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Abstract 

Since the very earliest days of the human race, people have been studying animal behaviours. 
In those early times, being able to predict animal behaviour gave hunters the advantages 
required for success. Then, as societies began to develop this gave way, to an extent, to 

agriculture and early studies, much of it trial and error, enabled farmers to successfully breed 

and raise livestock to feed an ever growing population. Following the advent of scientific 
endeavour, more rigorous academic research has taken human understanding of the natural 
world to much greater depth. In recent years, some of this understanding has been applied to 
the field of computing, creating the more specialised field of natural computing. In this arena, 
a considerable amount of research has been undertaken to exploit the analogy between, say, 
searching a given problem space for an optimal solution and the natural process of foraging 
for food. Such analogies have led to useful solutions in areas such as numerical optimisation 
and communication network management, prominent examples being ant colony systems and 
particle swarm optimisation; however, these solutions often rely on well-defined fitness 
landscapes that may not always be available. One practical application of natural computing 
may be to create behaviours for the control of autonomous vehicles that would utilise the 
findings of ethological research, identifying the natural world behaviours that have evolved 
over millennia to surmount many of the problems that autonomous vehicles find difficult; for 
example, long range underwater navigation or obstacle avoidance in fast moving 
environments. 
This thesis provides an exploratory investigation into the use of natural search strategies for 
improving the performance of autonomous vehicles operating in a search role. It begins with a 
survey of related work, including recent developments in autonomous vehicles and a ground 
breaking study of behaviours observed within the natural world that highlights general 
cooperative group behaviours, search strategies and communication methods that might be 
useful within a wider computing context beyond optimisation, where the information may be 
sparse but new paradigms could be developed that capitalise on research into biological 
systems that have developed over millennia within the natural world. Following this, using a 
2-dimensional model, novel research is reported that explores whether autonomous vehicle 
search can be enhanced by applying natural search behaviours for a variety of search targets. 
Having identified useful search behaviours for detecting targets, it then considers scenarios 
where detection is lost and whether natural strategies for re-detection can improve overall 
systemic performance in search applications. 
Analysis of empirical results indicate that search strategies exploiting behaviours found in 
nature can improve performance over random search and commonly applied systematic 
searches, such as grids and spirals, across a variety of relative target speeds, from static targets 
to twice the speed of the searching vehicles, and against various target movement types such 
as deterministic movement, random walks and other nature inspired movement. It was found 
that strategies were most successful under similar target-vehicle relationships as were 
identified in nature. Experiments with target occlusion also reveal that natural reacquisition 
strategies could improve the probability of target redetection. 
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Preface 

Several journal publications have been produced based on the material in this thesis. Initially, 

a two-part survey of Particle Swarm Optimisation exploring the development of the field and 
indicative applications was published in Natural Computing (Banks et al. 2007 and 2008a). 
Following this, a study into the application of findings from ethological research into search 
behaviours to artificial search problems, also published in Natural Computing (Banks et al., 
2008c), which forms a large component of background material. During this time, an article 
exploring the application of particle swarms in the guidance of autonomous unmanned aerial 
vehicles was published by the Royal Institute of Navigation (Banks et al., 2008b), based on 
the author's previous work that led to this thesis; this article was awarded the Royal Institute 

of Navigation's prestigious Michael Richey Medal for the best article published in The Journal 

of Navigation throughout 2008. More recently, this was further developed to include the 
nature inspired search at the centre of this thesis, once again published by the Royal Institute 
of Navigation (Banks and Vincent, 2009), and covering much of the method and findings 
reported here. 
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1 Introduction 

In a recent article to mark 100 years of British aviation (Aerospace International, 2008), a 

selection of leading aviation stakeholders were invited to predict its development over the 

next century. Perhaps unsurprisingly, autonomous behaviour featured among several of the 

opinions, including: "In the long term self-organising `swarms' of military `aircraft' will 

become feasible. Even more of the battle will become electronic rather than physical. " (Alex 

Dorten, chief executive, Thales UK). In a recent submission to the House of Commons 

Defence Select Committee, the Royal Aeronautical Society (Royal Aeronautical Society, 

2008) called for a commitment to the development of unmanned aerial systems in general. 

With respect to autonomy, the Society argued that, whilst it could reduce costs, it could also 

reduce communication bandwidth requirements, which in operational theatres can be 

problematic for other users and applications. 

As acceptance of unmanned vehicle use grows, however, the need to provide autonomous 
behaviours has increased. For example, it was recently reported (Reilly, 2008) that Irish 

peacekeepers working in Chad had lost a non-autonomous UAV due to a communications 
failure. The default behaviour for the vehicle under such circumstances was to return to its 

operating base; however, it is believed that operators may have failed to update the home 

coordinates following training sorties in the Republic of Ireland. Following the failure, it is 

believed that the vehicle attempted to return to a base several thousand miles beyond its 

maximum operating range. Had the vehicle been capable of operating autonomously, 

communication loss would have been less problematic; the vehicle could have completed its 

mission, which would have included a final destination, usually its operating base. 

The field of Natural Computing is increasingly being utilised by engineers and scientists 

wishing to find acceptable solutions to problems that are intractable using conventional 

processes that would otherwise require prohibitive computing resources. Such problems are 

often, though not exclusively, formulated as search problems. Generally, an acceptable 

solution is discovered in the following manner: an initial position is identified in the search 

space (typically at random), and its acceptability assessed through the application of a fitness 

function; a position change strategy, consistent with the paradigm in use, is then iteratively 

applied with the hope of improving the solution quality; the final solution is identified either 

through achieving an acceptable level of fitness or on the completion of a preset amount of 
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computation (either chronologically or in terms of the number of cycles executed). Examples 

of such approaches include inter alia evolutionary algorithms (Friedberg, 1958), which 

further inspired techniques such as genetic algorithms (Holland, 1962 and 1975); 

evolutionary strategies (Rechenberg, 1965); evolutionary programming (Fogel et al., 1964) 

and, more latterly, genetic programming (Koza, 1992); ant colony systems (Colorni et al., 

1991), and particle swarm optimisation (Kennedy and Eberhart, 1995). 

Sometimes, however, the search landscape is very flat. That is, the information returned by 

the fitness function is of little use until the selected position is within a given distance of a 

local or global optimum. In such circumstances the techniques typically associated with 

optimisation may not be viable, since they often rely on informative landscapes to guide 

search progress. A synthetic example might be the well-known multimodal test function 

referred to as Shekel's Foxholes, as incorporated into the five function test suite used by De 

Jong (1975) in an early exploration of the properties of genetic algorithms, whilst an 

application example might be autonomous robots searching for avalanche victims (Sandia 

National Laboratories, 2001). In other cases, the target may not be static, or may be actively 

trying to avoid detection, such as in a wide area security patrolling system (Sandia National 

Laboratories 2001). In such cases, a random walk or a deterministic search pattern may prove 

to be ineffective or inefficient, hence, the need to consider alternative search strategies. 
Therefore, this thesis considers search in a broader sense than just optimisation and, although 

many of the techniques may be applicable to optimisation problems, some are only of interest 

in the more general search problems where a paucity of information may exist, such as might 
be encountered by autonomous agents in a real-world scenario. Further, autonomous agents 

must also be able to communicate their findings to the group. In a perfect world this is a 
fairly simple requirement, but in harsh environments where, for example, the physical 
landscape or electromagnetic interference are problematic, the group of agents may require 

alternative techniques. 

1.1 Aim 

The aim of this work is look to nature and the search strategies that have evolved over 

millennia to produce the effective predatory behaviour observable today, apply them in a 

simulated environment and assess whether such strategies could be used to guide autonomous 

vehicle search. This does not suppose that there is one strategy for all occasions, but, where 
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there is a priori knowledge regarding the type of targets expected to be encountered, nature 

may well have already developed an effective solution. Where a priori information is 

unavailable, then it may be useful to have an array of strategies that can be selected according 

to environmental information, either sensed by the vehicle (or, more generally, `agent') or 

passed to it by a cooperating ally. 

1.2 Motivation 

As enabling technologies advance, the field of autonomous vehicles is developing rapidly, 

targeting a variety of applications and operating in a wide range of environments that are 

difficult, dangerous or mundane for humans. Further, autonomous vehicles are increasingly 

being utilised where existing control paradigms have been recognised as providing sub- 

optimal solutions to modern problems. For example, where vehicles become too difficult for 

direct human control (Robinson, 2006) or provide inappropriate strategies (Miasnikov, 2005). 

The benefits are such that a great deal of effort is being applied to their development; 

however, as the drive to push the boundaries of autonomous vehicle behaviour continues, 

real-world considerations continue to restrict levels of autonomy. At the forefront of such 

considerations are the difficulties encountered in building the real-time models of the 

environment, that are needed to plan forthcoming behaviour, caused by imperfect sensors and 

/ or communications with cooperating agents. 

The developing field of autonomous defensive system control is vast with many facets; the 

motivation for this work is to develop robust strategies that may lead to systems that require 

minimal human intervention and also reduce inter-agent communication levels and, where 

sensing difficulties are such that target detection is lost, the system can produce appropriate 
behaviour to recover. Instinctively a developer of such a system may attempt to coordinate 

search agents to provide efficient coverage of the search area; this may have several 

weaknesses that could be exploited by an intruder, such as predictability (Gage, 1990) and a 

dependence on reliable communication, for example (Jin et al., 2006). This latter point was 

also highlighted in a NATO technical report (NATO, 2003) that looked at urban operations in 

the future; in the report, potential counter-measures against all envisaged platforms are 

presented and all autonomous vehicles included susceptibility to communication jamming. 

Autonomous vehicles are often considered for military roles, and such a system should be 

able to operate under a variety of defender / attacker relationships from stationary targets to 
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those capable of operating several times faster. Defenders should be able to effectively locate 

targets, cooperate only when necessary (minimising communication requirements) and react 

intelligently where initial detection is lost, since real world sensors are not perfect. Nature has 

developed effective strategies to secure food supplies from a given environment and this 

work considers some of these as underlying metaphors to provide simple yet effective 

(defensive) search strategies. This does not suggest that the strategies developed are optimal 

in a perfect world but that they could offer alternatives for difficult environments or potential 

reversionary modes to support more elaborate systems. 

1.3 Application 

Perhaps the most obvious application of this research is in the defence sector; returning to the 

British aviation industry's vision of the future (Aerospace International, 2008), the uptake of 

autonomous behaviour such as that described in this work may not only be a technological 

challenge. Sir Brian Burridge's view of the future envisages autonomous behaviour for civil 

applications but warns that military applications `... will be limited by the appetite (or 

otherwise) in international law for robotic warfare... '. Such ethical arguments are beyond the 

scope of this work, since its findings are not restricted to combative military applications. 

Indeed, the findings of this research would, it is envisaged, be applicable to a wide range of 

autonomous search applications. Examples that could benefit include: ship hull inspection 

(Reed et al., 2006), which is an application that is increasing its use of Unmanned 

Underwater Vehicles (UUVs) to avoid dangerous manual inspection by human divers; and 

odour location applications, where research has generally concentrated on tracking plumes 

rather than on initial detection, a recent example being the odour plume tracking algorithms 
described by Lochmatter and Martinoli (2008). 

1.4 Contribution to Knowledge 

This research represents the first comprehensive study of the application of natural search 

strategies to the navigation of autonomous agents in an area that does not contain information 

concerning the existence or whereabouts of targets. Whilst there is a wide range of biological 

literature, the consideration within the computing field has been largely restricted to a few 

well known natural phenomena, such as evolution, swarming, and ant colony behaviour. This 

work goes beyond this by exploring a wide range of natural search behaviours and 
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considering how they may be exploited in a natural computing context. Hence, the 

investigation of natural search behaviours is particularly novel. 

This work also presents the first study of its kind into the properties of natural search when 

applied to autonomous agents working under a variety of target / agent relationships; these 

may be utilised as primary search navigation mechanisms or as reversionary systems where 

coordinated search breaks down due to environmental issues such as high levels of electro- 

magnetic noise that may make communication problematic. They could also be used in 

conjunction with existing bio-inspired autonomous vehicles to improve initial location of 

sensory information; for example, a robot with chemical odour source location behaviours 

must first locate a trace of the odour. The findings of this research, applying the natural 

search behaviours to a simulation of agent based search, are a novel contribution, and cannot 

be found within the existing body of knowledge. Additionally, the development of a systemic 

working memory provides new behaviours that could assist groups of autonomous agents in 

the redetection of targets that have escaped or been lost from previous detection. 

1.5 Thesis Overview 

Sections 2 and 3 review related research. Section 2 considers recent developments within the 

field of autonomous vehicles, establishing the context for this work. Section 3 then explores a 

wide range of natural search behaviours, drawing on the biological literature and considering 

this in a computational context. Finally, natural solutions to prey reacquisition are examined. 

Section 4 outlines the research method, first discussing the approach to the aims of this 

research, to assess whether natured inspired search behaviours may be useful in an artificial 

agent based system. A simulation environment is presented as a means to assess the search 

behaviours, and search algorithms and performance metrics are described. An outline of the 

empirical study is presented along with findings from configuration / tuning procedures. 

Section 5 presents the research findings for a range of agent and target configurations, 

considering static targets, dynamic targets, search space coverage, energy consumption and 

finally the predictive memory system that addresses target reacquisition when targets are lost, 

for example, through limited sensor capabilities or occlusion. 

Section 6 provides a discussion of the research findings, whilst Section 7 concludes and 

Section 8 suggests areas of further work. 
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2 Recent Developments in Autonomous Vehicles 

Remotely controlled vehicles have been in operation for many years; however, more recently 

there has been increasing interest in vehicles that operate autonomously. Despite their relative 

youth, investment in the vehicles and related enabling technologies has been substantial, with 
levels of permitted autonomy ranging from minor automatic assistance for remote human 

operators to completely autonomous decision making. As part of ONERA's (France's Office 

National d'Etudes et Recherches Aerospatiales) long term autonomous vehicle search and 

rescue project (ReSSAC - Search And Rescue (SAR) with a Co-operative Autonomous 

System) Fabiani et al. (2007) describe a hierarchy of autonomy in which all air vehicles may 
be located (see Figure 1), although similar hierarchies could be developed for all autonomous 

vehicles. At the lowest level, only vehicle stabilisation is provided autonomously with the 
human controller dictating the vehicle's coarse grained movement remotely. This level is 

satisfactory where time delays are not problematic and loss of communication with the 

vehicle even for a short period is unlikely. However, time delays have been cited as the 

rationale for increased levels of autonomy in British Aerospace's jet powered Unmanned 

Aerial Vehicles (UAVs) (Robinson, 2006). As the level of autonomy increases, the level of 
human involvement is reduced. In terms of the control of faster, more complex, vehicles this 
is desirable since the risk of human error is reduced. However, this can introduce safety, as 

well as ethical, problems, although these issues are beyond the scope of this review. 

It is not the intention of this review to provide complete coverage of autonomous vehicle 
development. Rather, the following sections will provide insight into recent state-of-the-art 
developments and applications in the field, beginning with some developments in aerial, 

ground, maritime and space vehicles before moving on to micro and nano vehicles. Finally, 

the some of the cornerstone technologies associated with vehicle sensing, control and 

communication are investigated to provide an insight in indicative technologies that could 

enable the implementation of the autonomous behaviours described in this work. 
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Figure 1. Levels of UAV autonomy and user interaction (adapted from Fabiani et al., 2007) 

2.1 Aerial Vehicles 

The development of a complex system, such as an UAV, could be structured in a myriad of 

ways. Hsiao et al. (2006) described the development of a small UAV that was capable of 
beyond visual range autonomous flight. To achieve this, the system was divided into three 

elements: the air vehicle; the onboard avionics; and the ground control station. The avionics 

suite consisted of: an onboard computer (providing the autonomous control); GPS for 

localisation; an air data sensor that was used to provide more accurate altitude and airspeed 
data than could be provided by the GPS; an attitude-heading reference system; and an 

actuator and servo control system. The autonomous controllers were further subdivided into 

guidance, navigation and flight control. Due to safety considerations, tight flight envelope 

restrictions were placed on the vehicle, which were acceptable for short range tests but 

proved problematic for the long range over sea trial where, despite careful selection of 

prevailing weather conditions, a reduction in engine power led to the test being safely aborted 
due to the system not being able to maintain altitude. This highlights the difficulty in the 

control of autonomous vehicles; in the presence of such uncertainty, they generally have to 
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abort, whereas a human operator may be able to overcome the difficulty using a novel 

approach. 

Take-off and landing are amongst the riskiest activities for UAVs. Lange et al., (2008) 

developed an autonomous landing system for multi-rotary wing UAVs that used optical 

detection and identification of the landing site. Whilst other autonomous landing systems had 

already been proposed, e. g. Saripelli et al. (2002), Lange et al. 's system had the advantage of 

being able to detect the target from higher altitude and not requiring the landing target to be 

fully visible. This was made possible by the use of a novel target consisting of unequally 

sized concentric rings (i. e. differing ring thickness) which meant that targets large enough to 

be seen from high altitude could also be detected at close range since the target identifier is 

simply searching for a circle. Once a set of target rings have been detected, the vehicle 

controller can then ascertain its height above the target by the ratio of the inner radius of the 

outermost detected circle to its outer radius and control the vehicle landing accordingly. 

