
Software Systems Modelling Group,
School of Design, Engineering & Computing,

Bournemouth University

Requirements Validation with Enactable
Descriptions of Use Cases

John Mathenge Kanyaru

A Thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy of Bournemouth University

August, 2006

. gnyaru, for To my parents, Iýgmano l(gnyaru csý Dominica K
taF}ng me to scFoddespite their having never seen a

classroom door..

Acknowledgement
Quite simply, this thesis could not have been
support of Keith Phalp and Martin Shepperd.

written without the supervision, guidance and

As my supervisor, Keith provided me with the inspiration, encouragement and freedom to pursue
my occasionally bizarre ideas. As my friend, he has been unfailingly supportive, patient and
generous. He has always been ready to listen and advise me on my endless technical and social
dilemmas - and for that I am deeply grateful.

For over three years, Martin consistently provided me with constructive and insightful feedback

on my work. He meticulously reviewed endless reports, papers and drafts of this thesis, and
effectively treated my bouts of verbal diarrhoea!

Some of the ideas behind the work presented in this thesis originated during Karl Cox's PhD

research at our research group between the years 1998 and 2003. His work on use case writing
guidelines highlighted, at least, the need for rigorous scrutiny of use case specifications, and
hence the need for tool support for that matter. Since then, Karl has been occasionally providing
feedback on my work- thank you Karl.

The EducatorTool, described in' chapter 4, was an evolutionary prototype. The feedback from
audiences who sat through my early demos was invaluable.

Last but not least, the support of my family has sustained me throughout the last two years of my
PhD. My very best friend and my wife, Shelly Ann, and my daughters, Damali and Muthoni,
have all, in different ways, contributed to this thesis.

My parents have never understood why I would want to engage in another three years of study,
but encouraged me to do so all the same. Their love and good wishes must have played a part in
sustaining me through it all.

Financial Support
The work presented in this thesis was funded by the School of Design, Engineering and
Computing (DEC). I am grateful for this support, without which I could not have made it on my
own.

The views and opinions expressed in this thesis however, are not necessarily those held by DEC
or its individual members, and any errors are of course, entirely the responsibility of the author.

3

List of publications

1) Kanyaru, J., K. Phalp, and M. Shepperd. Enhancing use case descriptions with states:

validation via enaction; PREP2004 conference, University of Hertfordshire; April, 2004.

2) Kanyaru, J. and K. Phalp. A lightweight state machine for validating use case descriptions;

ESERG technical report; May, 2004.

3) Kanyaru, J. and K. Phalp. Requirements validation with enactable models of state based use

cases. in Empirical Assessment in Software Engineering conference (EASE'05). Keele University,

UK; April, 2005.

4) Kanyaru, J. and K. Phalp. Supporting the Consideration of Dependencies in Use Case

Specifications. in Requirements Engineering: Foundations for Software Quality (REFSQ'05);

Porto, Portugal; June, 2005

5) Kanyaru, J. and K. Phalp. Aligning business process models with specifications using

enactable use case tools. in Requirements for business need workshop (at RE'05); Paris, France;

August, 2005.

4

Table of Contents
1. INTRODUCTION

...
12

1.1 SOFTWARE REQUIREMENTS ...
12

1.2 USE CASES-AN OVERVIEW ...
13

1.3 PROBLEMS WITH USE CASES ..
14

1.4 APPROACH TO SOLVING THE PROBLEM ..
15

1.5 RESEARCH OBJECTIVES ...
16

1.6 OVERVIEW OF THESIS CONTRIBUTION ..
17

1.7 THESIS ROADMAP ...
17

2. ANALYTICAL REVIEW .. 19

2.1 INTRODUCTION
..

19
2.2 REQUIREMENTS ENGINEERING (RE)

..
19

2.2.1 RE Difficulties ..
19

2.2.2 Surmounting RE difficulties
...

20
2.2.2.1 Formal specification ...

20
2.2.2.2 Prototyping specifications ..

21
2.3 UML SUPPORT FOR REQUIREMENTS ENGINEERING

..
22

2.3.1 Use cases ...
22

2.3.2 Scenario-based techniques ..
23

2.4 AUTOMATED USE CASE ENVIRONMENTS ...
26

2.4.1 The UCEd approach ..
26

2.4.2 The Play-In/Play-Out approach ...
27

2.4.3 The ArtScene approach ...
28

2.4.4 Executable Use Cases (EUCs) approach ...
29

2.5 CHAPTER SUMMARY ..
29

3. THE EDUCATOR APPROACH ... 31

3.1 INTRODUCTION AND MOTIVATION ..
31

3.2 CLARIFICATION OF TERMINOLOGY ...
32

3.2.1 Steps and Events ... 33
3.2.2 Events and States .. 33
3.2.3 Invoking Events .. 33
3.2.4 The Educator state model ... 34
3.2.4.1 Pre and post (states and conditions) - case refinement ... 35
3.2.4.2 Pre and post (states and conditions) -part refinement ... 37
3.2.5 RAD as Use Cases

.. 39
3.2.6 Discussion of advantages and disadvantages of the state model ... 39
3.2.7 Summary of terminology issues

.. 40
3.3 ISSUES ADDRESSED ...

40

3.3.1 Validation .. 40
3.3.2 Dependencies and interaction issues

... 41
3.4 APPLICATION OF PROCESS MODELLING ..

42

3.4.1 Role-based process models ... 42
3.4.2 State-based use case descriptions

.. 43
3.4.3 Intra-use case and inter-use case dependencies

... 44
3.6 A NEED FOR SUPPORT ENVIRONMENT ... 49

3.6.1 Motivation ... 49
3.6.2 Overview of features

... 50
3.6.3 Enacting Educator descriptions

... 51
3.6.4 Educator process ... 55

3.7 CHAPTER SUMMARY .. 56

4. DEVELOPMENT OF TOOL SUPPORT ... 57

5

4.1 RATIONALE FOR A BESPOKE TOOL ..
57

4.2 THE EDUCATORTOOL
..

58
4.3 SUPPORTING CP RULES ...

59
4.3.1 Overview of CP rules ..

59
4.4 ENACTABLE FUNCTIONALITY- EXAMPLES ..

62
4.4.1 Default enaction ..

62
4.4.2 State based enaction ..

63
4.4.3 Multiple use case enaction ..

66
4.4.4 Modal (Combinatorial) enaction ...

68
4.6 CHAPTER SUMMARY

..
68

5. EVOLUTION OF EDUCATORTOOL ... 70

5.1 RATIONALE AND ACTIVITIES UNDERTAKEN
..

70

5.2 FEEDBACK FROM STUDENT WORKSHOPS
..

71

5.2.1 Feedback gathering ... 71
5.2.2 Educator approach ... 71

5.2.3 EducatorTool ... 75
5.2.4 Discussion of issues

.. 79
5.3 RESEARCH GROUP SEMINARS .. 82

5.3.1 EducatorTool seminar 1
.. 82

5.3.2 EducatorTool seminar 2
.. 84

5.4 CHAPTER SUMMARY ..
84

6. INDUSTRIAL EVALUATION .. 86

6.1 INTRODUCTION
..

86
6.2 AIMS AND OBJECTIVES ...

86

6.2.1 Aims .. 86
6.2.2 Objectives ... 86
6.2.3 Evaluation activities .. 87

6.3 EVALUATION STRATEGY ..
87

6.4 THE PROJECT ...
90

6.4.1 The company ... 90
6.4.2 Purpose of the project ... 90
6.4.3 How the project was carried out .. 91

6.5 DISCUSSION OF STUDY ISSUES ..
92

6.5.1 Data gathering and procedure ... 92
6.5.2 Analysis issues

.. 93
6.6 EVALUATING THE EDUCATOR APPROACH ..

95

6.6.1 Intra-use case dependencies
.. 95

6.6.2 Inter-use case dependencies .. 108
6.7 EVALUATING THE EDUCATORTOOL

...
111

6.8 REVIEW OF OBJECTIVES & EVALUATIONS .. 113
6.9 DISCUSSION OF FINDINGS ...

1 14
6.10 LIMITATIONS

.. 116
6.10.1 Educator approach and tool limitations

... 116
6.10.2 Research methodology .. 1 17

6.11 CHAPTER SUMMARY
..

1 17

7. CONCLUSIONS ... 119

7.1 REVIEW OF OBJECTIVES ..
120

7.2 SUMMARY OF FINDINGS ...
120

7.3 THESIS CONTRIBUTIONS ..
122

7.4 CONCLUSION
..

124
7.5 FURTHER WORK ...

125

7.5.1 Educator approach ... 125

6

7.5.2 EducatorTool
...

126

REFERENCES .. 127

APPENDICES ... 133

A. ADDITIONAL DATA ..
133

A. 1 The systems ..
13 3

A. 2 Site-based Systems
...

134
A. 3 Control Centre Based Systems

...
136

A. 4 Further initiatives
..

13 7
B. SITE INFORMATION ...

139
C. SITE-BASED SYSTEMS USE CASES ..

139
D. CONTROL CENTRE-BASED SYSTEMS USE CASES ...

142
E. FURTHER USE CASES ...

143

F: QUESTIONNAIRE USED TO OBTAIN STUDENT FEEDBACK .. 144

F. 1 The Questionnaire
..

144
F. 2 Questionnaire analysis ...

145
F. 3 Further use cases from student workshops ..

146

G: ADDITIONAL (ANALYSIS) EXAMPLES FROM THE INDUSTRIAL STUDY 147

K: ADDITIONAL (ANALYSIS) EXAMPLES FROM THE WORKSHOPS 155

7

List of Figures
Figure 3.1: Traditional precondition used as a guard ... 35
Figure 3.2: RolEnact state model requires additional action and state ... 36
Figure 3.3: Standard RAD view of parallel .. 37
Figure 3.4: Separating roles in a process (RAD)

... 38
Figure 3.5: RAD for Pen exchange process ... 43
Figure 3.6: RAD for the Exchange pen and course registration use cases .. . 46
Figure 3.7: Synchronising use cases at event level

.. 47
Figure 3.8: Threads for Student and Lecturer actors

48
Figure 3.9: Pace maker use case description

... . 52
Figure 3.10: RAD for the pacemaker use case description

... . 54
Figure 4.1: Disallowed words 60
Figure 4.2: A word that may not be suitable

61
Figure 4.3: Checking use of past tense ... Figure 4.4: An example list of allowed words .. . 61
Figure 4.5: Default enaction (second event) 62
Figure 4.6: output of default enaction for the pacemaker 63
Figure 4.7: State-based Pacemaker process in EducatorTool

... . 63
Figure 4.8: Physician and Pacemaker's states (prior to event 1)

... .
64

Figure 4.9: Event 2 must involve setting the pace timer 65
Figure 4.10: resulting description

... . 65
Figure 4.11: Event level synchronisation within EducatorTool

.. . 66
Figure 4.12: Interaction at event level between 2 use cases .. .

67
Figure 4.13: RAD showing invocation of a use case from another 67
Figure 4.14: invoking Course registration at event 1 of Pen exchange 68
Figure 5.1: Care request use case description

... . 72
Figure 5.2: Depot exit use case description

... . 74
Figure 5.3: use case of Table 5.1 within EducatorTool 76
Figure 5.4: First enaction window .. . 76
Figure 5.5: Enaction dialogue after event I ... 77
Figure 5.6: revised version of Figure 5.3 ... 77
Figure 5.7: Enaction output of description in Figure 5.6 ... 78
Figure 5.8: third event during enaction .. 79
Figure 5.9: enaction output for depot exit use case .. 79
Figure 6.1: Alarm Receiver use case .. 95
Figure 6.2: Use case of Table 6.4 edited in EducatorTool ... 99
Figure 6.3: First Enaction window ... 99
Figure 6.4: AlarmReceiver at received state .. 99
Figure 6.5: no event is available with pre-state recorded ... 100
Figure 6.6: Revised version of Figure 6.2 .. 100
Figure 6.7: Resulting output ... 102
Figure 6.8: Client connection use case ... 103
Figure 6.9: Client Server connection use case ... 104
Figure 6.10: Client and Server states before event I .. 105
Figure 6.11: Client and Server states after event I ... 105
Figure 6.12: revised client-server connection use case .. 106
Figure 6.13: output of client-server enaction ... 107
Figure 6.14: invoking CCCS within AlarmReceiving use case ... 109
Figure 6.15: Control Centre AlarmReceiver use case .. 109
Figure 6.16: Typical CCCS process ...

110
Figure 6.17: Synchronisation of inter-use case events ... 110
Figure 6.18: Scheduler-Application ...

III
Figure 6.19: Scheduler-Application (within EducatorTool) .. 11 l
Figure 6.20: Relating CCCS to an event of AlarmReceiver

.. 112
Figure 6.22: Modal (combinatorial) enaction .. 115

8

Figure C. 1: Project Files creation ... 140
Figure C. 2: Database creation .. 140
Figure C. 3: Site-based Alarm Receiving .. 140
Figure C. 4: Alarms Display use case ... 141
Figure C. 5: Scheduler-application communication .. 141
Figure C. 6: Data logging

... 142
Figure C. 7: Activity Recording use case .. 142
Figure D. 1: Control Centre Alarm Receiver use case .. 142
Figure D. 2: Bureau Alarm Collection Service use case .. 143
Figure E. 1: Client-Server connection use case ... 143
Figure E. 2: Registering a new customer .. 144
Figure F. 2.1: Graph of respondents against suggestions .. 146
Figure F. 3.1: Validate operator details

... 146
Figure F. 3.2: Operator login

.. 147
Figure F. 3.3: Create transaction reports ... 147
Figure G. 1: Scheduler-application communication .. 147
Figure G. 2: First available event [Scheduler-application]

... 148
Figure G. 3: Second available event [Scheduler-application]

... 148
Figure G. 4: Revised scheduler-application communication .. 149
Figure G. 5: Enaction output for revised scheduler-application .. 149
Figure G. 6: Data logging use case description

... 150
Figure G. 7: Event 9 of data logging use case ... 150
Figure G. 8: Revised data logging use case description

.. 151
Figure G. 9: Revised customer registration use case ... 152
Figure G. 10: Customer registration use case (edited in EducatorTool)

... 153
Figure G. 11: clients-applications linkage

... 154
Figure G. 12: Customer registration - revised after enaction .. 154
Figure G. 13: Enaction output for the customer registration use case ... 155
Figure K. 1: Revised validate operator details use case .. 156
Figure K. 2: Create transaction report ... 157
Figure K. 3: First available event [Create transaction report] ... 157
Figure K. 4: Second available event [create transaction report] ... 158
Figure K. 5: Revised create transaction report use case .. 158
Figure K. 6: Enaction output for revised create report use case .. 159

List of tables
Table 3.1: Pen exchange use case .. 44
Table 3.2: Course registration 45
Table 3.3: Pacemaking use case (Educator version) 53
Table 5.1: Care request use case (revised in Educator approach) 73
Figure 5.2: Depot exit use case description

... . 74
Table 5.2: state based version of Figure 5.12 ... 75
Table 6.1: Quality aspects for evaluating Educator (based on Kitchenam's framework)

.................. 88
Table 6.2: Educator approach and tool evaluation framework

... 89
Table 6.3: Considering learning effect ...
Table 6.4: Alarm Receiver use case (revised in Educator approach) ...

96
Figure 6.2: Use case of Table 6.4 edited in EducatorTool ...

99
Figure 6.3: First Enaction window ... 99
Figure 6.4: AlarmReceiver at received state .. 99
Figure 6.5: no event is available with pre-state recorded ...

100
Figure 6.6: Revised version of Figure 6.2 .. 100
Table 6.5: Summary of changes due to augmentation and enaction ..

101
Figure 6.7: Resulting output ... 102
Figure 6.8: Client connection use case ... 103
Table 6.6: Revised client-server use case ... 103

9

Table G. 1: state-based version of customer registration use case .. 152
Table K. 1: state-based version of validate operator details use case .. 156

10

Abstract
The validation of stakeholder requirements for a software system is a pivotal activity for any non-

trivial software development project. Often, differences in knowledge regarding development issues,

and knowledge regarding the problem domain, impede the elaboration of requirements amongst
developers and stakeholders. A description technique that provides a user perspective of the system
behaviour is likely to enhance shared understanding between the developers and stakeholders. The

Unified Modelling Language (UML) use case is such a notation. Use cases describe the behaviour of a

system (using natural language) in terms of interactions between the external users and the system.
Since the standardisation of the UML by the Object Management Group in 1997, much research

has been devoted to use cases. Some researchers have focussed on the provision of writing guidelines
for use case specifications whereas others have focussed on the application of formal techniques. This

thesis investigates the adequacy of the use case description for the specification and validation of

software behaviour. In particular, the thesis argues that whereas the user-system interaction scheme

underpins the essence of the use case notation, the UML specification of the use case does not provide

a mechanism by which use cases can describe dependencies amongst constituent interaction steps.

Clarifying these issues is crucial for validating the adequacy of the specification against stakeholder

expectations.

This thesis proposes a state-based approach (the Educator approach) to use case specification

where constituent events are augmented with pre and post states to express both intra-use case and

inter-use case dependencies. Use case events are enacted to visualise implied behaviour, thereby

enhancing shared understanding among users and developers. Moreover, enaction provides an early

"feel" of the behaviour that would result from the implementation of the specification. The Educator

approach and the enaction of descriptions are supported by a prototype environment, the EducatorTool,

developed to demonstrate the efficacy and novelty of the approach.

To validate the work presented in this thesis an industrial study, involving the specification of real-

time control software, is reported. The study involves the analysis of use case specifications of the

subsystems prior to the application of the proposed approach, and the analysis of the specification

where the approach and tool support are applied. This way, it is possible to determine the efficacy of

the Educator approach within an industrial setting.

1. Introduction

The difficulty of matching software systems to the needs (requirements) of the stakeholders of the

system is well recognised (e. g., [1], [2], [3], [4]). One way to determine the extent to which these

needs will be met by the system is to involve the stakeholders in the validation of the system

specification ([5], [6]). That is, given that a specification is a description of the proposed system's

behaviour, validation of the specification is one of the appropriate ways in which to clarify the

extent to which the specification matches the stakeholder requirements. This thesis presents a

state-based approach for system specification with UML use cases, and the subsequent expression

of dependencies amongst constituent use case events as a means to validation.

1.1 Software requirements

Prior to constructing any non-trivial software system, it is crucial that the purpose of the system is

established. For the purpose to be established clearly, development participants often have to

obtain knowledge about the problem domain. The problem domain constitutes the part of the

world where the problem exists ([7], [8]). Software requirements can be regarded as the effects

that stakeholders wish to be brought about in the problem domain ([7], [9]).

Determining software requirements is not the end of the requirements process. Development

participants (software engineers and other stakeholders) must establish what the appropriate

behaviour of the intended system should be in order to produce the desired effects during its use.

This constitutes the software specification. Jackson [10] points out that a specification is a

restricted form of software requirements. That is, the specification provides enough information

for a developer to build the software system without further knowledge about the problem domain

([10], [11]). This view is also expressed by ([7], [12], and [13]) who observe that the input to a

specification task is the requirements document. Hence, specification in itself is the invention and

definition of behaviour of a software system such that the system will produce the required

effects in the problem domain [7].

Several researchers (e. g., [14], [15], and [16]) observe that inadequate requirements determination,

or flawed specification, inevitably leads to development of a system that does not meet its

intended purpose. This observation is evident from the many software projects that are abandoned

at huge financial cost, and often after many years of development effort. For instance, the London

Ambulance Service dispatch system was scrapped after two days of its. operation in 1992. The

12

problems cited for its failure were largely due to project management issues and an inadequate

requirements process (see [17] and [18]). In 1993, the London Stock Exchange abandoned the

development of its Taurus paperless share settlement system after more than 10 years
development effort. It was estimated that, when the project was abandoned, it had cost the city of

London over £480 million, whereas the original budget was £6 million [19]. The key problems

cited for its demise were failure to reconcile conflicting requirements. A few years ago, the UK

government set out to provide an electronic patient records' system in England, but the computer

system has been reported (see [20]) to be two and half years late and over budget (£20bn rather

than the initial £6.2bn). The main problem cited for its delay is that doctors have not been able to

agree on exactly what information should be recorded for each patient. In other words, there is

disagreement as to how much information should be included without getting patients' consent,

which also means that the patients are not in fact consulted during the development of the system.

These examples (and many others) indicate that some of the main issues contributing to the

failure of software projects are related to inadequate requirements and specification.

One way to address these requirements and specification issues is to involve concerned

stakeholders [21] in the elicitation of requirements and the validation of specifications. UML use

cases have recently gained wide uptake as a requirements and specification notation, mainly due

to their ease of construction and comprehension. Most crucially, use cases describe software

behaviour from the point of view of external users, thereby depicting stakeholders' views of the

system functions.

1.2 Use cases - an overview

The use case concept was originally proposed in the Objectory method [22] but has also been

integrated in a number of other approaches including the Fusion method [23] and the

UML([24], [25]). The basic elements of a use case specification include actors and use cases.

Actors are external roles or user types that have an interest in the use cases ([26], [27]). A use

case is a description of system usage from the viewpoint of an actor (or actors) ([22], [28]).

There are two main ways of constructing use cases, either in the form of a use case diagram (e. g.,

as discussed in [29] and [30]) or textual use cases (e. g., as suggested in [31] and [32]). Due to the

lack of detail regarding system behaviour depicted in use case diagrams, [33] argues that the

diagram should not be used on its own for software specification. A term that has been used

alongside (even interchangeably with) the use case notation is scenario. Scenarios are textual

descriptions of use cases showing a specific path of behaviour through a use case. Thus, a use

13

case has a main path (or main scenario), and any alternative paths (scenarios) showing different

pathways through the use case. Many authors (e. g., [34], [35], [36], and [32]) favour the textual

use case (or the use case description). Use case descriptions delineate the constituent steps
(events) of the use case, hence offering more detail regarding the interactions between actors and

the system.

During specification tasks for non-trivial systems, many use cases may be constructed which in

turn may have many constituent events. This thesis argues that inter-relating use cases for the

same system, or indeed, inter-relating the constituent events of a single use case is crucial to the

validation of the specification. Clarifying intra-use case dependencies is vital to determining the

implications of interactions amongst constituent events of a use case; additionally, clarifying

inter-use case dependencies is vital to determining the implications of interactions amongst use

cases of the same or different systems. Research efforts so far have mainly focussed on the

provision of authoring guidelines for use cases and where researchers have attempted to provide

automated analysis of use case specifications, formal approaches have been used for the

production of such specifications.

1.3 Problems with use cases

Much work has been devoted to UML use cases since the standardisation of the UML by the

Object Management Group in 1997. Given the importance of the comprehensibility of

descriptions, some researchers have focussed on the provision of authoring guidelines for use

cases (e. g., [32], [33], and [37]). The main motivation for these efforts is that the UML

specification of the use case (see [25]) does not state any guidelines to be followed when writing

use case specifications. Hence, different writing styles can result in ambiguous specifications.

Other researchers (e. g., [38] and [36]) have attempted to adopt formal specification techniques to

produce precise use case specifications. The main argument by proponents of the use of formal

techniques is that there is no precise syntax or semantics for UML use cases. However, the

application of formal techniques in requirements and specifications is often a drawback (see [39],

[40]) to the validation tasks which inevitably involve non-technical stakeholders. Hence, this

thesis suggests that a formal approach is inappropriate for many development participants.

The core philosophy of the UML use case is to describe software behaviour as interactions

between system users and the system; yet the UML offers no explicit mechanism for describing

dependencies amongst constituent interaction steps of the use case. The UML specification (see

14

[25]) states that every use case should express a sequence of interactions that are independent of

any other use case. This implies that use cases specifying the same system must not communicate

or have associations with one another. A contradiction is that the UML however, describes some

types of relationships between use cases (e. g., <<include>> and <<extend»). Both <<include>>

and <<extend>> imply the existence of use cases describing functions which are not necessarily

complete and do require communication between the base use case and the included/extending

use cases. Included use cases can be used to handle exceptions that might result in unrealistic

computations. On the other hand, <<extend>> means that the extending use case is inserted at a

designated extension point if a particular condition is true. Intra-use case dependencies such as

"event e requires that event q has been previously executed" cannot be expressed in UML. More

worryingly, inter-use case dependencies such as "use case A requires that use case X has been

previously executed" cannot be formally expressed in UML. More often though, applications in

the real world exhibit subtle interactions that are far from obvious and are difficult to describe

without considering how they interact ([11], [41]). Furthermore, in reality, use cases and use case

elements do interact. Hence, the property of independence of use cases cannot hold where

decomposition of a system is crucial to its understanding. Indeed, other authors have noted that

the independence rule is often flouted in practice ([42], [43]). It is argued in this thesis that as part

of system specification and validation, it is crucial that interactions and dependency issues are

explicitly described and clarified.

1.4 Approach to solving the problem

The traditional way of constructing models where interaction and dependency issues are of

concern is the use of a process algebra suited to the task (e. g., [44] and [45]). Within business

process modelling, graphically based models (mainly RADs) are deployed in constructing

diagrams of partial processes which are then composed to depict a whole system ([46], [47]). The

verification of the correctness of such models is sometimes conducted using formal descriptions

of the process within an automated environment such as that described in ([48], [49], [50] and

[51]).

In most commonly used process algebras (e. g., [45]), especially within business process

modelling, it is well known that the flow of logic within processes is not always sequential.

Processes are largely inter-dependent, both between themselves and within their constituent

process steps. Hence, there are points of synchronisation due to processes invoking each other, or

indeed waiting periods involving roles completing tasks in a context-dependent way [46].

15

Similarly, use cases are not always self-contained, transitive entities because often there are a
number of actors needed to fulfil a system function and a number of interacting steps necessary to
reach a desired computation result. The UML specification of the use case does not allow for the
description of state-based relationships among use case elements. Hence, this thesis borrows from

the process modelling community the concept of state-based specification where interactions
between roles depend on the states of the roles. This approach enhances the level of detail in use
case descriptions with state-based information, whereby each constituent event is augmented with
a pre and post state. The `pre' and `post' states for each event are used as a mechanism for
facilitating the consideration of dependencies amongst constituent events of the use case. The

thesis proposes an automated environment for authoring and animating descriptions written using
this state-based approach as a means of clarifying interactions and dependencies within use case
specifications.

1.5 Research objectives

This research addresses the weaknesses of the use case description as a software specification

notation; in particular, the research seeks an enhanced structure of the use case notation whereby
the resulting specification is amenable to analysis of interaction and dependency issues. It is the

position of this thesis that a state-based approach where use case events are augmented with

named `pre' and `post' states provides insight about dependencies (and interaction issues) that

cannot be gained from standard use cases.

Hence, there are three main objectives of this research:

l) To provide an enhanced structure of the use case description where dependencies and
interaction issues can be delineated as a means to requirements validation. The enhanced

structure provides a means for augmenting use case events with state-based information.

2) To provide automated support whereby the enhanced use case description (from

objective one) can be authored and enacted (animated) to reveal the behaviour that would

result from implementing a software system based on the specification. This enaction

provides behavioural prototypes that depict the implications of the specification to the

stakeholders.

3) To validate the efficacy of the enhanced use case structure and tool support via student

workshops, seminar presentations, examples from literature and an industrial study. The

aim of this validation is to determine the extent to which the enhanced structure and tool

help in producing specifications that match the expectations of the system stakeholders as

compared to the standard use cases.

16

Many state-based approaches and associated tools adopt a formally-based specification notation

(e. g., [49], [36]) for the description of system behaviour. The construction of such specifications

(and their readability) poses learning overheads to most non-technical participants [52]. This

thesis provides a means to obviate any need for formal specification or translation of use cases.

Thus, the adopted approach follows the controlled natural language guidelines of [37] (similar to

those suggested in [33]). This way, the construction of specifications based on the proposed

approach does not require the learning of any intermediate formal specification language. This

ensures that the simplicity of the use case description is preserved. A number of student

workshops, more formal workshops with colleagues, and an industrial project are reported to

evaluate the proposed approach and tool support.

1.6 Overview of thesis contribution

The work presented in this thesis seeks to address a requirements engineering issue pertaining to

the validation of software requirements and specifications. UML use cases have wide industry

uptake as a specification notation, but offer an inadequate means of validating the specifications

against stakeholder requirements. In particular, this thesis argues that use cases have no means for

elaborating intra-use case dependencies or inter-use case dependencies. This thesis proposes a

state-based approach, the Educator approach for authoring use case specifications whereby

dependency issues are made explicit. This is the central contribution of the thesis. Additionally,

the thesis presents a proof of concept tool, the EducatorTool, which acts as vehicle for illustrating

Educator-based use cases. The Educator approach affords the capability of automated simulation

of use case specifications within the EducatorTool, and this is considered an important aspect of

validation.

1.7 Thesis roadmap

The rest of the thesis is structured as follows:

Chapter 2 provides an analysis of use case literature, and an analytical review of literature

regarding the software engineering issues that are within the scope of this thesis. A review on

software requirements and specifications is made; the chapter highlights the significance of

rigorous validation of specifications, including the difficulties experienced in specification and

validation activities. A discussion of the requirements engineering discipline is made including

17

suggested ways of surmounting the difficulties experienced. The chapter reviews the objectives of
the thesis within the context of industrial strength CASE tools and other less holistic tools

Chapter 3 discusses the Educator approach, including the extent to which it is informed by some

process modelling approaches. The chapter discusses the Educator approach's dependency

analysis mechanisms, and the potential for enacting Educator-based specifications due their state-

based nature.

Chapter 4 discusses the EducatorTool, the motivation for its development, the architecture of the

tool and the different types of enactable capabilities provided. The chapter also demonstrates the

usage of the tool, including the adopted syntax for authoring descriptions.

Chapter 5 presents the process and the iterations that resulted in the development of the tool. The

chapter outlines the various workshops and seminars that were conducted to obtain feedback in

the refinement of the initial EducatorTool prototypes. The refinements were aimed at improving

enaction functionality and the user interface of the tool.

Chapter 6 provides a presentation of an industrial study conducted as a proof of concept for the

Educator approach and tool. The chapter presents a description of the company where the study

was conducted; the nature of software systems developed by the company; the purpose (i. e., to

provide a specification of real-time monitoring systems on the one hand, and to conduct an

empirical application of this research on the other) of the industrial project is also discussed. The

chapter outlines some of the data gathered, including a presentation of the data analysis and

discussions on the findings from the study. The chapter discusses some of the limitations of the

work presented in this thesis, including indication of directions for further work.

Chapter 7 offers some conclusions; the chapter reviews the objectives, and outlines the main

contributions of the thesis; a summary and conclusion are also provided.

18

2. Analytical review

2.1 Introduction

Many difficulties relating to software requirements and specifications are often associated with

inadequate communication ([53], [54]) between stakeholders and developers. Other difficulties

emanate from a poorly managed requirements process ([55], [56], [57]) whereby inaccurate

assumptions are made regarding the problem domain ([58], [59]). Further issues curtailing the

requirements and specification process are to do with inadequate conflicts and inconsistencies

handling techniques (see [18] and [60]).

In order to address some of the above issues (e. g., communication difficulties) and elaborate the

effects that a system would have on the problem domain, the specification process must be able to

expose any tacit issues or assumptions early during the specification process. Hence, a coherent

requirements process must address many subtle issues allowing for the interrogation of the

specification as a means to clarify requirements (e. g., [61]). This chapter discusses these

requirements issues and the existing attempts (and their limitations) to address them.

2.2 Requirements Engineering (RE)

Zave [62] offers a definition of RE that is widely accepted by other researchers (e. g., [63] and

[43]). In [62], RE is described as the branch of software engineering concerned with the real-

world goals for, functions of, and constraints on software systems. It is also concerned with the

relationship of these factors to precise specifications of software behaviour, and to their evolution

over time and across software families.

Simply put, RE is the process by which software requirements are determined and the

specification constructed. There are many inherent and subtle difficulties in the RE process.

2.2.1 RE Difficulties

One of the key products of a RE process is the specification which details the behaviour expected

of the system under development. Specification of software behaviour is a difficult task ([64],

[65]). It is a type of problem that has been termed uncertain ([66], [67]). The reasons for

difficulties in constructing specifications include the fact that the specification activities are ill-

structured and open-ended, and the knowledge available is incomplete [68]. More worryingly,

19

there is no notion of a finished specification, and the only criterion for stopping is some form of
satisfaction ([69], [70]) on the part of the participants.

Four major areas of difficulty can be identified (see [56] and [71]) as contributing to the problems
associated with the determination of requirements and specification:

l The knowledge sources are diverse and vary greatly in the quality of information and
exposition.

2 The actual knowledge takes many different forms that are often inadequately described.

3 Often, the contents of the specification need to be negotiated amongst competing
resources or conflicting stakeholders.

4 The requirements may be difficult to comprehend and the specification difficult to

construct due to unfamiliarity with the problem domain.

2.2.2 Surmounting RE difficulties

In order to produce software that meets its intended purpose, software engineers must conduct

some form of validation. One such way is the writing of a specification in a formal specification
language that ensures issues such as consistency are exposed or detected. The other way is to

construct models of the specification that are amenable to automated analysis such that

stakeholders can scrutinise the validity of the specification against their expectations. These two

ways are discussed in sections 2.2.2.1 and 2.2.2.2.

2.2.2.1 Formal specification

Hunter ([18], [60]) proposes the rigorous translation of a specification using weakened classical

logic as a means of testing the internal consistency of the specification. The use of weakened

classical logic is meant to allow useful reasoning in the presence of inconsistencies within the

specification. As a demonstration, Hunter conducts an analysis of various specification fragments

using the proposed logic. The use of mathematical logics does not lend itself to ease of analysis

by non-mathematical stakeholders who inevitably need to comprehend the specification during

the validation process [39]. Furthermore, mathematical clarity does not always equate to a useful

specification as often stakeholder views may still have been missed in a mathematically rigorous

specification ([72], [73]).

20

Others have attempted to formalise notations such as process modelling notations (e. g., [51]) or

some parts of UML. An example is the translation of UML use cases with the Z (e. g., [36]) and
LOTOS (e. g., [44]) formal specification languages. In most of these efforts, the aim is to produce

a precise specification that can be used within an automated environment for validation or testing.
For example, in [36] a use case is first structured around a model based on temporal logic that

allows the use of operators such as choice, repetition and interruption on specification parts
during execution of tests. The temporal logic model and the Z language offer some powerful

specification features that are not afforded by the UML specification of the use case. However,

the argument that formal translation of use cases is necessary in order to conduct any automation
(for testing) is not true since the work presented in this thesis indicates otherwise. For instance,

chapter 6 shows that a system can be specified and validated using an enactable scheme that does

not require the adoption of formal techniques.

