
Critters in the Classroom: A 3D Computer-Game-Like Tool for Teaching
Programming to Computer Animation Students

Eike Falk Anderson∗ and Leigh McLoughlin†

The National Centre for Computer Animation
Bournemouth University

Figure 1: Sheep on “The Meadow”.

Abstract

The brewing crisis threatening computer science education is a well
documented fact. To counter this and to increase enrolment and
retention in computer science related degrees, it has been suggested
to make programming “more fun” and to offer “multidisciplinary
and cross-disciplinary programs” [Carter 2006]. The Computer
Visualisation and Animation undergraduate degree at the National
Centre for Computer Animation (Bournemouth University) is such
a programme. Computer programming forms an integral part of
the curriculum of this technical arts degree, and as educators we
constantly face the challenge of having to encourage our students
to engage with the subject.

We intend to address this with our C-Sheep system, a re-
imagination of the “Karel the Robot” teaching tool [Pattis 1981],
using modern 3D computer game graphics that today’s students are
familiar with. This provides a game-like setting for writing com-
puter programs, using a task-specific set of instructions which allow
users to take control of virtual entities acting within a micro world,
effectively providing a graphical representation of the algorithms
used. Whereas two decades ago, students would be intrigued by
a 2D top-down representation of the micro world, the lack of the
visual gimmickry found in modern computer games for represent-
ing the virtual world now makes it extremely difficult to maintain
the interest of students from today’s “Plug&Play generation”. It is
therefore especially important to aim for a 3D game-like representa-
tion which is “attractive and highly motivating to today’s generation
of media-conscious students” [Moskal et al. 2004].

Our system uses a modern, platform independent games engine, ca-
pable of presenting a visually rich virtual environment using a state

∗e-mail: eanderson@bournemouth.ac.uk
†e-mail: lmcloughlin@bournemouth.ac.uk

of the art rendering engine of a type usually found in entertainment
systems. Our aim is to entice students to spend more time program-
ming, by providing them with an enjoyable experience.

This paper provides a discussion of the 3D computer game technol-
ogy employed in our system and presents examples of how this can
be exploited to provide engaging exercises to create a rewarding
learning experience for our students.

CR Categories: K.3.2 [Computers and Education]: Computer and
Information Science Education—Computer Science Education

Keywords: Pedagogy, Programming, Visualisation, Games

1 Introduction

The crisis in science education and especially in computer sci-
ence education, due to dramatically reduced enrolment numbers
and high attrition rates [Carter 2006], has escalated to the point
that it is now also reported on in the main-stream media [Koch and
Mohr 2006; Ghosh 2006]. Computer science and related subjects
suffer from a range of problems, many of which appear to be image
related, possibly caused by a general misconception of computer
science – sometimes confused with computer literacy [Beaubouef
and Mason 2005] – and computer programming among prospective
students.

In our experience of teaching on a long established computer an-
imation degree with very strong technical components, we have
found a great number of our students to be strongly biased against
computer science related units, especially against computer pro-
gramming. Our course, the Computer Visualisation and Animation
undergraduate degree at the National Centre for Computer Anima-
tion (Bournemouth University) fits the description of the “multi-
disciplinary and cross-disciplinary programs” proposed to counter
this trend and to increase enrolment in computer science related de-
grees [Carter 2006]. Our students find employment as technical
directors in the digital special effects and computer animation in-
dustries and as technical artists in the computer games industry. To
prepare them for these roles, our arts degree has a strong technical,
computer science related component, and computer programming
forms an integral part of the curriculum.



Computer programming is an essential skill for software develop-
ers; however, even the fact that students are pursuing a computer
science related degree is alone no indicator for the existence of
motivation and it can be very difficult to interest them in the act
of computer programming, the writing of software, itself. This is
something we have observed among students of our course who
come from very diverse backgrounds, often with little prior expe-
rience with computers. Motivation is a major factor in the success
of students of programming, who can only improve their skills by
practicing writing programs [Jenkins 2001]. We especially face
motivational problems among those students who joined the course
solely out of interest for its artistic elements and who consider the
computing aspects of the course as a necessary evil. This lack of
motivation and interest may be grounded in a general misconcep-
tion of computer science and programming among prospective stu-
dents who perceive it as boring (non-creative) and difficult (i.e. ac-
tually requiring work).

A lack of knowledge of the subject area may well be the underly-
ing reason for this bias against computer science and programming.
Among prospective students we have encountered candidates who
appear intimidated by the technological aspects and the maths in-
volved with the course we offer. Other candidates are overcon-
fident, having taken an information technology course at school,
which in reality is little more than a computer literacy course. As
soon as they realise their mistake, the latter quickly lose interest
once they have embarked on the computer science related course
(or module), an observation also made by Beaubouef and Mason
[2005].