In a further application of a vision-based system to facilitate UAV autonomy, Conte et al. 
(2008) utilised geo-referenced images to provide reversionary vehicle localisation in the 

absence of GPS. This was significant since most UAVs rely on GPS for navigation and where 

the system becomes unavailable (due to failure or jamming) the UAV should be able to 

continue with its mission or be able to navigate home. The reversionary system used data 

from a standard IN system, air pressure sensor and vision system (replacing the GPS) 

combined using a Kalman filter to provide vehicle state information. The positional data 

provided by the vision system was produced by matching the video camera imagery with a 

geo-referenced image database and visual odometer. 

Temporary loss of GPS data and GPS latency (slow speed compared to IN data) was also 

provisioned for in the lightweight inertial attitude and reference system developed by Jung 

and Tsiotras (2007) for use in small scale UAVs (wingspan of approximately 50cm). In such 

applications the processing power required for complex navigation systems is not available, 

so the developed system reduced Kalman filtering dimensionality to reduce computational 

overheads and used a simple magnetic compass to compensate for short term GPS loss. 

For a search role, Quigley et al. (2005) developed a fixed wing mini UAV that applied a 

spiral search pattern, having a focal point defined by the operator, for open area searching 

and linear search for enclosed areas such as narrow valleys, although this latter element 
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contained unresolved issues such as dealing with GPS loss generated by local landscape 

features. In later work, Goodrich et al. (2008) applied the approach to wilderness search and 

rescue where the operator defined waypoints were selected based on likely locations for the 

target, these were then used by the UAV as the start of the spiral search. This general 

technique was found to be unsatisfactory for some terrain and so other techniques were 

investigated such as contour following. 

2.2 Ground Vehicles 

Although arguably operating in the least difficult environment, because failure of the vehicle 

would be unlikely to result in its loss, safe operation of ground based vehicles can still be 

problematic. Keviczky et al. (2006) investigated a Non-Linear Model Predictive Controller 

(NLMPC) that had previously been presented by Borrelli et al. (2005) to assess the 

approach's performance in side wind rejection and lane changing on slippery surfaces. The 

controller combined several models (such as vehicle properties, traction and cornering) to 

successfully reject side winds of up to 10.1 m/s and perform double lane change manoeuvres 

at vehicle speeds up to 17 m/s. 

Obstacle avoidance is not the only solution to dealing with complex and unstructured 

environments, Vincent and Trentini (2007) defined a method for a robot (the Shape-shifting 

Tracked Robot Vehicle, STRV) to learn to negotiate obstacles rather than avoid them. The 

STRV utilised data from GPS, Inertial Navigation (IN) and laser range finder sensors for 

localisation, vehicle movement sensing and to build a 3D picture of the terrain to be 

negotiated respectively; further internal sensors provided track velocity and axle position 
data. 

The behavioural learning mechanism of the STRV consists of a two-stage reinforcement 
learning architecture. In the first layer, information from the terrain mapping and IN were 
input into the learning algorithm for computing axle angular position; the second layer then 

selects additional behaviours from previously controlled runs based on obstacle recognition 
(for example steps, ramp, etc). In the work reported the vehicle remained semi-autonomous 
in that an operator controlled the direction of the vehicle; however, in the additional work 
identified the authors advised that it should be equipped such that full autonomy should be 

available should it be required (e. g. for reversionary control). 
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Autonomous navigation of urban vehicles could be critical in addressing current issues 

surrounding inner city congestion and pollution. Courbon et al. (2008) developed an efficient 

visual memory management system that permits real-time navigation in a large-scale outdoor 

environment, a university campus, using a single vehicle mounted camera and natural 

landmarks. 

Further recent developments in Autonomous Ground Vehicle (AGV) technology include 

Ghumman et al. 's autonomous highway overtaking planning (2008), Kurt and Özgüner's 

(2008) hybridisation of a finite state machine controller with a continuous state controller to 

improve vehicular control across a range of urban scenarios and Lee et al. 's (2009) utilisation 

of an e. coli metaphor to develop a novel autonomous vehicle traffic data harvesting system. 

2.3 Maritime Vehicles 

The combination of unacceptably high diver casualty rates, increased need for integrated 

force protection and waterside security, combined with advances in UUV technology have, 

according to Reed et al. (2006), been the driving forces behind an increased effort to provide 

autonomous underwater surveys of artefacts such as pipelines and ship hulls. In their 

automatic ship hull inspection system, a 3D model was produced of the hull using a Doppler 

velocity log (DVL), which was then overlaid with a mosaic of imagery produced using a 
Didson sonar camera. These techniques were facilitated by autonomous control and 

navigation modules, the former utilising a modified Zeigler-Nichols method to maintain 

constant position despite underwater currents and the latter uses a SLAM-RTS (Simultaneous 

Localisation And Mapping - Rauch-Tung-Striebel) architecture that combined an extended 
Kalman filter and a Rauch-Tung-Striebel smoother to conduct manually defined landmark to 
landmark navigation. 

The results of a practical application of an Autonomous Underwater Vehicle (AUV), named 
Autosub, were recently reported by Nicholls et al. (2008), who utilised it to further the 

understanding of the Fimbul Ice Shelf in Antarctica. Previously, scientific studies of ice melt 

activity below the shelf had been very limited, restricted to ship based measurements along 
the ice front, making ice bores on the surface and inverting glacialogical data. To give an 
idea of scale, the AUV was small compared to manned vehicles, having a length of 6.8m and 
0.9m diameter, with a range of 400km and maximum depth of 1600m. Navigation was 

provided by a combination of GPS whilst on the surface and a combination of a downward 
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looking Doppler system (when close to the seabed) and a Photonic IN system when beneath 

it. To collate data, the AUV followed a pre-programmed route taking measurements using an 

array of onboard sensors. Results of the study indicated that previous studies, made using 

sub-optimal surface techniques, had been misleading and highlighted the need for a re- 

examination of existing theories on the influence of the ice melt on the climatically important 

Filchner-Ronne ice melt, which is further downstream of the study's location. 

2.4 Space Vehicles 

Space exploration is an obvious application for autonomous vehicular technology, although it 

does present its own difficulties such as, inter alia, relatively low processing speeds, gravity 

and atmospheric pressure (in the case of planetary exploration). 

The first autonomous spaceflight was performed in 1994 during the United States Air Force 

Phillips Laboratory's Technology for Autonomous Operational Survivability (TAOS) 

program (Guinn et al., 1995). To provide orbit determination a combination of GPS and 

positional information provided by a space ground link were fed to an autonomous navigation 

system. This was improved on, in terms of level of autonomy and flight efficiency by a fully 

autonomous system (Gurevich et al., 2000) that did not require updates from ground stations 

(due to improved position prediction). The improvement in efficiency was gained due to the 

satellite being able to fire its thrusters more often but with less power. Later, Wertz (2003) 

described a fully autonomous navigation system that did not require an existing GPS 

network, affording the possibility of using the system for autonomous inter-planetary 

navigation and remote planet orbiting. This system used improvements in optical sensor 

technology to identify planets and stars and then measured distance and inertial direction to a 

nearby planet. This system was first used successfully in NASA's Deep Space I (DS1) 

mission, a high-risk technology test mission (Rayman et al., 2000), which used navigation 
data that included all solar system planets (except Pluto) and a catalogue of 250,000 stars. 

DS I also conducted other autonomous behaviour tests: a beacon monitor that would check 
for other spacecraft in the vicinity, where other spacecraft were detected the system would 

apply a less demanding protocol for mission reporting thus reducing communication network 
load; a high-level remote agent was also tested that operated a planning and scheduling 

engine, which took vehicle measurements and re-planned to achieve high-level goals and 
fault rectification. 
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Closer to home, NASA's Autonomous Sciencecraft Experiment, ASE, (Chien et al., 2005) 

has been orbiting the Earth since 2003, utilising several autonomous components to analyse 

world environmental data, such as earthquakes and volcanoes detected by onboard sensors, 

and respond by replanning its activities to maximise observation and thus scientific returns of 

the event. This is achieved through the application of a traditional three-layer architecture: at 

the highest level of abstraction a mission planner schedules activity based on information 

from scientific sensors and spacecraft monitoring (timescales being in the tens of minutes due 

to limited spacecraft processor speeds); these plans are then fed to a spacecraft scripting layer 

that responds within seconds to produce low-level commands to the conventional flight 

software layer that responds reflexively. The advantage of this use of autonomous behaviour 

is that the spacecraft can decide how to respond to target events and downlink data only when 

necessary, thereby allowing the limited bandwidth to earth stations to be used more 

efficiently. 

Autonomous near-surface navigation in outer space presents additional difficulties to those 
found in Earth based or low orbit satellite applications. Thakoor et al. (2003) applied a bio- 
inspired approach, based on Dragonfly Ocelli eyes (that are dedicated to horizon sensing), to 
develop a horizon sensing system for use in an attitude reference system to assist control of 
UAVs that will explore the surface of Mars. The development is important to such missions 
due to environmental differences on Mars, such as reduced pressure and gravity fields, that 

render conventional attitude reference systems unusable. Where existing systems are viable 
such as inertial navigation systems the Ocelli system was reported to be advantageous due to 
its very small size and weight (quoted as being 40 times lighter than a comparative IN 

system). The system is very simple and operates by measuring the difference in light between 

two sensors each detecting UV and green light; the two light channels being spectrally 
processed in opposition to filter potential bias inducing features such as the Sun or clouds. 
Output from the system can then be fed directly to the control system to provide attitude 
stabilisation in pitch and roll. An indicative application for such a referencing system might 
be the Mars rotorcraft proposed by Young et al., (2005) although the DelFly flapping MAV 
(De Wagter et al., 2007) could offer an attractive alternative. The DelFly uses a conventional 
lightweight camera, applying vision-based technology that stitches images of the horizon 

together to form a 360° panorama, which when used in conjunction with a Sun detection 

algorithm can then provide a reference system for the vehicle to follow. 
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2.5 Micro and Nano Air Vehicles 

Whilst other micro and nano vehicles are being developed, e. g. Bergbreiter and Pister (2007). 

aerial vehicles (MAVs and NAVs), driven by an acceptance of the technology by military 

forces around the world, have become the most commercially viable platforms. 

Networks of autonomous vehicles are often limited by the communication networks in which 

they operate; in a reversal of this Hauert et al. (2009) proposed a self-organising swarm of 

MAVs to establish, and maintain, wireless communication networks in areas that would 

otherwise be problematic due to factors such as remoteness, environmental features or 

congestion of existing networks. Such factors can also make position sensing difficult (e. g. 

GPS signals may not be available) and therefore a requirement for the system was that the 

agents should be able to operate without externally provisioned positional information. To 

overcome these challenging conditions, genetic algorithms were applied to evolve neural 

controllers that could maintain vehicle positions such that the wireless network was 

maintained. Following experimentation using the most evolved controller, several design 

principles were identified: circular trajectories were the most efficient movement patterns to 

maintain the network; disconnected MAVs should backtrack to attempt reconnection; 

alternating disconnected and connected (with the 

base station) phases provide the basis for 

synchronisation; and MAVs that are connected to 

both the base and user stations should follow the 

smallest possible circular trajectories to maintain 

the link 

The advantages of MAVs over conventional 

vehicles are their ability to operate in locations not 

viable for their larger counterparts. For example. 

Honeywell (Honeywell, 2009) have developed a 

MAV system called the T-Hawk (Figure 2) that 

consists of a pair of duct fan operated vehicles. 

each with an outside diameter of less than 36cm. 

meaning that an individual can carry one of the 

*: 

pair in a backpack. However, the small size does Figure 2. Honeywell T-Hawk in operation. 
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not mean a lack of functionality: the system consists of a pair of vehicles, one carrying an 

electro-optical sensor and the other an infra-red sensor. They can operate under manual 

control or fully autonomously, able to follow a route of up to 100 waypoints for 40 minutes, 

due to a fully functioning flight management system containing an inertial navigation unit, 

GPS, barometric altimeter and air data sensors. 

Additionally, the size of MAVs can also allow operating features not possible for larger 

vehicles. For example, Green and Oh (2006) developed a fixed wing micro UAV that can 

transition from conventional horizontal flight to an autonomous vertical hover due to its 

thrust to weight ratio of greater than one. This allows for the more efficient and speedier 

flight associated with fixed wing vehicles, coupled with the flexibility offered by rotary wing 

aircraft. 

Powered by a miniature two stage rocket in its wing tip that provides a range of 

approximately 1000m and a top speed of up to lOm! s. I. ockhced Martins Maple Seed. as 

shown in Figure 3, is arguably one of the most 

novel NAVs under development to date 

(reported by Lockheed Martin, 2007: 

prototyping discussed by Jameson el al., 2007). 

Its planned reconnaissance role is to be fulfilled 

by a rotating camera module that maintains its 

focus in flight and transmits video images back 

to the operator in real-time. This module is 

expected to be interchangeable for other 
Figure 3. Lockheed Martin's 'duple Seed NA\'. 

modules such as infrared imaging, biological and chemical sensors. Notably, whilst present 
development is concentrating on individual vehicles, Lockheed Martin believes that the 

power of the technology lies in the application of massively parallel autonomous swarms of 
NAVs in the battlefield. Other recent advances in miniature technologies include the 
development of flocking in a swarm of mini-helicopters (De Nardi and Holland, 2007) and 

autonomous glider perching (Cory and Tedrake, 2008). 

2.6 Sensing, Controlling and Communicating 

Where autonomous vehicles operate in well defined environments it may be possible for 

them to simplify navigation through identifying, and reacting to, known landmarks; in 
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complex environments this remains a non-trivial task. Vacek et al. (2007) investigated a 

system for analysing markings on rural German roads to assist behaviours such as lane 

changing, obstacle avoidance and turning off. Lane identification was the first stage in the 

process and was achieved by defining four parameters associated with detection: longitudinal 

offset of the vehicle with respect to the middle of the lane; rotational angle between vehicle 

and lane; lane width; and tilt angle of the camera to the road surface. Each sample taken of 

the road surface was then recorded in terms of these parameters and pattern matched against a 

series of known cues such as lane widths and road edges. The weighted sums of all the 

matches to cues were then tested against a threshold to decide whether a lane was being 

followed. Once lane could be successfully followed using this technique road marking 

analysis was accomplished based on two types of marking: lines and arrows. Lines were 

analysed by overlaying orthogonal lines across detected lines and matching the number of 

intersections (0,1 or 2) with neighbouring orthogonal lines. Arrows were analysed by 

bounding the detected marking, which occur in the centre of the road and once again pattern 

matching. The system proved promising during trials where road markings were well defined 

(as laid down by strict German law) but further work was still identified to increase the 

robustness of the system by further systemic fusion that would allow more holistic decision 

making. 

In less well defined application environments, such as off road navigation, the features to 

detect and possibly avoid may be less well defined. For an autonomous off road military 

vehicle a feature as simple as a muddy puddle could lead to mission failure or even result in 

increased burden for the operators since it could require rescuing. Rankin and Matthies 

(2008) reported that whilst work on remotely sensing water moisture was mature, existing 

methods did not provide the resolution required for local navigation. To more accurately 

detect muddy areas a range of passive sensors were utilised including: colour stereo, in which 

isolated mud was detected by segmenting regions that were significantly darker than their 

surroundings whilst being of the same colour hue; multi-spectral sensors which used the 

differences in wet, dry and shadowed soil reflectance in the Near Infra Red (NIR) and red 
bands; Short Wave Infra Red (SWIR) camera, using a similar phenomenon as the previous 

camera but comparing SWIR with NIR reflectance; thermal imagery using a Long Wave 

Infra Red (LWIR) camera, wet soil being consistently cooler throughout the day; and a 

polarisation camera, which uses differences in the degree of linear polarisation of light 
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reflected wet areas with increased levels being an indicator of the presence of water. A 

combination of polarisation and stereo colour cameras were mounted on a vehicle, the 

polarisation camera providing primary mud detection whilst the stereo cameras were used to 

improve localisation and reject false positives such as vegetation that were above the ground. 
Output from the sensors was then combined with a terrain map to produce a world map that 

the vehicle could use for path planning. 

Biomimetic robots model nature in an attempt to gain the benefits of form and sensory 

capabilities evolved over millennia. Erwin (2004), building on earlier work modelling bat 

sensory-motor behaviour, implemented algorithms for sonar tracking of dynamic targets. 

These algorithms included non-predictive tracking, which was found to be only suitable for 

stationary targets; predictive tracking based on a Benedict-Bordner a/ß filter, which does not 
include an acceleration element; and several predictive filters that included acceleration (a 

second Benedict-Bordner a/ß filter, spherical and generalised unscented Kalman filters, and a 

simplified Segmenting Track Identifier model). Only the last of these models performed 

reasonably well, the others working poorly due to the having insufficient reaction time, the 
target moving with unsteady acceleration and, in the case of the Kalman filters, there being 
insufficient time for the filters to develop enough information to predict acceleration. 
Conclusions from the work suggested that using existing predictive technologies was 
insufficient for the application and that modelling natural behaviours more closely may be 

more effective. 

