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Abstract

With the advance of gene expression data in the bioinformatics field, the questions which frequently arise,

for both computer and medical scientists, are which genes are significantly involved in discriminating cancer

classes and which genes are significant with respect to a specific cancer pathology.

Numerous computational analysis models have been developed to identify informative genes from the mi-

croarray data, however, the integrity of the reported genes is still uncertain. This is mainly due to the

misconception of the objectives of microarray study. Furthermore, the application of various preprocess-

ing techniques in the microarray data has jeopardised the quality of the microarray data. As a result, the

integrity of the findings has been compromised by the improper use of techniques and the ill-conceived

objectives of the study.

This research proposes an innovative hybridised model based on genetic algorithms (GAs) and artificial

neural networks (ANNs), to extract the highly differentially expressed genes for a specific cancer pathology.

The proposed method can efficiently extract the informative genes from the original data set and this has

reduced the gene variability errors incurred by the preprocessing techniques.

The novelty of the research comes from two perspectives. Firstly, the research emphasises on extracting

informative features from a high dimensional and highly complex data set, rather than to improve classifi-

cation results. Secondly, the use of ANN to compute the fitness function of GA which is rare in the context

of feature extraction.

Two benchmark microarray data have been taken to research the prominent genes expressed in the tumour

development and the results show that the genes respond to different stages of tumourigenesis (i.e. different

fitness precision levels) which may be useful for early malignancy detection. The extraction ability of the

proposed model is validated based on the expected results in the synthetic data sets. In addition, two

bioassay data have been used to examine the efficiency of the proposed model to extract significant features

from the large, imbalanced and multiple data representation bioassay data.
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Chapter 1

Introduction

Cancer is a disease caused by abnormal cell growth. It is the second leading cause of death in developed

countries and is in the top three causes of death in developing countries (Hayter, 2003). Based on the survey

carried out by the World Health Organisation (WHO), deaths from cancer worldwide is projected to continue

rising, from 7.4 million deaths in year 2004 to an estimate 12 million deaths in year 2030 (WHO, 2010).

The use of microarray gene expression data to diagnose cancer patients has increased dramatically over the

past decade, indicating an urgent need for the development of treatment measures for the potential genetic

causes of disease.

Microarray experiment is a biological procedure to measure the activities of genes at a specific time frame

applied to a subject, i.e. pre-cancer screening, general health check and cancer remission check. It is designed

for bioinformatics field to provide an insight for information on the gene interactions and cancer pathways

with a potential for cancer diagnosis and prognosis, prediction of therapeutic responsiveness, discovery of

new cancer groups and molecular marker identification (Golub et al., 1999; Dupuy and Simon, 2007; Yu

et al., 2007; Wang et al., 2008). Microarray experiment contains measurements for thousands of microscopic

spot of DNA probes (i.e. DNA spots that have been complimentarily binded in the microarray experiment),

however, only a small set of these probes are relevant to the subject of interest, for example, amongst

7129 probes in the leukaemia microarray data available from the Broad Institute, only about 1000 probes

are relevant to the leukaemogenesis pathway (Golub et al., 1999). Therefore, techniques for extracting

the informative genes that underlies the pathogenesis of tumour cell proliferation, from high dimensional

microarrays is necessary (Yu et al., 2007; Osareh and Shadgar, 2008; Wang et al., 2008; Zhang et al., 2008)

and the need for computing algorithms to undertake such a complex task emerge naturally. This brings the

theme of computational analysis in microarray studies to the forefront of research.

Microarray gene expression data is characterised by high feature dimensionality, sample scarcity and complex

1



1.1 Motivation 2

gene behaviour (i.e. the interaction between genes within the data), which pose unique challenges in the

development of computing algorithms in class prediction, cluster discovery and marker identification, with

the aim of deriving a biological interpretation of the set of genes which underlies the cause of the disease. In

addition, microarray gene expression data may contain subgroup of cancer classes within a known class, for

example, the leukaemia microarray data in Figure 1.1 on page 4 contains two subgroup of cancer classes, i.e.

B-cell ALL and T-cell ALL, within a known cancer group called ALL. This makes the analysis of microarray

difficult. Thus, the first and foremost consideration for analysing microarray data, is feature extraction. For

class prediction, the extracted gene subset is used to avoid the over-fitting problem on supervised classifiers

and to achieve better predictive accuracy that generalises well to unknown data (Wang et al., 2008). For

unsupervised cluster discovery, the extracted gene subset is essential for discerning the underlying cluster

grouping tendency in a lower dimension and to prevent false cluster formation (Wang et al., 2008). For

molecular marker identification, the extracted gene subset provides a smaller feature search space with high

potential true cancer markers and thus, reduces computational cost on performing an exhaustive search over

the full feature space.

The goal of this research is to devise a more effective way to extract features with highly important informa-

tion to a specific disease, i.e. informative features, using genetic algorithms (GAs) and artificial neural net-

works (ANNs) due to their learning abilities to construct hypotheses that can explain complex relationships

in the data (Nanni and Lumini, 2007). This research explores the effectiveness of a genetic algorithm-neural

network (GANN) hybrid, in analysing gene expression activities, based on a specific tumour disease and

identifying the informative genes that underlie different precision levels in the extraction process. The iden-

tified gene subset may give an enhanced insight on the gene-gene interaction in response to different stages

of abnormal cell growth which could be vital in designing treatment strategies to prevent any progression of

abnormal cells.

This chapter provides the motivation of this research and an overview of our work, including the existing

problems in the field, our approach to the problem and our contributions to the field.

1.1 Motivation

The advances of microarray technologies to measure gene expression levels in a global fashion have signif-

icantly improve the accuracy of morphological and clinical-based diagnosis results (Lu and Han, 2003). It

also produces high dimensional noisy data (i.e. features which are not associated or least important to

the subject of interest) during the microarray production and, in most cases, it contains multiple cancer

subclasses within a known cancer class (see Figure 1.1). Numerous biology analysis methods have been
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introduced to study the gene-gene interaction and the functionality of genes. These methods include serial

analysis of gene expression (SAGE) (Velculescu et al., 1995, 1997, 2000), massive parallel signature sequenc-

ing (MPSS) (Brenner et al., 2000) and mass spectrometric analysis (Pandey and Mann, 2000). However,

the lack of standardisation on the gene probes (Asyali et al., 2006) and the gene annotations due to the

rapid development of microarray technology, plus, the variability on gene expression measurements based on

similar arrays from different research laboratories, makes the integration of microarray results impossible.

In addition, the relationships between genes have complicated the finding of marker genes. As a result, the

need for computational analysis of microarray gene expression is required.

Frequently, data preprocessing is required on microarray data to remove undesirable data characteristics with

the idea of ensuring data integrity and improving classification performance. For instance, missing values in

microarrays require some mathematical formulas to impute reasonable estimates to salvage the data. Feature

reduction is the approach most commonly used to remove data redundancies. Data normalisation is generally

expected to scale down the magnitudes of data values prior to computational analysis, such as prediction;

rather than to scale up the magnitudes of data values. Numerous normalisation techniques and feature

reduction approaches have been reported in the literature, such as standardisation with mean and variance

values of the data (Golub et al., 1999; Dudoit et al., 2002; Yu et al., 2007; Cheng and Li, 2008), scaling

with maximum and minimum values (Cho and Won, 2007; Gonia et al., 2008), logarithmic transformation

(Dudoit et al., 2000; Zhou et al., 2005; Chen et al., 2007) and filtering (Bø and Jonassen, 2002; Dudoit et al.,

2002; Futschik et al., 2003; Liu et al., 2004a; Ross et al., 2004; Chu et al., 2005; Jirapech-Umpai and Aitken,

2005; Lee et al., 2005). Consequently, different sets of identified genes were reported.

Existing research emphasises effective classification predictiveness (Khan et al., 2001; Dudoit et al., 2002;

Cho et al., 2003b; Lee and Lee, 2003; Bloom et al., 2004; Liu et al., 2004a,c; Lee et al., 2005; Yu et al.,

2007; Osareh and Shadgar, 2008; Zhang et al., 2008) and cluster discovery (Ross et al., 2000; Wang et al.,

2003). This research under-estimated the complexity of microarray data and overlooked the ‘true’ objective

of microarray studies, i.e. to extract molecular-based informative genes underlying the pathogenesis of

tumour development. Figure 1.1 shows example of some gene expression values extracted from the leukaemia

oligonucleotide Affymetrix chips. Generally, the oligonucleotide microarray preserve the exact measurement

of the expressed genes under the fluorescence labelling process in the microarray experiment. We will review

the microarray experiment in Chapter 2.

From the microarray perspective, the leukaemia data set shown in Figure 1.1 represents two distinct types

of leukaemia cancer: ALL and AML, as is indicated by columns in the figure. Most expressed genes, denote

in rows in the figure, were inhibitory (negative expression values), i.e. over-suppressed to the leukaemia

cancer. This means that there is a high amount of trivial information in the data set which has no significant
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contribution to the leukaemogenesis pathology. However, from the computing perspective, the leukaemia

data set shown in Figure 1.1 contains four different classes, rather than only 2 classes, as the ALL B-cell and

the ALL T-cell are considered as separate classes where, in fact, they are just a variant of ALL cancer from

the medical perspective. Furthermore, the data set is highly skewed as most data values are in negatives,

which is not commonly expected in standard classification problems. As a result, most microarray data,

especially the oligonucleotide microarray, has to be preprocessed to remove any incompatibility values for

effective classification results which, in fact, will yield the variation in the gene subset selection from similar

microarray data. This shows the inefficacy of the classification methods to analyse microarray data.

Figure 1.1: The gene expression values extracted from the leukaemia oligonucleotide Affymetrix chip. Each
column represent a biological sample and each row corresponds to a gene in the sample. From the microarray
perspective, this data shows 2 distinct types of leukaemia cancer: ALL and AML, and most expressed genes
were over-suppressed, indicating that there is a high amount of trivial information in the data set which has no
significant association to the cancer pathology. From the computing perspective, this data contains 4 different
classes: ALL B-cell, ALL T-cell, ALL and AML, and the data is highly skewed as most data values being
negatives.

Classification is merely a mathematical validation mechanism for assessing the significance of identified genes

in perfectly discriminated cancer groups, but it does not have the ability to assess the correlation of genes

at a genomic level. Most classification methods suffer generalisation problems. Some classifiers are sensitive

to data distribution, for instance, a neural network classifier (ANN) generally perform well with normalised

data and a naive bayes (NB) classifier inferiors when the number of features is larger than the number of

samples (Asyali et al., 2006). Some classifiers are sensitive to the fitness of the model, for instance, a weighted

voting (WV) classifier performs well on binary classification but its performance decreases when working

on a multiclass problem (Golub et al., 1999). As a result, classifiers are only effective for certain data sets

and for data sets which contain no relationship between features in different classes, and consequently, the

reliability of the reported feature subset becomes inexplicit, due to the little attention that has been made

for improving feature extraction technique.

Typical microarray data contains thousands of genes (i.e. curse of dimensionality) extracted from a few
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samples (i.e. curse of data sparsity) which are possibly obtained from the same arrays (source) because of

the high processing cost of microarrays, and, most of the genes in the microarray data are inter-related, as

shown in Figure 1.2. This complicates the process of finding informative genes. Numerous feature selection

techniques have been developed to extract informative genes, however, the core of the study is focused on

effective classification. For instance, Golub et al. (1999) introduced a signal-to-noise (S2N) ratio to improve

the classification performance of WV classifier in discriminating two dominant groups of acute leukaemia;

Khan et al. (2001) used gene signatures, identified by principal component analysis (PCA), to classify four

types of SRBCTs tumours using ANN classifiers and Tibshirani et al. (2002) developed a nearest shrunken

centroid (NSC) algorithm with respect to the prediction analysis of microarray (PAM) classifier. Albeit,

encouraging results had been achieved in most hybrid selection/classification models, the functionality of

the reported genes is inconclusive due to an ill-conceived hypothesis based on classification performance.

For instance, the S2N ratio calculates the correlation between individual genes based on the mean and the

standard deviation of the gene for the samples. This is not feasible for gene expression data as it omits the

correlation between a combination of genes. For instance, the ALL class in the leukaemia microarray data in

Figure 1.1 showed that there is more than one variant of ALL leukaemias, i.e. B-cell ALL and T-cell ALL.

Although, they are formed by different leukaemia cells, however, they shared some commonality in certain

genetic behaviour, i.e. lymphoblastic-based, which could be used as the signature markers in diffentiating

ALL patients from non-ALL cancer patients. Figure 1.2 shows the correlation between some expressed genes

in the leukaemia data which is presented in Figure 1.1.

Figure 1.2: The heatmap of the leukaemia microarray data. Each column represent a biological sample and each
row corresponds to a gene in the sample. The density of the significant genes to the sample is presented with
the shade of two colours: red and blue. Shades of red indicate elevated expression (i.e. highly significant to the
sample) while shades of blue indicate decreased expression (i.e. zero significant to the sample).

Furthermore, the implementation of more than one feature selection for the classification method may lead
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to different gene selection results due to over-complication in the model structure which could resulted in

model over-fit.

Over-fitting/under-fitting is a potentially serious problem in most computing algorithms, especially in the

classification methods. It occurs when the algorithm is learned for too long or too little. Normally, this

problem can be alleviated by continually monitoring the quality of training using a separate set of data.

However, there is no standard validation mechanism for assessing the algorithm’s performance. Some studies

validate the algorithm using a separate set of test data (Golub et al., 1999; Deutsch, 2001; Li et al., 2001a;

Hwang et al., 2002; Cho and Won, 2003; Liu et al., 2005b; Cho and Won, 2007; Zhang et al., 2008). Some

employed k-fold cross-validation procedures (Tibshirani et al., 2002; Cho et al., 2003b; Guan and Zhao,

2005; Osareh and Shadgar, 2008) to assess the performance of the algorithm. Some utilised leave-one-out

cross-validation procedures (Bø and Jonassen, 2002; Peng et al., 2003; Zhou and Mao, 2005; Zhou et al.,

2005; Chen et al., 2007) in the performance assessment. The over-fitting/under-fitting problem can also arise

when the algorithm has too many or too few parameters to learn, and consequently, its generalisation ability

may be inferior (Asyali et al., 2006).

The performance of a computing algorithm is usually defined based on a standard hypothesis that works

effectively in most real-world problems. This hypothesis is based on classification performance, i.e. ‘the

higher the classification accuracy obtained by the classifier, the better the solution to the problem’. However,

this hypothesis is not always correct in interpreting the gene correlation on microarray studies. Unlike

ordinary real-world data which has small levels of interaction between features, such as financial data,

bioassay data, intrusion data; microarrays has high complexity, as is depicted in Figures 1.1 and 1.2. The

genes in microarray data sets are all correlated either in a direct manner, for example, a high regulated

gene activates another gene with high expression, or in an indirect manner, for example, expression of a

gene is triggered by the detection of another genes. The p53 protein will only be activated by the presence

of the p53 gene (either highly expressed or has been detected) that contributes to the transformation and

malignancy of cells due to the failure to bind the consensus DNA binding site. The p53 protein is used to

co-ordinate the repair process of cells or induce cell suicide to stop any further growth of cancer cells. These

correlated genes may not be detected in high classification accuracy if the high individual correlated genes

are not presented or are “buried” by other more highly expressed genes.

There is an omission in the work of finding genes expressed in lower precision level, or, does not mention it at

all, due to the ill-conceived hypothesis and implicit research objective that was biased effective classification.

These genes, to some extent, may be important for early malignancy detection as some genes will only

become significant with the presence of its correlated genes which could be detected in lower precision levels.

The possible reasons for the immaturity of the computational analysis of microarrays is due to little un-
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derstanding of the complex relationship between genes and the importance of gene integration within a cell

or a tissue. As a result, the general hypothesis that worked effectively in ordinary real-world problems is

assumed to be effective for microarray data.

To conclude, our research is motivated by such challenges poses to the use of computational analysis on

gene expression aspects exposing several weaknesses, such as the implicit research objective and the ill-

conceived hypothesis, the normalisation of microarray data, the over-fitting problem and the omission of

genes expressed in lower precision levels.

1.2 Statement of the Problem

As mentioned in the previous section, research in microarray gene extraction is still inconclusive. Thus,

several problems on identifying informative genes have been exposed. This thesis concentrates on four main

aspects which are as follows:

1.2.1 Implicit Research Objective and Ill-conceived Hypothesis

Most research emphasises the effective classification and overlooks feature extraction. The analysis models

that were constructed based on the hypothesis emphasising the classification ability, which have been shown

to be successful in improving classification performance, but suffers from the problems of model fitness

and data distribution, as described in previous section. For instance, a conventional discriminant analysis

model requires more sample patterns than features (Culhane et al., 2002) to deliver high classification

results. Conversely, microarray data sets contain only a few sample patterns that are associated with

thousands of genes. Thus, the use of data preprocessing techniques and appropriate feature selection methods

to circumvent the problem are common solutions. However, such gene selections might involve arbitrary

selection criterion and overlook highly informative combinations of genes (Culhane et al., 2002). This is

due to microarray data containing more than one variant of cancer groups within a known cancer class, as

is shown in Figure 1.1 and a high correlation between genes expressed to a specific cancer disease, as is

indicated in Figure 1.2. Using the data preprocessing techniques, such as data normalisation, filtering and

data imputation, a potential consequence is that the features may end up equalised and what was originally

a primary feature may become of equal significance as secondary and less significant features. Furthermore,

the primary features may be removed in the filtering process and the features interactions may be altered

by improper impute values into some features. Thus, the lack of understanding of microarray data could,

possibly, lead to the improper research objectives outlined.
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1.2.2 Data Normalisation

There is often a large difference between the maximum and the minimum values within a gene in microarray

data, especially in oligonucleotide arrays, as is indicated in Figure 1.1. Some may be due to outliers, i.e.

values that are greatly different from the other values in the same gene, or missing values in the data. Thus,

data normalisation is usually expected to remove undesirable characteristics in microarray data to ensure

data integrity and better classification performance (Dudoit et al., 2002; Asyali et al., 2006; Kotsiantis et al.,

2006) rather than discovering correlated features. Normalisation, in the context of this thesis, is a scaling

process that reduces the magnitude of data values to a specific range and the degree of scaling is reliant on

the mathematical formulas applied. Data normalisation is normally expected in a classification problem, as

it is a very effective way of removing unwanted features from the data set, in particular when the features

are not correlated. In microarray data, due to the complex biological interaction between expressed genes,

normalisation is not always versatile. Conversely, it may deteriorate the finding of the correlated genes, in

response to the labelled classes, by compressing the intensity of expressed genes to minimal. As a result,

the correlated genes expressed in a lower expression level may be ignored. Furthermore, different types of

normalisation technique may also produce different set of data values on the similar data set. Table 1.1

shows some examples of the relevant work on the leukaemia microarray data involving data preprocessing

as shown in Figure 1.1.

Table 1.1: Some examples of the work related to the leukaemia microarray data.

Author Data preprocessing Selection method Classification method

Golub et al. (1999) Mean and deviation nor-
malisation

S2N ratio WV

Culhane et al. (2002) for COA: negative values
transformation; for PCA:
mean and deviation nor-
malisation

COA, PCA BGA

Dudoit et al. (2002) thresholding, filtering,
log-transformation, mean
and variance normalisa-
tion

BSS/WSS ratio various discrimination
methods

Li and Yang (2002) Log transformation Stepwise selection LRM

Lee and Lee (2003) as similar to Dudoit et al.
(2002)

BSS/WSS ratio SVMs

Mao et al. (2005) as similar to Dudoit et al.
(2002)

RFE SVMs

Cho and Won (2007) Max-min normalisation Pearson correlation ensemble ANNs
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Dudoit et al. (2002); Mao et al. (2005) and Lee and Lee (2003) conducted a comprehensive preprocessing step

comprising values truncation, genes ratio filtering and log (base-10) transformation on the data set before it

has been standardised using zero mean and unit variance. Consequently, the integrity of the gene selection

results have been compromised by these over-compressed techniques. Golub et al. (1999), on the other

hand, standardised the similar data set using different mathematical formula. Instead of using the variance

parameter (i.e. the square of the standard deviation), Golub et al. used standard deviation function. Cho

and Won (2007) adopted maximum-minimum function to scale down the magnitude of the data set into the

interval [0,1]. Li and Yang (2002), however, used only the log transformation to scale down the data values

in the data set. Culhane et al. (2002) converted all the negative expression values in the data set to positive

values before performing normalisation technique. This has, in fact, altered the context of the expression

values in the genes, i.e. from the original inhibitory became excitatory.

1.2.3 Over-fitting Problem

Over-fitting normally arises when the algorithm has learned too much due to several factors, such as an

over-parameterised model structure, too many repetition assessments in the algorithm and the complexion

of the algorithm. A typical example is the use of an external feature reduction method to filter the redundant

features and then analyse the remaining features with different selection approaches that are embedded in

the classification technique. As shown in Table 1.1, Dudoit et al. (2002); Mao et al. (2005) and Lee and Lee

(2003) used a normalised matrix of intensity values to filter the least significant genes of the leukaemia data

set before the selection method was applied. As a result, the correlated genes may have been discarded in

the filtering process and over-optimistic classification results were reported.

1.2.4 Omission on Features expressed in Lower Precision Level

In existing bioinformatics literature, the reported gene selection results are based on the optimum classifi-

cation accuracy. Thus, the correlated genes expressed in the lower accuracy have not received any attention

as these genes do not possess a predictive benefit in a classification result. This may lead to disregarding

the ‘true’ underlying genes responsible for the early stage of a cell abnormality. A possible approach to

solving this problem is to monitor differentiation of the genes expressed in different precision levels. The

main advantage of this approach is to provide a concrete formulation on the reported genes.

The outline of our approach to solve these problems is presented in the next section.
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1.3 GANN: Feature Extraction Approach

This thesis focuses on extracting informative features from the data set that contains high feature dimension

and feature correlation, as well as sample scarcity.

According to existing bioinformatics literature, none of the computational classification models are superior

to the other. This is due to the implicit research objective and model abilities in extracting informative genes.

Although many variants of hybrid selection/classification methods have been proposed, the performance of

the models are still heavily reliant on the characteristics of the data sets and the nature of classification

methods. In our solution, we analyse differentially expressed microarray genes using genetic algorithms

(GAs) and artificial neural networks (ANNs).

The reasons for choosing GA and ANN in this research are that they are the only two algorithms based

on the analogy of nature and have received high recognition for the delivery of promising results from

various disciplinary areas, such as medical diagnosis (Dybowski et al., 1996; Khan et al., 2001; Djavan et al.,

2002; Zhang et al., 2005; Froese et al., 2006; Heckerling et al., 2007), environmental forecasting (Nunnari,

2004; Fatemi, 2006; Nasseri et al., 2008), hardware utilisation prediction (Barletta et al., 2007; Taheri and

Mohebbi, 2008), real-time series prediction (Kim and Han, 2000; Sexton and Gupta, 2000; Arifovic and

Gencay, 2001), food lifespan forecasting (Gonia et al., 2008), sonar image reading (Montana and Davis,

1989) and computational problem (Sexton and Dorsey, 2000; Kwon and Moon, 2005; Cheng and Ko, 2006;

Hu et al., 2007). The ANN is a universal computation algorithm that has the ability to compose complex

hypotheses that can explain a high degree of correlation between features without any prior information

from the data set (Cartwright, 2008a). Meanwhile, the GA is an effective population-based search algorithm

designed for a large, complex and poorly understood data space due to its ability to exploit accumulating

information about this unknown data space and to bias subsequent a search into useful subspaces (DeJong,

1988). In addition, GA is robust from trapping into local minima, i.e. the over-fitting problem (Montana

and Davis, 1989).

GA/ANN hybrid systems are not new in microarray classification, but, are innovative for gene extraction.

Several examples of GA/ANN hybrid systems on classification include breast metastasis recurrence (Bevilac-

qua et al., 2006a,b), multiclass tumour classification (Cho et al., 2003a; Karzynski et al., 2003; Lin et al.,

2006) and DNA sequence motif discovery (Beiko and Charlebois, 2005). In these studies, the data sets were

normally normalised and partitioned into several smaller sets to ensure better classification performance of

the system. The GA acts as a supporting tool to optimise the classification performance of ANN. This could

contribute to the gene variability in the selection results. Rather than emphasize classification performance,

our research focuses on the extraction ability of the hybrid GA/ANN. Our approach optimises the connection
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weights of ANN and, at the same time, evaluates the fitness function of the GA using 3-layered ANNs. The

distinct difference between the existing GA/ANN hybrid systems and our GA/ANN hybrid approach is that

rather than using ANN as a classifier to predict cancer classes, the ANN in our approach is act as a fitness

score generator to compute the GA fitness function. Figure 1.3 presents the graphical hybridisation of the

GA/ANN approach used for classification and our selection approach.

(a) A typical GA/ANN hybrid system for microarray
classification.

(b) The proposed GANN hybrid system for
microarray gene extraction.

Figure 1.3: A typical GA/ANN hybrid classification model and the proposed GANN feature extraction model.
The diagram (a) shows a typical GA/ANN hybrid system used in microarray classification. In this hybrid
system, the ANN is used as a classifier to discriminate between cancer classes. The diagram (b) presents the
proposed hybrid system focusing on the extraction of informative genes from microarray data. In our system,
the ANN is act as a fitness score generator to compute fitness score for GA.

Fitness function is the most crucial aspect in GA as it determines the effectiveness performance of GA.

Most research concentrates on optimising other aspects of GA and only a few studies on improving GA

fitness function, e.g. the use of a penalty function to identify invalid chromosomes and approximating fitness

evaluation within a given amount of computation time (Beasley et al., 1993). However, these approaches

require an additional task level in a GA algorithm, for instance, a set of rules for determining the invalidity

of chromosomes, i.e. how poor the chromosome is, and a set of mathematical formulas to compute penalty

values when GA selecting invalid chromosomes, and consequently, the optimisability performance of GA
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relies heavily on how ‘good’ this additional function is in finding the ‘optimal’ fitness function. Some

studies proposed the use of effective classifiers on fitness computation, for instance, Li et al. (2001b) used

the classification result returned by k-nearest neighbour (KNN) as the fitness function of GA on acute

leukaemia classification, Cho et al. (2003a) computed fitness function based on neural network prediction

results on SRBCTs tumours, Lin et al. (2006) and Bevilacqua et al. (2006b) employed error rate returned

by neural network classification as GA fitness function on multiclass microarray data and breast cancer

metastasis recurrence, respectively. In our approach, instead of letting the user determine the level of invalid

chromosomes, we use simple feedforward ANN to compute fitness values for GA chromosomes. A novel

feature of our approach is based on the explicit design of the algorithm which explores the potentialities of

the GA and ANN methods of extracting informative features with minimal structural requirements on GAs

and ANNs, as followed the Ockham’s Razor principle.

Figure 1.3b shows our hybrid approach. To formulate an effective feature extraction method and to circum-

vent the over-fitting problem, a GA is used to initialise a population of chromosomes in which its fitness

value is computed using a 3-layered feedforward ANN with centroid vector principle and Euclidean distance.

Once all chromosomes are assigned with fitness values, a set of genetic mechanism is used to assess the fitness

of the chromosome and the least fit chromosome is replaced by a new chromosome. Through evolution over

many generations, ANN connection weights and GA fitness function are optimised, the least fit chromosomes

are gradually replaced by new chromosomes produced in each generation and the optimal set of genes are

obtained.

1.4 Research Question and Hypotheses

The research questions are derived from the problems identified in existing literature. Thus, two of our

research questions are as follow:

1. Can we use the simplest parameters in both GA and ANN to solve the problems stated in Section 1.2?

The simplicity in this context referring to the use of the minimal necessity parameters in both GA and

ANN to extract optimal gene subset from the raw (i.e. unprocessed) microarray data.

2. Can we identify informative genes which underly different precision levels in the microarray data?

The precision level in this context referring to the minimum fitness accuracy required by the model in

selecting informative genes from the raw, unprocessed microarray data.

These questions yield the aim of this research which is to devise a more effective way for extracting informative

features using machine learning methods. Thus, the hypotheses focuses on the outcomes of the research and
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on the conceptual design of hybridising GA and ANN methods. A feature extraction system has been built

based on these hybridised techniques. The hypotheses are as follow:

1. Without the use of acceleration techniques in ANN, the feedforward learning is able to compute the

GA fitness function (Model simplicity, generalisability and normalisation-free).

2. The proposed technique is able to detect genes that are differentially expressed in different tumour

development stages, i.e. different fitness precision levels (Biological plausible results).

These hypotheses are tested by the design developed in Chapter 3, the prototype and the experimental study

in Chapter 4, and the experimental results and discussion in Chapter 5.

1.5 Contributions

The aim of this research is to formulate, from the identified computing-related problems stated in Section

1.2, an innovative feature extraction model using machine learning methods for extracting informative and

relevant features using GAs and ANNs. This aim leads to major contributions, which are as follow:

• The realisation of problems pertaining to microarray experiment and the data structure of microarrays.

Unlike ordinary real-world data which has small level of interaction between features and high sample

size, microarray data contains thousands of genes associated with less than a hundred samples that

have been collected from various sources, which could, possibly, yield heterogeneity solutions in gene

combinations to the data. Additionally, genes in the microarray data are all correlated to some extent.

The aim of microarrays is to provide biological insights into gene interactions for the design of a

treatment strategy at the molecular level, instead of finding genes that can perfectly discriminating

between cancer classes. This realisation leads to the inducement to design a novel feature extraction

approach with as minimal an involvement of statistics as possible.

• A practical approach to identifying informative genes using an innovative hybridising GA and ANN.

This solution will assist in answering the problems addressed in Section 1.2.

• A prototype to realise the proposed techniques. This prototype will assist in validating the hypotheses

and in providing the fundamental basis for conducting an experimental study.

• The analysis of experimental results to indicate the cognitive performance of the prototype in different

precision states and the effect of an innovative hybridisation solution, as well as to demonstrate the

significance of the identified genes from a biological perspective.

• The publications of experimental result to various conferences.
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In additional to major contributions, the minor contributions stemming from this thesis are as follow:

• The review of existing bioinformatics literature pertaining to cancer classification and gene selection

techniques. The strengths and limitations for classification techniques, feature selection and/or reduc-

tion techniques and model evaluation approaches were discussed to determine the unresolved problems.

• The identification of informative genes in different stages of tumour development may enhance the

insight of the gene-gene interaction in the growth of abnormal cells and may assist practitioners in

designing treatment strategies to prevent further progression of a cell abnormality.

• The research in optimising GA fitness function. In our approach, the fundamental ANN paradigm

is exploited to increase the capability of the existing fitness optimisation techniques on the aspect of

improving the performance of GA.

1.6 Structure of Thesis

This thesis contains six chapters and three appendices. Chapter 2 explores the literature of the human

microarray cancer analysis framework. The literature covers the current works in the field and details the

intrinsic evaluation between existing works. The current works such as techniques for creating microarrays,

selection approaches for the selection of highly expressed genes in the cancer classes, classification methods

for discriminating sample patterns and validation mechanisms for validating the performance of classification

methods are reviewed.

Chapter 3 describes the planning and design phases that have been carried out to deliver the theme of this

research. A conceptual design of our feature extraction prototype namely, Genetic Algorithm-Neural Network

(GANN), is designed to study the interaction between informative genes that trigger the proliferation of a

specific tumour disease. In this chapter, the experimental data sets, used in supporting our research theme

will be discussed. These data sets including two synthetic data sets, two benchmark microarray data sets,

i.e. ALL/AML and SRBCTs, and two bioassay data sets, i.e. AID362 and AID688. The accuracy (i.e.

correctness) of the selection results will be evaluated with synthetic data sets and the robustness of the our

model in dealing with large data sets will be examined with bioassay data sets.

Chapters 4 and 5 describe the prototype and experiments of our approach to identify informative genes

that underlies the data. Chapter 4 describes software tools and the experimental study used to support

this thesis, including the prototype of our model, and Chapter 5 evaluates the reliability of our approach by

comparative studies of our results with four commonly used ANN activation functions, i.e. sigmoid, linear,

hyperbolic tangent (tanh) and threshold, as well as the results from the original studies. The insight of the
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identified genes will be verified against NCBI genbank via the Entrez Gene search system and the Stanford

SOURCE search and retrieval system.

Chapter 6 concludes our work and direction for future work. Our method will be evaluated based on the

goal achievement and further improvement in the method will be discussed. Finally, the thesis is concluded.



Chapter 2

Background and Literature Review

Chapter 1 gave the overview of our solution to the problems concerning informative genes detection in Section

1.2. This chapter describes the literature related to the problems and solution presented in this thesis, from

both the biological and the computing perspectives.

This thesis describes an intelligent gene extraction method using hybrid GAs and ANNs in microarray studies.

Hence the related literature from a biological perspective includes microarray production and its challenges,

and the computing perspective includes data preprocessing, classification and prediction modelling, as well

as computational challenges.

This chapter contains three sections. Section 2.1 provides the background on microarrays. Aspects concern-

ing the array design, fabrication techniques, fluorescent labelling systems and microarray-related problems

will be presented. Section 2.2 reviews computing approaches that have been used in cancer microarray

analysis, including data preprocessing approaches, classification and prediction techniques, model validation

mechanisms and aspects pertaining to the problems set out in Section 1.2. Section 2.3 provides a summary

of the chapter and to what follows next in the thesis.

2.1 A Biological Perspective

The understanding of genetics has advanced remarkably in the last three decades since the first recombinant

DNA molecule in the early 1970s. DNA plays a vital role in our daily activity as it makes cells more

specialised to perform certain functions, for example pancreatic cells to produce enzymes and insulin for

digesting food, or red blood cells to produce haemoglobin to transport oxygen to other cells (oxygenated)

and to carry carbon dioxide/monoxide away from cells. To do so, DNA makes ribonucleic acid (RNA) by

unbinding DNA strands to synthesise message RNA (mRNA). The mRNA is then sythesises with amino

16
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acid units to produce proteins to make cells function. Pragmatic studies have been performed to find a way

to measure DNA gene expressions in order to study the cancer biology of some genetic diseases over the last

decade and this has led to the vast development of publicly available repositories for microarray experiments

and microarray data. Table 2.1 presents examples on well-recognised resources for microarray experiments

and repositories. A microarray is the DNA chip that is used to store and to analyse the information contained

within a genome (the entire DNA sequence of a particular organism) or proteome (the entire complement of

proteins expressed by a genome). A microarray contains microscopic spots, i.e. the identical single-stranded

deoxyribonucleic acid (DNA) that attach to a solid surface, which is then used to detect the presence and

abundance of labelled nucleic acids in a biological sample. In the process of making microarrays, messenger

RNA (mRNA), transfer RNA (tRNA) or complementary DNA (cDNA) are extracted from the sample RNA

and labelled with a fluorescent dye system, these DNA probes are then hybridised and scanned to produce

an image of the surface of the array (Ebert and Golub, 2004). Figure 2.1 on page 19 presents the making of

microarrays based on two widely used DNA probes, i.e. cDNA and oligonucleotide arrays.

The microarrays quality and interpretation are influenced by the type of probe used, the way in which the

probes are aligned onto a solid support and the technique of target preparation (Ebert and Golub, 2004),

thus, great care is taken in conducting microarray experiments. In all cases, the first step is to extract the

RNA from the tissue/cell of interest by diluting the biological sample with certain chemical substances and

the RNA is then amplified using polymerase chain reaction (PCR) assays. The subsequent sections describe

the steps in the microarray experiment, including array design, fabrication technologies, labelling systems,

hybridisation and image analysis. This section concludes with problems concerning the cDNA arrays.

2.1.1 Array Design

At present, two prevalent approaches for DNA arrays are cDNA and oligonucleotide arrays, depicted in Figure

2.1, adopt different experimental platforms. The clone-based platform is used to produce cDNA arrays, while

the oligonucleotide-based platform is used to create a high density of oligonucleotide arrays. Both arrays

exploit hybridisation, however, they differ in terms of probe lengths and its composition, layout of sequences

in the array, cross-hybridisation and hybridisation effects from an immobilised substrate (Mah et al., 2004),

as well as objectives of the studies. For the studies where the focus is on a specific subject area and the

abundance ratio of differentially expressed genes is needed, such as genes relevant to particular metabolic

pathways, the low-density of cDNA array is required. Whereas, for the studies where little prior information

on relevant genes is available, or where an unbiased overview of global changes in gene expression patterns

is required, the high-density of oligonucleotide array is the best option (Tomiuk and Hofmann, 2001). Table

2.2 on page 21 presents a comparison study based on cDNA and oligonucleotide arrays, along with their



2.1 A Biological Perspective 18

Table 2.1: Resources for microarray experiments and microarray repositories.

Website URL Resources

National Center for Biotechnol-
ogy Information (NCBI)

http://www.ncbi.nlm.nih.gov/ GEO database, genbank,
analysis software, search
browsers

European Bioinformatics Insti-
tute (EBI)

http://www.ebi.ac.uk/arrayexpress genbank, biological on-
tology, ArrayExpress
database

National Human Genome Re-
search Institute (NHGRI)

http://research.nhgri.nih.gov/ cDNA microarray proto-
cols, cDNA microarray
repository, analysis soft-
ware

Broad Institute, cancer genomic
group

http://www.broad.mit.edu/ analysis software, mi-
croarray repository &
associated articles

Standford University, genomic
department

http://smd.stanford.edu/ experiment protocols,
SOURCE & AmiGO
browsers, analysis soft-
ware, cDNA microarray
repository

Microarray Gene Expression
Data (MGED) Society

http://www.mged.org/ MIAME standard, gene
ontologies, MAGE

GO Consortium http://www.geneontology.org/ gene ontology and partici-
pating laboratories

distinct advantages and disadvantages.

cDNA arrays containing cDNA fragments that are generated by PCR amplification of the cDNA clone, which

is the reverse-transcriptase of two different biological samples mRNA that are labelled with different dye

colours and hybridised to DNA sequences, that are robotically spotted on the surface of the glass slide (Ebert

and Golub, 2004). After hybridisation, a special scanner is used to measure the intensity of fluorescence of

each differentially expressed gene on a fine grid of pixels and to produce the digital image of hybridised arrays.

Normally, higher fluorescence indicates a higher expression value of the gene in the sample. The cDNA array

is relatively simple to produce and is inexpensive for laboratories with access to robotic equipment, however,

it needs careful attention to the chemistry which adheres the DNA to the glass (Ebert and Golub, 2004).

A lack of standard procedure due to manufacturing errors and improvised techniques used in producing

high-quality cDNA arrays by individual research laboratories has caused more unnecessary problems than

one might expect. For instance, the primary technical difficulty in microarray experiments is the amount

of each DNA probe that is robotically spotted on different arrays. To control inconsistency, sample RNA

is often hybridised with a defined amount of reference RNA that is labelled with a different fluorescent
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Figure 2.1: The microarray experiments: Oligonucleotide versus cDNA arrays. In all microarray experiments,
the RNA is extracted from the biological sample and the RNA is then amplified using PCR assays. For oligonu-
cleotide microarrays, the probes are directly synthesised onto solid surface and the single-dye colour is used to
read the gene expression in the sample. For cDNA microarrays, the PCR products from cDNA libraries are
deposited onto a solid surface and the two-dye colour is used to read the gene expression in the samples.

dye (Ebert and Golub, 2004). However, this yielded another technical concern, that is, the amount of

reference RNA in the hybridisation process is dependent on the amount of probes that are robotically spotted

and also the manufacturer’s guideline. Additionally, cDNA probes often contain repetitive sequences, as a

result, the process becomes intensive, especially when the experiment is conducted on a genome-wide scale,

consequently, the cross-hybridisation has become more problematic (Ebert and Golub, 2004). A significant

advantage of cDNA array is that it does not require prior sequence information due to it being initially

designed for sequence modelling. Thus, it is an attractive alternative for model organisms whose genomes

are not yet sequenced (Ebert and Golub, 2004). The disadvantages of cDNA array are, inconsistency in

the procedure adopted by the individual research laboratories and manufacturers resulting in a variation in

gene measurements, intensive computational cost on a genome-wide scale experiment and is problematic on

cross-hybridisation due to repetitive sequences in cDNA microarrays.

Comparing to cDNA arrays, high-density oligonucleotide array is an active area of technological development

(Parmigiani et al., 2003) and the most widely used oligonucleotide arrays are manufactured by Affymetrix

(Santa Clara, CA) which uses the in-situ photolithographic synthesis technique to produce oligonucleotides
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onto the array chips. Therefore, oligonucleotide arrays, also referred to as Affymetrix arrays, are less prob-

lematic than cDNA arrays. The oligonucleotide arrays contain short oligonucleotide probes with a length

between 25 and 60 mers (base-pairs) that are either synthesised in-situ or robotically spotted on the surface

of the glass side. In oligonucleotide array, sample RNA is prepared, labelled with dye colour and hybridised

to an array which is then scanned into digital image to obtain a fluorescence intensity value for each probe.

Unlike cDNA arrays, oligonucleotide arrays use single-channel labelling system, i.e. single dye colour, in

hybridisation and each oligo probe contains a unique oligonucleotide sequence (Ebert and Golub, 2004) that

ease the hybridisation process. Due to the short probe length in oligonucleotide arrays, the hybridisation

specificity is more easily controlled than cDNA arrays.

Literature (Mah et al., 2004; Asyali et al., 2006) shows that although cDNA and oligonucleotide arrays have a

poor correlation on the DNA probes, both arrays are able to display similar characteristics in the data, even

though, the combined results of both arrays have been not possible. Hence, studies on the combination of

results on multiple similar arrays have gained close attention from the bioinformatics field. With the robust

and reproducible gene expression data that can be generated on multiple similar arrays, the technicality

aspects of array design have become less critical (Ebert and Golub, 2004). However, the degree of similarity

of the DNA probe sets and the expression level of the corresponding transcript in the experiments still play

important roles in the reproducibility aspect and yet, this issue remains a topic of intensive research (Asyali

et al., 2006).

2.1.2 Fabrication Technology

Two prevalent microarray fabrication technologies in microarray experiments are robotic spotting and in-

situ synthesis. The robotic spotting synthesises DNA probes prior to the array deposition which is then

detected onto glass, while the in-situ synthesis synthesises DNA probes directly onto the array surface

without depositing intact DNA probes.

