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Abstract. Although addressed in many papers, classifier dependency is still not 
well defined. Continuously being described by variety of statistical models from 
conditional probability to diversity measures, dependency among classifier out-
puts was recently shown to have a crucial impact on the performance of multi-
ple classifier system. However, individual classifier performances still represent 
competitive and simple information clearly related to the performance of the 
combined system. In this work we show that all the measures related to classi-
fier outputs can be reformulated to represent just different forms of the same in-
formation of error coincidences. Applying set analysis for the representation 
and description of error coincidences we define collection of classifier sets de-
composed into two complementary types of coincidence levels. Furthermore 
we illustrate a high flexibility of using the coincidence levels, which supported 
be a simple algebra cover many established dependency measures including 
combining error in case of majority voting. Moreover we show that in the sets-
collection representation of error coincidences a specific inclusion relation re-
sults in a quicker and more effective handling of dependency information under 
different complexity conditions. In the experimental section we examine rela-
tions of the introduced error coincidence levels with majority voting combiner 
using real datasets and classifiers and indicate further potential applications of 
the presented concepts. 

1. Introduction 

There is a common agreement in many recent publications related to pattern recogni-
tion that dependency among classifier outputs plays a key role in combining classifi-
ers [1-8]. Diversity, independence, disagreement and most recently negative depend-
ency are the terms often used to express a desirable relation among classifiers to en-
sure the maximum improvement of the fusion system [4-8]. In this variety of concepts 
the idea is the same: how to measure relationship among classifiers from their outputs 
so that it is possible to say something about the combined classifier performance? 
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Recent investigations indicate that error coincidences seem to be the most valuable 
information in this pursuit [7-10]. 

Coincident events are traditionally described by probabilistic models. For the case 
of independent events, their coincidence can be easily calculated from the product of 
the individual probabilities of events. However in the realistic pattern recognition 
situations it is very naive to assume independence among classifier outputs or even 
more negative diversity [9,10]. Moreover it is not uncommon that when different clas-
sifiers are applied for the same pattern recognition task they turn up to be strongly 
dependent and so are their errors showing similar patterns of misclassification [9]. To 
be complete, the probabilistic analysis of the dependent events of error occurrences 
would require exponentially complex calculations of conditional probabilities of all 
combinations of events and becomes unmanageable even for small number of classifi-
ers [11]. What is more, probability estimations of higher order dependencies can be 
unreliable due to sparsity of examples unless vast amount of data is provided. To 
avoid these problems  some studies consider simplifications in a form of using only 
lower order dependencies, possibly applying them to approximate higher order de-
pendencies and completely ignoring or assuming independence for the highest order 
dependencies [11].  

Alternatively, coincident errors can be represented by means of sets [12]. In this 
approach the errors from a single classifier are mapped into corresponding set of indi-
ces of misclassified samples. If more than one classifier misclassifies a particular sam-
ple then the index of this sample becomes an element in the intersection of sets corre-
sponding to misclassifying classifiers. Using such representation, all available infor-
mation related to error coincidences can be visualized as a complex architecture of 
overlapping sets resembling Venn Diagrams comprehensively discussed in [13]. Such 
collection of classifier sets represents a simple and coherent source of complete infor-
mation about error coincidences. It encapsulates all conditional probability measures 
but at the same time preserves information about individual indices of misclassified 
samples, which would have been lost in the probabilistic representation of error coin-
cidences. 

Moreover, as we show in this work, applying a simple algebra on the cardinalities of 
different subsets of the collection of classifier sets leads to the derivation of various 
measures of dependency derived independently in the past. This relates for instance 
to the long-lasting debate of which information to choose: mean classifier error or 
pairwise diversity measure (i.e. ‘Double Fault’ measure discussed in [7,8]) to optimally 
select classifiers for a combining method [14]. We show that both types of information 
stem from common relation apparent in the set representation of coincident errors and 
for that reason instead of being competitive, they can be supportive as they both 
bring some new descriptive information. 

We further consider potential applications of the set representation of error coinci-
dences for majority voting operating on binary outputs (correct/incorrect), proved as 
simple yet quite powerful combining method [15-18]. We show a novel definition of 
majority voting error expressed by the predefined coincidence levels and investigate 
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its relation with cardinalities of lower and higher order error coincidences and their 
combinations. 

