
Using Enactable Models to Enhance Use Case Descriptions

Keith Phalp
ESERG

Bournemouth University, UK
kphalp@bmth.ac.uk

Karl Cox
Computer Science and Engineering

University of NSW, Australia
karlc@cse.unsw.edu.au

Abstract

Many tools developed for process modelling either
model client business processes or the software
development process itself. In both cases, benefits are to
be found by using the model to highlight real process
problems either of clients or developers. However, the
modelling of client business processes allows a further
opportunity for gain, where the intention is to build a
system to provide support for the process being modelled.
Although process models inform the requirements
process, by providing clarity and understanding at the
business modelling stage, the potential of such technology
is often lost in the subsequent development phases.

The premise of the work described here is to use
enactable state-based approaches, previously used
successfully in business process modelling and
simulation, to improve artefacts of requirements
engineering, by providing enactable versions of use case
descriptions. This allows for the kind of validation and
checking so useful to business models. In particular, such
models can be used to inform design, by providing
rigorous scrutiny of the (low-level) details of use case
behaviour.

The efficacy of this approach was gauged initially by
producing enactable equivalents of use case descriptions
using the existing process modelling language and tool
RolEnact. However, industrial application also found that
there was a mapping overhead and, hence, end users
were reluctant to devote their time to producing enactable
use cases without increased automation. This suggested a
pressing need for tool support. That is, a use-case
description tool which provided enaction capability, but
without need for any further description. A prototype use
case enaction tool is, therefore, introduced, along with a
discussion of development issues and possible future
directions.

1. Introduction

The rationale for considering the application of process
technology to use case descriptions is that despite many
years focus on software process, the requirements phase
still seems somewhat neglected by practitioners. Glass [1]
notes that many software projects fail due to poor or non-
existent requirements processes. In the UK, Hall et al. [2]
report that 48% of development problems are in the
requirements phase. The potential cost of such problems
is significant. Standish [3] estimated that “in 1995
American companies and government agencies will spend
$81 billion for cancelled software projects” and $59
billion for those (‘challenged’ projects) that overrun in
time or budget and which deliver (on average) only 61%
of specified functionality.

One might wonder why this situation still occurs,
particularly with a proliferation of methods purported to
address the entire development process. For example, the
Unified Modelling Language (UML) offers a host of
diagram types for the software developer. However,
support for requirements activities within the UML is
provided primarily by one diagram type (and associated
descriptions) the Use Case [4]. Though it has been
suggested that objects are obviously identified in Use
Cases [5], experience shows that this is not the case when
considering design [6]. A number of other authors have
also questioned whether Use Cases provide sufficiently
comprehensible descriptions, not only for the description
of requirements (e.g. [7, 8]) but also for moving towards
design [9].

Jarke [10] elaborates upon this: The UML “hardly
satisfies the demand for an adequate communications
medium between users, developers, and other
stakeholders.” That is, the Use Case (and particularly the
use case description) does not provide sufficient
information to support meaningful dialogue between
stakeholders. Maiden and Corrall [11] point out that
“engineers rarely know… what the content and structure
of … scenarios should be,” (p2/1) because they lack

usage guidance. Hence, validation and revision of such
descriptions is often difficult. Indeed, Anda and Jorgensen
[12] state that the “lack of studies on Use Case Model
understanding means that the guidelines and practices on
how Use Cases should be described to ease their
understandability… is highly subjective,” (p.2). Despite
the importance of Use Cases (being the only part of the
UML geared to the requirements phase) Jarke [10] also
notes that Use Cases and scenarios are hardly supported
by present UML-oriented tools.

 The L’Ecritoire tool [13] does not specifically address
enaction; though it is concerned with the way descriptions
are written. The SCORES tool focuses on verifying and
validating the transition from use cases to class models
[14]. The ScenarioPlus Toolkit [15] records scenarios as
descriptions of requirements without consideration of
enaction. Indeed, even Rational RoseTM barely supports
use case descriptions, though other tools (e.g., [14]) may
be used from Rose.

