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Abstract 

Geodesics have a wide range of applications in CAD, shape design and 
machine learning. Current research on geodesic computation focuses 
primarily on parametric surfaces and mesh representations. There is little 
work on implicit surfaces. In this paper, we present a novel algorithm able 
to compute the exact geodesics on implicit surfaces. Although the existing 
Fast Marching Method can generate a geodesic path on a Cartesian grid 
that envelopes the implicit surface in question, this method, as well as 
other existing methods, is unable to compute a geodesic on the original 
surface. The computed geodesic path is actually a polyline offsetting from 
the surface. Our approach provides a solution to two existing fundamental 
problems, which are (1) to produce a Cartesian grid that can tightly embed 
the implicit surface concerned, which remains challenging; and (2) to 
formulate exact geodesics on the original implicit surface itself. Our 
algorithm consists of two steps, Cartesian grid based geodesic 
computation and geodesic correction. The later corrects an approximate 
geodesic path so that it can be on the implicit surface. In addition, in 
comparison with other existing work, our methods can handle both low 
dimensional and high dimensional surfaces (hyper-surfaces). 
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1. Introduction 

Geodesic computation has a wide range of applications in medical imaging, 
robotics, machine learning and computer graphics, such as surface remeshing (Peyre 
and Cohen [1]), all-geodesic algorithm for filament winding (Seereeram and Wen 
[2]), inertia matrix constructed by geodesics (Kim and Luo [3]), bending invariant 
(Elad and Kimmel [4]), motion planning (Hu et al. [26]), Isomap (Tenenbaum et al. 
[27]). Because a geodesic represents the shortest path on a surface between two 
points, it is also important for length measurement on a curved surface. These 
measurements are fundamental to many applications relating to distances. Many 
recent efforts have been made for geodesic computation. The main objectives are to 
achieve accurate representations with a fast computation speed. The recent progress 
was documented in (Surazhsky et al. [14]), which discussed many effective 
algorithms computing a geodesic on a mesh. The resulting geodesics however, are 
not the true representation, as they are not on the surface concerned. 

In this paper, we present novel algorithms for computing geodesics, which will 
be on an implicit surface. Although there is an extensive literature for parametric 
surfaces (Ravi Kumar et al. [5] and Wang et al. [6]), little research was reported for 
implicit surfaces. This is due to the fact that implicit forms have no natural material 
coordinates and they are not as manipulateable as parametric surfaces. However, in 
many applications, surfaces are given in implicit forms, e.g. (Caselles et al. [7]; 
Frisken et al. [8] and Yezzi et al. [9]), where we need to extract geodesic paths for a 
surface distance metric. We could of course triangulate an implicit surface in 
advance, and use the available methods to compute geodesics on the mesh. The 
triangulation process usually introduces errors depending on the resolution and adds 
extra computational costs. Also, we can observe that working directly with implicit 
representations is more robust and accurate than on a triangulated surface when 
dealing with the differential characteristics of a surface (Memoli and Sapiro [10]). 

Our work was motivated by the works given in (Witkin and Heckbert [11] and 
Memoli and Sapiro [10]). The former gives a particle based approach to model 
implicit surfaces, while the latter addresses geodesics computing on implicit hyper-
surfaces through embedding surfaces into Cartesian grids. The resulting geodesic 
paths lie on a Cartesian grid. Focusing on the discretization of implicit surfaces, our 
algorithm can result in geodesics lying exactly on implicit surfaces instead of 
Cartesian grids or meshes. Our contributions can be summarized as follows: 
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(1) Implicit surface discretization. An important step identified in Memoli and 
Spairo [10] is to embed an implicit surface into a Cartesian grid so that the Fast 
Marching Method (FMM) (Sethian [12]) can be applied. However how to generate a 
Cartesian grid for an implicit function remains an unsolved problem, since the size 
of Cartesian grids grows exponentially when they are subdivided iteratively, 
rendering the computing process unbearably slow. We present two methods to deal 
with this issue for different scenarios. 

(2) Exact geodesics. Existing methods only compute geodesic paths on a grid 
(or a triangle mesh). Although the revised MMP algorithm (Surazhsky et al. [14]) 
can improve the computational accuracy, the resulting geodesic paths still lie on a 
mesh offsetting from the surface. We present a geodesic correction procedure to 
ensure an exact geodesic curve on the implicit surface is produced. 