High level decision making is arguably one of the most intractable areas of autonomous 

vehicle development and several existing artificial intelligence paradigms have been applied 
to the problem. Vacek et al. (2007) proposed the use of case based reasoning for autonomous 

road vehicle guidance. Particularly important to the application was the bounding of 
individual cases since in a real dynamic environment it would be difficult to identify the start 

and end of each case. To alleviate this, cases were seen as snapshots of situations (containing 

core components such as vehicle behaviour and that of other participants) rather than time 
intervals. A given situation could then be compared with previously experienced situations 
and an appropriate reactionary behaviour selected. A major drawback acknowledged by the 

authors, was the prediction of vehicle behaviour where novel situations arose that could not 
be associated with any existing cases. 
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As future systems develop, particularly in the defence sector, it can be expected that 

communications between heterogeneous elements would be required. Where systems were 

developed by a single agency, agent interoperability can be designed from the outset using 

standard protocols. However, where systems evolve, sometimes in an ad hoc manner, even 

small networks of networks can be difficult to administer, especially where systems involve 

multi-national elements that have been developed separately. Liang et al. (2008) have 

developed an Ada based architectural model called the Quantitative Interoperating Model 

(QIM), for C4ISR (Command, Control, Communications, Computers, Intelligence, 

Surveillance and Reconnaissance) that provides an enabling layer for new and legacy systems 

to interoperate on a CORBA basis. Such a model would ensure that systems know their 

respective communication roles, and a latency feature would allow agents to know whether 

cooperating agents are unavailable or unreliable. 

At a lower level, Chitre (2008) also tackled the requirement for autonomous vehicle 

interoperability through the development (initially for AUVs, but also applicable to other 

autonomous vehicles) of a4 layer distributed software architecture. At the lowest level, an 

internal communications layer provides an interface to whatever internal communications 

medium is in use, e. g. Ethernet, UDP/IP for WiFi, etc. Above this sits a Remote Procedure 

Call (RPC) layer that implements the remote procedure call semantics with the third layer, 

which contains services such as core vehicle services, sensor / actuator drivers and external 

communications links. Finally at the top layer operates vehicle command and control 

components. 

Some environments pose particular communication difficulties; for example, in networks of 

AUVs. AUV network links are usually maintained using acoustic modems which, due to the 

properties of the water in which they operate, have a relatively narrow optimal operating 

range. To overcome this, Shahabudeen et al. (2007) developed a medium access control 

(MAC) protocol that would enable the simultaneous operation of short, medium and long 

range modems using a DLL (data link layer) architecture. This development produced 

increased data rates and efficiency in a simulated AUV network. 

Similar problems present themselves in networks of surface based acoustic beacons that can 

be used to facilitate low cost AUV navigation; the quality of the signals available to the AUV 

being dependent on the network geometry (Matos et al., 1999), a problem that is 

compounded by signal attenuation increasing markedly with distance. To overcome these 
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problems, Santos et al. (2008) implemented a mobile network that placed autonomous 

surface vehicles that could be programmed with mission data that would position the acoustic 
beacons they carried in the correct place to coordinate AUV movement. The system 
improved AUV mobility but with additional complexity introduced by the movement of the 

surface vessels. 

2.7 Autonomous Vehicle Search 

In nature, animals apply a variety of decision making mechanisms to produce behaviours that 

maximise the chances of survival either for the individual or their species (broadly reviewed 
by Stephens et al., 2007). Andrews et al. (2007) exploited such mechanisms found in 

foraging theory to produce high level decision control for autonomous vehicles. To achieve 
this, targets were given a point value and a handling time and agents were given to the goal of 
attaining maximum scores available. The work, using agents that followed `lawnmower 

searches', indicated that the agents could decide, given a priori knowledge of the 

environment and available targets, whether, upon detection, a target was worth pursuing or 
whether, in order to gain maximum return, it should continue to search for more profitable 
targets known to exist in the search area. The adoption of foraging theories such as these 

could be criticised for using perfect world models, however, the work does point to 

adaptations to the model that could be made to align it more to real implementations; for 

example, a penalty could be included to accommodate non-zero recognition times or 
imperfect resemblance such that targets that were more difficult to recognise would incur the 

penalty during the agent's determination of whether a target warranted pursuit. 

With the recent rise in the popularity of nature inspired computing, it is unsurprising that 

work into applying ethological research findings to autonomous vehicles has been 

undertaken. What is noticeable in the work reviewed is that it assumes the presence of 
sensory information from the outset. This brief indicative review highlights the range of 
sensory that has already been successfully exploited to improve the capabilities of 
autonomous vehicles across a range of applications. 

Many naturally occurring sensory modalities have been exploited in the drive to improve the 

autonomous search in robotic applications. Morse et al. (1998) harnessed the behaviour of a 
nematode worm's chemotaxis (chemical following) based foraging to equip a robot with a 
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phototaxis (light following) spatial orientation ability that proved robust to large scale 

changes in robot speed and turning bias. 

Anderson et al. (2004) implemented a phonotaxis (sound following) robot by modelling the 

structure of the human head as a near sphere, using two microphones mounted, diametrically 

opposed, as ears to localise the source of a single broadband sound. The `head' was fixed to a 

mobile robot and the output of the localisation algorithm fed into the robotic navigation 

system. The algorithm calculated sound direction using pressure measurements (phase and 

amplitude) made at each microphone, with the robot manoeuvring left or right to achieve 

minimization in the inter-aural difference - the sound being directly ahead or behind when 

the difference between the two were minimal. 

Edwards et al. (2005) successfully exploited the pheromone plume tracking behaviour of 

male moths to construct an airborne chemical sensing `robo-moth' (a robotic gantry located 

in a wind tunnel) that has the ability to locate the source of an airborne chemical plume. 
When introduced into a plume of pheromone bearing odour, a male moth will actively sample 

the air making upwind surges, each consisting of rhythmical left / right tacking movements. 
When the odour is lost, due to the patchy distribution found in airborne chemicals, the moth 
begins to fly a crosswind pattern, known as casts, in an attempt to reacquire the plume. 

Extending the principle of modelling single sense search behaviour, Pyk et al. (2006) 

constructed a robot capable of harnessing multi-modal sensory inputs to locate the source of a 

chemical odour whilst avoiding obstacles. These modalities were the anemotaxis (wind 

sensing) behaviour of male moths, i. e. airborne search behaviour in response to pheromone 

odours, and the optomotor collision avoidance behaviours of locusts (the overall behaviour 

being generally invariant across flying insect species). The search strategy employed by the 

male moth is described later, whilst the object avoidance mechanism of the locust, known as 

the lobula giant movement detector, is outside the scope of this work. To combine the two 

modalities, a process not yet fully understood biologically, each operated as parallel 

competing schemes with integration occurring at the motor stage, with the optomotory 

element having precedence. 
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2.8 PSO in Autonomous Vehicle Control 

Brief consideration of the use of Particle Swarm Optimisation (PSO) in autonomous vehicle 

control is included here for two reasons: first, it is an approach that bears most similarities to 

the work reported in this thesis; second, the author's previous work in this area, which 

provided the initial starting point for this thesis, resulted in the first study in this area (Banks, 

2005; Banks et al., 2008b). 

Initially developed by Kennedy and Eberhart (1995), Particle Swarm Optimisation (PSO) is a 

cooperative population based search algorithm. An initial population of potential solutions 
(particles) are randomly located throughout the problem space. The fitness of each particle is 

computed according to the given problem, then a combination of the particle; s current 

velocity vector, previous best solution and the best solution found throughout the swarm 
determines the particle's next position. The basic algorithm for calculating the next particle 

position, x, in the i t' dimension is: 

vt+I =vi +ýAß1(p1-X, )+cP2ß2(pg 
-X1) (1) 

x, +i = x, + Vt+I (2) 

where constants r and rp, determine the balance between the influence of the individual's 

knowledge ((A) and that of the group (ßp2); Q, and ßZ are uniformly distributed random 

numbers defined by some upper limit, ß, ßx , that is a parameter of the algorithm; p; and pg are 
the individual's previous best position and the group's previous best position; and x; is the 

current position in the dimension considered. This algorithm was later modified to prevent 
the particles from accelerating out of the problem space (Shi and Eberhart 1998) through the 
inclusion of an inertia weight, co, as follows: 

Vr+I - U)VI +1ß1(p, - x, 
)+ 

co2Y2 
(p8 

- x, 
) (3) 

Although a significant amount of further research into understanding and improving the 

technique has taken place, the most significant with regard to the cooperative behaviour 

exhibited by the agents in this work was Kennedy's (1997) investigation of the PSO learning 

metaphor. Kennedy produced several alternative learning models: the cognition-only model 
in which the individual only uses its own prior experience (Equation 4); the social-only 
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model, in which the individual uses the group's experience (Equation 5) and the self-less 

model, where the individual's experience is not included in the social-only model, i. ei*g. 

v, +, = v, + S9, A (p, 
- xi) (4ý 

yr+I = vi + c02ß2 
(pg 

- Xi 
) ý5ý 

Pugh and Martinoli (2007) applied PSO to multi-robot search by utilising the mechanics of 

PSO to move simulated robots (each robot being a particle in the swarm) in search of a target 

within a bounded area. The fitness function for the simulation was provided by the intensity 

of the target, 1(d), using the function given in Equation 6 where Po is the source power, d is 

the distance between the robot and source and i is a sampling of Gaussian noise. 

1(d) = 
d2 +t (6) 

This approach was tested with robots that had perfect knowledge of their position via GPS 

and also with robots that could only know their position relative to neighbours. In the latter 

scenario, swarm members could not communicate their previous positions because of not 

having a coordinate system or knowing where the targets were positioned. To overcome this, 

they communicated the current and immediate past target intensity to near neighbours who 

then calculated the relative target location. Both GPS and relative position systems showed 

success, however, no indication is given as to performance without target detection or in the 

presence of multiple targets. 

The issue of multiple targets was tackled by Banks (2005), later reported in Banks et al. 

(2008b), by applying Kennedy's cognitive models described by Equations 4 and 5 to PSO 

controlled agents. These models were important to resolve conflicts where several agents 

concurrently detected separate and remote targets (if targets were close the effect would have 

less impact). In a full PSO model such conflicts may cause an agent to be drawn away from a 

potential target engagement by externally detected targets. To resolve this, the agents were 

endowed with three basic modes of operation: search mode, in which no targets are detected 

within a range such that pursuit is viable; swarm mode, where targets are detected but not by 

the individual, and the social-only model is applied; and engage mode, where the individual 

detects targets and forsakes all other group knowledge through the application of the 

cognition-only model. 
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Whilst the application of these models provided resolution to individual dilemmas, all agents 

responded to target detections even when they had no chance of intercepting the target. 

Systemically, this was problematic, since a target detected early could divert all defenders to 

a particular region of the defended space and leave other regions uncovered and susceptible 

to exploitation, i. e. the system would over-commit to early detections. To alleviate the 

problem a dynamic neighbourhood scheme known as the Launch Success Zone (LSZ) was 
developed to enhance the effectiveness of cooperation. Essentially the LSZ controlled the 

switch between search-mode and swarm-mode; the agent must be inside the LSZ to enter 

swarm-mode. 

Although empirical results suggest that PSO based guidance was beneficial, when compared 

with systematic alternatives, two weaknesses were noted: the success of the system was 
hampered by its limited ability to initially detect targets, and, where detection was lost, the 

system ̀ forgot' the target existed and made no attempt to reacquire it. These findings formed 

the foundation for the research presented in this thesis. 
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3 Natural Search 

This section reviews relevant literature concerning natural strategies for search. Various 

forms of cooperation and group behaviour are introduced, followed by in-depth consideration 

of various search behaviours found in the natural world. Common methods of communication 

to facilitate cooperation within a group are then examined, followed by a brief consideration 

of indicative foraging behaviour, to illustrate how some of the behaviours highlighted in the 

preceding sections combine to produce effective cooperative predation. Finally, there is a 
discussion of the exploitation of these behaviours, providing examples of how some have 

been utilised to develop natural computing paradigms; some less well known examples are 
deliberately selected, to highlight the breadth of research already taking place beyond 

autonomous vehicle exploitation. 

3.1 Natural Cooperation and Group Behaviour 

The manner in which (non-human) animals cooperate has fascinated biologists for many 

years. Cooperation among individuals of the same or different species may at first seem 

contradictory to the evolutionary principle of the survival of the fittest. Stevens et al. (2005) 

argue that all forms of cooperation must benefit the cooperators, whether directly, for 

example in mutual grooming, or indirectly, where cooperation helps to ensure genetic 

survival (an example of this being the division of labour in eusocial insect colonies, where 
individuals forego breeding in order to provide some other function that benefits their 

siblings). 

Dugatkin (1997) reviewed the four main, accepted, types of animal cooperation: reciprocity, 

where an individual performs an action with the expectation that the beneficiary will 

reciprocate (e. g. impala grooming); by-product mutualism, in which cooperation only occurs 

when it provides immediate benefits that outweigh possible benefits that could be accrued 

uncooperatively (e. g. lions hunting in packs); kinship based cooperation, where individuals 

cooperate for the benefit of their genetic relatives (e. g. ground squirrels alarm calling), and 

group selected cooperation where an individual works at personal cost, but for the benefit of 
the group (e. g. foraging ants). In addition to these main types, animals may also cooperate to 

avoid some form of punitive measure. For example, Hauser (1992) presented evidence that 
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rhesus monkeys announce food capture to avoid attacks that occur when they withhold the 

information. 

Exactly why animals congregate and operate as a group is debateable, due to several 

interrelated factors, such as protection from predation, environment and availability of food 

sources (Morrison et al., 1987). However, this work concentrates on the strategies and tactics 

that animals use to search (usually for food). First, it is useful to establish how individuals 

interact, and, especially whether the group consists of an aggregation of individuals, a group 

of individuals working together for mutual benefit, or a team of individuals each with their 

own specialised role. 

Aggregations can occur where there is restricted access to a resource, and individuals are 
forced together; in such cases, neither the individual nor the group benefit from the grouping. 
Freeman and Grossman (1992) studied group foraging by stream minnows, and noted that 

groups at feeding sites were actually just an aggregation of individuals who arrived and 
departed individually or in small groups because that was where food was located. This type 

of behaviour does not accrue any added value and is therefore not considered further here. 

The defining attribute of group behaviour is that the individuals perform the same task 

concurrently. This is relatively easy to achieve and can be very effective. Anderson and 
Franks (2001) categorised two broad groups as either those that form physical structures 

(known as self-assemblages) such as bridges, bivouacs and rafts (Anderson et al. 2002), or 

those that combine to form a more effective force, for example, ponerine army ants 
(Maschwitz et al., 1989), that, upon encountering a suitable foraging location, overpower 

prey much larger than themselves through swarming. 

Where animals work in teams, there is a requirement for a more structured approach than 

needed when working alone, since individuals or sub-groups have separate sub-tasks to 

perform, which must be coordinated to achieve the overall team goal. In this highly complex 

behaviour, the individuals may be working sequentially or concurrently. Anderson and 
Franks (2001) note that team members are not restricted to the performance of a single simple 

task; they can change their role to fulfil group needs, although performance can be degraded 

where an individual performs an unfamiliar task. Gordon (2003) reviewed how work was 

organised in colonies of harvester ants, and indicated that, whilst there was no central 

coordination, each individual based its behaviour on its encounters with the environment and 
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other colony ants, forming a form of ad hoc dynamical network. For example, to coordinate 

foraging, the following activities take place: initially, a group referred to as patrollers (pro- 

active foragers) leaves the nest in search of food sources; on encountering a food source, the 

patrollers return to the nest; reactive foraging ants leave the nest and forage along the trails 

taken by the patrollers; as foraging continues, the patrolling ants maintain the trails by 

encounters with the foragers; once the foragers cease to meet patrollers the foraging stops and 

all ants return to the nest. It has also been shown that group foraging may not always be the 

optimum strategy due to the potential cost of information sharing. Dechaume-Moncharmont 

et al. (2006) developed mathematical models of insect foraging that indicated that there may 
be times when, instead of waiting at the nest for foraging information, reactive foragers 

would fare better if they left the nest and searched for food proactively. This argument is 

supported on the grounds that, where food availability is transient, the time taken to return to 

the nest can be more costly than the returns made through cooperation. 

Individuals that work both alone and in groups can also be seen to change their behaviour to 

optimise their current mode of operation. In studies of social monkeys, Boyer et al. (2004) 

observed that the trajectories of individuals altered to a more optimal Levy search pattern 

when foraging in groups (from p=1.5 in individual foraging to p=2.1 in groups, see Section 

4.3.1). This switch in pattern is believed to be due to the increase in resource information 

available to the group and is considered the most efficient strategy under those circumstances. 
It is important to note that, although foraging became more efficient with larger groups, it 

was resource availability that affected group size; fewer resources resulted in smaller groups, 

although the group members would change throughout the day. It is useful to note that 

competition for the available resources does not always dictate the size of the group, 

members of a group can accrue other benefits such as mate availability. Delestrade (1999) 

conducted experiments using alpine choughs to ascertain the effect of competition and food 

availability on flocking behaviour. She found that where food sources were small in size and 

plentiful (competition was low) the alpine choughs did not require social interaction and the 

efficiency of belonging to the flock was high. When the food sources were large and patchily 
distributed, this efficiency was reduced because the number of birds visiting the site remained 
the same, but not all birds gained access to the food. In these experiments, where competition 

was high, the female members stayed with the group, which was dominated by the males, 
despite restricted access to food. In this case, Delestrade concluded that it was the mating 
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benefit that was more important. Thus, some caution must be applied when observing natural 

phenomena, such as group feeding, in search of new natural computing paradigms, since 

misleading associations could be made easily; in this case, are the group members acting 

cooperatively to gain mutual benefit or do individuals gather in conspecific groups simply 

because of the availability of food? 