The remainder of the paper is organized as follows. Section 2 gives a theoretical ba-
sis of a set-collection representation of error coincidences including definitions of two 
types of coincidence levels presented in the subsection 2.1, and an optimized method 
of collection generation and operations on error coincidences briefly described in 
section 2.2. In section 3 we show how the set analysis of error coincidences relates to 
the majority voting combiner and its error. Section 4 provides the results from the 
experiments with a number of real datasets and classifiers showing some numerical 
properties of the collection representation and correlations between majority voting 
error and different combinations of coincidence levels. Finally, summary, conclusions 
and further potential applications of the presented ideas are given in section 5. 

2. Set Representation of Coincident Errors  

Given a system of M  trained classifiers { }M1 D,...,DD =  applied for the classification 
of N  data samples let ( )iM2i1ii y,...y,yy =  denote a joint output of a system for the ith 
input sample ix , where iky  refers to individual output of the kth classifier for that sam-
ple and M1,...,kN,1,...,i == . In this work we consider only binary outputs assum-
ing 1yik =  as an error and 0yik =  as a correct classification. The outputs form a bi-
nary matrix of outputs MNY × , which is a starting point of our considerations. 

For the purpose of combining, there is no need to keep the information about all the 
outputs but only about errors and their distribution among all the classifiers [8]. This 
fact makes sets analysis particularly attractive for the description of errors and the way 
the errors are shared by different classifiers. From the set analysis standpoint each 
classifier kD  can be associated with a set kS , containing the indices of misclassified 
data samples. We call such sets the classifier sets. In a very common situation of more 
than one error for the same sample, its index has to be shared by corresponding classi-
fier sets. We denote a complex system of overlapping classifier sets obtained in this 
way by { }M1 S,...,SS =  and call it shortly a collection. The set representation of coin-
cident errors can be now formally expressed as a mapping from a binary matrix of out-
puts into a collection: 

}S,...,S{YSY
M1

MN →⇔→ ×  (1) 

The collection can be visualized by means of Venn Diagrams [13]. Figure 1 shows an 
example of such diagram for given outputs from 3 classifiers. For a larger number of 
classifier sets, visualization of coincident errors is more complicated as it is difficult to 
visually represent all combinations of classifiers given in the form of exclusive subsets 
of classifier sets. Figure 2 shows some examples of Venn Diagrams for more than 3 
classifier sets. Venn Diagrams and their construction represent a complex mathematical 
problem on its own and some further related details can be found in [13]. For the pur-
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pose of this work only some properties of the Venn Diagrams and graphs associated 
with them will be used. 

 
 
 
 
 
 
 
 

Figure. 1   Visualization of a set representation of coincident errors. A – binary outputs from 3 
classifiers (0-correct, 1-error). B, C – Venn Diagrams showing all mutually exclusive subsets. D 
– Venn Diagram with the indices of samples put in the appropriate subsets positions. 

Figure. 2   Venn Diagrams for more than 3 classifiers. A: 5 congruent ellipses. B: 6 triangles. C: 
7 symmetrical sets - Grunbaum construction. D: bipartite plot of 8 sets – Edward’s construc-
tion. See [13] for further detail. 

 
2.1   General and Exclusive Coincidences 

Given a collection of classifier sets, the coincidences of errors from a specific comb ina-
tion of classifiers }D,...,D,D{

k21 iii  can be viewed as subsets representing intersec-

tions of corresponding classifier sets. 

( ) Ik

1j i
G

...iiiiii
G

jk21k21
SC}D,...,D,D{C

=
==  (2) 

where k1 i...i  represent indices of classifiers and: 

k}D,...,D,D{
k21 iii = 1 (3) 

We call such type of coincidence the k th-order general coincidence of the errors from 
classifier subset }D,...,D,D{

k21 iii . We call it general as it does not depend on the other 

classifier sets, which may also overlap the considered intersection subset. On the 
other hand much different but not less important information related to the same sub-
set of classifiers is given if considered intersection subset is not overlapped by any 

                                                                 
1 The symbol S  denotes the cardinality of a set S and means the number of elements in this 

set 

1 

7 4 

9 

8 

6 
3 

 

5 

2 

D1 

D2 D3 

D1D3 

D2D3 

D1D2 

D1D2D3 

# D1 D2 D3 
1 1 0 0 
2 0 1 1 
3 1 1 1 
4 0 0 1 
5 1 1 1 
6 1 1 0 
7 0 1 0 
8 0 1 1 
9 1 0 1 

 