2.2.2.2 Prototyping specifications

The traditional software engineering concept of prototyping is becoming increasingly popular

during specification and validation (e. g., [74], [75]). Prototyping generally involves developing

mock-ups of the system with an aim to initiate further scrutiny of the requirements and

specification. Two main ways of system prototyping are throw-away and evolutionary

prototyping ([68], [76], [77]). Throw-away prototypes are system mock-ups that are not meant to

be kept after their use in further elaboration of the system's capabilities. Evolutionary prototypes

are the mock-ups built with an aim to be incrementally developed and evolved into a fully

working system. Sommerville [68] argues that since the objective of evolutionary prototyping is

to "quickly" deliver a working system to end-users, the development starts with those

requirements which are best understood. On the other hand, the objective of throw-away

prototyping is to validate or derive the system requirements and the prototyping process starts

with those requirements which are poorly understood [68].

In either case, the developers produce a partially working system that is either thrown away or

changed. For large systems, the time taken to produce executable prototypes can be long and

development effort may be wasted due to extensive changes (or throwing away) of the prototype

[78]. This thesis argues for a prototyping scheme based on the specification rather than any

implementation of the specification. That is, instead of producing executable mock-ups of the

21

system, it is considered far cheaper to prototype the specification (e. g., [79], [80], [81]) as a
means of validating the implied behaviour before any further development.

2.3 UML support for Requirements Engineering

The UML is a non-proprietary modelling language widely used in (object oriented) software
development. UML includes graphical notations that are used to create abstract models of a

system - UML models. The dominant notation for requirements and specifications within the

UML is the use case notation.

2.3.1 Use cases

A use case is a sequence of transactions in a system whose task is to yield a result of measurable

value to an actor of the system ([22,82]). Hence, a use case is more than a scenario as it

comprises of the set of possible scenarios that indicate the different ways a system can be used to

accomplish an external user's goal [83].

The use case notation is generally considered appropriate for describing and validating functional

requirements ([84], [85]). The reason for this is that the use case notation describes system

behaviour in terms of user-system interactions, hence making it possible for system stakeholders

to identify the extent to which those interactions reflect their expectations of the system.

The standard elements of a use case are stated as follows (see [33], [86], and [30]):

1 Use case name (describes the actor's goal)

2 Actors (user types that interact directly with the system)

3 Trigger (what starts the use case)

4 Pre- and post-conditions (system states before and after the use case is performed).

A use case can be viewed as a vehicle for describing scenarios since use cases describe general

system use whilst scenarios depict instances of this use. Hence, a use case approach is a means of

collating and organising scenarios ([87], [54]). It is surprising that despite these potentially useful

functions (e. g., organising scenarios) of use cases, there are no elaborate mechanisms for

organising use cases with regard to their validation beyond the <<include>> and <<extend>>

relationships. Indeed, the <<include>> and <<extend>> relationships are essentially aimed at

22

organising commonly accessed behaviours rather than organising constituent events or distinct

use cases to determine the consequences of their execution.

Schneider and Winters [28] introduce the concept of primary and secondary scenarios to use
cases. The primary scenario describes a most typical success scenario without any alternatives,
referred to as a "happy day scenario". Secondary scenarios are the alternatives not addressed in

the primary scenario. Taken together, the primary and secondary scenarios combine to make the

complete use case. Fowler and Scott [30] describe a use case as a collection of scenarios that

share a "common user goal". Cockburn [33] concurs with these definitions by observing that use

case descriptions are an appropriate specification medium because they offer a means to step
through the logic of the description from start to finish. There is no indication regarding what the

consequence of executing the third, or say fifth step before the first would be in any given system

use circumstance.

From the discussion above, it is clear that many proponents of use cases (e. g., [28], [88], [89]),

assume the sequential execution of use cases, their constituent scenarios and actions. This

assumption disregards the implications of executing certain actions prior to others, or certain

scenarios prior to other scenarios, or indeed, particular use cases before (or after) other use cases.
This thesis investigates these issues with an aim to provide a coherent mechanism by which
dependencies and interaction issues within use case actions can be scrutinised and clarified.

2.3.2 Scenario-based techniques

Emphasis is laid on the term "scenario-based" techniques in this section because there has been a

growing trend in several application areas for system behaviour to be modelled using a variety of

notations for depicting scenarios. Several authors (e. g., [90], [91]) also deploy state machines to

enhance scenarios.

Just like scenarios within the use case discourse, these other techniques recognise scenarios as

partial stories which, when combined with other scenarios provide a more complete system

description. This makes scenarios particularly well suited for incremental specification of

software behaviour ([92], [93]) because stakeholders may develop descriptions independently,

contributing their own view of the system to those of other stakeholders. Given that several

scenarios can be written to describe different usage circumstances, composition algorithms are

23

often designed (see [38]) to enable the integration of the behaviour of different scenarios into a
model that is amenable to behaviour analysis of the whole system

Usually, scenario-based techniques are used in the early specification of a system (e. g., [94]),

while state machines are used for dynamic modelling (e. g., [95]). The rigour afforded by some
dynamic modelling techniques (e. g., state machines) should not be limited to software design

alone. Behavioural modelling is essential also for understanding existing systems.

A widely used notation for scenarios (e. g., within the telecommunications industry) is the
Message Sequence Charts (MSCs) [96]. MSCs are variations of the UML sequence diagrams

[29]. Whereas MSCs and sequence diagrams have intuitive diagrammatic structures they are

geared to constructing specifications based on one scenario per diagram. Clearly, one scenario

conveys relatively little information, and often many scenarios are needed to provide a significant

system description. In such circumstances, the combination of a number of scenarios into a

coherent whole becomes a significant issue. Hence, how do researchers who focus on MSCs

relate their partial specifications? There are two common ways of tackling this issue:

1) By inferring the relations between scenarios (using synthesis algorithms e. g., in [38] and [97]).

2) By requiring the relationships to be explicitly stated by stakeholders (e. g., [85] and [65]).

In the latter case, abstractions should be provided to specify these relationships. Several different

answers are proposed to address this issue. For instance, [96] introduces a graph-like notation that

shows how the system evolves from one scenario to another. The underlying notion used in [96]

is that of scenario composition. The composition involves a process whereby new scenarios can

be defined in terms of other scenarios by composing with sequential, choice, and iteration

operators.

Kruger [98] suggests a different approach to that of scenario composition. This involves the

identification of state conditions instead of composing behavioural fragments in MSCs. State

conditions identify common states throughout different scenarios. Thus, two state conditions

equally labelled on different scenarios indicate that the scenarios have a common point in the

interactions they describe [98]. This allows the system to switch scenario when it reaches the

common state.

24

There are a number of strengths and weaknesses regarding MSCs composition and state labelling
approaches.

Some weaknesses of scenario composition mechanisms include:
l Composition approaches may contend with a situation where a large number of very

short scenarios must be composed in complex ways to describe the system's overall
behaviour. This is an inherent weakness of MSCs (and sequence diagrams) [99].

2 Some composition algorithms may be too complex for non-technical stakeholders to

comprehend and use in composition of scenarios ([100], [101]).

Some strengths of composition mechanisms include:

I Promoting scenario reuse as they are composed to develop more complex system
behaviours.

2 There is no requirement on the part of the stakeholder to specify scenarios with some
kind of state machine model in mind.

On the other hand, state identification approaches are a convenient way of introducing complex
behaviours without having to split scenarios into parts ([102] and [103]). A main system run can
be described in one scenario and then accorded its global states in order to relate it with other

scenarios. In addition, state identification can be used to introduce varied information about the

system and may provide means for progressively moving into a more detailed over-all system

description. On the negative side, requiring explicit identification of states requires consistency

from stakeholders when constructing scenarios and forces them to reason about their system in

terms of state machine models rather than sequences of actions. This requirement to be consistent

on the part of the stakeholder is not the case when deploying the standard approach. Furthermore,

lack of bespoke tools for supporting state identification approaches adds to the problems

experienced in adopting the approach. The state identification approach of [98] is simplistic since

it only endeavours to identify global states rather than states for constituent scenario steps. In this

thesis, a more elaborate state identification approach is adopted where states for constituent use

case actions are considered as a means to analysing intra-use case and inter-use case

dependencies.

25

2.4 Automated use case environments
There have been recent attempts to provide automated environments where use case
specifications can be authored and analysed. This section discusses some of these attempts, their
strengths and shortcomings.

2.4.1 The UCEd approach

The UCEd approach is described in [84]. The approach considers use case descriptions of
software behaviour and aims to produce animations of textual use cases. UCEd is similar to the
Educator approach in two important ways. First, UCEd intends to retain the simple nature of the

use case description by obviating any need for formal specification techniques. Second, the

adoption of an animation scheme in order to provide a visual artefact to which stakeholders can
react and validate.

A UCEd use case is either a normal use case or an extension use case. This categorisation is

similar to the UML <<extend>> relationship (see [25]). A UCEd use case description comprises a

global precondition and a global post condition. Again, these global conditions are part of the
UML specification of the use case. UCEd offers a limited elaboration of conditions that may be

associated with the use case steps. These conditions are:

I Added conditions - the conditions added to a system after a use case step executes.
2 Withdrawn conditions - the conditions withdrawn from the system after a use case step

executes.

Both added and withdrawn conditions are postconditions and it is not clear the need to declare

two postconditions for a use case action.

The UCEd approach requires the modeller to construct both the use case description and a

domain description. A domain description consists of all possible actors (termed concepts in the

UCEd approach); the operations (or actions) of the concepts and their corresponding added and

withdrawn conditions. A further UCEd description is a state machine description which is

automatically generated by UCEd prior to undertaking the animation process. A state machine

description itself comprises of two parts. The first part is a set of states (extracted from the

domain description), and the other part comprises actions that are responsible for state transitions.

During description simulation, a UCEd user should select a start state, and the action that would

26

trigger a transition from that state to a chosen end state. There are a number of problems with this
approach:

l There is laboured production of multiple artefacts surrounding the use case specification.
The initial aim to preserve the simplicity of the use case is compromised by requiring users
to construct and use domain models and state machine descriptions in a simulation.

2 The UCEd use case is based on Cockburn's use case template (see [33]). Cockburn's

template recognises the existence of both primary actors and secondary actors for use case
steps. The UCEd approach only proposes a primary actor for a use case step. There is no
mention of secondary actors that may be involved in executing use case steps alongside
primary actors.

3 There is little value to be associated with a UCEd simulation; tool users are allowed to make
their own choice of their desired transitions; rather, it is far more useful to produce an
animation based on the written description so that users scrutinise the extent to which the

existing specification reflects their expectations.
4 The animation itself does not work as described in [84]; there is no functionality in UCEd to

produce the simulations argued for.

5 The comparison made in [84] with Harel's Play-In/Play-Out approach [34] is erroneous.
UCEd does not automatically generate a Graphical User Interface nor does it offer any

animation functionality as suggested by the author.

2.4.2 The Play-In/Play-Out approach

The Play-In/Play-Out approach is a scenario-based specification mechanism [34]. The system's
behaviour is captured (played-in) as scenarios using a Graphical User Interface (built using say,
Visual Basic). A play-engine automatically generates a formal version of the played scenarios in

the language of Live Sequence Charts (LSCs). LSCs are a visual formalism for specifying the

scenarios of a system. LSCs allow for representation of scenarios that are mandatory, those that

are allowed but not mandatory, and those that are forbidden. LSCs are an extension of Message

Sequence Charts (MSCs), which do not make such distinctions.

Play-in is a mechanism for capturing use cases using a graphical user interface of the target

system. The output of this process is a LSC specification. Play-Out is the process of testing the

use cases by executing the LSCs. Hence, the input to the Play-Out process is a formal LSC

specification. This formal specification (translation of LSCs) is done using a dialect of PI calculus.

27

A similar approach to Play-In/Play-Out is the Labelled Transition System Analyser (LTSA). The
LTSA approach also accepts scenario specifications of behaviour regarding interactions amongst
software components. The scenarios are written using the Finite State Process (FSP) algebra. An

execution of FSP scenarios provides a graphical view of state transitions depicting inter-

component communication. A problem with both Play-In and Play-Out and LTSA is that both

approaches require learning effort on the part of non-technical modellers. For instance, a client

who is unfamiliar with FSP or PI calculus may not be able to alter the specification even if the

animations reveal incorrect behaviour.

2.4.3 The ArtScene approach
Maiden [104] describes ArtScene, a web-enabled tool that is claimed to enable organisations to

generate and walk through scenarios, and thus discover the complete and correct requirements for

new computer system. In this way, ArtScene is viewed as an enhancement to the use case

notation. An issue with the ArtScene approach is the extent to which a modeller can generate

scenarios as suggested in [104]. That is, it is not clear whether the claim that ArtScene is useful in

scenario generation is practical since scenarios are descriptions of system behaviour rather than

some processed data from a computer system.

In [104], it is argued that a project team using ArtScene writes use case specifications using

structured templates embedded within the tool. The specification is then parameterised and parsed

to enable ArtScene's two-step scenario generation algorithm to generate one or more scenarios. In

the first step, the algorithm ought to generate a normal course scenario from action ordering rules

and generation parameters in the use case specification. This is not demonstrated at all, nor does

this author's analysis of the ArtScene approach provide any of the suggested scenario generation

mechanism. Whereas ArtScene [104] observes that each different possible ordering of normal

course events is a different scenario, ArtScene does not demonstrate the way in which ordering of

events is handled or managed to generate new scenarios. It is suggested that in the second step,

the scenario generation algorithm produces candidate alternative courses, which are expressed as

"what-if' questions for each normal course event. To achieve this, [104] argues that a database

containing over fifty different classes of abnormal behaviour and states in socio-technical systems

is queried. These classes are based on error taxonomies in the cognitive science, human-computer

interaction and safety-critical disciplines. The algorithm is not presented in its original form, nor

is it demonstrated within ArtScene, hence, it is not likely to argue that ArtScene provides any

more than an editor of use case descriptions based on HTML hyperlinks. Further issues with

28

ArtScene are summarised as follows. For the specification to be parsed, it has to be written

according to some ordering rules. Those rules are not elaborated anywhere. Moreover, there is no
indication to the specification authors what the useful parameters would be for ArtScene to

conduct the first step. Additionally, the generation of scenarios from an initial specification seems

a far fetched idea. It is not clear how different types of systems can have their scenarios

automatically generated based on some underlying algorithms. Different problem domains have

different roles and interaction issues ([59], [69], [105]). The ArtScene approach does not indicate

how a main scenario (or alternative scenarios) is determined automatically for any possible use

case of the system under consideration.

2.4.4 Executable Use Cases (EUCs) approach

The EUCs approach is presented in [106]. Example applications of the EUCs are outlined within

specifications for a medical system [106] and banking system [89]. EUCs have three tiers, namely,

the informal tier for expressing system behaviour using standard textual use case descriptions; the

formal tier for providing the formal, executable translation of the use cases (using coloured Petri-

nets), and the animation tier which provides graphical animation of the formal tier. The central

argument in this three-tiered approach is that construction of visual prototypes requires the

presence of a formal, interpretable product (hence the use of Petri-nets). Moreover, such a formal

tier is considered necessary for any automated checking of the specification. The emphasis is on

the iterative development of a specification by moving through the 3 tiers, and providing

graphical animations to check the validity of the formal tier. The work presented in this thesis

shows that it is possible to construct specifications that are amenable to automated analysis

without delving into any formal specification techniques. The main concern is whether the

development of the formal tier requires skills that many stakeholders might not have, and whether

the efforts for developing such a middle-ground product is useful in comprehending the

expectations of the stakeholders. Furthermore, similar work (see [51]) had been done close to a

decade before the efforts on EUCs. The finding of [51] was that the creation of a bespoke

interface for each specification task was too much effort, especially for business stakeholders.

2.5 Chapter summary

The focus on formal translation of use cases is mainly driven by the lack of precise syntax and

semantics of the use case notation. The drawback of adopting formally based techniques is that

non-technical users are often put off by such specifications.

29

Additionally, much focus has been on the management of use case descriptions using templates

around which descriptions are written. Related to this idea is the research on guidelines and rules

for authoring textual use cases. For much of these efforts, a lacking ingredient is the focus on the

first principles of the use case notation. That is, the specification of software behaviour from the

user's perspective and the elaboration of that specification to validate its adequacy against the

user's initial expectations of the system.

Whereas there are well established notations (e. g., MSCs and sequence diagrams) for delineating

use case instances (or scenarios), most of these notations are limited in the amount of detail they

can reveal. For example, MSCs are used alongside formal specification languages to enhance

their lack of detail and informality.

In view of these shortcomings in the use case specification, this thesis identifies a need to

enhance the use case notation in order to make it amenable to dependency analysis. Inevitably,

consideration of dependencies subsumes the interrogation of interaction issues. The thesis

proposes the use of controlled natural language based on existing guidelines (see chapter 4,

section 4.3). The aim is to keep the use case description simple while offering rigour of scrutiny

via automated support where enaction can be applied to interrogate dependency issues.

30

3. The Educator approach

3.1 Introduction and motivation
There are various shortcomings of the specification approaches discussed in chapter 2 (section

2.4). For instance, most of the approaches adopt a formal specification technique (e. g., process

algebra), which raises the learning overhead for the non-technical user. An additional issue with

most of these approaches is that they require the production of multiple artefacts with a degree of

completeness that prohibits further progress when requirements and domain information are not

readily available. This thesis outlines general characteristics of a specification model that

addresses some of these shortcomings, whilst focussing on dependency analysis.

Rather than adopt a rigid specification process (that also requires learning of formal languages),

the analyst needs a model that can guide his or her expertise [56]. This model should support the

creative input and interpretive skills of the analyst. The work reported in [51] suggests that such a

model should be:

1. Flexible - the model should allow partial specification with incomplete information (e. g.,

with missing states or actors). For example, the approach outlined in this chapter allows

analysis of use case descriptions for dependency information, and the subsequent revision

of such descriptions upon finding new information about the description.

2. Co-operative - as many participants may be involved in the specification process, a

consistent view of the specification should be providing for optimal co-operative

specification and validation. That is, the specification model should enable co-operation

among specification participants such that written information is commonly understood.

3. Amenable to automated analysis - the model should allow specifications to be prototyped

during validation tasks.

However, in order to facilitate some automation, a degree of structuring must be introduced. An

approach that supports an incremental, iterative process is needed in order to allow for revision

and addition of newly elicited information. The individual steps that build the descriptions arise

out of dialogues among participants, and a model that is overly prescriptive will severely limit the

scope of these dialogues, possibly causing vital steps to be missed. Therefore, any automated

support or formalization must account for, and indeed encourage, dialogue in the exploration of

the current specification.

31

In order to allow the participants to control the process, the model should allow any order of
discussion. In other words, it cannot be guaranteed that needed information will be provided
immediately. [107] discusses the informality of human communication, listing abbreviation,

ambiguity, poor ordering, incompleteness, and contradiction as key features. These features

represent an essential part of the human thought process, as a means of dealing with complexity.
People present ideas in the order they occur, not in an order which is convenient to the hearer. In

particular, the human mind is adept at ignoring inconvenient consequences of particular

statements with the intention of clarifying them later.

Finally, the model should allow the participants to delay the resolution of issues involving

relationships among stated facts and the making of decisions. Requirements engineering is

primarily an exploratory process [108], involving the gathering and formulation of knowledge. It

is vital, therefore, that it does not become overly restricted by premature decisions [67]. A model
for the specification process should encourage participants to gather all the relevant knowledge

and explore all the issues regarding the problem before making a decision.

3.2 Clarification of terminology

The Educator approach draws upon work within business process modelling, especially, the use

of enaction to construct business process descriptions that are amenable to automated prototyping.

In describing the terminology used within this thesis (and particularly, this chapter), consideration

is made of the meaning of such terminology within those other areas that inform this thesis.

A term that may be considered suitable for an activity (here termed the event) within a use case

description (in the subject verb object structure), is the term action. Within business process

modelling using Role Activity Diagrams (RADs), the term action has the definite meaning of an

activity that is undertaken solely by the containing role (or actor in use cases) without interacting

with any other role (or actor). The intention of the Educator approach is to be able to depict and

model interactions among actors (within a use case and across distinct use cases), hence the term

action seems inappropriate.

Whereas the term event was chosen for this purpose, the author is aware that other communities

have different interpretations of the term event. For instance, events are usually considered to be

external stimuli that may trigger the occurrence of activities (e. g., in UML activity diagrams) or

state transitions (e. g., in UML statechart models).

32

3.2.1 Steps and Events

Within use case modelling, each use case line is often referred to as a step. This thesis observes
that there is a strong relationship between event and step since the occurrence of an event
amounts to completion of the step which contains it. It has to be noted however, that, these are
not really the same thing. That is, it is only by adhering to use case guidelines (discussed in

section 4.3) that each step has a single event, rather than this being imposed by the notation itself.

3.2.2 Events and States

A further subtle distinction concerns the idea of events (activities) being controlled by pre and
post states. In realising that each event has an associated pre and post state (in the simplified state
model) it is tempting to think of these as pre and post states of the event. However, in reality they

are not states of the event at all, since events do not have state. For role based models, the roles
have state, and for the Educator approach, the state is that of the actor. Hence, an event (activity)

can only occur when it has been invoked by the associated primary actor.

3.2.3 Invoking Events

We reiterate that, within traditional state machine based formalisms, events are understood to be

external stimuli for state transition or occurrence of an activity. Hence, the concept of `invoking

an event' may seem counter-intuitive. Even within the concrete example of the enactable model,

the act of clicking on a choice (of activity), is often thought of as being an event (indeed, one

might write a program which deals with mouse click events, and so on).

In taking these issues into consideration the following terminology is adopted; illustrations are

provided with reference to lines from a simplified use case description:

I Lecturer gives pen to Student

In the above description, the Lecturer is termed the primary actor, and the activity, gives pen is

referred to as an event. A further realisation is therefore, that, events are associated with actors.

For example, gives pen, is an event of the Lecturer actor. Hence, the enactable model would place

the event gives pen within the actor window for Lecturer. Student (the object here and another

actor) is referred to as the secondary actor.

33

The entire line is referred to as a use case step.

When pre and post states are added, the complete Educator-based description appears as follows:

Lecturer

pre state post state
Lecturer gives pen to Student has pen no pen

Student

pre state post state

no pen has pen

For the gives pen event to occur, the Lecturer (primary actor) must be in the state has pen, and the
Student (secondary actor) must be in the state no pen. Hence these states act, in effect as guards,
or simplified preconditions on the event (the activity of giving pen) taking place. (Note that they

are not quite the same as preconditions, as will be described below). However, these are actually
states of the actors, not of the event. Similarly, the occurrence of the event causes the actors
involved in this entire step (an interaction) to move to their post states.

This simple mechanism (as is explained in further examples) of augmenting a description with

pre and post states enables modellers to control interactions among actors. That is, Lecturer and
Student cannot interact, by way of the pen exchange (which involves invocation of the event gives

pen of the Lecturer actor) without either actor being in the correct pre-state. Hence, the
dependencies among events are also controlled (that is, the events that must occur in order for

actors to change state such that other events may occur).

The relationship between event and actor has been described, so far, as an association. For the
description to be enacted, the idea that events belong to actors allows each event to be visible

within a given actor window.

3.2.4 The Educator state model

The state model adopted here is adapted from the RolEnact process modelling language, which in

itself, is an enactable representation of Role Activity Diagrams.

One way in which this model differs from other state-based approaches is that the role (or, within

Educator approach, the actor) has only one state variable, and thus, can only be in one state at any

given time. Given the intention to be able to consider multiple dependencies, such as event x is

dependent on completion of events y and z, this may seem to be an important limitation of the

34

model. However, the mechanism to deal with this issue, which entails creating individual roles
for each parallel thread, each containing a state variable, also has some advantages for process

and procedural modelling. A key advantage is the rigour afforded to the modeller in the analysis

of interactions among actors (system users) within the domain of interest. A further advantage is

that the model is much smaller and easier to comprehend, since instead of having multiple

concepts (e. g., states, triggers, preconditions, etc) there are only states of actors to consider.
For the purpose of making annotations to use case descriptions this is an important consideration

given that only one further concept need be added.

In the following sections, simple RAD models are provided to help further clarification of the

terminology used within the Educator model.

3.2.4.1 Pre and post (states and conditions) - case refinement
As an example, consider two independent events, get apples, and get oranges, of some actor (or

role) each which result in the post states, has apples and has oranges. One might consider a third

event, make juice, which can occur when either apples or oranges have been obtained.

Traditionally, a guard on such an event might be a precondition such as has fruit.

get apples Get oranges

has apples has oranges

Preconditic
(has fruit)

Make juice

Figure 3.1: Traditional precondition used as a guard

Whereas the RAD model above is simple and elegant, it requires further understanding (semantic

load) on the part of the non-technical reader. Furthermore, the model relies on the implicit

understanding of the domain, thereby `hiding' some issues that may prove crucial to validation.

For example, one needs to know, or assume, that apples and oranges are both fruits. In

implementation terms one might verify that they are objects of fruit type, but again this relies

upon such understanding being clear and present in the first instance.

35

The Educator state model differs from the model shown above in that within Educator, the pre-

state for make juice has to be an exact match and this requires an extra step. The extra step brings

together two threads (independent behaviours) into a single state, has fruit. That is, one can still

arrive at the state has fruit, as a result of either thread. Importantly, at any given time there is still

only one state for the role (or actor), and hence a further simplification, for both understanding

and implementation, is preserved. However, since state change requires an action, this means that

there is a need for a further (often artificial) action in order for the actor to be in some more

general state (e. g., has fruit). This need for an extra action may be seen as a weakness since it

diverges from the way in which we imagine the problem domain to behave (analysis), and is also

an extra effort for the modeller.

get apples Get oranges

has apples has oranges

Check for fruit

has fruit

Make juice

Figure 3.2: RolEnact state model requires additional action and state

In spite of the apparent drawback of having to consider an extra action, this latter mechanism

facilitates consideration of each individual state, again an arguably positive benefit for validation,

and the check that one has fruit is made explicit.

However, the use of these pre and post states is unusual and, hence, is differentiated, here, from

the more flexible (but arguably more complex) notion of a precondition. (Note, however, that

many validating such models would not come with such expectations or notational baggage).

A similar but more complex situation occurs when instead of having either one state or the other,

an event is dependent on both. That is, instead of choice there is parallel behaviour, and the

subsequent action requires that both conditions are satisfied.

36

3.2.4.2 Pre and post (states and conditions) - part refinement
Suppose our event is now Make smoothie, which requires that when we have fruit, we actually
have both apples and oranges. For a use case we would be required to choose that the gaining of

apples and oranges occurs in some arbitrary sequence. That is:

1 Fruit Finder get apples
2 Fruit Finder get oranges

However, in reality one might gather these fruits independently and in any, often unknown order.

Process modelling notations such as RADs represent such behaviours as parallel threads:

get apples = Get oranges

has apples Q-has oranges

Check for both

have both

Make smoothie

Figure 3.3: Standard RAD view of parallel

In RolEnact, and, hence, in Educator, however, we cannot have such parallel threads, and we

employ the mechanism of splitting the role into different roles, each of which carries one of the

state variables (the having apples or having oranges states). Below is a RAD representation of

role of Fruit Receipt (left) and the separate roles Apple Receipt and Orange Receipt (right):

3

Fruit Receipt

get apples Get oranges

has apples has oranges

Check for both

have both

Make smoothie

Figure 3.4: Separating roles in a process (RAD)

Since the threads (Apple receipt and Orange receipt) are separate, (as with choice) a mechanism
is employed to join them, this time via an interaction. Since the interaction can only take place

when we have both apples and oranges, the interaction replaces (rather than adds to) the action of

checking. At first this may still seem particularly cumbersome, as we must have unique identifiers,

different names for the sub-roles. However, separation into different roles is useful in other

respects, both from a process perspective and a use case perspective.

Often, a user would consider the model as a vehicle for investigating the efficiency of current

behaviour. For example, a common issue found with parallel behaviours in roles, is where one

role appears burdened by many such tasks, and may often become a bottleneck. Consideration of

parallel tasks as belonging to separate roles highlights the possibility that these sub-roles could be

carried out by other resources, and further enforces the distinction between the role and the

person (or resource). For example, in the fruit gathering it might seem reasonable to divide into

apple and orange gathering roles, since typically these fruits may come from different suppliers,

and there is no need for them to be received at the same time, or by the same person.

In use case descriptions, such situations tend to occur across distinct use cases. For the Educator

state model, these are termed inter-use case dependencies. Consider the fruits example discussed

earlier. It might be that one can have separate use cases for receiving apples, receiving oranges

and making smoothie. Hence, a simple naming rule, such as UCname. actor will give unique

identifiers to the actor in each use case, e. g., receivingoranges f uitpef"son.

38

Apple Receipt Orange Receipt

3.2.5 RAD as Use Cases

Interactions

In order to show interactions, the notion of a driving (primary) actor and passive (secondary)

actor is also borrowed from a similar concept (driving and active roles) within Role Activity

Diagrams and RolEnact. Consider the interaction between a Lecturer and a Student (as described

previously in section 3.2.3). Here the primary actor is considered to initiate the interaction (or for

Educator, the event). When Educator enacts this interaction, the event will only be shown (it will

belong to) the window of the Lecturer (primary) actor. That is, the primary actor alone is able to

initiate the event. The secondary actor is considered passive in the enaction, and their change of

state is a result of the event (activity) gives pen, being carried out, (for example by clicking on

gives pen). Of course, for the example described, once the Lecturer has given the pen to the

Student, the Student may do likewise, that is they may act as the primary actor to give pen to the

Lecturer. That is, the event gives pen, would then become available within the actor window for

the Student. This also illustrates that an actor, may at different times, that is, for different use case

steps, be either a primary or a secondary actor. In addition, Educator adopts the convention that

use case descriptions will be written such that the primary actor is always the driving actor, and is

always the subject of the step.

3.2.6 Discussion of advantages and disadvantages of the state model

Some of the advantages and disadvantages associated with the model adopted are summarised as

follows:

0A model needs to spawn a role where there are multiple state variables. This can be seen as

both an added complication and an issue for drawing space and layout.

0 Additional roles are, however, often viewed as advantageous. For example where there is

parallel behaviour one may wish to highlight the fact that this other (independent processing)

could be carried out by another resource, or may even be another role.

0A model needs additional actions (or interactions) to join threads or to combine states. That is,

both x&y, or x or y, would then lead to another state.

" Classic precondition hides states or implies behaviour. Making states explicit facilitates

consideration of the states of the process.

0 The precondition also requires some understanding on the part of the reader (semantic load),

which may not be obvious for unfamiliar models.

39

0A significant consideration is that the model is intended to be accessible by business users, or
typical use case writers, who may not be familiar with state models (and indeed, will not
carry that baggage). Hence, only one additional concept is required.

3.2.7 Summary of terminology issues

In this section on clarification of terminology, illustrative fragments of process models have been

used:

 To demonstrate how RADs represent business processes using states.

 To discuss the extent to which RolEnact provides an automated environment for

constructing and enacting process descriptions that are equivalent to a RAD model.

 To discuss differences between RAD and RolEnact models.

 To discuss Educator model and how it is informed by the RolEnact model.

 To discuss terminology differences in both RAD and RolEnact modelling on the one
hand, and Educator modelling on the other.

The choice of this model was not merely pragmatic (for implementation reasons). The Educator

model is motivated by the need to provide an accessible notation, rather than focussing on

modelling power and flexibility (as is evident in RolEnact and similar modelling environments).

It is reiterated here that the idea behind the approach was to have a simple addition to use cases

descriptions which would not be onerous for the modeller, either in terms of learning or effort.

3.3 Issues addressed

3.3.1 Validation

The user-system description of a system (as provided by use cases) is often considered a benefit

for validation ([94], [83]) since users can identify the types of behaviours they expect from the

system when they use it. In this thesis, validation is supported by considering dependencies

among events in use case descriptions. In particular, the thesis argues that a use case specification

approach that makes such issues explicit is needed. Furthermore, such an approach should retain

the simple nature of the use case specification, in order to provide an accessible means for

validation. That is, considering states for actors in a use case description helps clarify interactions

among those actors. Additionally, the use of enaction on such descriptions helps modellers to step

through the logic of the description, thereby clarifying the extent to which the description

matches their expectations.

40

3.3.2 Dependencies and interaction issues

UML use cases have been widely taken up by industry, but use cases do not offer support for the

purposes of rigorous specification and validation of users' expectations of system usage. Some of
the issues outstanding are discussed below.

The UML specification of the use case (see [25]) argues that two or more use cases specifying the

same system should not be associated, since each of them individually describes a complete usage

of the system. Furthermore, to state anything about the internal behaviour of the actor, apart from

its communications with the system, is also prohibited. However, this prohibition is limiting in

practice since system users often act in context dependent ways during their use of the system

[109]. The actions of one user often determine what other users are able to do with the system.

Hence, use cases must be able to represent contextual behaviours that reveal interactions among

constituent use case (activities) events and system users (or actors). The divide and conquer

technique is an old software engineering (and mathematics [110]) adage. Jackson [11] observes

that the conquered and solved parts must then be integrated to form a system-wide solution. The

divide and conquer technique can be deployed in use case modelling to establish relationships

that help integrate partial use cases of a system after decomposition. Such application of divide

and conquer and use case integration would help to improve understanding of the overall system

behaviour.

The UML specification ([25]) of the use case also places some constraints on the way use cases

should be associated. For example, the UML requires that use cases can only be involved in

binary associations (include or extend). In effect, this forbids a multiple-call by one use case to

many use cases from which the calling use case might need some computed result. Other

modelling approaches (e. g., role activity diagrams, which are used within business process

modelling - see [46]), allow these types of process associations. As an example, consider the

widely cited (e. g., by [38], and [37]) ATM system scenario. A cash withdrawal use case might

need the behaviour (functionality) of a check balance use case, or a print statement use case

depending on what a customer withdrawing cash might want to do during the withdrawing

process. Hence, the restriction on the number of associations that can be made among use cases

seems a drawback on the expressiveness of the use case notation, since real world processes

interact in complex, and often, in ways that are dependent on the state of the actors (or roles) in

the process. Another constraint on associating use cases in UML is that use cases cannot have

associations to use cases specifying the same system or subsystem. In other words, UML forbids

41

any associations between use cases describing partial behaviour of the same system (or

subsystem).

