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Abstract 

The focus of this thesis is to measure the regularity of case bases used in Case-Based 

Prediction (CBP) systems and the reliability of their constituent cases prior to the sys- 
tem's deployment to influence user confidence on the delivered solutions. The reliabil- 
ity information, referred to as meta-data, is then used to enhance prediction accuracy. 

CBP is a strain of Case-Based Reasoning (CBR) that differs from the latter only in 

the solution feature which is a continuous value. Several factors make implementing 

such systems for prediction domains a challenge. Typically, the problem and solution 

spaces are unbounded in prediction problems that make it difficult to determine the 

portions of the domain represented by the case base. In addition, such problem do- 

mains often exhibit complex and poorly understood interactions between features and 

contain noise. As a result, the overall regularity in the case base is distorted which 

poses a hindrance to delivery of good quality solutions. 

Hence in this research, techniques have been presented that address the issue of 

irregularity in case bases with an objective to increase prediction accuracy of solutions. 
Although, several techniques have been proposed in the CBR literature to deal with 

irregular case bases, they are inapplicable to CBP problems. As an alternative, this 

research proposes the generation of relevant case-specific meta-data. The meta-data is 

made use of in Mantel's randomisation test to objectively measure regularity in the case 
base. Several novel visualisations using the meta-data have been presented to observe 

the degree of regularity and help identify suspect unreliable cases whose reuse may 

very likely yield poor solutions. Further, performances of individual cases are recorded 

to judge their reliability, which is reflected upon before selecting them for reuse along 

with their distance from the problem case. The intention is to overlook unreliable cases 

in favour of relatively distant yet more reliable ones for reuse to enhance prediction 

accuracy 

V 



Abstract 

The proposed techniques have been demonstrated on software engineering data sets 

where the aim is to predict the duration of a software project on the basis of past com- 

pleted projects recorded in the case base. Software engineering is a human-centric, 

volatile and dynamic discipline where many unrecorded factors influence productivity. 

This degrades the regularity in case bases where cases are disproportionably spread 

out in the problem and solution spaces resulting in erratic prediction quality. 

Results from administering the proposed techniques were helpful to gain insight into 

the three software engineering data sets used in this analysis. The Mantel's test was 

very effective at measuring overall regularity within a case base, while the visualisa- 
tions were learnt to be variably valuable depending upon the size of the data set. Most 

importantly, the proposed case discrimination system, that intended to reuse only re- 
liable similar cases, was successful at increasing prediction accuracy for all three data 

sets. 

Thus, the contributions of this research are some novel approaches making use of 

meta-data to firstly provide the means to assess and visualise irregularities in case 
bases and cases from prediction domains and secondly, provide a method to identify 

unreliable cases to avoid their reuse in favour to more reliable cases to enhance overall 

prediction accuracy. 
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CHAPTER 1 

Introduction 

Case-Based Reasoning (CBR) [AP941 is a relatively young, yet vibrant and popular 
Artificial Intelligence (AI) technique. Over the last 15 years, researchers have shown 

considerable interest in CBR by further maturing the approach via research and suc- 

cessfully applying it to many diverse applications. Its widespread adoption is much 

attributed to its deviance from traditional problem-solving approaches in computing. 

The CBR methodology is specially geared towards knowledge deficient domains and 

is merited for its flexibility and applicability to a rich variety of tasks [Aha98]. It mimics 

the problem-solving process of human experts, who use their experience accumulated 

over the years as starting points to solve new problems. For example, an experienced 

engineer may fix a computer by recalling a past job where the previous computer 

exhibited similar symptoms believing it is highly likely that the same solution may 

work again. 

Similarly, CBR systems are endowed with a case base(s) which is a repository of 
domain-specific instances of previously solved problems, each referred to as a case. 

Faced with a new problem (target case) to solve, the system scans its case base to find 

the most similar case using a suitable distance metric. The solution to the retrieved 

similar case is then reused to derive one for the target case. Hence, the successful op- 

eration of the entire system is crucially dependent on the premise - "Similar problems 
have similar solutions" [Ko1931. This is elaborated upon further in Chapter 2. CBR 

systems heavily rely upon their case base that is the basis of every problem-solving 

exercise. Thus, the quality or competence of a case base is crucial and can be judged 

on the basis of many parameters including its representation or coverage of the prob- 

lem space, inherent noise, redundancy, efficiency and so on. One such important 

parameter for judgement is problem-solution regularity [LW991 which is a central and 
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I Introduction 

critical phenomenon for delivery of good solutions. Regularity in a case base measures 
the degree to which cases lie within proportional distances from each other in both 

problem and solution spaces. Case bases with more inherent regularity are likely to 
deliver quick and reliable solutions. On the other hand, there are slimmer chances of 

obtaining equally desirable solutions when using a relatively inferior or irregular case 
base. 

This research focusses upon the aspect of dealing with irregular case bases in a par- 
ticular strain of CBR commonly referred to as Case-Based Prediction (CBP) in which 
the solution is a continuous value. To do so, the domain of software project effort pre- 
diction is used (Section 1.1). where the objective is to accurately predict the effort of 

new projects based on similar existing and completed projects in the case base. Whilst 

this particular application of CBP has attracted a substantial amount of research in- 

terest, a problem has been the somewhat erratic results in terms of prediction quality. 

1.1 Software Engineering Estimation 

One class of prediction problem that has had some success applying case-based rea- 

sonering is software project effort estimation`. Early estimation of software projects 
is commercially important - since effort is generally the dominant component of cost 

- but in many respects an extremely challenging problem domain. Problems include 

small, noisy, heterogeneous and Incomplete data sets coupled with large sets of cat- 

egorical and continuous features that typically exhibit complex interactions IMSJ05). 

In addition, the solution feature is a continuous value which makes It hard to mea- 

sure, judge or even compare accuracy. Nonetheless early work, e. g. IPVM96, SS971 

produced encouraging results and outperformed traditional methods such as stepwise 

regression analysis. 

But despite ongoing progress, results have not been consistent among research 

groups or even among different random holdout sets. Mair and Shepperd IMS051 

conducted a systematic review of published empirical studies using case-based pre- 
diction for project effort. Twenty distinct studies were identified that compared CBR 

and some form of regression analysis. Of these 9 supported case-based prediction, 7 

In this thesis, the terms estimation and prediction will be used interchangeably as this is common practice 

in the field. 
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1.2 Motivation for Thesis 

regression analysis and 4 were inconclusive. Further analysis reveals that one source 

of variation is the data sets used as case bases (also see IKCCSO0]). For this reason, it 

was decided to investigate further and in particular into problem-solution irregularity, 

where for example, projects that are close neighbours in the feature space but possess 

strongly divergent solutions (which, in this research is project effort). This domain is 

discussed in detail in Chapter 3. 

1.2 Motivation for Thesis 

The motivations to undertake this research are now addressed from the perspectives of 

both, the application domain (software engineering estimation) as well as the adopted 

methodology (CBP). 

1.2.1 Software Engineering Perspective 

"A vast amount of money is spent on developing software worldwide. The success- 

ful execution of such projects is dependent upon accurate cost estimated from 

the start. Thus, it Is crucial that work in software effort estimation Is continued 

to further refine existing techniques for the benefit of the industry. 

" Software development is a highly human centric problem. Hence, differences 

in productivity appear due to external variation, which may be unaccounted for 

by the feature set characterising the project state [Sca94, Arm02, JIS031. Such 

variation may inject an inevitable degree of randomness into the project that 

distorts overall problem-solution regularity in the case base and results in poor 

solution accuracy. 

Thus, firstly it Is important to verify if there is any value in using the data sets 

at all depending upon the degree of noise or irregularity. Secondly, it is valuable 

to have techniques in place that address this Issue of noise or irregularity in the 

data sets to improve solution accuracy. 

" It may be argued that incorporating sophisticated adaptation routines can help 

in obtaining more desirable solutions. Unfortunately the software engineering 

experts do not completely comprehend the complexity of multiple confounding 

factors that together determine total cost or effort. Thus, at the current state, the 
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1 Introduction 

community's understanding of the domain is inadequate to implement adaptation 

techniques, which may be no more than induced rules from individual data sets. 
These would be further inapplicable since they may be severely localised due to 

heterogeneity across data sets. 

1.2.2 Case-Based Maintenance Perspective 

. To the best of the author's knowledge, very little work (e. g. (CP041) has been un- 
dertaken to develop case base maintenance techniques for prediction problems. 
Most available techniques have been developed largely to be applied to analytic 
tasks [V096] (e. g. classification, diagnosis, decision support). These are often in- 

effective when applied to synthetic problems such as prediction, design, planning 

and configuration since it is hard to measure the accuracy of solutions in such 
domains. 

. Also, the utility problem [FR93] (i. e. unchecked increase in the size of case base 

reduces efficiency) has attracted more attention to controlling the size of the case 
base without compromising the solution accuracy for efficiency gains. Unfortu- 

nately, this does not account for dealing with noisy cases present in the case 
base. 

Hence, there is a realisation that CBR systems need to deal effectively with noisy 

software engineering data sets to enhance solution accuracy. However, techniques 

that can be applied successfully for such prediction problems are currently lacking. 

Hence, there is a genuine need for the development of alternative mechanisms that 

address this issue and are more generically applicable. 

1.3 Research Aims and Objectives 

The aim of this research is to develop and evaluate techniques that enable assessment 

of the regularity in a case base prior to deployment to influence user confidence on the 

solution and thereafter, identify potentially unreliable cases and discriminate their use 

in favour of relatively distant but regular cases to enhance solution accuracy. 

g Rahul Premraj 



1.4 Thesis Map 

The work described in this thesis develops and validates an alternative technique 

that can be applied across a variety of CBR systems independent of the application 

type. The research aim is planned to be achieved by accomplishing the following ob- 

jectives: 

º OB I: To establish that there is a need for an alternative technique that addresses 

problem-solution irregularity in CBP domains. 

º OB2: To assess the problem-solution regularity in a case base to determine its 

applicability to CBP and influence user confidence. 

º OB3: To identify unreliable cases that distort the overall regularity of a case base. 

º OB4: To investigate if case reliability can gainfully supplement inter-case dis- 

tance measures to increase solution accuracy in CBP using the domain of soft- 

ware engineering estimation as an example. 

1.4 Thesis Map 

In this section, a guide to the structure of the thesis is presented. Note that relevant 

chapters are mapped to the objectives above via the respective keys. - 

Chapter 2 This chapter provides a general overview of the CBR methodology. It then 

elaborates upon the methodology's characteristics that make it suitable for appli- 

cation to certain types of domains. 

Chapter 3 The focus in this chapter is on software cost estimation. Here, some history 

of cost estimation is provided along with references to select relevant models 

developed earlier. Thereafter, the nature of software engineering data sets and 

its suitability to CBP is presented along with supporting empirical evidence from 

previous research. 

Chapter 4 Here a literature review of techniques pertaining to CBM is presented. This 

chapter argues and exhibits that research to date has largely focussed on ana- 

lytic tasks. In parallel, it also demonstrates that these techniques may not be 

effectively applied to CBP (OB1). 

Chapters 5,6 &7 In these chapters, the methodology of the technique proposed to be 

used to assess case base quality (objectively and visually), identify individual un- 
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1 Introduction 

reliable cases and thereafter, use the gathered information to increase solution 

accuracy is presented (OB2 & OB3). 

Chapter 8 An introduction and a brief statistical summary of all data sets used in this 

research is presented. 

Chapter 9 Results from implementation of the technique presented in Chapters 5,6 

&7 on each data set are presented and compared with conventional techniques 

used in CBP. This is followed by a summary of overall results (OB4). 

Chapter 10 Lastly, the contribution and significance of the presented techniques is 

discussed, followed by conclusions and suggested future work. 
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CHAPTER 2 

Case Based Reasoning and Prediction 

CBR is a prime example of lazy learning techniques [Aha97J where the real work is 

deferred until the actual time of problem solving, i. e. very little or no work is done 

offline. A CBR system remains dormant until presented with a problem to solve and 

thereafter, returns to its inactive state. This is in contrast to eager learning techniques 

such as neural networks and fuzzy systems that learn from training data to make gen- 

eralisations about the problem before they attempt to solve a problem. While each of 

the two kinds of techniques has its own benefits, in this chapter, the former technique 

is concentrated upon since it is the focus of this research. 

This chapter begins with a description of the origins and workings of CBR systems. 

The focus then shifts towards the advantages and disadvantages of its application to 

help judge its suitability for different problem domains. Lastly, some of the existing 

CBR applications are visited including those involving prediction. 

2.1 CBR: Origin and Mechanics 

The origin of CBR is largely attributed to Schank [Sch821 whose research into cognitive 

science led to its conception. The idea was borrowed from the observation that humans 

commonly react to situations at hand by remembering previous similar situations. 

Later, this concept was formalised into models for practical implementation, such as 

in [Ko1931. 

The CBR approach is based on two tenets [Lea961. The first is that similar problems 

have similar solutions. Thus. previously solved problems would make a good starting 
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2 Case Based Reasoning and Prediction 

Problem 

1 

Figure 2.1: Aamodt and Plaza's CBR Cycle (AP94) 

points to solve new similar solutions. The second tenet is that types of problems tend 

to recur within a domain. Hence, future problems within a domain are likely to be 

similar to those from the past. 

With a relatively large research community focussing upon CBR in the last decade, 

its methodology has undergone a process of evolution over the years. Different models 

have been proposed, each contributing to a better understanding of the approach. 

Currently, Aamodt and Plaza's CBR model JAP941 (Fig. 2.1, see also (A1t891) is widely 

accepted to be an inclusive representation of the methodology. This model is also 

popularly referred to as the R4 model since each of the four processes start with the 

same letter 'R'. The following four descriptions of each process are quoted from JAP941: 

Retrieve the most similar case or cases 

Reuse the information and knowledge in that case to solve the problem 

Revise the proposed solution 

Retain the parts of this experience likely to be useful for future problem solving 
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2.2 Advantages of the CBR Approach 

Here, the broad idea is that on being presented with a new problem to solve, the 

system delves into its case base to search for similar previously solved problems. The 

relevant candidate (or most similar) case(s) is chosen objectively or contextually by 

a suitable distance measure. This characterises the retrieval stage. Thereafter, the 

solution or the process of its derivation is extracted in the Reuse stage and applied 
to the problem case along with general domain knowledge (if available) to propose a 

solution. The fitness of the solution is then tested and possibly repaired to adjust for 

non-corresponding features to be bettered in the Revise stage. Lastly, in the Retain 

stage a successfully solved problem, if considered useful for future use, is added to 

the case base with an intention to increase its quality or competence. Of course, 

each process poses several challenges to be correctly and efficiently applied for a given 

problem domain. 

But widespread application of CBR has brought to light several deficiencies of the 

model and suggestions for modifications have been proposed. Cunningham [Cun981 

pointed out that in practice, there is often a fuzzy distinction between the Reuse and 

Retain stages and suggested combining the two Into a single Adaptation phase. Finnie 

and Wittig [FW03] suggested adding an additional stage. Repartition before Retrieve to 

be able to build case bases better by partitioning them Into a world of problems and 

a world of solutions. While Reinartz et aL [RBIO11 proposed two additional processes 

identifying that case base maintenance Is crucial for the functioning of the entire sys- 

tem and must be explicitly represented in the model. 

Nevertheless, there is a general consensus that the main aspects of the functioning 

of the CBR methodology are covered by Aamodt and Plaza's model which still serves 

as a platform to build upon for many researchers. It may be challenging to arrive at a 

more generalised model since different problem domains have distinct characteristics 

which largely determine the tasks and processes that need to be implemented. 

2.2 Advantages of the CBR Approach 

The CBR approach has several distinct advantages over conventional computing and 

Al techniques that make it attractive for application. To mention a few: 

11 



2 Case Based Reasoning and Prediction 

" CBR is especially favourable when applied to weak theory domains which are 

either poorly understood or lack algorithmic models. Derivation of solutions from 

previous experience makes it possible to overcome these problems. 

" Due to reuse of previous experience, there is an impression that CBR may de- 

mand less knowledge engineering than alternative techniques [Cun98]. 

" On a wider scale, such systems can perform efficiently considering possibilities 

of centrally managed case bases that can be accessed by multiple users and 

also ensuring consistency amongst delivered solutions. This aspect may be very 

valuable in diagnostic CBR systems such as in the help desk domain [KB93]. 

" In some domains, it may be more efficient to derive competent solutions using 

analogy in comparison to use of first principle approaches. For example, under 

ideal circumstances in design and planning tasks, it may be easier to work upon 

an analogy to derive a solution rather than solving the problem from scratch. 

" Unlike most other AI techniques, it is possible to reason, explain or even justify 

proposed solutions in a familiar way to increase user confidence, e. g [SCA05]. 

" CBR systems can be configured to learn over time. The knowledge learnt could 

be new cases, domain knowledge and adaptation routines through deduction and 

so on. 

2.3 Disadvantages of the CBR Approach 

Whilst CBR provides an array of advantages for use, it also has its limitations that 

may hinder its successful application or prove very challenging to implement in certain 

situations. These include: 

" The CBR methodology was developed mainly for weak theory domains. Hence, it 

is likely that it may perform less favourably in domains that are well-defined and 

can potentially be modelled. Here, algorithmic models or rule-based systems may 

prove to be better alternatives. 

" Finnie and Zhaohao [FS021 made an mathematical distinction between similarity 

and equivalence. Since CBR functions on the premise of similarity, which results 

in ballpark solutions, they are not suitable for application that require a great 

degree of precision. 
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. While CBR Is merited for the advantages it provides on the knowledge engineering 

front, domains with fewer cases may have to rely on substantial general domain 

and adaptation knowledge. Gathering and implementation of such knowledge is 

a significantly challenging task. 

. CBR may provide only a partial quick fix alternative to problems. Substantial 

research is involved in the successful application of the methodology such as 

choosing the most favourable case representation structure, similarity measures, 

etc. Additionally, its operation critically depends upon the existence of recorded 

episodes of problem-solving within a domain. 

Thus, despite the benefits of applying CBR to characteristic problem domains, there 

also exist limitations that retard or constrain their implementation. For example, the 

effort saved on knowledge engineering may be compromised by consolidation of raw 

data as cases or development of adaptation routines to cater for sparsely covered ar- 

eas in the problem space. Additionally, the quality of the solution depends upon the 

contents of the case base. Hence, it is crucial to endow the system with a case base 

that is capable of meeting expectations. Also, since each problem exhibits different 

characteristics, they need to be individually tackled to identify the most appropriate 

representation and processes to deliver effective and efficient solutions [Cun98]. 

2.4 Case-Based Prediction 

The characteristics and advantages of CBR make it suitable to be applied to a variety 

of applications [Aha98, AltO1]. As mentioned in the previous chapter, Voss and Oxmon 

[V0961 classified CBR tasks or applications into analytic tasks and synthetic tasks. 

Applications belonging to the former class deal with analysing or interpreting the so- 

lution, e. g. classification tasks, diagnosis and decision support. While synthetic tasks 

cover those domains in which a solution needs to be composed or derived from other 

similar cases. Examples of such domains include design, planning and configuration. 

In Case-Based Prediction (CBP), the solution is a continuous value. Hence, there 

is no certainty that every possible scenario in the domain is covered by the case base 

(this is also true for other synthetic domains, e. g. [Cra031). As a result, an approximate 

solution is needed to be derived from one or more nearest case. The process adopted 
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for derivation of the solution is dependent upon the nature of the domain and its 

understanding. In some cases, this may be possible using adaptation techniques, 

while other knowledge deficient domains may resort to statistical learning approaches. 

This characteristic of CBP qualifies it as a synthetic task. 

Besides the challenge of composing a continuous value solution, another problem 

lies in assessing the quality of solution. Unlike analytic problems in which the solu- 

tion can be either correct or incorrect, synthetic tasks have to measure and infer the 

magnitude of error. In CBP, this translates into defining boundaries of good and poor 

solutions that are rather subjective. For example, can a solution with 10% error be re- 

garded as good while another with 11% error regarded poor even though the magnitude 

of error is insignificant? Moreover, such judgement is made in light of the fact that the 

user expects an approximate solution. While this consideration is a short term prob- 
lem, such statistics are cumulated to drive other processes in CBR in the longer term, 

e. g. maintenance of the case base by removal of redundant and noisy cases. Hence. 

even though delivering a solution in CBP may seem trivial, its implementation calls for 

application of techniques different to those of other domains due to the nature of the 

solution. 

Still, CBP has been applied to several problems. Daengdej et al. [DLT+97, DLM99) 

used CBP for making car insurance claim predictions. Companies dealing in car in- 

surance are required to factor in a 'predicted claims' component to determine the pre- 

mium for a new customer. The idea was to seek claims made by previous customers 

and predict an averaged value for the new customer. But due to inconsistencies within 

their data set (90% of the cases had zero claims), simply using the nearest neigh- 

bour(s) for prediction was likely to give them an unacceptable solution. Hence. an 

hybrid-reasoning method that employed statistical methods including probability and 

regression was presented and shown to perform comparably with existing techniques 

used for prediction within the company. 

Another example of CBP includes forecasting the sales of books [CLO5] to minimize 

losses occurred by inaccurate demand estimation. Here. Chang and Lai constructed 

a hybrid system using CBP and self-organising maps and demonstrated the utility of 

assessing clusters of cases to better prediction accuracy. In [EAO 11, Essara and Ahmed 

applied CBP to predict the costs of constructing steel buildings to help in the bidding 

process. Their approach disintegrated each case into sub-cases and then retrieved 
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cases by measuring similarity between sub-problems. The final solution was delivered 

by combining or adapting the different solutions using neural networks. 

Other examples of application of CBP include bankruptcy prediction [HI961, cor- 

porate bond rating prediction [KH01] and of course, software cost estimation [Sch981 

which is the focal application of this research and is discussed in detail in the following 

chapter. 

2.5 Summary 

Over the years, CBR has been shown to be a viable and promising approach to cater to 

many problem domains where knowledge elicitation is a challenging task. The flexibil- 

ity of its approach IWat981 allows it to accommodate any relevant techniques suitable 

or specific to the problem domain. 

Like other applications and domains, CBP too introduces a considerable number of 

its own challenges for implementation. Knowledge deficiency and a continuous value 

solution together call for more sophisticated techniques that specifically address prob- 

lems encountered in prediction. One such problem is determining the quality of the 

solution given the ambiguity involved in its assessment and the expectation of being 

delivered an approximate outcome. The problem is augmented when dealing with ir- 

regular case bases, such as software engineering data sets. The research concentrates 

upon this aspect of CBP and proposes techniques that are relatively more objective 

and flexible to gauge solution quality, which further opens channels to other tech- 

niques that can be used to enhance solution quality. The next chapter presents an 

overview of software engineering estimation and highlight some of the issues faced 

with applying CBP to it. 
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CHAPTER 3 

Software Engineering Estimation 

Software engineers recognise that estimates of development effort play a very cru- 

cial role in the completion of projects. Not only are the estimates important to bid for 

tenders successfully, many financial decisions are made by management based upon 

such early estimates. While underestimates may lead to budget overruns and aban- 
doning of the project, overestimates may cause commitment of too many resources to 

the project at the cost of other activities [LF02]. 

Due to its importance, over the past four decades, many attempts have been made to 

develop models for effort estimation. Several algorithmic and non-algorithmic models 

have been developed for this purpose. The following sections discuss some existing 

methods to give an overview of the state of affairs in software cost estimation. 

3.1 Algorithmic Methods 

Algorithmic models are statistical generalisations or parametric equations empirically 
derived from data sets that represent a relationship between cost or effort and other 

project characteristics. Thus, cost or effort estimate is considered dependent on other 

independent values such as lines of code, competence of staff and like. 

Examples of such models include COCOMO [Boe8lb], COCOMO II [BCHW95], Func- 

tion Points [MBM94. NV971, SLIM [Put78] etc. Many researchers have comprehensively 

studied these models and compared their performances [MK92, Hee92, BWO1, LF02]. 

But none of the models consistently performed well or even better than the others. 
Moreover, using some of the models resulted in errors of 100% or larger [Kem87]. Many 
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of the models have not been revised to keep pace with new technologies which has 

made them inapplicable to today's industry standards, e. g. Function Points may be 

inapplicable to today's world of new software technologies [Kit971. Another issue is 

that these models are not straightforward to use. The models require considerable 

experience and competence to determine the feature values to input. Also, studies 

showed that the models need to be calibrated for use within organisations for better 

estimations [BES+99, Ves99, MK041. This may be very discouraging for smaller soft- 

ware companies which may not have the competence or resources to adapt the models 
to suit their requirements. 

