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Abstract
Background: There are three main problems associated with the virtual screening of bioassay
data. The first is access to freely-available curated data, the second is the number of false positives
that occur in the physical primary screening process, and finally the data is highly-imbalanced with
a low ratio of Active compounds to Inactive compounds. This paper first discusses these three
problems and then a selection of Weka cost-sensitive classifiers (Naive Bayes, SVM, C4.5 and
Random Forest) are applied to a variety of bioassay datasets.

Results: Pharmaceutical bioassay data is not readily available to the academic community. The data
held at PubChem is not curated and there is a lack of detailed cross-referencing between Primary
and Confirmatory screening assays. With regard to the number of false positives that occur in the
primary screening process, the analysis carried out has been shallow due to the lack of cross-
referencing mentioned above. In six cases found, the average percentage of false positives from the
High-Throughput Primary screen is quite high at 64%. For the cost-sensitive classification, Weka's
implementations of the Support Vector Machine and C4.5 decision tree learner have performed
relatively well. It was also found, that the setting of the Weka cost matrix is dependent on the base
classifier used and not solely on the ratio of class imbalance.

Conclusions: Understandably, pharmaceutical data is hard to obtain. However, it would be
beneficial to both the pharmaceutical industry and to academics for curated primary screening and
corresponding confirmatory data to be provided. Two benefits could be gained by employing virtual
screening techniques to bioassay data. First, by reducing the search space of compounds to be
screened and secondly, by analysing the false positives that occur in the primary screening process,
the technology may be improved. The number of false positives arising from primary screening
leads to the issue of whether this type of data should be used for virtual screening. Care when using
Weka's cost-sensitive classifiers is needed - across the board misclassification costs based on class
ratios should not be used when comparing differing classifiers for the same dataset.

Background
The drug-development process is both time-consuming
and expensive: it takes an average of 15 years and $800
million to bring a drug to the market [1]. The process of
discovering a new drug for a particular disease usually
involves High-Throughput Screening (HTS), a mixture of

robotics, control software, liquid-handlers and optical
readers. In HTS, batches of compounds are screened
against a biological target (bioassay) to test the com-
pound's ability to bind to the target - if the compound
binds then it is an active for that target and known as a hit.
If this hit is amenable to medicinal chemistry optimiza-
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tion and can be proved to be non-toxic then it may be
developed further and become a lead for a specific target.
Virtual screening is the computational or in silico screen-
ing of biological compounds and complements the HTS
process. It is used to aid the selection of compounds for
screening in HTS bioassays or for inclusion in a com-
pound-screening library [2]. Virtual screening can utilise
several computational techniques depending on the
amount and type of information available about the com-
pounds and the target. Protein-based methods are
employed when the 3D structure of the bioassay target is
known and computational techniques involve the dock-
ing (virtual binding), and subsequent scoring, of candi-
date ligands (the part of the compound that is capable of
binding) to the protein target. Ligand-based approaches
are usually used when there are compounds known to be
active or inactive for a specific target. If a few active com-
pounds are known then structure-similarity techniques
may be used; if the activity of several compounds is
known then discriminant analysis techniques, such as
machine learning approaches, may be applied. This is
achieved by choosing several compounds that have
known activity for a specific biological target and building
predictive models that can discriminate between the
active and inactive compounds. The goal is to then apply
these models to several other unscreened compounds so
that the compounds most likely to be active may be
selected for screening. This is the approach taken in this
research.

The major challenge of using machine learning tech-
niques for this type of problem is that the data is highly
imbalanced: on average the ratio is 1 active compound to
1000 inactive compounds [3]. This means that standard
techniques, which assume equality, are not very effective
at building predictive models when there is a low minor-
ity class ratio. Any tools employed for Virtual Screening
must be able to cope with this imbalance and it is this
essential criterion that has led to this investigation of
Cost-Sensitive Classifiers (CSC). Virtual screening of
imbalanced pharmaceutical data has been carried out
before: in one study the classifiers used did not use mis-
classification costs [4], and in another, the datasets were
very small with only a slight imbalance [5]. A recent anal-
ysis of PubChem bioassay data using Naive Bayes classifi-
ers has been carried out [6]. However, in their analysis, the
number of compounds in the bioassay datasets was
reduced so that there was a 1:1 ratio of Active to Inactive
compounds. This research is a set of experiments to assess
the application of meta-learners included in the Weka
suite of machine learning algorithms [7] to a variety of
Primary and Confirmatory bioassay datasets. For the rest
of this section, we describe the background to this
research: the drug-discovery process, bioassay data and
cost-sensitive classifiers. We then discuss the methods and

results. In the Experimental section, we give descriptions
of the datasets, classifiers and data representation. Finally,
we discuss and conclude our findings.

