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Identification & Tracking of 
Maritime Objects for Collision 

Risk Estimation 

Andrew A. W. Smith 

Abstract 

With the advent of modem high-speed passenger ferries and the general 

increase in maritime traffic, both commercial and recreational, marine safety 

is becoming an increasingly important issue. From lightweight catamarans 

and fishing trawlers to container ships and cruise liners one question 

remains the same. Is anything in the way? 

This question is addressed in this thesis. Through the use of image 

processing techniques applied to video sequences of maritime scenes the 

images are segmented into two regions, sea and object. This is achieved 

using statistical measures taken from the histogram data of the images. Each 

segmented object has a feature vector built containing information including 

its size and previous centroid positions. The feature vectors are used to track 

the identified objects across many frames. With information recorded about 

an object's previous motion its future motion is predicted using a least 

squares method. Finally a high-level rule-based algorithm is applied in order 

to estimate the collision risk posed by each object present in the image. The 

result is an image with the objects identified by the placing of a white box 

around them. The predicted motion is shown and the estimated collision risk 

posed by that object is displayed. 

The algorithms developed in this work have been evaluated using two 

previously unseen maritime image sequences. These show that the 

algorithms developed here can be used to estimate the collision risk posed 
by maritime objects. 
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Chapter 1 Introduction 

Chapter 1: 
Introduction 

1.1 Maritime Safety 

With the advent of modem high-speed passenger ferries and the general 

increase in maritime traffic, both commercial and recreational, marine safety 

is becoming an increasingly important issue. In addition to high-speed, 

lightweight catamaran ferries capable of travelling at high speeds, container 

ships and cruise liners are becoming larger and heavier making them less 

manoeuvrable. An important question for all of these craft remains the same. 

Is anything in the way? 

A collision of any nature involving a marine craft can have a devastating 

effect. History shows that a collision between a cruise liner and an iceberg 

can lead not only to the loss of the ship but also to a massive loss of life. In 

more recent times November 1999 saw the banana boat `Dole America' 

collide with the Nab Tower, a lighthouse off the coast of the Isle of Wight 

(Fleet, 1999). In December 2002, a cargo vessel carrying nearly 2900 luxury 

cars collided with a container ship off the coast of Dunkirk (McBeth, 2002). 

Although no lives were lost in these recent cases, massive damage occurred 

to both the vessels involved and to the environment through the release of 

pollutants into the sea and atmosphere. 
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At present, maritime vessels employ two different forms of observation. The 

first is radar. Radar images show the energy that has been reflected back 

from objects in the full 360 degrees surrounding the vessel. Whilst being an 

extremely useful source of information the results are blobs on a screen that 

can be difficult to interpret. A large craft, heading directly towards a vessel 

could show up on radar as a relatively small reflection that could be 

misinterpreted as a small object presenting only a minor risk. Skolnik (2002) 

states that radar also suffers from the multipath effect where energy 

returning from an object then reflects off another surface (the sea) causing 

further returns to be received. This could result in multiple objects being 

displayed where there may only be one. 

The second form of observation is the human eye. Either by looking directly 

out of the bridge window or by viewing a video monitor linked to forward- 

looking cameras. If an object appears to be in the path of the vessel the 

operator raises the alarm and avoiding action is taken. This solution suffers 

from the major drawback of operator fatigue. Staring at a monitor or out to 

sea for long periods of time on the off chance that something might appear 

in the path of the vessel becomes very tiresome, very quickly. Lan et al 

(2002) includes tedious work as a key factor in their model of human 

fatigue. Makris and Ellis (2003) support this by saying that the inspection of 

a visual surveillance system by human operators is tedious work and highly 

susceptible to error. They suggest that the automatic analysis of such an 

activity is of great benefit. 

1.2 The Maritime Environment 

In figure 1.1 we see a typical maritime scene as viewed over the bow of a 

vessel leaving port. It is a very busy scene with several maritime objects 

present. There are two objects toward the bottom of the image, a rigid 
inflatable boat (RIB) on the left and a sailing dinghy toward the right. At the 

I 
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top of the image there are numerous other maritime objects, in these cases 

boats tied to mooring buoys. If the question `Is anything in the way? ' is 

asked of this image the simple answer is yes. However, if another question 

`which object presents the greatest risk of collision? ' were asked the answer 

is not obvious. Further questions have to be asked about the image: 

1. Which object is closest to the vessel? 
2. What is the point of collision with that object? 

3. Are any of the objects moving? 

4. Is the vessel closing on the objects? 

its 

=. ý, ý-rrý- .ýM 

_, .. ".. ý, ý w, 

Figure 1.1 -A Maritime Scene 

Given the single image above only the first two of these questions can be 

answered but even then certain assumptions have to be made: 

" The surface of the sea can be considered to be the ground plane as no 

object below the surface can be observed. 
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" If the camera is viewing an area in front of the vessel then it can be 

assumed that the effect of perspective is being seen. The ground plane, 

and hence the objects, at the top of the image are a greater distance from 

the vessel than the ground plane at the bottom of the image. 

" The bow of most vessels approaches a point and it can be considered 

that the centre bottom of the image represents this point. 

Given these assumptions the object closest to the vessel is the object that is 

nearest the bottom centre of the image. In figure 1.1 the dinghy toward the 

bottom of the image is closer to the bottom centre of the image (the vessel's 
bow point) than the RIB and the objects at the top of the image are some 

distance further away. 

In order to answer the final two questions a further image is required taken 

some time after the first to show the dynamic behaviour of the objects with 

respect to the vessel. Figure 1.2 shows the same scene some time after the 

first. In answer to question 3 it can be seen that the RIB has moved to the 

right but without moving any further up the image in the direction it is 

pointing. This is due to its own movement in a left to right direction and due 

to the movement of the vessel straight ahead. The dinghy has also carried 

out the same movement. As all the other objects are in the same relative 

positions it can be considered that they are stationary. 

With a single uncalibrated camera and without knowing the speed of the 

vessel it is not possible to accurately determine the speed of the objects in 

the image. This is not necessary to answer the fourth question, however, as 

the only requirement is to determine whether the distance between the two is 

increasing or decreasing. If the distance decreases then the vessel is 

travelling faster than the object and the risk of a collision increases whereas 

if the distance increases then the vessel is travelling slower than the object 

and the risk of collision decreases. As the distance between the objects and 

4 
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the bottom of the image has remained constant from figure 1.1 to 1.2 the 

speeds of the objects and the vessel can be considered comparable and 

therefore the vessel is not closing on the objects. 

Figure 1.2 -A Maritime Scene, some time later 

Revisiting the question `which object presents the greatest risk of collision? ' 

though gives a different answer. The collision risk from figure 1.1, the 

dinghy, has now moved toward the right edge of the image and is looking 

set to continue in that direction. It can be considered that the risk of 

colliding with this object is decreasing. The RIB, however, is moving further 

toward the centre of the image and is now the object posing the highest risk 

of collision. It should also be noted that a further dinghy has entered the 

scene from the left. Whilst not currently a major threat the risk of collision 

could increase if it continues toward the centre of the image. 

Whilst it is extremely unlikely that none of the crew would be monitoring 

the sea in front of the vessel in such a crowded location once out in open 

water such as that shown in figure 1.3 the situation may be quite different. 

I 
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This view may continue for many hours at which point human fatigue will 

become a real issue. 
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Figure 1.3 - Open Water 

1.3 Machine Vision System 

In answering the questions posed above several processes have been gone 

through, each of which can be realised using image processing techniques 

leading to the possibility that a complete machine vision system could be 

developed for the tedious task of monitoring the sea in front of the vessel. 

The first process was to identify the objects present in the scene. This can be 

realised using some form of image segmentation where regions of interest 

(objects) are distinguished from the rest of the image. Having identified the 

objects the next task is to follow their movement over time. In an image 

processing system this is performed by a tracking algorithm to match the 

regions of interest between frames. The final process is to use the 

knowledge of the movement of the objects to decide what collision risk the 

objects are posing a vessel at the camera position. That part of an image 

h 
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processing system dealing with knowledge based decision making is known 

as high-level vision. 

The image processing system developed here is designed to address the 

specific problem of collisions between a large maritime vessel and other 

maritime objects moving in areas of open sea. The aim is to increase 

maritime safety by making a large vessel operator aware of any objects that 

are present in the area of sea directly ahead of the vessel and estimating the 

risk of collision posed by the identified objects. This is achieved by 

capturing long, image sequences from a camera mounted on board a large 

vessel, looking forward at an area directly ahead of the vessel from the bow 

of the vessel to the horizon. The image processing system then identifies and 

tracks maritime objects present in the scene; predicts the future motion of 

the objects; and estimates the risk of collision with another maritime object. 

This information is presented to the operator as visual cues superimposed 

onto the original captured image. 

Figure 1.4 shows the context of the system developed in this thesis. The 

system is shown with an object, a camera, and an observation monitor. The 

input is an image sequence captured from a camera and the output from the 

system is the input image with any maritime objects identified highlighted to 

the operator. In addition the predicted future motion of each object is 

displayed along with the estimation of the collision risk the object poses to 

the vessel the camera is mounted on. 

Input 
linage 1'raessm, Ctuuaý Syalau --output-lo, 

Figure 1.4 - System Context diagram 
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Certain assumptions have been made about the working environment in 

order to bound the research presented here. As the system is intended to be 

of greatest use when the level of observation is at its lowest the weather 

conditions when this would be the case can be limited to conditions of 

daylight and relative calm seas. These are also the conditions when moving 

objects will be travelling at their highest speed increasing the risk of 

collision. As a vessel enters and leaves port the level of observation will be 

at its highest due to the increased risk of collision with the multitude of 

other maritime objects present in the confines of the port. Therefore this 

system is considered to be used away from port, out in the open sea where 

the level of observation will be much lower and where there will be 

considerably fewer objects present. It can therefore be assumed that there 

will only be a small number of objects present in any one image. 

As the system is not attempting to calculate the distance of any object from 

the camera a stereo camera is not required. The only criteria regarding an 

object's distance from the camera is whether the distance between the two is 

increasing or decreasing and this can be ascertained by observing the 

number of pixels between the bottom of the object and the bottom of the 

image. Therefore a single camera recording monocular image sequences has 

been used throughout. 

A frame rate of 10 frames per second has been used here as this is 

considered a high enough rate to capture object motion between frames. A 

higher frame rate would require more data to be processed without adding a 
significant amount of accuracy to the results and a lower frame rate would 

compromise the tracking algorithm due to the greater movement of objects 
between frames. 

Out in the open sea where this system is to be used, maritime objects, be 

they the camera platform or an object in the scene, are likely to be 
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commercial vessels and therefore moving in the most efficient manner. This 

is likely to be on a direct bearing between two points at a constant velocity. 

Because of this it can be assumed, for the purposes of predicting future 

object motion that object motion will be uniform across the image. 

1.3.1 System Overview 

The image processing system developed here is subdivided into four 

accepted machine vision steps as shown in figure 1.5. They are: Image 

Smoothing; Segmentation; Object Tracking; and High Level Vision. 

Frame N 

Object Store 

------------ ------------. ' Image 
Smoothing ; 

Filter Image 

'-------------------------' 

-------------------------- Object Tracking 

F--ý Track Objects 

Predict Motion 

-- 

-------------------------- Seginentation 

' Determine ' 

' Regions ' 

Segment into 
Sea & Object 

-------= 

--------------- High Level Vision 

Estimate Collision 
Risk 

----------- ------------ 

Display Image 

Figure 1.5 - System block diagram 
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Image Smoothing 

The image acquisition process introduces noise to the images from a number 

of sources including the image sensor, recording medium, and through 

image digitisation. In order for further processing steps to make full use of 

information present in the images it is necessary to reduce the undesirable 

effects of noise. Gaussian noise contains variations in intensity that are 

drawn from a Gaussian or normal distribution and is a very good model for 

many kinds of sensor noise (Jain et al, 1995). In addition, of particular 

concern to the maritime images used here, Voles et al (1999) note that the 

waves of the sea also cause noise. They go on to say that this wave noise 

does not have a gaussian distribution and that traditional (linear) methods of 

filtering are ineffective This is also implied by Pozzer and Pellegrino (2001) 

who add noise to their synthesised sea images. 

Segmentation 

Maritime images are, by their very nature, open world scenes. These, as 

opposed to synthetic images or those from a highly constrained 

environment, introduce a range of complexities into the analysis of the 

image. Teal (1997) names these as uncontrolled and variable light 

conditions; different object scales; orientation of the object with respect to 

the camera; and partial or full occlusion of the object. Pozzer and Pellegrino 

(2001) note that the behaviour of the sea will vary also as a result of external 

factors such as wind and temperature. 

Segmentation is concerned with splitting an image up into regions (also 

called segments or areas) that each hold some property distinct from their 

neighbour (Low, 1991). This part of the system is concerned with separating 

the maritime image into two distinct regions, sea and object. Segmentation 

algorithms generally fall into a small number of categories. Bassmann and 

Besslich (1995) detail region-oriented and contour-oriented segmentation 
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techniques although there are also methods involving the use of texture 

analysis and motion detection. 

Object Tracking 

The third stage considers the matching of those segmented objects across 

multiple frames. The tracking of objects has been a subject of considerable 

interest to researchers from many fields in the machine vision world. Work 

has been carried out into tracking small objects, in particular aircraft in low 

contrast images (Davies et al, 1998), objects from sporting events such as 

players and balls (Agbinya and Rees, 1999), vehicles on a road from both a 

remote viewpoint (Teal, 1997), (Enkelmann, 1989), (Koller and Nagel, 

1993) and from another vehicle (Smith and Brady, 1995). Here it is the 

tracking of maritime objects from another vessel. 

Techniques for tracking objects through a sequence of images include the 

use of optical flow (Smith and Brady, 1995), model-based tracking 

(Ferryman et al, 1998), measurements of object parameters (Ellis et al, 

1991), and the Kalman filter (Kalman, 1960). 

High Level Vision 

High level vision is concerned with using previously known knowledge 

about the goal or application of the system to make decisions about the 

information presented in the image. The final stage in this system uses a 

high-level vision technique to estimate a measure of risk that the objects will 

collide with the vessel the camera is mounted on. 
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1.4 Image Acquisition 

The image processing system described in this thesis has been developed 

using three test sequences: Poole; Dover; and Portsmouth. These contain 

different maritime objects and sea conditions that are representative of a 

typical scene the system is designed for. In order to obtain the best possible 

images with which to test the algorithms these sequences were taken from a 

static camera position. The developed system has been evaluated using two 

previously unseen sequences taken from a moving camera platform. The 

environment of these evaluation sequences is considered to be typical of the 

type the system would be expected to operate in and they contain a variety 

of maritime objects. 

A camcorder was mounted looking forward over an area of sea. Image 

sequences with an original frame size of 768 x 576 pixels were captured 

onto video film and later digitised using a PC containing a video capture 

card. The images were digitised at a rate of 10 frames per second, cropped to 

512 x 512 pixels, and stored in the loss-less GIF format. The camcorder was 

set to record image sequences at a focal length of 100mm, giving a field of 

view of approximately 23 degrees. This focal length was chosen as from a 

typical camera height of 15 metres this gives a cropped image stretching 

from the bow of the vessel to the horizon. The range of the objects captured 

in the images was typically 50 metres to 1000 metres. 

1.4.1 Algorithm Development Test Sequences 

Three image sequences have been used to develop the algorithms presented 
here. Sequence 1 was taken looking out over Poole Harbour on a very dull 

overcast day with very little wind. The sequence is 60 frames in length and 

shows a dark stationary dredging boat in the centre of the image and a 
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launch with a dark hull and light cabin entering the scene and travelling 

from right to left. The sea state is calm and the shoreline occurs at a level of 

127 pixels down from the top of the image throughout the sequence. Figure 

1.6 shows two frames from this sequence. 

Sequence 2 is of Dover Harbour on a very bright day with a moderate 

breeze. The sequence is 270 frames long and shows the harbour wall in the 

top right of the images and a buoy in the centre. The sea conditions are a 

slight swell with considerable illumination differences due to this. There is 

no shoreline in this sequence so the level has been manually set to 0 pixels 

down from the top. Figure 1.7 shows two frames from this sequence. 

Sequence 3 was taken in Portsmouth on a calm overcast day. This sequence 

is 150 frames in length and shows a number of small craft moving from the 

right towards the upper left of the image. As with the Dover sequence there 

is no shoreline in this sequence. Figure 3.4 shows two frames from this 

sequence. 

Figure 1.6 - Two frames from the Poole test sequence 
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Figure 1.7 - Two frames from the Dover test sequence 
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Figure 1.8 - Two frames from the Portsmouth test sequence 

1.5 Research Aims 

The specific problem being addressed in this work is that of maritime 

collision avoidance. The principal aim of this research is to develop a series 

of image processing algorithms that could be incorporated into a machine 

vision system designed to aid the safe passage of vessels travelling in a 

maritime environment. Any system would then be mounted on board a ship 

and would monitor an area of the sea directly ahead of the vessel. The key 
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tasks of the image processing algorithms are to identify and segment 

maritime objects from long, monocular maritime image sequences and track 

those objects over time. Based on the object motion, to predict and display 

to the operator the likely future path of the object and estimate the 

percentage risk that the object will collide with the operator's vessel. 

The contribution of the work presented here is a set of algorithms that 

demonstrate the feasibility of using a machine vision system to solve the 

problem of maritime collision avoidance. 

This research has three main objectives: 

9 To develop an algorithm capable of identifying and segmenting objects 
from a cluttered maritime scene. 

" To employ tracking techniques to match these maritime objects from 

frame to frame and develop an algorithm to predict and plot the future 

course of the objects across the scene based on the objects prior motion. 

9 To develop an algorithm to estimate and show the percentage risk of a 

collision between the object highlighted and the vessel the camera is 

mounted on. 

1.6 Thesis Outline 

Chapter 1 introduces the project, it discusses the background and reasons 

why there is a need for a machine vision solution in marine safety. It gives 

an overview of the system, gives details of the image capture process and 

the test sequences used in the development of the system and finally outlines 

the organisation of this thesis. 
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Chapter 2 reviews some of the relevant literature covering the key areas 

addressed by this thesis, filtering, segmentation, tracking, and high-level 

reasoning. 

Chapter 3 presents the pre-processing of the images. The FWV filter was 

developed as part of this research for use with maritime images and this is 

discussed and compared against other well-known filters. 

Chapter 4 describes the segmentation of maritime images. Three methods 
have been applied to the test images, results shown and conclusions drawn. 

A thresholding algorithm, a method of segmentation using frame 

differencing and a method of characterising the sea are all implemented. 

Chapter 5 presents the correspondence problem. The Kalman filter and a 

method of measuring object parameters have been implemented to track 

maritime objects between frames. It also details the algorithm used to 

predict the future motion of the objects for the object parameter method. 

Chapter 6 describes the method of high-level reasoning employed to 

estimate the collision risk and shows the results of the system using the test 

sequences utilised throughout the development process. 

Chapter 7 evaluates the performance of the system. Two previously unused 

sequences are used to test the system without any alteration to the 

parameters. A critical analysis of the results is also shown in this chapter. 

Chapter 8 draws conclusions and discussions on all of the developments 

made throughout the research. The current limitations are discussed and 

recommendations for future work are also made. 
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Chapter 2: 
Literature Review 

2.1 Introduction 

In the machine vision system being developed here the goal is to take a 

sequence of images, process the thousands of pixels that make up each 

image to identify the objects present in the image and robustly track those 

objects over time. A decision then needs to be taken for each identified 

object as to its estimated risk of collision with the camera platform. 

Applications such as this require image-processing techniques that span low, 

intermediate, and high level vision. 

Low level vision techniques are concerned with the manipulation of the 

image data at the pixel level. The aim is typically to reduce the effects of 

noise and to enhance data relating to useful features such as edges. 

Intermediate level processing takes the enhanced image data and tries to 

identify features or regions of interest within the image, usually called 

objects. A task performed under this heading could include segmentation. 

High level vision by contrast attempts to apply some predefined reasoning to 

the identified objects. This could be to track the objects over multiple 

frames for surveillance tasks such as intruder detection or it could be for 

product inspection where the aim is to identify those objects that do not 

adhere to a set criteria. In this application it is to track objects present in the 

image and estimates the collision risk posed by each object. 
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Each of the vision levels has seen considerable research carried out and 

many results reported. In the following sections techniques covering the four 

stages identified for this system will be reviewed to give direction to the 

research presented in this thesis. 

2.2 Image Smoothing 

Image smoothing is the set of local processing methods which has the aim of 

suppressing image noise (Sonka et al, 1993). These methods are categorised 

as linear and non-linear. Linear filters are good at removing Gaussian noise 

and are implemented using the weighted sum of the pixels in successive 

windows. A typical approach to this is to use a convolution mask (Jain et al, 
1995). The term non-linear filter is given to any filter that is not a weighted 

sum of pixels. Both linear and non-linear filters can be either spatially 

variant or invariant (Jain et al, 1995). Noise in maritime images is 

considered to come from the image capture process and from the waves of 

the sea. 

Bassmann and Besslich (1995) describe the linear mean filter using a 

convolution mask size of 3 by 3. The mask is placed over the 9 pixels in the 

top left comer of the input image. The central pixel under the mask is 

replaced with the average of the pixel values in the whole of the mask. 

Therefore in this case the greylevels of the pixels in the mask would be 

summed and divided by 9. The mask is then repeatedly shifted 1 pixel to the 

right and the calculation repeated. At the end of the top row the mask is 

moved down by one pixel and the process repeated. Bassmann and Besslich 

(1995) say that whilst the result of the mean filter brings the greylevels of 

noisy pixels closer to those of uncorrupted pixels any formerly steep 

greylevel step between regions (edges) will be flattened (blurred). Gonzalez 

and Woods (1992) say that one of the principal difficulties with linear 

filtering is that it blurs edges and other sharp details. 
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There are variations of linear filter using different weighting values in the 

mask. Jain et al (1995) say that when designing linear smoothing filters the 

filter weights should be chosen so that the filter has a single peak (main 

lobe) and symmetry in the vertical and horizontal directions. 

Many non-linear filters have been developed with one of the most popular 
being the median filter. In its simplest form the greylevel of each pixel is 

replaced by the median of the greylevels in a neighbourhood of that pixel 

and is particularly effective when the noise pattern consists of strong, 

spikelike components and the characteristic to be preserved is edge 

sharpness (Gonzalez and Woods, 1992). 

Sonka et al (1993) state that the main disadvantage of median filtering in the 

usual rectangular neighbourhood is a damaging of thick lines and sharp 

corners in the image. They go on say that this can be avoided by using a 

different neighbourhood shape. If horizontal and vertical lines need 

preserving then they suggest the neighbourhood shown in figure 2.1.. 

Figure 2.1 - Horizontal and Vertical Line Preserving Median 
Neighbourhood 
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Sonka et al (1993) go on to say that median filtering belongs to a category of 

techniques known as rank filtering which is described as the ordering of 

pixels in some neighbourhood followed by the calculation of some statistics 

over this sequence. The k-closest averaging method is another rank filter. 

Low (1991) says the aim of this filter is to preserve, to some extent, the 

actual values of the pixels without letting noise get through to the final 

image. To perform the operation Low (1991) says all the pixels in the 

window (neighbourhood) are sorted and the k pixels values closest in value 

to the target pixel - usually the centre of the window - are averaged. k is a 

selected constant value less than the area of the window. 

Kuwahara et al (1976) takes the principle of the rank filter and applies it 

across a number of neighbourhoods in their work on RI-angiocardiographic 

images. Instead of a single neighbourhood Kuwahara et al (1976) use four 

neighbourhoods of size WxW around the target pixel, ij, as shown in 

figure 2.2. 

W 
1 

w 

ij 

Figure 2.2 - Kuwahara filter neighbourhoods 

20 



Chapter 2 Literature Review 

For each of the neighbourhoods the mean and variance are calculated and 

then sorted by variance. The neighbourhood with the lowest variance is 

considered to be that to which the target pixel belongs and it is replaced with 

the mean value of that neighbourhood. Kuwahara et al (1976) say that the 

lowest variance is chosen as this region will not contain a boundary (edge) 

because the existence of a boundary makes the variance increase. They show 

the result of this through a simulation study on 1-dimensional data. The 

results of this can be seen in figure 2.3. 

The original data, figure 2.3a, are normal random numbers having different 

mean values on either side of a control boundary. While, in the mean filter, 

figure 2.3b, blur near the boundary is predominant, in the non-linear 

Kuwahara filter, figure 2.3c, the result has a sharp transition at the boundary. 
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Figure 2.3 - Simulation result on 1-dimensional data: a) original data, b) 

mean filter (window size 10), c) Kuwahara filter (window size 10) 
(Kuwahara, 1976) 



In an extension to the Kuwahara filter, Minato et al (1987) repeatedly apply 

the Kuwahara filter to the same image until no further pixel value changes 

occur. This results in a fixed-point image. The fixed-point set of a filter is an 

array (image) which is unchanged under the operation of filtering. Figure 2.4 

shows an encouraging result of the repeated use of the Kuwahara filter. 

Figure 2.4a shows the original 1-dimensional data set. Figure 2.4b after the 

Kuwahara filter has been applied once and figure 2.4c the fixed-point image, 

which in this case occurred after 10 iterations of the filter. This shows edges 

not only preserved but also enhanced. With regard to maritime images 

though this could lead to boundaries between waves also being enhanced 

potentially leading to them being segmented as false objects. 
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Figure 2.4 - Fixed-Point Kuwahara Filter: a) original image, b) Kuwahara 
applied once, c) Fixed-point image (Minato et al, 1987) 
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Less encouraging for this method is the second example Minato et al (1987) 

show that is repeated here in figure 2.5. This shows the sensitivity of the 

window size when using this method. Figure 2.5a shows the original image 

that consists of four patches 3,4,5, and 6 pixels wide each separated by null 

regions 4 pixels wide. Figure 2.5b shows the fixed-point image with a 

window size of 3. Patches of less than 4 pixels have been eliminated. Figure 

2.5c shows the fixed-point image with a window size of 4 where only the 

patch with 6 pixels has survived unchanged and all the others have been 

averaged. Although this method initially looked promising it suffers from 

being very sensitive to the size of the window and the number of iterations 

required to arrive at a fixed-point image. 
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Figure 2.5 - Fixed-Point Kuwahara: a) original image, b) Fixed-point image 

window=3, c) Fixed-point image window=4 (Minato et al, 1987) 
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2.3 Segmentation 

Image segmentation is an important and challenging problem in image 

analysis (Galic and Loncaric, 2000) (Tu and Zhu, 2002) and many methods 

have been developed to carry out this task. The goal of segmentation has 

variously been described as the identification of groups of similar image 

primitives (Puzicha et al, 1999), the parsing of an image into its constituent 

parts (Tu and Zhu, 2002), and with particular reference to texture 

segmentation as the accurate partitioning of an image into different 

(textured) regions (Dunn and Higgins, 1995). The approach to segmenting 

an image can depend on a number of factors such as the context of the 

image, is it a real-world scene or a constrained environment? The type of 

object being either segmented or identified is also a factor. If the object 

always has the same appearance and comprises a significant number of 

pixels a model-based technique may be appropriate, however, if the objects 

can take on any number of appearances and comprises only a small number 

of pixels then model-based methods might be less successful (Teal, 1997). 