3.2 Expert Judgement 

Expert judgement involves consulting one or more domain experts. The human ex- 

perts use their knowledge and experience to provide new estimates, where the experi- 

ence relates to previous projects for which estimates may have been made in the past. 
Heemstra [Hee92] argues that the estimates provided by human experts are qualitative 

and not objective since they may be prone to bias, optimism, pessimism or instinct, 

desire to win or please [De198] and cause under or overestimation without rational 

reasoning. Importantly, there is often a tendency in humans experts to forget [PS03]. 

Unsurprisingly, it has been observed that experts find it difficult to replicate or repro- 
duce their results given the same parameters on which to base their judgement. This 

is more apparent when multiple experts are used to estimate a project and may arrive 

at non-concurring estimates. All these factors together make it extremely challenging 

to extrapolate the experts' basis for estimation and embed the knowledge construc- 

tively in estimation tools or techniques. However, despite the above short-comings of 

using human experts for estimation including the fact that such human experts are 

scarce and expensive to hire, a recent review by Molukken and Jorgensen [MsJ03] re- 

vealed that amongst all estimation techniques, expert judgement is the most popular 

and preferred choice. Human experts are easy to employ in comparison to other tech- 

niques. Potentially the experts are updated with evolving new technology and hence 

are aware of compensating for relevant differences amongst different projects. Also, 

they have a psychological advantage since project managers may tend to trust a solu- 

tion produced by a human expert. Some studies, including [Jor041, consider human 
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expertjudgement to be a valuable technique such as the one conducted by Jeffery and 
Walkerden (JW991 to compare the performance of experts with and without the aid of 

tools. Results suggested that humans (without the aid of tools) were more competent 

at choosing relevant analogues from data sets and making appropriate estimations in 

comparison to automated tools. These findings were however contradicted in studies 
by Myrtveit and Stensrud [MS99). 

3.3 Machine Learning Methods 

The inadequacy of algorithmic techniques led researchers to experiment with non- 

parametric, especially machine learning (ML) alternatives for estimation. These tech- 

niques, including neural networks, analogy, fuzzy logic (MG961 and regression trees 

(SF951 were expected to learn the underlying relationship between features to deliver 

more accurate solutions. In this section, only the application of neural networks to 

estimation are discussed considering the the volume of research conducted, while es- 

timation by analogy (CBR) is discussed in the following section. 

One of the most widely experimented ML techniques for estimation are artificial neu- 

ral networks (ANNs). Unfortunately, the focus has largely been upon comparing their 

performance against algorithmic techniques instead of further refining their imple- 

mentation. An early promising attempt at using ANNs for estimation was by Venkat- 

achalam [Ven931 who trained a multi-layer perceptron on the COCOMO data set using 

back-propagation. Later, Srinivasan and Fisher [SF951 used the same neural network 

architecture and trained the network on the COCOMO data set. yet tested it on the 

Kremerer data set. Their results showed ANNs to outperform the algorithmic models 

used in the analysis including COCOMO and SLIM. This was a considerably promising 

attempt since the training and testing data came from different data sets. Likewise, 

other researchers e. g. Hughes [Hug961 and Tadayon [Tad05) achieved good results by 

applying ANNs to software estimation. 

However. the applications of ANNs also suffers from some drawbacks. Firstly, ANNs 

(such as multi-layer perceptrons) are known to be black boxes since it is not easy 

to extract the inherent relationships between features derived during training. Such 

knowledge may be important to gain acceptance of practitioners. Secondly, training 
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a neural network can be a very time consuming process since it involves choosing 

values by trial and error for several parameters such as the training function, the 

momentum and learning rate. Unfortunately, such parameters are also sensitive to 

small changes, making fining tuning the network all the more difficult. Despite these 

limitations, the results warrant further investigation into the use of this technique for 

estimation, although the focus needs to change to improve the configuration of the 

networks used. 

3.4 CBR in Software Engineering Estimation 

Several advantages of using CBR (Section 2.2) for software engineering estimation have 

propelled it to be one of the most intensively researched alternative to traditional and 

other contemporary techniques. Unlike neural networks, there seems to have been a 

balance between empirical validation of CBR for estimation purposes [FW97, FWD97, 

ASOOJ and refinement of the model. 

The idea of using previous completed software projects to estimate effort of new 

projects was initially coined by Boehm [Boe81a]. Later, Vicinanza et al. [VPM90, 

VMP911 made one of the first attempts at using analogy for software cost estimation. 

Their tool Estor was similar to the contemporary CBR model and previously com- 

pleted projects were made accessible. Similar projects were retrieved by finding sum of 

squares of differences and the solutions were adjusted using adaptation knowledge to 

account for non-corresponding features. Adjustments rules were in the form of if-then 

rules. e. g. If staff size of selected project is small and staff size of target project is 

large, then increase the effort estimation of target project by 20 percent. These rules 

were extracted from experts or were hand-coded to deliberately fit the data used, thus 

compromising their generality. 

Another tool, FACE (Finding Analogies for Cost Estimation) was developed by Bisio 

and Malabocchia IBM951 which normalised candidate-target case similarity scores 0 

between 0 and 100 (100 being a perfect match). The value of 0 was determined by 

the user and only those cases were reused to form an estimate whose similarity was 

beyond the threshold limit set. 
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Shepperd et ai. developed a generic alternative to Estor for prediction purposes 

which was called ANGEL [SSK96. SS97, Sch98J. This tool allowed for searching sim- 

ilar projects in the case base using a variety of optional distance functions and then 

averaged them to deliver a solution. Later. Kadoda et ai. [KCSO0. KCCSOOJ conducted 

experiments on ANGEL to find optimal configurational parameter values for prediction 

such as number of nearest neighbours and similarity measure. However. the version 

of the tool allowed optimal feature set selecting using only exhaustive search which 

was computationally intractable for use once the number of features exceeded 15-20. 

Later, a revised version called ArchANGEL was developed that provided several feature 

and case subset selection strategies such as hill climbing methods [Ska941 and forward 

and backward sequential search. The use of these algorithms was shown to increase 

prediction accuracy [KS02a. KSH02J. Later, the group also explored other techniques 

to increase prediction accuracy including linear adaptation IKPS031 and avoiding use 

of misleading cases [PSC031. 

Other initiatives to apply CBP for software estimation include work by Mendes et 

al. [MCM02, MCM031 whose interest lies in cost or effort estimation of web projects 

Delany et al. [DCW98, De198, D0001 also investigated applicability of CBP to soft- 

ware estimation and argued that features included in software engineering data sets 

are inappropriate for estimation early on in the project's life-cycle. They made recom- 

mendations to collect data on subjective aspects of a project such as team experience, 

user requirements, requirements reliability and stability and suchlike. Idri and Abran 

IIAO 1. IAK021 recognised that often, software engineering data sets comprise of ordinal 

feature values and hence suggested the use of fuzzy logic to compute similarity be- 

tween projects since it could handle linguistic values such as very low, low, high and 

very high. 

A few studies have also been conducted comparing the performance of different 

techniques for software engineering estimation. Select ones have been presented in 

Table 3.1. The first column reports the relevant study and the remaining columns 

list the different prediction techniques used by each study. These include Case-Based 

Prediction, Advanced Case-Based Prediction (i. e. using some form of adaptation or 

feature subset selection in contract to a nearest neighbour approach), least square re- 

gression (LSR), rule induction (RI) and artificial neural networks (ANN). Each of these 

studies compared the performance of CBR with other techniques to investigate which 

of them delivers the best prediction accuracy. " The maximum number of stars (*) on 
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Table 3.1: Comparison of Different Software Engineering Estimation Models 1: Comparison of Different Software Engineer 

Study CBP Adv. CBP LSR 

ing Es 

RI 

timation 

ANN 

[SS97] ** * 
[FW97] ** * 
[BES+99] * ** 
[MKL+00] *** ** * **** 
[SK01] **** *** ** * 
[KSHO2] * ** 
[MWT O3] * ** 
[KPSO3] * ** 

each row indicate the number of techniques investigated in the study, and the most 
favoured technique is awarded those many stars. Thereafter, the second best tech- 

nique is awarded a star lesser and so on and so forth. 

The comparisons clearly show the potential of CBP for this domain. In the four 

studies ([SS97, FW97, MKL+00, SK01]), CBP outperformed LSR, but this trend was 

contradicted by the studies performed by Briand et al. [BES+99] and Mendes et al. 
[MWT+03]. Mair et al. [MKL+00] found ANNs to be the most accurate technique, but 

also emphasized that the achieved accuracy may not always outweigh the time spent 

on building and training complex models like ANNs. In contrast to them, Shepperd 

and Kadoda [SK01] found ANNs to be the poorest effort prediction technique when 

using simulated data. Whilst Table 3.1 lists only select studies, it is clear that there is 

some potential in the use of CBP for software engineering estimation in comparison to 

other techniques. This is further reinforced by the two studies conducted by Kirsopp 

et ai. [KSHO2, KPSO3] where they found that advancing CBP by using adaptation rules 

and a better subset of features can further boost prediction accuracy of the technique. 

Thus, on the whole the software engineering research community recognises the 

merits of applying CBP for estimation purposes. As a result, considerable groups are 

working on different techniques to further mature the approach while maintaining a 

balance with empirically validating the approach too. 
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3.5 Chapter Summary 

Estimation of effort and cost is an important activity in the software engineering dis- 

cipline. It has attracted large interest within the research community that has led to 

development of a variety of algorithmic and non-algorithmic models. While the former 

have shown to be inconsistent at delivering acceptable solutions and challenging at 
keeping abreast with current technologies, non-algorithmic models have attracted a 
large level of interest which led to the development of some promising alternatives. 

CBP is one such widely researched and promising methodology. It has the advan- 

tages of being easily deployable, capable of explaination and importantly, adaptable to 

the constantly evolving software industry. But the erratic quality of solutions leaves 

ample room for betterment. As shown in [MS05], a cause for varying solution quality 

is the quality of data sets used as case bases and investigating the same is one of the 

foci of this research. 
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CHAPTER 4 

Case Base Maintenance 

Maintenance of a CBR system is crucial to facilitate continued achievement of pre- 
determined objectives in the future (LW98J. This is a broad aspect in CBR which may 
involve activities such as checking the contents of the case base for their correctness 

or validity, fine-tuning retrieval strategies and making the system more efficient. Al- 

though this has long been realised, only recently has the community witnessed this 

aspect of CBR receiving the attention of researchers. As noted by Pal and Shiu JPSO4J, 

this flurry of activity has resulted in largely diverse pieces of work conducted under the 

absence of a unified framework. But lately, this has begun to change since alternative 

frameworks that can potentially serve as building blocks for pragmatic prototypes for 

maintenance are being proposed, for example [WilO1, RBRO1, RB03J. In this chapter, 
broad issues pertaining to case base maintenance (CBM) including salient research 

that address some of them are visited. Later, in the discussion section, it is shown 

why the techniques are inapplicable for CBP problems and thus, reinforce the need for 

development of alternatives to cater for prediction problem case bases. 

4.1 Maintenance in Case-Based Reasoning 

CBR systems are widely accepted to comprise four knowledge containers [Ric981 viz. 

vocabulary, similarity measures, adaptation knowledge and the case base. While not 

every system may have all four knowledge containers, the contents are interchangeable 

between them. It is these knowledge containers upon which the system critically de- 

pends for problem-solving. But several factors affect the competence of their contents, 

such as obsolescence, redundancy and noise, and this degrades the overall perfor- 
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mance of the system. Thus, it is important to keep existing knowledge containers in 

shape to enable delivery of the best possible solutions. 

A survey on case base maintenance by Iglezakis and Roth-Berghofer [IRB00] revealed 

that most research pertained to or concentrated upon the contents of the case base 

itself. This has resulted in the term case base maintenance being used synonymously 

with knowledge maintenance, although the latter is rather more generic since it cov- 

ers all knowledge containers. But such predominant attention to the case base is 

unsurprising considering it is the crux of any CBR system. Also, a healthy or well- 

maintained case base facilitates solving a range of problems correctly and efficiently. 

This decreases dependence upon other knowledge containers (e. g. similarity measures 

and adaptation knowledge) for problem-solving, thereby reducing overall knowledge 

engineering effort. 

Broadly speaking, CBM involves tasks or procedures implemented upon the CBR 

system to preserve or enhance its performance. Alternative definitions and descrip- 

tions of CBM have been proposed by different researchers and seem to be fairly con- 

sistent. One such generic definition by Leake and Wilson (LW98, Wi101] is as follows: 

"Case-base maintenance implements policies for revising the organisation or 

contents (representation, domain content, accounting information, or imple- 

mentation) of the case-base in order to facilitate future reasoning for a partic- 

ular set of performance objectives. " 

We now examine this definition more closely: 

"Case-base maintenance implements policies": suggests that similar to other CBR 

sub-tasks, CBM is a methodology [Wat981 implemented by a set of guidelines 

rather than rules. Hence, CBM Is undertaken keeping in mind the performance 

objectives or goals for a given system and domain. 

"revising the organisation or contents": Revising the organisation refers to logical stor- 

age in the case base memory, while revising the contents refers to modifying the 

knowledge'containers. It is important to note here that CBM extends to all knowl- 

edge containers in the case base i. e. including domain knowledge, similarity mea- 

sures, vocabulary and adaptation knowledge. This is also in agreement with Zhu 

and Yang's classification of maintenance tasks [ZY99] which is discussed later in 

the chapter. 
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"a particular set of performance objectives": CBM may be implemented within a case- 
based reasoner for a variety of reasons. While the goal may be to only increase 

solution accuracy on one system, another system may need this goal to be ac- 

complished using the smallest possible case base. Hence. CBM operations on the 
knowledge containers are implemented according to pre-determined goals and 
different goals could lead to quite different maintenance activities. 

4.2 CBM in the CBR Cycle 

An important aspect of CBM is its integration into the CBR-Cycle. In a broad sense, 
CBM has always been part of CBR systems. In Aamodt and Plaza's CBR cycle ([AP941 

and Section 2.1). CBM is witnessed In the Retain stage (Fig. 2.1) where a new problem 
is added to the case base alongside its solution for future use. The notion behind 

adding a new case to the case base is to increase competence by enlarging its domain 

coverage for better problem solving in the future. Guided by a performance objective 

and resulting in the modification of a knowledge container qualifies the Retain step to 

be a CBM task, according to Leake and Wilson's definition presented in the previous 

section. 

A major drawback of Aamodt and Plaza's model is the implicit inclusion of CBM, re- 

sultantly undermining its importance. This deficiency was recognised and corrected by 

Reinartz et al. [RBIO1) who proposed a R6 CBR-Cycle which adds two additional steps 

viz. Review and Restore, to the R4 CBR cycle. The R6 CBR-Cycle is distinctly parti- 
tioned into Application Phase and Maintenance Phase (Fig. 4.1). While the Application 

phase focusses upon solving a given problem, the Maintenance Phase concentrates 

upon conditioning the case base to preserve its competence. This model is aimed at 

giving maintenance a more integrated, definite and functional role in CBR systems. 

In the R6 model, the Review step entails assessing the status of various knowledge 

containers and monitoring them routinely, ad hoc or when triggered. The results of the 

assessment are thereafter reported indicating whether and which knowledge container 

may require maintenance. The Restore step short-lists and ranks the possible oper- 

ations that may potentially be performed to reinstate the knowledge container to the 

desired level. This model is more elaborately discussed in [RBR01I. Besides, another 
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Maintenance Phase -" Application Phase - 

knowledge', problem 

Retain Retrieve 

Review knowlege knowledge Reuse 
containers' containers 

Restore -"" Revise 

--------------------- --------------------------- 
Figure 4.1: R6 Model (RBIO1) 

point of merit of the R6 model is that it accounts for the concepts of data collection 

and timing of implementing maintenance operations introduced by Leake and Wilson 

[LW981. 

4.3 Types of CBM Techniques . 

Zhu and Yang (ZY99) suggested a target driven classification for CBM techniques. 

One class of techniques deal with contents of the knowledge containers in the system 

to enhance overall performance. As mentioned earlier, most such techniques focus 

upon the case base and tend to maintain or enhance its competence for problem- 

solving. Examples of such tasks include adding or deleting cases, redefining similarity 

measures and so on. Such maintenance tasks can be termed as Knowledge-Specific 

Maintenance (KSM). On the other hand, other techniques concentrate upon issues 

such as the representation of knowledge within the containers, case base indices, etc. 

Thus, they are aimed at structural changes in the system to enhance efficiency, e. g. 

(CBS97, ZY981. Such tasks as can be classified as Structure-Specific Maintenance 

(SSM). It is important to note that these two classes are not necessarily exclusive since 

implementing one may result in or call for implementing the other. 
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Alternatively, Pal and Shiu IPSO41 more recently suggested a method driven clas- 

sification, i. e. Quantitative Maintenance or Qualitative Maintenance. As previously 

stated, a CBM is triggered or executed on a case base to accomplish pre-determined 

objectives. The former concentrates on efficiency related issues of CBR e. g. problem- 

solving efficiency, case base storage size, etc. while the latter deals with maintaining 

or enhancing the effectiveness of a system by addressing the case base's correctness, 

consistency and completeness. Similar to the above classification by Zhu and Zhang, 

both these categories are not necessarily exclusive since some objectives overlap and 

implementing one may result in or call for implementing the other. 

4.4 Case Base Editing Techniques 

Since this research centres around case base quality, Knowledge-specific maintenance 

techniques are focussed upon below. KSM or editing of case bases can be either decre- 

mental approaches, in which they reduce the size of the case base, or incremental 

approaches that add new cases to the case base. Brighton and Mellish [BM02) pro- 

posed another classification of approaches as competence preserving or competence 

enhancing techniques. The former class of techniques focuses upon superfluous in- 

stances whose removal does not lead to any decrease in classification accuracy, while 

in the latter class of techniques, noisy or possibly corrupt instances are identified and 

treated or removed to increase classification accuracy. We examine some such promi- 

nent techniques in the following two sub-sections. 

4.4.1 Competence Preserving 

Much recent research on CBM has been motivated by the utility problem [FR931, which 

in effect is competence preserving. In CBR, it is characterised by unchecked growth 

of knowledge (specifically cases) with an intention to improve performance, but results 

in quite the opposite i. e. degradation of overall performance, especially efficiency. 

This is because of the increase in size of the case base for systems that encounter a 

high frequency of problems. As a result, search and retrieval time increases with size 

and hampers quick solution delivery. This phenomenon of trade-off between solution 

quality and system efficiency, also referred to as the swamping problem [SG041, was 
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empirically validated by Smyth and Cunningham (SC961. Thus, many techniques have 

been proposed to reduce the size of the case base and preserve its competence. 

One of the earliest attempts was made by Hart who proposed the Condensed Nearest 

Neighbour (CNN) technique [Har68]. In CNN, cases are incrementally moved from the 

case base to an empty set only if their absence results in misclassification of cases 
in the edited set. As pointed out by Delany and Cunningham [DC04], this technique 

is sensitive to noise and the order of cases examined. CNN was further refined by 

Ritter IRWLI751 by accounting for adding noisy cases by adding only those new cases 

that are close in their problem and solution spaces to existing cases in the edited set. 
Again, this technique does not overcome the problem of case presentation order. A 

contrasting method to CNN was proposed by Gates [Gat721 who removed only those 

cases from the training set whose absence did not result in any misclassifications, but 

this is highly likely to be sensitive to the order of presented cases too. Aha et al. 's 

CBL1 learning algorithm [AKA91] was modified to develop CBL2 to selectively chose 
to retain only those cases that discriminated between goal feature values. Although 

it was shown that it considerably reduced the number of stored cases, it performed 

relatively poorly in comparison to CBL1 and was also vulnerable to noise. 

Smyth et al. have published several research papers on maintaining case base com- 

petence while minimising size, the resultant case base being termed as competence 
footprint. Here, competence is defined as the area of the problem-space covered by 

the case base. In [SK951, Smyth and Keane introduced the concept of coverage and 

reachability. The coverage of a case is the set of target problems that can be solved, 

while the reachability of a target case is the set of cases that can solve it. On the 

basis of the degree of overlap between these two sets for Individual cases, they were 

classified as pivotal, auxiliary, spanning and support cases. Then two case deletion 

policies were proposed. (a) the footprint deletion policy that deleted cases in the order - 

auxiliary, support, spanning and pivotal; and (b) footprint-utility deletion policy which 

deleted cases in the same order but in light of the case's utility. Thus, this technique 

removes only redundant cases from the case base which have no impact on the com- 

petence of the system, but retard efficiency. Empirical validation of the two policies on 

a residential property valuation system encouraged further work that was published 

in [SM98, SM99, MSOO, SMO11. Several variants that borrowed fundamental concepts 

introduced by Smyth et al. have been proposed. For example, Brighton and Mellish 

[BM021 removed cases from the case base whose reachability set was larger than their 
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coverage set. Again, aiming to build a competent case base, Zhu and Yang IZY991 pre- 

sented an algorithm to contrarily add cases to the case base to maintain competence. 

Reusing the concepts of case coverage, their technique, testing upon a planning ap- 

plication, claimed to place a desirable lower bound on the competence of the resulting 

case base. 

While the footprint technique was developed with an intent of removing redundant 

cases, it Is important to note that the case deletion policies were based on two large 

assumptions that may fail to hold in case bases for prediction domains. Firstly, the 

algorithms assume that the case base is representative of the problem space ILW991 

and secondly, the problem-space is a regular one. Also, no techniques have been 

suggested to verify if these assumptions hold for a given case base. In addition, com- 

petence preserving deletion strategies have shown to be effective, though on classifica- 

tion problems only. It is believed that these policies may be difficult to implement in 

domains where the solution is a continuous value since the concepts of coverage and 

reachability would be rather subjective. 

Salamö and Golobardes ISGO41 applied reinforcement learning (RL) to reduce the 

size or increase the competence of the case base. In their model, the RL algorithm 

continually monitors the state st of the system and awards a reward based on every 

performance. On failure, it triggers action to delete or maintain a case in the case base. 

A higher reward is awarded on problem-solving using the new reduced case base. On 

the whole, the important part of the of the RL algorithm is the score that reflects the 

on-going state of the CBR system. Thus, this model addressed the utility problem by 

correcting or removing noisy cases and has been evaluated using numerous classifi- 

cation data sets since it is clearer to recognise errors. 

Another reason to remove cases from the case base is limitations on storage. Kira 

and Arkin JKA04J faced this problem due to fixed storage on mobile-robots who used 

CBR for navigation purposes. Here. the system is required to make room for a new case 

to be stored by deleting an existing case. Several metrics including recency, frequency 

of use, successes and random deletion were experimented with and were found to be 

effective. 

There has also been research on maintenance of unstructured or textual case bases 

[RY96, RY97, RYO1J. One of the foci was to detect and remove redundant cases in the 

case base. This was achieved by pre-processing problem and solution descriptions to 
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identify keywords and thereafter, comparing cases to observe the degree of overlap in 

both descriptions. Rules were presented to determine the nature of the overlap and 

selection of which case to remove. 

4.4.2 Competence Enhancing 

Competence enhancing techniques are those which are aimed at increasing the solu- 

tion quality or accuracy of the CBR system. Such techniques are typically associated 

with noise removal which hamper the overall quality of solutions delivered. Noise in a 

case base can either be inherent or evolutionary. Inherent noise includes cases with 

inconsistencies or suspicious values in either, their problem or solution feature values. 

This could be a result of a false observation, a clerical error during data entry or may 

indeed be an outlier. On the other hand, evolutionary noise may be a result of changes 

in the domain which render older cases in the case base use lessor incorrect. Thus, in 

essence, the data is exhibiting a moving or evolving behaviour, e. g. behaviour of bank 

account holders over the past decade may exhibit differences rendering previous data 

unhelpful or even noisy. 

An early attempt by Wilson [Wil72]. also known as Wilson Editing, removed all cases 

in the case base which were incorrectly classified by their nearest neighbour. Though 

effective, a major drawback of this scheme was that the target case was assumed to be 

noise even though the candidate case may well have been so. Later, Tomek [Tom76] 

built upon this technique by making several passes over the training set and also by 

incrementing with different values of k (number of nearest neighbours). 

From a case base maintenance perspective, CBL3 [Aha91) is of interest to us since 

it aimed at removing noisy cases. This was implemented by tracking the frequency of 

a retrieved case matching the target's goal feature. Thereafter, only those cases with 

significantly high frequencies were reused. Results showed that CBL3 was relatively 

more robust and resilient to noise in comparison to its predecessors. 

A method that accounted for temporal drifts (evolutionary noise) was proposed by 

Montaner et al. [MLdeRO2J for recommender agents. Their technique accounted for 

changing tastes and preferences of uses that made some existing cases irrelevant. 