Additionally, UML requires that a use case cannot include use cases that directly or indirectly

include it. In other words, if a withdraw cash use case includes a check balance use case, then

check balance cannot include withdraw cash use case. This does not make logical sense as a

check balance use case can inform the concerned ATM user on how much they have in their bank

account so that the ATM user makes a decision on how much to withdraw. In other words, such

prohibition is not practical for many real world applications.

3.4 Application of process modelling

A benefit of some process modelling techniques such as those reported in [49] and [47] is that

business processes are built around the concept of interactions among roles in the business

context. The process descriptions are state-based and interactions among roles during

performance of the processes can be animated within an automated environment. Such

approaches have been shown to enhance shared understanding between modellers and business

stakeholders (see [51], [111], [47]).

3.4.1 Role-based process models
Within business process modelling, a widely used notation for business process representation is

the Role Activity Diagram (RAD) [46]. RolEnact [51] provides an environment for constructing

business process descriptions that are equivalent to a given RAD model. RolEnact has its own

formal specification language for writing process descriptions. The essence of the RolEnact

environment is to provide functionality for writing business process descriptions within an

environment that affords the capability of enacting the descriptions. Enaction constitutes stepping

through the process descriptions to reason about the logic of the process. As an example,

consider the interactions between two users of a pen, a Lecturer and a Student. This description

was discussed briefly in section 3.2. Again, suppose that, to start with, the Lecturer has the pen.

The Lecturer performs the gives pen event and moves from the hasPen state to the noPen state.

The student moves from the noPen state to the hasPen state after participating in the event. The

Student can in turn initiate the gives pen event; hence the Student moves from the hasPen state to

noPen state, while the Lecturer moves from the noPen state to hasPen state. A RAD

representation of this scenario is shown in Figure 3.5:

42

Lecturer Student

The RolEnact description equivalent to the RAD in Figure 3.1 is shown below:
Interaction Lecturer. gives pen

Me (hasPen-noPen)

Student (noPen-)hasPen)

End

Interaction Student. gives pen

Me (hasPen4noPen)

Lecturer (noPen -hasPen)

End

A problem with the RolEnact description is that the process description has to be written with the

RolEnact process specification language and compiled within the RolEnact environment. This

thesis argues that use case specifications that are amenable to automated analysis should be

constructed without resorting to an intermediate formal translation of use cases with another

language.

3.4.2 State-based use case descriptions

A use case equivalent of the RAD shown in Figure 3.5 is constructed such that pre and post states

are considered for each primary actor of the event. Moreover, consideration is made of the

secondary actors (and their states) that may participate in an interaction with the primary actor.

By considering named pre and post states associated with constituent events (the states actually

belonging to the actors), the Educator approach adopts an accessible means for constructing state-

based models of use cases that will enhance rigour in validation. This augmentation appears to the

user as a simple addition to each use case step (see Table 3.1). However, the additions are

actually controlling the event (though for our approach steps include only single events, and are

therefore equivalent in practice). In addition, the states are of the actor, even though it is their

43

Figure 3.5: RAD for Pen exchange process

association to each event (and hence each use case step), that will be the focus of scrutiny. This

state-based model is regarded as accessible to modellers since it does not require adoption of a
formal specification language. As an illustration of these ideas the complete Pen exchange use

case description is shown in Table 3.1:

Primary

Actor

Event Pre state Post state Secondary

Actor

Pre state Post state

Lecturer gives pen hasPen noPen Student noPen hasPen

Student gives pen hasPen noPen Lecturer noPen hasPen

Table 3.1: Pen exchange use case

The concept of state-based use case descriptions is not common within the UML community.
Where consideration has been made regarding expression of dependencies in use case

descriptions (e. g., Glinz [112]), the inclusion of states in each use case step (or event) is viewed

by some [112] as a drawback to the clarity of the description. However, Glinz's [112] view is

based on the assumption that state-based information is written using a formal specification

language (e. g., a process algebra). In contrast, the results of the study reported in chapter six

indicate that it is not necessary to use formal specification to add state information to use cases,

and this obviation of formality reduces the additional effort required.

The author recognises that thinking about states may be harder than working with default use case
descriptions, but the benefits of increased rigour (with use of states) may outweigh the extra

specification work. Moreover, many proponents of UML use cases (e. g., [33] and [27]) recognise

the importance of expressing interactions between primary actors and secondary actors, but do

not offer any support for clarifying such interactions. The approach proposed in this thesis

considers the need for elaborating dependency issues, and interactions among actors as a means

to validation.

3.4.3 Intra-use case and inter-use case dependencies

In the use case description shown in Table 3.1, the invocation of each use case event is dependent

on the state of the invoking actor. Intra-use case dependencies arise in a use case due to

consideration of interactions among the involved actors within the use case, and for the events

within that use case. However, often, a system may have several use cases, which may be inter-

dependent. Dependencies across multiple related use cases are termed inter-use case

dependencies. In order to understand further why such dependencies are important, or might

44

occur, consider how one might view interactions among roles within processes in a Role Activity
Diagram (RAD).

RADs (including the RolEnact environment) group activities into roles (similar to actors). Hence

the process is decomposed into roles, rather than decomposed by functionality, with actions

spread across those roles. In contrast use cases decompose by (high level) function, and thus

actors can be associated across, and associated to different, use cases. That is, the same actor,

may exist in different use cases. Hence, it is often the case, that, in contrast to the advice of the
UML, actions (for us events) of an actor in one use case impact the events of that same actor (or
indeed other actors) in other use cases.
Hence, there is no duplication of roles within RAD, but for use cases an actor can exist in any

number of related use cases. These issues will now be illustrated by consideration of the same

example, grouped:

a) By roles, as for a normal RAD

b) By use case (ignoring roles or actors)

c) By separating each actor that is involved in multiple use cases into separate unique roles,

where each role represents that actor for a particular use case, and is named accordingly.

That is, for the final example, c, the actor name is changed to include the use case to which it

belongs. This both clarifies the link to use case, and provides a way of identifying this role

uniquely.

Example

Consider the Pen exchange use case shown in Figure 3.5, and the description shown in Table 3.1.

Also, suppose that there is another use case describing a Course registration scenario. The Course

registration description is shown in Table 3.2.

Primary Event Pre state Post state Secondary Pre state Post state

Actor Actor

Lecturer volunteers for initial coursesAgreed Registrar waiting coursesAgreed

courses to teach

Registrar prepares course coursesAgreed listDone Student waiting listDone

list

Student chooses course listDone coursesChosen

to study

Table 3.2: Course registration

45

The Student chooses course to study event in the Course registration use case can occur only

under the following circumstances:

 The Registrar prepares course list event in the Course registration use case has occurred

and hence the Student is in listDone state.

 The Lecturer gives pen of Pen exchange use case has occurred and the Student is in

hasPen state.

In other words, if the Registrar has prepared the course list, but the Student has no pen, the

Student cannot choose courses. The assumption is that the Student needs the pen to be able to

choose courses, perhaps since they will have to write their name on a list.

To show this distinction, a RAD view for the use cases outlined in Tables 3.1 and 3.2 shown in

Figure 3.6:

Lecturer

Cý- initial
asPen I

Volunteers for courses
to teach Iii r
coursesAgreed

gives pen

c*ý noPen

C> hasPe

O- IistDone

hasPen &&
IistDone

chooses
courses to
study

coursesChosen

prepares course list

Q- IistDone

Figure 3.6: RAD for the Exchange pen and course registration use cases

In Figure 3.6, the Lecturer role has two threads, one thread in the Pen exchange use case and the

other in the Course registration use case. The Student role has two threads, each in both

descriptions. The Registrar role has only one thread within the course registration use case

description.

In constructing a RAD representation of these two use case descriptions it is important to take

into account the fact that the Lecturer and the Student actors appear in both use cases. Figure 3.7

Student Registrar

waiting

T
noPen waiting

coursesAgreed

46

is a RAD depicting the use cases of Tables 3.1 and 3.2 where the exact use case view (rather than

RAD view) is maintained:

Lecturer Registrar Student

initial 4 waiting
cwaiting

Lecturer Student

C} hasPen Ö-
noPen

gives pen

hasPen
Q noPen

r}

hasPen

gives pen

Pen

volunteers
for courses

listDone
ct, coursesAgreed

prepares

jIistDone
C} IistDone

-' hasPen

chooses courses to study

ý} coursesChosen

Figure 3.7: Synchronising use cases at event level

An important aspect of the Educator approach is to provide a means for expressing

communication among actors for events across distinct use cases. For instance, it is apparent that

the Student actor in the Pen exchange use case should notify `self within the course registration

use case so that the Student actor within the course registration use case can perform the chooses

courses to study action. That is, as in a previous example (see Figure 3.4), the Student actor has

to have a means of `informing self that they now have a pen, so that once the list is done (by the

Registrar), then the Student can choose courses to study. In the Course registration use case

(UC2), the Student (UC2. Student) is a secondary actor in the Registrar's event for preparing

course list. Hence, the UC2. Student moves from the waiting state to the listDone state after the

prepares course list event has occurred. In this example, the Student has to be in an AND state

that is a compound state of hasPen and the listDone which is arrived at by constructing a pseudo-

interaction between UC1. Student and UC2. Student (the inform has pen interaction).

These distinct threads are depicted in the RAD in figure 3.8.

47

UC1. Lecturer UC1. Student UC2. Lecturer
--- UC2. Registrar

C- hasPen a noPen UC2. Student
(} initial

p- waiting
a waiting

yl gives pen
volunteers
for courses

iI

noPen
hasPen

coursesAgreed

prepares course list

ý listDone
gives pen

J

o- listDone

inform has pen
_

C. } hasPen hasPen
881istDonel

noPen chooses
courses to informed
study

CT - coursesChosen

Figure 3.8: Threads for Student and Lecturer actors

Figure 3.8 shows a representation of the threads for the Student and Lecturer actors in both

(Exchange pen - UC 1) and (Course registration - UC2) use cases. Since the RolEnact (and

Educator) state model does not allow a role to have more than one state at any given time, this

precludes having parallel threads in either the UCI. Student or UC2. Student role. In addition,

there is a need to synchronise these two roles. Within RolEnact, this synchronisation would

normally be achieved by constructing an additional (pseudo) interaction between the respective

roles, so that one of the roles informs the other of its state.

For example, an interaction inform has pen, would allow UC2. Student to be aware of the state of
UC 1. Student. However, for the interaction to take place the pre-states for both UC 1. Student and

UC2. Student are prescribed (being respectively hasPen and listDone). Hence, the interaction can

only take place when both of these states are correct. On completion of this interaction

UC2. Student would be in a state hasPen and listDone and would then able to take part in the

chooses courses to study action,

While this approach works for the diagrammatic (and RolEnact) representations it is a clumsy

mechanism to choose to communicate states for the implementation of enaction. Hence, within

Educator, the synchronisation of both actors is achieved simply by making the UC1. Student state

accessible to the relevant actors in UC2. The Educator approach simplifies this mechanism

further by allowing association of distinct use case descriptions at event level. This mechanism

48

means that a logical AND operation is performed on the events across the concerned use case
descriptions to reason about the possibility of a particular use case event being dependent upon an

event in another use case description.

3.6 A need for support environment
The Educator approach is an enhanced means to use case specification where dependency and
interaction issues are made explicit. The view taken in using named pre and post states to

augment use case steps (events) is that an approach that seeks to enhance use cases for validation

purposes should consider affording rigour in the scrutiny of the specification without

compromising ease of reading by non-technical stakeholders. Some of the formal specification

approaches discussed in section 2.4 tend to regard mathematical clarity as a panacea. Instead, it

is the clarity and understanding of the specification with regard to the expectations of the

stakeholder that the Educator approach considers crucial. A further advantage is that the

approach offers the capability for the enaction of descriptions by the provision of simple tool

support. Hence, the following outlines the motivations for the support environment.

3.6.1 Motivation

In software engineering, construction of models that depict interactions of design artefacts (e. g.,

components) is a common practice. Attempts have been made to provide precise semantics for

scenarios to make them amenable for model construction and behaviour description. For example,
[113] describes a process algebra (Finite State Process (FSP)) for specification of scenarios and

an automated environment in which FSP scenarios are parsed to provide an animation of the

described component's behaviour. The novelty of such an approach is the construction of

behavioural models of components and the animation of model descriptions. Moreover, where

the emphasis is primarily on model construction during design, the use of formal specification

techniques (e. g., FSP) may not be a drawback as the audience could be engineers or academics

with experience in such techniques. However, during the requirements process, participation by

stakeholders with little or no experience in formal specification techniques is common. Hence, an

alternative light-weight approach should be adopted to construct behavioural models and the

animation of those models to `tease out' the implied behaviour. There are two main factors that

inhibit the application of formal techniques in the requirements process:

 Constructing models for behavioural analysis remains a difficult undertaking requiring

considerable expertise ([73], [39]).

49

 Given the difficulty stated above, the validation benefits appear at the end of the often
lengthy construction process, and users often have little involvement in the construction of

models, and hence do not `own' them.

Whereas adoption of a wholly formal approach is an impediment to non-technical stakeholders,

an entirely informal approach would also produce ambiguous model descriptions that are difficult

to validate. This thesis argues for the adoption of a semi-formal approach where controlled

natural language is used, augmented with states in a natural and accessible manner.

Dependency information is an important part of the specification process, and tools to help

identify and clarify dependencies are needed. Whilst considering dependencies is essentially a

human activity, a range of options need to be explored whereby the human participants can use a

visual model to share information regarding dependencies. That is, constructing specifications

from initial participant's comments and demonstrating to the participants the implications of their

statements is crucial to involving the relevant stakeholders. This thesis argues that animation of

specification models provides a coherent mechanism by which all stakeholders can visualise

implied behaviour and revise the specification as necessary.

Additionally, given adequate background knowledge about the domain, it should also be possible

to provide a degree of automated critiquing, to supplement the manual critiquing process. This

might involve the enforcement of syntactic guidelines that underpin the way in which

specifications should be written. It is noted in [73] that automating the clerical work of detailed

checking of specifications is an ideal way to supplement the human activity.

There are four key points that make it necessary to consider the development of tool support for

the Educator approach:

1) To provide a vehicle that illustrates the use of state-based information as a means for intra-use

case and inter-use case dependency analysis.

2) To offer automated support for authoring descriptions in the Educator approach.
3) To provide enactable functionality as a means to validating descriptions via visual prototypes.

4) To support authoring rules such as those suggested in the CP guidelines.

3.6.2 Overview of features

50

In addition to a coherent specification model, consideration needs to be made regarding what kind

of automated support is necessary for requirements and specification tasks. Automated tools

should form an environment in which the knowledge collected can be organised, manipulated and
interrogated.

This thesis envisages and presents (see chapters 4,5 and 6) an environment that comprises
functionality for recording aspects of the domain that might not necessarily feature in the

software specification. The tool has functionality to store notes regarding recorded specification

steps. The information repository and the existing specification state is continually added to,

and/or revised; hence any reasoning is non-monotonic in that new knowledge may invalidate

previous conclusions. The incremental refinement of descriptions inevitably involves adding
details such as exceptional case behaviour to fix problems that are discovered when descriptions

are validated.

3.6.3 Enacting Educator descriptions

Educator descriptions are state-based, and Enaction is the process of stepping through a
description to further scrutinise implied behaviour. This stepping through is possible given that

pre and post states are used to control interactions among actors as they perform constituent steps

(event) of the use case. This is analogous to the way in which states are used to control analysis of

state-based business process descriptions within the RolEnact environment. This section

discusses Enaction as the Educator approach's mechanism for fostering rigour in the scrutiny of

dependency issues within use case specifications.

An example

Consider a safety-critical example- a Cardiac Pacemaker. A detailed description of a cardiac

pacemaker is available in [114] and a partial specification using state charts can be viewed in [99].

Brief documentation of a pacemaker is given below:

A cardiac pacemaker is an implanted device that assists cardiac function when underlying

pathologies make the intrinsic heart rate too low or absent. In a nutshell, a pacemaker refers to a

pacing system which comprises of two subsystems:

1) The pacemaker subsystem which encases a pulse generator with a battery, a timer and a

sensing device.

51

2) Pacing lead which carries tiny electrical pulses from a pacemaker to the heart (pacing) and

also relays information about the heart's electrical activity back to the pacemaker (sensing)

Depending on medical diagnostics, the doctor can programme the pace maker to pace the Atrium

(mainly right atrium), the ventricle (mainly right ventricle) or both (dual pacing) right ventricle

and right atrium. To pace either an atrium or ventricle, the doctor must set the right pace maker

component to monitor the heart's electrical activity from that chamber. Depending on the sensed
heart activity, the pace maker can either be inhibited (so that no pacing is done) or triggered (so

that pacing takes place).

From the above narrative of the general working of a pacemaker, a requirements engineer would

want to construct a concise specification of the behaviour detailing how the supporting software

should behave to assist the working of an artificial pacemaker. In use case terms, this involves

identifying the actors that are involved in the pacing process, and their associated events. A `first-

cut' use case description of a pace making system is as follows:

1. Physician programmes pacemaker's impulse timer

2. Pacemaker interrogates the heart's electrical activity

3. Physician sets pacemaker's mode

4. Pacemaker sends pacing impulse to the heart

5. Heart conducts pacing impulse

6. Pacemaker ignores cardiac events for some time

7. Pacemaker resumes monitoring cardiac events

Figure 3.9: Pace maker use case description

Given the standard use case description of Figure 3.9, the basic question that a requirements

engineer would want to address is: under what circumstance does an event (e. g., event 2 or event

3 occur)? That is, is event 3 dependent on say, event 2,1,4, all of them, or none? Unless the

problem being specified is well known, the time-order dependency assumed when writing use

case descriptions can be wholly misleading, and often dangerous.

The essence of the Educator approach is to inter-relate events as means of facilitating a controlled
interaction model for scrutinising event occurrences amongst primary and secondary actors. Table

3.3 is a state-based version of Figure 3.9:

52

Primary Event Pre state Post state Secondary Pre state Post state

Actor Actor

Physician Programmes initial timerSet Pacemaker initial timerSet

impulse timer

Pacemaker Interrogates modeSet awaitingHeartRate Heart awaitingPace pacingRequestS

heart activity Request ent

Physician Sets timerSet modeSet Pacemaker timerSet modeSet

pacemaker's

mode

Pacemaker Sends pacing awaitingHeartRate heartPaced Heart pacingReques heartPaced

request to the tReceived

heart

Heart conducts heartPaced normalRateAchie Pacemaker heartPaced normalRateAchi

pacing ved eyed

impulse

Pacemaker Ignores normalRateAchie atRefractory

cardiac events ved State

for a set

period
Pacemaker Resumes atRefractoryState awaitingHeart

monitoring Rate

cardiac events

Table 3.3: Pacemaking use case (Educator version)

In Table 3.3, event 3 has the pre-state timerSet and the post-state modeSet. This means that prior

to the Physician setting the pacing mode, the Pacemaker's timer must be set first (timerSet), then

the pacing mode can be set (modeSet). The Pacemaker is a secondary actor since it is the device

whose mode and timing is being set. The pre-state associated with event 2 (timerSet) is the post-

state associated with event 1, which was the initially available event. Thus, the inclusion of states

enables the mimicking of a state machine model where the order of execution of events is

determined by correspondence of states.

A RAD equivalent of the state-based pacemaker description is shown in Figure 3.10:

53

Physician

c- initial

programmes
Limpulse timer
J

Pacemaker

CD- initial

n

timerSet - timerSet

sets pacemakers
L mode

modeSet c- modeSet

II

j- awaitingHeartRate

heartPaced

im

normalRateAchieved

ignores cardiac events
for a set period

rY

awaiting HeartRate

Heart

c- awaitingHeartRate

III'

ýI

I

pacingRequestSent

III
heartPaced

pacing

(Z)normaIRateAchieved

Figure 3.10: RAD for the pacemaker use case description

The RAD above (Figure 3.10) and the description in Table 3.3 indicate that the second possible

event is the Physician sets pacemaker's mode and not the Pacemaker interrogates the heart's

electrical activity as indicated in Figure 3.9. The main benefit for considering states as suggested

in the Educator approach is to foster rigour in reasoning about consequences for each event to

occur in relation to other events.

The above RAD depicts the actors in Table 3.3 as roles, and their state changes are shown both

prior to and after participating in the respective events. Figure 3.10 and Table 3.3 indicate that

upon the Pacemaker reaching the awaitingHeartRate state, the Pacemaker performs the event

interrogates heart activity again. Hence the Pacemaker interacts with the Heart again. Notably, it

is not possible to highlight this type of behaviour in the standard use case. In this example, a

problem of missing out such a specification issue is that it would impact on the Pacemaker such

that the pacemaking process would not be specified such that it would perpetually monitor and

54

provide pacing impulses as required by the heart. From the standard use case description, it is not

possible to determine whether or not the Pacemaker resumes any heart monitoring and pacing

activity after it has completed the current pacing activity. The Educator approach facilitates the

explicit delineation of such behaviour using state-based information which helps to inter-relate

events.

It is noted, however, that enaction can be applied to standard use case descriptions whereby

modellers step through the description following the sequential order of events. Whereas this is

not the intended use of enaction within the Educator approach, the work reported in chapter 6

shows that enaction of standard use case descriptions may often provide the benefit of
discovering dependency issues as opposed to manual scrutiny of those descriptions.

This thesis argues that, as indicated in the Cardiac pacemaker example, enaction of state-based

use case descriptions has the benefit of providing rigour in the scrutiny of descriptions by

reasoning about consequences of event occurrences in relation to other events. Where participants

realise that visualised behaviour is incorrect according to their knowledge of the problem,

corrective measures may be applied. These may include altering actors such that some actors are

associated with different use case events, adding extra events or actors, etc.

Combinatorial enaction is a means to use case enaction that considers multiple use cases being

enacted in some desired combination. For example, some use cases may be required to occur

concurrently, or one after the other (sequential), or that a modeller may choose which one to

perform given a set of plausible use cases. The consideration of combinatorial enaction arose

from the work reported in chapter 6, and an example is provided in Section 6.6.

3.6.4 Educator process

The typical process of constructing Educator-based specifications is outlined as follows.

An initial understanding of a problem may be gained by the modeller and a first-cut standard use

case description constructed. The constituent events of standard use case description are then

augmented with pre and post states, while also considering possible secondary actors (and their

states) for each event. This augmentation process may result in adding further events or actors, or

even further use cases. Hence, additional use cases may be authored as associates of the use case

already under consideration.

55

The modeller then applies enaction to visualise the state changes of actors as they participate on

performing the respective events. Enaction may result in revision of use cases as modellers gain
further insight into the behaviour described by the use cases.

3.7 Chapter summary
This chapter has outlined the motivation for the Educator approach to use case specification and

validation. In particular, the chapter has demonstrated the extent to which the Educator approach
is informed by the RAD and RolEnact approaches, and the key differences between Educator and
these approaches. The chapter has also provided a discussion of various terms used within the

chapter (and the thesis) that have different connotations in other areas.

Within this chapter, an argument has been made that formally based techniques, whilst providing

rigour in specification construction, sacrifice readability of the specification by non-technical

stakeholders, an issue of importance during validation. Hence, the Educator approach seeks to

provide rigour in scrutiny of specifications while obviating any need for formal specification

techniques.

The chapter has provided an outline of the nature of Educator descriptions, including the syntax
for a use case step. Aside from retaining the simple nature of the use case description, an

additional benefit of the Educator approach is the production of use case specifications that are

amenable to visual prototyping. Production of visual models at specification and validation stages

offers the extra benefit of enhancing shared understanding among participants.

56

4. Development of tool support

This chapter outlines the rationale for developing the EducatorTool. In particular, the chapter
discusses examples of EducatorTool's usage as a demonstration of how the tool provides support
for the Educator use case approach.

Additionally, a background to the controlled natural language adopted for writing Educator-based

use case descriptions is presented and the support for some of the CP ([114] and [37]) rules is

outlined.

4.1 Rationale for a bespoke tool

A use case is a partial story describing a circumstance of system usage and how the system
behaves while serving its external users. Two advantages afforded by UML use cases are that:

 the use case notation offers an intuitive way of describing software behaviour [117];

 use cases are easy to construct [30].

Industrial strength UML tools (e. g., Rational Rose [118] and TogetherSoft [119]) do not focus on

the use case description primarily, nor do they offer any mechanism for considering
dependencies. Whereas these tools lack such focussed functionality, one would think that the

more bespoke, research-oriented tools such as those reported in [31] and [84] might consider

specialised support for use case descriptions. The main shortcoming with most of those attempts

is that they do not provide a mechanism to support their core findings. For example, despite [84]

arguing for the need to adopt Cockburn's (see [33]) concept of primary and secondary actors,

there is no way of supporting that scheme using the tool proposed in [84].

The general aim of CASE tools in software engineering is to provide automated support for

various phases of software development (e. g., in unit-testing [120], or user interface engineering

[121], [122]). Much of the focus on automated software engineering research has been on the

later stages of the software process, namely verification of components' behaviour (see [123])

and model checking ([124], [125]). Software model checkers (see [126]) typically work by

extracting a state machine (e. g., in the form of a transition system) from code. The (often

incorrect) assumption of such efforts is that the specification phase will have been completed

successfully [127].

57

The Rational Unified Process seems to recognise the role of states in specifications and
recommends that a use case description should include a precondition, flow of events (basic and
alternatives), and a post condition [26] at the use case level. The problem with this simplistic
format is that dependencies amongst use case events are assumed to be linear (or not thought of at

all).

Another area that has seen successful application of state-based information is business process

modelling [49]. Whereas many process modelling approaches have a formal-methods orientation,

the same approach cannot be used with use cases given that the uptake of use cases is due to their

ease of use and understanding [128]. This thesis, therefore, posits that use cases can benefit from

state machine representations of the software behaviour that they describe in order to rigorously

validate stakeholder expectations. Furthermore, just as in much of model checking and business

process modelling, appropriate (and simple to use) tool support is needed to enforce the

incorporation of this type of information in use cases. Indeed, the role of tool support within

software engineering, especially, at the requirements phase, is to enhance communication
between stakeholders and development engineers [I I I].

The EducatorTool offers a mechanism by which modellers and stakeholders can enhance their

shared understanding by stepping through visual models of the use case descriptions.

4.2 The EducatorTool

It has been stated elsewhere (section 4.2) that a use case description is a partial story describing a

circumstance of system usage and how the system behaves while serving its external users

(actors). A bespoke support tool, must meet at least, the function of writing these partial stories.

The basic elements of a use case description are actors and events ([33], [37]). Additional

elements suggested in the Educator approach are pre and post states for events, secondary actors,

and pre and post states for those secondary actors. Hence, a most basic requirement of the

EducatorTool is to support the construction of Educator-based descriptions as specified on the

Educator model (chapter 3, section 3.4.3).

An additional requirement for the tool is the need to support behaviour prototyping based on the

edited descriptions. That is, the EducatorTool provides functionality to enact (animate) use case
descriptions. Enaction is a way of providing visual models whereby description authors can view

the implications of their statements as actors interact in performing the events. Stakeholders can

58

therefore develop visual models of their understanding of the system to other stakeholders during

validation of the specification.

Since use cases might have alternative courses, the tool provides functionality for including

alternative paths. Alternative paths are not independent descriptions, as their execution depends

on whether the execution of the base use case has followed the alternative path. Additionally, the

tool provides ways to inter-relate distinct use case descriptions. The purpose of this is to

synchronise distinct behaviour descriptions and enact them to visualise pre-defined interactions

amongst different system parts.

4.3 Supporting CP rules

4.3.1 Overview of CP rules
The CP rules are covered in [37] and their essence reported in ([129], [114]) and were largely

informed by those of [113]. The CP rules are a set of syntactic rules to be followed when

authoring use case descriptions. The aim of the rules is to enable the production of commonly

comprehensible use case descriptions given that the UML does not provide any guidelines

regarding how use cases may be written. There are thirteen CP rules (see [37]) briefly described

as follows:

1. Each sentence (or event) of the use case should be in a new line - this rule is aimed at

fostering a consistent writing structure where the detail of the use case is clearly stated.
2. Alternative paths should be in a separate section (from the basic path) and the sentence (or

event) number should agree - this rule aims to ensure alternative path details are not mixed

up with those of the basic path, nor are they lost such that one cannot tell which alternative

path is associated which event.
3. That present tense should be used in naming actions of actors.

4. Pronouns are to be avoided.
5. Adverbs are to be avoided.
6. Adjectives are to be avoided.
7. Negatives are only to be used in exceptional flows (error handling).

8. Explanation to be provided where it is needed to provide further detail.

9. Use case descriptions should be coherent.

10. A modeller should always employ the adjacency pair (Question -> Reply to Question).

11. Within a description, a modeller should show related use cases by underlining their names.

12. Only atomic events should be allowed: subject verb object

59

13. Also, atomic events of this form may be allowed: subject verb object prepositional phrase.

This thesis is not about use case authoring rules or guidelines. It is about dependency analysis in

use case specifications. However, as articulated in [37] comprehensible descriptions are vital to

validation. This thesis adheres to some of the rules (e. g., 1, and 12). Moreover, a few of the CP

rules have been selected to further demonstrate that automated support can be provided for such

rules.

The support of some of the CP rules by the EducatorTool is an additional benefit of automated

support, and not a central issue of this thesis. As noted already, Educator descriptions are written

such that each event is on a new line, thereby adhering to the first CP rule. This requirement is

supported. The CP rule that demands that use case description authors to avoid pronouns (e. g., he,

she, and it) is one of the other CP rules supported by the EducatorTool. This rule is enforced by

allowing the tool user to construct a working dictionary that contains the words that are not

allowed for use in the description:

,
LM !! "[

Figure 4.1: Disallowed words

If the user writes an event that has any of the disallowed words, then the application notifies the

user of that word and provides an option to re-write the event using another word to be chosen by

the user. For instance, if the user wanted to replace reference to "impulse timer" (in the

description of Figure 4.15, pgs. 66-67) with the pronoun "it", the user will be prompted:

60

Add word

Remove word

I11

-; 1 The Word: 'it' is on the disallowed word list.

Do you want to allow this word?
Iý F-

--ý,
ýo

Figure 4.2: A word that may not be suitable

CP rule 6 requires authors to write their events in present tense. EducatorTool provides the

functionality to check that users do not include words in the past tense. For instance, if the user

writes the first event (of the Pacemaker-Table 3.3) as "Physician programmed the pacemaker's

impulse timer", EducatorTool reports on the past tense usage:

. 2(j

The Word: 'programmed' might be in past-tense.
Do you want to allow this word?

E
Yes

=No

Figure 4.3: Checking use of past tense

This is enforced by use of an inbuilt checker of words that are in past tense. Since some words

could appear to be in past tense (e. g., names of people), the tool allows the user to construct a

working dictionary of allowed words to ensure such words do not appear to flout this CP rule

when used in the description:

f- LQJ xJ

New word: NEP-wv , word

Add word

r Remove ward

Figure 4.4: An example list of allowed words

The above CP rules are readily supported by the EducatorTool, and it is possible that the other CP

rules can also be supported in similar specification environments like the EducatorTool.

61

4.4 Enactable functionality- examples
Enaction of Educator descriptions is one of the main functions of the EducatorTool. Enaction

entails stepping through the logic of a description (or a set of descriptions).

Where the visualised behaviour does not match the expectations of the modeller, then modellers

can revise the description (by adding extra events, actors or changing states).
Sections 4.7.1 through to 4.7.5 discuss the different enactable capabilities supported by the

EducatorTool.

4.4.1 Default enaction
Default enaction is the simplest form of enaction offered by the tool. In this scheme, the

description is enacted in a sequential order based on event positions, that is, from the first event,

second event, etc. It is possible to invoke default enaction for an already state-based description.

The assumption is that by stepping through a visual animation of the description, modellers may
identify event orders that are erroneous. This thesis argues that the default enaction is simplistic

and only useful as a first step towards a state-based model. As an example, consider the Cardiac

pacemaker description of Figure 3.6.

Default enaction of use case descriptions entails stepping through the logic of the description

without taking into account the pre and post conditions for constituent events. Hence, once the

initial event has occurred, the next available event is the event in position 2:

>_ _IQIxj
------------- Q Physician

ungiamrf s impulse YBmeri

Heart

Q Pacemaker

--- --- ------ -
iriterrocýates heart activity Send pacae3 rf quest to 1I2arI

resumes monrtariug4 cardiac evk w

Figure 4.5: Default enaction (second event)

62

Overall, the Pacemaker process shown in Figure 3.6 would be visualised such that the constituent

events are executed in sequence. The output of default enaction of the description is shown in

Figure 4.6:

Enaction Output
Physicianýirograrnrnes impulse timer
Pacemaker interrogates heart activit. /
Physician sets pacemaker's pacing mode
Pacemaker sends pacing request to heart
Heart obtains normal rate
Pacemaker ignores cardiac events for a set period
Pacemaker resumes monitoring cardiac events

Figure 4.6: output of default enaction for the pacemaker

xl

A problem with this assumption of linear dependency of events is that there is no rigorous

scrutiny of the circumstances under which event occurs in relation to others (as discussed in

section 3.4.3). This thesis argues that, for non-trivial specification tasks, the Educator approach be

adopted for dependency analysis.