In contrast, many process-modelling tools, though
often possessing impressive (enactable) functionality, do
not consider the use case description, nor do they address
requirements concerns. Thus, there appears to be a need
for a use case tool that addresses two key issues, the
representation of textual use case descriptions and also
the formal enaction of subsequent descriptions as a
validation of requirements.

Hence, there are two research problems to be
addressed. Firstly, that the use case description itself, as it
stands, is not adequate. Secondly, that tool support is also
lacking. This paper examines the kind of information that
use cases lack, and then suggests how tool support (and in
particular the use of enactable models) addresses this
issue. In suggesting this approach, the work borrows
heavily from process modelling, which has used state-
based paradigms to highlight such issues. In particular,
exploratory work used the RolEnact business process
modelling language [16] to provide models equivalent to
given use case descriptions.

The rest of this paper is as follows. Section two
examines the inherent weaknesses of use case
descriptions, particularly with respect to their support for
understanding the dependencies among events. Section
three further examines the idea of dependencies and the
use of enactable models to clarify such issues. Section
four describes experiences with enactable models. These
experiences suggested the need for an enactable use case
tool; see section 5. Section six describes the issues and
development of the use case enaction tool. Finally,
section seven offers some conclusions and considers
further work and unresolved issues.

2. Use Cases and dependencies

A number of authors have reported various problems
both with use case diagrams and descriptions, e.g. [17,
18]. In particular, use case descriptions lack state-based
information, and do not explicitly include any details
about the dependencies of actions (except those at the
start and finish of the whole description). Sutcliffe [19]
suggests that an examination of dependencies in scenarios
(and, hence, Use Cases [20]) can be used as a validation
mechanism between requirements and specification and
would be of use in subsequent design.

This paper argues further, that a full understanding of
dependencies among actions is crucial to subsequent
design and implementation. Hence, we now discuss the
kind of issues that arise when dependencies are not fully
and explicitly stated, and show the problems of finding
such dependencies among use case description events. As
an example, consider a generic use case.

SubjectA verb1 ObjectX
SubjectB verb2 ObjectY
SubjectC verb3 ObjectZ

Upon reading the description, one might wonder under
what circumstances the final action (verb3) is able to
occur. That is, is it dependent upon verb2 having taken
place, or perhaps, verb1, or both or neither? It is usually
taken that such information is clear from the text.
However, as many will attest, such (implicit) assumptions
in requirements are at best optimistic, and at worst
dangerous [21].

Often, validation of such issues is important,
particularly where the domain knowledge of the users
may stop incorrect assumptions being made. Consider
two (very similar) sporting examples, illustrated by the
following use case description.

1 The match reached full-time
2 The referee blew his/her whistle
3 The ball crossed the goal-line
4 The goal was not given

Alternative Flow of Events

4a The goal was given

Consider the dependencies in this Use Case. It is
normal to assume a roughly transitive dependency. That
is, 3 follows from 2, which follows from 1. However, we
may not be certain of this nor the dependencies. For
example, let us suppose that our chosen sport is football

(that’s soccer to some readers). We might wonder what
line 4 (whether the goal is given) is dependent upon. In
football the game ends at full-time, irrespective of
whether the ball is still in play. Hence, the referee
blowing their whistle (line 2) is dependent only upon line
1 having occurred (although the referee has to look at
their watch to know this). At this point, the match is over.
Therefore, if the ball crosses the line after this (line 3),
then no goal is given.

A famous incident occurred in the 1978 World Cup in
a match between Brazil and Sweden, where exact
ordering had significant repercussions. With only seconds
left a corner was given to Brazil and quickly taken. Only
instants later, a goal appeared to have been scored and the
referee blew his whistle (apparently) as the ball crossed
the line. All commentators assumed that a goal had been
scored. However, referee Clive Thomas claimed that he
had blown for full-time (not to signify the goal) just
before the ball had crossed the line. Hence, play had
ended an instant before the goal had been scored. Despite
much protest, Clive Thomas refused to allow the goal.

