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Abstract— In this paper, we present a complete set of hybrid 
similarity invariants under the Analytical Fourier-Mellin 
Transform (AFMT) framework, and apply it to invariant face 
recognition. Because the magnitude and phase spectra are not 
processed separately, this invariant descriptor is complete. In 
order to simplify the invariant feature data for recognition and 
discrimination, a 2D-PCA approach is introduced into this 
complete invariant descriptor. The experimental results indicate 
that the presented invariant descriptor is complete and similarity-
invariant. Its compact representation through the 2D-PCA 
preserves the essential structure of an object. Furthermore, we 
apply this compact form into ORL, Yale and BioID face databases 
for experimental verification, and achieve the desired results. 

I. INTRODUCTION 
In pattern recognition, an object description needs to be 

invariant under certain Euclidean transformations. In general, 
invariant description is achieved with the geometric moments, 
complex moments, and orthogonal moments, which are widely 
applied to invariant pattern recognition, object classification, 
pose estimation and image retrieval [8]. It is important that the 
invariants fulfill certain criteria such as low computational 
complexity, numerical stability and completeness [1-3]. The 
first two criteria are intuitively easy to be understood while the 
third criterion is generally ignored. Indeed the completeness is 
one of the most important criteria for an invariant descriptor. A 
complete invariant means that two objects have the same shape 
if and only if their invariant descriptions are the same. Whereas 
the invariant property is only relative to a certain transformation. 
It may only contain partial information of an object and not the 
whole information. Thus, invariant descriptions based on partial 
information of an object are usually prone to an incorrect 
recognition. It is clear that the complete set of invariant 
descriptions can effectively be used for accurate object 
discrimination. 

Nevertheless, many familiar invariant descriptors are 
incomplete [4], such as geometric moments, complex moments, 
Legendre moments and Zernike moments. Although several sets 
of rotation and scaling invariant descriptors have been designed 
under the Fourier-Mellin transform framework [9], the 
completeness property could not usually be satisfied. This is 
because the phase spectrum was always ignored. In order to 
overcome this problem, Ghorbel in [3] proposed a complete set 
of rotation and scaling invariants under the analytical Fourier-
Mellin transform (AFMT) based on the complete complex 
spectra. Furthermore, Brandt and Lin in [2,6] presented two 

phase invariants with respect to translation and developed a 
complete set of hybrid similarity invariants based on the 
Fourier-Mellin transform modulus (Note that this hybrid 
similarity invariant is the combination of a translation invariant 
with a rotation and scaling one.). We have analyzed the 
strengths and weaknesses of this hybrid similarity invariant 
descriptor in [5,7]. Its main problem is the scaling invariant 
problem under the Fourier-Mellin transform scheme, which can 
indeed be suppressed under the AFMT scheme. In this paper, 
we will devise a new complete set of hybrid similarity 
invariants under the AFMT scheme. 

Recent applications have motivated a renewal of invariant 
recognition, for example, face recognition and image retrieval. 
The complete and compact invariant description can effectively 
improve the recognition performance. Since the completeness 
guarantees that no information is lost while the compactness 
reduces the redundancy data so as to improve the robustness of 
recognition. In general, the compact representation of features is 
fulfilled by the orthogonal subspace projection approach, for 
example, Principal Component Analysis (PCA), Independent 
Component Analysis (ICA) and kernel PCA. Turk and Pentland 
in [10] proposed the eigenface representation for face 
recognition based on PCA. [11,12] further analyzed how to 
measure the eigenface representation (i.e. by using the distance 
from feature space (DFFS) and the distance in feature space 
(DIFS)). Nevertheless, in the PCA-based face recognition, 
images are usually converted into 1D vectors. The obtained 
vectors of faces lead to a high dimensional vector space. This 
dimension problem brings about a large computational burden. 
In order to overcome this problem, Yang et al. proposed the 2D-
PCA approach in [13], which is applied directly on 2D images 
so as to avoid this curse of dimension problem. In this paper, we 
will employ the 2D-PCA approach to our presented complete 
invariant descriptions, so as to get a compact and complete 
invariant descriptor. 

The paper is organized as follows: a complete set of 
similarity invariants is first presented in Section 2. Then, the 
2D-PCA based compact representation of complete invariants 
is presented in Section 3. Experimental results and analysis are 
shown in Section 4. Finally, our conclusions and future works 
are presented in Section 5. 
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II. COMPLETE INVARIANTS 
Invariant analysis is usually performed with respect to the 

similarity transformation group of rotation, translation and 
scaling. Because the group of Euclidean transformations 
(rotation, translation and scaling) is non-commutative, the 
translation invariant is usually separated from the rotation and 
scaling invariant. This section will first give a brief introduction 
to the complete invariant descriptors presented in [2,3,6]. This is 
then followed by our proposed hybrid complete invariants under 
the AFMT. 