Additionally, the presented methods are valid for high dimensional cases. The 
remainder of this paper is organized as follows: In Section 2, we briefly overview 
the related work. Our methods, including the Cartesian grid based algorithms and 
geodesic correction procedure, are presented respectively in Sections 3 and 4. The 
details of the implementation and discussions are given in Section 5. Finally, our 
conclusions are given in Section 6. 

2. Related Work 

For a triangle mesh, the pioneering work is the MMP algorithm (Mitchell et al. 
[13]), which provides an exact solution for the “one source to all destinations” 

shortest path problem. In the worst case, the running time is up to ( ).log2 NNO  

(Surazhsky et al. [14]) discussed its implementation. Another exact geodesic 
algorithm was presented in Chen and Han [15], whose time complexity is up to 

( ).2NO  The majority of the research focuses on the computation of approximate 

geodesics with guaranteed error bounds, such as adding extra edges into the mesh 
for accurate geodesics (Lanthier et al. [16]), and iterative optimization (Kanai et al. 
[17]). A well-known work is the Fast Marching Method, which computes 
approximate geodesics in ( )NNO log  time complexity. However working on a 

triangle mesh, FMM sometimes makes the distance functions error-prone. The 
resulting geodesic path is not always ideal. Some correction post-processing 
procedures were subsequently proposed following FMM, such as applying the 
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“straightest geodesics strategy” (Polthier and Schmies [18]) to correct the geodesic 
path (Martinez et al. [19]). 

For parametric surfaces, an exact numerical algorithm on parametric surfaces 
was presented in Do Carmo [20] though it is computationally expensive. Many 
approaches for discrete geodesic computation on tessellated surfaces were 
subsequently presented (Ravi Kumar et al. [5], and Polthier and Schmies [18]). In 
contrast, little research was undertaken for implicit surfaces. It is the aim of this 
paper to address this issue. Mathematically speaking, a parametric curve (or surface) 
can always be represented in an implicit form, but not vice verse other than degree 
two or degree one cases. Although embedding an implicit surface into a mesh is a 
viable alternative, as seen in Memoli and Sapiro [10], where an implicit surface is 
embedded into a Cartesian grid, there exist some numerical challenges in practice. 
An immediate issue is how to efficiently embed an implicit surface into a Cartesian 
grid. Without it is being done, the strategy presented in (Memoli and Sapiro [10]) 
can not be used. One of the objectives of this paper is to resolve this issue. 

Modeling implicit surfaces can also be implemented with the particle sampling 
approach. The pioneering work is the W-H method, which samples and controls 
implicit surfaces by distributing particles on the surface (Witkin and Heckbert [11]). 
Our correction procedure presented later makes use of the particle system. 
Theoretically speaking, our approach can infinitely approximate the geodesic leading 
to an exact solution. Thus, we say that our approach produces the exact geodesics on 
implicit surfaces. 

To the best of our knowledge, existing methods can compute geodesics on grids 
or meshes but not on implicit surfaces. Our objective is to calculate a smooth 
geodesic curve on an implicit surface. The basic idea is to first discretize an implicit 
surface by embedding it into a Cartesian grid, and then apply existing techniques, 
such as FMM and Dijkstra’s algorithms, to the resulting grid for the approximation 
of geodesics. Finally, a geodesic correction procedure is presented to refine on the 
geodesics. 

3. Cartesian Grid Based Geodesic Computation 

3.1. Cartesian grid generation 

The basic idea is conceptually simple, that is, to determine a Cartesian grid 
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envelope which surrounds the implicit hyper-surface for carrying out the subsequent 
FMM. We describe two algorithms for different scenarios. 

The first case is concerned with implicit functions without given initial sample 

points. Consider an implicit surface S in ,dR  which can be represented as the zero 

level set of a distance function 

{ ( ) }.,0: dRppFpS ∈==  (1) 

It is straightforward to build a Cartesian grid on the variable domain of the implicit 
function F at a given grid cell size, and then do a cell-wise scan. This however is a 
time-consuming task, particularly for dimensionality .3≥d  Our approach is to 
employ a multi-resolution strategy, discussed as follows: 

Algorithm I. (1) Input an implicit function F with variable domain Ω having an 
initial grid cell size of the form 01 σ=Δ==Δ dxx "  and the expected grid cell 

size .σ  

(2) Looping until σ<σi  ( );,2,1,0 …=i  

(3) For each grid cell with size ,iσ  check whether S goes through it; 

(4) Retaining these cells that S goes through, but deleting others; 

(5) Halving the preserved cells in every dimension so that ,2ii σ←σ  then go 

to Step 2. 