A similar incident occurred at the 2002
Commonwealth Games in Manchester, England in a field
hockey match. With only seconds to go, a corner was
taken and the ball crossed the goal line (event 3) after
full-time (event 1), which had been signalled (event 2).
However, in this case the goal did count, because in
hockey the play from a short corner must be completed
for the game to be over.

For these examples, the choice of which line 4 is used,
main flow or alternative, is dependent upon the context.
That is, the choice is dependent upon the correct
interpretation of the rules of the game, and not just upon
the order in which it is written. Therefore, the correct
transition to event 4 (or alternative event 4) is not entirely
apparent solely from the order of the use case description.
It is the understanding of context and its impact on the
dependencies that govern the movement from one event
to the next. Understanding both context and description is
necessary for the correct interpretation of the process –
which may not be the order which the description alone
implies.

These may appear trivial examples (though they
caused much controversy at the time) but they serve to
illustrate important points. Hence, in order to understand
a problem domain, it is necessary to make such issues as
explicit as possible, and to validate this understanding
with end-users and domain experts. This means that
communication with this non-technical audience is
paramount, and hence that accessible modelling strategies
may need to be employed to take account of this change
of audience [22].

3. Consideration of dependencies and
enaction

One way to force consideration of dependency and
related design issues is to ask questions of the use case
description by means of interrogation. This is becoming
accepted in determining the accuracy of use case
diagrams [23] and in checking scenarios against
specifications [19].

However, a more formal approach (and, it is hoped,
through tool support, more complete and less time-
consuming) is to add (named) states to the description.
This allows the modeller to formally consider triggers (or
actions), which move the roles, actors or objects from one
state to the next. This is particularly beneficial when
considering synchronisation of independent objects.
Finally, one might attempt a simulation (or a walk-
through) of the possible actions and states. All of these
may help to bring such issues to light. Experience
suggests (both from process modelling [16, 24] and
latterly our own) that enaction provides significant
benefits in terms of understanding these issues.

Hence, in order to force consideration of dependencies
the authors saw the need to move to the production of
more formal (enactable) models that were equivalent to
use case descriptions. The use of such (more formal)
models would not only allow rigorous scrutiny of the
descriptions, but also, through enaction capability, would
allow for rapid, more complete validation. In order to test
this idea, the existing process modelling notation
RolEnact was utilised. RolEnact models were produced
for each use case description, which explicitly forced the
choice of pre and post states for each event of the Use
Case. Rather than describe RolEnact the interested user is
referred to original papers [16]. The following section
describes experiences with these (RolEnact) and other
enactable models.

4. Experiences with enactable models

In testing our ideas about use case enaction we used
postgraduate software engineering students, typically
undertaking larger group projects. Our experiences (over
five years of using RolEnact based descriptions)
suggested that models were relatively easy to produce
(though with some overhead) and did help students to
clarify issues. However, we realised that these student
projects were not representative and therefore attempted
this approach with an industrial collaborator [9].

The organisation concerned develops complex web-
based applications for the online buying and selling of

stocks and shares and other financial packages in a highly
competitive market. Each Customer application procedure
is long and the details of the accounts opened are
dependent upon the options selected by the Customer
over the web. Therefore, it is imperative for the
organisation to understand which options are selected and
how their site reacts to that selection – different accounts
require different information so correct dependencies are
vital to the success of the product. The Customer
application process was first modelled with Role Activity
Diagrams [25]. These provided a high-level overview of
the process. From these diagrams, finer-grained use cases
were then derived to describe actor – system interactions
at the application interface.

Other authors have also attempted similar approaches.
For example, Kosters et al [14] mapped use cases the
enhanced UML activity graphs (as part of the SCORES
method), again with the idea of enhancing requirements
validation and verification. They report that their
enhanced validation led to benefits in product quality over
a number of applications. However, they also note some
scepticism by users, about the amount of effort required
up front.