Each case was associated with a variable that recorded the degree of users' Interests 

in it. Upon reaching a certain threshold. it was discarded. 
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A failure driven deletion strategy was proposed by Portinale et al. IPT1799, PT001 

where the entire case base was periodically monitored. Here, two types of cases were 

identified and removed. Firstly, cases that have been inactive or not retrieved for a 

threshold period of time are considered irrelevant and deleted. Secondly, cases that 

have been recorded to deliver false solutions more often are deleted. 

An interesting extension to the footprint deletion policy ISM011 was proposed by 

Delany and Cunningham [DC04J who dealt with sparr filtering which entailed using 

voluminous and noisy case bases. In addition to defining the coverage and reachability 

sets of a case, they included another property, i. e. the liability set which defines 

the instances where the case misclassifies the target case or contributes towards it. 

Thereafter, if cases within the coverage of this case can be classified correctly using 

other cases, it is deleted or else retained. 

Cheetham [CheO01 developed a technique that associated a confidence value with the 

proposed solution. The approach preprocessed the training data to assess the magni- 

tude of error in the predicted value relative to the target-candidate case distance and 

generate a linear regression model between similarity scores and error. Although an in- 

teresting approach to influence users' confidence, this approach does not address the 

issue of avoiding reuse of noisy cases which principally affect the confidence intervals. 

Thus. the competence enhancing techniques presented above deal with noisy cases 

in the case base that may pose a hurdle to delivery of good solutions. 

4.5 Discussion 

This chapter summarised recent salient developments in case base maintenance. As 

mentioned before, it is evident from the works cited that research in this aspect of CBR 

has gained momentum in the recent years. In this section, some of the characteristics 

and trends In maintenance relevant to this research are discussed. Also, certain gaps 

or inadequacies in the research are presented that make such techniques ineffective 

for prediction problems. Firstly, it was noted that most techniques were built for 

and demonstrated upon classification problems. Such tasks usually have well-defined 

problem and solution space boundaries that ease development of routines that perform 

intelligent operations such as maintenance. Additionally. classification case bases may 
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tend to exhibit more problem-solution regularity due to relatively lesser noise. This is 

because most boundary cases are problematic since they can potentially misclassify or 
be misclassified and hence, can be labelled as noise. Moreover, detecting noise in such 

case bases is relatively trivial since a case simply correctly or incorrectly classifies or 
is classified, irrespective of 'by how much'. This makes possible implementation of 

concepts such as coverage and reachability, as suggested by Smyth et al. [SK951, to 

be determined for cases in such case bases since the boundaries are more hardlined. 

Whereas in software engineering estimation (and other prediction problem domains), 

even similar projects exhibit a certain degree of difference in the solution values since 

no two projects are likely to be identical in specifications and implementation. Ad- 

ditionally, every project is likely to be vulnerable to external factors that deviate the 

project from its schedule [Sca941. Also, as discussed in Chapter 3, the problem and 

solution spaces in our domain are open-ended. Hence, it is nearly impossible to as- 

certain whether a given case base well represents the domain. This further makes the 

task of confidently defining case coverage and reachability impossible since it cannot 
be ascertained whether a case subsumes another or can solve the problems that other 

similar cases can. 

Another interesting pattern noticed in the related work on maintenance is that, bar- 

ring Montaner et ai. IMLdeRO2], all other techniques implicitly assumed static problem 
domains, i. e. the data does not change with time. This is unrealistic in the software 

engineering field since it is common to see new technologies being used, which when 

gain popularity, make other cases irrelevant. But in the techniques discussed above, 

obsolescence and irrelevance seemed to be associated with non-use of the case for a 
threshold period of time. Hence, it is important for a framework to account for dynamic 

data to be implemented in software engineering. 

One can also argue that it may be worth considering to discretize the solution which 

would turn it into a classification problem and enable applying the above mentioned 

techniques. But this may be unfavourable for numerous reasons. To cite a few, firstly 

industrial budgets require absolute values to optimise resource allocation. Secondly, 

the open-ended characteristic of the solution value causes selecting the range of in- 

tervals for discretisation challenging and acceptable to all. Thus, predicting within 

smaller ranges adds to uncertainity while using larger ranges is of lesser value when 

budgeting in the real world. 
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4.5 Discussion 

Thus, current techniques seem inadequate to be directly applicable to prediction 

problems for maintenance purposes. They either cannot be applied conceptually or 
lack measures to cater for continuous value solutions. Thus, having identified a gap in 

the research, this thesis aims to provide one possible alternative to tackle this problem. 
The subsequent chapters present the methodology for the proposed technique and 
then validate it on software engineering data sets. 
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CHAPTER 5 

Meta-Data 

This chapter provides a description of the method for generating the two building 

blocks of this research, which is termed as meta-data in this research. For ease of un- 

derstanding, the methodology has been exemplified using one of the data sets from the 

analysis. To begin with, some instances of previous use of meta-data in CBR research 

are revisited. Thereafter, the proposed meta-data for this research are introduced fol- 

lowed by their generation procedure. 

5.1 Meta-Data in CBR 

The CBR community widely acknowledges that a within each case, there are features 

that describe the problem or represent a point in an n-dimensional problem space, 

while others (usually one) represent points in the solution space. Another perspective, 

as suggested by Finnie and Sun [FS02) is that the case base consists of a World of 

Problems' and aWorld of Solutions', i. e. Wp x W,. This is a more flexible outlook since 

it enables defining aM: N relationships [EN03) between data points in the problem 

and solution spaces. 

But, Leake and Wilson [LW981 and Reintartz et at. [RIRBO11 advocated interpolating 

data sets with case-specific information that can be gainfully exploited during problem- 

solving. Though these suggestions were made from a maintenance perspective. similar 

data in case bases has been witnessed previously in research for a variety of purposes. 

Such data or features are typically unindexed that do not form a part of retrieval 

(i. e. are not used when computing inter-case similarity) but only provide background 

information about other data. While Reintartz et a!. referred to such data as 'quality 
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information', in this research, it is referred to as 'meta-data' which has a more generic 

connotation. 

Meta-data can be stored in three possible levels in the case base. The highest level 

would be the information stored that pertains to the case base itself. An example 

where such information can be vital is when using more than one case base I S01, 

IS02a, IS02b]. On the next level, meta-data relevant to individual cases can be stored 

alongside the problem and solution space features. As mentioned earlier in Chapter 4, 

Portinale et al. [PTT99. PT00] stored case-specific meta-data including frequency of 

retrieval or reuse and frequency of successful and unsuccessful adaptations. Another 

example includes research by Kira and Arkin [KA04J who used features similar to 

Portinale et al for selecting cases to be deleted. On the lowest level, even individual 

features can possess their own meta-data such as their relevance or weighting [AB941 

and descriptions that can be very useful when mapping features across heterogenous 

case bases. 

The meta-data generated in this research is case-specific since the aim is to assess 
the regularity of the case base at that level and potentially identify noisy or unreliable 

cases. This chapter only describes the meta-data and the relevant methodology for 

their generation, while the following two chapters demonstrate how the meta-data can 
be used to accomplish the set objectives for this research. 

5.2 Desharnais Data Set 

Over the next three chapters (including this one), the methodology is exemplified us- 
ing the Desharnais data set. The software engineering projects included in the data 

set originate from a Canadian software house. After removing 4 cases with missing, 

solution values, the remaining 77 cases have been used in this research. Readers are 
directed to Section 8.2 (pp. 72) for descriptive statistics on the data set. 
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5.3 Distance and Residual Rank Ratios 

In software engineering estimation, the problem and solution spaces are open-ended. 
As a result, while inter-case distances are normalised, the solution spaces are merely 

residuals* with no bounded ranges (i. e software engineering is an open-ended prob- 
lem). For example. the range of the solution feature. Effort, in the Desharnais data 

set is 23394. This information says little about the quality of solution produced us- 

ing nearest neighbour techniques, especially when this range Is unknown to the user. 

Hence, the intention is to generate meta-data that is a further normalisation of (i. e. 
beyond normalising inter-case distance) problem and solution space distances, and 

are suitable for use in the techniques proposed in this research. 

In [LW991, concepts of PDist and RDist were introduced where the former referred to 

problem space distances between two cases in a case base, while the latter referred to 

solution space distances. It was expected that these distances should exhibit at least 

some (preferably strong) regularity or association for a CBR system to be successfully 

functional. In this research, DRRC, T and RRRc, T are concrete instances of PDist and 

RDist respectively for prediction problem domains and are described in the following 

sub-sections. 

Since the interest lies in assessing the quality of the case base before deployment, 

any proposed assessment must be carried upon only the constituent cases. This is ac- 

complished by splitting the data set randomly and without replacement into a training 

set, Tr (which forms the case base) and the testing set, Ts (which comprises the test 

cases) in a 2: 1 ratio. This is a popular split ratio used widely in the machine learning 

community. The meta-data is generated only for the training set. 

Of course. such a split may introduce a sample bias in the analysis and must be ad- 

dressed. Hence, 30 such random samples of training and testing sets were generated 

for each data set used in this analysis. The number of samples (30) was motivated by 

an empirical investigation by Kirsopp and Shepperd IKS02bj. Their results highlighted 

that random split of data into a training and testing set may introduce sample bias 

causing the technique to produce untrustworthy results i. e. the technique's good or 

For example, the residual for the ith observation of effort, e is given as ei - e;, where e; is the true value 

for effort and e; is the predicted value. 
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poor performance may actually be an artifact of the sample. To overcome this short- 

coming, they recommened testing the technique on at least 20 samples. 

Thereafter, for each sample generated, two meta-data, Distance Rank Ratio and 

Residual Rank Ratio are generated. These are described in the following two sub- 

sections. 

5.3.1 Distance Rank Ratio 

The Distance Rank Ratio (DRRC, T) is the ratio of the order of a candidate case's dis- 

tance from the target case (with respect to the other candidate cases in the case base) 

to the other total number of cases in the case base less one (for which the retrieval is 

being made). 

DRRc'T __ 
DistanceRank 

(5.1) 
n-1 

This is given by Eqn. 5.1 which is the DRRC, T of candidate case C for target case T. 

DistanceRank is the candidate's position with respect to other candidate cases when 

sorted in increasing order of distance from the target. While n is the total number of 

cases in the case base. Hence, lower the value of DRRC, T, the closer the candidate is to 

the target in a given case base. To exemplify, consider a case base with 51 cases. Now 

to predict for one of these cases, the Euclidean distance between it and the remaining 

50 cases is calculated. The cases are then sorted by increasing order of their distance. 

Here, the closest case would have DRRC, T as 1/50 = 0.2. The next similar case would 

have DRRC, T 2/50 = 0.4 and so on until the furthest case with DRRc, T 50/50 = 1. 

5.3.2 Residual Rank Ratio 

Likewise, Residual Rank Ratio (RRRC, T) is the ratio of the order of a candidate case's 

residual from the target case (with respect to the other candidate cases in the case 

base) to the other total number of cases in the case base less one (for which the re- 

trieval is being made). Recall, as explained earlier in the section, that residuals are the 

difference between the actual and predicted values. 
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RRRC, T = 
ResidualRank 

(5.2) 

This is given by Eqn. 5.2 which is the RRRC, T of candidate case C for target case T. 

ResidualRank is the candidate's position with respect to other candidate cases when 

sorted in increasing order of residuals from the target. While n is the total number 

of cases in the case base. Here, lower the value of RRRC, T, the better this candidate 

can predict for the target, assuming the solution is not adapted. Again, to exemplify 

consider a case base with 51 cases. To predict for one of these cases, the Euclidean 

distance between it and the remaining 50 cases is calculated. The cases are then 

sorted by increasing order of their absolute residual, i. e. in increasing order from the 

candidate case in the solution space. Here, the closest case would have RRRc, Tas 
1/50 = 0.2. The next similar case would have RRRc, T 2/50 = 0.4 and so on until the 

furthest case with RRRC, T 50/50 = 1. 

To compute inter-case distances, Euclidean distance was used. Typically, software 

engineering data sets comprise both, numerical and categorical features. The distance 

metric, resultantly was modified slightly to accommodate both feature types. Given a 

case base with n number of software engineering projects (P) and 1<i, j<n, each 

described by a set of m features and 1<l<m; the distance between two projects, P; 

and P,, is given by first, computing similarity between individual features (Eqn. 5.3) 

and then, summing them to compute total similarity (Eqn. 5.4). 

lPi, ' - P,, 1 \Z 
maxi - mznl 

0 

1 

if the It'` feature is continuous, 

if the 1t4 feature is categorical and Pi j=P,,, i. 

if the lth feature is categorical and P;, i # P3,1. 

jm 

E. 5(P1, t, ß'i, 1) 
distance(Pi, Pi) _ 

n 

(5.3) 

(5.4) 

The relevant MATLAB code to compute Euclidean distance can be found in Appen- 

dices A. 3 and A. 3. It is important to note at this stage that missing data from the data 
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sets used in this analysis were removed since they require considerable research to be 

appropriately imputed or handled ITC051, or else may introduce bias. 

5.4 Generation of Meta-Data 

For each data set described in Chapter 8,30 independent random samples of training 

and testing data were generated. The distance of each case (playing the target case) 
in the training set or case base, Tr from every other case (playing the candidate case) 
in the case base was computed along with the corresponding difference between their 

solution values, i. e. the residual. Thereafter, the values of DRRCT and RRRC, T were 

computed as described in the previous section. 

For each of the 30 random samples of the Desharnais data set, the training set 

comprised 51 cases while the testing set comprised of the remaining 26 cases. The 

meta-data was generated for each case in the case base as described above. Table 5.1 

is an extract of the meta-data generated from the first of the 30 training sets. Col- 

umn 1 denotes the case playing the role of the target for which a prediction is meant 
to be made. The second column denotes the case number against which the target 

case is compared to. In column 3, the Euclidean distance between the two cases is 

recorded while in column 4, the corresponding distance rank ratio is computed and 

recorded. Similarly, columns 5 and 6 record the corresponding residuals and residual 

rank ratios. Relevant MATLAB code is presented in the appendices on pages 136 and 
137. 

Hence, 2550 instances (i. e. 51 target cases x 50 candidate cases) of distances, resid- 

uals and corresponding DRRC, T and RRRC, T were generated. Table 5.1 exhibits the 

irregularities in the case base that we had hoped to perceive using the proposed meta- 
data. For example, Case 14 Is fairly similar to Case 1 since DRRC, T= 0.12 and as we 

would expect, its RRRC, T is very low too i. e. 0.02. Similarly, Case 16 with very high 

DRRC, T also has a very high RRRC, T. Such cases are examples of reliable cases since 

their behaviour Is predictable, i. e. their problem and solution features are proportion- 

ally distant from the target's features. This is also in accordance with the consistence 

case property, as proposed in [RIRB00, IRRB041 and the CBR premise -'Similar prob- 

lems have similar solutions'. 

44 Rahul Premraj 



5.4 Generation of Meta-Data 

Table 5.1: Rank Ratio Example 

Target Candidate Distance DRRC, T Residual RRRC, T 

1 2 0.3842 0.42 1498 0.56 

1 3 0.4506 0.78 -973 0.36 

1 4 0.5250 0.96 -301 0.14 

1 5 0.3428 0.18 1127 0.42 

1 6 0.3399 0.16 1316 0.48 

1 7 0.1123 0.02 924 0.34 

1 8 0.3839 0.40 1473 0.54 

1 9 0.4832 0.88 455 0.22 

1 10 0.3437 0.20 -7714 0.96 

1 11 0.4762 0.86 483 0.24 

1 12 0.4954 0.92 2247 0.68 

1 13 0.3945 0.46 -1505 0.58 

1 14 0.2215 0.12 21 0.02 

1 15 0.2330 0.14 2030 0.62 

1 16 0.5063 0.94 -5453 0.90 

However, cases with unexpected patterns of behaviour need to be cautiously treated. 

Examples include case 10 having fairly low DRRC, T, but would be a poor choice as 

a candidate case as reflected by its high RRRC, T. Similarly, Case 4 is very distant 

from the target case (DRRC, T= 0.96) but makes an excellent candidate case given that 

RRRC, T= 0.14. While this does not necessarily suggest that Case 4 is unreliable, in 

this research, we consider it to be so. This is because reuse of Case 4 when lacking 

sufficient implementation knowledge, which further results in the inability to adapt the 

solution, is likely to deliver a poor solution. Such cases are hence labelled unreliable 

cases since their problem and solution features are disproportionally distant from the 

target case. 
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5.5 Chapter Summary 

Meta-data is potentially a valuable component in case bases that can be either gen- 

erated or derived from other features to play crucial roles in the functioning of a CBR 

system. This chapter presented two novel meta-data that are the basic ingredients 

used in the techniques presented in this research, which are described in the follow- 

ing two chapters. A preview of the utility of the meta-data has been demonstrated on 

a sample of the Desharnais data. The meta-data helped observe the irregularity in the 

case base suggesting treating at least some cases with caution. This is because some 

cases behaved unreliably and their reuse may result in poor solutions. Of course, the 

data presented is only a small extract from a single sample, it is too early to draw any 

conclusions about the overall regularity of the Desharnais data set and its applicability 

to CBP. 

But techniques to determine applicability of data sets to CBP by verifying the reg- 

ularity in the case base is the focus in the next chapter. Thereafter, the focus drifts 

to techniques that assess individual case reliability that is further used to infer its 

suitability for reuse in an attempt to increase prediction accuracy. 
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CHAPTER 6 

Case Base and Case Quality 

Previously in Chapter 4, contemporary motivations and directions in case base main- 

tenance research were cited that focussed upon the criticality of a good case base to 

deliver effective solutions. How the goodness or 'quality of a case base is measured 

and the techniques implemented to retain such a case base is largely dependent on 

the domain, application and objective of the individual CBR system. 

This chapter describes the techniques and methodology exploited in this research to 

gauge and visualise case base and individual case quality, or specifically regularity in 

this case. using the meta-data generated in Chapter 5 for CBP. Again, to ease under- 

standing, the methodology is exemplified using the same Desharnais data set sample 

(first random sample) from the previous chapter. Firstly, techniques that measure case 

base quality are concentrated upon and then the focus moves to measuring individual 

case quality. 

6.1 Mantel Randomisation Test 

The Mantel Randomisation test' (Mantel's test) was primarily developed to compare two 

distance matrices (generated using a distance measure, e. g. Euclidean distance), and 

has so far been used across a range of disciplines such as ecology and biology [ManO 11. 

Fundamentally, the test measures the association between corresponding elements of 

The author is indebted to Barbara Kitchenham IKKJO51 for her recommendation to use Mantel Randomisa- 

tion test as one of the case base quality measures early on during the course of this research. In [KK. J05], 

the authors have used the Mantel test for feature subset selection to increase prediction accuracy. 
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two distance matrices using a suitable statistic (usually correlation). Assume that 

there are two distance matrices A and B: 

0 a12 """ aln 0 b12 """ bin 

a21 0 ""' a2n b21 0 """ b2n 

A= , B= 

and an2 0 bn1 bn2 0 

Here, matrix A records the inter-case distances between the independent or predictor 

variables and hence can be referred to as predictor variables distance matrix. while 

matrix B records inter-case distances between the dependent or response variables 

and can be referred to as response variable distance matrix. In both matrices, elements 

ai j and bt1 respectively record predictor and response variable distances between the ith 

and jt^ case. For example, in CBP matrix A will comprise distances amongst problem 
features set between cases in the case base while matrix B records the differences in 

solutions (residuals) between the respective cases. The diagonal elements in A and B 

are zero because in these cases, the candidate cases are same as the target (i. e. i= j). 

nnn 

E °''jbid - °''j 6'3 /n 

;, ý=i ., i=1 c i=1 R= (6.1) 
nnnn 

a-l aii)2/n b-( bij)2/n 

For the two given distance matrices A and B, Eqn. 6.1 calculates Mantel's test statis- 

tic (correlation in this case) where n is the square of the dimension of the matrices (both 

being square and of the same size) less the number of diagonal elements. The corre- 
lation (R1) of the two distance matrices A and B is calculated by measuring across 

the pairs of corresponding elements excluding the diagonal elements. Thus, Rl is 

an indicator of the degree of regularity in the case base. Higher values of Rl would 

suggest corresponding data points are appropriately spaced out in the problem and 

solution spaces while lower values would indicate problem-solution irregularity in the 

case base. 
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6.1 Mantel Randomisation Test 

Thereafter, the indices or positions of the elements of one of the matrices, say A, 

are randomised and the correlation (R2) between original distance matrix B and the 

randomised distance matrix A is recalculated. Interestingly, only the term E aijbt j 
changes in Eqn. 6.1 when A is randomised and thus, is equivalent to R. Now, if 

R2 > R1, it would suggest that there exists no relationship between the predictor and 

response variables since random pairs are more strongly correlated. This is analogous 
to regression modelling where no independent variable has a beta coefficient signifi- 

cantly different from zero. Hence, to ascertain the likelihood of a relationship, Mantel's 

test statistic is calculated between matrix B and 4999 permutations of matrix A to test 

for statistical significance. The remainder of the section describes the implementation 

methodology. 

It is important to recognise that Eqn. 6.1 is the formula to calculate correlation be- 

tween pairs of any two given samples. The test's main contribution resides in the con- 

cept of measuring association between distance two matrices, one of whose elements' 

indices are rearranged randomly. Coupled with the test statistic, the randomisation 

ascertains the relationship between the predictor and response variables, computes 

its strength and tests for statistical significance or the likelihood of occurrence of the 

relationship by chance. Such a test is crucial to CBP systems since they function 

by assuming a strong relationship between predictor and response variables. Results 

would expose the degree of underlying irregularity in the case base and indicate if 

there is a need to incorporate additional pre-processing or functionality to enhance 

prediction accuracy or even disregard the case base from use. 

One now arrives at the task of populating the two distance matrices for the problem 
domain. This task would seem as straightforward as recording inter-case distances 

(Euclidean distance in this case) for all predictor variables and recording them in ma- 

trix A and the corresponding residuals in the appropriate cells of matrix B. But, as 

pointed out earlier in Section 5.3. It is important for the distances to be appropriately 

normalised to be comparable to each other. Now, this is where the meta-data generated 

in Chapter 5 is first put to use. 

To populate the two matrices, first, distance matrix A (predictor variables) is popu- 

lated with values of DRRC, T (Section 5.3) using the corresponding target and candidate 

case numbers (Table 5.1) to serve as column and row indices respectively, e. g. DRRC, T 
for target case 1 and candidate case 2 is recorded in the second row and first 
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column of matrix A. Analogously, matrix B (response variables) is populated with the 

corresponding value of RRRC, T (Section 5.3) in the same cell position. This is contin- 

ued sequentially for all generated instances of meta-data resulting in the two distance 

matrices A and B, which are now ready for Mantel's test. Recall that DRRCT and 
RRRC, T are asymmetric (i. e. DRRC, TLDRRT, C and RRRC, T#RRRT, o). Hence, using 
them for Mantel's test reflects the regularity of the case base from the perspective of 

providing good solutions to problems. 

Once matrices A and B are populated, the correlation coefficient Rl is calculated 

using Eqn. 6.1. Thereafter, another 4999 coefficients (R2... 5o00) are calculated between 

RRRc, T and 4999 randomisations of DRRc, T, this sample size of 5000 being adequate 
for reliable statistical testing [Man01]. The value of Rl is examined to reflect upon 
the regularity of the case base and then is statistically tested using all 5000 correlation 

coefficients. The derived results are then analysed to judge the applicability of the case 
base to CBP and the degree of inherent regularity. 

The relevant MATLAB code for this section can be found in the appendices on . 
pages 139,140 and Appendix A. 6. 

6.2 Visualising Case Base Quality 

Though the Mantel's test is capable of measuring the problem-solution regularity in a 

case base, a visualisation that further substantiates the results can be very helpful. 

The following subsections present novel case base and case visualisation techniques 

that help examine case base regularity and the reliability of individual cases. 

While the focus in this research is to visualise the regularity of the case base, pre- 

viously there has been some interesting work on visualisation methods in CBR. To 

mention a few, these include CASCADE [MS01a] which enabled case base authoring 
by visualising the competence and coverage as cases are added to the case base. An 

extension to CASCADE was provided in [MS01b] by Mullins and Smyth. They pre- 

sented a Spring Model, which basically is a force directed graph, that preserved the n- 
dimensional similarity relationships between cases in a case base and presented them 

on-screen. Such visualisations are very helpful to analyse the coverage of the domain 

by a case base since they reveal dense and sparsely covered areas. Such information 
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can be used to concentrate on collecting cases to cover the under-represented areas of 

the domain. 

