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GVF-Based Anisotropic Diffusion Models
Hongchuan Yu, Member, IEEE, and Chin-Seng Chua, Member, IEEE

Abstract—In this paper, the gradient vector flow fields are in-
troduced in image restoration. Within the context of flow fields,
the shock filter, mean curvature flow, and Perona-Malik equation
are reformulated. Many advantages over the original models can
be obtained; these include numerical stability, large capture range,
and high-order derivative estimation. In addition, a fairing process
is introduced in the anisotropic diffusion, which contains a fourth-
order derivative and is reformulated as the intrinsic Laplacian of
curvature under the level set framework. By applying this fairing
process, the shape boundaries will become more apparent. In order
to overcome numerical errors, the intrinsic Laplacian of curvature
is computed from the gradient vector flow fields instead of the ob-
served images.

Index Terms—Anisotropic diffusion models, gradient vector flow
(GVF) fields, intrinsic laplacian of curvature.

I. INTRODUCTION

THE image anisotropic diffusion is to smooth the image in
the direction of an edge, but to not be perpendicular to

it, so that the location and strength of the edges can be main-
tained. Since the Perona–Malik equation was presented as an
anisotropic diffusion model in [1], there has been extensive lit-
erature that presents various anisotropic diffusion models and
offers diverse numerical schemes to obtain the steady-state so-
lutions [2]–[10]. In this paper, we will emphasize the following
three classical image restoration models: shock filter, mean cur-
vature flow scheme, and the Perona–Malik equation.

The shock filter scheme was presented in [12] as a stable de-
blurring algorithm which approximates a deconvolution. Unfor-
tunately, this scheme is extremely sensitive to noise. Further re-
search has therefore focused on defining a more precise and ro-
bust coefficient function in an attempt to smooth noise while
preserving the shape and geometric features. The common ap-
proach is to add some kind of an anisotropic diffusion term, as a
weighting factor, between the shock and the diffusion processes.
A combination to couple shock with a diffusion term was pro-
posed [2], , where is a pos-
itive scale, is the direction of gradient, and is the direction
perpendicular to the gradient. In [4], a complex diffusion model
was presented
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, where the first term is a shock term, is a parameter that
controls the sharpness, and and are, respectively,
complex and real scaling factors.

The mean curvature flow model was presented in [8] and [16]
as an edge enhancement algorithm in the presence of noise. In
[10], the mean curvature flow was applied to enhance and de-
noise under the Min/Max flow scheme. In their applications,
only the pure curvature flow model was employed. In [7], a de-
convolution model was further introduced in the mean curvature
flow model for deblurring and denoising.

A further enhancement to the Perona–Malik equation is the
ability to weight the terms and adaptively. In [5], the
coefficient function was defined as

, where is a threshold for gradi-
ents to be smoothed out, and are, respectively, threshold
and range factors that control the inverse diffusion process. In
[6], the general form of the Perona–Malik equation was pre-
sented . The eigenvalues of the Hessian
matrix are regarded as the second-order directional derivatives

and . The two corresponding eigenvectors are considered
to be the directions of and , respectively, so as to sup-
press the influence of noise. From the above discussion, it can
be seen that the research focus is to design a coefficient function
that should be robust, simple, and controlled.

In this paper, the gradient vector flow (GVF) fields [11] are in-
corporated with the anisotropic diffusion. Since these flow fields
can be determined in advance (that is, they are invariable during
image diffusion), and can also provide a large capture range to
the object boundaries, they perform well on noise or spurious
edges. Another particular advantage is the improvement of the
high-order derivative estimation. We will demonstrate these ad-
vantages by applying the GVF fields to the shock filter, the mean
curvature flow, and the Perona–Malik equation. These models
are chosen for comparison because many of the earlier image
restoration models usually regard these three models as their
basic prototypes. In addition, with the aim of making the en-
hanced boundaries vivid, the fourth-order flow model of the
plane curve [13] is introduced in the anisotropic diffusion. The
GVF fields make the fourth-order flow computation simple and
reliable. Our research in this paper is also inspired by the work
in [24], in which the anisotropic diffusion model is applied to
smooth and denoise the normal vector fields of a three-dimen-
sional (3-D) surface. In this paper, we extend their work to im-
plement image enhancement and denoising based on normal
vector fields, that is, the GVF fields.