Different approaches have been taken ranging from the generation of an 

artificial sea scene (Pozzer and Pellegrino, 2001) to the use of the frequency 

domain (Sanderson et al, 1999). 

A common approach to segmentation is to define the objects or type of 

region that is desired and process the image to extract these. This is also 

called object isolation (Castleman, 1996). The problem with following this 

approach for this application is the extremely varied nature of the maritime 

objects that are to be segmented. Boats can be small and relatively flat, or 
large and cumbersome. They can have sails or engines, and be black or 

white. Boats, of course, only make up a small proportion of the number of 

objects that could be encountered on the water. There are also channel 

marking buoys, mooring buoys, harbour walls, piers, pontoons, debris 

floating in the sea, and land. 

24 



Chapter 2 Literature Review 

2.3.1 Region-Oriented Segmentation 

Thresholding is a widely employed technique for the segmentation of grey 

level images. This approach is based on the assumption that the image has a 

uniform and stationary distribution of intensities over the object and over the 

background (Zhang and Desai, 2001) or that objects can be distinguished 

from the background by their intensity values (Cheng et al, 1998). Jain et al 

(1995) say that any thresholding method should automatically determine the 

threshold value to make the segmentation more robust. They go on to say 

that automatic thresholding analyses the grey level distribution in an image, 

usually by using a histogram of the grey levels, and applies some knowledge 

about the application to select the most appropriate threshold value. Boyle 

and Thomas (1988) describe a technique for segmentation by histogram for 

scenes that consist of an object on a uniform or slowly varying background. 

They expect such a scene to have a histogram with two peaks, one 

corresponding to the background and one to the object. This is shown in 

figure 2.6. It is important to note that Boyle and Thomas (1988) are not 

saying that the intensity is the same throughout the object or background 

region, just that they are distinguishable from each other and the trough 

between them in the histogram is easy to detect. Once the threshold has been 

determined any pixel whose intensity is below it is set to 0 and any pixel 

above the threshold is set to 1. 

# pixels 

ey level 

Figure 2.6 - Bimodal Histogram 
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Cheng et al (1998) believe that image processing bears some fuzziness in 

nature due to information loss while mapping 3D objects into 2D images, 

ambiguity and vagueness in edge, boundary, and region definitions, and in 

interpreting low level processing results. This belief is followed and uses the 

maximum entropy principle and the concept of a fuzzy c-partition to select 

the threshold values in grey-level images. In many real-world cases the 

boundaries between subsets are usually not clear. For this reason the hard c- 

partition is extended to the fuzzy c-partition which allows objects in the set 

to partially belong to different subsets. As there is no sharp boundary 

between two fuzzy sets any partition calculated would have been determined 

subjectively and there may exist some other partition that can produce better 

results. In order to automatically find the partition that best partitions the 

image Cheng et al (1998) use a simulated annealing approach and the fuzzy 

c-partition entropy as the criterion to measure the fitness of a fuzzy partition. 

This method has been applied to several real-world images including that of 

a coastal scene including a lighthouse and sea. The original image can be 

seen in figure 2.7. The fuzzy 2-partition threshold value for this image is 

115 and the result is shown in figure 2.8. By way of comparison Cheng et al 

(1998) applied Kapur's method (Kapur et al, 1985) of 2-level thresholding 

which also uses the entropy of the grey level image histogram. The result of 

this is shown in figure 2.9. They conclude that their approach has 

outperformed existing methods as it has segmented the main components of 

the image well. In contrast by using the Kapur method (Kapur et al, 1985) 

the contours of the objects have disappeared and some objects such as the 

upper part of the tower and part of the house have vanished. 

Tu and Zhu (2002) state that image segmentation is a long-standing problem 
in computer vision and it is found difficult and challenging for two main 

reasons. First, is the fundamental complexity of modelling the large amount 
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Figure 2.7 - Original coastal image comparison (Cheng et al. 1998) 

Figure 2.8 - Fuzzy segmented image Figure 2.9 - Kapur segmented 
image 

(Cheng et al, 1998) (Cheng et al, 1998) 

of visual patterns and secondly are the intrinsic ambiguities in image 

perception. Real world images are fundamentally ambiguous with human 

perception of the image changing over time. Hence the more you look, the 

more you see. They go on to say that it would be wrong to think that a 

segmentation algorithm should output only one result. 

According to Ishii and Kyuma (2001) image segmentation is a mixture of 

complex sub-problems and they highlight perceptual organisation as a 

concept to describe that it consists of many stages and that different types 

and levels of image features are involved. They propose a segmentation 

method at the primitive level that consists of processes to produce a 

representation whose dimensionality is lower than real objects. 
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Since real world images are the subject of their work, Ishii and Kyuma 

(2001) say it is not possible to strictly define connected areas or continuous 

image features. Even though there may be real segments in 3D physical 

space, the optical mapping to 2D image space includes very complex noise 

and existing boundaries are mapped incompletely. They go on to categorise 

the incompleteness into optical, structural, and higher level types. 

They assume the input to their segment scanning network is a smoothness 

value of some locally determined image feature. {e(x)} is the map of image 

feature continuity where x denotes spatial location and e is signal level 

information. Given {e(x)}, Ishii and Kyuma (2001) intuitively define that 

two neighbouring locations should be in the same segment when the 

absolute values in the continuity map are both very small. This means that 

{e(x)} represents the boundary of segments. This rule of neighbours may be 

applied to the next neighbours until all the locations in a segment are bound. 

A scanning wave is used to solve the incompleteness problem where the 

wave should not pass through small holes in the boundary. 

Huang et al (2000) state that methods of motion segmentation can be 

grouped into two broad classes. One solves the problem by letting multiple 

models simultaneously compete for the description of the individual motion 

measurements, whilst the other excavates out the multiple models 

sequentially by solving for a dominant model. Both encounter difficulties, 

the first at the determination of the number of models or uncertainty of 

mixture models and the latter in the case of absence of dominant motion. 

Huang et at (2000) use the dominant motion model described by Black 

(1996) to calculate both foreground and background motion and then use the 

watershed algorithm to segment the foreground from the background. 
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The dominant motion method begins by constructing a three level gaussian 

pyramid with the coarse level initially set to zero. Huang et al (2000) chose 

10 iterations and the estimated parameters for interframe motion, affine flow 

model, and scale are used to warp the first image to the second image. The 

simultaneous-over-relaxation method lowers the scale parameter in each 

iteration (within bounds) leading to an estimation of the dominant motion. 

The watershed technique of static segmentation considers the gradient 

magnitude image as a landscape where brightness levels correspond to the 

elevation. Areas where a raindrop would drain to the same minimum are 

considered to be catchment areas and the separations between catchments 

are the watersheds. As this technique can lead to many small partitioned 

subregions the catchment areas are iteratively merged based on thresholding 

the difference of two adjacent subregions mean values. 

Another approach to the segmentation problem is described by Voles et al 

(2000) where maritime vessels and other static nautical objects are extracted 
from the sea to aid the recognition and tracking process. Three algorithms 

are introduced to perform variable size image window analysis, statistical 

analysis by reclustering, and region segmentation. The first determines a set 

of overlapping image windows and calculates four statistical measures for 

each window. The measures used are more often seen in texture analysis 

having first generated a grey level co-occurrence matrix for the image. Voles 

et al (2000) do not calculate the matrix and apply the energy, entropy, 

homogeneity, and contrast measures directly to the image pixels. 

The statistical analyser uses a method of iterative reclustering of the feature 

space to determine the centroid of vectors that represent the sea, the main 

feature in the scene. The region segmentor then calculates the Mahalanobis 

distance between the values of the feature centroid in each window to 

identify outliers from the mean. The outliers are potentially regions 
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containing inhomogeneities that may indicate the presence of a rigid object. 
These extracted regions effectively form the segmented regions of interest in 

the image, which are then identified to the user. 

Figure 2.10 shows the variable sized image windows overlaid onto the 

image of the sea. Figure 2.11 shows the Mahalanobis distance transformed 

back onto the same image and figures 2.12 and 2.13 show the result of the 

segmentation process on two different maritime scenes. The method 

correctly segmented the yachts in figures 2.12 and 2.13 95% of the time and 

the buoy in figure 2.13 85% of the time. Voles et al (2000) conclude by 

saying that one advantage of this method is that it does not rely on any 

change between consecutive frames, it uses only the current image to 

perform the segmentation. The main drawback of this process is the 

requirement for the threshold value for separating the main feature from 

outliers in the Mahalanobis distance calculation to be set manually prior to 

segmentation. 
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Figure 2.10 - Variable sized windows Figure 2.11 - Mahalanohis distance 
(Voles et al, 2000) (Voles et al, 2000) 
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Figure 2.12 - Segmentation output 1 Figure 2.13 - Segmentation output 2 
(Voles et al, 2000) (Voles et al, 2000) 

A feature interval graph is used by Mills and Novins (2000) for 

segmentation in long image sequences. Their representation shares many 

properties with the Kalman filter (Kalman, 1960). It is recursively 

computed, relying on only the current and previous frames; it is efficient to 

compute; and it is robust with respect to measurement uncertainty. 

The feature interval graph is constructed from three-dimensional features 

identified in each frame. These features may be located and tracked using 

established techniques such as the Harris feature detector, stereo, and 

motion correspondence. In particular, here the Harris feature detector and 

stereo and motion correspondences were established using bipartite graph 

matching techniques. The feature interval graph is initialised with the first 

observation. A vertex is added to the graph for each feature in the scene. and 

an edge links each pair of distinct features. Associated with each edge is a 

measurement of the three-dimensional distance between the features, 

computed using interval arithmetic. This particular approach to calculating 

the location of features and the distances between features has been used to 

account for any uncertainty in the measurement of the feature locations. 

Each subsequent frame of the image sequence gives another set of 

observations and distance measurements. 
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There are two main tasks to be carried out - combine information from 

multiple observations, and account for missing observations. At each frame 

a new measurement may be made for the distance between each pair of 

points. These distances are represented as intervals and are combined using 

an intersection operator. The new distance stored in the graph is the 

intersection of the old distance and the latest observation. 

The task of accounting for points that appear, disappear, and reappear in the 

scene is dealt with by adding a new vertex to the graph when a new feature 

appears in the scene. This new vertex is linked to all other visible features 

vertices and the edge distances are initialised with the current distance 

measurement. When a feature disappears the portion of the graph relating to 

it is frozen. The location of the feature is estimated but the edges incident on 

the corresponding vertex are not changed. Features that disappear are not 

immediately removed from the graph as they may reappear. In the case of an 

occluded feature reappearing, information gathered prior to the occlusion is 

combined with the latest observation. Edges observed only before the 

occlusion retain their distance information, and those observed only after the 

occlusion use the new information. 

To segment the scene Mills and Novins (2000) propose an object definition 

based on triangles in the feature interval graph. Triangles correspond to 

small rigid substructures in the graph and lead to a segmentation method, 

which is robust with respect to a small number of missing or spurious edges 

in the graph. To construct a triangle-based segmentation an auxiliary graph 

is constructed from the feature interval graph. The vertices of the triangle 

graph correspond to triangles in the feature interval graph and two vertices 

are linked by an edge if the corresponding triangles share an edge in the 

feature interval graph. Component analysis is then applied to segment the 

triangle graph and the segmentation transferred back to the vertices of the 

feature interval graph. 
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The feature interval graph currently takes several frames to converge. 

Although not necessarily a problem from a computational point of view, 

practically this could be a concern. Mills and Novins (2000) suggest that the 

convergence of the feature interval graph could be accelerated by applying 

heuristics to remove edges from the graph, or to reduce features' initial 

connectivity. 

2.3.2 Texture Segmentation 

Texture has been used to successfully segment images for many 

applications. It is of interest to this work because the sea, as viewed by 

human observers, has a perceived texture. If this texture could be described 

it could be segmented from the remaining objects in the image. Many types 

of texture features exist including those based on grey level co-occurrence 

statistics such as homogeneity, contrast, entropy, and energy (Bassman and 

Besslich, 1995), fractal dimension (Chaudhuri and Sarkar, 1995), Gabor 

filters (Dunn and Higgins, 1995) and more recently, association rules 

(Rushing et al, 2002). 

For Chaudhuri and Sarkar (1995) the fractal dimension (FD) of a bounded 

set A is a real number used to characterise the geometrical complexity of A 

which can be estimated using the concept of self-similarity. The bounded set 

A is considered to be self-similar if A is the union of N non-overlapping 

copies of itself scaled up or down by a ratio r. The fractal dimension is then 

given by the relation specified by Mandelbrot (1982) in equation 2.1: 

FD = log(N) / log(1/r) (2.1) 

Chaudhuri and Sarker (1995) go on to use the FD for six variants of the 

image to calculate six features to discriminate the dominant orientation and 

degree of anisotropy of textures present in the image. This is done because 
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the combined effect of these two aspects may be the cause of different 

textures having the same FD. 

The six features are then smoothed to reduce the misclassification that may 

occur in the inner regions and at region boundaries. A K-means clustering 

algorithm is then used to give the final segmentation of the image. This 

method has been tested on texture images from the Brodatz album (Brodatz. 

1966) and also on coarse grain cemented sandstone as shown in figure 2.14. 

The problem was to separate the quartz particles from the iron cementing 

materials present in the sandstone. Compared with human judgement the FD 

technique correctly segmented 91.7% of areas as shown in figure 2.15. 

Figure 2.14 - Original Sandstone Figure 2.15 - Segmented Sandstone 
(Chaudhuri and Sarker, 1995) (Chaudhuri and Sarker, 1995) 

Gabor filters are considered by Dunn and Higgins (1995) for the 

segmentation of textured images. The principle behind Gabor filters is to use 

a number of different linear filters operating in parallel, in a combination of 

the spatial and frequency domain, to segment the image. No effective 

systematic method existed for designing Gabor filters for the segmentation 

of natural textures, which have wide variability, so Dunn and Higgins 

(1995) considered this problem. They developed a method based on a 
decision theoretic formulation using representative samples of the textures 
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of interest to detect the discontinuities at texture boundaries to segment the 

image. At present the filter-selection algorithm is limited to bipartite 

textures. Using a single filter to segment more than two textures might not 

be as effective as integrating the outputs from multiple filters. 

Rushing et al (2002) have developed a texture feature based on association 

rules to segment clouds in satellite images. They define texture as a surface 

property of an object that is reflected in a digital image as a local pattern of 

intensity variation. An association rule captures information about items that 

are frequently associated with each other. In texture analysis the aim is to 

capture information about how pixels in a given neighbourhood are related 

to each other and in order to use association rules to capture this information 

the image needs to be modelled in terms of items and transactions. 

An item is a pixel in the neighbourhood of a given root pixel (the central 

pixel of an nxn neighbourhood). The item is specified in terms of its 

mapping from the root pixel and is given by (X, Y, I). A transaction is a set 

of items associated with a root pixel. A root pixel can have exactly one 

transaction and this transaction describes the texture feature. 

Rushing et al (2002) go on to describe methods of mining these association 

rules from the images and how to use the rules to segment the image. They 

identify problems in capturing local image structures in grey level images 

using association rules. Instances of a texture pattern that might appear 

similar are rarely identical, there are usually small variations in the structure 

and intensity values of the corresponding pixels. This leads to common 

structures present in images not being recognised by the mining algorithm. 

This problem is alleviated by a method of quantization (reducing the number 

of grey levels) so that the structure is preserved but small variations in 

intensity are ignored. 
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This method is shown to work well for supervised segmentation applications 

where sample images are available in advance for each texture class to allow 

for the determination of the association rules. Rushing et al (2002) conclude 

that the segmentation problem can be viewed as a series of classification 

problems followed by some post-processing. 

Puzicha et al (1999) consider two problems in the unsupervised 

segmentation process: 

" The modelling problem - The requirement of a precise mathematical 

notion of homogeneity or similarity between image primitives in order to 

formalise the clustering problem. 

9 The computational problem - The derivation of an efficient clustering 

algorithm. The selection of a suitable method is tightly coupled to the 

chosen similarity measure and its underlying data representation. 

Their goal is to group pixels or small image patches such that segments of 

identical texture are obtained. They use a general method for grouping 

feature distributions that involves performing grouping directly on the 

histogram data, which they also call distributional data, as opposed to other 

classical clustering approaches such as a k-means algorithm on vectors 

generated from local features. The histogram represents features occurring 
in an image neighbourhood around each pixel. A class model of textures is 

then generated characterised by the specific distribution of features found in 

each neighbourhood. The optimal class assignment of a pixel does not 

depend on the location of the pixel but on the locally measured features. 

Puzicha et al (1999) go on to say that for most applications there is prior 
knowledge about inadmissible or unlikely texture configurations. As a 

quality criterion they propose to count for each pixel how many pixels of the 

same texture class are found in a 7x7 neighbourhood. When the number 
falls below a threshold the texture label configuration is considered to be 
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less likely. The results of this method for highly textured real-world images 

of wildlife are shown in figures 2.16 and 2.17. 

Figure 2.16 - Segmentation of Zebra into 3 texture classes 
(Puzicha et al, 1999) 

Figure 2.17 - Segmentation of Leopard into 2 texture classes 
(Puzicha et al, 1999) 

2.3.3 Motion Detection 

Motion is described by Aach et al (2001) as the temporal changes, which are 

introduced by true scene changes, and as temporal changes in image 

intensities by Techmer (2001). Motion is more specifically defined by Strehl 

and Aggarwal (2000) as arising from moving objects viewed by a fixed 

camera against a static background, or by a moving camera depicting a still 

background, or by multiple motions, the combination of a moving camera 

and moving objects. Wang et al (2000) also observes that the differences 

between consecutive frames are usually created by a combination of camera 

motion and the movement of objects. Aach et al (2001) qualify their 

definition by adding that true scene changes does not include varying 
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illumination or noise (Techmer, 2001) saying that intensity changes can also 

be caused by changes in perspective and deformation. 

Estimating motion has been approached in many ways with frame 

differencing (Franchi et al, 1996) (Xu and Ellis, 2002) being one of the most 

widely used. Despite its popularity frame differencing is not without its 

drawbacks. Lee et al (2001) state that frame differencing has the 

disadvantage that it can generally only be used with a static camera. Owens 

et al (2002) say that it is common for an object segmented by frame 

differencing to fragment due to parts of the object matching the greyscale of 

the background. And Ellis et al (1991) say that image differencing places 

considerable reliance on maintaining a reliable reference image. Voles et al 

(1999) apply frame differencing to maritime images the result of which 

shows that much of the sea is in motion in addition to any moving objects. 

Figure 2.18 shows an original image from the sequence and figure 2.19 

shows the differenced image. Determining a suitable threshold value for the 

differenced image however can eliminate much of the motion of the sea and 

successfully segment the image. 

Figure 2.18 - Boat and pontoon Figure 2.19 - Differenced image 
(Voles, 1999) (Voles, 1999) 
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2.4 Object Tracking 

Tracking an entity, feature or object over a sequence of frames requires the 

use of constraints based on the nature of the objects and their motion (Jain et 

al, 1995). Of the many methods developed for achieving this optical flow, 

implementations of the kalman filter, and the use of measurements of object 

parameters are discussed here. 

Optical flow is described by Horn and Schunck (1981) as the distribution of 

apparent velocities of movement of brightness patterns in an image. There 

are a number of ways in which to calculate optical flow including feature- 

based estimation as used by Smith and Brady (1995) to determine objects in 

a sequence where the camera is looking at a vehicle moving along a road. 

The features used in this case are 2 dimensional features often referred to as 

corners. Guerrero and Sagues (1999) use a combination of optical flow and 

geometric features (straight lines) to determine camera motion whereas 

Mallot et al (1991) use a biologically motivated method of computing 

optical flow by combining correlation type motion detectors and local voting 

over the outputs of the detectors. Barron et al (1994) has evaluated the 

performance of a number of optical flow techniques and they report results 

for differential, matching, energy-based, and phase-based methods. 

Stiller and Suntrup (1992) use a generalised parametric motion model where 

the motion of each object is described by a set of parameters and fixed 

transform. These parameters are estimated using two strategies, a slightly 

modified gradient-based algorithm and a region matching evolution 

technique. Raw sparse optical flow is used by Strehl and Aggarwal (2000) in 

a new probabilistic relaxation framework to iteratively perform robust 

multiple motion estimation while Techmer (2001) presents a contour-based 

approach of matching spatial contour points between frames for motion- 

based vehicle detection. 
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Marcenaro et al (2002) describes a tracking algorithm able to solve 

occlusion situations among moving objects in a scene (vehicles moving in a 

built up area). Their technique is based on a shape-matching algorithm 

initialised by using a linear Kalman filter. Using this technique it is possible 

to preserve object identities when they are partially occluded by a static or 

moving object. 

They start by performing frame to frame differencing and then perform blob 

tracking based on the spatial relations between blobs in subsequent frames 

obtained by comparing each extracted region of interest and looking for 

those that overlap. Dependant on their positions in the image objects 

(vehicles) are labelled as NEW, OLD, or MERGED. The last case represents 

a warning that a dynamic occlusion has occurred between two or more 

moving objects in the scene. By labelling the region of interest as MERGED 

the information about the position of each single object is lost. The tracking 

algorithm does not take into account the object's movements and if the 

frame rate is too low objects in adjacent frames will not be overlapped and 

so will not be matched. Marcenaro et al (2002) say that in general this 

condition is not satisfied in outdoor video-surveillance systems because they 

track high speed moving vehicles far from the camera. The problem can 

however be solved by using an estimation technique for the prediction of the 

position of the region of interest in the next frame and for this they use the 

linear Kalman filter (Kalman, 1960). 

During blob tracking a new Kalman filter is instantiated for each blob 

labelled as NEW. The filter is used to predict the position of the blob in the 

next frame. The extracted list of blobs in the next frame is compared with 

the predicted list of blobs from the previous frame. If a MERGED blob is 

detected, the system is not able to retrieve a new observation vector and the 

Kalman filter is updated only by using the previous state vector. This 

approach is only correct if the acceleration of the considered object is 
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constant. If the speed is not constant the prediction error of the Kalman filter 

increases and the system will fail to track the object. 

To counter this problem Marcenaro et al (2002) propose a shape matching 

algorithm. The shape of an isolated object can be defined as the subpart of 

the change detection image within the associated bounding box. This binary 

shape image is stored for each moving object labelled OLD. Whenever an 

occlusion is detected the prediction is computed by using the Kalman 

estimator for each blob in the merged event and a correlation function is 

minimised. The output of the procedure is, for each blob, a vector that 

maximises the correlation between the stored shape and the merged change 

detection image. The output vector is then passed to the Kalman filter as the 

new measurement vector for the blob in the next frame. Marcenaro et al 

(2002) show results with the Kalman filter only failing to track objects that 

have non constant acceleration and succeeding in tracking when the shape 

matching algorithm is introduced. They claim an average object 

misdetection rate of 2% on the tested sequence. 

Huang et al (2002) says that tracking objects in image sequences is an 

important task for vision-based control, human computer interaction, 

content based video indexing and structure from motion. They go on to say 

that visual tracking algorithms can be classified into two categories - 
feature-based methods and region-based methods and that the latter category 

can be subdivided into the view-based and parametric methods. The view- 

based method fords the best match of a region in a search area with a 

reference template whilst the parametric method assumes a parametric 

model of changes in the target image and computes optimal fitting of the 

model to pixel data in a region. 

Huang et al (2002) uses the parametric method in their work on 
segmentation-based object tracking. They utilise a least squares method to 
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determine motion parameters and a Kalman filter for motion prediction. A 

method of image warping is them employed followed by region analysis to 

track the object between frames. They show some encouraging results for 

head and hand tracking but point out some disadvantages of their method. It 

assumes the object has been reliably detected in the first frame and they also 

found that the Kalman filtering does not always provide a correct prediction. 

This method also only works for moving objects. 

Since Wang et al (2000) are interested in tracking moving objects they use 

the projective/bilinear camera model (Mann and Picard, 1997) to remove 

those differences caused by the camera as much as possible. They then go on 

to track objects with a rule-based algorithm using four sets of variables - the 

object trajectories, sizes, greyscale distribution, and textures. 

The variables for object trajectory are the object centroid co-ordinates and 

its predicted future position, which is calculated using the centroid from the 

previous three frames and measures of initial speed and acceleration. By 

comparing the predicted position and real position it is possible to achieve 

trajectory-based tracking. Assumptions made by Wang et al (2000) here are 

that the object trajectories are close to straight lines in a few adjacent frames 

and that object acceleration rate is constant in these frames. 

A further assumption is that for a given frame rate the size of the objects 

should not vary dramatically between frames. The dispersion variable is 

used to track objects based on size. The dispersion is calculated for each 

object using equation 2.2 (Wang et al, 2000) where (c»cy) is the object 

centroid, 0 is the set of co-ordinates of the object area, and pq is the value of 

the edge image at position (ij). The objects can then be tracked by 

comparing the dispersion variables. 

disp = (i - cx )Z + (j - cy )2 . P1, i pl, i 
(2.2) 

U. J)¬O 
. J)eo 
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They go on to say the greyscale distribution of an object does not usually 

change considerably given that the lighting condition stays relatively 

constant between frames. The variables they use are the mean of the whole 

greyscale range, the mean of the 10% pixels of largest greyscale range and 

the mean of the 10% pixels of smallest greyscale range. Greyscale based 

tracking is then achieved by matching the variables of the object in 

consecutive frames. 

Wang et al (2000) notes that the surfaces of objects are usually not 

homogeneous with the greyscale variations on an object varying from object 

to object. These variations are reflected in the wavelet transform 

coefficients. The mean of the 10% of pixels with the largest values in the 

constructed `edge' image roughly indicates the texture property of the 

object. The variable can be used in the same way as the others to track 

objects between frames. 

Four sets of variables have been used as it was noted that there are extremes 

that violate the assumptions that had been made such that none of the sets of 

variables individually would accurately track the objects over time. To 

reliably track the objects each set of variables is calculated for an object, the 

differences found between the object in frame k and frame k-1 and those 

differences thresholded. These results are entered into a matrix of size mxn 

where m is the number of objects in frame k and n is the number of matched 

objects in frame k-1. To arrive at the best object match a number of rules are 

applied. First, at least three of the variable sets must be less than the 

threshold. If there is only one element in its matrix row and column that is 

greater than or equal to three then that object is matched and that row and 

column eliminated from the matrix. Secondly, is eq is the only eligible 

element in row i but if all other eligible elements in column j are not the 

only element in their corresponding rows j is chosen as the best match and 

that row and column eliminated. If, after applying these two rules, any 
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elements remain unmatched then a weighted sum is computed. Then, for 

each column, the row with the lowest weighted sum value is chosen as the 

best match. After this process there can still be some objects left unmatched. 
If this is the case they are either labelled as new tracks or ceased tracks 

Wang et al (2000) shows results for a toy vehicle sequence. Figure 2.20 

shows frames 1 to 9 from this sequence. Figures 2.21 and 2.22 show the 

detected object areas for frames 4 and 5 and table 2.1 shows the tracking 

results. Objects tracked are given the same ID number so it can be seen that 

the car midway down on the left of the image has been tracked in the first 

five frames. The second vehicle, entering from the right, suffers occlusion in 

frame 1-3 and fails to be tracked but is successfully tracked in frames 4 

and 5. Neither object matches the combined object in frame 6 however this 

new object is tracked through frame 6-8. In frame 9 the two objects are 
detected separately however they have been given new ID numbers so they 
have not been recognised as the same objects as tracked in frame 5. They 

conclude that, whilst their method works effectively, their goal was to 
identify and track objects quickly and the projective model for camera 

motion is somewhat computationally intensive and it cannot really deal with 

occlusion. 