6.2.1 Overall Case Base Dissonance 

First, a simple visualisation of case base regularity is provided that could confirm the 

results derived from the Mantel's test. Again, this is demonstrated using the Deshar- 

nais data set training sample from Chapter 5. Fig. 6.1 is a bubble plot of all 2550 

pairs of DRRC, T and RRRc, T from Section 5.3 of candidate cases for each case as a 

target. The size of the bubbles increases in proportion to the frequency of data points 

superimposed, i. e. the frequency of pairs of DRRC, T and RRRc, T that share the same 

values. The grid-like distribution of data points in the figure is a consequence of rank 

normalisation, while their uniform spread across the entire plot highlights the disso- 

nance inherent in the case base. A very regular case base would yield a high value 

of Rl which further implies that retrieval instances with low DRRC, T would also yield 

low RRRc, T and vice versa. Hence, ideally the spread should be cigar shaped along 

the diagonal of Fig. 6.1 (within the enclosure across the diagonal in the figure) or even 
better, linear (i. e the data points lie on the diagonal itself), which would exhibit that 

cases with smaller distances would provide good solutions and distant cases would 

provide poorer solutions. Despite the observation in Fig. 6.1 that there is a higher con- 

centration of larger bubbles in areas surrounding the diagonal, this sample exhibits 

considerable irregularity and indicates the necessity to be preprocessed to increase 

prediction accuracy. 

Data points lying in the lower-left quadrant of Fig. 6.1 denote instances where candi- 

date cases are close to the target case in both the problem and solution space e. g. Case 

14 in Table 5.1. Thus, given a case base with inherent inconsistencies, such candidate 

cases are usually reliable to be reused to deliver solutions. Similarly, data points on 

the upper-right quadrant denote instances where the target and candidate cases lie 

distant in both problem and solution space. A higher density of data points in these 

two quadrants indicates high problem-solution regularity of the case base. Candidate 

cases, which when used for prediction deliver DRRc, T and RRRC, T regularly pairing to 

lie in these two quadrants can be deemed reliable since they behave as one may expect 

given the rationale behind CBP. 
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Figure 6.1: Distance Rank Ratio(,, -, " Vs. Residual Rank Ratio(%, 

Whereas, retrieval instances represented by data points lying in the lower-right 

quadrant of Fig. 6.1 are those where the target and candidate cases are distant frone 

each other in the problem space, but are remarkably close in the solution space, e. g. 

case 4 in Table 5.1. Analogously, data points lying in the upper-left quadrant of 

Fig. 6.1 represent those retrievals where the target and candidate cases are close to 

each other in the problem space, but are markedly distant in the solution space, e. g. 

Case 10 in Table 5.1. The density of data points in the latter two quadrants signify 

the irregularity of the case base and suggests maintaining caution in its use. 

6.2.2 Case Specific Dissonance 

Fig. 6.1 reveals that the case base does exhibit inconsistency in the distribution of 

cases in the problem and solution spaces. However, what remains to be accomplished 

is the identification of such cases and a possible mechanism to reuse them cautiously. 

1-fence, another plot is now introduced that reflects the same 255(I instances of meta- 

data, but from a different angle. 

In Fig. 6.2, there are a series of rows and columns. Each column represents a target 

case corresponding to Column 1 in Table 5.1, while the rows (correctly interpreted from 

bottom-up) represent candidate cases sorted in increasing order of their 1)RI? (' !. Since 
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Figure 6.2: Sorted DRRc, -iT Matrix Figure 6.3: RRRc, T Matrix sorted by I)RRc, i, 

there are 51 cases in our case base, there are a total there are 51 rows and columns 

present in the figure. The different shades in the rows symbolise the distance rank 

ratio (DRRc, T) of the candidate cases from the target. Paler blocks (i. e. the bottom- 

half of the figure) represent nearness to the target in the problem space. Conversely, 

darker blocks (i. e. the top-half of the figure) indicate that the candidate and target 

cases are very distant. The colour bar to the right of the plot indicates the shades 

associated with the corresponding range of values for DRRC, T ([0 - 1]). 

Fig. 6.3 is of more importance in relation to Fig. 6.2. Once again, columns represent 

target cases, but rows represent RRRC, T of candidate cases that are arranged in the 

same order as in Fig. 6.2. The RRRC, T matrix of an ideal case base would have a 

similar distribution of colours as in Fig. 6.2. This is because one expects cases to be 

close to each other in both, the problem and solution spaces. However, from Fig. 6.3, 

it is clear that in reality, this may very well not be the case. Columns with paler 

colours in their lower half of Fig. 6.3 represent instances in the lower-left quadrant 

of Fig. 6.1 while darker colours represent instances in the upper-left quadrant. Con- 

versely, paler blocks in the upper half of columns in Fig. 6.3 represent instances in the 

lower-right quadrant of Fig. 6.1 while darker colours represent instances in the upper- 

right. Again, the colour bar to the right of the plot indicates the shades associated with 

the corresponding range of values for RRRC, T ([0 - 1]). 

Thus, Figs. 6.2 and 6.3 give a clearer picture of the case base and in addition, also 

help identify potentially unreliable cases that may be one of the root causes for the 

inherent inconsistency. The term 'potentially unreliable cases' has been used since 
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6 Case Base and Case Quality 

the Fig. 6.3 plots RRRC, T for every pair of target-candidate cases, and not the RRRTc. 

Since the ratio is asymmetric, the figure only suggests that the target cases, with 
darker shades in the lower halves of their columns, may possibly serve as poor candi- 

date cases too. The primary purpose of the figure is the reinforcement of results frort, 

the Mantel's test on the inherent dissonance in a case base. 

However, the Fig. 6.3 can be further improved by ordering the columns with increas- 

ing order of irregularity. Sub-section 6.2.3 discusses how this can be achieved to make 

the figure more valuable. 

6.2.3 Spearman's Correlation 

While Fig. 6.3 is a good indicator of inconsistency in a case base, it appears rather 

chaotic and makes it challenging to identify potential root causes (i. e. unreliable 

cases). Rearrangement of cases in Fig. 6.3 in decreasing order of their reliability would 
be a valuable transformation. Such a figure is likely to reveal the percentage of reliable 

cases in the case base and also, make identification of unreliable cases easier. 

One alternative to achieve this is to measure the association of the series of DRRC, T, 
and RRRc, T for every candidate case in the case base and then, sort cases by decreas- 

ing order of their association. For this, the Spearman's rank correlation' [FPPA911 is 

calculated between the corresponding pairs of DRRC, T and RRRC, T. The formula for 

computing Spearman's coefficient (p) is given in Eqn. 6.2. Here, D is the difference ir7, 

the ranks of DRRC, T and the corresponding RRRc, T, and N is the number of pairs of 
DRRC, T and RRRC, T. 

N 
6ED; 

p=1-N(N2-1) (6.2) 

The Spearman's rank correlation measures the strength of association between two 

sets of data. When applied here, a high positive Spearman's correlation suggests that 

the candidate case has been very reliable in the past since its DRRC, T and RRRC. 

are in accordance with each other. Conversely, a high negative value is a warning 

that the candidate has been very unreliable since its DRRC, T and RRRC, T from past 
instances of reuse move in opposite directions. The use of such cases in the future 

*Spearman's rank correlation is preferred over Pearsons correlation for ordinal data. 
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may potentially continue to provide poor solutions. Lastly, a correlation value close 

to zero would indicate severe unpredictability about the case's performance because 

there is no clear pattern between its DRRC, T and RRRC, T. 

Before moving ahead, it is important at this stage to mention that another possible 

alternative to calculate the degree of association is Kendall's tau [FPPA91]. Literature 

suggests that Kendall's tau has the added advantage of being easy to interpret as it 

is fundamentally different from Spearman's correlation coefficient. It measures the 

difference between the probabilities that the observed data are in different orders for 

the two variables or not. However, it is generally agreed upon, as in [J. 99], the two 

values are likely to be very similar to each other. Other than that, Spearman's rank 

correlation is still a popular choice and hence, has been adopted for this research. 

Table 6.1: Case Quality using Spearman's Rank Correlation 

Case No. Correlation Case No. Correlation Case No. Correlation 

1 0.33 18 0.60 35 -0.03 
2 0.61 19 -0.19 36 0.45 

3 0.25 20 0.20 37 0.25 

4 0.59 21 0.19 38 0.66 

5 0.43 22 0.33 39 0.37 

6 0.30 23 0.38 40 0.30 

7 0.25 24 0.36 41 0.33 

8 0.70 25 0.68 42 0.06 

9 0.46 26 0.34 43 -0.48 
10 0.31 27 0.29 44 0.12 

11 0.27 28 0.32 45 0.04 

12 0.24 29 0.15 46 0.71 

13 0.62 30 0.15 47 0.54 

14 0.09 31 0.39 48 0.27 

15 0.05 32 0.13 49 0.21 

16 0.15 33 0.64 50 0.13 

17 0.21 34 0.37 51 0.28 

Table 6.1 shows the Spearman's Rank Correlation for each of the 51 cases in the 
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case base reflecting on the reliability of each case as a candidate. Here, case 46 has 

the highest correlation value of 0.71 suggesting that it is perhaps the most reliable case 

in our case base. This is further verified from column 46 in Fig. 6.3 where one can see 

a fair degree of concentration of paler colours in the lower half and darker colours in 

the upper half. On the other hand, Case 35 is perhaps the most disorderly case in the 

case base having an absolute value of correlation closest to 0 at -0.03. Hence, cases of 

this nature may need to be used with extreme caution. This is because the prediction 

is nearly a guess when correlation 0. Lastly, Case 43 has the highest negative 

correlation (-0.45) suggesting extreme caution before reuse to avoid a potentially poor 

solution. 

Using the correlation values in Table 6.1, one can order columns in Fig. 6.3 in 

decreasing order of their reliability, i. e. their correlation values. Fig. 6.4 is a reordered 

alternative to Fig. 6.3 in which the correlation values have been used. It is easily 

deduced from the distribution of coloured blocks in the figure that case reliability 

decreases as one moves along cases in the case base. In this sample, nearly half the 

case base seems reliable (given the paler blocks in their column's lower-halves). The 

chaotic distribution of the coloured blocks for the remaining half suggests they are 

unreliable and must be used with caution. 

Hence, visualisations such as Figs. 6.1 and 6.4 provide substantial insight into the 
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reliability of a case base. While the former figure reflected upon overall consistency. 

the latter figure indicated potential cases that can be deemed unreliable and as causes 

for overall case base inconsistency. However, the plots do not provide an objective 

measure of individual case reliability and it may be hard to examine very large case 

bases to single out potentially unreliable cases. Thus, in the following section, a new 

concept of case proffles are introduced that aid in measurement of case reliability. 

6.3 Case Profile 

Having established that the case base is irregular, it is crucial that cases significantly 

contributing to overall irregularity be identified and quarantined. Although the above 

visualisations aid in observing individual case reliability, their applicability is limited 

due to the subjectivity involved in assessing each case's performance as a candidate 

case and inefficiency associated with such examination for large case bases. Hence fo- 

cus is now on gauging individual case reliability objectively to exploit such information 

during prediction in an attempt towards increasing accuracy. 

The Spearman's Rank correlation gives a quick objective view of the case base qual- 

ity. But the measure is still rather subjective and it is difficult to judge one case from 

another with similar correlation values. What is required is a mechanism that can 

distinguish one case as reliable or unreliable objectively. For this, case profiles are 

proposed to be generated for each case in the case base. A case profile is meant to 

track the performance of a case each time it has been reused and reflect its perfor- 

mance history as a candidate. This can be achieved by using the meta-data that has 

been used throughout this thesis in different ways. While this section concentrates 

on how to build case profiles, Section 7.2 explains how it can be used to discriminate 

against unreliable cases. 

To build individual case profiles, the range of DRRC, T and RRRc, T ([0-1j) are divided 

into 4 equal intervals of size 0.25. This results in a matrix as Fig. 6.5. Scanning 

through the meta-data generated in Section 5.3 (2550 instances in this case), the count 

of each candidate case profile's cross-section quartile is incremented within which the 

DRRC, T and RRRC, T lie. For example, for any retrieval instance, if a candidate case 
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Figure 6.5: A Case Profile Example 

has DRRC, T= 0.125 and RRRC, T= 0.3, Q2 was incremented by one or if RRRc, T= 0.8, 

Q4 was incremented by one and so on. 

It is important to note that the case profile is candidate case specific, unlike the 

case base visualisations plotted in Fig. 6.3 and 6.4. For a specific candidate case. 

its case profile Is populated by taking into account the DRRc, T and RRRC, T for all 

instances of its reuse during the process of generating meta-data for the entire case 
base. Hence, the case profile is an apt reflection of the potential of a case to serve as a 

good candidate for reuse. 

Fig. 6.5 can be superimposed on Fig. 6.3 and be interpreted likewise as in Sec- 

tion 6.2. A case with high density of data points in blocks Q1, Q2, Q5 and Q6 is 

desirable since its distance in the problem and solution space are proportional. Also, 

cases with higher density of data points in blocks Qll, Q12, Q15 and Q16 are equally 

desirable for the same characteristic as above. Hence, an ideal case may be one whose 

profile vastly covers the eight blocks discussed yet to form a form a cigar shaped dis- 

tribution (see elliptical enclosure in Fig. 6.1). 

While case profiles with data points lying in blocks Q9, Q10, Q13 and Q14 reflect large 

distances in the problem space but nearness in the solution space between target and 

candidate cases. These cases pose lesser risk since the likelihood of a good solution 
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Figure 6.6: Reliable Case Example 
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Figure 6.8: Unreliable Case Example Figure 6.9: Unreliable Case Example 

may be high, but this may be a result of unreliable cases balancing their performance. 

Conversely, case profiles with data points concentrated in blocks Q3, Q4, Q7 and Q8 

signify nearness to the target case in the problem space but large distances in the solu- 

tion space. Such cases are most important to be recognised due to the high probability 

of their reuse and delivery of a poor solution. 

Figs. 6.6 and 6.8 demonstrate case profiles by visualising a reliable and unreliable 

case respectively. In the former figure, most data points can be found on the lower 

left and upper right quadrants of the profile. The few points in the lower left indicate 
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that in the problem space, this case is near few other cases and is at proportional 

proxdmities from them in the solution space too. While the higher concentration of 

points in the upper right quadrant signify that this particular case is largely dissimilar 

or distant to most other cases in the case base in both problem and solution spaces. 
Of course, there are a few instances in the upper left and lower right quadrants the 

denote instances of poor reuse. On the whole, the data points for this case are largely 

contained within the a cigar shaped distribution. The evidence of its reliability, which 

can be visualised, is that the few times this case would have been reused considering 
its distance from the target, it is likely to deliver a good solution. Fig. 6.7 supplements 
the case profile by reporting counts for the respective quadrants. 

While in Fig. 6.8, one notices a rather more random distribution of data points 

strongly indicating the unreliability of the case in question. Although several data 

points are present in the lower left and upper right quadrants denoting regular be- 

haviour, one also sees an ample number of data points distributed in the lower right 

quadrant. This indicates that although this case is far away from others in the case 
base in the problem space, it is relatively much closer to them in the solution space 

which is rather unexpected. It is noteworthy that there are also a few data points in the 

upper left quadrant which indicate that this case is also likely to deliver poor solutions 

when reused. Again, Fig. 6.9 supplements the case profile by reporting counts for the 

respective quadrants. 

Relevant code for populating the case profiles can be found on pages 137 - 139. 

6.4 Chapter Summary 

This chapter described techniques employing the meta-data generated previously in 

Chapter 5 to gain insight into a case base. While the mantel's test delivers an objective 

measure of overall inherent regularity in the case base, the visualisation techniques 

are aimed at verifying and reinforcing its results. However, the visualisations provide 

a subjective impression of the quality of individual cases that are the root cause of 

overall distortion of the regularity of the case base. Hence, a new concept of case 

profile was introduced that tracked performance of a case from the perspective of it's 

capacity to be a candidate case that reliably delivers good solutions. 
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In the next chapter, a case discrimination system is presented that exploits such 

quality information recorded in the case profiles of individual cases to objectively de- 

termine their reliability. This attempt is in direction of attaining the larger goal of the 

research, i. e. to use reliable cases for prediction to enhance prediction quality. 
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CHAPTER 7 

Enhancing Case-Based Prediction 

With the larger objective of increasing solution accuracy, a case discrimination sys- 

tem is proposed that would work in tandem with the retrieval algorithm and reuse 

reliable cases. The proposed system is based on the idea of computing the likelihood 

of a candidate case to deliver an acceptable outcome. Failing to meet a threshold like- 

lihood level, the CBR system would continue to seek the next nearest case that would 

satisfy the set performance criteria. The proposed technique is embedded within the 

Retrieval stage of the CBR cycle. During this stage. the CBR cycle retrieves select cases 

that qualify for reuse based on some objective metric such as distance from target, con- 

textual relevance of case, adaptability [SK941. For this analysis, the objective metric 

is the target-candidate case Euclidean distance. In addition, the technique endows 

the system with the candidate case's profile matrix and enables it to assess whether a 

candidate case can potentially generate a good solution. Once assessed, the relevant 

candidate case is chosen for reuse only if it meets a set performance threshold or else 

the next nearest case fulfilling the-criteria is reused. 

7.1 k-NN 

For benchmarking purposes, the simple k-NN technique to is used compare and val- 

idate the technique's effectiveness. In CBP, k nearest neighbours of the target case 

are identified using a distance metric. The solution is then derived by statistically 

combining the solutions of each of the k cases. ArchANGEL (KS02a] provides sev- 

eral such methods for statistical combination (a form of solution adaptation) such as 

simple averaging, distance weighted average, rank weighted average and distance ad- 

justed average. In this case, the nearest neighbours are identified by calculating the 
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euclidean distance between the target case and every candidate case in the case base. 

Then, the solutions of the nearest k neighbours are combined by computing their sim- 

ple average to propose the final solution. Other alternative combining methods stated 

previously were not explored since this was neither the focus of this research nor any 
deep theory was found to motivate another choice. 

Additionally, in previous research. Kadoda et aL [KCSO0] experimented using values 

of k ranging from [1, 
... , 5] and found k=3 to generally provide the lowest residuals 

for the Desharnais data set. To maintain consistency, experiments are conducted 

adhering to the original choice of range for k. 

7.2 Frequentist Approach for Case Assessment 

Having available the meta-data for the case base, each constituent case bears an asso- 

ciated profile matrix conceptually in the form of Fig. 6.5. The matrix is populated with 
the frequency of good or poor solutions provided by a case when at a certain distance 

from the target case relative to all other cases in the case base. With access to this 

tabulated frequency matrix or the case profile. assessing the potential of a candidate 

case to deliver a good quality solution translates into determining the chance or likeli- 

hood of reusing the case and achieving a quality solution considering its distance from 

the target case. Thus, an obvious method of choice for such assessment is computing 

the probability of the event as: 

Frequencyo f GoodSolutionsDRRc, 
T ProbalrilityDRRc, T = Freuen o Use q CU f DRRc, T 

This computes the probability ((0 - 1]) of a candidate case to deliver a good solution 

once its DRRC, T from the target case is known. But what remains to be answered in 

Eqn. 7.2 is what metrics should be used to define a good solution in order to calculate 

the respective frequencies. 

In the current scenario, a good solution is identified by the RRRC, T of the candidate 

case. Since the candidate's solution is not modified (unless averaged for k nearest 

neighbours), cases with lowest RRRC, T are bound to deliver the best possible solution 

given the distribution of the solution space by the case base. Hence cases which, within 
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a given range of DRRC, T, frequently provide solutions with low values of RRRc, T or 
have a higher concentration of data points in the lower halves of their profile matrices 

are to be preferred over others. Thus the likelihood or probability of a candidate case 

to provide a good solution is the ratio of the sum of its profile's lower blocks to the sum 

of all the blocks within the corresponding column whose range in which the DRRC, T 
lies. To exemplify, for a single case whose DRRC, T= 0.2, probability is calculated as 

(Fig. 6.5): 

Pl = 
IQ11 

IQ1I + IQ21 + IQ31 + IQ41 

P2 _ 
IQ1I + IQ21 

IQ11 + IQ21 + IQ31 + IQ41 

Likewise, if DRRc, T= 0.4, JQ1J, 1Q21, IQ31 and IQ41 would be replaced by IQ51.1Q61, IQ7I 

and IQ81 respectively and so on. Now, given a probability threshold limit PT, only those 

neighbouring cases whose values of Pl or P2 > PT would be reused. In such a case, 

Pl is relatively more discriminating than P2 since it only considers the data points in 

the lowest quarter of the case profile as instances of providing good solutions to judge 

case reliance. Hence, a case may need to have performed exceptionally well in the past 

to meet a set threshold. On the other hand, P2 is more permissive since it considers 

all data points in the lower half of the case profile to compute the probability or case 

reliability. Hence, the chances of cases being accepted for reuse increase using the 

latter equation given the typical size of software engineering data sets. This however 

remains a question to be examined. 

Another parameter that can vary the intensity of case discrimination for reuse is 

the value of PT. The value of PT can lie between [0 - 11 where setting PT =0 is 

equivalent to using k nearest cases (since there is no discrimination) while PT =1 

would expect all data points for a case to lie in the lowest quarter or lower half of 

the profile matrix. Hence, an in-between value is required so that the system would 

neither be too permissive nor too discriminatory. 

In this analysis, the range ([0-0.8]) for PT has been experimented with. The range 

begins begins with 0 since it is equivalent to using the k nearest neighbours against 

which the rest of the solutions will be benchmarked. However, during the coding stage, 
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it was discovered that setting PT > 0.8 caused prediction to fail since the system was 

unable to find any cases that meet such stringent criteria. Portinale too claimed that 

setting quality levels very high would case the system to fail at finding suitable cases 

to deliver a solution [PTOOJ. 

7.3 Procedure 

This section describes the procedure followed to conduct the experiments. There are 

three parameters (k, P1, P2 and PT) whose individual and combinatorial values would 

affect case selection and consequently prediction accuracy. A range of possible com- 
binations of k and PT were experimented with for every random sample of each data 

set. 

For a test case TS;. whose solution is to be predicted, its Euclidean distance from 
. 

every candidate case is computed. Then, the k nearest cases are averaged to provide a 

solution. Thereafter, the first k nearest neighbours for which Pl > PT are identified to 

provide a solution and lastly, the first k nearest cases for which P2 > PT are identified 

to provide a solution. This is repeated for each test case covering every combinatorial 

values of k, P and PT and the sum of absolute residuals for each combination is stored 
for comparing accuracy later. The relevant MATLAB code has been presented in the 

appendices on pages 140 - 142, Appendices A. 7 and A. 8. 

7.4 Analysis of Results 

Sum of absolute residuals (SumIResl) was chosen to measure error since it has largely 

been accepted to be an unbiased statistic [KPMS01]. Also, it is assumed that the 

direction of error is immaterial as both underestimation and overestimation must be 

precluded. Of course, this may not necessarily true for all software companies and 

more so in other domains where one may favour underestimation to overestimation or 

vice versa. In such situations, an appropriate measure of error must instead be used. 

For each random sample of the data set, 90 SumIResl resulting were derived from 90 

possible combinations of k, P1, P2 and PT (i. e. 5x2x9 respectively). Also, these 90 

SumIResl will be derived for each of the 30 random samples of every data set. 
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The results were analysed by reporting the means of the SumIResl for each combi- 

natorial value of the three paraments from all 30 random samples. However, since the 

residuals are not normally distributed, a Kruskal-Wallis (Kan99) test was performed 

on the residuals using only k and the combination of k and PT that gave us the low- 

est mean of sum of absolute errors. The Kruskal-Wallis test is a non-parametric form 

(comparing medians) of ANOVA that determines if the samples have come from differ- 

ent populations. Hence the null hypothesis was: 

Ho: there are no differences between the medians of the samples i. e. using 

PT in conjunction with k-NN makes no difference to prediction accuracy. 

The alternate hypothesis is: 

HA: there are differences between the medians of the samples i. e. using PT 

in conjunction with k-NN makes a difference to prediction accuracy. 

7.5 Chapter Summary 

This chapter has presented the proposed technique that uses individual case profiles 

to judge the reliability of a case to serve as a candidate. The reliability of the case is 

gauged by simply computing the probability of the case to deliver a good solution. Then 

the case is reused only if it meets a set threshold of reliability, else the next nearest 

case with an adequate reliability is reused. 