For robotic spotting, robotic-controlled pins are dipped into wells that contain DNA probes and then deposited

each probe at the designated locations on the array surface. The amount of probes collected depend on the

number of arrays being made and the amount of liquid the pins can hold. The pins are then washed to remove

any residual solution before the next sample is collected to prevent contamination on the subsequent sample.

Once all locations on the array are occupied with probes, the known reference template, i.e. complementary

cDNA or cRNA “targets” derived from experimental samples which represent the nucleic acid profiles is

prepared to hybridise with cDNA probes. The probes spotted by the spotting technique can be cDNA,

oligonucleotides or even small fragments of PCR products that correspond to mRNA.

For in-situ synthesis, the probes are short oligonucleotide sequences, in the range of 25 to 60 mer probes, that
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Table 2.2: A comparison between cDNA and oligonucleotide arrays.

Description cDNA arrays Oligonucleotide arrays

Platform design clone-based Oligonucleotide-based / Affymetrix-
based

Probe length Long sequence Short sequence, approx. 25 - 60 mer
(base pair)

Fabrication tech-
nique

Robotic spotting Synthesising in-situ

Labelling system Two-dye fluorescent colours Single-dye fluorescent colour

PCR correlation Low High

Production cost Low High

Normalisation Yes (pre- & post-normalisation) Yes (pre-normalisation)

Advantages Emphasize on genes related to a specific
subject areas

Unbiased overview on the global fluctu-
ations in gene expression patterns

Easily customise Less sensitive to cross-hybrdisation
No prior information on cDNA se-
quences required

Uniformity of probe length and the abil-
ity to discern splice variants
Able to recover samples after hybridis-
ation to a chip

Disadvantages Difficulties on the production of high-
quality cDNA arrays

Sensitive to base pair changes due to
short length of DNA probes involved

Variability in gene expression measure-
ment

Requires prior information on relevant
genes

Vulnerable to cross-hybridisation
Problems on reproducibility of genes
May contain latent non-specific DNA
sequences

are built up base-by-base on the array surface that are designed to match parts of the known sequence (Stekel,

2003a). With each added nucleotide to the array, there is a protective group to prevent more than one base

being added during each round of synthesis. This protective group is then converted to a hydroxyl group,

either with photolithographic synthesis or chemical reagents via inkjet technology. The photolithographic

synthesis approach uses light to convert the protection group, while the reagent approach employs a similar

chemistry substance as a standard DNA synthesiser and droplets of the appropriate base are fired at each

step of synthesis onto the desired spot via inkjet printers which fires adenine (A), cytosine (C), guanine (G)

and thymine (T) nucleotides. The main advantage of the inkjet approach over photolithographic synthesis

arrays and spotted arrays is that the gene synthesis process is highly flexible as it is fully controlled by

the computer, based on the user requirement. However, it is less efficient for making a large quantity of

identical arrays (Stekel, 2003a). Chemical reagents via inkjet technology have been used by some reputable

laboratories such as Rosetta, Agilent and Oxford Gene Technology (Tomiuk and Hofmann, 2001; Stekel,
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2003a).

At present, there are two types of photolithographic synthesis: masks and maskless. The masks photolitho-

graphic synthesis is the basis of the Affymetrix technology that uses masks to allow light to pass to a certain

area of the array and at each step of synthesis, different types of masks are required (Stekel, 2003a). The

maskless photolithographic synthesis used by Nimblegen and Febit, employs a computer-controlled mirror to

direct light to the desired parts of the glass slide at each step of synthesis (Stekel, 2003a).

2.1.3 Labelling Systems

After RNA is extracted and fabricated, the sample can then be labelled. The labelling process can be either

fluorescence or radioactive, depending on the fabrication technique used in the microarray experiment. This

thesis focuses on the fluorescence labelling system as it is the most commonly used system rather than the

radioactive system. Two types of fluorescence labelling systems for oligonucleotide and cDNA arrays are

single-channel (i.e. single-dye) and two-channel (i.e. two-dye) systems, respectively.

On Affymetrix arrays, i.e. oligonucleotide arrays, a biotin-labelled cRNA is constructed for hybridising to

the Affymetrix GeneChip, thus, a single-channel is commonly used to show the expression values of given

genes. A significant advantage of single-channel labelling is that the collected data can represent absolute

expression values of genes, as a result, an aberrant sample cannot affect the data collected from other samples

as each array chip can only hold one sample as opposed to a two-channel labelling system where an array

chip is exposed to many samples, i.e. cross-hybridisation. Consequently, the overall data precision on 2-

channel labelling system could be affected if there is an outlier between samples in the chip. Additional

strengths of the single-channel system are the comparison studies between arrays which can be conducted

in noncontinuous time frames, such as months or years and the combination results of multiple arrays on

different array chips are possible as a similar dye colour system is applied. A significant drawback of this

labelling system is that it requires more array chips to store the data.

Meanwhile, on cDNA arrays, cDNA probes and reference template are differentially labelled with two flu-

orophores to allow for the quantification of differential gene expression. Expression values are reported as

ratios between two fluorescent values (Ramaswamy and Golub, 2002), as shown in Figure 2.2. Two samples,

i.e. disease cell versus normal cell, are compared and labelled using two different fluorescent dyes, normally

with Cy3 corresponding to the green fluorescent probes and Cy5 corresponding to the red fluorescent probes.

These two Cy-labelled cDNA samples are then hybridised to a single microarray using control probes pro-

vided by oligonucleotide microarrays which is then scanned to visualise the fluorescence of the probes after

they have been excited with a laser beam. The fluorescence intensities of each probe are then normalised,

based on the preselected control probes and analysed using a specially designed computer algorithm to detect
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the regulation of genes. A two-channel system is prone to dye biases due to different dye properties and dye

ability which result in a variation in gene expression measurements using the same DNA sample (Parmigiani

et al., 2003). To remove dye biases, additional normalisation is performed after digitising hybridised arrays,

which is elaborated in Section 2.1.5.

Figure 2.2: A typical 2-channel microarrays. The RNA are extracted from the normal and disease cells and
amplified using the PCR assays. The RNA are then reverse-transcriptase into the cDNA, which is then labelled
with two different fluorophores using two-channel labelling system. Two fluorescent dyes for cDNA labelling are
Cy3 (green) and Cy5 (red). The two Cy-labelled cDNA samples are mixed and hybridised to a single microarray
that is subsequently scanned in a microarray scanner to visualise the fluorescence of the fluorophores after the
excitation with a laser beam of a defined wavelength. The intensities of each flurophore are then be used in the
ratio-based analysis to identify the regulation of genes.

2.1.4 Hybridisation

After DNA probes have been labelled with a proper dye system, hybridisation is performed by complemen-

tarily combining DNA probes and the labelled RNA reference template. Hybridisation can be performed

either manually or robotically. In the past, the sample has been manually hybridised and, to date, due to the

advance of biology technology, most research laboratories use robotic hybridisation which can provide a much

better control of the temperature of the target and slide (Stekel, 2003a), thus reducing the variability error
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in gene expression measurement. In addition to the ambient condition factor, variability errors can also arise

from other factors, such as salt concentrations, formamide concentration, target solution volume and oper-

ator, edge effects (effects seen only at the gene spotted near the edges of the array) and cross-hybridisation

(Stekel, 2003a; Parmigiani et al., 2003).

2.1.5 Image Analysis

The final step of microarray experiment is to produce an image of the hybridised array. A special scanner

is used to read the fluorescent dyes on the surface of the glass slide that are excited by the scanner laser

beam. In order to make a digital image of the array, the laser must focus at the desired point on the array

so that the dye at that point is excited by the laser and then detected by a photo-multiplier tube (PMT)

in the scanner (Stekel, 2003a). The quality of the digital image is generally associated with fabrication

techniques, hybridisation and dye labelling. For instance, Affymetrix arrays have light refraction problem on

the masks photolithographic synthesis, thus, it is compensated by a high quality of image processing software

(Stekel, 2003a), meanwhile spotted array images can be of variable quality, depending on the variation in

hybridisation and differential dye labelling (Auburn et al., 2005).

After producing a digital image of the array, some form of normalisation is generally applied to microarrays to

remove any form of biases yielded by fluorescent dyes used to label cDNA-based samples (Leung and Cavalieri,

2003; Wilson et al., 2003). There are two major groups of normalisation, i.e. within-array and between-

array normalisation. The within-array normalisation compares samples of a single array chip, meanwhile the

between-array normalisation makes comparisons between samples hybridised to multiple array chips.

The within-array normalisation generally involves either fitting a regression line to the log intensities of

dyes versus average intensity of each probe (Stekel, 2003b) or to form a smooth curve (lowess curve) based

on the joining of a large number of local regressions in every subset of data using log intensities of dyes

(Leung and Cavalieri, 2003; Stekel, 2003b; Wilson et al., 2003). However, a significant drawback of within-

array normalisation is that it is based on the assumption that a majority of the genes are not differentially

expressed (Stekel, 2003b).

The between-array normalisation, on the other hand, involves the global normalising gene expression based

on the equalisation of expression using the mean of all genes within an array across the mean of all expressed

genes from different arrays (Asyali et al., 2006; Leung and Cavalieri, 2003), with a core assumption that

genes can be differentially expressed as a result of the experimental condition and do not represent biological

variability (Stekel, 2003b; Asyali et al., 2006). However, depending on the biological conditions of different

arrays, this assumption could be violated. A solution to this violation is to use a set of common housekeeping

genes on the arrays to replace the mean expression normalisation of all the genes in the array or the known
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amount of exogenous control genes to be added to the finished microarrays. Housekeeping genes are genes

that have stable differential expression across different biological conditions (Asyali et al., 2006) with a low

differential expression and a small variability after normalisation (Wilson et al., 2003). Recent reviews show

that housekeeping genes are not as constantly expressed as was previously assumed (Leung and Cavalieri,

2003) and improper use of housekeeping genes may yield another potential source of error. Hence, the use

of the dye-swapping experiment is seen as a plausible solution. However, this experiment is impractical in

use, due to the limited supply of samples that fulfil certain criteria (Leung and Cavalieri, 2003).

To conclude, fluorescence biases are primarily dependent on the average expression level and spatial position

of the probe in the cDNA microarrays in which such conditions are determined by several factors, including

the experimental protocols, the lengths of probes, the number of tissues to be measured per array and the

array size (see Section 2.1.1). Therefore, the post-normalisation in the image analysis phase (see Section

2.1.5) is used to remove biases yielded from such conditions, but not to remove biases caused by other factors

such as printing resolution, scanning efficiency, labelling efficiency and PCR assays.

2.1.6 Microarray Challenge

cDNA microarray has been widely studied over the last decade, however, it is still imperfect in some ways

due to some technical problems incurred during the production process. The key problem is the variability

in gene expression measurements using the same DNA sample. This variability arises in almost every phase

of the cDNA microarray experiment, such as sample preparation (amplification, purification, concentration,

spotting volume), sample labelling (dye properties), hybridisation (ambient conditions, spotting effects,

cross-hybridisation) and image processing (scanner property, image algorithm and settings) (Parmigiani

et al., 2003). Although these errors are relatively small, however, the compounding of their effects can be

severe, particularly, in verifying the underlying functionality of correlated genes to specific subject studies.

A solution for gene validation is to apply alternative biological techniques, such as reverse transcriptase-PCR

(RT-PCR), or fluorescent in-situ hybridisation (FISH) , to validate the gene functions (Ebert and Golub,

2004). RT-PCR, however, it is only practical in a smaller number of genes and it is not to be used in

detecting variability errors. Thus, variability errors are usually expected in finished microarrays (Parmigiani

et al., 2003).

The low production cost of cDNA microarrays has motivated individual research laboratories to design

‘indoor’ microarrays with no proper guideline in experimental design, and so far, these arrays have only been

used internally. However, with the advances of microarray technologies, these ‘indoor’ microarrays have

caused additional problems in the “standard” microarrays. These problems are:
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• The lack of a systematic procedure to design microarray due to individual research laboratories cus-

tomising the experimental process to suit their requirements. For instance, all DNA probes are usually

replicated at least twice in every stage of the experiment to obtain a solid conclusion on both the

statistical and biological significance. This replication process may be conducted on two independent

RNA extractions or on two aliquots (i.e. a portion of a DNA sequence) of the same extraction. Each

spot on the array may also be replicated to provide a measure for each hybridisation process. Thus, an

inconsistency of experimental design occurs. To overcome this inconsistency, several institutions have

participated in the Laboratory Information Management System (LIMS) scheme to understand the

methodology adopted by different laboratories in designing microarray experiments (Stekel, 2003c).

A LIMS repository records all information regarding laboratory experiments, including procedures,

protocols and methods in microarray manufacture, sample preparation, labelling and hybridisation

(Stekel, 2003c). However, LIMS receives little attention from research laboratories.

• The lack of annotation control due to there being no standard practice applied in the experimental

stages, such as fabrication techniques, assay protocols, statistical analysis methods and annotation

protocols adopted by individual research laboratories (Leung and Cavalieri, 2003). For example, Bru-

chova et al. (2004) quantitated the cDNA microarrays based on the manufacturer protocol of Atlas

Img 2.01 software in which the global sum normalisation method has been applied the gene expression

values and they used the ratios of signal intensities ≥ 2 and ≤ 5 to determine the significance of

the genes. Rather than using the global normalisation method, Sakhinia et al. (2006) quantitated the

cDNA gene expression values based on the defined housekeeping genes and the significance of the genes

are determined using the Mann-Whitney test with p ≤ 0.05. Mah et al. (2004), however, performed

2-steps normalisation in the cDNA gene expression quantitation to remove fluorescent bias that was

introduced in the labelling phase. They first used the log-transformed global mean method on the data

values and the scaling factor is applied to prevent negative log values to remove fluorescent bias. They

then normalised the expression values according to the median expression intensity over all arrays (i.e.

the Zipf’s law), followed by a scaling factor to return the expression values to their original magnitude.

As a result, it is almost impossible to either judge the validity of the cDNA results or to compare

the cDNA results from different laboratories. Furthermore, the cDNA gene expressions are annotated

in the numerical format. Without a standard, similar numeric values to annotate different cDNA

probes become possible. For example, cDNA probe with the Image Id 782427 in the SRBCTs cDNA

microarray data (Khan et al., 2001) is annotated as EST (expressed sequence tag, which referring as

the unclassified gene or gene in which it function is unknown) can referring to two distinct genes in the

NCBI genbank, i.e. GRN gene in chromosome 17 and INHBB gene in chromosome 2. To circumvent the

problem, the Microarray Gene Expression Data (MGED) society enforces the Minimum Information
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About a Microarray Experiment (MIAME) protocol, that outlines the minimum information required

for creating the microarray data (Leung and Cavalieri, 2003). This is to ensure that the data can be

easily interpreted and the results can be verified independently by different laboratories. However,

there will always be some laboratories which have different experimental procedures by chance.

2.2 A Computing Perspective

The advancement of computing technology in the early 1960s has laid the fundamental methodology for

genetic analysis in the bioinformatics field, with an emphasis on cancer classification. In the past, cancer

classification has always been morphological and clinical-based (Lu and Han, 2003), as a result, the medical

conclusion has always been statistical-based. With the bloom of the Internet in 1990s, a fully developed

bioinformatics field was born and extensive research in computing methods for microarray classification

has been studied. Unlike clinical-based classification, microarray-based classification focuses on the search

for feature genes that are differentially expressed between cancer classes. Figure 2.3 presents a cancer

classification process based on supervised classification methods. The data preprocessing step is generally

expected in microarray data to remove any sort of data incompatibility in supporting classification results.

Depending on the circumstances, sometimes more than one preprocessing techniques is needed, such as

imputing missing data, normalising data, removing redundant information or preselecting data which meets

certain criteria. After the data has been preprocessed, a validation mechanism is normally chosen to evaluate

the performance of the classifier and the entropy rate of the trained classifier is computed. Depending on

the entropy results returned by the classifier, appropriate adjustments will be made on the classifier, the

validation method and the preprocessing approach. Normally, a separate set of test samples will be used to

evaluate the generalisability of the classifier in discriminating these unknown samples.

The subsequent sections describe the computing aspects in classifying microarray data, which include data

preprocessing, classification methods and validation mechanisms. A review of the existing selection methods

and problems pertaining to the computing aspects addressed in Section 1.2 will be discussed in this section.

2.2.1 Data Preprocessing

There are many factors that affect the success of classification methods. The first and foremost aspect is

the representation and quality of the data (Asyali et al., 2006; Kotsiantis et al., 2006). This is important

for classifiers, such as ANNs and KNN estimation, as these techniques are sensitive to the value magnitude,

and consequently, the predictive results will deteriorate when the magnitude is high. Thus, the removal of

undesirable characteristics, such as outliers, missing data values, excessive data values and data redundancy,
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Figure 2.3: The process of supervised classification methods.

can ensure data integrity and better predictive accuracy of the classification results. In general, there are

three principle aspects for preprocessing data which are missing value estimation, data normalisation and

feature selection, depending on the nature of the data, the appropriate action is performed. For instance, an

estimated value, based on standard statistics, is imputed for the missing entity in the data, normalisation is

performed to remove outliers and excessive data values and feature selection is used to identify significant

features and to remove irrelevant and redundant information from the data.

2.2.1.1 Missing value estimation

The imputation of estimated values for missing entities is not an uncommon issue in data preprocessing

as most real-world data contains incomplete information (Kotsiantis et al., 2006) and sometimes, due to

technical problems in microarray experiments, expression levels for some genes cannot be accurately mea-

sured, resulting missing data (Kim et al., 2005; Asyali et al., 2006). Classifiers such as nearest-neighbour

(KNN) algorithm, support vector machines (SVMs), principal component analysis (PCA), singular value

decomposition (SVD), hierarchical clustering (HC) and K-means clustering, cannot be directly applied to
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data with missing values, therefore, these missing values need to be imputed with some reasonable estimates

using imputation techniques. A commonly used imputation approach is to substitute a missing entity with

the global mean value of a feature computed from the remaining available samples. A variant of using a

general feature mean is to use the mean value of a feature computed from all samples belonging to the same

class for a missing value (Kotsiantis et al., 2006). These are straightforward approaches for imputing missing

values in the data with a minimal effort in statistics. The other imputation approach includes the use of

KNN-based imputation (KNNimpute) (Troyanskaya et al., 2001; Dudoit et al., 2002) based on the average

weight value of the selected genes with expression profiles similar to the missing gene, the employment of

SVD-based imputation (SVDimpute) (Troyanskaya et al., 2001) to identify a set of mutually orthogonal

expression patterns that can be linearly combined to estimate the expression levels of all genes in the data

set, the least squares-based imputation (LSimpute) (Kim et al., 2005) which utilises Pearson correlation

in selecting genes and arrays, the Bayesian PCA (BPCA) (Oba et al., 2003) that estimates a probabilistic

model and latent variables within the framework of Bayes inference using principal component analysis, and

the local least squares imputation (LLSimpute) (Kim et al., 2005) which only uses similar genes based on a

similarity measure in the imputation. As a result, the variability of imputation measurements on the similar

data set is inevitable.

2.2.1.2 Data normalisation

In addition to incomplete information in microarray data, there is often a large difference between the

maximum and the minimum values within a feature, some may be due to outliers or missing values in

the data. It is important to note that the normalisation technique in this thesis refers to the process of

scaling down the magnitude of a feature to a certain level of range prior to computational analysis, rather

than scaling up the magnitude of a feature. Ideally, normalisation enhances the predictive performance of

classifiers as it preserves the relationship between features in the samples and simplifies computation process.

The straightforward normalisation approach is the scale normalisation (Golub et al., 1999; Dudoit et al.,

2002; Cheng and Li, 2008) where samples in the data set are standardised with zero mean and unit variance

across features, to prevent dominance of feature values in a sample over the mean values of the features in

all samples. The other commonly used approach includes the max-min normalisation (Cho and Won, 2007;

Gonia et al., 2008) which divides the feature value with the substraction of the maximum and the minimum

values within a feature and logarithmic transformation (Golub et al., 1999; Dudoit et al., 2002).

However, due to the complex biological interaction between genes in microarray data, normalisation is not

always versatile. Conversely, normalisation deteriorates the finding of correlated genes in response to labelled

classes. Normally, marker genes are triggered by its correlated genes which are either over-expressed or
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suppressed in a tumour cell. By scaling down the gene magnitudes, the expression values of the genes in the

microarray data may end up equalised. In other words, the intensity of expressed genes are suppressed into

a specific range to form a clear discrimination between cancer classes, and consequently, what was originally

a primary gene may become of equal statistically significance as secondary and less significant genes. The

true marker genes can be ‘buried’ by higher expression genes and may not be selected in the classification

process as they do not provide ‘beneficial’ information in class discrimination.

At present, most classifiers require data to be normalised to ensure better classification accuracy and model

efficiency. No attention has been paid to the implication of normalisation in diminishing genes dependencies

and little attention has been made to the influence of normalisation technique in classification performance

(Futschik et al., 2003). This is mainly because data normalisation is a standard practice applied to all

discipline areas and has been proven effective for computing methods to achieve better classification results.

Most real-world data that has been dealt with does not exhibit such complex behaviour or underlying

meaning features as compared to microarray data. However, all microarray data has been normalised to

some extent during the microarray production (see Section 2.1.5 on page 24 and Table 2.2 on page 21) and

therefore, further normalisation could deteriorate the quality of microarrays.

To conclude, normalising data enables a better classification accuracy and model efficiency for classifiers

rather than improving the ability of the classifiers in discovering genes interactions. In addition, there are

many variants of normalisation which can be applied depending on the subject of studies. In the case of

improving classification performance, normalising data will significantly improve processing time and reduce

computational effort in classifiers. However, in the case of explaining the context of features dependencies, the

normalisation process jeopardises the finding of informative features. To validate our argument, a comparison

study based on the original data set and the normalised data set is discussed in Section 5.6 on page 169.

2.2.1.3 Feature selection/reduction

An important aspect for designing a cancer classifier is to reduce feature dimension or to select a set of infor-

mative genes to enable the reliable prediction of the model with a limited number of available samples. Thus,

the algorithms for removing redundant features and identifying informative data have been developed. Fea-

ture selection/reduction is crucial in microarray studies because microarray data contains a greater number

of noisy genes rather than informative genes, and these informative genes are less likely to be detected among

the large numbers of irrelevant genes due to their biological behaviour. There are three main categories of

feature selection/reduction methods, namely filter, wrapper and embedded methods. The filter method,

obtaining genes based on its individuality correlation to the known cancer classes, the wrapper method,

identifies a group of genes that is correlated in response to the classification task and the embedded method,



2.2 A Computing Perspective 31

similar to the wrapper method with the only difference that the embedded method is a built-in component

of the classifier. Table 2.3 on page 32 provides a common taxonomy of feature selection/reduction methods

with their prominent advantages and disadvantages.

Filter selection is the earliest selection approach used in cancer classification. It measures the marginal

relevance of an individual gene to the known class with standard statistics criteria such as t-statistic methods,

and ranked genes according to its entropy rate. A primary advantage of filter selection is that it is classifier-

independent, thus, it can be easily applied to any classifiers. Furthermore, it is easily scaled to a very high

dimension as the genes are individually evaluated and it is computationally simple and fast. However, a

significant drawback of the filter method is that it does not guarantee the delivery of relevant genes due to

most filter methods being univariate-based, thus, gene dependencies are not considered. Examples of filter

selection are t-statistic methods including ANOVA, t-test, signal-to-noise (S2N) ratio (Golub et al., 1999;

Inza et al., 2004; Osareh and Shadgar, 2008; Zhang et al., 2008), principal component analysis (PCA) (Khan

et al., 2001; Wei et al., 2004; Wang et al., 2006), between-group/within-group (BSS/BWS) ratio (Dudoit

et al., 2000), information gain (IG) (Osareh and Shadgar, 2008; Zhang et al., 2008) and Wilcoxon ranksum

(Jeffery et al., 2006; Zhang et al., 2008). With the advance of microarray technology, it is evident that genes

combination, rather than genes in isolation, contributes to tumour development. Thus, multivariate-based

selection was introduced into cancer classification.

Unlike the filter approach, wrapper selection measures the marginal relevance of gene subsets based on the

estimation of entropy in trained classifiers and ranks them based on the classification accuracy obtained

with a separate set of test data. In wrapper selection, the classifier is ‘wrapped’ by a selection method. A

hypothesis space containing an optimal gene subset extracted from the entire gene space is first constructed

using an exhaustive search procedure and these genes are then used to train the classifier. The correlation

of the genes are measured based on the estimation of the training accuracy percentage (i.e. entropy rate) of

the classifier. Finally, the optimality of genes is validated using a separate set of data. A primary advantage

of wrapper selection is that it examines genes dependencies, thus, the genes with low expression levels but

strong interactions can easily be detected. The common disadvantages of wrapper selection are that it is

computationally intensive and has a higher risk of an over-fitting problem than the filter approach, depending

on the choice of classifiers and the parameters of the selection method. Although the wrapper approach has

been extensively studied by the machine learning community and widely applied in pattern recognition and

classification problems, it is not commonly used in microarray studies (Inza et al., 2004; Asyali et al., 2006),

as compared to filter selection and embedded approach, probably due to the intensive computational efforts

involved. A commonly used wrapper method is evolutionary algorithm (EA) techniques including genetic

algorithm (GA), simulated annealing (SA) and genetic programming (GP) (Li et al., 2001a,b; Ooi and Tan,
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2003; Peng et al., 2003; Yu et al., 2007).

Embedded approach is a variant of wrapper selection in which the search of optimal genes is built into the

classifiers, thus, the gene space and the hypothesis space can be viewed as one (Saeys et al., 2007). The

claimed advantages of the embedded approach are that it explores the interaction between a search algorithm

and classifiers and it is less computationally intensive than the wrapper method. However, the embedded

approach does not guarantee the genes interaction and it is classifier-dependent. The common examples of

the embedded approach include regression search in Fisher discriminant analysis (FDA) (Dudoit et al., 2000),

recursive feature elimination (RFE) using weight vector of support vector machines (SVMs) (Guyon et al.,

2002), signal-to-noise (S2N) utilised the mean and deviation of genes in weighted voting (WV) algorithm

(Golub et al., 1999), random forest (Dı́az-Uriarte and de Andrés, 2006) and nearest shrunken centroid (NSC)

that normalises the gene deviations within a class in a supervised classifier (Tibshirani et al., 2002). There is

an interchangeable term used in the embedded search approach and some supervised classification methods.

For instance, much of the literature has generally identified FDA as a supervised classifier rather than a

variant of the feature selection approach and NSC is normally used for classification problems, although it is

initially used to support a supervised classifier. To avoid any form of confusion, we categorise the embedded

approach under the umbrella of the classification method in this thesis because the “classification” term

has been used since the establishment of bioinformatics and the “embedded” term has just recently been

introduced to bioinformatics field.

Table 2.3: A common taxonomy of feature selection/reduction methods.

Model search Advantages Disadvantages Examples

Filter Scaleable
Fast
Simple
Classifier-independent

Ignore gene interactions
Statistical significant
Ignore interaction with the clas-
sifier

t-statistics;
ANOVA; PCA;
BWS; IG; Wilcoxon
ranksum

Wrapper Model biological gene interac-
tions
Interacts with classifier
Less prone to local optima

Over-fitting risk
Computationally intensive
Classifier-dependent

GAs; SAs; GPs

Embedded Interacts with classifier
Less computationally intensive
than wrapper methods

Classifier-dependent
May ignore gene interactions

RFE-SVM; S2N in
WV; regression in
FDA; NSC; Ran-
dom forest; CART;
Decision Tree

The goal of this research is to devise a more effective way for extracting informative features using machine

learning techniques. Therefore, a review of the existing feature selection methods is presented in Section

2.2.4 on page 45.
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2.2.2 Validation Mechanism

Assessment of the statistical significance and validation of findings is a critical step in cancer classification

(Ebert and Golub, 2004). The principle of microarray-based classification is to use it as an insight for the

existing data for prediction of future data. As Simon (2003) said: “We want to be able to predict class

membership for future samples whose class membership we do not know”. However, the major problem

of the existing classification methods is the over- or under-fitting problem, which is due to the nature of

microarray data, such as high gene dimension, sample scarcity and complex interaction between genes within

the data; the structure of the classification framework, such as data preprocessing prior to classification that

may homogenised the primary features and the secondary or the less important features; complex hybrid

classification model, such as DT/SVM (Statnikov et al., 2004); and high network size in the ANN model

(Chen et al., 2007). Thus, methods for obtaining an unbiased assessment on the classifier’s error rate are

required. These methods, ideally, assess one or more of the following factors (Simon et al., 2003; Somorjai

et al., 2003; Dabney, 2005):

• The unbiased estimation on the prediction accuracy in which high classification corresponds to low

misclassification errors (Classification Accuracy).

• The practicality of the prediction model dealing with the data characterised by high feature dimension

and sample sparsity (Scaleability and Generalisability).

• The interpretability of the prediction models based on the complexity of the hybridised approach to

reduce computational cost and to minimise the risk of over-fitting (Simplicity).

• The interpretability of the results at a biological level rather than at a statistical significant (Biological

versus Statistical Significance).

The validation techniques in this section, however, evaluate the accuracy and the generalisability of the

classification models in providing statistical-based results rather than biological-based. These techniques

include splitting sample patterns and cross-validation (CV) procedures. Table 2.4 on page 34 shows the

taxonomy of validation mechanism for evaluating classification methods.

The straightforward approach for properly evaluating a classifier is to base the evaluation on a separate set

of test sample data. In a sample-splitting procedure, the data set is randomly split into two independent

subsets, namely training set and test set. The splitting ratio is normally 0.7 : 0.3 in which 70% of the data

is used as a training set and the remaining 30% as a test set. The training set is used by a classifier to

learn discriminant patterns and the test set is used for evaluating generalisability of the trained classifier.

The fundamental principle of this procedure is that the samples in the test set must not have been used in
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training the classifier (Ambroise and McLachlan, 2002; Dupuy and Simon, 2007). In fact, some studies use a

third set, known as validation set, to act as a secondary test set, on the quality of the classifier. This method

will prevent the over-fitting problem, providing the data set is large and there are sufficient samples in all

three sets (Cartwright, 2008a).

Another commonly used validation approach is cross-validation (CV). Unlike the sample-splitting procedure,

CV is an iterative process. In each iteration, part of the data set is used to develop a classifier and another

part of the data set is left apart as a validation set to the classifier. Similar to the sample-splitting procedure,

the samples in the validation set must not have been used in training the classifier (Dupuy and Simon, 2007).

The widely used CV approach in bioinformatics literature is leave-one-out cross-validation(LOOCV) due to

the small number of samples available in microarray data (Cartwright, 2008a). For LOOCV, each time the

classifier is trained on the entire samples, with the exception of a single sample that acts as a test for the

trained classifier. The performance of the classifier is then accessed by this exception sample. This is carried

out for all samples in the data set. The main advantage of LOOCV is that it ensures the unbias estimation

on the classification result, however, the downside of LOOCV is that it is computationally intensive. Thus,

it is not recommended if the data sets are large, but, the n-fold cross-validation (CV) procedure is suggested.

In n-fold CV, the data set is divided into n subset of data with equal sized of sample patterns in each fold.

Each time, the classifier is trained using n− 1 subsets of data and tested with the omitting subset of data.

The process repeats for n iteration and each time, a different subset of data is used to evaluate the classifier.

Comparing to LOOCV procedure, n-fold CV is efficient when the sample size is large.

Table 2.4: A common taxonomy of validation mechanism on classification model.

Validation mecha-
nism

Description Advantages Disadvantages

Sample-splitting Randomly divides data with the ra-
tio of 0.7 : 0.3 in training and test
sets, respectively. The training set con-
tains adequate information to develop
the classifier and the test set is used to
evaluate generalisability of the trained
classifier

Simple and fast
Less prone to over-
fitting risk

Biased classifica-
tion estimation
when the sample
size is small

Cross-validation Iterative process where the data is ran-
domly divided into n folds with equal
seized of sample and classifier is devel-
oped on the n−1 folds with tested with
the omitting fold

Unbiased classifica-
tion estimation
Less prone to over-
fitting risk

Computationally
intensive when the
sample size is large

Most studies in the bioinformatics literature favoured to apply more than one variant of validation mechanism

in their studies. The commonly used combined mechanisms are the sample-splitting and LOOCV procedures,
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where the prediction performance of the trained classifier is evaluated using the n-fold CV procedure in the

training set (see Appendix C).

Simon (2003) and Ambroise and McLachlan (2002) discussed several important issues on model evaluation

that have been overlooked by some studies and optimistically bias prediction performances were reported.

2.2.3 Classification Design

At present, the two dominant designs in cancer classification are class prediction and class discovery, each is

used as a different study’s objective. When the study emphasises either the insight exploration of the known

genes or the risk prediction of metastasis activity (survival rate of cancer patients), based on the known

cancer classes, class prediction design is the only option (Khan et al., 2001; Dudoit et al., 2002; Cho et al.,

2003b; Lee and Lee, 2003; Bloom et al., 2004; Liu et al., 2004a,c; Lee et al., 2005). While the objective of

study is to discover the unknown cancer class from the existing cancer classes, the model construction is based

on class discovery paradigm (Golub et al., 1999; Ross et al., 2000). Both approaches are concentrating on

the improvement of classification accuracy rather than other issues. The class prediction approach develops

the predictive strength of the models based on the classification training accomplished with a sequence of

training samples associated with the target output for the training samples. Hence, it is also known as

supervised learning. While the class discovery approach develops the discovery ability of the models based

on the observation of the correlation between samples, that is, genes that are expressed in a similar manner

are grouped in similar clusters, while samples with a low similarity of genes are a distance away. Therefore,

it is known as unsupervised learning in classification literature. Table 2.5 presents a common taxonomy of

classification design with their prominent advantages and disadvantages.

Table 2.5: A common taxonomy of classification design.

Model objective Advantages Disadvantages Examples

Class prediction Robust
Simple

Over-fitting risk
Unable to generate new
knowledge
Curse of data dimensionality
and sparsity

WV; DT; SVM;
FDA; KNN; ANN

Class discovery Generate new knowledge
Less prone to over-fitting risk

Computationally intensive HC; K-means clus-
tering; SOM

2.2.3.1 Supervise learning

One of the earliest supervised learning methods in microarray classification is weighted voting (WV) classifier

proposed by Golub et al. (1999). The WV algorithm is a linear classifier based on the amount of weight
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carried by each vote in participating entities (i.e. genes). Each entity is assigned a weighted vote and the

magnitude of each vote is dependent on the entity value in the sample and the correlation of that entity’s

with the class distinction. The weighted vote of gene g is the production of the subtraction of the normalised

log gene value xg ,with the average mean log gene values of all classes bg and the ratio of mean and standard

deviation of the gene ag based on the measure of signal-to-noise (S2N) ratios. Thus, the formation of the

weighted vote of a gene can be expressed as WVg = ag(xg − bg). The WV algorithm has been commented

on, as computationally simple and ability to select genes, however, the downside of this algorithm is that it

is designed for binary classification with a lack of exploration on gene dependency.

Golub et al. (1999) applied WV classifier to categorise the new unknown samples of acute leukaemia cancer

based on the top-50 informative genes identified by S2N ratios. They observed that satisfactory classification

results were achieved with 29 out of 34 test samples being correctly classified. However, Dudoit et al. (2000)

commented that an incorrect variance calculation in S2N ratios decreased the efficacy of WV algorithm.

Dudoit et al. developed a univariate selection approach based on the ratio of mean and variance of the genes

for cancer classification.

The classification tree, also known as decision tree (DT), is another commonly used classifier in microarray

studies (Lidén et al., 2002; Li et al., 2004; Lee et al., 2005). A DT contains a set of internal nodes and

leaf nodes in which the internal nodes associated with splitting criterion (i.e. splitting features and split-

ting predicates of the features) and the leaf nodes represent individual classes (Lu and Han, 2003). The

construction of the tree involves two phases: growing phase and pruning phase. In growing phase, the tree

is constructed by splitting each feature and its predicates into individual internal nodes to learn a set of

general rules in class separability. Once the rules have been learned, pruning phase begins by pruning the

tree with an IG function to reduce the entropy caused by over-partitioning samples into leaf nodes and to

avoid an over-fitting problem. The claimed advantage of the classification tree is that it is easily understood

by the user.

Lidén et al. (2002) proposed three types of rule induction criteria to improve the performance of DT, namely

divide-and conquer (DAC), boosting and separate-and conquer (SAC) based on LOOCV procedure. DAC is a

variant of recursive partitioning technique that used IG to select branching features in generating hierarchical

rule sets on the tree, boosting is an ensemble method that used iteratively readjusts the weight distribution

of the training samples and SAC is the covering method that iteratively finds one rule that covers a subset of

the data rather than recursively partitioning the entire data set. They observed that a DT trained with the

boosting technique outperformed DAC and SAC approaches, however, there is no significant improvement

in binary classification comparing it to other classification methods, such as SVMs, clustering approach and

Bayesian approach using 128 genes. For multiclass classification, a boosting classification tree showed 100%
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classification accuracy based on about 20 rules regardless on the number of genes. They also observed that

the boosting approach works significantly better in a classification tree rather than decision stumps. This

observation has also been noted by Dudoit et al. (2002) and Lee et al. (2005) when they applied classification

and regression tree (CART) in binary and multiclass cancer classification.

Despite combining a DT with aggregation methods (i.e. boosting and boostrap), Statnikov et al. (2004)

combined the DT with SVMs for multiclass cancer categorisation. They observed that a sole classification

tree performs significantly worse than other supervised methods, such as SVMs, KNNs and ANNs, regardless

with or without the selection method. Li et al. (2004) also observed that the selection method downgraded

the performance of a DT, due to the tree being built by dynamically selecting the most informative features

from the data set and selection method, in fact, it removes features from the data set and some informative

features may be lost during the data removal process. They used the J48 tree algorithm that was implemented

in WEKA environment to discriminate multiclass tumour data.

Fisher’s discriminant analysis (FDA) is also widely used for microarray classification. FDA is a non-

parametric method, that finds an optimal projection matrix (gene subsets) which reshapes the data set

for maximum class separability using the ratio of between-class to within-class matrices (BSS/WSS) (Lu

and Han, 2003). Unlike linear discriminant analysis, FDA has the ability to discriminate multiclass data,

but, its predictive efficacy is dependent on the number of features in the data set and it ignores the correlation

between features (Dudoit et al., 2000).

Dudoit et al. (2000, 2002) compared discriminative ability of FDA with four other supervised methods,

namely KNN, linear discriminant analysis (LDA), DT trees and aggregating classifiers for binary and multi-

class scenarios. They observed that generalisability of FDA is dependent on gene dimension and sample size.

The performance of FDA was significantly improved with a smaller number of genes used for classification.

A similar pattern of discriminant methods and observations are also reported by Lee et al. (2005) when

they extended the comparison studies with more variations of classification methods, microarray data and

selection techniques.

Meanwhile, Cho et al. (2003b) utilised the kernel function to enhance the capability of FDA for multiclass

classification. They observed that the kernel-based FDA has better classification results in a multiclass

scenario than in a binary classification. They reported the minimum overall mean errors of 0.96% and 4.06%

based on 5-fold cross-validation (CV) procedure on multiclass and binary microarray data, respectively.

Naive Bayes (NB), is another supervised classifier that can, generally, achieve good classification perfor-

mance in most application areas and some bioinformatics areas, including bioassay classification and clinical

diagnosis. However, it is not a popular method to be implemented in microarray classification because it is

a univariate-based approach. A NB classifier is a statistical-based approach based on the elementary Bayes’
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Theorem with strong independence assumptions, i.e. all members (i.e. samples or genes in the context of

microarray data) in the data set are unrelated to each other. Given a C number of classes in the data set

and s is an observation (i.e. a sample or a gene) in the data set with a known probability density of the class

p(Sc). If the class prior probability p(c) is known, then the posterior probability P (c|s) of the observation

can be expressed as:

P (c|s) =
p(Sc)

p(S)
.
L

p(Sc)
. (2.1)

L is the predefined number of labelled observations (priori) used to measure the likelihood of the observation,

irrespective of their class labels. The main advantage of the NB classifier is due to its over-simplified assump-

tions which often work efficiently in classification problems, however, this simplicity is also the drawback of

the NB classifier when identifying correlated set of genes in the microarray data.

In microarray literature, the NB classifier is normally implemented for binary classification problems, rather

than for multiclass scenarios, or is used as the performance evaluator in logistic regression model (LRM).

Hwang et al. (2002) implemented the NB classifier to discriminate between two types of acute leukaemia

classes. Chu et al. (2005) used the Bayes’ Theorem to evaluate the significance level of the genes identified

by the Gaussian methods in three binary microarray data sets and Li and Yang (2002) used the Bayesian

information criterion (BIC) in LRM to determine the minimal number of genes to be needed for a discriminant

microarray analysis.

k-nearest neighbour (KNN), on the other hand, is a similarity-based approach based on the minimum distance

measure between the testing samples and the training samples (Lu and Han, 2003). For KNN, k number

of training samples (i.e. nearest neighbours) are used to label unknown samples according to the distance

measure. For instance, if k = 1, the test sample is simply assigned to the class of its nearest neighbour

(training sample), if k > 2, then the test sample is assigned to the nearest class with the minimum distance.

The distance metric can be any similarity measure statistics such as Pearson correlation, Euclidean distance,

Spearman correlation and many more. The common advantages of KNN are that it is computationally

simple, less prone to noise and bias, however, it is not scaleable and is similar to FDA, its performance is

reliant on the number of k points used in the classification process (Lu and Han, 2003).

Dudoit et al. (2000, 2002) performed a comparison study between KNN with four other supervised methods,

i.e. FDA, LDA, DT and aggregating classifiers based on binary and multiclass scenarios. They observed that

the classification performance of KNN is improved when the number of classes is not large and KNN performs

remarkably well compared to DT and aggregating methods, albeit, with a lack of transparency. Li et al.

(2004) also found that the KNN classifier outperforms DT in ensemble classification. They indicated that the

choice of feature selection methods will, in fact, affect the performance of KNNs in the multiclass scenarios.
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However, Golub et al. (1999) argued that the performance of classification methods could indeed be based

on the types of expression data when they applied KNN to discriminate genes that are uniformly high in

one class and uniformly low in the other, for binary cancer classification. Wang et al. (2006) observed that

the interaction between genes in microarray data were not explored by KNN based on a leukaemia cancer

classification conducted using the LOOCV procedure and a lymphoblastic origin sample misclassified into

myelogenous origin.