4.4.2 State based enaction
Consider the description of Table 3.3 edited in the EducatorTool:

File Use Case Actor Conditions Enact Tools CP Words Help

Description '`" .º....
ý

IU; tveni rreconamon rosiconailiori 'ecunaarýHýUIur rreuunnin j rustuunuiuun
1 Physician programmes impulse timer initial tirnerSet Pacemaker ir'l l tirnerSet

2 Pacemaker interrogates heart acti ritt' modeSef awaitirigHeartRate Heart tirýgPaceRequest pacingRequestSent
__ 3 ! Physician ; sets pacemaker's pacing mode timerSet modeSet Pacemaker tirrimrSet modeSet

4 Pacemaker r ; sends pacing request to heart o awaifingHeartRafe heaitPaced Heart rýuR. equestReceived heartPaced
-- 5 Heart obtains normal rate --- -- --te heartPaced --- normalRateArhievell Pacemaker `: 1, '. Faced - normalRateAchieved

6 Pacemaker ignores cardiac events for a set period normalRateAchieved atRefractoryState
- --- --- -- - -- --- -- 7 Pacemaker resumes monitoring cardiac events atRefractoryState awaitingHeadRatP

Figure 4.7: State-based Pacemaker process in EducatorTool

The essence of enacting a state-based use case description is to provide a means for further

scrutiny of dependency issues by visualising actors' state changes as they perform events.

Whereas enaction or some form of prototyping is considered important (see [80], [130]) for

enhancing shared understanding, most industrial strength CASE tools such as RationalRose do

not provide specific functionality for authoring use case descriptions let alone their animation.

Bespoke tools such as that reported in [31] do not consider enaction. A major theme of the work

63

presented in this thesis is to provide a prototyping mechanism where use case descriptions can be

animated to visualise the implied behaviour. Hence, the perceived benefit of enaction is the visual

rendering of the description thereby depicting what the stakeholders would obtain from the

delivered product. For instance, the Physician and the Pacemaker interact during the performance

of event 1 (see Figure 4.8). Prior to event 1 occurring, Figure 4.8 shows the states of both actors:

Physician

programmes impulse timer I initial
'' I

dil

8 Heart

.
k'24Yý. ̀

.... _...
ý

0 Pacemaker

--------- -- -
L. 9nt ¬r f _. ý tvkýf

;1
`fin i` E_'

..
sT Zss i £s t9

icjrlores Caeeiaa events fac a set period 1 resumes monitnring c initial

Figure 4.8: Physician and Pacemaker's states (prior to event 1)

By stepping through visual models of the description, stakeholders can revise any behaviour they

deem undesirable by changing the primary or secondary actors, or even by adding or changing

events and states. If the enaction of events followed the order of events in the stateless use case

description, the next available event after the dialog above would be event 2, "Pacemaker

interrogates heart activity". However, the inclusion of state based information reveals that the

state of the Pacemaker after the execution of event 1 does not allow the Pacemaker to trigger

event 2. Indeed, the next enaction dialog is as shown in Figure 4.9:

64

Oacemaking Use case Desýripucni The 1J x1
Physician

sets pacemaker's pacing made timerSet

e Heart

e Pacemaker 7777,
ýaac o scents iýýr a snt t rod a rc ., +. n ýaaon orýn

_r
arcl+ tc timerSet

Figure 4.9: Event 2 must involve setting the pace timer

The literature on artificial Pacemakers is clear about the fact that pacing must be done based on

the chamber of the heart that requires a pacing impulse. Thus, if event 2 of the stateless

description is executed before the timer is set, and the mode determined (whether the left chamber

or the right chamber of the heart is to be paced), then the incorrect chamber of the heart will be

paced, hence inducing an exaggerated heart rate, the very condition being monitored for

mitigation. Finally, the correct sequence of events after considering dependencies is shown

below:

Pacemaking x

Enaction Output
Phpsician prograrnrnes irnpulse timer
Physician sets pacemaker's pacing mode
Pacemaker interrogates heart activity
Pacemaker sends pacing request to heart
Heart obtains normal rate
Pacemaker ignores cardiac events for a set period
Pacemaker resumes monitoring cardiac events

Figure 4.10: resulting description

Moreover, the description of the pacemaker will be able to mimic the continuous working of a

pacemaker, whereby, after the final event, the pacemaker will resume monitoring again to ensure

the heart is continually monitored and paced. The stateless description does not provide such a

prototype of the exact behaviour expected of the working of the pacemaker, and it is difficult to

determine, for example, the event at which pacing must resume.

65

4.4.3 Multiple use case enaction
The reason for considering enaction across multiple use case descriptions is to be able to

determine inter-use case dependencies, and hence validate behaviour for sub-systems that interact

in their course of execution. The UML specification of the use case does not consider such
interaction issues across distinct use cases.

Consider the Exchange pen (UC 1) and the course registration (UC2) use cases shown on pages 37

and 38 respectively. There are two ways in which distinct use cases can be associated with the

EducatorTool. One way is to consider an event whose occurrence is dependent on local

dependencies and those of events in other descriptions. For instance, in the discussion of the

Educator approach (chapter 3, Figure 3.4) indicates that the Student (in UC2) cannot choose

course to study based on events in UC2 alone. Choosing a course to study also depends on an

event in UC 1.

In a situation like this, the EducatorTool provides a modeller with the set of events from the Pen

exchange use case. The modeller would then choose the specific event (Lecturer gives pen) of the

Pen exchange use case that would be associated with the desired event (Student chooses courses

to study) in the course registration use case:

Please choose the event desired:
Event:

Commit relationship!
Pen Exchange. Lecturer gives pen ý- -- L-
Pen Exchange. Studerrt [dues pen

Figure 4.11: Event level synchronisation within EducatorTool

Again, an establishment of this inter-use case dependency means that the Student cannot choose

courses to study based on the Registrar's event alone. Rather, the student's action of choosing the

course is also dependent upon an event (Lecturer gives pen) in another use case (Pen exchange

event). The meaning of such a dependency assertion has to be context dependent. That is, what is

the essence of a student not being able to choose courses until the Lecturer has given pen?

Perhaps, the student needs the pen during the choosing of the courses. Whereas this example is

simple in nature and easy to reason about, real life applications and processes can be complex.

Again, the synchronisation of processes has been a topic in computer science for many years.

Issues such as resource sharing, multithreaded applications and the management of resource

sharing amongst threads and processes can be seen as an area where this type of specification

might be relevant. When the use cases are inter-related in the manner described here, there is

choice between two events for the Student in the two descriptions. That is, the Student can

66

perform the event 3 in Course registration or event 2 ("gives pen") in the Pen Exchange use case.

Figure 4.12 shows the interaction between the two descriptions within EducatorTool:

=1J xJ
Lecturer--

,. «. rýuý, _QS tý7 u., cuursecAgreed
------------- -

Registrar -
-..

iis[Lore

E) Student ---".

chooses courses to stud i hstDone

Figure 4.12: Interaction at event level between 2 use cases

The other form of multiple use case enaction is by considering a certain event in one use case

where the behaviour of the other use case is to be invoked. That is, an interaction among actors in

one use case leads to the invocation of a related use case. Consider the Exchange pen and Course

registration use cases again. It may be that after Lecturer gives pen (in the Exchange pen use

case), and the student is then in the hasPen state, the entire Course registration use case needs to

be invoked before the Student can give pen (event 2 of Exchange pen use case) back to the

lecturer.

Lecturer Student

hasPen noPen

Gives Pen

noPen hasPen

I uInvoke Course registration
use case

noPen

Figure 4.13: RAD showing invocation of a use case from another

67

Again, Figure 4.13, and the indication of a whole use case being invoked upon the execution of

an event in another use case is an issue that can bear contextual interpretations depending on the

processes described. Whereas the example used here is easy to outline and reason about, some

real life processes require computed resources from other processes before they can execute their

part of the system-wide goal. EducatorTool provides support for invoking use cases during the

enaction of other use cases. Once a use case has been invoked, it overrides the invoking use case

until it (invoked use case) has completed enacting. To invoke the Course registration use case

within the Pen exchange use case, a user selects the event at which the invocation occurs, and

then further selects the use case to call:

Please choose the des

Description:
ion desired:

'V

Commit relationship!
ri Exchange

arse Registration
Close

Figure 4.14: invoking Course registration at event 1 of Pen exchange

4.4.4 Modal (Combinatorial) enaction

Modal enaction is a scheme where different combinations of use case descriptions are enacted in

either sequential, selection (choice), iterative, or concurrent order. That is two or more
descriptions, regardless of their internal states can be enacted in sequential order, one description

following the other. This forms the sequential mode of enaction. In iterative mode, two or more
descriptions are enacted iteratively, each after the other. Selection involves making of choice
between a set of available descriptions the one appropriate for enaction to realise the context-

dependent behaviour of a situation. Concurrent enaction entails enacting two or more descriptions

at the same time. The concept of modal enaction arose during the conduct of the industrial project.

It became essential to consider modal enaction of descriptions because of the nature of some

subsystems' functions. Hence, section 6.6 (of chapter 6) has further discussion (and illustration)

of modal enaction.

4.6 Chapter Summary

The enactable functionality supported by the EducatorTool can be classed as either state-based or

default (where states are disregarded). This chapter has outlined the various flavours of state-

based enaction supported and the type of scrutiny offered by each. In stateless enaction the tool

allows description authors to produce prototypes of a description following the default order of

events. States play no role in this form of enaction. However, authors can change the ordering by

68

simply inserting events in different positions. The limitation of default ordering is that it

disregards the notion of actors in a description "knowing" the context of actions of other actors.
Rarely in any specification (whether of software or business process) are actions of one actor or

role only important to that actor's or role's interests alone [14]. Thus, in order to enforce this

form of interaction between actors this chapter argues for the inclusion of accessible states that

determine which actor is responsible for initiating which action, and which actor is affected by

the execution of the action. Thus, the state-based model makes states a crucial property of actors'

events, which determine whether the actor may invoke (or participate in) an event.

There are two reasons for considering dependencies in use case specifications:
1) To determine a correct sequence of events given a set of requirements that a software system

must meet.

2) To enhance the level of detail in use case descriptions since in their standard form, UML use

cases offer little useful information to elaborate software behaviour.

The author does not impose a prescriptive adoption of the approach and tool presented in this

thesis to systems development engineers. Rather, the thesis argues that where software engineers

deploy use case descriptions in their specification tasks, then the approach and tool presented here

are a useful means for validating requirements and specifications.

69

5. Evolution of EducatorTool

This chapter discusses feedback from various sources that informed the development of the

Educator approach and tool. For instance, workshops with MSc Computing (Software

Engineering) students provided an opportunity where the students used the tool for the

specification of their software projects. The feedback obtained from these informal workshops is

discussed in section 5.2. Further feedback was obtained from more formal workshops whereby

presentations were made by this author to colleagues in the research group. Section 5.3 offers a

discussion of the feedback arising from these presentations.

5.1 Rationale and activities undertaken

It has been pointed out in previous chapters that the Educator approach is motivated by the

process modelling approach - RolEnact. Much of Educator's support environment was developed

iteratively with use of example use cases from literature. The rationale for participating in

workshops with students was to obtain feedback regarding the approach as presented within the

tool. Preceding chapters have indicated that the essence of the Educator approach is to facilitate

the consideration of dependency issues in use case specifications. The EducatorTool is a proof of

concept tool that acts as vehicle for the approach. Hence, one of the things that the informal

workshops sought to elicit from the MSc students was the extent to which they found the

application of the Educator approach and the use of the support tool useful (or not useful) in

"teasing out" dependency issues in the specifications for their software projects. The

EducatorTool provides an enactable environment where Educator-based use cases can be

visualised. Hence, the other issue that the author wanted to find out from the informal workshops

was the extent to which the enactable functionality helped in validating the participant's

specifications. A related matter is, of course, to obtain feedback regarding any enhancements that

could be made to EducatorTool's functionality for authoring Educator-based use cases, their

amendment, and enaction.

Additional workshops involving presentations to colleagues in the research group were conducted.

These aimed at obtaining general critique of the approach and the tool, based on example
demonstrations during these presentations.

70

5.2 Feedback from student workshops

5.2.1 Feedback gathering

The process of obtaining feedback from both workshops was informal in that no experimental
design was involved to control participants and the treatments. Most of the feedback elicited was

qualitative. For example, feedback on the use of the approach to validate specifications was

obtained by discussing dependency issues discovered as result of applying the approach. An

example from each workshop is provided in section 5.2.2.

Feedback gathering from the first workshop also involved the use of a questionnaire to ensure

systematic responses by all participants at the early stage of the approach and tool development.

Questionnaire design requires the consideration of the objectives for the study ([131], [132]) in

order to be able to formulate the questions that will help address the issues being evaluated. Most

questions were closed format with responses to choose from; the last question was open format

where respondents could write comments regarding issues, that may not have been covered in the

closed questions, that they wish to raise.

There were two main objectives for the workshops. First is to obtain feedback regarding the

extent to which participants found enaction suited to dependency analysis. The reason for

considering enaction is because it is the most explicit way in which the EducatorTool supports the

Educator approach for dependency analysis. Second, the workshops had an objective of obtaining

feedback regarding the use of the tool in constructing use case descriptions and revising them.

Educator use cases can be constructed with the EducatorTool, and it is this construction of

Educator-based use cases that the second objective was concerned with.

5.2.2 Educator approach

This section considers feedback, and examples from students and how such examples informed

the Educator approach. Hence, some example use cases from students are presented. Their

analysis is discussed with respect to how students found the Educator approach and tool useful
(or not useful) in validating the use cases.

Example use cases & analysis
Example 1 is from the first workshop and example 2 is from the second workshop. Further

example descriptions are provided in appendix F. 3 and analysis of some of them is found in

appendix K. The discussion of the examples is organised as follows. First, the augmented use

71

cases are presented, and any dependency issues found by students discussed. Second, presentation
is made of the application of enaction (with EducatorTool), and any dependency issues found also
discussed.

Example 1

One of the students was working on a project based on the UK's care home sector. The student
had carried out background research regarding trends in the care sector. A disturbing finding was

that whereas many care homes were vulnerable to closure (for various reasons), the number of

people requiring care was increasing.

The student observed that since these care facilities are few, it is important that some of their

activities are supported with a software system to increase the efficiency of the care staff. Some

of the issues investigated and that needed addressing somehow were:
 Staff at many care homes often face difficulties obtaining leave (even sick leave) due to

the many tasks that have to be attended to in person at the care home (e. g., administrative

tasks like booking new clients).

 Managing staff issues (e. g., rota, wages, arranging and communicating departmental

meetings, etc).

The student was specifying a care system where a family could make direct enquiries online

without having to travel to the care home physically. The student started with an initial use case

description depicting the sequence of events that a family would go through to make an enquiry

(and hopefully, registration at a care home):

1. Family requests information on care home

2. Family sends information on elderly kin

3. Staff accesses relevant care information

4. Staff selects data to be included in report

5. Staff prints the report

6. Staff sends the report to the family
Figure 5.1: Care request use case description

The Educator approach proposes the augmentation of use case descriptions with state-based

information. One of the reasons for developing the EducatorTool is to provide automated support

for augmenting use case descriptions with the state-based information. Moreover, the Educator

approach proposes the delineation of interaction issues by indicating any secondary actor for an

72

event and the pre and post state for the secondary actor involved in the event. The student

considered the pre and post states for the description in Figure 5.1, and revised it to produce the

state-based description shown in Table 5.1:
Primary Secondary

ID Actor Event Precondition Postcondition Actor Precondition Postcondition
Requests
information on

1 Family care home initial careInfoRequested Staff initial requestReceived
Requests
family's kin

2 Staff details requestReceived kinInfoRequested Family carelnfoRequested kinRe uestReceived
Sends
information on

3 Family elderly kin kinRequestReceived kinRequestSent Staff kinInfoRe uested infoReceived
Accesses care

4 Staff information infoReceived carelnfoAccessed
Selects
relevant care

5 Staff information carelnfoAccessed carelnfoSelected
Prints the

6 Staff information careInfoSelected infoPrinted
Sends the
report to the

7 Staff family infoPrinted infoSent
Table 5.1: Care request use case (revised in Educator approach)

Effects of augmentation
As a result of considering pre and post states for each event, the student brought to light some

dependency issues. For instance, in Figure 5.1, it was not clear where the family requests the care

home information (event 1) from. Hence, the inclusion of the staff as a secondary actor for that

event clarifies the fact that the family interacts with a staff member from the care home.

Furthermore, the state-based information enabled the student to realise that after event 1, the next

available event could not be event 2 of Figure 5.1. The reason for this is that the care staff needed

to know certain information regarding the person who needs care. This was considered useful for

staff in determining whether they (staff) would be able to provide the care service and hence send

the appropriate information to the family. An additional event was introduced:

Staff Requests family's kin details.

One of the issues that was associated with missing out the above additional event (and hence not

carefully considering the family's kin circumstances), was that staff could take on people who

need more specialised care (e. g., due to any existing medical condition or advanced age) than

may be offered at the care home. Hence, this seemingly slight omission could mean admitting

people for whom there were no adequate care facilities at the care home.

73

The set of events in the initial use case description (Figure 5.1) had the ordering changed by one
position each starting at the second event. The importance of this has been discussed in the
previous section. To reiterate, the introduced event was necessary to indicate what is the next the
appropriate action for a member of staff who receives a request from a family regarding care
service and facilities at the care home. The staff should know specific information about the
family's kin to be able to determine the adequacy of the care services they offer with regard to the
enquiring family.

Example 2

This example is from a workshop conducted with a different group of MSc students, mainly to

gain further feedback on the extent to which the approach is supported by the EducatorTool.

A process considered by one of the students during this workshop is that of the monitoring of
Lorries entering and leaving a depot. The student was attempting to describe the behaviour of the

part of a system that could aid the depot operator in assessing and recording Lorries entering the
depot to deliver goods, and those leaving the depot after delivery (or picking of) goods. Consider

the use case description for recording Lorries exiting the depot:

1. Lorry arrives at depot exit
2. Operator drives to the depot exit office
3. Operator sets movement type (exit)

4. Operator checks entry load value for the Lorry

5. Operator requests lorry registration
6. Lorry driver provides lorry registration information

7. Operator weighs the lorry

8. Lorry exits the depot
Figure 5.2: Depot exit use case description

The state-based version of the use case in Figure 5.12 is shown in the following table:
ID Primary Event Precondition Postconditio Secondary Precondition Postcondition

Actor n Actor
1 Lorry arrives at inSite atExit Operator initial driving

depot exit
2 Operator drives to driving atExitOffice

depot exit
office

3 Operator logs into the regReceived opLogon
vehicle
monitoring
system

4 Operator sets opLogon movementSet

74

movement
type (exit)

5 Operator checks entry movementSet loadChecked
load value for
the lorry

6 Operator requests lorry atExitOffice regRequested Lorry initial regRequested
registration Driver
information

7 Lorry provides regRequested regProvided Operator regRequested regReceived
Driver registration

information
8 Operator weighs the loadChecked weighed

lorry
9 Lorry exits depot infoSaved exit Operator infoSaved lo soff
10 Operator saves lorry weighed infoSaved

exit
information

11 Operator shuts the logsOff systemShut
vehicle
monitoring
system

Table 5.2: state based version of Figure 5.12

Revisions to the initial description:

 Three added event:

Operator logs into the vehicle monitoring system.

Operator saves lorry exit information

Operator shuts the vehicle monitoring system

There were no added actors.

The additional events were considered important. For instance, the "Operator logs into the vehicle

monitoring system" was a crucial event for ensuring entry information is checked on the existing

records. The "Operator saves lorry exit information" is important as the determined exit load has

to be recorded and saved too. The "Operator shuts the system" is important to ensure no active

logons are left as that would expose the system to misuse whereby drivers can record falsified

information.

5.2.3 EducatorTool

Considering Example 1

This section considers the application of the EducatorTool on the student examples. The main

feature of the EducatorTool that is central to the Educator approach is the enaction of descriptions.

Hence, this section provides a discussion of enaction and a discussion of whether or not students

found enaction useful (or not useful) in further validation of specifications.

The EducatorTool was used to produce enactable models of the state-based use case of Table 5.1.

75

ri

File Use Case Actor Conditions Enact Tools CP Words Help

Description .""

ID jPrimary Acto Event Precondition Postccondition Serrnr a r", rtr
1 Farnil'' Requests information on care home initial carelrifoRequested Staff
2 Staff Requests family's kin details ; requestReceived kin Info Requested Farnil,,, +
3 Family Sends information on elderly kin ! kinRequestReceiverd kinRequestSent Stan
4 Staff Accesses care information

_
infoReceived carelrifoAccessed

5 Staff
6 Staff

Selects relevant care information icarelnfoAccessed
Prints the information carelnfoSelected

carelnfoSelected
IinfoPrinted

7 Staff Sends the report to the family l, infoPrinted ! infoSent

_ia

Precondition Prýstronrdition
in tsl requestPerei; red
i; are Info Reqjested kirRequestRereived
k nlrifoRequested info Received

Figure 5.3: use case of Table 5.1 within EducatorTool

The enaction dialogue prior to the execution of event I is shown in Figure 5.4:

IN X1
amity

Requests information on care home ivfO nation of elder t kirr f initial

O Staff

P, N: -tuasts
fami "s kiss details ccesses ýa ei oriýaaiiart j f

S,!,, -, 0, fMm it Care itiformation I Prfn t the information

; Ands the report to the family initial

Figure 5.4: First enaction window

When the family requests information on the care home, the following dialogue is reached:

76

e Family

careinfoRequested

e staff

Requests family's kin details cce: es c: ý; e iýýfr rrtýa irsýý

iritý = eie+x tat ire information Prints the innformal ;

ýr r ý, ý, s"1 to rho £ýt; i? requestReceived

Figure 5.5: Enaction dialogue after event 1

Upon the enaction of event 5, the student argued that a manager of the care home had to be

involved when relevant care information has been identified for a family's kin. The selected
information (event 5) has to be sent to the manager who then opens a temporary file for the

family's kin before the information is sent to the family. This is to ensure that when the family

contacts the care home with any further queries (or with an indication that they want the service),

the manager is able to obtain the information for easy reference and decision making. Hence the

following is the revised use case description:

Educatmuse case ...
File Use Case Actor Conditions Enact Tools CP Words Help

Description 1r
e. lnfcýrmaion Reýcuestj

1 Family ; Requests information on care home initial
2 Staff Requests family's kin details requestReceived

Family Sends information on elderly kin kinRequestReceived
4 Staff ! Accesses care information infoReceived
5 Staff (Selects relevant care information careinfoAccessed
6 Staff Gives rnanagerthe information icarelnfoSelected
7 : Manager bpens temporary file for family kin se
3 Staff JPrints the information familyFileOpened

- 9 ., tiff ,ý
- ------ -- Sends the report to the family ------------- infoPrinted

e': 0nda

Guested Farni! j
stSent IS taft

Manager a. raiting seIectedlnfoReatlp
Statt irifoGiventoManager farnilyFileOpened

n

uested

Figure 5.6: revised version of Figure 5.3

Revisions to the description of Figure 5.3:

 Two added events:
Staff gives manager the information.

Manager opens temporary file for the family's kin.

 One added actor:
Manager

77

 Moved (affected) events
From Figure 5.3, event 3 moves to position 8 (Figure 5.6).

From Figure 5.3, event 7 moves to position 9 (Figure 5.6).

The necessity of the additional actor and events was seen as a means to ensuring integrity check
by the manager of the care home to ensure any outgoing information is validated, and records
kept for future reference. Hence, the additional revisions of the initial description due to the

application of enaction were deemed important to the specification of the appropriate behaviour

of the system.

The output of the enaction produced the following description which was considered an accurate

representation of the intended behaviour:

IL Care Information Request

Enaction Output
FarniI

NRe
uestsinformation on care home

Staff Requests family's kirr detail.
- ----------- ----- ----- --- --- ------- -- - ------- ----------- Family Sends information on elderly kin
Staff Accesses care information
Staff Selects relevant care information
Staff Gives rnanagerthe information
Manager Opens temporary file for family kin
Staff Prints the information
Staff Sends the report to the family

Figure 5.7: Enaction output of description in Figure 5.6

The use of the approach and the application of enaction by other students during this workshop

raised a number of issues. These issues pertained to the functionality provided by the

EducatorTool for both enaction and editing of descriptions. The issues are briefly discussed in

section 5.2.4.1.

Considering Example 2

The enaction of the state based description (Table 5.2) with the EducatorTool produced a

different order of events from the order of events depicted in the initial description (Figure 5.13).

For instance, whereas the third event in Table 5.2 is "Operator sets movement type", enaction

shows that the third event is:

78

Figure 5.8: third event during enaction

This was explained as follows. Once the Operator arrives at the depot's exit office, the first thing

is to check the registration details of the Lorry against those held in the depot's system. Setting

the movement type is signalling that the Lorry registration details exist in the system (as a vehicle

that entered depot legally before).

The output of enaction is the use case description shown in Figure 5.9:
LE' F..,

Erzaction Output
Lorry arrives at depot exit
Operator drives to the exit office
Operator requests Lorry registration
Lorr/Driver provides Lorry registration
Operator logs into vehicle monitoring system
Operator sets movement type (exit)
Operator checks entry load value for the Lorry
Operator vie ighs the Lorry
Operator saves Lorry exit information
Lorr., exits depot
Operator shuts vehicle monitoring system

Figure 5.9: enaction output for depot exit use case

5.2.4 Discussion of issues

5.2.4.1 Tool issues

An issue reported was that there was no clear distinction between events for a main use case path

and those of its alternative paths. The reason for this lack of distinction is that all events had the

same font and print size. This was a problem, especially during enaction where a user needed to

know which events belong to which use case path. This issue was resolved by changing the font

79

type of the alternative path events to italic with a font size of 12. Also, alternative path events
have been given a colour yellow. Main path events have the times new roman font with size 12.

NB: alternative paths are named using the dot notation as shown:

<BasicPathName. AltemativePathName>

For example, if there is an alternative path called ArrangeMeeting in the use case of Figure 5.6,

this alternative path could be named as follows:

Care Information Request. ArrangeMeeting.

Some students correctly pointed out that preconditions should be replicated and made available

for selection as post conditions, and vice versa. That is, once preconditions are added, these

preconditions should be made available to description authors for choosing as postconditions. The

reason for this is that in a state-based specification, the precondition of one event might as well be

the postcondition of another event. This functionality has since been implemented. The main

benefit of this is that modellers are afforded greater efficiency since there is little scope for

mistakes (e. g., spelling mistakes) as typing is minimised. This functionality works the same for

actors, whereby once a primary actor is added, then it is also supplied for selection as a secondary

actor. The reason for this is that in specifications where interactions are expressed (e. g., Educator-

based specifications) some secondary actors act as primary actors depending on the event in

which they are participating.

An additional issue brought forward by some of the group members was the amount of real estate

that EducatorTool offers for writing events in a description. Several users of the tool in this

group felt that EducatorTool was restricting their expressiveness for writing descriptions. The

brevity with which EducatorTool enforces on event authoring was found to be restricting how

much users could write. The Educator approach recommends a specification approach where

modellers are able to clearly define the actors for their events; for this reason, the EducatorTool

does not allow events to be added before a primary actor for the event is chosen. The event itself

is written such that it is clear what the verb and the object in the event is. This model is again a

recommendation within the CP guidelines. Functionality is provided within EducatorTool to

write notes for each event where such additional notes may be needed. Whereas reasoning about

80

software behaviour in terms of atomic events with their participating actors might be more
difficult compared to standard use case specifications, this approach is geared to enhancing clarity
in considering dependencies amongst the events. Furthermore, articulating software behaviour

during specification construction is often not an easy activity. Hence, the main reason for

advocating brevity in writing use case events is to enhance clarity on the part of the description

author (as suggested in the work of Cox [37] and Rolland [32]). Educator descriptions follow the
CP writing guidelines (see section 4.4 of chapter 4). Indeed, the CP rules emphasise the issue of

comprehensibility at great length. Moreover, where event text is too long to be viewed on the

main display, a tree structure is provided where the events can be displayed alongside their actors

and states.

5.2.4.2 Discussing the questionnaire

The questionnaire can be found in Appendix F. The questionnaire had suggestions stated in a way
that the participants could respond in varying strengths of agreement or disagreement. In [132], it

is argued that clarity is important in formulating questions and responses. The recommendations

outlined in [132] were followed in constructing the questions. Furthermore, there are brief

explanatory notes to each question. The responses were obtained in terms of whether the

participants agreed, strongly agreed, disagreed, strongly disagreed, were undecided, or had no

opinion. Short notes were written under each suggestion to explain each of the suggestions
further. The confidentiality of the respondents was assured.

The first 4 suggestions required the respondents to tick an appropriate box indicating their answer.
The fifth part required participants to write brief notes regarding their recommendations for

improvements, and any constraints that they thought the approach and the tool placed on

specification construction. Most of the comments written in part 5, and additional ones written in

parts 1 through 4 have been discussed in the preceding "Issues and discussion" sections.

Figure F. I (in Appendix F) shows that one of the respondents was undecided as to whether the

tool was easy to use or not. This is because the respondent did not use the tool as much as the

other respondents. Indeed, the respondent did not return any descriptions written using the tool

despite using it during the initial trial session. Others found it easy to use as can be seen in the

graph. Moreover, all respondents agreed (some even strongly agreed) that the scheme adopted for

writing descriptions in a state-based fashion is well supported by the tool.

81

Enaction was found to provide feedback to the participants enabling further scrutiny of
descriptions compared to mere reading of static textual use cases. Hence, the responses to

suggestion 3 were indicative of the participants' agreement with the suggestion.

One participant disagreed with suggestion 4. The participant observed that the functionality to

amend actors or states once enaction reveals that such changes are necessary was not

straightforward. Participants recommended that all pre-states are also allowed to be selected as

post-states, and vice versa. This issue has been discussed in the preceding "Issues and discussion"

sections.

During the conduct of this workshop, the tool could only construct use cases and their alternative

paths. The association of distinct use case descriptions had not been implemented. Some

respondents pointed out to the necessity of this inclusion in the part 5 of the questionnaire where
it was left open for the participants to describe any extra functionality they wished the tool to

provide. Handling of multiple use case descriptions has now been implemented and is discussed

in chapter 6.

Some participants wanted a further constrained way of writing descriptions. For instance, some

argued that an intuitive starting point would be writing the actors, then the events for the actors

and then the states. The tool has been built such that there must be a triggering actor for each

event, and states can be added to events after the events have been written or during the writing of

the events. Logically, the construction of an Educator description is such that a state cannot exist

without an associated event, nor can an event exist without a triggering actor. Events can exist

without states (as in default use cases) or without secondary actors.

5.3 Research group seminars

5.3.1 EducatorTool seminar 1

This seminar was conducted at the end of the first six months of the research reported in this

thesis. The audience consisted of members of the Empirical Software Engineering Research

Group (now Software Systems Modelling Research group). The research group comprised of 1

senior lecturer, 1 lecturer, 3 research fellows, 2 PhD students and 1 professor of software

engineering. The general aim of the presentation was to report the progress made on the definition

of the Educator approach and the support tool. The emphasis of the presentation is summarised as

follows:

82

a) Clarifying to the group the nature of the state-based use cases as described within the Educator

approach.

b) Demonstrating to the group how Educator descriptions are written within the EducatorTool.

c) Gaining feedback on any limitations of the approach and functions of the tool.

5.3.1.1 Discussion of issues

One of the issues that elicited discussion was the entry and exit points into and from a description

during enaction. In other words, given that a description has more than one event, at what event
does a modeller enter the enaction and at what point does a modeller exit enaction. This issue

was explained as follows.

Educator descriptions can be written in two schemes: the standard (or default) scheme where

states are not included in events and the state-based scheme where each event has a pre and post

state. In the standard scheme, enaction starts at the event on position 1 (the first written event),

proceeds to the second event, third event, and so on, until the event in the last position is enacted.
In the state-based scheme, enaction of events is based on the event's state. Like in any other state-

machine model, there is an initially available event, where enaction is entered from. The

subsequent event is dependent on whether its pre-state matches the post state of the previous

event; enaction is terminated (and exit point reached) in this scheme if there is no other event

with a pre-state matching the post state of the currently available event.

Another issue was the extent to which information represented in a RAD model is transferable

into an Educator description. This question arose from the fact that some of the research group

members have a background in process modelling research. In particular, the Educator approach

has been largely informed by the business process modelling approach whereby interactions

between roles is depicted using state-based process models.

The author explained this issue as follows (also, others in the audience had similar views). RAD

models of business processes provide a rich depiction of the business process being modelled.
RAD models show roles, the responsibilities for those roles and their interactions as they execute

various business tasks. On the other hand, there is no approach to date (as far as the author
knows) that models interactions between actors within the UML use case in as a rich manner as
business processes are modelled using RADs and associated tools. The Educator approach is a

step toward providing this modelling capability. However, it should be noted that Educator use

cases, like standard UML use cases can only model processes that require software support.

Hence, much of a RAD model may not be described in an Educator use case simply because not

83

all roles (in a RAD) have a direct interest in a specific software system. A discussion of these
issues can be found in [133].

5.3.2 EducatorTool seminar 2

This seminar was a presentation to the research group during a time when the group was hosting

collaborators from a German university. The participants from the German university were one

professor of software engineering and a prospective PhD student.

Discussion of issues

One of the issues raised during the presentation was whether use cases are well suited to

constructing behaviour models depicting state changes between events. That is, is the deficiency

of use cases typically a problem with the UML or that use cases are not meant for constructing

interaction based models. The issue was raised with UML state charts in mind. First, construction

of state chart models presumes a concise use case to have been produced in the first place.

Secondly, the use of state-charts to enhance use case specifications introduces a layer of

complexity to the specification process.

An additional issue that was raised was whether EducatorTool would provide further scrutiny of

descriptions by constructing a trace of state transitions in diagrammatic form. Whereas this

capability can be provided in latter versions of EducatorTool, the author set out to produce a

proof of concept tool that enables enaction of state-based descriptions to support scrutiny of

dependency issues. The general functionality for the enaction capability has been provided, and it

would be worthwhile investigating these other issues (e. g., diagramming of state transitions) in

further work on the approach and tool.

5.4 Chapter summary

This chapter has discussed several sessions that were conducted by the author to gain feedback on

the approach and the tool proposed in this thesis. In particular, the chapter has described the

changes that were made to the EducatorTool resulting from the feedback gathered.

The workshops and seminars provided invaluable feedback that became useful in evaluating the

efficacy of the approach and the proof of concept tool. Given the need for automated support for

many software engineering activities, it was important to obtain direct feedback regarding the

EducatorTool as it plays the role of demonstrating the efficacy of the Educator approach.

84

This chapter does not by any means imply that the current tool is a final or complete version of a

typical state-based use case authoring and enaction tool. There is scope for extension of the tool.

especially to move towards the construction of a `first cut' design model (e. g., a class diagram).

