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Abstract
This paper presents an enhanced technique for inverse analysis of
photoelastic fringes using neural networks to determine the applied load.
The technique may be useful in whole-field analysis of photoelastic images
obtained due to external loading, which may find application in a variety of
specialized areas including robotics and biomedical engineering. The
presented technique is easy to implement, does not require much
computation and can cope well within slight experimental variations. The
technique requires image acquisition, filtering and data extraction, which is
then fed to the neural network to provide load as output. This technique can
be efficiently implemented for determining the applied load in applications
where repeated loading is one of the main considerations. The results
presented in this paper demonstrate the novelty of this technique to solve the
inverse problem from direct image data. It has been shown that the
presented technique offers better result for the inverse photoelastic problems
than previously published works.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

Photoelasticity is an optical technique for analysing stress
distribution in loaded models. It is based on the
phenomenon of temporary birefringence possessed by certain
non-crystalline materials that are ideally isotropic but behave
anisotropically when loaded [1]. The effect is temporary and
persists only whilst the specimen is loaded. The technique
is used to measure surface strains in structures, regardless of
their shapes and sizes. The strain information is represented
by fringe patterns generated due to loading which can be
seen through a polariscope. If the photoelastic effect is to
be used for sensing applications, the inverse problem needs
to be solved, i.e. finding the applied force from the generated
fringe patterns. The advantage of using this technique is to
get whole-field visualization of the stress field, which may
provide qualitative load information of the entire field as
opposed to employing strain gauges, or load cells that only
offer discrete load information. Figure 1 shows a portion

of a footprint obtained on a photoelastic medium; clearly this
provides load information at every contact location of the foot.
If this image can be quantified in terms of loads at all contact
locations this can find use in a range of application areas. This
paper discusses a neural network-based approach to analyse
the whole-field image developed on a photoelastic model due
to point loading or the deflection of the specimen.

Photoelastic techniques such as RGB calibration [2–4]
and phase shifting [5, 6] are useful for stress–strain
applications but cannot be directly used for applications
requiring load/torque estimation. The reason being the model
could have complex geometry and loading conditions, and the
inverse may require prior parameter determination to define
precise analytical relations for the inverse problem. For such
inverse problems, where it is difficult to develop analytical
relations between information available and the output, use
of neural networks may prove to be an effective approach,
since neural networks are well suited to develop nonlinear
functions between input and output [7, 8]. It is also known that
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Figure 1. Portion of a footprint obtained on a photoelastic plate.

neural networks can tolerate slight experimental variations [9],
which are likely to occur in real systems. For simpler models
like beam sections under bending, disc/ring under diametral
compression, which are typically used for experimental
demonstrations, analytical relations can be derived but for
complex shapes and loading conditions (such as shown in
figure 1) it is practically impossible to derive analytical
relations between the image and the applied load. Under such
situations a neural network can prove to be an effective tool to
solve the inverse problem. In this paper we are aiming to prove
the principle of using neural networks for solving the inverse
photoelastic problem. The aim is to show that direct image
information from photoelastic fringes can be used to obtain
the input function. The same technique can be enhanced for
any generalized case involving complex fringe patterns under
different input conditions for whole-field analysis. This may
find application in biomedical and robotics areas such as, to
assess the footprint of diabetic patients or to analyse pressure
patterns of disabled subjects and thereby enacting prevention
strategies by suitable footwear or bed designs. The technique
may also be suitable for developing haptic interfaces in robotic
applications or human–computer interface (HCI) [10].

