.4. Other Application Areas 

The shape analysis and visualization techniques developed and implemented in this research 

should be applicable to other biomedical measurement problems, in particular, the following: 

Effect of treatment methods and reconstructive surgeries on various parts of the body 

can be explored using the analysis and visualization techniques developed in this 

study without the need for physical examination of the patient. Breast reconstruction 

offers restoration of breast symmetry to women whose breasts have been removed due 

to cancer or other disease by creating breast mounds that is similar in size, shape, con- 
tour, volume and position. The shape analysis and visualization techniques developed 
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in this study will permit models of breast moulds to be created, analysed, visualized 

and applied to a torso model of the subject before the actual implants. Another exarn- 

pie is wound reconstruction where the measurement and visualization of irregularly 

shaped wounds are required. Indeed, the methods developed here could benefit the en- 

tire cosmetic surgery industry. 

Facial landmarks detection for face recognition. Face recognition systems attempt to 

identify a person's face by matching the features of the current image with those of a 

known image. The curvature analysis and landmark detection methods developed in 

this study can be used to locate the facial landmarks to facilitate recognition. 

Seated posture analysis, such as design of wheelchair seats for the disabled where the 

objective will be to provide measurements required for comfort design. The midline 

and the surface measurements can be used to derive information required for the de- 

sign. 

* This methods developed here system could also be beneficial to the healthcare and 

sports therapy sectors, for example, in the measurement of muscle symmetry. 
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Appendices 

Appendix A: System Functionalities and Screen Shots 

The developed software has standard functionalities that are found in modern GUI applica- 

tions, including the following: 

" Basic visualization tools: zooming in and out, panning, etc. 

" Tools to display attributes of points or pixels 

" Tools for onscreen measurements of distances, angles, areas, etc 

" 3D visualization: rotating, scaling, and transforming surfaces with mouse events 

41 importing scanner data from TXT file into vector and raster data structures 

" Displaying the attribute table associated with each data layer 

" Performing SQL query on the database associated with geometric objects 

do Tools for converting data between different formats 

" Various tools for creating the various visualization discussed in Chapter 5 

" Tools for automatically detecting landmarks from curvature maps, deriving the mid- 

line and computing the various surface measurements discussed in Chapter 6 

The following screen shots demonstrate the main interfaces and functionalities of the system, 
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Appendix B: Ethics Approval, Subject Information and Consent Forms 

B-1: Ethics Acceptance Letter 

om 

Salisbury and South Wiltshire Research Ethics Committee 
Unit D 

Valentines 
Epsý Sciuste 

While Horse Business Part 
Trowb(" 
BA14 OXG 

Telephone 01225 756752 
FmcWrnge. 01226 754648 

11 August 2005 

Dr Steven E Crook 
Clinical Scientist and Deputy Head at Department 
Department of Medical Physics, Salisbury Healthcare NHS Trust 
Department of Medical Physics 
Salisbury District Hospital 
Salisbury 
SP2 88J 

Dear Dr Crook 

Full tit, @ of study; The automated extraction of topographic features from 
the human dorsal view to determine extent of postural 
abnormality and suggest correction. 

REC reference number: OSIQ2008146 

The Research Ethics Committee reviewed the above application at the meeting held on 27 
July 2005. 

Ethical opinion 

The mwnbers of the Committee present gave a favourable ethical opinion of the above 
research on the basis described in the application forrn, protocol and supporting 
documentation. The Committee would like to commend you for a very well presented 
project 

Conditions of approval 

The favourable opinion is given provided that you comply with the conditions set out in the 
attached document You are advised to study the conditions carefully 

Approved documents 

The documents reviewed and approved at the meeting were. 

Application 
_ _14 

July 2005 
Application 3 4 July 2005 

Investigator CV L4 July 2005 
Letter from Sponsor 11 July 2005 
Copies of Advertisements 26-05 

1 articipant n ormation She 3 j 14 July 2005 
Participa t Consent Form 3 14 July 2005 
Other 1 14 July 2005 
Other 4 _ 2005 

An advisory committee to Avon, Gloucestershire and Wiltshlre Strategic Health Authority 
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Management approval 

The study should not commence at any NHS site until the local Principal Investigator has 
obtained final management approval from the R&D Department for the relevant NHS care 
organisation 

Membership of the Commitit" 

The members of the Ethics Committee Who were present at the meeting are listed on the 
attached sheet 

Statement of compliance 

The Committee is constituted in accordance with the Governance Arrarvements for 
Research Ethic* Committees Puly 2001) and complies fully with the Standard Operating 
Procedures for Rewarch Ethics Committees in the UK. 

RIEC referOnCO number OSIQ20DO146 please quote this number on all corres ýndenqý 

With the Committee's best vvishes for the succm of this project, 

Your* awncerely 

, V-;, ýLý, P, K 
Kirsten Peck 
Coordinator 
Salisbury and South Wiltshire Research Ethics Committee 

Enc"ures: 

AMMAnce at COPvnM" weN on 27 Jury 2005 
SISMAM AWrOVAI cOndRoons 
SFI 

An advisory committee to Avon, Glouceirtershire and Wiltshire Strategk Heatth Authority 
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B-2: Volunteer Information Regarding Data Collection 

Data collection for surface measurement system for analysis and monitoring 
spinal and back deformities 

Dear Volunteer 

Thank you for your interest in this project. The information that you are reading is de- 

signed to explain the purpose of this project and why we need your help. In addition we 
hope to address any questions that you may have and reassure you as to the safety and 
confidentiality of your contribution. 