ASSET-2, a real-time image processing system developed by Smith and 
Brady (1995) takes a real life situation, a vehicle travelling along a road and 
monitors what is in front of it. If other vehicles can be seen they must be 

segmented from the background so their motion can be estimated and the 
necessary action taken. 
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(d) frame 4 

(g) frame 7 (h) framc 8 (i) frame 9 

Figure 2.20 - Toy vehicle sequence (Wang et al, 2000) 

Figure 2.21 - Detected objects Figure 2.22 - Detected objects 
frame 4 (Wang et al, 2000) frame 5 (Wang et al, 2000) 

(a) frame 1 (b) frame 2 (c) frame 3 

(e) frame 5 (f) frame 6 
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Table 2.1 - Toy vehicle tracking results (Wang et al, 2000) 

Frame No. Obj. ID Centroid Obj. ID Centroid 

1 1 (53.2,295.4) - - 
2 1 (51.8,303.4) - - 
3 1 (53.2,310.4) 2 (377.1,336.9) 

4 1 (66.5,317.6) 3 (325.4,338.6) 

5 1 (79.7,326.5) 3 (257.0,338.9) 

6 4 (135.5,332.1) - - 
7 4 (135.1,334.8) - - 
8 4 (144.2,336.6) - - 
9 5 (96.9,313.5) 6 (283.3,353.5) 

The ASSET-2 system is built around feature-based image motion 

estimation. The features used are primarily two-dimensional `corners', 

detected using either the SUSAN (Smith, 1992) or the Harris (Harris and 
Stephens, 1988) corner detectors, whilst edges are used to refine the results. 
These ̀ comer' features are used to find the optic flow in the scene. Smith 

and Brady (1995) state that comers were chosen to determine optic flow 

because they should contain as much information about the scene motion as 
is available at the places in the image where the process of flow recovery is 

most well conditioned and where the information is most relevant. 

As soon as a corner has been matched once, the velocity estimate obtained 

allows a large reduction in the necessary search space for future matches. 
The motion model update filter used is a simplified two dimensional 

Kalman filter in which the search space is reduced over time and the model 

estimates are given increasing importance over time. The next step after 
flow estimation is to segment the flow list into clusters, which represent 
different objects in the world. The flow within each cluster is fitted to a 
linear space dependant model giving a total of six parameters for each 

cluster using a least squares fit. Newly found clusters are now matched with 
the clusters in the filtered list using time-symmetric matching. Both 
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elements of a potential matched pair must prefer their proposed partner more 

than any other in the partner's list for the match to be valid. The attributes 

used for the forward matching are the cluster's motion model and the shape 

of the cluster. 

Figure 2.23 shows 15 frames from the ambulance sequence used in the work 

by Smith and Brady (1995). Figure 2.24 shows the flow vectors for one of 

the frames and figure 2.25 shows the clusters formed from the flow vectors. 

Figure 2.26 contains 12 frames from the final output of the ASSET-2 system 

showing how it successfully tracks objects before, during, and after 

occlusion. 

Figure 2.23 - Ambulance sequence (Smith and Brady, 1995) 



Figure 2.24 - Flow vectors Figure 2.25 - Segmented clusters 
(Smith and Brady, 1995) (Smith and Brady, 1995) 

Figure 2.26 - ASSET-2 tracking output (Smith and Brady, 1995) 

2.5 High-Level Vision 

High-level vision is that part of any vision system that is concerned with 

recognition and interpretation (Gonzales and Woods, 1992). It takes 

information about the image from previous processing steps and also some 

knowledge provided a priori regarding the scene being analysed. 
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High level strategies can be broadly divided into two classes depending on 
the way the system represents the outside world. The classes are: 

1- Knowledge-based 

2- Model-based 

Knowledge-based systems use information about the objects and their 

relationships between each other and the scene domain. Information is 

gathered about the objects during the intermediate processing stage from the 

identified features or regions. Predetermined knowledge about the scene 

domain and the rules governing the interactions between objects and the 

scene domain are then used to make decisions regarding the objects 

behaviour. Approaches to this might include the use of Semantic or Neural 

Networks. Knowledge-based systems can suffer in situations where the 

scene domain or objects do not exactly match the criteria set for them. This 

can result in falsely matched objects between frames. 

Model-based approaches rely on a set of geometric models of each object of 

interest being held internally. The task of the high level algorithm is to 

extract such information from the image data as necessary to enable the 

matching of the identified object to one of the 2D or 3D models. Model- 

based object matching can prove successful where the set of distinct objects 

of interest is small and the objects occupy a large proportion of the image as 

in the vehicle tracking systems developed by Koller and Nagel (1993) and 

Ferryman et al (1995). These perform less well where sufficient information 

to enable matching to the models cannot be extracted (Ellis et al, 1991). 

Several factors can impact both knowledge and model-based approaches to 

high level vision by changing the appearance of objects between frames. 
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These factors include: 

1 Changes in illumination both inter- and intra-frame 

2 Object occlusion including partial, full, and self occlusion 
3 Changes in object orientation effecting its size 

In `Semantic Interpretation of Object Activities in a Surveillance System', 

Lou et al (2002) describe a framework for semantic interpretation of vehicle 

and pedestrian behaviours in visual traffic surveillance. They say the main 

problem in image or video semantic interpretation is the construction of a 

mapping from images or video into the human's conceptual space. 

Trajectories are often used in semantic interpretation of dynamic image 

sequences, and in the work by Lou et al (2002) are generated by recording 

the position, speed, and direction of the target in each frame. The 

acceleration of the targets is not recorded, as they believe this information to 

be very unreliable because the noise in a target's position can be amplified 

in acceleration information. 

Trajectory pattern analysis, which can automatically classify the trajectories 

into several patterns, is an important method for activity interpretation. Lou 

et al (2002) designed a classification tree with three layers. The top layer 

contains all trajectories. The second layer contains clusters of trajectories 

based on spatial information and the third layer contains classes of 

trajectories based on dynamic information. 

A distance formulation similar to the Hausdorff distance is used to measure 

the spatial similarity between trajectories before a variation on a C-mean 

clustering method is used. For the mid layer spatial clustering Lou et al 
(2002) select a threshold p. Then, a subset of the trajectories xk is chosen as 
the initial centres in such a way that every two trajectories x; and xx in the 

subset satisfy D, (x;, x; )zp where D, is the spatial distance between x; and x;. 
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For clustering into classes using dynamic information at the bottom layer of 

the tree the distribution density of every trajectory sample is evaluated by 

counting the number of trajectories around it while the trajectories which 

have heavy densities are selected to form the initial centres. All trajectory 

samples are classified to the class whose centre is the nearest one in all 

classes. 

With the classification tree built action analysis takes place. To analyse the 

actions Lou et al (2002) use a trajectory segment analysis method based on a 
hidden Markov model similar to that used by Fraile and Maybank (1998). 

Each trajectory is divided into several segments and one of four actions is 

assigned to the tracked target in each segment. The actions are: Move 

Forward, Turn Right, Turn Left, Stop. These actions are assigned based on a 

curvature value for the segment x= co /v where w is the mean of angular 

speed and v is the mean of translation speed. A simple thresholding 

operation is then used to assign the actions as shown in table 2.2. 

Table 2.2 - Thresholding operation (Lou et al, 2002) 

Action Curvature value 

Move Forward -0.1 <x<0.1 and v>0.5 

Turn Right x>0.1 andv>0.5 
Turn Left x<-0.1 andv>0.5 

Stop v<0.5 

Finally Lou et al (2002) introduce a simple grammar to generate natural 
language descriptions based on the activity patterns obtained. They assume 

that in most surveillance scenarios the questions most often asked are "Who 

does what at where? And How? " and so use only one grammar rule: 

(The Obj) (Action) in (The place name) [at (high/middle/low) speed] 
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The contents of the square brackets are optional and the contents in 

parenthesis should be substituted with information provided by the 

classification tree. This then yields a natural language description such as: 

`Vehicle 1 parked in parking lot' 

The system does not output the semantic description every frame, only when 

one of the following conditions is satisfied: 
1) A new action is happening 

2) The target is entering a new region 
3) An abnormal event is happening 

The methods described by Lou et al in (2002) have been demonstrated on 

the real world scene shown in figure 2.27. When a car enters the view 

(identified in red) and then is parked the system gives the natural language 

description. The results show the system to be successful at automatically 
learning activity patterns and generating semantic interpretations for tracked 

targets. However, the system does suffer from the very limited grammar rule 
database used. 

Semantic networks are also used by Shih and Huang (2003) for the 

interpretation of baseball video. They develop several semantic networks to 

model the different semantic events in baseball video such as view, field, 

zooming, regular-panning, and fast-panning. A Bayesian belief network 

training procedure is applied to the semantic networks, which are then used 

to interpret the semantic meanings of the different events in the video. 

The overall structure consists of three layers: the category layer at the top, 

the mid level semantic layer, and the low level feature layer. The lowest 

level of the framework consists of an object analyser that finds the existence 

of the main object, the objects sizes and number and a texture analyser that 

describes the background in terms of the entropy and edge histogram. Based 

on this low level information the semantic network `view' describes 
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Figure 2.27 - Natural language descriptions (Lou et al, 2002) 

the video as `distant view' or `close-up view', whereas the semantic network 
`field' describes the video as `infield' or -outfield'. Figure 2.28 shows the 

semantic network for `view'. 

The mid level of the structure, which relates to motion activity, generates a 

displacement vector that can be used by the mid level semantic network to 

demonstrate the certainty of three different mid level semantics: fast- 

panning, regular-panning, and zooming. At the top of the multi-level 
hierarchy are the root nodes representing the certainty of the six different 

categories: Event Occur, Overview, Runner, Defence, Pitching, and Batter. 

The results of the mid-level semantic feature are shown in table 2.3 and for 

the categorisation level in table 2.4. It should be noted that each feature 

required many thousands of frames of training data to give these results. 
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Figure 2.28 - Semantic Network for `View' (Shih and Huang, 2003) 

Table 2.3 - Mid-level semantic feature (Shih and Huang, 2003) 

Mid-level 

Semantic feature 

Training Data 

(frames) 

Testing Data 

(frames) 

Success rate 
(%) 

Field 12,819 4,161 85.77% 

View 17,995 7,777 80.01% 

Zooming 11,106 30,238 82.20% 

Fast Panning 10,429 27,592 79.24% 

Regular Panning 9,724 T 31,183 74.82% 

Table 2.4 - Result for category level (Shih and Huang, 2003) 

Video Class Detection Accuracy False Alarm 

Overview 96.23% 26.79% 

Runner 97.20% 41.49% 

Defence 96.55% 28.07% 

Pitching 98.70% 38.92% 

Batter 98.70% 43.60% 
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Semantic networks have also been used for different applications. 

Maderlechner and Mayer (1994) use them to collect geographical 

information from scanned maps whilst Teal (1997) uses a semantic network 

to interpret road traffic scenes in order to build up a map of the scene. 

Di Bona et al (2001) present an approach for the classification of brain 

tissue density based on a hierarchical neural network applied to three 

dimensional brain volumes. Classification is obtained with a multi-step 

approach. In the first step, the region of interest is extracted from the 

background of each tissue slice in order to improve the efficiency of the 

approach. All voxels (three co-ordinates identifying a pixel by an x, y co- 

ordinate and az co-ordinate identifying the tissue slice number) inside the 

region of interest are processed to compute a set of features which will be 

used to obtain the classification of the voxels themselves. 

The classification consists of two-levels. The lower level performs the 

classification of the single features extracted from each voxel whilst the 

higher level takes these results and performs a final classification. The lower 

level classification is performed by a number of modules equal to the 

number of features extracted. Each module is a one-layer neural network 

where every output neuron is connected to every input neuron and every 

output neuron is also connected to other output neurons that are spatially 

close. Each network is trained for the classification of a specific feature. 

Weights are defined between input and output neurons and can change 

during the training phase. The weights are modified so that the network is 

able to recognise the input features and thus specialise it for a particular 

feature's input. 

The number of neurons in each network is initially greater than the number 

of density classes and is then optimised by applying a clustering algorithm 
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based on a distance criterion. The output of each network is the 

classification of the voxel, depending on the specialised feature. 

The classifications from these lower level neural networks are the input to 

the higher level classifier, which is performed by an Error Back-propogation 

algorithm. This algorithm has the following parameters: The network used is 

a feed-forward back-propogation network; The training function updates 

weights according to the back-propogation algorithm; The network is used 

with no hidden layer; The number of iterations is fixed to 1000. The format 

of the input is now an array containing, for each voxel, the classification 

given to it by each lower level classifier. During the training phase of the 

back-propagation the format is changed to that of a matrix where every row 

is a voxel array. A value is added at the end of each array representing the 

actual classification of the voxel, the target. 

The supervised algorithm will be able to train the network propagating 

backward the resulting error. This error is calculated, starting from output 

neurons in the network, as a function of the neurons output and the 

difference between actual output and target. The output neurons propagate 

this error backward to each hidden neuron connected in the lower level 

network. The error is used to update the weights between neurons. 

Di Bona et al (2001) state that the low number of inputs to the networks 

(four) allow the network to be trainable in a short time implying that if the 

number of inputs was high the training time would also be very high. Messer 

and Kittler (1998) reinforce this by saying that a 25 input, 25 unit hidden 

layer and 2 unit output layer neural network has 702 free parameters. They 

then say that it is very important that enough training examples are used to 

estimate these free parameters reliably. They state the generally accepted 

guideline is to have at least five to ten times the number of training patterns 

as free parameters. The example they give would therefore require a 
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minimum of 3510 training samples. Failure to have an adequate number of 

training samples can lead to the network learning the training set rather than 

building a statistical model of the process generating the data. Ultimately the 

network would be unsuccessful in classifying previously unseen patterns. 

Messer and Kittler (1998) present an input selection algorithm that reduces 

the network complexity for searching through a large image database. An 

input saliency measure is defined which is the sum of the magnitude of the 

trained weights connecting that input to the hidden layer. The higher the 

sum the more important the feature input. The algorithm, which uses this 

measure to prune the network, requires a training dataset and a verification 

dataset. The user also needs to specify an acceptable error level. 

The algorithm is then defined as follows: 

" Step I- train the network on all the features in the training dataset 

" Step 2- calculates the saliency for each input node 

" Step 3- find the index of the feature returning the minimum saliency and 

remove this feature from the training dataset 

" Step 4- retrain the network using the reduced feature sub-set and 

calculate the error level on the verification dataset 

" IF calculated error level <= acceptable error level then goto Step 2 ELSE 

add the removed feature back into the training dataset, retrain and stop. 

The results presented were from the performance of the algorithm on a 

database of seismic images. The algorithm reduced the network size such 

that it had only 20 free parameters instead of 702. Messer and Kittler (1998) 

conclude by saying the reduction in network size also dramatically reduces 

the amount of time required to classify unseen patterns, which is important 

in their application. 
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Matesin et al (2001) uses a different approach to the high-level analysis of 

stroke lesions in CT brain images. Their rule-based expert system uses high- 

level knowledge about the anatomical structure and organisation of CT brain 

images containing stroke lesions together with various properties of the 

segmented image. The process used first determines the symmetry axis of 
the brain. Next the image is segmented into regions having uniform 
brightness. These regions are then labelled using the rule-based expert 

system. 

The expert system works on facts based on rules, which are in the 'IF- 

THEN' form. If the left-hand-side of the rule is satisfied by the `activation' 

of some facts the rule `fires' and executes rules on the right-hand-side. 
There are several stages of labelling. In each stage only selected subsets of 

all facts can be activated or fired and this is controlled by a kind of priority 
in execution of rules. When a rule fires the stack that holds information 

about which rules can fire is updated with new activations. As long as there 

are rules with a higher priority, those rules with a lower priority cannot fire. 

The system presented by Matesin et al (2001) has 5 levels in the hierarchy as 

shown in figure 2.29. 

label 'background' and'skWl' 

label 'brain', 'csf, 'nonmi', 'n ybestroke 

labd'stroke! 

merge neighbour 'stroke' regions' 

find largest connected 'stroke' region 

Figure 2.29 - Stages in the rule-based labelling Matesin et al, 2001) 
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Some of the rules from the first and third stages are: 

" Rules for `background' 

" Largest ̀ verydark' region is `background' 

" `verydark' or `dark' region that has ̀ background' region for a 

neighbour is `background' itself. 

" Region that has only one neighbour, and that neighbour is 

`background', is `background' itself. 

" Rules for `skull' 

" Largest ̀ verybright' region is `skull'. 

" Rules for `stroke' 

" `maybestroke' region that has no symmetric ̀ maybestroke' region is 

'stroke'. 

This rule-based approach provides flexibility in the experimentation of rules 

as it can be easily adapted by adding new rules or removing irrelevant ones 

without having to go through the lengthy process of retraining. 

2.6 Discussion and Summary 

It is generally accepted that the image capture process introduces noise to 

the image and that this noise approximates a gaussian distribution. In 

addition, and particular to maritime images, Voles et al (1999) tell us that 

waves cause noise that does not have a gaussian distribution. To reduce the 

effects of noise images are filtered using either a linear or non-linear filter. 

Linear filters use a weighted sum of pixels within a neighbourhood to 

calculate filtered pixel values such as the Mean filter described by 

Bassmann and Besslich (1995). Whilst these methods are good at removing 

gaussian noise they have the undesirable effect of blurring the image 

(Gonzales and Woods, 1992). 
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Non-linear filters attempt to remove noisy pixels whilst keeping edges 
intact. The Median filter orders the pixels within a window and selects the 

median of the ordered values as the new pixel value. Noise usually consists 

of spurious high and low intensity values and these are removed effectively 
by the Median filter. Senel et al (2002) point out the limitations of the 

Median filter saying that it can introduce spurious artefacts into the 

transformed image. They go on to say that the filter removes or attenuates 
image features that are smaller than the filter window and that in the 

presence of significant noise step edges can be blurred by the median filter 

contrary to its edge-preserving nature. Despite the reservations of Senel et al 
(2002) if the median smoothes the image whilst retaining edge detail it 

could be suitable for use with maritime images. 

The Kuwahara filter (Kuwahara, 1976) appears to be a very effective filter 

for both noise reduction and edge preservation by making use of the 

advantages of both linear and non-linear filters. This is due to its non-linear 

selection of the window with the lowest variance from which it takes the 

linear mean value for the filtered pixel value. This gives excellent 

smoothing whilst retaining edge detail. This method would appear to be 

suitable for use with maritime images due to its smoothing abilities for the 

noise and the waves whilst retaining the edge detail of any objects present. 
Minato et al (1987) applies the Kuwahara filter repeatedly to the same image 

to obtain a fixed-point image. Their results are initially encouraging as they 

show very good edge retention and smoothing. However, they also show 

that the method is very sensitive to the size of filter window chosen. A 

further disadvantage is the increased computation time taken to apply the 

method many times to achieve the fixed-point image. Considering maritime 
images Minato et al's method could result in weak edges between areas of 

sea, such as waves, being strengthened and enhanced. This would make any 

segmentation process more likely to falsely segment areas of sea as object. 
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To the human observer the surface of the sea appears to have a texture. The 

use of a texture technique for the segmentation of maritime images should 

therefore be appropriate. Results shown by Puzicha et al (1999) and Rushing 

et al (2002) are encouraging as they use images of the natural world. 

However, for texture techniques to be successful the structure of the texture 

(the spatial relationship between texture elements) (Sonka et al, 1993) needs 

to be modelled. This is unlikely to be possible for maritime images as the 

sea can take on a wide range of appearances. Ellis et al (1991) support this 

as they say explicit models do not adequately describe most natural objects 

such as landscape because of the wide variety of form and shape. This is 

further reinforced by Pozzer et al (2001) in their work on the artificial 

generation of the surface of the sea. They state that modelling natural 

phenomena is one the most complex tasks in image synthesis. In order to 

achieve a high degree of realism they use a noise function that generates 

values with no correlation to any previously generated value. The random 

nature of this noise goes a long way to eliminating any structure the texture 

may have had. 

The assumption stated by Cheng et al (1998) in their work on thresholding 

that an object can be distinguished from the background by their intensity 

values is shown to be true in figure 1.1 of a typical maritime scene. The 

objects present in the scene are noticeably darker or lighter than the sea. 

Therefore it should be possible to segment maritime images using the 

histogram thresholding technique described by Boyle and Thomas (1988) 

where separate peaks are expected for the background (sea) and objects. 

Huang et al (2000) uses calculations of foreground and background motion 

together with a watershed algorithm to segment the foreground from the 

background. This approach is considered inappropriate for maritime images, 

as an object such as a buoy could be moving as a result of the motion of the 

sea. This would not be segmented using this method. Other maritime objects 

could be moving more than the sea such as a motor boat and other less than 

61 



Chapter 2 Literature Review 

the sea such as a harbour wall. These differences in motion are considered 

too great for this method to be effective. 

Voles et al (1999) uses frame differencing to identify maritime objects that 

are moving. The frame differenced image in figure 2.13 also shows areas of 

the sea that are moving and when considered with the original image in 

figure 2.12 it can be seen that the pontoon object has not been segmented. 
This is due to the static nature of the camera and as the camera will be 

mounted on a moving platform in this application static objects not being 

segmented by Voles et al (1999) should not be an issue. Frame differencing 

is considered to be a method worth investigating for maritime objects as 
Voles et al (1999) have shown it to be successful. 

In later work Voles et al (2000) use statistical measures more commonly 

used in texture analysis to determine a threshold for the segmentation of 

maritime objects. Whilst this technique is shown to be successful it does 

suffer from the drawback of requiring the manual selection of the threshold 

value. With the addition of a method of threshold determination a statistical 

approach is considered a suitable approach for the segmentation of maritime 

images. 

Following segmentation objects are often identified as blobs on a 

background. Several techniques for tracking these blobs through an image 

sequence have been reviewed including that by Marcenaro et al (2002) who 

look for regions of interest that overlap in adjacent frames. If the frame 

capture rate is high enough or the objects are not moving at high velocities 

then this approach is valid, as shown in figure 2.14. The approach taken by 

Ellis et al (1991) is to record measurements of object size, centroid, 

minimum bounding rectangle, location, and sequence number. Wang et al 

(2000) also uses measurements of object parameters to aid the tracking 

process. In this case the measurements taken are object trajectory (centroid 

position), size, greyscale distribution, and texture. Wang et al (2000) also 
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use the assumptions that object trajectories are close to a straight line over a 

few adjacent frames and that object acceleration is constant in these frames 

to help in the tracking of objects. Teal (1997) too uses object parameter 

measurements to track objects through image sequences. In this case it is 

vehicles travelling along a road. The technique is shown to be successful 

where objects are some distance from the camera and occupy a small 

number of pixels. As the objects of interest in maritime scenes could also 

occupy small numbers of pixels this approach could be appropriate for use 

in this application. 

As maritime objects could have a wide variety of appearances the collection 

of measurements about each object could aid the tracking process. If the 

assumptions made by Wang et al (2000) were shown to be true of objects in 

maritime images this approach could well be appropriate for the prediction 

of future object motion in place of more complex techniques such as the 

Kalman filter (Kalman, 1960). However, the Kalman filter is arguably the 

most popular method for tracking objects and should be investigated for this 

application. 

Model-based approaches to high level vision such as that used by Koller and 

Nagel (1993) and Ferryman et al (1995) rely on geometric models and have 

been shown to be successful. Ellis et al (1991) agrees that explicit models 

are appropriate for describing a wide range of man made objects. However, 

they go on to say that geometric models do not adequately describe most 

natural objects such as landscape. They also point out that small objects a 

large distance from the camera suffer from poor spatial resolution 

precluding the use of structural models to represent objects. 

The essence of neural network techniques is the use of a multitude of 

elemental non-linear computing elements organised as networks reminiscent 

of the way neurons are interconnected in the human brain (Gonzales and 
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Woods, 1992). Di Bona et al (2001) and Messer and Kittler (1998) both use 

neural networks in their work and it becomes clear from both that the design 

of the network is complex and that the amount of training required for the 

network to interpret unseen images correctly is vast. Matesin et al (2001) 

uses a different approach to high-level vision. Their knowledge-based expert 

system uses previously known information and a set of rules of the form 

'IF... THEN'. This allows the flexibility of adding or subtracting rules from 

the system easily and does not require any prior training before use with new 
image sequences. This type of approach is considered to be appropriate for 

use with maritime images as information can be ascertained through 

observation and experimentation that can be used to form rules which can 
then be used to develop a method of estimating the collision risk of objects 
identified in the scene. 
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Chapter 3: 
Image Smoothing 

3.1 Introduction 

The first task of the image processing system is the acquisition of suitable 

images from a sensor. The images for this system are those in the visual 

spectrum taken from a camcorder facing forward over an area of sea. The 

capture and digitisation process introduces unwanted noise, random 

variations in intensity values. It is considered to introduce noise from the 

optics, the recording onto tape, the playback of the tape, and the digitisation 

of the images. These types of noise can be considered Gaussian as Jain et al 

(1995) state that Gaussian noise contains variations in intensity that are 

drawn from a Gaussian or normal distribution and is a very good model for 

many forms of sensor noise. 

Filtering is the generic name for techniques of changing the grey levels in an 

image to enhance the appearance of objects according to Ballard and Brown 

(1982). These techniques can equally be used to suppress elements within an 

image that are not desired with noise being a good example of this. Sonka et 

al (1993) state the aim of pre-processing is an improvement of the image 

data that suppresses unwilling distortions or enhances some image features 

important for further processing. 
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The first stage of this system, noise reduction and smoothing, is performed 

to achieve the following criteria: 

" To reduce the Gaussian noise typically introduced by the acquisition and 
digitisation process. 

" To enhance the edge detail of any objects in the image to aid the 

segmentation of the objects. 

Jain et al (1995) note that whilst linear smoothing filters are good filters for 

removing gaussian noise and, in most cases, other types of noise as well, the 

application of linear noise-cleaning filters has the effect of defocusing the 

image. Edges become blurred (Haralick and Shapiro, 1992). 

3.2 image Filtering 

Three non-linear filters have been considered for use in this application, the 

Median, Kuwahara, and FWV. Each is described in the following sections 

after which results are shown. 

3.2.1 Median Filter 

The median filter is a non-linear filter that replaces the current pixel in the 

image with the median of the intensities in its neighbourhood. In its usual 
form a square neighbourhood is used that may be typically 3x3 or 5x5 in 

size. Figure 3.1 shows a 3x3 neighbourhood. The mask is placed over the 9 

pixels in the top left corner of the image, the intensity value of each pixel is 

sorted and the target pixel (shown as a black square in figure 3.1) replaced 

with the median value of the sorted intensities. The mask is then shifted by 
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one pixel and the median calculated. This process is repeated until the mask 
has been placed over all combinations of 9 pixels. 

Although the median filter and its modifications have shown good efficiency 
in suppressing impulse noise Chen and Wu (2001) state that the approach is 

location-invariant in nature and tends to alter the pixels not disturbed by 

noise. Senel et al (2002) note also that the median can introduce spurious 

artefacts into the transformed image and that it removes or attenuates image 

features that are smaller than the filter window. 