Some attempts have been made in the past for the inverse
photoelastic problems using neural networks [9, 11]. Noroozi
et al [9] used a tensile testing machine to apply symmetrical
bending load on a photoelastic beam. The fringe order
was determined at known points using a polariscope and the
stress difference was evaluated. The results were validated
with an identical model using finite element analysis (FEA).
Thus entire training data were generated from the FEA to
avoid the uncertainty in the experimental data. A noise
generator was used to add noise in the input data. Whilst the
presented technique demonstrated the principle, it required
prior calculations of fringe order for training and testing of
the neural network and required a large number of training
sets; data collection was another disadvantage of the system.
Extracting test data required experience in photoelasticity to
determine fringe order at known points in the model as inputs
to the neural network. In a related work a sensor was developed
using photoelastic material and a neural network to estimate
torque from the fringe input [11]. Their network had an
input dimensionality of 48, and 12 neurons were used in the
hidden layer thus making the size of the network rather big.
The network size and efficiency could have been improved if
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Figure 2. Image acquisition rig.

principal component analysis (PCA) or other dimensionality
reduction techniques were used [12]. Photoelastic models
have also been used in robotic applications for developing slip
sensors [13, 14]. Cameron et al [13] developed mathematical
models to describe a slip sensor for edge detection. A similar
model was developed by Eghtedari et al [14] to study the effect
of various design parameters such as mechanical and optical
properties of photoelastic models on the resolution of the slip
sensor. This paper presents an enhanced technique that uses
image information from the photoelastic fringes and neural
networks to determine the load information. The input given
to the neural network is R intensity1 from the fringe patterns
and the output is the deflection of the model. The deflection
is used as an output parameter since it can be easily measured
during training and can be related to the applied load. The
novelty of this technique is that the neural network is trained
with direct image data from actual experiments and requires no
prior calculations. The network size is considerably smaller
than would otherwise be required and the system is generalized
to analyse completely unseen data even at different camera
settings. The technique does not require any knowledge of
photoelasticity or FEA as used in [9].

2. Experimental setup

A photoelastic model of PS-1 sheet [15] with modulus of
elasticity 2.5 GPa, strain optic co-efficient 0.15 and thickness
3 mm was used with reflective backing in this experiment. A
40 W incandescent bulb as the light source and a 3.2 million
pixel resolution camera were used in the setup. The camera
was used in conjunction with a release cable to avoid any
unwanted movements during image acquisition. Figure 2
shows the basic arrangement of optical elements and the image
acquisition system. The optical elements included a pair of
circular polarizers kept crossed (axes are 90◦ apart) with each
other.

The model was subjected to a bending load as shown in
figure 3 and fringe patterns were obtained from the region of
interest (ROI). The applied deflection was measured to one
hundredth of a mm using a digital micrometer. Since within
the elastic limit the model has a linear relationship between
load and deflection, so training the neural network against
either of the two parameters would not make any difference as
far as modalities of the input functions are concerned. Thus,
the deflection was set as the output target for the implemented

1 Eight-bit red intensity curves across line of interest.
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(a) (b)

Figure 3. Model under bending load and the ROI (the rectangular
area).

Figure 4. ROI showing multiple lines for the input data.

Figure 5. Band of noise in the input data at a deflection of 0.4 mm.

neural network. The input to the neural network was given
as R intensity of line ‘a–b’ as shown in the figure (note that
the intensity patterns of the G or B plane are similar so will
give similar results). To train the network it is essential that a
sufficient amount of training sets are provided.

3. Data acquisition

Figure 4 shows a magnified view of the ROI with input line
‘a–b’ showing a linear stress distribution. Considering the
stress distribution along line ‘c–b’ in the ROI, it is evident
that the stress is uniform. This facilitates extracting more
than one input line from the same image thus multiple input
lines are extracted along line ‘c–b’. There may be some noise
introduced in the data if there is uneven loading at the two
ends. It has been reported, however, that noisy data can help
in better ‘generalization’ of the neural networks [12].