Introduction to the Problem 
Back pain and related symptoms has a major impact on the UK workforce. People with a 
curve in their back have an increased risk of back pain. This may start with personal dis- 
Comfort, but can lead to increased back pain, disrupting productivity; often requiring ex- 
pensive and prolonged treatment. There are also cosmetic issues when the curve, called 
a scoliosis, causes distortion of the whole trunk (see Figure 1). The assessment tech- 
nique presently used relies on a skilled operator to interpret and assess images of the 
back and legs that have been enhanced by a shadow pattern on the skin. This procedure 
is very subjective. X-rays are often prescribed for people identified as having spinal 
curves but they pose a small health risk which is increased if the deformity is to be moni- 
tored over time. 

Figure 1: A picture of a girl with ScolioSiS 

This project was setup to investigate whether surface measurements methods like 3D 
Laser imaging could be use to diagnose spinal and back shape deformity. 3D laser scan- 
ning is fast, accurate, safe, non-invasive and does not carry with it the hazard associated 
with X-rays. The data obtained from laser scanner will be processed using computer al- 
gorithMS to extract relevant information for clinical decision making. 
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Need for Data Collection 
Preliminary work has determined that certain key features of the back and upper but- 

tocks can be characterised on the limited data set available to the researcher. It is ap- 

parent that fine tuning of the feature detection can improve its performance on one im- 

age but may not offer the same improvement on another. The human subjects that the 

system will have to cope with will come in all shapes and sizes. it is therefore essential 
that a wider range of data be collected in order to ensure that the final system can be 

applied to the general population who will benefit. 

Data Required 
" Person information-The following information will be collected for each person 

will include age, sex, height, weight, occupation, work type, back pain symptoms 
if any. 

" Laser scan data-Five scans will be taken for each person, 3 scans without mark- 
ers and 2 scans with markers. These markers are 5 small sticky tags placed on 
the back by Dr Steve Crook for reference purposes. New markers will be used for 
each volunteer. 

Data Collection Procedure 
The scanning process is simple: the individual stands about 1-2metres from the scanner 

which will acquire the image within 3 seconds. The scanner cannot work through clothing 

so volunteers will have to undress their back for the scan. However, we will provide a 
hospital gown that will be worn to cover the front part of the body. There will be two 

members of the research team (male) present plus a chaperone if it is a lady being 

scanned. The researchers will be Dr. Steven Crook who is a medical expert from Salis- 

bury District Hospital (NHS) and Bright Osei Twumasi (PhD student). The parts of the 

body being scanned are the back and upper buttocks regions. Each scan takes only 3 

seconds and we hope to keep each volunteer for no more than 5 minutes. 

Technology and Safety issues 
The scanning will be performed with a Minolta non-contact Laser Scanner (VI-900, 

CLASS-2,690nm). According to Health and Safety Manual produced by the US National 

Institute of Environmental Health Sciences, Laser Class 2 is safe in operation: 

Class II - denotes low power visible lasers or laser systems which because of the 

normal human aversion responses (<0.25s), do not normally present a hazard 

but may present some potential for hazard if viewed directly for extended periods 

of time (like many conventional light sources)[1]. 

Minolta VI-900 has been used for scanning various parts of the human body. Examples 
include: scanning the human breasts (Langmack et al, 2000), face and head scanning 
(see Minolta website for example medial applications [3)). 

Anonymity of Volunteers and Data Usage 
The anonymity of all volunteers will be completely ensured. To achieve this, data cOl- 
lected for each person WILL NOT include any personal information such as name or ad- 
dress. In addition, all data files will be saved under arbitrary names Such as 'File 1', etc. 
The collected data will ONLY be used for the purposes of this research. 
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Thank you for your contribution, 

The Project Team 
Bright Osei Twumasi 
Dr Steve Crook (Co-Supervisor) 

Dr Martin Lefley (Co-Supervisor) 

References 
[1] US National Institute of Environmental Health Sciences, Health and Safety Manual, 

http: //www. niehs. nih. gov/odhsb/manual/home. htm 
[2] Langmack, K. A. et al (2000), Practical intensity modulated radiotherapy for improving 

dose homogeneity in tangent breast irradiation. IOS, Birmingham, May 2000, Web: 
http: //www. minolta-3d. com/applications/eng/breast. html 

[3] Minolta website: http: //www. konicaminolta-3d. com/applications/ 

B-3: Subject Consent Form 

CONSENT FORM 

I confirm that I have received and read the details of the research experiment being un- 
dertaken on 3 November 2005 and understand the purpose for which this data is being 
collected. 

I am a willing participant in the experiment and volunteer for an image of my back to be 
made using the Minolta VI-900 Laser Scanner. 

My consent is given for the data collected to be used for research purposes only in con- 
nection with the PhD project currently entitled: "A surface measurement system for 
analysis and monitoring of spinal and back deformities". 

Please print your name and sign below: 

Name: ........................................................................................................................................... 

Subject's Signature: ................................................................................................................. 