Although users (by the end of projects) may accept the
benefits of such approaches, it was apparent that the
increased modelling complexity (even if only perceived)
was acting as a barrier to the acceptance of these kinds of
technologies. For example, in our case, it was clear that
production of a state-model (even in a simple language
like RolEnact) was not an attractive proposition. That is,
although they found the approach beneficial, the overhead
of learning, what appeared to be a formal approach, was
somewhat off-putting for developers. Hence, there was a
need to allow users to gain this kind of functionality,
without having to write (albeit simple) code, or map to
other notations. This led to the realisation that there was
an urgent need for ‘simple to use’ tool support.

5. Need for a use case enaction tool

As stated, early experience with enactable models of
use case descriptions suggests that, though useful for
validation, they were not always feasible for industrial
application (mostly due to the perceived overheads
involved in construction of the enactable models). This
led to our move to develop tool support. The tool needed
to allow the user to step through sequences of available
events, using state based information to control their
dependencies and thus which events were available at any
given point. However, the tool also needed to produce this
enaction directly from a normal use case description. That
is, the tool should provide a use case editor, which will

then allow the user an enaction capability without the
need for further work.

The main problem with attempting such automation is
that the basic use case does not contain sufficient data for
one to ‘know’ which events are dependent upon others.
Hence, the tool would need to allow the user to augment
events, in order to make ordering explicit, or to change
the ordering or dependencies. These issues, and our
solutions to this dilemma, are now discussed with respect
to development of a prototype ‘use case enaction’ tool.

6. Issues encountered in developing a use
case enaction tool

An enaction tool aids the participation of both the
customer and the requirements engineer in the validation
process. In particular, the requirements engineer may
easily show the customer the implications of the
behaviour implied by use case descriptions. Indeed, this
increased understanding on the part of both parties, and
has shown to be one of the major benefits of enactable
process models [22].

6.1. Default dependencies and enaction

In order to appeal to many development organisations
it was felt that there should be a low-entry cost (in terms
of understanding) for new tool users. Therefore, we
wished to provide a basic level of functionality for
minimal effort on the part of the user. Hence, for the first
prototype the default dependencies implied by the use
case description are assumed. That is, the normal ordering
of events is used to produce a default dependency. The
tool also displays the number of the event, which acts as a
pre-condition in a final column. Hence, event 2, in the
default case, is shown to be dependent upon event 1, and
so on (see figure 1).

Figure 1. Actors, actions and dependencies
shown within a description

The advantage of this approach is that it saves the user
time, since (unless the implied sequence is incorrect) no
further information is required. In addition, the non-
technical user may still gain validation benefits, by
stepping through use cases, and possibly revising them,
without needing to delve into an understanding of states.

An example of an enaction step is given in figure 2
below, along with the description from which it was
generated. This is taken from a variant of the classic ATM
use case description [13].

Figure 2. A simple enaction and related
description

However, there are two possible disadvantages to this
simple approach. Firstly, that the user can only control
ordering (of enaction) by re-ordering the description. That
is, the flexibility afforded by process modelling
languages, such as RolEnact is lost. For example, more
complex dependencies, where events depend on multiple
circumstances, or where there are choices, concurrency
and the like cannot be described. (Though of course these
constructs cannot easily be accommodated within normal
use case descriptions without exponentially increasing the
complexity of the use case model.) Secondly, that the user
is not explicitly forced to consider the dependencies for
each event. The danger of making the enaction too simple
to achieve is that the deep understanding gained by
forcing a formal scrutiny of dependencies may be lost.

6.2. Levels of usage

The dilemma in providing a simple to use tool is that
some of the enaction capability is compromised.

The mechanism proposed to deal with these ‘default’
dilemmas is for the initial description (and enaction) to
assume the default ordering (see figure 1), but to allow
the user to change the dependencies for each event when
they wish to deviate from this default.

