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Fast Generation of 3-D Deformable Moving Surfaces

Lihua You and Jian J. Zhang

Abstract—Dynamic surface modeling is an important subject fracture. In order to achieve local deformation, Terzopoulos and
of geometric modeling due to their extensive applications in en- Metaxas developed a 3-D dynamic model whose global defor-
gineering design, entertainment and medical visualization. Many  mation captures the gross shape features and the local deforma-

deformable objects in the real world are dynamic objects as their _. .
shapes change over time. Traditional geometric modeling methods tion parameters reconstruct the details of the complex shapes

are mainly concerned with static problems, therefore unsuitable for that the global abstraction misses [5]. Qin and Terzopoulos rep-
the representation of dynamic objects. Apart from the definition ~resented a dynamic NURBS swung surface [6] by introducing
of a dynamic modeling problem, another key issue is how to solve the time parameter into its original static formulation. By mini-
the problem. Because of the complexity of the representations, cur- mizing an energy functional subject to user controlled geometric
rently the finite element method or finite difference method is usu- constraints and loads, Celniker and Gossard proposed a curve

ally used. Their major shortcoming is the excessive computational d surf finite el t method for f f f
cost, hence not ideal for applications requiring real-time perfor- and surface ninite element method for iree-form suriace genera-

mance. In this paper, we propose a representation of dynamic sur- tion [7]. Following the theory of pure elasticity, Gudukbay and
face modeling with a set of fourth order dynamic partial differ- Ozgulc¢ implemented a primal formulation and a hybrid formu-

ential equations (PDEs). To solve these dynamic PDEs accurately|ation into a physically based modeling method for animating
and efficiently, we also develop an effective resolution method. This deformable objects [8]. Physics-based modeling has also been

method is further extended to achieve local deformation and pro- : . . s
duce n-sided patches. It is demonstrated that this new method is combined with geometric subdivision methodology to develop

almost as fast and accurate as the analytical closed form resolution 0 integrated technique by Mandat al. [9]. However, these

method and much more efficient and accurate than the numerical physically based geometric modeling approaches rely on nu-

methods. merical methods, mainly the finite element method and finite
Index Terms—Dynamic partial differential equations, dynamic difference method. Therefore, they are computationally expen-

surface modeling, 3-D deformable moving surfaces. sive and unsuitable for real-time applications.
Partial differential equation (PDE) based surface modeling is

another physics-based geometric modeling approach. The static
|. INTRODUCTION PDE modeling was firstly proposed by Bloor and Wilson [10].
HREE-DIMENSIONAL (3-D) objects are usually repre-In their work, they mainly used a biharmonic partial differential
sented with surfaces. The popular modeling methods feguation with a shape parameter. Since the shape parameter has
parametric surfaces have Bézier, B-spline and nonuniform gastrong effect on surface shapes, we proposed a more general
tional B-splines (NURBS) [1]. These methods are effective féeurth order PDE. It has three vector-valued shape parameters
the modeling of static surfaces. In the real world, however, thedgd provides more user handles for surface shape manipulation
are many deformable moving objects such as human and anifddl]. In addition, we have also discussed the capacity and ef-
characters in motion, draping cloth and deforming metals. Cdiciency of surface generation using the solution to PDEs with
rently, these objects are modeled mainly with the static methodifferent orders [12]. Recently, the PDE method was also used
combined with computer animation techniques. Since the ii-the parameterization for the reconstruction of 3-D free-form
herent nature describing the deformation and motion of objeétgjects [13] and the generation of complex 3-D free form sur-
is not incorporated into the modeling methods, the realism @fces such as human hearts [14] and three-armed starfish vesi-
the modeled objects depends primarily on the perception of ttles [15]. The most important and challenging issue of the PDE
designer. In contrast, dynamic modeling, taking into accou@pproach in static geometric modeling is the resolution of the
physics laws, has a great potential in generating more realiq@tial differential equations. Since the closed form resolution
and visually appealing artifacts. Due to the difficulty of dysmethod can only deal with a limited number of applications
namic modeling, only a small number of references have diith simple boundary conditions, numerical methods are again
cussed this issue. In [2], Terzopouletsal. discussed the shapethe dominating means. The finite difference method was pro-
and motion of deformable curves, surfaces and solids using ffgsed by Chengt al.[16], and Du and Qin [17]. The finite ele-
theory of elasticity. This model was further extended in thement method was given by Brovet al.[18], and Li and Chang
later works [3] and [4] to include viscoelasticity, plasticity and19]-[21]. The method of collocation points was discussed by
Bloor and Wilson [22]. These methods are effective. However,
they are computationally expensive, and not ideal for interactive
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creates a significant setback for certain computer graphics appliThe boundary functions of (2) can always be written as a sum
cations, such as surface blending, and consequently the solubésome nonpolynomial basic functions of parametric variable
is inaccurate. In order to meet the boundary conditions exactyd the time variable. With this treatment, the boundary con-
Bloor and Wilson introduced a remainder function to modify thditions are transformed into