Moreover, it is feasible to provide functionality that allows the production of some of the UML

diagrams used for dynamic modelling (e. g., a sequence diagram or statechart) as a means of

augmenting the class model of the system design. A further discussion on the extensions deemed

necessary is provided in the final sections of chapter 6.

85

6. Industrial evaluation

6.1 Introduction

This chapter describes an industrial project undertaken as proof of concept for the Educator

approach and the associated tool. The Educator approach is outlined in chapter 3. Chapters 4 and
5 discuss some aspects of the approach that pertain to initial feedback gathering and design. The

goal of this chapter is to bring these ideas together in the form of a single industrial study. State-
based use case specifications and the subsequent validation via early prototyping are
demonstrated by constructing specifications of parts of a real-time monitoring system.

Use cases and state machine approaches address a wide range of software engineering concerns
(e. g. behaviour specification, validation, automated analysis). It is, therefore, difficult for a single
project to address all aspects of the use case notation or to demonstrate all of the claimed benefits

of state-based approaches. The work reported in this chapter aims to demonstrate the rigour and
scrutiny afforded by the proposed approach and tool in an industrial application. In particular, the

analysed subsystems demonstrate the possible benefits of constructing enactable models of use

cases for dependency analysis, and the ramifications of not considering such dependencies.

6.2 Aims and objectives
6.2.1 Aims

The workshops reported in chapter 5 highlight interesting features of the Educator approach and
tool. In particular, the workshops and the seminars provided an opportunity to gain feedback, and,
hence, improve upon the way in which the Educator approach is supported by the associated tool.

However, the development of tools of this nature is often driven by industrial demand or a need to

extend the novelty of existing notations; hence, an industrial project is a necessary test of fit. The

basic aim for the work described in this chapter is to provide conduct an evaluation of the

Educator approach and tool based on an industrial software project.

6.2.2 Objectives

There are two main objectives for undertaking an industrial specification project as part of the

research described in this thesis. First, is to conduct an evaluation of the Educator approach to

determine whether applying the approach within industrial projects is helpful in dependency

analysis. It is to be noted that the application of the approach entails both augmentation of use

cases with state-based information and the enaction of such use cases. The second objective is to

evaluate the EducatorTool to determine its suitability for editing Educator-based use cases,

86

including the support of some of the guidelines outlined in chapter 4. A breakdown of these

objectives is provided below:

1. To evaluate the extent to which the application of the Educator approach (including

the mechanism of enaction) helps clarify dependency issues that were not found

without application of the approach.

2. To evaluate the extent to which the EducatorTool provides an environment suited to

authoring Educator-based descriptions, and the automated checking of the supported
CP rules.

6.2.3 Evaluation activities
The evaluation activities for objective one will entail the augmentation of standard use case

descriptions with pre and post states, and the consideration of secondary actors for events. An

additional activity will be the enaction of such augmented use cases. The discovery of any

(additional) of the following elements would be an indication that the application of the approach

has helped highlight dependency issues:

1. Any additional events discovered.

2. Any additional actors discovered.

3. Any events whose order of occurrence is altered.

For any of the above items, a qualitative discussion is made to describe the ramifications for

missing the additional specification element, or the significance of reordering the occurrence of

events.

The evaluation activities for objective two will comprise the automated syntax checking of

descriptions to be in conformance with the supported CP rules. Additionally, this objective will

consist of evaluating the extent to which the EducatorTool supports the editing of descriptions.

This editing involves adding new actors, or events, deleting events, changing actors for events,

rewriting events, altering states for events, and editing associations among descriptions.

6.3 Evaluation strategy
The model evaluation framework presented in [134] provides a basis for evaluating software

bidding models. Various model qualities (e. g., syntactic quality, semantic quality, model value

and test quality) are outlined for consideration in the evaluation process. The application of the

framework for specific evaluation circumstances would require that the framework be tailored to

the specific model being evaluated. Table 6.1 lists the quality aspects outlined in initial model

87

evaluation framework [134], the initial definition of those qualities, and the way in which those

qualities are tailored for evaluating the Educator approach and tool.
Quality aspect Generic application (by Application for evaluating

Kitchenam) Educator approach/tool
Syntactic quality That the language used (e. g. That the controlled natural language

predicate logic or algebraic adopted for constructing Educator
equations) in producing model descriptions is correct as per the
constructs is syntactically correct. adopted CP guidelines. These can

be checked by using the automated
CP checker within the tool.

Semantic quality That model statements are correct That Educator descriptions are
and relevant to the problem correct and relevant to the problem
domain. That such statements are being specified since such
complete in that no more descriptions are validated by
statements about the problem are domain experts. An aid to
necessary for the model. validation is augmenting such

descriptions with states, and
enaction.

Pragmatic quality A model quality concerned with For the Educator approach and tool,
whether roles (or stakeholders) this will be concerned with whether
interested in the model can relate domain experts do offer qualitative
their understanding of the explanation of their reason
process/task being modelled (e. g., regarding changes they recommend
bidding process in Kitchenam's during specification construction
case) to the model itself (bidding and validation. That is, do the
model) participants identify specification

issues that are consistent with
domain concerns?

Test quality The use of simulation to assess There is no sense in which this is
whether the model's outcomes are necessary for the industrial project
consistent with specific (pre- undertaken to evaluate the Educator
defined) situations. approach and tool.

Value The extent to which the use of the The extent to which the use of the
model improves an organisations approach and tool is seen to
process (e. g., bidding process) improve the specification and

validation process. That is, what is
the significance of revisions made
to specifications as a result of
applying the Educator approach and
using the tool?

Table 6.1: Quality aspects for evaluating Educator (based on K. itchenam's tramework)

For each quality aspect, there is an associated goal (or goals) to be achieved by the evaluation.

Moreover, further adaptation of the initial framework (see [135]) introduced the need to consider

means for achieving the goal (by model developer) and means to assess the achievement of the

goal (by the model evaluator). For the Educator approach and tool, the model development

(specification of Educator approach) and evaluation were mainly conducted by this author, with

participation and input (in terms of use case descriptions) being provided by staff from the

company where the project was undertaken. Table 6.2 outlines the enhanced framework tailored

to provide goal definitions for the evaluation of the Educator approach and tool. The table also

provides brief descriptions of the means to achieve the stated goals and the means to assess their

achievement. In [135], a further enhancement to the initial framework of [134] was the

88

delineation of the object of evaluation. The object of evaluation is either a conceptual model (e. g.,
the Educator approach) or a software tool supporting the conceptual model (e. g., EducatorTool).

Quality Object Goal Definition Model Means to Means to
aspect properties achieve goal assess

achievement
of goal

Syntactic Model Syntactic All the Defined syntax - Support for Review of each
quality and tool correctness of descriptions includes authoring deficiency and

Educator adhering to the structure of Educator each suggested
descriptions Educator Educator events, descriptions, and correction with

approach and and supported checking of an option to
authored with the authoring adherence to obey rules or
support tool guidelines guidelines override them

Semantic Model Feasible The model is Traceability to Descriptive notes Interviews and
quality completeness; feasibly domain of model discussions with

feasible validity complete and elements (e. g. company staff to
feasibly valid secondary actors) elicit their views

linking the model on descriptions
to the domain;
checking of
models'
consistency
based on pre/post
states

Pragmatic Model Feasible As far as Description Presentation of Eliciting of
quality comprehension possible, elements (e. g., Educator understanding

Educator actors, events, approach using achieved by
approach is states) demonstrations staff via
understood by its and examples interviews
target audience

Model Feasible As far as Structuredness Not applicable Not assessed
understandability possible, of Educator

Educator descriptions
approach is

presented in a
format that is

understandable
to its target
audience

Test Tool Feasible test Adequate testing Executability Example usage Evaluation of
quality coverage of the tool in and enaction i. e. of the tool (test implied

terms of feasible ability to execute cases) behaviour of the
test coverage to the tool in order demonstrating use case
assure support to do enaction tool requirements descriptions
for Educator and showing how with staff
approach the tool supports

each type of user
for authoring
simple or
enhanced
descriptions

Value Model Practical utility The extent that Not applicable Assessment of interviews with
the approach additional staff to
facilitates rigour description determine their

of scrutiny of elements views on the use
when authoring produced as a of the approach

specifications result of using
the approach

Tool Practical utility The extent that Not applicable Appropriate user Not assessed as
the tool improves interface design tool was mainly
the efficiency for authoring used by this
and effectiveness descriptions with author during

of the user EducatorTool, the study
organisation online user

manuals.
Table 6.2: Educator approach and tool evaluation framework

89

For the industrial study reported in this chapter, the quality aspects assessed for the Educator
approach and tool will be highlighted in various sections of the chapter where a specification
activity constitutes the evaluation of that quality aspect.

6.4 The project
6.4.1 The company
The company concerned (based in the UK) is a software house specialising in the development

and maintenance of real-time monitoring and control software for its clients (other companies
distributed across the UK). During the time of the study, the company had a staff base with the
following roles:

1 Software developers: - staff who are involved with the development and maintenance of the

monitoring and control systems.
2 Software Projects manager: -a member of staff who works closely with software developers

on prioritising and agreeing on the projects and project deadlines.

3 Operations manager: - responsible for recruitment of new customers for the company; this

role also determines and liaises with the customers regarding the various fixtures that would
be supported.

4 Applications manager: - charged with the deployment of systems at customer sites, and the

management of software development milestones for new releases or upgrades.
5 The managing director: - the main decision maker and has the final say on the customer to be

supported, the fixtures to be allowed for support and also follows project completion and

success on deployed sites.
6 Incident operators: - these are operators at the control centre office who provide support to

remote customers. Their work involves notifying customers (through telephone calls or

email) of any incidents that need to be attended to, or indeed, receiving requests from

customers and acting upon those requests. There are at least 4 fulltime incident operators and

an unknown (to the author) number that work on shift basis.

The description of the various systems and their organisation, including a discussion on efforts to

re-engineer the systems for centralisation to the company site is provided in Appendices A. 1, A. 2,

A. 3, and A. 4. Appendix B provides a description the type of details the company typically stores

with regard to their client organisations. Further use cases can be found in Appendix C.

6.4.2 Purpose of the project

There were two main reasons for conducting the study:

90

1) The company concerned realised that they needed to construct a comprehensive specification
for their existing software systems for maintenance purposes.
2) The author took the opportunity to conduct an empirical evaluation of the Educator approach
and associated tool.

Regarding the first purpose stated above, the company had no existing documentation or
specification of their systems. Given the workload on development tasks for the existing
development team, the company decided to involve the author in the specification of their

systems. One key purpose for the specification was stated to be the continued maintenance of the

systems. Another essence of the work was to produce specifications for systems depicting new
initiatives for centralising most systems' functions at the control centre. That is, the company

wanted to reduce the amount of functions distributed to remote customer sites on various control

system components. The operations manager advised that centralisation of systems would reduce
travel overheads as the company often had to send out engineers to customer sites to resolve

apparently simple problems.

Hence, the author undertook the opportunity to participate in the project in order to conduct an

evaluation of the Educator approach using industrial applications. A difficulty in conducting the

study was the conflict between the author's need for the study and that of the company. The

company wanted all the systems specified and documented as quickly as possible. The author

wanted to determine the extent to which the Educator approach and the EducatorTool could help

clarify dependency and interactions issues within industrial setting. This conflict of interest meant

that it was not possible for this author to organise participants in a way that would suit some

aspects of the study design, rather, the company had their own project agenda which had to be

adhered to.

6.4.3 How the project was carried out
The study involved a number of visits (by the author) to the company offices where interviews

were conducted. The staff that participated in the interviews included two software developers,

one software projects manager, one applications manager, one operations manager, and the

managing director. The first interview was with the managing director, the applications and

operations managers who provided an overview of the existing systems, associated databases, the

nature of the customers supported, and the `logical' preview of the differences among systems at

customer sites and those at the control centre offices. Subsequent interviews involved the

91

developers, the software projects manager and the applications and operations managers. The

general process of gathering data followed the following pattern. Given that the author was
unfamiliar with the control engineering domain, the initial data collected entailed a brief
description of each system. This was then followed by a detailed description of the systems in the
form of use cases that depict the behaviour of the system. The use case descriptions were then

revised by the author using the proposed state-based approach. The state-based information was

elicited from the participants. Resulting state-based use cases were subsequently enacted
(animated) to visualise the implied behaviour. Moreover, the author inspected the existing code
for the subsystems studied to determine the extent to which the specifications matched the

existing functionality. The functions of the inspected code were further discussed with the
developers from the company to ensure the author's understanding of the code matched that of
the developers. Additionally, the reverse engineering tool, CodeLogic, was used to produce class
diagrams from code to gain further insight into what the developers had in place. Again, the class
diagrams were verified with the developers. This demonstrates that the Educator approach and

associated tool support can be used alongside other software design/development tools, in order

to provide different perspectives of a system architecture to support maintenance efforts.

6.5 Discussion of study issues

6.5.1 Data gathering and procedure
The data collected for the study was use case descriptions detailing the behaviour of various

subsystems. These descriptions were elicited via interview with participants from the company

where the study was undertaken. The author had been provided with a document outlining the

systems supported by the company. Hence, the interview involved the author mainly asking

questions regarding the functions of these systems, and the participating staff (mainly developers)

addressing the questions. The analysis involves augmentation of use cases with pre and post

states, and the enaction of the use cases.

The analysis process took the following general procedure. An understanding and documentation

of the system was obtained first. This understanding was gained through a discussion with

participating company staff where an overview of each monitoring system was provided (by the

staff to the author). The author wrote this overview using MS-Word on a laptop computer.

Further elaboration of the functions of each system was sought by the author, and this is where

use case descriptions were constructed (with the help of participating company staff) to describe

the functions of each system. That is, an initial use case description (standard use case) was

92

written with help of the participating staff following an overview of the subsystem's function.

Following that description, a state-based one would be constructed again with the help of the

participating staff. Often, this author would work separately to produce state-based use cases

which would later on be verified with the company staff. Additionally, enaction would be applied

to try and clarify any specification issues that might not have been highlighted with augmentation

alone.

The study is to be considered a success if augmentation of use cases, and enaction helps `tease

out' dependency issues that would otherwise not have been revealed without the application of

the Educator approach or the use of enaction within the EducatorTool. The consideration of the

extent to which the study succeeded (or did not succeed) is discussed in the "Explanation"

sections following each analysed use case description.

To ensure the approach and tool were applied correctly, the author took part in every interview.

As indicated above, the interview comprised of an explanation (by participating staff) of

functions for certain systems (based on a question from the author). Hence, a brief overview of

each system/subsystem was constructed in Microsoft Word first (the author had a Laptop

computer where the descriptions were typed); the use case descriptions of each system/subsystem

were then edited within EducatorTool. In effect, the author did all the editing while the

participants provided the information pertaining to the systems; the participants also provided

input on states for various events in the use case descriptions. The use cases provided within this

chapter are those considered most important by the company staff; part G of the appendices has

further analysed use cases.

6.5.2 Analysis issues

A typical way for the use of the approach and the tool is that standard use case descriptions are

revised using the proposed approach and enacted within the EducatorTool. Each resulting

description is then compared with the initial use case without the application of the Educator

approach or EducatorTool. The selection of the systems to be studied and analysed was based on

recommendations from participating staff from the company regarding the parts of the control

systems they regarded most crucial to them and their customers. In general, the study evaluates

the extent to which the application of the approach and tool support helps gain insight into

dependency issues that would otherwise not have been considered without this type of analysis.

Whereas the study is broken down into various subsystems, the problem domain is that of real

93

time monitoring systems. That is, the organisation concerned is a software house within the real-
time monitoring systems domain. The company is typical of many other software houses in terms

of use of software development technologies. For instance, like many other software development

companies, the concerned company uses technologies such as C#, Java, C++ and SQL server.
The company also constructs design models such E-R models, UML diagrams, etc. Hence, the

study results are generalisable to domains similar to that of the studied company. As stated above,
many software houses are typical (e. g., in construction of use case specifications during

requirements analysis) of the one where this study was conducted, and the results of this study are

equally applicable to those other companies (and system types) since similar issues can
potentially be investigated using the approach and tool described in this thesis. That is, whereas

the target clientele and domain is often different for different software development houses, the

application of the use case notation for requirements and specifications is common across

software houses. It is for the validation of such use case specifications that the results of this

study are considered generalisable.

Considering learnin eg ffect

It is recognised ([136], [137]) that learning effect can affect the results of an empirical study (e. g.,

experiments and case studies). For the industrial study reported in this chapter, the author made

consideration to address the learning effect issue. One way to rule out learning effect would be to

conduct an experimental design where the analysis of use case descriptions is conducted as
follows. Consider any two use case descriptions as follows:

Use case Dependencies

1 Standard A Augmented B n

2 Augmented B Standard A m

Table 6.3: Considering learning effect

The table above shows use cases 1 and 2. For use case 1, the dependencies n is the number of
dependencies revealed as a result of producing Augmented B following the construction of

Standard A. For use case 2, the dependencies m is the number of dependencies revealed as a

result of producing Augmented B first and then Standard A. Whereas this experimental design

would assure the discovery of dependencies is not due to learning effect on the part of the

modeller, the experiment is practically impossible for various reasons. First, the standard use case

description is always a subset of the augmented one, hence, starting with augmentation and then

producing a standard use case is not possible. The reason for this is that augmented use case

descriptions have all the information that the standard ones have, and more (state-based

94

information, and notes). Second, the Educator approach and tool work by moving from an initial

sequence of events (the standard use case) that is then augmented and enacted to determine any

dependency issues. Hence, there is no sense in which a modeller would find it useful to start with

an augmented use case as a first-cut analysis of the problem in hand.

6.6 Evaluating the Educator approach
This section considers the subsystems studied and the constructed use cases which helped provide

an evaluation of the Educator approach. The Educator approach is proposed as a means for

considering intra-use case and inter-use case dependencies. This section is organised to highlight

and address these types of dependencies. Enaction is part of the Educator approach, and this

section also provides an assessment of the extent to which enaction of Educator-based

descriptions highlighted dependency issues. Additionally, this section highlights the quality

aspects assessed as a result of the specification activities undertaken. References to the quality

aspects outlined in Table 6.2 will be made where necessary.

6.6.1 Intra-use case dependencies

This section discusses examples that help to highlight the importance of considering intra-use

case dependencies.

Example1: the alarm receiving process

This section provides an example to address objective 1. The section demonstrates the Educator

approach by analysing the alarm handling process. The aim is to scrutinise and determine

dependencies amongst the steps of the alarm handling process. One of the key functions of the

company is the monitoring, receiving and recording of alarms. The process revolves around an

alarm handling subsystem. Besides receiving and recording alarms, the subsystem also provides

suggestions on appropriate alarm resolution actions for an operator at the customer's site. The

following use case description was produced during interview with developers and applications

manager at the company:

1. AlarmReceiver receives alarm data

2. AlarmReceiver records alarms

3. Operator accesses existing alarms

4. Operator views recommended alarm actions

5. Operator resolves alarm

Figure 6.1: Alarm Receiver use case

95

The essence of the Educator approach is to facilitate consideration of dependencies by producing

a state machine model of the use case description. This state machine model requires that each

event has a pre and post state; moreover the modellers should consider whether an event has a

secondary actor participating in the execution of the event. The use case of Figure 6.1 revised to

adhere to the Educator approach is shown below:
Primary Secondary Postcondit

ID Actor Event Precondition Postcondition Actor Precondition ion
requests
alarm requestRec

1 AlarmReceiver data initial requested Scheduler waiting eived
sends alarms AlarmReceiv

2 Scheduler data requestReceived dataSent er requested waiting
receives
alarms

3 AlarmReceiver data waiting received
records
alarms

4 AlarmReceiver data received recorded
accesses
existing

5 Operator alarms initial accessed
views viable

6 Operator alarm actions accessed actions Viewed

resolves alarmResolve
7 Operator alarm actionsViewed d

Table 6.4: Alarm Receiver use case (revised in Educator approach)

6.6.1.1 Effects of augmentation

There are a number of dependency issues that came to light as a result of considering pre and post

states for each event (without application of enaction). For instance, in Table 6.4, event 1, it was

not clear from where the alarm receiver receives its alarm. Consideration of states for an alarm

receiver, before and after receiving an alarm, caused the introduction of the Scheduler actor

which is responsible for relaying alarm data to the alarm receiver. However, before sending any

alarm data to the AlarmReceiver, the Scheduler must have received a request regarding alarms

from the alarm receiver. Hence, receiving of an alarm by the AlarmReceiver is dependent on two

actions:

1) The AlarmReceiver must first request the alarm data

2) The Scheduler must send the alarm data to the AlarmReceiver

The participating staff indicated that the consequence of missing out the Scheduler in the alarm

process is that active alarms could not be received. Hence leaving out the functions of Scheduler

in the alarm process would mean that fire alarms are not received and recorded for the operator to

act upon. Moreover, intruder alarms would not alert staff for action where intrusion had occurred.

A summary of the revisions made to the initial description, due to the consideration of states for

each event is given:

96

Revisions to the initial description:

Two added events:
AlarmReceiver requests alarms data.

Scheduler sends alarms data.

One added actor:
Scheduler.

Moved (affected) events:

After augmenting the use case of Figure 6.1 with states, the initial five events were each moved 2

steps down. The revisions and clarification of initial description in the way shown above was

regarded as important by the staff participating in the project. It was mentioned that an omission

of the Scheduler (actor) subsystem would technically curtail the working of the AlarmReceiver.

6.6.1.2 Explanation

In Table 6.4, the AlarmReceiver is at initial state prior to triggering event 1, and moves to

requested state after requesting alarm data. Alarm data requests are made to a middle ware

subsystem, Scheduler, which is a secondary actor during the first available event. Scheduler

moves from a waiting state to a requestReceived state during its interaction with AlarmReceiver.

Scheduler then performs the event whose pre-state is requestReceived; this event involves

sending the data to the AlarmReceiver. Scheduler moves from requestReceived state to dataSent

state, whereas AlarmReceiver moves from requested state to waiting state. The AlarmReceiver

then receives the alarm data, and moves from waiting state to received state. Once received, the

alarm is then recorded, and the AlarmReciever moves from received state to recorded state.

Site-based operators are able to access recorded alarms (event 5), view actions recommended for

resolving alarms (event 6) and subsequently act to resolve the alarms (event 7).

6.6.1.3 Changes to event positions

The initial set of events (derived from first interview-Figure 6.1) had their ordering changed by

two positions each. This was regarded as a significant change given that events such as

"AlarmReceiver records alarm " cannot happen until the alarm has been requested (event 1-Table

6.4) and received (event 3 -Table 6.4). Hence, the use of augmentation helped highlight

dependency issues regarding an essential actor and important events that were missed in Figure

6.1.

97

The augmentation of use case events with pre/post states has helped reveal dependency issues that
were not explicit without the augmentation of the use case. The use of state-based information

within use case descriptions forces the modeller to reason about the consequences of each event
to occur, and hence follow the logic of the events. It is this rigorous reasoning within a state-
machine model that the Educator approach endeavours to foster.

Quality aspects assessed

As a consequence of considering pre and post states for events in the Alarm Receiver use case,

several addition description elements were revealed. These include additional actors and events,

and the altering of the initial order of occurrence of events based on feedback from the

participating staff. Hence, in validating the Alarm Receiver use case the Educator approach

quality aspects assessed include both pragmatic and semantic quality. The semantic quality

aspect of the approach is considered in the situation where additional actors (e. g., Scheduler) are
deemed necessary for the description to be complete within the specific real time monitoring sub-

system. The pragmatic quality aspect is deemed to have been assessed because the participating

staff were able to provide input in constructing and amending the use case for the Alarm Receiver

sub-system. Discussions with the participants indicated that they understood the Educator-based

description of the sub-system, hence providing a positive assessment of pragmatic quality.

6.6.1.4 Enacting state based use cases-further dependencies analysis
This section considers enaction to further address objective 1. The part of objective 1 addressed is

that of enaction as a constituent part of the Educator approach. Educator models are visual

prototypes of behaviour where the occurrence of events and the ensuing state changes of involved

actors are visualised. It is recognised by many researchers (e. g., [138], [139], [140], [130]) that

some form of visual simulation (or prototyping) enhances clarity and shared understanding during

requirements validation tasks. Enaction has to be performed using an automated environment, and

the EducatorTool provides such support. The use case of Table 6.4 is shown within the

EducatorTool in Figure 6.2:

98

_io
le Use Case Actor Conditions Enact Tools CP Words Help

Description A arrr, Receiving

ID PrimaryActor Event j Precondition Postcondition 3ecorndarjArtor Precondition Postcondition
1 tAlarrnReceiver- requests alarm, data initial ; requested Scheduler , citing requestReceived
2 Scheduler sends alarms data to AlarmReceiver requestPeceived dataSent AlarrnRFeriiFr reg nested waiting

- ----- - -------- 3 ! AlarmReceiver receives alarms data waiting received ý- -

4 AlarrmReceiver records alarms data received (recorded
5 Operator accesses existing alarms a ccessingAlarmsä cessed
6, Operator ! views recommended alarm actions accessed actionsVievred
7 Operator resolves alarms a alarrnResolved

Figure 6.2: Use case of Table 6.4 edited in EducatorTool

An enaction dialogue prior to the execution of the first available event is shown in Figure 6.3:

Figure 6.3: First Enaction window

When the alarm receiver receives alarm data then the data should be recorded, hence the dialogue

in Figure 6.4:

99

Figure 6.4: AlarmReceiver at received state

Following this state machine model, the occurrence of the event in Figure 6.4 above produces the
dialogue in Figure 6.5 where there is no further enactable event:

Figure 6.5: no event is available with pre-state recorded

There was no such event and this situation was only noticed during enaction. In other words, once

the alarm is recorded by the AlarmReceiver, nothing else happens to the alarm. The consequence

of a stalemate like the one shown in Figure 6.5 is that neither event 4 nor event 5 would occur.

Hence, any alarms could not be attended to by the operator. Where the alarm receiving module

does not raise alarms when they occur, the consequences can be catastrophic (e. g., in the case of a

fire). Furthermore, it was pointed out that the specification of a correct sequence of events, and

the knowledge about the states for each involved component was important for any new

development staff; such new staff would need to learn about interactions between systems to be

able to support the systems. A further scrutiny of the inter-relationships among events caused the

revision of description to produce the following:

Educator . Use Case Enaction

File Use Case Actor Conditions Enact Tools CPWords Help

Description

erator

SeconrJ. rACtor

rued alarrnSent AlarrRecceiver dälaRequested

d SChedIlýEr
Controller

uiýitlal iiiaccessingA

Figure 6.6: Revised version of Figure 6.2

Revisions to the description of Figure 6.2:

L: IIL

ests alarms data
Is alarms data to AlarmReceiver

alarms data request
no alarm data from fixtures
Is alarms data request to Controller

ves alarms data

, ds alarms data

sses existing alarms
a recommended alarm actions
Ives alarms

100

Three added events:
Scheduler sends alarms data request to controller
Controller obtains alarms data from fixtures

Controller returns data to Scheduler

One added actor:
Controller.

Moved (affected) events

From Figure 6.2, event 3 moved to position 6 (in Figure 6.6).

From Figure 6.2, events 5,6, and 7 moved to positions 8,9 and 10 respectively (in Figure 6.6).

6.6.1.5 Explanation of results

The following table summarises the results of augmentation alone and augmentation coupled with

enaction for the AlarmReceiver use case.

Variable Augmentation Enaction Augmentation + Enaction

No. of events discovered 2 3 5

No. of events moved 5 4 9

No. of actors discovered 1 1 2

Table 6.5: Summary of changes due to augmentation and enaction

The introduction of the network Controller actor and its events meant that there was clear
description of how the Scheduler obtains alarms data from the fixtures in order to relay the data to

the AlarmReceiver. These issues were deemed significant to correct execution of the alarm

receiving process. Moreover, the re-arrangement of events 3,5,6, and 7 (of Figure 6.2) was made

possible by considering the Controller actor as part of the alarm handling process. Again, this

consideration was highlighted by visualising interactions between actors during enaction of the

description.

It was pointed out that Scheduler communicates with a network Controller upon receiving

requests for alarm data from the alarm receiver subsystem. It was further explained that the

network Controller interfaces with the networked fixtures and Scheduler simply acts as a type of

middleware between the controller and the alarm receiver. The revision of the description of

Figure 6.2 into what is presented in Figure 6.6 resolved the issue of some events not being able to

execute. For instance, the issue visualised in Figure 6.6 was resolved when it was pointed out that

101

a site-based operator must access recorded alarms and subsequently act to resolve them. Hence an
Operator actor is involved in an interaction with the AlarmReceiver during the execution of the

event in Figure 6.5. The Operator is a secondary actor in that event. Hence, the events 8,9 and
10 are now able to execute.

Figure 6.7 shows output of the enaction after the description was corrected through enaction and

augmentation:

ß. 1J

Enaction Output
Alarm Receiver requests alarms data
Scheduler sends alarms data requestto Controller
Controller gets alarms data request
------ - --- - Controller obtains alarm data from fixtures
Scheduler sends alarms data to AlarmReceiver
AlarmReceiver receives alarms data
AlarmReceiver records alarms data
operator accesses existing alarms
Operator views recommended alarm actions

------- ------- - Operator resolves alarms

Figure 6.7: Resulting output

Upon consideration of dependencies (via augmentation and enaction) the final description has 4

more events and two more actors added to the description that had initially been constructed (in

Figure 6.1) at the first interview. It is this kind of rigorous scrutiny of specifications that the

Educator approach seeks to emphasise as means to clarifying issues concerning dependencies and

interactions.

Quality aspects assessed

As a consequence of enacting the Educator descriptions, several addition description elements

were revealed. These include an additional actor (Controller) and 3 additional events. Thus, in the

further validation of the Alarm Receiver use case the quality aspects of the approach, including

pragmatic and semantic quality were assessed. The semantic quality aspect of the approach is

considered in the situation where additional actors (e. g., Controller) are deemed necessary for the

description to be deemed complete and valid. Again, the pragmatic quality aspect was assessed

because the participating staff were able to provide input in the revisions to the description

following information arising from the enaction. It was apparent to the author that the participants

understood and followed the enactable models, further providing a positive assessment of

pragmatic quality. Syntactic quality was assessed in that descriptions in this section are edited

with the EducatorTool, which has automated checking capability for various CP rules. Hence, it

is reasonable to argue that syntactic correctness was assessed.

102

Example 2: client-server connection process

The example considered in this section helps evaluate objective 1.
The company wanted to move most of the monitoring systems' functions from remote sites to
reduce the travel overheads incurred by engineers each time they need to solve issues at disparate

customer locations. The envisioned change of the infrastructure was described by the operations
and applications managers. The site-based systems (seen as client applications in a new client-
server infrastructure) would hold reduced functionality and would have a communication
mechanism with control-centre based systems (seen as server applications). There needed to be

established a generic communication protocol by which clients would connect to servers to seek
the enhanced functions that clients need to do routine tasks (e. g. alarm handling and reporting). A

first-cut use case specification for client-server process is shown in Figure 6.8:

1. Client looks up domain naming service
2. Client creates connection socket
3. Client connects to server

4. Server requests clients login data

5. Client sends login data to Server

6. Server authenticates client login data
Figure 6.8: Client connection use case

The state-based version of the use case in Figure 6.8 is shown in the following table:

Primary Secondary
ID Actor Event Precondition Postcondition Actor Precondition Postcondition

looks up
Domain Naming

1 Client Service initial addressResolved Server waiting addressResolved
creates
connection

2 Client socket dataAuthenticated socketCreated
connects to

3 Client server socketCreated connected
requests clients

4 Server login data addressResolved dataRequested Client dnsResolved dataRequested

sends login data
to

5 Client Server dataRequested dataSent Server dataRequested dataReceived
Authenticates
client

6 Server login data dataReceived dataAuthenticated Client dataSent dataAuthenticated

Table 6.6: Revised client-server use case

Revisions to the initial description:

Added events:
None

103

Added actors:

None

Moved (affected) events:

None

6.6.1.6 Explanation

The author and the participants did not find any amendments necessary for the above description.
It was not clear whether this was because the client-server process was a new process being
initiated or because the description was an accurate representation of the intended behaviour. A

general point to be inferred from this is that, often, modellers may construct standard use case
descriptions that depict the behaviour of a system accurately even without further scrutiny with
the Educator approach. Hence, for well known systems, a standard use case description might

suffice to showing the desired behaviour of the system.

6.6.1.7 Enacting the client-server use case- further dependency analysis
This section provides an analysis of the client-server connection use case by way of enaction to

provide further evaluation of objective 1.

EducatorTool was used to provide enaction of the description. Hence the description of Table 6.5

edited within EducatorTool is shown below:

File Use Case Actor Conditions Enact Tools CP Words Help

Description

ID Primar Actor Event Precondition Postcondition SeronderVAý, ior Precondition Postcorýdition
1Client looks Domain Naming Service initial addressResolved Serier waiting addre. sPesolved
2 ! Client activates connection socket 'dataAutherill cated socketActivated

--ý-ý -- - _ - 3 Client ! connects to server sockefAcfivated connected
_

- -- - - - -
4 Server requests client's login data addressResolved dataRequested Clierd atldressResolved _ _ dataRequested
S Client sends login data to server dataRequested dataSent Senner riataRequested ciataReceived
6 'Server authenticates client data dataReceived dataAuthenticated Client dataSent dataAuthenticated

Figure 6.9: Client Server connection use case

An enaction window indicating interaction between the client application and the server

application during the first event shown below:

104

MIN, 1111 X1

Client -----

looks Domain Naming Service

ý;,, p ý ý16171 _z i[ä6ä1

Server

wafting

Figure 6.10: Client and Server states before event 1

The execution of the above event leaves the involved actors in the addressResolved state.