It is expected that reuse of such reliable cases would help increase prediction accu- 

racy. The remaining parts of the thesis are directed at Investigating the value of the 

proposed technique. The next chapter introduces the data sets used in the analysis 

and includes a brief statistical summary of each. And the following chapter includes 

the results from administering all the techniques proposed in Chapters 5,6 and 7. 
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CHAPTER 8 

Data Sets 

In this chapter, the three software engineering data sets, viz. British Telecom (BT), 

Desharnais and Finnish, are presented which were used to test the proposed tech- 

niques. Their selection was largely governed by their respective sizes to enable exami- 

nation of the effect or impact of using the techniques on case bases of different sizes, 

and the required computational expense. Another motivating factor was the research 

group's familiarity with these data sets since they have been previously used in various 

publications. 

In the following sections, for each data set, a description has been provided including 

a brief statistical summary of their respective features including the mean, median. 

range and standard deviation. This is to give the reader an idea of the expanse of the 

problem and solution spaces commonly dealt with in the this problem domain. 

8.1 British Telecom Data Set 

The BT data set comprising 18 cases is the smallest data set analysed in this research. 

The features are presented in Table 8.1. It was collected in the mid-90s for the purpose 

of estimating testing costs. The projects involve an approximate total of 4 million lines 

of code in C. 

Five of the total eight features in the data set were included to compute inter-case 

Euclidean distances. The remaining three were removed for various reasons including 

being redundant or case labels. 
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8 Data Sets 

Table 8.1: BT Data Set Feature list 

Feature Description Range Median Mean Std. Dev. 

Case Name Case Label N/A N/A N/A N/A 

EstTotal Estimated no. of 
hours 

30 - 777 289 320.3 240.1 

ActTotal Actual no. of hours 24-1116 222 284.28 264.85 

ActDevEffort Actual devp. effort 16 - 833 153.5 202.61 193.2 

ActTestEffort Actual test. effort 7- 267 50.5 80.83 75.38 

Changes No. of changes 3- 377 127 138.05 120 

Files No. of files 3- 284 68.5 100 92 

Development Type N/E Interfaces 

Architectural 

Business 

N/A N/A N/A N/A 

8.2 Desharnais Data Set 

A medium sized data set comprising 77 complete and 4 incomplete software projects, 
the Desharnais data set was collected by Jean-Marc Desharnais [Des891 from a Cana- 

than software house. These projects were collected across three different develop- 

mentenvironments. All but one of the 11 features are numeric while the remaining 
feature 'Language' is categorical and denotes 3 development environments. Of the 77 

completed projects, 44 (57%) belonged to development environment 1, while the re- 

maining 23 (30%) and 10 (13%) projects belonged to environments 2 and 3 respectively. 

8.3 Finnish Data Set 

This data set is derived from the 2004 release of the "Experience data set" usually re- 
ferred to as the Finnish data set and some of its features have been analysed in depth 

by our research group [PSKFO5]. The Finnish data set is a result of a commercial ini- 

tiative by Software Technology Transfer Finland (STFF] to provide support for software 

development organisations for both project cost estimation and productivity analyses. 
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8.3 Finnish Data Set 

Table 8.2: Desharnais Data Set Feature List 

Feature Description Range Median Mean Std. Dev. 

Effort Total 

project effort mea- 

sured in hours 

546 - 23940 3542 4834 4188 

ExpEquip Team experience in 

years 

0-4 2 2.3 1.33 

ExpProjMan Project managers 

experience in years 

0-7 3 2.65 1.52 

Length 1- 36 10 11.3 6.8 

Trans Number of transac- 

tions 

9- 886 134 177.5 146 

Entities Number of entities 7- 387 96 120.6 86.12 

RawFP Unadjusted func- 

tion points 

62 -1116 247 282.4 186.4 

AdjFP Adjusted function 

points 

73 -1127 258 298 182.3 

AdjFact Adjustment factor 5-52 28 27.4 10.5 

YearFin Year of completion 1983 -1988 N/A N/A N/A 

This has resulted in a data set which includes software projects between 1978 and 

2003 and in its current form, it comprises 622 projects. Organisations pay an annual 
fee to gain access to the data via a tool called Experience Pro. The same tool is used 

to submit their own project data upon which they are entitled to a discount on their 

annual fee. The use of the tool for project data submission facilitates standardisation 

of variables included. In addition, the project data are carefully assessed at STTF by 

experts before being added to the data base. More information about Experience Pro 

is available at their website [Expl. 

The projects are derived from a wide range of business sectors spanning financial to 

telecommunication projects and embrace a range of different platforms and develop- 

ment technologies. The data set includes both New Development (approximately 93% 

of observations) and Maintenance projects. Project data include size information in 

function points (FPs), effort and a range of factors to characterise the type of project, 
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factors to characterise the development circumstances, development and target tech-, 

nology. In total, 102 variables are collected. A fuller description of a previous version 

of the data set may be found in [MF00]. 

The major hurdle faced in using this data set was the presence of several miss- 

Ing values. Hence, it had to be substantially reduced in size for actual use in this 

analysis. In addition, several redundant and irrelevant features were also removed. 

Table 8.3 includes all remaining features after cleaning the data set and were included 

in this analysis. Here. Effort was the dependent variable while the remaining features 

were used to measure inter-case similarity. A total of 137 complete projects projects 

remained after cleaning and were used for the analysis. Symbols have been placed 

after some feature names in Table 8.3 indicating the feature type and hence the corre- 

sponding summary statistics. Features with no symbols are continuous value features 

whose mean, median, range and standard deviation have been reported. Features with 

symbols t are categories and no statistics are reported for these figures. Lastly, fea- 

tures with symbols * are ordinal features and their mode has been reported along with 

their range. The mean and standard deviations for these features have been excluded 

since they are ordinal values and are in effect, categories. Irrelevant columns for the 

respective features have been labelled N/A. 

8.4 Chapter Summary 

The three software engineering data sets used in this research have been introduced 

in this chapter along with a brief descriptive statistical summary for each. The main 

idea behind their choice was to examine the techniques performance on data sets 

of different characteristics, especially size and inherent regularity. The next chapter 

presents the results from applying the techniques on the data sets which is followed 

by a discussion on their effectiveness on each of them. 
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Table 8.3: Finnish Data Set Feature List 

Feature Description Range Median Mean/Mode Std. Dev. 

Effort Duration of project in hours 55 - 21994 2885 1655 3486 
SizeUnit Function Point measure (for N/A N/A N/A N/A 

all projects EP20) 

StartDate Year of commencement of 1997 - 2003 N/A N/A N/A 

project 
HardWaret Target platform N/A N/A N/A N/A 

Businesst Business Sector N/A N/A N/A N/A 

DevLangt Programming Language N/A N/A N/A N/A 
YKt Company code N/A N/A N/A N/A 

AmountofApps No. of applications developed 1- 14 2 1 1.7 

ProjSlze Size in EP20 27 - 5060 498 329 592 

Reusemultiplier 0.64 -1 0.98 1 0.044 

SituationAnalysisModelt N/A N/A N/A N/A 
SituationAnalysisMultiplier 0.2-2.48 1.1 1.02 0.41 

CompDeliveryRate 0.5-31.8 6 5.26 4.2 

TOI* Involvement of customer rep- 1-5 N/A 3 N/A 

resentatives 

T02* Performance and availability 1-5 N/A 3 N/A 

of development environment 
T03* Availability of IT staff 1-5 N/A 3 N/A 

T04* No. of stakeholders 1-5 N/A 3 N/A 

T05* Pressure on schedule 1-5 N/A 3 N/A 

T06* Impact of standards 1-5 N/A 3 N/A 
T07* Impact of methods 1-5 N/A 3 N/A 

TOS* Impact of tools 1-5 N/A 3 N/A 

T09+ Level of change management 1-5 N/A 3 N/A 

T10* Maturity of software develop- 1-5 N/A 3 N/A 

ment process 

TI I* Logical complexity of soft- 1-5 N/A 3 N/A 

ware 

T12* Size of database based on 1-5 N/A 3 N/A 

number of entities 
T13* No. of interfaces to other 1-5 N/A 3 N/A 

software 

T14* Quality requirements of soft- 1-5 N/A 3 N/A 

ware 

T15* Efficiency requirements of 1-5 N/A 3 N/A 

software 
T16* Training and installs- 1-5 N/A 3 N/A 

tion/platform requirements 
T17* Analysis skills of staff 1-5 N/A 3 N/A 

T18* Application knowledge of 1-5 N/A 3 N/A 

staff 

T19* Tool skills of staff 1-5 N/A 3 N/A 

T20* Experience of project mgmt. 1-5 N/A 3 N/A 

T21* Team skills of project team 1-5 N/A 3 N/A 

WBSModelt Work Breakdown Structure N/A N/A N/A N/A 
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CHAPTER 9 

Results 

This chapter presents and discusses results from implementing our proposed tech- 

niques on the data sets described in the previous chapter. For each data set. the 

analysis begins with Mantel's randomisation test and then moves on to addressing the 

regularity of the case bases visually and objectively. Lastly, we demonstrate the use 

and impact of generated case-specific knowledge to enhance prediction accuracy. 

9.1 BT Data Set 

The BT data set comprising 18 cases was split into 30 random samples of training and 

testing sets as described earlier in Section 5.3. Thus, in each sample the training set 

comprised 12 cases and the remaining 6 cases constituted the testing set. Additionally, 

132 instances (i. e. 12 * 11) of meta-data were generated for each sample (Chapter 5). 

9.1.1 Mantel Randomisation Test 

The results from performing the Mantel test (concept and methodology discussed in 

Section 6.1) on the data set are first examined to gauge overall inherent problem- 

solution regularity. These, from each of the 30 samples, have been recorded in Ta- 

ble 9.1 including the correlation between the original distance matrices and the maxi- 

mum and minimum values from the 4999 correlation coefficients between the §random 

and original matrices. 

Several interesting observations can be made from Table 9.1. Firstly, all 30 coef- 

ficients between the original distance matrices are positive. This indicates that from 
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a hypothetical reference point. corresponding data points in the problem and solu- 

tion spaces tend to move in the same direction. Such a characteristic of the data is 

particularly important for models based on empirical data since they rely upon a posi- 

tive (or negative depending upon the objectives) association between the predictor and 

response variables. 

Secondly, not only are the original coefficients positive, they are also distributed over 

a wide range of values. The highest recorded correlation was 0.70 for sample 6 and 

the lowest being 0.30 for sample 10. Such high variation is an artifact of the small size 

of the training set (Tr) and the likely presence of some unreliable cases that distort 

the regularity of case bases with low coefficients. Also, previous research by Kirsopp 

and Shepperd addressed issues when dealing with small data sets that is likely to 

include sample bias [KS02b). Case bases with high correlation coefficients are likely to 

attract more user confidence since they reflect inherent consistency in the distribution 

of points in the problem and solution spaces. While using CBP systems endowed 

with such case bases, a user could expect a near optimal solution (i. e. the best the 

case base can provide) to the problem, i. e. a solution with low RRRc, T, without the 

aid of additional case or domain knowledge. On the other hand, systems using case 
bases with low coefficient values may need to be augmented with more knowledge' of 

individual cases to afford a reflective choice of cases for reuse. 

Lastly, each random sample's association between the predictor and response vari- 

ables was statistically significant at p<0.001 or at 0.1% level. This strengthens the 

likelihood of a true relationship between the two sets of variables in the real world. 

It is noteworthy that in 29 out of the 30 samples analysed, the maximum recorded 

correlations were equal to that between the original matrices in 20 cases. These re- 

sults support the use of the BT data set for CBP since a system strictly using the 

k-NN technique for reuse would benefit from using the original combinations of pre- 

dictor and response variables rather than any random association (which would make 

it hard to explain causality). However, In the remaining sample, 1 combination was 

more strongly associated with each other in comparison to the original pairs of vari- 

ables. The low correlation coefficient of this sample indicates the presence of unreliable 

cases. Still, the sample remains statistically significant, but is very unlikely to distort 

solution accuracy. 

Thus, the Mantel test results confirm that the BT data set does contain at least few, 
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unreliable cases that distort the overall regularity of the case base. This is evident 

from the wide range of correlation coefficients of the samples. Also, each coefficient 

is positive and many being on the higher end warrant the use of the data set for 

CBP. Although each sample's coefficient was statistically significant. the tests signal 

the importance of some pre-processing of the case base before deployment to ensure 

relatively more dependable solutions are proposed. 

9.1.2 Visualisation Case Base Quality 

Having identified the most regular and irregular random samples from the mantel test, 

now the utility of the proposed visualisation techniques is demonstrates to verify the 

test's results. Figs. 9.1 and 9.2 are scatter plots of DRRC, T and RRRC, T from random 

samples 6 and 10 respectively. Recall that these samples have correlation coefficient 

values of 0.70 and 0.30 between predictor and response distance matrices. 

The spread of data points in Fig. 9.1 is more close to cigar-shaped (Fig. 6.1) and 

represents a relatively consistent case base. The larger concentration of points in the 

lower-left quadrant signify retrieval instances with low DRRC, T and low RRRC, T , im- 

plying closeness of target and candidate cases in both problem and solution spaces. 

Similarly, the high density of data points in the upper-right quadrant denotes in- 

stances where target and candidate cases were far apart in the problem and solution 
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Table 9.1: Mantel's Randomisation Test Results on the BT Data Set 

Sample Con Sample Con. Sample Corr. 

Max. 0.43 Max. 0.31 Max. 0.47 

1 Original 0.43 11 Original 0.31 21 Original 0.47 

Min -0.31 Min -0.27 Min -0.29 
Max. 0.35 Max. 0.68 Max. 0.45 

2 Original 0.35 12 Original 0.68 22 Original 0.45 

Min -0.28 Min -0.23 Min -0.23 
Max. 0.67 Max. 0.43 Max. 0.38- 

3 Original 0.67 13 Original 0.43 23 Original 0.38 

Min -0.24 Min -0.28 Min -0.27 
Max. 0.58 Max. 0.57 Max. 0.32 

4 Original 0.58 14 Original 0.57 24 Original 0.32 

Min -0.26 Min -0.29 Min -0.28 
Max. 0.66 Max. 0.47 Max. 0.69 

5 Original 0.66 15 Original 0.47 25 Original 0.69 

Min -0.31 Min -0.35 Min -0.33 
Max. 0.70 Max. 0.57 Max. 0.33 

6 Original 0.70 16 Original 0.57 26 Original 0.33 

Min -0.28 Min -0.26 Min -0.26 
Max. 0.58 Max. 0.45 Max. 0.40 

7 Original 0.58 17 Original 0.45 27 Original 0.40 

Min -0.28 Min -0.26 Min -0.30 
Max. 0.39 Max. 0.31 Max. 0.40 

8 Original 0.39 18 Original 0.31 28 Original 0.40 

Min -0.28 Min -0.30 Min -0.28 

Max. 0.42 Max. 0.40 Max. 0.35 

9 Original 0.42 19 Original 0.40 29 Original 0.35 

Min -0.23 Min -0.25 Min -0.26 

Max. 0.36 Max. 0.43 Max. 0.44 

10 Original 0.30 20 Original 0.43 30 Original 0.44 

Min -0.30 Min -0.27 Min -0.23 
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spaces. Additionally, very few data points lying in the upper-left and lower-right quad- 

rants augment the consistency characteristic of this particular sample. 

On the other hand, the data points in Fig. 9.2 are more uniformly spread through- 

out the axes reflecting inherent inconsistency in the problem-solution spaces. One ob- 

serves a fair degree of concentration in the lower-left and upper-right quadrants (which 

suggest comparable values of DRRC, T and RRRc, T). However, one also observes many 

data points in the upper-left and lower-right quadrants indicating instances where 

target and candidate cases are close in the problem space but far apart in the solution 

space or vice versa. Of course, such a spread may weaken a user's confidence in the 

system. 

Such visualisations may offer less for samples with high correlation values. For oth- 

ers samples with lower correlation values, such visual impressions of the overall case 

base reflects presence of some unreliable cases that underscore case base inconsis- 

tency and degrade of overall performance. Hence, the next task is to identify such 

cases. 

Figs. 9.3 and 9.4 represent the overall consistency of the same samples, but provide 

a richer presentation. Both figures plot the RRRc, T from instances in increasing order 

of distance. In an ideal sample of the BT data set, one would expect to see a uniform 

transition of paler shaded blocks on the lower-half of the plot to darker blocks on 

the upper half. Candidate cases in both figures are sorted by their Spearman's Rank 

correlation values as reported in Table 9.2. 
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9 Results 

Table 9.2: Case Quality using Spearman's Rank Correlation 

BT Sample 6 BT Sample 10 

Case No. Correlation Case No. Correlation 

1 0.98 1 0.85 

2 0.94 2 0.85 

3 0.80 3 0.84 

4 0.74 4 0.79 

5 0.74 5 0.77 

6 0.73 6 0.63 

7 0.71 7 0.55 

8 0.66 8 0.45 

9 0.65 9 0.42 

10 0.60 10 0.35 

11 0.58 11 0.14 

12 0.35 12 -0.25 

However, in Fig. 9.3 (representing sample 6 with correlation coefficient 0.70) sub- 

stantial number of paler shaded blocks are concentrated on the lower-half of the plot 

while darker shaded ones are distributed on the upper-half for a large majority of can- 

didate cases. Certainly, this reflects overall consistency and support for the results 

from Mantel's test since the overall distribution of the coloured blocks is closer to 

Fig. 6.2. The figure also helps identify suspect unreliable cases such as 11. But it is 

important to note that in this sample, such cases are very few in number and do not 
fare so poorly (since the column's lower blocks have relatively paler shades), and this 

accounts for overall high correlation of the case base. On the other hand, all cases with 

an exception of case 6 seem very reliable given the distribution of the coloured blocks 

in their respective columns in which the paler blocks are consistently concentrated on 

their lower-halves while the darker are present in their upper-halves. 

In contrast, in Fig. 9.4 the sample case base (correlation = 0.3) is observed to be 

more irregular. This is evident from the random distribution of shaded blocks across 

the entire breadth of the axes. The lower-half of the plot comprises some dark shaded 

blocks which denote very poor solution quality given the proximity of target and can- 

didate cases in the problem space. For instance, cases 10 and 11 are prominently 
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unreliable since darker blocks are consistently concentrated on the lower-half while 

paler blocks are present on the upper-half of their columns. Other cases do not serve 

much better as candidate cases as reflected by the distribution of colours in columns. 

Hence, overall this sample of the BT data set is inappropriate for CBP and must be 

pre-processed before use. 

Thus, so far in this section, results from Mantel's test have been confirmed by us- 

ing two extreme samples for demonstration. First a relatively general visualisation 

was presented that exhibited overall case base consistency and inconsistency. Then a 

richer visual insight of the regularity in case bases was provided which helped identify 

suspect (evidence being inadequately objective) unreliable constituent cases. Unfortu- 

nately, the visualisation is intended to display only the consistency of only the first 11 

cases. 

9.1.3 Case Profile 

Given the constraints of the visualisation techniques (subjectivity and missing cases), 

now the focus is upon an objective measure that confirms the unreliable characteristic 

of the suspect cases. Table 9.2 records the Spearmans Rank Correlation between 

the respective DRRC, T and RRRC, T for each candidate case in the case base from BT 

samples 6 and 10. 

In sample 6, there are only 2 cases with correlations < 0.6. This set of cases over- 

lap the suspect cases we identified from Fig. 9.3. Overall, the case base seems very 

consistent with 7 cases having correlation > 0.7. These values explain the overall high 

value of Mantel's test correlation and the desired near-uniform transition of shades in 

Fig. 9.3. Such a case base is very likely to attract high user confidence. Note that the 

table also records the correlation for the missing case 12 in Fig. 9.3. 

In addition, the table also confirms the Irregular characteristic of sample 10. Six 

constituent cases have correlation values < 0.6 including a case with negative correla- 

tion. Of the remaining cases, five have correlation values > 0.7. Thus, in comparison to 

sample 6, this sample of the BT data set has more number of irregular or inconsistent 

cases and consequently, it seems likely that a poor solution will be delivered by its use. 
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Figs. 9.5 and 9.7 demonstrate individual case profiles constructed for a case from 

each sample (corresponding counts in each quartile are presented in Figs. 9.6 and 9.8 

respectively). Figs. 9.5 and 9.6 are examples of a reliable case (case 7 from sample 

6) with most of its DRRc, T and RRRC, T being comparable. Such a case is expected 

to deliver a reliable solution when reused in the future and hence, its usage must be 

encouraged. On the other hand, Figs. 9.7 and 9.8 are examples of a poor case 4 from 

sample 10. Data points are seen to be scattered all over its profile matrix. There is a 

risk of a poor solution being delivered from the use of this case and hence, its usage in 

the future must be discouraged. It is noteworthy that according to Table 9.2, case 7 

from sample 6 has the seventh highest correlation value. This case was chosen simply 

as a good example of the utility of case proffles. This was less strongly demonstrated 

by more strongly correlated cases since their data points primarily resided in the top- 

right quadrant, meaning the cases are distant from other cases in the case base, in 

both, problem and solution spaces. 

9.1.4 Enhancing Prediction 

Now, results from using the generated case profile matrices in an attempt to enhance 

prediction accuracy are presented. The methodology followed has been described in 

Chapter 6. To summarise, for a given target case, all candidate cases in the case 
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Figure 9.7: Case Profile for Unreliable case 4 Figure 9.8: Case Profile for Unreliable case 4 

from BT Sample 10 from BT Sample 10 

base were sorted in increasing order of Euclidean distance. Thereafter, beginning 

with the closest candidate case, the probability (P1,2) of each case delivering a good 

solution was computed (separate predictions were to be made using each equation). If 

a candidate case had P1,2 beyond a set threshold limit, the case was reused. Else, the 

next nearest case that satisfied the performance criteria was used for prediction. This 

cycle continued until k nearest cases that met the criteria were identified and then, 

were reused to deliver a solution for the target case. 

Unfortunately, for the BT data set, retrieving cases using P2 largely failed since it 

required a high frequency in the lower blocks of the individual case profiles. Prediction 

was successful (for the entire test set) only when using exceptional training samples 

which commanded a high value of correlation between predictor and response vari- 

ables. This may therefore be a consequence of the size of the training set and varying 

inherent irregularity across case bases. Hence, predictions were made by using only 

P2. The size of the data set and inherent irregularity also constrained the range of PT 

(initially intended to be [0.1 
... 0.81) to [0.1 

... 0.3]). These constraints indicate that the 

applicability of our technique is conditional upon the size and quality of the case base 

itself and hence, the parameters are required to be determined by trial. 

The mean of the SumI Rest from each of the 30 random testing samples have been 
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Table 9.3: Mean of SumjRP. Sj from the BT Data Set 

k- 
Probability 1 2 

i 
34 5 

O 850.53 764.40 729.93 740.03 750.27 

0.1 836.37 776.40 720.87 741.63 783.33 

0.2 836.37 776.40 722.27 744.90 789.77 
0.3 836.37 775.97 724.10 757.77 796.00 
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Figure 9.9: Mean of S? LnzlRf, sl from BT Data Set 

presented in Table 9.3 and plotted in Fig. 9.9. From both, it is observed that the 

SnrnI Resj reduces when using more neighbours until k=3 and thereafter increases. 

However, once case reliability is gauged using P2 starting at PT = 0.1 before reuse, 
little overall difference is seen in the SumjResj. In fact, for PT- 0.1, the residuals only 
decreased in two instances (k = 1,3). Beyond PT = 0.1, the residuals seemed to either 

remain constant or even increase. Despite having a marginal effect upon residuals, 

the lowest SumI Resl recorded was by using 3 nearest neighbours along with PT= 0.1. 

The Kruskal-Wallis test was performed to compare residuals from using only k and 

those from the combination of k and PT which gave the lowest residuals. For each 
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case, the null hypothesis could not be rejected. Thus, for the BT data set, using 

case profiles for selecting candidate cases to reuse makes a modest yet statistically 

not significant improvement in prediction accuracy. There could be several possible 

explanations for this including the small size of the test sets. Also, few cases were 

rejected for use which indicates that the data set was fairly regular to begin with. 

9.2 Desharnais Data Set 

The Desharnais data set was the second largest data set analysed comprising of 77 

complete cases. The training and testing sets comprised 51 and 26 cases respectively. 

Also, 2550 instances of meta-data were generated for each of the 30 random samples 

of the data set. 

9.2.1 Mantel's Randomisation Test 

Similar to the BT data set, first results from the Mantel's Randomisation test (Sec- 

tion 6.1) on the Desharnais data set are examined. For each of the 30 samples, the 

correlation between the original pair of distance matrices was computed. Thereafter, 

another 4999 correlation coefficients were calculated between the original residual ma- 

trix and 4999 randomisations of the distance matrix. Results have been recorded in 

Table 9.4 which includes the original correlation coefficient, maximum and minimum 

values from the entire set of 5000 coefficients for each sample. 