A major source of frustration appears to be a lack of patience that
we have observed among students from the “Plug&Play genera-
tion”. Real-world programming languages often require a lot of
understanding, as well as a lot of work, before useful results are
obtained. The students however expect to see immediate (and spec-
tacular) results, often before they have learned enough to achieve
anything remotely spectacular. Their programs often have unin-
tended results, causing confusion, and once faced with difficulties
(a recent study of which was made by Lahtinen et al. [2005]),
their motivation suffers and they quickly lose interest in the sub-
ject, causing them to fall behind in their studies. In our experience
this is a vicious circle, causing frustration and a further loss of mo-
tivation, leading to a downwards spiral and eventually ending in
exam failure. We believe that an important step towards solving
this motivational problem is to make the act of programming ap-
pear less alien to our students. The solution in this case must be a
familiar environment for programming which is not purely a learn-
ing instrument, i.e. not too far removed from real-world systems to
appear irrelevant, but which is both simple and close to real-world
systems.

Having had a positive first hand experience of learning program-
ming through use of a “Karel the Robot” [Pattis 1981] like pro-
gram, it appeared only logical to try to use a similar approach for
teaching our students. C being the language traditionally used in
our undergraduate course, our solution is the C-Sheep program-
ming language, a fully compatible subset of the ANSI C program-
ming language [Kerninghan and Ritchie 1988]. The virtual entities
whose behaviour is controlled by C-Sheep programs are sheep, in-
habiting “The Meadow” virtual environment. The 3D game-like
virtual world of “The Meadow” is built on a proprietary game en-
gine [McLoughlin and Anderson 2006] which incorporates a virtual
machine for executing C-Sheep programs. By offering modern 3D
computer graphics and effects more commonly found in computer
games, our goal is to help students to realise that computer pro-
gramming can be an enjoyable and rewarding experience.

2 Related Tools

Over the years, following in the footsteps of Logo and its turtle [Pa-
pert 1980], there have been many tools for teaching programming
in particular and computer science education in general, a detailed
overview of which is presented by Kelleher and Pausch [2005].
The game-like setting of “Karel the Robot” [Pattis 1981], its suc-
cessors and related systems, as well as the success that they have
achieved, make them especially attractive to educators who have
to motivate students to spend more time programming. These sys-
tems can be counted in the family of mini-languages [Brusilovsky
et al. 1997; Anderson and McLoughlin 2006] that provide a task-
specific set of instructions and (sensor) queries which allow users
to take control of virtual entities, acting within a micro world. This
micro world provides a graphical representation of the algorithms
used in the programs controlling the virtual entities. Their position
and orientation within the virtual world provide visual feedback of
the current state of the program, which is especially useful as many
problems faced by novice programmers can possibly be traced back
to an inadequate understanding of program state [Dann et al. 2000].
The aim of these introductory programming environments is to mo-
tivate students to take up programming, and to provide them with an
enjoyable experience at the same time, by solving tasks in a sand-
box environment in which the human player interaction is limited
to the programming of the virtual entities that act out the solutions.

In fact, there are several examples of games that provide interaction
through this method, such as the Java based Robocode [Li 2002],
which has also been used in computer science education [Bierre
and Phelps 2004; Hartness 2004], or the full 3D action game GUN-
TACTYX [Boselli 2004]. Among these games the ones with 3D
computer graphics are of special interest, as they are most likely to
help with meeting the high expectations of the “Plug&Play genera-
tion”: The traditional mini-language systems are now severely out-
dated and the 2D top-down representation of their micro worlds (of-
ten restricted to ASCII characters in text-mode) is no longer enough
– an assumption that is reinforced by the negative student reaction
to the 2D Robocode system reported by Bierre et al. [2006].

We have chosen an interactive environment using 3D computer
graphics to meet the expectations of our students. Only a few exam-
ples, such as Alice or the MUPPETS system [Cooper et al. 2000;
Phelps et al. 2003], use true 3D graphics for their micro world rep-
resentation. This is surprising since the 3D game-like representa-
tion of the program state created by the virtual entity is “intrinsic
in the natural way to view the data itself” [Dann et al. 2000]. Both
systems act on the same premise, but use a different approach to
ours.

While it is based on the Java language (an earlier version used
Python instead), the design of Alice explicitly tries to remove lan-
guage complexity by hiding the language syntax from the user, al-
lowing the “building” of programs using context-sensitive menus
[Kelleher 2006]. While this can help with the teaching of pure
concepts, this avoidance of syntax unfortunately does little for the
learning of programming using a programming language.