Figure 3.1 - 3x3 Median Neighbourhood 

3.2.2 Kuwahara Filter 

This was developed by Kuwahara et al. (1976) to facilitate the extraction of 

the left ventricle in medical images. It divided a square symmetric 

neighbourhood into four slightly overlapping windows, each containing a 

central pixel. The mean and variance are calculated for each window. The 

point of observation, the target pixel, is then replaced with the mean of the 

window with the lowest variance. Figure 3.2 shows the four neighbourhoods 

with W being the size of the window in pixels and ij being the target pixel. 

Bakker et al (1999) state that the combination of filtering and homogeneity 

avoids filtering across edges in the image. 
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The Kuwahara filter has been applied repeatedly to the same image by 

Minato et al (1987) to arrive at a fixed-point image that is no longer changed 

by filtering. This repeated application of the filter has the effect of reducing 

the variance in the windows each iteration until such time as the variance is 

zero. 

W 

Lw 

1J 

Figure 3.2 - Kuwahara filter neighbourhoods (Kuwahara et al, 1976) 

3.2.3 FWV Filter 

The FWV filter is an expansion of the Kuwahara filter and was developed 

by the author specifically for use with maritime images. Where the 

Kuwahara uses four neighbourhoods the FWV uses nine. A 3x3 convolution 

mask is placed over the image with the target pixel placed in the bottom 

right corner of the mask as in figure 3.3. 
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Figure 3.3 - Target Pixel in Mask 

The Mean µ and Variance a2 are calculated for the 9 pixels using: 

33 
%xP(x, y) (3.1) 

x=1 y=1 

33 

- u)2 
21 (P(xlY) 

Xai y=l 
62 9 (3.2) 

where P(x, y) is the grey level pixel value at position x, y 

The mask is then shifted such that the target pixel is placed in the bottom 

centre of the mask and the mean and variance calculated. The mask is 

shifted a further seven times such that the target pixel has been placed in 

each possible place in the mask as figure 3.4 shows. The mean and variance 

are calculated each time using equations 3.1 and 3.2. 

The new, filtered value of the target pixel is set to the mean of the window 

with the lowest variance. This gives the smoothing of a mean filter as the 

target pixel is ultimately replaced with the mean value of the pixels around it 

whilst retaining the edge detail as any windows with an edge present will 

result in a higher variance figure. 
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Figure 3.4 - Target Pixel Positions 

3.3 Results 

Shown here are the results of the Median, Kuwahara, and FWV filters. 

Figures 3.5 and 3.6 shows the original test images and figures 3.7 to 3.12 

show an enlarged section of those images with the three filters applied. 

Figure 3.5 - Poole Sequence Figure 3.6 - Dover Sequence 
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Figure 3.7 - Poole Median Filtered 

Figure 3.9 - Poole Kuwahara 
Filtered 

Figure 3.8 - Dover Median Filtered 

Figure 3.10 - Dover Kuwahara 
Filtered 

Figure 3.11 - Poole FWV Filtered Figure 3.12 - Dover FWV Filtered 
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It can be seen that the Median filter has tended to group pixels together into 

blocks of the same grey level. It gives the appearance of reducing the 

resolution of the image. The grouping has left collections of pixels near the 

top of figure 3.8 brighter than in the original image and has meant that the 

hull of the boat in figure 3.7 and the body of the buoy in figure 3.8 no longer 

contain a single grey level. Figures 3.9 and 3.10 show the results of the 

Kuwahara filter. This filter has smoothed the images whilst retaining the 

edge detail. This is particularly evident in figure 3.10 where the shape of the 

buoy can be made out easily. The FWV filter has also smoothed the images 

and retained the edge detail as was seen for the Kuwahara. This is expected 

as both filters use a similar algorithm. 

3.4 Discussion and Summary 

Although linear filters such as a low-pass filter are optimal when the noise is 

additive and gaussian (Yin et al, 1993) and can improve the quality of the 

image by filtering the noise, image details are also filtered and therefore 

smoothed with undesirable consequences (Perez-Luque et al, 1990). Non- 

linear filters have been successfully substituted for linear filters because of 

their better edge preservation and impulse noise rejection capabilities (Chen 

and Wu, 2001). 

Anisotropic diffusion is an extension to isotropic diffusion equation and was 

introduced by Perona and Malik (1990). It is a non-linear filter that 

encourages smoothing within a region in preference to smoothing across the 

boundaries thus preserving edges. This was achieved by incorporating an 

`edge-stopping' function to the equation (Black et al, 1998). Perona and 

Malik (1990) show that in addition to smoothing within a region, by 

choosing the conduction coefficient part of the diffusion equation locally as 

a function of the magnitude of the gradient of the brightness function not 
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only preserves, but actually sharpens brightness edges. This means that the- 

more defined the region boundary the less smoothing will occur across it 

They say that by using this approach to choosing the conduction coefficient, 

thinning and linking of edges is unnecessary and that edge junctions an 

preserved. They do point out however that in images where the brightness 

gradient generated by noise is greater than that of the edges, this scheme for 

anisotropic diffusion proves insufficient to obtain a correct segmentation. 

Voles et al (1999) highlight that anisotropic diffusion is an iterative and time 

consuming method. 

Three non-linear filters have been tested with maritime images, the median, 

FWV, and Kuwahara filters. The median has preserved the edge detail 

although this has been through blocking grey-level areas together giving an 

image that has been smoothed by a lesser amount than the other filters. This 

can be seen clearly when the enlarged sections of the test images are 

considered. 

The FWV and Kuwahara filters have both preserved edge detail and 

smoothed the gaussian noise and the wave noise present in the image. 

Visually there is little difference between them. As both filters use a similar 

algorithm this similarity in results is to be expected. The main difference is 

the FWV's use of nine to the Kuwahara's four neighbourhoods. This in 

theory should lead to a more appropriate filtered value for the target pixel. 

This is because the FWV considers a greater number of neighbourhoods 

than the Kuwahara and, as Minato et al (1987) point out, "among the 

neighbourhoods, the one which has the smallest variance is considered as 

the one to which the pixel should belong". In practice however, the 

increased number of neighbourhoods has made no difference to the final 

filtered result, a comparison of the filtered pixels between the Kuwahara and 

FWV results shows the pixel intensities to be the same. 
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The real difference between these two filters is the computation time. With 

the same calculations being made and the same conclusion being reached as 

to the filtered value for the target pixel the difference in computation comes 

down to the number of neighbourhoods being considered. With the FWV 

having nine and the Kuwahara four, the FWV takes over twice as long to 

filter each pixel. 

The FWV filter was developed by the author (Smith and Teal, 1999) 

specifically for use with the maritime images used here and whilst 

successful was shown to be no more effective than the Kuwahara filter 

(Kuwahara et at, 1976) but had a higher computational cost. Consequently 

the Kuwahara filter was chosen for the image acquisition and smoothing 

sub-system. 
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Chapter 4: 
Maritime Image 
Segmentation 

4.1 Introduction 

A maritime scene is an extremely complex image to analyse (Sanderson et 

al, 1997), due to the fact that large areas of the image are moving with the 

motion of the sea. To this problem is added the fact that the objects to be 

tracked have a wide variety of appearances. The segmentation of an image is 

a very useful technique for reducing the amount of data further processing 

steps deal with and a great many methods have been developed to do this. 

According to Low (1991), segmentation can be approached from two points 

of view: by identifying edges that run through an image or by identifying 

regions within an image. Region-oriented segmentation techniques range 

from histogram thresholding (Bassmann and Besslich, 1995) to Huang et al 

(2000) who use the dominant motion model (Black, 1996) to determine both 

foreground and background motion and then apply a watershed algorithm to 

segment the image. Contour-oriented techniques include the Canny edge 

detector (Canny, 1986) and the scanning wave used by Ishii and Kyuma 

(2001). An approach more commonly used for object tracking is frame 

differencing. Voles et al (1999) use this approach to successfully segment 

maritime objects from the background but note that the motion of the sea is 

also captured in a frame differenced image. Because of this the differenced 

image is processed further to segment the objects from the sea. 
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Presented in this chapter are three methods of segmenting maritime images 

into areas of `sea' and areas of potential maritime objects. The first is a 

region-oriented thresholding algorithm (Bassmann and Besslich, 1995) 

based on the histogram data taken from the whole image. The second is the 

method of frame differencing used by Voles et al (1999). The third is an 

algorithm developed by the author (Smith et al, 2003) based on histogram 

data taken from various regions of the image that calculates a statistical 
range of grey-levels that represent the `sea' present in the image. This grey- 
level range is used to segment the image into two regions, labelled sea and 

object. 

Each of the methods presented here have been evaluated against a method of 

manually segmentation to measure the success of each approach with 
maritime images and conclude which is the most appropriate algorithm for 

use in the system being developed. 

4.2 Thresholding 

This common segmentation technique, described by Bassmann and Besslich 

(1995), is based on grey level differences in the source image. In figure 4.1, 

a frame from the Dover test sequence, it can be seen that the two objects are 
darker than the sea. The histogram of the image is shown in figure 4.2 and 

the two regions are clearly distinguishable. The small peak to the left 

represents the objects and the large peak to the right represents the sea. 
Placing a threshold in the valley between the two peaks of the histogram 

allows the segmentation of the image into the two regions. The sea region is 

assigned grey level 0 and the object region grey level 1. 

In order to determine the correct threshold value the histogram values are 
smoothed to remove any small valleys and peaks to leave only the 
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Figure 4.1 - An image from the Dover test sequence 

Figure 4.2 histogram of Dover image 

a 

Figure 4.3 - Dover image Segmented by Thresholding 
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significant peaks and valleys. The thresholding algorithm searches the 

smoothed histogram data and allocates a threshold for every significant 

valley as maritime objects can be brighter as well as darker than the sea. 

Figure 4.3 shows the result of thresholding the frame from the Dover 

sequence. 

4.3 Frame Differencing 

Voles et al (1999) begin their segmentation by creating a difference image 

by subtracting each pixel value in the current frame from those in the 

previous frame in the sequence. To avoid potential implementation 

problems the absolute value of the pixel subtraction is considered. This 

results in an image with stationary areas represented as dark areas and areas 

where motion is present are bright. Figure 4.4 shows a current frame from 

the Poole test sequence and figure 4.5 shows the difference image. 

Figure 4.4 Current frame Figure 4.5 - Difference image 

To determine the co-ordinates of the bright areas of motion the difference 

image is projected onto its horizontal and vertical axes from which two 

projection histograms are obtained. Figure 4.6 shows the vertical projection 

histogram of the difference image. Between frame width 211 and 271 there 

is a large peak representing the moving object. As maritime scenes contain 
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large amounts of unpredictable wave motion it is necessary to threshold the 

projection histograms to eliminate the sea motion. The threshold value was 

set to the RMS value as Voles (1997) concluded that the best empirical 

results were obtained using this threshold method. A binary histogram is 

then created by setting every value below the threshold to 0 and all those 

above the threshold to 1. Many narrow peaks still remain and these are 

either combined with broader peaks if they are close to them or they can be 

deleted. Voles et al (1999) use a minimum peak width of 5 pixels for peak 

combination or deletion. The resulting projection histogram can be seen in 

figure 4.7. 
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Chapter 4 Maritime Image Segmentation 

Finally, the resulting histograms are scanned to determine the horizontal and 

vertical positions of the remaining regions. These regions are identified as a 
binary image with white (motion) rectangles on a black (stationary) 

background. Figure 4.8 shows the segmented image. Although the stationary 

object has not been segmented this is due to the static nature of the camera. 
It is considered that with a camera mounted on board ship the motion of the 

platform would enable the stationary object to be identified and segmented. 

Figure 4.8 - Image Segmented by Frame Differencing 

4.4 Sea Characterisation and Segmentation 

It can be observed in histograms from each test sequence that objects occupy 

a different range of grey levels from the sea. Furthermore it is noted that the 

sea generally occupies more central grey levels whilst objects occupy grey 
levels either side of the grey level range of the sea. Figures 4.9 - 4.11 show 
histograms from each of the test sequences. The separate peaks of object and 

sea are particularly strong in the histogram from the Dover sequence, figure 

4.10, although they can be picked out in all three histograms. It can further 

be considered that the distribution of sea pixel grey levels approximate a 

normal distribution. This method aims to determine the characteristic grey 
level range of the sea and use this to segment the image into regions of sea 

and object. 
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Figure 4.9 - Histogram from the Poole Sequence 

Figure 4.10 - Histogram from the Dover Sequence 

Figure 4.11 - Histogram from the Portsmouth Sequence 

Figure 4.12 shows a flow chart of the Sea Characterisation & Segmentation 

process. The top half of the figure breaks the Sea Characterisation process 
into its individual processing blocks. The output of this process is four grey- 
level ranges, one for each of the four windowpanes the image has been 

divided into during the characterisation. The grey-level ranges are passed to 

the Segmentation process shown in the lower half of figure 4.12. Here the 

grey-level ranges are used to determine the segmentation of pixels into 

either sea or object regions. 
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Figure 4.12 - Sea Characterisation & Segmentation Flow Chart 

4.4.1 Sea Characterisation 

The aim of the Sea Characterisation process is to arrive at a grey-level range 

that is representative of those in the sea portion of the image. Characterising 

the range comprises several smaller operations. First, that part of the image 

containing the sea, the sea window, is divided into four equally sized areas 
known as windowpanes. Each pane is then addressed in turn and a grey- 
level range determined for the sea pixels present in that part of the image 

using histogram statistics calculated for a set of tiles placed within the pane. 
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The results of the four panes are then compared to ensure a consistent result 

is obtained across the image. 

Preparation of the Image 

The first task is to determine that part of the image that contains sea pixels. 

The requirement for this is to determine the shoreline (that point in the 

vertical plane where the sea ends and the sky or land begins). The 

observation of video sequences taken from a moving vessel in calm 

conditions has shown that the shoreline does not pitch up or down, nor roll 

from side to side by more than 3 pixels. A fixed value for the shoreline can 

be set without compromising the outcome of the algorithms. It is necessary 

for the user to specify a value, which is treated as a horizontal line, for the 

level of the shoreline. The area under that shoreline is considered to be a sea 

`window' as shown in figure 4.13. 

The open world nature of maritime images gives rise to other issues that 

need addressing before any characterisation can be done. The state or 

condition of the water changes with the strength and direction of the wind 

between a flat calm when the water gives the appearance of glass, or a 

mirror, to storm force conditions where swell and white horses (the frothy 

white crests) are prevalent. In addition to the sea condition there is the issue 

Figure 4.13 - Shoreline Figure 4.14 - Shoreline & Panes 
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Chapter 4 Maritime Image Segmentation 

of scene illumination. In any weather conditions the illumination will 

change but this is most noticeable in bright, sunny conditions. If a cloud 

were to pass in front of the sun a large shadow will be cast across the scene. 
These two aspects mean that the sea itself can contain a different range of 

grey-levels from one side of the image to the other. This could lead to false 

segmentation if the sea were characterised as a whole. To reduce the effects 

of sea state and differences in illumination across the image the sea'window' 
is divided into four equal quarters called 'panes'. Figure 4.14 shows the 

image complete with the panes. 

Initial assessment of each pane 

Taking each pane in turn an initial assessment is made as to the 

characteristic grey level range for the sea in the pane. If the grey level range 

was calculated using every pixel in the pane then the pixels from any object 

present in the pane would be included giving a false characterisation. 
Therefore a number of smaller pixel regions called tiles are used and the 

initial grey level range calculated using the pixels in these tiles. 

In order to achieve an accurate characterisation of the pane all grey-levels 
from every part of the pane are included in the calculations. The random 

placement of tiles within the pane could lead to the tiles all being placed in 

one small area of the pane or even overlapping each other. This is 

undesirable, as grey-levels present in other areas of the pane would not be 

represented in the characterisation. More importantly, if the tiles were 

randomly placed over an area of object then the characteristic grey-level 

range would be false. Fixed tile positions were used to ensure the 

consideration of grey-levels from all parts of the pane. A later stage in the 

characterisation process would address the issue of a tile being placed over 

an area of object. 
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The positioning of the tiles is shown in figure 4.15. This arrangement of tiles 

gives an even spacing between a tile and either the edge of the pane or 

another tile thereby minimising the possibility of a large area of grey-levels 

being underrepresented in the characterisation process. 

Figure 4.15 - Panes & Tiles 

Calculation of Tile Statistics 

The characterisation process revolves around histograms being calculated 
for each of the tiles. Figure 4.16 shows the histograms for the five tiles 

shown in figure 4.15. It is noticeable from figure 4.16b, the histogram for 

tile 1, that this tile has the object in it. Moreover, it is observable that there 

is a distinctive range of grey level's that covers those tiles containing only 

the sea. As with the sea peak in the histograms of each test sequence in 

figures 4.9-4.11 this range can be considered to approximate a normal 

distribution. 
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Figure 4.16a - Tile 0 

Figure 4.16b - Tile 

Figure 4.16c - Tile 2 

Figure 4.16e - Tile 3 

Figure 4.16e - Tile 4 
Figure 4.16 - Tile histograms 
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The statistics calculated for each tile are the mean, µ, and standard 
deviation, 6 as defined by equations 4.1 and 4.2. 

32 32 

µ 11024" P(z' 
x=1 y=1 

132 32 

Cy = 
2: 2: (P(x, Y) - ý1)2 (4.2) 
s=1 y=l 

1024 

Although most of the graphs are of calm sea conditions the same 

distribution is seen in the histogram of the rougher sea in the Dover 

sequence, figure 4.10. Also noticeable from the tiles in figure 4.16 is that the 

sea range occupies a relatively central position in the grey level spectrum. 

To determine the grey-level range for the sea component of the histogram it 

is necessary to eliminate those grey levels above and below the sea range. 

In rougher sea conditions these grey levels would contain a high grey level 

component from the white horses and a dark grey level component from 

wave troughs. As these values lie outside the characteristic grey-level range 

for the sea they need to be eliminated. To ensure the characteristic range of 

the sea is retained the peak of the histogram is used as the starting point and 

the measure of standard deviation used to determine the initial range for the 

sea. Stroud (2001) says that 68% of values occur within 1 standard deviation 

of the mean, 95% of values within 2 standard deviations, as shown in figure 

4.17, and 99.7% of values within 3 standard deviations. To determine the 

most appropriate standard deviation value to use each has been applied to 

the test sequences and the results shown in figure 4.18. 
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2-5% oý 2.5% 

Figure 4.17 - Normal distribution showing the values outside 2 standard 
deviations from the mean 

Figure 4.18- A frame from the Poole, Dover, and Portsmouth sequences 
respectively segmented at a level of 1,2, and 3 standard deviations 

respectively above and below the mean sea grey level 
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Chapter 4 Maritime Image Segmentation 

The standard deviation results show that 1 standard deviation, figure 4.18a- 

c, does not segment a considerable amount of sea. This is particularly 

noticeable for the Dover sequence, figure 4.18b. At the other extreme, a 

standard deviation of 3, shown in figure 4.18g-i, segments not only sea but 

also significant object grey levels. The results for the Poole sequence show 

that the high grey-levels in the fast moving object partly segmented in figure 

4.18a but hardly at all in 4.18g. Although this is only an initial 

characterisation of the sea it is felt that both 1 and 3 standard deviations 

eliminate too few and too many grey levels respectively and so the value of 

2 standard deviations is chosen for the initial characterisation. This measure 

allows the central 95% of the values to be retained thereby eliminating the 

lowest 2.5% of grey-levels values and the highest 2.5% of values (Stroud, 

2001) as shown in figure 4.17. The initial sea range for each tile is 

calculated to be between 2 standard deviations below, and 2 standard 

deviations above the mean grey-level. These values are referred to as 

minSeaGrey and maxSeaGrey respectively. 

Tile Rejection 

It is possible that the location of a tile coincides with the position of one or 

more objects in the image. If this is the case then the grey-level range for 

that tile will not correctly represent that of the sea, it will represent the 

object, as can be seen in figure 4.16b. If this false grey-level range were used 

in the segmentation of the image then there is the potential for objects to be 

classed as sea and for area of sea to be classed as object. To counter this 

situation it is necessary to compare the initial grey-level ranges in each of 

the tiles. 

The minSeaGrey value for each of the five tiles is compared and the median 

value calculated. The median is also calculated for the maxSeaGrey value 

for each of the five tiles. If any of the minSeaGrey values is greater than A 

grey levels lower than the median then that value is rejected. The values 
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from two tiles can be rejected and a characteristic grey-level range for the 

pane still be determined. The same comparison is carried out for the 

maxSeaGrey values with the rejection level being 0 grey levels higher than 

the median. The final characteristic grey-level range for the pane is set to 

between the lowest of the remaining tiles minSeaGrey value and the highest 

of the remaining tiles maxSeaGrey value. 

The value of 0 has been determined by recording the grey-level ranges for 

panes in two frames from the Poole and Dover test sequences. The grey- 

level ranges were calculated both manually using the histogram tool in the 

Adobe Photoshop software and using the algorithm developed here with 

various threshold values. Figures 4.19 shows the average error for each pane 

in frames from the Dover and Poole sequences for threshold values 15,20, 

25,30,35, and 40. 

6 is set to the threshold giving the minimum overall percentage error 

between the actual (manual) and calculated (algorithm) grey-level ranges. 

From the results shown in figure 4.19,0 was set to 25. The data used to 

obtain this result can be found in Appendix A. 
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Figure 4.19 - Percentage error between actual and calculated sea grey level 
for threshold values 15,20,25,30,35, and 40 
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Pane Comparison 

For the same reason that a tile coincides with the position of an object in the 

image, it is possible that a large object could have coincided with the 

majority of the tiles in a pane. This would result in the grey-level range for 

the pane being set to that of the object, which would be an incorrect 

characterisation. It is therefore necessary to compare the grey-level ranges 

across the four panes. 

The panes are compared in the same way as the tiles. The minimum grey 

levels from the four panes are sorted into ascending order, as are the 

maximum grey levels. Adjacent ordered minimum values are then compared 

against the same value of 0. Although the panes are expected to have 

different grey-level ranges because of changes in sea state and illumination 

this difference is expected to be small, typically less than 20 grey levels. If 

the difference between two values is greater than 0 then it is considered that 

the grey-level range for the pane has become corrupted, possibly by an 

object. The minimum grey-level for this pane is then set to be the same as 

that for the pane one higher in the ascending order. The same comparison is 

then carried out for the maximum grey level except that if the difference is 

greater than 0 then the value will be set to one lower in the order of the 

maximum grey levels. 

Characterisation Results 

The characterisation process has been developed using two of the test 

sequences, Poole and Dover. Figures 4.20 and 4.21 show a image from each 

sequence. The final output from the entire characterisation process is shown 

in figure 4.22 for the Poole sequence and figure 4.23 for the Dover 

sequence. The Calculated Sea Ranges are those arrived at after the initial sea 

ranges for the tiles within each pane have been compared and following the 

comparison and adjustment of values in the four panes. The Actual Sea 
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Range figures for each pane have been arrived at manually by using the 

histogram tool in the Adobe Photoshop software and the Calculated Sea 

Range for each pane is the final result of the Sea Characterisation algorithm. 

The results shown in figures 4.22 and 4.23 were arrived at by averaging the 

values taken from every fifth frame from a sixty frame sequence. 
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Figures 4.24 and 4.25 plot the average percentage error between the actual 

and calculated sea ranges for each of the panes in the image. It can be seen 

that the error for the Poole sequence is lower than that for the Dover 

sequence, particularly the maxSeaGrey error which shows a 14% error in 

panes 0 and 2 of the image from the Dover sequence. This is to be expected 

as the sea in the Dover sequence contains a wider range of grey-levels than 

the Poole sequence. The 2 standard deviation point used to determine the 

minSeaGrey and maxSeaGrey values will leave a greater number of grey- 

levels out of the characterisation than is true of the Poole sequence. 

It should be noted that pane 1 of the Dover image only has errors of 0% and 

10.5% respectively for the minSeaGrey and maxSeaGrey values. Given that 

this pane contains the large object in the top right of the image this shows 

the success of the fixed tile pattern and of the tile rejection stage of the 

process. Figure 4.22 also shows quite clearly the difference in illumination 

across the image. The right hand side of the image from the Poole sequence 

in figure 4.20 is darker than the left hand side and this is shown in the 

minSeaGrey values of figure 4.22. Panes 0 and 2 (the left hand side) have 

values of 65 and 60 whilst panes 1 and 3 (the right hand side) have the value 

45. 

4.4.2 Segmentation 

The aim of the segmentation process is to segment the image into two 

distinct regions, those of sea, represented by black pixels, and object, 

represented by white pixels. As the area of the image of interest is that 

below the shoreline, any area of the image above the shoreline is not 

considered. The segmentation process is shown in the lower half of figure 

4.12. 
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Each of the four panes is segmented in turn using the characteristic grey- 
level range determined by the Sea Characterisation process. It is assumed 

that a large proportion of the image will contain sea and therefore to 

segment the image pixel by pixel would be unnecessarily computationally 
intensive. Therefore the pane is further split into tiles of a fixed size, as 

shown in figure 4.26, before the segmentation process begins. The use of 

tiles enables a far less intensive decision to be made on the tile as a whole 

thus segmenting larger areas of the image at a time. 

Although the images used in this system are real world images the three 

dimensional perspective is ignored. If a texture technique were being used to 

segment the images then perspective would have to be considered, as the 

texture element would need to be scaled according to the depth in the image. 

However, as the method used here is based on the statistical characterisation 

of the sea this is not necessary. Providing the size of the tiles used is 

sufficient to include representative grey levels for the sea the process will be 

successful. Any difference in grey level intensity between the foreground 

and background is addressed through the division of the image into quarters 
before the sea is characterised. 

The segmentation process uses two additional parameters, a size for the tiles 

that the pane will be segmented into, and a percentage value for the decision 

level used to decide whether a tile is an object or sea tile. The decision level 

is that percentage of pixel values within a tile beyond which the whole tile is 

considered to be sea. For example, if the decision level was 5% then if 

greater than 95% of pixel values in the tile were within the sea range then 

the whole tile would be segmented as sea. Similarly if less than 5% of pixel 

values were in the sea range then the whole tile would be segmented as 

object. If neither of these cases is true for the tile then a decision on the 

whole tile cannot be made and segmentation of the tile is then carried out on 

a pixel by pixel basis. Those pixels whose grey-level value is within the sea 
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range for the pane are segmented to sea pixels and those pixels whose grey- 

level value is outside the sea range are segmented to object. 

Segmentation Parameters 

To arrive at the optimal segmentation for the tile the values for the tile size 

and decision level parameters have been derived as a pair. Both the Poole 

and Dover test sequences were used to ensure the consideration of different 

sea states. 

As the aim of this process is to segment the sea region from any object 

region that may be present in the image the tile needed to be of sufficient 

size to contain a true representation of the sea. If the tile size were too small 

there would be an increased possibility that the low number of pixels in the 

tile lay outside the characteristic sea range for the pane. This would result in 

the false segmentation of the tile. This is particularly true of sea states such 

as that in figure 4.26 from the Dover sequence that contain a wide variety of 

grey-levels. If the tile size were too big then small objects of only a few 

pixels could be lost as the tile was segmented to the sea region. 