Drug Discovery and Bioassay Data
Drug discovery is the first stage of the drug-development
process and is concerned with the selection of compounds
to screen and their subsequent screening against a specific
biological target. This first stage screening process is
known as primary-screening and usually involves the
screening of thousands of compounds. One of the prob-
lems of the primary-screening process is the number of
false positives (a compound that has been deemed as active
but subsequently turned out to be inactive) that occur.
Usually a secondary, or confirmatory, screen of the com-
pound at different doses is required to ascertain its con-
firmed activity for a specific target. The confirmatory-
screening process uses the exact technology as for primary
screening but the number of compounds screened is usu-
ally significantly smaller: it is usually only the actives from
the primary screening process that are used for confirma-
tory screening.

The main resource for obtaining freely-available bioassay
data is the PubChem repository provided by the National
Center for Biotechnology Information [8,9]. One of the
problems of using the bioassay data from PubChem is
that the data is not curated and is potentially erroneous
[3,10]. However, there is a lack of publicly-available bio-
assay data due to the fact that most HTS technology is held
at private commercial organisations. In PubChem, there
are 506 Primary Screening bioassay results and 858 Con-
firmatory Screening results (as of November 2009). How-
ever, there is no search facility to retrieve the Primary
Screening results together with its corresponding Con-
firmatory Screen (if there is one). Finding corresponding
confirmatory bioassays is only achieved by manually
going through each primary screen webpage and see if
there is one in the related bioassays section. The problem is
complicated further as sometimes several primary screen
bioassay data is used for the one confirmatory screen and
vice versa. In database terminology, there is a many-to-
many relationship between the 2 types of bioassays. Man-
ually going through each bioassay looking for related bio-
assays still does not give the complete picture - the
bioassay protocol also has to be read. For example, for
bioassay AID1919 the Protocol overview states:

The purpose of this assay is to determine dose response
curves for compounds identified as active in a previous set
of experiments entitled, "Primary biochemical high
throughput screening assay to identify inhibitors of VIM-2
metallo-beta-lactamase" (PubChem AID 1527), and inac-
tive in a set of experiments entitled, "Epi-absorbance pri-
mary biochemical high throughput screening assay to
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identify inhibitors of IMP-1 metallo-beta-lactamase"
(PubChem AID 1556).

This type of protocol is common in the bioassay data so a
lot of data pre-processing has to be carried out to retrieve
the relevant compounds from the bioassays. Sometimes
finding the relevant confirmed Actives involves manually
going through more than one bioassay, for example
AID1509 leads to AID1523 which in turn leads to
AID1701. Structuring the data this way also hinders the
investigation in to why so many compounds end up as
being false positives in the primary screening process.
Even reading the bioassay protocols does not provide all
the necessary information. For example, in primary
screening bioassay AID1663 there are 661 bioactive com-
pounds. In confirmatory screen AID1891 the protocol
states:

Counter screen for luciferase inhibitors of Dense Granule
Secretion. 20 ul of 1.5 uM ATP (Sigma, #A1852) in PBS
is plated in 384-well white assay plates (Aurora,
00030721) and was exposed to the 1584 cherry-picked
compounds chosen based on activity of the platelet dense
granule release primary screen (AID1663) and structure to
compounds with the highest activity, to provide some SAR
data.

Over 900 previously unscreened compounds have been
added to the bioactive compounds from the primary
screen. This type of bioassay protocol is also common
throughout PubChem. Occasionally there are also errors
or missing information in the bioassay protocols. For
example, in AID688 there are 248 Active compounds but
in the confirmatory screen AID792 it states

The HTS has been reported earlier (AID 688). Here we
report the follow-up dose-response testing on the 448 com-
pounds identified as hits in the HTS.

Other bioassays also contain incorrect information. In
AID530, the Data Activity Table is contradictory. Accord-
ing to the main bioassay description, 10,014 compounds
were screened with 34 Actives, 9066 Inactives and 1136
Inconclusive compounds. This adds up to 10,236 com-
pounds. When looking at the Data Activity table, the fig-

ures are 34 Actives, 9066 Inactives and 222 Discrepant
compounds. This adds up to 9322 compounds even
though it states that 10,014 compounds were tested. If
you download the AID530 Activity information in CSV
format, the figures are different from both of these - there
are 22 labelled as Active, 8866 as Inactive, 931 as Incon-
clusive and 195 as Discrepant, which does total the origi-
nal figure of 10,014.

Out of 250 manually searched confirmatory screening
bioassays, only six had good links to the primary screen.
However, four of these still had some compounds either
added or removed without a detailed explanation why.
Table 1 shows a summary of the False Positives that have
occurred in the HTS Primary Screen. The table shows the
number of Actives founds in the primary screen (PS), the
number of compounds tested in the confirmatory screen
(CS), the number of Actives in the confirmatory screen
and the percentage of false positives from the primary
screen.