Fourier series solution [24]. This method was later employed to

develop the interactive surface design techniques [25] and [26]. J ox;
After such a modification, the boundary conditions can be sat- % =Y %i = Z aij19ii(v:1) ou
isfied. But the PDE is unfortunately violated, which inevitably =1

brings errors. Therefore, the fast and accurate resolution of PDE J ox;
still remains an unsolved problem. In addition, the existing PDE =1 i = Z aij39ij (v;1) ou
based geometric modeling methods only suit for static modeling =1

problems. In the reported literature we have not yet seen any at-

tempts in the modeling of 3-D deformable moving surfaces with ] )
dynamic partial differential equations. In order to solve dynamic PDEs (1), we construct the solution

In this paper, we will propose a set of fourth order dyf_unctions which consist of the basic functions in (3) and trial
namic partial differential equations. The effects of densityinctions of variable: as follows.
and damping on deformable moving surfaces are considered. J N
In order to solve the dynamic PDEs, we will develop a fast wi(w,v,t) = Z Zpijnungij('v,t) (i=1,2,3). (4)
7=1n=0

I
M~

aij29ij(v,t)
1

<.
Il

[
M~

aijagij(v,t)
1
i=1,2,3). (3)

.
Il

—

and accurate resolution method. The solution consists of

trial functions and basic boundary functions. The unknown

constants in the solution are determined by exactly satisfyingSubstituting (4) into (3), and zeroing the sum of the coef-
the boundary conditions and minimizing the residual functiorfigients of each basic functiog;;(v,t), we obtain four linear
of the proposed PDEs. Then a comparison is made betweggiebraic equations for each basic functign(v, t). Solving

the developed method, the closed form resolution methagese four linear algebraic equations for all basic functions, the
and other existing analytical methods. Finally, we will discusgnknown constantg;;, (i = 1,2,3;5 = 1,2,...,J;n =

surface manipulation techniques, local deformations and they, 2, 3) are determined. Then substituting the expressions of
generation ofi-sided patches, and demonstrate the applicatiofifese constants back to (4), the position functions are changed

of the proposed method with a number of examples. into
Il. DYNAMIC PDEAND SOLUTION zi(u, v, 1)

A static 3-D surface can be regarded as the solution to a partial 7 ) 5 s 3
differential equation subject to boundary conditions. This idea — Z aij1(1 —3u” + 2u”) + aijz(u — 2u” + u”)
is now extended to dynamic geometric modeling. For dynamic J=1 ) ‘ )
modeling, 3-D deformable moving surfaces are time dependent. + aij3(3u” — 2u®) + aija(—u” + u®)
In addition, density and damping of the surfaces have an influ- N ‘
ence on the surfaces [27] and [28]. Taking these factors into ac- ~ + »_[(n — 3)u® — (n — 2)u® + u"|piju ¢ gi;(v,1)
count, we propose the following dynamic fourth-order partial n=4 .
differential equations (i=1,2,3). (5)

ot o* . .

{bi(% v, t)w + ci(u, v, “W + d;(u, v, t) In order to determine the rest unknown constants in the above

. ) equation, we substitute (5) into dynamic PDE (1) whigre=
9 9 9 : bi(u,v,t),¢; = ci(u,v,t), andd; = d;(u,v,t). We now obtain
P P R i A tZO ,:1!2_3 1 2 » Y 7_1, L- » Y ’ . 7 2 » Y .

o + P o + ”at}x (u,0,2) (i 23 M) the following residual functions:

where b;(u,v,t), ¢i(u,v,t),d;i(u,v,t), (i = 1,2,3) are the SN
shape functionsp and n are the density and the damping Ri(u,v,t) = Z ZB” (4,9, D)pijm + Cij(u, v, 1)
coefficient of the surface, respectively,(u, v,t) (i = 1,2,3) e e mA T AR AT

. . . . n=4
are the three positional functions representing the three position

components of the surface, v are the parametric variables, (i=123) (6)
andt is the time variable. where

The boundary conditions for a dynamic geometric modeling
problem can be generalized in the following form which takes p (4,0, 1)
into account the effect of the boundary tangent on the surface” 7"~ ' -
shape =n(n—1)(n—2)(n - 3)u"" *b;g;j(v,t)

. O . +[2(n = 3) — 6(n — 2)u +n(n — Du""?]
u=0 =z;=G;1(v,t — = Gy9(v,t 2
(0 gjfl o t) X ¢; 9gii(v:1) qgv(;u t + [(n = 3)u® — (n — 2)u® + u"

u=1 z; = Gz(v,t)

= Gi4(’l},t) (L =1, 2,3). o4 o2

ou oo o)
@) X |digga T rgE T g | 901 )