Figure 4.26 - 32x32 Pixel Tiles in Pane ready for Segmentation 
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The tile sizes considered were 16x16,32x32, and 64x64 and the decision 

levels considered were 5%, 10%, 15%, and 20%. The following method was 

used to determine the values for tile size and decision level and the results 
for all the values considered can be found in Appendix B. 

Every fifth image in a filtered 100 frame sequence had a grid of the tile size 
being considered laid over it. Each tile was then manually observed and 
recorded as being in one of the following three categories: 

" Object Tile 

9 Sea Tile 

9 Undecided 

This was repeated for the 100 frame sequences after they had been 

segmented by the algorithm presented here. The results were plotted and the 

percentage of correctly segmented tiles calculated for each combination of 
tile size and decision level. These results are shown in figures 4.27 for the 
Dover sequence and 4.28 for the Poole sequence. The data for all the results 

can be found in Appendix B. Each of the three categories has been 

calculated separately with the manually recorded number of tiles per 

category being 100%. As the number of Object and Undecided tiles are 

relatively small, typically between 12 and 20 Object tiles in the Poole 

sequence, the error in segmentation appears to be very high. This is 

unrepresentative of the operation of the algorithm but allows for a clearer 
differentiation to be seen between the parameter values being evaluated. 

The parameter values to be used are those that give the highest percentage of 
correctly segmented tiles averaged across both test sequences. If a single 
sequence were used or the values yielding the highest percentage of 
correctly segmented tiles then the algorithm would be tailored to a specific 
image sequence. This would be wrong as the algorithms developed here are 
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to be used in a variety of sea conditions. This can be seen in figure 4.27e 

showing the result for a tile size of 16x16 pixels and a decision level of 

15%. This combination of parameters for the Dover sequence shows the 

percentage of correctly segmented object tiles only drops below 80% in one 

frame and the undecided tiles in four frames. However, if the equivalent 

results from the Poole sequence are observed, figure 4.28e, it can be seen 

that the percentage of correctly segmented object tiles drops below 80% in 

fourteen frames and the undecided tiles in twelve frames. 

The combination of parameter values giving the highest percentage of 

correctly segmented tiles in all categories over both test sequences is a tile 

size of 32x32 pixels and a decision level of 10%. Figure 4.29 shows the 

average results for these parameter values for both sequences. This figure 

shows the percentage of correctly segmented sea tiles is over 97% in all 

frames, the figure for object tiles is over 89% in all frames, and over 70% in 

all except one frame for the undecided tiles. The data and graphs for the 

averages of all combinations can also be found in Appendix B. 

The figure of only 70% of undecided tiles being correctly segmented is 

lower than expected and it is considered that further processing is necessary 

to increase this result. A method of region growing will address this and a 

further consequence of segmentation. 
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Region Growing 

In many segmentation processes, objects can become fragmented (Owens et 

al, 2002) and some form of region growing is required to rejoin the objects. 

Region growing can also be used to remove small areas of sea that have 

been falsely segmented as object and therefore increase the percentage of 

correctly segmented tiles. The method of region growing used is similar to 

that of an 8-directional chain code as described by Gonzalez and Woods 

(1992) except that instead of using it to describe the boundary of the region 

it is being used to confirm a pixel's segmentation in a particular region. 

Nine directions have been used in this method as shown in figure 4.30, 

where C is a central direction and considers the pixels surrounding the target 

pixel and the eight other directions are labelled as the cardinal and inter- 

cardinal points of the compass. 

The method involves, for each object pixel in the segmented image, a count 

of the number of object pixels in each of the nine directional search spaces. 

Figure 4.31 shows the search space for the SW direction. If a threshold 

value for the number of object pixels found is not met in any direction then 

the object pixel under test is considered to be a falsely segmented pixel and 

it is reclassified as a sea pixel. If the threshold is met then the pixel is 

considered to be a part of an object in all the directions in which the 

b0 ýp 60 " 00 :P "zO 

Frame Number 



Chapter 4 Maritime Image Segmentation 

threshold was met and the object region is grown by setting all the pixels in 

that directional search space to be object pixels. 

N mw NE 
Target 
Pixel 

W4C No E 

SW SE 

Figure 4.30 - 9-Way Directional 
Chain Code 

Figure 4.31 - SW Search Space 

Region Growing Parameters 

Two parameters are required for the region growing process. The size of the 

search space and the threshold value. These have been derived as a pair, in 

the same way as with the parameters for the segmentation method, to give 

the minimum number of falsely segmented object tiles where an object is a 

collection of white pixels completely surrounded by sea pixels. 

If the size of search space is large then multiple objects could be merged 
into a single object and if the search space is small then correctly segmented 

object fragments could be falsely reclassified as sea pixels. Even numbered 

search spaces such as 4x4 or 6x6 were not considered as it would not be 

possible to locate the existing object pixel in the centre of the search space 

when considering the Central direction in figure 4.30. The search space sizes 

evaluated were 3x3,5x5, and 7x7 pixels. 

As the resolution of the region growing is at the pixel level the threshold 

value was determined to be a specific number of pixels within the search 
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space. With regard to threshold values it was found that above and below 

certain thresholds the false reclassification of pixels was 100% as in figure 

4.32d. As the number of pixels per search space did not allow for the same 

percentage values to be used the threshold values evaluated for each search 

space were: 

. 3x3 search space 

5 pixels (55.5%), 6 pixels (66.6%), 7 pixels (77.7%), 8 pixels (88.8%) 

" 5x5 search space 

18 pixels (72%), 20 pixels (80%), 22 pixels (88%), 23 pixels (92%) 

0 7x7 search space 

35 pixels (72%), 39 pixels (80%), 43 pixels (88%), 45 pixels (92%) 

Both the Poole and Dover test sequences were used in the derivation of the 

final values and the results of the experiments can be seen in figure 4.32 and 
figure 4.33. 
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The average of the results for the two test sequences, Poole and Dover, used 

in the evaluation were calculated and the data and graphs for all of these can 

he found in Appendix B. The search space and threshold combination giving 

the lowest average false segmentation rate chosen for use in this algorithm is 

the 5x5 search space and the 80% threshold. This average result is shown in 

figure 4.34. The percentage of falsely segmented tiles is 10% or less in all 

frames for object tiles and less than 8% for sea tiles. 
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4.5 Segmentation Results 

All three segmentation methods described have been applied to the Poole, 

Dover, and Portsmouth test sequences. Figures 4.35 - 4.37 show an input 

frame from each sequence together with the output from each of the 

thresholding, frame differencing, and sea characterisation segmentation 

methods for that frame. 

Figure 4.15a - Poole frame 

Figure 4.35c - Frame Differencing 

Figure 4. h I'hresholdin 

Figure 4.35d - Sea Characterisation 

Figure 4.35 - Poole Sequence Segmentation Results 
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For the Poole sequence the thresholding method (figure 4.35b) has 

successfully segmented the objects and the sea although one of the objects 

has been heavily fragmented. This fragmentation has also occurred in the 

sea characterisation method (figure 4.35d) but to a much lesser extent. Due 

to the static camera platform the frame differencing method has as expected, 

not segmented the stationary object. The moving object has been segmented 

but the use of projection histograms has meant the segmentation will always 

be in the form of rectangles. A false object is also present. 

Figure 4.36a - Dover frame 

l figure 4.36c - Frame Dil'lerencing 

Figure 4.36b - I'hresholding 

Figure 4.36d - Sea Characterisation 

Figure 4.36 - Dover Sequence Segmentation Results 
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The thresholding method (figure 4.36b) has segmented the objects present in 

the Dover sequence but because of the wide range of grey levels in the sea 

many small areas of sea have also been segmented. The motion of the sea 
has caused the frame differencing method (figure 4.36c) to segment large 

areas of sea as objects. The stationary objects have not been segmented. The 

sea characterisation method has falsely segmented three small areas of sea. 
One of these is the dark shadow area to the left of the harbour wall and has 

been segmented as part of the wall object. 

Figure 4.37a - Portsmouth frame 
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Figure 4.37 - Portsmouth Sequence Segmentation Results 
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Chapter 4 Maritime Image Segmentation 

In figure 4.37b the thresholding method has falsely segmented the lighter 

area of sea in addition to the objects from the darker area of sea in the 

Portsmouth sequence. The frame differencing method (figure 4.37c) has 

successfully segmented the larger object and part of the smaller object. 

However, many false objects have also been segmented. Figure 4.37d shows 

the result of the sea characterisation method. This has successfully 

segmented the two objects from the sea but has also falsely segmented the 

darker area of wake caused by the larger object. 

The three segmentation methods have been evaluated in the same way as 

that used to determine the parameter values for the sea characterisation 

method in section 4.4. A 32x32 pixel grid was placed over every fifth frame 

from a sixty frame clip from each sequence and the number of tiles 

containing false objects recorded. The average number of tiles with false 

objects across each sequence, as a percentage of the total number of tiles, is 

shown in figures 4.38 - 4.40. Appendix C contains all the data used to 

generate these graphs. 

Figure 4.38 shows the evaluation of the three segmentation methods on the 

Poole sequence. Most notable is the performance of the frame differencing 

method. The centrally located dark object is stationary and as there is no 

motion between frames the object is not segmented. As this is to be 

expected the tiles relating to this object have been considered to be correctly 

segmented for the purposes of the evaluation. The second, moving, object in 

this sequence enters the scene completely by frame 10 and exists by frame 

30. It can be seen than while the moving object is present in the scene the 

frame differencing method performs quite well with a minimum error of 

0.78% of tiles segmented falsely. 
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Figure 4.38 - Poole sequence segmentation evaluation 

In both the Poole and Dover test sequence there are stationary objects that 

will not be detected with the frame differencing method owing to the static 

camera used to capture the sequences. For the purposes of the evaluation the 

tiles in which these objects should have appeared have not been marked as 

falsely segmented. 

Both prior to and after the moving object's presence in the scene the error 

rate is considerably higher with a maximum error of 21.09% of tiles falsely 

segmented. This is due to the RMS method of threshold determination being 

used in this implementation of frame differencing. While an object with a 

high element of motion is present in the scene the threshold will be set 

above that of the sea motion but once that object leaves the scene the 

threshold will be set at a much lower level resulting in areas of sea being 

segmented. 

Both the thresholding and sea characterisation methods have a consistently 

lower error rate when compared to the frame differencing method however 

when the moving object is present the thresholding method has a higher 

error rate. It can be seen that both the thresholding and sea characterisation 

methods have an increased error rate between frames 30 and 50. The 
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thresholding method has a maximum error of 4.69% and the sea 

characterisation method a maximum error of 2.15%. This is due to the wake 

following behind the moving object being falsely segmented by both 

methods. 

For this sequence the sea characterisation method would be chosen as it has 

a lower error rate for all of the recorded frames except frame 55 where the 

thresholding method has a lower error rate. 

Figure 4.39 shows the same evaluation for the Dover test sequence. This 

sequence contains a stationary harbour wall object and a floating buoy 

object. In this sequence the Frame Differencing method does not perform as 

well as the Thresholding method with the exception of 3 frames. The high 

error rate shown by the Thresholding method (maximum error of 67.58% 

and minimum error of 45.31%) is due to the wide range of grey levels 

present in the sea. The slightly choppy sea conditions have led to some of 

the very dark and very light grey levels of the sea to be segmented as object 

in addition to successfully segmenting the real objects. 
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Figure 4.39 - Dover sequence segmentation evaluation 
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The high error rate of the Frame Differencing method is expected as the 

motion of the sea caused by the wind causes large areas of sea to be falsely 

segmented by this method. The minimum error rate is 9.77% and the 

maximum error is 25.59%. 

With a minimum segmentation error of 0.2% and a maximum of 1.76% of 

tiles the Sea Characterisation method has outperformed the other two 

methods by quite some margin. All objects have been successfully 

segmented from all but the smallest areas of sea. 
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Figure 4.40 - Portsmouth sequence segmentation evaluation 

Figure 4.40 shows the results for the Portsmouth sequence. The difference in 

performance between the three methods is clearer to see with the Sea 

Characterisation method showing the lowest level of false segmentation and 

the Thresholding method the highest level of false segmentation. The 

Thresholding method has suffered as the sea toward the top left of the image 

is lighter than in the rest of the scene and the threshold has been falsely 

segmented as large areas of object in many of the frames. 

The low level of sea motion and the motion of objects in this sequence 

suggests that the Frame Differencing method should return a low error rate 
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as the RMS method of threshold selection would eliminate most of the sea 

motion. This has not been the case with this method showing a minimum 

error of 5.47% and a maximum of 13.48%. 

The Sea Characterisation method has performed well with a minimum error 

rate of 0.2% and maximum error rate of 1.76%. The objects have been 

successfully segmented in all the tested frames and the Sea Characterisation 

method would be chosen for this sequence as it returned a lower error rate in 

every frame. 
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Figure 4.41 - Average Segmentation Error 

In figure 4.41 is shown the percentage of tiles falsely segmented by each 

method when averaged across the three test sequences. This shows gives a 

more realistic result for the methods being evaluated here as it takes into 

account a variety of sea conditions and objects of differing sizes and grey 

level intensity. Despite the results being only 1.37% different for frame 55 it 

is clear that the Thresholding method performed the worst of the three with 

the Frame Differencing method returning on average 10% fewer falsely 

segmented tiles. However, the best performer was clearly the Sea 

Characterisation method. It successfully segmented objects in every frame 

and over 98% of the sea. This method returned a minimum average error 

rate of 0.2% and a maximum average of 1.5%. 
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4.6 Discussion and Summary 

Three segmentation algorithms have been introduced in this chapter. First, a 

grey level thresholding method that searches the histogram of grey levels for 

valleys between distinct peaks representing sea and objects. Secondly the 

method of segmentation by frame differencing that Voles et al (1999) used 

on maritime images. Finally a method of segmentation developed for use 

with these images by statistically characterising the grey level of the sea and 

using this to segment the image into the same two regions as the other 

methods, namely sea and object. Implementations of all three algorithms 

segment the sea to black pixels and objects to white pixels. 

The Thresholding method constructs a histogram of the grey levels in the 

image, smoothes the histogram then searches for the peaks and troughs. 

Thresholds are set in each trough and the regions between the troughs 

segmented into either sea or object regions. This method has been successful 
in segmenting all the objects present in the images but in all three sequences 

the threshold has been set at a level that allows areas of the sea to also be 

segmented. On average this method returned a false segmentation rate of 
between 18.23% and 27.99%. 

The method of Frame Differencing implemented begins by subtracting the 

current frame from the previous frame. The resulting image is then projected 

onto its horizontal and vertical axes and a projection histogram for each 

obtained. These histograms are then thresholded using the RMS value of the 

histogram entries to eliminate the low levels of motion caused by the sea. 
Values above the threshold are then set to object and those below to sea. The 

co-ordinates of the objects are then determined by scanning the histograms. 

The result is a binary image with white rectangles representing areas of 

motion (object) and the background (sea) is black. It is noticed in the results 

for the Poole sequence that while a fast moving object is present in the scene 

this method works well with a minimum error rate of 0.78%. However, 
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because of the RMS method of threshold selection, when no object is 

present the threshold is set low enough for areas of sea motion to be 

segmented. This raises the error rate to a maximum of 25.59% in the Dover 

sequence. This method also suffers from the method of projecting the 

objects identified in the histograms back into co-ordinate space. If only a 

single object is found in each of the horizontal and vertical directions then a 

single object results. However, if multiple objects are found in each 

direction then an object results at each location where the co-ordinates cross. 

This is not necessarily correct and has led to a number of false objects to be 

segmented, particularly in the Dover sequence. Further processing steps 

would be required to eliminate these false objects. 

The Sea Characterisation process uses a preset `shoreline' value to mark the 

upper limit of the sea in the image. This is used to ensure that only valid sea 

pixels and those of any maritime object present in the scene are considered 

in the statistical characterisation of the sea. Statistical analysis based on the 

histograms of the pixels in the image then follows. This uses predetermined 

values for the tile size and decision level parameters to arrive at a 

characteristic range of grey-levels for the sea in the image. The tile size and 

decision level parameters were derived through extensive experimentation 

using differing values for the parameters. The characterisation process 

showed an error of 3% for the Poole sequence and 14% for the Dover 

sequence 

The segmentation process uses the characteristic grey-level range 

determined for the image to segment the image into two regions, sea 

represented by black pixels and object, shown by white pixels. The tile size 

determined in the characterisation process is used again here. A grid of these 

tiles is placed over the image and a decision about the segmentation of the 

entire tile is attempted. This approach was taken as it is considered that the 

majority of the image will be sea therefore segmenting a whole tile at a time 
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would reduce the number of false objects segmented due to highlights and 

shadows present on the sea. If it is not possible to segment a whole tile then 

the tile is segmented on a pixel by pixel basis to be either sea or object. The 

success of the division of the image into quarters and the use of 32x32 tiles 

to segment the image shows that the decision to ignore scene perspective has 

not compromised the segmentation process. 

A 9-way connectivity measure is used as a method of growing the object 

regions that have been segmented. This has been done as an object can be 

fragmented during the segmentation process as several smaller distinct 

objects. The region growing algorithm grows and joins these areas together. 

Nine directions were used in the connectivity measure using a 

predetermined search space size and threshold value. 

The Sea Characterisation method has been shown to be the method of 

choice for each of the three test sequences with the average error across all 

the sequences ranging from 0.2% to 1.5%. The Sea Characterisation method 
has, therefore, been chosen as the method of segmentation for the system 
developed in this thesis. 
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Chapter 5: 
Object Tracking and 
Motion Prediction 

5.1 Introduction 

In image motion analysis, tracking is the process of identifying the same 

object in each frame of an image sequence. It plays a fundamental role in 

many applications including encoding of visual data, man-machine 

communication, and surveillance (Mitiche et al, 2002). 

Tracking man-made objects moving in open world scenes is a complex task 

(Teal, 1997) and has received considerable attention in the literature. The 

tracking process has the primary goal of solving the correspondence 

problem (Jain, 1984). The correspondence problem can be solved using a 

number of techniques such as feature based geometric model matching (Tan 

et al, 1994). Worrall et al (1993) shows model based techniques to be 

successful where the objects to be tracked occupy a significant proportion of 

the image. 

If the object to be identified and tracked is a long distance from the camera 

and only occupies a small proportion of the image pixels Rosin and Ellis 

(1991) and Teal and Ellis (1995) found that the matching of crude object 

descriptors is more robust. A similar approach is that of Wang et al (2000) 

who use a rule-based algorithm using the variables calculated from 

information about the object to perform the tracking of objects. 
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Maritime objects can take many forms, from a racing dinghy to a ferry and 

from a harbour wall to a buoy. Each of these objects could have a different 

velocity and manoeuvrability but each presents a potential collision threat 

for another maritime craft and needs to be tracked through the image 

sequence. In this chapter the correspondence problem is addressed to track 

maritime objects over many frames and the future motion of the objects 

tracked is then predicted. Two methods have been evaluated for use with 

maritime images. The first method uses a tracking method based on object 

parameter measurements similar to those used by Wang et al (2000) and 

Ellis et al (1991), a set of motion constraints (Teal and Smith, 1999) and a 

motion model developed for use with maritime images. Motion prediction is 

then carried out using a method of least squares (Stroud, 2001). The Kalman 

filter (Kalman, 1960) is the second method and is arguably the most popular 

technique for tracking objects for its ability to predict the future position of 

the object. 

The two algorithms described here are evaluated against the manually 

derived centroid position of each object. Results for each algorithm are 

shown and a conclusion reached for which is the most appropriate method 

for use in the system being developed. The input to the tracking and 

prediction algorithms is a segmented image sequence where the maritime 

images have been segmented into sea and objects. Each segmented object 

has had its minimum and maximum x and y co-ordinates and centroid 

location calculated. 
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5.2 Object Parameter and Motion Model Tracking 

Each segmented object input to the tracker has a statistical feature vector 

built. This is used together with a set of motion constraints (Teal and Smith, 

1999) in the form of a motion model developed for maritime objects, similar 

in nature to the features used by Franchi et al (1996), to decide if an object 

identified in two adjacent frames is the same. Falsely segmented blobs are 

minimised through the use of the motion model. This object matching 

continues over N frames with key motion parameters being recorded about 

the object in each frame. The output from the tracker is a set of matched 

object descriptors. In the output image the tracked objects are highlighted by 

visual cues. A black box is drawn around the area of each blob that has been 

matched to show it is being tracked. Once a blob has been confirmed as a 

maritime object a white box is drawn. A flow chart showing the tracking 

and prediction process is shown in figure 5.1. 

A number of methods have been employed in the prediction of object 

motion. Kalman filtering (Kalman, 1960) described in section 5.3, and 

curve-fitting such as the Linear Regression (Achelis, 2004) method. These 

methods can yield accurate results for the prediction of object motion. Wang 

et al (2000) show that their assumption that object trajectories are close to 

straight lines in a few adjacent frames was successful. This assumption was 

also shown to be true of maritime objects and is the basis for the choice of 

prediction algorithm used here. As object trajectories are assumed to 

approximate a straight line a less intensive Least Squares algorithm (Stroud, 

2001) has been used for calculating the future position of an object in the 

scene. In frame N+1, the future motion of the object is predicted. A line of 

best fit is calculated and drawn from the recorded object data. Straight-line 

segments are then drawn in the image showing the estimated future motion 

of the identified objects. 
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Figure 5.1 - Object Tracking & Motion Prediction Flow Chart 
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5.2.1 Maritime Object Motion Model 

A model has been developed of the typical motion of maritime objects. This 

model will be used to solve the correspondence problem by determining 

whether an object segmented in successive frames is the same object. The 

model includes motion constraints such as the maximum speed of an object 

and the rate of change in orientation of a valid maritime object. 

5.2.2 Motion 

Through the observation of the maritime environment the total motion of a 

maritime object can be considered to contain three elements: 

" Principal Motion 

" Incidental Motion 

" Platform Motion 

Principal motion is defined as that motion introduced by the objects own 

power source to drive the object in an intended direction. For a boat the 

power' source would be the engine and for a yacht it would be the wind. As 

this source of motion is applied intentionally it is assumed to be predictable 

allowing certain parameters such as orientation (direction of travel) to be 

taken into account when tracking the object. 

Other maritime objects, such as a mooring buoy, have no such power source 

but observations show that there will still be some variable amount of 

motion. This is defined as Incidental motion. This motion can be due to the 

movement of the sea and can be caused by a number of variables, namely: 
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. Wind 

. Tidal flow 

" Wake from passing craft 

The levels of these variables and the direction they come from will all vary 

the amount of motion applied to the maritime object. As the level of these 

forces is unknown this motion is assumed to be unpredictable, removing the 

use of the orientation parameter in the tracking process. 

Platform motion is that motion introduced by the movement of the vessel 

the camera is mounted on. As no information is known about the movement 

of the sensor platform the motion from this source is also considered to be 

unpredictable. Objects present in the image are considered to have the 

combined motion of the object and the sensor platform. 

5.2.2 Motion Model Parameters 

The motion model contains the following parameters: Object 

Characterisation; Object Speed; and Object Orientation. The values of these 

parameters dictate how the tracking algorithm will approach the matching 

of each object in the image. 

Object Characterisation 

An object generating sufficient power for principal motion to be the higher 

proportion of total motion allows the possibility of using the predictability 

of the principal motion to aid the tracking of the object. If the reverse were 

true then the unpredictability of the incidental motion component would 

require a different approach to tracking the object. For this reason objects 

are categorised. The motion of the sensor platform will also affect the 

observed velocity of any object present in the image. 

122 



Chapter 5 Object Tracking & Motion Prediction 

A maritime object such as a harbour wall is a solid object fixed to the 

seabed. It is not floating so we assume it is stationary. However, as the 

vessel on which the sensor is mounted could well be moving the harbour 

wall object could appear to have motion. If the sensor platform had a low 

speed and therefore had incidental motion as its major source of motion 

then the harbour wall object would also appear to have incidental motion as 

its major source of motion. If the sensor platform were travelling at a high 

speed then the harbour wall object would also appear to have a high speed 

and principal motion as its major source of motion. 

An object that is floating in the water, either tethered in some way such as a 

buoy, a channel marker, or a boat on a mooring will `bob' around with the 

movement of the water. These objects have no element of principal motion, 

any motion being the result of incidental motion. As with stationary objects 

any movement of the sensor platform will effect the motion of the object in 

the image. Objects moving with principal motion will have the effect of this 

motion changed by that of the sensor platform. If the platform were moving 

in the same direction as the object at a similar speed the object would 

appear to have a low speed. 

Objects present in the image are categorised as either Slow Moving or Fast 

Moving. If the sensor platform were not moving the major source of motion 

alone could be used to categorise an object, slow moving for those with 

unpredictable incidental motion as the major source of motion and fast 

moving for objects with predictable principal motion as the major source. 

However, as the sensor platform could well be moving it is the combined 

total motion that is used to categorise the objects. To take account of the 

unpredictable incidental motion, a threshold has been determined below 

which all objects are categorised as Slow Moving and above which all 

objects are categorised as Fast Moving. 
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The definition of a slow moving object is that its motion will be made up of 

primarily incidental motion with principal motion being secondary. This is 

due to that motion caused by the sea being equal to or in excess of that 

provided by the object's own power source. 

If we consider that a speed of 2 knots is equivalent to 3.7 kilometres per 
hour, or a steady walking pace, it is not unreasonable to assume this to be a 

slow moving maritime object and a speed at which incidental motion is the 

greater component of total motion. 

Using the basic trigonometry function for a right angle triangle in equation 
5.1, equations 5.2 and 5.3 and the image capture parameters it is possible to 

estimate the number of pixels an object moving at 2 knots would cover 
between frames. 

O=tann*A (5.1) 

tP/s (5.2) 

p(w/t)/f (5.3) 

Where: 

A= minimum distance from sensor to object in metres 

n field of view/2 
O= distance from edge to centre of the image 

P=0*2 

s= speed in metres per second 
t= time in seconds for object to cross the image 

f= number of frames per second 

w= width of image in pixels 

p= number of pixels moved per frame 
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Figure 5.2 - Calculating the length of the opposite side of a triangle 

We know from the image capture parameters that: 

" the angle n will be half of the field of view of 23° 

the width of the captured image is 768 pixels 

" the capture rate f is 10 frames per second 

We consider the minimum distance, A, between the sensor and the object to 

be 50 metres as the length of a typical ferry is 82.4 metres (Whyte, 1998) 

and it is assumed that the camera will be mounted on the bridge, 

approximately half way along the vessel's length. 

At a speed of 2 knots and a distance of 50 metres, the centroid of an object 

will move approximately 4 pixels in a horizontal direction between frames. 

As this movement can be in any direction this gives an area of 8x8 pixels 

within which a slow moving object may be found. 

Fast moving objects are defined as those objects whose motion is comprised 

primarily of principal motion with incidental motion secondary. This is due 

to the object's own power being in excess of that provided by external 

125 



Chapter 5 Object Tracking & Motion Prediction 

forces. The motion model has to allow for the movement of these fast 

moving objects up to the maximum speed of a typical high-speed vessel. 

A typical fast maritime object, the Red Jet catamaran passenger ferry, has a 

maximum speed of 34 knots (Whyte, 1999). Given the formulas (5.1-5.3) 

and figure 5.2 the maximum number of pixels covered by an object 

travelling at 34 knots and a distance of 50 metres can be estimated as 33 

pixels. Any object in frame N+l that has a centroid greater than 33 pixels 

away from an object in frame N would not be considered the same, as the 

object could not have moved that far between frames. Maritime objects that 

are moving tend to do so at a consistent rate, it can be considered that they 

do not accelerate or decelerate between frames so it is assumed that object 

motion will be uniform across the image (Wang et al, 2000). 