Researcher's Signature: ........................................................................................................... 
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Appendix C: Experimental Results 

Table C-1: Comparison of marker with curvature coordinates: C7 Landmark 

C7 Landmark 
Marker Mean Gaussian Curvedness 

Subject x y x y x y x y 
1 117.2161 277.4766 104.1252 295.8676 104.4328 296.2114 105.1059 296.9769 
2 16.0672 350.7410 

- - 
-13.0621 353.1176 

, -13.3660 352.9869 -13.8340 352.5286 
3 3,9486 374.69 8 7 -5.4788 379.9731 1 5.5560 380.0766 5.6048 380.2145 

49.1898 359.0524 49.3176 361.3703 49.2017 361.4492 48.8292 362.8847 
5 62.3831 240.0596 62.3573 242.7546 62.4628 242.5665 62.5380 242.4431, 
6 72.8813 297.9698 76.3015 301.1226 76.0914 301.0238 75.9903 300-8780 
7 59.6311 263.3015 69.2781 261.7227 69.2841 

, 
261.7200 69.2996 261.7309 

8 -94.9169 282.3878 -77.7349 284.2188 -77.7203 284.1900 -77.7114 284.1744 
9 -31.5186 310.1729 

- 
-34.6812 314.6903 -34.6976 314.6777 -34.6892 314.6778 

10 -1.7271 25T5 057 -1.8529 259.2171 -1.8755 259.2082 -1.9023 259-1481 
11 1.6706 270.6169 -7.4190 273.9843 -7.3873 273.8082 -7.3733 273.5465 
12 -27.3529 266.8883 -25.1020 268.5803 -25.0414 268.6031 -25.0056 268.6162 
13 -1.2310 267.0826 0.5740 269.5772 0.6085 269-5163 0.6256 269.4370_ 
14 -14.6983 271.4948 -8.3844 267.9566 -8.3433 267.8359 -8.3125 267.6732 
15 -14.7840 269.8635 -25.2748 268.8143 -25.2632 268.7529 -25.2436 268.6553 
16 -15.3687 258.8470 -16.5699 266.3303 -16.60351 266.3515 -16.6209 266.3475 
17 -2.3025 269.2527 -27.67161 258.04951 -27.66371 257.9910 -27.6975 258.0974 
18 11.6914 264.3965 14.6477' 270.58061 14.6751 270.5749 14.67711 270.5669 
19 17.8106 268.2011 

- 
22.5621 

- 
265.70241 22.5938 265.6094 22.6086 265.4936 

20 24.0377 266.642 3 T6.3733 264.0218 26.3842 263.8803 26.4122 263.6743 
21 27.0314 143.3286 29.7186 145.9696 145,9696 29.6740, 145.8347 

- 
29.6539 145.6416 

22 32.7897 151.0389 34.4580 151.7286 151,7286 1 34.4533 1 ý1- 7 514 34.4480 151.8007 
23 34.7865 231.0443 43.5101 236.8885 36,8885 2E5 888 

1 

43.3883 236.7073 43.2993 236.3594 
24 58.4540 24.8035 59.0471 28.167 9 59.0558 28.1220 59.06561 8 03_2J5 2- 05 

25 113.0531 149.8119 126.1696 146.1624 126.2444 146.2411 126.31561 146.32141 
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Table C-2: Comparison of marker with curvature coordinates: Left PSIS landmark 

Left PSIS Landmark 
Marker Mean Gaussian Curvedness 

Subject x y x y x y x y 
1 67.3343 -166.5801 57.4961 -163.4530 57.5804 -163.6244 58.1918 -164.3334 
2 -71.3149 -132.7183 -75.3118 -131.2625 -75.8641 -130.7535 -76.9509 -130.5034 
3 -45.0249 -118.3190 -46.9125 -122.2182 -46.6069 -121.9943 -46.2232 -121.7850 
4 -13.2377 -114.2452 -14.6187 -119.0072 -14.6064 -119.0867 -14.4579 -119.1363 
5 16.8254 -175.5168 14.5925 -176.5323 14.3956 -176.4777 14.1961 -176.4205 
6 14.6993 -162.4589 22.8212 -159.8046 23.0141 -159.7345 23.1680 -159.7174 
7 -15.7908 -143.6774 -8.7947 -146.4558 -8.3943 -146.2417 -7.7935 -146.2183 
8 -153.8745 -190.2485 -137.9146 -189.2326 -136.7516 -189.3578 -136.8179 -190.2942 
9 -102.7379 -123.8262 -105.9316 -120.6510 -106.6162 -120.6634 -108.7441 -120.7756 

10 -46.8649 -231.4667 -44.7346 -232.2378 -44.5752 -232.5283 -43.8736 -232.6314 
11 -62.5731 -202.8060 -61.3191 -201.3493 -60.5217 -202.0168 -55.8872 -205.5017 
12 -76.9640 -197.1423 -81.2278 -199.3960 -80.4777 -199.3469 -78.6786 -200.5377 
13 -66.3003 -207.6578 -61.8828 -200.1144 -61.8828 -200.1144 -61.8828 -200.1144 
14 -66.0990 -213.3382 -59.7568 -217.8105 -59.5207 -217.7816 -59.1691 -217.7628 
15 -53.3523 -207.4049 -68.3184 -220.5379 -68.3184 -220.5379 -68.3184 -220.5379 
16 -66.1997 -211.1948 -68-0095 -213.1664 -67.4794 -212.0935 -67.4794 -ý-12.0935 
17 -51.9613 -218.0078 -77.5086 -212.0466 -77.0655 -211.4329 -77.0655 -211.4329 
18 -29.4813 -208-1473 -33.4931 -209.2525 -32.7166 -208.5044 -32.7166 -2OF50-44] 
19 -22.9876 -215.3139 -27.0831 -213.9421 -26.8071 -213.1638 -26.9260 -212.1488 
20 -21.3475 -218.6510 -25.8678 -216.4383 -25.8209 -215.8584 -25.9201 -214-5933 
21 4.4979 -339.3927 7.0301 -339.8115 6.8549 -340.1189 6.6680 -340.4133 
22 15.0538 -320.6202 14.9859 -323.1441 15.0057 -323.1547 14-8384 -323 3810 
23 10.0572 -228.6803 11.0895 -228.3671 11.0615 -228.3692 11.0773 -228.3629 
24 40.2966 -374.7460 41.96421 -376.67011 41.2995 -376.3719 40.7426 -376.174.41 
251 36.7598 -305.0357 43.36931 -302.95041 43.28201 -302.7518_ 43.0103 
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Table C-3: Comparison of marker with curvature coordinates: Right PSIS landmark 