 5 

other classifier set from the collection S . We refer to such intersection as the k th-order 
exclusive coincidence and define it formally by: 

UI M

1kj i

k

1j i
E

...iii jjk21
SSC

+==
−=  (4) 

Both coincidences are graphically shown in Figure 3-a for a simple example of 3 classi-
fier sets.   
To be able to consider relationships between these two types of coincidences effec-
tively, we define a k th-level of coincidence as a sum of all different coincidences of the 
same order and type as shown in the following formula: 

M2k-M1k-M1k1-k21k21 ...iiii...iii...iiik C...CCL
+++

+++=  (5) 

Note that the number of coincidences to be summed is: 

{ } 





=

++ k
M

C,...,C
M2k-M1k-Mk21 ...iii...iii  

(6) 

An important fact about the introduced coincidences is that they both represent com-
plete information about error relations among classifiers and in a sense complement 
each other. In different applications however one type of coincidence may be more 
useful than another for different reasons. 

We consider now the relations between general and exclusive coincidence levels. 
Each kth-level of one type of coincidence can be decomposed into a sum of equal and 
higher levels of the other type of coincidences as defined by a pair of formulas: 

( )∑∑ =

−

= 





−=





=

M

ki

G
i

kiE
k

M

ki

E
i

G
k L

k
i

1LL
k
i

L  
(7) 

An obvious consequence of the definition of exclusive coincidence, is that all their 
levels sum up to the cardinality of the union of classifier sets: 

UM

ki i

M

ki

E
i SL

==
=∑  (8) 

From (2) and (4) it is also clear that any exclusive coincidence is always smaller or 
equal to the corresponding general coincidence of the same order. Consequently the 
same relation applies to coincidence levels:  

G
k

E
k

)5(
G

i...i
E

i...i LLCC
k1k1

≤⇒≤  (9) 

Note that for the highest level where Mk = , both levels are equal: G
M

E
M

LL = . For the 

application purposes we consider a sum of higher levels of exclusive coincidences. It 
can be shown that adding E

i
L  from certain ki =  to the highest level ( Mi = ) gives 

the following simple expression: 
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Effectively, sequential summing and subtraction of consecutive general coincidence 
levels can easily represent the sum of exclusive coincidence levels. 

Example: 3 classifier sets 
Given 3 classifier sets }S,S,S{ 321  we consider two scenarios, when different types of 
coincidence information is given and the other is to be retrieved. 
1. General coincidences are given. In this case only cardinalities of different comb i-

nations of set intersections are necessary. This allows to calculate general coinci-
dence levels according to (4) as shown below: 
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SSSCL
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(11) 

For the example shown in Figure 1, general coincidence levels  would give the fol-
lowing values: 2L,10433L,17665L G

3
G
2

G
1

==++==++= .    

From (7) and given general coincidence levels (11), the sums of exclusive coinci-
dence levels can be retrieved as follows: 
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(12) 

Again for the example in Figure 1, the values for exclusive coincidence levels 
would be: 2L,42310L,32310217L G

3
E
2

E
1

==⋅−==⋅+⋅−=  

2. Exclusive coincidences are given. Optimally they can be extracted directly from 
the binary matrix of outputs Y , introduced in section 2. As in previous case the 
respective coincidence levels can be calculated according to (5): 
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(13) 

For the example shown in Figure 1, exclusive coincidence levels would give the fol-
lowing values: 2L,4211L,3111L E

3
E
2

E
1

==++==++= .    

And further transformed into general coincidence levels according to (7):  
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(14) 

with values: 2L,10234L,1723423L G
3

E
2

G
1

==⋅+==⋅+⋅+=  for the example in 

Figure 1.  
 
 
 
 
 
 
 
 
 
 

Figure. 3   Two types of error coincidences for the classifier 1D  and 3D  of the ensemble 
{ }321 D,D,D . A: Example of error indices distribution. B: General coincidences 

{ }( ) }6,5,3{,C 31G =DD . C: Exclusive coincidences { }( ) 6D,DC 31E = . 