This paper is organized as follows: Section II briefly intro-
duces the GVF fields. In Section III, the shock filter, mean curva-
ture flow, Perona–Malik model, and the fourth-order flow model
are reformulated in terms of the GVF fields. The implementa-
tion of our proposed models and experimental results is shown
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in Section IV. Finally, Section V concludes with some ideas for
future research.

II. GVF FIELDS

The GVF field was first presented for active contour models,
in which the GVF field was used as an external force [11]. The
GVF fields are computed as a diffusion of the intensity gradient
vectors that enable noise to be suppressed. Since the GVF is es-
timated directly from the continuous gradient vector space, its
measurement is contextual and not equivalent to the distance
from the closest point. In addition, the GVF provides a bidirec-
tional forcefield that can capture the object boundaries from ei-
ther side without any prior knowledge of shrinking or expanding
toward the object boundaries. Hence, the GVF fields can provide
a large capture range to the object boundaries.

First, a Gaussian edge detector (zero mean, with
variance) is used in the edge map [14],

, , where
is a Gaussian with a small variance. Compared with other

forms of the edge map in [11], this form could avoid the case
where the norm of the GVF vector decreases quickly during the
evolution of the GVF fields. Indeed, this is only a normalization
process. Since the magnitude of the GVF is spatially varying
and is usually not unity, the GVF is normalized in order to make
the maximum magnitude unity. The GVF field is defined
as the equilibrium solution to the following vector diffusion
equation:

(1a)

(1b)

where is a blending parameter. In (1a), the first term on the
right is the smoothing term since it will produce a smoothly
varying vector field. Since is constant, smoothing occurs ev-
erywhere. The second term on the right of (1a) is the data term
since it encourages the vector field to be close to . It
should be noted that grows large near strong edges and
should dominate at the boundaries. In [22], other choices for pa-
rameters and are proposed. In reality, the smoothing
term extends the gradient map further away from the edges so
as to enlarge the capture range, and simultaneously suppresses
the influence of noise (see [22] for details). In Fig. 1, the vectors

in the GVF fields always point to the closest boundaries of
the object. Note that the vector does not always maintain
the same direction with the intensity gradient but will always
point to the closest boundary. On both sides of the boundary,
the directions of the GVF vectors will be opposite. Moreover,
a large capture range to the desired edges is achieved through
a diffusion process of the intensity gradient vectors, which do
not smooth the edges themselves. In the anisotropic diffusion
models, the second- or higher-order derivative is usually needed.
In general, the high-order derivative is very sensitive to noise or
computational error. Hence, the intuitional motivation of intro-
ducing the GVF fields is to decrease the order of the derivative.

Fig. 1. GVF field corresponding to the rectangle on the right image.

Since the GVF fields are invariable during the image diffusion,
they can be determined in advance. This will decrease the in-
fluence of noise and improve the numerical stability for image
evolution.

In order to reveal the intrinsic properties of the GVF fields,
can be rewritten as

(2)

where . For
convenience, the Gaussian operator in is omitted.
Strictly speaking, the vector field is only an approxima-
tion of , which is computed from the observed image
data, with the exception that noise or trivial details can be
suppressed. Although the GVF fields will be applied to several
nonlinear models (with different geometrical interpretations) in
Sections III and IV, it is essentially an approximation and not
an equivalence. For simplicity, we still use the equal sign in (2).

III. DIFFUSION MODELS BASED ON GVF FIELDS

A. Shock Filter

The heat equation will result in a smoothing process, while
the inverse heat equation will lead to a deblurring process to
approximate deconvolution. However, the inverse heat equation
is extremely ill-posed. The shock filter tries to get as close as
possible to the inverse heat equation to reach a stable solution.
This is formulated as , where is the
direction of the gradient.