For example, consider the simple library scenario,
where the librarian (user) is to issue the book to the
customer (or ‘Borrower’). [Strictly speaking, one should
not model the behaviour of the borrower for a use case
specification. However, use cases are often used in this
kind of domain modelling role].

The default ordering would assume that event 4,
‘Librarian validates membership details’, is dependent
upon only event 3 ‘borrower presents membership card’.
However, it may be that the action is dependent on both
presenting a card and on event 1, ‘Borrower presents item
to borrow’. That is, the librarian only moves on in the
process, when they have both the book and the
membership card. An example of this change of
dependencies is shown in figure 3 (note the shorthand
form of AND, which is shown as the intersection of 1 and
3).

Figure 3. Changing dependencies

Other simple conjunctions of dependencies, such as
logical OR, allow for choice, parallel threads and so on.
In addition to changing dependencies, the user may also
add further pre and post states for each event.

This two-tiered approach provides the flexibility and
capability required for detailed enaction (across multiple
use cases) when potentially vital events are examined,
whilst also allowing the more straightforward use case to
be enacted with minimal effort.

As can be seen, the tool allows two main levels of
usage. At the first level the requirements engineer and the
participating stakeholders may simply write the scenario
as a simple sequence running from trigger through to
completion. In this case, the default is that an action is
simply dependent on the preceding action. However, at
the next level more complex dependencies (pre and post

conditions) may also be added by making simple changes
using the dependency modification features. These
additional dependencies are typically within the single use
case, but it may also be that an event in one use case is
dependent upon another event within a different use case
on the same project. (This need to consider multiple use
cases is discussed in section 6.4).

6.3. Alternative paths

One of the main features of the use case description is
that of describing alternatives to the main path. (Note that
for implementation of enaction we consider exceptions
and alternatives as the same functionality, even though we
realise that semantically these are different).

Typically, an alternative (or exception) starts with a
condition that makes it relevant, the pre-condition for that
alternative. The alternate path might contain several steps
describing what happens under that condition and ends
with delivery of its goal or its abandonment.

Once the goal of the path has been achieved, or
abandoned, then the extension post-condition must be
true. For example, again consider a user borrowing books
from a library. The behavioural branch that occurs when
the borrowing limit is exceeded should be recorded with a
pre-condition that the borrower has more books than
allowed limit. However, the subsequent sequence of steps
that occurs within this alternate path may also have
multiple outcomes. For example, the goal of the
alternative may be to achieve a correct amount of books,
thereby returning to the main path, or may be
abandonment of the use case, or may even be the
initiation of another use case (perhaps to deal with fines).
Hence, the user may wish to make both pre and post
conditions for the path explicit. Figure 4, shows the
simple edit box for adding pre and post conditions for an
alternative path.

Figure 4. Adding conditions to alternative path

The handling of some conditions and system behaviour
requires further domain knowledge and might mean
further elicitation of requirements. Cockburn [26] argues
that extensions are where the most interesting system

requirements reside. The team members usually know the
main success scenario. However, failure handling often
uses business rules that the developers do not often know.
Indeed, requirements engineers frequently have to
research the correct system response and quite often that
research introduces a new actor, a new use case or a new
extension condition [26]. Hence, the tool regards all
events and all paths as equal. That is, any path may itself
have an alternative (or an extension). Equally, any path
may also link to another use case (see below).

6.4. Multiple use cases

In the previous discussions, multiple interacting use
cases have been suggested in two ways. Firstly, we note
that the post-conditions for an action could come (as is
usual) from another event within the current description,
or from an event in another description. (Once again
experience with process models shows the importance of
this realisation for non-trivial processes.) Secondly, we
note that any line in a use case (either within the main
path or an alternative) may link to another use case.

Indeed, this reflects our development, in that we started
with single (standalone) use cases and very soon realised
that the potential for the tool was in aiding the more
complex situation, which reflects real processes where
aspects of one use case (or process) have an impact upon
another.