3.2 Search Strategies 

The success of a species depends on many factors, including its ability to search effectively 

for resources, such as food and water, in a given environment. Pianka (1966) broadly 

classified search strategies into sit and wait (for ambush) or foraging widely (for active 

searchers). Butler (2005) reports that, in general, active foragers range widely, eating slower 

prey, and expend high levels of energy in the process; in contrast, sit-and-wait foragers 

capture fewer prey (which are usually the active foragers) but expend less energy in doing so. 

Differing species utilise a variety of search strategies depending on their physiological 

characteristics, the environment, and the resources available to them. These can range from a 

continuous motion search (also called cruise search), such the long range foraging patrols of 

the albatross (Stahl and Sagar, 2000), through saltatory search, such as tyrant flycatchers 

(Fitzpatrick, 1980), to the ambush type predation of the scorpion (Skutelsky, 1995). It is 

important, therefore, to understand the types of environment, in order to establish which type 

of search is appropriate. The following subsections briefly examine pertinent characteristics 

of search environments before considering the strategies employed in nature to address search 

tasks within them. O'Brien et al. (1990) provide a useful summary of search strategies and 

the appropriate circumstances under which they should be adopted. 

3.2.1 Search Environments 

Resources can be distributed uniformly or regularly, and may vary temporally and spatially; 

where they are distinctly grouped they are termed patchy. Where distribution is regular and 

stable it is advantageous for the predator to be easily conditioned to the most effective 

strategy and then to maintain it. Papaj and Rausher (1983) describe two types of conditioning 

that may take place: conditioning of response, where behaviour is learned through repeated 

encounters with stimuli, and conditioning of perception, where the probability of perception 

is increased through repeated encounters. The effect of this was shown in experiments with 

26 of 240 



butterflies (Weiss and Papaj, 2003), where butterflies alighted more frequently on model 

flowers with colours that they had been conditioned to believe would be more profitable in 

terms of nectar foraging and ovipositioning. The work indicated that, whilst efficiency 

improved in same context activity, it led to mistakes occurring following both behaviour 

switches (between foraging and ovipositioning) and environmental context switching. 

For patchy or irregular resources, a predator will avoid becoming conditioned because to do 

so would leave it too dependent on a particular, possibly unreliable, resource. Burns (2005) 

illustrates how this can occur in conspecific group foraging (in this case, with bees) where he 

argues that it can be beneficial for a group when individuals within it display different 

foraging behaviours to exploit the variable resources available, i. e. the group itself does not 

become conditioned. 

3.2.2 Sit-and-Wait 

There are times when active searching does not provide sufficient energy gains to warrant the 

effort required; for example, in a harsh environment, or where prey speed or agility make it 

highly unlikely that the predator would capture the prey in an open pursuit. Naturally, in a 

predator / prey situation, the predator must be sufficiently camouflaged to avoid being 

detected until the prey is close enough to attempt capture. 

As with most natural search strategies the tactic is often used in conjunction with other tactics 

to provide maximal benefit, such as in the case of the sidewinder snake (Secor, 1994). In this 

study, sidewinders often performed either a straight line or random walk search, both in 

combination with chemoreception, to locate a suitable ambush site at the entrance to a prey 

burrow. Once located the Sidewinder would partially bury itself in the sand to provide 

camouflage, environmental protection and an anchorage from which an attack could be 

launched. 

3.2.3 Continuous Motion Search 

Bell (1991) offers four theoretical continuous motion search strategies: random walks, where 

the direction of each step is changing at random; straight line walks in a random direction for 

some distance; systematic strategies, such as spiral patterns; and kinesthetic input mappings. 

The latter case, in which the animal uses knowledge of its own previous movements to search 

for a return location such as a burrow, is part of a navigation system known as path 
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integration or dead reckoning, which may include idiothetic (internal cues) or allothetic 

(external cues) mechanisms (Merkle et al., 2006). Animals may use a combination of these in 

a variable strategy determined by individual needs, group needs or environmental factors. 

After examining several experiments designed to assess the affect of spatial distribution on 

search patterns, Bell concludes that the dispersal of resources affects the locomotory search 

pattern in that the search patterns of those insects under examination was sufficiently plastic 

to be constrained by the resource dispersion rather than inherent patterns. 

The following subsections elaborate further on each of the continuous motion search tactics. 

3.2.3.1 Random Walk 

A random walk may consist of either Brownian motion, where the direction of one step is 

independent of its predecessor, or Levy paths, where there is a lower probability of a change 

in direction. For hidden fixed targets, Levy paths have been utilised by several species when 

foraging for food. Examples of such behaviour have been observed in spider monkeys 

(Ramos-Femändez et al. 2004) and jackals (Atkinson et al. 2002), amongst others. Levy path 

lengths (lj) can be described as being stochastic with continuous probability (P) having 

stationary and independent movement increments with distribution: 

P(1l) = Ij -N (where p 2) (7) 

Viswanathan et al. (1999) showed that Levy search is a statistical random search that 

outperforms normal random search (i. e. Brownian motion, where µ >_ 3) under certain 

searcher / resource conditions, particularly where prey density is low. This may appear to be 

counter-intuitive since Brownian motion paths produce more homogenous coverage and 

would be more likely to find widely dispersed targets. However, when the general overriding 

principle for foragers is that of maximising efficiency, where sufficient food is available, then 

more intense, systematic, local search would require less effort (see Figure 4). Viswanathan 

et al. (2001) further investigated the efficiency of the approach under such circumstances, 

assessing whether the argument held with short leg lengths and different numbers of 
dimensions. Findings were that the optimum of p=2 still held under the scenarios tested. 

Further extending those findings, Marthaler et al. (2004) reported that, in scenarios where 

targets were removed, searches were more efficient when p was approaching 1; i. e. less 

tortuous paths were more efficient. 
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Further comparisons between Levy and Brownian motion searches in a biological context 

were made by Viswanathan et al. (2002) and Bartumeus et al. (2002), to assess predator 

success against varying prey densities and motion types. The relationships among these 

factors are complex, but for a given target density, they indicated that, for Brownian motion 

targets, predators that are larger and faster are better served by Levy search, whilst for 

smaller and slower predators, Brownian search was a better option. Where targets moved 

using Levy motion, size ratio was unimportant and velocity ratios dominated, with Levy 

search being preferred for slower targets. Target density was regarded as the prime factor, 

with Levy search only being suited to lower density targets, although a target with Levy 

motion reduced the effectiveness. Further, where targets have a proportionally higher velocity 

(i. e. super-diffusive movement), Levy search is less profitable; indeed, Brownian search, or 

even no search at all (sit-and-wait), is usually adopted, since the prey is just as likely to move 

into sensory range without the higher effort required for Levy search. 

3.2.3.2 Straight-line Search 

A strategy that includes straight line search can be effective when there is no other 
information regarding resource location and provided the searcher does not pursue the same 
line for an inappropriate length of time. If the time period between direction changes were too 

short, the search area would be too constrained; if it were too long, the searcher may 

unnecessarily follow an unproductive path. It can also be shown that the strategy is inefficient 

when the resource density and sensory acuity are small, since the probability of target 

detection (Td) is: 

_ 
aresin(a/r0) Td 

180 
(8) 

where a is the detection radius and ro is the distance between the start point and target. Using 

several case studies, Bell (1991) indicates that when the searcher does decide to move, it 

usually uses a strategy, such as alternating left and right turns (with a mean angle of 35°), that 

reduces the possibility of revisiting previously searched territory. Further, this strategy may 
be useful in group search scenarios since the decreased turning rate may make the search 

more efficient than strategies with higher turn rates, since the likelihood of each predator 

covering the same ground as another predator is also decreased. 
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3.2.4 Systematic Searches 

Bell (1991) discusses three hypothetical systematic search tactics. The expanding square, the 

spiral, and parallel sweeps (Figure 4). To be most effective, the search path should be spaced 

at twice the sensory acuity of the searcher. These strategies are most viable where the target 

is moving more slowly than the searcher and there is no spatial or temporal information. 

a b C 

Figure 4. Systematic search strategies: (a) expanding square, (b) spiral and (c) parallel sweep 
(Bell (1991), Figure 6.1). 

Whilst there is a paucity of evidence for such tactics in the literature, Müller and Wehner 

(1994) indicate that desert ants use spiral searching as part of a homing strategy that includes 

Path Integration (PI). In this case the ants use the PI strategy to calculate a global return 

vector, which is used to return to the nest after a foraging sortie. The return vector is not 

always sufficiently accurate, and when they do miss the nest they enter an expanding spiral 

search. 

3.2.5 Path Integration 

An animal will often need to search for a location that it has moved away from, for example, 

a previously lucrative location or its burrow. Possible tactics could be to employ one of the 

search patterns discussed, or to navigate using remembered landmarks, but these can be 

inefficient or error prone (a landmark might move, for example). Alternatively, the animal 

can map its outbound movements using idiothetic and allothetic mechanisms, and calculate a 

global return vector by an innate path integration (PI) ability (see Etienne and Jeffery, 2004, 

and Merkle et al., 2006, for reviews). Two PI models have been proposed in both Cartesian 

and polar coordinate systems (only Cartesian models are shown here for comparison). Both 

models only require the animal to sense the input variables of forward speed (v) and angular 

turn rate (co). The basic models are as follows. 
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Geocentric models are based upon the animal's perception of its movement in relation to its 

environment (allothetic inputs) where it continuously updates its global return vector through 

the integration of movements calculated using trigonometry. Research by Freake (2001) 

indicates that the parietal eye (a photo-sensitive organ present in some animal species) plays a 

significant role in the homing behaviour of the sleepy lizard, suggesting that a form of 

celestial compass could be in use; this could be used to facilitate a geocentric PI system. In 

the geocentric PI model (Mittelstaedt, 2000) the global return vector G is: 

G= Po -P (9) 

where Po is the origin [0,0] and 

P= J(cosq5, sinq) ds (10) 

if integration is over walked distance (s is the arc length), or 

P= f(vý)(t) dt (11) 

if integration is over time, and 

q=j o) dt (12) 

In contrast to geocentric models, egocentric models require less complex calculations, since 

the animal uses idiothetic input signals to calculate its forward speed and angular turn rate. 

Merkle et al. (2006) argue that, although recent improvements to the geocentric model 

described above have included results consistent with mammalian neuro-activity, it has yet to 

be shown that animals have the ability to physiologically perform the necessary trigonometric 

calculations, the egocentric model is physiologically possible and simpler to calculate, and 

therefore more plausible. For the egocentric model the update to the global return vector 

(X, Y) is: 

- 
=-v+wY dt 

(13) 

dY 
= _coX (14) 

dt 

These geo- and ego-centric models need not be mutually exclusive; Menzel et al. (2000) 

argue that some honeybee navigation can utilise both systems. Generally, the argument is 
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presented that honeybees only apply egocentric models, since most evidence does not show 

that novel shortcut behaviour takes place when bees have been trained to fly a route to and 

from feeding sites. Findings from the experiments of Menzel et al., combined with supporting 

evidence from other work, suggests that they store relational information on landmarks and if 

they do not receive sufficient orientation to employ ego-centric based navigation they can use 

an alternative geo-centric system. This geo-centric system is believed to further use 

combinations of reference systems depending on the accuracy of available sources, such as 

scent deposits or visual cues for their `odometer' (Vladusich et al. 2006). 

Although these models present efficient mechanisms, they are not perfect, and a returning 

animal may not return to its start position. In this case another local search mechanism can be 

employed, such as a local random walk or a systematic search. As previously indicated, 

Müller and Wehner (1994) show this type of behaviour in desert ants, which perform a spiral 

search where PI fails to locate the return location of a foraging sortie. 

3.2.6 Area Concentrated Search 

Area concentrated search (ACS), also known as area restricted search, is a variable strategy in 

which a predator will attempt to exploit the natural tendency of prey to appear in patches, by 

concentrating their search effort in a particular area upon encountering an individual prey 

item. Searching often begins in a ranging mode, with long leg lengths and small turning 

angles, followed by intensive searching initiated by some kind of cue. This strategy can be 

termed win-slow fail fast since, when a successful encounter occurs the predator slows into 

intensive search, but speeds into extensive search when an encounter fails (Krakauer and 

Rodriguez-Girones, 1995). 

An example of this behaviour is that of the juvenile plaice (Hill et al., 2000), which use 
localised cues, although it is not known what sensory apparatus is used, to alter their search 

pattern from extensive to intensive search. This switch, on average, shortens pause time by 

15%, increases move duration by 14%, reduces speed by 22% and increases median absolute 

turn angle by 33%. The effect of this change is that the predator can effectively search a small 

area rapidly, since it knows that once it has discovered one item of prey, it is likely to 
discover others nearby. 

Krakauer and Rodriguez-Girones (1995) presented an ACS model to examine several 
foraging rules: 
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I. 4 

Tracking errors. These occur when the forager searches extensively where resources are 

good or intensively where resources are poor. With ACS it is possible to reduce tracking error 

by capitalising on patchy distributions through initiating intensive searching only on 

encountering prey items. The amount and types of error will therefore depend on the 

patchiness of the resource. 

Learning. The forager is required to learn about the environment and distribution of the 

resources to maximise exploitation. This activity must be balanced with the time available 
for, and value to be gained from, exploitation. 

Evaluation of information. The forager must decide whether there is any value in the 

information it gathers or to apply a general strategy instead. As the patchiness increases, so 
does the likelihood of prior assumptions being incorrect, and the value of time spent in 

assessing the prey distribution and selecting an appropriate exploitation strategy increases. 

Functional response. The prey intake in response to its density. The selection of a resource 
dependent strategy can alter -the response curve from one in which, at high prey density, the 

limiting factor is the amount of time spent handling the prey, to one in which the predator 

spends more time searching. 

Further to these rules, Krakauer and Rodriguez-Girones (1995) also assessed whether the 

standard win-slow-fail-fast ACS strategy was always optimal. They argued that, where the 

resource distribution regularly alternates between good and bad, the reverse could be true 

(win-fast fail-slow), since the switch to intensive mode is only worthwhile where the chances 

of successive encounters are high. 

3.2.7 Saltatory Search 

Animals do not always need to have located prey to enter an intensive search phase; the 
intermittent scan and relocate foraging method, also known as saltatory search, is a widely 

adopted strategy when the targets are sparse and difficult to detect (Benichou et al., 2005). 

The strategy consists of two distinct phases, a search phase, in which the searcher pauses to 

explore its immediate vicinity (within the scope of its sensory acuity), and a motion phase, in 

which the searcher moves more quickly, such that it is not normally possible to detect hidden 

prey. 
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During the search phase, the predator may have to scan a given area many times in order to 

detect a well hidden target. Benichou et al. modelled this phase using a diffusion process 

(random walk) that was notable in that it was a sensory search rather than the animal's 

physical movement. Results of the modelling closely matched that of several animal species, 

indicating that the diffusive search was an appropriate selection for the search phase. 

The motion phase is notable in its similarity to the klinokinetic strategy used by the juvenile 

plaice (Hill et al., 2000) when changing from intensive to extensive searching during an 

ACS, although Benichou et al. (2005) adopted an efficient relocation strategy that had been 

observed in nature -a straight ballistic motion to the next search area. The results of the 

modelling indicated that the optimal relationship between the average duration of the search 

and motion phases was bimodal (motion phase duration equals search phase duration to the 

power 3/5 or 2/3). 

The similarity of this strategy with ACS is striking, but the difference is vital to the potential 

exploitation of either in a natural computing context. To summarise, ACS is suitable where 

predator acuity and prey visibility are such that a prey item can be detected during extensive 

search, whilst saltatory search is suitable where sensory acuity is limited or prey visibility is 

low, and thus unlikely to be detected during extensive search. 

3.3 Knowing When to Give Up 

Once a predator has assumed a search tactic, it must then decide when to switch to another or 

move location, which is known as the giving up time (GUT). The decision could be based on 

factors such as estimated prey numbers, capture rate, or time (Bell, 1991). For example, 

juvenile plaice (Hill et al. 2000) use a short term klinokinetic strategy; that is, they will only 

exploit a patch for a short time before swimming away (by reducing their turn rate). This, it 

was argued, is because other external pressures are operating; if they loiter to fully exploit the 

patch, there is an increased possibility of predation. Charnov (1976) presented a more 

generalised departure strategy known as the Marginal Value Theorem (MVT). This states 

that, where an omniscient predator depresses prey availability, departure from a patch should 

occur when the capture rate drops to the average capture rate for the habitat. 

A GUT also needs to be optimised for sit-and-wait predators since, in common with 

continuous motion predators, sit-and-wait predators often do not know prey density within a 
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patch, and, furthermore, prey size may not be known until capture, and to give up before any 

capture is a waste of the expended energy (Iwasa et al. 1981). Nishimura (1999) explored, 

using modelling, the behavioural variability of GUT in a stochastic environment for sit-and- 

wait predators and indicated that, when entering an unknown patch, the predator should 

employ a variety of strategies to learn the optimal GUT. Nishimura asserts that the number of 

decisions made in search of the optimal GUT strategy would relate to the uncertainty of the 

environment and from this it is possible to further assert that to be optimal in highly 

stochastic environments, a predator should have an array of potential strategies to explore, 

and the efficacy of decision making in the pursuit of the optimum is vital. 