Orientation 

Figure 5.3 shows the possible directions an object can have. Slow moving 

objects can have a high degree of unpredictable incidental motion. As the 

orientation change is unpredictable the motion model disregards the 

orientation of slow moving objects by setting the orientation parameter to 

zero. In the first frame in which a new object is identified the orientation of 

the new object will be unknown. New objects are therefore also given the 

orientation zero. 

Franchi et al (1996) state that a very reasonable assumption is that the 

motion of an object does not change abruptly between consecutive frames. 

An object travelling at higher velocities will therefore not be capable of a 

dramatic change in orientation between frames. It is assumed that a fast 

moving object heading East in frame N cannot be moving West in frame 

N+1. However, because a fast moving object may change orientation 

between frames the motion model allows a fast moving object in frame N+1 
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to have moved up to one direction each side of its orientation in frame N. 

For example, with reference to figure 5.3, if an object in frame N had an 

orientation of 5 then in frame N+1 the object could have orientation 4,5, or 

6. Direction zero is the 8x8 pixel area within which slow moving objects 

may be found. 
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Figure 5.3 - Directions of Travel. The number associated with each 

direction is the value stored in the object feature vector. There is also a 

direction 0 for new objects and stationery or slow moving objects. 

5.2.3 The Motion Model 

From the points made in sections 5.2.1 and 5.2.2 the motion model 
developed contains the following motion constraints: 

1. Objects may only move between their current orientation and either of 

the adjacent orientations shown in figure 5.3. The orientation may also 

be zero. An object moving in one direction in frame N cannot move in 

the opposite direction in frame N+1. 
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2. Objects moving at 2 knots or less and stationary objects are considered 
to have an unpredictable direction of travel therefore a direction zero has 
been established. 

3. Objects can have a maximum estimated acceleration between frames of 
33 pixels. Based on a typical high-speed ferry having a maximum speed 
of 34 knots (Whyte, 1999). 

4. An object's motion is assumed to be uniform across the image as it is 

assumed that an object does not accelerate or decelerate between frames. 

5. All maritime objects are assumed to be rigid. 

6. All new objects will have an initial direction of zero. 

5.2.4 Tracking Process 

The tracking process is shown in flow diagram form in figure 5.4. Before 

the object matching begins a two-pass connected component analysis 

algorithm (Sonka et al, 1993) is applied to the segmented image to define 

the boundary for each region of interest (object). Each object is then 

labelled with a unique integer identifier (object number) and has a feature 

vector similar to that used by Teal and Smith (1999) built as shown in table 

5.1. The min and max X, Y co-ordinates are determined by scanning the 

image in a raster scan order and noting the co-ordinates for each labelled 

object. 

The direction is set to zero for each new object. Once an object has been 

matched between frames the direction is calculated from the centroid co- 
ordinates of the object in frame N+1 and the centroid co-ordinates of the 
object in frame N. 
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Figure 5.4 - Motion Model Tracking Flow Diagram 
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Table 5.1 - Feature vector built for each object in the image 

Object Number 

Min X Coordinate 

Max X Coordinate 

Min Y Coordinate 

Max Y Coordinate 

X Centroid 

Y Centroid 

Area 

Direction 

Number of Frames Matched 

Centroid Data Array 

As the feature vector is being built from the segmented image the zeroth 

order moment will give the area of the object (the total number of pixels in 

the object). Equation 5.4 defines the zeroth order moment (Glasbey and 
Horgan, 1995). 

MOO _II i°j° (5.4) 
(i, �) EA 

where i, j are object pixel co-ordinates 
A is the object of interest 

The Number of Frames Matched is incremented every frame if the object is 

matched and is used by the motion prediction algorithm. 

The Centroid Data Array is a 2-dimensional array containing the centroid 

co-ordinates of the object for a number of frames and is used by the motion 

prediction algorithm. The array is initialised to contain all zeros. 
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Segmentation algorithms that have no information regarding the objects of 

interest, such as that used here, can lead to objects being fragmented. This is 

a situation in which an object is segmented into many smaller parts. To 

reduce the effect of object fragmentation any objects whose boundaries 

overlap are combined into a single object. Although this can lead to objects 

that may be occluding each other being combined as a single object this is 

acceptable, as the collision risk for the combined object will be that of the 

object posing the greater risk. Once the occlusion has ceased the objects will 

be segmented individually and their collision risk estimated separately. 

The problem of object correspondence between frames is minimised by 

applying the motion constraints from the motion model and maximising a. 

confidence measure to find the best match for the object under 

consideration, as shown in figure 5.4. 

Each object in frame N is compared with each object in frame N-I using the 

constraints in the maritime motion model and a measure of the confidence 

of a match. The first constraint to be used is the acceleration. If the centroid 

positions of the objects being compared are within the limit of acceleration 

contained in the motion model then these could be the same object. The 

measure of confidence in the match is incremented. If this constraint is not 

met then the object in frame N cannot be a match and the object is rejected 

as a possible match for the object in frame N-1. 

If the acceleration constraint is met then the orientation constraint is 

considered. The motion model states that a fast moving object travelling 

East in frame N-1 cannot be moving West in frame N. If the orientations of 

the two objects match then the confidence measure is increased by 2. If the 

orientations vary by a single direction then the confidence measure is 

incremented and if the orientations do not match then the confidence 

measure is left unaltered. 
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At this point the object from frame N will have a confidence level of 1,2, or 

3. The higher the number, the greater the confidence that this is the same 

object as that in frame N-1. If this is the first object from frame N to be 

considered for a match then this object becomes the Best Matched Object. If 

this is a further object being considered then the confidence level of the Best 

Matched Object and object currently under consideration are compared. The 

object with the higher confidence level becomes the Best Matched Object 

and the other is rejected. Once all objects in frame N have been compared 

against the object in frame N-1 the Best Matched Object has its feature 

vector updated with the object number from the object in frame N-1 and has 

its Number of Frames Matched value incremented. The object is then copied 

into a Matched Objects vector. In this frame, as in each frame that an object 

is matched, the X and Y centroid values for the object are stored in the 

Centroid Data Array within the feature vector for that object. 

As it is possible for falsely segmented objects to be matched between frames 

each object that has been matched across two frames has a black box drawn 

around it and is termed a possible object. The black box shows that the 

object has been matched but that is has not been confirmed as a maritime 

object. The number of frames an object needs to be matched across before it 

is confirmed as a maritime object has been determined from the Poole and 

Portsmouth test sequences. Figures 5.5 and 5.6 show the number of frames 

false objects are matched across for 60 frames of the Poole and Portsmouth 

sequences. In both sequences false objects have been matched over several 

frames but in most cases these objects ceased to be matched after two, three, 

or four frames. Given the results from these sequences it has been decided 

that objects must be matched a minimum of five times before it is confirmed 

as a maritime object. Confirmed objects are displayed with a white box 

around them. 
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Figure 5.6 - The number of frames false objects are 
matched across in the Portsmouth sequence 

5.2.5 Motion Prediction 

The assumption by Wang et al that in a few adjacent frames object 

trajectories are close to a straight line (Wang et al, 2000) has been tested on 

two maritime test sequences. The plotting of centroid positions for moving 

objects in both the Poole and Dover test sequences, figures 5.7 and 5.8, 

showed that the assumption was true for the test sequences. In figure 5.8 the 

assumption is shown to be true over 20 frames however in figure 5.7 the 

object shows some movement away from a straight line after 15 frames. 
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Figure 5.7 - The centroid position of the fast moving object in the Poole 
sequence for frames 10-30 
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Figure 5.8 - The centroid position of the fast moving object in the Dover 
sequence for frames 90-110 

From the result shown in figure 5.7 it was considered that a fast moving 

object would show a noticeable change in orientation after twenty frames so 

this was chosen as the period that the prediction of future motion would be 

calculated for. 

Sumpter and Bulpitt (1998) say that the future behaviour of an object, in 

terms of its motion and appearance, can be implied from previous 
behaviour. Before any prediction can be made about an object's future 

motion then a certain number of frames worth of an object's previous 

motion data is required. If the number of frames chosen is too high then the 

object could have moved across the image and be leaving the scene before 
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the prediction is made. From the discussion on the maritime motion model 

about speed (section 5.2.3) we know that a typical fast moving object can 

move up to 33 pixels between frames. Given an image size of 512 x 512 

pixels it would take less than 16 frames for an object to completely cross the 

scene. For a fast moving object to enter the scene and to arrive at the point 

of maximum collision risk (the centre of the image) would take a minimum 

of 8 frames and so this has been chosen as the number of frames to record an 

object's previous motion over. 

The motion prediction process is shown in the flow chart in figure 5.9. It 

uses the Least Squares algorithm (Stroud, 2001), equations 5.5 and 5.6, to 

calculate a line of best fit through the Centroid Data Array, an element in an 

object's feature vector. The standard method of line fitting gives each data 

element and even weighting, however, as objects can change orientation 

over many frames time weighting has also been applied to the sum of 

squares element of equation 5.6 to reduce the confidence in older 

measurements. The weighting factors used are: 

Centroid Data Array location: 12345678 

Weighting Factor: 1.3 1.2 1.1 1.0 1.0 0.9 0.8 0.7 

It then uses the equation for a straight line, equation 5.7, and the distance 

travelled over the 8 frames worth of entries in the Centroid Data Array to 

predict the likely centroid position of the object in a further 20 frames time. 

A line is then drawn from the current centroid position to the predicted 

centroid position. As the algorithm uses the centroid position of the object in 

each of the last 8 frames, the predicted future position takes into account the 

speed the object is moving at. The faster the movement of the object, the 

longer the line of predicted motion. Using the motion model assumption that 

a maritime objects motion is uniform across the image the predicted position 

in 20 frames time will be the average of the distance travelled between each 

of the Centroid Data Array entries. 
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Figure 5.9 - Motion Prediction Flow Chart 

an+b2: x = 2: y (5.5) 

al: x+b>x2 = J: xy (5.6) 

;y= ä+bx (5.7) 

where: 

x= object centroid value in the x direction 

y= object centroid value in the y direction 

n= the number of x, y centroid pairs 

a and b= variables determined by dividing through equations 5.5 

and 5.6 by the coefficient of a 
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5.3 Kalman Filter 

The Kalman filter is an efficient recursive filter, which estimates the state of 

a dynamic system from a series of incomplete and noisy measurements. It 

was developed by Rudolph E. Kalman and first published in 1960 (Kalman, 

1960). Being a recursive filter only the estimated state of the system from 

the previous time step and the current measurement are needed to compute 

the estimate for the next state. This is in contrast to batch estimation 

techniques where a history of observations and estimates are required. 

Welch and Bishop (2004) give a practical introduction to the discrete 

Kalman filter and consider it to be very powerful as it supports estimations 

of past, present and future states of a system, even when the precise nature 

of the modelled system is unknown. The Kalman filter estimates a process 

by using a form of feedback control: the filter estimates the process state at 

some time and then obtains feedback in the form of noisy measurements 
(Welch and Bishop, 2004). As such, the equations for the Kalman filter fall 

into two groups. Reid (2001) calls them the prediction step and the update 

step. 

Prediction, also known as the time-update equations are responsible for 

projecting forward (in time) the current state and error covariance estimates 

to obtain the a priori estimates for the next time step. Update, also known as 

the corrector or measurement update equations are responsible for the 

feedback, for incorporating a new measurement into the a priori estimate to 

obtain an improved a posteriori estimate. Welch and Bishop (2004) 

describe the two steps in simpler terms by saying the time update projects 

the current state estimate ahead in time and the measurement update adjusts 

the projected estimate by an actual measurement at that time. This ongoing 

discrete Kalman filter cycle is shown in figure 5.10. 
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Figure 5.10 - The ongoing discrete Kalman filter cycle. 

There are many versions of the discrete Kalman filter algorithm (Welch and 

Bishop, 2004). The implementation used here is that described by Ian Reid 

in his lecture notes on the subject (Reid, 2001). It uses interim equations for 

innovation and innovation update in the determination of the a posteriori 

estimate as they are considered to be more stable than the original formulas. 

Innovation is defined as the difference between the observation zk+1 and its 

prediction z^, E. 1Jk made using the information available at time k. It is a 

measure of the new information provided by adding another measurement to 

the estimation process. Reid (2001) goes on to say this is important because, 

whereas zk+1 is in general statistically correlated to the set of observations up 

to and including time k, the innovation Ik+1 is uncorrelated to the set of 

innovations up to and including time k and so effectively provides new 

information or `innovation'. 

The Kalman filter is not itself a tracking algorithm, it is a tool used to 

increase the robustness of a tracker by smoothing measurements taken in 

previous frames and hence increasing the confidence in these measurements. 

However, the filter can be used to predict the future position of an object 

being tracked. 

It is useful to define the notation and assumptions used before describing the 

equations themselves. 
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Zk - Observation vector at time k 

xk - System state vector at time k 

x^k - Estimation of x at time k 

Pk - Covariance matrix 
Fk - State transition matrix 

Hk - Output transition matrix 

Qk - Process noise covariance matrix 
Rk - Measurement noise covariance matrix 

Kk - Kalman gain matrix 

Vk - Measurement noise 

Ik - Innovation at time k 

Sk - Innovation update at time k 

The first assumption is that the system concerned can be modelled by the 

state transition equation, 

Xk+l= FkXk (5.8) 

It is also assumed that the observations of the state are made through a 

measurement system represented by a linear equation of the form, 

Zk -KkXk+Vk (5.9) 

Further assumptions are: 

" The measurement noise vk is uncorrelated, zero-mean white 

noise with known covariance matrix. 

" Qk and Rk are symmetric positive semi-definite matrices. 

" The initial system state has a known mean and covariance 

matrix. 
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Given the above assumptions the task is to determine, given a set of 

observations z1,..., zk+,, an optimal estimate of the state xk+l denoted by 

x^k+l. 

The time update equations used to predict the state and variance at time k+1 

dependent on information at time k are: 

XAk+llk = Fkx'k 

Pk llk = FkP^MkFk + Qk 

(5.11) 

(5.10) 

The measurement update equations used to update the state and variance 

using a combination of the predicted state and the observation zk+l are: 

x' +1Ik+1= x^k+llk + Kk+lIk+l (5.12) 

Pk+Ilk+1 = Pk+Ilk - Kk+1Sk+1Kk+ 1T (5.13) 

where: 

Ik+i = zt+i - Hk+ix^k. llk (5.14) 

Sk+i = Rk+l + Hk+lPk+l kHk+ lT (5.15) 

Kai = pk+llkHk+lTS'1 (5.16) 

The complete picture of the Kalman filter operation, taken from Welch and 

Bishop (2004), is shown in figure 5.11. 
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Time Update ("Predict") 

1) Project the state ahead 

ilk = FkX"k 

2) Project the error covariance ahead 
Pk+llk+-l - Pk*11k - KJ +1 Sk+IKk+1T 

L 
Initial estimates for x^k and Pk 

Measurement Update ("Correct") 

1) Compute the Kalman gain 
Kk++i = Pk+ llkHk+ITS-1 

2) Update estimate with measurement 

XAk+, W+l = XAk+llk + c4-Ilk-F1 

3) Update the error covariance 

Pk+ilk+i = Pk+1 - Kk+-JSk+tKk+iT 

Figure 5.11 - The complete Kalman filter operation 

5.3.1 Object Tracking Using The Kalman Filter 

Figure 5.10 shows a flow chart of the tracking process utilising the Kalman 

filter. As the Kalman filter only performs the task of predicting the position 

of the objects in the next frame the other tracking elements such as 

determining the centroid and co-ordinates of objects and identifying the 

objects to the user are the same as those used in the motion model method. 

In the first frame, N, of a sequence the centroid, X and Y co-ordinates, and 

area of all segmented objects are recorded. In frame N+1 the object with the 

closest area to one found in the first frame is considered a match. From the 

centroid of the matched object in frames N and N+1 the velocity is 

calculated using equations 5.1-5.3 and this, together with the position are 

141 



Chapter 5 

Tacked Objects vector Is this the 
\/ 

vecLabeUed 
objects 

tor tom Frame from Frame N-1.1 st name? / N. 

used to initialise a Kalman filter. This initialisation is then used to predict 

the position of the object in the following frame, N+2. The position variance 
defines the search area around the predicted position in which the object is 

looked for in the next frame. The variance is calculated from the differences 

between the manually derived object centroid locations and the centroid 
locations of the objects segmented in chapter 4. 

Start 

Any more 
Record remaining 

ýc segmented objects Load Segmented 

objecu? centroids is tacked Objects. 
objects vector 

centroiW 

-------------------- 
Is a new Predict ltrture 

tracking Med centroid position and 
found? variance 

Kakxýen Fý7ta ' 
------------------------------------------------------- ---------- 

Object Tracking & Motion Prediction 

stop 

---------------------------- 
Scan predicted 

Get aaö tracked position search 
flhint cv e. P 

Id ty object to 
opa or. Is count >5? 

Increment tzacked 
object's Rama 
matched comad. 

Write objects to 
tracked objects 

vector. 
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If an object centroid is found in this search area a match is considered to 

have occurred and this new centroid becomes the measurement incorporated 

in the Kalman filter to predict the position of the object in the next frame. In 

addition to xo and Po the Kalman filter also requires initial values for the F, 

H, Q, and R matrices. 

Xk 

Xk is a state vector containing the actual centroid position from frame N+1 

and the velocity along the line calculated from the object data in fames N 

and N+1. The format of Xk is: 

position(k) 
xo = 

[velocUy(k)j (5.17) 

Pa 

Po is a diagonal matrix and is the covariance matrix of the Kalman filter 

output. This matrix is updated each iteration but requires initial values to be 

set. If the initial position and velocity are known perfectly this matrix should 

be initialised with zeros. However, if the initial position and velocity are not 

perfectly known the covariance matrix should be initialised with a suitably 

large number on its diagonal. The filter will then prefer the information from 

the first measurements over the information already in the model. 

Welch and Bishop (2004) say that as it turns out, the alternative choice is 

not critical. Almost any initial value could be chosen so long as Po *0 and 

the filter would eventually converge. They start their filter with Po = 1. As 

the initial position and velocity are not perfectly known in this case and the 

initial value is not critical, Welch and Bishop's lead has been followed and 1 

used to initialise this matrix. 

143 



Chapter 5 Object Tracking & Motion Prediction 

location variance 0 
PO -0 velocity var lance 

10 
=01 (5.18) 

Fk 

Given that measurements in this system are taken at discrete time intervals, 

AT, (1 /frame rate of 10 frames per second) and assuming a constant velocity 

then: 

1 AT 1 0.1 
Fk 01 Lo 1 

The matrix F works in the following manner: 

position (k+l) = position (k) + velocity (k) * AT 

velocity (k+1) = velocity (k) 

(5.19) 

H 

H contains a correction factor between the measurement and the actual 

position. The segmentation results show a maximum average error of 1.5% 

for the Sea Characterisation method of choice so the correction factor for 

has been set to 1.015. 

H= [1.015 0] (5.20) 

Qk 

The system noise covariance matrix Q is another diagonal matrix containing 

the location and velocity variances as in P. The values contained here, 

however, are set to how much the position and velocity can change. As the 

system assumes a constant object velocity the values for the variances can 

also be assumed to remain constant. Therefore, they are set to unity: 
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location variance 
Q0 

10 

01 

0 
velocity var lance 

(5.21) 

Rk 

R is a matrix of the same dimensions as the measurement vector z. and 

contains the value of the measurement position variance. Here R is 1xi as 

the measurement will be the centroid position of an object in one direction. 

This parameter represents the measured position variance and is the same as 

H. Therefore: 

Rk= [ 1.015 ] (5.22) 

5.3.2 Predictive Tracking 

The Kalman filter uses the series of object position and velocity 

measurements up to and including that taken in the current frame to predict 

the position of the object in the next frame. In order to predict the position 

any further forward in time than the next frame it is necessary to reapply the 

filter for each time interval. As the prediction in this system is to be made 

for the object position in frame N+20 the filter has to be applied twenty 

times per frame to achieve the desired predicted position. As measurements 

cannot be taken to update the predicted value, the prediction alone is used to 

project further into the future. 

5.4 Tracking Results 

The Poole and Portsmouth test sequences have been used in the 

development of the two tracking algorithms. The Poole sequence includes a 
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fast moving object travelling from right to left and a moored craft in the 

centre of the image. The Portsmouth sequence contains slow moving objects 

moving from right to left. The results are presented for each of the two 

sequences used. 

5.4.1 Poole Sequence Tracking Results 

Figure 5.13 shows the output of frames 6,16, and 26 from the Poole test 

sequence after the motion model tracking algorithm has been applied. A 

white box is shown around the objects that have been matched across a 

minimum of five frames and a black box around that object matched in 

between two and five frames. In figure 5.14a, the actual and calculated 

centroid positions of object 1, the large dark stationary boat, are plotted for 

every fifth frame through a sixty frame sequence. Figure 5.14b shows the 

actual and calculated centroid positions for object 2, the fast moving object 

entering from the right. The actual centroid positions have been determined 

manually and the calculated centroid positions determined by the algorithm. 

The graph in figure 5.15 shows the percentage error between the centroid 

values shown in figures 5.14a and 5.14b. The calculated centroid error for 

object 1 is less than 1% in all except the X centroid in frame 1 where the 

error is 3.7%. The centroid error for object 2 is higher at typically 2% but in 

frames 15 and 20 the X centroid error rises to 7 and 6.8% respectively. 
These higher percentages are due to the segmentation of the object. This is 

shown in figure 5.14b where the rear of the object has been segmented as 

sea owing to the grey levels present being within the grey level range for the 

sea in that part of the image. 
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Figure 5.13a Figure 5.13b Figure 5.13c 
Figure 5.13 -3 tracked frames from the Poole sequence 
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Figure 5.14 - Actual and Tracked Centroid Comparison by Pixel Position 

for the Poole sequence 
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Figure 5.15 - Actual and Tracked Centroid Comparison by % Error for the 
Poole sequence 

The Kalman filter also successfully tracked the real objects present in the 

Poole sequence. As the determination of object centroid and co-ordinates 

and the identification of the objects to the user are the same for both trackers 
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the results for the Kalman filter tracker are the same as those in figures 5.13 

-5.15. 

The difference between the two trackers becomes evident when the number 

of false objects tracked is considered. As the Kalman filter searches an 

omni-directional space around the current centroid it matches false objects 

in a greater number of frames. Figure 5.16 shows a frame from the Poole 

sequence with a false object identified as a maritime object. The false object 

is the wake caused by the fast moving object. Although not a maritime 

object the wake does contain grey levels that are distinctly different from 

those of the sea and this is why it has been segmented, matched and tracked. 

The number of false objects tracked in the Poole sequence by the Motion 

Model Tracker is shown in figure 5.17 and figure 5.18 shows the same result 

for the Kalman filter tracker. It can be seen that the Motion model tracker 

has a maximum of two false objects tracked in seven frames and one false 

object in a total of sixteen frames. The Kalman filter tracker however, has a 

maximum of three falsely tracked objects in four frames. This method also 

tracks two false objects in eleven frames and one object in twenty frames. 

Figure 5.16 - False tracked object from Poole sequence, frame 42 
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Figure 5.17 - Number of false objects tracked in Poole sequence 
by the Motion Model Tracker 
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Figure 5.18 - Number of false objects tracked in the Poole sequence 
by the Kalman filter tracker 

5.4.2 Portsmouth Sequence Tracking Results 

Figure 5.19 shows the output from three frames from the Portsmouth test 

sequence after the Motion Model tracking algorithm has been applied. A 

white box is shown around the objects that have been matched across a 

minimum of five frames. In figure 5.19a this also includes a false object. 

This false object has occurred due to the narrow band of grey levels 

comprising the sea. This has left the area of wake behind the left most object 

several grey levels darker than the grey level range for that part of the image 

and it has therefore been segmented as an object. The false object is 
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eliminated later in the sequence, as darker grey levels are included in the 

characterisation of the sea. In figure 5.20a, the actual and calculated centroid 

positions of object 1, the centrally located moving boat, are plotted for every 
fifth frame through a sixty frame sequence. Figure 5.20b shows the actual 

and calculated centroid positions for object 2, the small moving boat 

entering from the right. As with the Poole sequence the actual centroid 

positions have been determined manually and the calculated centroid 

positions determined by the tracking algorithm. 

Figure 5.21 shows the percentage error in the actual and calculated centroid 
for the objects in the Portsmouth sequence. The highest error in this 

sequence is 2.5% and all except a single result are below 2%. The low error 

rate is considered to be due to the increased contrast between the sea and 

objects in the Portsmouth sequence over that in the Poole sequence. 

As with the Poole sequence the Kalman filter tracker successfully tracked all 

real objects and also the false object shown in figure 5.19a. The false object 
is, as with the Poole sequence, the wake caused by the central object 

containing grey levels significantly different from those of the sea. The false 

objects matched and tracked again provide the difference between the two 
tracking algorithms. Figures 5.22 and 5.23 show the number of false objects 
tracked as maritime objects (over more than 5 frames) for both trackers. 

The Motion model algorithm tracks a maximum of one false object and it 

does this in seven frames. The Kalman filter algorithm tracks a maximum of 
two false objects and these are tracked in a total of five frames. One false 

object is also tracked in a further nineteen frames. 
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Figure 5.19 -3 tracked frames from the Portsmouth sequence 
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Figure 5.22 - Number of false objects tracked in the Portsmouth sequence 
by the Motion Model tracker 
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Figure 5.23 - Number of false objects tracked in the Portsmouth sequence 
by the Kalman filter tracker 

5.4.3 Motion Prediction Results, Poole Sequence 

Shown in figures 5.24 and 5.25 are the results of the Motion Model 

predictive tracking algorithm on frames 16 and 26 from the Poole sequence. 

It can be seen in the object positions that the lower object is moving much 

faster than the large dark object in the centre of the image. This also shows 

the effect of the predicted motion being based on object velocity, as the line 

of predicted motion is significantly longer for the lower object than the large 

dark object. 
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Figure 5.26 shows the accuracy of the Motion Model prediction by plotting 

the percentage error between the predicted centroid position of the object 

and the actual (manually derived) centroid of the object in the future frame. 

Object 1, the large dark object, has a maximum error in the X direction of 

7.8% and a maximum error in the Y direction of 0.78%. Object 2, the fast 

moving object, is only present in the scene long enough to provide the future 

motion predictions for seven frames before the prediction leaves the scene. 

During those seven frames object 2 has a maximum X direction error of 

54.23% and a maximum Y direction error of 4.45%. Although the error rate 

of 56.05% for the object 2X direction is extremely high it should be 

observed that this rate drops dramatically to 10.39% in just seven frames. 

The high initial error rate is due to object 2 taking 14 frames to fully enter 

the scene during which time the centroid of the object will not be truly 

representative of the whole object. 

Figure 5.27 shows the same result for the Motion Model method with time 

weighting line fitting applied. Although the error rates appear to be similar 

the method with time weighting has a high maximum error in all four plots. 