However, there are many issues still to be resolved
with our attempts to provide multiple use case support.
For example, although from a requirements perspective
each description should be regarded as equal, from an
enaction perspective it seems that some hierarchy is
helpful. Hence, we are still experimenting with different
development approaches, and are in the process of ‘trying
out’ these early efforts with current student cohorts.

6.5 Other opportunities (use case guidance)

The opportunity of developing a use case description
tool allowed us to introduce support for writing
guidelines. Such guidelines are typically based upon best
practice, but also draw upon other foundations such as
discourse processing, and have been shown to improve
the quality of use case descriptions [27]. Again, our goal
was to be able to incorporate such guidance without
requiring significant overhead on the part of the user. In
particular, from the very first prototype [28] the tool
supported use case description guidelines (CP Rules
[27]), by providing simple syntactic structures. The most
obvious of these is the use of the subject verb object
format (CP Structure 1). The tool also offers guidance to

the user about other best practices, for example the
avoidance of past tense or passive voice by optional
application of (an expandable) use case rules repository
that flags known ‘bad’ or unrecognised words and
grammars.

6.6 Experience so far

Our initial student-led experiences led us to realise that
we needed to make improvements to the usability of the
tool. For example, one of the problems raised was in
editing or changing the placement of an alternative path
on an existing description. We had assumed that if an
alternative path were shown to be incorrect it would
typically be deleted. We had not considered the
possibility that a path might be internally consistent, but
misplaced within the description. Students suggested that
it would be better to provide functionality enabling users
to simply move the alternative path elsewhere (in the
Alternative Flows of Events sub-section). Closely related
was the idea of re-organising already written descriptions
(re-ordering) without rewriting the entire description from
scratch (as described in 6.1) and the ability to add new
events to the main scenario.

As with our previous experience using RolEnact
models, these student experiences have proved useful in
providing timely feedback on both the process (of tool
usage) and the product. However, we are now attempting
industrial exposure, and are currently collaborating with
an organisation specialising in the production of software
for the support of legal processes. (Indeed, previous
experience suggests that the development of such
products is enhanced by process-based requirements
validation [29]).

.
7. Conclusions

This paper describes weaknesses in the ‘normal’ use
case description, and suggests why such weaknesses are
an area of concern. Typical use case descriptions do not
consider dependencies between individual events. This
means that both the sequence and dependencies among
these events are implicit. However, further scrutiny of
these dependencies often engenders greater
understanding, both of the domain and the specific
problem behaviour. This is of vital importance, not only
to requirements validation but also to subsequent design.

One way to force rigorous scrutiny of dependencies is
the production of formal (often state-based) models, but
such models are not always well received by end users.
This means that a major opportunity afforded by

validation, to gain understanding from domain experts,
may be lost.

A solution to this dilemma is the use of enactable
models, which provide both rigour (in production) and
communication (when being enacted). The authors report
on experience of using enactable models (a commonly
used technique in process modelling) both with students
and industry. In brief, it was found that existing enaction
approaches (such as RolEnact) proved valuable for
validating use case descriptions but were perceived (by
collaborators) as too much of an overhead for industrial
acceptance.

Hence, a use case tool was introduced, which provides
an enaction capability from a normal textual use case
description. The issues encountered in attempting this tool
support are described, as are proposed resolutions. For
example, it was found necessary to produce two levels of
usage; where a default dependency is assumed, which can
then be edited and augmented by the user.

Experience so far is limited, however, this paper sets
out a need to provide support for both the production and
analysis of the use case description. Given the importance
of requirements validation, and the potential benefits of
enaction, the acceptance of such support promises many
benefits. However, developers have traditionally been
reluctant to increase the proportion of effort devoted to
requirements activities.

The authors contend that tool-sets of this nature, which
provide an enaction capability ‘for minimal effort’,
increase the possibility of such industrial take-up.