The computational complexity is ( ),2 NO d  where N denotes the grid cell 

number. This algorithm is suitable for low-dimensional implicit surfaces. If d 
becomes large, then it will become very expensive. (For details, please refer to 
Appendix I.) 

Now let us look at the second case. In many applications, implicit surfaces are 
often employed to fit a set of discrete sampling points. For the 3D case, these 
sampling point sets are called point clouds or range data, which are likely from 3D 
shape acquisition devices, such as laser or structured light range scanners. They have 
a wide range of applications in geoscience, artworks, medical imaging, and reverse 
engineering. In machine learning, for example, we need to construct a hyper-surface 
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based on a given training set in a high-dimensional space for various learning 
purposes. The resulting implicit hyper-surfaces are usually defined by a weighted 
sum of local basis functions over the given sampling points, such as radial basis 
functions. 

Once an implicit surface is constructed to represent the original geometry from a 
point cloud, we are given two types of information, which are the control points and 
the implicit surface itself. Compared with the first case, now we have additional 
data, i.e., the control points. This allows different strategies to be considered. Our 
basic idea is to employ the region growing strategy, i.e., to consider the given sample 
points as the seeds which iteratively grow over the implicit surface. Our approach is 
presented as follows: 

Algorithm II. (1) Input an implicit function F, having initial sample set ,Ω  
with the expected grid cell size .σ  

(2) Computing the grid coordinates Gp ∈′  of samples Ω∈p  at the grid cell 

size .σ  

(3) Looping until the set of new interpolated cells U is empty. 

(4) Making samples Gp ∈′  grow over their neighborhood (as shown in Figure 

1) on a Cartesian grid, the new neighbors are stored in U. 

(5) Updating U by identifying if the surface S goes through the current cells. 

(6) ,UGG +←  then go to Step 3. 

 

Figure 1. Illustration of the point ( )kji ,, ’s neighborhood in a 3D Cartesian grid. 

Due to non-uniform sample distributions, many points within the initial Ω 
usually share one grid cell. But then, each new added point will occupy one cell 
exclusively. Different from Algorithm I, Algorithm II has polynomial complexity 

of ( ),2dNO  where N denotes the grid cell number. (For details, please refer to 

Appendix I.) 



GEODESIC COMPUTATION ON IMPLICIT SURFACES 7 

3.2. Geodesic computation on Cartesian grids 

Once the Cartesian grid envelope around the implicit surface is obtained, we can 
carry out the standard FMM on it for geodesic computation. The error bound is 

given as, ( ) ( ) ,,, σλ≤− qpdqpd Eg  ,, dRqp ∈  where gd  denotes the geodesic 

distance on S, Ed  denotes the Euclidean distance and λ is a constant (Memoli and 

Sapiro [10]). However, it can be noted that the resulting geodesic path is a path on a 
Cartesian grid, not on the surface itself, similar to other existing methods. 

Usually for pair-wise geodesic computation, FMM has an ( )NNO log2  

complexity. Taking this into account, the combined complexity of the presented 

algorithm II and FMM is around ( ( )).log2 NdNO +  

4. Geodesic Correction 

So far, the resulting geodesic paths lie on a grid or mesh offsetting from the 
surface. In this section, we present an evolution procedure of geodesic curvature 
flow, which makes the approximate paths converge to the geodesic curves on the 
surface instead. This is based on the principle that a geodesic curve has a vanishing 
geodesic curvature everywhere. 

We first consider a regular surface S and two endpoints ,, 21 dRpp ∈  between 

which we intend to compute a geodesic curve. Let ( )0,sC  be an initial smooth 

parametric curve on S with ( ) 11 0, psC =  and ( ) ,0, 22 psC =  where s denotes the 

arc-length parameter of the curve. If both endpoints are fixed, then we deform 
( )0,sC  using the geodesic curvature flow, which eliminates the geodesic curvature 

point-wise on a curve. The curve will then converge to a geodesic curve. The 
geodesic curvature flow is described as 

( ) ,, NktsC gt
G

=  (2) 

where Nkg
G

 denotes the geodesic curvature vector of ( ),, tsC  and the geodesic 

curvature vector can be expressed as 

,, nnssssg CCNk −=
G

 (3) 
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where ssC  is the second order derivative of ( )tsC ,  w.r.t. arc-length s, and n is the 

normal to S. This flow is also known as the Euclidean curve shortening flow and has 
been proved that it can shrink a curve on S to a geodesic (Grayson [24]). 