618 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 4, AUGUST 2003

and methods, will result in all the unknown constants to be obtained.
cij(u, v, t) Since only a small number of unknown constants are involved
o in the equations, the developed method is computationally ver
= 2[=3ai;1(1 — 2u) — aij2(2 — 3u) + 3ay3(1 — 2u) i tq P P y very
P (v.) efficient.
v I1l. COMPARISONBETWEEN DIFFERENTMODELING METHODS

+ a1 (1 = 3u® + 2u®) + aijo(u — 2u® + u?)
X [+aij3(3u2 — 2u3) + aij4(—u2 + u3)
4 02 0
X |d; — ey — | gii(v,1).
501 T PgE T gy | 9ii(v:1)

Since the developed method exactly satisfies all the boundary
conditions and minimizes the errors of the surface functions,

8) the developed method is expected to generate 3-D deformable
moving surfaces quickly and accurately. In order to demonstrate

the advantages of the developed method over existing geometric

At an instant of motiort = o, within the resolution region modeling methods, in this section, we compare the developed
{0 <u <1309 < v < w1}, by uniformly choosingV colloca-  method with the closed form resolution method and some ex-
tion points and substituting the values of parametric variablessting analytical methods. Since no PDE based method is avail-

andv at these collocation points into (6), (7), and (8), we obtaigy|e for the problem of dynamic surface modeling, we will make
the residual values from residual functions (6), which consist gfcomparison only over a static problem.

M linear algebraic equations for every position functiores | order to obtain a closed form solution, we choose the fol-
follows [29] lowing boundary conditions with which a free form surface can
N be generated using the solution to PDE (1)

Ri(um-/vm7t0) = Z ZBijn(um./?)m./to)pijn u=0 xzi=a+b Siﬁu—l—ceo'l”
21 Lz 3] :
j=1 4 or1 =a +V sin+ e
ou
Cii(Um, U, t i =1,2,3;m=1,2,..., M). (9 )
+ ](u , U 0)] (¢ m y 4y , M). (9) w2 =d+ ev+ fcom %zd'—l—e’v—i—f’CO&}
u
. . . Jz3 1 I
If the size of the equations is equal to the number of the un- x3 = ho — h1v ou ho — hyv
known constants of each position function, i¥.,= J x (N — Oz

3), (9) can be solved directly to obtain all unknown constants oft =1 21 = 7 sinv o 7’ sin
(6). Alternatively, we can choose more collocation points than

£L2
the number of the unknown constants and find the square sum Tz = —TCOD u —r’ co
of all the residual values. In doing this, we rewrite (9) in the fol- dz3
i i =0 —==0. (13)
lowing matrix form T3 £

According to the above boundary conditions, the closed form

Ri=BP; -C; (i=1,23) (10)  solution of PDEs (1) can be expressed as the following:
whereR;, P;, andC; are column vectors af/ elements con- z1 = fi1(u) + fra(u)e” ™ + fis(u) sin
sisting of residual valueg; (t,, vm,to) (m = 1,2,..., M), z2 = fo1(u) + fa2(w)v + foz(u) com
unknown constants;;,, (j =1,2,...,J;n=4,5,...,N,and 23 = f31(u) + faz (). (14)

known constanti}’:1 Ci;i (Um,vm, to), respectively, and; o ] ) )

isaM x [J x (N — 3)] matrix consisting of the coefficients of Substituting the above equations into PDEs (1) and taking

unknown constants;;, (j = 1,2,..., Jin=4,5...,N). bi = 1,¢; = 2af,d; = a}(i = 1,2,3), we obtain the unknown
Thus the square sum of all the residual values for each pdéiDctions fi;(u), which are given by

tion function is given by fii(w) = cijo + cijiu+ cijou® + cijzu’

for fi(u) (i =1,2,3) and fio(u) (i =2,3) (15)

L=R/R: (i=1,2,3) (11) .
flg(u) = (6120 cod).la;u + c191 Slrl).laiu)
By minimizing the square sum, we obtain the followisig + u(c122 €OD.1a;u + 123 SiN0.1a,u) (16)
(N — 3) linear algebraic equations and
i3(1w) = (ci30 + cizru)e®™™ + (¢ijzo + ciz3u)e” 4
BTB,P, = BTC, (i=1,2,3). (12) fialw) = (cizo + ciau) (€2 + cizn)

for fis(uw)(i=1,2). (17)

The resolution of (12) will determine the rest of the unknown The unknown constants in the above equations can be deter-
constants. Thus various 3-D deformable moving surfaces camrbmed by substituting them into boundary conditions (13).
created with (5). Takinga; = 3 (i = 1,2,3) anda = 4.763,b = 0.017,¢c =

The developed method is easily understood and programme®.395,d = d' = —f = —f/ = 0.475,e = ¢/ = 0.0159, r =
The resolution of the linear algebraic equations (12), whioti = 1,hg = —h{; = 3,h1 = —h} = 0.1, =0 = =0,
can be achieved with many standard linear equation solvitige surface which is defined with the closed form solution (14)
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where the unknown functiong;o(«), A;,.(u), andB;,, (u) can

be found in [23] and the unknown constants in these unknown
functions are determined by solving a series of linear algebraic
equations of order four which are obtained from boundary con-
ditions (13) with the consideration of (19) and (20).