Meanwhile, Li et al. (2001a,b) applied GA to select informative genes for KNN for leukaemia cancer clas-

sification. They claimed that hybrid GA-KNN is superior to KNN, simply because the hybrid approach

implicitly assumes that genes are similarly expressed within each type of sample group, however, this could

be problematic when subtypes of cancer exist, resulting in the relevant genes not being uniformly expressed

in the group. Ooi and Tan (2003) also commented that the GA-KNN strategy might not be optimal for

multiclass scenarios due to the identified genes being based on the n top-ranked genes that were picked from

a finite number of gene predictor sets, resulting in little exploration on gene interactions which are believed to

be more complex for multiclass scenarios. Furthermore, the distance metrics used to determine the k neigh-

bours became less sensitive, as data dimensional increases and sample data might also be unclassifiable, if

no satisfactory majority vote was obtained from the k neighbours.

Artificial neural network (ANN) is the commonly used machine learning approach for clinical diagnosis and

it has recently received attention in the bioinformatics field. ANN is a non-parametric method that inter-

connects numerous artificial neurons (i.e. genes) and processes information using connectionist computation.

For ANN, all incoming signals are processed by neurons in the layer and the output signal is forwarded to

neurons in the next layer. The predictive strength of ANN can be accelerated by the parameter choices

including activation function, learning algorithm, momentum and bias on the gene selection. The common

example of supervised-based ANN is a multilayer perceptrons network that contains three layers of neurons,

using the backpropagation learning algorithm.

Bloom et al. (2004) applied a 3-layered ANN with backpropagation learning to classify multiclass sample

data based on the genes selected using H-test statistic, for two different array platforms, i.e. cDNA and

oligonucleotide. They reported a mean test accuracy of 83% and 88% based on a 95% confidence interval for

cDNA and oligonucleotide platforms, respectively and, a mean test accuracy of 85% in combining platforms.

Meanwhile, Ko et al. (2005) compared ANN with two other supervised methods, i.e. DT and KNN for a

multiclass scenario. They also reported that ANN outperforms DT and KNNs based on purity estimation

values for network structure of 61-10-21.

Despite using multiple layer networks, Khan et al. (2001) proposed a single-layered ANN for predicting

4-class of SRBCTs tumours based on 96 gene expression signatures selected by the PCA. They reported
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100% classification accuracy based on test data with no evidence of over-fitting. Due to the encouraging

results reported by Khan et al., their work has been extensively studied by other researchers (Wei et al.,

2004; Chen et al., 2007). Wei et al. used a 3-layered ANN with 10-3-1 structure to predict the survival rate

of neuroblastoma (NB) patients based on DNA clones selected by PCA, while Chen et al. adopted 40-3-4

structure to diagnose and classify SRBCT tumours using the genes selected based on multiplex RT-PCR

assays. Markowetz and Spang (2005), however, commented that perfect separation can be an artifact of high

dimension rather than an indication of a biological relationship of genes, in fact, it is a sign of over-fitting.

Keedwell and Narayanan (2003) also used a single-layered ANN for acute leukaemia and myeloma microarray

classification based on gene combinations selected by GA. Their work was further extended using only a

single-layered ANN to identify gene combinations (Narayanan et al., 2005). In the latter work, myeloma

data was pruned from the original 7129 genes to only 21 genes based on 3 network models. The first

two models were used to reduce the gene dimension, while the third model was used for classification. They

reported 98.1% overall accuracy based on test sample data using See5 tool. When data partitioning approach

was applied on the models, 29 genes were reported.

Liu et al. (2004a) examined generalisability of ensemble ANNs, based on three selection methods, which are

Wilcoxon ranksum, PCA and t-test, to improve predictive accuracy and robustness of ANNs. Three ANN

models, each accommodating different selection methods, were used to train the same set of training sample

data and the overall mean accuracy from these models was calculated. The bootstrap technique was used to

re-sample the data 100 times, resulting 300 ANN models for each data set. They claimed that the ensemble

ANN method performed better, or, is at least comparable, to bagging tree classification.

Schwarzer et al. (2000) discussed several important issues on the improper implementation of ANN which

might led to serious consequences in the classification results and they have reported some important common

mistakes that have been omitted in the reported results.

Support vector machine (SVM) is another machine learning technique that has recently received attention in

the bioinformatics field. It was originally introduced by Vapnik and his co-workers for data mining problems

(Lu and Han, 2003). SVMs adopt the structure risk minimisation principle to identify a hypothesis that

can guarantee the lowest probability of error (Lee et al., 2005). The underlying principle of SVM is to

map the features to a higher dimensional space using a linear function and to identify the maximum-margin

hyperplane, i.e. a linear line that can separate samples into two distinct classes. The common advantages of

SVM are that it explores gene interactions, scaleable to high dimensional and robust performance, however,

a significant drawback is that it is designed for binary classification. The suggested solutions to the problem

are either to breakdown the multiclass problem into several binary scenarios, or to iteratively performing

binary classification until all classes have been separated (Lu and Han, 2003). However, these suggestions are
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computationally intensive. To reduce the computational cost of SVMs, two weighting strategies are proposed

for multiclass problems, i.e. one-versus-all (OVA) and all-pairs (AP). The OVA approach builds k number

of linear SVMs corresponds to k number of classes in multiclass data and distinguishing one class at a time

from all the other classes, while the AP approach distinguishes two linear SVMs from the rest of the classes

at one time. Additionally, different kernels applied to different data sets can also improve the classification

performance of SVM (Cruz and Wishart, 2006).

Guyon et al. (2002) introduced RFE selection in SVM algorithm to find the optimal gene subset for binary

classification. They revealed that the classification results are significantly affected by types of selection

methods, rather than by classification methods, based on cross test results obtained with a WV classifier

and FDA classifier. However, Li et al. (2004) argued that the accuracy of classification is dependent on

the choice of the classification methods rather than on selection methods. They made their comment based

on the evaluation of eight different selection methods constructed using the RankGene algorithm and four

supervised classification methods on multiclass microarray data.

Peng et al. (2003) applied AP strategy in linear SVMs for each binary classification ramified from a multiclass

data set and these results are then combined to form the final result for a multiclass data set based on the gene

subsets derived from GA’s selection. They observed that the combination of GA and SVM bestows benefit

to microarray analysis, including avoiding over-fitting, no priori information on the data set is required and

robust to noise. Better performance on GA/AP-SVM is reported compared to KNN, HC and SVM trained

with a OVA strategy. Similar hybridisation of GA and AP-SVM also reported by Liu et al. (2005a) and

unlike Peng et al. who used RFE to further eliminate the non-predictive features in the GA-derived gene

set, Liu et al. used NSC to refine the GA-derived gene set.

Yeang et al. (2001) compared AP and OVA weighting strategies based on the multiclass classification. They

noticed that the performance of strategies is dependent on the number of genes defined in the classification

process. The AP approach outperforms the OVA approach when a fixed number of genes is applied, however,

the OVA approach achieves lower error rates than the AP approach in a LOOCV procedure when a random

number of genes is applied. In contrary, Li et al. (2004) commented that the performance of weighting strate-

gies appeared to be problem-dependent and they made their comment based on the experiments conducted

on eight multiclass microarray data.

Meanwhile, Shen and Tan (2006), attempted to improve the performance of SVMs using various selection

methods, such as BSS/WSS ratios, partial least squares (PLS) and PCA, however, the improvement is not

significant.

Instead of refining weighting strategies, some research focuses on the implementation of nonlinear kernel

functions on SVMs. For instance, Lee and Lee (2003) developed Gaussian-based kernel function on multiclass
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scenarios and presented promising results when the data sets were appropriately preprocessed with adequate

selection methods; Statnikov et al. (2004, 2005) used polynomial function to evaluate the performance of AP

and OVA strategies; and Mao et al. (2005) applied fuzzy-based kernel function in microarray classification.

Class prediction has been extensively studied in literature. For instance, Boulesteix et al. (2008) reviewed

various statistical aspects of supervised classifier evaluation and validation, such as accuracy measures,

error rate estimation procedures, selection methods, choice of classifiers and validation strategy. Kotsiantis

(2007) reviewed various supervised learning classification techniques that cover the major theoretical issues

and possible bias combinations of the techniques. Markowetz and Spang (2005) discussed four supervised

learning methods, i.e. likelihood-based methods, DTs, SVMs and regularised binary regression, based on

model selection and over-fitting perspectives. Meanwhile, Simon (2003) discussed the key factors to be

observed in developing diagnostic and prognostic prediction models based on microarray data and the pitfalls

to be aware of in reading reports of microarray-based studies. The statistical issues that arise from the use

of microarrays are addressed by Simon et al. (2003). Cruz and Wishart (2006) conducted a detailed review

of published studies employing machine learning methods for cancer prediction and prognosis, focusing on

the key aspects of the types of methods being used, the types of integrated training data, the kinds of

endpoint predictions being made, the types of cancers studied and the overall performance of the methods in

predicting cancer susceptibility. Table 2.6 presents a unified view of supervised learning methods reviewed

in this section.

2.2.3.2 Unsupervised learning

One of the earliest unsupervised learning methods in microarray studies is hierarchical clustering (HC).

HC organises data into a hierarchical tree structure according to the proximity matrix such as Manhattan

distance or Euclidean distance, and the result is depicted in a binary tree, known as a dendrogram (Xu

and Wunsch, 2005). The root node of the dendrogram represents the entire data set and each leaf node

is regarded as a data object (i.e sample) containing information of cluster formation and the correlation

between clusters. Two common strategies for constructing dendrograms are the agglomerative (bottom-up)

and the divisive (top-down) approaches (Jiang et al., 2004). For the agglomerative approach, the dendrogram

is overgrown in a massive structure and then pruned layer-by-layer by merging the two closest clusters at

each step, until a predefined number of clusters are obtained. The divisive approach, conversely, starts with

one cluster containing all data objects and at each step, a new cluster is created. The main advantage of

the HC algorithm is due to its ability to graphically represent the data set which provides a global view of

the distribution of data. However, it is not robust and is computationally intensive (Xu and Wunsch, 2005;

Jiang et al., 2004). Zhang et al. (2006) also commented that the HC algorithm is not as robust as the SVM,
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Table 2.6: A unified view of supervised learning methods. The * indicates the performance of classifier in dealing
with specific task and is range from * (represents poor performance) to *** (represent best performance)

Task WV DT SVM FDA KNN ANN

Strategy Vote weight-
ing

Entropy
function

Maximum-
margin

Maximum-
likelihood

Similar prox-
imity

Perceptron

Generalisability ** * *** ** ** ***

Missing value
handling

* ** ** * * *

Noise handling * ** ** * ** **

Model trans-
parency

** *** * ** * *

Multiclass han-
dling

* ** ** ** ** ***

Feature selec-
tion

distance ma-
trix

backward/
forward
search

weight vec-
tor

forward
search

distance ma-
trix

entropy
function

Genes interac-
tion

* ** *** * * ***

a supervised learning method, in producing an unbiased estimation of predictive power for new unknown

sample data based on the splice recognition problem.

Ross et al. (2000, 2004) and Alizadeh et al. (2000) used the HC algorithm in analysing the variation of gene

expression patterns for both binary and multiclass scenarios. For Ross et al. (2000), the HC algorithm is

used to group 60 cell lines of an anticancer drug screen (NCI60) with similar repertoires of expressed genes

and to group genes whose expression level varied among the cell lines in a similar manner. They conducted

the experiments twice using different gene subsets to ensure the robustness of the analysis results and the

proximity similarity of genes was computed using the Pearson correlation coefficient. Meanwhile, Alizadeh

et al. applied the HC algorithm for lymphoid malignancies clustering based on the basis of the similarity

in the pattern with which the expression varied over all samples. Ross et al. (2004), however, developed a

2-dimensional HC algorithm to discover a new sub-cluster of an acute myeloid leukaemia cancer.

K-means clustering is another unsupervised approach based on gene partition and centroid adjustment

principles. For K-means clustering, the cluster centroid value is iteratively adjusted each time when a gene

is introduced so that the distance between genes within a cluster can be minimised using a proximity matrix.

The K-means clustering algorithm commented on, as a fast algorithm converges with a small number of

iterations, however, this feature tends to lose out with high gene dimension and noisy data (Jiang et al.,

2004). Xu and Wunsch (2005) commented that the iteratively optimal cluster centroids on K-means cannot
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guarantee convergence to a global optimum, moreover, K-means clustering is sensitive to outliers and noisy

data. Even if a gene is located far away from the cluster centroid, it is still forced into a cluster and thus,

distorts the cluster shape (Xu and Wunsch, 2005).

The Kohonen’s self-organising map (SOM) is an ANN model based on unsupervised learning paradigm.

It is a single-layer mapping algorithm in which input and output neurons (i.e. genes) are organised in a

two-dimensional map (matrix). Each neuron is associated with a reference vector and each gene point in

the matrix is mapped to the neuron with the nearest reference vector (Jiang et al., 2004). The training

process of SOM commented on, is more robust than K-means in dealing with high noisy data, however, it

requires a predefined number of clusters and the grid structure of the neuron map (Jiang et al., 2004). In

addition, SOM may suffer from input space density misrepresentation in which low pattern density genes

may be ‘buried’ by high pattern density genes (Xu and Wunsch, 2005). In this case, SOM is not effective

because most of the interesting patterns that merge into only one or two clusters and cannot be identified

(Jiang et al., 2004).

Golub et al. (1999) applied binary SOM to automatically cluster acute leukaemia microarray data on the

basis of the 6817 gene expression patterns. They observed that SOM was effective, although not perfect, for

class discovery with 34 of 38 test samples correctly classified. Wang et al. (2003), however, used SOM to find

the optimal map neurons, that can represent the configuration of the input tumour data, and this optimal

map was used to classify tumour samples and identify informative genes using fuzzy C-means clustering, a

variant of K-means, and pair-wise based FDA.

Jiang et al. (2004) and Xu and Wunsch (2005) presented comprehensive literature on the clustering algo-

rithms. Jiang et al. compared three clustering categories in gene expression, i.e. gene-based, sample-based

and subspace clustering methods, as well as the problems pertinent to each clustering category. Xu and

Wunsch reviewed clustering approaches for data sets appearing in statistics, computer science and machine

learning.

Microarray classification has been extensively reviewed over the last decade. For instance, Mocellin and

Rossi (2007) presented the principles underlying the analysis of microarray data, such as cancer classification,

microarray data collection and normalisation, gene expression comparison and clustering algorithms. Valafar

(2002) conducted a survey on the techniques that have been used in mining microarray data, including

missing values imputation, selection approach and clustering method. Lu and Han (2003) presented a

comprehensive overview on cancer classification and selection methods, along with an assessment based on

aspects such as computation time, classification performance and the ability to reveal biologically meaningful

gene information. Kuo et al. (2004) also outlined the main challenges and critical considerations regarding the

construction of classification models in gene expression studies, such as modelling techniques and biological
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validation of results. Asyali et al. (2006) reviewed class prediction and class discovery that are applied to

gene expression data, along with the implications of the findings. Tarca et al. (2007) conducted a survey on

the supervised and unsupervised learning methods in the application to biology, along with the methods and

examples implemented in the open source data analysis and visualisation R language. Dupuy and Simon

(2007) discussed the dispute between microarray-based clinical research and published microarray studies

in which gene expression data is analysed in relation to cancer outcomes. They proposed guidelines for

statistical analysis and reporting based on the common discrepancies identified.

2.2.4 Feature Selection (FS)

A known challenge in microarray studies is to identify smaller sets of informative genes that are highly

associated with the pathogenesis condition of malignancy proliferation from high feature dimension of data.

Thus, FS techniques are normally expected in the preprocessing stage. FS is the process of finding a subset of

the original features of a data set, either individually correlated or combinatory correlated, and run on data

containing only these features, generates a classifier with the highest possible accuracy. Some FS methods

have the ability to remove redundant information from microarray data, thus, it is also known as feature

reduction in literature. Several claimed advantages of FS include (Saeys et al., 2007; Rocha et al., 2007):

• To provide a focus group of genes that are useful in either biological or classification way.

• To avoid the over-fitting risk and to improve the prediction accuracy of classifiers.

• To provide faster and cost-effective models.

• To reduce the complexity of the classification model.

Table 2.3 on page 32 presents the taxonomy of FS along with its advantages and disadvantages.

2.2.4.1 Filter selection

Filter selection measures the marginal relevance of the individual feature to the known class with standard

statistics criteria and is independent of the classification model used. Although the filter selection is simple

and efficient, however, it overlooks the relationships between features. Pruning these correlated features in

the preprocessing stage seem unimportant, when individually evaluated, but, are crucial for explaining the

problems when more than one of these features are taken into consideration.

The simple filter scheme is to compute a mean and a variance, or a standard deviation in the data. For

instance, Dudoit et al. (2000) proposed between-group/within-group (BSS/WSS) ratio based on mean and
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variance computation between selected features with the known class which is expressed as below:

BSS(j)

WSS(j)
=

∑
i

∑
k I(yi = k)(x̄kj − x̄j)2∑

i

∑
k I(yi = k)(xij − x̄kj)2

, (2.2)

where xij denotes value of feature j for sample i, x̄j indicates overall mean value of feature j across all

samples in the data set, x̄kj indicates average value of feature j for its class k and I is indicator function in

the ratio. Dudoit et al. (2002) commented that the use of a feature variance value in filtering features is more

accurate and efficient than using standard deviation of the feature. They made such comments based on the

comparison study with S2N ratios proposed by Golub et al. (1999). However, BSS/WSS is not scaleable to

high dimension and is sensitive to data magnitude and as a result, feature reduction and normalisation are

generally expected to preprocess the data. For instance, Dudoit et al. (2002); Lee and Lee (2003) preprocessed

acute leukaemia oligonucleotide data with steps involving thresholding, filtering, log-transformation and

normalisation based on a variance, to remove data redundancy and suppress value magnitude before the

implementation of BSS/WSS ratios. Meanwhile, Shen and Tan (2006) preprocessed GCM oligonucleotide

data and lymphoblastic leukaemia oligonucleotide data by computing a standard deviation in the data and

statistic approaches, such as PCA and PLS for feature reduction. Lin et al. (2006), however, attempted to

use BSS/WSS ratios to reduce the dimensionality space of genes for NCI60 oligonucleotide data and GCM

data which have been preprocessed by zero mean normalisation.

More complex filter selection methods include the use of statistics functions, including PCA and PLS for

redundancy reduction and feature extraction (Khan et al., 2001; Cho et al., 2003a; Liu et al., 2004a; Wei et al.,

2004; Tan et al., 2005; Shen and Tan, 2006), the use of information gain (IG) matrices to rank features (Cho

and Won, 2003), the use of proximity matrices, such as Euclidean distance, Pearson correlation, Spearman

correlation and Cosine correlation for feature extraction (Cho and Won, 2003, 2007), the use of t-test and

F-test in selecting important features (Inza et al., 2004; Liu et al., 2004a; Mao et al., 2005; Tan et al., 2007)

and many more. Amongst these methods, PCA is commonly applied to microarray data.

The principal component analysis (PCA) is a profoundly statistical model implemented in the chemoinfor-

matics field (Gasteiger, 2006; Brown, 2009) that finds a set of orthogonal principal components, i.e. features,

based on the eigenvector concept to describe the correlation of sample data in different independent variables

and is an effective approach for redundancy reduction without the loss of data characteristics. However, this

may be its drawback from a classification point of view because there is no guarantee that the principal com-

ponent representing the large variance in an independent variable would necessarily be the component most

strongly related to the dependent variable (Tan et al., 2005). Unlike PCA, the partial least squares (PLS)

maximises the sample covariance between the linear combination of dependent features and the orthogonal
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component of independent features (Tan et al., 2005), thus, the relationships between features are taken into

consideration in the pruning process.

2.2.4.2 Wrapper selection

A wrapper selection method conducts the selection process with an optimisation algorithm that searches the

space of possible feature subsets to find the best subsets of features based on the predictive error estimation

returned by a supervised classifier. A typical wrapper approach based on the hybrid GA/ANN is presented in

Figure 1.3a on page 11. The idea of wrapper selection is to “wrap” the classifier in an optimisation algorithm

that would make a feature subset from the current set of features. This feature subset will continue to grow

until the accuracy of the model was no longer more accurate (Kohavi and John, 1997). An objective function

is generally defined for wrapper selection that takes into consideration different criteria, such as the accuracy

of a classifier that is trained in the feature subset. The number of features to reward the model or the

predictive performance of the trained classifier is evaluated by using a separate set of unknown data samples.

Wrapper selection does not have the possible shortcomings of filter selection, however, wrapper selection

easily over-fits the data and is computationally intensive. In addition, wrapper selection is dependent on the

‘wrapped’ classifier, thus, there is no guarantee that an optimal feature subset for one classifier will be the

optimal for another classifier.

The evolutionary algorithm (EA) is commonly used selection method to “wrap” the classifier to find cor-

related gene subsets in microarray data. An EA algorithm normally involves two search processes, i.e.

exploration and exploitation. The former process conducts a global search (i.e. heuristic search) on data

space for possible regions of feature subsets and the latter process exploits the favourable feature subsets

from the region space in which the possible subsets of features are retained using an exhaustive search. The

examples of EA include genetic algorithm (GA), simulated annealing (SA) and genetic programming (GP).

EA has been studied in bioinformatics literature as an optimisation algorithm for efficient classification and

gene subset selection. Li et al. (2001a,b) used GAs to select an arbitrarily fixed set of 50 and 40 genes for colon

and lymphoma cancer classification, respectively, using a consensus KNN classification method. Meanwhile,

Deutsch (2003) developed a replication algorithm based on EA with a KNN classifier and better classification

accuracy and smaller gene subsets used in the classification were observed. A similar approach is also used

by Jirapech-Umpai and Aitken (2005) on acute leukaemia and NCI60 oligonucleotide data. They evaluated

the generalisability of a classifier based on separate test sets and a variation of the number of selected genes

for classification. Ooi and Tan (2003), on the other hand, used an EA with a maximum likelihood classifier

for multiclass scenarios and they defined the objective function based on the independent test error rate

returned by the classifier. Liu et al. (2005a) and Peng et al. (2003) also applied similar approaches as used
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by Ooi and Tan (2003), however, instead of using a maximum likelihood classifier, they used SVM as the

classifier. They used LOOCV procedure as an objective function. The validation of their work is based on a

single test sample for each data set. Tan et al. (2007) also used SVM as a classifier in their work, however,

instead of using LOOCV as objective function, they applied multiobjective functions in EA, i.e. to maximise

the classification accuracy of the feature subsets and to minimise the number of features selected, based on

multiple feature subsets produced by multiple feature selection methods. However, there may be a risk of

an over-fitting of their results due to an over-pruning of the data and the high complexity of the proposed

model.

In addition to conventional classification methods, perceptron-based classification is also proposed with

consensus of GA. Keedwell and Narayanan (2003) used a single-layered ANN as a classifier to discover small

combinations of genes which lead to the correct classification for acute leukaemia and myeloma data. Similar

ANN architecture is also used by Cho et al. (2003a) and Karzynski et al. (2003). Cho et al. defined the

objective function based on the prediction results returned by ANN with a 3-fold cross-validation procedure

and they evaluated the generalisability of the classifier with a separate blind test set and a variation of the

number of selected genes for classification. Meanwhile, Karzynski et al. used GA to find the population of

optimal solutions for ANN architecture in where the balance between samples and parameters to train is

optimal. Bevilacqua et al. (2006a) and Lin et al. (2006) proposed the use of error estimation returned by

the ANN classifier as the objective function in the classification of breast cancer metastasis recurrence and

multiple microarray data, respectively. Bevilacqua et al. (2006a) observed that GA/ANN hybrid model is a

robust algorithm and would only be affected by a very low variability of results due to the efficacy of GA to

focus its search on feature subsets and to avoid local minima entrapment.

2.2.4.3 Embedded selection

Embedded selection is the latter variant of wrapper selection in which the search procedure is built in and

is specific to a classification model. Unlike wrapper selection, embedded selection does not guarantee the

findings of correlated feature subsets, however, it is being far less computationally intensive than wrapper

selection.

The simple scheme of embedded selection is a univariate-based approach that selects features using a mean

and a standard deviation computation in the data, such as signal-to-noise (S2N) ratios developed by Golub

et al. (1999) for a WV classifier. Given gene g in class c, in order to classify gene g, the mean µ and the

standard deviation σ of gene g in class c are computed. [µ1(g), σ1(g)] and [µ2(g), σ2(g)] denotes the means

and the standard deviations of the log of expression levels of gene g for the samples in class 1 and class 2,
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respectively. The S2N can thus be expressed as:

S2N = P (g, c) = |µ1(g)− µ2(g)

σ1(g) + σ2(g)
|. (2.3)

For S2N ratios, large value indicates a strong correlation between gene expression and the distinction class,

while the sign of S2N being positive or negative corresponds to gene g being more highly expressed in class

1 or class 2, respectively. Golub et al. (1999) used S2N ratios to select a fixed set of 50 genes, 25 genes for

each known cancer class, in acute leukaemia data and they observed a satisfactory validation of the results

was achieved in a blind test.

S2N ratios are normally used as a comparison study with other embedded selection methods and supervised

classification methods. Takahashi et al. (2005) compared the number of identified marker genes by S2N

ratios with projective adaptive resonance theory (PART) for acute leukaemia data and they observed that a

total of 10 informative genes is sufficient for classification rather than using 50 genes for class discrimination.

Dudoit et al. (2002) compared the statistics criteria of S2N with BSS/WSS ratios and they concluded that

the use of the deviation computation is unstable compared to the use of variance computation.

Recursive feature elimination (RFE) is another embedded selection method that assists in improving the

classification accuracy of SVMs as proposed by Guyon et al. (2002). RFE was inspired by backward feature

elimination in which the removal of multiple irrelevant features by iterating three steps: train SVM, rank

features and removes the feature with the smallest rank, each time only one least-fitted feature is removed.

RFE is a univariate-based approach that finds an individual feature using the ranking criterion of optimal

brain damage (OBD) algorithm. The OBD algorithm approximates the changes in cost function δJ(i) by

expanding cost function J in the hyperplane. The δJ(i) can thus be expressed as follow:

δJ(i) =
∂J

∂wi
δwi +

∂2J

∂w2
i

(δwi)
2, (2.4)

where wi is the weight vector for feature i, J = |w|2/2 for linear SVM computation and the weight vector

can be computed with the following expression:

w =

Ns∑
i=1

αiyixi, (2.5)

where Ns is the number of support vectors which are defined with 0 < αi ≤ C, C is the penalty parameter

for the error xi and yi are data instances in a d-dimensional Euclidean space. For linear SVM, the margin

width can be set to 2/||w||. At the optimum of J , the first order can be neglected and the second order
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becomes ∂J(i) = (∂wi)
2. As removing the feature i, means ∂wi = wi, the second order w2

i is taken as the

ranking criterion. By iterating the processes of training SVM, adjusting cost function and removing the

smallest weight vector, a smaller set of features with higher weight vectors is yielded.

Guyon et al. (2002) used RFE to find a small subset of genes for acute leukaemia and colon data. They

reported only 2 genes are required for acute leukaemia classification without a validation mechanism, however,

a total of 64 genes are necessary for the baseline method to get the best result with a LOOCV procedure.

For colon data, they identified 4 marker genes. Shen and Tan (2006) applied RFE to optimise multiclass

SVMs. The RFE is used to execute each SVM classifier independently to obtain the best performance and

the smallest gene subsets. A 3-fold cross-validation is then applied to validate the fitness of the gene subset

for each classifier, so that a set of base classifiers with different gene subsets can be constructed for multiclass

classification tasks.

Forward selection, also known as regression selection, is commonly embedded in linear discriminant methods

and DT. Contrary to RFE selection, forward selection selects one feature at each step, this gives the best

prediction accuracy for FDA and DT classifiers in combination with the previously selected features. Forward

selection for FDA is proceeded as follows (Park et al., 2007):

1. After k features are selected, perform the steps (a) - (c) for the remaining candidate features:

(a) Add one feature to the set of k features already selected.

(b) Perform FDA for the k + 1 features and project data samples.

(c) Measure prediction accuracy in the projected space.

2. Find the k + 1th best feature by choosing the feature which gives the highest prediction accuracy.

3. Repeat the processes to produce gene ranking forwards.

Although forward search is embedded in an FDA classification model, an independent filter selection method

is always applied to an FDA model for better classification. Dudoit et al. (2000, 2002) applied BSS/WSS

ratios to find a smaller set of gene subsets from the data that had been pruned for microarray cancer

classification. Similar approaches were also reported by Lee et al. (2005) for classification in multiclass

scenarios. Meanwhile, Park et al. (2007) used forward selection to identify a number of optimal genes to be

selected for acute leukaemia microarray classification based on different splitting to the training and test sets,

and LOOCV procedure. They observed that it is difficult to determine the number of optimal genes with

LOOCV validation due to the potentiality of over-fitting risk in the training process and different splitting

of the data also gave a different number of optimal genes. They also compared consistency in gene ranking

of forward selection with RFE selection in SVMs and S2N ratios in WV classifier. Based on the top 100
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selected genes between different selection methods, they found that forward selection has less than 10% of

common genes among the genes selected by the other two methods.

Nearest shrunken centroid (NSC) was proposed by Tibshirani et al. (2002) for prediction analysis of microar-

rays (PAM) classifier to identify minimal subsets of genes on SRBCT tumour data. NSC shrinks the class

centroids for each gene toward overall centroids for each gene with an absolute value ∆ after standardising

by the within-class standard deviation for each gene. The NSC value is defined as the following equation.

NSC = sign(dik)(|dik| −∆)+, (2.6)

where dik is a t-statistic for gene i, comparing class k to the overall centroid and each dik is reduced by an

amount ∆ in threshold. + means positive part of the t-statistic (if t > 0, then t+ = t, else t+ = 0). To

compute dik,

dik =
x̄ik − x̄i

mk.(si + s0)
, (2.7)

where x̄ik is centroid for gene i in class k, x̄i is overall centroids for gene i, si is the pooled within-class

standard deviation for gene i, s0 is a positive constant value and mk is defined as follows:

mk =

√
1

nk
+

1

n
, (2.8)

where nk is sample number for class k and n is all sample number.

Tibshirani et al. (2002) tested different shrinkage parameters in NSC with 10-fold cross-validation and

identified 43 and 21 informative genes based on shrinkage parameters ∆ = 4.34 and ∆ = 4.06 for SRBCTs

and acute leukaemia microarray data, respectively. A high consistency on the selected genes compared to

the original study (Khan et al., 2001) was also reported for SRBCTs data. Dabney (2005) commented that

NSC computation is wrapped with layers of complexity which can be simplified. He criticised the insertion

of ‘fudge factor’ to each t-statistic’s denominator instead of simple t-statistics. A further level of complexity

is added to shrink the class centroids toward their overall mean which is not necessary for gene ranking.

He presented an alternative gene ranking scheme, namely ClaNC, based on the principle of NSC without a

shrinkage or fudge factor component and observed that ClaNC is much simpler and has substantially lower

error rates than NSC.

Feature selection/reduction is a vast topic by itself and has been extensively studied in literature. Saeys

et al. (2007) reviewed the usage of feature selection approaches in existing bioinformatics domains, including

sequence analysis, microarray analysis and mass spectra analysis, as well as upcoming domains such as single
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nucleotide polymorphism (SNP) analysis. Meanwhile, Guyon and Elisseeff (2003) presented a wide range

of aspects discerning variable and feature selection in microarray analysis. Park et al. (2007) evaluated

the consistency of three embedded supervised approaches, namely S2N in WV algorithm, RFE in SVM and

forward selection in FDA, in gene ranking under the changes of training samples or different selection criteria.

They concluded that the performance of selection methods are dependent on the number of available samples

and selection criteria, and this data dependency has posed a dilemma between the necessity and reliability of

feature selection in microarray studies. This findings also been noted by Jeffery et al. (2006) when different

sizes of samples and features were tested in multiple binary microarray classification. Meanwhile, Osareh and

Shadgar (2008) commented that the selection methods, especially the filter selection, is strongly dependent

on the size of the selected features rather than the choice of the selection method itself. To alleviate the

data sparsity problem, Saeys et al. (2007) suggested two alternatives which could enhance the robustness

of the finally selected gene subsets: (1) the external evaluation on the selected genes at each stage of the

training process and (2) the use of ensemble selection approaches. Asyali et al. (2006), however, proposed

the use of feature extraction to reduce the gene dimension first, before the application of selection approach.

However, these alternatives may yield an intensive computational cost and the identification of correlated

genes is purely dependent on the choice of selection approaches in ensemble.

Inza et al. (2004), on the other hand, compared six different filter criteria, namely Shannon-entropy, Eu-

clidean distance, Kolmogorov-dependence, Kullback-Leibler, P-metric and t-score for discrete and continuous

data with a sequential forward selection procedure which is a variant of the hill-climbing wrapper search in

colon and leukaemia studies. They observed that the application of a gene selection approach leads to con-

siderably better classification accuracy results in comparison to the non-gene selection approach, moreover,

several common genes have been found in both filter and wrapper approaches which may lead to biological

interpretation, albeit, that further investigation is required. Osareh and Shadgar (2008) also observed a

significant improved classification performance in a supervised classification method with the application of

a gene selection approach. They made such comments based on five supervised classifiers, i.e. SVMs, KNNs,

NB, ANNs and DT; in four filter selection methods, i.e. t-statistics, IG, Relief Algorithm (RA) and PCA.

Asyali et al. (2006) commented that there is no clear distinction between feature selection and feature extrac-

tion in bioinformatics literature as in pattern recognition literature. They argued that PCA, FDA, SOM and

multidimensional scaling are all examples of feature extraction algorithms which have been miscategorised

as feature selection or classification methods and this can lead to a poor diagnostics test and biomarker de-

velopment due to feature extraction algorithms using metagenes (i.e. new genes from the linear combination

of some particular genes) instead of the existing genes in the data. However, their argument has not receive

wide attention from the bioinformatics field. This may be due to the following reasons:
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• The output provided by feature extraction is not so biologically different from feature selection. Thus,

the differentiation between these approaches is not important.

• The bioinformatics researchers might not be aware of the difference between feature extraction and

feature selection as both methods are commonly used to solve the dimensionality problem in the field.

For instance, PCA has proven its usefulness in identifying gene expression signatures for diagnosing

SRBCTs tumour (Khan et al., 2001), predicting the survival of neuroblastoma patients (Wei et al.,

2004) and differentiating different groups of primary lung tumours (Wang et al., 2006).

To conclude, majority of the bioinformatics literature is favourable on the filter selection approach. This is

mainly because such approach has been profoundly used in biology experiments and has been scientifically

proven by mathematics scientists on its efficiency in spotting the significance difference between individual

features in the data. With the increased understanding in molecular biology, many unknown areas in the

past have been discovered.

These areas include the gene-gene interactions (i.e. gene regulatory network) in the microarray data, the

gene-gene interactions in different microarray platforms (i.e. cDNA and oligonucleotide), the gene-peptide

interactions (i.e. the association between genes and its protein peptides) and the peptide interactions within

a protein. As a result, the univariate filter selection became obsolete, as it was unable to explore the

interaction between features within the data. The multivariate selection, such as wrapper selection, has

become the primary research in the bioinformatics field. Even so, the univariate filter selection method is

generally expected as a comparison method to the multivariate selection.

2.2.5 Computing Challenges

The advance of computing technology in cancer classification has created a new era for genetic analysis in

the bioinformatics field. However, it also poses some challenges including:

• The lack of understanding of microarray data resulting in an ambiguity of the objectives of the study.

Most existing studies have been misconceived by the usage of a classification method. Microarray

investigation has been biased towards discovery-based research rather than hypothesis-driven research

(Dupuy and Simon, 2007) due to microarray data containing complex interactions between the corre-

lated genes underlying certain biological pathways. Genes with high expression levels in microarrays do

not always underly the biological causes, however, its correlated genes with moderate expression levels

trigger the problems (Markowetz and Spang, 2005). Thus, hypothesis-driven research based optimal

feature sets for classification does not imply that this feature set is highly relevant to the problem

(Kohavi and John, 1997), thus flaws in the results occur.
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• The risk of over-fitting and biased under-estimates of the error rate due to the misuse of a validation

mechanism and resubstitution estimation for classification (Simon, 2003; Simon et al., 2003; Markowetz

and Spang, 2005; Dupuy and Simon, 2007). Microarray data has a high gene dimension and small sam-

ple size, thus, n-fold cross-validation and sample-splitting procedures are not appropriate for model

construction and evaluation. Additionally, the construction of a classification model based on genes

selected using all samples in the data set and with no separate set of sample data for validation pur-

pose could lead to an overly optimistic and inflated prediction accuracy. This phenomena is known as

resubstitution estimation, a common error occurred in classification process. Moreover, some studies

presented a dual-validation procedure in which the classifier is validated with a cross-validation proce-

dure and “additional independent samples”, have brought more confusion than clarity to the results

(Dupuy and Simon, 2007).

• The lack of supporting evidence in the declaration of new prediction models. Many prominent studies

made claims for gene expression classifiers and for new classification algorithms based on the invalid

result findings from improper cross-validation (Ambroise and McLachlan, 2002; Simon, 2003; Simon

et al., 2003), an overly complication of the hybridisation of multiple filter selection approaches on two

distinct acute leukaemia specimens by Sethi et al. (2009), selection bias on the selected genes based

on the entire data sets by Osareh and Shadgar (2008), and ambiguous validation approach by Chetty

and Chetty (2009) in classifying multiclass microarray data sets. A feasible solution to the problem is

to conduct a comparative study with other classification algorithms using the same data set and the

same validation mechanisms (Simon et al., 2003).

• The unrealisation of the influence of the model complexity to the prediction results which result in

model over-fitting (Markowetz and Spang, 2005). As Simon (2003) stated: “Complex methods with

large number of parameters often fit the data used to develop the model well, but provide inaccurate

predictions for independent data”. The large parameters in complex models allow them to fit any kind

of problem, but simultaneously, redundant parameters yield confusion in training the classifiers due

to the fact that the classifiers are statistically programmed to learn all parameters in the algorithm

without knowing the usage of the parameters in the study.

• The unrealisation of the effects of data preprocessing in the findings of the relevant information of the

problems. Oligonucleotide microarray data are generally high expression magnitude and most genes are

suppressed (i.e. negative expression levels), thus, data preprocessing is generally expected to provide

a higher prediction accuracy of classifier. As a result, the ‘true’ cancer markers are ‘buried’ by other

higher gene expressions and are omitted from classification.
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2.3 Summary

Over the past decades, vast developments in the medical field, particularly, in molecular diagnosis. The

creation of microarrays to examine genome-wide expression data has provided a global view on the fluc-

tuations of gene expression levels in response to either the physiological alterations or the manipulations

of transcriptional regulators of living systems. Such development provides insight into information of the

interaction of biological behaviour for both normal and diseased tissues which are ultimately important for

the design of an effective treatment therapy for patients.

This chapter presents the relevant literature covering both the biology and the computing perspectives on

microarray studies. The related literature has been reviewed and shows that the research area of microarray

production and marker identification is still immature, as a result, technical aspects pertaining to these two

domains have been exposed. Comparisons on capabilities and limitations for microarray design, selection

techniques, classification methods and validation mechanism are shown in Tables 2.2 - 2.4. The challenges

pertaining to biology and computing communities are also discussed in Sections 2.1.6 and 2.2.5. Four major

points from the literature are summarised as follows:

Gene expression measurements. The variation in gene expression measurements is inevitable due to a

lack of control in microarray production (see Section 2.1.6). Care in every phase of microarray production,

from sample preparation to image analysis, can minimise the impact of these errors but does not completely

prevent them. Thus, errors are generally expected in the finished microarrays.

cDNA microarray handling. The low production cost on cDNA microarrays has led to the inconsistency

of microarray handling in individual research laboratories due to different laboratories adopting different

approaches in conducting microarray experiments (see Section 2.1.6).

Computational Analysis on microarray data. Most existing studies have an ill-conceived hypothesis

in microarray classification by treating it as an ordinary data set (see bullet points 1-4 in Section 2.2.5).

Microarray data is distinct from any clinical correlative studies and statistically-based classification studies

in which a large number of samples are analysed with respect to a limited number of features. Therefore,

attention to the choice of computing methods and the hybridisation of selection techniques, classification

methods and validation mechanism are advisable to minimise the over-fitting problem.

Data Preprocessing. Data preprocessing on oligonucleotide microarray data may result in the suppression

and exclusion of the true cancer markers from the marker identification and the classification process (see

Section 2.2.1 and bullet point 5 in Section 2.2.5).

This thesis describes an intelligent gene extraction method using hybrid GAs and ANNs to efficiently extract
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differentially expressed genes for a specific cancer pathology. Chapter 3 presents the methodology used for

constructing a feature extraction model for this thesis.



Chapter 3

Experimental Methodology

Chapter 1 described the problems pertaining to microarray analysis using a computational algorithm and our

approach to solving them. Related literature on the production of microarrays and the computing methods is

reviewed in Chapter 2, along with the challenges posed to both the biology and the computing communities.

In this chapter, a feature extraction model is designed using machine learning methods to overcome the

computational problems addressed in Section 1.2. The existing GA/ANN hybrid models emphasise effective

classification and overlook the level of complexity of feature extraction and the influence of data preprocessing

of the classification results. The microarray data, specifically the oligonucleotide data, will generally require

data preprocessing techniques, such as to scale down the magnitude of the feature values and to convert

the negative values into positive values, before the computing analysis takes place. Thus, inevitable errors

in gene variability results from such techniques occur. Our approach tackles the problem yielded by the

normalisation process in the data preprocessing stage. The novelty of our approach is its simplicity, as it

follows the Ockham’s Razor principle, which can avoid the risk of gene variability errors that yielded by

data preprocessing techniques that may alter the quality of the data to be analysed by a computing analysis

model. Our approach is referred to the overview as illustrated in Figure 1.3b on page 11.

This chapter contains five sections. Section 3.1 describes the acquisition of empirical data to be used in

supporting the theme of this thesis. Section 3.2 discusses the issues concerning the design and building of

the feature extraction model, taking into consideration the hybridisation of GAs and ANNs techniques, the

model simplicity and the adequacy of the parameters in deriving satisfactory results. Section 3.3 presents

the genomic analysis tool, namely GenePattern, which is used to visualise the gene findings of the model.