Right PSIS Landmark 
Marker Mean Gaussian Curvedness 

Subject x y x y x y x y 
1 147.3282 -175.3103 139.9582 -171.3010 139.9939 -171.2365 140.0198 -171.1970_ 
2 42.4853 -128.6121 39.8861 -128.7873 40.3369 -128.9066 41.9935 -129.1151 
3 46.5450 -124.6779 47.3540 -128.9808 1 47.5331 -129.0686 48.0886 -128.5115 
4 100.3903 -113.5572 99.6857 -118.2228 1 99.2144 -118.2669 98.7639 -118.2535 
5 112.5570 -175.1901 111.2536 -176.5743 1111.2997 -176.3913 111.3488 -176.2270 
6 138.2655 -163.8205 145.9701 1 -160.1093 145.8220 -160.4081 145.2140 -160.5856 
7 121.0145 -145.0352 128.5905 5 -148-5756 128.6725 -148.6128 128.8050 -148.7849 
8 -50.9892 -197.6490 -37.0321 -197.8450 -38.4569 -194.9021 -38.0940 -195.3401 
9 9.5664 -122.0055 6.8996 

1 

-121.5690 7.4490 -122.6797 3.1354 -121.7226 
10 24.0751 -233.8416 26.7898 -233.8366 27.0499 -233.8977 27.3626 -233.9867 
11 23.9458 -205.7038 25.7839 -202.0427 24.4710 -203.0571 21.1221 -204.7833 
12 7.5915 -198.0414 7.2873 -197.2581 7.9472 -197.0128 8.3517 
131 23.1572 -210-1955 25.0698 -203.0717 24.8753 -203.2942 24.4460 -203.5255 
14 3.6924 -219.5874 10.3091 -224.0471 10.1199 -223.9962 9.8535 -223.9136 
15 14.9837 -213.1182 -1.6567 -229.7181 -1.4711 -229.8333 -1.2590 -229.8992 
16 -1.6412 -216.8443 -1.9720 -218.8038 -2.1437 -218.8127 -2.4705 -218.7608 
17 16.4653 -229.8292 -12.3135 -223.3574 -12.5013 -222.7920 -13.137 -221.9041 
18 37.2503 -215.0671 34.4443 -215.5880 34.3640 -215.6055 34.2495 -215.60831 
19 60.9863 -211.4174 56.1153 -210.5411 55.0978 -210.7615 52.7178 -211.21411 
20 51.7288 -222.3694 46.7961 -220.9223 46.7241 -220.9470 46.6513 -220.9565 
21 84.09582 -331 . 275 87.14055 -331.486 86.69519 -330.53 86.53885 -330.106 
22 101.3199 -327 . 277 101.5641 -325.199 101.6196 -325.53 99.1292 -325-448 
23 101.3505 -228.45 102.7844 -228.968 102.8525 -228.969 102.9234 -228.976 
24 100.518 -376.275 

- - 
100.20041 

- -376. 
-2794 100.2197 -377.412 100.37541 -376.457 

251 155.5925 -36 6 . 23 1 60.88521 -305.9861 160.8981 -305.989 160.84691 -306.042 
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Table C-4: Coordinates of registration points (Gl-G4) for the two datasets 

Dataset 1 (Landmark + Registration Pts) Dataset 2 (Only Registration Pts) 
Subject G1 I G2 G3 G4 G1 G2 G3 G4 

Subject 1 X -37.12537 219.4589 -8.88462 186.7085 -22.7183 229.4091 5.617006 193.2408 
Y 247.1235 236.176 -95.3976 -87.2106 233.4544 218.4557 -100.535 -95.1582 

Subject 2 V -166.3304 140.1374 -116.154 66.14103 -167.781 137.9188 -114.363 67.40671 
IY 256.2174 255.3299 -15.7661 -11.5357 252.1105 255.2401 1 -18.181 -11.4669 

Subject 3 X -94.6839 83.70362 -94.4499 106.1563 -93.8236 81.00121 1 -92.6822 104.2927 
Y 291.8804 281.0836 -8.52961 -10.8232 287.7138 277.6917 -6.98899 -8.51656 

Subject 4 X -96.38848 153.4684 -29.1325 104.5694 -93.8056 152.2885 -27,5905 104.2865 
Y 301.3449 299.859 26.73748 3.278807 300.4957 298.6463 29.51576 6.25844 

5 -62.25797 170.8501 -17.73 137.346 -60.7153 170.371 -15-0192 137.8675 
FY 205.9717 190.5424 -102.934 -98.6724 202.7024 188.2333 1 -102.455 -97.2813 

Subject 6 X -91.82621 233.9404 -6.95713 161.2374 -95.8453 229.3457 1 -13.6994 154.0859 
Y 229.6909 231.1156 -59.2867 -55.4109 228.1798 226.5907 1 

-61.3597 -59.2535 
ubject 7 X -77.21065 206.8432 -32.7671 168.7464 -85.8261 196.9384 1 -40.0207 160.8764 