3.4 Capitalising on Environmental Cues 

A priori information regarding certain search target attributes can provide additional cues that 

can be used to improve the likelihood of success. These cues might be topographical or other 

environmental factors. For example, harbour seals have been shown to exploit their 

knowledge that salmon migration runs occur under certain tidal conditions and that during 

these runs the salmon densities are increased in constricted channel areas (Zamon, 2001). 

Environmental cues can also be used to avoid intra-specific competition. This is illustrated by 

the foraging behaviour of Frugivorous lepidopteran larvae (Marchand and McNeil, 2004). 

These larvae feed on cranberry fruits and exhibit plastic foraging behaviours that are cued on 

fruit size, spacing and colour. The first two are self-explanatory: the larvae will exploit a 

patch where the resource can provide sufficient return on foraging effort, i. e. select the largest 

fruit in the densest patches. The fruit colour is significant since the larvae feed from the 

inside of the fruit to avoid predation and the activity of feeding larvae affect the fruit by 

turning them prematurely red. Other foraging larvae use this cue to avoid wasting energy and 

possible intra-specific confrontation. The colour cue is so important that during laboratory 

controlled experiments, far higher numbers of larvae entered small green fruits than large red 

ones (even though the larger fruits offered potentially higher gains). 

3.5 Variable Strategies and Patterns 

The reasons for variations in search behaviour are diverse, but usually related to a changing 

environment or physiological state. There are a variety of reasons why a variable foraging 

strategy could be optimal. For example, Skutelsky (1995) studied the scorpion Buthus 
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occitanus isrealis and discovered that the subject had added active foraging to its usual sit- 

and-wait strategy, to maximise its predation of termites. The reason for this adaptation is that 

when a group of termites detects a predator they all retreat to the safety of the nest. Within 

seconds, by changing to an intensive search mode, the scorpion was observed to kill up to 

eight termites compared to the single kill that would be possible with a pure sit-and-wait 

strategy. This discontinuous variation is an example of an Evolutionarily Stable Strategy 

(ESS) as proposed by Maynard Smith (1982). Whilst the scorpions used prey defined 

variation, female red-faced warblers vary their strategy due to breeding restrictions (Dobbs 

and Martin, 1998). The warblers were observed capturing stationary prey from a perch (sit- 

and-wait) whilst egg laying or incubating, and hover-sallying for stationary prey during the 

nesting period. This variation was believed to be a result of changes in time and energy 

requirements, since the former strategy occurred whilst the female nested alone and the latter 

was during a period when the male assisted with the hatchlings. 

It is not just the foraging strategy that can be adapted; the search pattern itself can change in 

response to dynamic changes to the environment, although this requires that an individual 

acquires information about the environment and the optimality of its current strategy, and 

then makes a decision about the proposed pattern's efficacy. In stable, homogenous 

environments, this is a fairly straightforward decision, but real situations are rarely simple 

and the learning I decision making process itself requires energy, and the individual must also 

decide, therefore, whether a net energy gain would result. 

3.6 Repeat Searches 

In dynamic environments it can be important that an area is revisited to search for new 

resource occurrences. Bell (1991) describes several strategies: 

Cropping. Cropping is the process of depleting a resource, moving on, and then delaying a 

return until the resource has had time to renew. When implementing cropping, it is argued 

that a systematic approach is most efficient since resource renewal increases exponentially 

over time (notwithstanding unrelated environmental pressures). 

Traplining. This is similar to cropping in that it involves returning to the locations of 

previously successful encounters. In traplining, however, the searcher learns a successful 
foraging route that allows resources to recoup between foraging visits. 
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Partial depletion. The predator can choose to only partially deplete the resource during a 

foraging visit, leaving resources available for return visits. This has the added advantage that 

the resource will replenish more rapidly due the exponential nature of resource rejuvenation. 

All three share a common principle: that the resource is allowed to renew between visits. 

Whether they are employed, very much depends on the goal of the target application. 

3.7 Competitor Avoidance 

It is not beneficial for individuals to compete for the same resources. This can be seen, for 

example, in insect oviposition site selection; when the eggs hatch there should be sufficient 

local food for early larval survival. When searching for a site, the insect will examine the 

amount of resources available and maximise them by avoiding superparatism where other, 

better, resources are available. Cope and Fox (2003) conducted experiments that indicated 

that the seed beetle uses a combination of resource size, competition (i. e. existing eggs) and 

their own need to egg lay (older beetles were more likely to lay since it is better to lay sub- 

optimally than not to lay at all). 

This principle can be applied to improve group searching, since the competitors for resources 

can be considered to be cooperating in the goal of ensuring the survival of the species. Thus, 

if a group of agents are searching for hidden resources, it is not efficient for them to cover the 

same ground (assuming a static environment) or to converge on small incidences of the 

resource. 

3.8 Communication Strategies 

The manner in which inter-group communication occurs not only affects the efficiency of 

information passing but can also produce emergent behaviours in its own right. 

Communication strategies are often multi-modal and can be either direct, where two or more 

individuals pass information and receipt occurs within the same time frame as transmission, 

or indirect, which is usually more subtle, and occurs where a message is left, and any group 

member can receive it at a later time. 
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3.8.1 Indirect Communication 

Grasse (1959) first documented the method by which social insects communicate indirectly to 

achieve the complex emergent behaviour required to perform feats such as termite nest 

construction. He termed the process stigmergy (from the Greek stigma, goad, and ergon, 

work). To achieve stigmergy, multiple individuals interact when one modifies the 

environment and the others react in some way on encountering the modification. Essentially 

this description highlights the voluntary nature of response, for example, in the case of ants a 

receiver may choose to ignore a pheromone signal because the intended action is outside the 

responsibility of its caste (e. g. a soldier ant may well ignore food trail signals). Holland and 

Melhuish (1999) expanded on Grasse's concept of stigmergy occurring where activity is 

stimulated through changing the environment. They argued that it is the outcome of the 

behaviour that is important and can be manifest in three ways: 

" It may affect an agent's choice of action. 

9 It may not affect the agent's choice of action but how it performs that action. 

" It may affect neither of the previous points but influence the outcome. For example, 
by placing a physical barrier to alter the path of fellow group members. 

In social insects the stigmergic reaction usually involves the application of low level rules; in 

the termite nest building scenario, a termite drops a piece of chewed earth when encountering 

a raised piece of ground (generated by other termites dropping pieces of chewed earth) until 
large, complex structures emerge. Stigmergy is most commonly associated with ants and 

termites but is also used by other insects such as bees (Dornhaus and Chittka, 2004) and 

wasps (Reed and Landolt, 2000; Steinmetz et al., 2002). Stale data is often avoided via 

mechanism such as evaporation, where the importance of response time can be tied to 

evaporation rate. 

3.8.2 Direct Communication 

The obvious forms of direct communication in social groups are through aural and visual 

cues, although direct communication can occur using all sensory cues, including the use of 

pheromones. The methods discussed in this section are not exhaustive; however, they do 

cover some of the direct communication methods that have already been used in natural 

computing. Also notable is that the latter two strategies (tandem calling and information 
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centres) can be regarded as higher level strategies that make use of lower level forms of 

communication. 

3.8.2.1 Trophallaxis 

Some species of social insects communicate successful foraging information via the transfer 

of bodily fluids; this may be proctodeal (faeces sampling), or stomodeal (regurgitation). 

Dejean et al. (2005) report on research that indicates that trophallaxis is employed by tramp 

ants (and even simulated trophallaxis in less phylogenetically advanced sub-families) to pass 
information regarding good foraging sites located in the territory of interspecific competitors. 

In this instance, the odour of the competing group is contained within the transferred fluid, 

alerting the receiver, and therefore expediting exploitation of the site in order to avoid 

confrontation, and thus gain competitive advantage. Bees also use trophallaxis, as a learning 

medium for odour signalling (Gil and De Marco, 2005). This epigenetic learning occurs as 
the transferred liquid contains the odour used to mark the source, and the receiver associates 

the odour (via olfactory stimulation) with the reward. Experiments indicate that the process is 

as successful as experiential learning in effectuating long term memories with the properties 

of the liquid (odour and reward concentrations - the latter being sucrose solution during 

experimentation) affecting association intensity. 

3.8.2.2 Honeybee Dancing 

When a honeybee locates a good source of nectar, it returns to the nest, noting the resource's 
distance from the hive and its direction with respect to the sun. On entering the hive, it 

performs its dance: the distance is communicated by the speed of the dance and the direction 
by the dance orientation (Von Frisch, 1967). Several types of dance have been identified, 

including the waggle dance described here, and experiments have indicated that the precision 
of the dance correlates to the availability of resources (Dornhaus and Chittka, 2004). Further, 

Farina and Wainselboim (2005) examined the dancing behaviour of honeybees and indicated 

that some honeybees, upon witnessing the dancing performed by a successful forager, 

engaged in stomodeal trophallaxis in order to sample the nectar quality, possibly influencing 

the sampling bee's decision to visit the resource. 
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3.8.2.3 Tandem Calling 

Tandem calling, also known as tandem recruitment or tandem running, is a communication 

method that can be used where an insect wants a specific individual to assist with a particular 

task. The actual contact method can vary, and multiple strategies can be employed, including 

chemical signals, touch or visual cues, and often comprise a combination of stimulation 

signals to enable the recruitment and directional signals (De Meyer et al., 2003). The strategy 

can be expanded to include many recruits, which may be led using a visual cue as stimulation 

followed by pheromone trail laying for guidance, and has been identified in a variety of 

species such as ponerine ants (Fresneau, 1985) and stingless bees (Lindauer and Kerr, 1960). 

This may still be considered as direct communication, since the action of following has 

already been stimulated, and individuals would not follow the trail without such stimulation. 

3.8.2.4 Information Centres 

When animals forage unsuccessfully, it may well be in the best interest of the species that 

other, more successful, animals communicate likely foraging locations to them. One such 

communication method is the communal `information centre' (Ward and Zahavi, 1973). In 

this hypothesis, animals are believed to communicate successful foraging whilst visiting 

central communal areas, allowing less successful members to follow them to the resource at a 

later time. Although this hypothesis has seen some controversy, evidence for its existence is 

accumulating. Wright et al. (2003) conducted field experiments on communities of ravens in 

which food carcasses were laced with coloured pellets. They noted that dominant birds 

feeding at the carcass would perform acrobatic displays at the communal information centre 

at pre-roost aggregations. Following this, increased numbers of birds would follow the lead 

bird to the feeding area. 

3.9 Example Behaviours 

The natural world is awash with different foraging behaviours and to explore all of them here 

is beyond the scope of this work. It is worthwhile, however, to sample a few species to 

highlight how the some of the behaviours discussed above are combined, and to examine 

some of the material available to natural computing for inspiration in developing potential 

search algorithms. For example, ponerine ant foraging has already been used, and the 

algorithm developed from it is discussed briefly in Section 3.11.1. 
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3.9.1 Ants 

The many species of ants display an array of foraging behaviour, the strategies of two types 

of ponerine ant are described here, the army ant style foraging of the genus Leplogenys and 

the partitioned space search of Pachycondyla apicalis. 

Maschwitz et al. (1989) studied the nocturnal foraging of the South East Asian Leptogenys 

sp. l. Their large colonies were found to forage in 3 stages termed exodus, main raid and 

retreat (see Figure 5 for a depiction of the overall search pattern formed). During the exodus 

phase, new trails are established in narrow, tentacle-like patterns extruding from the colony's 

current bivouac (they are not nest builders). The outgoing traffic follows (it is assumed) 

pheromone trails deposited by occasional ants travelling contra-flow. Once the ants on one of 

the tentacles finds a suitable raiding area, that tentacle becomes very attractive, and the traffic 

rate along it increases to a peak rate of over one thousand workers per minute in a column of 

up to 13 ants abreast. At the column forefront, the ants spread out in an organised swarming 

unit to begin the raiding phase, and, as this moves forward a supporting fan shaped network 

of trails forms behind it. Whilst the main raid is in progress, there is a balanced flow of traffic 

to and from the bivouac, with the majority of homebound ants carrying food. Once the raid is 

complete, the swarm front turns, almost synchronously, to return to the bivouac, those ants 

still heading for the swarm also turn for home once the homebound now becomes dominant. 

This is referred to as the retreat phase. 

Foraging Swarm 

Main Two-Way 
Column 

Swarm Support 
Fan Trails 

Colony Bivouac 

Initial 
Exploratory , --- 

Columns 

Figure 5. Foraging behaviour of Leplogenys sp. l, modelled from photographs and diagrams produced by 
Maschowitz et at (1989). 
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The foraging strategy of the ponerine ant Pachycondyla apicalis, from Mexico (Fresneau 

1985), involves partitioning the global search area into smaller local areas. The colony 

members (colonies are relatively small, numbering 20 to 100 individuals) begin by setting up 

hunting sites roughly uniformly distributed about 10m from the nest, each having an 

approximate radius of 2.5m. Foraging ants then go out to individual hunting sites to look for 

prey. If they are successful, they memorise the location from landmarks and later return using 

these landmarks rather than the pheromone trails used by many other ant species. When ants 

are unsuccessful at one site, they tend to return to other previously successful sites, indicating 

that multiple site memory is possible. Since the system relies on landmarks, and local 

foraging at the hunting sites is an individual based activity, interaction among ants during 

foraging is limited. Occasionally, the nest is moved to another location (providing a global 

search aspect), using tandem calling to recruit ants from the existing nest to the new one. 

3.9.2 Bees 

Bees forage for targets (flowers containing varying amounts of nectar) that are static and 

generally patchy. Initial bee foraging follows an ACS strategy slightly different from that 

described earlier (Pyke, 1978; Waddington, 1980). Following a visit to a nectar rich 

inflorescence, a bee will fly a short distance to the next inflorescence, but the direction is 

maintained; this, it is believed, is to avoid revisiting a site that it has depleted. When an 

inflorescence provides poor rewards the bee will extend its flight and increase its turn angles 

to move away from the area. This response is not immediate though, and is graded according 

to the number of unrewarding visits made. Waddington believed this to be due to the 

diversity of floral distribution and therefore the low probability of being able to correctly 

predict the quality of surrounding inflorescences from a single visit. Experiments indicated 

that this overall strategy proved most effective in high density flora with clumped nectar 

distribution. 

These finding were further supported in research that examined whether the strategy was 

evolutionary stable (Motro and Shmida, 1995). This work compared the bees' strategy, 

termed near-far by Motro and Shmida, with several alternatives using only a single level 

memory (that is, the response was not graded as described above). The movement strategies 

compared were: 
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Random search. The next location could be any of the surrounding flowers, excluding the last 

visited, with uniform probability. 

Near search. The next visited location is always the nearest flower to the last visited. 

Far search. The next visited is never the nearest to the last visited and is selected randomly 

with uniform probability. 

Near-random search. A combination of the first two strategies where the bee selects the 

nearest flower subject to sufficient reward from the last, otherwise a random flower is 

selected. 

Near far search. This is similar to near-random except the strategy switches to a far search 

following an unrewarding visit. This represents the non-graded version of the earlier work 

described above. 

In a large area comparison with random search, the near-far strategy was shown to be most 

effective in an evolutionary stable environment where resources were patchy. It was also 

shown that the advantage increased with increased search area size. A second, smaller, area 

comparison that included all strategies showed that the near-far search discovered most 

flowers in fixed length runs in all but the shortest search, in which random search was most 

effective, since the resources were not depleted sufficiently for repeated visitation to be 

problematic. In an exhaustive search the near-far search again consistently outperformed the 

other strategies and was shown to be an evolutionary stable strategy. The worst performer in 

all cases was the near search because there was a high probability of repeat visits. 

As previously reported, once profitable sites have been located the bees make use of path 

integration to return to hive and communicate the find to fellow bees via waggle dances. 

3.9.3 Bacteria 

Cooperative foraging behaviour is not limited to insect and high order species; bacteria have 

also been found to display emergent group foraging behaviours far beyond the scope of the 

individual. Passino (2002) drew together a wide variety of literature, in particular relating to 

E. coli, to explore the possibility of using bacterial foraging as inspiration for new techniques 

in distributed optimisation and control systems. Whilst the types of bacteria are numerous, it 

is the foraging behaviour of E. coli that is described here. 
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Physically, an E. coli bacterium consists of the main cell body, the pili (used for the transfer 

of DNA to other bacteria) and flagella (long, left-handed helix, whip-like projections that 

enable motor activity). When the flagella rotate counter-clockwise they are pushed forward in 

a swimming motion. Upon reversing the rotation, the bacterium is pulled, causing it to 

tumble, allowing direction change to occur. The activities required for such movements are 

very efficient and, despite being in almost continuous motion, cost less than 1% of the overall 

energy requirements. When placed into a neutral environment, that is, one without nutrients 

or harmful substances, the bacteria work independently, tumbling and swimming for equal 

time periods. Notably, the swimming movement produces a Brownian motion that induces 

approximately a 30° wander, and the independent tumbling allows the group to search, albeit 

in an uncoordinated fashion, for nutrients. Upon discovering the presence of a nutrient, the 

bacteria engage in a specialist movement behaviour known as chemotaxes. In an environment 

with a constant level of nutrient the chemotaxes is similar to the neutral case, except that the 

mean swim length and speed increase at the cost of tumbling time. When a positive nutrient 

gradient is encountered, this effect is further increased but only until the gradient is lost, 

either to a negative gradient or a flat area whereupon, after a short period, they will resume 

the equal swim and tumble search behaviour. In summary, the bacteria will always seek 

positive gradients, even in nutrient rich environments. This behaviour is reversed in the 

presence of a harmful substance where negative gradients are sought. 