Another approach was taken with the MUPPETS system [Phelps
and Parks 2004], which provides a networked virtual world. This
is rendered in 3D using modern games technology, shared amongst
several students who create objects that can interact with each other.
The students develop the objects using the Java language in a com-
prehensive IDE (integrated development environment) which is in-
cluded in the virtual world interface.

The commonality is that by offering modern 3D computer graphics
and effects more commonly found in computer games, their sys-
tems and our system aim to motivate students to take up program-



Figure 2: “The Meadow” virtual environment.

ming and to help them realise that computer programming can be
an enjoyable task. While many of the availablable systems have
been successfully used in the teaching of programming, unfortu-
nately those that are more graphically appealing do not fit our re-
quirements. Their choice of language and programming paradigm
have made them unsuitable for our course, prompting us to develop
our own solution.

3 “The Meadow” in a Game Engine

“The Meadow” virtual environment is the virtual world in which
entities controlled by C-Sheep programs exist (see figure 2). This
is enabled through a compact portable game engine (currently sup-
porting Linux and Windows operating systems) which was de-
signed specifically for “The Meadow”, yet it is flexible in design
and offers a number of features common to more complex engines.
In its current form, the engine achieves scene management through
a scene graph data structure, which also acts to bind the system
components together as a whole. The main game engine is itself
subdivided into a number of modules and supporting structures,
some of which we will cover in more detail. Management of the
rendering context, sound output and user input are achieved through
the Simple DirectMedia Layer [Latinga 2004]. The engine has a
flexible GUI (graphical user interface) system, with basic window
management, widgets and input/output methods. The system also
contains a physics module based on the Open Dynamics Engine,
which provides physically based dynamics and allows for colli-
sion detection and resolution [Smith 2003]. In comparison with
some recent computer game releases, this feature list may seem un-
remarkable; however, it is quite extensive for a teaching tool.

3.1 Rendering Module

Rendering is achieved with a rendering engine using the OpenGL
API (application programming interface) [Shreiner et al. 2005],
supporting the programmable graphics hardware pipeline through
NVIDIA’s Cg Shaders [Mark et al. 2003]. With the exception of the
GUI system, the engine uses Cg for almost all of its graphical out-
put, and most of the advanced features also rely on OpenGL Frame
Buffer Objects, which provide a convenient method of rendering to
texture. When the system is run on a machine with graphics hard-
ware that is incapable of supporting such features, the effects are
unavailable, since software emulation is usually prohibitively slow.

The graphical effects that the engine currently provides to “The
Meadow” virtual environment include:

3.1.1 High Dynamic Range (HDR) Lighting

Traditionally, lighting calculations are performed using just 8 bits
per colour channel, resulting in a finite set of brightness values. Re-
ality, however, is quite different; for example, the sun at noon is
around 100 million times brighter than starlight [Reinhard et al.
2006]. This is not achievable using traditional techniques, and re-
quires a much higher range of values for accurate representation.
Such a higher dynamic range of values can now be simulated on
modern graphics hardware by using higher precision floating point
numbers for the colour channels. HDR lighting has become an
increasingly popular effect in computer games, and as such is in-
cluded as an integral part of the programmable pipeline in our en-
gine.

Current computer displays, with a very few (costly) exceptions, are
still limited to a low dynamic range of colours that can be repre-
sented. Therefore, any simulation that performs calculations in a
high dynamic range must convert them in order to be successfully
displayed. This process is known as tone mapping, and often in-
cludes a number of parameters that can be adjusted. In our sys-
tem, a virtual ‘exposure’ value is presented, mimicking that of a
real camera’s – the principles of which should be familiar to our
students. This exposure can either be adjusted manually, or an au-
tomatic system can be specified at the program configuration level.
The automatic system is based on that used in the game Half Life 2
[Mitchell et al. 2006], and involves building up a basic histogram
of the scene luminance, by each frame drawing pixels within a dif-
ferent luminance range to an off-screen buffer, and asynchronously
querying the results.

Another popular HDR effect implemented in the graphics engine
is that of the bloom, or glare. Here, overly bright parts of a scene
appear to glow very slightly. This is achieved by extracting the
brightest parts of the rendered frame, blurring them, and then com-
positing the result with the original.

3.1.2 Image Processing Techniques

Continuing with the camera analogy, a depth of field effect is pro-
vided, along with an approximation to motion blur. The depth of
field, which results in an area that is in focus, with objects too close
or too far away being blurred, is implemented in a similar man-
ner to that described by Gillham [2007]. The depth of field effect
relies on accessing the depth buffer and evaluates how blurred a
pixel should be, based on its depth difference from the ‘in focus’
area – the centre of the screen. This level is then used to interpo-
late between the original image and a blurred version. Motion blur
is approximated simply by blending the current frame with all the
previous ones, the wheighting of the current frame determining the
amount of blur. Both effects are adjustable.