2.2   Collection generation 

The question might be asked: is the collection representation of error coincidences 
any better than binary matrices? We show that the answer to this question a is very 
decisive yes. First immediate advantage of the collection is that it stores only valuable 
information related to errors. For the purpose of combined error modeling, the superi-
ority of information related to errors rather than correct outputs was recently con-
firmed in [8] and formulated as asymmetry of the diversity measure with respect to the 
output change. Furthermore, whatever the purpose of using error coincidences, the 
information regarding any specific coincidence has to be accessible as fast as possible 
and the collection of classifier sets offers further advantages in comparison to the 
binary matrices. Rather than extracting all different combinations of classifier set inter-
sections as it happens for the binary matrix of outputs, collection offers much simpler 
access to any coincidence information, exploiting inclusion relation among different 
coincidences. Inclusion properties can be very effectively implemented for both quick 
generation of collection data structure and extraction of any information in a graph 
propagation manner. 

Generation of the collection of classifier sets is not a straightforward process and it 
requires a specific data structure. As shown in previous section general coincidences 
of higher orders are non-increasing in value. In practice they are decreasing very 
quickly as long as the classifier errors are not strongly correlated. Exp loiting this fact 
we show a simple mechanism for rapid generation of all general coincidences. One 
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observation is here important. Namely, general coincidence of the kth order can be most 
effectively obtained from the intersection of two general coincidences of the 1k −  
order as they have the most narrowed set of elements that we have to deal with. Start-
ing from the lowest coincidence levels it is possible to devise a recurrent algorithm 
rapidly generating all general coincidence levels. Both the algorithm and an associated 
graph are shown in Figure 4. 

Assuming that we have easier access to exclusive coincidences, we can immedi-
ately retrieve the general coincidences according to (7). Graphs associated with Venn 
Diagrams can be effectively used for an illustration of this procedure as shown in 
Figure 5. General coincidence of the kth order is found as a sum of all exclusive coinci-
dences (nodes) found on all the paths of ordered graph propagation starting from the 
highest order exclusive coincidence down towards the respective exclusive coinci-
dence of the kth order included in the considered general coincidence.  
  

 
 
 
 
 
 

 
 
 
 
 
 
 

Figure. 4   Collection generation. A. Algorithm. B. Visualization of the collection generation 
process. 

 

A. B.  

Figure. 5   Graphs associated with Venn Diagrams. A. An ordered graph of exclusive coinci-
dences for 3 classifier sets. B. Unordered graph for Edward’s construction of 5 sets, to order the 
graph, all vertices have to be directed towards lower order coincidence. 

function gc=GenSetCon(c) 
if size(coll)==2 then %if 2 sets 
   ints = c(1)∩c(2) %intersection 
   gc= IintsI   %cardinality             
else 
   M=size(coll);  %number of 
sets   
   gc=[]; 
   for i=1:M-1 
      ints=[]; 
      for j=i+1:M 
         ints=[ints, 
c(i)∩c(j)]; 
      end; 
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3. Majority Voting Errors 

Majority voting is an example of a simple fusion operator that can be applied for com-
bining multiple classifiers with both soft and binary outputs. Moreover, it can be ap-
plied practically for any classifiers as their outputs can always be mapped, if neces-
sary, to the binary representation. 

Given a system of M  classifiers: }D,...,{DD M1=  applied for N  input data ix , 

N1,...,i =  we can obtain the binary matrix of outputs MNY ×  (0-correct, 1-error)  intro-

duced in Section 2. The decision of majority voting combiner MV
i

y  for a single i th data 

sample can be obtained according to the following formula: 
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For the whole binary matrix the estimate of the  
combined error would be then: 

Nye N

1i

MV
iMV ∑ =

=  (16) 

A more detailed definition of MV including the rejection rule observed for 

2/MyM

1j ij =∑ =
 when M  is even can be found in [15]. However, this work is not con-

cerned with a detailed study of MV itself and in further analysis, without any loss of 
generality, we assume odd M . What is interesting about majority voting with respect 
to the presented set representation of error coincidences is that the definition of the 
MV error can be explicitly expressed by means of both types of coincidence levels as 
shown in the following relations: 
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(17) 

