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Abstract. This paper outlines a framework for the modelling of slender rod-like 
biological tissue structures in both global and local scales. Volumetric 
discretization of a rod-like structure is expensive in computation and therefore 
is not ideal for applications where real-time performance is essential. In our 
approach, the Cosserat rod model is introduced to capture the global shape 
changes, which models the structure as a one-dimensional entity, while the 
local deformation is handled separately. In this way a good balance in accuracy 
and efficiency is achieved. These advantages make our method appropriate for 
the modelling of soft tissues for medical training applications.  
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1 Introduction 

Virtual simulation can replicate the teledisplay and instrumentation of laparoscopic 
surgery and is attracting increasing attention from both the research community and 
the medical practitioners. As a training methodology it can reduce the costs and risks 
and has been adopted widely by the surgical community.  A training system based on 
virtual simulation provides the trainees with flexible access to training sessions, 
whereas traditionally the training sessions are limited by the availability of patients 
and training posts. The most essential element of such a system is to model the 
behaviour of the tissues in a proper manner in order to produce convincing visual and 
haptic feedback to the user. Slender shapes represent a group of organs and tissues in 
the human body. Efficient simulation of such structures provides a useful framework 
which lays the foundation for virtual surgery applications involving such objects. Our 
work discussed in this paper focuses on modelling slender biological tissues which 
can be presented with a simple rod model. 

In the human body, many tissues are of long, thin, rod-like shapes, and we can 
take the advantage of modelling them as one-dimensional entities to efficiently 
simulate their behaviours. Examples of such tissues include blood vessels, muscle 
fibres, small intestines, rectum, ligaments, tendons, and hair. Though the one 
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dimensional rod-like object has been well studied in engineering, such as the analysis 
of the beam frames to improve the safety of structures in civil engineering, the 
calculation of the deformation for the above biological tissues remains a challenging 
task. For instance, the tissue may exhibit large deflexion that invalidates the 
algorithms which were derived based on the assumption of small deformation. The 
finite element method and mass spring method have been widely adopted in surgery 
simulation. They can provide accurate results, but they are generally inefficient in 
modelling the rod-like object if using volumetric discretization. Other classic methods 
based on the centreline of a rod, such as the Cosserat rod model [1], are designed to 
capture the global deformation, which provide little information about the local 
deformation. In order to capture the local deformation, the finite element method and 
the mass spring systems are often the only options which unfortunately are 
computationally expensive for real-time simulation.  

In this paper, we propose to model the rod-like biological structure with two 
separate layers: global deformation and local deformation. To our knowledge, Barr 
[2] was the first who developed the idea in computer graphics, where global and local 
shape changes were dealt with separately. In our method, the Cosserat rod model is 
adopted to model the global deformation along the centre line, while the local 
deformation is characterised by the deformation of a given cross-section of the tissue. 
Large global deformation, such as twisting and bending, is well handled with the 
Cosserat rod model. The local stretch of the surface is then approximated with our 
local deformation module.  

In general, the biological tissues are not isolated in the body. They are often 
attached to each other, which restricts their movement, i.e. they are usually subject to 
physical constraints. For instance, Raghupathi et al. [3] proposed to model the 
mesentery which connects the blood vessel and the intestine with a mass spring sheet. 
In this paper, the influence of such constraints can be integrated into the Cosserat 
model with an additional elastic energy item.  

Our contributions in this paper are as follows: (1) we have developed a general 
framework of global and local deformations of long flexible rod-like biological 
tissues; (2) we have introduced a quasi-static Cosserat rod model for fast simulation 
of the global deformation of a rod with additional constraints; (3) we have established 
a local deformation model which performs in an efficient manner. 

2 Related Work 

There exists a large body of research in the area of soft tissue simulation [4, 5, 6, 7, 
8]. Due to the complexity of soft biological tissue, it is extremely challenging to 
simulate their natural behaviour accurately, especially when subject to interventions 
with surgical instruments.  

Most of the current approaches are based on either the mass spring system [9, 10] 
or the finite element method [4, 11, 12]. The mass spring system uses discretized 
mass points in the space to represent the volume or surface. Such mass points are 
connected to each other with springs to capture the dynamics. The finite element 
method discretizes the object into many small elements, e.g. tetrahedrons. A problem 
is solved by finding the numerical solution of governing partial equations in an 
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element-wise manner. The finite element method provides accurate results but it is 
computationally expensive.  

Thin slender rod-like biological tissues have been studied in a wide range of 
disciplines. In computer animation, hair modelling has attracted a great deal of 
attention [13, 14], which can be used in character rigging. In applications of virtual 
surgery training, some researchers reported the development on modelling intestine 
with the mass spring system [3, 15]. In [16] a centreline model was introduced for 
long thin rod-like structures. By filtering out local changes of the cross-section shape, 
it greatly reduced the degrees of freedom of the problem and hence enabled the 
problem to be solved efficiently.  