Two further visual effects are provided as post-processing tech-
niques. The first is saturation, which allows for adjusting between
full colour and grey scale; the second is vignette, which displays a
darkening around the edges of the screen.

3.1.3 Object Shaders

A number of modern effects are provided within object shaders.
The most notable of these is the ground shader, which displays ei-
ther a grass texture or cobble stones. At a given point on the ground,
the surface type is determined by a low resolution texture map that
is stretched to fit the playable area within “The Meadow”. To al-
low for smooth transitions between the two surface types, they are



both calculated within a single ground shader and the results are
blended accordingly. The grass surface is relatively simple, and
relies on a grass texture as its foundation, calculating flat diffuse
lighting due to the sun, lightning, and the ‘artificial’ light generated
from a lamp post object. In contrast to the grass, the cobble stone
surface is fairly complex. Using a height map and a normal map,
it provides parallax mapping [Welsh 2004] and normal mapping.
These give the illusion of a greater level of geometric detail than is
actually present. During wet weather conditions, the cobble stones
change their reflective properties, and a reflection approximation
based on the ambient background colour is applied in low parts of
the height map to simulate pools of water collecting in the gaps
between stones (see figure 3).

3.1.4 Weather System

A sky system with dynamic weather is included, with basic user
adjustable controls: a haze value, and a generic weather value that
varies the cloud cover. The effect involves a dome for the sky
colour, and a separate dome for the clouds. While the sky colour
was originally calculated using the relatively complex method by
Preetham et al. [1999], following Heigl’s implementation guide-
lines [Heigl 2004], its high computational cost prompted the adop-
tion of an empirical solution using data collected from photographic
sources. The result approximates the sky using a series of simple
colour blends which are computationally cheap and, although basic,
provide surprisingly good results.

The cloud system is applied to a cloud-dome, which is slightly
smaller than the sky dome. To create the illusion of perspective,
the texture coordinates are adjusted within the shaders. An approx-
imation based on the process described by Elias was taken for the
cloud simulation process [Elias 1998]. This approach involves the
continual gradual linear interpolation between pre-generated two
dimensional textures of Perlin noise [Perlin 1985]. The generic
weather value is passed into the shader, and is used to determine
the cloud coverage which can be changed from clear to overcast to
thunderstorm. The shader lights the cloud layer by taking into ac-
count the sun direction and a single lightning source. Lightning is
generated when the weather value reaches its upper quarter, with
the chance of a strike gradually increasing. The lightning is an ap-
proximation of high-level inter-cloud lightning and does not dis-
play visible streaks, although this is planned as a future extension.
The generator only generates one strike at a time, the parameters of
which are passed into various shaders, such as those for the cloud
layer and the ground.

One of the most important aspects of bad weather is precipitation.
The weather values ranging in the upper half are used to determine
rain intensity. Rain is shown as a dynamic texture in front of the
camera, and also through small rain splashes on the ground (see
figure 3). The techniques for both are inspired by those used by
Tatarchuk [2006], where the rain splashes are small billboards –
polygons aligned to face the camera. An animated splash texture is
then applied to these.

3.2 Scripting Module

A recent trend in computer games is to make the games extensi-
ble. The method by which this extensibility is most often realised
is by the use of more or less complex scripting systems. Script-
ing removes a large part of the – previously hard-coded – internal
game logic from the game engine and transforms it into a game as-
set. Robert Huebner’s case study on the use of scripting languages
in computer games details how this is often achieved [Huebner
1997]. Our engine uses a Lua scripting interface [Ierusalemschy
et al. 1996]. The scripting language Lua is currently the language of

Figure 3: Rain on “The Meadow”.

choice for building the scripting solutions in many computer games.
It is a generic programming language that was originally designed
to be used to extend programs by adding various scriptable features,
which is why the creators of Lua have dubbed it an “extensible ex-
tension language”. Since its first conception, Lua has been used
to add scripting to a number of bestselling computer games. We
use Lua primarily for scene initialisation, i.e. scene graph setup,
with node operations provided as functions to the scripted inter-
face, thus, it is from within the scripting environment that the scene
graph hierarchy is constructed. The engine also uses Lua scripts for
determining responses to user input. The GUI management system
provides Lua functions, which allow for setup and the registration
of Lua functions as callbacks to handle user interaction with the
GUI.