Section 3.4 presents the validation mechanism via the NCBI Genbank and the SOURCE search system,

which is used to validate the gene findings of the model. Lastly, Section 3.5 provides a summary of the

chapter and to what follows next in the thesis.

57
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3.1 Empirical Data Acquisition

The bloom of the Internet in the 1990s has produced a fully developed bioinformatics field with a massive

cyber-space to store microarray data and allow microarray integration from various sources to improve its

quality. The aim of this thesis is to formulate, from the identified computing-related problems stated in

Section 1.2 on page 7, an innovative feature extraction model, namely Genetic Algorithm-Neural Network

(GANN), for extracting informative and relevant features using GAs and ANNs. Two benchmark microarray

data sets, namely acute leukaemia (ALL/AML) and small round blue cell tumours (SRBCTs), were obtained

from its original public repositories and have been used to examine our model. Due to the different data

format in microarray data set than the ordinary data set as showed in Figure 1.1 on page 4, a specially

written C++ program is used to transpose the microarray data sets. Two designed synthetic data sets

characterised with high feature dimension and small sample sizes in response to the research goal of this

thesis, C++ programming was used. Furthermore, two bioassay data sets were obtained from its original

source to evaluate the generalisation ability and the robustness of our model to handle large, imbalanced

and different data representation data sets.

The summary of the microarray data sets, the synthetic data sets and the bioassay data sets to be used in

supporting this thesis are presented in Table 3.1. Figures 3.1-3.5 present data distributions for each data

set based on the multidimensional scaling (MDS) in two-dimensional R plots. The screen shot to construct

a two-dimensional plot on the R environment is presented in Figure 4.3 on page 97. To avoid any form of

confusion on both the biology and computing fields, the original sample names or descriptions in the data

sets were used in this thesis.

3.1.1 Microarray Data Sets

3.1.1.1 Acute leukaemia (ALL/AML)

The acute leukaemia (ALL/AML) microarray data is a 2-class high-density oligonucleotide data set that was

originally presented by Golub et al. (1999) to evaluate the predictive accuracy of a weighted voting (WV)

classifier based on the marker genes selected using the S2N ratio. This data set contains 72 samples, collected

from patients, both adults and children, and were sourced from peripheral blood specimens and bone marrow

samples, distributed into acute lymphoblastic leukaemia (ALL) and acute myelogeneous leukaemia (AML)

classes. Amongst 72 samples, 47 samples were associated with ALL tumour and the remaining 25 samples

in AML. All samples were prepared using Affymetrix technology and contained 7129 probes for 6817 human

genes.

The ALL/AML data set is available online from the Broad Institute that are in partnership with Harvard
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Table 3.1: The summary of the experimental data sets.

Data set Description Objective

Microarray Data

Acute
leukaemia
(ALL/AML)

2 classes, i.e. ALL and AML. A total of 72
samples in which 47 samples are expressed in
ALL class and the remaining 25 in AML. Each
sample is associated with 7129 genes.

To identify relevant informative genes
underlying the pathogenesis of acute
leukaemia tumours.

Small round
blue cell tu-
mours (SR-
BCTs)

4 classes, i.e. EWS, BL, NB and RMS. A to-
tal of 83 samples in which 29 samples are ex-
pressed in EWS class, 11 in BL, 18 in NB and
the remaining 25 in RMS. Each sample is as-
sociated with 2308 genes.

To identify relevant informative genes
underlying the pathogenesis of 4 types
of small round blue cell tumours.

Synthesized Data

Synthetic
data set 1

2 classes, i.e. Class 1 and Class 2. A total of
100 samples equally distributed in each class.
Each sample is associated with 10000 features.

To determine the minimum parameter
setting of the model.

Synthetic
data set 2

3 classes, i.e. Class 1, Class 2 and Class 3. A
total of 67 samples is distributed with 20 sam-
ples in Class 1, 30 in Class 2 and the remaining
17 in Class 3. Each sample is associated with
5000 features.

To simulate a real-world data set that
contains a complex level of feature in-
teractions, high dimension of noisy data
and inequality distribution of samples
size for each classes in multiclass sce-
nario.

Bioassay Data

AID362 2 classes, i.e. active and inactive. A total
of 4279 compounds, i.e. 60 active compounds
and 4219 inactive compounds, and each com-
pound is associated with 144 attributes (1.4%
minority class).

To identify active compounds for
Formylpeptide Receptor Ligand Bind-
ing assay

AID688 2 classes, i.e. active and inactive. A total of
27189 compounds, i.e. 248 active compounds
and 26941 inactive compounds, and each com-
pound is associated with 153 attributes (0.91%
minority class).

To identify active compounds for Yeast
eIF2B assay.

University and its affiliated hospitals, the Massachusetts Institute of Technology and the Whitehead Institute

for Biomedical Research. The data set is free to download from the Broad Institute website (ALL/AML

oligonucleotide microarray data, 2007). The online source contains 7129 genes including 312 expressed

sequence tags (ESTs) in which 59 are control tags.

Figure 3.1 presents the distribution of samples on 2 distinct leukaemia classes. From the plot, 25 AML

samples are scattered distantly with a few samples overlapping in the ALL class. Forty-seven ALL samples
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have a rather distinct cluster except that a few samples are distance away from the cluster. The reason for

the spread of ALL samples may be due to the fact that there are 2 different lineages of ALL tumours in

the collected samples, i.e. T-cell and B-cell, which may have similar symptoms but have a distinct genetic

alteration, as is showed in Figure 3.1. Both T- and B-cells are two types of lymphocytes (i.e. white blood

cells) which cause lymphoblastic leukaemia. B-cells make antibodies and T-cells make other infection-fighting

substances. Due to no distinguishing of T- and B-cell ALL samples in the downloaded data set, and to avoid

sample mislabelling, all ALL-related samples are grouped under a generic name, i.e. ALL, despite the genetic

differentiation. Even so, the data set is fairly linearly separated.

(a) The description of 72 samples in the ALL/AML data set. There are 25 AML samples and 47 ALL samples
(19 were B-cell ALLs, 8 were T-cell ALLs and 20 unspecified).

(b) A two-dimensional plot on the sample distribution in the
ALL/AML data set. The coordinates x and y reflect the dis-
tance (dissimilarities/similarities) of the samples using the MDS
function in R Project. The ALL class has a rather distinct clus-
ter compared to the AML class and only a few ALL samples are
distance away from the cluster. There are only few overlapped
samples from both classes.

Figure 3.1: The acute leukaemia (ALL/AML) microarray data.

The ALL/AML data set has been commonly used in examining the prediction accuracy of classification

methods and it is, generally, altered in some way to facilitate the classification process, for instance, data

normalisation is generally expected to remove any incompetent information for better classification results.
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Table C.1 in Appendix C shows some of the related works in the ALL/AML data set. Meanwhile, some

studies reduced the number of genes to be analysed in the classification process (Dudoit et al., 2000; Lee

and Lee, 2003; Mao et al., 2005). As a result, different conclusions can be drawn from these studies as the

relevant marker genes may be removed at the pruning stage. Culhane et al. (2002) further differentiated

ALL samples according to T-cell and B-cell linkages, and outlined the list of the distinct set of genes for each

linkage class. It is a good intention to provide an insight into the information for these linkages, provided

that there are sufficient samples to draw a firm conclusion. However, it is not feasible in this data set as

only 8 out of 47 ALL samples were labelled as T-cell ALL, while the remaining are labelled as generic ALL.

Due to the rapid development of microarray technology, some gene annotations are no longer supported by

the NCBI Genbank. Therefore, to avoid any sort of confusion, the original annotation will be displayed in

our findings and will be cross-referenced with the SOURCE search system and the NCBI Genbank.

3.1.1.2 Small round blue cell tumours (SRBCTs)

The SRBCTs cDNA microarray data was originally presented by Khan et al. (2001), with the intention of

identifying marker genes that distinguish 4 types of round cell tumours of childhood which often masquerade

as each other using ANN classification models in conjunction with the PCA. This data set contains 88

samples, each associated with 6567 probes that were filtered to 2308 genes. The 4 types of tumours are

Ewing’s sarcoma (EWS), rhabdomyosarcoma (RMS), neuroblastoma (NB) and Burkitt lymphoma (BL) which

are collected from two different biological sources, i.e. cell lines and tissue samples, that were prepared

according to standard NHGRI protocol. Amongst 88 samples, 29 samples were expressed in the EWS class,

25 in RMS, 18 in NB, 11 in BL and the remaining 5 samples were blind tests.

The SRBCTs data set is available online and is free to download from the NHGRI Institute website (SRBCTs

cDNA microarray data, 2007). Due to the high dimension of redundant genes expressed during transcription

process, Khan et al. had reduced the number of genes from the initial 6567 genes to 2308 genes using filtering

technique. Therefore, the online version contains only 2308 genes with 83 SRBCTs-related samples and the

5 blind test samples were not published online.

Figure 3.2 shows the distribution of 83 SRBCTs samples on four known classes in the data set. The SRBCTs

plot is much more complex than the ALL/AML data set as it involves multiple tumours which often react

to similar therapies. From the plot, EWS and RMS classes have a lot of shared features, most probably

because both EWS and RMS sarcomas are connective tissue-related cancers, that cause the proliferation of

mesoderm and they can be treated with similar prescribed drugs. The BL class, meanwhile, has a distinct

cluster rather than other classes, probably as it was collected from lymphocyte cells. RMS class has the

widest spread of the samples due to there being 2 subgroups of RMS tumours in the collected samples, i.e.
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embryonal and alveolar, which have similar phenotypical symptoms but with a distinctive genetic alteration.

The plot also showed that both the sarcoma-related samples and NB samples were scattered distantly. This

might be due to these samples were collected from different biological sources. Unlike the other, BL samples

were all collected from cell lines. Some related works on the data set is presented in Table C.2 in Appendix

C.

(a) The description of 83 samples in the SRBCTs data set. There are 11 BL cell lines samples, 29 EWS samples (16
were tissue samples, 11 were cell lines and 2 unspecified), 18 NB samples (14 were cell lines and 4 were tissue samples)
and 25 RMS samples (10 were cell lines and 15 were tissue samples).

(b) A two-dimensional plot on the sample distribution in the SR-
BCTs data set. The coordinates x and y reflect the distance (dis-
similarities/similarities) between samples using the MDS function
in R Project. The BL class has a distinct cluster compared to
the other classes. The RMS class has the widest spread of the
samples, as well as the NB class. The EWS and RMS classes have
a lot of common features as both EWS and RMS are connective
tissue-related cancers.

Figure 3.2: The small round blue cell tumours (SRBCTs) microarray data.

3.1.2 Synthetic Data Sets

To evaluate the performance of GANN and to ensure the desired set of features to be identified, two synthetic

data sets were created using the C++ programming to assess the integrity of GANN in performing a task.

Thirty features were predefined on each data set. All feature values excepting the predefined features, were

standardised with zero mean (µ = 0) and unit standard deviation (δ = 1). The 30 predefined features on
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each data set were assigned with different µ values, ranging from 0.5 - 2.0.

3.1.2.1 Synthetic data set 1

The synthetic data set 1 is a 2-class data set that contains 100 samples equally distributed in each class.

For the synthetic data set 1, each sample is associated with 10000 features. Amongst the 30 predefined

features, indexed from 1-15 and 5001-5015 were standardised with the mean value of 2 (µ = 2.0). Similar

to the ALL/AML data set, the synthetic data set 1 can be linearly separated and does not contain complex

feature interactions. Figure 3.3 presents the sample distribution of the synthetic data set 1. This data set

is designed to simulate the gene interactivity pattern of ALL/AML data set and is used to determinate the

minimal parameter setting of our model.

Figure 3.3: A two-dimensional plot on the sample distribution in the synthetic data set 1. The coordinates x
and y indicate the distance (dissimilarities/similarities) between samples using the MDS function in R Project.

3.1.2.2 Synthetic data set 2

The synthetic data set 2, as plotted in Figure 3.4, contains 67 samples distributed into 3 distinct classes,

with 20 samples for class 1, 30 samples for class 2 and the remaining 17 samples for class 3. This data

set is designed to simulate the complex feature interactions in the multiclass scenario that contains a high

dimension of irrelevant information and inequality distribution of sample patterns available for each class.

For the synthetic data set 2, each sample contained 5000 features. Amongst the 30 predefined features,

indexed from 1-10 were standardised with the mean value of 0.5 (µ = 0.5) and the remaining 20 features,

indexed from 11-30 were standardised with µ = 2. Similar to the SRBCTs data set, this data set has a
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complex level of feature relationships and there are no clearly distinct class clusters among these classes.

Class 1 shared features from the remaining 2 classes, while Class 2 has a widest spread of sample cluster

and, some of the samples overlap with Class 3.

Figure 3.4: A two-dimensional plot on the sample distribution in the synthetic data set 2. The coordinates x
and y indicate the distance (dissimilarities/similarities) between samples using the MDS function in R Project.

3.1.3 Bioassay Data Sets

Bioassay, i.e. biological assay, is a scientific procedure for the determination of the concentration of a par-

ticular substance of a mixture. It is designed for chemoinformatics field and is essential in the development

of new pharmaceutical drugs as it estimates the effect of a substance on living organisms. Unlike the bioin-

formatics field that focuses on the sequence of DNA data (i.e. genes expression), the chemoinformatics field

studies the chemical structure of small molecules (i.e. chemical compounds) (Gasteiger, 2006; Brown, 2009).

A microarray data normally involves multiple ‘targets’ (i.e. growth factor receptors, kinase, oncogenes) ap-

plied to a ‘subject’ (i.e. colon cancer, diabetes), a typical bioassay involves only one target (i.e. an ingredient

in a pharmaceutical drug, a substance of a vitamin) in each subject (i.e. active screening drug compounds

for anti-epileptic activity, effects of sodium phosphates substance in the betnovate cream). In this thesis, we

used two primary screening bioassay data to evaluate the generalisation performance of our model.

A screening process is a technical analysis of a biological specimen, such as urine, blood, saliva; to determine

the presence (i.e. active) or absence (i.e. inactive) of the compounds in a target. The term primary screening

in the context of bioassay represents the first-hand information on a target of interest and is usually involves

thousands of unfiltered compounds (i.e. samples) bounded to a set of conditions, known as attributes (i.e.
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features). Due to the majority class of inactive compounds in the primary screening bioassay data, the

number of false positives (FPs), i.e. misclassification of an inactive compound as an active compound, are

enormous. This led to the implementation of selection methods to identify the most significance of attributes

that can efficiently discriminate between the active and the inactive compounds in bioassay data sets. A

typical bioassay data set contains two generic classes, i.e. active (i.e. positive) and inactive (i.e. negative),

and tends to be large and highly imbalanced, i.e. the ratio of 1 active compound to 1000 inactive compounds

(Schierz, 2009).

Many selection methods were applied to reduce the number of attributes in the data set. However, not

many selection methods are capable to select the most significant attributes from a bioassay data set, mainly

due to the multiple data representation in the data set and the data are highly imbalanced. Many of the

methods have considered only qualitative information (Brown, 2009) of the data set, i.e. active or inactive

of an attribute against a particular compound (binary value), but not the quantitative information of the

data set, i.e. the concentration level of a particular compound (real number).

In this thesis, two virtual bioassay data sets, namely AID362 and AID688, were used to assess the gener-

alisability of our model in handling highly imbalanced data which containing multiple data representation,

as well as the extraction capability of our model in finding quantitative attributes from the bioassay data.

These data sets were originally introduced by Schierz (2009) to study the efficiency of the cost-sensitive clas-

sifiers, i.e. Naive Bayes (NB), Support Vector Machine (SMO), C4.5 Tree (J48) and Random Forest, that

were developed on the WEKA environment, to identify active compounds in the data sets. The summary

of the data sets is presented in Table 3.1 on page 59.

3.1.3.1 AID362

The AID362 data set is a relatively small data set in the context of bioassay that details the results of

a primary screening bioassay for Formylpeptide Receptor (FPR) Ligand Binding assay. It contains 4279

compounds, i.e. 60 active compounds and 4219 inactive compounds, with a ratio of 1 active compounds to

70 inactive compounds (1.4% minority class) and 144 attributes. Amongst 144 attributes, 3 were presented

in integer numbers, 27 were real numbers and the remaining 114 were binary numbers. Figure 3.5 presents

the compounds distribution of the AID362 data set.

3.1.3.2 AID688

The AID688 data set is a large data set that details the results of a primary screening bioassay for Yeast

eIF2B assay. It contains 27189 compounds, i.e. 248 active compounds and 26941 inactive compounds, with
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Figure 3.5: A two-dimensional graph on the compound distribution in the AID362 data set 1. The coordinates
x and y indicate the distance (dissimilarities/similarities) between compounds using the MDS function in R
Project.

a ratio of 1 active compounds to 108 inactive compounds (0.91% minority) and 153 attributes. Four out of

153 attributes were presented with integer values, 27 were real numbers and the remaining 122 attributes

were binary numbers. Due to the enormous amount of compounds in the data set, the R Project was unable

to simulate the interaction between compounds in the data set.

3.2 Designing Feature Extraction Model using GAs And ANNs

In designing the feature extraction model using GAs and ANNs, the model simplicity, representativeness and

adequacy are essential to the reliability of the research to be carried out. Simplicity of the model depends

on the way to hybridise two different techniques in which only the simplest theory that fits the fact of a

problem is to be considered. In our case the hybridisation of GAs and ANNs with minimal parameters were

involved in the algorithm. Meanwhile, representativeness of the model depends on the quality of the data

which must represent the type of information that is being investigated, in our case the microarray data

sets, synthetic data sets and bioassay data sets.

In this section, we first look at the machine learning techniques to be used in supporting our research. We

then discuss the technical issues in designing our model so that a set of meaningful features can be identified.
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3.2.1 GA - An optimisation search method

GAs are optimisation methods, in the context of machine learning, that have their inspiration in the analogy

of biological evolution. The GA as a search algorithm operates on the basis of a population of potential

solutions, rather than a search from general-to-specific solutions or from simple-to-complex. GAs generate,

over time, successor solutions by repeatedly mutating and recombining parts of the best currently known

solutions (Mitchell, 1997b) with the assistance of the mechanics of selection and natural genetic mechanism.

The quality of the solutions in the population will be calculated using a fitness function. For instance, if

the learning task is to formulate a treatment strategy for thyroid dysfunction patient, then the GA’s fitness

could be defined as the number of time a thyroid effective plans that had successfully cured the patient and

the risk of side effects of the plans. Over decades, different techniques were implemented in GAs, however,

they typically share and iterate the following five processes:

1. Establish the population containing a finite number of potential solutions to the problem.

2. Evaluate individual solutions in the population according to the fitness function.

3. Generate a new population by selecting the most fit solutions from the population.

4. Create new solutions by applying genetic operations.

5. Replace current solutions with new solutions if necessary.

In order to construct a GA search model, the following five technical aspects are considered:

1. A way of representing potential solutions to a problem, as individuals, that can be manipulated by

evolutionary mechanism (population).

2. A fitness function that can be used to assess the quality of individuals in solving the problem.

3. A method to select better individuals to create a new generation (selection).

4. A mechanism for genetic change so that the individuals in a new generation will not be identical with

the individuals in the current generation (crossover & mutation).

5. A way of encoding individuals into the computer environment (encoding scheme).

3.2.1.1 Population of potential solutions

A GA population contains solutions that can be constructed as a chromosome which contains all the infor-

mation needed to describe the problem. The individual unit from which each chromosome is constructed is
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referred as genes that represent a unique characteristic to the problem. For instance, if the learning task is

to formulate the treatment strategy for thyroid dysfunction patients, the chromosome that defines a possible

solution to the problem could be formed from the considerations: patient age, phenotypic symptoms, gender,

brain neurotransmitters’ activities, the hormonal activities and the neuropeptides activities.

The size of a GA population and the chromosomes are normally fixed, as a result, the existing chromosome

in the population has to be removed when a new chromosome is introduced by a GA. Cartwright (2008b)

commented that the success of a GA does not critically rely on the exact size of the population provided

that the population is not unreasonably small. However, it relies on the evolution of solutions which only

occurred in GA generations. Too small or too large a population makes proper evolution become impossible

and leads to computational cost problems. Cartwright suggested the ideal population size, in most problems

applied, should be in the range of 40 − 100 and this will lead to a fast convergence of the solution and is

computationally time effective. However, DeJong and Spears (1991) discovered that the choice of population

size had a strong interactive effect on the evolution operator, the crossover operator to be specific, even

after augmenting the crossover operators. With smaller population sizes, crossover productivity effects were

drastic and caused chromosomes to become homogeneous more quickly. With larger population sizes the

crossover productivity effects are far less dramatic. This is due to a lack of information capacity of a smaller

population size which provides accurate sampling. As a result, the optimum solution to the problem may

be overlooked in the process of initialising the population.

To validate the implication of the population to the efficiency of a GA to perform the task, we examined 3

population sizes and the findings were presented in Chapter 5.

3.2.1.2 Fitness of potential solutions

Most real-world problems are multifaceted and full of trade-offs, several factors contributing to measure the

quality of each potential solution in the population can easily be conflicting and it is not always easy to

distill them down to a single factor (Cartwright, 2008b). For instance, if the learning task is to learn a

strategy for playing chess, the quality of the solution can only be based on a single factor, i.e. the number of

games won by the individual when playing against another individual. However, if the task is to formulate a

treatment strategy for thyroid dysfunction patient, the quality of the solution could not be based on a single

factor, instead, multiple factors should be considered, such as the duration of treatment (time element), the

current state of immunological activity of the patient (health condition element), the usage of treatment

preparations (preparation element) and the cost of treatment (financial element). These factors, in most

cases, are conflicting, such as a trade-off between prescribed drugs for patients who have depression as a side

effect with the natural preparations, as the prescribed drugs deteriorate the depression symptoms, although
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the prescribed drugs provide effective effects in patients; and the treatment duration for natural preparations

are much more longer than prescribed drugs, but its have lower side effects.

In the GA, the quality of a chromosome in solving the problem is computed using a fitness function which

yields a quantitative measure on how close the individual units in a chromosome to the desired solution

that is not defined by GA, instead, it is decided by the use upon a suitable relationship for each problem.

For the task to formulate a treatment strategy, the fitness function will include a component that scores the

progression estimation of each treatment stage using the historical records of the patient, along with any side-

effect problems related to the patient. Normally, the GA fitness function rewards the better chromosomes

with a higher fitness value than the poorer chromosomes so that the better chromosome can be further

processed by the evolutionary mechanism and has a better chance of survival in the next generation.

Recent research has concentrated on improving GA fitness functions with either the use of a penalty function

(Beasley et al., 1993; Busetti, 2001) or the incorporation of machine learning algorithms (Li et al., 2001b;

Bevilacqua et al., 2006b; Lin et al., 2006), however, most research is biased towards classification problems

and a trade-off of the computational time and/or the algorithm complexity for a better classification accuracy,

is generally to be expected.

In our approach (see Section 3.2.3 for detailed explanation), we keep as minimal parameter settings as

possible in our model and we defined our model’s fitness function as the number of correctly labelled samples

in the data sets.

3.2.1.3 Selecting potential solutions

The selection process begins when the fitness has been calculated for all individual solutions in the population.

Generally, the selection process is partially stochastic and biased towards better chromosomes in order that

the GA can move forward. This is because if the selection was completely deterministic, the population

would soon be dominated by the fittest chromosome and would quickly become homogenous before the

desired solution is reached (Cartwright, 2008b). This phenomenon is known as premature convergence.

However, if the solution did not have some guidance for selecting a fitter chromosome, the search would be

largely random and the selected chromosome might not be the fittest chromosome, instead, it could be the

poorest chromosome in the population. The process will then further deteriorate in subsequent evolutionary

operations. Two widely adopted selection mechanism in a GA are the roulette wheel and the tournament

selection.

Roulette wheel selection, also known as proportionate selection, ranked the GA chromosomes based on their

fitness proportions in the current population. For roulette wheel selection, every individual chromosome is
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assigned a slot, sized on the proportion of its fitness, on a virtual board. The better chromosome, normally,

has a larger slot than the poorer chromosome. The wheel is then spun and the chromosome, into whose

slot the virtual ball falls, is copied into the parent pool, i.e. the repository in which the chromosomes

have a chance to mate. The selection process is repeated to pick the complement chromosomes until the

parent pool is full. Roulette wheel selection leads to the fast convergence of chromosomes with larger fitness

proportions being more likely to be picked than those chromosomes with smaller proportions, however, it

cannot guarantee that the selected chromosomes are optimal. In addition, roulette wheel selection lacks

stochastic power as the population is easily dominated by fitter chromosomes which, consequently, leaves

an insufficient resource for the genetic mechanism to further exploit the population, resulting in the loss of

better chromosomes being found.

Tournament selection, on the other hand, ranked the GA chromosomes based on the competition basis of at

least two or more chromosomes. For a typical tournament selection, two chromosomes are randomly chosen

from the population and compared. The chromosome with the greater fitness is selected and copied into the

parent pool. The selection process is repeated, to yield a group of competent chromosomes in the parent pool.

Since the tournament selection randomly picks chromosomes, the consequent results may vary each time the

process is performed and fitter chromosomes may participate more than once in the competition. Even so,

tournament selection often yields a more diverse population than roulette wheel selection (Mitchell, 1997b)

and it leads to deeper exploitation of the chromosome search. A known benefit of tournament selection is

that it provides a certain level of confidence of the selected chromosome being fitter than those not being

picked. In addition, it also guarantee that the poorest chromosome will never be selected. The downside of

this method is that it takes a longer time to identify fitter chromosomes than roulette wheel selection.

Cartwright (2008b) noticed that both roulette wheel and tournament selections have a lack of stochastic

features, as a result, neither can guarantee that the best chromosome, in the current generation, will be

chosen again in the next generation. Therefore, a new hybrid-based selection was introduced to overcome

the pitfall of roulette wheel and tournament selections, i.e. stochastic remainder selection.

Stochastic remainder selection is a hybrid method that combines a stochastic element with a deterministic

step to ensure that the best chromosome in the current generation is never overlooked in the next generation.

In stochastic remainder selection, the fitnesses of chromosomes are scaled in accordance with the average

chromosome fitness of 1.0 (Cartwright, 2008b). Each chromosome is copied into the parent pool and the

number of copies is based on the integer part of the average fitness. The fitness of the chromosome is then

subtracted from the average fitness and yields a residual fitness value which must be below 1.0. A modified

roulette wheel or tournament selection is then performed using these residual values to fill the remaining

space in the parent pool. The deterministic step in the stochastic remainder selection ensures that every
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chromosome with a fitness above 1.0 will appear at least once in the parent pool.

Goldberg and Deb (1990) criticised that by using suitable adjustment of selection parameters, except the

roulette wheel selection, a similar performance can be achieved with most selection methods, thus, there is no

absolute better selection method in the GA. They made such observations based on four different selection

schemes: roulette wheel, tournament selection, fitness ranking and steady state selection.

In our design, to avoid the poorest chromosome being selected into the next generation and to prevent the

premature convergence in our model, we chose the tournament selection. Additionally, we also applied the

elitism strategy to retain fitter chromosomes in the parent pool.

3.2.1.4 Evolving the potential solution

The selection method in GAs can only introduce the existing chromosome to the parent pool or remove the

chromosomes from the parent pool, however, it is unable to create new chromosomes for the next generation.

Therefore, a mechanism is required to modify the existing chromosome by introducing “new life” into the

population. Two GA operators that are able to create new chromosomes are crossover and mutation.

A crossover operator is the main operator for generating new chromosomes from existing chromosomes.

There are three common ways of performing crossover: single-point, two-point and uniform crossovers, as

showed in Figure 3.6. For single-point crossover, two chromosomes from the parent pool are each cut at

the same corresponding point and exchange the section after the cut point to produce new chromosomes as

offspring of the parents. Meanwhile, the two-point crossover is very much like single-point crossover, except

that two cut points instead of one are performed. For two-point crossover, the offspring are produced by

swapping the intervening cut points between two parents. Uniform crossover radically differs from single-

and two-point crossovers. In uniform crossover, many small sections rather than a single large block are

swapped between parent chromosomes. The exact swapping points are determined by a crossover mask

which contains a list of random binary values generated every time for each pair of parents.

Uniform crossover is simple, but could be severely disruptive and the degree of disruption critically relies

on the crossover mask (i.e. a defined string used to determine the cut points on the parent chromosomes)

rather than the defining length of the chromosome as single- and two-point crossovers does. Therefore

the crossover mark, in general, is on average one half of the chromosome length which avoids unnecessary

disruption (Cartwright, 2008b). On the other hand, uniform crossover is also likely to break up any large

building blocks in the parent chromosomes and, in some cases, it could be too destructive for a highly

correlated group of individual units in the chromosome. Therefore, it is more effective when applied to

problems which involve only a limited correlation between genes, probably, one or two places apart in the
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Figure 3.6: Three common crossover operators for GAs. These operators form the offspring of chromosomes
represented by real number encoding. The crossover operators create two descendants (offspring) from two
parents, using the predefined cut points or the crossover mask to determine which parent contributes which bits.

chromosome. Goldberg (1989) observed that multiple cut points, except the two-point crossover, could lead to

the over-interaction between similar chromosomes at the premature stage of convergence, although Syswerda

(1989) argued in favour of uniform crossover. Syswerda argued that uniform crossover is beneficial when the

ordering of genes in the chromosomes is entirely irrelevant and less disruptive with longer defining length

chromosomes. DeJong and Spears (1991) pointed out that the increased disruption of uniform crossover

could be an advantage if the population size is small.
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In crossover operation, the probability that a chromosome selected from a parent pool is determined by a

crossover probability, pc. The pc rate is normally large, typically in the range of 0.6 − 1.0 (Beasley et al.,

1993; Busetti, 2001) so that most, and possibly all, chromosomes in the parent pool are selected for mating.

In the process of chromosome evolution, the crossover operator is responsible for introducing new chro-

mosomes to the next generation only by shuffling genes between parent chromosomes. As a result, the

population is soon flooded by homogeneous chromosomes and becomes stagnated before the desired solution

is found. Therefore a mutation operator which creates new information to the chromosomes is required.

A mutation operator acts as a “background” operator in the evolution process and is responsible for providing

a small diversity in the population when most chromosomes are identical to prevent genetic drift caused by

the accumulation of stochastic errors on each generation. Mutation refreshes the population by inserting a

new value into a small fraction of chromosomes. However, not all new introduced values are beneficial to

the population. This is because mutation does not have a ‘blueprint’ on what so-called ‘good’ information

and ‘bad’ information is. It simply changes the values by randomly picking the fraction of the chromosome.

As a result, some researchers claimed that mutation does not improve the evolution progress but prolongs

the convergence process, because it may destroy important information, by inserting unwanted information

into the chromosome. Therefore, it is important to apply mutation cautiously, this is normally at a low rate

specified by the mutation rate, pm, typically 0.001 (Beasley et al., 1993).

The aim of this research is to identify the informative genes that underly the tumourigenesis pathway of a

specific cancer, i.e. the genetic pattern of tumour formation and tumour production. Therefore, we used

the single-crossover operator in our model to minimise any form of disruption that yielded by the crossover

operator.

3.2.1.5 Encoding evolutionary mechanism

In early work, GA chromosomes were encoded using binary coding that involves only 1s’ and 0s’. With

the rapid development of computer technology, most problems, nowadays, are full of complications and

contradictions which require better ways to encode the problems. Binary coding became obsolete, as it had

a small binary length, which is insufficient to express the present problems. In addition, binary coding has

added complexity in manipulating chromosomes in the evolution process, although it can be easily solved

by applying an additional programming execution rule. Nevertheless further problems arise when the degree

of complexity of the problems are increased, binary coding does not have an adequate length of coding to

express problems and it is far more difficult to interpret than other alternative forms of coding such as real

number representation, which can accommodate far more complicated problems.
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Except for binary coding and real number coding, an alternative encoding scheme is gray code introduced by

Whitley (2001). Gray code is a binary form of encoding scheme and an example of gray coding is presented

in Figure 3.7. The advantage of gray code is that successive real numbers only differ with one binary digit,

so a small change in the Gray code may translate into a small change in the real value of a parameter.

However, gray code has yet to receive attention in science.

Figure 3.7: Gray code versus Binary coding. This figure is extracted from Whitley (2001). The arrow shows
the possible adjacent values can be connected with the change on a single bit in the scheme. The Binary
representation has less flexibility than the Gray representation.

3.2.1.6 Elitism

A GA provides some level of certainty of the identified chromosomes, however, during the evolutionary

process, the quality of the solution may be distorted. Roulette wheel selection and tournament selection

can fail to select the best chromosome from a population as parent, even if no other chromosome is of

comparable fitness. Stochastic remainder selection guarantees the best chromosome, but crossover operator

and mutation operator might jeopardise the quality of the offspring. In order to avoid persistent problems,

an elitist strategy is required.

Elitism is an independent selection scheme that preprocesses the chromosomes in the population before

the conventional selection method in a GA is applied. In elitist strategy, the best chromosome in the

current generation is copied into the parent pool without having to compete against other chromosomes

for selection. This process ensures that the best chromosome, in any generation, will remain in the next

generation until it is eventually replaced by a chromosome of superior fitness. Elitism promotes diversity and

encourages a wider exploitation of the search space, at a stage when most chromosomes in the population

have almost converged. At the early stage of GA evolution, the elitism accelerates the convergence process

of the chromosomes by retaining chromosomes with similar characteristics in the population, and at the later

stage when most chromosomes in the population are homogenised, the elitism slows down the convergence
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process by introducing chromosomes with different characteristics into the population. Therefore, it reduces

the disruption which may be caused by mutation during the evolutionary process.

3.2.1.7 Exploration versus Exploitation

For an efficient search in GAs, two contradictory search techniques are generally required to find a global

maxima (optimal peak): exploration (performed by crossover and mutation operators) to investigate new

and unknown areas in the search space and exploitation (performed by selection operator) to make use of

information (knowledge) found in the previous points will help in finding better points within a region space

(Beasley et al., 1993). A balance between both techniques are vital in identifying optimal results, thus, a

trade-off between these two techniques must be wisely judged when applied to the problem.

Holland (1992) showed that a well-balanced ratio between exploration and exploitation can be found in

a GA using a k-armed bandit analogy (evolving from a traditional slot machine with a tradeoff between

exploitation of a lever that has the highest expected payoff and exploration to get more information about

the expected payoffs of the other levers). However, Beasley et al. (1993) questioned the practicality of

the assumptions made by Holland. A commonly found problem is genetic drift which is caused by the

accumulation of stochastic errors, which result in a gene becoming predominant in the population, as once

a gene has converged in this way, it is fixed. This produces a domino effect, as generations go by, each gene

eventually becomes fixed (Beasley et al., 1993). The impaction of genetic drift to a GA could be beneficial

if the predominant gene is what is being look for, however, it can become disastrous if the population is

dominated by the wrong gene.

Beasley et al. (1993) suggested the rate of genetic drift can be reduced by increasing the mutation rate to

explore more unknown peaks in the space. However, excessive mutation could lead to a poor exploration of

the region space and high computation processing. This produces skewed results in GAs.

There are no standards or guidelines for balancing the powers of exploration and exploitation in a GA. The

efficiency of a GA to find an optimal solution is mainly reliant on the trial-and-error experiments conducted

with different GA’s parameters and sufficient number of evolution (i.e. fitness evaluation) provided to the

chromosomes. Therefore, in our design, we examined various sizes of fitness evaluations to determine the

best balance ratio between exploration and exploitation of a GA.

3.2.2 ANN - A universal computational method

An ANN is a computational model that attempts to simulate the structure and/or functional aspects of

the human brain in the way that an individual biological neuron reacts in pattern recognition. In the
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human brain, it is the combined efforts of numerous neurons acting together to create complex behaviours,

while in the ANN, it mirrors the structure of the human brain in which many simple processing elements,

known as nodes, acting as neurons, work co-operatively. As a consequence, ANNs are often referred to as a

connectionist model, in the context of machine learning.

An ANN contains numerous nodes that are interconnected using connection links which are associated with

different connection weights that are arranged in layers (see Figure 3.8). The initial connection weights for

constructing ANN are given random values as the network does not have prior knowledge for modelling the

problem. The learning process then takes place, during which the network is shown with a large number of

examples that are required to learn, and in response adjusts its connection weights in order to give meaningful

results. A network in which all the weights have been determined is considered as fully trained and is ready

for use. The training process of ANN is shown in Figure 3.9.

Figure 3.8: A typical 3-layered ANN.

Each ANN node is featured by a set of connection weights, an activity level that determines the polarisation

state of a node, an output activation value and a bias value, each represented mathematically by real numbers.

The connection weight can be positive (i.e. excitatory) or negative (i.e. inhibitory), and determines the effect

of the incoming signal on the activity level of the node. The input signals, generally, are sum linearly as

showed in Equation 3.1, yielding an output value for the node. If the output value exceeds the activation

level, the node raises the activation (i.e. positive) sign. If the output value is below activation level, the node

lowers the activation (i.e. negative) sign. The activation of a node is determined by the activation function

of the network.

Netj =

n∑
i=0

wijxij + bj , (3.1)

where wij is the connection weight between nodes i and j, xij is the input from node i to node j and bj is

the bias value for node j.

An ANN can execute complex types of tasks, for instance, forming a model from data which does not require

a comprehensive theoretical or prior model exist. Although ANN is difficult to interpret rather than other
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Figure 3.9: The training process of an ANN.

computational models, however, its superior performance in pattern recognition is still impeccable.

A typical ANN model is characterised by:

1. The connection pattern between nodes (architecture).

2. The method of determining weights on the connections (training/learning).

3. The activation function that define how the output from a node is determined from its input.

3.2.2.1 The architecture of the network

Neurons, more commonly known as nodes, are fundamental elements used to construct an ANN model.

Each node receives and integrates input signals, performs simple computations on the sum of the signals,

using an activation function and outputs the result to its adjacent node. The ANN is built with numerous

nodes interconnected in the form of layers (see Figure 3.8 on page 76). Nodes are joined by connection links

which allow messages to pass from one node to another. Some nodes take input directly from the external

environment; others may have access only to data generated internally. Consequently, some connection links

act as inputs providing a pipeline through which data arrives. Nevertheless, every ANN model contains at

least one output connection link that provides feedback to the user.

Generally, smaller ANN structures are used rather than larger ones. This is due to the fact that the over-
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fitting problem is normally occurred in larger ANN structures and to be specific, the over-fitting problem is

generally expected when larger hidden nodes are used in the network (Schwarzer et al., 2000). The number

of hidden nodes is generally one half of the number of nodes in the input layer. Therefore, to reduce the risk

of the over-fitting problem, the ANN structure is kept small, ideally in the range of 6 - 50 nodes. However,

in most microarray studies, an ANN model contains up to hundreds or thousands of nodes (Bloom et al.,

2004; Narayanan et al., 2005; Ko et al., 2005), which could lead to a severe over-fitting problem and the

results were flawed.

To prevent the over-fitting problem in our model, we used smaller ANN structure which comprised of 10

input nodes, 5 hidden nodes and 2 - 4 output nodes in which each output node corresponded to a cancer

class in the data set.

3.2.2.2 The training of the network

In the iterative ANN training process, as shown in Figure 3.9 on page 77, the network is shown a sample

pattern and uses the pattern to calculate its output. The output is then compared with the target output,

i.e. an ideal output for the sample. The difference between the target output and the network output is

the measure of how well the network is performing. Unless the output is perfectly matched with the target

output, an adjustment is usually made to the weights to improve network performance.

The adjustment of the connection weights is measured by the error δ, i.e. the discrepancy between target

output and network output, which, if the network contains only one output node y and the target output t,

thus δ can be expressed as:

δ = t− y. (3.2)

If both the network output and the target output are identical, no further learning is required for this sample

pattern. Another sample pattern is fed into the network and the training process is continued. If the match

is not perfect, the network needs to improve by adjusting the connection weights so that the network can

perform better when the same sample pattern is provided in the future. The adjustment of the weight ∆w,

is the proportion of both the input to the node x, and the size of the error δ:

∆w = ηδx, (3.3)

where η is the learning rate which determines the size of the changes, i.e. high or low, to the weight. The

connection weight is then updated with:

wnew = wold + ∆w. (3.4)
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Once the weights on all connections have been adjusted, another sample pattern is taken and the process is

continued until all sample patterns have been learned and the error δ in the network’s prediction becomes

negligible. This training process is commonly known as backpropagation learning.

The training process is aimed at diminishing the difference between target output and network output over a

large number of sample patterns. The error could be reduced by making a suitable change to the connection

weights, as described earlier, or by the incorporation of learning rate and/or momentum.

In an ANN model, the weights are used to store information about sample patterns and this information

builds up over time as the training proceeds. If a large adjustment is made to the weights, knowledge learned

previously will be jeopardised. However, if a small adjustment is made to the weights, they are only moved

a little into the direction of the optimum values and the learning will take too long to converge. Thus, a

typical learning rate η of the ANN is below 0.1 (Cartwright, 2008a).

Cartwright (2008a) suggested a sensible compromise solution based on gradually diminishing the value of

the learning rate as training proceeds, so that in the early stages a coarse pruning on the weights can be

performed, while in the later stages, only gentle adjustments are made to the weights which allow them to

be fine-tuned. For this solution, Cartwright suggested the value should be in the range of 0.0− 1.0.

ANNs with a large number of interconnected nodes are able to model any continuous function. Consequently,

the error will also be highly corrugated, displaying numerous minima and maxima. Once the adjustments to

the weights lessen, the network can be easily trapped, making the learning cyclic. This phenomena is known

as local minima in the context of machine learning. To reduce the chance of trapping in endless oscillation,

a momentum α, is generally applied to update connection weights. Momentum is the velocity of how fast

the network is being trained, and will provide spontaneous speed to the network to pass through the local

peaks in the error surface, by adding a proportion of the update of the weight in the previous epoch, n− 1,

to the weight update in the current epoch n:

wij(n+ 1) = wij(n) + ηδj(n)xij + α[wij(n)− wij(n− 1)], (3.5)

where 0 ≤ α < 1.0.