Cosserat rod can capture the large bending and twisting deformation of one 
dimensional rod-like object, which records the motion of points on the centreline and 
the rotation of a local coordinate frame attached to each individual point. It was used 
to model the deformation of cable like instrument in engineering [17]. Linn et al. [18] 
outlined a method to model rod deformation with Kirchhoff model (a special case of 
Cosserat model) for virtual reality applications. Several recent works [19, 20, 21, 22] 
in computer animation provided good reference of Cosserat rod model in detail. 
Despite its efficiency the Cosserat rod model’s inability to handle local deformations 
often renders it unsuitable for high fidelity surgery training applications, as local 
deformation can provide useful feedback to the surgeons. In this paper, a quasi-static 
model of Cosserat rod is introduced to construct global deformations. Different from 
the previous approaches [20, 21], our quasi-static model drops the dynamic items and 
simplifies the solving process to allow fast simulation. In order to overcome the 
drawback of lack of local deformations, in this paper we model the deformation of 
local regions separately, whose superposition with the global deformation provides 
convincing looking of the soft tissues.  

3 Cosserat Rod Mechanics  

The Cosserat rod model, which describes the dynamics of a long thin rod-like object, 
is a well established model in both traditional mechanics [1] and computer graphics 
[20, 21].  

With the Cosserat rod model, a rod is represented as a space curve and its cross 
section is shrunk to one single point on the curve. Such curve is either selected as the 
neutral axis or as centroid axis (we will call this the curve centreline in the context). A 
local coordinate frame is attached to each point on the curve which indicates the 
position and orientation of the cross section.  
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Fig. 1. Cosserat rod model. 

As shown in Fig. 1, given r(s) as a point on the selected curve, where s is the 
curve length ranging from 0 to L, we denote the coordinate frame by three unit 
vectors d1, d2and d3. These three vectors are also named as directors, which are 
orthogonal to each other. In particular, d3 is defined to be along the tangent of the 
beam centreline, where the other two directors, d1 and d2, represent two orthogonal 
material lines in the cross-section perpendicular to d3.  
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we can write the torsion (τ) and the flexures (κ1,  κ2) of the rod as 
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Apart from the bending and twisting deformation measured by torsion and 
flexures, a rod can have stretching and shearing deformations, which are described by 
another measure v, 
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where v1 and v2 denote the shear deformation of the cross section which is the tilting 
of the cross-section, and (v3-1) denotes the stretch which is the length change of the 
beam. In practice, we often omit the influence of any shear deformation, that is v1= 0 
and v2 = 0.  

In a surgical operation, the maneuver of the subject (the organ) is relatively slow, 
and a sudden change of speed rarely occurs. Therefore, we can omit the influence of 
the inertial force and model the deformation in a quasi-static fashion, unlike the 
previous work [20, 21] where the dynamic effect is considered. In our method, the 
overall potential energy is written as 

WU −=Π                                                                (5) 
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with note (̄) are initial state defined on the rest shape. B1 and B2 represent the bending 
stiffness, E is the Young’s modulus, A is the area of cross section, G is the shear 
modulus and J is the polar moment of inertia of the cross sectional area. Minimization 
of the potential energy gives out the solution of a rod in equilibrium.  

3.1 Discretization of the Rod 

To find the numerical solution, we approximate a continual rod with n+1 vertices x0, 
x1, …,  xn and n straight edge e0, e1, …,  en-1. The ith edge ei connected point xi and 
xi+1. The local coordinate system is defined on each individual edge after 
discretization. For edge ei , we can have  
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With the above notation, we can define the discrete curvature and torsion on 
vertex xi as: 
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Here the directorsi
1d , i

2d , i
3d are defined on the ith edge and the curvature(i1κ , i

2κ ) 

and torsion iτ  are defined on the ith vertex. And the stretch on vertex xi is defined as  
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with note (̄) denoting initial state defined on the rest shape. 

3.2 Biological Tissues with Constraints 

In real anatomy, rod-like structures are embedded into surrounding tissues or fixed at 
certain position with ligaments and/or fat tissues. For example, the rectum is 
surrounded by the pelvic skeletal structure. To remove a low rectal cancer requires 
cutting the rectum near the anal verge and the surgeon has to separate the colon near 
the anal verge around the perimeter. To model the effect of such constraints, we 
added springs to the Cosserat rod model as shown in Fig. 2.  
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Fig. 2. Model the constraint of surrounding tissues. 

With the additional springs, we can rewrite the elastic energy U in equation (5) as 
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where the last item describes the contribution of the spring constraints. K is the spring 
stiffness distribution of the constraints. 

If an operation involves separating part or all of the organ from its supporting 
tissue, we can model the effect of cutting by altering the distribution of stiffness K. 
K(s) equals to 0 means that the rod has no connection to its surrounding tissue at point 
r(s). 

Fig. 3 shows results of a uniform elastic rod under gravity, fixed on one end. The 
top is the result for rod without springs and the bottom is the result for rod with spring 
constraints.   

 

 
(a)    

  
(b) 

Fig. 3. Deformation of a rod without or with spring constraint. 