3.3 Virtual Machine Module

The virtual machine used in the engine is a kind of parallel stack-
based machine, allowing the creation of several simultaneously run-
ning processes, each of which has its own stack to keep different
programs separate. It uses pre-emptive multi-tasking with round-
robin scheduling to execute loaded processes during its run cycle.
An improvement on the ZBL/0 virtual machine [Anderson 2004],
it retains full backwards compatibility to bytecode compiled from
programs created using the ZBL/0 core language. In the case of
ZBL/0 the programming language was designed specifically as an
educational tool with the definition of NPC (Non Player Character)
behaviour in First Person Shooter (FPS) games in mind [Zerbst
et al. 2003], which is reflected in the functions and procedures of the
language, only a few of which remain present in the C-Sheep lan-
guage. The instruction set of the virtual machine includes pointers
as well as facilities for the creation of aggregate data types (arrays
and record structures). While much of this is unused as it exceeds
the requirements of the C-Sheep C language subset, the provision of
this rich feature set provides upwards compatibility to possible fu-
ture revisions of the system, as well as the possibility of source lan-
guage independence. This can easily be demonstrated with ZBL/0
programs that can be executed within the virtual machine, in which
case the NPC controlled by the ZBL/0 program in “The Meadow”
is the sheep entity.

To execute native C-Sheep programs in “The Meadow” they must
first be compiled with an external compiler which translates from



the C-Sheep subset of the C programming language to the virtual
machine bytecode. This is where our system differs from the more
integrated development environments of other systems. While this
slightly complicates the use of our system, it does create greater
flexibility by freeing “The Meadow” from being bound to the C-
Sheep language. This potentially makes it targetable by compilers
for different languages, i.e. a Java based J-Sheep or Pascal based
P-Sheep could be created with relatively little effort.

3.3.1 C-Sheep Language

The C-Sheep subset of the ANSI C programming language [An-
derson and McLoughlin 2006] was designed in accordance with
some of the introductory language design principles proposed by
McIver and Conway [1996], of which we especially considered the
provision of a set of non-overlapping language features as impor-
tant. C-Sheep implements the C control structures that are required
for teaching the basic computer science principles encountered in
structured programming, these being the (unconditional) sequence,
conditional statements and loops [Böhm and Jacopini 1966]. Its in-
structions allow users to control the actions performed by the sheep
actor and to query changes in the virtual world (e.g. the current
state of the weather).

A feature in which C-Sheep differs from other mini-language based
systems, that aim to provide an environment with minimal com-
plexity, is that C-Sheep allows the declaration and use of variables,
which some might consider as a potential problem. There are, how-
ever, other problems with variable free languages that can occur
at the moment of transition to a real-world system, as identified by
Untch [1990]. By including variables, the migration to a real-world
language can be delayed and the transition will be smoother.

4 C-Sheep in the Classroom

Our system was designed as a teaching tool for the first term of a
first year computer programming unit in a computer animation de-
gree, originally planned for deployment in the 2006/2007 academic
year. Unfortunately this target could not be met due to mainly hard-
ware constraints that made it impossible to run the finished proto-
type of “The Meadow” in the labs assigned to the first year cohort,
but we are planning to use our system in this role from the start of
the next academic year.

The system itself, however, lends itself to many other uses beyond
the simple introduction to computer programming with C.

4.0.2 Graphics Programming

In graphics programming, a prominent theme in the second year
programming unit of our course, we have used the “The Meadow”
to illustrate the usage of OpenGL for writing graphics programs.
This is an area of use which we intend to explore further, as “The
Meadow” provides us with a visual aid and test platform for demon-
strating a wide range of techniques, from the simple usage of
OpenGL, as we have already done, to the use of shaders and specific
graphical effects.

4.0.3 Languages & Compilers

Another theme in the second year computer programming unit are
formal languages, parsers and compilers. Here we have used the
simple structure of the C-Sheep C language subset as a sample lan-
guage in classroom exercises. As “The Meadow” can be used with
other languages than C-Sheep, it could also be used as the target
for a compiler for a simple model language like Oberon-0 [Wirth
1996].

Figure 4: A programming lab assignment.

4.1 C-Sheep Companion Library

The C-Sheep system includes a counterpart library for programs
written in the ANSI C programming language. The functions pro-
vided by this library mirror the C-Sheep instructions for the virtual
entities in the virtual machine. As suggested by Untch, the pur-
pose of such a library is to simplify the migration from the educa-
tional mini-language to real-world systems [Untch 1990], in our
case from C-Sheep to the C programming language. Using the li-
brary, C-Sheep programs can be compiled into an executable using
a normal off-the-shelf C/C++ compiler, allowing novice program-
mers to make an easy transition from using the C-Sheep system to
C. The compiled executable can then be run from within the native
working environment of the operating system.

The library allows advanced students to tackle more complex prob-
lems than those that can be solved within “The Meadow”, such as
the use of dynamic data structures like linked lists and trees. The
library is currently available to students in a stable and usable state,
however lacking on the visual side (not yet as pretty as we would
like as currently only visualising C-Sheep programs in a 2D top-
down view).