Y 209.7824 193.5929 -68.1369 -68.2321 210.7739 196.2922 -66,564 -64.863 gu-bject 8 X -209.1253 43.18889 -174.876 7.412749 -225.453 25.95366 -189.142 -7.35924 
Y 238.286 233.7038 -76.2782 -76.5999 235.709 232.8534 -77.585 -T6 6-813 

Subject 9 X -165.5099 106.5335 -149.952 52.63502 -161.894 109.4146 -146.388 55.3513 
Y 242.1706 222.6229 -41.5689 -48.9636 237.9052 218.1752 -44.6499 -52.4948 

Subject 10 X -125.0038 108.8591 -98.2335 92.76987 -124.176 107.1744 -99.362 89.81152 
Y 160.979 153.1701 -139.04 -139.811 157.8912 148.9954 -139.278 -141-067 

Subject 11 X -128.3253 106.5387 -93.4729 55.30323 -120.439 113.125 -92.7134 55.87132 
Y 211.4203 177.1546 -112.025 -108.785 210,5888 171.4207 -112.719 -: ýi 12-917 

Subject 12 X -138.4315 93.08801 -112.192 35.74161 -139.701 91.43764 -112.237 35.73747 
Y 221.1797 175.1378 -116.327 -110.613 220.334 174.0411 -118.201 , -111432 

Subject 13 X -121.5094 115.6726 -94.0389 56.7343 -124.562 114.9806 -96.702 55.43461 
Y 207.0664 170.5311 -113.39 -110.24 203.9415 167.0655 -119.547 -116.632 

ubject 14 X -128.2773 96.54027 -102.171 
' 

47.44449 -134.579 90.04663 -108.602 40.94533 
Y 207.9045 167 03161 -123.311 -117.635 211.543 170.6787 -119.07 -113-456 

Subject 15 -143.3184 88.76761 -111.644 35.2437 -128.205 97.44795 -95.1317 49.72784 
Y 206.4048 162.3289 -124.121 -119.109 207.3596 168.162 -108.174 5871 

gu-bject 16 X -138-9832 91-99573 -110.634 39.03134 -135,427 91.22737 -108.171 38.87591 
Y 208.4096 166.1069 -115.9961 -111.155 202.2479 160.4945 -115.97 -111.414 

Subject 17 
- 

X -147.8769 67.24769 
- -121.129 

- - 
29.05956 -126.435 96.66809 -97.5211 58.29395 

Y 196.708 T6 3.6056 -TJ 89 12 -113.621 205.2219 171.8982 -121.776 -115.524 
ubject 18 X -103.4046 118.5982 -74.1699 75.24016 -104.319 115.58581 -71.1433 76.22273 

- 
Y 216.0216 175.2866 -112.931 -108.611 209.2395 171.7289 -114.949 -108.994 

ubject 19 9 X -95.92059 126.5473 -65.8254 82 
. 248833 -100.467 124.7792 -64.2408 85.00691 

Y 202.851 157.6524 -126.729 
ý 

-123.971 202.6952 161.2513 -128.9 -123.53 Fubject 20 X -96.15496 136.4105 
- 

-65.8383 

M 

83.12543 .1 

E 

-98.774 136.4552 -63.9932 86.84823 
Y 203.4553 1666.3 173 -1 7.502 -123.777 203.7776 169.786 -129.615 -123.758 !L X -80,89161 1 .36 -392341 .9 10 12O 9677 -82.8455 139.2609 -41.4192 117.823 E 

Y1 61.401321 7 56.56577 _247.113 -247.113 _242 - . 336 242 336 59.10379 54.49698 : ýý47.183 7.183 -242.465 
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I Dataset 1 (Landmark + Registration Pts) Dataset 2 (Only Registration Pts-) 
Subject I G1 G2 G3 G4 G1 G2 G3 G4 

Subject 22 X -50.9959ý 
- 

152.1527 -17.6208 136.7157 -52.6193 150.7175 -18.6736 135,5231 
V ý2 

-07431 56-6194 -253.605 -249.874 61.10012 56.12783 -254.809 -250.572 
Subject 23 X -73.36669 143.7562 -30.0434 127.6296 -78.1425 138.8739 -31.782 126.009ý 

- FY 174.2541 168.481 -139.125 -149.525 173.4972 165.7111 -139.734 -148.611 
Subject 24 X -50.3374 165.5925 -18.894 140.8434 -48.733 164.1367 -17.032 140.2881 

Y -89.93621 -93-8899 -296.434 -305.504 -92.1604 -95.2366 -295.897 -304.234 
Subject 25 X 13.82722 220.792 40.25789 168.7721 1.0 1533 210.5025 32.24497 161.5173 

l y1 48.42283 29.8657 -185.6991 -190.571 49.35711 33.90919 -186.6951 -189.261 

Table C-5: Transformation parameters and RME errors (mean RMSE: 1.33XIO-08) 

Subject s w K Tx Ty Tz R 
-MS 

E 
1 0.97314 3.2E-25 1.05E- -0.00858 13.14214 -8.34542 -1.4E-23 1.01E-10 
2 0.99677 l. F7E-25 T-38E-25 0.01279 1.327136 -0.99189 -3.8E-23 2.7E-Oi 
3 0.980915 1.35E-27 7.37E-27 0.003667 0.016806 1.713946 -1.9E-25 4.24E-12 
4 0.98598 1.43E-28 -1.7E-28 -0.00034 1.077229 3.147466 -2.8E-26 5.22E-1 5 
5 0.988217 