The effect is to let momentum update the weights as the network travels across the error surface. Conse-

quently, the network is more likely to escape from a local minima on the error surface rather than being

trapped within it.

In addition to being trapped in the local minima, ANNs can be easily over-fitted by the data. This arises

when the network takes too long to learn or when the network is over-parameterised. As the network learns,

connection weights are adjusted so that the network can model general rules that underly the data. If
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these general rules are applied to a large proportion of the sample patterns, the network will repeatedly see

examples of these rules and learn from them first. Subsequently, when more specialised rules, which occur

in a few examples, appear in the network, the network will start to learn these rules. Once it has learned

these rules well, if the training is allowed to continue, the network may start to learn specific sample patterns

within the data and the network will then be overtrained (over-fitted). This is because the network tried to

fit the connection weight closer to the target output so that it can reduce the error rate of the network.

Over-fitting problems in ANNs, generally, can be tackled either by, monitoring the quality of the training

process using appropriate validation mechanisms (see Section 2.2.2 on page 33), or by ensuring small and

sufficient networks are used to assess the data. The use of a validation mechanism in assessing network

performance is commonly used by most studies for pattern recognition problems, sample classification to be

exact.

Taking into considerations of over-fitting and trapping problems, we decided to use a simple feedforward

learning rather than the backpropagation learning and with no additional learning acceleration techniques in

our model. The primary objective of this research was to find a feature set that correctly acts to discriminate

between the classes. The presumption is, and this is a major assumption of our model, that the feature set

will actually be the feature set that in some sense correctly acts to discriminate between the classes. That

is to say, that by deliberately not focusing on the quality of the ANN classifier, then the selected feature set

will be closer to the true discriminating feature set for the given classes. This has led us to select feedforward

learning method in our model.

3.2.2.3 The activation function of the network

In order for a node to calculate its output signal (activation signal), it requires an activation function f(x),

that determines the state of action potential firing (or idle) of the node. An activation function is the

mathematical computation that limits the amplitude of the output signal of a node with a predefined set of

mathematical theorems. Figure 3.10 presents four common activation functions implemented in ANNs.

Most activation functions, except the linear function, reflect the firing rate in a normalisable range. Some

functions allow the firing occurring on the values falling in the range of two extreme numbers, i.e. positive

and negative signs, f(x)ε[1,−1]. This is known as a bipolar range. Some functions, on the other hand, are

based on only positive signs, i.e. binary range, f(x)ε[0, 1], to determine the firing of a node. There is also a

function which allows the firing based on a positive constant number, i.e. a threshold value θ. If the output

signal is greater than θ, the node will fire the signal, otherwise, the node will switch into idle mode.

As the ANN field has developed, numerous functions have been proposed. The commonly used functions
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include threshold function (Beiko and Charlebois, 2005; Cho et al., 2003a), linear function (Keedwell and

Narayanan, 2003; Tong, 2009), sigmoid function (Toure and Basu, 2001; Tong, 2009) and tanh function

(Valdés and Barton, 2004; Bevilacqua et al., 2006a; Lin et al., 2006; Tong, 2009; Tong et al., 2009). Other

less likely used function includes Gaussian function (Shenouda, 2006).

Figure 3.10: Four common activation functions for ANNs. These functions determine the state of action potential
firing of a node. When the activation value of a node is favour towards the positive sign (excitatory), the node
firing its signal, otherwise the node is static (inhibitory).

For threshold activation function, the firing rate of a node is determined by a threshold value θ, usually a

positive sign. If the total input of the node is below θ, the node’s output is changed to 0 and the node is

static. If the summed input is greater than θ, the output value is set to 1 and the node status becomes

active which allows it to fire.
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Unlike threshold function, sigmoid and tanh activation functions allow flexible firing zones, provided that

an output value is covered within its firing range. The sigmoid function, normally, provides an output in

binary range while the tanh function has an output covering the bipolar range. Both the sigmoid and the

tanh functions have a different speed advantage during training.

For linear activation function, the node passes the summed input signals directly to the output, normally

after multiplication by a scaling factor K, usually in the range of 0 < K ≤ 1.0. The simplest linear function

is identify function in which K is 1.0, thus the output from a node is identical to its input. The output

from a linear function may be capped to prevent signals from becoming unreasonably large, in the case of a

large network with connection weights greater than 1, so that input and output are linearly related within

a restricted range.

In our design, we examined the implication of these four activation functions in computing the fitness values

of the chromosomes.

3.2.3 Hybridising GAs and ANNs

Both GAs and ANNs are adaptive, robust and able to deal successfully with a wide range of problems

including highly nonlinear models and noisy data. In addition, they do not need priori information to model

the problem being studied. Therefore, from a practical perspective, GAs and ANNs appear to work best in

combination (Busetti, 2001).

A typical combination is to use ANN as the prime modelling tool with GAs to optimise the network param-

eters (see Figure 1.3a on page 11). As both of these fields have developed, recent research focuses on using

ANNs to model the GA fitness function. Although different implementations of ANN parameters in assessing

the quality of a fitness function have been introduced, they can generally be tackled by two computations,

i.e. based on the number of correctly labelled sample patterns returned by an ANN (Cho et al., 2003a; Tong,

2009; Tong et al., 2009), or the network error rate computed by an ANN (Lin et al., 2006; Bevilacqua et al.,

2006a).

In this thesis, we design a feature extraction model, namely Genetic Algorithm-Neural Network (GANN). In

our model, the ANN is used as a fitness score generator to compute the fitness function of a GA in identifying

informative features for microarray data, rather than being used as a predictor to model data classes. The

philosophy of our approach is to apply the parameter settings that are no more complex than that required

for the solution to the problem, i.e. the Ockham’s Razor principle.
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3.2.3.1 The general description of GANN model

Figure 3.11 on page 84 shows the architectural design of the GANN model. The GANN model consists of three

main modules, i.e. initialising population of chromosomes, calculating fitness values for each chromosome in

the population and evaluating the quality of each chromosome in the population.

Given an experimental data set to the GANN model, a population containing chromosomes (parent pool),

is first initialised and at this stage, the quality of chromosomes in the population are yet to be evaluated

as they are not assigned fitness values. Once the population is fully occupied by chromosomes, ANNs are

used to calculate the fitness values of each chromosome in the population, as depicted in Figure 3.11b. In

the fitness computation phase, a new ANN is constructed each time for each chromosome. The evaluation

process soon begins when all chromosomes in the population are assigned fitness values. In the evaluation

process, two fitted chromosomes are selected for reproduction and new offspring are produced. The fitness of

this new offspring is then calculated by an ANN. To ensure that the fitter chromosomes will not be discarded

in future generations, an elitism scheme is adopted, in which only one least fit chromosome in the current

population, is replaced by new offspring in each generation. Once the chromosome is substituted by new

offspring, the entire population is copied in the new population (new generation) and the new evaluation

cycle for the generation begins. The cycle will continue until the termination criteria is met and the GANN

stops. Finally, a summary result: the number of correctly labelled samples in each model repetition run and

the ranked features based on the entire number of repetitions in accordance to their selection frequency, are

produced as the final outcome from the GANN model.

In order to visualise the relationship between features, a genomic analysis tool, i.e. HeatMapViewer, from

the GenePattern Software Suites is used to graphically present the feature selection results.

It is worth pointing that unlike most hybrid GA/ANN models which focusing on the quality of the ANN

architecture to discriminate data classes, the role of an ANN in our hybrid model is merely a fitness score

generator for an GA. We deliberately use simple ANN models with no acceleration parameters to avoid any

form of variability that might be incurred by a sophisticated ANN architecture. For the GANN model, the

derived ANN is an artefact of the process and is discarded. In the subsequent sections, we will look at each

module of the GANN model and its stopping criteria. The summary of GANN parameters is depicted in

Table 3.4 on page 90.
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3.2.3.2 Population initialisation

A GA normally operates on the basis of a finite-sized population of fixed-length chromosomes. This is to

avoid infinite oscillation of a GA in searching the optimal solution, albeit, by limiting the size of population,

the optimality of the solution is in question. Even so, a GA is still able to derive sub-optimal solution with

limited available information.

In this module, a group of features from the data set are randomly selected by GA and stored in a temporary

repository (i.e. population) for further use. The number of features stored is reliant on the size of the

population. All features in the population are encoded with real-number representations and are considered

as a subset of a member (i.e. GA chromosome) in the population. We set the chromosome size to 10. In

other words, there are 10 features in each chromosome. Depending on the size of the population N , the

number of features in the population can be expressed as N x 10. Features are allowed to be duplicated so

there is potential that a feature can be selected more than one time by the GA.

Cartwright (2008b) recommended small population sizes (40 - 100 chromosomes) as this will lead to a fast

convergence of the solution and is time effective. However, DeJong and Spears (1991) discovered that fast

convergence does not guarantee the quality of the solution as with smaller population sizes.

In our design, three population sizes: 100, 200 and 300, are used to investigate the implication of different

population sizes in finding the correct solution to the problem. We do not consider a population size below

100, as our experimental data features a high dimension (2308 - 10000 features) and a small population size

does not have sufficient capacity to accommodate this information. However, larger population sizes could

slow down the processing time of GANN, thus, we limited the population size to a maximum of 300 in our

model.

3.2.3.3 Fitness computation

Fitness computation is the core component in our design and poor judgement of the fitness function can lead

to the deficiency of our model. A penalty function is generally used to assist the function, in assessing the

quality of a chromosome, however, this incorporation has added complexity to GAs and is computationally

intensive. Over the last few years, research on the incorporation of machine learning methods, such as

ANNs and k-nearest neighbours (KNNs) have been introduced to replace penalty functions. These studies

reported better performance and delivered promising results. However, this new way of incorporation is not

fully-fledged and most studies attempted to use complex parameters in the combination.

In this module, a new ANN model is constructed each time a new chromosome is introduced to the network.

Each feature in a chromosome represents an input node to the ANN. In an iterative training process, all
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samples in the data set are processed by the network and the activation output for each sample is calculated.

Using the target output of the data, the network calculates centroid values of the classes (see Equation 3.8)

and the distance between samples for each class is computed using the Euclidean distance technique (see

Equation 3.7). The difference between the target output and the network output (see Equation 3.6) is the

fitness of the chromosome, i.e. the number of correctly labelled samples per chromosome. This training

process is known as feedforward learning.

In our design, we used a simple 3-layered feedforward ANN architecture to calculate the fitness values of each

chromosome in the population (see Figure 3.11b on page 84). The fitness function of our model is defined

as the number of correctly labelled samples for each chromosome. The equation is presented as follow:

fitness f =
∑
i=1

n∑
k=1

c
sik, (3.6)

sik = tik −
√

(Aik − Ck)2

 ≥ f(x), Oik = Tik

< f(x), Oik 6= Tik ,
(3.7)

centroid Ck =
1

sk

∑
sεk

Ask, (3.8)

where sik is the sample i in class k, Tik is the target output of sample i, f(x) is the activation function to be

used in the ANN, Aik represents the output activation value for sample i, Ck is the centroid value of class

k and Oik is the final output value generated by ANNs.

The centroid vector principle and the Euclidean distance (
√

(Aik − Ck)2) are the most fundamental statistics

to construct any computer algorithm. The centroid vector principle is laid on the use of mean (i.e. centroid)

and standard deviations of classes to label samples. Since our research is on feature extraction instead of

sample classification, we exclude the use of standard deviations of classes in our design (see Equation 3.8).

Meanwhile, the Euclidean distance is used to measure how far the distance of individual samples are from

each class. Depending on the proximity value, the sample is labelled to its nearest class.

As Schwarzer et al. (2000) said: “With increasing number of hidden units we fit more and more implausible

functions which move away from the true law f, and hence the misclassification probability increases.”. Large

network sizes can lead to over-fitting problems as the network tries to fit the connection weight closer to the

target output so that it can reduce the error rate of the network. Thus, to reduce the risk of over-fitting in

our design, a standard 3-layered network architecture 10-5-O is applied, i.e. 10 input nodes corresponding to

the number of features in a chromosome, 5 hidden nodes and O output nodes corresponding to the number

of classes in the experimental data.

To make the ANN function, an activation function is required. In our design, despite drawing the finding
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based on one type of activation function, we examine the potentialities of four activation functions in cal-

culating the fitness values of each chromosome. These activation functions are sigmoid, linear, hyperbolic

tangent (tanh) and threshold in which their equations and activation range is depicted in Figure 3.10 on

page 81. To keep the ANN model simple, we only adopt the feedforward learning algorithm and the bias

parameter.

3.2.3.4 Chromosome evolution

In the process of chromosome evolution, the selection mechanism is responsible for selecting two fitter

chromosomes for reproduction, i.e. mating. The crossover operator is responsible for introducing new

chromosomes (offspring) to the next generation and the mutation operator is responsible for creating new

information in the offspring.

The tournament selection with the tournament size of 2 is chosen in our design because it often yields a

more diverse population (Mitchell, 1997a) which could lead to deeper exploitation of the chromosome search

and to prevent premature convergence of homogenous chromosomes.

Cartwright (2008b) commented that the evolution parameters affect the success of a GA, crossover operators

to be specific (DeJong and Spears, 1991). Uniform crossover has a high reputation in pattern recognition

problems, due to its flexibility on the points to be exchanged in chromosomes and simplicity. However,

it is critically reliant on the crossover mask and could be too destructive for high correlated groups of an

individual unit in the chromosome. Therefore, instead of using a uniform crossover operator, we use a single-

point crossover operator (see Figure 3.6 on page 72) in our design as it is least destructive to the relationship

of the units in chromosomes and the crossover rate pc is set to 0.5.

A mutation operator is crucial in the evolution process as it prevents genetic drift caused by the accumulation

of stochastic errors on each generation. Mutation refreshes the population by inserting a new value into a

small fraction of the chromosome. However, not all of these values are beneficial to the population. Thus,

in our design, we use a small mutation rate pm = 0.1, to avoid any drastic changes in the population.

Information on the selection methods and GA operators can be found in Sections 3.2.1.3-3.2.1.4.

To ensure that the quality of the chromosomes will not be distorted in the evolution process and to balance the

powers of exploitation and exploration, we also apply an elitism scheme in our design. In our elitism strategy,

only one chromosome is allowed to be replaced by offspring. This is to ensure that a wider exploitation of the

search space is provided when the population has almost converged. Additionally, it reduces the disruption

which may be caused by mutation operators.



3.2 Designing Feature Extraction Model using GAs And ANNs 88

Table 3.2: The summary of the trial based on various sizes of fitness evaluation. These results are based on the
use of the tanh activation function with 5000 repetition runs.

Data set Fitness Evaluation
500 1000 5000 10000 15000 20000 25000

Synthetic data set A (2-class data set)

Fitness accuracy (%) Nil Nil 58.36 90.5 93.44 94.62* 95.6*
Predefined features (30) Nil Nil 30 30 30 30* 30*

Synthetic data set B (3-class data set)

Fitness accuracy (%) Nil Nil Nil 4.1 20.24 32.56* 41.28*
Predefined features (30) Nil Nil Nil 29 30 30* 30*

3.2.3.5 Termination criteria

In the iterative process, the algorithm constantly learns new patterns of the data and models general rules

that can represent data. However, when the algorithm has been given too much iterations in the modelling

process, the algorithm tends to over-fit. Therefore, to prevent the algorithm from over-learning these rules

and to stop when the desired solution is achieved, a set of termination criteria is generally required. Cares

should be taken in determining these criteria as it affects the generalisation capability of our model in

interpreting the problem. Poor decision in the termination criteria may lead to an over- or under-fitting

problem and the outcome of the algorithm may be either overly optimistic or overly pessimistic.

In our design, we apply two criteria to stop our model from over-learnt. These criteria examine the effects

of our model in two factors, which are as follow:

a. The sufficient amount of freedom for GA to explore and to exploit both the global and the regional

feature spaces.

b. The sufficient number of iterations for producing consistent set of results.

The first criteria examines different amount of freedom for our model to deliver optimal results, based on

different number of evolution cycles and population sizes, which internally repeating the process of fitness

computation for chromosomes in the population. As indicated by Cartwright (2008b), evolution of solutions

are crucial in determining the success of a GA rather than the population size. However, there is no clear

indication on the number of evolution cycles nor population sizes to be used for microarray studies. A set

of trial experiments with an identical set of parameter settings, but different numbers of fitness evaluations,

were conducted using synthetic data sets and a summary table is presented in Table 3.2.

The result indicates that the improvement in the identified features are more significant in the increased
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Table 3.3: The summary of the trial based on various repetition runs. These results are based on the use of the
tanh activation function with 20000 fitness evaluations.

Data set Repetition Run
100 500 1000 5000 10000 15000

Synthetic data set A (2-class data set)

Fitness accuracy (%) 96* 94.8 95.5 94.62 95.24 95.2
Predefined features (30) 30* 30 30 30 30 30

Synthetic data set B (3-class data set)

Fitness accuracy (%) 33* 31.2 32.4 32.56 33.64 33.65
Predefined features (30) 26* 28 28 30 30 30

number of fitness evaluations. In fact, the fitness evaluation 20000 can be considered as a minimum setting to

differentiate more than 2 classes of samples rather than the fitness evaluation 15000 as it showed a very clear

distinction between the degree of fitness confidence on the first 30 extracted features from others features

which are also significant but not as important as the first 30. Even though, we decided to examine 10

different evaluation sizes, ranging from 5000 to 50000, to observe the implication of the fitness evolution on

delivering consistent results.

The second criteria, on the other hand, assesses the stability of our model in extracting consistent set of

features by externally iterating the entire extraction process. Many researchers often ignore the fact that

the sufficient number of repetition runs on the computer algorithm can affect the integrity of the reported

results. Consequently, most of the published results based on the identical data set vary from one to another.

To present the effects of the repetition run on the final result, a set of trial experiments with an identical set

of parameter settings, but a different number of repetition runs were conducted, using synthetic data sets as

summary shown in the Table 3.3.

Based on the results, there is no significant improvement with incremental repetition runs in response to the

fitness accuracy. However, it shows the high accuracy based on the smaller number of repetition runs do

not always guarantee that the identified features are the most significant ones. In Table 3.3, the repetition

run 100 has a high fitness accuracy in both the binary and the multiclass data sets. It seems reasonable

to draw conclusions based on this result, since the result looks promising and a slight improvement with

the incremental number of repetition runs does not make a lot of difference in the fitness accuracy, plus,

it takes a shorter time to process the results. In fact, this result is unacceptable from the medical and

pattern recognition perspectives because it fails to identify all significant features defined in multiclass data

set. Amongst the 30 defined features in synthetic data set B, only 26 features were identified. In contrast,

with a greater number of repetition runs in the algorithm, all 30 predefined features were identified. Less
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repetitions on the algorithm restricts it from exploiting the rules that were learnt (under-fitting), when more

repetition runs were performed, the prototype can practise more on the rules and even improvise the rules.

When a similar set of rules frequently appear, the algorithm will group these rules as “general” rules, refining

them each time when a new sample pattern is introduced. Eventually, the algorithm will formulate a set of

logic rules based on these general rules to deal with any unknown samples. Although more repetitions can

help the algorithm to formula its own set of rules, too many repetition runs will put the prototype at risk of

over-fitting and is computationally intensive. By comparing repetition runs 10000 and 15000 in the synthetic

data set A, the performance of the prototype starts decreasing in run 15000, a pre-sign of over-fitting. There

is a marginal different on the fitness performance on the repetition runs 5000 and 10000 in both data sets.

Therefore, it was decided to iterate the whole process 5000 cycles.

Table 3.4: The summary of the GANN parameters.

Parameter Setting

GA parameters

Population size {100, 200, 300}
Selection Tournament, tournament size = 2
Crossover operator Single-point, Pc = 0.5
Mutation operator Pm = 0.1
Elitism strategy Retain N − 1 chromosomes in the population, where N is the total number of

chromosomes in the population
Fitness function Number of correctly labelled samples
Fitness evaluation
size

{5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000}

ANN parameters

Architecture 10-5-O, where O is ranges from 2-4, for microarray and synthetic data sets
20-10-2 for bioassay data sets

Network Size 67-79 nodes for microarray and synthetic data sets, including 7-9 bias nodes
232 nodes for bioassay data sets, including 12 bias nodes

Learning algorithm Feedforward
Activation function {sigmoid, linear, tanh, threshold}

Repetition run 5000

3.3 GenePattern Software Suites - A genomic analysis platform

GenePattern is a powerful scientific genomic analysis platform that provides access to a broad array of

computational methods used to analyse genomic data (Reich et al., 2006). It is a freely available software

package developed at the Broad Institute of MIT and Harvard. It is designed to enable researchers to

develop, capture and reproduce genomic analysis methodologies using the pipelines approach. Figure 3.12

shows the pipeline representation and results that could be derived from GenePattern in a simple form.
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In this thesis, the HeatMapViewer module in GenePattern software suites version 3.2 is used to display

the relevance of the identified features by our model. Normally, the most relevant features (largest values)

are displayed in red (hot) and the least relevant features (smallest values) are displayed in blue (cool).

Intermediate values are displayed in different shades of red and blue. This colour-coding scheme provides a

quick coherent view of feature correlations. The screen shot of the HeatMapViewer is presented in Figure

4.2 on page 96.

Figure 3.12: The pipeline representation of GenePattern for microarray analysis, which was extracted from Reich
et al. (2006). Diagram on the left shows the steps in classifying microarray data and, generally, each step of
the analysis invokes manually. In GenePattern (diagram on the right), all steps can be encapsulated in a single,
reproducible pipeline that choreographs the entire classification and identification process. The pipeline is then
available for modification, with each revision preserved for reproducibility.

3.4 Data Validation - NCBI Genbank & Stanford SOURCE Search System

A cross-reference on the experiment results will be conducted via the National Center for Biotechnology

Information (NCBI) Genbank and the SOURCE search and retrieval system by the Stanford University.

The NCBI Genbank sequence database is an annotated collection of all publicly available nucleotide sequences

and their protein translocations, i.e. chromosomal structure aberration, which implemented by the NCBI

as part of the international collaboration with the European Molecular Biology Laboratory (EMBL) Data

Library from the European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan (DDBJ) from

the National Institute of Genetics (NIG). The description of the gene entries are retrieved using the Entrez

system, a text-based search and retrieval system, supported by the NCBI for all major databases, including
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PubMed bibliography, taxonomy project, protein sequences and structures, and many others. In this thesis,

the Entrez Gene, one of the several search tools supported by the Entrez system is used to validate our gene

findings.

The SOURCE is a unification tool which dynamically collects and compiles data from various scientific

databases, such as Gene Ontology (GO), UniGene, SAGE, Genbank and PubMed. It is a text-based search

and retrieval system supported by the Stanford University that encapsulates the genetics and molecular

biology of genes from variety living organisms, i.e. homo sapiens (human), mus musculus (house mouse),

rattus norvegicus (domestic rat), into easy to navigate gene reports.

The screen shot for validating microarray gene expression profile using the NCBI Genbank and the SOURCE

system is presented in Figure 4.12 on page 114.

3.5 Summary

In this chapter, we discussed the design of our feature extraction model. We have shown technical perspec-

tives on both GAs and ANNs, how to use ANNs to calculate the fitness values of GA chromosomes. We

have applied simple mathematical formulas in fitness computation including the centroid vector principle

to calculate mean of each classes, the Euclidean distance to measure the proximity of samples from each

classes and network activation functions to determines the potential firing of a node. We have also applied a

genomic analysis platform, GenePattern software suite, to demonstrate the gene selection results graphically.

The NCBI Genbank and the SOURCE search system have been used to validate the gene findings obtained

by our model.

In Chapter 4, the prototype and the experimental study of our model will be presented.



Chapter 4

Prototype and Experimental Study

Chapter 3 presented the conceptual design of our feature extraction model to support the theme of this

thesis. This chapter demonstrates the prototype of our model, namely Genetic Algorithm-Neural Network

(GANN). The novelty of the GANN model is its simplicity that follows the Ockham’s Razor principle which

can minimise the potentiality of gene variability errors incurred by data preprocessing which is discussed

in Chapter 2. The construction of ANN for computing the fitness values of the chromosomes described

in the previous chapter will be explained. Since a standard GA technique, except the fitness computation

technique, has been used in the pattern evaluation module, we did not explain the GA construction steps in

details, however, we outlined the overview of the implementation for GA evaluation.

The objectives of this chapter are to describe the tools, the prototype and the experimental study for

supporting the theme of this thesis. This chapter contains six sections. Section 4.1 presents the software

tools used in this thesis, including the programming tool for developing the prototype and the synthetic data

sets, the data mining tool for validating the findings of the bioassay data sets and the visualisation tools to

present graphically the result findings and the data sets. Section 4.2 explains the needs for the transposition

process to preprocess microarray data. The GANN prototype is presented in Section 4.3 and Section 4.4

describes the validation steps conducted using the NCBI Genbank and the SOURCE search system. Section

4.5 describes the research methodology used to test the hypotheses of this thesis and finally, Section 4.6

concludes the chapter.

4.1 Tools used in the Prototype

Five tools: C++, WEKA, GenePattern, Microsoft Excel and R Project, are used to support the theme of

this thesis. C++ is an object-oriented programming language that is used for the coding of the GANN

93
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prototype. WEKA is a data mining software that is used to compute the statistical significance of the gene

findings and to validate the bioassay findings. GenePattern is a genomic analysis platform that is used

to visualise the correlation of the gene findings. Microsoft Office Excel is a spreadsheet software from the

Microsoft Office Package Suite that is used to graphically present the findings from the prototype. Lastly,

R Project is a language and environment that is used to visualise the data interactions.

4.1.1 Programming language for developing the prototype and the synthetic data

Although C programming language is more commonly used in the machine learning community, C++ is

chosen to be the language for developing the prototype since it is less complex in terms of coding commands

and rich in variety of built-in functions without a sophisticated programming environment. The screen

shots of the important functions in the prototype can be found in Appendix A. In addition to the GANN

prototype, two specially written C++ programs are coded to which one is used to transpose the microarray

experimental data sets and the other program is used to construct the synthetic data sets. All C++ coding

were programmed on the LINUX environment.

For the synthetic data program, the values of genes were designed based on a standard Gaussian distribution,

i.e. the mean value of 0 (µ = 0) and the standard deviation of 1 (δ = 1), with the exception on 30 randomly

selected genes, from each data set, which were created with different µ values. Table 4.1 presents the settings

in the synthetic data sets. In the synthetic data set 1, the 30 differentially expressed genes were created with

µ = 2.0 and were labelled with the gene indexes 1-15 and 5001-5015. In the synthetic data set 2, 10 out of

the 30 genes were created with µ = 0.5 (gene indexes 1-10) and the remaining 20 genes were created with

µ = 2.0 (gene indexes 11-30).

Table 4.1: The description of the synthetic data sets.

Data set Description Significant features

Synthetic data set 1 100 samples equally distributed into 2
class. Each sample has 10000 features
which were standardised with µ = 0
and δ = 1.

30 significant features, with the
feature indexes 1-15 and 5001-
5015, were standardised with
µ = 2.0 and δ = 1.

Synthetic data set 2 67 samples distributed into 3 classes,
i.e. 20 samples in class 1, 30 in class
2 and 17 in class 3. Each sample has
5000 features which were standardised
with µ = 0 and δ = 1.

30 significant features, with the
feature indexes 1-10 were stan-
dardised with µ = 0.5 and δ =
1 and the feature indexes 11-30
were standardised with µ = 2.0
and δ = 1.
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4.1.2 Tool for evaluating the significance of the findings

WEKA (Waikato Environment for Knowledge Analysis) is a data mining software developed by the University

of Waikato (Hall et al., 2009). It is a free software that is available to download from its original website

(WEKA data mining software). WEKA contains numerous collection of machine learning and data mining

tools, such as data preprocessing, classification, regression, clustering, association rules and visualisation.

Amongst these tools, the Information Gain (GainRatio) is selected to measure the significant of individual

genes extracted from the microarray and synthetic data sets. Four cost-sensitive classifiers, which are naive

bayes (NB), support vector machine (SMO), C4.5 tree (J48) and random forest (RF) are used to validate the

significance of the attributes extracted from the bioassay data sets. Additionally, the principal component

analysis (PCA) is used as a comparative tool in the bioassay data sets.

For GainRatio and PCA, the default parameter settings on the Attribute Selection tool were used. To

construct the cost-sensitive classifier, the Cost Sensitive parameter on the Meta option for NB, SMO and

RF, and the MetaCost parameter for J48 tree were selected. Figure 4.1 shows the screen shot to construct

a Cost-Sensitive NB classifier (CSC NB) on the WEKA environment. We used the default WEKA settings

for NB and RF classifiers. For SMO classifier, we set the build logistic models parameter to “true” and for

J48 tree, we amended the Unpruned tree parameter to “true”.

Figure 4.1: The screen shot for constructing a CSC NB on the WEKA environment.
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4.1.3 Tool for visualising the significance of the gene findings

GenePattern software suites is a freely available software package developed at the Broad Institute of MIT and

Harvard (Reich et al., 2006) that provides access to a broad array of computational methods used to analyse

genomic data via the Broad Institute website (GenePattern software suites). HeatMapViewer, one of the

GenePattern tools, which allows the transformation from the numeric findings into graphical representations

and provides a global view on the features interaction without any form of programming syntax, is used to

support the findings of the GANN prototype. The colour-coding scheme in the HeatMapViewer provides a

quick coherent view of feature correlations.

Figure 4.2 presents the screen shot to produce a heat-map on the GenePattern environment. In the HeatMap

Viewer module, the expression values are standardised with the mean value, ranging from -3 to 3, and the

standard deviation of 1. These values are presented in 2 different colour shades, i.e. red and blue. High

expression values are displayed in red indicating with positive values and the negative value representing low

expression values which is displayed in blue. Intermediate expression values are displayed in different shades

of red and blue. We used the default HeatMap Viewer settings to generate heat-maps for our findings on

microarray data.

Figure 4.2: The screen shot generating heat-map using HeatMap Viewer.

4.1.4 Tool for visualising the findings

Microsoft Office Excel is a spreadsheet application written and distributed by Microsoft. It is featured with

calculation functions, graphing tools, pivot tables and VBA macro programming language. In this thesis,
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the calculation functions and graphical tools of the Microsoft Office Excel (version 11.0) are used.

4.1.5 Tool for visualising data sets

R project is a language and environment for statistical computing and graphics developed at the Bell Labo-

ratories. It is available freely under the terms of the Free Software Foundation’s GNU General Public License

in source code form from the R website (R Development Core Team, 2006). In R, the cmdscale() function

has been used to visualise sample patterns within the data. Figure 4.3 shows the screen shot on the cmdscale

programming code in R environment. The cmdscale function performs classical multidimensional scaling

(MDS) in visualising similarities/dissimilarities between data points (i.e. samples) based on several fitter

variable points (i.e. features) to project data points in a two-dimensional graph. The results are evaluated

by comparing the distances between data points on the proximity matrix with the Euclidean distances and

a measure of goodness-of-fit. In R project, we use the default parameters on the Euclidean distance and

goodness-of-fit.

Figure 4.3: The screen shot visualising data pattern using multidimensional scaling (MDS) on the R environment.

4.2 Microarray Data Transposition

Like all kind of data sets, microarray data sets is designed in a two-dimensional table. However, in practice,

microarray data sets have different arrangement in the data layout, as showed in Figure 1.1 on page 4.

Typical microarray data sets arranged individual instances, i.e. samples, in the columns of the table and

its associated attributes, i.e. genes, in rows. The reason for such data arrangement is that most microarray
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software utilise spreadsheet features from the Microsoft Office Package (version 11.0 and below) which can

only hold maximally 256 columns, but has an enormous number of rows up to 65536 rows. With the

introduction of the new Microsoft Office Package in year 2007 (version 12.0), this new version of Excel

software can stores up to 1048576 rows and 16384 columns of data. However, many of the laboratories

have not transformed their data to this new version of spreadsheet system. Thus, data transposition is still

required when working with current publicly available microarray data.

In this thesis, a C++ program is specially written to transpose the microarray data into the standard format

that is compatible to the computing algorithm.

4.3 Architectural Design of the Prototype

Referring to the conceptual design of the GANN model in Figures 3.11 page 84, a high level of architectural

design based on the program functions in the prototype is presented in Figure 4.4. The prototype contains

three main modules that are coherent with the components in the design phase as discussed in the previous

chapter, which include population initialisation, fitness computation and pattern evaluation. These modules

are integrated as one whole bespoke program which is implemented using C++. The pseudocode of the

GANN prototype is depicted in Figure 4.5 and its coding statements can be found in Appendix A.

4.3.1 Parameter Setting Interface

Before the prototype being executed, the parameters for both GA and ANN need to be defined. As this

is only the prototype of our approach, there is no graphical user interface (GUI) environment for such

definition. Instead, it was made directly on the coding statement shown in Figure A.1 in Appendix A. Table

4.2 presents the the parameter settings of the prototype.

Table 4.2: The summary of the GANN interface parameters.

Parameter Description

RUN COUNT The whole GANN process cycle. The default value is 5000.

INPUT ROWS The number of samples to be read from the data set.

INPUT COLS The number of features to be read from the data set.

CLASS COUNT The number of class clusters in the data set.

HIST COUNT The number of ranked features produced by GANN. The default value

is consistent with the INPUT COLS parameter.

HIST MIN The minimum frequency of the correctly labelled samples in each feature

produced by GANN. The default value is 0.

Continued on Next Page. . .
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Table 4.2 – Continued

Parameter Description

HIST MAX The maximum frequency of the correctly labelled samples in each fea-

ture produced by GANN. The default value is consistent with the IN-

PUT ROWS parameter.

GA POPSIZE The population sizes to be examined {100, 200, 300}. User can input

integer values that is higher or lower than the defined sizes.

GA EVALS The evaluation sizes to be examined {5000, 10000, 15000, 20000, 25000,

30000, 35000, 40000, 45000, 50000}. User can input integer values that

is higher or lower than the defined sizes.

GA PRECISION The fitness confidence (accuracy) level of GANN. The default value is

consistent with the INPUT ROWS parameter.

GA MUTATIONDIST The mutation point (the point on the chromosome to be changed) of the

string (offspring). The default value is 0.5.

GA MUTATIONRATE The mutation rate. The default value is 0.1.

GA XFACTOR The cut-point on the parent strings. The default value is 2 (single-point

crossover).

GA CROSSOVER The execution of crossover function. The default setting is true. User

can de-activates this function by amending the parameter to false.

GA TOURNAMENTSIZE The size of the tournament selection. The default value is 2.

MLP ISIZE The input nodes in the input layer. The default value is 10.

MLP HSIZE The hidden nodes in the hidden layer. The default value is 5.

MLP OSIZE The output nodes in the output layer. The value must consistent with

the CLASS COUNT parameter.

MLP ACT The activation function. The available functions include binary sigmoid,

linear, tanh, threshold.

MLP SIZE The network weights including the bias nodes. User can amend the

number of bias nodes in the hidden and output layers.

Three data set parameters, which are INPUT ROWS, INPUT COLS and CLASS COUNT ; were used to

describe the experimental data set. The INPUT ROWS is the total number of samples in the data set, the

INPUT COLS is the total number of features in the data set and the CLASS COUNT is the number of

classes in the data set.

The layout of the results is defined by three parameters, i.e. HIST COUNT, HIST MIN and HIST MAX.

The HIST COUNT indicates the total number of ranked features to be displayed by the prototype, the
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Figure 4.4: GANN Prototype: A high level of architectural design.

HIST MIN and the HIST MAX indicates the cut-off range for the minimum and the maximum correct

labelled sample frequency for each ranked feature to be displayed by the prototype.

For a GA to optimise chromosomes in the population, eight parameters were included, which are GA POPSIZE,

GA EVALS, GA PRECISION, GA MUTATIONDIST, GA MUTATIONRATE, GA XFACTOR, GA CROSSOVER

and GA TOURNAMENTSIZE. The GA POPSIZE indicates the population size, the GA EVALS indicates

the evaluation size, the GA PRECISION is the fitness accuracy of the prototype, the GA MUTATIONDIST

and GA MUTATIONRATE are the mutation point and the mutation rate for mutation operator, the

GA XFACTOR is the cut point for crossover operator and the GA TOURNAMENTSIZE is the number

of chromosomes competed in the tournament.

To compute the fitness values for GA chromosomes, five ANN parameters were used, i.e. MLP ISIZE,

MLP HSIZE, MLP OSIZE, MLP ACT and MLP SIZE. The first three parameters (MLP ISIZE, MLP HSIZE

and MLP OSIZE) indicate the number of nodes for the input, hidden and output layers, respectively. The

MLP ACT is the activation function for the hidden layer and the MLP SIZE is the total ANN weights,

including the bias weights.

The RUN COUNT and GA EVALS parameters are used to stop the prototype when the desired solution is
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INITIALISE GANN parameters

REPEAT until termination criteria A (Max. no. of iteration) is satisfied {

Generate GA population

Calculate fitness values for each string in the population {

DO WHILE EOF {

a. Generate network weights

b. RUN ANN

c. Compute centroid values for each class using target output

d. Calculate distance between samples and classes

e. Label samples to its nearest class

}

}

REPEAT until termination criteria B (Max. no. of fitness evaluation ||

predefined precision value) is satisfied {

Select 2 strings as parents for reproduction

Perform GA operators {

For network evolution {

a. Crossover 2 set of network weights to produce new set of network weights

b. Mutate the new set of weights

}

For feature evolution {

a. Crossover 2 strings to produce new set of string

b. Mutate the new string

}

}

Calculate fitness value for new string

Replace the least fit string with the new string

}

Calculate the number of correctly labelled samples

}

PRODUCE summary results

Figure 4.5: The pseudocode of the GANN prototype.

achieved (GA PRECISION ). The RUN COUNT parameter performs external looping on the entire extrac-

tion process and the GA EVALS parameter internally repeating the fitness computation module.

4.3.2 Population Initialisation Phase

In this module, two program functions are executed, which are the read files() and ga init() functions. Figure

4.6 presents the module’s flowchart.

This module begins when the data set is retrieved by the prototype. The read files function reads the entire

data set and stores the data in a two-dimensional input matrix with rows indicate samples and columns

indicate features. This input matrix is ready for use by the subsequent functions. After the input matrix

was created, subsets of the features from the matrix is extracted using the ga init function. The number of

extracted features is reliant on the population size and the chromosome size. For example, in the population



4.3 Architectural Design of the Prototype 102

size of 300 and the chromosome size of 10, the ga init function will extract 3000 features (300 x 10) from

the input matrix. The extracted feature subset is stored in the GA GENOME array for later use. The

subsequent program functions will process the feature subsets in the array, rather than the features in the

input matrix. The configuration statement for the GA GENOME array and the coding statement for the

ga init function are presented in Figures A.2 and A.4a in Appendix A, respectively.

Figure 4.6: Population Initialisation Phase: The system flowchart.

It is important to note that, other than the data transposition for microarray data, there is no data pre-

processing steps, such as pre-filtering, imputation techniques and normalisation methods, are applied to the

experimental data sets, as is in the traditional way for analysing microarray data. The reason for excluding

such traditions is that we would like to avoid any of the sort of errors that may induced by these preprocessing

steps.

4.3.3 Fitness Computation Phase

After the feature subsets are loaded in the GA GENOME array, a 3-layered feedforward ANN with the

structure of 10-5-O is constructed to calculate the fitness values for each feature subset in the array. Three

program functions are created in this module are the mlp set(), mlp run() and mlp fit() functions. The overall

system flowchart of this module is presented in Figure 4.7 and the coding statements of these functions can
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be found in Figure A.3 in Appendix A.

Figure 4.7: Fitness Computation Phase: A high level system flowchart.

In this module, the mlp set function is first executed to initialise the network weights for each network layer

and the bias values for the hidden and output layers. The initial weight values are randomly selected from

the range of [0,1]. The mlp set function then reads the input nodes from the GA GENOME array. In other

words, 10 features will be used as the input nodes in the ANN when the chromosome size is set to 10. The

mlp run function is then executed to process each sample of the data set for which the network must be run

and calculates activation outputs, which is then used by the mlp fit function to calculate the fitness of the

feature subset. The fitness output of the mlp fit function is stored in the GA GENOME array.
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4.3.3.1 mlp set() function

The mlp set() function is the looping function based on the for loop command, used to construct the network

model based on the network size defined in the parameter setting interface module.

4.3.3.2 mlp run() function

After the network is constructed, the mlp run() function processes samples for each chromosome in the

GA GENOME array. Once the input activations of the network are set, using the activation value and the

element values, the network can be run in sequential order. This process is often called “feedforward” in the

context of ANN.

In the mlp run function, as shown in Figure 4.8, the first input weight for the first input node is read from

the GA GENOME array to compute the activation value for the input node f(Ainput). The network is

then process the second input weight for the second input node. This process is repeated until all the input

nodes have assigned activation values. In the input layer, the identity activation function (f(x) = Σxi) is

used to calculate input activation values.

The network then process the nodes in the hidden layer by reading the first hidden weight and its bias from

the GA GENOME array to calculate its hidden activation value f(Ahidden). In the hidden layer, each

hidden node is supported by a bias node B, meaning that 5 bias nodes will be generated by the network for

5 hidden nodes. This process is iterated until all the hidden nodes have assigned activation values. In the

hidden layer, four commonly used activation functions f(x), i.e. sigmoid, linear, hyperbolic tangent (tanh)

and threshold functions are examined in this thesis. The equations for these activation functions can be

found in Figure 3.10 on page 81. The hidden activation function can be expressed as f(x) = Σxij + Bj , in

which f(x) is the selected activation function, xij is the weight for the input node to hidden node, and Bj

are the bias weights for the hidden nodes.

Based on the outputs from the hidden layer, the network calculates the activation value f(Aoutput) for

each output node in the output layer. A two dimensional matrix A, as shown in Expression 4.1, that holds

the activation values from the output layer is produced and this matrix is used by the mlp fit function to

calculate the fitness value for each feature subset in the GA GENOME array.

A =


a1s1 a2s1 . . . aks1

a1s2 a2s2 . . . aks2
...

...
...

...

a1sn a2sn . . . aksn

 , (4.1)
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where a1 is the activation value computed by the first output node (i.e. class 1) and a2 is the activation

value computed by the second output node (i.e. class 2).

Figure 4.8: Fitness Computation Phase: A low level flowchart on the mlp run() function.