Though a detailed analysis could not be carried out due to
the lack of information provided, these false positive rates
are quite high (average 64%) and possibly suggest that
primary screening data should not be used for virtual
screening. For AID688, mentioned above for the cross-ref-
erencing error, there was a 100% false positive rate accord-
ing to the confirmatory screen AID792. These figures have
not been included in Table 1 in case they are also errone-
ous.

Methods
Bioassay Datasets
A variety of datasets have been chosen for this study.
Unfortunately due to computer memory limitations
(Weka can only utilise 2 gigabytes of heap space for Win-
dows systems), only small to medium datasets have been
selected. However, the datasets are from the differing
types of screening that can be performed using HTS tech-
nology (both primary and confirmatory screening) and
they have varying sizes and minority classes. 21 datasets
were created from the screening data. Table 2 shows a
summary of the datasets used for this study. For four of
the primary screening bioassays where there are corre-
sponding confirmatory results, datasets have been created

Table 1: Summary of Primary Screen false positives

Primary (PS) Confirmatory (CS) PS Actives CS Tested CS Actives False Positive %

AID604 AID644 212 206 67 65.57%
AID1284 AID746 366 362 57 83.33%
AID439 AID373 62 69 13 90.32%
AID721 AID687 94 94 21 77.66%
AID561 AID611 278 273 195 28.06%
AID525 AID600 359 359 213 40.67%
Page 3 of 12
(page number not for citation purposes)



Journal of Cheminformatics 2009, 1:21 http://www.jcheminf.com/content/1/1/21
where the false positives from the primary screen are rela-
belled as Inactive. For the smaller confirmatory bioassay
datasets, two types of data representation are used in order
to see if adding more information improves the classifica-
tion results.

Further information on these assays may be found in the
Experimental section and on the PubChem website. The
AID number may be used as the search criterion.

Data Pre-processing
The chemical structures from PubChem were downloaded
in Structure Data Format (SDF) and imported into the
molecular descriptor generator PowerMV [11]. A total of
179 descriptors were generated for each compound. The
details of the descriptors may be found in the Experimen-
tal section. The bit-string fingerprint descriptor values that
only had one value throughout the dataset (For example,
all 0 s or all 1 s) were removed. For a secondary analysis,
735 additional fragment-pair fingerprint descriptors were
generated for the confirmatory bioassay datasets.

Cost-Sensitive Classifiers
Most classifiers assume equal weighting of the classes in
terms of both the number of instances and the level of
importance - misclassifying class A has the same impor-
tance as misclassifying class B. However, when trying to
predict a minority class in an imbalanced dataset or when
a false negative is deemed more important than a false
positive, standard data mining techniques are not success-
ful.

This type of problem led to the introduction of cost-sensi-
tive classifiers where instances are predicted to have the
class that has the lowest expected cost [12,13]. In Weka,
two methods are used to introduce cost-sensitivity - the
reweighting of the training instances according to the total
cost assigned to each class in the cost matrix or predicting
the class with the minimum expected misclassification
cost using the values in the cost matrix. A cost matrix may
be seen as an overlay to the standard confusion matrix
used to evaluate the results of a predictive modelling
experiment. The four sections of a confusion matrix are
True Positives (TP) - in our case Active compounds cor-
rectly classified as Active; False Positives (FP) - Inactive
compounds incorrectly classified as Active; True Negatives
(TN) - Inactive compounds correctly classified as Inactive;
False Negatives (FN) - Active compounds incorrectly clas-
sified as Inactive. For bioassay data and more importantly
for screening compound selection, it is better to minimise
the False Negatives at the expense of increasing the
number of False Positives. One of the advantages of using
cost-sensitive classifiers is that the number of False Posi-
tives may be controlled - increasing the misclassification
cost of the False Negatives will potentially increase both
the number of False Positives and the number of True Pos-
itives. Table 3 shows a cost matrix when there is no pen-
alty or cost for classifying the instances correctly, a cost of
1 for misclassifying an Inactive compound (False Positive)
and a cost of 5 for misclassifying an Active compound
(False Negative). This means that it is more costly misclas-
sifying the positives than misclassifying the negatives.

Table 2: Summary of Bioassay datasets used in the predictive models

Assay No of Attributes Screening Type Compounds Minority Class %

AID362 144 Primary 4279 1.4%
AID604 154 Primary 59788 0.35%
AID456 153 Primary 9982 0.27%
AID688 154 Primary 27198 0.91%
AID373 154 Primary 59788 0.1%
AID746 154 Primary 59788 0.61%
AID687 153 Primary 33067 0.28%
AID746&AID1284 154 Primary and Confirmatory 59784 0.1%
AID604&AID644 154 Primary and Confirmatory 59782 0.11%
AID373&AID439 154 Primary and Confirmatory 59795 0.02%
AID687&AID721 153 Primary and Confirmatory 33046 0.06%
AID1608 154 Confirmatory 1033 6.58%
AID644 100 Confirmatory 206 32.52%
AID1284 103 Confirmatory 362 15.75%
AID439 81 Confirmatory 69 18.84%
AID721 87 Confirmatory 94 22.34%
AID1608 914 Confirmatory 1033 6.58%
AID644 914 Confirmatory 206 32.52%
AID1284 914 Confirmatory 362 15.75%
AID439 914 Confirmatory 69 18.84%
AID721 914 Confirmatory 94 22.34%
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This misclassification cost is then used to build the predic-
tive models.