Again, the results unfolded several interesting characteristics of the data set with 

some similar to the BT data set. Firstly, the correlation coefficient for each of the 

30 random samples between the original distance matrices was positive and thus, it 

encourages the use of this data set for CBP. 

Secondly, although positive, the value of correlation from each sample was consis- 

tently low (unlike the BT data set). The highest recorded value was 0.34 for Sample 5 

and the lowest was 0.15 for sample 14. The weak strength of correlation suggests the 

existence of many outliers that contribute towards overall irregularity in the case base. 

The belief was further strengthened by the range and low variance of the correlation 

values which imply that every random sample contained at least few unreliable cases 
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that distorted overall irregularity. Hence, overall for this data set, there is a need to 

supplement inter-case distance with more information prior to selecting the case for 

reuse. 

Lastly. for each random sample, the correlation coefficient between the original dis- 

tance matrices was the highest amongst all 5000 computed coefficients. Thus, each 

sample passed the test of statistical significance (p < 0.001). This is an important ob- 

servation which verifies that there indeed exists a pattern between the predictor and 

response variables or confirms a problem-solution relationship. Thus, any prediction 

model or method would derive the best possible results using the original pairs of 

predictor and response variables. 

Hence, though the positive values and test of significance support its use for CBp, 

the Desharnais data set appears to have a larger number of unreliable cases given the 

low correlation values for each of the 30 samples. This cautions us to make a more 

informed decision about which cases to select for reuse in order to increase prediction 

accuracy. 
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Table 9.4: Mantel's Randomisation Test Results on the Desharnals Data Set 

Sample Con Sample Con Sample Corr. 

Max. 0.25 Max. 0.29 Max. 0.25 

1 Original 0.25 11 Original 0.29 21 Original 0.25 

Min -0.07 Min -0.06 Min -0.07 
Max. 0.30 Max. 0.25 Max. 0.22 

2 Original 0.30 12 Original 0.25 22 Original 0.22 

Min -0.06 Min -0.05 Min -0.06 
Max. 0.30 Max. 0.30 Max. 0.25 

3 Original 0.30 13 Original 0.30 23 Original 0.25 

Min -0.06 Min -0.06 Min -0.06 
Max. 0.23 Max. 0.15 Max. 0.20 

4 Original 0.23 14 Original 0.15 24 Original 0.20 

Min -0.07 Min -0.06 Min -0.06 
Max. 0.34 Max. 0.25 Max. 0.32 

5 Original 0.34 15 Original 0.25 25 Original 0.32 

Min -0.06 Min -0.07 Min -0.06 
Max. 0.25 Max. 0.18 Max. 0.23 

6 Original 0.25 16 Original 0.18 26 Original 0.23 

Min -0.07 Min -0.07 Min -0.06 
Max. 0.25 Max. 0.21 Max. 0.23 

7 Original 0.25 17 Original 0.21 27 Original 0.23 

Min -0.06 Min -0.06 Min -0.06 
Max. 0.32 Max. 0.23 Max. 0.21 

8 Original 0.32 18 Original 0.23 28 Original 0.21 

Min -0.07 Min -0.06 Min -0.05 
Max. 0.34 Max. 0.25 Max. 0.23 

9 Original 0.34 19 Original 0.25 29 Original 0.23 

Min -0.07 Min -0.06 Min -0.07 
Max. 0.29 Max. 0.24 Max. 0.21 

10 Original 0.29 20 Original 0.24 30 Original 0.21 

Min -0.07 Min -0.06 Min -0.06 

89 



n 9 Results 

c 

m VV 

10 

C 

O 

il 

(1 7 

0.3 

0.2 

11.1 

Target Case 

Figure 9.12: RRRc,, sorted by DRR(, J for Regular Desharnais Sample 5 

9.2.2 Visualisation Case Base Quality 

The overall dissonance in the two extreme samples 5 and 14 is visualised in Figs. 9.10 

and 9.11 respectively. The density of data points in the lower-left and upper-right 

quadrants of the former figure is much higher than in the other two quadrants. Con- 

siderable presence of data points in upper-left and lower-right quadrants may be an 

atrefact of the number of cases in the case base (and hence the large number of meta- 

data instances) and the degree of inherent irregularity (correlation = 0.34). The pres- 

ence of bigger data points along the diagonal of the figure further supports its regular- 

ity. 

On the other hand, Fig. 9.11 plots the meta-data instances from sample 14 hav- 

ing a correlation coefficient as low as 0.15. It is evident from the distribution of the 

data points that this sample has more inherent irregularity in comparison to sample 

5. While many of the data points lie in the lower-left and upper-right quadrants, in 

comparison to sample 5 there seem to be more points in the upper-left and lower- 

right quadrants giving evidence of frequent poor instances of reuse. Additionally, the 

presence of darker data points in the latter quadrants further explain the resultant low 

correlation value and make evident the inherent irregularity. 

In Figs. 9.12 and 9.13, the same two samples are again represented in an attempt 
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Table 9.5: Case Quality using Spearman's Rank Correlation for Desharnais Sample 5 

Case Correlation Case Correlation Case Correlation 

1 0.71 18 0.44 35 0.29 

2 0.69 19 0.43 36 0.29 

3 0.68 20 0.42 37 0.28 

4 0.68 21 0.41 38 0.28 

5 0.65 22 0.38 39 0.28 

6 0.65 23 0.38 40 0.27 

7 0.64 24 0.38 41 0.25 

8 0.58 25 0.37 42 0.25 

9 0.57 26 0.37 43 0.22 

10 0.55 27 0.36 44 0.16 

11 0.55 28 0.36 45 0.15 

12 0.53 29 0.35 46 0.14 

13 0.50 30 0.34 47 0.13 

14 0.47 31 0.33 48 0.12 

15 0.47 32 0.31 49 0.03 

16 0.46 33 0.30 50 -0.01 

17 0.45 34 0.29 51 -0.10 
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Figure 9.13: RRRc, 7" sorted by DRRC, T for Irregular Desharnais Sample 14 

91 

10 ?U 30 III 51i 

Target Case 



9 Results 

Table 9.6: Case Quality using Spearman's Rank Correlation for Desharnais Sample 14 

Case Correlation Case Correlation Case Correlation 

1 0.65 18 0.24 35 0.11 

2 0.51 19 0.24 36 0.10 

3 0.48 20 0.24 37 0.10 

4 0.45 21 0.22 38 0.09 

5 0.43 22 0.22 39 0.09 

6 0.43 23 0.22 40 0.09 

7 0.40 24 0.21 41 0.06 

8 0.39 25 0.20 42 0.05 

9 0.38 26 0.20 43 0.04 

10 0.37 27 0.18 44 0.03 

11 0.36 28 0.16 45 0.02 

12 0.35 29 0.16 46 0.01 

13 0.34 30 0.16 47 -0.04 
14 0.34 31 0.16 48 -0.05 
15 0.32 32 0.15 49 -0.09 
16 0.30 33 0.15 50 -0.11 
17 0.28 34 0.12 51 -0.47 

to identify suspect unreliable cases. The cases in both figures have been sorted by 

the descending order of their Spearman's rank correlations (Tables 9.5 and 9.6). The 

degree of irregularity in the case base can be observed by comparing their distribution 

of shades with that in Fig. 6.2. Ideally, a regular case base would have paler shaded 
blocks concentrated on the lower-half of each column while the darker ones would be 

largely present in the upper-half. However, in both figures it is observed that this is 

not the case. Both samples seem to be chaotic because of the low correlation values 
for each. Having said this, it is still possible to identify certain cases in Fig. 9.12 that 

can be deemed reliable because of the concentration of paler shaded blocks on the 

lower-half, e. g. cases 10 to 50. On the other hand, cases 48 and 50 are examples 

of suspect unreliable cases since many darker shaded blocks are present on the lower- 

halves of their respective columns. Similarly in Fig. 9.13 (which has a relatively more 

random distribution of blocks), cases 8 to 18 seem be be examples of the reliable 

cases while cases 44 to 49 exhibit unreliable behaviour. 
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Hence. like for the BT data set, Figs. 9.12 and 9.13 demonstrate the benefits of 

using different visualisation techniques on the Desharnals data set to judge the overall 

quality of the case base. However, the two extreme samples examined visually seem 

more or less equally random given their low correlation values, thus also validating the 

results of Mantel's test. Again, unfortunately, the latter pair of case base visualisations 

restrain the number of cases plotted to one less than the total number of cases in the 

case base 

9.2.3 Case Profile 

The visualisation methods demonstrated above are very effective to quickly glance at 

the incoherence existing in the case base. However, besides being rather subjective. 

another important limitation brought to light by the Desharnais data set is the effect 

of larger case bases. Having more cases results in a dense visualisation that makes 

identifying unreliable cases more tedious and perhaps for larger case bases nearly 

impossible by manual scrutiny. 

In Tables 9.5 and 9.6, the Spearman's rank correlations are presented for cases in 

samples 5 and 14 of the Desharnais data set. To recall, the correlation values record 

the strength of association between the DRRC, T and RRRC, T for each candidate case 

in the case base. 

Out of the two samples, 5 has the higher correlation value of 0.34 and is represented 

by Table 9.5. Here, only 7 of the 51 candidate cases have a correlation value > 0.6. 

Respective columns for these cases can be cross-checked in Fig. 9.12, each having 

paler shaded blocks in their lower halves and darker blocks on their upper halves. On 

the other hand, 8 cases have correlation values < 0.2 including 2 with negative values. 

Again, corresponding columns of these unreliable cases are observed to have a rather 

random distribution of shaded blocks in Fig. 9.12. A larger proportion of cases with 

low correlation values explain the overall low value of Mantel's correlation for the case 

base. It is also indicative of more constituent cases being unreliable in comparison to 

the better sample of the BT data set. 

Sample 14 is presented in Table 9.6 that presents an even worse case base with 

correlation 0.15. Here, only 1 case had correlation values > 0.6 while 25 cases had 

correlation < 0.2. Thus, nearly half the case base is comprised of unreliable cases. 
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Figure 9.16: Case Profile for case 39 from Figure 9.17: Case Profile for case 39 from 

Desharnais Sample 14 Desharnais Sample 14 

Again, the corresponding columns of the cases can be cross-checked in Fig. 9.13 that 

exhibit either uniformity or irregularity in the distribution of shaded blocks. Resul. 

tantly, overall this case base is likely to deliver poorer solutions in comparison to the 

other sample but the difference would most likely be inconsiderable given the weak 

correlations for both training sets. 

In Figs. 9.14 and 9.16, individual case profiles have been demonstrated. The former 

figure is an example of a reliable case (case 49 from sample 5) where most of the data 
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points are concentrated across comparable values of DRRc, T and RRRc, T. Interest- 

ingly, the few times this case has been very close to the target (low values of DRRC, T), 
it has provided a good solution. Otherwise, this case is dominantly distant from most 

of the other cases in the case base (hence the dense cloud in the upper-right quad- 

rants) and as expected, provides distant solutions. The distribution of the data points 

across the DRRc, T also highlights that this case is rather unique in both, problem and 

solution spaces. Hence, it appears to reliably cover a certain portion of the domain. 

On the other hand, in Fig. 9.14 we demonstrate (case 39 from sample 14) as an 

unreliable case which is evident from the numerous data points in the upper-left quad- 

rants of the plot. The points indicate close proximity of case 39 to the target cases 

in the problem space, yet they are very distant in the solution space. Hence, such a 

case should be reused with extreme caution, especially considering how similar it is to 

most other cases in the case base. 

9.2.4 Prediction 

This section presents the impact of combining case quality information with distance 

on prediction accuracy using the Desharnais data set. We aimed to measure case 

reliability using both, Pl and P2. However, again retrieving cases using P2 failed due to 

the inherent -inconsistency in all samples. As a result. predictions were made across 

using all combinations of k([l ... 5]) and PT([0... 0.8]), but only using P2. Fig. 9.18 is 

a plot of the mean of SumIRes1 from each of the 30 samples and the respective values 

are recorded in Table 9.7. 

We first examine the behaviour using k-NN exclusively for selecting cases for reuse 

i. e. PT = 0. Using only the nearest neighbour (k = 1) results in the largest Sum, I Resl. 

However, the sum of absolute residuals continue to decline as k increases to 5 (accu- 

racy increasing by 17%). During the experiments on this data set, it was found that 

often, k-NN retrieved cases that were lying far away on opposite sides of the target case 

in the solution space and thus, provided a ballpark solution by averaging the extreme 

values. Resultantly, a larger value of k lessened the effect of extreme values on the 

proposed solution. Such a pattern is also in line with some previous research [KCSO0] 

where an increase in k (up to a limit) neutralised the effect of outliers and resultantly 
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the Desharnais Dataset 

reduced the SumIResl. Though the solution may potentially be close to the true value, 

this technique is likely to reduce the confidence of users in the system. 

However, once coupled with PT set even as low as ft 1, we observe an improvement 

in performance for every value of k other than 5. Barring k=5, the trend of improved 

performance continued until PT = 0.3 and thereafter, the S,,. m IRc. s again began in- 

creasing. This is because the system became more discriminating and overlooked 

many similar cases in search of high quality cases. As a result, very distant cases 

got reused and this decreased prediction accuracy. For this data set, we found the 

optimum combination of k and PT was 3 and 0.4 respectively giving the lowest means 

SumI Resp. A total gain of 17.4% improvement in prediction accuracy was made from 

using more than one nearest neighbour and probability threshold in comparison to 

using the nearest neighbour only. 
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Table 9.8: Kruskal-Wallis Test Results for Desharnais Data Set 

k PT p-value 

1 0.5 < 0.05 

2 0.5 < 0.05 

3 0.4 < 0.05 

4 0.3 0.08 

5 N/A N/A 

Also note that by using k=1. the lowest mean of SumI Rest is obtained by using 

PT as high as 0.5. This is indicative of the number of unreliable nearest neighbours 

in the case base that may have been reused for values of PT < 0.5. This decrease in 

the residuals using the sole neighbour confirms that the system successfully learnt to 

favour relatively more distant yet quality cases for reuse instead of unreliable nearer 

cases. 

Importantly, for this particular data set, the value of k=5 stood out distinctly from 

the remaining values of k. This is because the residuals indicate a negative impact 

on accuracy of solutions for every value of PT. Moreover, the residuals obtained by 

using solely the 5 nearest neighbours is only approximately 170 hours more than that 

from using the optimal combination of k and PT. This of course challenges the worth of 

using case proffles considering the computational expense and time, when comparable 

accuracy can be obtained by simply using k=5. 

Hence, we investigated further by observing the median of SumlResl plotted in 

Fig. 9.19. By using medians too, k=3 and PT = 0.4 gave the lowest sum of resid- 

uals. However, there was a much larger difference by using this combination of k and 

PT in comparison with using only the nearest neighbour since the error reduces by 

approximately 22%. Also, setting PT even as low as 0.1 induced a marginal increase in 

prediction accuracy. The accuracy tends to increase for values of PT = 0.6 and then 

began increasing due to reuse of more distant cases. We also noticed a larger differ- 

ence in the median values between the optimal combination of k and PT and k=5. 

Thus, the comparable prediction accuracy using mean of SumIResl may be an artefact 

of some extreme values negating each other. 
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9 Results 

Thus, both Figs. 9.18 and 9.19 indicate that prediction accuracy increases by avoid- 
ing reuse of unreliable similar cases using the proposed case discrimination system. 
To further confirm this, results from the Kruskal-Wallis test have been presented in 

Table 9.8. The first column indicates the value of k while the second column indicates 

the value of PT for which the SumiRes) was least when used along with the corre- 

sponding value of k. Lastly, the third column records the attained p-value from the 

tests. The results were significant for k=1,2,3 indicating the SumIResi using k along 

with the proposed case discrimination system were significantly lower (at a= 5%) than 

reusing the k nearest neighbours. This is an important result since it statistically 

verifies the value of the technique. and in these three cases, the null hypothesis can 
be rejected. However, for k=4, the results were not significantly different indicat- 

ing that higher values of k tend to neutralise extreme outliers, which are seemingly 

avoided from reuse by the case discrimination system for lower values of k. Hence,. 

the null hypothesis could not be rejected. Lastly, for k=5, the lowest SumlResl were 

obtained using k alone, but now lower than the optimal results achieved using k=3 

and PT=0.4. 

9.3 Finnish Data Set 
ý, 

The Finnish data set was the largest of all three data sets used in this research. With a 
total of 207 remaining cases after cleaning the data set (Section 8.3), in each of the 30 

random samples, the training set comprised 137 cases while the remaining 70 cases 

constituted the testing set. As a result, 18,632 (i. e. 137 * 136) instances of meta-data 

were generated for each sample. 

9.3.1 Mantel Test 

Again, analysis of the Finnish data set begins with the Mantel test, results for which 

have been recorded in Table 9.9. For each of the 30 random samples, the correla- 

tion between the original pair of distance matrices was computed. Thereafter. another 

4999 correlation coefficients were calculated between the original residual matrix and 

4999 randomisations of the distance matrix. Results in Table 9.9 include the origi_ 
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9.3 Finnish Data Set 

nal correlation coefficient, maximum and minimum values from the entire set of 5000 

coefficients for each sample. 

The value of correlation for each sample was positive meaning that there is a ten- 

dency in the data set for points in the problem and solution spaces to move in the 

same direction. Of course, this is an important starting criteria to be satisfied in order 

to justify to use this data set for CBP. 

However, the values of correlation for each sample were quite low. sample 19 had 

the highest correlation value of 0.18 while sample 9 had the lowest value of 0.07. Inter- 

estingly, only 5 samples had a correlation value < 0.1 while the remaining 25 samples 

had values distributed between 0.1 and 0.18. Such small variance in the correlation 

values strongly suggests a high degree of irregularity in each training set due to pres- 

ence of large number of influential unreliable cases. Beyond doubt, this gives a strong 

signal that any case base comprising such cases must be either pre-processed or dealt 

with extreme caution during reuse. 

Similar to the Desharnais data set, for all 30 samples of the Finnish data set, Rl 

was greater than the other correlation values between the randomised and original 

distance matrices. Thus each sample passed the test of significance at p<0.001. This 

suggests a true (albeit weak) relationship in the real world between the problem space 

features and the solution features. Not only does this result help explain casuality, it 

also suggests that any model built upon empirical data is likely to perform best using 

the original combination of problem and solution space features. 

9.3.2 Visualisation Case Base Quality 

We now turn to visualising the case base irregularity for samples 19 and 9 in 

Figs. 9.20 and 9.21. The former figure depicts the training set with correlation 0.18 

and is extremely densely distributed with data points across the entire axes indicating 

many instances of good and poor reuse. But the marginally less density of points in the 

upper-left and lower-right quadrants is noteworthy, especially in relation to Fig. 9.21. 

and larger bubbles are concentrated around the diagonal. Thus, despite being the best 

or most highly correlated of all samples, we observe a very high degree of dissonance 

in the sample which would almost certainly influence solution quality. 
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9 Results 

Table 9.9: Mantel's Randomisation Test Results on the Finnish Data Set 

Sample Corr Sample Corr Sample Corr 

Max. 0.14 Max. 0.12 Max. 0.13 

1 Original 0.14 11 Original 0.12 21 Original 0.13 

Min. -0.02 Min. -0.03 Min. -0.02 
Max. 0.15 Max. 0.12 Max. 0.15 

2 Original 0.15 12 Original 0.12 22 Original 0.15 

Min. -0.02 Min. -0.02 Min. -0.02 
Max. 0.12 Max. 0.15 Max. 0.11 

3 Original 0.12 13 Original 0.15 23 Original 0.11. 

Min. -0.03 Min. -0.02 Min. -0.02 
Max. 0.09 Max. 0.14 Max. 0,12 

4 Original 0.09 14 Original 0.14 24 Original 0.12 

Min. -0.02 Min. -0.03 Min. =0.02 

Max. 0.13 Max. 0.15 Max. 0.15 

5 Original 0.13 15 Original 0.15 25 Original 0.15 

Min. -0.02 Min. -0.02 Min. -6.02 
Max. 0.15 Max. 0.08 Max. 0.12 

6 Original 0.15 16 Original 0.08 26 Original 0,12 

Min. -0.02 Min. -0.02 Min. -0,02 
Max. 0.12 Max. 0.09 Mag. 0.12 

7 Original 0.12 17 Original 0.09 27 Original 0.12 

Min. -0.03 Min. -0.02 Min. -0,02 
Max. 0.09 Max. 0.12 Max. 0.12 

8 Original 0.09 18 Original 0.12 28 Original 0.12 

Min. -0.02 Min. -0.02 Min. -0.02 
Max. 0.07 Max. 0.18 Max. 0.11 

9 Original 0.07 19 Original 0.18 29 Original 0,11 

Min. -0.02 Min. -0.02 Min. -0,02 
Max. 0.14 Max. 0.12 Max. 0.15 

10 Original 0.14 20 Original 0.12 30 Original 0.15 

Min. -0.02 Min. -0.03 Min. -0.02 
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9.3 Fiiinitih Data Set 
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Figure 9.20: DRI? ýý,, vs. Rl? l? ( ,, 
for Finnish Sample 19 

Fig. 9.21, which depicts the sample with correlation 0.07, is practically little different 

from the other considering its weak correlation. This is a result of a large number 

of number of meta-data instances and high irregularity inherent in the case base. 

The distribution confirms our deductions from the Mantel test that it is imperative to 

cautiously reuse cases from this data set in order to improve prediction accuracy. 

It would appear that both, Figs. 9.20 and 9.21, emphasize that the dissonance in 

the two case bases is comparable; a direct consequence of low correlation values. 

Importantly. the figures highlight the limitation of using the bubble plots to visualise 

case base dissonance. As the case base grows larger, the plot becomes more dense, 

making any meaningful interpretation from the plots challenging. 

To analyse the two samples in more depth, in Figs. 9.22 and 9.23 the meta-data 

has been plotted to attempt identifying potentially unreliable cases within the same 

samples 19 and 9. The cases in both plots are arranged in accordance with "fables 9.10 
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Figure 9.21: U!!! t ,,, vs. /t!? lt,;,, for Finnish Sample 9 

and 9.1 1. Although overall, both figures appear equally random (a result of comparable 

and low correlations), there are relatively more paler shaded blocks in the lower half 

of Fig. 9.22 and darker in the upper-half. However, the sheer number of meta-data 

instances dampen this characteristic of the better sample resulting in a low correlation 

value for the training set. Though it is possible to invest much time to identify suspect 

unreliable cases in the two samples, both figures demonstrate the weakness of the 

visualisation. Such manual identification is virtually impossible for even larger case 

bases. 