In this section, the GVF fields are introduced in the shock
filter. Both sides of (2) are dot-multiplied by the intensity normal
vector as

(3)

where denotes the Hessian of intensity . It can be noted
that the above equation can effectively approximate the second
derivative of in the direction of the intensity gradient up
to a positive scale factor . So the shock filter equation can be
reformulated as

(4)

According to the GVF definition in Section II, the direction of
the GVF vector will change across the boundaries while one of
the gradients will be unchanged. Therefore, the sign of
will be opposite for both sides of the boundaries. This will result
in two opposite evolutions for both sides of boundaries. Thus,
(4) allows the image to develop true edges. The worst case is
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when the GVF is tangential to the intensity normal and no fur-
ther evolution takes place. From the implementation point of
view, (4) simplifies the computation of . As a matter of fact,
the original shock filter scheme is extremely sensitive to noise
because of the lack of the diffusion processes (see [4] for de-
tails). While the term in (4) is only a second derivative
of in the direction of the intensity gradient and not a diffusion
term, it cannot be used to remove noise. Thus, the noise-sensi-
tive problem will still exist in (4) as in the original scheme.

B. Mean Curvature-Flow Equation

The mean curvature-flow equation is only one of the
anisotropic diffusion models. The key idea is that an image is
interpreted as a collection of isointensity contours, which can
be evolved. Usually its standard form can be formulated as

, where is the curvature of isointensity contours
. It has received a lot of attention because

of its geometrical interpretation. The level sets of the solution
move in the normal direction with a speed proportional to their
mean curvature. Many theoretical aspects of this evolution
equation, such as the theory of weak solutions based on the
viscosity solution theory, have been summarized in [15]. In
nonlinear image diffusion applications, it has been proven that
the curvature flow equation is well posed and the curvature
flow has been used as an image selective smoothing filter in
[8] and [16]. However, according to Grayson’s theorem [15],
all structures would eventually be removed through continued
application of the curvature-flow scheme. In order to preserve
the essential structures while removing noise, the Min/Max
flow framework based on the curvature flow equation was
proposed in [10]. In the above algorithms, only the pure mean
curvature flow model is used. Indeed, we could introduce some
constraint terms in the mean curvature-flow scheme just as in
the active contour models. In this section, our starting point is to
balance between the internal force, which is from the curvature
of evolution curve, and the external force. The GVF fields will
provide the curvature-flow scheme with a new external force,
which can overcome the noise or spurious edges effectively.

Consider (3): indicates that the second derivative of
is in the direction of gradient. The sign of will change

along the normal to the boundaries in the neighborhood even if
the direction of gradient does not change. Thus, the GVF in-
dicates a correct evolution direction of the curvature flow rather
than the gradient direction. In our approach, the GVF is intro-
duced as a new external force into the original curvature evo-
lution equation, directly from a force-balanced condition. Ac-
cording to (3), we determine a contextual flow ,
where . An important fact is that the propagation driven
by the curvature flow always takes place in the inward normal
direction (that is, ). It is clear that a better way to reach the
boundaries is to move along the direction of GVF. Due to noise
or spurious edges, the gradient vector cannot always align to
the GVF. Thus, a desired propagation can be obtained when the
vector of and the inward normal direction are identical. On
the other hand, the worst case occurs when is perpendic-
ular to the normal (that is, ). Since in this case,
the GVF will lose its effect.

Under the level set framework, it is convenient to introduce
this contextual flow from the GVF fields into the curvature evo-
lution equation

(5)

where . When the GVF and the inward normal have
the same directions, then the flow will be accelerated. On the
other hand, when these vectors have opposite directions, the
flow will be weakened, or even stopped. When the GVF is tan-
gential to the normal, then the curvature flow will dominate
the evolution process.

The proposed scheme of (5) is similar to the model presented
in [7], in which a model of convolution was introduced in the
mean curvature-flow scheme. Indeed, both the deconvolution
and deblurring processes are sensitive to noise, while the mean
curvature term could make them well posed (see [7] for details).