- - 
-8.9E-26 3.82E-25 0.004059 1.942143 -0.58146 2.58E-2 5.64E-08 

6 ý. 99893 2.62E-2 7 ý7&25 
-0.00933 -6.35037 -2.2013 -3E-23 4.53E-09 

7 0.996859 -1.9E-28 5.21E-28 0.006557 -7.76464 1.935077 4.72E-26 1.94E-15 
8 0.996704 -2.5E-28 6.38E-26 0.007098 -15.3626 -0.34931 -5.3E-24 2.01 E-08 
9 0.996511 -3.5E-27 

- 
-1.2E-26 -0.00097 2.967051 -3.54268 7.79E-25 2.95E-09 

10 0.990074 7.1TE-2 7 -2.3E-26 -0.00528 -1.33581 -2.12977 6.15E-26 1.1 3E-08 
11 0.997969 -1.5E-26 

- 
3.74E-26 

- -0.02171_ 3.007275 -3.07782 9.54E-26 4AE-08 
12 
13 

1.000467 
1.009833 

1.4 E-27 

-4.9E-29 

72 -4E--27 

2.12E 28 
0.003621 

-2.4E-05 
-0.57508 
-1.82169 

-1.06843 
-5.16368 

1.35E-26 

-4E-28 

7.2E-12 
5.26E-09 

14 0.998482 -3.5E-28 -3.5E-27 -0.00026 -6.47311 3.971408 8.78E-26 1.36E-08 
15 0.966251 4.89E-26 -3.8E-25 0.009455 12.87803 10.35245 1.08E-23 1-85E-10 
16 0.981143 -6.2E-27 -3.1 E-26 -0.00147 0.661696 -2.34947 1.14E-24 5.58E-08 
17 1.036456 5.99E-27 9.28E-26 0.004088 27-635 2.028592 -4.4E-24 3.12E-08 
18 0.987122 3.02E-26 5.22E-25 0.012642 0.602911 -2.686 5.5E-25 4.24E-09 
19 1.008355 1.32E-28 -2.9E-28 0.017667 -0.10039 -0.00609 JE-2 8.46E-15 
20 1.009417 8E-28 -1.5E-27 0.013674 1.023143 -0.05025 -4.5E-26 1.77E-13 
21 0,993593 3.92E-29 -1.1E-28 -6.8E-05 -2.34629 -1.73404 -4.6E-28 4E-14 
22 1.000615 6.48E-29 4.98E-29 0.001648 -1.51831 -0.87357 8.99E-27 1.43E-14 
23 0.995861 4.02E-25 2.54E-25 0.006811 -2.98764 -1.03496 5.09E-24 7.71 E- 10 
24 0.986369 -9.3E-26 3.03E-25. 0.003383. 0.5171351 -3.31758 1 -8.9E-26 5.44E-08 
25 1,009335 -5E-28 5.18E-291 0.01711 -1 1-8855ý 2E-13 
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Table C-6: Information on subjects used in the study for comparing landmarks detected from curvature 
maps with palpation. All subjects are males, unless indicated otherwise. 

Subject Age Height (cm) Weight (kg) BMI (kg/M2) 
1 30 170 70 24.22 
2 48 170 80 27.68 
3 31 202 107 26.22 
4 26 182 78 23.55 
5 27 176 75 24.21 
6 27 172 65 21.97 
7 30 182 80 24.15 
8 24 168 80 28.34 
9 30 175 76 24.82 
10 27 168 72 25.51 
11 26 168 70 24.80 
12 24 170 75 25.95 
13 27 169 74 25.91 
14 24 175 72 23.51 
15 30 176 78 25.18 

16 29 174 70 23.12 

17 25 175 70 22.86 

18 26 176 80 25.83 
19 27 167 65 23.31 
20 25 172 68 22.99 
21 24 168 70 24.80 

22 24 174 75 24.77 
23 27 170 70 24.22 

24 (female) 30 170 64 22.15 
25 (female) 27 167 58 20.80 
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Appendix D: Colour Conversion Formulae 

D-1: Conversion from RGB space to XYZ space 

Given an RGB colour whose components are in the nominal range [0-0,1.0] and whose 

gamma isy, the equations for converting from RGB space to XYZ space are: 

[X Y Z]=[r g b][M] 

where if the RGB system is sRGB, then 

R/ 12.92 
r ((R + 0.55)/1.055 )2.4 

G/ 12.92 
g ((G + 0.55)11.055 )2.4 

B/ 12.92 
b 

((B+0.55)11.055 )2.4 

and it the RGB system is not sRGB, then 

r=Ry 

g =G' 
b =By 

R:! ý 0.04045 

R>0.04045 

G:! ý 0.04045 

G>0.04045 

B!! ý 0.04045 

B>0.04045 

(D-1) 

The transformation matrix (M) is calculated from the chromaticity coordinates of the RGB 

system (xr, yr), (xg, yg) and (xb, yb) and its reference white (xW, YW, ZW) using the fol- 

lowing formula: 

ýIxl Sly, SIZ, 
M= S9X9 S9 Y9 ý11 Z9 

SbXh Sb Yb ShZb 

where 

xl, x j)/y, 

1 and p= [r g b] 

-Z/) 
(1-x 1) - 

YP)/y" 
- 
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Table D-1: Results of matrix computation for commonly used RCB working spaces 

RGB Work- Ref. 
RGB to XYZ [M] XYZ to RGB [M]-l 

ing Space White 

0.576700 0.297361 0.0270328 2.04148 -0.9691,58 0.0 134 
Adobe RGB 

D65 0.185556 0.627355 0.0706879 -0.564977 1.8759q - 0.118 1"? i 
(1998) 0.188212 0.0752847 0.991248 -0.314713 0.041555"ý 101 r)., I 