With the same shape parameters and geometric parameters
and takingN = 20, we obtain the surface generated from
approximate solution (21) as shown in Fig. 1(c). Since the
Fourier series cannot accurately fit the function at the two ends
of the upper boundary curve [30], a small gap goes through
the bottom boundary curve. Clearly, big discrepancy exists
between the Fourier series solution and the above two solutions
because boundary conditions (13) are not satisfied exactly
by the Fourier series solution. We have taken many terms
(N = 50) of the Fourier series. However, the surface cannot

d a be further improved.
In order to remedy this weakness, Bloor and Wilson sug-
Fig. 1. Surface generated with different methods. gested a remainder functidmi(u, ,U) (z =1,2, 3), which has

the form of [24]
of PDEs (1) subject to (13), is depicted in Fig. 1(a). It is the, _ wu ' wu
accurate surface of this problem. %’ = Ra(v)e™ + Z_zi(v)ue o
Considering the basic functions in boundary conditions (13), + Riz(v)e™" + Rig(v)ue (1=1,2,3). (22)
the solution of PDEs (1) subject to boundary conditions (13) canadding the remainder function (22) to (21), they obtained a
be written as follows according to the solution function (4)  modified approximation solution below, which was called the

N N N pseudospectral solution
1= ) punt” + ) praau” e+ pranu” sin Fi=ai+ R (i=1,2,3). (23)
n=0 n=0 n=0
N N N Unknown functionsR;;(v) (i = 1,2,3;j = 1,2,3,4) are
To = Z po1nu” + Z P22 v + Z P23 " CO determined by making solution (23) satisfy boundary conditions
n=0 n=0 n=0 (13) exactly.

N N With the pseudospectral solution (23) and takifig= 5 in
T3 = Zp:nnu" + Zp32nunv. (18)  (21), the surface produced is shown in Fig. 1(d). Although the
n=0 n=0 surface is slightly improved by the pseudospectral method, it is

With the above-developed method, we can determine all thiéll different from the accurate surface. When the term number
unknown constants. Using the same shape parameters and §é#he Fourier series was increasedo= 10, the surface ob-
metric parameters, taking the total collocation points tdbe-  tained in Fig. 1(e) actually becomes poorer. Itindicates that with
36 and the termsV = 7, the obtained surface for this problenmthe pseudospectral method, the accuracy of the solution cannot
is given in Fig. 1(b). There is no visible difference betweehe improved by increasing the number of Fourier series terms.
Fig. 1(a) and (b). It indicates that the accuracy of the develop&bis is because after the introduction of the remainder function,
method is very close to that of the closed form solution metho@ithough the boundary conditions are satisfied exactly, PDEs (1)

For the Fourier series based method [23], the basic functidiself will not be satisfied any more.

v ande® ' in boundary conditions (13) must be first expanded This example shows that among all the methods, the method
into the following Fourier series, respectively proposed in this paper is closest to the closed form resolution

N method. The other two are not accurate enough.

2 . Since our developed method obtains the unknown constants
v:w—Z—SIﬂn’U (29) . : . . :
—n by solving a small set of linear equations, it is computationally
60_2:__ 1 very efficient. We have timed the process to determine all un-
Ol = - known constants of the above four solutions. Using both the
4 closed form resolution method and the method developed in this

paper, it took less thah0—% of a second on an 800 MHz PC.
For the Fourier series solution, when taking Fourier series terms
] ~ tobeN = 20, the time determining all unknown constants is
Then, the solution of PDEs (1) under boundary conditiongsg |ess than0—6 of a second. However, it is 20 times slower
(13) can be approximated with the following Fourier series  hap, the developed method in the generation of the surface. For
N the pseudospectral method, when the number of Fourier series
z; = Ajo(u) + Z[Am(u) coSw + Bjp(u) Sinmv) terms was taken to b& = 5, it took 0.047 seconds to deter-
n=1 mine all the unknown constants and the values of the unknown
(¢=1,2,3) (21) functionsR;;(v)at100 points of the boundary curves which are

]\7
1
> 5+§ m(O.lCOSnU—nSinnv) . (20)
n=1
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used to generate the surface. If the unknown functi@psv)

are not determined numerically, tedious manual operations have
to be performed to obtain their analytical expressions. There-
fore, the method developed in this paper is more efficient than
the Fourier series based method and the pseudospectral methoc
In fact, it can generate surfaces almost as fast as the closed forn
resolution method in addition to its ability to deal with complex
dynamic surface modeling which cannot be solved by the closed
form solution method. Since the numerical methods are impos-
sible to generate surfaces as quickly and accurately as the closet
form resolution method, the developed method has much better
accuracy and higher computational efficiency than the reported
numerical methods.