4.2 Classroom Experience – a Simple Exercise

Helped by the fact that C-Sheep uses a reduced, but not minimal
syntax, including data types, we have used the C-Sheep system
in the context of algorithm design exercises in the second year
programming unit of our course. After being introduced to both
the C-Sheep system consisting of the C-Sheep compiler and “The
Meadow”, as well as the C-Sheep companion library for use with a
normal compiler, students were presented with an algorithm design
exercise: the design and implementation of a simple maze solver
(see figure 4). This is a kind of exercise that could easily be used in
the first year computer programming unit as it provides a problem
that can be used for the teaching of iteration and recursion.

A question that students frequently ask when confronted with sim-
ilar toy-problems in programming exercises is the relevance of that
problem to real-world problems or - in extreme cases - to their ex-
ams. In this case we encountered fewer such questions, which we
believe to be due to the visual nature of the problem. This made it
easier for the students to recognise situations in which the solution
to this problem might be useful.



4.3 Observations & Student Comments

When trying the system in the classroom we first expected to en-
counter comments similar to those reported by Bierre et al [Bierre
et al. 2006]. They had first tried to teach using the 2D top-down
Robocode [Li 2002] system, but found students disliked the 2D
view as they were used to 3D views from the games they were
playing. We therefore anticipated our students to dislike the 2D
counterpart library and to favour “The Meadow” 3D virtual envi-
ronment. Instead, to our surprise, we found that while our less ex-
perienced students did prefer the 3D view, some of our students ac-
tually preferred the primitive 2D top-down graphics of the counter-
part library. The students who preferred the 2D library were those
who had either a greater interest in computer programming or some
prior programming experience, and while they liked the look of
“The Meadow” they thought it distracted from the main task, i.e.
the solving of problems. While this could only be incidental, it
suggests that additional research is necessary to determine if the
choice of dimension for the graphical representation is a relevant
factor when it comes to motivating students with different levels of
competence.

When asked, the overall reaction was that C-Sheep “makes pro-
gramming more interesting”. The consensus was that the system
provided “a fun way to program” or that using it was just “fun”.
Some of the students had previously been exposed to the Logo tur-
tle and therefore recognised its similarity to the instructions avail-
able in C-Sheep. This led them to compare it to the turtle, with a
few even suggesting we offer the alternative choice of a turtle to
complement the sheep. The use of the sheep as the programmable
entity - which was a random pick (or rather a joke) - itself turned
out to be a good choice: we found that the use of a cartoon style
sheep was attractive to both male and female students, the former
considered it to be “cool”, whereas the latter thought of the sheep
as “cute”. This finding, although encouraging, must be interpreted
with care as the number of students participating in the exercise was
relatively small, making this anecdotal evidence which cannot be
deemed representative. However, we believe this calls for further
investigation, as research suggests that gender inclusiveness at an
early point in computer science education is a contributing factor to
success in the field, as female students usually have “significantly
less pre-college programming experience” [Murphy et al. 2006].
This makes it especially important to motivate female students to
practice programming so they do not fall behind their male coun-
terparts.

5 Summary & Future Work

We have presented C-Sheep, a system to simplify the teaching of
computer science principles using the C programming language by
means of a mini-language subset within a state-of the art 3D com-
puter game-like virtual environment. For easy migration from our
system to real world compilers, the system is complemented with
a counterpart library for use with real-world compilers. One of the
enhancements that we intend to make is to extend the C counterpart
library to use better graphics. Coupled with this improved visual
representation, the control structures, operators and aggregate data
types (arrays and record structures) accessible by any real-world
C compiler could make an expansion of the C-Sheep C language
subset unnecesary. Instead of “The Meadow”, this enhanced coun-
terpart library could be used to facilitate the introduction of these
elements of C language syntax, providing a more seamless tran-
sition to the real-world compiler. A major issue with the current
implementation of the C-Sheep system that requires additional at-
tention is the support of a wider range of graphics hardware, as the
prototype implementation of the underlying games engine has some

steep graphics hardware requirements. The provision of additional
shaders for lower-spec hardware and vendor independence is only
a matter of course and will not only simplify the deployment in our
computer labs, but also make the support of additional platforms a
possibility. During use in the lab, students discovered a number of
potential problems, e.g. slight incompatibilities between C-Sheep
compilers on different platforms (Linux and Windows) which we
hope to fix before the full deployment of our system. Students also
made suggestions for improvement that we will address in the fu-
ture. Their feedback leads us to believe that further work on the
C-Sheep function library, i.e. the instructions available for the con-
trol of the sheep, is required to enhance interactivity with the virtual
environment in “The Meadow”. Another issue raised by students
was the available documentation, mainly consisting of a descrip-
tion and explanation of the available functions, which many of them
considered to be insufficient. Poiker explains how novice program-
mers write programs employing a mixture of “copy and paste” with
“trial and error”, requiring many examples and good documenta-
tion [Poiker 2002]. We therefore intend to provide the next ver-
sion of our system with a more detailed manual and comprehensive
examples to simplify the introduction of the system into the first
year programming unit in the next academic year. Finally we are
planning to include a JIT (Just In Time) compiler for C-Sheep into
“The Meadow” to allow C-Sheep program development and testing
within the confines of the virtual environment.