Essentially, once the Domain Naming Service has been resolved, it implies that the Client

application has identified the appropriate Server application to send or request data or other

information from. Hence, the next available event is one whose pre-state is addressResolved

(Server requests client's login data) and not the event in position 2. The next enaction dialogue is

shown in Figure 6.11:

seFlds iUyin date, to SOMA2 a(WeS leS4Rü

Server__

requests client's login data I addressReso ved

Figure 6.11: Client and Server states after event 1

During enaction, it was pointed out that in the current distributed infrastructure, Clients always

have to look up domain naming service but don't always connect at the instant the address is

resolved. In the proposed client-server connection infrastructure, however, clients must request

connection to server applications explicitly. Moreover, the "middleware" for establishing inter-

component communications (Scheduler) must initialise the client connection sockets to override

any previous server data. Finally, the description was amended to the following:

105

&Educator: Use Case Enaction

File Use Case Actor Conditions Enact Tools CP Words Help

Description Client-Server connection

1111 XI

ID Prima Actor Event Precondition Postcondition S'econdarAct. .
Precondition Postcontliton

11 Client looks Domain Naming Service initial addressResolved Server, F waiting 1 atltlressResolvetl
ý2 Client

-
requests conenchon
- -- --

activated
--

connectionRequeste

7
d Scheduler

-- 3 Scheduler nitializes the connection socket connectionRequeste d! socketinitialized
_ 14 Client activates connection socket dataAuthenticated activated scheduler waiting activated

5 Client connects to server atHandshake : connecting Server dataAuthenticated connecting
6 Server (acknowledges connection connecting connected Client connecting connected
7 Scheduler registers network handler with Server handlerCreated handlerRegistered
8 Scheduler creates network handler for client socketlnitialized handlerCreated
9 (Server requests client's login data , addressResolved ydataRequested Cli rlt addressResolvetl dataRequested
10 (Scheduler establishes client and server' handshake handlerRegistered atHandshake Q

11 Client sends login data to server tlataReuested tlataSent Server dataRequested dataRe e ; ed
_ 12 ; Server iauthenticates client data dataReceived dataAuthenticated Client dataSent dataAuthPnticated
1

13 _ Client ; executes tasks connected lexecutingTasks

Figure 6.12: revised client-server connection use case

Revisions to the description of Figure 6.9:

Seven added events:
Client requests connection

Scheduler initializes the connection socket

Client activates connection socket

Scheduler registers network handler with Server

Scheduler creates network handler for client

Scheduler establishes client and server `handshake'

Client executes tasks

Added actors:
Scheduler.

Moved (affected) events:

From Figure 6.9, the following events moved from their current positions to new
positions in Figure 6.12 as follows:

Figure 6.9: Figure 6.12:
Event 2 moved to position 4.
Event 3 moved to position 5.
Event 4 moved to position 9.
Event 5 moved to position 11
Event 6 moved to position 12

Again, consideration of dependencies by augmenting use case events with pre and post states

enabled the discovery of additionally actors and events. The inclusion of these extra elements in

the initial use case description changes the way in which the execution of events occurs.

Inevitably, such scrutiny was regarded significant as new information regarding important

subsystems was revealed.

106

6.6.1.8 Explanation of results

In the Client-Server connection use case the role of Scheduler was not apparent when the
description was augmented with pre and post states. For instance, the participants had not thought

about the express necessity of the connection socket to be initialised each time a connection is

requested by a client. Moreover, Scheduler was again highlighted as an important middleware for

providing a "handshaking" between clients and servers. Hence, the visual enactable models

produced with the EducatorTool provided cues within the participants regarding additional events
(seven of them) and the additional actor (Scheduler). Whereas in the previous example,

augmentation of the description alone provided insight into dependency issues, in this example

augmentation alone did not offer any further clues into the nature of relationships between events.
Rather, the enaction of the augmented description provided extensive and important insight into

issues that were not determined in the default description, or the augmented description. The

significance of combining augmentation with enaction within the Educator approach can be seen
by observing the importance of some of the changes made to the descriptions. For instance, if a

client does not perform event 2 (of Figure 6.12), the Scheduler will assume that a previous

connection exists. If such a situation is not the case, then the client application will not find a

server application. Where such a server application is an alarm receiver such as the one seen

earlier, the implications are enormous. Another crucial change was the need for a Scheduler to

create a connection handler for a client and register it for the specific server that the client wants

to connect to. These events are crucial for offering a stable connection that does not experience

deadlocks. For instance, a network handle for alarm handling should not be confused with that of

data logging or vice versa. Finally, the correct sequence of events upon the consideration of

dependencies is shown in Figure 6.13 below:

Enaction Outout 0

ieht sends login data to server
ewer authenticates client data
ient activates connection socket

lient requests conenction
cheduler initializes the connection socket
cheduler creates network handler for client
cheduler registers netv-rork handler with Server
cheduler establishes client and server handshake'
ient connects to server

ewer acknowledges connection
lient executes tasks

Figure 6.13: output of client-server enaction

Various quality aspects were assessed during the analysis of the client-server connection process.

For instance, the use of the EducatorTool in editing descriptions is an indication that the

supported authoring guidelines were automatically checked. Again, this aligns to the syntactic

107

quality aspect of the evaluation framework. Moreover, the information provided by participants,

and associated discussions during the validation of descriptions provided an assessment of

semantic quality since participants were able to provide insight about specifications based on

their problem domain knowledge. Discussions arising from the revisions to the descriptions

indicated that the participants felt the application of enaction provided a means to rigorously

scrutinise specifications. This can be mapped to the value quality aspect in the evaluation

framework.

6.6.2 Inter-use case dependencies

This section discusses examples that highlight the importance of considering inter-use case

dependencies. Inter-use case dependencies clarify dependencies among distinct use cases of the

same or different systems (or subsystems). One of the aspects of the industrial project was to

describe the manner of interaction between two control-centre based systems. These systems are:

a) A control-centre alarm receiver.

b) A control centre collection service (CCCS).

The control centre alarm receiver has the same functions as the alarm receiver at customer sites

(seen earlier in the analysis of intra-use case dependencies). An important difference between the

two alarm receivers is that the one at the control centre creates a text file with the alarm data and

saves the text file on a local computer disk. The use case description of the control-centre alarm

receiver is shown in Figure 8 of Appendix C.

The CCCS on the other hand is a utility module for polling the text files containing alarm data,

formatting the alarms into a standard view, and executing functions (typically stored procedures)

to resolve the alarms.

NB: The stored procedures and the databases where the resolved alarms and alarm actions are

stored is a subject outside the remit of this thesis.

The aspect of the control centre alarm receiver that created alarm text files and the aspect of the

CCCS that polled the alarm text files needed to be precisely specified to delineate points of

synchronisation between the two modules. Figure 9 of Appendix C shows the use case

description for the CCCS module.

108

Schemes for inter-use case dependencies

There are two ways in which distinct use case descriptions can be associated to analyse
dependencies amongst them. One of the ways of synchronising distinct use cases is to invoke one
use case at a certain event of the related use case. Consider the CCCS and the Control Centre
AlarmReceiver again. The CCCS's functionality can be invoked when the AlarmReceiving use
case executes the "alarm text file creation" event according to one of the developers at the

company. The RAD in Figure 6.18 shows the CCCS being invoked as described above:

Alarm Receiver

alarm Recorded

constructs alarm textfile

alarniFileCreated

invoke CCCS

cccsInvoked

Figure 6.14: invoking CCCS within AlarmReceiving use case
In Figure 6.14, the invocation of the CCCS process cannot happen unless the alarm receiver has

constructed the alarm text files. A second scheme of inter-use case dependency analysis is one

where events in one active description are synchronised with those of another active description.

In this scheme, an event in the CCCS use case description is able to execute if and only if another

event in the AlarmReceiver has executed. In this case, the CCCS cannot "read text files" (event 2)

before the AlarmReceiver has constructed the text files (even 8 of Control centre AlarmReceiver).

,-. _IJJ
File Use Case Actor Conditions Enact Tools CP Words Help

Description

1 ID ; Primary Actor I Event Precondition I Postcondition Secondar, " ctcr Precondition Postcondition
ý1 Fiature raises alarm at remote site alarmOk alarrc r. tive Controller iit al alarmActnve

Controller obtains alarm data aIarmActive data0btained
3 Controller relays alarm data to Scheduler dataObtained dataSent Scheduler dataReceived
4 Scheduler connects to AlarmReceiver dataReceived connected
5 Scheduler relays alarm data toAlarm Receiver connected alarmSent AlarrnReceiver I? alarmReceived
6 AlarmReceiver returns alarm received ackowledgement nleSaved ackSent C'cheduler nSent ackReceived
7 AlarrReceiver records alarm on database alarmReceived alarmRecorded
8 AlarmReceiver constructs alarm textfile alarmRecorded alarm File Created
9 AlarmReceiver saves teile on local HDD alarmFileCreated fleSaved

10 Scheduler drops connection with, AlarmReceiver ackReceived disconnected

Figure 6.15: Control Centre AlarmReceiver use case

109

Consider the CCCS description:

i 171-FT -- Ii

le Use Case Actor Conditions Enact Tools CP Words Help

Description Call Centre Collection Cerk.. _ -

IU trimarrxcior tveni I Precondition Postcondition I Seconrrar/Actjr Precondition Postcondition
CCCS 1 jpolls alarm receivers rereiverPolled

2 CCCS ! reads text files receiverPolled fileRead
3 'CCCS calls standardisation procedure jfIPRead iproredureCalled
4 CCC produces recommendations to resolve alarm procedureCalled actionsRecomd ýýpeýetýýr +aiting actionsRecomd
5 jOperator ! resolves alarm actionsRecomd IalmResolved
6 CCCS stores unresolved alarm in activeýtlarnno table alrnResol red alrn Stored

Figure 6.16: Typical CCCS process

An example of event-level associations across descriptions in this example is the requirement that

CCCS should not attempt to read text files before they are created. During enaction, event 2 of
CCCS can only occur when the CCCS is at receiver Polled state and the AlarmReceiver (in

control centre alarm receiver use case) is at alarmFileCreated state:

Controller

dataSeld

Fixture
- ------ ---------- --- ------ -

eldrmACttue

AlarmReceiver

cw struct alarm IT, -tole saves teile on local HDD alarmFileCreated

Scheduler

als , , rinc: ii. r Ji, h ; ", i : rrTtr ere ;e alarmSent

Figure 6.17: Synchronisation of inter-use case events

In the above descriptions (Figures 6.15 and 6.16), the enaction (shown in Figure 6.17) indicates that the

second event (with precondition receiverPolled) in the CCCS description occurs only after the eighth

event (with postcondition alarmFileCreated) in the Control Centre AlarmReceiver occurs. Hence, the

110

two processes run together, but only synchronise on those events since the processing of alarms at the
control centre is guided by recommendations from the CCCS. However, the production of those

recommendations is dependent on the alarm receiver constructing text files containing data regarding
the alarms. Whether modellers enact their descriptions using any of the flavours offered within
EducatorTool is purely dependent on the interactions envisaged between systems and also on the level

of development of the specification.

6.7 Evaluating the EducatorTool

Editing descriptions

This section provides an example to address objective 2. The example outlined in this section was used
as a means to demonstrate to the participating company staff how descriptions are edited with the tool.

The example comprises the Scheduler-Application process. Scheduler is a subsystem that was said to be

central to the monitoring process in that it is a type of middleware that manages communication
between subsystems, where these subsystems are generally termed "Application". The following

standard use case description was constructed during interview:

1. Application opens project files

2. Application connects to Scheduler

3. Scheduler sends acknowledges connection
4. Application sends network layout to Scheduler

5. Scheduler creates network handle for the application
6. Scheduler registers application for resource use

7. Scheduler sends registration to application

8. Application executes monitoring functions

Figure 6.18: Scheduler-Application

The description of Figure 6.18 edited within the EducatorTool is shown in Figure 6.19.

File Use Case Actor Conditions Enact Tools CP W

11 ýImj -- 11
: Description -"-.. _.

111

Figure 6.19: Scheduler-Application (within EducatorTool)

Again, the aim of editing the description of Figure 6.18 in the tool (as shown in Figure 6.19) was
to demonstrate the basic usage of the tool to author descriptions. In this editing, emphasis was
laid on the <actor> <event> scheme discussed in chapter 3. At this initial stage, no further

demonstrations were made regarding elements such as secondary actors, and states since these

were going to be introduced during further analysis of the specifications.

Associating descriptions

In consideration of inter-use case dependencies, one way to associate distinct use cases is to

consider an event in one use case where a related use case should be invoked. This is shown in

Figure 6.18. The EducatorTool supports this functionality by providing a modeller with all the

descriptions in to choose in constructing such associations. The Figure below shows a snapshot of
EducatorTool usage in such an association:

i ýJ X

Please choose the description desired:
Description:

Commit relationship! ' Control Centre AlarmReceiver
CCCS

Figure 6.20: Relating CCCS to an event of AlarmReceiver

To do this, the tool offers the functionality to insert a description at an event in another

description where its functionality is specifically needed (in the case of description in Figure 6.15,

event 8). When the alarm receiving use case reaches event 8, then the CCCS (see Figure 6.16) is

invoked automatically, so that it can access the alarm and recommend actions to resolve it.

Another way the EducatorTool supports associations among descriptions is event-level

associations. For example, to perform the event level association mentioned in the paragraph

below Figure 6.15, would highlight event 2 of CCCS and chose the AND (event 8) event from the

Control Centre Alarm Receiver

Jo
Please choose the event desired:

Event: constructs alarm textfile

Commit relationship! Kill relationship Close

Figure 6.21: Linking use cases at event level

These schemes for use case association were considered during the study, and the developers

indicated that the later association scheme is more elegant given that it does not require the

invocation of an entire use case unnecessarily.

112

6.8 Review of objectives & evaluations
The application of the Educator approach in dependency analysis has been discussed throughout

sections 6.6.1 (with examples based on 2 sub-systems) and 6.6.2. An assessment of the

subsystems studied shows that the augmentation of use case events with state-based information

provided insight about dependency issues that was not apparent within the standard use case

specification for the subsystems. For instance, the analysis of the Alarm Receiver subsystem (see

Figures 6.1 and Table 6.4) highlighted some dependency issues which are discussed in sections
6.6.1.1,6.6.1.2 and 6.6.1.3. Enaction is considered in section 6.6.1.4 for this sub-system and

again, several dependency issues are highlighted.

The various quality aspects of the Educator approach assessed during the study of this sub-system

are as follows:

Syntactic quality - the syntactic correctness of the Educator descriptions was assessed at the

point of editing descriptions with the tool. This was often not conducted explicitly, rather,

checking of Educator descriptions against adherence to supported guidelines is inbuilt in the tool.

Semantic quality - discussions with participating staff indicated that analysis of descriptions via

mere augmentation, and the application of enaction provided further clarity about the sub-systems

to be able to consider such descriptions complete and valid specifications of the sub-systems.

Test quality - the tests regarded as having been "indirectly" conducted were those concerning the

use of the tool to perform enaction and associations of descriptions. Such aspects of the tool were

executed and discussions with participating staff indicated that such automated support was

useful during validation and authoring of descriptions.

Value -the value associated with the model and the tool is the facilitation of rigorous scrutiny

specifications. In most of the sub-systems studied, the application of the approach provided

insight into aspects of the sub-systems that would possibly be missed without such rigour.

Pragmatic quality - discussions with participating staff suggested that Educator descriptions

were well comprehended, and in most cases, participants altered descriptions to correct found

issues with them.

For the objective two, the use of the EducatorTool to edit descriptions was considered well

supported. For instance, the associations among use cases that are often made to consider inter-

use case dependencies were deemed useful in validation of specifications.

113

6.9 Discussion of findings

Software engineers are often not experts in most application domains within which they are
required to develop software. On the other hand, most domain experts are not experts in software
engineering. Despite the communication gap that normally impedes informed elaboration of
business needs, and the possibilities of their support with software, few approaches exist that lend

themselves to bridging this gap without introducing costly learning overheads. Whereas the use
case notation has been widely adopted due to its ease of use and intuitiveness, its lack of rigour
and detail has been a stumbling block to wider application in non-trivial systems development

projects. The study presented in this thesis is a reasonably complex test for the proposed approach
where use cases are augmented with state-based information and supported with an automated
environment for their authoring and animation. By enhancing the level of detail in use case
descriptions and by providing a mechanism for stepping through the logic of the descriptions, the

validation of use case specifications against stakeholder expectations can be done prior to any
further development takes place.

An interesting outcome (and to some extent unexpected) of the study was that, some information

that resulted from the enaction did not fit in either as an actor, event or state. For instance,

information regarding the duration between a client's request of a server resource and the time

taken by the server to respond cannot be represented with UML use cases. Developers however

emphasized that such timing attributes must be described because a delay time of more than 10

seconds by the server is deemed a failed `resource seek'. The author has since introduced a

mechanism to write short notes to explain aspects that cannot be represented in an interaction step

of a use case. Indeed, whereas timing requirements are critical to some domains (e. g., real time

monitoring and control), use cases are not suited to describing such requirements. This thesis does

not claim that state-based use cases would be suited to describing software requirements dealing

with timing of executions for certain functions. The thesis demonstrates, however, that state-

based use cases are better suited (compared to traditional use cases) to detailed description of

software behaviour where dependency and interaction issues ought to be made explicit.

Additionally, developers were keen to ensure some subsystems were described so that they

executed their tasks concurrently. An example given was that a new customer can be registered

while alarm receiver and alarm display clients for existing customers continue their functions.

Some subsystems also execute in a given sequential order regardless of their internal states. This

type of sequential execution was mainly necessary to ensure an alarm receiver client only

requested alarm resolution stored procedures after a reliable client-server connection had been

114

established. Some subsystems needed to execute every so often. Thus, it was important to include
functionality for iterative enaction. The other mode of enaction is one where choice must be made
between subsystems to execute. For example, customers can resolve alarms or in some

circumstances, control engineers can resolve the alarms for the customer. There needs to be

functionality to support the making of choice between specific processes. This combinatorial

enaction scheme has since been incorporated in the support tool. Figure 6.21 shows a typical

usage of the tool where different combinations of partial specifications can be made depending on
functional demands of the users:

e Manage Enaction Modes
Descriptions to choose from Concurrent Enaction

C., sýnºerRe ration Site
.
AIarrnReceivrrig

iIeEditor
.
IarrnDispla+y

BaseBuilder
Client Sewer connection
Site AJarmReceiving
AlarznDispl; ay
Control Centre AlarmReceiving "
CCCS

Enact Concurrently

Iterative Enaction

Control Centre AL x-mF_' cFirün
cc.

Populate

Sequential Enaction --

ikEditer
EaseEuilder

ý------ -- -------------
Enact Iteratevty

-Alternate Enaction -

'I oritrol Centre AIarrnReceivine
Site AlarrnReceiving

Enact Sequentially Enact Alternately

Figure 6.22: Modal (combinatorial) enaction

It is argued in [109] and [90] that application of state-based approaches in use cases (and

scenarios) can tedious for large systems because there is bound to be states ̀ explosion'. Whereas

this may indeed be an issue, this thesis observes that progressing software development on the

basis of a flawed specification does not justify avoidance of a rigorous means for specification

validation. Moreover, where larger systems are encountered, it may require creativity on the part

of the modeller to break down the specifications into smaller parts that are specified and analysed

individually. These distinct specifications can then be integrated using one of the means described

within the Educator approach.

115

Most existing tools that are oriented toward behaviour modelling tend to describe the processes
being modelled using formal grammars (e. g., process algebras for the LTSA [38] tool, and the
P1ayIn/P1ayOut Engine [34]). Other tools such as L'Critoire [31] do not consider enaction at all.
This study shows that by maintaining the simple nature of the use case notation, and allowing
much of the appeal regarding process and tasks to be captured within the use cases, toolsets of
this nature can gain industrial uptake.

6.10 Limitations

This section considers some limitations of the work presented in the thesis. In particular, a
discussion is made of the limitations associated with the Educator approach and the support tool.
Additionally, a discussion is made of the limitations pertaining to the evaluation study

6.10.1 Educator approach and tool limitations

One of the issues that may be considered as a limitation of the Educator approach is the inability

to associate more than one secondary actor to an event. That is, if a specification requires more
than one secondary actor per given event, the Educator approach and tool would not be able to

represent such an event. An example of such a circumstance (and how it might be addressed) is

discussed in section 7.5.

Use cases are geared to describing the functional requirements of a system and not how well

those functions are performed by the system. Within requirements engineering, however, it is

well recognised that the quality attributes of a system are often as important (if not more

important) than the systems functional capabilities ([141], [140], [123]). The Educator approach,

however, does not focus on the quality attributes of a system. That is, integrating non-functional

requirements with the functional requirements is not within the initial premise of the Educator

approach.

Another limitation of the Educator approach is the lack of emphasis on non-functional

requirements. It is to be noted however, that, whereas non-functional requirements may be quite

critical in some domains, use cases are not geared to describing such requirements. Hence, there

are no explicit Educator approach elements to describe such requirements. However, it is possible

to write down notes regarding some aspects of a use case specification with the EducatorTool to

ensure some of the quality-based information is not lost.

116

6.10.2 Research methodology
The essence of the industrial project described in previous parts of this chapter is to provide an
evaluation of the Educator approach and tool. The analysis of the use cases provided indicates

that the approach and the tool helped (in this particular project) highlight dependency issues. One

of the limitations of the study is that it is not possible to determine which dependency issues

could have been highlighted during later stages of development (or with further scrutiny) without

application of Educator approach and tool. The author recognises that perhaps, some of the
dependency issues might have come to light during design or implementation of the

specifications. However, there is also a risk of such issues being missed (as they were missed in

these cases), and it is such rigour in scrutiny that Educator approach is aimed at fostering so as to

avoid the risk of missed information.

An interesting way to conduct the evaluation of the approach and tool would be to adopt a case

study design where the author remained mainly as an observer. Multiple case studies may provide

an opportunity to evaluate the approach and tool in multiple organisations, across multiple

projects, thereby offering greater confidence in results. That is, such an approach might be useful
in affording greater opportunity for multiple participants (from different companies) to apply the

approach and tool in the validation of their specifications. It is hoped that multiple studies would

provide wider insight into the way the Educator approach and tool helps in dependency analysis.

Moreover, consideration of multiple studies with multiple participants might provide an

opportunity to assess issues such as whether more significant effort is required to construct

Educator-based use cases as opposed to standard use cases.

6.11 Chapter Summary
This chapter has presented a software specification project demonstrating the application of the

Educator approach and associated tool within industry. The study highlights the rigour afforded

by treating use case descriptions as light-weight state machines and the power of enaction in

providing cognition cues during dependency analysis. Whereas many proponents of UML only

recognise the need for pre/post states global to a use case, the study has shown that this simplistic

state space is insufficient for any non-trivial problem.

This thesis does not impose conversion of large monolithic use cases into state machine models;

however, the Educator approach is useful in situations that require precise specification of

behaviour and its validation for system parts that are not well understood or must be precisely

117

specified. Hence, the Educator approach and tool can be used in conjunction with (or to

supplement) other approaches and tools.

Much of UML use case literature seldom considers dependencies beyond the typical <<extend>>

and <<include>> relationships [10,55,106]. The (often dangerous) presumption normally is

that events follow a time-order dependency. This was the assumption by the developers and

managers during the outline of all the descriptions presented in previous sections of this chapter
(and in the appendices). This thesis asserts that for simple problems and uncomplicated domains,

it is possible to outline the correct sequence of events in such use cases with confidence. Most

control systems are however, complex, and the synchronisation of events in a process, or indeed,

the synchronisation of processes is usually far from obvious [107].

The study shows that consideration of states for constituent events of a use case and the states

relating distinct use cases offers a mechanism for the explicit consideration of dependency issues.

Dependency issues on the other hand enable rigour in the analysis of the behaviour implied in use

case descriptions. Moreover, enaction of the augmented use case descriptions provides visual

models that enhance shared understanding amongst description authors. In particular,

consideration of dependencies causes modellers to evaluate further the ramifications of

proceeding with development with the current specification. For instance, the consequences of

flawed alarm receiving process can cost lives, and extensive damage to property and such

considerations must be made prior to subsequent design and implementation.

The validation of the specifications for the various subsystems with the Educator approach and

tool indicates that additional specification elements were discovered. It is possible, however, that

some of those elements (e. g., additional actors, events, and their reorganisation) might have been

discovered in later stages of development. For instance in Figure 12, the additional events, and

the added actor (Scheduler) might have been noticed to be missing during design or

implementation of the subsystem. However, it is also likely that such information regarding a

crucial communication module might be missed (as it was missed during the specification stage).

The risk of such an anomaly is the lack of communication between applications that are involved

in the monitoring of fixtures. Rather than take such a risk, the Educator approach and tool provide

a means to rigorously scrutinise implied behaviour at a stage when the cost implications are not

so high.

118

7. Conclusions

This thesis set out to address the inadequacy of the UML use case as a specification and
validation notation; in particular, the inability of the use case to provide a mechanism by which
dependency issues can be delineated. In addressing this problem, the thesis has provided an
enhanced use case structure (Educator approach) whereby state-based information is used to

augment the specification as a means to `teasing out' dependency issues. An additional
component of the work done to address the above inadequacy of use cases is the provision of an
automated environment in which the Educator-based use cases are authored, and enacted as a
means to early prototyping of the implied behaviour.

This thesis has presented various examples from literature and an industrial software specification

project that serve to demonstrate the outlined problem with use cases. The analysis of the

examples and the industrial study also serve to demonstrate the application and benefits of the

proposed solution. In short, the work described in this thesis has addressed two related issues. The

first issue is the inadequacy of the use case notation as a vehicle for software specification and

validation. To address this issue, the thesis has proposed the Educator approach which enhances

use case descriptions with state-based information as a means to considering dependency issues.

The thesis argues that by supporting the consideration of dependency issues, modellers tend to

reason more rigorously about the behaviour implied in the use case description. The other issue

addressed in this thesis is the commonly held view (e. g., by [97], [142], [140]) that to provide

automated support for animation of specifications a formally-based language is needed for

constructing such specifications. This thesis argues that such an approach is not necessary during

the early stages of requirements and specifications, especially because many participants are often

unfamiliar with such formal languages. That is, for specification and validation purposes, this

thesis seeks to obviate the need for such techniques as a means of ensuring non-technical

participants are able to comprehend and hence scrutinise the specification.

Empirical methods of research have long been adopted within social sciences, and have also

gained wide acceptance within the software engineering community (e. g., [143], [144], [145],

[146]). The strength of empirical research is the evaluation of research results using direct (or,

often indirect) observation or experience. This thesis has endeavoured to evaluate empirically the

proposed approach and to demonstrate the efficacy of the proof of concept tool. Initial evaluation

119

was conducted in the form of seminar presentations to colleagues and student workshops. An
industrial proof concept study was conducted to provide evaluation of the research within an
industrial setting.

Whereas the study reported in chapter six provide interesting evaluation of the Educator approach

and tool, there are a few weaknesses of the evaluation study. For instance, it is not possible to

argue that the only way that dependency issues would be revealed in the studied systems is by

applying the Educator approach. Perhaps, participants would discover such issues during later

stages of development. Whether this is true or not, it is not possible to argue either way based on
the study. What is clear though, is that, at the time of considering the subsystems, many important

issues regarding the subsystems were missed out. The important thing was that further analysis

with the use of the Educator approach helped discover some missing information.

7.1 Review of objectives
The first objective (see section 1.5, pg. 16) of the work reported in this thesis was to provide an

approach for constructing use case specifications whereby dependency issues could be made

explicit. This constitutes the Educator approach. In essence, the state-based information, by which

constituent use case events are augmented, acts as control for event executions. The second

objective (see section 1.5, pg. 16) of this thesis was to provide automated support for the approach

of objective one. That is, a proof of concept tool was deemed necessary to illustrate the novelty

and benefits for the application of the proposed approach. This automated support is developed

within the EducatorTool.

An additional objective (again, see section 1.5, pg. 16) of this thesis was to consider an empirical

means for evaluating the benefits of applying the enhanced use case approach in specification and

validation, and the extent to which the supporting tool elaborates the essence of the approach. The

evaluation was seen as a means of determining whether Educator-based use case descriptions are

amenable to dependency analysis, and hence, validation of the specification, and whether (easy to

use) tool support can provide enactable functionality to help tease out such dependency issues.

Chapters 4,5 and 6 provide discussions on the approach including the evaluation of the

supporting tool.

7.2 Summary of findings

The chapter outlining the industrial evaluation (chapter 6) discusses various real-time monitoring

system functions that were investigated during the study. For instance, the default enaction of the

120

Scheduler-Application (section 6.7) communication subsystem provided insight about subtle and
tacit issues that had not been highlighted by the manual inspection of the specification. The

application of the Educator approach on the `Alarm receiving' process (section 6.6.1, example 1)

provided further information regarding events and actors that were crucial to the subsystem but
had not been thought of in the initial specification. Enaction of the `Alarm receiving' process

using the EducatorTool provided further insight into dependency issues by highlighting the need
for inclusion of further events and actors to the augmented use case specification. In short, the

analysis of subsystems from the industrial project indicated that augmentation of use case events

with state-based information provided insight about dependency issues that was not found in the

standard use cases. Moreover, the application of enaction on the augmented use case

specifications provided further scrutiny about dependency issues than merely inspecting the state-
based use cases. There was an exception in one of the subsystems (Client-Sever connection

process - section 6.6.1, example 2) studied regarding the augmentation of the use case

specification with states. For this subsystem, augmentation alone did not reveal any additional
dependency issues that required addition of events or actors. However, the enaction of the

augmented use case specification revealed some dependency issues that were not revealed by

augmentation alone. Indeed, this thesis proposes that Educator descriptions be further scrutinised
by application of enaction using automated tools such as the EducatorTool.

This thesis has shown that use case specifications must not necessarily be written in a formal

language, especially when the focus is the early phase of requirements and specifications. The

reason for this is that developers (and many non-technical stakeholders) are often reluctant to

devote the proportion of effort needed to learn such languages in order to use the underlying

approaches and tools ([73], [140]). Moreover, this thesis shows that it is possible to provide

automated support for specification purposes (e. g., Educator approach) without delving into any

formal specification languages.

It has been mentioned elsewhere in this thesis that the core theme of the use case specification is

to describe software behaviour in terms user-system interactions. It is surprising to find, that

despite this novel underpinning theme, there is little focus on the rigour and scrutiny of such

interactions in terms of the consequences for performing each constituent step in relation to the

others. These issues have long been investigated within process modelling (e. g., [47], [49]) and

also within process algebras (e. g., [45], [147]). These approaches ([47], [49]), and [45], [147])

have not been applied primarily to requirements and specifications to address some of the

121

weaknesses mentioned already within the UML use cases, and this is indeed a surprise. This
thesis has applied concepts from business process modelling to use case specifications in order to
address dependency and interaction issues within use case specifications. Hence, the key finding
from this work is that application of state-based approach (borrowed from business process
modelling) and the automated production of visual prototypes helps development participants in

clarifying dependency issues during specification and validation. Additionally, whereas the initial
focus of the work was to investigate means for clarifying intra-use case and inter-use case
dependencies, the work during the industrial study provided an opportunity to consider other
ways in which systems interact. For instance, it was found out that consideration and provision
needed to be provided (see section 6.6) to clarify sequential, concurrent, iterative, and choice-
based interactions amongst systems. An additional finding is that production of such state-based
specifications does not need to adopt a formally based technique like is common with much of
process modelling approaches.

7.3 Thesis contributions
The contributions of this thesis are outlined as follows. The conduct literature survey (see chapter
2) has highlighted some of the inadequacies of use cases as a specification and validation notation.
In particular, validation of use case specifications, and especially, clarification of dependencies is

hardly supported by the UML specification of the use case or the approaches described in section
2.4. Consideration of process modelling approaches and the use of process algebras have

provided insight about the way in which use cases can be enhanced to facilitate elaboration of
dependency issues. The identification of these issues with use cases, and the way in which they

can be addressed, is considered (by the author) as one of the contributions of this thesis.

To address dependency and interaction issues, the notion of pre and post states for use case events

is introduced. The state-based information is used to augment constituent events of a use case to

facilitate the clarification of both intra use case and inter use case dependencies. One of the key

factors to dependency analysis is the consideration of interactions among actors when performing

constituent steps of the use case. This thesis addresses interaction issues by allowing explicit

addition of a secondary actor (with its pre and post states) for an event. Hence, the main

contribution of this thesis is the provision of an enhanced structure for authoring state-based use

case descriptions whereby dependency and interaction issues can be analysed. This state-based

approach is the Educator approach (discussed in chapter 3). The Educator approach is supported

by a proof of concept tool. The tool provides enactable functionality for producing visual

122

prototypes of the specification. The enaction of the Educator-based specifications is considered
an important contribution of the thesis since visual models have long been accepted as a means to
enhancing shared understanding among development participants.

The concept behind the Educator approach is informed by business process modelling approaches
where some authors (e. g., [47], [51]) constructed business process models using a formal

specification language. The resulting process descriptions are then enacted to produce visual
models that business partners can scrutinise for validation purposes. A key focus of most of these
business process modelling approaches is the production of visual (also see [48] and [49]),

enactable models that participants can use as prototypes for clarifying implied behaviour. Unlike

most UML notations (e. g., use cases), these process modelling approaches have not gained wide

adoption within industry, and whereas other reasons might contribute to this, their inclination

toward the use of formal techniques is again a drawback to their uptake.

To obviate the need for such learning effort, the Educator approach allows for the state-based

modelling of use case descriptions in which the constituent steps of the use case are augmented

with named pre and post states. Again, the essence of this approach is to force the rigorous

scrutiny of intra-use case and inter-use case dependencies. Further to the state-based approach,

the investigation of use case specifications and the outlined validation efforts has led to several

considerations. For instance, this thesis has gone beyond the standard <<include>> and

<<extend>> relationships to offer a mechanism for considering various forms of associations

among use case descriptions. In this regard, the Educator approach and tool provide a means for

synchronising descriptions at use case level and also at event level. Moreover, there is provision

of a mechanism to perform combinatorial validation of descriptions based on the different ways

in which subsystems in the real world might execute in relation to each other. The sets of

combinations include selection of a description from several existing ones, iterative enaction,

concurrent enaction, etc. Again, chapters 4,5 and 6 provide examples where intra and inter-use

case dependency analysis is performed based on event-level relationships within the same use

case, event-level associations across different use cases, or indeed associations amongst use cases

based on their need to execute in some sequential order, concurrent order, or even through

iterations.