One of the problems of cost-sensitive classifiers is that
there are no standards or guidelines for setting the mis-
classification costs. Previous research has used the ratio of
positives to negatives as the misclassification cost for
fraud detection [14] and for medical data classification
[15]. Other research has employed the number of major-
ity class instances as the misclassification cost [16] or
bespoke methods of cost calculation that work for specific
classifiers only [17]. However, when using Weka the dif-
fering data mining algorithms utilise costs differently
depending on the underlying probability handling of the
algorithm. For example, in Sheng and Ling [16] they have
used Weka's cost-sensitive classifiers to evaluate their
novel method. However, for the differing classifiers they
have used across-the-board costs of 2, 5, 10 etc. This
research shows that setting the Weka cost matrix is
dependent on the base classifier used. For example, in one
of our experiments using a cost-sensitive Naive Bayes clas-
sifier requires a misclassification cost of 2 to achieve the
same results as a cost-sensitive Random Forest with a mis-
classification cost of 75. One of the difficulties in setting
up the Weka cost matrix is that the costs are not a straight-
forward ratio. Weka normalises (reweights) the cost
matrix to ensure that the sum of the costs equals the total
amount of instances.

For our set of experiments, we used incremental costing
where the cost was increased in stages from 2 to 1000000.
The misclassification cost was incremented until a 20%
False Positive rate was reached - a 20% False Positive rate
seemed an appropriate place to stop. This meant over
5000 classifiers were built for this study so that we could
find an optimal Weka misclassification cost setting for a
specific base classifier when applied to a specific type of
dataset. The base classifiers used were Naive Bayes, Ran-
dom Forest and Weka's implementation of a Support Vec-
tor Machine (SMO) and a C4.5 (J48) decision tree.
Default Weka options were used for the Naive Bayes and
Random Forest but for the SMO "build logistic models"
was set to true and for the J48 tree "Pruning" was disabled.
The standard cost-sensitive classifier was used for Naive
Bayes, SMO and Random Forest. For J48, a bagged (Boot-
strap Aggregating) meta-learner MetaCost was used as it

works more efficiently for unstable, unpruned decision
trees [18]. Further details of these models may be found in
the Experimental section.

There are two main goals of the classification experiments
- to find the most robust and versatile classifier for imbal-
anced bioassay data and to find out the optimal misclas-
sification cost setting for a classifier. Even though we do
not recommend using primary screening data, we have
included this type of data as it tends to be larger and more
imbalanced than some confirmatory screening data.
These experiments are more of a survey of the classifiers
rather than an experiment to gain insightful information
about potential drugs for the particular targets. The data-
sets were randomly split into an 80% training and valida-
tion set and a 20% independent test set. To train the
models cross-validation was employed. Cross-validation
is a standard statistical technique where the training and
validation data set is split into several parts of equal size,
for example 10% of the compounds for a 10 fold cross-
validation. For each run of the classifier, 10% of the data
is excluded from the training set and put in a correspond-
ing validation set. A 5 fold cross-validation was used for
the training and validation of the larger datasets and a 10
fold classification for the smaller confirmatory datasets. In
both cases, the resulting model from the cross-validation
was applied to the test set. All reported results are based
on the independent testing and not on the training.

Results
This section first looks at the setting of the Weka cost
matrix and compares the misclassification costs needed
for each classifier for each dataset. We then look at the per-
formance results of the primary screen bioassay datasets
when constrained to a maximum False Positive limit of
approximately 20%. The results of the two types of con-
firmatory bioassay datasets are then analysed and finally a
comparison is made of the results of the datasets that have
mixed primary and confirmatory data.

Weka Cost Matrix
The set of experiments carried out show that there is a
large variability in how the differing classifiers respond to
the misclassification costs in the Weka Cost Matrix. The
Naive Bayes classifier in all instances requires a smaller
misclassification cost setting than the other classifiers. A
Random Forest classifier requires more memory than the
other classifiers, though this will be due to the fact it uti-
lises bagging. When it could be run, the Random Forest
classifier requires a large cost setting to achieve the same
results as the others. Table 4 shows the Weka Cost matrix
misclassification costs for the False Negatives in order to
achieve the maximum number of True Positives with a
False Positive rate of fewer than 20% for each classifier.
The number in brackets after the dataset name is the mis-

Table 3: A typical Cost Matrix which shows the misclassification 
cost for Positives and Negatives

Actual Positive Actual Negative

Predicted Positive 0 TP 1 FP

Predicted Negative 5 FN 0 TN
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classification cost if the ratio of active compounds to inac-
tive compounds (inactives/actives) had been used.