An interesting observation in both, Tables 9.10 and 9.11 is the high correlation 

values for individual cases. Upon verification, it was learnt that most cases in the 

sample were far away from each other in both problem and solution spaces. As a 

result, their DRRcý,, r' and RRRc, -1" had high values resulting in stronger correlation. 
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9.3 Finnish Data Set 

Table 9.10: Case Quality using Spearman's Rank Correlation for Finnish sample 19 

Case Correlation Case Correlation Case Correlation 

1 1.00 47 0.70 93 0.30 

2 1.00 48 0.70 94 0.30 

3 1.00 49 0.60 95 0.20 

4 1.00 50 0.60 96 0.20 

5 1.00 51 0.60 97 0.20 

6 0.90 52 0.60 98 0.20 

7 0.90 53 0.60 99 0.20 

8 0.90 54 0.60 100 0.10 

9 0.90 55 0.60 101 0.10 

10 0.90 56 0.60 102 0.10 

11 0.90 57 0.60 103 0.10 

12 0.90 58 0.60 104 0.10 

13 0.90 59 0.60 105 0.10 

14 0.90 60 0.60 106 0.10 

15 0.90 61 0.60 107 0.10 

16 0.90 62 0.60 108 0.10 

17 0.90 63 0.50 109 0.10 

18 0.80 64 0.50 110 0.10 

19 0.80 65 0.50 111 0.00 

20 0.18 66 0.50 112 0.00 

21 0.80 67 0.50 113 0.00 

22 0.70 68 0.50 114 0.00 

23 0.70 69 0.50 115 -0.10 
24 0.70 70 0.50 116 -0.10 
25 0.70 71 0.50 117 -0.10 
26 0.70 72 0.50 118 -0.10 
27 0.70 73 0.50 119 -0.10 
28 0.70 74 0.50 120 -0.20 
29 0.70 75 0.50 121 -0.20 
30 0.70 76 0.50 122 -0.20 
31 0.70 77 0.40 123 -0.20 
32 0.70 78 0.40 124 -0.20 

33 0.70 79 0.40 125 -0.30 
34 0.70 80 0.40 126 -0.30 
35 0.70 81 0.40 127 -0.30 
36 0.70 82 0.40 128 -0.30 

37 0.70 83 0.40 129 -0.50 
38 0.70 84 0.40 130 -0.50 

39 0.70 85 0.40 131 -0.50 
40 0.70 86 0.40 132 -0.60 
41 0.70 87 0.40 133 -0.60 
42 0.70 88 0.30 134 -0.60 

43 0.70 89 0.30 135 -0.60 
44 0.70 90 0.30 136 -0.60 
45 0.70 91 0.30 137 -0.90 
46 0.70 92 0.30 
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9 Results 

Table 9.11: Case Quality using Spearman's Rank Correlation for Finnish sample 9 

Case Correlation Case Correlation Case Correlation 

1 1.00 47 0.60 93 -0.30 
2 0.90 48 0.60 94 -0.40 
3 0.90 49 0.60 95 -0.50 
4 0.90 50 0.60 96 -0.50 
5 0.90 51 0.60 97 -0.50 
6 0.90 52 0.60 98 -0.50 
7 0.90 53 0.60 99 -0.60 
8 0.90 54 0.60 100 -0.60 
9 0.90 55 0.60 101 -0.60 
10 0.90 56 0.50 102 -0.60 
11 0.80 57 0.50 103 -0.60 
12 0.80 58 0.50 104 -0.60 
13 0.80 59 0.50 105 -0.60 
14 0.80 60 0.40 -106 -0.60 
15 0.80 61 0.40 107 -0.60 
16 0.80 62 0.30 108 -0.60 
17 0.80 63 0.30 109 -0.60 
18 0.80 64 0.30 110 -0.60 
19 0.80 65 0.30 111 -0.60 
20 0.80 66 0.30 112 -0.60 
21 0.80 67 0.30 113 -0.60 
22 0.80 68 0.30 114 -0.60 
23 0.80 69 0.30 115 -0.70 
24 0.80 70 0.30 116 -0.70 
25 0.70 71 0.30 117 -0.70 
26 0.70 72 0.20 118 -0.70 
27 0.70 73 0.20 119 -0.70 
28 0.70 74 0.10 120 -0.70 
29 0.70 75 0.10 121 -0.80 
30 0.70 76 0.00 122 -0.80 
31 0.70 77 0.00 123 -0.80 
32 0.70 78 0.00 124 -0.80 
33 0.70 79 0.00 125 -0.80 
34 0.70 80 -0.10 126 -0.80 
35 0.60 81 -0.10 127 -0.80 
36 0.60 82 -0.10 128 -0.80 
37 0.60 83 -0.10 129 -0.80 
38 0.60 84 -0.20 130 -0.80 
39 0.60 85 -0.20 131 -0.80 
40 0.60 86 -0.20 132 -0.80 
41 0.60 87 -0.30 133 -0.80 
42 0.60 88 -0.30 134 -0.90 

43 0.60 89 -0.30 135 -0.90 
44 0.60 90 -0.30 136 -0.90 
45 0.60 91 -0.30 137 -0.90 
46 0.60 92 -0.30 
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Figure 9.22: RRRc, r sorted by DRRc,,, for Finnish Sample 19 
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Figure 9.24: RRRc, r sorted by DRRC, T for Finnish Sample 19 (Enhanced) 

Alternatively, these visualisations could be further enhanced for large case bases by 

adopting several possible techniques. An example is Fig. 9.24 which is an extract from 

Fig. 9.22. Here, only the first 50 candidate cases are concentrated upon for all target 

cases in the case base. Interestingly, the most important information is preserved in 

this plot since these are the cases that matter more being nearer to the target and 

are most likely to be reused. While Fig. 9.24 is meant to only demonstrate enhancing 

visualisation, other possibilities to accomplish the same include averaging across k 

different values and using optimisation techniques such as genetic algorithms. 

Thus, in this section, results from the Mantel test were confirmed visually by demon- 

strating the substantial irregularity even in the better of the two samples of the Finnish 

data set examined. Unfortunately, the respective figures also strongly highlight the 

shortcomings of the proposed visualisation technique which has shown itself to be in- 

effective for any further practical use other than examining the overall irregularity for 

large case bases. 

9.3.3 Case Profile 

Two case profiles are visualised in Figs. 9.25 and 9.27 along with their values in 

Figs. 9.26 and 9.28 respectively. The former figure that represents a rather good case 

from sample 19 has many data points spread across the lower half of the plot. This 

suggests that though the case may be far from a target, it is likely to also deliver good 

results. Importantly, note the higher concentration and larger bubbles in its upper- 

right quadrant. While in Fig. 9.28, the profile suggest the case has a substantially 
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Figure 9.27: Case Profile for Unreliable Case 77 Figure 9.28: Case Profile for Unreliable Case 77 

from Finnish Sample 20 from Finnish Sample 20 

different solution value in comparison to other cases in the case base, irrespective of 

its distance from the target. Considering the consistency of poor results (RRRc T al- 

ways is equal to one), such a case must be dealt with severe caution since it seems 

certain that it usage will deliver substantially poor results again. 
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the Finnish Dataset 

9.3.4 Prediction 

Lastly, the impact of using the case profiles on prediction accuracy is examined. Once 

again, predictions by using P2 to measure case quality failed. This certainly is because 

of the degree of unreliability of the cases in the case base. In the case of the Finnish 

data sets, an early experiment revealed that the optimum combination of k and PT 

that minimises SumnjResI was 5 and 0.2 respectively. To check whether the residuals 

decrease further as k increases, the range of k was increased to [1 
... 81. The results 

from the predictions in the form of means of Suml Rest for the Finnish data set are 

reported in Table 9.12 plotted in Fig. 9.29. 
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9 Results 

Table 9.13: Kruskal-Wallis Test Results for Finnish Data Set 

1k PT p-value 

1 0.5 0.65 

2 0.2 0.23 

3 0.2 0.09 

4 0.2 < 0.05 

5 0.2 < 0.05 

Again, one observes that using the nearest neighbour provides the highest SumIRes) 

or least prediction accuracy. But as the value of k increases, estimates tend to get 
better as indicated by the decreasing mean of SumlResi. The mean was recorded lowest 

for k=5 with an improvement of 9% in prediction accuracy in comparison to k=1. 

This again may be a result of negation of extreme values by averaging more and more 

solutions. But as soon as case quality is reflected upon before reuse by setting PT 

as low as 0.1. we observe a drop in SumiResi for all k. This trend only continued until 
PT = 0.2 after which the Sum! Resl began increasing for most values of k since more 
distant cases were being retrieved. This may be due to few good quality cases in the 

case bases which may be frequently used despite being distant from the target in the 

problem space. Even for the larger range of k, the optimum combination of k and PT 

for this data set was 5 and 0.2 respectively, having the lowest mean of SumIResl. If 

one concentrates on k=1, it can observe that as PT increase, the mean of SumlResl 

constantly declined until PT = 0.5. This again is a confirmation that the system ably 

rejected use of unreliable cases in order to increase prediction accuracy. Of course, 

as k increased, more distant cases must have been used due to discrimination that 

resulted in increase in sum of residuals. 

Lastly, to statistically verify the value of use of the case discrimination system on 
the Finnish data set, Table 9.13 lists the results from the Kruskal-Wallis tests on the 

residuals. Similar to Table 9.8, the first and second column record the value of k and 

the corresponding value of PT which results in the lowest SumlResl. The third column 

records the p-value indicating whether the residuals from using the proposed case 

discrimination system were significantly different to simply using k nearest neighbours 

at a= 5%. In contrast to the Desharnais data set, the null hypothesis could not be 

rejected for k=1.2.3 in the Finnish data set. This is rather surprising, especially 
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Figure 9.30: An Example of Increase in Prediction Accuracy 

for k=1 considering the fall in SurnjResj. However, it is evident from the SumjR&. HHin 

all three cases there seems to be at least some value in using the proposed technique. 

While for remaining values of k, the results are statistically significant and the null 

hypothesis could be rejected. Hence, the application of the case discrimination system 

did result in improvement in accuracy, especially for k=5 which also resulted in the 

lowest SurnRes. 

9.4 Retrieval Demonstrations 

The above sections have overall shown that the proposed methods improve prediction 

accuracy. But the results have so far been looked at from a very broad perspective 

considering the Sump Res j were used as a measure of accuracy. In this section, we 

provide two concrete examples (real retrieval instances) that demonstrate the working 

of the proposed case discrimination system. 
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Figure 9.31: An Example of Decrease in Prediction Accuracy 

Fig. 9.30 is a retrieval instance from a sample of the Desharnais data set. In the 

upper panel (Retrieval I), prediction using only nearest neighbours (k = 2) is depicted 

for the target case (in blue). Candidate cases 1 and 2 are the two closest to the target 

and their solutions are averaged to prediction effort of 4505 hours for the target, leaving 

a residual of 1369 hours. While in Retrieval II, for the same target case, but with k=2 

and Pl = 0.5, candidates 1 and 3 were rejected because of being unreliable. Instead, 

candidates 2 and 4 were reused which reduced the residual to only 45 hours (i. e. a 
96% increase in accuracy). Note that the distances between the candidate boxes only 

reflect the order of their distance from the target and not scaled Euclidean distance. 

On the contrary, Fig 9.31 is an example where prediction accuracy decreases due 

because of the case discrimination system. In panel Retrieval I, using k=2 Candidate 

cases 1 and 2 were used to prediction for the target case with solution value 9051. 

The residual in this case was 1516 hours. However, as shown in panel Retrieval II, the 

case discrimination system rejected candidate case 2 and reused 3 instead causing 

the residual in this case to increase to 3111 hours. The rejection of candidate 2 can be 
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Figure 9.32: Case Profile of Rejected Case 

attributed to its large solution value since it may stand out in the solution distribution 

and resultantly, must have a poor case profile. To confirm this, the relevant case's 

profile was retrieved and is plotted as Fig. 9.32. Clearly, the case has performed poorly 

in the case considering the large frequency in the upper-left quadrants of it's profile. 

Hence there is ample evidence and reason to deem the case unreliable and not-use it. 

There are several such examples of good and bad retrievals that can be cited. But 

the underlying message is that there is no assurance that the system may not reject a 

circumstantially good case. 

9.5 Discussion 

Having administered the techniques to all three data sets, this section revisits the re- 

sults to draw a big picture of their effectiveness. To recall the order of techniques 

implemented, first the Mantel test was performed on each of the 30 random samples 
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Table 9.14: Summary of Effectiveness of Techniques 

n Mantel's Test Visualisations Enhanced Prediction 

BT 18(12) Y y N 

Desharnais 77(51) y ? Y 

Finnish 207(137) Y N 

of all three data sets. Thereafter, several visualisations were presented to demonstrate 

the quality or inherent regularity of the case bases, followed by examination of individ- 

ual cases. Lastly, the generated case specific information was used to influence case 

selection for reuse in an attempt to increase accuracy of solutions. 

Table 9.14 summarises the efficacy of each technique. i. e. whether it satisfactorily, 
demonstrated case base dissonance and enhanced prediction accuracy, when admin- 

istered to the three data sets. The first column records the total number of cases used 

while the number within brackets indicate the size of the case base. The symbols 'y' 

and 'N' indicate whether the respective techniques were effective or not respectively. 

while Y indicates ambiguity about effectiveness of the technique. 

The Mantel test proved to be very valuable to indicate the quality of all samples 

(or case bases) being dealt with for each data set. Higher values of correlation were 

observed for the BT data set suggesting more inherent problem-solution regularity in 

the case case. While the correlation values were lower for Desharnals and Finnish data 

sets suggesting the presence of more irregularity. The Mantel test also helped reflect 

upon the applicability of the case bases for CBP via the significance test. This supports 

the notion of a true relationship between the predictor and response variables in the 

real world, which helps explain causality. 

The visualisations more explicitly manifested the quality of the samples of each data 

set examined. However, they seem useful for smaller data sets (BT) since it is possi- 

ble to clearly view overall dissonance and identify suspect unreliable cases. But this 

approach seems less pragmatic as the case base size increases since the plots appear 

cluttered making it nearly impossible to manually extrapolate any meaningful trends 

and search for unreliable cases. Hence, this is a major constraint since case bases 

are generally large (i. e. at least > 50) for most domains making the plots more or less 

unhelpful. However, individual case visualisations, such as in Figs. 9.14 and 9.14 
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were more interesting as their respective behaviour and role in the case base could be 

studied. 

Lastly, the distance metric was supplemented with case quality information to selec- 
tively use high quality or reliable cases for prediction. Overall, it found that applying 
the technique did positively influence solution accuracy. But the degree of impact was 
dependent upon the regularity of the case base itself. In a fairly regular case base (BT), 

the technique seemed to make a modest impact on prediction accuracy since it may 
have had fewer opportunities to reject unreliable similar cases. However, in the case of 

the larger and more irregular case bases, the advantages of using the proposed tech- 

niques were more obvious considering the reduction in sum of residuals and results 
from statistical tests. 

Thus overall, this chapter shows some value in the proposed techniques for pre- 
diction problems although the degree of impact may be variable. The results clearly 

show that it may not always be valuable to use the most similar case for reuse without 

considering its performance history or reliability. Users have to be even more cautious 

when reusing simply the nearest neighbours or statistical adaptation techniques such 

as distance-weighted average that give more importance to nearer cases. The conclu- 

sions of this research follow in the next chapter which revisits the aims and objectives 

and assess the degree of which they have been attained. Thereafter, directions for 

further maturing this work have been put forth. 
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CHAPTER 10 

Conclusions 

This chapter reviews the research presented in this thesis and reflects upon the 

work's significance and limitations. To begin with, the research objectives (discussed 

in Chapter 1) are revisited and assessed to determine the degree to which they have 

been met. Thereafter, the contributions made by this research are highlighted followed 

by current restraints of the presented work. Lastly, potential directions for further 

work are explored. 

10.1 Summary of Research 

A study of the application of Case-Based Prediction (CBP) to software engineering es- 

timation was conducted which shed light on the criticality of a competent case base 

for delivery of effective solutions. It was expected that an impression or measure of in- 

herent regularity in the case base would influence users' confidence, or caution them 

with regard to the delivered solution's reliability. A review of current literature in CBR 

showed that methods to assess case base quality existed, though they largely catered 

for analytic problem domains e. g. classification and diagnosis. These techniques were 

incapable of accommodating the extent or unboundedness of problem and solution 

spaces and resulting complexity of problem domains. 

Thus, the need to research alternative techniques for assessment regularity of case 

bases for CBP arose. A novel technique to measure the overall regularity of the case 

base was experimented with. Thereafter, two visualisation techniques that highlighted 

the regularity of the examined case base were demonstrated. These visualisations 

also enabled identification of unreliable cases (subject to practical limitations) that 
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appeared to be the cause of overall distortion in the case base's regularity. Addition- 

ally, an objective method to measure individual case reliability was introduced that 

strengthened the notions of individual case reliability drawn from the visualisations. 

All of the above was undertaken keeping the larger goal of enhancing solution ac- 

curacy in mind. The idea was to identify unreliable cases and confine their usage to 

extenuate their effect on solution quality. The proposed techniques were demonstrated 

upon three software engineering data sets of different sizes, but it was observed that 

their effect varied across from one data set to another. 

10.2 Research Objectives 

The four objectives mentioned in Chapter 1 will now be restated to be assessed in light 

of the work presented in the preceding chapters. 

º OBI: To establish that there is a need for an alternative technique that addresses 

problem-solution irregularity in CBP domains. 

In Chapter 4, many recent approaches to case base maintenance were revisited., 

It was shown that these techniques were developed for analytic problems and 

were unsuitable to be applied for prediction problem domains. This is a result 

of the continuous value solutions in CBP that makes the proposed approaches 

ineffective since many concepts such as case coverage and reachability cannot be 

defined with certainty. Hence, there was a need to develop new approaches that 

addressed the challenges posed by prediction problem domains. 

º OB2: To assess the problem-solution regularity in a case base to determine its 

applicability to CBP and influence user confidence. 

A case base, in which cases are proportionally placed with respect to each other 

in both problem and solution spaces, is more likely to deliver a good quality 

solution in comparison to other case bases where cases may be disproportionably 

placed. While a regular case base is desirable, case bases in the real world tend 

to exhibit some distortions. Hence, it is valuable to have an impression of the 

degree of distortion to verify its applicability to CBP and influence confidence on 

the proposed solution. 
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This research successfully used the Mantel's randomisation test to measure reg- 

ularity of case bases from prediction problem domains. The results showed that 

different samples of the case bases exhibited varying degrees of regularity between 

the problem and solution spaces. It made possible to identify relatively more reg- 

ular case bases that would gain more user confidence since they are likely to 

deliver good solutions. Additionally, varying degrees of regularities amongst dif- 

ferent samples indicated the presence of noisy or unreliable cases in the case 
base. 

º OB3: To identify unreliable cases that distort the overall regularity of a case base. 

While the Mantel's randomisation test indicated the presence of unreliable cases, 

it is vital that such cases are identified to either be treated or avoided from reuse. 

To achieve this, some novel visualisations were proposed that made it possible 

to identify cases that exhibited considerable irregularity and could potentially 

be labelled as unreliable. But this was more challenging and inefficient for larger 

case bases since the visuals appeared more cluttered and hence, it was difficult to 

manually identify unreliable cases. Besides the problem of dealing with large case 

bases, the visualisation also delivered a subjective impression of case reliability. 

As an alternative, Spearman's rank correlation was used to provide a measure of 

case reliability and in addition, it also confirmed results from the visualisations. 

º OB4: To investigate if case reliability can gainfully supplement inter-case distance 

measures to increase solution accuracy in CBP using the domain of software engi- 

neering estimation as an example. 

A case discrimination system was proposed that successfully avoided reuse of 

unreliable cases in favour of distant yet reliable cases. The reliability information 

was gathered from case profiles that tracked the performance of the candidate 

case. Although positive, the impact on accuracy varied from one case base to the 

other depending upon the regularity. In regular case bases (BT'S, the impact was 

modest considering reuse of few unreliable cases must have been avoided while 

the increase in accuracy was marked for larger and more irregular case bases 

(Desharnais and Finnish). 
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10.3 Summary of Research Findings 

The major finding from this research is that: 

It is beneficial to supplement inter-case distance with a reflection of the can- 
didate case's quality and reusing relatively distant yet reliable cases for pre- 

diction increases solution accuracy i. e. using the nearest candidate case(s) 
for prediction is not always desirable. 

Other important findings include: 

9 Software engineering data sets maybe vulnerable to irregularity and should be 

treated cautiously. It was observed that in two of the three data sets used in this 

research (Desharnals and Finnish). there was substantial irregularity in the case 

bases. In the remaining data set (BT data set), the irregularity was insignificant 

but this could be a result of its small size as reflected by the differences in the 

samples. Overall, this suggests that SE data sets are likely to contain noise 

and therefore, each case should be carefully examined before use. The degree of 

impact from irregularity may differ from one technique to another built using the 

data set. For example, a single outlier could significantly alter a regression model 

and resultantly decrease overall prediction accuracy. On the other hand, the 

presence of a single outlier in CBP would have a rather modest impact considering 

the likelihood of it being frequently reused. Variation of such regularity is one 

such plausible explanation for erratic prediction accuracy. 

. Different optimum values of k for different data sets. Another interesting observa- 

tion drawn from results is that while there is a consensus on using more than 

one nearest neighbour for prediction, the optimum value of k differs from one data 

set to another. This may again be an artefact of the irregularity in the case base. 

More regular case bases are likely to perform well using the nearest neighbour. 

On the other hand, irregular case bases would benefit from using k>1 since they 

may neutralise extreme values. 

. Measuring case reliability is always favourable. It was noted that using a case 

discrimination system that learns to overlook unreliable cases always increases 

prediction accuracy (except for k=5 in the Finnish data set). This is true even 

at the lowest experimented threshold value (0.1). Hence, one is better off using 
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any such system along with the similarity measure irrespective of the value for k. 

However, the degree of impact is determined by the degree of irregularity in the 

case base. It is expected that the improvement in prediction may be rather modest 
for smaller and regular cases while it may be more significant for larger and 

irregular case bases. The Increase in impact for irregular case bases is because 

- there are higher chances and instances of ignoring unreliable cases. 

" Influence on user confidence. The reason why prediction accuracy increases when 

using the proposed case discrimination system is because cases that are more 

regularly and coherently spread out in the problem and solution spaces are used 

to predict each other. This is contrary to using only k where prediction accuracy 

increases with increasing k mostly due to extreme values negating each other. 

With such explanatory knowledge, it is likely to increase the confidence of users 

on the system and solutions delivered. 

10.4 Contributions of the Thesis 

The following contributions have been made by this work to the field of Case-Based 

Prediction: 

I-A gap in contemporary research pertaining to maintenance in CBR has been 

brought to light. It has been shown that existing methods and techniques for 

case base maintenance are unfit for application to CBP. 

II -A technique novel to CBR has been demonstrated to measure problem- 

solution regularity in case bases used for prediction. 

III - Additionally, two new visualisations have been presented to gauge inherent 

distortion of regularity in case bases and individual cases. Observations have 

been further substantiated by an objective measure of individual case relia- 

bility. 

IV -A novel concept of case profile has been introduced that records the perfor- 

mance history of a case to enable judging its reliability for future reuse. 

V- Lastly, a relatively simple yet effective approach has been developed to en- 

hance solution accuracy that supplements inter-case distance with candidate 

case quality information to selectively reuse similar cases for prediction. 
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10.5 Limitations of Work 

While the proposed techniques have been demonstrated to be useful, there are some 

limitations of the research that are recognised and are discussed in this section. 

10.5.1 Limitations of Approach 

. All the visualisations of different case bases proved to be effective in demonstrat- 

ing the inherent dissonance. However, they were relatively unhelpful for large 

case bases when trying to manually identify suspect unreliable cases. This was 

shown clearly by sections 9.2.2 and 9.3.2. especially the latter. Thus, the visual- 

isations fell short of their purpose and utility for practical reasons. 

. The research used the SumlResl as an indicator for error. Though this is widely 

accepted to be an unbiased measure of error, the technique could have shown 

to be even more promising by using other measures, especially Pred25. This 

measure is the count of total number of predictions that were within a range of 

25% from the true value. Hence, it indicates the number of projects which have 

been predicted within a certain margin of error even though the sum of residuals 

may be higher. 

. The frequentist approach used to select cases for reuse has been effective at re- 

ducing error. However, it may be regarded as a very simple technique for making 

such decisions. Another possibility is to use neural networks that can be trained 

to discriminate against cases that appear to have unreliable profiles. Likewise, 

other techniques capable of learning patterns can be explored for use that may 

perhaps lead to better results. 

. The size of the case base has been kept constant during the experiments. This 

does not adequately represent a real world scenario where cases are at least 

aperiodically added to the case base. 

10.5.2 Tool Limitations 

. The implementation of the work presented was coded in MATLAB. Though it is 

possible to create stand-alone executable applications using its in-built compiler, 
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currently this has not been done. Hence, it is possible to share only the scripts 

within the community to widen usage and validation, but this requires users to 

have access to MATLAB which is a relatively expensive piece of software. 

" Secondly, the scripts were coded specifically keeping the research objectives in 

mind. Hence, they lack flexibility and other desirable features such as choice of 

distance metrics, feature and case subset selection etc. Additionally, at present 

there also exists no GUI to ease usability. 

Though these tool limitations are constraining, they do not pose a difficult hurdle 

for further advancement of the work. This is because the details of the technique have 

been provided in our methodology chapters and can be easily built into systems by 

developers. Other alternatives have been presented in Section 10.6.1 

10.5.3 Analysis Limitations 

So far, the technique has been shown to be effective using a manually filtered set 

of case base features rather than a pre-determined optimal subset using wrappers 

[KS02a, AB941. It would have been interesting to determine the effect of the presented 

technique In conjunction with feature selection i. e. verify if there is further improve- 

ment in prediction accuracy when already using an optimal set of features for mea- 

suring similarity. Another worthwhile comparison of performance would be between 

the presented technique and case subset selection. Since, the discrimination system 

implicitly deletes (or ignores) cases at different levels of PT, it conceptually strives to 

achieve the same results as case subset selection in which an optimal set of cases are 

selected to comprise the case base. Besides performance accuracy, other parameters 

that the two techniques could be compared against include computational expense, 

reliability and suchlike. 

Secondly, the experiments have been conducted keeping the case base size constant. 

But realistically, cases are added to the case base from time to time and the system 

must gauge the reliability of each new case. This can be simulated for research pur- 

poses by adding every test case to the case base once a prediction has been made. 