0.449695 0.244634 0.0251829 2,95176 -1.0851 0.0854804 
Apple RGB D65 0.316251 0.672034 0.141184 -1.28951 1.99084 -0.2(94,6 

0.18452 0.0833318 0.922602 -0.47388 0.0372023 1.0911 3 

0.430587 0.222021 0.0201837 3.06313 -0.969258 0.06786? 4 PAL/SE- D65 0.341545 0.706645 0.129551 -1 . 39328 1.87599 -0.228821 CAM 0.178336 0.0713342 0.939234 -0.475788 0.04 151)5ý 1 . 06919 

0.412424 0.212656 0.0193324 3.24071 -0 . 969258 0.0556352 

sRGB D65 0.357579 0. ý15158 0.119193 -1 . 53726 1 . 87599 -0 . 203ý)96 
0.180464 0.0721856 0.950444 -0.498571 0.0415557 1. O'ý707 

D-2: Conversion from XYZ space to CIELAB space 

The conversion from XYZ space to CIELab space is accomplished by the set of equations D- 

2. 

LI 16. f, - 16 

a* 500 

b* 200 

where: 

cx, 
X, >E 

Ky, + 16 

116 
3 Yr y> 

lCyr + 16 
116 Yr 

VIT Zr > -c fz 
Kz, + 16 

116 

(D-2) 
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r 

ý0.008856 

216/24389 
ý903.3 

24389/27 

Actual CIE Standard 

Intent of the CIE Standard 

Actual CIE Standard 

Intent of the CIE Standard 

It is sometimes convenient to express CIELAB colours in cylindrical coordinates System, 

which can be computed as follows: 

C. *,, = [a*' + b*'] Y2 
tan -1 

b*)(180) (D-3) 

The polar coordinates are useful since difference in the chroma term Cý, can be correlated 

with to perceived colour difference and the difference in hue term h,,, can be correlated with 

perceived hue difference. 

D-3: Conversion from XYZ space to RGB space 

e Given an XYZ colour whose components are in the nominal range 0.0,1.0] and whose ref r- 

ence white is the same as that of the RGB system, the conversion to RGB is as follows is ac- 

complished by the following equations: 

g b]=[X Y ZJ[M]-' (D4) 

where if the RGB system is sRGB, then 

12.92r r! ý 0.0031308 
R ý- 

ý 

1.055r 1/2.4 

-0.055 r>0.0031308 
12.92r g !ý0.0031308 Gý 

1.055g 1/2.4 

-0.055 g>0.0031308 
12.92r b! ý 0.0031308 

1.055b 1/2.4 

-0.055 b>0.0031308 
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and if the RGB is not sRGB, then 

R= rY7 

G= gyr 

B= byy 

The inverse transformation matrix M-' is obtained from Table D- I and y is the gamma value 

of the RGB colour system used. 

D-4: Conversion from CIELAB space to XYZ space 

TheconversionfromCIELABtoXYZspacerequiresareferencewhitepoint[X, Y, Zj. 

x= 
-)(; x, 

y= Yy, 
Z=Z, Z, 

where: 

> 
X' (I l6fý -I 

61K) f3 
x 

((L + 16)/116 )3 L> KE 
Y, 

LIK L! ý KE 

f3 f_3 > 
z 

(I 16fz -I 611c) 6 z 

a+ 
500 

fz f, - 
b* 

200 
(L + 16)/116 Y, >6 

(Ky, + 16)/116 y, 

0.008856 Actual CIE Standard ý 

216/24389 Intent of the CIE Standard 

903-3 Actual CIE Standard ý 

24389/27 Intent of the CIE Standard 

(D-5) 
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D-5: Computing CIELAB Colour Difference 

The CIELAB colour difference is computed as the Euclidean distance between two points in 

CIELAB space: 

AEýb = 
[(A£ )' (Aa* )' + (Ab* )2 ]1/2 

(D-6) 

where: 

Ar = L: 
T - 

fs 

Aa* = aT* - as* 
Ab* = 

bT 
- bs' 

The subscript S and T refers to refers to the standard and the trial respectively-in industrial 

application of colour difference, it is typical to regard one of the colours as a standard and the 

other as a trial (or sample) that is supposed to be a visual match to the standard. 

Other optimal colour difference formulae have been proposed with varying advantages and 

disadvantages, such as CMC, CIE94, CIEDE2000 (Westland & Ripamonti, 2004). These 

formulae are more complex and supposed to be optimal thanAE*,,. The CIE recently recom- 

mcnded CIEDE2000 formula for evaluating small colour difference. However, AE, *,,, is still 

,h 
>5). the current CIE recommendation for evaluating large colour differences (i. e. AE, * 

F- 1 218 1 
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Appendix E: Basic Statistical Concepts 

E-1: Basic Terminologies 

The following statistical terminologies were assumed as the basis for most of the analysis 

methods applied in this Thesis. 

* Standard error. The standard error of a sample of sample size n is defined as the 

standard deviation of the sample divided by Vn 
. The standard error of a statistical es- 

timate is also defined as the square root of the estimated error variance of the quantity, 

i. e., se = 
V; T 

- 

e Root mean square. The root mean square (RSM), also known as the quadratic mean, is 

a measure of the magnitude of a random variable, calculated as in Equation E- 1. 

Xrni = 

iJ-; 
(E-1) 

The relationship between x,,,, and 7 is expressed by Equation E-2, which shows that 

the RMS is always greater than or equal to the mean, in that the RMS includes the 

square of the standard deviation. The RMS is a useful statistics than the mean if the 

random variable has both positive and negative values. 