In 10 out of 11 experiments, Naive Bayes has the smallest
cost setting, then the SMO and finally the J48. In all
instances, the performance of the classifiers would have
been reduced if minority class ratios had been used as the
Weka misclassification cost - there are significant differ-
ences between the optimal cost and the class ratio cost.

Confirmatory bioassay data tend to be smaller and less
imbalanced (smaller Inactive/Active ratios) than primary
bioassay data. For these datasets, standard classifiers were
applied first (no misclassification costs) and if there was
less than a 20% False Positive rate then cost-sensitive clas-
sifiers were used. Table 5 shows the misclassification
costs, if any, used for the confirmatory datasets. A * indi-
cates that the best results that could be achieved had a
greater than 20% False Positive rate. The 'a' after the data-
set name represents the smaller dataset and the 'b' repre-
sents the larger version of the dataset. The number in
brackets after the dataset name is the misclassification cost
if the ratio of active compounds to inactive compounds
(inactives/actives) had been used.

Once again, it seems that there is no connection between
the ratios of Inactives:Actives to the Weka cost matrix set-
ting. The Naive Bayes classifier has not needed any mis-
classification costs for 90% of the datasets, however in
60% of the datasets there are greater than 20% False Pos-
itives. Adding approximately 800 more attributes to the
larger 'b' datasets has not had an effect on the setting of
the misclassification costs. This illustrates that the setting
of the Weka misclassification cost is arbitrary and more
closely linked to the base classifier used than the class
ratios or the number of attributes. As the costs we are dis-
cussing are the actual settings of the Weka cost matrix
rather than class ratios, the comparison of classifiers can-
not be compared using cost curves [13].

Primary Screen Bioassay Datasets
The independent test performance of each classifier was
compared by the maximum number of True Positives that
could be attained with approximately a 20% False Positive
rate. As mentioned previously, one of the advantages of
using cost-sensitive classifiers is that the False Positive rate
may be controlled. Figure 1 shows the True Positive rate
achieved by each classifier with under a 20% False Positive
rate when the training models were applied to the inde-
pendent test set. The minority class % of each dataset is
shown in brackets.

These figures are quite promising considering the degree
of imbalance in the bioassay data. Though classifier accu-
racy and precision are not the best statistical evaluation
methods for imbalanced datasets, the results of these may
be found in the supplementary Excel results file. See Addi-
tional file 1: Full results of the classification experiments.

Some observations from the experiments are detailed
below:

• Even though all the datasets are from primary screen-
ing bioassays, there is a big difference in classifier per-
formance. There appears to be no relation of

Table 4: Misclassification Costs per primary screen dataset and mixed primary/confirmatory datasets

Dataset Naive Bayes SMO Random Forest J48

AID362 (70) 40 150 3000 285
AID604 (281) 40 250 Out of memory 650
AID456 (369) 18 200 100000 1000
AID688 (109) 34 78 Out of memory 220
AID373 (963) 20 2000 Out of memory 3000
AID746 (162) 25 100 Out of memory 450
AID687 (351) 50 250 Out of memory 680
AID746&AID1284 (1048) 100 1000 Out of memory 1900
AID604&AID644 (891) 70 750 Out of memory 1500
AID373&AID439 (4599) 70 9000 Out of memory 9500
AID687&AID721 (351) 700 6702 Out of memory 1900

Table 5: Misclassification Costs for False Negatives per 
confirmatory dataset

Dataset Naive Bayes SMO Random Forest J48

AID1608a (14) 2 5 75 25
AID644a (2) None* None None None*
AID1284a (5) None* 2.7 8 2
AID439a (4) None* None None None
AID721a (3) None* None None None
AID1608b (14) None 200 75 30
AID644b (2) None* None 1.5 2
AID1284b (5) None* 6 8 2
AID439b (4) None None 3 None*
AID721b (3) None None None None
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performance to the number of compounds in the bio-
assay or the size of the minority class. From a cost-sen-
sitive classifier point of view, the experiments show
that these types of classifiers are capable of producing
some good True Positive rates with a controllable False
Positive rate for highly imbalanced data. From a bio-
assay point of view, it is questionable how helpful
these models are: primary screening usually involves a
large amount of false positives. For example, AID688
had a 100% false positive rate and AID373 had a 90%
false positive rate. This leads back to the issue of
whether this type of data should be used for virtual
screening.

• As a Random Forest classifier is an ensemble classi-
fier (an ensemble of Random Trees), it requires more
computational memory than the other classifiers. It
has not been able to run when there has been over
27,000 compounds

• Overall, Weka's implementation of the cost-sensitive
Support Vector Machine, the SMO, has performed
consistently well. A disadvantage of the SMO has been
the amount of time taken to build the model and run
the 5 fold cross-validation - in some cases the model
took 7 hours to complete per cost setting used. The
cost-sensitive Naive Bayes models were the quickest to

build and the J48 and Random Forest models took, on
average, about 1 hour per cost-setting to build.