4.3.3.3 mlp fit() function

To classify the sample to its nearest class, the mlp fit() function is invoked. Figure 4.9 presents the low level

flowchart for mlp fit function. This function plays a key role in calculating the fitness value for each chromo-

some in the population. In this function, the network firstly reset the network output in the FIT CENTROID

array to zero to ensure that the network performance is not interfere by the predecessor network. Using

the target output T (see Expression 4.2) from the FIT CLASS array, the network counts the number of
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samples in each class and these values are used to calculate the centroid value for each class Ck using the

activation results from the mlp run function (see Expression 4.1). The centroid values are stored in the

FIT CENTROID array, which will be used for labelling samples to its nearest class. The configuration

statements of the FIT CENTROID and FIT CLASS arrays can be found in Figure A.2 in Appendix A.

T =


ts1

ts2
...

tsn

 , (4.2)

where tsn is the target (actual) output for sample n in the data set.

When the centroid of the classes in the data set is calculated, the network computes the sample distance

for each class. In the distance proximity measure, the square root for the subtraction of output activation

value for each sample to each class centroid is calculated (
√

(Aik − Cik
2
) and the results are stored in the

FIT CLASS array, which is used to label the sample to the nearest class. Expression 4.3 presents a two-

dimensional matrix used in the FIT CLASS array to store the proximity values of samples to each class

centroid.

O =


o1s1 o2s1 . . . oks1

o1s2 o2s2 . . . oks2
...

...
...

...

o1sn o2sn . . . oksn

 , (4.3)

where oksn is the network output for sample n for class centroid k.

Based on the proximity values in the matrix O, the network compares values of both the centroid and the

sample and labelled sample to the class with the smallest discrepancy value. Thus, the matrix O in the

FIT CLASS array is updated as:

∆O =


o1s1 o2s1 . . . oks1 class 1

o1s2 o2s2 . . . oks2 class 2
...

...
...

...

o1sn o2sn . . . oksn class k

 . (4.4)

The matrix ∆O is the actual output generated by the network. To count the number of correctly labelled

samples for each chromosome, the network output is compared to the target output. For each correctly

labelled sample, a constant value of 1 is added to the chromosome’s fitness score, which is saved in the

GA GENOME array.
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Figure 4.9: Fitness Computation Phase: A low level flowchart on the mlp fit() function.

The entire fitness computation process is repeated until all chromosomes in the population have been assigned

a fitness value and the termination criteria defined in the parameter setting interface module are met.
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4.3.4 Pattern Evaluation Phase

When all chromosomes have been assigned fitness values, the evaluation process begins by first identifying a

pair of chromosome from the GA GENOME array for producing new offspring. The ga run() function is used

to execute such process and the ANN process (fitness computation module) is evoked to compute the fitness

value for this offspring. The GA compares all chromosomes in the array to identify the least fit chromosome,

which is then replaced by the new chromosome; and sorts these chromosomes in sequential order, ranking

from the best fit chromosome to the least fit chromosome. The comparison process is performed using

the ga getworst() function and the sorting process is invoked by the ga getbest() function. The latter two

functions are invoked in the ga run function. In other words, the ga getworst and ga getbest functions are

the subfunctions executed by the ga run function. Figure 4.10 presents the system flowchart of the module

and the coding statements for this module can be found in Figure A.4 in Appendix A.

4.3.4.1 ga run() function

The ga run() function plays a key role in evolving chromosomes and it, in fact, represents the entire GA

evolution process and to stop the prototype from over-learnt. In the ga run function (see Figure 4.10a),

the GA randomly selects a chromosome from the GA GENOME array for comparison. The GA is then

selects another chromosome from the array and the fitnesses of these two chromosomes are compared. The

chromosome with high fitness value is chosen as the parent chromosome a. Such comparison process is known

as tournament selection in GA. Similar process is performed to find the parent chromosome b. When the

GA has identified parent chromosomes, these chromosomes are cross-overed to produce new offspring. This

is known as reproduction in the context of GA.

In this module, two types of reproduction process are performed. They are network weight optimisation

process and conventional GA process (i.e. feature subset optimisation). For the network weight optimisation

process, the weight of the first input node from both parent are cross-overed based on the random crossover

point (i.e. cut point) in the range of [1, network size - 2], to obtain the new input weight for the first input

node in the new network. This new weight is then mutated with the Gaussian range [0, 0.5] and the mutated

weight is saved in the GA GENOME array. The process is repeated until weights for all nodes in both parent

are optimised. The similar optimisation process is used to optimise feature subset in the new offspring. For

feature subset optimisation, the crossover point of the features is selected randomly in the range of [1, Input

nodes - 2] and the mutation point is selected randomly in-between the range [-z, +z], in which the z value is

the division of the entire features in the data set over 100. In other words, for the data set containing 7000

features using the network structure 10-5-2, the crossover point for new network is [1, 65], the crossover and

mutation points for new feature subset is [1, 8] and [-70, 70], respectively.
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(a) The ga run() function.

Figure 4.10: Pattern Evaluation Phase: A low level flowchart on ga run() function.

The fitness of this new offspring is calculated by repeating the processes in the fitness computation module

and the comparison between chromosomes is carried out by the ga getworst function and the feature ranking

is performed by the ga getbest(). The processing step in these two functions is presented in Figure 4.10b.



4.3 Architectural Design of the Prototype 110

(b) The ga run() function.

Figure 4.10: – Continued

• ga getworst() In this function, all chromosomes in the GA GENOME array are copied to the tem-

porary matrix M1. Then the comparison between chromosomes begins by comparing the first two

chromosomes. The least fit chromosome is preserved in another temporary matrix M2 and the other
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chromosome is removed from the matrix M1. The second chromosome from the matrix M1 is retrieved

and compared with the chromosome in the matrix M2. The process is repeated until there are no

chromosome left in the matrix M1. The chromosome in the matrix M2 is considered as the worst

chromosome in the population and this chromosome is removed from the GA GENOME array. The

new offspring is replaced the position of the removed chromosome in the array. The contents of the

matrices M1 and M2 are emptied so that these matrices can be reused by other functions.

• ga getbest() When the new offspring is introduced to the GA GENOME array, the ga getbest function

is invoked by the ga run function. In this function, all chromosomes in the GA GENOME array are

copied to the temporary matrix M1. A chromosome y, randomly selected from the matrix M1, is

copied into the first pointer (i.e. fittest) in the temporary matrix M2 for comparison. The second

chromosome retrieved from the matrix M1 is compared with the chromosome y in the matrix M2. If

this chromosome has higher fitness score than the chromosome y, the chromosome y is moved one step

below the first pointer in the matrix and this new chromosome is allocated in the first pointer. If this

chromosome has lower fitness score than the chromosome y, this chromosome is added at the second

pointer after the chromosome y. This sorting process is repeated until there are no chromosome left

in the matrix M1 and the ranking of each feature in the chromosomes are stored in the HIST ENTRY

array.

4.3.5 Terminating the Prototype

Before the prototype stops running, the fitness score of the best chromosome is compared to the defined value

in the GA PRECISION parameter in the parameter setting interface module. If the fitness score matches

the value in the GA PRECISION parameter, the termination criteria based on the external iterating on the

entire GANN process is performed (RUN COUNT parameter). Otherwise, the termination criteria based

on the internal looping on the fitness computation process is invoked (GA EVALS parameter). For either

criteria, a summary result is produced when the prototype stops. This result comprising features ranking

based on their selection frequency in different classification accuracy, retrieved from the HIST ENTRY array.

The screen shot of the summary result processed by the HIST ENTRY array is presented in Figure 4.11

and the configuration of the HIST ENTRY array can be found in Figure A.2 in Appendix A.

4.4 Data Validation - NCBI Genbank & Stanford SOURCE Search System

Due to the rapid development of microarray annotations, most of the gene description, in both microarray

experimental data sets, was not supported by the NCBI Genbank nor can it be found in the Stanford
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Figure 4.11: The screen shot of the HIST ENTRY array. Column 1 indicates the indexes of the features in the
data set; column 2 represents the total number of frequency selections for each index; column 3 represents the
number of times the index has been selected with no mislabelled samples; column 4 shows the number of times
the index has been selected with 1 mislabelled sample; and so on.

SOURCE search and retrieval system. Thus, great care is taken in validating the gene findings. Firstly, a

list of the unique gene number, i.e. Affymetrix Accession Number for the ALL/AML genes and Clone Image

Id for the SRBCTs genes, of the selected genes is uploaded into the SOURCE system. A variety of options

on the type of gene information can be selected in the system. Then, the outcome of the SOURCE system

is cross-referenced against the NCBI Genbank via the NCBI Entrez Gene system.

There are two main reasons for choosing the SOURCE system as one of the validation mechanisms in this

thesis. Firstly, it is far more user friendliness than the NCBI Genbank and it can process multiple gene

queries at the same time. Secondly, which is arguably the most important, that is, the SOURCE system can

process Clone Id of the cDNA gene, whereas the NCBI Genbank is unable to recognise the Clone Id of the

cDNA data.

To validate the gene findings of the GANN prototype, the following steps are performed:

1. A text-based document containing only the unique gene numbers of the selected genes, i.e. Accession

Number of the ALL/AML genes and Image Id (clone id) of the SRBCTs genes, was produced.

2. The document is then uploaded to the SOURCE system (Stanford SOURCE search and retrieval
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system) and the gene options: Gene Id, Gene Symbol and Gene Cytoband, are selected. When there

is more than one possible outcome of a specific gene found in the system, no result will be produced

for that gene. Most of the SRBCTs genes containing more than one possible result in the SOURCE

system. This is mainly due to different cDNA protocol and annotation being used in different research

laboratories.

3. The annotation results obtained by the SOURCE system was then compared with the annotations used

in the experimental data sets. For the SRBCTs findings, an additional comparison on the annotation

results in the SOURCE system and the up-to-date gene annotations from the original authors was

performed. This is to prevent any incorrect annotation being used in our findings.

4. For gene annotations that are not supported by the SOURCE system, the annotation of these genes is

entered individually into the NCBI Entrez Gene system (NCBI Genbank).

(a) For ALL/AML findings, the accession number of the gene is used to perform the search. When

more than one possible outcome is found in the Genbank, the annotation based on the term

“Homo Sapiens” is used. In the case where the accession number is invalid, the gene description

is used to perform the search in the system.

(b) For SRBCTs findings, the gene description of the gene is used to perform the search. Even so,

there is always some undefinable genes in the SRBCTs data set due to a generic description being

used in the data.

5. A complete list of genes containing the original unique gene number, the gene id and the cytoband of

the gene, was produced.

Figure 4.12 presents the steps for validating identified genes on the microarray data set.

4.5 Experimental Study

To support the theme of this research, a research methodology is applied on this thesis. There are several

research methodologies in computer science, such as simulation, mathematical proof and experimental study.

Our research uses the experimental study to test the hypotheses related to conceptual design and to system

performance. We validate our solution by comparing the results from the prototype with the expected results

from the synthetic data sets, the findings from the NCBI Genbank and the SOURCE search system, as well

as the results reported in the original studies.
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Figure 4.12: The steps for validating identified genes on the microarray data set. [1] A text-based document
containing the clone id or accession number of the selected genes is uploaded to the SOURCE entry and retrieval
system. Options such as Gene Id, Gene Symbol and Gene Cytoband in the SOURCE system are selected. [2]
The SOURCE system processed the clone id and [3] a text-based document containing the defined options is
displayed. When there is more than one possible outcome on a specific clone id, the system indicated the words
“Data not found” or “Multiple clusters” in the output result. [4] The results was then compared with the gene
descriptions in the data set to ensure the correct result is obtained for each identified gene. [5] The annotation
for the gene with more than one possible outcome on the SOURCE system is entered into the NCBI genbank
for validation. The annotation based on the term “Homo Sapiens” is used for cross-referencing our findings.

4.5.1 Objectives of experimental study

Reference is made to the hypotheses of this research as stated in Section 1.4 on page 12, emphasising the

model simplicity, the model generalisability and the normalisation-free model, as well as the formation of

biologically relevant results. To test the hypotheses, our experimental study measures the performance of

four ANN activation functions: sigmoid (binary sigmoid), linear, tanh and threshold, for which each function

is represented by a separate system in the prototype. This is to indicate which activation function has the

best or worst performance when they are used to compute the fitness values of features in the same data
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sets with similar parameter settings applied. Thus, the experimental study serves five purposes as follows:

The first purpose is to assess the overall performance of each system to handle raw, unprocessed microarray

data sets. The term ‘raw’ used in this section refers to the original microarray data set, obtained from

the respective repository, with no preprocessing steps performed on data values. In this experiment, the

oligonucleotide microarray data set having large range between the maximum and the minimum values

within a gene in the data set is examined.

The second purpose of the study is to assess the overall performance of each system to handle different types

of microarray platforms. In this experiment, two microarray data sets with different array platforms and a

different number of classes are examined.

The third purpose of the study is to assess the implication of two main GA features: population size and the

number of fitness evaluations for analysing microarray data. This objective is to examine which population

size is best for data with high feature dimensions and the minimal number of evaluations required for

consistent results.

The fourth purpose of the study is to assess the generalisability of the prototype to select the most significant

attributes from a large, imbalanced data set that contains multiple data representation. In this experiment,

two bioassay data sets with different percentage of minority class (different number of active compounds)

are examined.

The last purpose of the experimental study is arguably the most important, that is, to check the accuracy

(correctness) of the work described here in extracting the desired features from the data sets. The accuracy

of the results is checked by comparing the results obtained via the prototype and our expected results in

synthetic data sets.

4.5.2 Experimental Data Sets

Six experimental data sets were used in the experimental study. These data sets comprise of microarray

data sets (i.e. ALL/AML and SRBCTs), synthetic data sets (i.e. synthetic data set 1 and synthetic data

set 2) and bioassay data sets (i.e. AID362 and AID688). The description of these data sets is presented in

Section 3.1 on page 58.

4.5.3 Experiment Design

The experiments are designed according to the objectives of the experimental study, which has been men-

tioned in Section 4.5.1 and the hypotheses of this thesis, is as follows:
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1. Varying sizes of data sets with varying numbers of samples allocated in each class cluster were used in

the experiments. We performed trial experiments on several different sizes of data and it was found

that data that had a class size between 2 to 3 and a ratio between samples and features is 1:100 showing

a significant performance difference between the systems. Thus, the experiments were conducted based

on the synthetic data with sample size varying from 67 to 100, feature size varying from 5000 to 10000

and class size varying from 2 to 3. Similar sets of experiments were also performed on the real-world

microarray data sets which have a sample size varying from 72 to 83, feature size varying from 2308 to

7129 and class size varying from 2 to 4. This design serves the first two purposes of the experimental

study.

2. Varying sizes of population and fitness evaluation on the GA were tested in the experiments. In the

GANN prototype, the values of GA parameters, i.e. the population size, the fitness evaluations size,

the crossover factor and the mutation rate, can be changed (see GANN interface in Figure A.1 in

Appendix A). Trial experiments were conducted on these parameters and it was found that there was

a minor influence of the mutation operator to the stability performance of the system, with mutation

rate varying from 0.1 to 0.5. When the mutation rate more than 0.5 was applied, the system became

unstable and different set of genes were produced in the repeated trial when similar set of parameters

were used. This could be a precursor to the over-fitting problem. Therefore, we retained a small

mutation rate, i.e. 0.1, in all systems.

We also conducted trial experiments based on the population size varying from 100 to 700 and the

fitness evaluation size varying from 1000 to 50000. The trial results showed that convergence began

in most systems when the population size reached 300 and the fitness evaluation size 20000. However,

there was not much difference in system performance for population size, ranging from 300 to 700.

Therefore, the experiment was conducted on a population size varying from 100, 200 and 300. We

performed the experiments on smaller fitness evaluation sizes, started from 5000 and each time, the

evaluation was increased another 5000 cycles, until the maximum evaluation size of 50000 is reached.

This design supports the third purpose of the experimental study.

3. Varying levels of fitness precision in the prototype were examined in the experiment. The default values

of the precision parameter is usually consistent with the sample size, i.e. 100% fitness precision score.

This value can be altered to different precision accuracies. The experiments based on three precision

levels varying from 95% to 100% were tested. This design argues our statement in Section 1.2.4 on

page 9 and supports the objectives of our research theme stated in Section 1.4 on page 12.

4. The comparison study based on the normalised and the raw microarray data set was performed to

support our argument concerning the implication of data normalisation process addressed in Section



4.6 Summary 117

1.2.2 on page 8. The experiments based on the ALL/AML microarray data set was conducted.

5. The experiments based on two bioassay data sets with the tanh-based GANN system were performed.

This design supports the fourth purpose of the experimental study.

All the above experiments were designed for the last purpose of the experimental study. The first and the

second experiments were assessed based on the number of significant genes extracted by the system, the

fitness accuracy of the system on the extracted genes and the processing time of the system. The integrity of

the findings was evaluated based on the comparison studies conducted in previous work and from a molecular

perspective.

4.6 Summary

In this chapter, we have discussed the tools used to support the theme of this thesis and explained the

prototype of the method outlined in Chapter 3. An experimental study were conducted to evaluate the

performance of the prototype from several aspects, including the effect of different precision levels, the

population sizes, the fitness evaluation sizes and different activation functions.

With the vast development of microarrays, and there are many ‘grey areas’ that need to be further investi-

gated, the existing feature selection models are unable to handle these areas. Questions, such as ‘which genes

trigger the development of specific cancer diseases?’ and ‘which genes shown the first sign of the recurrence

of mutated cells?’, are yet to be answered. These questions have been taken into consideration when we

constructed the prototype which aims to provide an insight into the elementary genes and triggered genes

in malignancy development. A fitness precision accuracy parameter is also built into the prototype, which

allow users to closely monitor the pattern of the disease development from the beginning stage to the final

stage.

In the next chapter, we carried out a comparative study of our results with the studies reported previously

and show how the hybridisation of GAs and ANNs is suitable for analysing microarray data as well as the

bioassay data.



Chapter 5

Experimental Results and Discussion

The prototype and the experimental study have been explained in the previous chapter. The objectives of

this chapter is to present the findings of the prototype including discussions of the experimental results. Four

GANN systems represent different activation functions, based on three population sizes and ten evaluation

sizes which were compared in this chapter.

The relevant graphs and tables to support the objectives of the experimental study and the hypotheses of

this thesis were produced in this chapter. Additional information on these graphs and tables can be found

in Appendix B.

5.1 System performance with different data sets in different population

sizes

In this section, we assess the overall system performance based on the synthetic data sets and the microarray

data sets. Three figures, each representing an evaluation criteria, were produced. Each figure presents a high

level view of system performance in terms of the the average number of the extracted genes in Figure 5.1,

the average fitness accuracy of the extracted genes in Figure 5.2 and the average elapsed time (processing

time) in Figure 5.3, based on three population sizes, ranging from 100, 200 to 300. The complete list of the

extracted gene by each system in the four data sets are presented in Appendix B.

The four systems shown in the figures represent four different ANN activation functions used in the GANN

prototype to compute the fitness values for each subset of genes in the population. These systems comprise

of sigmoid, linear, tanh and threshold based.
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5.1.1 The number of significant genes

With observation on the synthetic data sets in Figure 5.1, all systems have extracted an almost similar

number of predefined genes in the synthetic data set 1 and in every population size. The linear based system

has the highest number of predefined genes found in both synthetic data sets, i.e. on average 30 and 16 with

the population size 300 in the synthetic data set 1 and the synthetic data set 2, respectively. The tanh based

system has the lowest number of predefined genes found in the synthetic data set 2, i.e. on average 11 out

of 30 genes in the population size 300.

Figure 5.1: The average number of significant genes extracted by each system based on the selection frequency
of 50 and above. The linear based system has the highest number of extracted genes in both synthetic data
sets and the ALL/AML data set, while the other three systems have a similar performance in these data sets.
None of the systems has a significant performance in the SRBCTs data set. In order words, all systems have a
comparative performance in the SRBCTs data set.

For microarray data sets, there is a significant difference in the number of genes extracted by the linear based

system and the other three systems in the ALL/AML data set. The linear based system has found more

genes in every population size, while the other three systems have an almost equal number of genes was

found in every population size. For SRBCTs data set, a significant fluctuation on the number of extracted

genes by each system in every population size. In the population size 100, the sigmoid based system has

the highest number of genes found, while the linear based system has the lowest number of genes found

when a similar parameter was applied. When the population size is increased to 200, the threshold based

system has found a slightly higher number of genes than the sigmoid based system, while the tanh based

system showed a significantly decreased number of genes was found. A similar observation was made on

the decreased number of extracted genes by the sigmoid and tanh based systems in a population size 300.

When a similar population size was applied to the linear and the threshold based systems, both systems had
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a higher number of genes extracted than the sigmoid and tanh based systems.

An interesting phenomenon was observed on the number of genes extracted on the data sets when the

population size is increased. There are, on average, 11.47% (i.e. 11.64% on sigmoid based, 9.12% on linear

based, 11.74% on tanh based and 13.39% on threshold based) and 14.76% (i.e. 18.89% on sigmoid based,

9.16% on linear based, 17.42% on tanh based and 13.57% on threshold based) of decreased number of

significant genes extracted by all systems on ALL/AML and SRBCTs data sets, respectively. Conversely, a

significant increased number of predefined genes (on average 55.05% on synthetic data set 2) by each system

on both the synthetic data sets. This is due to the quality (characteristics) of the data sets. Both the

synthetic data sets were generated based on different mean µ values in the Gaussian distribution; as a result,

there are no extreme maximum and minimum values in the genes and outliers, which most microarray data

suffer. Microarray data sets contain large value interval within a gene, especially the ALL/AML data set

that contains large number of suppressed genes expression (i.e. negative values). With the increase in the

population size, more chromosomes were exploited by the systems and consequently, more learning patterns

(i.e. chromosomes) have been presented to the systems to model a set of general rules from these patterns.

As indicated in Figure 5.1, all systems might under-learnt the rules in population size 100 due to insufficient

learning patterns to model these rules. With the increase population size to 200, the systems started to

explore more learning patterns, however, the rules were still imperfect in some way as microarray data sets

are highly imbalanced on the scale of available samples and the number of associated genes per sample, and

a high ratio of significant genes and noisy genes in the data sets. When the population size was increased to

300, the systems have been provided with sufficient learning patterns to model a set of better general rules

with lesser number of but most significant genes in the data sets. We will discuss the significance of the

extracted genes in Sections 5.3-5.4.

5.1.2 The fitness performance

With assessment on the fitness performance of each system in Figure 5.2 for synthetic data sets, there is

no significant difference between the systems’ performance in the synthetic data set 1 when the population

size are 200 and 300. This is because all the 30 predefined genes in the data set have been identified by all

systems, as is indicated in Figure 5.1 on page 119. Tables B.1-B.3 in Appendix B show the list of identified

genes in the synthetic data set 1.

Even so, some predefined genes may be stronger, i.e. genes with significant expression values than the other

genes, these genes have a significant influence on the fitness accuracy. This is indicated by slightly better

fitness performance on the linear and the threshold based systems in the population size 300 in the synthetic

data set 1. For synthetic data set 2, with a population size of 300, the linear based system has the best
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Figure 5.2: The average fitness performance by each system. A significant improvement in the fitness performance
in each system with the increased population size. The linear based system has the best fitness performance in
both synthetic data sets, whereas the tanh based system has the lowest performance. In the case of microarray
data sets, both sigmoid and tanh based systems have the best fitness performance on the ALL/AML data set
and the sigmoid based system has the highest fitness performance on the SRBCTs data set.

fitness performance (50.45%), while the tanh based system has the lowest performance (22.8%). This is

consistent with the smallest number of predefined genes found by the tanh based system in the data set, as

is shown in Figure 5.1. Tables B.4-B.6 in Appendix B shows the list of identified genes in the synthetic data

set 2. The linear and the threshold based systems have a significant difference in the fitness performance in

a population size of 300, although, both systems have a similar number of predefined genes identified. The

fitness discrepancy is due to the influence of some stronger (fitter) predefined genes than the other predefined

genes, which resulted in a better fitness confidence performance in the system. This inconsistency may be

also due to the implication of some strong noisy genes, i.e. indexes 667, 2471, 2816, 2828, 4175, 4377, 4390

and 4883 (see Table B.6b in Appendix B), in the linear based system. This indicates that the linear based

system capable in exploring stronger genes more efficiently than the other three systems. The identified

genes were important to the subject of interest, however, it cannot assure that the identified genes are genes

of interest.

For microarray data sets, the sigmoid and the tanh based systems have a better overall fitness performance

than the linear based system, although more genes have been identified by the latter system, as is indicated

in Figure 5.1. For ALL/AML data set, the threshold based system has the lowest fitness performance in

every population size, while both the sigmoid and the tanh based systems have the highest performance in

every population size. The low performance of threshold based system may be due to the involvement of

multiple cancer subtypes within a cancer class in the data set (see Figure 3.1a on page 60). In the population

size 300, the linear based system has an average fitness accuracy of 79% on 51 identified genes, compared
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to both the sigmoid and the tanh based systems which achieved an average 91% of fitness confidence on 42

identified genes. This has confirmed our observation in the linear based system that it is able to detect the

strongest genes, i.e. genes that can discriminate cancer classes, but not these genes might always underly the

data. For SRBCTs data set, the linear based system had the lowest fitness performance, while the sigmoid

based system outperformed the other systems. The sigmoid, the linear and the tanh based systems have a

lower fitness performance in the SRBCTs data set than in the ALL/AML data set. Conversely, the threshold

based system has a slightly better performance in the SRBCTs data set than in the ALL/AML data set.

This might due to the tumour classes in the SRBCTs data set are not dependent while the ALL/AML data

set is formed by subtypes of similar cancer classes, and the SRBCTs data set is a multiclass problem while

the ALL/AML data set is a binary class problem.

5.1.3 The processing time

Finally we look at the processing cost of each system in each experimental data set. From the Figure 5.3, both

the linear and the threshold based systems have the lowest processing time in all data sets. This is because

both systems involved only the basic statistics operations, i.e. addition and multiplication, to calculate the

fitness results rather than the sigmoid and the tanh based systems, which adopted more advanced statistics

operations in the fitness computation process. This is indicated by a high ratio of elapsed time by both the

sigmoid and the tanh based systems in almost all data sets, as is depicted in Figure 5.3.

Figure 5.3: The average processing time for each system. Both the linear and the threshold based systems have
the lowest amount of elapsed time, while the tanh based system has significantly increased amount of processing
time in both synthetic data sets and the SRBCTs data set. The sigmoid based system has an intensive processing
time in the ALL/AML data set when compared to the other systems.

The tanh based system has the highest processing time in both synthetic data sets and the SRBCTs data
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set, and a low processing time in the ALL/AML data set. This is because the ALL/AML data set contains

multiple subclasses of cancer sample within a known class (see Figure 3.1a on page 60) and the tanh based

system normally worked better in nonlinear problems. The sigmoid based system has the highest processing

time in the ALL/AML data set.

5.1.4 Discussion

We would like to bring attention to the performance of the tanh based system. As is indicated in Figure

5.3, the tanh based system has a very low processing time in every population size in the ALL/AML data

set. Overall, it outperformed all other systems in the microarray data sets when a high fitness accuracy

(see Figure 5.2) on the low number of extracted genes (see Figure 5.1) achieved by the system is taken into

consideration. Two main reasons for its efficiency are: (a) the microarray data sets contain subgroup of

cancer classes within a known class and have a large value interval within a gene in the data sets; and (b)

the bipolar range (-1,1) in the tanh based system has produced two esteem output signals, i.e. positive and

negative, in the output of the network, which has expanded the differentiation between the classes in the

data sets. This has reduced the chances of mislabelling the sample into the wrong class.

The findings also showed that the performance of each system is very much dependent on the quality of

the data set and, to some extent, the population size and the degree of statistics involved in the fitness

computation process. Depending on the requirement of the study, each system has its pros and cons in

terms of the quality of the extracted genes within a satisfactorily confidence range and in an acceptable

processing time. For instance, the linear based system has the lowest processing time in all data sets,

however, the identified genes may not underly the data. The sigmoid and the tanh based systems promise a

high fitness confidence in larger population size, but they are computationally cost intensive. The threshold

based system, meanwhile, is unable to effectively model data with multiple subclasses in a known class.

Even so, we are still able to identify two better systems from the findings in this experiment. The two superior

systems are the linear and the tanh based systems. The linear based system has the best performance in the

synthetic data sets for which all the 30 predefined genes in the synthetic data set 1 and on average 16 genes

in the synthetic data set 2, have been identified and have been associated with high fitness confidence and

low processing time for the selected genes in increased population size. The tanh based system has the best

performance in microarray data sets for which it achieved a high fitness accuracy with a smaller number

of extracted genes and the effective processing cost in the ALL/AML data set and a satisfactory fitness

performance in the SRBCTs data set. This indicates that unlike the other three systems, the tanh based

system is not restricted by the nature of the microarray platform, such as oligonucleotide-based (ALL/AML)

and cDNA-based (SRBCTs); the data distribution and the number of classes in the data set.
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In the next section, we will assess the performance of each system on the effects of a specific fitness evaluation,

ranging from 5000 to 50000 in three different population size ranging from 100 to 300.

5.2 System performance with different sizes in population and fitness eval-

uation

In this section, we examined two vital components in the GA which could influence the integrity of the

results in supporting the third purpose of our experimental study in Section 4.5.1. These GA components

are population and fitness evaluation. Three figures, each containing four graphs representing four different

experimental data sets, were produced. Each figure represents the performance of individual systems in

terms of the number of genes selected with a selection frequency of 50 and above in Figure 5.4, the fitness

performance in Figure 5.5 and the processing time in Figure 5.6, in three population sizes: 100, 200 and 300,

and in ten fitness evaluations, ranging from 5000 to 50000. The complete list of the extracted genes by each

system is presented in Appendix B.

The four types of the systems shown in the figures represent four different activation functions used in the

GANN prototype to compute the fitness values for each subset of genes in the population. These systems

comprising sigmoid, linear, tanh and threshold based.

5.2.1 The number of significant genes

Observations on the synthetic data set 1 in Figure 5.4a, in all systems, except the linear based system, were

unable to detect all the 30 predefined genes in population size 100. The linear based system detected all

predefined genes in every population size, except the fitness evaluation size 20000 in population size 100.

With increased population size, all systems were able to detect all predefined genes in the data set. Tables

B.1-B.3 in Appendix B show the complete list of extracted genes in the synthetic data set 1. A similar

observation on the increased number of predefined genes were detected in the synthetic data set 2, as is

indicated in Figure 5.4b and Tables B.4-B.6 in Appendix B. A low performance by each system in the

population size 100 and the performance was improved when the population size was increased.

The variation of different fitness evaluation sizes in the synthetic data sets has showed a significant impact to

the number of predefined genes identified by the system. There was a low number of predefined genes found

by all systems in the fitness evaluation size 5000 and when the fitness evaluation size was increased, a larger

number of predefined genes was found by each system. The linear based system has the best performance

when the fitness evaluation size exceeds 20000 in every population size, while the tanh based system required

at least 30000 fitness evaluations to produce consistent results. For sigmoid and threshold based systems,
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there is a discrepancy in the minimum fitness evaluation size for each population. In the population sizes

100 and 300, the sigmoid based system required 35000 fitness evaluations for consistent results and in the

population size 200, a minimal 30000 fitness evaluations is required for producing consistent results. The

threshold based system, on the other hand, required minimally 25000 fitness evaluations in the population

size 100, 35000 fitness evaluations in the population size 200 and 30000 fitness evaluations in the population

size 300.

This observation verified that a small population, i.e. population size 100, is not efficient for microarray

analysis. This is due to limited space in the population which is not sufficient to accommodate the enormous

possibilities of the combined heterogeneity genes in the data.

For the microarray data, there was a significantly increased number of identified genes by each system

when the fitness evaluation size was increased in a larger population size in Figure 5.4(c-d). However, with

the comparison on the number of genes found by each system in two population sizes: 200 and 300. In

population size 300, all systems have a smaller number of genes identified than in population size 200. There

are three reasons: (a) the identified genes in population size 200 may be informative in the development of

a cancer, but not crucial in cancer formation,as compared to the genes identified in the population size 300;

(b) the complex interaction behaviours of the genes in the microarray data produced the enormous possible

combinations of heterogeneity genes which might contribute to cancer development; and (c) the system has

been over-fitted by over-sized fitness evaluations and populations, albeit, this reason seems very unlikely in

our opinion, as there is no sign of over-fitting in each system when similar parameters were applied in the

synthetic data.
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5.2.2 The fitness performance

There is an improvement in the fitness accuracy of the selected genes by each system with the increased

fitness evaluations and larger population size, as is indicated in Figure 5.5.

For synthetic data sets, when the population size was increased from 100 to 200, the significantly improved

fitness accuracy on the selected genes by each system in every fitness evaluation, as is indicated in Figure

5.5(a-b). The performance of each system had also improved in the synthetic data set 2 when the population

size was increased to 300. With the comparison of the fitness performance of each system based on two

population sizes: 200 and 300, in the synthetic data set 1, there is no significant performance difference in

every fitness evaluation in all systems, except that the threshold based system had a better performance

with a fitness evaluation size 5000 in the population size 300 than the other systems.

We would like to draw attention to the fitness performance of each system in the synthetic data set 1. As is

shown in Figure 5.4a, with the population sizes 200 and 300, all system have identified all the predefined genes

in every fitness evaluation. We observed a discrepancy in the effect of the stronger genes which can severely

affect the fitness accuracy of the reported genes. This discrepancy could subsequently affect the decision

in the types of therapeutic exercises to be undertaken by patients. All four systems have a lower fitness

performance in the population size 200 than in the population size 300, although, all the 30 predefined genes

in the data set were detected. Amongst these four systems, the linear based system has slightly outperformed

the other three systems. This has further confirmed our observation on the linear based system in which it

is able to explore the most informative genes than the other systems.

For microarray data sets, as is depicted in Figure 5.5(c-d), in the population size 100, there was a low fitness

performance achieved by each system in every fitness evaluation. With the increased population size to 300,

the performance of each system was significantly improved. For ALL/AML data set, both the sigmoid and

the tanh based systems have the best fitness performance with minimally 30000 fitness evaluations in the

population size 200 and above, while the linear and the threshold based systems required only 20000 fitness

evaluations. For SRBCTs data set, all systems have a better performance in the population size 300 than

in the population size 200, with minimally 30000 fitness evaluations. This is due to the multiclass nature of

the data set.
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5.2.3 The processing time

With observation on the processing time of each system in Figure 5.6, a high ratio of elapsed time by

each system was found and this is associated with a high fitness evaluation size rather than the population

size. This is indicated by the increased elapsed time in different fitness evaluation sizes within a specific

population size and there is no significant processing time difference between similar sets of fitness evaluation

in population sizes 200 and 300.

The figure shows that higher processing time in every fitness evaluation in the population size 100 when

compared to the identical sets of fitness evaluation were applied in a larger population size. This is because

a small population size is not sufficient to accommodate more learning patterns (chromosomes) for the system

to model the general rules. The insufficient capacity on the population has significantly reduced the fitness

performance of the systems (see Figure 5.5), even though a sufficient number of evaluations is given.
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5.2.4 Discussion

The findings reported in this section are based on the performance of each system in the effect of different

sizes in population and fitness evaluation . The results indicate that the integrity of the system in finding

stronger genes could, indeed, be compromised by inappropriate configuration of the GA population and the

fitness evaluation.

Cartwright (2008b) commented on, that the population size is not critically important in the success of a

GA,provided that the population size is not unreasonably small (i.e. < 40 chromosomes). Our results had

shown the importance of the population in the success of a GA and a strong interaction on the evolution

process, as is observed by DeJong and Spears (1991). This is indicated in the population size 100 with the

elevated processing time and low fitness accuracy achieved by each system in every fitness evaluation. With

the increased population size, better fitness performance and lower processing time are achieved when similar

fitness evaluations were applied. DeJong and Spears (1991) made such comments based on the augmentation

in the crossover operator and we derived similar conclusions with the increased fitness evaluation sizes.

In addition to the population size, a larger fitness evaluation also promise better fitness confidence in the

selected genes and the processing time is not always increased with larger evaluations. This is indicated in

Figure 5.6, where a lower or equal ratio of elapsed time was found in each fitness evaluation in population

sizes 200 and 300.

Despite the ideal population size, i.e. ranging from 40 to 100, as is suggested by Cartwright (2008b), our

results show that the population size 100 is still considerably small for handling microarray data sets. Based

on the ALL/AML and SRBCTs data sets, our findings suggest the minimal population size for microarray

data should be between 200 and 300. The minimal fitness evaluation size for binary class data should be

20000 and 25000 for multiclass data. The maximal fitness evaluation size should not be exceeds 40000. Our

findings also confirmed that the linear and the tanh based systems are the two most effective ANN activation

functions to be used to compute fitness values for GA chromosomes.

5.3 The statistical significance of the extracted genes

In this section, we examine the performance of each system based on the integrity of the extracted genes

by each system. This experiment was conducted based on the number of identified genes extracted in each

data set and is based on the population size 300 with fitness evaluation size ranging from 20000 to 40000.

Four tables based on these data sets were produced and each table presents a list of genes extracted by each

system, ordered, according to the selection frequency of the gene, along with its IG value. The IG (gain

ratio) method is a type of t-statistics approach that evaluates the significance of a feature by measuring the
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gain ratio with respect to the class. This ratio value is used as the comparison on the feature ranking order

between the IG method and the GANN systems.

5.3.1 The synthetic data set 1

Table 5.1 on page 133 shows the list of extracted genes in the synthetic data set 1. All four systems have

identified all the 30 predefined genes in the data set with an identical set of the strongest genes, i.e. genes

5014 and 12; and the weakest genes, i.e. genes 15, 6, 5011 and 13. Amongst four systems, the threshold

based system, overall, has a fairly consistent ranking in the selected genes when the fitness evaluation size is

25000 or more (see Table 5.1d). Whilst the other three systems have a significant gene ranking discrepancy

in different sizes of fitness evaluations.

Both the sigmoid and the linear based systems have a significant ranking discrepancy in the fitness evaluation

size 40000 and the fitness evaluation size lesser than 40000. For sigmoid based system, as is showed in Table

5.1a, gene 5013 has been highly rated in smaller fitness evaluations, i.e. 20000 to 35000, however, this

gene is not frequently selected in the fitness evaluation size 40000. As opposed to gene 5013, gene 5008

has been highly rated in the fitness evaluation size 40000, but not in smaller fitness evaluations. For linear

based system in Table 5.1b, gene 5009 has a significant ranking in the fitness evaluation size 40000, when

compared to smaller fitness evaluations. The tanh based system, in Table 5.1c, however, has a greater

ranking discrepancy in the genes in the fitness evaluation size 35000 with the other evaluation sizes. The

differentially expressed genes involved genes 8, 5009 and 5008, for which gene 5009 was highly rated in the

fitness evaluation size 35000, however, genes 8 and 5008 were less significant.

By comparing the ranking order of the genes extracted by the GANN systems and the IG method, gene

5014 is the most significant gene (i.e. the primary feature for perfectly discriminate data classes) amongst

the 30 selected genes by all the GANN systems, followed by genes 12 and gene 13 is the weakest (i.e. the

least significant feature for class discrimination) in the ranking. The IG method, however, rated gene 12 as

the strongest with the rate of 0.612, followed by gene 5005 with the rate of 0.545 and gene 2 is the lowest

ranked in IG. The variability on the gene ranking is due to the IG method ranks genes based on its individual

significance to the cancer classes and overlooks its correlation with other genes to the cancer classes. The

GANN system, on the other hand, rank the genes based on its correlation with the other genes to the cancer

classes, meaning that using the selected genes by the GANN system. It is not sufficient for creating a perfect

discrimination between data classes compared to the genes selected by the IG method. However, the genes

selected by the GANN system provide more information on the correlation between expressed genes to the

cancer classes.
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Table 5.1: The list of extracted genes in synthetic data set 1 by each system based on the population size 300.
Freq. is the number of times that the gene is selected.

Continued on Next Page. . .
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Table 5.1 – Continued

5.3.2 The synthetic data set 2

For synthetic data set 2 in Table 5.2, the linear based system outperforms the other three system by consis-

tently identifying 19 out of 30 predefined genes in the data set. Meanwhile, the sigmoid, the tanh and the
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threshold based systems only identified 15, 14 and 18 predefined genes, respectively.

Table 5.2: The list of extracted genes in synthetic data set 2 by each system based on the population size 300.
Freq. is the number of times that the gene is selected. Genes highlighted in red are noisy genes.

Continued on Next Page. . .
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Table 5.2 – Continued

With increased fitness evaluation size, there was a significant improvement in the detection of the number

of predefined genes by each system. The sigmoid based system identified 18 predefined genes in the fitness

evaluation sizes 35000 and 40000, the linear based system detected 19 predefined genes in a fitness evaluation

size of 30000 or more, the tanh based system found 15 identical predefined genes in the fitness evaluation

sizes 30000 and 40000, and the threshold based system had the highest number of predefined genes found,

i.e. 20 genes, in the population size 35000. This would suggested that both the linear and the tanh based

systems required a minimal 30000 fitness evaluations for consistent and better selection performance, while

the sigmoid and the threshold based systems required at least 35000 fitness evaluations.

The findings also show that none of the systems was able to detect all the 30 predefined genes in synthetic

data set 2. This is because two different mean µ values, i.e. 20 stronger genes and 10 weaker genes, were used

in creating the data set. All systems are able to detect the stronger genes, but not the weaker genes as they

were ‘buried’ by the other stronger noisy genes, i.e. genes that were not suppose to be selected. Instead, the
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presence of the noisy genes was detected in the sigmoid, the linear and the threshold based systems when the

fitness evaluation size was increased. These noisy genes are genes 667, 4883, 4377, 2828, 4175, 2816, 4390

and 2471. Gene 667 was found in the sigmoid based system when the fitness evaluation size was increased to

35000 or more (see Table 5.1a), genes 4377, 667, 2816 and 4175 were detected in the threshold based system

when higher fitness evaluation sizes were applied (see Table 5.1d) and genes 667, 4883 and 4377 appeared

in every fitness evaluation in the linear based system. This would suggested that the linear based system

can explore the most significant genes, even with smaller fitness evaluations, however, it cannot promise on

whether the selected genes are truly important to the subject of interest. The tanh based system is able

to rule out any unrelated genes from those that are highly related, however, it might also dismissed some

important genes.