IV. DYNAMIC GENERATION OF 3—D DEFORMABLE
MOVING SURFACES

t=0 t=0.25
'
The developed method provides us with a fast and accurate .

generation method of 3-D deformable moving surfaces. In thig 2. pynamic generation of a glass-like 3-D surface.
section, we will use two examples to demonstrate this point.

In the first example, we willindicate how a glass-like ObjeCt.'gnd those for the middle and bottom surfaces have the following

generated by dynamically deforming its upper circular opening .c. 4 forms

into a pedal-like object. The boundary conditions for the upper

t=0.75

opening are given by N
r1 = Zﬁllnun COS v
u=0 z;=aco + btsinbv ";1
% = a’ cox + bt sinsw To = Zﬁzmun sinv
Ty = cSiMv + bt COSHw ";1
% = ¢ sinv + b't cosw 3 = Z_:lﬁglnu". (26)
x3 = hg + ho1t SiNbv "=
O3 P With the above-developed method, we can determine all the
ou ho + hoyt Sinbv (243) unknown constants in (25) and (26). Specifying the values of
. the shape parameters, density and damping coefficient in PDEs
and those for the other boundaries have the forms of (1), and the geometric parameters in boundary conditions (24a)
. or1 ) and (24b), fixing them and only changing the value of titme
U=t T =708V o =T oS U we generate a series of surfaces dynamically. In Fig. 2, we give
. 0o . ' the surfaces e_xt 5 different ms_tants. The upper circular opening
Ty =TisiU oom =Tisiny (i=1,2,3) was consecutively deformed into a pedal-like shape.
O3 ) For many objects, the boundary curves defining these objects
w3 =hi —==h;. (24b)  change with the motion of the objects. Human limbs in motion

are such an example. In the example below, we will demonstrate
Sincet is a time variable, PDEs (1) subject to the basithe dynamic generation of a vase-like 3-D surface by moving its
functionst sin 5v andt cos 5v have no closed form solutions.one boundary curve and deforming its surface. The boundary
The method developed in this paper will be used to solve thisnditions for this example are defined by
problem. oz
According to the above boundary conditions (24a), (24b) and u=0 z;=M+rCOm —F = )13 co
(4), the solution functions for the upper surface are given as Ou

. Oz .
@y = N+ risin —2 =73 sim

N N Ju
Fi= 3 i 09+ 3 st oy P

n=1 n=1 8u 8

N N T1 /42

. u=1 =z =r9CO —— =r)t° COY

T2 = menun sinv + szgnunt cosv r=ro ou o

nt =t —rosine 222 _ 4t 2 sing

N N Tz =10 S| ou Tt Sl
T3 = sznnu + szsznu t sinsv (25) w3 = ho Ox3 _ hit3. 27)

n=1 n=1 8’[,6
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— ot
Fig. 4. Surface manipulation with the boundary tangent functions.
t, the surface can be further manipulated by changing the other
factors of PDEs (1) and boundary conditions (3). Their combi-

a (t=0) b (t=0.3) ¢ (t=0.6)
d (t=0.8) e (t=1) nation with the time variable provides us with effective dynamic
manipulating tools. In this section, we will examine these shape
Fig. 3. Dynamic generation of a vase-like 3-D surface. manipulation techniques.

Same as above, PDEs (1) have no closed form solutions for Boundary Curve and Tangent Functions

the basic functions? sin v, t? cos v, #* sinv andt* cosv inthe  Changing the coefficients of the boundary curve functions
boundary conditions (27). can scale the size of the boundary curves and using different

According to (4) and the basic functions in (27), the solutiogoundary curve functions can create different boundary curves.
functions for this problem can be written as the following formssoth methods will result in a different surface shape.

N N N The boundary tangent functions provide another powerful
T, = Z prinu”t + Z Pranu” CO + Z Pranu”t? cO shape manipulation means. Still using the same boundary con-
n=0 n=0 n=0 ditions (27) and the same shape parameters and geometric pa-
N rameters defining Fig. 3(a), but setting= 0, fixing ¢ = 1, and
+ Zp14nu"t3 co takingr{, = 0.845, 7] = —1.29, h{, = 0.192, b} = —0.154, the
n=0 surface in Fig. 4(a) is created. Then, settifjg= 1.19,7] =
N N N —1.84,hy = 0.271,h} = —0.257, the surface is changed to
To = Z pglnu"t =+ Z p22nu" Sinv -+ Z p23nu"t2 sinu that in F|g 4(b)
n=0 n=0 n=0
N .
B. Shape Functions
+ Zp24nu"t3 sinv P . . .
= In our previous examples, the shape functions in PDEs (1)

N N N were taken as constants. In general, the shape functions can
T3 = Z painu” + ZpgznuntZ + me"ﬁ_ (28) be functions of parametric variablesv and time variable.

ne0 ne0 ne0 When doing so, these shape functions become more powerful
in shape manipulation. Here we use the following shape func-

The shape parameters in PDEs (1) are taken tg bed; = éions 0 demonstrate it.