Confirmatory Screen Bioassay Datasets
The independent test performance of each classifier has
been harder to compare as some classifiers could not
achieve fewer than 20% False Positives. The compounds
in confirmatory bioassay data (ie. those compounds that
were deemed Active in the primary screen) are, in general,
quite similar in terms of unique attributes. In some cases,
there has been a 50% reduction in the fingerprint data
representation when these attributes are removed. For this
reason, another set of experiments was carried out where
more descriptors were generated. This could not be done
with the primary screening datasets because of computa-
tional memory limitations. Though these types of datasets
are relatively small with only a small imbalance of Actives
and Inactives, the classifiers have not been very successful
at predicting the bioassay's active compounds. This could
be due to the fact that the compounds in a confirmatory
screen are usually closer in structure and physicochemical
properties. Table 6 shows the results of both sets of exper-
iments in terms of the True Positive and False Positive
rates. The 'a' after the dataset name represents the smaller
dataset and the 'b' represents the larger version of the data-
set. The numbers of attributes in the datasets are written
in brackets after the dataset name.

Primary Screen datasets: True Positive rate with under or approximately a 20% False Positive rateFigure 1
Primary Screen datasets: True Positive rate with under or approximately a 20% False Positive rate. The True 
Positive rate achieved by each type of classifier for the Primary Screen datasets. A maximum limit of 20% False Positives were 
allowed.
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The results have been disappointing and the best True
Positive rate that can be achieved with under a 20% False
Positive rate is approximately 55% - this is worse than for
the large, highly imbalanced data. The number of com-
pounds correctly classified as Active could have been
improved if the False Positive rate was increased, but it
was decided that the same benchmark as the larger data-
sets should be used. These results raise the question of
molecular structure representation - are Boolean finger-
prints the best data representation? The confirmatory
datasets represented with significantly more descriptors
have only produced slightly better results than the smaller
datasets.

Primary/Confirmatory Screen Bioassay Datasets
These datasets are a mixture of primary and confirmatory
bioassay data - all the false positives from the primary
screen are relabelled as inactive. The datasets are generally
the same size as for the primary screen datasets but have a
smaller minority class. Figure 2 shows the True Positive
rate achieved by each classifier with under a 20% False
Positive rate when the training models were applied to the
independent test set. The minority class % of each dataset
is shown in brackets.

These results were quite surprising - in two cases the Met-
aCost J48 classified all the Active compounds correctly in
the independent test set with fewer than 20% False Posi-
tives. Considering the minority classes were less than 1%,
this is very promising. In all cases, the datasets were too

Table 6: The True Positive and False Positive rates for the confirmatory bioassay datasets

Dataset Naive Bayes SMO Random Forest J48
TP% FP% TP% FP% TP% FP% TP% FP%

AID1608a (154) 23.08 19.17 30.77 8.81 30.77 8.29 15.78 20.21
AID644a (100) 38.46 39.29 23.08 17.86 23.08 7.14 38.46 28.57
AID1284a (103) 27.27 26.23 36.36 13.11 45.45 18.03 54.55 13.11
AID439a (81) 100.00 27.27 50.00 9.09 50.00 18.18 50.00 18.18
AID721a (87) 0.00 28.57 0.00 14.29 0.00 21.43 0.00 14.29
AID1608b (914) 30.77 12.95 38.46 13.47 30.77 12.95 38.46 18.13
AID644b (914) 30.77 28.57 53.85 14.29 38.46 17.86 30.77 14.29
AID1284b (914) 36.36 24.59 36.36 13.11 54.55 18.03 45.45 16.39
AID439b (914) 50.00 18.18 50.00 9.09 50.00 18.18 0.00 27.27
AID721b (914) 0.00 14.29 0.00 21.43 0.00 7.14 0.00 0.00

Mixed datasets: True Positive rate with under or approximately a 20% False Positive rateFigure 2
Mixed datasets: True Positive rate with under or approximately a 20% False Positive rate. The True Positive rate 
achieved by each type of classifier for the Mixed Primary Screen/Confirmatory Screen datasets. A maximum limit of 20% False 
Positives were allowed.
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large for a cost-sensitive Random Forest to be run. The
results of the mixed bioassay data were compared to the
classification results of the corresponding primary and
confirmatory data. Table 7 shows the bioassay datasets
with the results of the best classification model high-
lighted.

Interestingly, in all cases the best model, in terms of cor-
rectly classified Active compounds, has been the mixed
datasets that have the smallest minority classes. This once
again leads back to the question of whether primary
screening data should be solely used to build bioassay
predictive models - better models may be built using the
confirmed Active compounds only. It is unfortunate that
the models that have been the most successful are based
on the hardest to obtain data from PubChem.