7.1 Further work

We are currently developing the tool with feedback
from students, other members of faculty and industrial
collaborators. Thus far, we can enact for single
descriptions and are experimenting with different
strategies to enact multiple threads through a number of
descriptions. A further idea is to support the situation
where there are a number of related scenarios (differing
only by small numbers of choices). It is thought that these
will need to be bound together, so that all possibilities are
accessible from the main flow. For example, the user
might want to load all (or chosen) scenarios with a simple
button press. However, there remain a number of
unresolved research questions, such as those outlined
below, and we believe that these suggest a need for
further research:
• Does the increased capability offered by

dependencies enhance or overcomplicate
descriptions?

We are of the opinion that this is an enhancement that
will be of importance in design as much as in
requirements validation. In any case, the user can use the
basic enaction functionality when it is not necessary to
explore dependencies in such detail.
• Will the inclusion of use case writing guidelines

restrict the flexibility offered by enaction?
Entirely unconstrained use case structures can lead to

ambiguity and are ultimately difficult to validate (and
later implement). Thus some guidance makes sense. So
long as the enaction tool can interpret the description
event (and should be able to do so if the event is
formatted to meet a simple guideline construct [30]) then
this should not be an issue.
• Does the template approach to structuring use cases

fit more naturally with tool support?
It would seem sensible to provide users with a use case

template. This gives them the opportunity to consider all
potentially relevant features within the context they are in.
This should not affect the enactability of the description.
• Will requirements volatility make dependency

mapping unmanageable?
Although requirements are notoriously changeable

(and this has an impact upon subsequent use case
descriptions [30]), we plan to assess how this volatility
impacts upon the dependencies within and between the
descriptions. It is our contention that this impact will be
minimal since dependencies are at a lower abstraction
than the requirements. However, fundamental
requirements changes will naturally affect the nature of
the use case descriptions (as many descriptions may
simply be thrown away or sidelined for a later release).
• Do users really require models that consider

dependencies across use cases, or does the restriction
to consideration within a use case provide a
partitioning of understanding?

We believe that enaction is of benefit and that
consideration of dependencies is a powerful verification
and validation tool. Detailed dependency consideration
should also be importance because designers and coders
can explore design alternatives to enable a better
structuring of the underlying design and implementation.

8. References

[1] Glass, R., Software Runaways, Prentice Hall, Harlow, 1998.
[2] T. Hall, Beecham, S. and A. Rainer, “Requirements
problems in twelve software companies: an empirical analysis”,
Proceedings of the 6th International Conference on Empirical
Assessment in Software Engineering, Keele, Keele University,
8-10 April 2002.