Acknowledgements

First and foremost we would like to express our gratitude towards
our supervisor, Prof. Peter Comninos. Without his support and
encouragement this project would never have reached its current
state. We also have to mention our collaborator on this project,
Steffen Engel, as well as our other colleagues for their comments
and suggestions that have contributed to this project. Finally, a word
of thanks must go to our students for giving us useful feedback.

References

ANDERSON, E. F., AND MCLOUGHLIN, L. 2006. Do robots
dream of virtual sheep: Rediscovering the karel the robot
paradigm for the plug&play generation. InProceedings of the
Fourth Game Design and Technology Workshop and Conference
(GDTW 2006), 92–96.

ANDERSON, E. F. 2004. A npc behaviour definition system for
use by programmers and designers. InProceedings of CGAIDE
2004, 203–207.

BEAUBOUEF, T., AND MASON, J. 2005. Why the high attrition
rate for computer science students: some thoughts and observa-
tions. ACM SIGCSE Bulletin 37, 2, 103–106.

BIERRE, K. J., AND PHELPS, A. M. 2004. The use of mup-
pets in an introductory java programming course. InCITC5 ’04:
Proceedings of the 5th conference on Information technology ed-
ucation, 122–127.

BIERRE, K., VENTURA, P., PHELPS, A., AND EGERT, C. 2006.
Motivating oop by blowing things up: an exercise in cooperation
and competition in an introductory java programming course. In
SIGCSE ’06: Proceedings of the 37th SIGCSE technical sympo-
sium on Computer science education, 354–358.

BÖHM, C., AND JACOPINI, G. 1966. Flow diagrams, turing ma-
chines and languages with only two formation rules.Communi-
cations of the ACM 9, 5, 366–371.



BOSELLI, L., 2004. Gun-tactyx - historical background.
http://gameprog.it/hosted/guntactyx/info.php#intro0.

BRUSILOVSKY, P., CALABRESE, E., HVORECKY, J., KOUCH-
NIRENKO, A., AND M ILLER , P. 1997. Mini-languages: A
way to learn programming principles.Education and Informa-
tion Technologies 2, 1, 65–83.

CARTER, L. 2006. Why students with an apparent aptitude for
computer science don’t choose to major in computer science.
ACM SIGCSE Bulletin 38, 1, 27–31.

COOPER, S., DANN , W., AND PAUSCH, R. 2000. Alice: A 3-d
tool for introductory programming concepts.Journal of Com-
puting Sciences in Colleges 15, 5, 107–116.

DANN , W., COOPER, S., AND PAUSCH, R. 2000. Making the
connection: Programming with animated small world. InPro-
ceedings of the 5th annual SIGCSE/SIGCUE ITiCSE conference
on Innovation and technology in computer science education,
41–44.

ELIAS , H., 1998. Cloud cover.
http://freespace.virgin.net/hugo.elias/models/mclouds.htm.

GHOSH, P., 2006. Computer industry ’faces crisis’. BBC News
Online: http://news.bbc.co.uk/1/hi/technology/6155998.stm.

GILLHAM , D. 2007. Real-time depth-of-field implemented with
a postprocessing-only technique. InShaderX5: Advanced Ren-
dering Techniques. Charles River Media, 163–175.

HARTNESS, K. 2004. Robocode: using games to teach artificial
intelligence.J. Comput. Small Coll. 19, 4, 287–291.

HEIGL, S., 2004. Simulating nature.
http://www.eisscholle.de/index.php?d=devel/openmountains
&sub=daylight.

HUEBNER, R. 1997. Adding languages to game engines.Game
Developer 4, 9.

IERUSALEMSCHY, R., DE FIGUEIREDO, L. H., AND CELES, W.
1996. Lua - an extensible extension language.Software: Prac-
tice & Experience 26, 6, 635–652.

JENKINS, T. 2001. The motivation of students of programming. In
ITiCSE ’01: Proceedings of the 6th annual conference on Inno-
vation and technology in computer science education, 53–56.

KELLEHER, C., AND PAUSCH, R. 2005. Lowering the barriers to
programming: A taxonomy of programming environments and
languages for novice programmers.ACM Computing Surveys
37, 2, 83–137.