For the discrete case, the geodesic curve has to be approximated by a polyline 
containing a set of nodes. Correcting the geodesic approximation is carried out on 
the resulting polyline. Since we have no parametric representation of the initial 
approximation, the second order derivative of ( )tsC ,  w.r.t. s has to be approximated 

using a vector triangle shown in Figure 2. This gives ( ) ,11 hppppC iiii
ss Δ−≈ −+  

where hΔ  is the mean of the intervals between points. If ’ssC s projection onto the 

tangent plane at ip  vanishes, then the geodesic curvature of equation (3) is bound to 

vanish at .ip  When the geodesic curvature vanishes pointwise on S, the deforming 

curve given by equation (2) reaches its stable state, i.e., the geodesic curve. 

Thus, projecting the nodes p of the resulting geodesic paths on a grid or mesh 
onto the surface S yields a polyline as the initial estimation ( )0,sC  of the geodesic 

on S. This can be achieved by the Newton-Raphson iteration as follows: 

( ) .2FFpFpdt
d ∇∇−=  

Applying equation (2.3) to ( )0,sC  can drive it to converge to the geodesic on S. 

The precision can be improved with more nodes adding into the approximation 
( )., tsC  To this end, we introduce the particle system (Witkin and Heckbert [11]) 

into equation (2) as follows: 

( ) ( ) ( )( ) ,2FFpFpCFpCp ttt ∇∇β+⋅∇−=  (4) 

where β is a balance parameter. The nodes are not only attracted to surface S, but 
also are repelled away to each other along the curve ( )tsC ,  to make even particle 

distribution on ( )., tsC  In general, during the evolution of equation (4), it is 

required to add a new sampling node between two successive nodes on C, if the 
interval is greater than a given threshold .Eε  However due to lack of information of 

the whole surface S, there is no guarantee that the curve ( )tsC ,  will pass arbitrary 

concave convex areas we desire. Figure 3 shows that the new adding node between 
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AB  is always projected on the two points A and B in S, and the gap between AB  
cannot be reduced. 

To overcome this challenge, we insert a plane to break the concave or convex 
areas as shown in Figure 4, i.e., plane π is inserted into the gap between two points A 

and B. It is perpendicular to AB  and goes through the midpoint of .AB  Moreover, 

we can project the midpoint p′  of AB  onto the surface S along the plane π by 

solving the following constrained optimization problem 

( )

( )⎪⎩

⎪
⎨
⎧

=⋅′− .0tosubject

,min

ABpp

pF
p   (5) 

The resulting projection p is regarded as a new node and is added into ( )., tsC  

Plane π leads the curve ( )tsC ,  to some desired concave or convex areas on S. There 

are a lot of standard techniques to solve the optimization problem of equation (5), 
such as the method of Lagrange multipliers. 

It is not required to compute the scheme of equation (5) for every node. Herein, 
the surface S has been embedded into a grid as described in Section 3. The evaluated 
curve ( )tsC ,  is thus partitioned into a set of grid cells. The constraint optimization 

of equation (5) will have to be computed when the gap shown in Figure 4 falls in 
one grid cell. Due to the grid cell’s size, it is usually impossible that such a 
complicated structure as shown in Figure 3 would be covered in a grid cell. Hence, 
the scheme of equation (5) does not result in a significant computing overhead in 
practice. The approximation error of the evolution curve C to the geodesic is 
unrelated to the original grid cell size, since new nodes could be generated by the 
particle system. For the analysis of the approximation error and complexity of 
equation (4), please refer to Appendix II. 

 
Figure 2. Approximation of the 2nd order derivative of a curve and the geodesic 

curvature vector on surface S. Note that N
G

 denotes the direction of the geodesic 

curvature vector, which is tangent to S at point .ip  
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Figure 3. Illustration of a geodesic curve (blue) on a 3D roll’s model. 

 

Figure 4. Illustration of gap rising in a grid cell. The dashed line denotes the 
estimated geodesic curve. The plane (dotted line) is inserted into the gap between A 
and B. 

Remark. Equations (4) and (5) can be performed on arbitrary surfaces. But due 
to the computational complexity (see Appendix II), it is wise to start from a coarse 
estimation. The Cartesian grid based geodesic computation can provide a reasonable 
initial estimation. 