Not surprisingly, only higher levels of coincidences decide about the level of major-
ity voting. The question is however, whether a single coincidence level may convey a 
meaningful information about the performance of majority voting. In many recent pub-
lications the relation between various diversity measures and the performance of ma-
jority voting combiner has been studied [6-8]. In our work [8] we showed that two 
diversity measures: ‘double fault’ and ‘fault majority‘ had especially high correlation 
to the majority voting error. The correlations were also better than for a measure based 
on a mean classifier error. The strength of both measures has been identified as result-
ing from the asymmetry of their definitions with respect to the classifier outputs and 
greater emphasis put on measuring coincidences of errors. The set analysis of error 
coincidences presented in this paper can be used to generalize the problem of error 
focused diversity measures and provide further tools to construct other effective di-
versity measures. For instance it can be noticed that the mean classifier error is an 
equivalent to the 1st order general coincidence level and the ‘double fault’ measure is 
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nothing else but a normalized 2nd order general coincidence level in our set representa-
tion presented above. Moreover, the most successful ‘fault majority’ measure has an 
explicit relation with exclusive coincidence levels and the whole concept of discrete 
error distributions shown in [8,16] on which it is based, represent normalized exclusive 
coincidence levels introduced in section 2.1. The usefulness of higher order coinci-
dences for modeling of combiner performance is rather unclear and rarely discussed in 
the past mainly due to high complexity of such analysis. Nevertheless in the experi-
mental section we examine in detail the relationship between different variations of 
coincidence levels and majority voting performance. The results of these experiments 
indicate significant potential applications of the set-based analysis of coincident er-
rors for variety of purposes related to majority voting combiner.  

4. Experiments 

The experiments have been carried out in two groups. In the first simple experiment we 
intend to evaluate the performance of the collection data structure in terms of the time 
of accessing information about error coincidences and compare it against traditional 
but optimized method of coincidences retrieval from the binary matrix of outputs. The 
purpose of a second experiment is to comprehensively examine the relationship be-
tween majority voting error and different levels of error coincidences. In particular we 
want to reevaluate the significance of mean classifier error and ‘double fault’ diversity 
measure (here 1st and 2nd order coincidence levels) in relation to the majority voting 
performance and learn if the higher order coincidence levels may bring some new valu-
able information improving this relation. To maintain the generality of our findings we 
chose 11 out of 19 commonly used classifiers and applied them for a classification of 8 
real datasets taken mostly from the UCI Repository of Machine Learning Databases 2. 
Short description of classifiers and datasets is provided in Table 1 and Table 2 respec-
tively. 
 
 
 
 
 
 
 
 
 
 

                                                                 
2 University of California Repository of Machine Learning Databases and Domain Theories, 

available free at: ftp.ics.uci.edu/pub/machine-learning-databases.  



 11 

Table 1. Description of classifiers used in the experiments. 

Classifier name Description 
Klclc Linear classifier by KL expansion of common cov matrix  
Kljlc Linear classifier by KL expansion on the joint data 
Loglc Logistic linear classifier 
fisherc Minimum least square linear classifier 
Ldc Normal densities based linear classifier 
Nmc Nearest mean linear classifier 
Nmsc Scaled nearest mean linear classifier 
Perlc Linear classifier by linear perceptron 
Persc Linear classifier by non-linear perceptron 
Pfsvc Pseudo-Fisher support vector classifier 
Qdc Normal densities based quadratic classifier 
Udc Uncorrelated normal densities based quadratic classifier 
Knnc k-nearest neighbour classifier 
Parzenz Parzen density based classifier 
Treec Binary decision tree classifier 
Lmnc Feed forward neural network by Levenberg-Marquardt 

rule 
Rbnc Radial basis neural network classifier 
Rnnc Random neural network classifier 
Bpxnc Feed forward neural network classifier by backpropaga-

tion 

Table 2. Description of datasets used in the experiments. 

Dataset  #cases #feature
s 

#classes 

Wine 178 13 3 
Iris 150 4 3 
Thyroid 215 5 3 
Texture 5500 40 11 
Biomed 194 5 2 
Liver 345 6 2 
Satimage 6435 36 6 
Chromo 1143 8 24 

4.1   Experiment 1 

To prove the efficiency of set representation of error coincidences we compared the 
time of extracting the cardinalities of all possible general coincidences from the 
collection data structure and from the binary matrix of outputs. For that purpose we 
generated a series of artificial binary matrices of outputs k10000Y ×  where 

}11,9,7,5,3{k =  equivalent to the outputs from 11,...3k =  classifiers with mean error 

of 40%. For each of these matrices we generated the respective collection data 
structure and for both matrix and collection we measured the time needed to calculate 
cardinalities of all possible combinations of general error coincidences extracted from 
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the binary matrix of outputs and from collection according to the algorithm shown in 
Figure 4. The results are shown in the Table 3. 