In summary, the major innovations are described as follows. The idea of constructing light

weight state models is pivotal to enhancing the structure of the use case description to be

123

amenable to dependency analysis. This constitutes the Educator approach. Moreover, the use of
enaction is vital in providing visual models for scrutinising use case descriptions during

specification and validation. It is considered (by the author) that the conduct of an industrial

project as a proof of concept for the approach and tool is a significant part of the contribution of
this thesis. Moreover, the EducatorTool provides support for some of the CP rules (see section
4.4) recommended (see [37] and [114]) for authoring of use case descriptions.

7.4 Conclusion

Whereas behaviour modelling has proved to be successful in helping `teasing' out and correct
flaws in business processes (e. g., [51] and [49]), it has not had similar success in software
specification and validation. The two main reasons for this are as follows. First, constructing
models for behavioural analysis remains a difficult undertaking requiring considerable expertise.
Second, the validation benefits appear at the end of the (often lengthy) construction effort, and
users do not devote time to learning the specification languages involved. The Educator approach
is a compromise attempt that proposes the use of state-based information for rigorous

specification, and enhances communication during enaction of the specification. Given the
importance of behaviour validation, and the potential benefits of enaction, the adoption of such an

approach and tool support promises many benefits. Software developers have traditionally been

reluctant to devote proportionate effort to requirements activities, and this thesis contends that

semi-formal approaches of this nature increase the likelihood for industrial uptake.

In its entirety, this thesis has demonstrated the essence of considering dependency issues during

software specification and validation. The thesis has shown the extent to which the use of state-
based information, and the enaction of the resulting specification can help in "teasing out"
dependency and interaction issues in requirements and specifications. This was done by

considering applying the Educator approach and enaction to use case specifications. In many

cases, augmentation of use case specifications alone provided insight about dependency issues

that had not been within the standard use cases. The application of enaction in the subsystems

studied provided further insight into dependencies. Analysis in itself comprised the consideration

of the additional events and actors (including the reordered events) that resulted from the

application of the Educator approach and tool. Hence, the Educator approach has been proposed

as one way of facilitating the consideration of dependency issues, and the EducatorTool has been

discussed as a mechanism by which Educator-based specifications can be authored and enacted

by participants during the scrutiny of the implied behaviour. Finally, the thesis has shown that it

124

is (technically) unnecessary to use intermediate formal grammars for specification authoring as is
the case with many state-machine oriented approaches.

7.5 Further work

7.5.1 Educator approach
The Educator approach is currently based on a dual actor interaction per use case event. Cockburn

[33] and Douglas [67] recognise the importance of considering both primary and secondary actors
in use cases. Many other researchers (e. g., [56], [109], and [110]) however, do recognise the need
to indicate the secondary actors in use case events.

The Educator approach adopts an event occurrence style where each event is triggered by a

primary actor, and the secondary actor is an optional user who can participate in the event of
interest. Whereas reasonably sized and complex systems have been investigated using the

Educator approach, it is possible that an event can require more than two interacting actors. In

such a case, Educator would be limited, and an extension of the approach may be necessary. As

an example of where multiple secondary actors may be needed to describe an interaction is an

automated response system for a library. Consider a situation where the system is used to send

reminders to borrowers when items are due. Hence, the system would send a reminder to the

borrower, who would respond by returning the due item to the library, where a member of staff

would collect the item from the borrower. The use case event triggered by the library response

system can be written as:

1. System sends reminder to borrower initial reminderSent
Secondary actor 1: Borrower initial reminderReceived

Secondary actor2: Staff atWork itemRecieived

In such a case, the automated system for sending reminders is the primary actor. Where such

specifications are necessary, participants ought to decide how they organise the multiple

secondary actors (perhaps as written above). However, this author observes that in many cases

where multiple secondary actors per event are encountered, it is likely that a further event(s) is

missing where one of the secondary actors is the primary actor. Consider the example described

above. It is possible to re-write it as follows:

1. System sends reminder to borrower initial reminderSent

Secondary actor: Borrower initial reminderReceived

2. Borrower returns item to the library reminderReceived itemReturned

125

Secondary actor: Staff atWork itemReceived

Decomposing the description further may enhance clarity regarding the process being described.
But again, where it is crucial that multiple secondary actors are needed, the approach would
require artistic deployment to incorporate further secondary actors. This is an aspect of the
Educator approach that needs further work.

7.5.2 EducatorTool

One of the ideas that need to be considered for support with the EducatorTool is the issue

supporting multiple secondary actors per event in a use case description (see section 7.5.1). Such

an extension of the tool is regarded trivial, as extending the existing application classes is indeed

likely to a straightforward implementation issue. It would be worthwhile of course considering

matters pertaining to real-estate; that is,. how use case events with multiple secondary actors are to

be written to fit in a graphical interface without hiding important information.

An additional issue that arose during early demonstrations of the EducatorTool was the

construction of state diagram equivalents of the state-based textual specification. That is,

providing a means to depict graph-like state-transitions during enaction. Much more can be done

to provide different ways of displaying actors and their respective events, and state changes. For

instance, it is possible that use of graphical icons, or some form of multimedia facility during

enaction can provide better means of viewing behavioural models of the use cases. However, this

thesis set out to address dependency and interaction issues, and to show that a simple enactable

tool can provide the benefit of visual scrutiny and clarification of implied behaviour. Hence, there

is scope for extending the tool, and these possible enhancements will be considered for further

work.

A further issue that may arise in an environment with multiple users is the need to maintain and

track, and merge versions of descriptions. That is, given that the Educator approach allows for

description association (in various ways) for dependency analysis, users may alter such

associations, or states, and actors thereby changing the initial associations applied by other users

of the descriptions. Hence, further work is needed to determine means for version control of

Educator-based specifications in a multi-user environment.

126

References
1. Potts, C. SceniC: A Strategy for Inquiry-Driven Requirements Determination. in Proceedings of

the 4th IEEE International Symposium on Requirements Engineering. 1999. Los Alamitos, CA:
IEEE Computer Society press.

2. Ryser, J. and M. Glinz. A Practical Approach to Validating and Testing Software Systems Using
Scenarios. in Quality Week Europe. 1999. Brussels: Software Research Institute.

3. Laney, R., et al. Composing Requirements Using Problem Frames. in 2th IEEE International
Requirements Engineering Conference. 2004. Kyoto, Japan.

4. Rapanotti, L., et al. Architecture Driven Problem Decomposition. in 12th IEEE International
Requirements Engineering Conference. 2004. Kyoto, Japan.

5. Loucopoulos, P. Systems Co-development through Requirements Specification. in 13th
International Conference on Information Systems Development: Advances in Theory, Practice and
Education. 2004. Vilnius, Lithuania.

6. Loucopoulos, P. Systems Co-development through Requirements Specification. in 13th
International Conference on Information Systems Development: Advances in Theory, Practice and
Education. 2004. September.

7. Bray, I., An Introduction to Requirements Engineering. 2002, Harlow, UK: Pearson Education
Limited.

8. Maiden, N. and A. Sutcliffe. Domain Abstractions in Requirements Engineering: an exemplar
approach? in Proceedings 7th Knowledge-Based Software Engineering Conference. 1992: IEEE
Computer Society Press.

9. Jackson, M., Software Requirements & Specifications: a lexicon of practice, principles and
prejudices, ed. ACM. 1995: Addison-Wesley.

10. Jackson, M., The meaning of requirements. Annals of Software Engineering, 1997.3.
11. Jackson, M., Problem Frames: Analyzing and structuring software development problems. 2001:

Addison-Wesley.
12. Maciaszek, L. A., Requirements Analysis and System Design. 2001: Addison-Wesley.
13. Sutcliffe, A., Scenario-Based Requirements Analysis. Requirements Engineering Journal, 1998.3:

p. 48-65.
14. Deraitus, M., Customer Requirements and User Requirements: Why the Discrepancies? IEEE

Software, 2002.
15. Li Xiaoshan, et al., Generating a Prototype From UML Model of System Requirements. 2004,

United Nations University.
16. Loucopoulos, P., et al. Project Failures: Continuing Challenges for Sustainable Information

Systems. in proceedings of 6th International Conference on Enterprise Information Systems. 2004.
Porto, Portugal.

17. Finkelstein, A. and J. Dowell, A Comedy of Errors: the London Ambulance Service case study. 8th
International Workshop on Software Specification & Design IWSSD-8: IEEE CS Press, 1996: p. 2

--4.
18. Hunter, A. and B. Nuseibeh, Managing Inconsistent Specifications: Reasoning, Analysis, and

Action. ACM Transactions on Software Engineering and Methodology, 1998.7(4).
19. ITCortex, Failure Examples of IT projects (http: %/wwriv. it-cortex. com/Examples f. htrn). 2005.
20. Oates, J., NHS IT: Over budget, overdue and unpopular

(hap: iilvui'tiv. theregister. co. uk/2006/05/36/nhs_it_hatedi'), T. Register, Editor. 2006.
21. Nuseibeh, B., A. Finkelstein, and J. Kramer. ViewPoints: meaningful relationships are difficult. in

International Conference on Software Engineering. 2003. Portland, Oregon.
22. Jacobson, I., ed. The Use Case construct in object-oriented software engineering. Scenario-based

design: envisioning work and technology in system development, ed. J. M. Carroll. 1995, Wiley:
New York.

23. Coleman, D., et al., Object Oriented Development: The Fusion Method. 1993, Engelwood Cliffs,
NJ, USA.: Prentice-Hall.

24. Rumbaugh, J., I. Jacobson, and G. Booch, The Unified Modelling Language Reference manual.
1998: Addison-Wesley.

25. OMG, Unified Modelling Language Specification version 2.0.2002, OMG-UML;
http: //www. unii. org/'.

127

26. RationalCorporation, The Use Case model (http: 1, ww ". rational. com). 2003.
27. Jacobson, I., et al., Object Oriented Software Engineering: A Use Case Driven Approach. 1992:

Addison-Wesley.
28. Scheneider, G. and J. P. Winters, Applying Use Cases: A Practical Guide. 1998, Reading:

Addison-Wesley.
29. Jacobson, I., J. Rumbaugh, and G. Booch, The Unified Software Development Process. 1999,

Harlow: Addison Wesley.
30. Fowler, M. and K. Scott, UML Distilled. 2nd edition ed. 2000: Addison-Wesley.
31. Rolland, C., L'E-Lyee: Coupling L'Ecritoire and LyeeALL. Information and software Technology

journal, 2002.
32. Rolland, C. and B. Achour, Guiding The Construction of Textual Use Case Specifications. 1998,

CREWS Report Series.
33. Cockburn, A., Writing effective Use cases. 2001: Addison-Wesley.
34. Harel, D. and R. Marelly, Capturing and Executing Behavioral Requirements: The Play-In/Play-

Out Approach. 2001, The Weizmann Institute of Science: Rehovot, Israel.
35. Kulak, D. and E. Guiney, Use Cases: Requirements in Context. 2000: Addison-Wesley.
36. Grieskamp, W. and M. Lepper. Using Use Cases in Executable Z. in 3rd IEEE International

Conference on Formal Engineering Methods. 2000. York, England.
37. Cox, K., Heuristics for Use Case Descriptions, in Design, Engineering & Computing. 2002,

Bournemouth University, UK.
38. Uchitel, S., J. Kramer, and J. Magee, Synthesis of Behavioural Models from Scenarios. IEEE

Transactions on Software Engineering, 2003.29(2).
39. Holloway, M. and R. W. Butler, Impediments to Industrial Use of Formal Methods. IEEE

Computer, 1996.29(4).
40. Parnas, D. L., Mathematical Methods: What We Need and Don't Need. IEEE Computer, 1996.

29(4).
41. Leveson, N. G., et al., Requirements Specification for Process-Control Systems. IEEE Transactions

on Software Engineering, 1994.20(9).
42. Kavakli, E. and P. Loucopoulos. Goal Driven Requirements Engineering: Evaluation of Current

Methods. in Eighth International Workshop on Evaluation of Modeling Methods in Systems
Analysis and Design. 2003. Klagenfurt/ Velden, Austria.

43. Loucopoulos, P. and N. Prekas. A Framework for Requirements Engineering Using System
Dynamics. in 21st International Conference of the System Dynamics Society. 2003. New York
City.

44. Hnatkowska, B. and Z. Huzar, Transformation of dynamic aspects of UML models into LOTOS
behaviour expressions. International Journal of Applied Mathematics and Computer Science, 2001.
11(2): p. 537-556.

45. Hoare, C. A. R., Communicating Sequential Processes. 2004: Prentice Hall.
46. Ould, M., Business Processes: Modelling and Analysis for Reengineering and Improvement. 1995,

Chichester: Wiley.
47. Abeysinghe, G., et al., RolEnact: Enactable Models of Business Processes. Information and

software Technology journal, 1998.40(3).
48. Walters, R., Checking of models built using a graphically based formal modelling language.

Journal of Systems and Software, 2005.76(1).
49. Walters, R. J. A Graphically Based Language for Constructing, Executing and Analysing Models

of Software Systems. in 26th Annual International Computer Software and Applications
Conference. 2002. Oxford, England.

50. Heimdahl, M. P. and N. Leveson, Completeness and Consistency Analysis of State-Based
Requirements. IEEE Transactions on Software Engineering, 1996.22(6): p. 363-377.

51. Phalp, K., et al., RolEnact: role-based enactable models of business processes. Information and
software Technology journal, 1998.

52. Zimmerman, M. K., K. Lundqvist, and N. G. Leveson. Investigating the readability of state-based
formal requirements specification languages. in International conference in software engineering.
2002. Florida, USA.

53. Homrighausen, A., H. Six, and M. Winter, Round-Trip Prototyping Based on Integrated
Functional and User Interface Requirements Specifications. Requirements Engineering, 2002.7.

128

54. Mannio, M. and U. Nikula. Requirements Elicitation Using a Combination of Prototypes and
Scenarios. in The 4th Workshop on Requirements Engineering. 2001. Buenos Aires, Argentina.

55. Finkelstein, A. and A. Savigni. A Framework for Requirements Engineering for- Context-Aware
Services. in First International Workshop From Software Requirements to Architectures; 23rd
International Conference on Software Engineering. 2001.

56. Sommerville, I., Requirements Engineering, A Good Practice Guide. 1997: Addison Wesley.
57. Finkelstein, A. and W. Emmerich, The Future of Requirements Management Tools, in Information

Systems in Public Administration and Law, G. Quirchmayr, R. Wagner, and M. Wimmer, Editors.
2000, Oesterreichische Computer Gesellschaft.

58. Sutcliffe, A. and N. Maiden. Use of Domain Knowledge for Requirements Validation. in
Proceedings of IFIP WG 8.1 Conference on Information System Development Process. 1993:
Elsevier Science Publishers.

59. Spanoudakis, G., A. Finkelstein, and D. Till, Overlaps in Requirements Engineering. Automated
Software Engineering, 1999.

60. Hunter, A., Reasoning with conflicting information using quasi-classical logic. Journal of Logic
and Computation, 2000.10(5): p. 677-703.

61. Kanyaru, J. and K. Phalp. Supporting the Consideration of Dependencies in Use Case
Specifications. in Requirements Engineering: Foundations for Software Quality (REFSQ'05).
2005. Porto, Portugal.

62. Zave, P., Classification of Research Efforts in Requirements Engineering. ACM Computing
Surveys, 1997. Vol. 29(4): p. 315-321.

63. Nuseibeh, B. and S. Easterbrook. Requirements Engineering: A Roadmap. in Proceedings of
International Conference on Software Engineering (ICSE-2000). 2000. Limerick, Ireland: ACM
Press.

64. Sutcliffe, A., J. Galliers, and S. Monica. Human Errors and System Requirements. in Proceedings
of 4th IEEE International Symposium on Requirements Engineering. 1999. Los Alamitos, CA:
IEEE Computer Society Press.

65. Sutcliffe, A. and S. Minocha. Analysing Socio-Technical System Requirements. in 4th
International Symposium on Requirements Engineering. 1999. University of Limerick, Ireland.

66. Hunter, A. and S. Parsons, Introduction to uncertainty formalisms, in Applications of Uncertainty
Formalisms: Lecture Notes in Computer Science. 1998, Springer.

67. Hunter, A. and B. Nuseibeh. Analysing inconsistent specifications. in Third IEEE International
Symposium on Requirements Engineering. 1997: IEEE Computer Society Press.

68. Sommerville, I., Software engineering. 6th edition ed. 2001: Addison-Wesley.
69. Wieringa, R. J., Requirements engineering: frameworks for understanding. 1995, Chichester:

Wiley.
70. Tveito, A. and P. Hasvold, Requirements in the Medical Domain: Experiences and Prescriptions.

IEEE Software, 2002.19.
71. Graham, I., Requirements engineering and rapid development: an object-oriented approach. 1998,

Harlow: Addison-Wesley.
72. Liu, S. and R. Adams. Limitations of formal methods and an approach to improvement. in

Proceedings of 1995 Asia Pacific Software Engineering Conference. 1995. Brisbane, Australia.
73. Henderson, P. and R. J. Walters. System Design Validation Using Formal Models. in Tenth IEEE

International Workshop on Rapid System Prototyping (RSP99). 1999. Florida.
74. Letelier, P., P. Sanchez, and I. Ramos, Prototyping a requirements specification through an

automatically generated concurrent logic program, in Practical Aspects of Declarative Languages,
Lecture Notes in Computer Science, G. Gupta, Editor. 1998, Springer-Verlag.

75. Sanchez, P., P. Letelier, and I. Ramos. Validation of Conceptual Models by Animation in an
Scenario-based Approach. in ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications: Workshop on scenario-based round-trip engineering.
2000. Minneapolis, Minnesota, USA.

76. Urban, J. E., Software Prototyping and Requirements Engineering. 1992, Data & Analysis Center
for Software: Rome.

77. Pfleeger, S., Software engineering: theory and practice. 2nd ed. 2005: - Prentice Hall.
78. Pressman, R., Software engineering: a practitioner's approach. 5th edition ed. 2000: McGraw-

Hill.

129

79. Andriole, S. J., Fast, cheap requirements prototype, or else! IEE Software, 1994.11(2).
80. Homrighausen, A., H. Six, and M. Winter. Round-Trip Prototyping for the Validation of Requirements Specifications. in Requirements Engineering: Foundations for Software Quality.

2001. Interlaken, Switzerland.
81. Kanyaru, J. and K. Phalp. Requirements validation with enactable models of state-based use cases. in Empirical Assessment in Software Engineering conference (EASE'05). 2005. Keele University,

UK.
82. Bruegge, B. and A. H. Dutoit, Object-Oriented Software Engineering. 2000: Prentice Hall.
83. Regnell, B., Requirements Engineering with Use Cases- A Basis for Software Development, in

Department of Commnunication Systems, Lund Institute of Technology. 1999, Lund University,
Sweden.

84. Some, S., Supporting use case based requirements engineering. Information and software
Technology journal, 2006.48(1).

85. Sutcliffe, A., et at., Supporting Scenario-based Requirements Engineering. IEEE Transactions on
Software Engineering, 1998.24(12): p. 1072-1088.

86. Dennis, A., Systems analysis and design: an object-oriented approach with UML. 2002,
Chichester: Wiley.

87. Glinz, M. Improving the Quality of Requirements with Scenarios. in Second World Congress on
Software Quality. 2000. Yokohama.

88. Jarke, M., T. Bui, and J. C. J, Scenario Management; An Interdisciplinary Approach.
Requirements Engineering Journal, 1998.3(4): p. 155-173.

89. Jorgensen, J. B. and K. B. Lasen. Aligning Work Processes and the Adviser Portal Bank System. in
Ist International Workshop on Requirements Engineering for Business Need and IT Alignment, in
conjunction with RE'05.2005. Paris, France.

90. Glinz, M., An Integrated Formal Model of Scenarios Based on Statecharts, in Software
Engineering - ESEC'95, W. Schafer and P. Botella, Editors. 1995, Springer: Berlin. p. 254-271.

91. Harel, D. and A. Naamad, The STA TEMA TE Semantics of Statecharts. ACM Transactions on
Software Engineering and Methodology, 1996.5(4).

92. Carroll, J. M., ed. Scenario-Based Design: Envisioning Work and Technology in System
Development. 1995, Wiley: New York.

93. Amyot, D. and A. Eberlein, An Evaluation of Scenario Notations and Construction Approaches
for Telecommunication Systems Development. International Telecommunications Systems Journal,,
2003.24(1): p. 61-94.

94. Maiden, N. and D. Corrall, Scenario-driven systems engineering. 2000, IEE Seminar: London.
95. Uchitel, S., T. Systa, and A. Zundorf. Scenarios and state machines: models, algorithms, and tools.

in Workshop on Scenarios and State Machines: models, algorithms, and tools: Proceedings of the
24th International Conference on Software Engineering. 2002. Orland, Frolida.

96. ITU, Message Sequence Charts. International Telecommunication Union, Telecommunication
Standardization Sector, 1996.

97. Whittle, J. and J. Schumann. Generating Statechart Designs from Scenarios. in 22nd International
Conference on Software Engineering. 2000. Limerick, Ireland.

98. Kruger, I., et al., From MSCs to Statecharts, in Distributed and Parallel Embedded Systems, F. J.
Rammig, Editor. 1999, Kluwer Academic Publishers.

99. Douglass, B. P., Real-time UML: Developing Efficient Objects For Embedded Systems. 2000:
Addison-Wesley.

100. Uchitel, S. and J. Kramer. A Workbench for Synthesising Behaviour Models from Scenarios. in

proceeding of the 23rd IEEE International Conference on Software Engineering. 2001. Toronto,
Canada.

101. Damm, W. and D. Harel, LSCs: Breathing Life into Message Sequence Charts. Formal Methods in
System Design, 2001.19(1).

102. Czerny, B. J. and M. P. E. Heimdahl. Integrative Analysis of State-Based Requirements. in
Proceedings of the 13th IEEE International Conference on Automated Software Engineering.
1998. Honolulu, Hawaii.

103. Thomas, D. and A. Hunt, State Machines. IEEE Software, 2002.19(6).
104. Maiden, N., Discovering Requirements with Scenarios: The ART-SCENE Solution. Special

Theme: Automated Software Enginering, 2004.

130

105. Subramaniam, K. and B. Far. Automating Transition from Stakeholder requests to Use cases. in
IEEE Canadian Conference on Electrical and Computer Engineering. 2004. Niagara Falls.

106. Jorgensen, J. B. and C. Bossen, Executable Use Cases: Requirements for a Pervasive Health Care
System. IEEE Software, 2004.

107. Yu, E. Towards Modelling and Reasoning Support for Early-Phase Requirements Engineering. in
3rd IEEE Int. Symp. on Requirements Engineering. 1997. Washington D. C., USA.

108. Macaulay, L., Requirements Engineering. 1996: Springer.
109. Glinz, M. Statecharts for Requirements Specification-As Simple as Possible, as Rich as Needed. in

Proceedings of ICSE; workshop on scenarios and state machines; models, algorithms and tools.
2002.

110. Polya, G., How to Solve It. 1957: Princeton University Press.
1l1. Phalp, K. and K. Cox. Using Enactable Models to Enhance Use Case Descriptions. in Proc. of

ProSim'03, Int. Workshop on Software Process Simulation Modelling (in conjunction with ICSE
2003). 2003. Portland, USA.

112. Glinz, M. Problems and Deficiencies of the UML as a Requirements Specification Language. in
Proceedings of the 10th International Workshop on Software Specification and Design. 2000. San
Diego.

113. Rolland C and B. Achour, Guiding The Construction of Textual Use Case Specifications. 1998,
CREWS Report Series.

114. Phalp, K. and K. Cox. Supporting Communicability with Use Case Guidelines: An Empirical
Study. in 6th International Conference on Empirical Assessment and Evaluation in Software
Engineering. 2002. Keele University, Staffordshire, UK.

115. Uchitel S., Kramer J., and J. Magee, Synthesis of Behavioural Models from Scenarios. IEEE
Transactions on Software Engineering, 2003.29(2).

116. BetterHealthChannel, Artificial Cardiac Pacemakers. 2001.
117. Stevens, P. and R. Pooley, Using UML: Software Engineering with objects and components. 2000:

Addison Wesley.
118. Quatrani, T., Visual Modelling With Rational Rose 2000 and UML. The Addison-Wesley Object

Technology Series, ed. J. R. a. I. J. Grady Booch. 2000, London: Addison-Wesley.
119. IBM, Role-Based Visual Modeling Platform for Software Teams

(htip: //www. borl and. com/us. lproducts/together%). 2005.
120. Xie, T. and D. Notkin, Tool-assisted unit-test generation and selection based on operational

abstractions. Automated Software Engineering, 2006.13(3).
121. Savidis, A. and C. Stephanidis, Automated user interface engineering with a pattern reflecting

programming language. Automated Software Engineering, 2006.13(2).
122. Elkoutbi, M., I. Khriss, and K. Keller, Automated Prototyping of User Interfaces Based on UML

Scenarios. Automated Software Engineering, 2005.13(1).
123. Padmanabhan, P. and R. Lutz, Tool-Supported Verification of Product Line Requirements.

Automated Software Engineering, 2005.12(4).
124. Heimdahl, M., Y. Choi, and M. Whalen, Deviation Analysis: A New Use of Model Checking.

Automated Software Engineering, 2005.12(3).
125. Li, H., S. Krishnamurthi, and K. Fisler, Modular Verification of Open Features Using Three-

Valued Model Checking. 12,2005.3.
126. Taghdiri, M. and D. Jackson. Inferring Specifications to Detect Errors in Code. in the 19th IEEE

Conference on Automated Software Engineering. 2004. Linz, Austria: IEEE CS press.
127. Babin, G. and F. Lustman, Application offormal methods to scenario-based requirements

engineering. International Journal of Computers and Applications, 2001.23(3).
128. Sutcliffe A., et al., Supporting Scenario-based Requirements Engineering. IEEE Transactions on

Software Engineering, 1998.24(12): p. 1072-1088.
129. Phalp, K. and K. Cox. Guiding use case driven requirements elicitation and analysis. in 7th

International Conference on Object-Oriented Information Systems. 2001. Calgary: Springer-
Verlag.

130. J. Magee, et al. Graphical Animation of Behavior Models. in Proceedings of the 22nd
International Conference on Software Engineering. 2000.

131. Bulmer, M., ed. Questionnaires. SAGE benchmarks in social research methods. Vol. IV. 2004,
SAGE: London.

131

132. Frazer, L. and M. Lawley, eds. Questionnaire design & administration: a practical guide. 2000,
Wiley.

133. Kanyaru, J. and K. Phalp. Aligning business process models with specifications using enactable
use case tools. in Requirements for business need workshop (at RE'05). 2005. Paris, France.

134. Kitchenam, B., et al., A framework for evaluating a software bidding model. Information and
software Technology journal, 2005.47.

135. Kitchenam, B., Stephen Linkman, and S. Linkman, Experiences of using an evaluation framework.
Information and software Technology journal, 2005.47(11).

136. Flyvbjerg, B., Five Misunderstandings about Case Study Research. Qualitative Inquiry, 2006.
12(2).

137. Easterbrook, S. and J. Aranda. Case Studies for Software Engineers. in 28th International
Conference on Software Engineering. 2006. Shanghai, China.

138. Seybold, C., S. Meier, and M. Glinz. Evolution of Requirements Models by Simulation. in
International Workshop on Principles of Software Evolution. 2004. Kyoto, Japan.

139. Eshuis, R. and R. Wieringa, Tool Support for Verifying UML Activity Diagrams. IEEE
Transactions on Software Engineering, 2004.30(7).

140. Heymans, P. and E. Dubois. Some thoughts about the animation of formal specifications written in
the Albert II language. in 3rd IEEE International Symposium on Requirements Engineering. 1997.

141. Amyot, D. and A. Eberlein. An Evaluation of Scenario Notations for Telecommunication Systems
Development. in The 9th International Conference on Telecommunication Systems. 2001. Dallas,
TX, USA.

142. Tuok, R. and L. Logrippo, Formal Specification and Use Case Generation for a Mobile Telephony
System. Computer Networks, 1998.30(11).

143. Basili, V. and R. Selby, Paradigms for Experimentation and Empirical Studies in Software
Engineering. Reliability Engineering and System Safety, 1991.32(1-2).

144. Basili, V. The Role of Experimentation in Software Engineering: Past, Current, and Future. in
Eighteenth International Conference on Software Engineering. 1996. Berlin, Germany.

145. Selby, R., V. Basili, and T. Baker, Cleanroom Software Development: An Empirical Evaluation.
IEEE Transactions on Software Engineering, 1987.13(9).

146. Shull, F., et al. Replicating Software Engineering Experiments: Addressing the Tacit Knowledge
Problem. in First International Symposium on Empirical Software Engineering. 2002. Nara, Japan.

147. Milner, R., Calculus of Communicating Systems. 1980, Springer-Verlag.

132

Appendices

A. Additional data

A. 1 The systems
The organisation installs the main monitoring application at each customer's site. The monitoring

application has the following sub-systems: alarm receiver, alarm display, network controller
drivers, scheduler (a middleware for inter-component communication), a web-client for data

display, database builder, and a file editor. The databases (created automatically by database

builder sub-system) are: Logs database, Alarms database, and User Tracking database. The

following is a brief description of the main functions of each subsystem:

 Alarm receiver obtains active alarms from alarmed fixtures and records the alarms into

Alarms database.

 Alarm display pops active alarms onto a customer's computer monitor.

 Database builder automatically creates the above mentioned databases upon the

installation of the entire system.
 File editor subsystem provides an interface for an operator at customer site to construct

project files containing attributes of monitored fixtures and network layout.

 Scheduler supports communication between the subsystems (including the network

controllers) for data exchange.

 Web client for displaying alarm handling statistics (number of alarms resolved, pending

alarms, who resolved them, etc.)

 The Alarms database stores data regarding alarms.

 The User tracking database stores information regarding site-based operators and their

usage of the various sub-systems.

 The Logs Database stores records of monitored data (e. g., temperature, refrigerant liquid

levels, etc.)

At the time of the study, the control systems were dividend into two broad categories, namely, the

systems deployed at customer sites (hence termed site-based systems) and the systems deployed

at the Company's office (also called the Control Centre Systems). For each site, there is at least

one individual (operator) termed a key holder. The key holder is a person associated with a site

who can be contacted by the operators at the control centre office. Thus, each site must have at

least one key holder (or customer name for contact) associated with the site. The information

133

necessary to fully describe a site is outlined in part B of these appendices.

The following sections present the descriptions of various site-based and control centre-based
systems (and subsystems).

A. 2 Site-based Systems

The site-based systems are for data logging and reporting on activities within the monitored
fixtures. All the data logging and monitoring functions are encapsulated within designated

subsystems that interact, exchange data and messages during the execution of their monitoring

tasks. The subsystems are outlined below (respective use cases can be found in part B of the

appendices).

a) FileEditor: When a developer (or a support engineer) from the Control Systems Company

installs the site-based system on the customer's host machine, an operator at the site creates a text

file comprising information regarding the monitored fixtures, the network profile of any other

communication software, and the profile of users at the site. A crucial communication software

whose virtual network profile must be stored in the text file is Scheduler (see part e). This

subsystem is a type of middle-ware for inter-component communication, especially, sitting at the

interface between network controllers and other subsystems.

Thus, the main function of the FileEditor subsystem is to enable the creation of essential

properties of monitored fixtures and save them in a text file for access during the monitoring

process. In a nutshell, FileEditor allows a user (customer) to produce project files (as text files)

that contain the following information:

 Virtual network layout

 Scheduler's IP address

 Database connection information

 List of data points to be logged and where they should be logged

 Information regarding users of applications and their login details and privileges.

The project files are stored in a directory on a host machine at the customer's site.

b) DBaseBuilder: This subsystem automatically creates databases based on information contained

in the text files created by the FileEditor subsystem. The information relevant for creation of the

134

databases include fixture details (e. g., code, name, location etc). For example, the alarms database

stores information regarding any arising alarms, or any alarms pending actioning, or indeed

previous alarms that have been resolved (including who resolved them and the action taken to

resolve them). Another database created by this module is the Logs Database which records the
data variables being monitored (e. g., temperature, refrigerant liquid levels etc.).

c) AlarmReceiver: This subsystem obtains active information regarding active alarms (e. g.,
AlarmID, AlarmType, AlarmTime, FixtureCode, FixtureName) and records it on the Alarms

Database. This subsystem provides important functions to the customer and should be available

all the time.

d) AlarmDisplay: Once the alarms have been recorded on the Alarms database, the AlarmDisplay

subsystem pops the active alarms on the customer's PC monitor. This enables the customer to

know which fixture has raised the alarm, what time the alarm occurred, and the recommended

action for resolving the alarm. Depending on the type of alarm (e. g., open door, or smoke), the

customer can resolve the alarm straightaway, or a control engineer can resolve it for the customer
(e. g., if it is an alarm due to a fault in the control systems).

e) Scheduler: this subsystem offers a communication interface between applications that need

environmental data and the serial ports. It (Scheduler) connects the AlarmReceiver and the data

logging subsystems) with the external networked artefacts (e. g., fixtures) that are being monitored.

Thus, the stable communication between Scheduler and monitoring applications (the applications

needing network access) is critical to the monitoring process.

f) DataLog: This is a data logging application. DataLog simply records points of data onto the

Logs database. This data concerns the variables that the control systems monitor on the fixtures.

Simply put, DataLog accesses project files to gain the structural layout of the information it needs.

Subsequently, DataLog requests the information from Scheduler which in turn (Scheduler)

contacts a network controller to gather the requested information. The controller returns requested

values to Scheduler which in turn (Scheduler) returns information to DataLog. The information

returned to DataLog is then recorded into the Logs database.

g) ActivityTracker: This subsystem records information regarding activities being undertaken at

particular sites by customers using various site-based subsystems. For example, once a customer

135

resolves an alarm, the action undertaken to resolve the alarm must be recorded, including the
details of the customer who acted on the alarm. All such information is stored in the User-
Tracking database.

A. 3 Control Centre Based Systems

Many control-centre based subsystems are copies of those deployed at the customer sites. For
instance, at the Control Centre, the engineers run Alarm Receiver subsystems for each customer
site.