- +IT" (E-2) 

True value. The true value is a variable's theoretically correct and exact value. This is 

simply the mean of the population and is indeterminate since the population of meas- 

urements is infinite. 

Error. An error is the difference between any individual measurement of a variable 

and its true value. This is also indeten-ninate since the true value is unknown. Errors 

are expressed by: 

el ý X, - // (E-3) 

where x, is an individual measurement associated with error !ý and true value p. 

---i 
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9 Residual. This is the difference between any individual measurement and the most 

probable value or the mean. The terms error and residual are often used interchangea- 

bly; and although they have similar behaviour, they are theoretically different. 

e Degrees offreedom. This refers to the number of measurements that are in excess of 

the number required to solve for the unknown parameters, i. e., the number of redun- 
dant measurements. The degree of freedom (r) is computed as the number of observa- 

tions (n) minus the number of parameters (p): r=n- 

* Accuracy and precision. Although accuracy and precision are often used inter- 

changeably, the two concepts are statistically different. Accuracy refers to the close- 

ness of a measured quantity to its true value or the most probable. Since the true value 

is indeterminate, absolute accuracy is also unknown. Precision on the other hand de- 

scribes consistency among measurements, i. e. it is a measure of the closeness of a set 

of repeated measurements to each other and is usually measured by the standard de- 

viation. A set of measurements may be precise but not accurate and vice versa. An ex- 

ample often used to illustrate the difference between precision and accuracy is the 

groupings of riffle shots (Mikhail, 1976; Wolf and Ghilani, 1997). Figure E-I shows 

four possible groupings: (a) is both accurate and precise because the measurements are 

close to each other and the mean is close to the centre; (b) is precise but not accurate; 

(c) is accurate but not precise; (d) is both inaccurate and imprecise. In general, when 

making measurements, the results in (a) are preferred while (c) and (d) are undesir- 

abic. The results in (b) can be accepted if proper steps are taken to correct for the 

presence of the systematic errors that caused the entire set of measurements to deviate 

from the true value. 

0 

00 0a0 0 

(a) accurate and precise (b) precise but inaccurate (c) accurate but imprecise (d) inaccurate and imprecise 

Figure E-1: Difference between accuracy and precision (adapted from Wolf & Chilani, 1997) 
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* Relative precision. This refers to the ratio of a measure of precision (standard devia- 

tion) to the quantity measured or estimated. 

E-2: Propagation of Random Errors 

Measurements may be direct or indirect. Direct measurements are made by applying a device 

directly to the unknown quantity and observing its value. Indirect measurements are derived 

or computed from direct measurements using their mathematical relationships to the direct 

measurements. During this process, the errors inherent in the direct measurements are propa- 

gated by the computational process into the computed quantities. Thus, the computed quanti- 

ties contain errors that are functions of the original errors. This concept is known as error 

propagation and is discussed in this section. 

Let y be a quantity computed from several independent measurements x, , X2 I-*, x, which 

have standard deviations a,, a ..... a. respectively. Then using a general non-linear func- 

tion yý f(XI ý X2 Xn) I the combined propagated error in or,, can bc computed from Equation 

E-4 (Anderson and Mikhail, 1998): 

172 + 

(_L) 

72 ++2 -4) ax 
I 

ax 
22 

ax" 

if y is related to x by a linear function y =a, x, +a2X2 +... +a,, x,,, Equation E-4 simplifies to: 

a2a2 +a 
2a2 

+--. +a 
2 

or 
2 

(E-5) 1122nn 

The one-dimensional case contains only one random variable x with mean p., and variance 

a., . The two-dimensional case has two random variables x and y, with means y. and PY, and 
2 

variances and or, respectively, and covariance or., These three parameters can be col- 

lected into a square symmetric matrix with the variances along the main diagonal and the co- 

variance along the off-diagonal. This matrix is called the variance-covariance matrix or sim- 

ply the covariance matrix. 

(E-6) 
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Equation E-6 can be extended to multidimensional case for n random variables x,, x2, ---, x, : 

1 er] 2 ... erl 
n 

47 12 er 2 er 
2n 

2 
erl 

n 
(T2 

n 
0-n 

which is nxn square symmetric matrix. 

(E-7) 

Often, in practice, the variances and covariances of the random errors are not known in abso- 
lute terms but only to a scale factor termed the reference variance (denoted co ). The square 

root of the reference variance (a, ' ) is called the reference standard deviation or standard error 

of unit weight. The relative variances and covariances are called cofactors, and are given by: 

2 

q,, qj 
U02 U, 2 

(E-8) 

Collecting the cofactors into a square matrix produces the cofactor matrix denoted by Q- If 

is non-singular, its inverse is called the weight matrix denoted by W, and the relationship 

in Equation E-9 is deduced. 

W=Q-I= 21-1 co - 
(E-9) 

This can be generalised to correlated measurements and multiple functions. Let y be a set of 

n measurements, each of which is a function of another set x of n random variables. Given 

the covariance matrix Y_. (or the cofactor matrix Qj for the variables x, the covariance ma- 

trix (or the cofactor matrix Q, ) for the computed quantities y is given by: 

Y-, =JIJT or Q, =j" jT 

, IT YX XX YX j Qxx yx 
(E-10) 

where J is mxn and called the Jacobian matrix which contains the partial derivatives of Y 

with respect to x and is given by: 

222 1 
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Oly Oy clyl 
axi aX2 ax" 
(ýY2 CY2 C"y 2 

t9xl aX2 axý 

ýY. ctv. ay. 
axi aX2 ax, 

1) 

1 221 11 
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