For image acquisition, the camera was set in automatic
mode where focus and aperture could change according to
the ambient light and reflections. This introduced noise in
the data in successive experiments and eliminated the need
for a noise generator [9]. Images were acquired at 1 M pixel
resolution and filtered for data extraction before being fed
to the neural network. Image smoothing was performed to
remove the irregularities present due to high sensitivity of
the CCD chips. Average R-intensity of 10 input lines was
extracted along ‘c–b’ to make one input data line (131 points
each) as shown in figure 4. Similarly, 15 input data lines were
extracted from each image under the load and the procedure
was repeated for the successive loads. Figure 5 shows 15 input
intensity curves obtained at a deflection of 0.4 mm applied to
the model. The noise induced can be seen in the plot, the main
consideration for selection of image data as direct input was
to minimize the computational effort of [9].

Ten similar sets of experiments were performed with 25
loading and unloading (13 different loads) allowing 15 input
data to be extracted from each image at a particular deflection.
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Figure 6. Flow chart of the implemented system.

Thus a total of 250 images was acquired. The deflection was
incremented in steps of 0.04 mm from 0 to 1 mm using a digital
micrometer. The neural network was trained with noisy data in
order to make it robust against slight experimental variations
that may occur during image acquisition, e.g. changes in image
orientation and scaling due to loading, lighting, reflections or
camera settings. Generally, one load value would provide only
one input datum thus 250 input data sets from 250 images,
but multi-input extraction gave 15 input sets from each image.
This increased the training data from 250 to 3750 and improved
the robustness of the neural network.

As there were 131 points in each input line it was
important to reduce the dimensions of the input as it might lead
to the dimensionality curse [8], which in turn might increase
the number of training patterns required. Principal component
analysis [16] was used to reduce the input dimensionality. The
input data were normalized between −1 and +1 since neural
networks are found to be more efficient if data are presented
in this range [8, 17]. Another factor that can contribute to
a change in input under the same load is the orientation of
the optical elements. It is important that relative positioning
between the two circular polarizers is always kept at 90◦

(crossed). The flow chart in figure 6 shows the step-by-step
procedure for implementation of the neural network for the
photoelastic fringe mapping system.

4. The neural network

Figure 7 shows the structure of the neural network with two
hidden layers used for this implementation. A feed forward
back propagation network was constructed using MATLAB R©

Neural Network Toolbox [17] and training was done using the
‘Levenberg–Marquardt’ approach [8]. This offers the fastest
training algorithm for networks of moderate size and has a
memory reduction feature for use when the training set is
large. The network trains by slowly modifying the weights
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Figure 7. Structure of the neural network.

and learns from the input data sets. The input data need to
be shuffled for efficient learning otherwise networks tend to
memorize the last trained class of input data [7, 12]: a separate
code was generated to shuffle the data.

In the implementation of the network the performance
goal set was based on a mean square error (MSE) function.
Weights were initialized randomly and the training was
performed with 50 different sets of initial weights. This is
important since the error surface is unpredictable and randomly
initializing the weights can help in finding the global minima
of the error surface, otherwise the network may get stuck in
local minima and will not generalize. The validation data (a
subset extracted from total input data) were used to keep a
check for generalization of the system and stop training in the
case of over-fitting (memorizing). The network size was kept
small, as larger networks tend to memorize instead of learning
[17].

5. Result and discussions

The results confirmed that ‘Levenberg–Marquardt’ was the
most efficient training method for this application. The
network performance was significantly affected by the input
dimensionality and the size of the network. It has also
been found that the network gave consistent and accurate
results when two hidden layers were used as compared to
one hidden layer; more than two hidden layers were found to
be computationally overloading. However, in order to further
determine the optimal input dimensionality and the size of the
network, 49 different network configurations were tested at
each input dimensionality. Table 1 shows part of the tested
network configurations with different input dimensions. The
error was computed for 24 different test points. By comparing
the input dimensionality and the network size, the network
{7 3 5} was selected as the best choice. This means the final
network had input dimensionality of seven with two hidden
layers, each with three and five neurons, respectively. The
average percentage error was found to be 4.20 and it further
dropped to 2.78 when the initial load was eliminated from
the analysis: since there was very little fringe information
available at such a low deflection of 0.04 mm when the network
did not learn efficiently. The range of error was found to be
between 4% and 9% for most of the networks as could be
seen from table 1. When the error falls in the same range
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Table 1. Part of the input dimensionality and network configuration test table.