1,¢; = 2(i = 1,2, 3). The density and damping coefficient ar

set Lq/_) = 7(72;) 1. And thf_e ge;ometric para;lneters in b;l)undary b; = bio(1 — t)u(u — 1)

conditions (27) are specified as= 1,7y = 0.4,7, = 0.9, hg = - o

0,hy = 3,7 = 0.77,r, = —1.47, andh) = —h}, = 0.3. Ci _"’20(1“)2“(“_1) (i=1,2,3)

Takingt = 0,0.3,0.6,0.8 and 1, we obtain a sequence of the di = dio(1 +t7)u(u - 1). (29)

images of the deformed surface, as seen in Fig. 3, where th
upper boundary curve is consecutively moved to new posnlo':_llsg 3(a), buth is set to 0. Keeping — 0.5,r) — 1.32, 7, —

and the surface is alsq Qeformed a_ccordlngly. —2.52, andh, = —h} = 0.3 unchanged. When taking
The boundary conditions given in the above two examples
- - - 0 = bzo = 1,c10 = c20 = c30 = 2,d10 = dao = d3o =

are only for the purpose of illustration. Since the boundary co . i .
. ) i . —1300, we obtain the surface shape in Fig. 5(a). WHgn(i =
straints given in (2) and (3) are in a general form, more er>i—

; : . (?j’ 3) are changed te-9000, the surface shape in Fig. 5(b) is
ible and general boundary constraints can also be ConSIder?oduced Clearly, shape functions exert a great influence on the
with the developed method. It is applicable to any complicaté)d ) Y. P g

boundary conditions surface shape.
ry ' From PDE (1) there are three shape functions for each posi-

tion function, making a total of nine shape functions. Each of

them affects the shapes of the generated surfaces. These nine
In the previous section, we have shown that when time vaghape functions can have many different combinations and their

ablet takes a series of values, the developed method can be ustelcts on surface shapes are profound. However, if wig set

to animate 3-D deformable moving surfaces. At a given instabt = b3 = £,¢1 = ¢co = ¢3 = ( andd; = ds = d3 = 3, the

She geometric parameters were taken to be those that define

V. DYNAMIC MANIPULATION TECHNIQUES
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a b

a

Fig. 6. Surface manipulation with density and damping coefficient.
Fig. 5. Surface manipulation with shape functions.

sented through reparametrization. If the tangential continuity is
smaller the absolute values 6fand(, or the larger that ofs, also required between the local and the global surfaces, the local

the more concave the generated surfaces become. tangent boundary conditions can be determined according to the
_ _ o mathematical expressions of the local boundary curves.
C. Density and Damping Coefficient To perform local deformation, one can use one of the three

Any objects and surfaces moving or deforming with a higiechniques: adjusting tangential boundary conditions of the
speed are subject to the inertia and damping forces accordind@al region; setting different forms of the shape functions
the laws of physics. In order to describe their appearance méfd other parameters in PDE (1); and adding an additional
realistically, these forces must be considered. deforming term to the solution (5). Among them, the first two

In the previous examples, we fixed the density and dampit@chniques require the resolution of PDE (1) in the local region
coefficient to bep = 1 = 1. Now let us change their valueswhereas the last does not. Therefore the last technique is the
and see how the surface shape is affected. Keeping the sheipenlest and here we introduce this technique.
parameters, boundary conditions and the value of the time varilf we intend to perform a localized geometric operation in a
able defining the surface in Fig. 5(a) unchanged, when takital region ofu; < u < u, andv; < v < v, of a given sur-
the density to bep = 8 and fixing the damping coefficient face, we first define two new parametersaindv in the range
n = 1, we change the surface in Fig. 5(a) into that in Fig. 6(a9f 0 < @ < 1 and0 < o < 1. Next, the local position
Then, changing the density and damping coefficient te 1 boundary conditions and tangent boundary conditions are de-
andn = 9, respectively, the surface in Fig. 6(a) is deformed t&rmined from (5). If the boundaries of the local region are not
Fig. 6(b). along the original. andv parametric directions, it is always pos-

Unlike the effect of the shape parameters, the influence gible to obtain the position and tangent values of some points
the density and damping coefficient on surface shapes is simgiethe local boundaries from the global surface (5). Then, the
From the above example, itis clear that the larger the density, fw local boundary conditions are formulated from these points.
more concave the surface; the bigger the damping coefficiehtmilar to (5), the mathematical equations of the local surface
the more convex the surface. can be written in the following form after the introduction of the

In fact, if we do not regard the density and damping coeffadditional term
cient as the physical properties of the surfaces, but as factorsxi(m 7,t)
which manipulate the surfaces, we can also take the density and