Whilst bacteria do not use obvious communication strategies, emergent behaviours are 

produced when a collection of cells is subjected to certain conditions. For example, where 

cells are placed in a substance containing high levels of succinate, it causes them to produce 

aspartate, which acts as an attractor, bringing the cells together to form a kind of swarm that 

moves together in a protective aggregate. This suggests that even such a basic form of 

indirect communication, when accompanied by adherence to the simple set of rules described 

above, can produce beneficial behaviour for the whole group. 

3.10 Prey Reacquisition 

Whilst in the pursuit phase of hunting, an animal may find that the sensory information about 

a target becomes obscured, for example, due to limitations in sensory capability (such as eyes 

failing to adjust to changes in light levels) or because the prey has hidden or escaped. At that 

point the predator may decide to give up or to apply a reacquisition strategy. There are many 
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components to target tracking and to fully review them is beyond the scope of this work. 

However, some elements have been identified as having potential as metaphors for improving 

the systemic response to loss of target detection, these are: prediction, as used to reacquire 

targets that can move faster than the visual system can track using smooth movement; 

anticipation, where an animal can use its knowledge of target movement, likely occlusion and 

own readiness; visual occlusion, where less certainty exists; and crosswind casting, used 

when tracking an airborne odour to reacquire the lost scent from an upwind source. 

Usefully, and in support of techniques for tracking visually occluded targets, it can be argued 

that existing ethological research into how predators visually track targets can be applied to 

the problem of reacquiring targets after detection has been lost. The rationale being that when 

animals are visually tracking a target they must apply predictive techniques to overcome 

intrinsic sensorimotor delays and therefore tracking occurs in a cycle of smooth pursuit and 

predictive saccades. Orban de Xivry and Lefevre (2007) provide insight into how the two 

elements combine in a single sensorimotor process in humans. In this case the smooth pursuit 

operates with a fixed delay and maximum tracking speed, and can operate successfully in 

scenarios that change within these boundaries. However, where abrupt changes occur or 

targets are moving quickly, corrective saccades are applied, albeit at the cost of visual acuity 

during the movement. It is important to note that saccadic movements do not utilise visual 

feedback from the target, they are totally predictive and are intended to place the target back 

into the fovea (the region of the retina with the highest acuity). The relationship between the 

two modes is dependent on the ability of a smooth pursuit system; for example, Orban de 

Xivry and Lefevre (2007) compare the human process with that of cats and note that the latter 

rely more heavily on saccades due to the lower and more variable gain in their smooth pursuit 

feedback system. Klara et al. (2001) reported two saccadic techniques in the sensorimotor 

process of cats, the tracking saccade and the interception saccade. The former operates in 

much the same way as for humans and is utilised where target speeds are lower or positional 

error is deemed small. Interception saccades are more extreme in their movement and 
intentionally overshoot the predicted target position before attempting to operate smooth 

pursuit. Figure 6 shows indicative movements for all three strategies. In the first third of the 

graph, the sensorimotor process can keep track with the target; in the middle third, the target 

speeds up but the process can keep track by making small catch up tracking saccades; in the 

final third, where target speed increases still further, interception saccades are made. The 
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defining features of the overall process are that the least time possible is spent in saccadic 

motion, where visual acuity is low, and that the target is kept within the fovea for the 

maximum time during smooth pursuit. 
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Figure 6. Indicative smooth pursuit (SP), tracking saccades (TS) and interception saccades (IS). 

Crosswind casting is a physical movement pattern employed by many insect species that use 

chemical odours to locate prey, for example, fruit flies (Budick and Dickinson, 2006) and 

moths (Willis and Arbas, 1998). During anemotactic search in odour plumes insects, employ 

a tacking motion whilst surging upwind toward the source. The nature of odour plumes is 

such that the scent is often inconsistent, and when a gap is encountered, the insect turns 

perpendicular to the wind direction and crosswind casting is applied to reestablish a lost 

odour trail (Figure 7). 
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Figure 7. Indicative movement path of an insect (red trail) through an odour plume (green). 

Direct search is a strategy whereby a predator will return to the last known location of a lost 

prey in cases of occlusion because the prey may have stopped to hide. Ogden (1974) 

observed this behaviour in the short tailed hawks of Florida. Generally, these hawks would 

adopt soaring, either `balancing' in a fixed position on deflected air currents or spiralling 

upward in small circles. Following, an unsuccessful attempt to capture a prey item, they 

execute an alternating flap and sail direct search across the treetops for a short distance, 

endeavouring to relocate the prey before resuming their initial search strategy. Interestingly, 

this direct search technique was amongst a selection of initial search techniques, which 

included sit-and-wait (perched in trees), soar-and-stoop (high level soar followed by a stoop) 

and soar-and-sneak (high level soar followed by an inconspicuous direct line movement), 

adopted by a variety of Florida based hawks and described by Johnson and Peeters (1963), 

but was not observed as an initial technique by Ogden. 

Badler and Heinen (2006) conducted laboratory experiments to investigate the anticipatory 

eye movements of monkeys tracking a target that was occluded for a given time. A 

conceptual model, Figure 8, was produced that had two main components, fixation and 

anticipation. The fixation component was tonically active and its influence on movement 

increased with visibility of the fixation point. This also acted as a filter to remove unwanted 

movements. When visibility was lost, the anticipation component was activated; this was a 
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timer that reactivated movement in anticipation of the reappearance of the fixation point and 

had knowledge of the fixation point and the readiness of the subject. The overall effect being 

that when employing such a mechanism successfully, the predator would increase its 

advantage through improved reaction time. 

Fixation point I Readiness 

Anticipation 
Fixation component 

component 

Movement trigger 

Figure 8. Conceptual model for pursuit initiation proposed by Badler and Heinen (2006). 

3.11 Discussion 

Within the field of natural computing there already exist several well established paradigms 

that rely on individual elements working cooperatively toward a common goal; such systems 

are generally termed `agent based' systems (a term inspired by Minsky's book, The Society 

of Mind, 1986). Agent based systems are characterised by a set of computing entities that 

exist independently, but have a common goal, which they attempt to achieve either alone or 

as part of a team. 

From the taxonomy of cooperation strategies indicated in Section 3.1, it can be seen that the 

type of cooperative mechanism that is employed in nature is dependent on the intended result. 

Agent based systems could utilise any of the forms of cooperation, but it should be noted that 

the choice directly affects the overall system behaviour. It could be argued, for example, that 

particle swarm optimisation employs by-product mutualism and genetic algorithms use 
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group-selected cooperation, and it is these aspects that define the very nature of the 

paradigms. Within the context of the cooperation strategy, the manner in which the agents' 

work can affect the efficiency with which the goals are achieved. Selection of specific 

individual roles for agents can enable more complex group goals to be achieved, but this 

could be at the cost of emergent behaviours, which are less likely, since systems that include 

agents with specific roles are generally more deterministic. Individual behaviours need not be 

so restrictive, however - it has been seen that some animals adapt their behaviours to 

individual or group needs. Ants are a classic example of this, where colony members will 

usually perform one of a number of tasks, such as foraging, but switch to another task 

following environmental or internal perturbations (Waibel et al., 2006). The ability to vary 

behaviour could allow a system to be more adaptive and robust in hostile or unpredictable 

environments. 

A wide variety of search behaviours have been examined, and it has been seen that nature has 

adapted its behaviour to suit the prevailing conditions. Similarly, it is important for the 

developer of a natural computing paradigm to consider the target application and the 

strengths (and weaknesses) of naturally occurring behaviours before selecting an appropriate 

strategy. Consider, for example, a reversionary navigation system for swarming search robots 

in harsh environments where limited bandwidth or electromagnetic noise could hinder 

communication. While communication is available the robots could search in a coordinated 

fashion, sharing information to increase search efficiency. If the system degraded, it could be 

more profitable for the robots to enter individual search patterns using the strategies 

described earlier; an example that has already been researched as a target application of 

autonomous robotic swarms is mine detection; see, for example, Fruergaard-Pedersen (2006). 

Such systems rely heavily on good communications, and loss of this facility may render the 

system ineffective; however, in such situations, the robots could enter a saltatory search mode 

to look for well hidden, patchily distributed mines. Such use of natural metaphors could also 
lend itself to division of labour, which is already suggested by Fruergaard-Pedersen, where 

some robots could be specialist detectors, whilst others could be disposable clearance drones, 

and, once the expensively equipped detectors were clear, destroy the mine. 

Two examples of how natural behaviour has already inspired natural computing paradigms 

are also considered in this section, the examples have deliberately been selected outside of 
the more established techniques, such as particle swarm optimisation, to illustrate the breadth 
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of potential for naturally inspired paradigms. The first considers how ponerine ant 

(Pachycondyla apicalis) foraging behaviour has inspired the development of a search 

algorithm for use in combinatorial optimisation (Monmarche et al., 2000), whilst the second 

examines how trophallaxis is being investigated as a potential communication strategy for 

miniature robots (Schmickl and Crailsheim, 2006). 

3.11.1 Ponerine Ant Inspired Combinatorial Optimisation 

The natural foraging behaviour of ponerine ants consists of a global and local strategy, as 

previously described. The search algorithm derived from it, known as API (from 

Pachycondyla apicalis), is as follows (with pseudo-code shown in Figure 9). An initial nest 

location is selected at random within the search space. Each of the ants then does one of the 

following: if they do not have a minimum number of hunting sites, they create one and 

explore it; otherwise, if the previously explored site was successful it is explored again, and if 

it is unsuccessful, one of the other sites is selected at random and explored. If a site is 

unsuccessful for a given period of time, it is removed from the ant's memory. Tandem 

recruitment is then performed, in which two ants are selected at random and the performance 

of their best hunting sites compared. The ant with the weakest site replaces it with the 

strongest site of the other, in a form of elitism that assists exploitation, because it increases 

the number of trials in the better sites. After a set number of iterations, the nest position is 

moved to the group best position and the last nest move and all ant memories are erased. 
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choose randomly the initial nest location N 
for each ant a,, i in L n: 

if a, has less than p hunting sites in memory 
then 

create and explore a new site in the neighbourhood of N 

else 
if the previous site exploration was successful 
then 

explore same site again 
else 

explore randomly selected site (among the p hunting sites in memory) 
end if 

end if 
remove from the ants memories all sites which have been explored unsuccessfully more than 
P, ap! (a, ) consecutive times 

perform recruitment (best site copy between two randomly selected ants) 
if more than T iterations have been performed 
then 

change nest location N to the most successful site explored and reset memories of all ants 
end if 

end loop or stop if a stopping criterion is satisfied 

Figure 9. The AN algorithm pseudo-code (adapted from Monmarche et aA, 2000, Figure 3). 

Communication among the ants is limited in both the natural and artificial systems, but 

cooperation occurs both explicitly and implicitly. Explicit cooperation occurs via tandem 

calling and implied cooperation occurs due the nest being moved to a location that is based 

on information gathered by individual ant search behaviour. Of particular interest is the note 

made by the API authors that the search behaviour of the ants need not be random, but can be 

matched to the specific problem, where landscape information is known a priori. A potential 

problem with the algorithm is its dependency on initialisation - in a multimodal landscape, 

the group could easily be drawn away from the global optimum if the nest site is initialised to 

a remote local optimum. 

3.11.2 Troph allaxis and Swarming Robots 

Whilst the example above did not utilise extensively naturally based information sharing, 

many naturally inspired paradigms do require complex communication solutions. Ant Colony 

Optimisation (Colorni et al. 1991) is one of the most widely known and successful uses of a 

naturally inspired communication to facilitate group behaviour, but others have been 

exploited. 

Schmickl and Crailsheim (2006) utilised a strategy inspired by trophallaxis to maintain 

communication in a simulated swarm of 200 miniature robots; the aim of the research being 

to develop a swarm of 1000 2mm x 2mm robots. The swarm communication works on the 
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ollowing premise: when a honeybee collects nectar from a source and flies back to the nest it 

vill enhance its communication of its find to other nest mates using trophallaxis. As this 

ccurs, a small amount of the crop is passed to the enquiring bee; thus, bees closer to the 

ource would be expected to have higher crop levels. The robots in the simulation were 

vorking in a cleaning scenario; when a robot located dirt it collected an amount and moved 

way to find a dump area, this amount was stored in the robot memory. On encountering 

empty robots they would electronically pass an amount of dirt thus lightening their own 

virtual load. The empty robots would in turn pass on any information they had regarding a 
lumping area. Using this technique, empty robots could follow the gradient towards the 

, ounce, and a traffic system emerged. The approach has several interesting facets: sensor and 

ommunication system size can be very small, enabling small scale robots to be used 
ffectively, and the emergent path from the dirt to the dump area was directed in that it 

ontained no random walk behaviour even where there where obstacles along the most direct 

)ath. Further, where multiple equidistant paths existed, the technique was seen to be more 
affective than pheromone based techniques, because all paths were used equally, distributing 
he traffic flow more efficiently. 
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4 Method 

This section details the method used to achieve the aims of the research. The context and 

purpose of the work are outlined, followed by a discussion of the approach taken to the study 

of the utility of natural search strategies for autonomous search control from a high level 

perspective. A simulation environment is then described in more detail and search algorithms 

and associated behaviours specified. The metrics used to evaluate performance are presented 

followed by a discussion of the approach to statistical analysis. Finally, a schedule of the 

experiments that follow in Section 5 is included. 

4.1 Context and Purpose 

In Section 2, the current state-of-the-art in autonomous vehicles was discussed. Whilst 

remotely controlled vehicles have been in use for some time, and have obvious advantages in 

hazardous or remote environments, autonomy has only recently become the subject of major 

research and development efforts. Autonomy, although raising safety and ethical questions, 

also has distinct advantages, particularly in environments where control lag is critical and 

renders remote control at least partially ineffective, or where communication is unreliable, as 

is often the case in military scenarios and harsh environments. One could also envisage large 

swarms of vehicles being deployed that would simply be too complex for effective human 

control. Hence, the need to find robust and efficient controls strategies for autonomous 

vehicles is becoming more pressing. 

In searching for solutions to complex engineering problems, researchers are increasingly 

turning to the natural world for inspiration. Whilst there are some examples of well 

established natural computing paradigms, such as evolutionary computation, ant colony 

systems, and particle swarm optimisation, these barely scratch the surface of potentially 

valuable solution strategies. In Section 3, a more broad review of natural search was reported, 
indeed, the first of its kind, which revealed a wide range of behaviours that could be applied 
in autonomous vehicle search. Generally, in cases where natural phenomena have been 

applied, they have been shown to be robust and effective; where studied, by observation 

and/or simulation, the natural behaviours have often been found to be optimal in some sense. 
Given that a critical aspect of the survival of many animal species is successful search, there 
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is a clear motivation for exploring the extent to which these evolved search strategies may be 

usefully applied in the context of autonomous vehicle search. 

In previous work, the author developed an approach to the control of UAVs based on particle 

swarm optimisation (PSO) (Banks, 2005; Banks et al., 2008b). The approach was successful, 

in the sense that the UAVs that followed random search and applied PSO on target detection 

generally performed better than those following systematic search paths but did not apply 

PSO, and interesting swarming behaviour emerged that enabled the UAVs to locate and 

intercept targets travelling faster than the UAVs were capable of. Whilst a swarm inspired 

approach is a reasonable starting point for such an investigation, and, indeed, Pugh and 

Martinoli (2007) made a similar attempt, it was realised that the natural world has many 

examples of search behaviour, and that a more thorough study, returning first to the available 

biological research, was needed to form a sound basis for future development. 

This background work formed the general motivation for this study, which therefore aims to 

ascertain whether there is any value in developing search strategies for autonomous vehicles 

based on metaphors drawn from nature. Few studies have been conducted in this area; even 

the review of natural search behaviours is significant and novel. It is, therefore, impossible to 

be exhaustive in this first foray into this new field. It is necessary to construct a scenario in 

which the search behaviours may be explored (of necessity, by simulation), and evaluated 

against non-nature inspired approaches, that is, the systematic approaches that a human 

operator might reasonably apply. Clearly, the range of behaviours - both natural and 

systematic - and the range of possible scenarios for autonomous vehicles are prohibitively 

large. However, the choice of scenario is, to a large extent, not especially relevant to 

answering the main research question; that is, if natural search strategies are understood to be 

of value in any scenario, then a significant step forward has been made. 

The selection of scenario is not entirely arbitrary, however. Much of the autonomous vehicle 

research is driven by future military needs. Hence, the selection of air vehicles as the basis for 

the author's previous research, and the continuation of that theme here. It is worth 

considering, briefly, the purpose of a simulation environment. In general terms, we have a 

wide range of application scenarios, as discussed in Section 2, which share some common 

properties: 
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9 Autonomous vehicles (agents) with the ability to move throughout the search space, 

whether air, land, sea or space. 

9A search task, which may be anything from the detection and interception of military 

targets to the location of avalanche victims. Hence, targets may be moving or 

stationary, indeed, may even be faster than the agents, depending on the search task. 

Even within a given application domain, target properties are likely to vary, therefore, 

there is a need to explore a range of agent target relationships. 

" Limited sensory capability, such that a movement strategy is needed in order to bring 

the agent into proximity with the target. 