5. Implementation and Analysis 

The implementation consists of the Cartesian grid based geodesic computation 
and geodesic correction. Our fist example is to perform the Cartesian grid based 
geodesic algorithm in Section 3 on a semi-sphere. This is to compare geodesic 
curves with different Cartesian grid cell sizes. Since the surface is represented by an 
implicit function without any initial sampling points, the Cartesian grids are 
generated by Algorithm I described in Subsection 3.1. We constructed two Cartesian 
grids with different grid cell sizes, respectively, shown in Figures (5a) and (5b). To 
each Cartesian grid, we utilized FMM and FMM + geodesic correction procedure to 
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produce two geodesic curves, i.e., the red and blue curves in Figure 5. It can be 
noted that the corrected geodesic curves by the geodesic correction procedure are 
independent of the original Cartesian grids. The sampling points have moved from 
their original cells (red curves) to the geodesics (blue curves). When the geodesic 
correction procedure continuously interpolates new nodes, this improves the 
smoothness of the curves while the approximation error becomes unrelated to the 
original grid cell sizes. 

 

Figure 5. Illustration of geodesic computation on different grid sizes. The red curves 
represent the geodesic paths by FMM while the blue ones by FMM + geodesic 
correction procedure, and the green points denote the Cartesian grid cells. 

 

Figure 6. Illustration of the resulting geodesic paths. (a) Geodesic paths of single 
source to all destinations on Cartesian grids. (b) Geodesic paths on the human face 
surface. (The face range data is from FRGC (Phillips et al. [25]).) 

We performed the Cartesian grid based algorithm on a 3D human face model, 
which was acquired as a point cloud, and modeled as an implicit surface with the 
radial basis function approach. Algorithm II as described in Subsection 3.1 is 
employed to the Cartesian grid generation. Figure 6 shows the result of applying our 
approach to the scenario of “one source to all destinations” on this face model. The 
color bar indicates the change of the geodesic distance between two points. 
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We further performed our algorithms on a set of models with more complex 
shapes, including human hand, watering pot and sculpture, for the scenario of “one 
source to all destinations” in Figure 6. Herein, both the water pot and sculpture are 
closed surfaces with genus two. We also list the running times in the Table below. 
All the codes were run on MatLab in a Pentium IV 3.2GHz PC with 1GB RAM. 
Applying Algorithm II to these three models results in their individual Cartesian 
grids. Specifying some points on the surfaces as fixed points, geodesic computation 
is then performed to the scenario of “one source to all destinations”. Figure 6 shows 
three sets of the geodesics (red, blue and green) of one source to all destinations 
depicted on the surface of each model. 

Table. Running time of Figure 7 (times are in seconds) 

Model Cartesian Grid Size Time (FMM + geodesic correction) 

Human Hand 290 cells 51.71 s 

Watering Pot 302 cells 56.42 s 

Sculpture 311 cells 59.37 s 

 

Figure 7. Illustration of geodesic computation on three complicated models. For 
each model, three sets of geodesics of one source to all destinations are depicted 
together on the surface with three different colors. (These models are acquired from 
http://www.farfieldtechnology.com/download/.) 

6. Conclusions 

We have presented an algorithm for geodesic computation on implicit surfaces, 
including Cartesian grid based geodesic computation (i.e., algorithm I/II+FMM) and 
geodesic correction. To suit different applications, we have presented two sub-
algorithms for the generation of Cartesian grids on implicit surfaces. Their time 
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complexities are analyzed. In order to produce exact geodesics on implicit surfaces, 
we have introduced the particle system to the geodesic correction procedure. The 
distinct advantage over other approaches is the ability to produce geodesics on 
implicit surfaces rather than on Cartesian grids or triangle meshes. This improves 
the accuracy of geodesic computation and helps the numerical stability. The 
algorithms proposed in this paper can be applied to other, non-implicit and surface 
representations. 

Although all the examples are concerned with 3D models, the algorithms 
presented are valid for higher dimensional spaces. They therefore have applications 
in many areas other than surface manipulation, such as manifold interpolation in 
machine learning and motion planning in robotics. 

The geodesic correction procedure is the most time-consuming step, more 
expensive than other steps presented in this paper. This is because it involves the 
resolution of partial differential equations equation (4) by adding new nodes 
gradually. Optimizing for time complexity and accuracy of the geodesic correction 
procedure will be investigated as future work. 
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Appendix I 

Complexity analysis of Algorithm I 

For the bisection subdivision operation on a cell, there are d2  sub-cells, where 
d denotes the dimensionality. Assume that there are iN  sub-cells surviving after a 

bisection subdivision operation on a cell, ,...,,1,2 niN d
i =≤  where n denotes the 

number of iteration. It can be noted that we have to check the result around 

( ) d
nNN 21 1 +++ "  times after n iterations, where n depends on the cell sizes 0σ  

and .σ  Without loss of generality, we assume that only a half of the cells is retained 

after a bisection subdivision, i.e., ( ) ( ).2...,,2,2 112
2

1
1

−−− === dn
n

dd NNN  The 

whole computational time is consequently around ( ( ) ( ) ) ( ) .12122 111 −− −−+ ddnd  

This yields the complexity of ( ),2 NO d  where N denotes the grid cell number. Thus 

the complexity of Algorithm I increases exponentially along with the increase of the 
dimensionality. 