 

A. Translation 
Taylor Invariant Descriptor [2]: 

With this invariant descriptor, the basic idea is to eliminate 
the linear part of the phase spectrum by subtracting the linear 
phase from the phase spectrum. Let F(u,v) be the Fourier 
transform of an image I(x,y), and φ(u,v) be its phase spectrum, 
i.e. F(u,v)=|F(u,v)|exp(jφ(u,v)). The following complex function 
is called the Taylor invariant, 

( ) ),()(exp),( vuFbvaujvuFT +−=                 (1a) 
where, a and b are respectively the derivatives with respect to u 
and v of φ(u,v) at the origin (0,0), i.e. a = φu(0,0), b = φv(0,0). 
Because the Taylor invariant does not satisfy the property of 
reciprocal scaling, it can be modified as follows: 

( ) ( ))(exp),(),( 22 bvaujvuFvuvuFT +−+=          (1b) 
It is proven that this complete translational invariant defined 

in Eq.(1b) is complete, rotationally symmetric and reciprocally 
scaled. 

 

B. Rotation and Scaling 
AFMT Complete Invariants [3]: 

In [3], the Analytical Fourier-Mellin Transform (AFMT) was 
adopted to construct a complete invariant to rotation and 
scaling. Different from the Fourier-Mellin transform, the 
AFMT adopts the polar coordinate instead of the Log-polar 
coordinate. It is defined by, 

( ) 0,exp),( 
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The inverse Analytical Fourier-Mellin transform is defined by, 
( )∫∑

∈

+−=
R Zv

juc durjvvuAFrI ϕϕ exp),(),( . 

Under the AFMT, the rotation and scaling transform have a 
new representation, which is different from the translation 
property of the Fourier transform. The rotation and scaling in a 
polar coordinate, i.e. I1(r,φ) = I0(λr,φ+β), are transformed 
through the AFMT as follows, 

( ) ),(exp),( 01 vuAFjvvuAF juc βλ +−=                (2) 
It can be noted that the magnitude spectrum is no longer 
invariant to scaling because of the λ–c term. Several of the 
AFMT numerical algorithms were presented in [8]. 

The basic idea of the AFMT complete invariant in [3] is to 
eliminate the scaling term λ–c+ju and the linear phase exp(jvβ) in 

Eq(2). On this basis, the AFMT complete invariant with 
respect to rotation and scaling is defined as follows, 

( )( ) ),()1,0(argexp)0,0(),( vuAFAFjvAFvuAI c
juc

−=
+−

.   (3) 
 

C. Translation, Rotation and Scaling 
When considering the translation, rotation and scaling 

together, we can combine the translational invariant of Eq.(1) 
with the rotation and scaling invariant of Eq.(3) to construct a 
hybrid complete invariant. Note that the basic property of Eq.(2) 
is satisfied in the complex domain. Thus, the AFMT invariant 
can be applied to the Taylor spectra. But then, due to the 
reciprocal scaling property of the Fourier transform, i.e. 

( )vuFyxIF 112 ,)),(( −−−= λλλλλ , when the property of Eq.(2) is 
applied in the polar domain of the Fourier spectra, it would be 
modified as follows, 

( ) ),(exp),( 0
2

1 wkAFjwwkAF jkc βλ −−=  
The AFMT invariant of Eq.(3) is also modified as follows, 

( )( ) ),()1,0(argexp)0,0(),( 2
2
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++−

 
By the combination of these invariants, we can construct a 
complete set of hybrid similarity invariants under the AFMT 
scheme as follows, 

( ))()( ⋅=⋅ TFAIS .                                  (4) 
In addition, the intensity change usually results in the 

magnitude spectrum change of ),( wkAI . In order to overcome 
the illumination change problem, the magnitude of ),( wkAI  is 
quantified in the range [0,1]. 

 

III. THE PROPOSED 2D-PCA BASED COMPLETE 
INVARIANT DESCRIPTIONS 

The 2D-PCA approach was first employed to real images in 
[13]. Indeed, because a 2D complex spectrum is conjugate and 
symmetric, and the energy distribution is concentrated at the 
origin of the 2D spectral plane, applying the 2D-PCA to a 
complex spectrum can more effectively compress data 
compared to the application of the 2D-PCA to a real image. 

For a 2D complex spectrum, nmCA ×∈ , one can project it 
onto a unitary vector, nCX ∈ , i.e. mCXAAY ∈−= )( 0 , where 

0A  is a standard form. In general, the trace of the covariance 
matrix of the projected feature vector can be used to 
characterize the total scatter of the projected sample difference. 
Let the covariance matrix of the projected vectors be, 

HH

H

AAXXAA

XAYXAYB

)()(

))((

00

00

−−=

−−=
. 

For a given unitary vector X, the covariance matrix B should be 
a square matrix with .1=rank  Thus, we have, 

XAAAAXBtr HH )()()( 00 −−= . Denote, 

)()( 00 AAAAG H −−= , 
which is called the spectral covariance matrix. Because 

GGH = , thus, the eigenvalues of G are real, and the 
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eigenvectors corresponding to the different eigenvalues are 
orthogonal. Applying the PCA to G, we can obtain a set of 
orthonormal eigenvectors, which span the unitary subspace of 
G, i.e. using SVD, G is decomposed as HUUG Σ= , and the 
optimal projection matrix kU  consists of k orthonormal 
eigenvectors corresponding to the first k largest eigenvalues of 
Σ. The obtained set of projected feature vectors, 

kiXAAY ii ...1,)( 0 =−= , is namely the set of the principal 
component vectors of the sample )( 0AA − . These principal 
vectors form an m×k matrix ),...( 1 kYYY = . 