Table 3. Comparison of the time needed to extract cardinalities of all general coincidences from 
a binary matrix of outputs and a collection for different number of classifiers. 

# Classifiers Binary Matrix – Time 
[s]  

Collect ion – Time 
[s] 

3 0.02 0.01 
5 0.16 0.12 
7 0.84 0.58 
9 4.49 2.96 

11 22.77 14.58 

 
Although complexity of the process remains the same, the time of extracting 
information about all general coincidences is shorter for the collection representation 
of error coincidences. The time savings become more significant for the larger number 
of classifiers. The results confirm an advantage of the set representation of error 
coincidences in terms of accessibility and managebility of vital information about error 
coincidences. 

4.2   Experiment 2 

In this experiment we examined relation between majority voting error and individual 
and combined coincidence levels of both types. First step towards this goal was to 
prepare binary matrices of classification outputs. Initially we applied 19 different clas-
sifiers for 8 real datasets split 100 times randomly into equally populated training and 
testing set. Descriptions of both classifiers and datasets used are provided in Table 1 
and Table 2 respectively. The classifier outputs obtained for only testing set were 
hardened and stored in large binary matrices of outputs. It turned very quickly that 
error coincidence analysis of 19 classifiers is very expensive computationally and 
virtually impossible to perform using available resources. For this reason only 11 clas-
sifiers have been chosen guided by the minimum average ‘double fault’ measure and 
the binary matrices reduced accordingly. 

In the next step, out of these 11 classifiers we considered all combinations of 3, 5, 7 
and 9 classifiers for which all exclusive and general coincidence levels have been cal-
culated and stored together with the majority voting error associated with each comb i-
nation. We measured dependency between majority voting error and different coinci-
dence levels separately for different sizes of the classifier team. Effectively for each 
series of all k-element combinations of classifiers we obtained k correlation coefficients 
between majority vote errors and k series of 1st to kth order coincidence levels measured 
separately. Figure 6 shows the evolution of the correlation coefficients along increas-
ing levels of general error coincidences for all examined datasets. Clearly there is 
greater relation of the lower levels of general coincidences. There is however no con-
sistent rule on which of the lower levels is the most informative in terms of correlation 
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to the majority voting error. For the extreme example of Wine dataset 1st level of general 
coincidence is surprisingly completely uncorrelated with majority voting but already 
the 2nd level reaches very high value of the correlation coefficient above 0.9. On the 
other hand there is the example of Liver dataset for which the 1st level of general coin-
cidence is the most correlated with combined error and the correlations for the follow-
ing levels are falling dramatically and by the 3rd level remain in the completely uncorre-
lated state with correlation coefficients close to zero. Taking into account all the data-
sets from Figure 6, 1st and 2nd general coincidence levels share the position of most 
correlated information to the majority voting error. However, it does not have to be 
general rule as we can see for the Texture dataset where for the comb inations of 9 
classifiers the maximum correlation seems to be at the 3rd level and the shapes of the 
correlation curves suggest that for a larger number of classifiers this maximum could 
possibly be shifted towards higher coincidence levels. The tendency of increased 
correlation coefficient for the fixed level of general coincidence but ris ing number of 
classifiers is also evident for all datasets. The exception to this rule is observed only 
for the 1st level where this tendency is opposite but gets reversed between 1st and 2nd 
coincidence level. Effectively the emerging conclusion could be that for small number 
of classifiers the 1st coincidence level (equivalent to the mean classifier error) has a 
greater chance to be better correlated with majority voting than for large number of 
classifiers where the 2nd and possibly higher levels are more likely to reach the maxi-
mum correlation.  

The equivalent relations between majority voting error and exclusive coincidence 
levels, are shown for just 2 datasets in Figure 7. The plots represent two patterns of 
correlation curves that we persistently observed for all datasets. For some datasets the 
correlation curves tend to peak around the middle level and fall on both sides as 
shown for the Texture dataset, whereas for other datasets the correlation curves were 
completely shapeless oscillating chaotically around zero or slightly above zero correla-
tion. The first pattern is easy to explain, as the exclusive coincidence levels are the 
ones taken directly to the sum forming majority voting error definition. The middle 
levels are positioned at the decision boundary of majority voting and are the first 
taken to the error definition. The second pattern, very commonly observed among the 
datasets, proves however that exclusive coincidence levels on their own represent 
rather insufficient information for effective modeling of majority voting error. 