From an implementation perspective, the scheme of (5) has an
advantage over the original curvature evolution equation: due to
the invariance of the GVF fields, the flow would not propagate
endlessly. When a balance between the internal and external
force is reached, the flow evolution will be terminated at the
object boundaries. Furthermore, since the GVF fields provide a
large capture range to the object boundaries, the flow would not
fall at the noise points or spurious edges. Thus, the scheme of
(5) is able to suppress noise effectively.

C. Perona–Malik Equation

The Perona–Malik equation (P–M equation), introduced in
[1], has been successful in dealing with image restoration in a
wide range of images. The key idea is to roughly smooth out
the irrelevant, homogeneous regions (such as the heat equation)
when is small and to enhance the boundaries instead (such
as an inverse heat equation) when is large. The P–M equa-
tion, in the divergence form, is and

. In this equation, is a smooth decreasing
function of the gradient , which is usually defined as an ex-
ponential expression , where
is a positive parameter that controls the level of contrast at the
boundaries. The coefficient function is close to one for

, while is close to zero for . A
theoretical analysis shows that solutions of the P–M equation
can perform an inverse diffusion near boundaries and enhance
edges that have gradients greater than . However, the design of
the coefficient function to balance between the smoothing and
inverse diffusion processes is critical. Nevertheless, the original
P–M equation is an ill-posed parabolic equation. In [23], the co-
efficient function was replaced by which
leads to a well-posed model, and this has been widely used in
practice. In this section, the GVF fields are also introduced in
the well-posed P–M model. For convenience, we will omit the
Gaussian operator in . As the GVF is deter-
mined in advance, the influence of noise or spurious edges will
be weakened in the inverse diffusion process. In this section, we
will try to design the coefficient functions of the smoothing term
and inverse diffusion term based on the GVF fields, respectively,
so that the two functions could be adjusted independently and
freely for different smoothing effects.
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First, let us expand the P–M equation

where is the direction of gradient. In general, the first term is
an inverse diffusion term for sharpening the boundaries while
the second term is a Laplacian term for smoothing the regions
that are relatively flat. In accordance with the GVF definition,
the coefficient function is defined as

. Comparing (2) with the P–M
equation, we note that the gradient vector is missing in (2).
Indeed, the P–M equation is hybrid and combines the gradient
vector and the estimate of gradient . Consider the
equation . The term is an ap-
proximation of the inverse diffusion term in the P–M equation.
Thus, the P–M equation can be rewritten as

(6)

where can be controlled independently. The advantages of
(6) over the traditional P–M equation are distinct.

• Since only the gradient needs to be computed directly from
the observed images in the inverse diffusion term, this will
improve the robustness of the inverse diffusion term.

• The worst case for the first term is when the GVF is tan-
gential to the gradient direction, then this inverse diffu-
sion term is equal to 0. In fact, it is noise or spurious edges
that cause these vectors to be orthogonal. Thus, the regions
around these points should be smoothed and should not be
enhanced.

• The scheme of (6) is an open framework. Under this
scheme, the inverse diffusion term and Laplacian term
can be easily controlled by redefining their coefficients

and , according to the smoothing effect.
Consider the coefficient function and its derivate .

By adjusting the parameter , the smoothing effect is con-
trolled. But the coefficient of the inverse diffusion term cannot
be adjusted freely (Fig. 2) since the GVF fields have been de-
termined before image evolution. An intuitional idea is to de-
form to become similar to the Gaussian function. A robust
method is to redefine the coefficient of the inverse diffusion term
as , , where is a scaling factor and
is a parameter that controls the location of the wavecrest. This
function is a bimodal function, in which each wavecrest is sim-
ilar to the Gaussian distribution. Since in our case, we
only need to consider a single wavecrest of this function. From
the definition of

Since in is a power function, it can eliminate the in-
fluence from the exponential term for
the noise points with large gradient magnitudes. It can be noted

Fig. 2. Comparison of the coefficients g(x) and g (x), plotted as the functions
of gradient magnitude. (� = 1).

Fig. 3. Coefficient ĝ(x) varies with parameter m AUTHOR: INSERT
“WHICH”? changed (� = 1).