Complexity analysis of Algorithm II 

For one cell in ,dR  there are 2d neighbors. Assume that when a cell is connected 

to a patch, only one neighbor of this cell belongs to this patch. It can be observed 
that there are ( )( )1122 −−+ ndd  neighbors around the patch containing n connected 

grid cells. These neighbors need to be further identified in Algorithm II. This is the 
extreme case. In general, there is more than one neighbor belonging to the patch. 
Hence in practice, the neighbor’s number is usually less than this estimate. However, 
if there is only one seed in the initial sample set ,Ω  then we have to take the check 

operation on the neighbors approximately ( ) ( )112 ++− dndn  times for the extreme 

case. Since the size of the current patch n is also the current iterative number, we 

therefore obtain the complexity as ( ),2dNO  where N denotes the grid cell number. 
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This is the worst case. When there are many samples in the initial Ω as seeds with 
uniform distribution over an implicit surface, the practical running time is less than 
this estimate. 

Appendix II 

In order to estimate the error of geodesic correction procedure as described in 
Section 4, let us consider the local structure of a curve with an osculating circle as 

shown in Figure A(1). The local error can be described as ,err ABBA −=
�

 where 

BA
�

 denotes the arc-length from A to B, and AB  is the Euclidean distance of two 

points .ε  Applying the Cosine law yields, ,
2

1cos 2

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε−= −

r
rBA

�
 where r denotes 

the curvature radius. Substituting BA
�

 into err gives .
2

1coserr 2

2
1 ε−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ε−= −

r
r  For 

a whole geodesic curve C, the error is expressed as 

∑ ∑ε−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε
−= −

m

i

m

i
i

i

i
i

r
r ,

2
1coserr 2

2
1  

where m denotes the nodes’ number on the curve, and iε  and ir  depend on the local 

curvature of the curve. During the evolution of the geodesic curvature flow (4), all 
nodes are floating on surface along the curve ( )tC  except the two fixed endpoints. 

Moreover, the final distribution of the nodes on a geodesic curve depends on the 

local curvature. For simplicity, we therefore assume Cstrii =ε  and ∑ =ε
m

i
i L.  

This gives 

 ,121cos1err
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= − Cst

CstL  (A1) 

for the whole geodesic curve. L depends on the size of surface while Cst depends on 
the local structure of surface. For a given discrete geodesic curve with the fixed 
nodes’ number m, L and Cst are constant, while for different discrete geodesic 
curves (e.g., m is variable), they are variable. The error distribution is shown in 
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Figure A(2). Furthermore, we assume that L and Cst are constant while iε  is variable. 

Varying iε  will change m. Figure A(3) shows that raising the node’s number m can 

improve the numerical stability effectively but cannot make err converge to ZERO. 
The other part of err is from Cst, i.e., the local curvature of the curve. More nodes on 
the geodesic curve can effectively reduce Cst. The given threshold Eε  described in 

Section 4 is the maximum interval of two successive nodes. It can guarantee that 
there are dens samples at the curved areas of a curve. 

In addition, let us consider the time complexity of equation (4). Assume that it 
takes the same time K to move a node to a geodesic. The number of nodes can be 
estimated as ,ε= Lm  where ε  is the mean of intervals ,iε  ε⋅ε<ε E   depends 

on the maximum interval of successive nodes .Eε  In terms of equation (A1), the 

running time can be estimated as 

( ( ) ).121coserrTime 211 −−ε⋅= −− CstCstK  (A2) 

The time complexity is also illustrated in Figure A(4). It can be noted that reducing 
the nodes’ number by increasing ε  and increasing the ratio Cst of ( )ii r,ε  can 

reduce running time. But this will increase approximate error. We have to tradeoff 
between the accuracy and the running time. 

 

Figure A. (1) Illustration of approximate error. (2) (3) Error distribution surface of 
equation (A1). (4) Illustration of running time change at 10err =  and .sec2=K  
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