[3] Standish Group, “The Standish Group Report: Chaos”,
http://www.scs.carleton.ca/~beau/PM/Standish-Report.html,
1995.
[4] Jacobson, I., Christerson, M., Jonsson, P. and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, Wokingham, 1992.
[5] Jacobson, I., 2001. Introduction. In: Armour, F. and G.
Miller, Advanced Use Case Modelling, Addison-Wesley,
Harlow, 2001, ppxiii-xiv.
[6] E. Insfran, Pastor, O. and R. Wieringa, “Requirements
engineering-based conceptual modelling”, Requirements
Engineering Journal, 7 (2), 2002, pp. 61-72.
[7] Graham, I., Requirements Engineering and Rapid
Development, Addison-Wesley, Harlow, 1998.
[8] Jackson, M., Problem Frames , Addison-Wesley, Harlow,
2001.
[9] K. Phalp and K. Cox, “Guiding use case driven requirements
elicitation and analysis”, In: Wang, Y., Patel, S. and R. Johnston
(eds), 7th International Conference on Object-Oriented
Information Systems, LNCS, Springer-Verlag, Calgary, 27-29
August 2001, pp. 329-332.
[10] M. Jarke, “CREWS: towards systematic usage of scenarios,
use cases and scenes”, Wirtschaftinformatik 99, Saarbrucken,
Springer Aktuell, 3-5 March 1999. CREWS Report Series 99-
02:
http://sunsite.informatik.rwth-achen.de/CREWS/reports.htm.
[11] N. Maiden and D. Corrall, “Scenario-driven systems
engineering”, IEE Seminar on Scenarios through the System
Lifecycle, London, 7 December 2000, IEE (Ref 00/138), pp. 2/1-
2/3.
[12] B. Anda and M. Jorgensen, “Understanding use case
models” Beg, Borrow or Steal: Using Multidisciplinary
Approaches to Software Engineering Research, Proceedings
ICSE 2000 Workshop, Limerick, June 5 2000.
[13] C. Achour, “Guiding scenario authoring”, In: 8 th European-
Japanese Conference on Information Modelling and Knowledge
Bases, Vammala, Finland, 26-29 May 1998, pp. 181-200.
[14] G. Kosters, H-W. Six and M Winter, “Coupling Use Cases
and Class Models as a Means for Validation and Verification of
Requirements Specification”, Requirements Engineering
Journal, 6, 2001 pp. 3-17.
[15] I. Alexander, Scenario Plus, www.scenarioplus.org.uk
[16] K. Phalp, P. Henderson, R. Walters and G. Abeysinghe,
“RolEnact: role-based enactable models of business processes”,
Information and Software Technology, 40, 1998, pp. 123-133.
[17] Rosenberg, D. with K. Scott, Use Case Driven Object
Modelling with UML: A Practical Approach, Addison-Wesley,
Harlow, 1999.
[18] K. Cox and K. Phalp, “A case study implementing the
Unified Modeling Language use case notation version 1.3”, In:
Opdahl, A., Pohl, K. and M. Rossi, (eds), 6th International
Workshop on Requirements Engineering: Foundation for
Software Quality, Stockholm, 5-6 June 2000, Essen, Essener
Informatik Beitrage, pp. 69-78.
[19] A. Sutcliffe, “Scenario-based requirements analysis”,
Requirements Engineering Journal, 3, 1998, pp. 48-65.
[20] I. Alexander, “Scenarios in systems engineering – a range
of techniques for engineering better systems”, IEE Seminar on

Scenarios in the System Lifecycle, London, 7 December 2000,
IEE (Ref 00/138), pp. 1/1-1/6.
[21] Gause, D. and G. Weinberg, Exploring Requirements:
Quality Before Design, Dorset House Publishing, New York,
1989.
[22] K.T. Phalp, “The CAP Framework for Business Process
Modelling”, Information and Software Technology, 40 (13)
1998, pp. 731-744.
 [23] Armour, F. and G. Miller, Advanced Use Case Modelling,
Addison-Wesley, Harlow, 2001.
[24] T. Kalito, D. Partridge, K. Phalp, D. Raffo and J. Ramil,
“Working Group Report: ICSE'99 Workshop on Empirical
Studies of Software Development and Evolution”, Empirical
Software Engineering Journal, Vol. 4, No. 4, December 1999.
[25] Ould, M., Business Processes: Modelling and Analysis for
Reengineering and Improvement, Wiley, Chichester, 1995.

[26] Cockburn, A., Writing Effective Use Cases , Addison-
Wesley, Harlow, 2001.
[27] K. Phalp and K. Cox, “Supporting communicability with
use case guidelines: an empirical study”, 6th International
Conference on Empirical Assessment in Software Engineering,
Keele, Keele University, 8-10 April 2002.
[28] Hageseter, T., The Production of an Enactable Use Case
Tool, Masters Thesis, Bournemouth University, November
2002.
 [29] Mitchell, M., The Development of a Conveyancing System ,
Masters Thesis, Bournemouth University, November 2002.
[30] Adolph, S., P. Bramble, A. Cockburn, and A. Pols, Patterns
for Effective Use Cases , Addison-Wesley, 2003.