Fig. 4. Evolution of star shape. (a) Flow under the intrinsic Laplacian of
curvature with iteration = 15000. (This example is from [21]). (b) Flow under
the mean curvature with iteration = 1000.

that is a new center for the coefficient function of the
inverse diffusion term. When parameter is increasing, the
center of the coefficient function will be moved from low
to high. This is illustrated in Fig. 3.

Thus, the extension of (6) can be re-expressed as

(7)

where the parameter controls the inverse diffusion, the pa-
rameter controls the smoothing effect, and these two param-
eters are independent of each other.

The scheme of (7) is only one of the various forms of the P–M
equation. The scheme of (6) is an open framework, in which
there are many possible choices for designing the coefficient
functions and .

D. Fairing Processing and Fourth-Order Flow Model

The fairing process is derived from computer-aided-design
(CAD)/computer-aided-modeling (CAM) modeling techniques.
A basic approach is to minimize the two energy functions; that
is, for curve fairness and ,
where and are the principle curvatures for surface fairness
[17]. They are usually called the least total curvature. Recently,
these curvatures were introduced [19], [20] in the anisotropic
diffusion model for the curve and surface. The main idea is
to smooth complicated noisy surfaces, while preserving sharp
geometric features. Under a variational framework, fourth-order
PDEs can be deduced from the least total curvature. In this
section, we focus on the fourth-order flow model in the plane,
which will be introduced in the image anisotropic diffusion.

In [21], the fourth-order flow was presented as the intrinsic
Laplacian of curvature under the level set framework

yu
Note
Coefficient \hat g(x) varies along with parameter m change (\sigma_E=1).



IE
EE

Pr
oo

f

YU AND CHUA: GVF-BASED ANISOTROPIC DIFFUSION MODELS 5

where . This is the second derivative of the
local curvature with respect to the arc length parameter .
The particular geometric property of this flow is to improve the
isoperimetric ratio, but not to reduce the enclosed area such as
the mean curvature flow. For comparison, the evolutions of a
star shape under the intrinsic Laplacian of curvature flow

and the mean curvature flow are shown in
Fig. 4.

It is obvious that the flow under the intrinsic Laplacian of cur-
vature will finally converge to a circle. This is due to the isoperi-
metric ratio of the circle being maximum when the perimeter
is fixed, and that the derivatives of the curvature converge uni-
formly to zero. Thus, the final solution to the flow under the in-
trinsic Laplacian of curvature should be a circle. In image diffu-
sion, this fourth-order flow model will preserve the boundaries
of shapes and not smooth them out. Simultaneously, some small
oscillations around the boundaries will be smoothed out.

However, owing to the fourth-order derivative term in the in-
trinsic Laplacian of curvature, it becomes highly sensitive to er-
rors and the fourth-order derivative term requires the numerical
scheme with very small time steps. In Fig. 4(a), the space step

and the time step with more
than 40 reinitializations are used. In fact, it is ill-posed to min-
imize the total squared curvature in the plane-closed
curves (that is, plane curve raveling). Since the total squared
curvature is scale dependent, it can be reduced as far as the gra-
dient flow inflates any closed curve without limit. In order to
make it well posed, the total squared curvature was modified to

[13] and the corresponding gradient flow was
deduced under a variational framework

(8)

where is a closed curve, is the normal vector, and
is the penalty function to make the problem well posed. A few
important conclusions to AUTHOR: “FROM” INSTEAD OF
“TO”?(8) from AUTHOR: “TO” INSTEAD OF “FROM”?
[13] need to be highlighted as follows.

• The long time solution of (8) exists and a stationary solu-
tion can be reached.

• If the descent flow corresponding to the “pure” energy
is considered, the normal speed is simply

.
• The flow can smooth the embedded curves as well as the

immersed curves.
The intrinsic Laplacian of curvature was introduced in active

contours as a frigid force for 2-D and 3-D segmentation in [18].
In fact, it could also be applied in the anisotropic diffusion of
images. Due to the isoperimetric property originating from the
intrinsic Laplacian of curvature term, the shape boundaries in
the evolving image will become vivid. We will deduce the in-
trinsic Laplacian of curvature directly from the GVF fields to
improve numerical stability.