Furthermore, apart from the relation to individual coincidence levels in the same 
manner we also examined the MV error relation to the three types of sums of coinci-
dence levels: 

1. kth sum of type 1 of coincidence levels from 1 to k out of M classifiers.  
2. kth sum of type 2 of coincidence levels from k to M out of M classifiers. 
3. kth sum of type 3 of coincidence levels from  2/M  to M out of M classifiers 

according to the formula (10). 
These sums have been designed as simple examples of the combinations of coinci-
dence levels and are intended to indicate whether the joint coincidence information 
could improve the correlation with majority voting error. Figure 8 shows the results for 
type 1 sums for general coincidence levels illustrated for 4 representative datasets. For 
comparison the correlation curves for individual general coincidence levels (shown in 
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Figure 6) are also shown here in thin lines. What is striking for the Liver dataset in the 
fact that the sum of the first two general coincidence levels is better than the 1st level 
individually despite drastic fall of correlation for the 2nd level individually. In other 
words the pairwise coincidence information brings such vital additional information to 
just mean classifier errors that jointly this information is the most meaningful in terms 
of majority voting error. If correlation curves are not sloping down that fast the sum of 
more than two first levels may be optimal. For Satimage dataset the sum of the first 3 
and for the Thyroid the sum of the first 5 general coincidence levels gave the maximum 
correlation with the majority voting error. In the extreme cases like for the Wine dataset 
the sum of coincidence levels is not optimal due to disastrous contribution of a com-
pletely uncorrelated 1st level. Nevertheless addition of further general coincidence 
levels substantially raises correlation coefficients. Summarizing,  the sum of type 1 of 
the general coincidence levels may substantially improve correlation with majority 
voting error comparing to the correlation with individual coincidence levels. Further-
more it prevents to a certain degree, situations of completely uncorrelated measure 
that can happen for individual general coincidences as shown for Liver and Wine 
datasets. The gain in the correlation to the majority voting error is likely to continue by 
adding further general coincidence levels when correlation curves for individual coin-
cidence levels are falling slowly. 

Individual examples of the sums of type 2 and type 3 are shown in Figure 9 but they 
did not bring any significant results. This is somewhat surprising as in the special 
cases they become exactly the definition of majority voting error represented by exclu-
sive and general coincidence levels respectively. The unit correlations between type 2 
sums of exclusive coincidence levels are observed for summing the higher levels start-
ing from the middle (  2/M  for M classifiers) as shown for Satimage dataset in Fig-
ure 9; the unit correlations between type 3 sums of general coincidence levels are 
observed for summing the higher levels starting from the middle according to (10) as 
shown for Biomed dataset in the same figure. However only small variations from 
these precisely defined sums result in a total decorrelation of their values with the 
majority voting error. In that sense, additionally due to costly information of highest 
levels of coincidences they require, their significance is rather weak. 
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Figure. 6   Correlation coefficients between majority voting error and individual general coinci-
dences grouped in series of 3, 5 ,7 ,9 out of 11 classifiers for 8 considered datasets as marked.  
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Figure. 7   Correlation coefficients between majority voting error and individual exclusive coin-
cidences grouped in series of 3, 5, 7, 9 out of 11 classifiers for 2 representative datasets showing 
two patterns of the relationship observed for all 8 examined datasets.  
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Figure. 8   Correlation coefficients between majority voting error and type 1 sum (from 1st to 
kth level) of general coincidence levels here showed in bold lines. For comparison, correlation 
curves of the individual general coincidences are also shown in thin lines. 4 out of 8 examined 
datasets with most representative patterns of the relationship are presented are presented. 
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Figure. 9   Correlation coefficients between majority voting error and: LEFT: type 2 sum (from 
kst to M th level) of exclusive coincidence levels here showed in bold lines. For comparison, corre-
lation curves of the individual exclusive coincidences are also shown in thin lines, RIGHT: type 
3 sum of general coincidence levels with correlation curves of the individual general coincidences 
shown for comparison in thin lines. 