By comparing the ranking order of the genes extracted by the GANN systems and the IG method, genes 21

and 12 are the most significant amongst the 30 selected genes all the GANN systems and for the IG method,

genes 12 (IG rate = 0.645) and 17 (IG rate = 0.248) are ranked as the most significant genes. Amongst the

predefined genes, the gene 22 (IG rate = 0.265) is the lowest ranked by the IG method. Meanwhile, for all

four GANN systems, gene 22 is more significant in terms of its correlation with other genes, compared to

gene 28 which is ranked lowly by the linear and the threshold based systems. For the sigmoid/tanh based

systems, gene 28 has not been identified as it’s correlated gene (i.e. gene 4377) has not been detected by

the systems. Amongst the noisy genes detected by the linear based system, genes 667 and 4883 provide a

certain level of statistical significance in the cancer classification based on the IG method and the other noisy

genes (4377, 2828, 4175, 2816, 4390 and 2471) pose no significance contribution to the cancer classification.

This means that the detection of these noisy genes is due to the detection of their correlated genes by the

linear based system. Gene 667 may correlates to the predefined genes 25, 13 and 14 based on the comparison

between the extracted genes by the sigmoid and the tanh based systems. The detection of gene 4377 is due

to the presence of gene 667 in the linear/threshold based systems.

5.3.3 The ALL/AML microarray data set

With reference on Table 5.3 on page 138 for ALL/AML data set, not surprisingly, the linear based system

has the highest number of extracted genes, i.e. 63 genes in total, and the tanh based system has the lowest

number of extracted genes, i.e. 53 genes in total. Both the sigmoid and the threshold based systems have,

in total, 54 genes extracted by the fitness evaluation size ranging from 20000 to 40000. Amongst the genes

extracted in each system, across the board, 39 genes overlapped in all systems, including the first-17 genes

selected by each system.
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Table 5.3: The list of extracted genes in ALL/AML data set by each system based on the population size 300.
Freq. is the number of times that the gene is selected. Genes highlighted in Boldface are common genes that
were identified by all systems. Genes marked with “*” symbol are genes that matched with the genes reported
in the original study.

Continued on Next Page. . .
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Table 5.3 – Continued

Continued on Next Page. . .
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Table 5.3 – Continued

Continued on Next Page. . .
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Table 5.3 – Continued

Both the sigmoid and the tanh based systems have 49 genes in common and have an identical set of the first-

11 selected genes. This might be due to both sigmoid and tanh based systems being non-linear functions,

which able to explore the correlation between features within the data. Furthermore, both the sigmoid and

the tanh based systems used the logistic curve (i.e. S-shape curve, see Figure 3.10 on page 81) for squashing

the activation value of each set of genes to a specific activation range before the output is generated by the

network. A logistic curve relates to the growth in the learning process. At the initial stage of the learning,

the growth is exponential, then as saturation begins (at the middle stage of the learning), the growth slows

and at the final stage of the learning (i.e. maturity), growth stops. This curve provides better discrimination
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between data classes. Whilst, the linear and the threshold based systems have 52 common genes. This is

due to both systems performing simple linear computation on the activation value for each set of genes and

not squashing the activation results. Both the linear and the threshold functions utilised a straight line (see

Figure 3.10) to discriminate data classes rather than the logistic curve. However, they do not have genes in

identical rankings, mainly because the threshold based system restricted the activation of the network node

only when it exceeds the defined threshold value in the system.

A comparison between the genes extracted by each system and the original work by Golub et al. (1999)

was conducted (see Table 5.3). Amongst the selected genes in each system, both the sigmoid and the tanh

based systems have 20 genes, including the top 4-ranked genes in the systems, which were consistent with

the top-50 genes reported by Golub et al. Meanwhile, the linear and the threshold based system have 24

matching genes when compared to the reported genes by Golub et al. Amongst these common genes, 18 were

overlapped in all systems. This indicates that our method is effective in extracting informative genes from

ALL/AML data set and the data set is not being normalised. In Golub et al. (1999) work, the ALL/AML

data set had been normalised with zero mean and unit standard deviation. Some relevant works on the

ALL/AML data set is presented in Table C.1 in Appendix C.

By comparing the ranking order of the genes extracted by the GANN systems and the IG method, genes

1882, 2288, 4847 and 2354 are the top-4 most significant genes selected by both the sigmoid and the tanh

based systems, and these genes were consistent with the top-50 genes reported by Golub et al. (1999). For

the linear based system, the top-4 significant genes are 4847, 2288, 2354 and 2121, which were also consistent

with the top-50 genes reported by Golub et al.. Meanwhile the threshold based system identified gene 1779

as one of the top-4 important genes, instead of gene 2354 that was highly rated by the sigmoid, the linear

and the tanh based systems. For the IG method, the top-4 significant genes are 2288 and 760 (both genes

have the equal IG rate of. 0.747), 1882 (IG rate = 0.742), 4847 and 1834 (both genes have equal IG rate

of 0.735) and 3252 (IG rate = 0.718). Amongst the IG selected genes, gene 3252 is ranked in-between the

top-11 and the top-20 significant genes by all the GANN systems and gene 1834 is the least significant genes

in all the GANN systems as it does not have much correlation with other selected genes in the systems. For

gene 760, both the linear and the threshold based systems have poor ranking on this genes, however, in both

the sigmoid and the tanh based systems, gene 760 is ranked in-between the top-13 and the top-17 significant

genes. The gene ranking discrepancy between the sigmoid/tanh based systems and the linear/threshold

based systems confirmed our observation on the sigmoid and the tanh based systems in which the use of

logistic curve provides features which benefits data classification and simultaneously, these features pose a

certain degree of correlation with other selected features. The main reason for such gene ranking discrepancy

between GANN system and the IG method is due to the fact that the IG method measures the distance
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between features to its nearest class independently, meaning that each of these features can be used as an

independent primary feature to categorise data classes as each feature provides a high classification accuracy

in the data set. Unlike the IG method, GANN explores the correlation between features to the data classes.

Therefore, a feature in the GANN system may not provides high classification accuracy in the data set;

however, using a group of features extracted by the GANN system, a certain level of classification accuracy

might be achieved.

5.3.4 The SRBCTs microarray data set

For SRBCTs data set in Table 5.4, surprisingly, both the sigmoid and the threshold based systems have the

highest number of extracted genes, i.e 70 genes in total, compared to the linear based system which has 69

extracted genes and the tanh based system which has extracted 68 genes from the data set. Amongst these

genes, 49 genes were overlapped in all systems, including the first-17 genes selected by each system. Both

the sigmoid and the tanh based systems have 61 genes in common, while the linear and the threshold based

systems have 65 common genes.

By comparing our findings with the original work conducted by Khan et al. (2001), the linear based system

has the lowest number of overlapping genes with the top 96 genes reported by Khan et al. Even though, the

top-10 ranked genes in all systems were consistent with the genes reported by Khan et al. Amongst the 69

genes identified by the linear based system, 39 genes were consistent with the genes reported by Khan et al.,

meanwhile, the sigmoid and the threshold based systems have 43 and 41 matching genes, respectively. The

tanh based system has the highest number of matching genes, i.e. 44 genes, to the genes reported by Khan

et al. Amongst these common genes, 34 were overlapped in all systems. This would suggest that the tanh

based system is the most effective system to be used in this study. Some relevant works on the SRBCTs

data set is presented in Table C.2 in Appendix C.

We also observed that more matching genes with the genes reported by Khan et al. were found in the fitness

evaluation size 35000.
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Table 5.4: The list of extracted genes in SRBCTs data set by each system based on the population size 300.
Freq. is the number of times that the gene is selected. Genes highlighted in Boldface are common genes that
were identified by all systems. Genes marked with “*” symbol are genes that matched with the genes reported
in the original study.

Continued on Next Page. . .
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Table 5.4 – Continued

Continued on Next Page. . .
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Table 5.4 – Continued

Continued on Next Page. . .
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Table 5.4 – Continued

By comparing the ranking order of the genes extracted by the GANN systems and the IG method, common

genes 742, 1389, 509 and 1955 are the top-4 most significant genes selected by all the GANN systems and
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these genes were matched with the top-96 genes reported by Khan et al. (2001). Genes 246, 545 and 187

were also highly ranked by both the sigmoid and the tanh based systems. Gene 545 was ranked at the 4th

place in both the linear and the threshold based systems. Using the IG method, the top-5 most significant

genes are genes 836 (IG rate = 0.89), 1955 (IG rate = 0.858), 1003 (IG rate = 0.851), 783 (IG rate = 0.817)

and 842 (IG rate = 0.814). Genes 742, 1389, 509 and 545 were lowly ranked by the IG method, with the IG

rates of 0.655, 0.64, 0.572 and 0.723, respectively. This is because these genes did not pose any classification

benefit when they were evaluated independently. Amongst the top-5 significant genes selected by the IG

method, gene 1003 is ranked in-between the top-11 to the top-20 significant genes by all GANN systems, and

the remaining genes 1003, 783 and 842 are lowly ranked by all GANN systems, meaning that these genes

does not have strong correlation with other selected genes. This shows that the GANN system was a better

approach for analysing microarray data as it explores the correlation between features in the data sets.

5.3.5 Discussion

The findings reported in this section are based on the performance of each system in extracting informative

genes in the effect of different fitness evaluations. For synthetic data sets, all systems have equivalent

performance in identifying all the 30 predefined genes in the synthetic data set 1. The linear based system

outperformed the other three system in the synthetic data set 2, by consistently identifying 18 out of 30

predefined genes in almost all fitness evaluation sizes. However, the linear based system also identified,

consistently, the highest number of noisy genes compared to both sigmoid and threshold based systems. The

tanh based system is the only system that did not select any noisy gene in the synthesis data set 2.

For microarray data sets, both linear and threshold based systems outperformed the sigmoid and the tanh

based systems in the ALL/AML data set by having 26 genes overlapped with the genes reported in the

original study. In the case of SRBCTs data set, the tanh based system outperformed the other three systems

with 44 matching genes to the original study. In terms of the number of extracted genes in the microarray

data, the linear based system, however, has the highest number of extracted genes in both data sets and the

tanh based system outperformed the other three system with the lowest number of extracted genes in both

microarray data sets.

The findings suggested that the tanh based system is, amongst all systems, the most effective systems to be

used for microarray data sets.
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5.4 The biological sensible of the extracted genes

In Sections 5.1 and 5.2, we discussed the performance of each system based on different data sets: synthetic

data sets and microarray data sets, and the implication of two vital GA parameters: population and evolution;

to extract the most relevant genes from the respective data sets. Based on the findings in these sections, we

found that the sufficient population size for microarray studies should range from 200 to 300 and the fitness

evaluation sizes should range from 20000 to 40000.

This section presents a global view on the biological relevance of extracted genes presented in Section 5.3,

i.e. based on the population size 300 and the fitness evaluation sizes, ranging from 20000 to 40000. The

relevant studies of the disease will be reviewed and followed by a discussion on the gene findings of the GANN

prototype. A total of 74 and 90 genes extracted from the ALL/AML and SRBCTs data sets, respectively,

as is indicated in Tables 5.3 and 5.4 in Section 5.3 will be discussed.

In this section, the term “gene” indicates the identified features from the respective data sets and does not

possess biological context in the medical field. The term “chromosome’ represents a threadlike strand of

DNA in the nucleus of a biological cell.

5.4.1 The ALL/AML microarray data

Leukaemia is the blood cancer disease that is caused by the immaturity of blood cells in the bone marrow.

There are generally two main groups of leukaemia cancer, i.e. lymphoblastic leukaemia, derived from the

abnormal growth of lymphoblasts, these are the primitive progenitor cells originating in the bone marrow;

and myelogeneous leukaemia which arises from the immaturity of myeloid precursor cells in the bone marrow.

These two types of leukaemia cancer can be either chronic or acute. Due to the leukaemia data set that

we used in this thesis being acute leukaemia, we only discuss acute-based leukaemia cancers, i.e. Acute

Lymphoblastic Leukaemia (ALL) and Acute Myelogeneous Leukaemia (AML).

Leukaemia cancer is normally incurred by an abnormality of chromosomes in a cell. Several chromosomal

abnormalities has been reported in both ALL and AML which leads to tremendous advances in leukaemia

research. Most of the identified abnormalities involve translocation of different chromosomes in leukaemia

cells. Translocations is a type of “Structural Chromosomal Aberrations” that often cause human infertility

as they interfere with the normal distribution of chromosomes during meiosis (Robinson, 2003). In cancer

cases, it is a chromosome abnormality caused by re-arrangement of parts between two non-homogenous

chromosomes.

A standard designation t(A;B)(p1;q2) outlined by the International System for Human Cytogenetic Nomen-
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clature (ISCN) is used to denote a translocation between chromosome A and chromosome B. The second

part of information, i.e. (p1;q2), denotes the precise location (i.e. regions, bands, and so on) of a gene, within

chromosome A and chromosome B, respectively. The (p1;q2) can be interpreted as band p1, is located in

chromosome A and band q2, is located in chromosome B. The terms “p” and “q” indicate the length of a

chromosome in where “p” indicating the short arm of the chromosome, i.e. short DNA sequence, while “q”

indicating the long arm of the chromosome. Table 5.5 shows some chromosomal translocations in leukaemia

cancer.

Table 5.5: Some characteristic translocations in Leukaemias.

Translocation Genes involved Leukaemia Type

t(1;19)(q23;q13) TCF3 (E2A), PBX1 ALL - L1/L2; B-ALL

t(7;9)(q35;q34.3) TCR@ (TCRB), NOTCH1 T-ALL

t(8;21)(q22;q22) AML1, ETO AML - M2

t(9;11) Various AML - M5; B-ALL

t(9;22)(q34;q11) BCR, ABL1 AML - M1/M2 (CML); B-ALL

t(12;21)(p13;q22) ETV6 (TEL), RUNX1
(AML1)

B-ALL

t(15;17)(q22;q11-12) PML, RARα AML - M3 (APL)

t(v;11)(v;q23)
v = 9-19

Various AML - M1/M4/M5

del(5q34) EBF1 B-ALL

MLL rearrangement (11q23) MLL, ALL1, HRX B-ALL

Chromosomal translocations in varying chromosomes from 8 to 19, chromosome 21 and chromosome 23 are

normally associated with leukaemia disease. The AML1-ETO fusion in t(8; 21)(q22; q22) causes a higher

remission rate in AML patients with M2 band (based on French-American-British (FAB) classification) than

those without it (Golub et al., 1999; Sheer and Shipley, 2005). The AML1 protein contains a DNA- and

protein-binding region that is homogenous to the CBFA component and the Drosophila segmentation gent

runt. The ETO gene is not normally expressed in myeloid cells.

The BCR3 type PML-RARα fusion in t(15; 17)(q22; q11.2− 12) is the signature marker for AML M3 band,

which is more commonly known as Acute Promyelocytic Leukaemia (APL). RARα is a transcription factor

that normally binds to all-trans retinoic acid (ATRA) which then binds to retinoic acid response element

(RARE) in the promoters of many genes and transcriptional activation domain (Sheer and Shipley, 2005).

A potential role for ATRA has been advocated in APL patients (Sanz et al., 2000).
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The Philadelphia (Ph) chromosome, i.e. BCR-ABL fusion in t(9; 22)(q34; q11) is commonly found in Chronic

Myelogeneous Leukaemia (CML) patients and AML patients in M1 and M2 subtypes. The immaturity of

the Ph chromosome can also occur in ALL (Sheer and Shipley, 2005). BCR gene encodes a serine kinase.

The ABL protein is a tyrosine kinase that contains a DNA binding domain and it functions as a negative

regulator of cell growth when the cell cycle is over-expressed.

A translocation between chromosomes 8 and 21 and a vary translocation of chromosomes varying from

9 to 19, may also possibly invoke AML. A translocation between chromosomes 8 and 21 will cause the

elevation of the c-myc activity, a gene involved in cell replication (Robinson, 2003). A translocation between

chromosomes 9 and 19 contributes to the AML patients with M1, M4 and M5 bands.

Deletion of the gene EBF1 in del(5q34), an early B-cell factor, could also contribute to leukaemogenesis

(Mullighan et al., 2007). The EBF1 gene is required for the development of B-cells and with the gene TCF3

regulates the expression of B-lineage genes.

In addition to chromosomal translocations, up-regulation of certain genes expressed in leukaemia cells is due

to chromosomal rearrangement and could contribute to the development of the cancer.

The positive expression in the genes CD1, CD3, CD4, CD8 and terminal deoxynucleotidyl transferase (TdT)

correspond to an intermediate thymocyte stage of T-cell ALL differentiation (Strauchen, 2001). The expres-

sion of TdT is normally restricted to lymphoid precursors, especially in T-cell and the non-positive TdT

(i.e. suppressed) might be detected in B-cells when it is associated with the down-regulation of genes CD10

and CD34; a high WBC count and the rearrangement of gene MLL (Mixed Lineage Leukaemia) (Liu et al.,

2004b).

Regulation of the gene CD179a/b in chromosome 22 is useful as a marker for differentiating the immature

and mature B-cell precursors, in which the up-regulation of genes CD179a/b were specifically expressed in

precursor B-cell lymphoblastic lymphomas, but not in mature B-cell lymphomas of childhood (Kiyokawa

et al., 2004).

Suppression in the gene myeloperoxidase (MPO) in adult ALL patients reduces the survival rate of the

patient (Arber et al., 2001).

The gene podocalyxin, a CD34 family member, is a useful hematopoietic blast marker for patients with

abnormal hematopoietic cells. The increased level of podocalyxin is commonly expressed in both AML and

ALL, as well as in cutaneous myeloid sarcoma disease (Kelley et al., 2005).

The translocations in chromosomes with t(8;21) is a distinct clinicopathologic entity for patients who have

been diagnosed with AML cancer (Khoury et al., 2004). The translocations t(8;21) displayed a higher level

of CD34, HLA-DR and MPO expression, and a lower level of CD13 and CD33 expression.
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The gene CD99 (MIC2) is characteristically expressed in precursor B- and T-cell lymphoblastic leukaemias

and lymphomas, as well as in Ewing sarcoma and primitive neuroectodermal tumours (Kang and Dunphy,

2006). It is most intensely expressed by immature thymus T-lineage cells and in the earliest stage of precursor

B-cells.

A total of 74 genes were extracted from the ALL/AML data set. Among 74 genes, 39 genes were found by

all systems, 6 were found by 3 systems (i.e. 4 in sigmoid/linear/tanh based; 2 in sigmoid/tanh/threshold

based), 21 genes were identified by 2 systems (i.e. 6 in sigmoid/tanh based; 11 in linear/threshold based;

2 in linear/tanh based; 2 in sigmoid/linear based), 3 genes were identified by only the linear based system,

3 genes by the tanh based system and 2 genes by the threshold based system. Table 5.6 presents all 74

extracted genes ordered by the cytoband of the gene. The complete list of the genes extracted by each

system is presented in Table 5.3 on page 138. The correlation between genes within the sample and the gene

interaction within the sample is presented in Figure 5.7.

Table 5.6: The summary list of ALL/AML genes. The genes are ordered according to the cytoband of the
selected gene. The Index denotes the row number of the selected gene. The Gene Accession is the id number
of the selected gene. The Symbol represents the official abbreviation of the selected gene based on the NCBI
Genbank (as of October 2009). The GeneID is the NCBI genbank number of the selected gene. The Cytoband
is the location of the selected gene. The Group is the cancer group to which the selected gene belongs. Genes
marked with “§” are genes that were match with the genes reported by Golub et al. (1999). Genes marked with
“†” were genes identified by all systems in the GANN prototype.

Index Gene Accession Symbol GeneID Cytoband Group

Index 6510 U23852 LCK 3932 1p34.3 ALL

Index 804 HG1612-HT1612† MARCKSL1 65108 1p35.1 ALL

Index 1928 M31303†§ STMN1 3925 1p36.1-p35 ALL

Index 5445 X04526 GNB1 2782 1p36.33 ALL

Index 4095 X06948 FCER1A 2205 1q23 AML

Index 6388 S54005 TMSB10 9168 2p11.2 ALL

Index 2408 M96803 SPTBN1 6711 2p21 ALL

Index 4291 X56468 YWHAQ 10971 2p25.1 ALL

Index 6184 M26708 PTMA 5757 2q35-q36 ALL

Index 5501 Z15115†§ TOP2B 7155 3p24 ALL

Index 412 D42043† RFTN1 23180 3p24.3 ALL

Index 668 D86967† EDEM1 9695 3p26.2 ALL

Index 760 D88422† CSTA 1475 3q21 AML

Index 6200 M28130†§ IL8 3576 4q13-q21 AML

Index 6201 Y00787†§ IL8 3576 4q13-q21 AML

Index 7128 M71243 GYPA 2993 4q28.2-q31.1 AML

Index 5952 U05255 GYPB 2994 4q28-q31 AML

Index 6796 J02982 GYPB 2994 4q28-q31 AML

Index 5950 M29610† GYPE 2996 4q31.1 AML

Continued on Next Page. . .
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Table 5.6 – Continued

Index Gene Accession Symbol GeneID Cytoband Group

Index 1630 L47738§ CYFIP2 26999 5q33.3 ALL

Index 3258 U46751§ SQSTM1 8878 5q35 AML

Index 3320 U50136§ LTC4S 4056 5q35 AML

Index 2354 M92287†§ CCND3 896 6p21 ALL

Index 4409 X64594 RHAG 6005 6p21.1-p11 AML

Index 4438 X66401 TAP1/TAP2 6890/6891 6p21.3 ALL

Index 6049 U89922† LTB 4050 6p21.3 ALL

Index 5772 U22376†§ MYB 4602 6q22-q23 ALL

Index 4211 X51521† EZR 7430 6q25.2-q26 ALL

Index 4847 X95735†§ ZYX 7791 7q32 AML

Index 1745 M16038†§ LYN 4067 8q13 AML

Index 6539 X85116§ STOM 2040 9p34.1 AML

Index 1941 M31994 ALDH1 216 9q21.13 AML

Index 1144 J05243 SPTAN1 6709 9q33-q34 ALL

Index 4196 X17042†§ SRGN 5552 10q22.1 AML

Index 1685 M11722† DNTT 1791 10q23-q24 ALL

Index 4229 X52056 SPI1 6688 11p11.2 AML

Index 3984 U94855 EIF3F 8665 11p15.4 ALL

Index 1962 M33680† CD81 975 11p15.5 ALL

Index 2121 M63138†§ CTSD 1509 11p15.5 AML

Index 6702 X97267 PTPRCAP 5790 11q13.3 ALL

Index 4050 X03934 CD3D 915 11q23 ALL

Index 6041 L09209† APLP2 334 11q23-q25—11q24 AML

Index 3252 U46499† MGST1 4257 12p12.3-p12.1 AML

Index 4377 X62654† CD63 967 12q12-q13 AML

Index 1239 L07633† PSME1 5720 14q11.2 ALL

Index 1809 M21624 TRD@ 6964 14q11.2 ALL

Index 4328 X59417†§ PSMA6 5687 14q13 ALL

Index 4680 X82240 TCL1A 8115 14q32.1 ALL

Index 2020 M55150§ FAH 2184 15q23-q25 AML

Index 6225 M84371 CD19 930 16p11.2 ALL

Index 2111 M62762§ ATP6V0C 527 16p13.3 AML

Index 4951 Y07604† NME4 4833 16p13.3 AML

Index 6271 M33493 TPSAB1 7177 16p13.3 AML

Index 1975 M34344† ITCA2B 3674 17q21.32 AML

Index 4373 X62320† GRN 2896 17q21.32 AML

Index 6079 U59632† SEPT4 5414 17q22-q23 AML

Index 2335 M89957 CD79B 974 17q23 ALL

Continued on Next Page. . .
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Table 5.6 – Continued

Index Gene Accession Symbol GeneID Cytoband Group

Index 1779 M19507† MPO 4353 17q23.1 AML

Index 6215 M19508 MPO 4353 17q23.1 AML

Index 5542 M37271 CD7 924 17q25.2-q25.3 ALL

Index 5543 D00749 CD7 924 17q25.2-q25.3 ALL

Index 2642 U05259†§ CD79A 973 19p13.2 ALL

Index 7119 U29175§ SMARCA4 6597 19p13.2 ALL

Index 2288 M84526†§ CFD 1675 19p13.3 AML

Index 2402 M96326†§ AZU1 566 19p13.3 AML

Index 6855 M31523†§ TCF3 6929 19p13.3 ALL

Index 1796 M20902† APOC1 341 19q13.2 AML

Index 1834 M23197†§ CD33 945 19q13.3 AML

Index 1674 M11147 FTL 2512 19q13.3 AML

Index 1882 M27891†§ CST3 1471 20p11.21 AML

Index 1704 M13792§ ADA 100 20q12-q13.11 ALL

Index 1829 M22960† CTSA 5476 20q13.1 AML

Index 758 D88270† IGL@ 3535 22q11.1-q11.2 AML

Index 6376 M83652†§ CFP 5199 Xp11.3-p11.23 AML

Amongst the 74 identified genes, 35 were expressed in ALL class and the remaining 39 genes were expressed

in AML class.

The already proven efficient biomarkers from the existing medical studies that were involved in the translo-

cations were found by the GANN prototype. These biomarkers are DNTT (Index 1685, previously known

as TdT), SMARCA4 (Index 7119), TCF3 (Index 6855), CD3D (Index 4050), CD79 (Index 2642 and In-

dex 2335), MPO (Index 1779 and Index 6215) and APLP2 (Index 6041). The genes DNTT, SMARCA4 and

TCF3 were reported as being under-expressed in an MLL translocation (Armstrong et al., 2002). Amongst

these biomarkers, 5 were found by all systems (i.e. Index 1685, Index 6855, Index 2642, Index 1779 and

Index 6041) and the remaining 2 were identified by multiple systems (i.e. Index 7119 in linear/tanh based

and Index 2335 in sigmoid/linear/tanh based). Please refer to Table 5.3 on page 138 for the complete list of

the extracted genes by each system.

DNTT (Index 1685) plays a role in DNA repair and is normally expressed in the normal and the early stage

of malignant B-cell development. It was expressed in some B-cell ALL samples in Figure 5.7 which suggests

that these samples were taken at the early stage of B-ALL development.

SMARCA4 (Index 7119) is a SWI/SNF family member, is a tumour suppression gene that interacts with

the tumour suppression gene p53, for p53-driven transcriptional activation and it plays an important role in
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Figure 5.7: The heatmap of ALL/AML genes. The gene with high intensity (i.e. excited by the fluorescence
dyes) denotes in red and the gene with low intensity denotes in blue.

p53-mediated cell cycle control (Lee et al., 2002). The mutation of gene SMARCA4 in the absence of MYC

amplification is associated with the lung tumourigenesis (Medina et al., 2008). The presence of the gene

SMARCA4 in almost all the ALL samples, but not in the AML samples in Figure 5.7, indicates that it is

associated in ALL tumourigenesis.

TCF3 (Index 6855) is a transcriptional regulator that coordinates the regulation of the expression of genes

involved in cell survival, cell cycle progression, lipid metabolism, stress response and lymphoid maturation

(Schwartz et al., 2006) and is important for appropriate B-cell development. A similar observation to

SMARCA4, TCF3 is associated with ALL tumourigenesis, as is indicated in Figure 5.7

CD3D (Index 4050) is a T-cell receptor involved in signal transduction and the development of T-cell. The

deficiency in CD3D is characterised by the absence of T-cells but it does not affect the development of normal
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B-cells (Dadi et al., 2003). This observation is also indicated in Figure 5.7 where CD3D is highly expressed in

all the T-ALL samples and in a B-ALL sample. This may suggest that possibly combined immunodeficiency

genes in the B-ALL induce the activation of the CD3D receptor.

CD79A (Index 2642) and CD79B (Index 2335) are B lymphocyte antigen receptors required for the de-

velopment of normal B-cells. The down-regulation of both CD79 genes are the hallmark of tumoural B

lymphocytes in B-cell chronic lymphocytic leukaemia (Vuillier et al., 2005) and the coexpression of CD79A

with AML1/ETO fusion in t(8;21) represents biphenotypic acute leukaemia (He et al., 2007). Both CD79A

and CD79B have expressed a moderate level in all ALL samples in Figure 5.7 but not in T-ALL samples.

APLP2 (Index 6041) belongs to the APP family that may assist in the regulation of haemostasis. This is

indicated by the presence of APLP2 in most AML samples in Figure 5.7.

MPO (Index 1779 and Index 6215) is a key enzyme in the cellular response to hypoxia and consequent

development of tissue fibrosis (Saed et al., 2009). The gene MPO is presented during abnormal myeloid cell

differentiation. The high level of MPO in some AML samples in Figure 5.7 suggests the possibilities of the

AML subgroups in the AML class.

In addition to the biomarkers, there are also genes which are only expressed in one of the subgroups of ALL.

These genes includes genes that are only expressed in T-ALL, i.e. ADA (Index 1704) and CD7 (Index 5542

and Index 5543) and genes that are only expressed in B-ALL, i.e. IGL@ (Index 758), CD19 (Index 6225)

and TCL1A (Index 4680). These genes could be potential signature markers in differentiating T-ALL and

B-ALL. Amongst these genes, excepting Index 758 that was found by all systems, 3 were overlapped in

sigmoid/tanh based systems (i.e. Index 1704, Index 5543 and Index 4680), Index 6225 in the linear based

system and Index 5542 was solely identified by the tanh based system with the fitness evaluation size 25000

(see Table 5.3 on page 138).

ADA (Index 1704) catalyses the hydrolysis of adenosine to inosine. The deficiency in this gene could causes

a dysfunction of both B and T lymphocytes with the impairment of cell immunity and decreased production

of immunologlobulins (EntrezGene: GeneID 100). The elevation of this gene may activate the Th1 response

to the disease (Kisacik et al., 2009) and have been associated with congenital haemolytic anaemia. The

gene CD7 (Index 5542 and Index 5543) is the immunoglobulin superfamily member that is normally found

on thymocytes and mature T-cells. It is required in T-cell interactions and also in T-cell/B-cell interaction

during early lymphoid development (EntrezGene: GeneID 924).

IGL@ (Index 758) plays an important role in B-cell development. It contains lambda light chain in the

germline organisation which allows it to recognise foreign antigens and to initiate immune responses (En-

trezGene: GeneID 3535). CD19 (Index 6225) encodes the cell surface molecule which binds with the antigen
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receptor of B lymphocytes to decrease the threshold for antigen receptor-dependent stimulation (Entrez-

Gene: GeneID 930). It is constantly expressed in all stages of B lineage differentiation and is a reliable

marker for diagnosing B-lineage ALL (Chen et al., 2004). TCL1A (Index 4680) is a powerful oncogene that

is involved in the pathogenesis of mature T-cell leukaemia (Pekarsky et al., 2004). It plays an important role

in controlling the growth and the effector T-cell functions (Hoyer et al., 2005). In Figure 5.7, TCL1A is not

expressed in T-ALL samples, but in most B-ALL samples, which could suggests that the T-ALL samples

in the ALL/AML data set are premature, i.e. in the early stages of T-cell development and TCL1A is

predominantly associated with mature precursor lymphocytes but not differentiated B- or T-cells.

Amongst the identified genes, some genes may be involved in some known leukaemia chromosomal aber-

rations. These genes include E2A/PBX1 fusion related genes, i.e. FCER1A (Index 4095), SMARCA4

(Index 7119), CFD (Index 2288), AZU1 (Index 2402), TCF3 (Index 6855), APOC1 (Index 1796), CD33 (In-

dex 1834) and FTL (Index 1674); TCR/NOTCH1 fusion related gene, i.e. SPTAN1 (Index 1144); BCR/ABL1

fusion related genes, i.e. SPTAN1 (Index 1144) and IGL@; MLL rearrangement genes, i.e. CD3D (In-

dex 4050) and APLP2 (Index 6041).

The findings in this study shows that the GANN prototype is a robust feature extraction method that is able

to extract highly informative genes from the raw (unprocessed) data set. This is indicated by the majority of

the identified genes involved in leukaemogenesis and also some signature genes in differential B- and T-ALL.

The tanh based system outperformed the other three systems to extract the biological significant genes from

the data set.

5.4.2 The SRBCTs microarray data

The term “Small round blue cell tumours” (SRBCTs) is a generic name (category) used to describe a large

number of malignant tumours that occur in childhood in the medical studies. They are characterised by

small, round and relatively undifferentiated cells, such as Ewing’s sarcoma, acute leukaemia, small cell

mesothelioma, neuroblastoma, rhabdomyosarcoma, synovial sarcoma, Non-Hodgkin’s lymphoma and many

more small round cells. In this thesis, we examine only four types of SRBCTs tumours, which are Burkitt’s

Lymphoma (NB), a subtype of Non-Hodgkin’s Lymphoma, Ewing’s Sarcoma (EWS), Neuroblastoma (NB)

and Rhabdomyosarcoma (RMS).

Burkitt’s lymphoma (BL) is a cancer yielded from the dysfunction of B lymphocytes, a type of white blood

cell. This cancer is associated with the translocation of the c-myc gene with other genes, such as the

translocation between c-myc gene with genes located in chromosome 14, i.e. t(8;14)(q24;32). The c-myc

gene plays an important role in cell cycle progression and its dysfunctional, i.e. mutation, over-expression,

rearrangement and translocation, are associated with a variety of haematopoietic malignancy (EntrezGene:
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GeneID 4609).

Ewings sarcoma (EWS) is a bone malignant cancer that predominantly occurs in the second decade of life and

commonly affects areas including the pelvis, the femur, the humerus and the ribs (Rajwanshi et al., 2009).

The cell origin of this tumour is uncertain. EWS has a shared cytogenetic abnormality with the primitive

neuroectodermal tumour (PNET) which is a small round cell malignancy that arises from the soft tissue or

bone. The shared cytogenetic abnormality involves a translocation between chromosome 11 and chromosome

22, i.e. the EWS/FLI1 fusion in t(11;22)(q24;q12), a signature marker for EWS/PNET from other small

round tumours (Owen et al., 2008). The EWS (EWSR1) gene acts as a strong transcriptional activator in

various cellular processes and chromosomal translocations between this gene and other transcriptional factor

genes could result in the production of chimeric proteins that are involved in tumourigenesis. The FLI1 gene

is a member of ETS transcription factor that is involved in a wide variety of bodily regulation functions,

including cell differentiation, cell cycle control, cell migration, cell proliferation, apoptosis and angiogenesis.

The EWS/FLI1 fusion can be detected by the positive expression of CD99 (Rajwanshi et al., 2009) and

the negative expression of CD45 (Bernsteina et al., 2006). Other less frequent translocations involved in

this tumour are the EWS/ERG fusion in t(21;22) (Sorensen et al., 1994) and the EWS/ETV1 fusion in

t(7;22)(p22;q12) (Jeon et al., 1995).

Neuroblastoma (NB) is the third most common, solid malignant tumour of infancy and childhood that

predominantly occur in the male group (Rajwanshi et al., 2009). This tumour arises from the neuroblasts

which are the undifferentiated precursor cells of the sympathetic nervous system. The etiology of NB is

not well understood by medical scientists, however, there are cases where this tumour could be inherited

from a parent and is associated with the mutation of the germline in the ALK gene (Mossé et al., 2008) at

chromosome band 2p23. The ALK gene plays an important role in the development of the brain and exerts

its effects on specific neurons in the nervous system. The presence of del(1p), i.e. deletion of chromosome

1 short arm, or MYCN amplification are also useful in detecting the early stage of NB development in the

young age group (Sheer and Shipley, 2005).

Rhabdomyosarcoma (RMS) is a connective tissue related cancer that commonly occurs in children (Rajwan-

shi et al., 2009). This tumour can be classified into three main subtypes: embryonal rhabdomyosarcoma

(ERMS), alveolar rhabdomyosarcoma (ARMS) and pleomorphic rhabdomyosarcoma (PRMS). The former

two subtypes of RMS are almost undifferentiated based on the morphological result, however, at a molecu-

lar level, ARMS shows predominantly dissociated cells or chance formations and ERMS shows large tissue

fragments with abundant eosinophilic material and disassociated cells (Rajwanshi et al., 2009). The Desmin

protein has been reported as a useful marker for detecting large rhabdomyoblasts during the early differ-

entiation of skeletal and smooth muscle cells, however, it is also positively expressed in smaller, less well
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differentiated tumour cells (Rajwanshi et al., 2009). The other two markers: MyoD1 and myogenin, have

a higher sensitivity (positive) than desmin in RMS detection and they can differentiate ARMS from the

embryonal type (Rajwanshi et al., 2009). The MyoD1 gene involves in muscle regeneration and regulates

muscle cell differentiation. The myogenin (MYOG) gene is a muscle-specific transcription factor that is

essential in the development of functional skeletal muscle. Table 5.7 shows some cytogenetic differentiation

in four types of SRBCTs tumours.

Table 5.7: Some cytogenetic differentiation in four types of SRBCTs.

Cytogenetic Difference Genes involved Tumour Type

t(8;14)(q24;q32) c-myc (MYC), IGH@ BL

c-myc rearrangement c-myc (MYC) BL

t(11;22)(q24;q12) EWS (EWSR1), FLI1 EWS

t(21;22)(q22;q12) EWS (EWSR1), ERG EWS

t(7;22)(p22;q12) EWS (EWSR1), ETV1 EWS

+CD99, −CD45 CD99, CD45 EWS

ALK mutation ALK NB

del(1p) Various NB

+DES, +MYOD1, +MYOG DES, MYOD1, MYOG RMS

A total of 90 genes were extracted from the SRBCTs data set. Among these 90 genes, 49 genes were

found by all systems, 11 genes were found by 3 systems (i.e. 6 in sigmoid/linear/tanh based; 4 in sig-

moid/tanh/threshold based; 1 in linear/tanh/threshold based), 18 genes were identified by 2 systems (i.e.

7 in linear/threshold based; 8 in sigmoid-/tanh-based and 1 in linear/tanh based) and 12 were detected by

individual system (i.e. 3 by sigmoid based system, 3 by linear based system, 5 by tanh based system and 1

by threshold based system). Table 5.8 presents all 90 extracted genes ordered by the cytoband of the gene.

The complete list of these 90 genes is presented in Table 5.4 in page 144. The correlation between genes

within the sample and the gene interaction to the sample is presented in Figure 5.8.

Table 5.8: The summary list of SRBCTs. The genes are ordered according to the cytoband of the selected
gene. The Index denotes the row number of the selected gene. The Img Id is the clone number of the selected
gene. The Symbol represents the official abbreviation of the selected gene based on the NCBI Genbank (as of
October 2009). The GeneID is the NCBI genbank number of the selected gene. The Cytoband is the location of
the selected gene. The Group is the cancer group to which the selected gene belongs. Genes marked with “§”
are genes that were match with the genes reported by Khan et al. (2001). Genes marked with “†” were genes
identified by all systems in the GANN prototype.