" Sparse feedback, such that, unless within the proximity of a target there is no 

indication of where the most profitable search area might be. This separates the 

problem space from that of the more common search (optimisation) problems, which 

typically have landscapes that give some clue as to potentially useful search 

trajectories, which are then exploited by the various search algorithms (such as 

genetic algorithms and particle swarm optimisation). 

Whilst the simulation environment developed for this study is described in some detail in 

later sections, it is important to bear in mind that this is only a vehicle with which to explore 

the search behaviours, and that many other, equally valid, simulation scenarios could be 

constructed. Hence, the choice of particular scenario is somewhat arbitrary, provided that it 

recreates the above conditions. 

The general approach chosen for this research, therefore, is to construct a (military inspired) 

simulation of agents and targets, endow the agents with both systematic and natural search 
behaviours, and identify and evaluate the conditions under which the natural search 

behaviours may be advantageous. Whilst an attempt may be made to draw general 

conclusions from observation of the simulations, the critical result is ascertaining whether 

natural search behaviours are viable contenders for further research and development within 

the field of autonomous vehicles. At this stage of the research, it is essential to strip down the 

simulation to a fairly minimal form, such that one can be confident that variations in 

performance are due to the inherent properties of the search strategies, and not complicated 
by fine details in the world model. Hence, to achieve the aim of this research a simplified 

simulation environment is not only satisfactory, but to be preferred. For example, there is no 
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sense in providing complex environments and physics models, if the search behaviours are 

not first found to be useful. The design and implementation of even a simplified simulation 

environment is non-trivial, but not the subject of this research. Hence, only the properties of 

the environment are described in detail (sufficient for reproduction of the results), along with 

the rationale for various decisions in approach. 

4.2 Approach 

Of necessity, this exploratory investigation is conducted by simulation rather than 

implementing autonomous behaviours into physical vehicles. In simulation, all agents are 

identical, allowing differences in search performance to be attributed to the search behaviours 

rather than environmental factors, such as individual vehicle performance or local conditions 

impacting on movement. However, due to the coarse grained control of the agents in the 

simulation, it is not envisaged that individual differences in vehicles would affect 

significantly the findings regarding the efficacy of each strategy. The ability of any form of 

implementation vehicle (e. g. aerial / ground / marine based) to perform the movements 

required for a given search strategy could affect results; for example, a ground based vehicle 

should be able to apply a high turn rate strategy more effectively than a fixed wing aerial 

vehicle. For the purposes of fair comparison, therefore, the simulation environment permits 

all strategies to operate within a reasonable movement envelope (for example, one would not 

generally consider it feasible to allow the simulated agents to apply the turn rates observed in 

fruit flies). Moreover, it was decided to maintain agent speed, unless a strategy specifically 

includes changes, since the strategy itself should determine the agents' movement across the 

search area. This also applies to targets, due to the need to explore the performance of each 

search strategy against targets applying different forms of movement. In the literature 

reviewed, the influence of relative speed was also seen to be influential on the choice of 

search strategy, with predators using different strategies against prey that moved faster to 

those that moved more slowly relative to their own ability. In particular, it is of interest to 

explore whether a number of agents are able to cooperate in order to effectively detect and 

intercept targets travelling at significantly higher speeds. 

Inter-agent communication and sensory imperfections could also affect results; initially, 

search strategies are compared without considering occlusion, and assuming that all 

communication is perfect. At lower target speeds, communication is less critical, because an 
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individual agent is capable of tracking and intercepting a dynamic target, even if cooperation 

could speed up the process. Where agent speeds cannot match that of the targets, 

communication becomes more critical as cooperation is then essential for interception. In 

recognition of potential communication difficulties, sensory imperfections and other such 

problems that may result in target detection being lost, a mechanism is needed to evaluate the 

ability to reacquire targets and assess the robustness of the system to communications 

failures. 

Clearly, there are many conceivable scenarios for occlusion, and a comprehensive study of 

different scenarios is not within the scope of this work. It was noted that the impact of target 

loss could potentially be very different depending on whether the effect was permanent (e. g. 

through total sensor failure) or transient. Hence, two such mechanisms were implemented: 

the first considering an agent permanently losing the ability to sense a target shortly after 
initial detection; and the second, a more transient occlusion, that could occur, for example, 

where a target moves behind a physical structure. The former permits the robustness of the 

system to be evaluated, whilst the latter offers an opportunity to explore the effectiveness of 

various approaches to target reacquisition. 

Similarly, communication failure is examined with both permanent and transient effects; with 
increased severity a graceful degradation is desirable. One might consider loss of 

communication to have a similar impact to occlusion, since, in both cases, the impaired 

agents are unable to share target information with the rest of the swarm. However, in cases 

where the speed of the target speed is less than that of the agent, communications failure, 

unlike occlusion, will not result in loss of the target. 

The literature highlights a breadth of natural search behaviours; clearly, it is not possible to 
investigate the entirety of known behaviours and a sampling of representative behaviours is 

needed. The rationale for that sampling applied the general findings of ethological research, 
i. e. that search can be placed along the two behavioural axes of path tortuousness and pause 
lengths. This is then supplemented with notable species specific searches drawn from the 

review of relevant literature. Ambush behaviour (sit-and-wait initial search or the anticipation 

mechanism for prey acquisition) is not investigated here, having rather narrow applicability 
(indeed, being impossible for some vehicle types) and, in particular, incapable of searching 
for static targets. The two species specific searches, fruit fly and bacterial, were chosen 
because of their two phase nature and marked difference from the generalised strategies 

57 of 240 



common to many species, with the former having a mixture of long and short leg lengths 

containing distinct turn angles, and the latter slowing down and increasing turn rates when 

targets are not being detected. The key properties of interest in the search strategies are: how 

quickly agents can locate targets within the search area, whether static or dynamic; how 

effectively the agents can cover the search area; and whether the more successful searches are 

less efficient in terms of energy requirements. 

With respect to the simulation environment, the search area is featureless, allowing an 

uncomplicated comparison of search behaviours. This is a similar approach to that taken by 

Walmsley and Sims (2004), who used a featureless landscape as a baseline for evaluating 

environmental impacts on ISTAR (Information, Surveillance, Target Acquisition and 

Reconnaissance) assessment. Oftentimes, a predator may use environmental clues to enhance 

their hunting prospects, and it is possible that artificial search behaviours could also benefit 

from this. However, at this early stage of investigation, it is the underlying properties of the 

search patterns that are of interest. It should be noted that this does deny the saltatory search 

strategy its most profitable scenario, where targets are potentially hidden. Detection of hidden 

targets, however, is rather application specific; that is, it is difficult to construct some general 

simulation of mechanisms of hiding and discovery that might have some practical relevance, 

hence, this is considered to be beyond the scope of this particular study, although an 

interesting area for further work. 

Search applications and scenarios are diverse. For the purposes of this investigation, several 

simplified (military inspired) scenarios are considered. These are, however, deemed 

sufficiently general that findings are more broadly applicable. Scenarios involve swarms of 

agents of varying size pitted against varying numbers and distributions of targets in both non- 
destructive and destructive situations; that is, location only, or location and destruction (i. e. 

targets removed when detected by, and within a given range of, an agent). Basic search 

ability is evaluated against static targets. For dynamic targets, two main approaches are 

considered under various conditions. First, a scenario inspired by a military air defence role, 

as adopted in the author's previous work on PSO based control of UAVs (Banks, 2005; 

Banks et al., 2008b), in which two locations within the search space are defined as ̀ defended 

locations', and the objective of the agents is to prevent targets from reaching those locations 

and exiting the search area. Up to four targets are explored in this scenario, each following 

one of four different planned routes to the defended locations. Hence, targets behave in a 

58 of 240 



deterministic manner. Second, to evaluate performance against non-deterministic targets, 

dynamic targets are allowed to move throughout the search space using various behaviours 

drawn from the same pool as the agents. Where dynamic targets are explored, cooperation 

among agents allows potential improvement in performance, in particular where targets are 

travelling faster than agents, and interception by cooperating agents is necessary. The impact 

of cooperation on performance is examined for selected scenarios. 

4.3 Simulation Environment 

A simulation environment was developed to allow the search strategies to be compared as 
fairly as possible, whilst minimising factors that could confound the results. It was 

constructed in Ada 95 using the John English Windows Library (JEWL) (English, 2000) and 
AdaCore's Gnat Programming System (AdaCore, 2005), along similar lines to that used in 

Banks (2005) and Banks et al. (2008b). This section describes the environment in sufficient 
detail for replication of this study, although the findings should not be particularly sensitive 

to implementation details, provided the natural behaviours are replicated as described. 

4.3.1 Search Environment 

Figure 10 shows an indicative screenshot of the simulation environment. The search area 
comprises a two-dimensional representation of an area measuring 400 x 300 units; within this 
are two arbitrary non-central `defended locations', shown by two small black crosses, used 
for those simulations where targets follow deterministic routes. In this scenario four targets 
(represented by blue dots when not detected and red once detected) are being sought by five 

agents whose search area is bounded by the large white rectangle and sensor range and field 

of view is shown by the green angled lines when not detecting a target, turning blue when 
detecting. The agents do not know of the targets' existence unless they have been detected 

and can only be certain of their presence whilst they are being detected. 
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Figure 10. Simulation environment. 

The search environment was deliberately featureless to ensure that the capabilities of the 

search strategies were measured with respect only to target movement characteristics. A 

significant simplification is achieved by the use of a two dimensional search space, which 

renders both implementation and, more importantly, analysis and visualisation tractable. 

Whilst extension to the vertical plane (altitude for air vehicles, depth for submersibles) is 

certainly an area worthy of further investigation, it should also be noted that such search is 

not always present in the natural world, nor in many applications of autonomous vehicles 

(particularly ground based vehicles). Animals often search within a set of vertical bounds 

(fish, for example, forage at different levels) and search vehicles operate such that the vehicle 

maintains a given height, or depth, and the sensor provides some coverage in the vertical 

plane. Therefore, autonomous vehicles may operate in the same manner, implementing the 

movement patterns essentially in two dimensions. Indeed, such principles are already applied 

in typical Combat Air Patrol flight patterns (see Figure 11), where, to achieve sensor 
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coverage of a given three dimensional space, multiple interceptors fly elliptical paths, each 

varying its routine to ensure prospective targets cannot take advantage of predictability. 

I 

Figure 11. Typical Combat Air Patrol flight paths to provide 3-dimensional coverage using 2-dimensional 

routes (note: each vehicle directs its sensor (either high or low) to prevent excessive vertical overlap since 
if they physically move too far apart flight coordination can become problematic). 

4.3.2 Agent Characteristics 

All movement in the physical world is constrained by the characteristics of the object and the 

environment through which it moves. In the natural world, search strategies are often 

physiologically limited, although some, such as fruit fly movements (where Tammero and 

Dickinson (2002) report turn rates of 90° in less than I OOms), easily outperform current 

vehicular technology. In this simulation, generic limitations were imposed on agent 

movement based on the author's experience of aircraft flight envelopes (note: both agent and 

target speeds were scaled to make simulation timescales viable). They do not aspire to 

replicate any given vehicle type, but represent an element of realism with a view to the range 

target applications. 

Agents travel at a constant speed of 0.8 units per step (unless the search strategy dictates 

otherwise), have a sensor range of 40 units, a field of view (FOV) angle of 40° and maximum 

turn rates of 10° per step. Agents destroy targets if the targets are within 10 units and inside 

the sensor FOV. 
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Where an agent simultaneously detects multiple targets it needs to decide which one to 

pursue. In a given application there may be several factors that need to be taken into account 

when making such a decision. For example, a human operator would assess inter alia the 

value of the various targets, the threat they posed to the agent and defended positions, and the 

likelihood of a successful attack. For the purpose of this work we apply a rudimentary fitness 

function for a target (target) (Equation 15), based on the likely success of launching a guided 

weapon (as previously used in Banks et al., 2008b). 

f(tgt) +cosyr 
= dist (15) 

where dist is the Euclidean distance between agent and target, and V is the agent heading with 

respect to the reciprocal of the target bearing; for example, an agent following a real heading 

of 100 detecting a target with a real bearing of 195° would have a yr value of 355° since the 

reciprocal heading of 195° is 15° and the agent's heading is 5° counter-clockwise from that. 

The target, given a distance of 10 units, would therefore have a fitness of 0.1996. Compare 

that with a scenario where the target was the same distance away but on a bearing 280°, its 

reciprocal would be 100° giving a yr of 270° and a lower fitness value of 0.1. This fitness 

function means that a target directly ahead of an agent would have maximum fitness whereas 

a target directly behind the agent would have minimum, because the chances of launching a 

successful attack on the former target would be greater than the latter. In reality a target may 

attempt an evasion tactic such as a ̀ notch' manoeuvre where the target turns perpendicular to 

the agent. Such a manoeuvre, where employed successfully, denies a radar return and the 
target effectively becomes occluded. Where agents are searching for a target following 

detection loss and a target is detected the agent will assume it has located the original target it 

was searching for, i. e. the agents are assumed not to be intelligent enough to distinguish 

individual targets and as such they assume any targets detected to be the lost target. This will 

only impact behaviour where several targets are located in the same vicinity and the agent 

could detect a different, previously undetected, target leaving the original target to continue 
(although other agents could still attempt to intercept it). 
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4.3.3 Target Characteristics 

Targets move with the same characteristics as agents with the exception of speed, which 

varies for experimental purposes. Speeds are measured relative to maximum agent speed (e. g. 

a target speed of 0.5 represents half maximum agent speed, that is, 0.4 units per step). 

Depending on the experiment, targets may be static, dynamic with randomised movements 

using some of the same movement patterns applied by the agents, or dynamic but following 

predetermined routes. Static targets were either uniformly distributed across the search area 

or clustered. The distribution of clustered targets was achieved by initialising groups of 4 

targets with random uniform distribution across the search area. Each cluster was formed by 

placing an initial target in the search area and then locating 3 other targets (once more with a 

random uniform distribution) within 40 units of it. This cluster size ensured that a 

recognisable cluster existed, whilst it was possible that, in extreme cases, the targets could be 

located at a distance of twice the agent sensor range apart. 

For those dynamic experiments where targets follow predetermined routes to the two 
`defended locations' shown in Figure 12, these were selected such that any defensive system 

that favoured one particular area, especially the centre, of the search space would not gain 

advantage. The routes, which are unknown to the agents, were designed such that the 

attackers spent minimal time in the defended area and exited at or near the entry point, with 

routes generally avoiding defended positions where possible (the exception being route 4, 

which at one point is close to target position 1, to provide variation). Targets were assumed to 

have successfully attacked the defended locations if they moved to with 2.5 units. 
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Route 1 

Route 2 
Route 3 
Route 4 

Figure 12. Map of deterministic target routes around search area indicating attackers' targeted locations 

(target I is attacked via routes 1 and 3 whilst target 2 is attacked via routes 2 and 4). 

4.3.4 LSZ Neighbourhood 

In the author's previous work on PSO based guidance, it was established that cooperation 

amongst agents could be detrimental by drawing agents towards detected targets that they 

could not possibly intercept, and thereby moving them away from other areas of the search 

space and allowing other targets to remain undetected. To address this, and promote 

productive swarm behaviour, a neighbourhood function termed the Launch Success Zone 

(LSZ) was introduced. The term was associated with the neighbourhood since it was based on 

a similar zone employed in aerial combat situations to describe the area in which an 

intercepting aircraft can successfully deliver a missile attack against an enemy. The term is 

retained here since its basic rationale remains and also to distinguish it from other 

neighbourhoods in operation. 

When an agents detects a target, this neighbourhood determines which other members of the 

swarm, if any, might have reasonable prospects of intercepting the target. Those agents 

outside of the neighbourhood continue with their own search behaviours, whilst those within 

the neighbourhood cooperate in an attempt to intercept the target. It is this mechanism that is 

primarily responsible for the ability to detect and intercept targets moving at speeds faster 

than the agents. 

Although developed for a PSO based control system rather than the natural search strategies 

explored in this work, the neighbourhood function is retained to enable fruitful cooperation 
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within the swarm. Figure 13 illustrates how the neighbourhood works. In this scenario agent 

1 detects the target and broadcasts the target location, heading and speed to the rest of the 

swarm; agents 2 and 3 assess that they may be able to intercept whilst agent 4 would be 

unlikely to be successful and so would not attempt pursuit. If the target changed heading 

toward agent 4 to avoid detection, the neighbourhood would also follow (whilst an agent is 

able to detect the target) and agent 4 could find itself in a more advantageous position. 

Membership of the neighbourhood is therefore dynamic, changing with swarm and target 

locations and headings. 

The dynamic behaviour of the neighbourhood could be realised through a variety of linear 

and non-linear functions, but, since it is the search behaviours that provide the focus for this 

work, in depth exploration of the neighbourhood function is avoided. Hence, a simple but 

effective linear function (Equation 16) was applied to control the length of the conical 

neighbourhood with a fixed angle (0). 

length (1)=r"c"s (16) 

Where r is the sensor range, c is a constant and s is the relative target speed. The angle, 0, and 

constant, c, are tuned to provide good performance (see Section 5.2.1, page 104). An agent 

may find itself in multiple neighbourhoods, in which case the selected target is resolved 
following Equation 15. 
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Figure 13 Example LSZ neighbourhood scenario. 