Consider the GVF form of (3). The second derivative of is
extracted in the direction orthogonal to the gradient. The deriva-
tive can be formulated as .

As can be written as a “quasi divergence form” in [16],
, we have, ,

where , , which can be
looked upon as a curvature flow. In general, the curvature flow
evolves along the direction of a gradient. The above equation
can be defined as a force field along the direction of gradient

. The derivative of the field with respect to the arc
length follows from the Frenet–Serret formulation

where is a unit tangent vector and , is the isoin-
tensity contour curvature, which is extracted only from the ob-
served images. The second derivative of the field with respect
to the arc length is

For the gradient flow, we have .
Note that this is the normal speed of the gradient flow corre-
sponding to the “pure” energy . Denoting for
convenience, the second derivative of can be expressed as

where , can be estimated from the GVF
and the observed image, and can be estimated by using the
gradient from the observed image data and from the
GVF fields. Hence, the flow under the intrinsic Laplacian of
curvature is rewritten as

The fourth-order derivative term and the related term
in the above intrinsic Laplacian of curvature flow are estimated
from the GVF fields and are not extracted directly from the ob-
served image. This effectively improves the numerical stability.

However, the above intrinsic Laplacian of curvature flow
equation is ill posed. Compared with the scheme of (8), it lacks
a mean curvature term. In order to make it well posed, the mean
curvature flow is coupled with the above equation as

(9)

where is a constant that balances the contribution between the
mean curvature flow and the fourth-order flow.

IV. EXPERIMENTS

We first illustrate the GVF fields generation on a noisy image
in Fig. 5. For comparison, the GVF fields of this noisy image
calculated by (1) are shown in Fig. 5(b), while the gradient flow

calculated directly from the observed image is shown in
Fig. 5(c). The factor in (1) is empirically set to 0.5. It can
be noted that the GVF flow fields appear smooth and many in-
significant noise points can be effectively overcome in Fig. 5(b),
while the gradient flow fields in Fig. 5(c) appear more disor-
derly. It is more sensitive to noise than the GVF flow fields. If
applying (3) to approximate the gradient flow fields as shown in
Fig. 5(d) (i.e., ), we note that the GVF-based gra-
dient flow fields likewise behave in a disorderly manner. This is
caused by the intensity normal vector from the observed image.
Nevertheless, the boundaries of object are still preserved, and
the evolution trend of the GVF flow field is not changed.

Subsequently, we illustrate the GVF-based shock filter on a
mammographic image in Fig. 6(a)–(c). To deblur such noisy

yu
Note
A few important conclusions from (8) need to be highlighted as follows. (for details, see [13])
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Fig. 5. GVF field of a noisy image (b–d flow fields corresponding to the rectangle
of the noisy image), (a) noisy image, (b) GVF flow field, (c) gradient flow field
without GVF, (d) GVF-based gradient flow field.

and blurry medical images, the shock filter is applied as a stable
deconvolution filter. By comparison, the experimental result
of the original shock filter is also shown. It is noticed that the
original shock filter overenhanced the details in Fig. 6(b), while
the scheme of (4) is able to enhance the essential structures
while suppressing trivial details. This is shown in Fig. 6(c).
Fig. 6(d) demonstrates that the scheme of (4) can reach a
steady-state solution more quickly than the original scheme
with the mean absolute difference (MAD), which is calculated
as , where and

are the width and height of the image, respectively. (All
of the following experiments will adopt this MAD formula to
generate the MAD diagrams.)