4 Local Deformation Modelling 

The Cosserat rod model represents the motion of centreline and rotation of cross 
section, which reflects the global changes. However, as the cross section has shrunk 

r 
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into one point in geometry, the shape of cross section, which relates to the local 
deformation caused by the intervention of surgical instruments, is missing from the 
Cosserat model.  

The reaction force on the instrument can be calculated with the Cosserat rod 
model by consideration of the global deformation along the centreline. But the local 
deformation of a soft tube-like structure cannot be ignored in some cases. For 
example, in the resection operation removing a rectum cancer, poking or pushing the 
bowel causes visible deformation of the tube wall. Previously, such deformation had 
to be modelled with either the mass spring system or the finite element method, which 
increases the complexity of computation and modelling. Furthermore, when the 
geometric mesh of the mass spring system or the finite element method is coarse or 
distorted, the local deformation may be filtered out and not shown correctly.   

Here, we select a curve C resembling the cross-section at intervention point and 
deform it to create a local deformation. Being a manifold of a circle, the curve C can 
be parameterised with angle θ from 0 to 2π as R(θ). We assume that the deformed C 
takes an in-plane deformation only. Therefore the deformed shape of the curve is 
characterised by minimising the potential energy, WU −=Π . 

The elastic energy is defined as 
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where the first item presents the energy of bending, and the second item denotes that 
of stretching. Only one bending item appears in an in-plane deformation and there is 
no twisting. We write the work by external forces as follows, 
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where values with note (¯) are initial values defined on the rest shape, F is the 
projection of the exerted force in the cross section at point Rf, and a body force of 

cLF− is distributed along the curve to balance it, where Lc is the length of curve C. 

An additional constraint is added which ensures the mass centre of the curve 
unchanged during the deformation. 

Once curve C is deformed, its deformation is propagated to its neighbouring mesh 
points. Firstly, before deforming the vertices of the edges which C comes across are 
selected (see Fig. 4(a)). For one of the selected vertices, p, we can find the closest 
point on the curve as pR  with distance d. Vertex p is moved to the new position p′  

with 

)()/1( 2
pphd RRpp −−+=′                                          (12) 

where h is a control parameter, which we set to A56.0 . A is the area of cross-
section C. New points are then added to propagate the deformation further. These 
newly added points have edge connections to the previous selected points (see Fig. 
4(b)). Given a new added point p which connected to the previous selected k points 
p1, p2… pk, its new position is given as 

∑
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where ei is the edge length of pi and p. This process then iterates until pp −′ is less 

than a given threshold A01.0 . 
 

          
(a)                                                                (b) 

Fig. 4.  (a) Selecting mesh vertices (blue squares) which the curve C (red curve) comes across. 
(b) New added vertices (green triangles) which connect to the previous selected vertices (blue 

squares). 

5 Results 

 

Fig. 5. A Phantom Omni device was used to get haptic output. 

A Phantom Omni device is used to control the drag and poke actions at a point on the 
rod-like structure. As shown in Fig. 5, the user can input the 3D coordinates of a 
selected point on the mesh to mimic the intervention of the instrument in surgery and 
the Phantom Omni device provides force feedback according to the input. 
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(a) 

  
(b) 

 
(c) 

Fig. 6.  (a) a section of intestine before deformation; (b) the section of intestine deformed 
globally when  being dragged upwards; (c) a local deformation added after global deformation.  

Fig. 6 shows the results without (Fig. 6(b)) or with (Fig. 6(c)) local deformation, 
which are simulation of a pull operation on a section of a bowel structure. It is 
observed that the local deformation enhanced the visual fidelity in the simulation. 
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6 Conclusions 

We have presented a method to model one dimensional rod-like biological tissues, 
which handles both global and local deformations plausibly in an efficient manner. 
Our strategy is to formulate them with two separate layers. Global deformations of 
such tissues like bending and twisting are simulated with the Cosserat rod model, 
while local deformations are handled separately. The cross-section where the 
drag/poke action is exerted is extracted to generate local deformations, which are also 
represented with an enclosed curve subject to the given loads. The approximated local 
deformation propagates to the neighbouring vertices in a geometric manner. Our 
approach provides a good balance between visual fidelity and computational 
efficiency. However, if higher accuracy of the local deformation is necessary to an 
application, one can always use a more accurate and a slower approach, such as 
nonlinear finite element computation.  

The main benefit of using a one dimensional entity to present the physics of the 
object is efficiency. Fewer degrees of freedom are required to discretize a curve than a 
surface or a volume in order to capture the change of physical variables. When 
modelling a slender structure, our approach is more desirable than the traditional 
finite element method or mass spring system with volumetric discretization.  

We have not considered the influence of self-collision in this implementation. It is 
possible to include known contact algorithms, e.g. the method in [3], into the 
prototype. In the future, we would also like to extend this work to consider the 
nonlinear material properties and to model the cutting operation, which requires 
changes of the mesh topology locally as well as changes of the physical properties of 
the object accordingly.  
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