5. Summary, Conclusions and Future Work 

In this paper we attempted to show that relations among errors of multiple classifiers 
could be very effectively modeled by a collection of overlapping sets holding indices 
of misclassified samples for each classifier. Comparing this set representation of error 
coincidences against complete binary matrix of classifier outputs we proved experi-
mentally that the collection of classifier sets offers faster access to the information 
about error coincidences. This important advantage has been achieved by excluding 
redundant information related to the correct classification outputs and efficiently ex-
ploiting inclusion relation among coincident errors for the algorithm of fast coinci-
dence retrieval. Comparing against probabilistic models of error coincidences our set 
representation covers all possible probabilistic measures with the additional advan-
tage of keeping indices of individual samples misclassified by particular classifiers. On 
top of that the error coincidences represented by a collection of sets can be to a cer-
tain degree visualized by Venn Diagrams, examples of which have been shown in this 
work, contributing to a greater understanding of the complexity of the error relations. 

 
Enormous number of subsets arising from the collection of overlapping sets in-

spired us with the definition of the two complementary types of coincidences: exclu-
sive and general. Exclusive coincidences expressing joint error incidence of selected 
classifiers with the presence of all correct outputs from the other members of the team 
represents more constrained information than general coincidence completely ignoring 
the background information. To handle such distinct information arising from a vast 
number of subsets and also for the application purposes we defined respective coinci-
dence levels numerically describing the sum of cardinalities of all coincidence subsets 
of the same number of classifier sets. By performing a simple algebra on the coinci-



 18 

dence levels we derived definitions of a number of diversity measures operating on 
error coincidences. Not only mean classifier error (1st general coincidence) and ‘double 
fault’ measure (2nd general coincidence level) but also complex ‘fault majority‘ measure 
and even majority voting error itself is shown as a quantity derivable from simple op-
erations on coincidence levels.  

 
Developing the findings from our previous work [8] related to the successful asym-

metric diversity measures, we thoroughly investigated the relations between majority 
voting errors and individual and combined error coincidence levels examined by the 
correlation coefficients. For a number of real datasets we showed experimentally that 
general coincidences represent the information much better related to the majority 
voting errors than exclusive coincidences. What is even more precious the lowest 
levels of general coincidences, which represent the least complex measures, appear to 
be the most informative in terms of the relation to the majority voting error. Unfortu-
nately, the linearly complex 1st level of general coincidence representing simply mean 
classifier error is not always the best choice. It appears that the 2nd level of general 
coincidence (‘double fault’) would show the best average correlation with the majority 
voting error, which confirms the findings from [8]. Further analysis revealed that for 
some datasets the 3rd general coincidence level exhibited the higher correlation with 
the majority voting error and for a larger number of classifiers the optimal level is quite 
likely to be shifted towards higher coincidence levels. Another novel finding is that 
combining general coincidence levels in a form of simple sums results very often in 
further improvement of the correlation with majority voting error observed as rising 
even if added level is on the falling individual tendency. This proves that different 
coincidence levels bring some portions of a unique valuable information related to the 
majority voting, which jointly can be used to achieve better correlated measures. Only 
for the cases when the first level is much less correlated than the second level, the sum 
of the first 2 general coincidence levels is not the optimal choice. For more steady 
individual correlation curve, the sum of even more first levels shows optimal. The a 
priori prediction of the evolution of the correlation curves is however difficult and 
possibly needs additional information related to the dataset and classifiers.  

 
Summarizing, lower levels of general coincidences both individually and in simple 

combinations show high correlations commonly exceeding 0.9 with the majority voting 
errors. This information is very vital for a variety of applications related to the majority 
voting and possibly other combining methods. The above set analysis of error coinci-
dence provides a good starting point for construction of simple yet well correlated 
with majority voting error diversity measure. The high correlation with combiner error 
means that it is possible to use the measure for selection of the best comb ination of 
classifiers or more securely a number of best combinations as shown in Figure 10. 

Furthermore we intend to apply the above set analysis of error coincidences for the 
low cost approximation of the value of the majority voting error according to the novel 
definition (17), which just requires estimation of any type of coincidence levels. The 
information about error coincidences can be also applied for the analysis of the limits 
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of majority voting errors. Specifically, interesting is the level to which the combined 
error limits shrink with incoming information of error coincidences.  
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Figure. 10   Illustration of importance of correlation coefficient for classifier selection in the 
example of the dependence between general coincidence levels of 3 out of 11 classifiers and the 
majority voting error for the Liver  dataset. A. Relation of the first general coincidence levels. B. 
Relation of the second general coincidence levels. C. Relation of the sum of the first and second 
general coincidence level with majority voting error. 
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