J
c_iampmg coefficient as fL_mctlons of position vanabzlg&‘_u and_ — Z aij1(1 — 382 + 28%) + aija(T@ — 282 + 7°)
time variablet. They again are powerful surface manipulation =
tools. + i3 (3% = 20°) + agja(—0" + %)
N
VI. LOCALIZED GEOMETRIC OPERATIONS AND =2 =3 | =nj
MULTIPLE-SURFACE MODELING +n§_:4[(n I~ (n =27+ ]p””}

Most of the above examples are modeled with a single surface x g (0, t) +%; (1=1,2,3) (30)
patch. Although this is able to demonstrate the advantage = ~
the PDE based dynamic modeling method, one has to reaﬁl/\mereu —
that more powerful modeling measures have to be introducggg
for complex shapes. In the following we first discuss how loc rms.
deformations are achieved so that a surface can be sculpte Qhen only the positional continuity is requireg; can be
have more complex surface features. Then, we introduce U\)ﬁtten as
construction of three and four-sided patches. And finally, we
give an example of the modeling of a more complex object. i = (uv — u?*v — wv® + w*o”)p;(u,v) (i =1,2,3). (31)

When the tangential continuity is also required, the above ad-
ditional term takes the following form
To locally deform a region of a surface with the developed_ o __9 . 9 9w . _\ .
method is to treat this region as a sub-patch within the origfm = (a0 - @0 —av” + @) "pi(w,9)  (i=1,2,3) (32)
inal surface. The first step is to specify the boundaries of theherep;(a, v) (i = 1,2, 3) can be an arbitrary function whose
deformed region. These local boundary curves are then repi@ms determine the local deformation.

(’U,Q — ul), V= V1 +17(U2 — ’Ul), andfi is the
itional term. Depends on whether the tangential boundary
tinuity is required, the additional terim has two different

A. Local Deformation Technique
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Fig. 7. Local deformation with different degrees of blending smoothness.

Fig. 8. Surface consisting of three- and four-sided PDE surface patches.

As an application of the above method, let us carry out a Transforming these boundary conditions into polynomial
local geometric operation on the surface given in Fig. 5(a). TH'MS of theu parametric variable, (33) can be written as
chosen local region i8.4 < u < 0.5 and5.03 < v < N N
5.65. The unknown functions of the additional term are taken  ,, —( 4. — Z bin1 (£)u" Oz _ Z bina(t)u™
to bepy(a,v) = (cos[vr + v(vy — vy)] for the z; compo- ne0 du =
nent,p2(,v) = (sinfvy 4+ #(ve — v1)] for z2 component and N PV |
ps(,v) = ¢ for z; component. Using the additional term (32) v =1 z; =Y bins(t)u" &: =3 bina(tyu"
and setting{ = 300, we have achieved the local deformation n=0 n=0
depicted in Fig. 7(a). Changing the additional term to (31) and (i=1,2,3) (34)
setting¢ = 19, the surface shape of the local deformation is

changed to that in Fig. 7(b). In Fig. 7(a), both positional and tan-_iettmgv =0 ﬁndv =1 for.(5) apdbllts flrstbpa'rtlahl dgrlvatéves
gential continuities at the local boundaries are guaranteed. ithrespectto the parametric variableve obtain the boundary

a result, a smooth transition surface appears between the or'ijé]-Ctlons of the surface (5) at the boundaries- 0 andv =

1 'Equating these boundary functions to those of (34), we can

inal and the local surfaces. However, in Fig. 7(b), thetangent&l}tam a set of linear equations. Taking the positional boundar
continuity at the local boundaries is not satisfied and only the q : 9 P y

o L nditions ofv = =N b, " n example, th
position continuity is maintained. A sharp edge separates b(ﬁt) | o(ivtiSQTi:erlz)ir egijzfcionszaﬁog%;te(rgge d as an example, the

surfaces, as the positional continuity only giv&ssmoothness.

With this method, complex surfaces can be effectively created J J
with a controlled blending smoothnessor G*). biot(t) = Y aij1gij(0,1) bina(t) =Y aij29:;(0,1)
j=1 j=1
J
B. Construction of.-Sided Patches bio1 (1) = Z [—3%'1 — 2aijo + 353 — a;j4
=1

With the above-developed local deformation technique, we
can create a complex surface containing various surface details
through a number of local deformations applied on the surface.
Alternatively, a surface of a complex shape may be viewed as bis1 (t)
a collection of smaller and simpler patches connected together
smoothly. The modeling of such a complex surface is thus trans-
formed into the generation of simple surface patches with a -
set of constraints to stitch them together. Since arsided
patches can be constructed from both four-sided and three-sided J
patches, in the following we will extend our method to generate lin1(t) = Y pingij(0:t) (n=4,5,...,N) (35)
these surface patches. i=1

For a four-sided patch, when both the position and tangentSimilar equations can also be obtained for other boundary
constraints at its four sides are required, boundary conditiogsnditions. By solving these linear equations, we can determine

n
WE

(n— 3)pijn] 9i(0,1)

2aij1 + aij2 — 20453 + aija

<
Il
—

I
Mzﬁ:

3
Il
b

(n— 2)pijn] 9i(0,1)

(2) should be extended to comprise those at the boundariesioknown constantg;;, (: = 1,2,3;5 = 1,2,...,J;n =
v =0andv =1, i.e., 4,5,..., K < N). Following the treatment given in (6)—(12),
the rest unknown constants can be determined with (12). Then,
ox; the obtained surface functions (: = 1,2,3) can be used to
v=0 @ =Gis(ut) ou Gis(u, 1) generate the surface patch. Using this method, the four-sided
0x; patches in Fig. 8 are created.
v=1 2;=Gilut) ou Gis(u,1) For a three-sided patch, we take its 3 boundaries to be

(1=1,2,3). (33) 0,v = 0andv = 1. The boundary conditions at the boundary
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satisfactorily. Existing dynamic modeling approaches rely on
the use of numerical methods such as the finite element method
and finite difference method, which are too slow for dynamic
modeling, and therefore unsuitable for tasks requiring interac-
tive or real-time performance.

In order to dynamically model 3-D deformable moving sur-
faces quickly and accurately, in this paper, we extended the PDE
based static modeling approach to dynamic modeling. A set of
fourth order dynamic partial differential equations have been in-
troduced for this purpose. They consider the effects of inertia
and damping on the motion and deformation of a surface. By

B il ai by (3). With th ition f ) constructing an effective solution function which consists of the
u = 0 are still given by (3). With them, position functions (5)trial functions and the basic functions in the boundary condi-

Fig. 9. Model of an aircraft.

are modified to have the following form: tions, all the boundary conditions are satisfied exactly. In ad-
J N dition, the dynamic partial differential equations of the fourth
xi(u,v,t) = Z <(lij1 + a;jou + Zpijnu”> gij(v,t) order are solved by minimizing its residual functions.
j=1 n=2 A comparison has been made between this method, the closed
(1=1,2,3). (36) form resolution method and the existing Fourier series method
) . N N and pseudospectral method. It has been found that the devel-
Still taking the positional boundary condition of= 0. z; = oped method can generate 3-D surfaces almost as fast and ac-
2 n—o bin1(t)u"™ as an example, the resolution equations fro@yrately as the closed form resolution method, far more effi-
this position boundary condition become cient and accurate than the existing analytical and numerical
J methods. Moreover, it can cope with the complicated problems
bio1 (t) = Z aij19i5(0,1) of dynamic modeling of 3-D deformable moving surfaces which

cannot be solved with the closed form resolution method.
With the developed method, we have demonstrated how to
) (n=2,3,...,N) generate 3-D deformable moving surfaces dynamically with two
examples. This method can also be employed as a dynamic ma-
nipulation means of 3-D surfaces. We have investigated the ef-
Dijngij(0,t). (37) fects of the boundary curve and tangent functions, shape func-
tions, density and damping coefficient on the surface shape, and

_ . . demonstrated that they can be used as an effective tool for the
Similarly, the resolution equations from other boundar ; . . .
amic manipulation of 3-D deformable moving surfaces.

" . . . . n
conditions can be obtained. Their resolution determines mo : . :
. . . e have also introduced an effective local deformation tech-

unknown constants in (36). Then the mathematical operations ! . o L

. : . .~ -nigue with which not only the positional continuity at the local
given in (6)—(12) can be employed to determine the remainin ; . L o
: . . undaries, but also the tangential continuity can be satisfied.
unknown constants. In Fig. 8, a three-sided patch is produce

It is well known that anyn-sided patches can be decom. he local deformable patch can be connected to the original

surface with a controllable degree of continuity. The developed

posed into a number of four-sided patches or four-sided leTQ‘egwod has been further extended to the construction of three-

three-sided patches. Therefore, the above method can be gss|8ed, four-sided and-sided patches. An arbitrarily complex

;Oe(r:](;?;tgéﬂ any.-sided patches. In Fig. 8, a five-sided patch "Burface can be readily created as a collection of these basic sur-
' face patches.

Inthis paper, we have discussed the basic theory, the resolving
) method and some applications of PDE based dynamic modeling,

Applying the above-developed method, we here generate thgne of which have not been discussed in existing literature.
model of an aircraft. The aircraft is divided into four main part§, order for this method to have a wider impact on the mod-
a fuselage, two wings, three tail components and four engiggg of deformable moving surfaces, and to make this approach
housings. These parts are further decomposed into & NUMBEL, friendly for interactive applications, we will produce an in-
of surface patches. The above-developed PDE based modefing .sive user-interface, which transforms the user interaction
method is employed to generate these surface patches. Them, mathematical expressions, and hide the implementation de-
they are assembled to produce the model of the aircraft as giYgik from the user. This idea has been tested in another related

in Fig. 9. project [11] and will be included in our future development.

bi11 a;529:5(0,1

binl

jjl
=Y
g
=Y

C. Modeling of a More Complex Object
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