The original mean curvature flow and the proposed scheme of
(5) are illustrated on a noisy and blurry image in Fig. 7(a)–(d),
respectively. The original image is degraded with Gaussian
noise (zero mean, with 0.1 variance), and then blurred by a
Gaussian lowpass filter with variance . We adopted

as the original mean curvature flow scheme, and set
in the scheme of (5). It can be observed that the features

of the water lily image are enhanced and denoised effectively
by the scheme of (5) in Fig. 7(d), while all of the features are
smoothed out gradually by the original scheme in Fig. 7(c).
The MAD diagram in Fig. 7(e) demonstrates that the scheme
of (5) is able to reach a steady-state solution and preserve the
essential structure of shapes, while the original curvature flow
scheme would eventually smooth out all of the information.

In the experiments for the P–M equation, the original scheme
is compared with the proposed scheme of (6). The original water
lily image is degraded with Gaussian noise and blurred as shown
in Fig. 7(b). The diffusion results are shown in Fig. 8(a) and
(b). Their diffusion effects seem to be close, but the MAD di-
agram in Fig. 8(c) demonstrates that the scheme of (6) is able
to reach a steady-state solution more quickly than the original
P–M equation.

Fig. 6. Evolutions of shock filter and mean curvature flow scheme. (a) Original
image. (b) By the original shock filter. (c) By the scheme of (4). (d) MAD
diagram of the shock filter.

Fig. 7. Evolutions of mean curvature flow scheme. (a) Original image. (b)
Noisy and blurry image. (c) By original scheme. d) By scheme of (5). (e) MAD
diagram of the mean curvature flow.

In the successive experiments, the scheme of (7) is demon-
strated on the water lily image, which is blurred and degraded
with Gaussian noise as illustrated in Fig. 7(b). The experimental
results are shown in Fig. 9. It can be noted that when the coef-
ficient increases, some details with large gradients are en-
hanced, while others with small gradients are eroded gradually.
This is due to the fact that the center of the inverse diffusion
term in the scheme of (7) moves along with the change in the
coefficient .

In the experiment for the fourth-order flow scheme, the
scheme of (9) is illustrated on the noisy and blurry water-lily
image as shown in Fig. 7(b). The factor is empirically set to
0.5 in (9). The result is compared with that of the scheme of
(6) and depicted in Fig. 10. Due to the intrinsic Laplacian of
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Fig. 8. Evolutions of the P-M equation with � = 0:45. (a) By the original
scheme with iteration = 150. (b) By the scheme of (6) with iteration = 200.
(c) MAD diagram.

Fig. 9. Evolutions of the scheme of (7) with � = 0:45, s = 1 and iteration
= 200. (a) m = 1. (b) m = 2. (c) m = 3. (d) m = 4.

curvature term in (9), the boundaries of objects become distinct
in Fig. 10(b). This indicates that the isoperimetric property from
the intrinsic Laplacian of curvature term would enhance, while
smoothing the shape boundaries during the image anisotropic
diffusion.

V. CONCLUSION

In this paper, we first introduced the GVF fields in the image
anisotropic diffusion. Some well-known nonlinear PDE models,
such as the shock filter, the mean curvature flow, and the P-M
diffusion model were reformulated based on the GVF fields. The
particular advantages that the GVF brings about are the robust
estimation of the high-order derivative, improvement of numer-
ical stability, and the ability to perform well on noisy images. In
addition, the proposed GVF-based anisotropic diffusion models
are able to reach steady-state solutions more quickly than the
original ones. In order to enhance and smooth the boundaries of
an object without eroding them, the intrinsic Laplacian of the
curvature is introduced in the anisotropic diffusion of images.
Since this flow contains a fourth-order derivative term, it is very
sensitive to image noise and computational errors. Despite this,
we are able to obtain a robust estimate of this flow from the
GVF fields. The experiments indicate that our proposed models
are robust and practical as they exploit the GVF fields.

Fig. 10. Evolution of schemes (6) and (9) on the water lily image at iteration
= 200. (a) By scheme (6). (b) By scheme (9).

For future work, the GVF-based P–M diffusion equation
needs to be further examined. The design of the coefficient
in the inverse diffusion term is also a critical problem to be
investigated. In addition, we will apply these proposed diffusion
models to a 3-D volume dataset for medical visualization, as
the classification process is critical for direct volume rendering,
with the anisotropic diffusion providing the desired classifica-
tion results.
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