Input Number of Number of % error % error
dimensionality neurons–layer 1 neurons–layer 2 24 test points 23 test points

5 4 3 5.56 4.18
6 3 3 4.97 4.68
7 3 5 4.20 2.78
9 3 6 5.98 4.15

10 3 4 6.67 2.93
11 3 4 5.54 3.26
12 3 4 9.08 3.49
13 3 3 6.08 3.90
14 5 5 5.23 5.08
15 3 5 7.51 3.92
16 3 3 6.53 5.08
17 3 8 5.97 5.02
18 4 3 5.70 5.67
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Figure 8. Neural network output with actual deflection curve.

Table 2. Regression analysis on the training and test data.

Data Correlation coefficient Slope

Training 0.993 0.985
Test 0.999 0.985

for different networks, it is better to use the network with
fewer numbers of weights as they are more generalized. Once
the optimal size of the network is achieved and the neural
network is trained, the weights are saved and the test data can
be fed without any further training. No further retraining of
the network is required for this setup and it can analyse any
unseen test data.

The test results for unseen data are plotted in figure 8. To
check the robustness of the system, test data were collected
separately in ‘manual mode’ of the camera as opposed to the
‘auto mode’ used during the training data collection. The
results show that the system is capable of mapping output for
the unseen data accurately. The plot between actual deflection
and the deflection computed by the neural network is shown
in figure 8.

Regression analysis on the training data and the test results
are shown in table 2. Under the ideal conditions of perfect fit
(neural network output should equal the desired target) slope
and the correlation coefficient should be unity between the
training and the test data.

It can be clearly seen from the plot (figure 8) and table 2
that the actual deflection and the neural network output are very
close to each other. It can be further concluded that the noise

Table 3. Enhanced technique: a comparison.

Noroozi et al [9] Our approach

Input requires calculations Direct input from image
FEA package required No additional package required
198 training sets 3750 training sets from 250 images
Noise generator required Default noisy input (for robustness)
Test data: fringe order (N) is Test data: ‘R’ plane of digital images

required, thus knowledge of
photoelasticity is essential.

due to experimental variations did not have a considerable
effect on the system performance and it coped well within
these variations. For efficient training at low load values,
where there are insignificant changes in the fringe patterns,
use of additional training sets will improve the performance.

Table 3 compares the system capabilities of our approach
with the similar research conducted by Noroozi et al [9]. It
can be clearly seen that our approach presents an enhanced
technique in many aspects.

6. Conclusions

In this paper an enhanced technique for inverse mapping of
photoelastic fringes has been proposed using neural networks.
The neural network was trained from direct image data without
requiring any mathematical computation. It has been shown
that if sufficient and relevant inputs were provided, no prior
calculations were needed on the training data and the results
obtained were very close to the desired target. The output was
also found to be stable against slight experimental changes
such as changes in loading condition, lighting, reflections and
camera settings. Large training sets were used and the PCA
was implemented to reduce the dimensionality of the input
whilst keeping the relevant information to make the network
robust and generalized. The results have shown that in
the absence of analytical solution for fringe mapping on to
the applied load, use of neural networks could be a better
approach for such inverse problems. The system could be
further improved and generalized if training data could be
combined from all three intensity planes and image acquisition
be carried out with more than one light source. This
technique is particularly suitable for repeated and generalized
loading conditions, as may be required in various sensing
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applications—this follows on from the repeated loading and
image acquisition during the network training. Although in
this paper only a simple deflection model has been analysed;
nevertheless, the technique used the whole-field image data
from the photoelastic model. The current implementation
used only R intensity of the image, however, with further
enhancement to include other colour planes and geometrical as
well as statistical parameters of the image this technique could
be potentially developed for whole-field image analysis of
photoelastic fringes which may find use in various biomedical
and HCI applications.
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