KELLEHER, C. 2006. Alice: Using 3d gaming technology to
draw students into computer science. InProceedings of the
Fourth Game Design and Technology Workshop and Conference
(GDTW 2006), 16–20.

KERNINGHAN, B. W., AND RITCHIE, D. M. 1988. The C Pro-
gramming Language. Prentice Hall.

KOCH, J., AND MOHR, J. 2006. Gute F̈acher, schlechte Fächer.
Der Spiegel, 50, 64–79.

LAHTINEN , E., ALA -MUTKA , K., AND JÄRVINEN , H. 2005. A
study of the difficulties of novice programmers.ACM SIGCSE
Bulletin 37, 3, 14–18.

LATINGA , S., 2004. Simple directmedia layer introduction.
http://www.libsdl.org/intro.php.

L I , S., 2002. Rock ’em, sock ’em robocode! IBM
developerWorks: Java technology - http://www-
106.ibm.com/developerworks/library/j-robocode/.

MARK , W. R., GLANVILLE , R. S., AKELEY, K., AND K ILGARD ,
M. J. 2003. Cg: a system for programming graphics hardware
in a c-like language. InSIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, 896–907.

MCIVER, L., AND CONWAY, D. 1996. Seven deadly sins of intro-
ductory programming language design. InProceedings of Soft-
ware Engineering: Education and Practice (SE:E&P’96), 309–
316.

MCLOUGHLIN, L., AND ANDERSON, E. F., 2006. I see sheep: A
practical application of game rendering techniques for computer
science education. Poster at Future Play ’06 Conference.

M ITCHELL , J., MCTAGGART, G.,AND GREEN, C. 2006. Shading
in valve’s source engine. InSIGGRAPH ’06: ACM SIGGRAPH
2006 Courses, 129–142.

MOSKAL, B., LURIE, D., AND COOPER, S. 2004. Evaluating
the effectiveness of a new instructional approach.ACM SIGCSE
Bulletin 36, 1, 75–79.

MURPHY, L., RICHARDS, B., MCCAULEY, R., MORRISON,
B. B., WESTBROOK, S., AND FOSSUM, T. 2006. Women
catch up: gender differences in learning programming concepts.
In SIGCSE ’06: Proceedings of the 37th SIGCSE technical sym-
posium on Computer science education, 17–21.

PAPERT, S. 1980.Mindstorms: Children, Computers and Powerful
Ideas. Basic Books.

PATTIS, R. E. 1981.Karel the Robot, a Gentle Introduction to the
Art of Programming. John Wiley and Sons.

PERLIN, K. 1985. An image synthesizer. InProceedings of the
12th Annual Conference on Computer Graphics and Interactive
Techniques SIGGRAPH ’85., 287–296.

PHELPS, A. M., AND PARKS, D. M. 2004. Fun and games: Multi-
language development.ACM Queue 1, 10, 46–56.

PHELPS, A. M., J., B. K., AND PARKS, D. M. 2003. Mup-
pets: multi-user programming pedagogy for enhancing tradi-
tional study. InCITC4 ’03: Proceedings of the 4th conference
on Information technology curriculum, 100–105.

POIKER, F. 2002. Creating scripting languages for nonprogram-
mers. InAI Game Programming Wisdom. Charles River Media,
520–529.

PREETHAM, A. J., SHIRLEY, P.,AND SMITS, B. 1999. A practical
analytic model for daylight. InProceedings of the 26th Annual
Conference on ComputerGraphics and Interactive Techniques.,
91–100.

REINHARD, E., WARD, G., PATTANAIK , S., AND DEBEVEC, P.
2006.High Dynamic Range Imaging: Acquisition, Display, and
Image-Based Lighting. Morgan Kaufmann.

SHREINER, D., WOO, M., NEIDER, J., AND DAVIS , T. 2005.
OpenGL Programming Guide, 5th ed. Addison-Wesley.

SMITH , R., 2003. The open dynamics engine. http://www.ode.org.

TATARCHUK , N. 2006. Artist-directable real-time rain rendering in
city environments. InSIGGRAPH ’06: ACM SIGGRAPH 2006
Courses, 23–64.



UNTCH, R. H., 1990. Teaching programming using the karel the
robot paradigm realized with a conventional language. On-line
at: http://www.mtsu.edu/˜untch/karel/karel90.pdf.

WELSH, T. 2004. Parallax mapping. InShaderX3: Advanced
Rendering With DirectX And OpenGL. Charles River Media, 89–
96.

WIRTH, N. 1996.Compiler Construction. Addison-Wesley.

ZERBST, S., DÜVEL , O., AND ANDERSON, E. 2003. 3D-
Spieleprogrammierung. Markt + Technik.