Figure 5.24 - Poole Sequence, Figure 5.25 - Poole Sequence, 
frame 16 frame 26 
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Figure 5.26 - Percentage error between predicted and actual centroid 
positions for objects in the Poole sequence using the Motion Model method 

with even weighted line fitting 
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Figure 5.27 - Percentage error between predicted and actual centroid 
positions for objects in the Poole sequence using the Motion Model method 

with time weighting line fitting 

The result of the Kalman filter predicted tracking is shown, for frames 16 

and 26 of the Poole sequence, in figures 5.28 and 5.29. As with the Motion 

Model method it has correctly predicted that the fast moving object will 

move much further compared to the large dark object. However, the 

predicted centroid position is noticeably different to that of the Motion 

Model method in figures 5.26 and 5.27. In frame 16 the Kalman filter 

method has predicted that the object will move a greater distance in the x 
direction and further down in the y direction in frame 26. 
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Figure 5.28 - Kalman filter predicted Figure 5.29 - Kalman filter predicted 
tracking, Poole frame 16 tracking, Poole frame 26 
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Figure 5.30 - Percentage error between predicted and actual centroid 
positions for objects in the Poole sequence using the Kalman filter method 

Plotting the percentage error between the predicted centroid position of the 

object and the manually derived actual centroid of the object in the future 

frame, figure 5.30 and can be directly compared with figure 5.26 as it shows 

the accuracy of the Kalman filter prediction method. The large dark object 

has a maximum X direction error of 7.2% and a maximum error of 5.7% in 

the Y direction. The fast moving object has a maximum error of 21.1% in 

the X direction and 65.6% in the Y direction. The error rate for both X and 

Y direction of the fast moving object, object 2, is higher than that for the 

large dark object, object 1. This is due to the prediction between two frames 

ý;; 



Chapter 5 Object Tracking & Motion Prediction 

being used repeatedly to predict the position twenty frames later. In the 

absence of measurements taken from the interim frames to update the filter 

any error in the initial prediction is compounded leading to the higher error 

rate. Whilst this has also taken place for object 1 the effect is greater for 

object 2 as the velocity of this object is higher. 

5.4.4 Motion Prediction Results, Portsmouth Sequence 

The predictive tracking results for the Portsmouth sequence are shown for 

the Motion Model method in figures 5.31 and 5.32 and for the Kalman filter 

method in figures 5.35 and 5.36. The accuracy of the Motion Model 

prediction algorithm with even weighting, figure 5.33, shows that the Y 

direction prediction is more successful than the X direction with a 

percentage error of 3.3% or less while the X direction has a maximum error 

of 7.8%. The Motion Model method with time weighted line fitting, figure 

5.31, shows both directions for object 1 having a higher maximum error 

(17.57% in the X direction and 5.86% in the Y direction) than the even 

weighted results in figure 5.33. In fact the Y direction for object 2 is the only 

one to show a lower maximum error rate. In figure 5.37, the accuracy of the 

Kalman filter method shows a similar error rate for all four parameters. The 

maximum error is the X direction for object 2 at 5.2% whilst the minimum 

error is that of the X direction of object 1 at 4.2%. 
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Figure 5.31 - Motion Model method Figure 5.32 - Motion Model method 
Portsmouth Sequence, frame 16 Portsmouth sequence, frame 26 

Figure 5.33 - Percentage error between predicted and actual centroid 
positions for objects in the Portsmouth sequence using the Motion Model 

method with even weighted line fitting 
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Figure 5.34 - Percentage error between predicted and actual centroid 
positions for objects in the Portsmouth sequence using the Motion Model 

method with time weighted line fitting 

Figure 5.35 - Kalman filter method Figure 5.36 - Kalman filter method 
Portsmouth sequence, frame 16 Portsmouth sequence, frame 26 
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Figure 5.37 - Percentage error between predicted and actual centroid 
positions for objects in the Portsmouth sequence 

using the Kalman filter method 

5.5 Discussion and Summary 

Two methods of tracking have been evaluated for use with the maritime 

images being used in this system, the Motion Model method and the Kalman 

filter method. 

The maritime motion model contains a set of rules determining the 

allowable motion of a valid maritime object. The rules include constraints 

on the speed of an object, which is assumed to be constant, the orientation 

change an object can go through between frames, and the specific rules 

regarding slow-moving objects whose motion is influenced to a greater 

extent by the movement of the sea than by its own movement. 

A measure of confidence is used to determine which of the segmented 

objects in the current frame is the best match for an object in the previous 

frame. The object with the highest level of confidence is considered to be 

the same object and the feature vector for that object is updated and stored 

in the object vector that is carried forward to the next frame. 
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The Kalman filter is a set of mathematical equations that provides an 

efficient computational means to estimate the state of a process in a form 

that resembles a predictor-corrector algorithm (Welch and Bishop, 2004). It 

performs the tracking of an object by predicting the position of an object in 

frame N+1 given the measured position of it in frame N. It then takes a fresh 

measurement in frame N+l, updates the filter with this information and then 

predicts the object's position in the next frame. The only information 

required is the initial position and velocity of the object together with the 

variances of these values. In order to perform predictive tracking over more 

than a single frame the filter is applied repeatedly without the update stage, 

as no interim measurements are available. 

Two sequences were used to test the algorithms developed here. The first of 

these, the Poole sequence, contained a fast moving object and a stationary 

object. The second, the Portsmouth sequence, contains two slow moving 

objects. Figures 5.13 shows the tracked objects in three frames from the 
Poole sequence. Figure 5.13a shows the results at the point when the fast 

moving object enters the scene from the right. At this point the segmented 
blob has only been matched on two occasions so the system considers it to 
be a potential object and has identified it with a black box. In the second 
frame the object has been confirmed by the placing of a white box but only 
half the object has been enclosed. This is due to the similarity of the grey 
levels contained in the rear of the object to those in the characterisation of 

the sea. 

The segmentation process has allowed the front of the object to be classified 

as object and the rear of the object has as sea. This has been shown not to be 

restrictive in the performance of the tracking process as the third frame, 

figure 5.13c, shows that the object has continued to be tracked further in the 

sequence. The graphs in figure 5.14 show the accuracy of the tracking 

process in matching objects between frames by plotting the manually 

160 



Chapter 5 Object Tracking & Motion Prediction 

recorded `actual' centroid values against the centroid of the matched objects. 

Figures 5.15 shows these results as a percentage error. The error rate of 7% 

for frames 15 and 20 in figure 5.15 from the Poole test sequence are due to 

the error in the segmentation of the fast moving object due to the similarity 

of grey levels already mentioned. 

The results outlined above are true for both the Motion Model and Kalman 

filter tracking methods. This is because the two methods are only used to 

match objects between frames. The determination of object parameters 

(centroid, x and y co-ordinates, area), and the drawing of black or white 

identification boxes is the same for each method. In order to distinguish 

between the two methods the number of false objects identified and tracked 

has to be considered. Figure 5.17 shows the number of false objects tracked 

by the Motion Model method and figure 5.18 the false objects tracked by the 

Kalman filter method. The Kalman filter method tracks (in 5 or more 

frames) a total of 54 false objects compared to a total of 30 false objects 

with the Motion Model method. When considering the number of frames in 

which false objects were tracked the. Kalman filter method tracked false 

objects in 35 out of the 60 frames whilst the Motion Model method tracked 

false objects in 23 out of the 60 frames. 

The results for the Portsmouth sequence are the same as those for the Poole 

sequence, the two methods yield the same successful tracking of real objects 

as shown in figures 5.19 - 5.21. It can be seen from each of the frames from 

the Portsmouth test sequence, figure 5.19, that the objects have been tracked 

successfully by the placing around them of a white box. This indicates that 

the object has been matched over a minimum of five frames to confirm it as 

a valid object. The graphs in figure 5.20 show the accuracy of the tracking 

process for this sequence by plotting the manually recorded `actual' centroid 

values against the centroid of the matched objects. Figures 5.21 show these 
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results as a percentage error. The maximum error in the Portsmouth test 

sequence is shown to be 2.5%. 

Again it is the number of false objects tracked that distinguishes the two 

methods apart. Figures 5.22 and 5.23 show the number of false objects 

tracked by the two methods through the Portsmouth sequence. In this 

sequence the Motion Model method tracks a total of 6 false objects over 6 of 

the 60 frames whereas the Kalman filter method tracks a total of 29 false 

objects over 24 of the 60 frames. The Motion Model method is the preferred 

tracker having shown to identify and track less false objects than the Kalman 

filter method whilst successfully tracking all the real objects present in the 

image sequence. 

Figures 5.7 and 5.8 show the assumption made by Wang et al (2000) that 

object trajectories over a few frames approximate a straight line to be true 

for both the Poole and Portsmouth test sequences. For each matched object a 

centroid data array is filled with the centroid data from each matched frame. 

The data held in this array is used to predict the future motion of the object 

using the least squares method of calculating the line of best fit through the 

set of data. Two variants of this method have been applied, the first with 

even weighting and the second with time weighting to decrease the 

confidence in the old measurements in the data array. 

This method is shown to be successful in figures 5.33 and 5.34 where the 

error between the predicted centroid positions and the actual centroid 

position of the objects in the Portsmouth test sequence is plotted. The 

maximum error of 8% for the method with even weighting is encouraging 

and shows the validity of the approach. The maximum error for the time 

weighted method is 17.57%. The same result for the Poole sequence is 

shown in figure 5.26. The stationary object has a maximum error of 7.8% in 

the X direction and 0.78% in the Y direction. The fast moving object, 
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however, shows a maximum error in the X direction of 54% and 4.4% in the 

Y direction. Whilst the error of 54% is initially disappointing it should be 

noted that within seven frames this error rate has dropped to 10.3%. The 

error is due to the object entering the scene. This has resulted in the centroid 

of the object moving very slowly leading to a prediction that the centroid 

will move slowly. 

The results of repeatedly applying the Kalman filter to obtain the predicted 

position of an object in twenty frames time is shown in figures 5.28 - 5.30 

for the Poole sequence and figures 5.35 - 5.37 for the Portsmouth sequence. 

The maximum error from the Portsmouth sequence was 5.2% and the 

minimum error was 4.2%. For the Poole sequence the maximum error was 

65.6% for the Y direction of the fast moving object, object 2, and 21.1% for 

the X direction. For object 1, the maximum error in the X direction was 

7.2% and 5.7% in the Y direction. The large error for object 2 is due to a 

combination of object 2 being fast moving and the repeated application of 

the Kalman filter without having the benefit of any measurements to update 

the filter with. As the object has a large velocity any error in the initial 

prediction will be accumulated over the twenty frame prediction. This is 

particularly evident in the Y direction with an error of over 60%. The X 

direction has suffered too, although to a much lesser extent with a maximum 

error of 21.1%. The slow moving object and both of the slow moving 

objects in the Portsmouth sequence show how the error is much reduced due 

to the lower speed of the objects. The highest error of the three slow moving 

objects is just 7.2%. 

Given that the Motion Model method performed better in frame to frame 

tracking and that the Kalman filter is more computationally intensive, 

particularly in the predictive tracking element where the filter has to be 

applied twenty times per object, the Motion Model method of tracking and 

prediction using even weighting is chosen for use with this system. 
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Chapter 6 Collision Risk Estimation 

Chapter 6: 
Collision Risk 
Estimation 
6.1 Introduction 

Image understanding is the highest level in the machine vision processing 

classification and one of the most complex challenges in artificial 

intelligence (Sonka et al, 1993). Approaches used in the literature include 

the use of Semantic Networks (Lou et al, 2002), (Fraile and Maybank, 

1998), (Shih and Huang, 2003), and Neural Networks (Di Bona et al, 2001), 

(Messer and Kittler, 1998). The main problem encountered with semantic 
interpretation according to Lou et al (2002) is constructing a mapping from 

images into the human conceptual space. Shih and Huang (2003) note that 

the exploitation of semantic information is difficult because of the large 

difference in representations and levels of knowledge present in images. 

Neural network techniques require a learning process to be gone through 

before any target data is processed. A typical feed-forward network usually 

requiring many thousands of iterations through a training set (Sonka et al, 
1993). Castleman (1996) lists the disadvantages of neural networks when 

compared to statistical approaches as 1, the extensive amount of training 

required, 2, slower operation when implemented as a simulation on a 

conventional computer and 3, the unavailability of a detailed understanding 

of the decision-making process that is being used. Another approach to 
image understanding is used by Matesin et al (2001), that of a rule-based 

expert system, which uses a combination of known information regarding 
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the subject matter and information, gained from processing the images. 

Gonzalez and Woods (1992) describe expert systems as offering flexibility 

of response through the use of a knowledge base containing procedural, 

visual, and world knowledge and a series of rules typically of the if 

(conditions) then (actions) form. 

In this collision risk estimation chapter the question posed in chapter 1 is 

addressed. Is anything in the way? The feature vectors from tracked objects 

are used together with a high-level reasoning algorithm based on a set of 

rules to estimate the likelihood of each object colliding with the vessel the 

camera is mounted on. The high-level reasoning algorithm has been 

developed based on rules regarding the vessel the camera is mounted on, the 

maritime environment and the motion model developed previously to 

estimate the threat an object is posing to the vessel the camera is mounted 

on. An estimation algorithm has been developed whereby the threat posed 

by each object is estimated to be a function of the distance the centroid of 

the object is with respect to the point of collision. The threat is displayed to 

the user as a percentage risk of collision. The higher the percentage, the 

higher the risk of collision and the lower the value, the lower the risk of 

collision. The predicted future position of the object also has its collision 

risk estimated and displayed to the user. 

6.2 Reasoning Strategy 

The set of rules and reasoning strategy have been developed using the 

information known or that can be inferred about: 

- The vessel the camera is mounted on and the mounting of the camera 

allowing inferences to be made about the camera platform and where the 

highest risk of a collision is likely to be. 
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- The environment in which the scene is taking place used to reinforce the 

inferences of where the highest risk of collision is likely to be found. 

- The maritime objects using the motion model developed in chapter 5 

providing information regarding the behaviour of the objects expected to 

be found in the images. 

6.2.1 The Vessel and Camera 

The primary research aim of this work is that of maritime collision 

avoidance. This is achieved through the monitoring of an area of sea directly 

ahead of the vessel. This aim leads to the inference that the camera will be 

mounted on a vessel such that it is looking forward out in front of the vessel. 

For efficiency and smoothness of movement maritime vessels are designed 

so that the bow of the craft approaches a point as shown in figure 6.1. It can 

be assumed that the first point of collision when the vessel is travelling 

forward and therefore the point presenting the greatest risk of a collision will 

be the bow of the vessel. If the camera is mounted to point directly out in 

front of the vessel but does not include any of that vessel in the image, that 

initial point of impact will be the centre bottom of the camera image. 

Figure 6.1 - QE2 showing pointed bow 
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It is assumed that the camera will be mounted upright such that if the camera 

platform were stationary an object moving from left to- right across the 

image at the same height in the image remains the same distance from the 

camera. 

6.2.2 The Maritime Environment 

The maritime environment is one that is, due to the nature of water, 

essentially flat. Given that the camera is forward looking, perspective 

projection tells us that the higher the object appears in the image, the greater 

the distance between the camera and the object. If an object is further away 

from the camera there is more time for either the object or the vessel the 

camera is mounted on to move and therefore the risk of collision is less. 

6.2.3 The Maritime Objects 

Knowing that the point of contact is the centre bottom of the image and that 

height in the image represents depth and therefore distance away from the 

camera the following can be stated: 

" Objects moving down the image (approaching the camera) will pose an 

increasing risk of collision. 

" Objects moving up'the image (away from the camera) will pose a 

reducing risk of collision 

" Objects moving across the scene toward the centre of the image will 

pose an increasing risk of collision. 
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" Objects moving across the scene away from the centre of the image will 

pose a reducing risk of collision. 

" All confirmed maritime objects could cause a collision. 

" Although an object may pose little threat a collision is always possible. 

6.2.4 High-Level Reasoning Rules 

Given the known and inferred information in the previous sub-sections the 

following rules for the collision risk estimation can be stated: 

1. the point of impact will be at the centre bottom of the image 

2. the centre bottom of the image poses the greatest risk of a collision 

3. the risk of collision will reduce the further up the image the object is 

located 

4. the risk of collision will reduce the further each side of the centre of the 

image the object is located 

5. there is always a risk of collision so the minimum threat cannot be 0% 

6. there is always a chance that collision can be avoided so the maximum 

threat cannot be 100% 

6.3 Implementation of Reasoning Strategy 

This collision risk estimation is carried out for the current centroid position 

of each object and also for its predicted future centroid position and these 

are displayed to the user. In this way the user can see whether an object's 

risk is likely to increase or decrease. 
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The implementation of the high-level reasoning strategy requires the 

calculation of the risk an object poses to be based on its position in the 

image. The centroid location in the X direction is used and the lowest point 

in the Y direction. This point is used as the point of the object lowest in the 

image poses the greatest risk. From rules 1 and 2 we know the highest risk 

will be at the centre bottom of the image. Rules 3 and 4 tell us that the risk 

diminishes onini-directionally away from the centre bottom to the outside 

edge of the image. They also tell us that the lowest risk will be around the 

very edge of the image. 

The percentage risk of collision based on the distance from the point of 

collision to the centroid position of the object is carried out mathematically 

using the following algorithm: 

if (Xsquares <= totalYsquares) then 

if (Xsquares >= Ysquares) then 

%risk = Ysquares 

else if (Xsquares < Ysquares) then 

%risk = Xsquares 

else if (Xsquares > totalTsquares) then 

%risk = Xsquares - 99 

where 
Xsquares =X centroid / 2.6 (pixels per I% resolution) 

Ysquares =Y lowest point /5 (pixels per I% resolution) 

totalYsquares = total number of 5 pixel blocks in the Y dimension 
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6.4 Results 

Figures 6.2 and 6.4 show four frames from each of the Portsmouth test 

sequence and the Dover test sequence after the collision risk estimation has 

taken place. The percentage risk of collision is written directly under the 

centroid and predicted future centroid position for each confirmed target in 

the scene. The percentage risk is taken from the centroid point on the X axis 

and the point on the Y axis that is nearest the bottom of the image as this is 

the point closest to the camera platform and therefore presenting the greatest 

risk of collision. 

The collision risk for the objects in the Portsmouth sequence have been 

manually calculated and plotted against the collision risk estimated by the 

algorithm developed here. Figure 6.3 shows the percentage error between 

the manually calculated risk and the risk estimated by the developed 

algorithm. This shows the maximum error for object 1 is 4% and the 

maximum error for object 2 is 5%. The average error for object 1 is 2.34% 

and the average error for object 2 is 1.6%. 

Figure 6.5 shows a graph plotting the percentage error between the manually 

calculated collision risk and the algorithm estimated collision risk for 60 

frames from the Dover test sequence. The maximum errors for the three 

objects present in the sequence are 5% for the harbour wall, 1% for the 

buoy, and 4% for the boat. The average errors for the objects are 4.34%, 

0.18%, and 1.3% respectively. 
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Figure 6.2a - Frame 20 collision risk Figure 6.2b - Frame 30 collision risk 

Figure 6.2c - Frame 40 collision risk Figure 6.2d - Frame 50 collision risk 

Figure 6.2 -4 frames from the Portsmouth Sequence showing the collision 
risk posed by each object 
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Figure 6.3 -% Error between manual and calculated collision risk for the 
Portsmouth sequence 
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Figure 6.4a - Frame 70 collision risk Figure 6.4b - Frame 80 collision risk 

Figure 6.4c - Frame 90 collision risk Figure 6.4d - Frame 100 collision risk 

Figure 6.4 -4 frames from the Dover sequence showing the collision risk 
posed by each object 

" 
°4 
` 

! 
w -. --Object 1 

Object 2 

ö2 
ýw ----- 

Object 3 
i 

- 

o ",.. "... ... 
1' 

0 I; r 00 N co O s} wN co O (D 
co CO CO rnm oo co 0) o> OoO 

Frame Number 

Figure 6.5 -% error between manual and calculated collision risk for the 
Dover sequence 
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6.5 Discussion and Summary 

A high-level reasoning algorithm has been developed for estimating the 

percentage risk of collision posed by each object present in the scene. The 

collision risk has been calculated for both an object's current centroid 

position and also the predicted future centroid position. 

The algorithm has been developed using the Portsmouth and Dover test 

sequences and the results for four frames from each sequence are shown in 

figures 6.2 and 6.4. The results from the Portsmouth sequence, figure 6.2, 

show that the algorithm has successfully calculated and displayed the 

estimated collision risk for the current and predicted future position for both 

objects present in the scene. Figure 6.3 shows the absolute percentage error 
between the collision risk calculated by the algorithm and that calculated 

manually. The average error for Object 1 is 2.34% and for Object 2 is 1.6% 

and the maximum error is 4% and 5% respectively. This error rate shows the 

algorithm has performed well in estimating the risk of collision based on the 

reasoning strategy developed. 

Figure 6.4 shows four frames from the Dover sequence and figure 6.5 shows 

the percentage error between the manually calculated collision risk and that 

estimated by the reasoning algorithm. The error for Object 1, the Harbour 

Wall, is a maximum of 5% and is, on average, 4.34%. This is considered to 

be high for what is a stationary object but is explained by considering the 

four frames in figure 6.4. Figures 6.4a, b, and d all show the white box is 

drawn a little way away from the edge of the object. This is due to the 

slightly enlarged segmentation of the object that has taken place. The sea 

pixels immediately surrounding the object are appreciably darker than the 

majority of the sea and so the segmentation algorithm considers these pixels 

to be part of the object. Object 2, the buoy, is shown in all four frames of 

figure 6.4 to have been segmented accurately and this has led to the 

maximum error of 1%. Object 3, the boat, moves into the scene from the 

17 3 



Chapter 6 Collision Risk Estimation 

left. This motion has led to some frames being segmented with the inclusion 

of sea pixels as in figure 6.4c. The amount of this object enlargement varies 
between frames and it is this variation in the segmentation of the object that 

has led to the differences shown in the collision risk results. 
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Chapter 7: 
System Evaluation 
7.1 Introduction 

The test sequences used in the development of the algorithms used in this 

system were all taken from a static camera position. The aim of this work 
has been to develop a system to be used on maritime vessels so the main 

objective of this evaluation is to test the system with sequences taken from a 

moving vessel. 

The sequences used in this evaluation have been taken using a digital 

camcorder looking forward over the bow of a vehicle ferry travelling 

between Southampton and Cowes on the Isle of Wight. The image capture 

parameters are the same as those used for the test sequences (see chapter 1). 

The key difference between the test and evaluation sequences is the 

introduction of motion to the camera platform. This is considered to come 

from three sources: The motion of the vessel; the wind; and the vibration 

from the vessel's engines. 

Both stationary and moving objects are included to evaluate the motion 

model because of the different types of motion the objects are under. The 

course of these objects through the scene will test the tracking, motion 

prediction, and collision risk algorithms. The objects in the evaluation 

sequences approach the camera, enter the scene and head toward the centre 

of the image, and head away from the centre of the image in order to fully 

test these algorithms and the reasoning behind them. 
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7.2 Evaluation Sequences 

This system has been developed using three maritime test sequences, each 

showing object's in different maritime environments. It is important to show 

that the system is not scene dependent and that the parameter values and 

thresholds chosen are not specific to the test sequences but have been 

arrived at by logical and experimental means to cover the maritime objects 

and environments that are the subject of this work. 

To show this, the system has been evaluated using two previously unseen 

image sequences. These sequences show maritime objects moving in 

different maritime environments to those in the test sequences. The objects 

present in the evaluation sequences are of differing size, shape, and intensity 

to show that small and light coloured objects can be identified and tracked 

as well as larger and darker objects. 

7.2.1 Sequence I 

In this 300 frame sequence the camera is mounted on a vehicle ferry that is 

in dock being loaded. Although the ferry is not under way the engines are 

running and the camera is being subjected to both wind and vessel motion 

from its raised and exposed position. A motor boat approximately 25 feet in 

length can be seen moving from the top left of the image to the bottom right 

across in front of the camera. The illumination in this sequence is very 

bright causing some highlights to appear on the water. The object is light 

coloured and varies in size from 50 x 40 pixels at the beginning of the 

sequence to 140 x 80 pixels at the point it leaves the scene. 

This sequence evaluates the performance of the sea characterisation 

algorithm on a brightly lit sea with highlights present and evaluates the 
identification and tracking algorithms when presented with a light coloured 
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large object. It also tests the collision risk estimation as the object 

approaches the centre of the image as shown in figures 7.1 a and b, crosses it, 

and heads away from the centre, figure 7.1 c, before leaving the scene, figure 

7.1 d. At the very top of the image throughout the sequence are a number of 

dark stationary objects. 
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Figure 7.1 a -Sequence 1, 
Frame 10 
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Figure 7. lc- Sequence 1, 
Frame 200 
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Figure 7.1b - Sequence 1, 
Frame 100 
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Figure 7.1 d- Sequence 1, 
Frame 300 

Figure 7.1 - Four frames from evaluation sequence 1 
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7.2.2 Sequence 2 

This sequence shows the camera platform moving forward along a shipping 

lane. Figures 7.2a to 7.2d, taken from the sequence, show a channel marker 

buoy on the right of the image moving down and out of the image as the 

vessel moves towards and past the buoy. There is also a yacht in the top left 

of the image. As the sequence progresses this yacht moves across the image 

to the right and down the image as the camera platform approaches the 

yacht. The illumination of the scene is very bright, there is a light wind 

present contributing to camera motion, and the sea is calm. 

Sequence 2 tests the system's tracking and prediction algorithms with an 

object undergoing only incidental motion in the form of the marker buoy 

and a slow moving object in the yacht. The motion of the camera platform 

adds to the motion of both objects. If a fast moving object travelling at 34 

knots were approaching the camera platform then the closing velocity would 
be faster than that set in the motion model. This is not considered to lead to 

the tracking algorithm failing to match the object between frames as the 

perspective present in the image will have the effect of reducing the closing 

velocity. 

The collision risk estimation is tested as both objects move down in the 

image as the camera platform approaches them. In addition to moving down 

in the image, the yacht also moves from left to right across the path of the 

camera platform. From the reasoning strategy it is expected that the collision 

risk of the yacht will increase as it moves toward the centre of the image and 

then decrease as it moves away to the right. It is also expected that the 

collision risk will increase as the yacht moves down in the image. This 

sequence also tests the performance of the algorithms with small objects as 
both the marker buoy and the yacht begin some distance from the camera. In 
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figure 7.2a the yacht is just 16 x 53 pixels, including the tall thin mast, and 

the buoy 19 x 35 pixels. 

The sequence is 800 frames in length and both objects start within the scene. 

The marker buoy leaves the scene at approximately frame 200 and the yacht 

leaves the scene at frame 760. The shoreline has been set to the level of the 

horizon, 21 pixels down from the top of the image. The very small dark 

object at the top centre of the scene will not be identified as it resides on the 

horizon. The top of the yacht's mast will also not be identified as this also 

resides above the level of the horizon. 