Upon addition, a case profile has to be populated for the newly added case in the same 

manner as previously for the other existing cases. Thus, such experimentation in a 
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more realist environment would prospectively give us deeper insight into the long-term 

effectiveness of the technique. 

Besides, for more robust validation, it is imperative that the technique is used on 

more software engineering data sets. This would further support the value of the 

technique when predicting software costs. In addition, the technique could also be 

tested upon data sets from other problem domains. 

10.6 Future Extensions to Research 

Suggestions for future work to build upon current research are made in this section. 

Three different areas of work are discussed in the following sections. 

10.6.1 Tool Support 

The current implementation of this work was coded using scripts in MATLAB [MAT] 

and lacks a GUI. Hence, it is essential that these scripts are upgraded with a user- 
friendly GUI to make them available for widespread use and validation within the CBR 

community. 

A rather preferable alternative would be to upgrade ArchANGEL IKSHO21 which is 

a CBP shell developed previously by our research group. ArchANGEL, which is freely 

available, has been extensively used by researchers worldwide for conducting activ- 

ities pertaining to software engineering estimation. Embedding the technique into 

ArchANGEL would augment the tool's utility and further allow more opportunities for 

validation of our technique by numerous users. 

Lastly, an exciting possibility would be to contribute the technique as a method(s) (or 

class(es) in Java) in jColibri (BTGCDA04] which is a very flexible CBR shell. The shell 

is designed to enable handling multitudes of data types and CBR pertaining operations 

by developing new or modifying existing methods. Importantly, the tool appears to be 

gaining widespread popularity within the CBR community and hence, it shall provide a 

remarkable platform to validate our techniques across a variety of domains by different 

users. 
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10.6.2 Method Refinement and Enhancement 

The populated case profiles are currently static. As a result, once the profiles are 

generated, unreliable cases are as good as deleted for various values of PT since they 

will never be used. Instead, updated beliefs can be used. Here, even though the pre- 
diction for a test case is made using the k nearest neighbours, a check is performed 

on the quality of solution delivered if every case in the case base was reused exclu- 

sively. This would result in more meta-data for each prediction and accordingly, each 

candidate case's profile can be updated. In this way, cases which were previously 

considered unreliable may gradually begin to be reused and deliver effective solutions. 
The utility of this approach could be better understood with an example. Imagine a 

scenario where a software project (existing in the case base) was completed using a 

revolutionary technique that substantially improved productivity. Hence, in relation 

to other similar candidate cases, this case may be initially deemed unreliable due to 

Its differences with other cases in the solution space. However. over time as this new 
technology becomes popular, the usefulness of this unreliable case would be realised 
by its prospects of providing a good quality solution and henceforth, be favoured for 

reuse over other candidate cases. 

Secondly, it is obvious that the technique that decides whether to use a case or not is 

crucial for meeting our objective of increasing prediction accuracy. It is recognised that 

the frequentist approach used in this research to measure quality though effective, is 

relatively simple and naive. This leaves considerable room to test alternative methods 
that could be used instead such as fuzzy logic, neural networks, decision trees, logistic 

regression, support vector machines and so on. 

Lastly, the case profiles can be investigated in more depth and could be used to 

classify new cases as reliable, unreliable, common, distinct etc. This can be achieved 
by examining their distinct patterns or spread of data points in their respective profiles 

that reveal characteristics of the case, such as in Figs. ?? and ??. Such classifications 

can be further used to influence other decisions such as whether to add a case to the 

case base, measure expected solution quality or even measure expected frequency of 

use. 
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10.6.3 General Applicability 

Most importantly. there is a need to validate the general applicability of the techniques 

presented in this research. This may initially be done strictly on other CBP systems to 

uncover any unspotted weaknesses in the system that need to be addressed. There- 

after, the technique can be further modified to be factored into other CBR systems e. g. 

classification tasks, design and planning tasks, recommender systems, etc. 

10.6.4 Software Engineering Estimation 

Notwithstanding the above, this research also raises questions about software engi- 

neering data sets. It has been shown that there is a need to reflect upon data collec- 

tion practices including both what and how data is collected. While the latter issue is 

more administrative in nature, the former underlines the necessity of more research 

in the field to further understand the dynamics of software development. With more 

insight, it may also open channels to develop adaptation routines that could perhaps 

be beneficial to reduce or even eradicate problems caused by heterogeneity of software 

engineering data sets. 

10.7 Summary 

This research has shed light upon the fact that CBP systems used for software engi- 

neering estimation are sensitive to the presence of noise in the case bases. And this 

may very well be true for case bases from other prediction domains which are vulner- 

able to similar irregularities. Since this may have an adverse effect on accuracy of 

solutions, it is vital that methods are in place that monitor the quality of case bases 

and check for unreliable cases to avoid their reuse. Of course, this is true for other 
CBR systems too that rely upon problem-solution regularity within their case bases to 

perform well. While this research has presented an alternative to account for unreli- 

able cases in prediction domain case bases, the techniques deployed for such purposes 

may differ from one application to the other and hence, need to be appropriately cho- 

sen or developed. 
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A Script Listing - Main. m 

fopen_sumerrors = fopen((strcat('BT', num2str(iterations), ... 
'/SumOfResiduals_', date, '. txt')), 'a'); 

fprintf(f_open, '***********#*******************************#****' 
... 

fprintf(f_open, 'Date of Run: %s\t\t', date); 

fprintf(f_open, 'Time: %d: %d: %d\n\n', clock-(4), clock_(5), clock_(6)); 

fprintf(f_open, '*****************+***+**ý*******+*****************ý 
... 

fprintf(fopen_sumerrors, 

fprintf(fopen_sumerrors, 

fprintf(fopen_sumerrors, 

clock_(6)); 

fprintf(fopen_sumerrors, 

'Date of Run: %s\t\t', date); 

'Time: %d: %d: %d\n\n', clock_(4), clock-(5), 

*************************«************\n\n'); 

colnames = fieldnames(data); 

[dataset_train, dataset_test] - split_data(data, 1,0); 

size--: train = size(dataset_train); 

size-: test = size(dataset_test); 

cb_profile = zeros(size_train(1), 16); 

metadata = zeros((size_train(1) * (size_train(1)-1)), 6); 

metadata_counter, = 1; 

metadata_counter_ = 1; 

distjnatrix = zeros(size_train(1)); 

resi_matrix = zeros(size_train(1)); 

pred residuals = zeros(5,9, size_test(1)); 
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% Preparing data for similarity matching 

for target = 1: size_train(1) 

X=1j 

for candidate = 1: size_train(1) 

if (target == candidate) 

continue; 

else 

Normalise Continuous Features 

ranges = normalise(dataset_train, dataset_train(target)); 

distance = calc_distance(dataset_train(target), ... 
dataset train(candidate), ranges); 

distances(x, 1) = candidate; 

distances(x, 2) = distance; 

residual = dataset_train(target). (colnames{l})-... 

dataset_train(candidate). (colnames(1)); 

residuals(x, l) = candidate; 

residuals(x, 2) = residual; 

metadata(metadata_ counter, 1) = target; 

metadata(metadata_ counter, 2) = candidate; 

metadata(metadata_ counter, 3) = distance; 

metadata(metadata_ counter, 5) = residual; 
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metadata_counter = metadata_counter + 1; 

x=x+1; 

end 

end 

% Sorting distances and residuals of all Candidate cases 

distances = sortrows(distances, [2]); 

residuals = sortrows(abs(residuals), (2]); 

for candidate = 1: size_train(1) 

pack; 

if (target == candidate) 

dist_matrix(target, candidate) - 0; 

resi_natrix(target, candidate) = 0; 

continue; 

else 

for rank-seek = 1: (size_train(1)-1) 

if (distances(rank_seek, 1) _= candidate) 

metadata(metadata_counter_, 4) - rank_seek / ... 

(size_train(1)-1); 

end 

end 
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for rank-seek = 1: (size_train(1)-1) 

if (residuals(rank_seek, 1) == candidate) 

metadata(metadata_counter_, 6) = rank_seek / ... 
(size_train(1)-1); 

end 

end 

disc matrix(candidate, target) = metadata(metadata_counter_, 4); 

% Distance Matrix for Mantel's Test 

resi matrix(candidate, target) = metadata(metadata_counter_, 6); 

% Residual Matrin for Mantel's Test 

end 

Populating Case Profile 

if metadata(metadata_counter_, 4) <= 0.25 

if metadata(metadata_counter_, 6) <= 0.25 

cb_profile(candidate, 1) = cbprofile(candidate, l)+1; 

elseif metadata(metadata_counter_, 6) <= 0.5 

cb_profile(candidate, 5) = cb_profile(candidate, 5)+1; 

elseif metadata(metadata_counter_, 6) <= 0.75 

cb-profile (candidate, 9) = cb profile (candidate, 9) +1; 

elseif metadata(metadata_counter_, 6) <= 1 

cb-profile (candidate, 13) = cbprofile (candidate, 13) +1; 

end 

elseif metadata(metadata_counter_, 4) <= 0.5 

if metadata(metadata_counter_, 6) <= 0.25 
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cb_profile(candidate, 2) = cb-profile(candidate, 2)+1; 

elseif metadata(metadata_counter_, 6) <= 0.5 

cb-profile (candidate, 6) = cb-profile (candidate, 6) +1; 

elseif metadata(metadata_counter_, 6) <= 0.75 

cbprofile(candidate, 10) = cb_profile(candidate, 10)+1; 

elseif metadata(metadata_counter_, 6) <- 1 

cbprofile(candidate, 14) = cb_profile(candidate, 14)+1; 

end 

elseif metadata(metadata_counter_, 4) <- 0.75 

if metadata(metadata_counter_, 6) <= 0.25 

cb_profile(candidate, 3) = cb-profile(candidate, 3)+1; 

elseif metadata(metadata_counter_, 6) <= 0.5 

cbprofile(candidate, 7) - cb_profile(candidate, 7)+1; 

elseif metadata(metadata_counter_, 6) <- 0.75 

cb_profile(candidate, 11) - cbprofile(candidate, ll)+1; 

elseif metadata(metadata_counter_, 6) <- 1 

cb_profile (candidate, 15) - cbprofile (candidate, 15) +1; 

end 

elseif metadata(metadata_counter_, 4) <- 1 

if metadata(metadata_counter_, 6) <- 0.25 

cb_profile(candidate, 4) - cb_profile(candidate, 4)+1; 

elseif metadata(metadata_counter_, 6) <- 0.5 

cb-profile(candidate, 8) - cb-profile(candidate, 8)+1; 

elseif metadata(metadata_counter_, 6) <- 0.75 

cbprofile(candidate, 12) - cb_profile(candidate, 12)+1; 

elseif metadata(metadata_counter_, 6) <- 1 

cb_profile(candidate, 16) - cb-profile(candidate, 16)+1; 

end 

end 

metadata_counter_ = metadata_counter_ + 1; 
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end 

end 

sort_distmatrix = dist matrix; 

sort_resimatrix = resi matrix; 

[sort_dist_matrixl, sort_resi_matrixlj = sortmatrices_bydistance ... 
(sort_dist_matrix, sort_resimatrix, size train(1)); 

% Spearman's Rank Correlation 

case-profile-all = calc_case_profiles(sort_dist matrixl, ... 

sort_resi_matrixl); 

% Re-arranging matrices for case base visualisation 

[dist. jnatrix, resi_matrix] = arrange_corr_matrices(dist_matrix, ... 

resi_matrix, size_train); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Mantel's Randomisation Test 

mantels_corr(1) = calcmantels_corr(distmatrix, resimatrix, ... 

size_train(1)); 

max_corr = mantels_corr(1); 

min_corr = mantels_corr(1); 

for rand perms = 2: 5000 
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rand_dist matrix = randomise_distmatrix(dist_matrix); 

mantels_corr(rand_perms) = calc_mantels_corr(rand_distmatrix, ... 

resimatrix, size_train(1)); 

if mantels_corr(randperms) > max_corr 

max_corr = mantels_corr(rand. perms); 

elseif mantels_corr(rand_perms) < min_corr 

min_corr = mantels_corr(randperms); 

end 

end 

fprintf(f_open, 'Matrix Correlation\t=\t%d\n', mantels_corr(1)); 

fprintf(f_open, 'Max Mantel\t\t\t=\t%d\n', max_corr'); 

fprintf(f_open, 'Min Mantel\t\t\t=\t%d\n', min_corr'); 

%%%%%%%%%%%%%%%%%%%%%%I$%%%%%%%%%%%%*********** 

% Predicting Target Cases 

sum error_k = 0; 

sum error_pl = zeros(5,9); 

for target = 1: size_test(1) 

clear distances; 

clear residuals; 

X= lj 

140 Rahul Premraj 



A. 1 Main Script 

for candidate = 1: size_train(1) 

ranges = normalise(dataset_train, dataset_test(target)); 

distance = calc_distance(dataset_test(target), ... 
dataset_train(candidate), ranges); 

distances(x, 1) = candidate; 

distances(x, 2) = distance; 

residual = dataset_train(target). (colnames{l})-dataset_train ... 
(candidate). (colnames{1}); 

residuals(x, 1) = candidate; 

residuals(x, 2) = residual; 

x=x+ 1; 

end 

distances = sortrows(distances, [2]); 

residuals = sortrows(abs(residuals), [2]); 

for dist_rank = 1: size_train(1) 

distances(dist_rank, 3) = dist_rank / size_train(1); 

end 

fprintf(f_open, '\n\nFor Case %d (%d) : \n', target, dataset_test ... 
(target). (colnames{1})); 

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$*********** 

% Nearest k 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for k=1: 5 

[cases_k, solutions_k, prediction_k, error_k] = predict_k ... 
(k, dataset_train, dataset_test(target), distances); 
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for k_counter = 1: k 

fprintf(f_open, 'Case(p2) (%d): %d (%d)\t', k, ... 

cases_k(k_counter), solutions_k(k_counter)); 

end 

fprintf(f_open, 'Prediction(k): %d\t Residual(k): %d\n', ... 
prediction_k, error-k); 

prell residuals(k, l, target) = error-k; 

pred_residuals_(residual_counter, k, 1) = error_k; 

sum_error(iterations, k, 1) = sum error(iterations, k, 1)+... 

error_k; 

end 

fprintf(f_open, '\n'); 

for k=1: 5 

for p=0.1: 0.1: 0.8 

[cases_p2, solutions-p2, prediction p2, error_p2] m ... 

predicts (k, p, 2, dataset_train, dataset test(target),... 

distances, cb profile); 

sum_error(iterations, k, ((p * 10)+1)) - sum_error ... 
(iterations, k, ((p * 10)+1))+error_p2; 

for k_counter = 1: k 

fprintf(f_open, 'Case(p2) (%d, %s): %d (%d)\t', k, 

" num2str(p), cases_p2(k_counter),... 

solutions_p2(k_counter)); 

end 

fprintf(f_open, 'Prediction(k): %d\t Residual(k): %d\n', 
,,. 

prediction-p2, error-p2); 

pred_residuals(k, ((p * 10)+l), target) error-p2; 

pred_residuals_(residual_counter, k, ((p * 10)+1)) = error-p2; - 

end 

end 
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residual-counter = residual-counter + 1; 1 

end 

toc; 

fprintf(f_open, '**************************************************' 
... 

fclose (f_open) ; 

save((strcat('BT', num2str(iterations), '/MATFILE_', date))); 

fclose(fopen_sumerrors); 

keep3 iterations sum_error pred_residuals_ residual-counter; 

end 
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A. 2 Splitting Data sets into Training and Testing Samples 

function (dataset_train, dataset_test] = split_data(data, choice, rand) 

% function [dataset_train, dataset_test] = split_data(data, choice, rand) 

% data = struct data 

% choice = split -1 for 2: 1 and 2 for 1: 1 

% rand = randomise data or not -1= yes, 0= no 

data_copy = data; 

size-data = size(data); 

even = 0; 

if (rem(size_data(1), 2)) 

even = 0; 

else 

even = 1; 

end 

if (choice == 2) 

train_size =( round (size_data(1) / 2)); 

test_size = size_data(1) - train_size; 

elseif (choice == 1 && even ==0) 

train_size =( round ( size-data(l) / 3) *2)-1; 

test-size = size-data(l) - train-size; 

elseif (choice ==1 && even ==1) 

train-size =( round ( size-data(l) / 3) *2); 

test-size = size-data(l) - train-size; 
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end 

if (rand == 1) 

rand_num = randperm(size_data(1)); 

for i=1: size_data(1) 

data-copy(i) = data(rand num(i)); 

end 

end 

dataset_train = data_copy(1: train_size); 

dataset_test = data_copy(train_size+l: end); 

A. 3 Normalising Distances 

function [ranges] = normalise(data, target) 

data(end+1) = target; 

colnames = fieldnames(data); 

size-data = size(data); 

size-cols = size(colnames); 

ranges = 0; 

temp = 0; 

for i=1: (size_cols(1)) 

if iisnumeric(data(1) . (colnames{i}) ) 

for j=1: size_data(1) 

temp(j) = data(j). (colnames{i}); 

end 
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else 

end 

end 

ranges(i) = max(temp) - min(temp); 

if ranges(i) 0 

ranges(i) = 1; 

end 

ranges(i) = 0; 

ranges = ranges'; 

A. 4 Calculating Inter-Case Distance 

function [distance) = calc_distance(datal, data2, ranges) 

distance = 0; 

colnames = fieldnames(datal); 

size_data = size(colnames); 

for i=2: (size_data(1)) 

if isnumeric(datal. (colnames{i})) 

distance = distance + (((datal. (colnames{i})-data2. (colnames{i})).,. 

/ ranges(i)) " 2); 

else 

if (strcmp(datal. (colnames{i}), data2. (colnames(i))) _- 0) 

distance = distance + 1; 

end 

end 
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end 

distance = sqrt( distance / ((size_data(1))-1)); 

A. 5 Sorting Matrices 

function (sort_distmatrix, sort_resi_matrix] = ... 

sortmatrices bydistance(sort_distmatrix, sort_resi_matrix, size_train) 

for i=1: size_train 

temp(:, 1) = sort_dist_matrix(:, i); 

temp(:, 2) = sort_resi_matrix(:, i); 

temp = sortrows(temp, l); 

sort_dist_matrix(:, i) = temp(:, 1); 

sort_resi matrix(:, i) = temp(:, 2); 

end 

A. 6 Calculating Mantel's Correlation 

function mantels_corr = calc_mantels_corr(distmatrix, resi_matrix,... 

size_train) 

correlation_value = corrcoef(dist matrix, resi_matrix); 
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mantels_corr = correlation_value(1,2); 

A. 7 Calculating Probability from Case Profile 

function [probability] = calc-probability(i, quad, distances, cb_profile) 

if quad == 2 

if(distances(i, 3) <= 0.25) 

if(cb_profile(distances(i, 1), 1)+cb profile(distances(i, l),, 5)... 

+cb-profile(distances(i, l), 9)+cb-profile(distances(i, 1), 13 
.., 

)) == 0 

probability = 1; 

else 

probability = ((cb-profile(distances(i, l), 1)+cb_profile... 

(distances(i, l), 5)) / (cb_profile(distances(i, 1), l)+... 

cb-profile(distances(i, l), 5)+cbýrofile(distances(i, 1), 9)+... 

cb_profile(distances(i, 1), 13))); 

end 

elseif(distances(i, 3) <= 0.5) 

if (cb_profile (distances (i, 1) , 2) +cb^profile (distances (i, 1) , 6) +.. . 
cb-profile(distances(i, 1), 10)+cb_profile(distances(i, l), 14)) == p 

probability = 1; 

else 

probability = ((cb_profile(distances(i, 1), 2)+cb profile... 

(distances(i, l), 6)) / (cb_profile(distances(i, 1), 2)+... 

cb_profile(distances(i, l), 6)+cb, 
_profile(distances(i, 

1), 1o)+... 

cb_profile(distances(i, 1), 14))); 

end 

elseif(distances(i, 3) <= 0.75) 
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if(cb_profile(distances(i, l), 3)+cb_profile(distances(i, 1), 7)+... 

cbprofile(distances(i, 1), 11)+cb_profile(distances(i, 1), 15 ... 

== 0 

probability = 1; 

else 

probability = ((cb profile(distances(i, 1), 3)+cb-profile... 

(distances(i, l), 7)) / (cb profile(distances(i, l), 3)+... 

cb-profile(distances(i, l), 7)+cb-profile(distances(i, 1), 11)+... 

cb_profile(distances(i, 1), 15))); 

end 

elseif(distances(i, 3) <= 1) 

if(cb_profile(distances(i, l), 4)+cb_profile(distances(i, 1), 8)+:.. 

cb-profile(distances(i, l), 12)+cb profile(distances(i, l), 16 ... 
)) _= 0 

probability = 1; 

else 

probability = ((cb_profile(distances(i, l), 4)+cbprofile... 

(distances(i, 1), 8)) / (cb-profile(distances(i, 1), 4)+... 

cb-profile(distances(i, l), 8)+cb_profile(distances(i, l), 12)+... 

cb profile(distances(i, 1), 16))); 

end 

end 

elseif quad == 1 

if(distances(i, 3) <= 0.25) 

if(cb_profile(distances(i, l), l)+cb profile(distances(i, l), 5)+... 

cb profile (distances (i, 1) , 9) +cb profile (distances.. . 
(i, l) , 13)) == 0 

probability = 1; 

else 

probability = ((cb. profile(distances(i, l), l)) / (cb profile... 

(distances(1,1), 1)+cb^profile(distances(i, l), 5)+cbprofile... 

(distances(i, l), 9)+cb-profile(distances(i, 1), 13))); 
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end 

elseif (distances (i, 3) <= 0.5) 

if (cb_profile (distances (i, 1) , 2) +cb profile (distances (i, 1) , 6) +.. . 

cb-profile(distances(i, l), 10)+cb_profile(distances(i, l)... 

, 14)) 0 

probability = 1; 

else 

probability = ((cb_profile(distances(i, l), 2)) / (cb profile... 

(distances (i, l), 2)+cb. profile(distances(i, 1), 6)+cb profile... 

(distances(i, l), 10)+cb-profile(distances(i, 1), 14))); 

end 

elseif(distances(i, 3) <= 0.75) 

if(cb_profile(distances(i, l), 3)+cb_profile(distances(i, 1), 7)+... 

cb-profile(distances(i, 1), 11)+cb-profile(distances... 

(i, 1), 15)) == 0 

probability = 1; 

else 

probability = ((cb-profile(distances(i, 1), 3)) / (cb_profile... 

(distances(i, l), 3)+cb-profile(distances(i, l), 7)+cb-profile... 

(distances(i, l), 11)+cb_profile(distances(i, l), 15))); 

end 

elseif(distances(i, 3) <= 1) 

if(cb profile(distances(i, 1), 4)+cb-profile(distances(i, l), 8)+... 

cb_profile(distances(i, 1), 12)+cb profile(distances... 

(i, 1), 16)) == 0 

probability = 1; 

else 

probability = ((cb profile(distances(i, 1), 4)) / (cb_profile... 

(distances(i, l), 4)+cb_profile(distances(i, 1), 8)+cb-profile... 

(distances(i, l), 12)+cb-profile(distances(i, 1), 16))); 

end 

end 
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end 

A. 8 Predicting Solutions 

function [cases_k, solutions-k, prediction_k, error_k] = predict_k ... 
(k, train, target, distances) 

colnames = fieldnames(train); 

prediction_k = 0; 

error_k = 0; 

cases_k = zeros(k); 

solutions_k = zeros(k); 

for i=1: k 

prediction_k = prediction_k + train(distances(i, 1)). (colnames{1}); 

solutions_k(i) = train(distances(i, 1)). (colnames{1}); 

cases_k(i) = distances(i, 1); 

end 

prediction_k = round(prediction_k / k); 

error_k = abs( target. (colnames(1})-prediction_k); 

function [cases-p, solutions-p, prediction,, error p] = ... 

predict-p(k, p, quad, train, target, distances, cb_profile) 

colnames = fieldnames(train); 

151 



A Script Listing - Main. m 

prediction_p = 0; 

error _p = 0; 

cases_p = zeros(k); 

solutions = zeros(k); 

k_counter = 0; 

i=1; 

while k_counter <k 

probability = calc probability(i, quad, distances, cb_profile); 

if probability >= p 

prediction_p = prediction_p + train(distances(i, 1)). (colnames(1)); 

solutions_p(k_counter + 1) = train(distances(i, 1)). (colnames(1}); 

cases_p(k_counter + 1) = distances(i, 1); 

i=it1; 

k_counter = k_counter + 1; 

else 

i=i+1; 

end 

end 

predictions = round(prediction_p / k); 

error_p = abs( target. (colnames(1))-prediction_p); 
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