The compact representation of the sample A, can hence be 
written as follows, 

0AYUA H
k +=′ .                                     (5a) 

However, if the 2D-PCA is introduced into statistic 
recognition, i.e. there is a training set of samples, the similar 
result can be achieved. Herein, the standard form 0A  is replaced 
by the mean A  of the training set. The spectral covariance 
matrix G can be evaluated by, 

∑ −−=
M

i
i

H
i AAAA

M
G )()(1 . 

Applying the PCA to G, we can obtain a similar form of the 
compact representation as follows, 

AYUA H
k +=′ .                                     (5b) 

The similarity metric of this compact form can adopt the 
residual reconstruction error defined as follows, 

22
))(( H

kkUUIAAAA −−=′−=ε              (6) 

 

IV. EXPERIMENTS AND ANALYSIS 
In this section, we pay attention to the following issues, 

(1) completeness: When applying the hybrid invariant 
descriptor of Eq(4) to an object, one should obtain the 
complete invariant descriptions except that the 
similarity transform is eliminated; 

(2) sensitivity: When the compact form of Eq(5) is applied 
to a hybrid complete invariant descriptor, the obtained 
compact form should be insensitive to the size of the 
complete invariant descriptions; 

(3) recognition performance: When applying the 2D-PCA 
based complete invariant descriptor of Eq(5) to 
invariant recognition, such as face verification, we will 
evaluate its performance using a Receiver Operating 
Characteristic (ROC) curve. 

The first two issues can be illustrated by the variance of the 
residual reconstruction error. For comparison, we performed 
experiments on two scenarios, i.e. “rotation + translation” and 
“scaling + translation”. When the coefficient k of the 2D-PCA is 
fixed, one can compute the corresponding residual errors while 
increasing the size of the complete invariant descriptions as 
shown in Fig.(1). 

In Fig.(1d), one can note that the quantity of the residual error 
is very small. Thus the invariant descriptions of Eq(4) is 
complete. Furthermore, one can also note that the residual error 

rises with an increase of the size of the complete invariant 
descriptions. The residual error in Eq(6) results from numerical 
computation, interpolation and the loss of some image details. 
Theoretical completeness of the invariant set is best attained 
with a large set of invariant descriptions. However, the variance 
of the residual error is very small. Thus, the compact form of 
Eq(5) is insensitive to the size of the hybrid invariant 
descriptions. 

With the evaluation of the performance, we tested our 
approach on ORL, Yale and BioID face databases [14-16]. For 
convenience, we only carried out verification tests, i.e. conduct 
a one to one comparison between a probe sample and a known 
template during each computation. The sample set includes 70 
persons. Each person has 10 frontal face images with a slight 
pose and expression variance or illumination changes. All the 
face images are cropped to the same size, and preprocessed 
through the illumination correction approach in [12]. Note that 
in these face images of the used databases, the change in 
orientation and scaling is small compared to the one shown in 
Fig.1. 

For comparison, we employed Eq(5a) to the hybrid complete 
invariants of Eq(4) and the original real images respectively, 
and generated their corresponding ROC curves. The genuine 
and imposter distributions are shown in Fig.(2a,2b). It is clear 
that the overlapping region (i.e. false probability) of the 
complete invariants is smaller than the one of the original 
images. Furthermore, their corresponding ROC curves relating 
to the False Acceptance Rate and the False Rejection Rate were 
depicted by changing the threshold as shown in Fig.(2c). It can 
be noted that the 2D-PCA based compact and complete 
invariant descriptor can effectively improve the accuracy of face 
recognition. For different applications, one can determine a 
desired threshold accordingly. 
 

   
a. original image        b. rotation+translation   c. scaling+translation 
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d. residual error curve 

Fig.1  (a-c) the original image is transformed by “rotation+translation” 
and “scaling+translation” respectively; (d) using Eq(6) to compute the 
residual error, where the k of 2D-PCA is 30. 
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Fig.2  Recognition Performance results. a) are the genuine and 
imposter distribution curves of complete invariant descriptions; b) a) 

are the genuine and imposter distribution curves of original images; c) 
are their ROC curves relating to False accept rate and False reject rate. 

 

V. CONCLUSIONS 
In this paper, we first presented a complete set of similarity 

invariants under the analytical Fourier-Mellin transform 
framework. Then we applied the 2D-PCA to this complete 
invariant descriptor to obtain a compact representation of the 
complete invariants. Moreover, we applied this 2D-PCA based 
complete invariant descriptor to face recognition. The 
experimental results indicate that the proposed 2D-PCA based 
complete invariant descriptor is robust to the slight pose and 
expression variance or illumination changes of faces. 
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