I 

Figure 7.2a - Sequence 2, Frame 10 Figure 7.2b - Sequence 2, Frame 200 

Figure 7.2c - Sequence 2, Frame 400 Figure 7.2d - Sequence 2, Frame 600 
Figure 7.2 - Four frames from evaluation sequence 2 
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7.3 Sequence 1 Results 

The output from the system for this sequence is shown in figure 7.3. Figure 

7.3a shows the output from frame 10. The motor boat has been identified as 

a confirmed object (matched over more than 5 frames) as have two of the 

stationary objects at the top of the image. The area of dockside in the top 

right corner of the image has only been identified as an object (matched in 

less than 5 frames). This is due to the illumination of the scene. The shadow 

cast onto the water at the left end of the dockside varies from frame to frame 

resulting in it being segmented as a separate (false) object in some frames, 

as shown here, and as a single object in others. The motion prediction and 

collision risk estimation have been calculated for the motor boat and show 

its current collision risk to be 25%. 

In figure 7.3b, showing the result from frame 100, it can be seen that the fast 

moving object has continued to be matched and had the future motion 

predicted and a collision risk estimated for it. 
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Figure 7.3a - Sequence 1, Figure 7.3b - Sequence 1, 
Processed Frame 10 Processed Frame 100 
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Figure 7.3c - Sequence 1, Figure 7.3d - Sequence 1, 
Processed Frame 200 Processed Frame 300 

Figure 7.3 - Evaluation sequence I results 

As the object is moving towards the centre of the image the high-level 

reasoning strategy states that the risk of a collision should increase. The risk 

in figure 7.3a was 25%, in this frame the current risk is given as 33% and 

the future risk as 34% so the reasoning strategy is correct, the risk is 

increasing. The other objects in the scene have also continued to be 

identified as targets, including the dockside. Although stationary, the two 

objects in the top centre and left of the image are shown with a predicted 
future motion moving to the left. This has occurred because of the vibration 

and motion of the camera platform introducing false motion to those objects. 

A collision risk has also been assigned to these objects, which is useful for 

the further testing of the reasoning strategy. The strategy states that the 

further up the image the object is located, the further away from the camera 

platform the object is in the real world and therefore poses a lesser threat of 

collision. It can be seen that the current collision risk for these two objects is 

4% and 5% respectively. These are considerably lower than the 33% of the 

motor boat object that is lower in the image and as such, closer to the 

camera so the strategy is shown to be correct. 
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In figure 7.3c the fast moving object is beginning to move from the centre of 

the image toward the right of the image. The fan structure shows that the 

risk of collision should decrease as the object moves away from the centre 

of the image. This figure shows the strategy be to correct with a current 

collision risk of 48% and the predicted future collision risk of 25%. 

Figure 7.3d shows the wake of the motor boat as a number of false objects 

identified with black boxes. This false object changes appearance between 

frames however it does get confirmed as a maritime object in the later 

frames of the sequence. 

Figure 7.4 shows the number of false objects identified in the scene and the 

number of false objects confirmed and tracked through the sequence. The 

numbers of false objects identified are those that are matched in less than 5 

frames. Those confirmed and tracked are those matched in more than 5 

frames and are displayed to the operator by the placing of a white box 

around them. An average of 3.4 false objects were identified across the 

sequence with a maximum number of 10 false objects identified in frame 

250. The number of false objects tracked was 0 or 1 until frame 250 when 

this number rose to 3. Across the whole sequence the average number of 

false objects tracked is 0.5. 
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7.4 Sequence 2 Results 

Figure 7.5 shows the results of four frames from sequence 2. In 7.5a it can 

be seen that the two objects present, a yacht and a channel marker buoy, 

have both been confirmed as maritime objects by the white boxes drawn 

around them. In addition the trailing wake of a previous maritime object has 

also been confirmed as an object. This is a false object. It consists of a group 

of pixel intensities that are distinctly different from those of the sea, which 

is why it has been identified. If figures 7.5b to 7.5d are also considered it 

can be seen that this area has been identified throughout the sequence. This 

is due to the non-dispersal of the wake owing to the calm sea conditions of 

this sequence. Object motion prediction and collision estimation has taken 

place in figure 7.5a. Also present in figure 7.5a are two areas at the bottom 

of the image that have been matched across less than five frames. These are 

false objects that have been matched as the pixel intensities are outside the 

characteristic grey level range for the sea. 

In figure 7.5b it can be seen that after 200 frames the confirmed maritime 

objects present in the scene have continued to be identified as objects and 
have future movement prediction and collision estimation calculated for 

them. The channel marker buoy, on the right of the image and leaving the 

scene has a current estimated collision risk of 1% and no predicted future 

risk as it will have left the scene in twenty frames time, the time scale over 

which the prediction and estimation is made over. The area of wake has also 

continued to be confirmed as a maritime object. 

In Figure 7.5c the results from frame 400 of the sequence are shown. The 

yacht continues to be identified, its future movement predicted, and collision 

risk estimated. In figures 7.5a to 7.5c only the main body of the yacht has 

been identified, the mast has failed to be identified. This is because the 

number of pixels the mast occupies in the tiles used for segmentation is 

small enough for the whole tile to be segmented as sea. 
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Figure 7.5a - Sequence 2, 
Processed frame 10 

Figure 7.5c - Sequence 2, 
Processed frame 400 

Figure 7.5b - Sequence 2, 
Processed frame 200 

Figure 7.5d - Sequence 2, 
Processed frame 600 

Figure 7.5 - Evaluation sequence 2 results 

The final results frame, figure 7.5d, shows the yacht much closer to the 

camera platform and includes much of the mast as it now occupies sufficient 

pixels to be included in the segmentation process. Over the four frames 

shown the yacht has moved closer to the camera platform therefore it is 

expected that the collision risk will increase through the sequence. This 

expectation is met with the collision risk estimates being 11%, 13%, 17%, 

and 23% for frames 10,200,400, and 600 respectively. The area of wake 

has also continued to be identified and has closed on the camera platform. 
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Figure 7.6 - Total number of false objects and false objects tracked 

The high level reasoning strategy states that this should result in an increase 

in the collision risk, especially as it is central in the image. This is shown as 

the risk is given as 52% for its current position. A small number of areas of 

wake have been identified as objects with a black box indicating they have 

been matched in less than 5 frames. The vibration of the camera platform is 

evident in this frame with the image being less sharp than the others. This 

has not had an effect on the performance of the algorithms developed here 

showing a level of robustness and scene independence of the algorithms. 

The number of false objects identified in the scene and the number of false 

objects confirmed and tracked through the sequence are shown in figure 7.6. 

The numbers of false objects identified are those that are matched in less 

than 5 frames. Those confirmed and tracked are those matched in more than 

5 frames and are displayed to the operator by the placing of a white box 

around them. Figure 7.6 shows that the number of false objects rose as the 

sequence progressed. This is because the area of wake approaches the 

camera platform and is falsely segmented into a greater number of objects. 

Despite the total number of false objects rising to a maximum of 9 the 

number of false objects confirmed and tracked only reaches a maximum of 

4. Across the whole sequence the average number of false objects is 2.7 and 
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the average number of false objects tracked is 0.8. The lower numbers of 
false objects tracked shows the success of the algorithm requiring an object 
to be matched across 5 frames before it is confirmed as a maritime object. 

7.5 Discussion and Summary 

Two previously unseen sequences taken from a maritime vessel have been 

presented to the software system developed in this thesis in order to evaluate 

the system for scene dependency and to test the high-level reasoning strategy 

with different maritime scenarios. In the first sequence the performance of 

the system is tested on a highly illuminated sea with many highlights 

present. This sequence also tests the performance of the system with a large 

light coloured object close to the camera. The camera platform undergoes 

motion introduced by engine vibration, and wind and vessel motion. The 

second sequence shows the vessel moving forward along a shipping lane. It 

tests the performance of the system with slow moving (or stationary) objects 
that are a long distance away from the camera. All of these objects move 

within the image through the sequence as a result of the motion of the 

camera platform. 

A fast moving motor boat object crosses sequence 1 from high on the left to 

low on the right and leaves the scene. The high-level reasoning strategy for 

this scenario would be for the collision risk this object poses to increase as it 

moves down and toward the centre of the image and for the collision risk to 

decrease as the object moves away from the centre of the image. The results 

shown give the collision risk as 25% in figure 7.3a, 33% increasing to 35% 

as the object moves toward the centre of the image in figure 7.3b, and 49% 

decreasing to 42% as it moves away from the centre of the image in figure 

7.3c. 
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The number of false objects identified through sequence 1 is shown in figure 

7.4. This average number of false objects identified in the sequence was 3.4 

although only an average of 0.5 of these went on to be tracked as confirmed 

maritime objects. This lower number of false objects tracked shows the 

success of the algorithm requiring an object to be matched across 5 frames 

before it is confirmed as a maritime object. 

The objects present in the second sequence are a channel marker buoy that 

moves from high on the right of the scene down the right side of the image 

and leaves the scene as the vessel approaches and passes the object. The 

other object present is a yacht heading away from the vessel. It moves from 

the top left of the scene, down and across the centre of the scene finally 

leaving it on the right side. A third small dark object at the very top of the 

scene is above the horizon and therefore above the shoreline set for this 

sequence. As any area above the horizon does not contain grey levels from 

the sea it is in an area not considered by this system and so the small object 

will not be detected. 

This second sequence shows how the system handles slow moving (and 

stationary) objects from a moving camera platform. The high-level 

reasoning strategy should identify the buoy as being toward the top of the 

image and as such pose a small risk of collision. As the sequence develops 

the buoy moves down in the image and to the right side of the scene. The 

risk of collision should increase as the object moves down in the image then 

decrease as the buoy moves toward the edge of the scene. Results show the 

collision risk presented by the buoy to be 14% decreasing to 13% in frame 

8.5a, increase to 17% in frame 100 (not shown) and decrease to 3% in frame 

200 as it leaves the scene. These results show the high-level reasoning 

strategy to be correct. 
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The yacht also present in sequence 2 is expected to present a low collision 

risk at the outset of this sequence as it is situated very high in the scene 

representing some distance from the camera and hence the vessel. As the 

sequence continues the collision risk is expected to rise slightly as the vessel 

approaches the yacht moving it down in the scene. This should be followed 

by a decrease in collision risk as the yacht moves to the right of the scene 

and finally leaves the scene. Figure 7.5a shows the yacht with a collision 

risk of 11% increasing to 12%, frame 200 (figure 7.5b) shows the yacht with 

a 13% risk increasing to 14%, frame 400 (figure 7.5c) as 17%, and frame 

600 (figure 7.5d) as 23%. At this point the yacht is still moving down the 

scene as so the high-level reasoning strategy has performed correctly by 

estimating an increasing risk. In frame 750 (not shown) the yacht is situated 

on the far right of the image and has a collision risk of 13% with a predicted 

risk decreasing to 2%. 

This second sequence does contain a false object that is identified as a target 

that continues to be identified as a target throughout the sequence. This is an 

area of wake from some maritime object that has left the scene and has 

occurred because of the calm sea conditions. The area of wake has not 
dispersed as would usually be the case resulting in the area being matched 

over multiple frames and considered a valid target. Figure 7.6 shows the 

number of false objects identified through sequence 2. The average number 

of false objects identified in the sequence was 2.7 of which an average of 0.8 

went on to be tracked as confirmed maritime objects. 
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Chapter 8: 
Discussion and 
Conclusions 

8.1 Discussion 

The research presented here has been concerned with the complex task of 

identifying and tracking maritime objects in open world maritime scenes. 

This work has been further concerned with arriving at an estimate of the risk 

of collision between an identified maritime object and the camera platform. 
Of particular interest here is the ability of the system to identify any 

maritime object - described as any object that protrudes above the surface of 

the water - at any distance from the front of the camera platform 

(approximately 50 metres from the camera) to the horizon. This had led to 

the direction the development of some of the algorithms has taken. 

The system has been broken down into four component parts: filtering of the 

input images; segmentation of the images; tracking of segmented objects; 

and finally the prediction of future object motion and collision risk 

estimation. 

The first stage of the system is the enhancement of the input images. This is 

carried out to remove that noise introduced by the capture and digitisation 

process. The noise introduced into the system has been assumed to 

approximate a gaussian distribution. In addition to removing noise the image 
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enhancement had to enhance edge detail and smooth the grey-level 

distribution in the image. Results show the problems caused by noise were 

reduced by the application of the Kuwahara filter (Kuwahara et al, 1976) to 

maritime images. A fixed point image, arrived at by the repeated use of the 

Kuwahara filter on the same image, was found to be successful by Minato et 

al (1987) for contour detection. When applied to maritime images it was 

found that in addition to enhancing the intensity difference between valid 

maritime objects and the sea, differences between areas of sea were also 

enhanced. Consequently a single application of the Kuwahara filter was 

used. 

The segmentation stage involves the identification of the maritime objects 

present in the scene. Detecting the motion of maritime objects with frame 

differencing methods would lead to a great number of false motion cues as 

almost every part of the image is moving. The sea is constantly moving, the 

objects are moving, and the camera platform is moving. Model-based 

techniques such as the geometric models used by Ferryman et al (1998) and 

Koller and Nagel (1993), or the feature model used by Luo and Etz (2002) 

require the reliable extraction of features that can be fitted to models. The 

wide variety of object shapes and the distances the objects could be away 

from the camera would yield unreliable features for these techniques to be 

successful. The method used was to calculate the characteristic grey-level 

range for the sea and to segment the image into two regions, those that 

contained the grey-level range, the sea, and those that did not, the maritime 

objects. This led some objects to be fragmented and so an 8-way 

connectivity method of region growing was used to join fragmented objects. 

A feature vector is built for each object segmented in the image containing 
details including its co-ordinates and area. This vector is used by the 

tracking algorithm together with a maritime motion model to match objects 
between frames. The system considers objects to belong in one of two 
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categories, fast moving or slow moving. The distinction is made as the 

maritime motion model allows for different motion characteristics 
depending on the category of the object. Any object that is matched over at 
least two frames is identified by a black box drawn around the object. If an 

object is matched over five or more frames then it is confirmed as a 

maritime object and a white box drawn. This allows for the number of false 

objects to be reduced. 

In each frame that an object or target is matched data regarding its current 

position is recorded in the feature vector. Targets that have been matched 

over more than 8 frames have a least-squares algorithm applied to their 

position data to arrive at a line of best fit through the data and to predict the 

future motion of the target. 

Finally a high-level reasoning algorithm based on a rule-based strategy is 

used to estimate the risk of a collision that each target poses to the vessel the 

camera is mounted on. The pattern of risk suggested a structure that can be 

visualised as a fan shape with the highest risk at the bottom centre of the 

image and the lowest risk at the outer edge of the image. The percentage risk 

presented by the bottom centre of each target is obtained and displayed. The 

risk posed by the predicted future position of the target is also calculated and 

displayed. 

8.2 Conclusions 

The aim of this research has been to develop a machine vision system that 

would highlight objects of interest (maritime objects), track these objects 

over time, indicate the future course of the object, and provide an estimate 

of the likelihood of a collision occurring with that object. 
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It was found that the relatively straightforward techniques of statistical 

analysis of image histograms and the application of a set of motion 

constraints based on knowledge of the problem domain can be used to 

identify and track maritime objects. 

Following confirmation in chapter 5 that the assumption made by Wang et al 

(2000) - object motion approximates a straight line over a few frames - held 

true for maritime objects the previous motion of identified objects was used 

to calculate a line of best fit through the motion data. This line was extended 

in the object's direction of travel to give an indication of future motion. 

A knowledge-based reasoning strategy utilising known information about 

the maritime environment and the motion of maritime objects was used to 

estimate the risk of collision an identified and tracked object posed to the 

camera platform. 

It has been demonstrated through the use of two image sequences 

representative of the situation the system is likely to be used in that without 

modification the developed algorithms could identify, track, and estimate 

the collision risk posed by maritime objects present in the scene 

Little previous work has been carried out toward using image processing in 

the maritime environment and less still on the specific problem addressed 

here of collision avoidance. The originality and contribution of the work 

presented in this thesis is to bring together new and existing image 

processing techniques and apply them to a specific problem in a new 

application area, that of safety in the maritime environment. Further it has 

been shown that an image processing system can successfully address a 

problem traditionally solved by radar and human observation. 
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In each of the four stages of this system existing appropriate techniques 

were evaluated against methods developed specifically for use with 

maritime images. In the case of the image filtering the existing Kuwahara 

filter was chosen as the most appropriate. However in the other three stages 

newly developed algorithms outperformed existing techniques such as 
thresholding and frame differencing for the segmentation of the images and 
the Kalman filter for tracking the objects over time. 

8.3 Limitations and Future Work 

In order to show that applying image processing techniques to the maritime 

environment could be successful the sequences used here both to develop 

the algorithms and to evaluate the system have been taken in generally good 

weather conditions. The Poole test sequence was taken in dull, overcast 

conditions with a calm sea. The Dover sequence contained bright sunlight 

and a slight swell, as did the first evaluation sequence. The Portsmouth 

sequence was bright but calm, as was the second evaluation sequence. 

The favourable weather conditions were used as this is considered to be the 

conditions when the level of observation on board ship will be at its lowest. 

These are also the conditions when objects will be moving at their highest 

speeds. The calm sea conditions used have also allowed the shoreline 

parameter to be a fixed value. Both the weather conditions and the fixed 

shoreline are limitations of the current system and should be addressed in 

future work. Whilst thick fog and very dark conditions are beyond the 

capability of cameras operating solely in the visual spectrum and therefore 

could not be considered the effects of rain or light mist or strong winds on 

the system are not. These environmental conditions might be addressed 

through the extraction of different features for different conditions as used 

by Cucchiara and Piccardi (1999). The fixed shoreline has been shown not 
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to restrict the performance of the system, as in the calm sequences used the 

pitch of the camera platform altered by just a small number of pixels. 

Another limitation of the current system is the treatment of occluded 

objects. This is addressed by the targets being combined and treated as a 

single target for the duration of the occlusion. This does not effect the 

performance of the system, as the collision risk will be that of the closer 

target. However, when the targets cease to occlude each other it currently 

takes a number of frames for the targets to fully separate during which time 

the collision estimate is being made on the point midway between the two 

targets. A second issue regarding occlusion is that once the occlusion ceases 

the occluded object is considered to be a new object and will not be 

identified as a maritime object for a further five frames. Future work in this 

area would be for each target to be treated entirely independently leading to 

the prediction of occlusion duration and the correct collision risk estimation 

of the closer maritime target. This would also lead to the occluded object 

being identified as a maritime object as soon as the occlusion ceases. 

A further limitation of this system is the environment in which it is designed 

to be used. As discussed in chapter 1, section 3, the system has been 

currently designed for open sea where object motion is assumed to be 

uniform and where only a few objects will be present. Future work in this 

area would involve allowing other environments such as entering and 
leaving a harbour. This would require updating the motion model to deal 

with a wider range of objects such as fast manoeuvring jet ski's and also to 

deal with objects whose velocity changes over a few frames. 

Finally, future consideration could be given to the use of calibrated stereo 

cameras to make more accurate calculations regarding the distance of 

objects from the camera leading to a greater accuracy in the collision risk 

estimation. This may also help with the issue of object occlusion. 
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Figure Al - Poole sequence, frame I 
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Table Al - Tile rejection value evaluation for Poole sequence, frame 

Threshold Value Pane Actual Sea Range Calculated Sea Range %Error 

min max min max min max 
15 0 65 97 70 95 7.692308 2.061856 

1 45 95 52 81 15.555556 14.736842 
2 60 95 66 91 10.000000 4.210526 
3 45 93 50 82 11.111111 11.827957 

20 0 65 97 70 95 7.692308 2.061856 
1 45 95 37 93 17.777778 2.105263 
2 60 95 66 91 10.000000 4.210526 
3 45 93 50 91 11.111111 2.150538 

25 0 65 97 70 95 7.692308 2.061856 
1 45 95 37 93 17.777778 2.105263 
2 60 95 66 91 10.000000 4.210526 
3 45 93 37 91 17.777778 2.150538 

30 0 65 97 70 95 7.692308 2.061856 
1 45 95 37 93 17.777778 2105263 
2 60 95 37 94 38.333333 1.052632 
3 45 93 37 91 17.777778 2.150538 

35 0 65 97 37 95 43.076923 2.061856 
1 45 95 37 91 17.777778 4.210526 
2 60 95 37 91 38.333333 4.210526 
3 45 93 37 91 17.777778 2.150538 

40 0 65 97 37 95 43.076923 2.061856 
1 45 95 37 93 17.777778 2.105263 

2 60 95 37 91 38.333333 4.210526 
3 45 93 37 91 17.777778 2.150538 

Figure A2 - Error rate for each pane at each threshold value 

`. ý 
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Figure A3 - Poole sequence, frame 10 
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Table A2 - Tile rejection value evaluation for Poole sequence, frame 10 

Threshold Value Pane Actual Sea Range Calculated Sea Range %Error 

min max min max min max 
15 0 64 96 69 97 7.812500 1.041667 

1 47 96 52 84 10.638298 12.500000 
2 60 94 65 93 8.333333 1.063830 
3 47 91 49 79 4.255319 13.186813 

20 0 64 96 69 97 7.812500 1.041667 
1 47 96 36 91 23.404255 5.208333 
2 60 94 65 93 8.333333 1.063830 
3 47 91 49 90 4.255319 1.098901 

25 0 64 96 69 97 7.812500 1.041667 
1 47 96 36 91 23.404255 5.208333 
2 60 94 65 93 8.333333 1.063830 
3 47 91 36 90 23.404255 1.098901 

30 0 64 96 69 97 7.812500 1.041667 
1 47 96 36 91 23.404255 5.208333 
2 60 94 65 93 8.333333 1.063830 
3 47 91 36 90 23.404255 1.098901 

35 0 64 96 36 97 43.750000 1.041667 
1 47 96 36 91 23.404255 5.208333 
2 60 94 36 93 40.000000 1.063830 
3 47 91 36 90 23.404255 1.098901 

40 0 64 96 36 97 43.750000 1.041667 
1 47 96 36 91 23.404255 5.208333 
2 60 94 36 93 40.000000 1.063830 
3 47 91 36 90 23.404255 1.098901 

50 

40 

F- 
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10 
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0 minSeaGrey maxSeaGrey 

Figure A4 - Threshold value error rate for Poole sequence, frame 10 
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Figure A5 - Dover sequence, frame 1 
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Table A3 - Tile rejection threshold value evaluation for 
Dover sequence, frame I 

Threshold Value Pane Actual Sea Range Calculated Sea Range %Error 

min max min max min max 
15 0 45 180 55 149 22.222222 17.222222 

1 50 170 63 139 26.000000 18.235294 
2 45 185 53 140 17.777778 24.324324 

3 40 175 58 143 45.000000 18.285714 
20 0 45 180 55 149 22.222222 17.222222 

1 50 170 63 139 26.000000 18.235294 
2 45 185 53 140 17.777778 24.324324 
3 40 175 58 143 45.000000 18.285714 

25 0 45 180 55 149 22.222222 17.222222 
1 50 170 63 151 26.000000 11.176471 
2 45 185 53 153 17.777778 17.297297 
3 40 175 58 143 45.000000 18.285714 

30 0 45 180 55 149 22.222222 17.222222 
1 50 170 63 151 26.000000 11.176471 
2 45 185 53 153 17.777778 17.297297 
3 40 175 58 143 45.000000 18.285714 

35 0 45 180 55 149 22.222222 17.222222 
1 50 170 63 151 26.000000 11.176471 
2 45 185 53 153 17.777778 17.297297 
3 40 175 58 143 45.000000 18.285714 

40 0 45 180 55 149 22.222222 17.222222 
1 50 170 63 151 26.000000 11.176471 
2 45 185 53 153 17.777778 17.297297 
3 40 175 58 143 45.000000 18.285714 
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Figure A6 - Threshold value error rate for Dover sequence, frame I 
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Figure A7 - Dover sequence, frame 10 

\` 



Annendix A 

Table A4 - Tile rejection threshold value evaluation for 
Dover sequence, frame 10 

Threshold Value Pane Actual Sea Range Calculated Sea Range %Error 

min max min max min max 
15 0 45 170 57 135 26.666667 20.588235 

1 50 170 64 135 28.000000 20.588235 
2 40 190 57 136 42.500000 28.421053 
3 45 170 63 148 40.000000 12.941176 

20 0 45 170 57 150 26.666667 11.764706 
1 50 170 64 147 28.000000 13.529412 
2 40 190 57 152 42.500000 20.000000 
3 45 170 51 148 13.333333 12.941176 

25 0 45 170 57 158 26.666667 7.058824 
1 50 170 64 147 28.000000 13.529412 
2 40 190 47 152 17.500000 20.000000 
3 45 170 51 148 13.333333 12.941176 

30 0 45 170 57 158 26.666667 7.058824 
1 50 170 64 147 28.000000 13.529412 
2 40 190 47 152 17.500000 20.000000 
3 45 170 51 148 13.333333 12.941176 

35 0 45 170 57 158 26.666667 7.058824 
1 50 170 64 147 28.000000 13.529412 
2 40 190 47 152 17.500000 20.000000 
3 45 170 51 148 13.333333 12.941176 

40 0 45 170 57 158 26.666667 7.058824 
1 50 170 64 147 28.000000 13.529412 
2 40 190 47 152 17.500000 20.000000 
3 45 170 51 148 13.333333 12.941176 

Figure A8 - Threshold value error rate for Dover sequence, frame 10 
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Appendix B 

Appendix B: 
Segmentation Tile 
Size and Decision 
Level 

This appendix shows the results of the determination of the tile size and 
decision level used in the segmentation process. For every fifth frame of a 100 

frame sequence from the Poole and Dover test sequences, a grid of tile size 

being considered was placed over it. Each tile in the grid was then manually 
determined to be an Object tile; a Sea tile; or an Undecided tile. This procedure 

was carried out again following the algorithmic segmentation of the image with 
different values for the tile size and decision level parameters each time. 

The tables presented here show the results of this evaluation. Each table shows 

the results of manual and algorithmic tile segmentation for a given tile size and 
decision level. The graph accompanying each table shows the percentage of 

correctly segmented tiles for each of the Object, Sea, and Undecided categories. 
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Appendix C 

Appendix C: 
Evaluation of 
Segmentation 
Techniques 

This appendix shows the results of the evaluation of three segmentation 
methods. The methods used were Thresholding; Frame Differencing; Sea 

Characterisation and Motion Model Segmentation. For every fifth frame of the 
Poole, Dover, and Portsmouth test sequences a 32x32 sized grid has been placed 
over the segmented image and the number of falsely segmented tiles manually 

recorded. The number of false tiles has then been converted into a percentage of 
the total number of tiles and plotted on a graph. This has been carried out for 

each sequence and each segmentation method. The resulting three graphs show 
the direct comparison of the three techniques on the test sequences. 

The tables presented here show the results of this evaluation. Each table shows 
the results of the manual recording of falsely segmented tiles. The graph 
accompanying each table shows the percentage of falsely segmented tiles for 

each of the three segmentation techniques. 
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Appendix A 

Appendix A: 
Evaluation of Tile 
Rejection Threshold 

This appendix shows the results of the determination of the tile rejection 

threshold value, 0. Two frames from each of two test sequences have been used. 

These are shown in figures Al and A3 for the Poole sequence and A5 and A7 

for the Dover sequence. The tables Al to A4 give the manually calculated and 

the algorithmically calculated characteristic sea range for each of the four panes 

in the image. This has been carried out for six different threshold values and the 

error between the manual and algorithmic values calculated for each threshold. 

Figures A2 and A4 show the error rates for each threshold value on a graph for 

the two frames from the Poole sequence and figures A6 and A8 show the error 

rates for the two frames from the Dover sequence. 
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