Conclusions and Discussion
This paper has examined the three main problems associ-
ated with the virtual screening of bioassay data - the access
to freely-available curated data, the number of false posi-
tives that occur in the primary screening process and the
imbalance of Active compounds to Inactive compounds.
Though the first two of these problems are not solvable by
this research, it is still important that these problems are
pointed out to researchers of virtual screening. This
research has shown that the bioassay data at PubChem is
not recorded in a standard and consistent way and some
entries contain erroneous information. It is unfortunate
that there is no direct search facility where related primary
and confirmatory bioassays may be retrieved together -
the classification models that have been the most success-
ful are based on the hardest to obtain data from
PubChem. The number of false positives from the HTS
primary screen process is very high and maybe virtual

screening techniques should be applied to the bioassays
where there is corresponding confirmatory data.

Weka is a tool that is used by the academic community for
both primary and comparative studies and it is important
to explain how the cost-sensitive classifiers handle mis-
classification costs. Previous research has used across-the-
board cost settings for differing classifiers and this
research has shown that this is not the best way to imple-
ment cost-sensitivity in Weka. When using Weka, the cost
matrix should be set according to the classifier being used
rather than to the ratio of the minority class. From the sur-
vey of cost-sensitive classifiers carried out, the Support
Vector Machine (SMO) and C4.5 decision tree learner
(J48) have performed quite well considering the sizes of
the minority classes. The poor results from the confirma-
tory bioassay experiments have led to a question of molec-
ular structure data representation and this is an area for
future work.

For the virtual screening of bioassay data, it is recom-
mended that both primary and the corresponding con-
firmatory screening data are used.

Experimental
Bioassay Datasets
The following are the descriptions of the datasets used for
these experiments. See additional files Additional file 2:
Training and Testing primary screen datasets in CSV for-
mat.

Additional file 3: Training and Testing primary screen
datasets in CSV format.

Additional file 4: Training and Testing confirmatory
screen datasets in CSV format.

Table 7: Best classification models for the bioassays with mixed, primary and confirmatory data

Assay Best Model TP% FP% Accuracy %

AID604 CSC SMO 64.29 20.59 79.36
AID644b SMO 53.85 14.29 75.61
AID604&AID644 CSC SMO 76.92 11.91 88.08

AID373 MetaCost J48 75.00 14.50 85.49
AID439ab SMO 50.00 9.09 84.62
AID373&AID439 MetaCost J48 100.00 17.65 82.35

AID746 MetaCost J48 63.01 20.30 79.60
AID1284b CSC Random Forest 54.55 18.03 77.78
AID746&AID1284 MetaCost J48 100.00 19.34 80.68

AID687 CSC Naive Bayes 44.44 18.97 80.93
AID721b J48 0.00 0.00 77.78
AID687&AID721 MetaCost J48 50.00 9.49 90.49
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Additional file 5: Training and Testing primary/confirma-
tory screen datasets in CSV format.

• AID362 details the results of a primary screening
bioassay for Formylpeptide Receptor Ligand Binding
University from the New Mexico Center for Molecular
Discovery. It is a relatively small dataset with 4279
compounds and with a ratio of 1 active to 70 inactive
compounds (1.4% minority class). The compounds
were selected on the basis of preliminary virtual
screening of approximately 480,000 drug-like small
molecules from Chemical Diversity Laboratories.

• AID456 is a primary screen assay from the Burnham
Center for Chemical Genomics for inhibition of TNFa
induced VCAM-1 cell surface expression and consists
of 9,982 compounds with a ratio of 1 active com-
pound to 368 inactive compounds (0.27% minority).
The compounds have been selected for their known
drug-like properties and 9,431 meet the Rule of 5 [19].

• AID688 is the result of a primary screen for Yeast
eIF2B from the Penn Center for Molecular Discovery
and contains activity information of 27,198 com-
pounds with a ratio of 1 active compound to 108 inac-
tive compounds (0.91% minority). The screen is a
reporter-gene assay and 25,656 of the compounds
have known drug-like properties.

• AID604 is a primary screening bioassay for Rho
kinase 2 inhibitors from the Scripps Research Institute
Molecular Screening Center. The bioassay contains
activity information of 59,788 compounds with a
ratio of 1 active compound to 281 inactive com-
pounds (1.4%). 57,546 of the compounds have
known drug-like properties.

• AID373 is a primary screen from the Scripps
Research Institute Molecular Screening Center for
endothelial differentiation, sphingolipid G-protein-
coupled receptor, 3. 59,788 compounds were screened
with a ratio of 1 active compound to 963 inactive com-
pounds (0.1%). 57,546 of the compounds screened
had known drug-like properties.

• AID746 is a primary screen from the Scripps
Research Institute Molecular Screening Center for
Mitogen-activated protein kinase. 59,788 compounds
were screened with a ratio of 1 active compound to
162 inactive compounds (0.61%). 57,546 of the com-
pounds screened had known drug-like properties.