An additional component of the Alarm Receiver subsystem for the control centre operators is the
Call Centre Collection Service (CCCS). The communication between the Alarm Receiver and the
CCCS is crucial. This is explained as follows: The Alarm Receiver constructs an alarm text file

containing the information (alarm identifier, alarm type, alarm time, fixture identifier, site code,

site name) about the alarm arising at the customer site. Every fifteen seconds, the CCCS accesses
the folder in the hard disk of the host machine to fetch alarm text files in which the alarm
information is encoded. CCCS then executes a SQL standardization script, which decodes the

alarm information from the file. The alarm information that the standardization procedure is

concerned with is AlarmTime, AlarmlD, SiteCode, FixtureType, FixtureCode and AlarmType.

The standardization procedure also executes a script that is used to determine the appropriate

alarm resolution action. The alarm record constructed by the CCCS is stored in the Standardised

Alarms table of the database. The table stores these alarms in a queue awaiting an operator to

resolve them. That is, CCCS first decodes alarm information from alarm text files (created by the

alarm receiver) and stores the alarms in a standard alarms table. These are the alarms that are in

the process of being dealt with. All the alarms here should send warnings to the supervisor/senior

operator if they are overdue with being dealt with.

Thus, unlike site-based alarm handling where an alarm receiver records an alarm, then the alarms

display subsystem pops the alarm for the customer to view and resolve (manually), the Control

Centre has further automation where the CCCS intervenes to `suggest' alarm resolution strategy.

An additional component of the control-centre based system is a web client which provides real-

time data regarding alarm activity in all the supported sites. This information is accessed by

control centre staff who then prioritise the sites and alarm types that need immediate attention if

the Alarm Receiver-CCCS process did not culminate in a successful resolution of the alarm.

136

Figures 8 and 9 of part C (of the appendices) shows the textual use cases for the control-centre
alarm receiver and CCCS processes.

A. 4 Further initiatives

The company proposed the reengineering of its control systems. This proposal was

communicated to the author by the operations and applications manager. The essence of the

reengineering work was stated as follows. Maintenance overheads were increasing due to the

need for engineers (the developers and occasionally, operators) to travel to customer sites most of
the time there was a task to be resolved. The company therefore realised that they needed to
investigate and specify the aspects of the existing systems that needed reengineering for

adaptation into a centralised infrastructure. The applications and operations managers indicated

that the centralisation effort was going to result in applications at customer sites becoming clients

to server applications administered centrally by the Control systems company. The databases

were to be centralised too, so that all the client applications did was to request data/services from

the respective remote server. This way, the engineers only needed to ensure continued stability of

server applications as any problems with clients could be resolved via telephone call or the

customer being given access to a remote copy of the necessary subsystem. Besides centralisation,

an additional functionality was to be bundled into server applications to enable the addition of

new networks for new customers, registration of associated network controllers, and the creation

of project roots for these networks and for new customers. This aspect of the new infrastructure

needed to be specified.

The following is a description of the capabilities that needed to be centralised in different

functional modules to act as servers for light-weight client applications based at customer sites:

ConnectionBuilder: Given the necessary communication between remote clients and servers, the

ConnectionBuilder's first task is to establish a stable network connection between the client

application (e. g. a site-based alarm receiver) and the server (a Control Centre-based Alarms

database with stored procedures for resolving alarms). This module therefore has the further

demand to support construction of such objects as standard alarms and database connections.

That is, remote client applications make requests to a module charged with the function of

standardising alarms, and storing the alarms in a database table based on the site whose client

application sent the alarm data. Thus, a server application needs to be clearly set out with

functionality to enable the receiving of alarm data from the remote client, establishing a database

connection, standardising the alarm, determining the appropriate response and storing the alarm

137

on the customer database quota. This ensures that all requests are handled at the control centre
(even if it appears to a remote customer as if every response is local to their site).
ProjectBuilder: A project builder is central to the activities of adding new customers to the
Company's database of the customers being supported. Once the usual business negotiation has

been done between the managing director (of the Control Engineering company) and the business

director of the new customer's company, the next task is for a project task to be initiated where

various functions are executed to enable the support of the new customer. For example,
depending on the fixtures being supported its network type is determined, network controllers are

configured, the controllers are registered for the new network. Briefly, the incorporation of a new

customer must be completed by executing a number of functions which are described in part D of
the appendices.

This module also has the functionality to implement on the fly a controller interface that allows a

controller to register an event with the interface requesting a connection to another network type,

requesting data from that network, and un-registering the network. This is to ensure that any

client application that requires data from multiple network types can dynamically connect to these

network types via capabilities being proposed in the new infrastructure.

This module also has the functional responsibility of creating a description of each client for all

customers. This description includes client name, client socket type, client protocol type, and

address family. These attributes are necessary when a client needs to establish communication

session with remote server, network controller or other clients.

The first issue of concern for the proposed client-server architecture became the establishment of

a generic ubiquitous client-server connection process whereby client applications would request

data/services from server applications. For the actual communication between clients and servers,

we needed the input of the developers who had a greater depth of lower level issues than the

managers. Further scrutiny resulted in a systematic client-server connection use case description

shown in Figure 10, part D of the appendices.

As mentioned previously, an additional demand was to enhance the process of registering a new

customer for support with the control company's real-time monitoring systems. It was imperative,

given the proposed centralised infrastructure that the registration of a new customer is made as

easy as possible with appropriate software support. In this process (registration of a new

customer) the three members of staff involved in the initial decision making are the managing

director, the operations manager and the applications manager. Further discussions yielded a

generic customer registration use case shown in Figure 11, part D of the appendices.

138

B. Site information

 Site Code- a unique alphanumeric identifier for a site (e. g. SW 100XT)

 Site Name- the name of the site (the same name that would be used in the mailing
address)

 Site Address- the mailing address for the site

 Site Phone Number- the telephone number for the site
 Site Fax Number- the fax number for the site
 Site E-mail Address- an email address for the site

 Site Opening Times- the opening (and closing) times for each day of the week

 Customer Name- the name of the contact customer for the site

 Fixtures-the fixtures being monitored in the site

 Fixture Sub Systems-subsystems monitoring a fixture(depends on the functions of the

fixture)

 Fixture valuation- the cost associated with the fixture for stock taking

 Controllers- network controllers for the site

" Controller Name- the name assigned to the controller

" Controller Address--the network address of the controller

" Controller Type- the type of the controller depending on the network it interfaces.

 Alarm Methods- the specified actions for solving different alarms for the site

 Key Holders - individuals who carry the site's keys

" Name

" Phone Number

" Fax Number

" E-mail Address

0 Position Held

 Site Check Frequency- the frequency that the site needs to be checked by control centre

staff.

C. Site-based systems use cases

The use case description detailing the desired behaviour of the project files creation by the

FileEditor subsystem is outlined in Figure C. 1:

139

1. User creates text file (project file) with FileEditor
2. User adds virtual network layout to project files
3. User adds database connection information to project files
4. User adds list of point types to be logged to project files

5. User sets up login information for all applications
6. User adds Scheduler IP address to project files
7. User stores project files on host machine

Figure C.!: Project Files creation

Figure C. 2 is a use case description for the database creation process:
1. User creates project files with FileEditor

2. User saves project files on host machine
3. DBaseBuilder reads project files

4. DBaseBuilder obtains database connection information from project files

5. DBaseBuilder obtains point types to be logged from project files

6. DBaseBuilder obtains Scheduler IP address from project files

7. DBaseBuilder executes SQL commands to create Logs DB

8. DBaseBuilder executes SQL commands to create Alarms DB

9. DBaseBuilder executes SQL commands to create Tracking DB

Figure C. 2: Database creation

Figure C. 3 is a use case description of the site-based alarm receiving process (final use case):
1. Alarm Receiver requests alarm data (FixtureCode, AlarmID, AlarmType, AlarmTime,

SensorValue, SiteCode, SiteName, etc.) from Scheduler

2. Scheduler sends alarm data request to the Controller

3. Controller gets alarm data request

4. Controller obtains alarm data from fixtures

5. Scheduler sends alarm data to Alarm Receiver

7. Alarm Receiver records alarms data (in alarms database)

8. Operator accesses existing alarms

9. Operator views recommended alarm actions

9. Operator resolves alarm

Figure C. 3: Site-based Alarm Receiving

Figure C. 4 is a use case description of the AlarmDisplay subsystem:

1. Fixture triggers alarm

140

2. Controller sends alarm data to Schedule

3. Schedule relays alarm to alarm receiver
4. Alarm Receiver records alarm in Alarms DB

5. Alarms Display reads project files

6. Alarms display reads user settings from project files

7. Alarms display accesses alarms table in Alarms DB to read active alarms

8. Alarms Display pops alarm on user's PC monitor [alarm details include FixtureCode,

AlarmTime, AlarmType, SiteCode, and AlarmID]

9. ActivityTracker records alarm resolution actions on User Tracking Database

Figure C. 4: Alarms Display use case

The general process for connection between applications at the customer site and Scheduler is

shown in Figure C. 5:

1. Application opens project files

2. Application connects to Scheduler

3. Scheduler acknowledges connection

4. Application sends network layout to Scheduler

5. Scheduler creates network handle for the application

6. Scheduler registers application for resource use

7. Scheduler sends registration to application

8. Application requests information from resource

9. Resource sends information to application

10. Application executes monitoring functions

Figure C. 5: Scheduler-application communication

Figure C. 6 is a use case description of the data logging process:

1. DataLog obtains Scheduler IP from project files

2. DataLog requests connection to Scheduler

3. Scheduler acknowledges connection to DataLog

4. DataLog relays virtual network layout to Scheduler

5. Scheduler checks network layout against existing network handler

6. Scheduler registers DataLog with network handler

7. Scheduler sends acknowledgment to DataLog

8. DataLog sends points data request to Scheduler [e. g. temperature, refrigerant level, etc]

9. Scheduler forwards data to DataLog

141

10. DataLog reads database connection information from project files

11. DataLog records data into the points table in Logs database.
Figure C. 6: Data logging

Figure C. 7 is a textual use case description for activity tracking subsystem:

1. Customer executes a site-based task
2. ActivityTracker reads user information from project files (user name, role, profile of

systems allowed to access etc)

3. ActivityTracker records user details into User Tracking DB

4. ActivityTracker reads recorded alarms from Alarms DB

5. ActivityTracker reads user actions taken to resolve alarms
6. ActivityTracker records user's actions against the user in Tracking DB

Figure C. 7: Activity Recording use case

D. Control centre-based systems use cases
Figure D. 1 shows a use case description of alarm receiving at the control centre

1. Fixture raises alarm at customer site

2. Controller obtains alarm data [site code, site name, date/time of alarm, system/fixture

name, sensor name, current sensor value, alarm set point]

3. Controller relays alarm data to Scheduler

4. Scheduler connects to AlarmReceiver

5. Scheduler relays alarm data to Alarm receiver
6. Alarm receiver returns alarm received acknowledgement

7. Alarm receiver records alarm on database

8. Alarm Receiver constructs alarm textfile

9. Alarm receiver saves the alarm textfile on local HDD

10. Scheduler drops connection with AlarmReceiver

Figure D. 1: Control Centre Alarm Receiver use case
Figure D. 2 shows the use case description for the CCCS process:

1. CCCS polls alarm receivers (every 15 seconds)

2. CCCS reads alarms text files (on local HDD)

3. CCCS calls the standardisation procedure

[Standardisation procedure writes alarm information into a standardised alarms table.

This is to make a copy of original alarms, store them else where for actions thereby leaving

the original raw alarms data unchanged]

4. CCCS produces recommendations for resolving the alarm

142

5. Operator resolves alarms in Active table manually
6. CCCS stores unresolved alarms in active alarms table.

Figure D. 2: Bureau Alarm Collection Service use case

NB: Some alarms are resolved automatically by appropriate scripts executed by CCCS.

Some other alarms require intervention by an operator at Next Control.

Some alarms however are resolved by customers at their sites.

E. Further use cases

Functions of the ProjectBuilder:
1. AddNewController- a new controller is added to ensure client applications are able to connect

to the specific network types.

2. AddNewNetwork- a network for a given category of fixtures is set up by the engineers and

the necessary server applications configured for it.

3. AddNewProjectsRoot- a network profile, including folders for storing different access

privileges and data.

4. AddNewSession- a method for ensuring connection session attributes are always accessed

and verified to establish a stable communication session.
5. AddNewDatabase- this function is executed by specific embedded SQL commands for the

construction of various databases for a new customer (e. g. AlarmsDB, LogsDB,

UserTrackingDB).

6. CreateDatabase- this is an overridden version of the AddNewDatabase function. It ensures

that during the writing of any data to a database element, such a database is checked to ensure

it exists; otherwise, a new database is created.

7. ConfigureDatabase- this function ensures the correct settings, including the class path

(directory structure), database elements (tables, views and stored procedures), are done

depending on the database being created.

Figure E. l is a client-server connection use case:

1. Client looks-up the Domain Naming Service

2. Client creates a connection Socket

3. Client connects to server

4. Server requests login data

5. Client sends login data

6. Server authenticates login data
Figure E. 1: Client-Server connection use case

143

Figure E. 2 is a centralised customer registration use case:
1. Operations manager prepares fixtures list.

2. Managing director ratifies fixtures.

3. Operations manager creates customer's profile.
4. Applications Manager sets up client applications network information.

5. Applications manager stores client applications in customer's profile.
6. Applications manager links client applications to server applications.
7. Applications manager configures Server applications.
8. Applications manager initialises customer's client applications.

Figure E. 2: Registering a new customer

F: Questionnaire used to obtain student feedback

F. l The Questionnaire

1. The EducatorTool application is easy to learn

(This refers to how easily you were able to learn to write your actors, events and states; it also
includes saving, printing, adding extra events and extra states etc)

0. No
Opinion

1. Strongly
disagree

2. Disagree 3. Undecided 4. Agree 5. Strongly
Agree

Comments

2. The EducatorTool application is efficient

(This refers to how well suited to the task the application is. That is, compared to say, writing the

description with pen and paper; and whether you think it took you too long doing some tasks such

as choosing actors and/ or states)

0. No
Opinion

1. Strongly
disagree

2. Disagree 3. Undecided 4. Agree 5. Strongly
Agree

Comments

3. Enaction enabled me to scrutinise the description further

(This refers to state-based enaction. Did the state changes during enaction cause you to think a lot

more about your description, did you find that you needed to revise the description because the

enaction produced state changes that were not appropriate according to your knowledge of the

problem represented by your description)

144

To. No
Opinion

1. Strongly
disagree

2. Disagree 3. Undecided 4. Agree 5. Strongly
Agree

Comments

4. Revising the description using the tool is easy

(This follows directly from question 3 above. After deciding to revise the description, e. g. by

adding more states, or appending secondary actors to events, or even changing primary actors for

some events, was it easy to effect those changes)
0. No
Opinion

1. Strongly
disagree

2. Disagree 3. Undecided 4. Agree 5. Strongly
Agree

Comments

5. Please describe any changes to functionality or added functionality that you would like

to see:

The graph and table shown below presents the participants responses to each suggestion. A

graphical representation of these responses is also given.

F. 2 Questionnaire analysis

The data collected from the participants was laid on a table showing the number of respondents

that chose a particular option for each question. The table then was translated into a bar graph.

The two figures are shown overleaf:

No Strongly
Opinion Disagree Disagree Undecided Agree Strongly Agree

Suggestion
1 0 0 1 0 7 0

Suggestion
2 0 0 0 0 3 5

Suggestion
3 0 0 0 0 2 6

Suggestion
0 0 1 0 4 3 4

145

Educator Feedback

No Opinion

i Strongly Disagree

Q Disagree

Q Undecided

ii Agree

Q Strongly Agree

Figure F. 2.1: Graph of respondents against suggestions

F. 3 Further use cases from student workshops

The use case in Figure F. 3.1 shows a use case for Operator validation. It is a use case to be

performed when an operator of a depot entry system wishes to login to undertake one or more

functions with the system. The use case was constructed by one of the students during the second

workshop.

1. Operator selects system login function.

2. System prompts operator to enter login details.

3. Operator enters their login details.

4. System searches for operator details on database.

5. System validates operator details.

6. System confirms operator details ok.

7. Operator logs into the system.
Figure F. 3.1: Validate operator details

Another student constructed a use case to describe the login behaviour as follows:

1. System prompts operator to enter their username.

2. Operator enters their user-name.

3. System prompts operator to enter their password.

4. Operator enters their password.

5. System verifies the operator's username.

6. System verifies the operator's password.

7. System accepts operator login details.

146

Suggestion Suggestion Suggestion Suggestion
1234

Suggestions

8. Operator gets logged into the system.
Figure F. 3.2: Operator login

Another student constructed a use case to describe the behaviour of a module for creating reports: 1. Operator logs into the system.
2. Operator selects create report function.

3. System prompts operator to select report type.
4. Operator selects report type (e. g. movements).
5. System prompts operator for report dates (from and to).
6. Operator enters the dates.

7. System prompts operator to select report format.

8. Operator selects report format (print or view).
9. System produces the requested report.

Figure F. 3.3: Create transaction reports

Examples showing the analysis on the above use cases can be found in appending K.

G: Additional (analysis) examples from the industrial study

Example 1

Consider the Scheduler-application communication use case description of Figure C. 5.

The default use case edited within EducatorTool is shown in Figure G. 1:

Edvca tor -Use Case E

File Use Case Actor Conditions Enact Tools CP Words Help

Description V . I. _

iu I rrimary Actor Event Precc
1 Application reads scheduler IP from project files
2 Application connects to Scheduler
3 Scheduler acknowledges connectio n
4 Application sends network layout to Scheduler
5 Scheduler creates network handle for alicatio n
6 Scheduler registers application for resource use
7
8

Scheduler
-- Application

sends registration info to application
--- - -- ---

, requests information from resource
9 Resource kends info to application
10 Application rexecutes monitoring functions

Figure G. 1: Scheduler-application communication

The essence of the description in Figure G. 1 (and C. 5) is to show the steps that constitute a

communication process between a site-based application and the Scheduler subsystem. Enaction

of the above default use case description was done to further scrutinise any dependency issues

without application of state-based information (further addressing objective 2.1).

During enaction of the description in Figure G. 1, the initial enaction dialog is shown in Figure

G. 2:

147

Given that default enaction entails stepping through the events in the order they are written, the

next available event would be "Application connects to Scheduler":

One of the developers observed that prior to the event in Figure G. 3 happening, that is, before

connection is done and acknowledged, the application must first request the connection to be

established. The reason for this is that Scheduler could have been "held" by other applications,

and a straightforward connection would disrupt previous, perhaps more urgent communication.

Moreover, it was argued that prior to Application sending the network layout to Scheduler (event

4, Figure G. 3), Scheduler must request the applications network layout first. The reason for this is

148

Figure G. 2: First available event [Scheduler-application]

Figure G. 3: Second available event [Scheduler-application]

that, Scheduler has an inbuilt network layout for some of the most crucial applications, and does

not need them resent. Hence a revised Scheduler-application communication use case is shown
in Figure G. 4:

File Use Case Actor Conditions Enact Tools CP Words Help

Description Scheduler-. Application Con-irriunir-ation

1 Application Treads scheduler IP from project files
2 , Application {requests connection

-- - 3 Application connects to Scheduler
d Scheduler

----- ------ , acknorfledges connection
5 Scheduler ! requests network layout
b jF+pplication Jsend net ork layout to Scheduler
7 Scheduler ; creates net+r"rork handle for application
S Scheduler registers application for resource use
9 ; Scheduler sends registration info to application
10 Application ; requests information from resource
11 Resource -sends info to application
12 Application executes monitoring functions

Figure G. 4: Revised scheduler-application communication

The output of enaction for the description in Figure G. 4 is shown below:

Erzaction Output
ftcation reads scheduler IP from prjectfles

Application requests connection
Application connects to Scheduler
Scheduler acknowledges connection
Scheduler requests netriork layout
Application sends network layoutto Scheduler
Scheduler creates network handle for application
Scheduler registers application for resource use
Scheduler sends registration info to application
Application requests information from resource
Resource sends info to application
Application executes monitoring functions

Figure G. 5: Enaction output for revised scheduler-application

Example 2

Consider the Data logging use case description of Figure C. 6. The default use case edited within

EducatorTool is shown in Figure G. 6:

149

File Use Case Actor Conditions Enact Tools CP Words Help

Description DataLogging

DataLog obtains Scheduler IP frorn project files
DataLog requF is connection to Scheduler
Scheduler acknowledges connection to DataLog

- Data Log relays virtual network layout to Scheduler
Scheduler checks netvdork layout against existing network handler

Scheduler
_ irege tern: Data Log with Wehrdock handler

Scheduler _ __ send ackno". v. »ledgrnentto DataLog
DataLog Isends points data request to Scheduler
Scheduler (forwards data to DataLog

- ----------- ------ -- DataLog reads database connection information from project files
DataLog records data into the points table in Logs database.

Figure G. 6: Data logging use case description

The data logging use case (Figures G. 6 and C. 6) who the data logging process as executed by the

DataLog subsystem. Like many other monitoring subsystems, DataLog needs the services of the

Scheduler application. Again, default enaction (or enaction of standard use cases) entails stepping

through the events in the order they were written. One of the issues raised during the enaction of

the use case in Figure G. 6 regarded event 9 (Scheduler forwards data to DataLog):

reads database connection infort-T3 t on from project file, --

ffý. cýýi#3. r; ß

Scheduler

, o,. t; erhjes connection to DalaLüj

checks network layout against existitifj network handler---------------

registers Datatorj with n--tw=ark handler
i.

sends acknowle=iairfaemt to Data4_.

Figure G. 7: Event 9 of data logging use case

It was observed by the developers that the above event (Figure G. 7) cannot happen without

Scheduler requesting such data from a network controller. In other words, Scheduler

communicates with the controllers on behalf of the DataLog. The Controller must then return the

requested data to the Scheduler, which in turn relays the data to DataLog.

Hence, the revised use case description Data logging is shown in figure G. 8:

150

Fite Use Gase Actor Conditions Enact Tools CP Words Help

Description J DataLogginq

II_

1
. , '.. I-I y r.. -L..,

Data Log l
c-. /eni ý Prei:

obtains Scheduler IP from project files
2 DataLog requests connection to Scheduler
3 Scheduler acknowledges connection to Data Log
4
-- -

DataLog - --- -- --------- --- -- relays virtual network layout to Scheduler
- E Scheduler - ---- -- --- -- -- -- -- -------- - checks netv. ro rk layout against existing network handler

E! Scheduler registers Data Log v. ith network handler
7 Scheduler sends acknowledgrnent to Data Log
8 DataLog sends points data requestto Scheduler
9 Scheduler sends data request to Controller
10 Controller returns requested data to Scheduler
11 Scheduler for , ards data to Data Log

--- 12 'DataLog reads database connection information from project tiles - ------- -
13

ýDataLog]
-records

data into the points table in Logs database.

Figure G. 8: Revised data logging use case description

Two additional events were added as a result of enaction:

 Scheduler sends data request to Controller

 Controller returns requested data to Scheduler

An actor that was not within the initial description was added, the Controller.

Example 3

Consider the Customer registration use case of Figure E. 2. A state-based version of the

description is shown in table G. 1:

Primary Event Precondition Postcondition Secondary Precondition Postcondition

Actor Actor

OpsManager prepares initial listReady MD waiting listReady

fixtures list

MD ratifies fixtures listReady listRatified OpsManager listReady listRatified

list

OpsManager creates listRatified profileCreated AppsManager waiting profileCreated

customer profile

AppsManager sets network clientslnitialised networkInfoSet

info for client

applications

AppsManager stores client listenerRegister clientsStored

applications in ed

customer profile

AppsManager links clients serverAppsConf linkingDone

applications inured

with server

applications

AppsManager configures networkInfoSet serverAppsConfig

151

server

applications

ured

AppsManager initialises profileCreated clientslnitialised

customers

client

applications

AppsManager registers linkingDone listenerRegister

network ed
listener for

client

applications

Table G. 1: state-based version of customer registration use case

Discussion

Table G. 1 shows the state-based version of the use case in Figure E. 2 (Customer registration).

The description in Table G. 2 has one extra event:

 AppsManager registers network listener for client applications.

The additional event was considered necessary due to the fact that it is possible for customer's

client applications to be set up in most ways, and leave them "inactive" in terms of accessing

resources across the network. This is possible mostly when the registration process has not been

completed, especially when the control engineering company is still awaiting for some relevant

information for the new customer.
Another notable change in the state-based description (Table G. 1) is that events do not

necessarily execute in the order in which they were written. Consideration of the pre and post

conditions for each event, including the secondary actors, resulted in a different execution

sequence as compared to the one that would have occurred if default order was assumed:.

1. OpsManager prepares fixtures list

2. MD ratifies fixtures list

3. OpsManager creates customer profile

4. AppsManager initialises customer's client applications.

5. AppsManager sets up client applications network information

6. AppsManager configures server applications

7. AppsManager links clients applications with server applications

8. AppsManager registers network listener for client applications

9. AppsManager stores client applications in customer profile
Figure G. 9: Revised customer registration use case

152

Some observations were made as result of augmenting the initial use case (Figure E. 2) with states.
These are explained as follows:

Client applications must be initialised (event 8, Figure E. 2) prior to network information for the

clients being set up. Initialisation means determining whether the application has an assigned user
(customer) and whether the details for an operator from the customer's company are available for

any subsequent contact. In short, the states enabled the rigorous reasoning about the implications

of each step happening in relation to other steps, and the actual monitoring processes.

Hence, the use of state-based information alone resulted in the addition of one event and the re-

ordering of events' sequence (see Figure G. 9).

Example 4

Consider the state-based description in Figure G. 1 edited in EducatorTool:

-
1111 X1

File Use Case Actor Conditions Enact Tools CP Words Help

Description iCu_tcrner Registration

OpsManager lpre pares fixtures list initial
MD ratifies fixtures list listReady
0 sManag er creates customer profile listRatifed
AppsManager ; sets net., vork info for client applications clientslnitialised

_!
AppsManager stores client applications in customer profile listenerRegistered

ýAppsManager ! links clients applications with server applicatio ns serverAppsConfigr
IAppsManager confguresserver applications netwarklnfoSet

stcrondition Secondar;; Actor Preyc

.1yM
p ý, vaitin

bed __ Cpsý, 4ana_1er -_tRe
treated ppsi14_ariager tiri
KInfoSet
Stored
)one
ppsConfiyured

stRatifled
rofileCreated

AppsManager ; initialises customers c lent applications profileCreated
AppsManaoer [registers network listener for client applications IlinkingDone

nitialised

Figure G. 10: Customer registration use case (edited in EducatorTool)

The participating developers observed that this is an important part of the new initiatives. Further

scrutiny if the description by way of applying enaction was conducted.

During the enaction, the occurrence of the event where client and server applications are linked

together (or clients associated with respective servers), it was observed that the MD needed to act

at that point to add the new customer into MD's list of the existing customers. The event

concerned is shown in Figure G. 11:

153

An additional issue brought forward after considering the additional event mentioned above, was

the need to assign a control engineer as a custodian for the new customer. This assignment is

done by the operations manager, who considers the best suited engineer based on the customer's
business, and whether the engineer has been supporting similar customers before.

A revised use case description, based on these two arising issues is shown on Figure G. 12:

File Use Case Actor Conditions Enact Tools CP Words Help

Description ý. . ýi "

imaryActor Event Precondition Postcondition Serunrlýr, Actor
sNlanager prepares fciures list initial IistRead'; 1 MD

ratifies fixtures list IistReadi IistRatified 0p=stAanager
sManager creates, customer profile IistRatined profleCreated Appsf, danager

-------- - ---- ----- isManager sets network info for client applications rlientslnitialised nebvorklnfoSet

DsManager'stores client applications in customer profile IistenerRegistered clientsStored
)sManagerlinks clients application with server applications se verAppsContigured IinkingDone

adds new customer to the list of existing custorners'IinkingDone

customerAdded
---- -- -- -

GpsManager
sManager assigns an engineer to the new customer customerAdded engnrAssigned AppsManager

)sManager configures server applications networklnfoSet serverAppsContigured
---- ------ initialises customers' client applications protileCreated clientslnitialiseü

isManager registers network listener tor client applications engnrAssigned IistenerRegistered

Figure G. 12: Customer registration - revised after enaction

ified
Created

i_tFatifled IcustomerAddec
ink ngDone , engnrAssigned

The output of the enaction produced a revised description that participants agreed to (see Figure

G. 13).

154

Figure G. 11: clients-applications linkage

t Customer Registration

Enaction Output 0
JMana er pre area fi! lures list ý"J

MD ratifies fixtures list
OpsManager creates customer profile
A. ppsManager initialises customers' client applications
AppsManager sets network info for client applications
A, ppsManage r configures server applications
AppsManager links clients applications with server applications

--- - MD adds new customer to the list of existing customers
OpsManager assigns an engineer to the new customer
A. ppsMMAanager registers network listener for client applications
A, ppsManager stores client applications in customer profile

Figure G. 13: Enaction output for the customer registration use case

K: Additional (analysis) examples from the workshops
Example 1

Consider the Validate operator details use case of Figure F. 3.1. The concerned student produced

the following state-based version of the initial description:

Primary Event Precondition Postcondition Secondary Precondition Postcondition

Actor Actor

Operator selects system initial loginSelected System idle loginSelected

login function

System prompts loginSelected detailsRequested Operator loginSelected waiting

operator to enter

login details

Operator enters their waiting detailsEntered System detailsRequested detailsObtained

login details

System searches detailsObtained searchingDB

operator details

on database

System validates searchingDB detail sValidated

operator details

System confirms details Validated confirmed Operator detailsEntered confirmed

operator details

ok

Operator logs into the confirmed logged System confirmed functionPrompt

system

System requests fimctionPrompt waiting Operator logged functionPrompt

operator to

choose ftinction

to execute

Operator selects a functionPrompt functionSelected System functionPrompt functionSelected

155

function (e. g.

create report)

System records the functionSelecte recorded

selected d

function into

usage log

Table K. 1: state-based version of validate operator details use case

Discussion

Table K. 1 shows the state-based version of the use case in Figure F. 3.1 (Validate operator).

The description in Table K. 1 has three extra events:

 System requests operator to choose function to execute.

 Operator selects a function (e. g. create report).

 System records the selected function into usage log.

The student argued that the additional events were necessary to ensure that authentic usage of the

depot system monitored. For instance, each operator needed to be able to indicate why they were

logging into the system (by selecting a system function). The system function would then be

automatically recorded for security purposes. It was not considered desirable to just login and not

use the system in anyway as that would leave it vulnerable to unauthorised use.

Hence the revised description is shown below:

1. Operator selects system login function.

2. System prompts operator to enter login details.

3. Operator enters their login details.

4. System searches for operator details on database.

5. System validates operator details.

6. System confirms operator details ok.

7. Operator logs into the system.
8. System requests operator to choose function to execute.

9. Operator selects a function (e. g. create report).

10. System records the selected function into usage log.

Figure K. 1: Revised validate operator details use case
Example 2

Consider the Create transaction reports use case shown in Figure F. 3.3. The student performed an

enaction of the default use case to try and find out whether there were any specification issues

that could be further elaborated. Figure K. 2 shows the description edited in EducatorTool

156

lEduicateir --Use Case ..
File Use Case Actor Conditions Enact Tools CP Words Help

Description "ýý

ID I PrirnarS+Actor Event
1 Operator Tongs into the system
2 Operator

-
selects create report function

--- --- 3 System --- ---- ---- prompts operator to select report b/pe i
4 Operator h- -

selects
_a

report tipe (e g movements)
5 SSýstern Fprompts operator for report dates from and to)
6 _ Operator enters the dates
7 Sfstem prompts operator to select report format
8 Operator ; selects report format (print orvnevv)
9 (System produces the requested report

Figure K. 2: Create transaction report

To reiterate, the description in Figure F. 3.3 (and K. 2) describes and sequence of steps that the

user of the depot system would follow to produce a report with the system. Enaction of the above

default use case description was done by the student to further scrutinise any dependency issues

without application of state-based information.

During enaction of the description in Figure K. 2, the initial enaction dialog is shown in Figure

K. 3:

211

Q Operator

longs into the system selects create repot Piinctim

rJernents) enters the dates

selects report format (print or % ., new)

System

Jperator to select report y pe 1 prompts opet ator for report dates (from and to)

Fpf
oompts operator to select report format

-
pfoduces the requested report

Printer

Figure K. 3: First available event [Create transaction report]

Default enaction entails stepping through the events in the order they are written and the next

available event is "Operator selects create report function":

157

to =mw,
CI 2xi

operator

selects create report function

%01VýOs --5, t-port type (O. iv

_: s3at (print ar view)

e System

s (+¢ el, tip. ,. ̀f typ} ýt : _Pt t> Üx i ä? C 1 lic; s 'jl: li i ., ü2ý S1 Jts> c id tü;

e Printer

Figure K. 4: Second available event [create transaction report]

The student observed that it is likely that after login (see Figure K. 3), the system has a range of

options (besides creating report) that the user (operator) can choose to execute. For instance, the

student argued that prior to printing a report, the operator might want to perform some data

processing (e. g., summarise all depot entries for the day) so that such processed data is reflected

in the report. This meant that the student considered an addition event for the System actor:

 System prompts operator to select a function to execute.

Hence a revised Create transaction report use case is shown in Figure K. 5:

ir- r

File Use Case Actor Conditions Enact Tools CP Words Help

Description

ID Prirnary Actor f Event P
1 Operator longs into the system_
2 System prompts operator to choose function to execute
3 Operator selects create report function
4 Systems

__f
prompts operator to select report type

5 Operator selects a reporttype (e. g- movements)
6 System prompts operator for report dates (from and to}
7 Operator enters the dates
8 L System prompts operator to select report format
9 Operator (selects report format (print or viewýrj-

__ 10 System produces the requested report

Figure K. 5: Revised create transaction report use case

The output of enaction for the description in Figure K. 6 is shown below:

158

Create report 4

Operator lon s into the systern
System prompts operator to choose function to execute
Operator selects create report function
S; rstern prompts operator to select report tVpe
---- ---- ---- --------- --- --------- - -- ----- Operator selects a report type (e. g. rnovements)
System prompts operator for report dates from and to)
Operator enters the dates
Systern prompts operator too select report format
Operator selects report format (print or view)
Svstern produces the requested report

i Figure K. 6: Enaction output for revised create report use case

159