Index Img Id Symbol GeneID Cytoband Group

Index 251 486787§ CNN3 1266 1p22-p21 RMS/NB (<> BL)

Continued on Next Page. . .
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Table 5.8 – Continued

Index Img Id Symbol GeneID Cytoband Group

Index 1700 796475 FHL3 2275 1p34 EWS/RMS (<> BL/NB)

Index 1738 771323 PLOD1 5351 1p36.22 RMS

Index 742 812105†§ MLLT11 10962 1q21 NB (<> BL)

Index 1613 80338†§ SELENBP1 8991 1q21-q22 EWS (<> BL/NB)

Index 129 298062§ TNNT2 7139 1q32 RMS

Index 1067 489489 LBR 3930 1q42.1 BL

Index 1434 784257†§ KIF3C 3797 2p23 NB (<> BL)

Index 1662 377048§ MYO1B 4430 2q12-q34 NB (<> BL)

Index 2144 308231§ MYO1B 4430 2q12-q34 NB (<> BL)

Index 1105 788107§ BIN1 274 2q14 RMS (<> BL)

Index 566 357031§ TNFAIP6 7130 2q23.3 EWS

Index 783 767183†§ HCLS1 3059 3q13 BL

Index 1764 44563§ GAP43 2596 3q13.1-q13.2 NB

Index 2199 135688§ GATA2 2624 3q21.3 NB (<> BL)

Index 1066 486110§ PFN2 5217 3q25.1-q25.2 NB

Index 589 769657 PPP1R2 5504 3q29 BL

Index 236 878280†§ CRMP1 1400 4p16.1-p15 NB (<> BL)

Index 1319 866702†§ PTPN13 5783 4q21.3 EWS

Index 1601 629896†§ MAP1B 4131 5q13 NB (<> BL)

Index 1 21652†§ CTNNA1 1495 5q31 EWS/RMS (<> BL)

Index 1721 40643 PDGFRB 5159 5q31-q32 EWS/RMS (<> BL)

Index 1955 784224†§ FGFR4 2264 5q35.1-qter RMS

Index 188 435953† ITPR3 3710 6p21 BL/EWS (<> NB)

Index 1932 782811 HMGA1 3159 6p21 BL

Index 1606 624360† PSMB8 5696 6p21.3 BL

Index 1634 82903 TAPBP 6892 6p21.3 BL/EWS

Index 1915 840942§ HLA-DPB1 3115 6p21.3 BL

Index 1916 80109†§ HLA-DQA1 3117 6p21.3 BL

Index 2186 208699† KIAA1949 170954 6p21.3 BL

Index 846 183337†§ HLA-DMA 3108 6p21.3 BL

Index 1536 530185 CD83 9308 6p23 BL (<> RMS)

Index 407 195751 AKAP7 9465 6q23 EWS

Index 1327 491565† CITED2 10370 6q23.3 EWS (<> BL)

Index 165 283315† PGAM2 5224 7p13-p12 BL (<> RMS)

Index 1884 609663†§ PRKAR2B 5577 7q22 BL (<> RMS)

Index 1084 878652† PMS2L12 392713 7q22.1 NB (<> BL)

Index 246 377461†§ CAV1 857 7q31.1 EWS

Index 1911 898219 MEST 4232 7q32 RMS (<> BL)

Continued on Next Page. . .
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Table 5.8 – Continued

Index Img Id Symbol GeneID Cytoband Group

Index 951 841620†§ DPYSL2 1808 8p22-p21 EWS/NB (<> BL)

Index 74 193913 LYN 4067 8q13 BL

Index 107 365826†§ GAS1 2619 9q21.3-q22 EWS/RMS (<> BL/NB)

Index 1645 52076†§ NOE1 10439 9q34.3 EWS (<> BL/RMS)

Index 276 868304§ ACTA2 59 10q23.3 BL

Index 166 897177 PGAM1 5223 10q25.3 BL (<> RMS)

Index 417 395708†§ DPYSL4 10570 10q26 NB (<> BL)

Index 139 729964 SMPD1 6609 11p15.4-p15.1 EWS/RMS

Index 1207 143306† LSP1 4046 11p15.5 RMS

Index 187 296448†§ IGF2 3481 11p15.5 RMS

Index 509 207274†§ IGF2 3481 11p15.5 RMS

Index 1386 745019† EHD1 10938 11q13 BL

Index 1980 841641§ CCND1 595 11q13 EWS/NB (<> BL)

Index 1263 324494§ HSPB2 3316 11q22-q23 RMS (<> BL/NB)

Index 1991 740554 RDX 5962 11q23 EWS (<> BL)

Index 842 810057† CSDA 8531 12p13.1 <>NB

Index 1301 346696 TEAD4 7004 12p13.3-p13.2 RMS (<> BL)

Index 836 241412†§ ELF1 1997 13q13 BL

Index 1387 740604† ISG20 3669 15q26 BL

Index 1497 203003 NME4 4833 16p13.3 EWS/NB (<> BL)

Index 85 297392†§ MT1L 4500 16q13 BL

Index 585 68977 PSMB10 5699 16q22.1 BL

Index 153 383188†§ RCVRN 5957 17p13.1 NB (<> BL)

Index 430 379708 CHD3 1107 17p13.1 EWS (<> BL)

Index 1003 796258†§ SGCA 6442 17q21 RMS

Index 365 1434905† HOXB7 3217 17q21.3 EWS (<> BL/NB)

Index 976 786084† CBX1 10951 17q21.32 NB

Index 554 461425†§ MYL4 4635 17q21-qter RMS

Index 1626 811000§ LGALS3BP 3959 17q25 EWS/NB (<> BL)

Index 255 325182†§ CDH2 1000 18q11.2 NB

Index 1954 814260†§ KDSR 2531 18q21.3 EWS

Index 368 1473131§ TLE2 7089 19p13.3 EWS (<> BL/NB)

Index 847 265874 NFIC 4782 19p13.3 EWS

Index 380 289645†§ APLP1 333 19q13.1 EWS/NB (<> BL)

Index 257 740801 BCKDHA 593 19q13.1-q13.2 EWS (<> BL)

Index 1389 770394†§ FCGRT 2217 19q13.3 EWS

Index 1055 1409509†§ TNNT1 7138 19q13.4 RMS (<> BL)

Index 1158 814526†§ RBM38 55544 20q13.31 RMS/BL (<> NB)

Continued on Next Page. . .
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Table 5.8 – Continued

Index Img Id Symbol GeneID Cytoband Group

Index 1295 344134 IGLL3 91353 22q11.23 BL

Index 335 1469292†§ PIM2 11040 Xp11.23 BL

Index 123 236282† WAS 7454 Xp11.4-p11.21 BL (<> NB)

Index 1708 43733§ GYG2 8908 Xp22.3 EWS

Index 545 1435862†§ CD99 4267 Xp22.32 EWS

Index 1776 768246 G6PD 2539 Xq28 NB

Index 94 809603 EST BL

Index 758 47475 BL

Index 937 789204 BL/NB

Index 1116 626502† ARPC1B 10095 7q22.1 BL

Index 2046 244618†§ EST RMS (<> EWS/BL)

Index 2050 295985†§ CDK6 1021 7q21-q22 RMS/NB (<> EWS)

Index 2157 244637 NB

Unlike the ALL/AML data set which is oligonucleotide-based platform, the SRBCTs data set is cDNA-

based. Due to the lack of a standard protocol in the cDNA microarray production, the integrity of the

cDNA microarray is compromised by poor gene annotation. This has made the validation of the identified

genes in this study difficult as an identical clone number (image id of the cDNA gene) could be used to label

multiple greatly differential genes.

Amongst the 90 identified genes by the GANN prototype, 14 were highly expressed in RMS class, 17 in

EWS class, 27 in BL class, 16 in NB class and 16 genes were moderately expressed in more than one class,

including 2 expressed in EWS/BL, 5 in EWS/NB, 1 in RMS/BL, 1 in BL/NB, 2 in RMS/NB, 5 in RMS/EWS

and 1 common gene that appeared in RMS/EWS/BL class. Amongst these genes, 5 were undefined in our

findings due to the lack of sufficient gene information in the data set. These undefined genes are image id

244637 (Index 2157), 47475 (Index 758), 789204 (Index 937), 809603 (Index 94) and 244618 (Index 2046),

as indicated in Table 5.8.

Some already proven efficient biomarkers in the existing medical studies have been found by the GANN

prototype. These biomarkers are CD99 (Index 545) and GYG2 (Index 1708) for EWS tumourigenesis; and

genes located in the chromosome band 11p15, i.e. SMPD1 (Index 139), LSP1 (Index 1207) and IGF2

(Index 187 and Index 509), which have been associated to RMS pathology. Four of these biomarkers were

found by all systems (i.e. Index 545, Index 1207, Index 187 and Index 509), Index 1708 was identified by

both the sigmoid and the tanh based systems; and Index 139 was solely identified by tanh based system

with the fitness evaluation size 35000 (see Table 5.4 on page 144).
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Figure 5.8: The heatmap of SRBCTs genes. The gene with high intensity (i.e. excited by the fluorescence dyes)
denotes in red and the gene with low intensity denotes in blue.

The CD99 (MIC, Index 545) molecule is a very effective positive marker used to identify almost all EWS-

related patients and it can help to rule out any differential diagnostic considerations when used as part of

immunostaining techniques, i.e. antibody-based staining methods (Khoury, 2005). It was over-expressed in

almost all EWS samples in Figure 5.8 and presented in 2 RMS samples. It is also a useful marker to identify

lymphoblastic-related cancers including leukaemias and lymphomas (Kang and Dunphy, 2006). The gene

GYG2 (Index 1708) was moderately expressed in EWS class in Figure 5.8, but not in any of the tumour

classes in the data set which indicates that it is effectively more sensitive than CD99 in differentiating EWS

tumour from the other SRBCT-related groups.

Genes in chromosome band 11p15 have generated a particular interest in medical studies. This region accom-
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modates various types of growth factor genes which play an important role in controlling the regulation of

various cellular processes in the body. Deregulation of the genes in this region is associated with over-growth

and tumour predisposition syndrome (Smith et al., 2007). Genes SMPD1 (Index 139), LSP1 (Index 1207)

and IGF2 (Index 187 and Index 509) were presented in RMS class in Figure 5.8 indicates that this region

may play a role in the pathogenesis of RMS. The gene IGF2 has been reported in the pathogenesis of RMS

by over-expression of the IGF2 level detected in ERMS subtype rather than in ARMS subtype (Makawita

et al., 2009).

In addition to biomarkers, some identified genes may also be involved in some known cytogenetic differenti-

ation among these four tumour groups. These genes are TNNT2 (Index 129) which may be associated with

MYOG and CD45 in EWS/RMS tumours; KIF3C (Index 1434) and may play a role in the ALK mutation

in NB tumour and LYN (Index 74) which may be associated with c-myc rearrangement in BL tumour.

The GANN prototype also identified some potential genes to be useful as biomarkers when used as a sole

differential diagnostic marker or as part of the immunostaining technique in detecting a specific tumour

group. These genes include ISG20 (Index 1387) in BL class; GAP43 (Index 1764) in NB class; SGCA

(Index 1003), MYL4 (Index 554) and FGFR4 (Index 1955) in RMS class; FGCRT (Index 1389), CAV1

(Index 246), TNFAIP6 (Index 566), PTPN13 (Index 1319) and KDSR (Index 1954) in EWS class; as is

indicated in Figure 5.8. There are also genes which were not expressed in certain tumour groups and these

genes may be useful in ruling rule out any differential tumour considerations in the diagnosis process.

SGCA (Index 1003) is the muscle specific protein that associated with muscular dystrophy and insulin-like

growth factor II (IGF2). High expression of SGCA in RMS class might be more indicative of the tissue origin

rather than related to the molecular background of RMS (Lidén et al., 2002). While IGF2 gene (Index 187

and Index 509) is an already known oncogene associated with ERMS subtype cancer (Makawita et al., 2009).

FGFR4 (Index 1955) is a tyrosine kinase receptor that binds to fibroblast growth factor and to carry out the

signal transduction to the intracellular environment in cellular proliferation, differentiation and migration

(Pal et al., 2007). The activity of FGFR4 normally is undetectable (i.e. suppressed) in normal tissues,

however, it becomes active when a tumour is formed. High expression of FGFR4 in RMS tumour was

associated with advanced-stage cancer and poor survival (Taylor et al., 2009). In addition, over-expression

of FGFR4 has been shown in various cancers (Pal et al., 2007), i.e. pituitary, prostate and thyroid.

CAV1 (Index 246) is a putative tumour suppressor gene involved in the regulation of signal pathway. Low

expression of CAV1 has been associated to the development of colon cancer (Futschik et al., 2003). CAV1

has also been associated with prostate cancer (Lidén et al., 2002). Mutation in CAV1 is usually a sign of

metastasis breast cancer (Bonuccelli et al., 2009).
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The findings in this section showed that the GANN prototype able to identify genes that are not only related

to tumour histogenesis, but also genes that may not normally be expressed in the corresponding tissue. This

means that the GANN prototype does not detect genes exclusively associated with a single cancer type,

however, it explores genes that are differentially expressed in multiple cancer types. The identified genes

may provide new insights into the biology of the cancer. We also observed that the tanh based system

extracted more biological significant genes than the other systems.

5.5 The differentially expressed genes in various precision levels

In previous sections, we discussed the extraction performance of each system based on the implications from

two vital GA parameters that could affect the success of the system in extracting the most relevant genes

from the respective data set. The integrity of the findings have been discussed based on the expected results

from the synthetic data sets and the biology perspective.

In this section, the differentially expressed genes in three different fitness precision levels, i.e. 95%, 98% and

100% were examined. A comparison study based on these parameters was conducted using genes that were

overlapped in all four systems with a specific GA parameter condition, i.e. population size 300 and fitness

evaluation size 40000. Two tables, each representing a microarray data set, were produced. The complete

list of genes extracted by each system in different precision levels was listed in Tables B.13 and B.14 in

Appendix B. This design supports the objectives of our research theme stated in Section 1.4 on page 12.

Table 5.9: The summary list of overlapped ALL/AML genes with three different fitness precision levels.

Index Accession Number Symbol Precision Level

100% 98% 95%

Index 760 D88422 CSTA * * *

Index 804 HG1612-HT1612 MARCKSL1 * * *

Index 1685 M11722 DNTT * * *

Index 1779 M19507 MPO * * *

Index 1882 M27891 CST3 * * *

Index 2121 M63138 CTSD * * *

Index 2288 M84526 CFD * * *

Index 2354 M92287 CCND3 * * *

Index 2402 M96326 AZU1 * * *

Index 2642 U05259 CD79A * * *

Index 3252 U46499 MGST1 * * *

Index 4328 X59417 PSMA6 * * *

Index 4377 X62654 CD63 * * *

Continued on Next Page. . .
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Table 5.9 – Continued

Index Accession Number Symbol Precision Level

100% 98% 95%

Index 4847 X95735 ZYX * * *

Index 6041 L09209 APLP2 * * *

Index 1829 M22960 CTSA * *

Index 6855 M31523 TCF3 * *

Index 1239 L07633 PSME1 * *

Index 1834 M23197 CD33 * *

Index 1928 M31303 STMN1 * *

Index 1962 M33680 CD81 * *

Index 4211 X51521 EZR * *

Index 5501 Z15115 TOP2B * *

Index 5772 U22376 MYB * *

Index 6200 M28130 IL8 * *

Index 6201 Y00787 IL8 * *

Index 6376 M83652 CFP * *

Index 4373 X62320 GRN * *

Index 412 D42043 RFTN1 *

Index 668 D86967 EDEM1 *

Index 1796 M20902 APOC1 *

Index 4196 X17042 SRGN *

Index 758 D88270 IGL@ *

Index 1745 M16038 LYN *

Table 5.9 shows the list of overlapped genes identified by all systems in the ALL/AML data set in three

different fitness precision levels, i.e. 100%, 98% and 95%. There were 30 common genes obtained in 100%

precision level, 31 common genes in 98% precision level and in 95% precision level, only 16 common genes

were found. Amongst these genes, 15 genes were expressed in all levels. These genes include some biomarkers,

i.e. DNTT, MPO and CD79A, that have been described in the previous section. The remaining genes were

only expressed when a specific precision level was applied. Twelve genes were detected in higher precision

levels, i.e. 98% and 100%, one gene (Index 4373) was found to be present in lower precision levels, i.e.

95% and 98%. These genes include CTSA (Index 1829), TCF3 (Index 6855), PSME1 (Index 1239), CD33

(Index 1834), STMN1 (Index 1928), CD81 (Index 1962), EZR (Index 4211), TOP2B (Index 5501), MYB

(Index 5772), IL8 (Index 6200 and Index 6201) and CFP (Index 6376) that were expressed in the precision

level 98% and above.

GRN (Index 4373)is a glycosylated peptide that has been cleaved into a variety of sections which may act

differently on cell growth. It is important in normal development of cell and brain, wound healing and
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tumourigenesis. Mutation in GRN has been associated to brain disease, such as Alzheimer and dementia,

and has a crucial role in breast tumourigenesis (EntrezGene: GeneID 2896).

SRGN (Index 4196) encodes a haematopoietic cell granule proteoglycan protein, which was found to be

associated with the macromolecular complex of granzymes and perforin, which may serve as a mediator of

granule-mediated apoptosis (EntrezGene: GeneID 5552). LYN (Index 1745) is a tyrosine kinase that partic-

ipate in the regulation of cell activation. The expression of LYN has been associated to B-cell lymphocytes

(EntrezGene: GeneID 4067). SRGN, IGL@ (Index 758) and LYN have been identified with 98% fitness

precision level.

The findings showed that a low expression but biologically significant gene could be identified by the GANN

system. Although these lowly expressed genes are not directly associated in leukaemogenesis, however, they

play an important role in normal development and deficiency of these genes may lead to immunodeficiency

disease, which, in most cases, promotes tumourigenesis.

Table 5.10: The summary list of overlapped SRBCTs genes with three different fitness precision levels.

Index Image Id. Symbol Precision Level

100% 98% 95%

Index 1 21652 CTNNA1 * * *

Index 85 297392 MT1L * * *

Index 123 236282 WAS * * *

Index 187 296448 IGF2 * * *

Index 236 878280 CRMP1 * * *

Index 246 377461 CAV1 * * *

Index 255 325182 CDH2 * * *

Index 335 1469292 PIM2 * * *

Index 417 395708 DPYSL4 * * *

Index 509 207274 IGF2 * * *

Index 545 1435862 CD99 * * *

Index 554 461425 MYL4 * * *

Index 742 812105 MLLT11 * * *

Index 783 767183 HCLS1 * * *

Index 836 241412 ELF1 * * *

Index 846 183337 HLA-DMA * * *

Index 951 841620 DPYSL2 * * *

Index 976 786084 CBX1 * * *

Index 1003 796258 SGCA * * *

Index 1055 1409509 TNNT1 * * *

Index 1084 878652 PMS2L12 * * *

Continued on Next Page. . .
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Table 5.10 – Continued

Index Image Id. Symbol Precision Level

100% 98% 95%

Index 1116 626502 * * *

Index 1158 814526 RBM38 * * *

Index 1207 143306 LSP1 * * *

Index 1319 866702 PTPN13 * * *

Index 1386 745019 EHD1 * * *

Index 1389 770394 FCGRT * * *

Index 1434 784257 KIF3C * * *

Index 1601 629896 MAP1B * * *

Index 1606 624360 PSMB8 * * *

Index 1645 52076 NOE1 * * *

Index 1916 80109 HLA-DQA1 * * *

Index 1954 814260 KDSR * * *

Index 1955 784224 FGFR4 * * *

Index 2046 244618 EST * * *

Index 2050 295985 CDK6 * * *

Index 153 383188 RCVRN * *

Index 1613 80338 SELENBP1 * *

Index 1327 491565 CITED2 * *

Index 1884 609663 PRKAR2B * *

Index 165 283315 PGAM2 *

Index 365 1473131 HOXB7 *

Index 107 365826 GAS1 *

For SRBCTs data set, as is indicated in Table 5.10, most of the identified genes, i.e. 36 genes, were presented

in all levels of fitness precision, including 1 undefined gene and some biomarkers, such as CD99, IGF2 and

LSP1. These genes may play a role as general markers for detecting small round undifferentiate cells.

Two genes (Index 153 and Index 1613) were detected in higher precision levels, i.e. 98% and 100%, but did

not appear in a lower precision level. Index 1327 and Index 1884 were found in both the highest (100%) and

the lowest (95%) precision levels, but not in 98%. This would indicate that these genes were provoked by

other abnormal genes. However, further molecular analysis on these genes should be performed to validate

their roles in tumourigenesis pathology.

Meanwhile, GAS1 (Index 107) was detected in 98% precision level. GAS1 is a putative tumor suppressor gene

involved in cell arrest and can induce apoptosis when it is over-expressed in different cell lines. It contains the

expected properties as a melanoma tumor suppressor: suppression of metastasis in a spontaneous metastasis

assay, promotion of apoptosis following dissemination of cells to secondary sites and down-regulation in
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human melanoma metastasis (EntrezGene: GeneID 2619).

To conclude, this section demonstrated the presence of differentially expressed genes in different precision

levels which could contribute to an early prognosis of tumourigenesis. The findings show the potential of

some genes which might be provoked by the presence of certain genes. This information could be useful for

therapeutic and biological diagnostic to prevent the development of tumour pathology.

5.6 Raw microarray data set Versus Normalised microarray data set

Referring to the problems stated in Section 1.2 on page 7, most of the oligonucleotide-based data sets were

generally preprocessed before being analysed by the computer algorithm. Table C.1 in Appendix C shows

some preprocessing techniques have been used in the ALL/AML data set. We argued that the quality of the

data set could be compromised by the normalisation process. To validate our statement, a comparison study

based on the raw and the normalised ALL/AML data sets was performed on each system in the population

size 300 and the fitness evaluation size 40000. A tailored C++ program is coded to scale down the gene

values to the [0, 1] interval, based on the maximum and the minimum values of a gene within the data set.

The equation of max-min normalisation is as follows:

x̄i =
xi − xmin

xmax − xmin
(5.1)

This max-min normalisation is being used in this study as it has been reported effective for the ensemble

ANN classifiers by Cho and Won (2007) in dealing the ALL/AML data set.

Table 5.11: The summary of the genes extracted from the raw and the normalised ALL/AML data sets.

System Raw data set Normalised
data set

No. of consistent
genes

No. of selected
genes solely pre-
sented in the raw
data set

Sigmoid-based 45 86 35 10

Linear-based 55 92 47 8

Tanh-based 46 77 33 13

Threshold-based 47 94 41 6

Tables 5.11 and 5.12 present the summary of our findings and the complete list of the extracted genes is

presented in Table B.15 in Appendix B. The results show that by normalising the data set, the number of

genes identified by each system was tremendously increased. This is indicated by the increased number of
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Table 5.12: The processing time (in seconds) spent in the raw and the normalised ALL/AML data sets.

System Raw data set Normalised data set

Sigmoid based 8809 4007

Linear based 1951 1482

Tanh based 1644 6265

Threshold based 3036 1596

genes found in the normalised ALL/AML data set as compared to the genes identified in the raw ALL/AML

data set in Table 5.11. The normalisation process scaled down the magnitude of the gene values into a

specific interval, as a result, the highly differentially expressed genes were forced to be compressed to meet

the normalisation criteria and the significance of these genes was not obvious to the system. This is indicated

by a significant low selection frequency when similar genes were being selected in the normalised data set

as being selected in the raw data set (see Table B.15 in Appendix B). The chances to select low expression

but high biological relevant genes become impossible in the normalised data set as these genes have been

suppressed by other genes which have a higher expression values.

We observed a significant improvement in the processing time spent by the sigmoid, the linear and the

threshold based systems when the data set was normalised. However, the tanh based system required an

intensive processing time when analysing this normalised data set. This is because the tanh based system

adopting larger interval range, i.e. [-1, 1], in the selection process, whereas this normalised data set has a

smaller scaling range that is not appropriate for standard tanh computation.

The findings in this section has demonstrated the deficiency of using the normalisation process in the

ALL/AML data set, due to the quality of the data altered by the normalisation technique and, subsequently,

the integrity of the results was compromised.

We would like to draw the attention of researchers to the implication of normalisation techniques in the quality

of microarray data. The application of normalisation technique in the microarray data without understanding

the data itself could severely compromised the integrity of the results. This is due to microarray data being

much more complicated than the ordinary real-world data in the sense that it contains a multivariant of

cancer subtypes within a known cancer group and some of these cancer subtypes might associated with other

disease. Furthermore, the oligonucleotide microarray data are highly skewed with negative data values and

consequently, the biological relevant, however, lowly expressed genes in the data set may be ’buried’ by the

highly expressed ones in the data set. Therefore, the normalisation is usually expected in the oligonucleotide

microarray data to reduce the value skewness within the data. The improper use of normalisation techniques

could lead to an overly optimistic result and redundant information.



5.7 The significance of the extracted bioassay attributes 171

5.7 The significance of the extracted bioassay attributes

In the previous sections, we discussed the GANN performance to handle data with high feature dimension,

sample scarcity and complex feature interaction. Based on these findings, we observed that the tanh based

system is, amongst all the systems, the most effective system to extract the most significant features from

the biology perspective.

In this section, we examine the selection performance of the tanh based system to handle bioassay data

characterised by low feature dimension, feature-independent and highly imbalanced between the positive and

the negative samples. An experiment was conducted using the bioassay data sets based on the population

size 300 and the fitness evaluation size 30000. The completeness of the findings is evaluated using four

cost-sensitive classifiers constructed in the WEKA environment (see Section 4.1.2 on page 95 for parameter

settings) and is compared with the original work reported by Schierz (2009). The data sets have been split

into an 80% training set and a 20% test set, as recommended by Schierz. For AID362 data set, the training

set contains 3423 compounds, i.e. 48 active and 3375 inactive; and the test set contains 856 compounds, i.e.

12 active and 844 inactive. For AID688 data set, the training set has 21751 compounds, i.e. 198 active and

21553 inactive; and 5438 compounds, i.e. 50 active and 5388 inactive.

The top 20% of the attributes from each data set were selected by GANN prototype. To evaluate the

generalisation performance of the prototype, these selected attributes were trained by the identical set of

cost-sensitive classifiers (CSC) as reported in the original study (Schierz, 2009), i.e. Naive Bayes (CSC NB),

Support Vector Machine (CSC SMO), C4.5 tree (MetaCost J48) and Random Forest (CSC RF), with a 10-

fold cross-validation procedure. The significance of the attributes were then validated using the independent

test set.

Standard classifiers usually assume equal weighting of the classes in the data set, in the sense that mis-

classifying class A has similar consequences as misclassifying class B. As a result, most standard classifiers

are unable to predict a minority class in the bioassay data sets (Maloof, 2003; Schierz, 2009) due to highly

imbalanced data between active and inactive compounds in the data set. This led to the development of

cost-sensitive classifiers, which can assign different costing for different weighting classes in imbalanced data

sets (Domingos, 1999; Elkan, 2001; Maloof, 2003).

A trial experiment, based on the network size 10-5-2 using the AID362 data set was performed and the

results showed a poor performance on the system. This was due to the large data size of bioassay data

(4279-27189 samples) when compared to microarray data (72-83 samples), thus, we increased the network

size of GANN to 20-10-2, while the remaining parameters remain unchanged. Figure 5.9 shows the summary

of the results based on the independent test set of the data sets and the list of the selected attributes by
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GANN is presented in Table B.16 in Appendix B. We have also conducted the experiments using principal

component analysis (PCA).

(a) The true positive (TP) rate of the bioassay data sets with under or approximately a
20% false positive (FP) rate.

(b) The false positive (FP) rate of the bioassay data sets.

Figure 5.9: The classification results based on the independent test set in the bioassay data sets.

There has been no significant decrease in classification performance of the cost-sensitive classifiers, as showed

in Figure 5.9a. Using the 28 attributes selected by GANN in the AID362 data set, a CSC RF has produced

better results than using the entire 144 attributes reported by Schierz (2009) and the 95 attributes selected

by PCA. There has been a slight decrease in performance when using CSC NB and CSC SMO, but all other

results are comparable. Furthermore, using the 28 attributes selected by GANN, a significant decrease on

the number of false positive (FP) rate was observed in all classifiers, except a CSC SMO, as is presented in

Figure 5.9b.

For AID688 data set, as showed in Figure 5.9a, using the 31 attributes selected by GANN, a MetaCost

J48 tree has performed better than using the entire 153 attributes reported by Schierz (2009) and the 116

attributes selected by PCA. Surprisingly, the CSC RF which was unable to run using neither the whole
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data set nor the 116 attributes selected by PCA, due to the size of the data set (∼ 27000 compounds),

has produced good results using the attributes selected by GANN. However, there has been a decrease in

performance using CSC NB and CSC SMO for attributes selected by GANN when compared to using the

entire attributes and the 116 attributes selected by PCA. Even so, all cost-sensitive classifiers have the lowest

FP using the 31 attributes selected by GANN (see Figure 5.9b).

The findings in this section demonstrate the efficiency of the GANN prototype to handle a large, imbalanced

data set. The results show a comparable better performance on the GANN prototype and the entire at-

tributes in the data set and the PCA. The advantage of using GANN to select attributes over using the entire

attributes and the PCA is that GANN enables computationally effective algorithms, such as Random Forest

and Classification Tree, to be implemented in a larger data set with a high success rate. Considering the

GANN prototype only implemented 20% of the attributes from the data set, the classification performance

of cost-sensitive classifiers has not been sacrificed. This shows that the GANN prototype has successfully

identified the most significant attributes needed to discriminate between the active and the inactive com-

pounds. The only downside of the GANN prototype is that a computationally intensive processing time

required for larger data set.

5.8 Summary

In this chapter, we examined the performance of the GANN model as a feature extraction. The prototype

was implemented to extract informative features (genes and attributes) from six data sets, comprising two

synthetic data, two microarray data and two bioassay data. The results can be summarised as follows:

• The linear based system is able to explore the potential genes more effectively than the other three sys-

tems and is very much processing cost effective as compared to the remaining three systems. However,

this system also induced a high number of low interest genes in the subject of study.

• The sigmoid based system is also able to efficiently explore the potential genes. However, this system

requires a more intensive processing cost than the other three systems.

• The threshold based system is lack of the stability factor in extracting consistent genes and it is sensitive

to data distribution.

• The tanh based system is, amongst the four systems, the most effective system to extract the most

informative genes from the data sets.

• All systems have a significant improvement on their performance with the population sizes 200 to 300

and the fitness evaluation sizes, ranging from 20000 to 40000.



5.8 Summary 174

• The identification of informative genes that were lower expressed in the data set can be achieved with

a low fitness precision level. These genes may be useful for therapeutic and biological diagnostic to

prevent the development of a tumour.

• The improper use of normalisation technique and a lack of understanding on the microarray data could

compromise the integrity of the results.

• The tanh based GANN system has produced better, or at least comparable, results in a large and imbal-

anced bioassay data set. However, the only downside of the GANN prototype is that a computationally

intensive processing time required for larger data set.

In the next chapter, we conclude our research by revising our contributions to the bioinformatics field, the

revision on our methodology and suggests the trend of the future research. The chapter will concluded with

the overall achievement of this thesis.



Chapter 6

Conclusion and Future Works

This chapter draws conclusions on our work reported in this thesis . A summary of the major contributions

of the research is provided and suggestions for possible further research areas.

This chapter contains five sections. Section 6.1 provides conclusions of the thesis. Section 6.2 summarises the

major contributions for this research. Section 6.3 presents the areas that have been omitted in this thesis.

Section 6.4 indicates the limitations of our research and suggests several interesting avenues for further work

to extend our research. Finally, Section 6.5 concludes the thesis with the overall achievements of the research.

6.1 Conclusions of the Thesis

This thesis presents an intelligent extraction approach via the hybridisation of GAs and ANNs to identify

informative features in the bioinformatics field. Our research emphasises the Ockham’s Razor principle to

extract features from high dimensional data and imbalanced data. Our approach is one of the very rare

feature extraction facilities that exploits the features of GAs and ANNs as a feature extraction and works

efficiently in two distinct types of data in the field. The main conclusions drawn from this thesis to answer

the research questions are given below.

1. Using the simplest parameter settings in both GA and ANN, primary features can be extracted from the

microarray data and these features show their biological significance on the tumourigenesis pathway.

2. The important genes which were lower expressed in the microarray data can be extracted with a lower

fitness precision level.

Some important conclusions derived from this the experimental study are given as below.

175
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1. The use of tanh activation function in ANNs, amongst four ANN functions, is the most effective

function to be used to compute the fitness function of a GA.

2. The GA has the best performance when the population size is between 200 to 300 and the fitness

evaluation sizes, ranging from 20000 to 40000.

3. The improper use of normalisation technique and a lack of understanding on the microarray data could

compromise the integrity of the gene selection results. This is because the normalisation technique

homogenised the magnitudes of the primary features with the secondary or the least significant features

in the data, and consequently, the chance of discovering primary features become narrowed.

6.2 Summary of Contributions

The main goal of this thesis was to devise a more effective way for extracting informative features from high

dimensional data using GAs and ANNs. This goal leads to three major contributions, which are reviewed

in related literature, the solution for feature extraction, the prototype implementation and evaluation. The

summary of these contributions is as follows:

6.2.1 The review of related literature

Two domains of literature pertaining to the biology and computer fields were reviewed. The existing biology

literature shows that there are two dominant types of microarrays: oligonucleotides and cDNA, each of which

requires different techniques to be used in the microarray production. The cDNA microarray usually requires

a two-phase in normalisation steps, i.e. the pre-normalisation in the fluorescent labelling process and the

post-normalisation in the imaging process. The oligonucleotide microarray requires only post-normalisation

in the imaging process. Both types of microarray data contain a high dimension of noisy genes, which require

the use of computer algorithm to analyse the data.

The existing computer literature shows that there are two dominant ways for analysing microarray data:

predicting the accuracy of the samples based on the known cancer group in the data; and discovering new

cancer groups from the known cancer group in the data. Both ways expose the immaturity of the gene

extraction area. Thus, in this thesis, we devised an efficient solution for extracting informative genes based

on the application of hybrid GAs and ANNs, as the previous research restricting the utility of the selection

method to retain the effectiveness of the classification method and the presentation of gene extraction based

upon the hybrid GA/ANN is rare. The rarity of this solution in feature extraction is mainly due to the

ill-conceived hypothesis in the existing works in dealing with microarray data. Another reason is because

both GAs and ANNs are not model transparent which lacks the step-by-step logic to explain the interaction
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between genes in the model. Thirdly, the ANN is commonly used as a classifier to classify samples and the

GA is usually used to optimise the parameter of the ANN. Promising results based on the incorporation of

GA into the ANN were reported in many discipline areas. Thus, researchers are not keen to find outcomes

when the ANN is incorporated into a GA.

Our work has incorporated the ANN into a GA using as minimal parameter setting as possible to avoid the

over-fitting problem which normally arises in ANNs. The ANN in our model is used as a fitness generator

to compute the GA fitness function.

The existing literature identifies several problems as follows:

• The lack of understanding of microarray data result in an ambiguity of the objectives of the study.

• The risk of over-fitting and biased underestimates of the error rate due to the misuse of a valid

mechanism and resusbstitution estimation in the classification process.

• The lack of supporting evidence in the declaration of new prediction models due to the misuse of a

valid mechanism and resusbstitution estimation.

• The researchers being not aware of the influence of the model complexity to the prediction results

which result in model over-fitting.

• The researchers being not aware of the influence of the data preprocessing in finding the relevant

information for the problems.

Information on these problems can be found in Sections 1.1 and 1.2 in Chapter 1 and Section 2.2 in Chapter

2.

6.2.2 The solution for feature extraction

Identifying a solution for feature extraction is the most important contribution of this research, as the

selection method is always needed to reduce the number of noisy information from microarray data. In our

solution, we utilised the universal computation power of ANNs and the evolutionary ability of GAs to extract

informative genes from a specific microarray data sets. Three main steps in our feature extraction model

are: (a) initialising a population of potential members to the problem, i.e. GA chromosomes; (b) computing

fitness values for each member in the population using a 3-layer feedforward ANN; and (c) evaluating the

fitness of each member in the population using GA crossover and mutation operators.

The capabilities of our solution are as follows:
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• The order of genes selected based on the selection frequency of genes, i.e. the number of times that the

gene is selected, and the fitness accuracy of the gene subset, i.e. the number of times that the sample

is correctly labelled in the class for the selected gene, is calculated.

• The fitness accuracy and the number of fitness evaluations for each GA cycle, i.e. GA generation, are

preserved.

• The flexibility to alter parameters, such as types of activation function to be used to compute fitness

values, the population size, the fitness evaluation size, the network size, the fitness precision level and

the gene list corresponds to a specific fitness accuracy to be displayed.

• The simplicity of the model in which only the fundamental parameter settings are applied which reduce

the possible risks arising from the complex model and also provides generalisability in handling multiple

types of data structures, i.e. microarray data and bioassay data, in the bioinformatics field.

• Retaining all highly fitted members for the next generation, excepting the least fit member which is

replaced by the new member in the next generation.

6.2.3 The prototype implementation and Evaluation

The prototype of the feature extraction solution has been implemented using a C++ programming language

in LINUX environment to realise the proposed techniques. This prototype helps to validate our approach and

shows the possibility of using ANN as a fitness generator for a GA, as well as extracting informative features

from the high dimensional data and in the highly imbalanced data with different data representations. The

prototype provided a fundamental basis for conducting our experimental study.

The performance of the prototype has been evaluated via experimental study which serve the following

purposes:

• The performance of prototype, each with a different ANN activation function, to extract informative

genes from the microarray data.

• The minimal sizes of GA population and fitness evaluation for efficient marker identification.

• The ability of prototype to handle different platform of microarray data.

• The ability of prototype to extract important genes that were lower expressed in microarray data set.

• The ability of prototype to handle a highly imbalanced data with multiple data representations.
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6.3 Areas that are not explored in this thesis

There are several areas which were not explored in this thesis. These areas include:

• The mathematical proof on the logic of the activation function to calculate fitness values for each

member in the population.

• The implication of various data partition sizes in marker identification.

• The biological validation on the identified genes using RT-PCR assay or FISH analysis.

• The exploration in chemoinformatics literature and the challenges in the field.

• The exploration in pattern recognition literature for handling large and imbalanced data sets.

6.4 Limitations of this research and Further work

Our model has some limitations that should be improved in the future. These limitations are to handle data

with multiclasses more efficiently, to reproduce identical sets of extracted features and to reuse the selection

results.

• Although we have tested our model with two multiclass data sets in this thesis and the findings from

these data sets are promising, however, a lower fitness confidence level of the identified genes was

achieved compared to the fitness confidence level of the selected genes from the binary class data sets.

With the increased number of classes and different data representation, we may need to re-configure

the parameters in the model for better performance.

• Since our model did not preserve information of the network weights after each repetition run, the

reproduction of the identical set of genes is impossible, even though identical sets of parameter settings

were applied. With no preserved information of the network weights, we are unable to generate similar

fitness scores for the identical sets of chromosomes. When we consider the computational cost of our

model, with no preservation on the network weights used in the previous run, our model, in fact, has

a low computational cost as our model has less tasks to perform. Furthermore, each run represents a

new start on the GA and the ANN process in our model which can avoid the model being over-fitted

by prior information in the model.

• Our model produced only the list of identified genes ordered by its selection frequency and the total

number of correctly labelled samples after the completion of the maximum number of repetition runs.

As a result, the gene results cannot be reused in a different number of repetition runs.
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For further work, we would like to explore the follows:

1. The implication of data partition on the significance of the extracted genes

One of the characteristics of microarray data is complex gene interactions, meaning that the number

of interacted genes are not fixed. Thus, by partitioning the data into different sizes and/or different

number of equal portions, different results may produced. Therefore, we would like to investigate the

potentiality of data partitioning in the effect of significant genes identified by our model.

2. Configurating the parameter of GANN

The current model using the fundamental configuration of the GA and the ANN. Although, promising

results are achieved, however, the level of fitness confidence for the selected genes from multiclass data

and data with different representation is low. This may be due to single-point crossover and binary

tournament selection being applied in our model. Thus, we would like to explore the potentiality of

different crossover operators and different variant of tournament selection techniques in improving the

fitness performance of the model in multiclass data and in imbalanced data.

3. Program new Functions

The existing model did not preserve the genes extracted in each repetition run. Thus, the selection

results cannot be reused when a different number of repetition runs is needed. In addition, the existing

model unable to associate the extracted genes to the respective class in the data set without the

assistance of an external tool. To circumvent the problem, we will write new program functions to

specifically preserve the list of genes extracted in each repetition run and to calculate the fitness

accuracy strength of the gene and, without increase the processing time in the current model.

4. Designing a User Interface

The current model has no proper user interface. All the changes of the parameter settings have to be

made directly in the C++ source code. This could increase the risk of logic errors that may be made

by the user which could yield undetected flaws in the results. Thus, we will program the window-based

interface in which the user can alter the parameter values and choose the report format to be displayed.

6.5 The overall achievement of the thesis

The overall achievement of this thesis can be summarised as follows:

• The first achievement is the presentation of a solution for extracting highly significant features from

high dimensional data sets.
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• The second achievement is the way we hybrid GAs and ANNs which can utilised the minimal parameter

settings of the techniques to derive highly informative sets of genes.

• The third achievement is the experimental study conducted on four activation functions of ANNs in

different population size and GA evaluation, which has never been conducted before.

• The fourth achievement is the interpretation of the extracted genes from the biological perspectives

and its association to the disease of interest.

• The fifth achievement is the identification of the important genes appearing in different tumour devel-

opment stages and the precaution steps on these genes may prevent the spread and the growth of a

tumour.

• The sixth achievement is arguably novel, that is, our model is able to extract highly informative

features from multiple types of bioinformatics data, including microarray data that was characterised

with high gene dimension, sample scarcity and complex gene interaction; and bioassay data featured

with enormous compound size and highly imbalanced.

• Lastly, this thesis also demonstrate the practicality and the reliability of the solution through the

prototype.

Overall, we believe that our research makes advances in the feature extraction area in the bioinformat-

ics field. Our hybrid GANN method has proved that the selection on both the biological-relevant and

statistical-significant genes can be achieved using the raw, unprocessed microarray data. By deliberately not

emphasising on the quality of ANNs, true marker genes can be extracted by our model. Furthermore, our

approach also demonstrated its efficiency in dealing with bioassay data, which brings a new perspective in

finding the association between marker genes and pharmaceutical drug that is used to control the progression

of cancer disease. We believe that the findings presented in this thesis will draw more attention to the area

and stimulate more research in this field.
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Appendix A

Feature Extraction Model

This appendix contains relevant screen shot figures of the GANN prototype that is written in C++ pro-

gramming.

Figure A.1: The parameters in the Prototype.

200
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Figure A.2: The storage arrays in the Prototype.
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(a) mlp set() and mlp runl()

Figure A.3: The ANN functions in the Prototype.
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(b) mlp fit()

Figure A.3: – Continued



204

(a) ga init() and ga eval()

(b) ga getbest() and ga getworst()

Figure A.4: The GA functions in the Prototype.
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(c) ga run()

Figure A.4: – Continued
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(d) ga run() – Continued

Figure A.4: – Continued



Appendix B

Experimental Results

This appendix contains relevant tables to be used for supporting our findings reported in Chapter 5.

Table B.1: The complete list of synthetic data set 1 genes in the population size 100.

Continued on Next Page. . .
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Table B.1 – Continued

Continued on Next Page. . .
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Table B.1 – Continued

Table B.2: The complete list of synthetic data set 1 genes in the population size 200.

Continued on Next Page. . .
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Table B.2 – Continued

Continued on Next Page. . .
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Table B.2 – Continued

Table B.3: The complete list of synthetic data set 1 genes in the population size 300.

Continued on Next Page. . .
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Table B.3 – Continued

Continued on Next Page. . .
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Table B.3 – Continued
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Table B.4: The complete list of synthetic data set 2 genes in the population size 100.

Table B.5: The complete list of synthetic data set 2 genes in the population size 200. Genes marked in red
denote noisy genes.

Continued on Next Page. . .
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Table B.5 – Continued
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Table B.6: The complete list of synthetic data set 2 genes in the population size 300. Genes marked in red
denote noisy genes.

Continued on Next Page. . .
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Table B.6 – Continued
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Table B.7: The complete list of ALL/AML genes in the population size 100.
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Table B.7 – Continued
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Table B.7 – Continued
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Table B.7 – Continued
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Table B.8: The complete list of ALL/AML genes in the population size 200.
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Table B.8 – Continued
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Table B.8 – Continued
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Table B.8 – Continued
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Table B.9: The complete list of ALL/AML genes in the population size 300.
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Table B.9 – Continued
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Table B.9 – Continued
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Table B.9 – Continued
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Table B.10: The complete list of SRBCTs genes in the population size 100.
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Table B.10 – Continued
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Table B.10 – Continued
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Table B.10 – Continued
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Table B.11: The complete list of SRBCTs genes in the population size 200.
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Table B.11 – Continued
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Table B.11 – Continued
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Table B.11 – Continued
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Table B.12: The complete list of SRBCTs genes in the population size 300.
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Table B.12 – Continued
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Table B.12 – Continued
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Table B.12 – Continued
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Table B.13: The complete list of ALL/AML genes with different precision levels.
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Table B.14: The complete list of SRBCTs genes with different precision levels.
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Table B.15: The complete list of genes based on the raw and the normalised ALL/AML data sets.

Continued on Next Page. . .



245

Table B.15 – Continued
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Appendix C

Related Works

This appendix contains relevant studies in the microarray data sets that were being used in this thesis.
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