• AID687 is the result of a primary screen for coagula-
tion factor XI from the Penn Center for Molecular Dis-
covery and contains activity information of 33,067

compounds with a ratio of 1 active compound to 350
inactive compounds (0.28% minority). 30,353 of the
compounds screened had known drug-like properties.

• AID1608 is a different type of screening assay that
was used to identify compounds that prevent
HttQ103-induced cell death. National Institute of
Neurological Disorders and Stroke Approved Drug
Program. The compounds that prevent a release of a
certain chemical into the growth medium are labelled
as active and the remaining compounds are labelled as
having inconclusive activity. AID1608 is a small data-
set with 1,033 compounds and a ratio of 1 active to 14
inconclusive compounds (6.58% minority class).

• AID644 confirmatory screen of AID604

• AID1284 confirmatory screen of AID746

• AID439 confirmatory screen of AID373

• AID721 confirmatory screen of AID746

Bioassay Descriptors
As previously mentioned, the software PowerMV [11] was
used to generate descriptors for the bioassay SDF files
from PubChem. 179 descriptors were generated for each
dataset.

• 8 descriptors useful for characterizing the drug-likeness
of a compound. These include XlogP (the propensity of a
molecule to partition into water or oil), the number of
Hydrogen bond donors and acceptors, molecular weight,
polar surface area, the number of rotatable bonds, a
descriptor to indicate if the compound penetrates the
blood-brain barrier and a descriptor for the number of
reactive or toxic functional groups in the compound.

• 24 continuous descriptors based on a variation of BCUT
descriptors to define a low dimensional chemistry space.
The method used by PowerMV differs from BCUT in that
PowerMV uses electro-negativity, Gasteiger partial charge
or XLogP on the diagonal of the Burden connectivity
matrix before calculating the eigenvalues.

• 147 bit-string structural descriptors known as Pharma-
cophore Fingerprints based on bioisosteric principles -
two atoms or functional groups that have approximately
the same biological activity are assigned the same class.

For the confirmatory datasets, Fragment Pair Fingerprints
were also generated using PowerMV. For fragment-based
descriptors, 14 classes of paired functional groups are
defined. For example, two phenyl rings separated by two
bonds are expressed as AR_02_AR [11].
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Meta-Learners and Base Classifiers
The following classifiers were implemented for this
research. Please note that italics represent Weka key words
so that the experiments may be reproducible.

• Weka's CostSensitiveClassifier was used for the base
classifiers Naive Bayes, SMO and Random Forest.
Cost-sensitivity can be achieved in two ways - the
reweighting of the training instances according to the
total cost assigned to each class or predicting the class
with the minimum expected misclassification cost.
The former was used for this research and therefore the
MinimizeExpectedCost option was set to False. Our pre-
liminary experiments, not documented here, showed
that the standard CostSensitiveClassifier produced bet-
ter results for these base classifiers than the meta-
learners AdaBoost and MetaCost.

• MetaCost combines the predictive benefits of bagging
(combining the decisions of different models) with a
minimized expected cost model for cost-sensitive pre-
diction. An ensemble classifier is built using bagging
and it is used to relabel the training data based on the
minimised expected costs [6]. Metacost works well
with unstable models and our preliminary experi-
ments found that using Metacost with the J48
unpruned tree produced better results than AdaBoost
and CostSensitiveClassifier.

• NaiveBayes is a probabilistic classifier based on
applying Bayes' theorem with strong independence
assumptions. A Naive Bayes classifier assumes that the
presence or absence of a particular feature of a class is
unrelated to the presence or absence of any other fea-
ture. The Weka defaults for this classifier were used.

• SMO is Weka's implementation of the Support Vec-
tor Machine where the sequential minimal optimisa-
tion algorithm is used to train a support vector
classifier. With the SMO, linear models may be used to
implement non-linear class boundaries. As the meta-
learner CostSensitiveClassifier works better with proba-
bility estimates, the SMO option BuildLogisticModels
was set to True.

• J48 is Weka's implementation of a C4.5 decision tree
learner. J48 was used for these experiments as it is not
a black box approach and may provide added value to
the classification tasks. MetaCost works better with
unstable data and therefore the J48 option Unpruned
was set to True.

• RandomForest is an ensemble classifier that consists
of many RandomTrees, in this case 10. The output of
the RandomForest is the class that is the statistical mode

of the class's output by the individual trees. Weka
defaults were used for the classifier. As a Random For-
est classifier is a bagged classifier, more computer
memory is required to run them than for the other
base classifiers used.

Abbreviations
SVM: Support Vector Machine; HTS: High-Throughput
Screening; 3D: 3 Dimensional; CSC: Cost-Sensitive Classi-
fier; CSV: Comma Separated Values; PS: Primary Screen;
CS: Confirmatory Screen; SDF: Structure Data Format;
SMO: Sequential Minimal Optimisation.
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