4.3.5 Predictive Memory System Strategies 

Key 
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The author's previous work, which provided an initial investigation into the application of 

particle swarms to autonomous aerial vehicles guidance (Banks 2005), identified two main 

areas for further development to enhance the performance of swarms of vehicles defending 

an area against intruders. Both of these involved search activities: the first being the approach 

to initially locating targets (prior to the particle swarm based cooperation) and the second 

being the swarm behaviour where a target escaped detection. In the latter case, the existence 

of the target was immediately forgotten and the defending vehicles resumed initial search 

behaviour. This situation is undesirable since the information gleaned about the target during 

detection could be used to improve the likelihood of re-detection. As discussed in Section 

3.10, nature has evolved strategies that utilise the information known about the last known 

location and behaviour of lost prey items to improve the chances of reacquisition. Such 

behaviours have developed because they can improve overall foraging efficiency since, if a 

prey item is lost, the initial effort in locating and pursuing it is wasted. Strategies from nature 

considered for this work are predictive tracking, direct search, crosswind casting and saccadic 

tracking. In summary: 
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" Predictive tracking assumes that the target will maintain its last known speed and 

direction, the searcher behaves as if the target is still in view and moves to intercept at 

a suitable location where the target could reappear. 

" Direct search assumes the target has not moved far, if at all, from its last known 

position, e. g. it could have realised it was being pursued and gone into hiding. The 

searcher in this case makes a direct line for the last known target position. 

" Crosswind casting, in nature, is applied where the searcher is attempting to reacquire 

a plume of odour (e. g. during Chemotaxes). Since the target in such cases presents a 

broad front, the searcher turns perpendicular to the air flow, moving back and forth 

attempting to re-detect any part of the plume. 

" Saccadic tracking is a sensory tracking mechanism, employed where the target is 

moving faster that the searcher can track (due to limitations of visual sensing, where 

focus cannot be maintained). In such scenarios, the searcher shifts visual attention to a 

point just ahead of the target attempting to briefly re-acquire it as it passes the focal 

area before performing another saccadic shift. If a shift is performed and the target 

does not appear at the expected point, the focus moves back along the predicted track 

until either the target is reacquired or the search is given up. 

The strategies implemented in this research that deal with reacquisition search, after loss of 
target detection, are termed Predictive Memory System (PMS) strategies, since they attempt 

to predict the most likely location of a lost target, utilising a short-term memory and simple 

trigonometry. The PMS, regardless of strategy, has several elements: 

" Target location prediction. Targets are either predicted to have remained in the 

vicinity of the last known location or to have continued on their last known heading 

and speed. Both scenarios model behaviours observed in nature: the former is 

included to assess whether it could be of value against targets that have a high turn 

rate (and hence prediction could be less reliable); conversely, the latter is incorporated 

to assess whether it could add value where targets are more predictable. 

" Reacquisition attempt decision. All agents, on noting that they are no longer 

receiving information regarding a previously communicated target, have to decide 

whether they should attempt to intercept the target based on a predicted position. 
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Such a decision is either based on membership of a given neighbourhood or the 

ability to reach a predicted target location within a given time period (Le. no later 

than when the target is predicted to pass through). 

" When to give up. Once an agent decides to search for a lost target it should only 

continue to do so for a finite period of time, otherwise it may be wasting energy 

seeking a target that is no longer present or has deviated significantly from its 

predicted behaviour. Even where agents do not initially decide to engage in a 

reacquisition search they should still maintain the target's predicted position in 

memory for a period of time in case the agent finds itself in such a position that to 

change to a reacquisition search may be profitable. In this implementation a single 

giving up time is used because the likelihood of redetection diminishes at the same 

rate (e. g. an agent finding itself entering a neighbourhood after 50% of the giving up 

time has passed will only attempt reacquisition for the remaining 50%). 

The specific PMS strategies are now considered, starting with those where the decision to 

attempt reacquisition is based on membership of a neighbourhood. 

Similar to the LSZ neighbourhood described earlier, neighbourhoods are implemented for the 

occlusion and communications failure experiments that consider target reacquisition 

(associated algorithms are described in Section 4.4.2). When a target is lost, the 

neighbourhood determines which agents may be associated with attempts to reacquire the 

target. The neighbourhood is referred to as the Predictive Memory System (PMS) 

neighbourhood. Two neighbourhood shapes were implemented: circular, for predictive 

tracking and direct search; and V shaped for predictive tracking and crosswind casting 
(hereafter, the two predictive tracking variants are termed predictive-C and predictive-V, 

respectively, to avoid confusion). 

Neighbourhoods generally follow the underlying metaphor on which the reacquisition 

strategy is based. A circular pattern only was applied to direct search since that approach 

considers that the target is still located somewhere in the vicinity of its last known location; 

that being the case, any agent within a reasonable distance may be able to reacquire it. 

Similarly, crosswind casting applies only aV shaped neighbourhood since the underlying 

metaphor is based on tracking odour plumes and assumes that they continue to travel in the 

same direction, in which case agents located behind the target would not expect to be able to 
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redetect since the target would continue to travel away from them. Predictive tracking also 

expects the target to maintain its speed and direction; however, it was also implemented in a 

circular neighbourhood to reflect an `optimistic" tracker that may continue to track the target 

in the hope that it would change direction or slow down. 

Consider the scenario depicted in Figure 14. When target detection is lost (at point A) the 

agents continue to predict its path. If, at any time until the GUT (Giving Up Time) has 

expired, an agent finds itself in the neighbourhood it attempts to re-detect the target by 

moving toward its predicted actual location. No lead was included, since to do so would 

begin to move away from the predictive search metaphor into that of a saccadic search. At 

point B, agent 3 finds itself in such a position and, since predictive-V PMS is in operation the 

agent moves toward the predicted location. 
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Figure 14. Scenario where predictive-V PMS is applied. 

In the next example, Figure 15, a similar situation exists except crosswind casting is in 

operation. By the time the target, assuming it follows its predicted path, reaches point B agent 
3 has been inside the neighbourhood for some time, has crossed the predicted path and the 

target will pass behind it; Agent 4, however has only just joined the neighbourhood and may 

well be in a better position to intercept. An obvious solution, to the problem of agents 

passing in front of a target and not being in a suitable position to re-detect, would be to allow 

the agents to slow down such that they do not pass the predicted path before the target. 
However, this was not implemented because it would move too far from the natural 
behaviour. Moreover, it may not be bad behaviour to operate as implemented because the 
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target could deviate from its path and even if it does not, the agent could reacquire when it 

turns back toward the predicted path to continue casting. 

---a 

k 

Figure 15. Scenario where crosswind casting PMS is applied. 
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Figure 16 shows a scenario where direct search is being applied. In this scenario the agents 

finding themselves in the neighbourhood move toward the last known position (point A); 

however, in this case the target has moved and is now at point B and the reacquisition fails. 

Had predictive-C been the PMS in operation, the locus of the neighbourhood would have 

been at a position just above point B and agents 2 and 4 may have moved to a potentially 

more profitable location. This does not suggest a predictive neighbourhood is always better, 

rather that it may have been in this situation. 
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Figure 16. Scenario where direct search PMS is applied. 
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This optimism, suggested by agents using the predictive-C circular neighbourhood, was not 

conferred on the crosswind casting strategy since the agent turns at right angles to the target 

movement and therefore if the agent were behind the target to begin with it would become 

increasingly unlikely to redetect. 

The linear function of Equation 16 (page 65) was applied to both neighbourhood shapes. A 

minimum neighbourhood size was also included for both shapes and set such that where a 

target has a relative speed of less than equality the neighbourhood was set to that of an equal 

speed relationship. This was introduced because an agent losing detection of a slow target 

could have found itself outside the neighbourhood straight away, precluding a reacquisition 

search; for example, if the target was lost at the edges of sensor range then, due to a low 

relative target speed, the neighbourhood could be smaller than the agent's sensor range. In 

such cases, with the minimum neighbourhood, the agent would switch back to initial search 

without attempting reacquisition. For the circular neighbourhood Equation 16 determines the 

radius of the neighbourhood in relation to the relative target speed and sensor range. 
Parameters of the neighbourhood are tuned for best performance (see Section 5.2.2, page 
105). 

Saccadic PMS (Figure 17) does not apply a neighbourhood but imitates the sensory 

behaviour employed where a predator is unable to continuously detect a target due to sensory 

71 of 240 



limitations (the agent moves in the same way as the point of focus in the natural metaphor). 

When a target becomes lost (point 1) all agents predict the target path and identify a location 

termed the saccade point where it (the agent) could intercept the path in the shortest time, i. e. 

the closest intersection. If the agent calculates that it can reach the saccade point before the 

target it will continue with the attempted reacquisition, otherwise it will continue with its 

initial search behaviour. Should the agent reach a location within sensor range of the saccade 

point (point 2), and the target is not there, several scenarios could exist such as the target 

could have sped up, deviated from its predicted path, slowed down or simply not reached the 

location yet. In keeping with the natural metaphor, the saccadic agent will assume one of the 

latter two scenarios and will turn to track back along the predicted path toward the last known 

position. Like direct search, the PMS is ceased if either the PMS GUT is exceeded or the last 

known position reached. 

Key 

2 Last known 
target position 

Predicted target 
path 

Initial Agent 
Position 

Actual Agent 
Path 

* Saccade Point 

Figure 17. Example path of an agent intercepting an occluded target using a saccadic PMS. 

4.3.6 Occlusion 

Since the simulation environment is featureless, it was necessary to implement an occlusion 

mechanism to simulate the target becoming occluded from a detecting agent, thereby 
facilitating evaluation of the PMS in scenarios where targets are lost whilst still within 

sensory range. 
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Two indicative occlusion types were identified. The first, (hereafter termed permanent 

occlusion) simulates a target becoming occluded from the system due to an agent failure 

(such as sensor failure). When permanent occlusion is applied, it always occurs upon the first 

detection by an agent and the target remains occluded to the initial detecting agent but the 

target remains detectable by other agents. The second type, temporary occlusion, simulates 

where targets may become occluded through environmental features or target evasion 

manoeuvres such as ̀ notching' (where an aircraft turns at right angles to detecting radar). In 

this scenario the target occlusion is not certain and occurs randomly with 5% probability on 

each stepwise move. Redetection is possible by the original detecting agent, once again 

randomly, except with a 1% probability on each stepwise move. These figures were selected 

to offer a challenge to the system, and therefore allow the merits of the different PMS 

strategies to be evaluated. As with permanent occlusion, other agents could detect the target 

whilst it remains occluded to the agent that first detected it. 

4.3.7 Communications 

For all experiments, except for those dealing with communication failure, perfect 

communication is assumed between all agents. The agents only broadcast target location, 

speed and direction, and never any information about themselves. This keeps down 

communication bandwidth requirements and would also be considered good practice in 

combat situations where transmission of such information, even encrypted, should be 

avoided. For those experiments exploring the impact of communications failures, two forms - 
temporary and permanent - were implemented. In the former case, failure occurs for a 

random period between 10 and 20 steps following which good communications were 

maintained for the same period, before again failing. This time period was selected to provide 

a reasonable mix of availability; longer periods of outage would yields results more akin to 
having smaller swarm sizes, whilst shorter periods would be less effective at testing the 

predictive memory system. For permanent failures, the communication system of affected 

agents was unserviceable and could neither transmit nor receive information, although they 

could still detect and potentially destroy any targets within sensor range. In both types of 
failure, agents that were not in receipt of target information continued to behave as if no 
target information existed, i. e. they either continued with their initial search behaviour or 

applied a PMS strategy as appropriate. 
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4.4 Search Algorithms 

The implementation of the search algorithms and the reacquisition of targets form the main 

emphasis of this section. However, a brief discussion concerning the implementation of the 

administrative hierarchy, for decision making, intercept behaviours and Giving Up Time 

(GUT), is also included to highlight important considerations made during the 

implementation. 

4.4.1 Initial Search 

The strategies applied by agents in the initial search phase (i. e. behaviours applied prior to the 
detection of a target, or when a target has escaped detection and the agents involved have 

given up their pursuit and returned to their search function) are described in this section. 
These strategies comprise three random walks (Brownian motion, Levy paths and straight 
line search, ), Area Concentrated Search (ACS), saltatory search, and two species specific 

movement patterns (bacterial and fruit fly). The illustrative search patterns formed by each 
initial search strategy shown in this section were taken directly from the simulation 

environment. The shaded line shows the path of a single agent over a given duration. The 

period of time spent in each location is indicted by its shade, darker squares indicating longer 

periods. Note that this illustrates agent location, rather than sensor coverage. 

First, the basic random walks of Brownian motion, Levy paths and straight line searches are 
considered, having the same basic formulation but differing in terms of leg lengths and turns 

rates. As discussed in Section 3.2.6 (page 32), ACS is a two-phase search, implemented here 

as a combination of straight line, for the extensive search phase, and Brownian motion, for 

the intensive search phase; the former being used until a target was detected and the latter 

until the giving up time (GUT) was exceeded (see Section 5.2.3, page 108, for tuning). Due 
to its trivial nature, the implementation of ACS is not discussed further. The remaining 
searches, whose implementation description follows that of random walks, also include 

elements of random walks and where this occurs any variations are highlighted. 

Each natural search pattern was implemented such that it reflected the natural strategy it was 
inspired by. All random walks were implemented in the same manner (see Figure 18). To 
model the leg length probabilities described by Equation 7 (page 28) the leg lengths were set 
by truncating (removing fractions of a unit) the result of ""rand, where rand is a uniformly 
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distributed random number in the range [0, l] and p sets the path tortuousness, i. e. p=1 

produces longer leg lengths than p=2 giving the latter a higher turn rate. The truncation is 

implementation specific and was necessary because, in this implementation, distance 

travelled was measured as time spent on a given heading rather than actual distance travelled; 

this simplification was possible since constant agent and target speed meant that the distance 

calculations were unnecessary. In implementations where actual distances are used the 

truncation would not be necessary. As an exception, for straight line search only, the random 

numbers were drawn from the range 0.0005 < rand ?1 in order to constrain, for pragmatic 

reasons, the leg lengths, since values less than 0.0005 result in excessively large legs. The 

three random walks are characterised by differing values of p, with p=1 for straight line 

search, p=2 for Levy paths, and p=3 for Brownian motion. Additionally, in keeping with 

the literature (Bell, 1991), the mean turn angle of straight line searching was restricted to 35°; 

whilst for others there was no such restriction. The raw leg lengths, for all three random 

walks, were then scaled up to suit the search area by a factor of 10 in keeping with agent 

sensory and speed capabilities. 

if distance travelled < leg length 
then 

maintain heading 
increment distance travelled 

else 
if movement = Brownian 
then 

leg length := truncate(10 " -3'lrand) 
change heading (range ± [0°, 180°]) 

else if movement = Levy 
then 

leg length := truncate(10 " -2/rand) 
change heading (ranged: [0°, 180°]) 

else 
leg length := truncate(] 0" '1Irand) 
change heading (mean change ± [35°]) 

end if 
end if 

Figure 18. Pseudo-code for random walks. 

As can be seen in Figure 19 (left and right), the resulting paths were similar for Brownian 

motion and Levy paths, with Brownian motion also being used for the intensive phase of 
ACS. A typical path of an agent applying straight line search is shown in Figure 20 (left); this 
behaviour was further utilised in the extensive phase of ACS. 
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Figure 19. Typical movement pattern produced by, left: Bro%nian movement search and ACS (intensive 

phase); right: Levy path search. 

Figure 20. Typical movement pattern produced hy, left: straight line search and ACS (extensive phase); 
right: saltatory search (note: dark points on route highlight where the agent paused and searched 
intensely). 

Saltatory search applied 1.6} path search during the intensi%e search phase, i. e. a random 

walk with y=2, but also slowed the agent down by 50%. A modification to the parameters 

provided in the literature was the reduction in the GUT of the intensive search. This was 

made in acknowledgement of the environment, the targets were not hidden and to linger for 

too long (where there was plainly no target) would not have mimicked natural predators. In 

applications where targets could hide (for example, in dense vegetation) GUT times would be 

expected to be extended accordingly. The intensive search phase duration was calculated in 

the same manner as Levy search except the leg length was extended by a scaling factor of 

100 (rather than 10). A further modification to the indications from the literature was the 

relationship between the intensive and extensive search phases, which was extended from a 

2/3 power to a 2/3 product. This was necessary to prevent the intensive search phases from 

76 of 240 



overlapping and ensured the resulting behaviour (Figure 20, right) replicated its natural world 

counterpart. 

if phase time < phase duration 
then 

if phase = pause 
then 

perform Ldvy search according to Figure 18 

else 
maintain heading -- to move to new search area 

end if 
increment phase time 

else 
if phase = pause 
then 

set phase to travel 
increase agent speed to maximum 
phase duration := 2/3 of previous pause duration 

change to new random heading 

else 
set phase to pause 
reduce agent speed by 50% 
phase duration := truncate(100 " 4rand) 

end if 
end if 

Figure 21. Pseudo-code for saltatory search. 

In bacterial search, where no targets are being detected, the agent is slowed down by 50% and 

a high a turn rate (as per bacterial tumbling behaviour) is maintained alternating with 
Brownian motion (as per bacterial swimming behaviour) for equal periods of time (see Figure 

22). Figure 23 (left), illustrates the limiting effect this has on the explorative aspect of the 

search. When a target is detected, the whole group speeds up and switches to an unequal turn 

and movement pattern (ratio of 2: 1). This mimics the behaviour of bacteria in the presence of 

a positive nutrient gradient, as illustrated in Figure 23 (right). A further attempt to mimic the 
bacterial response to a positive nutrient gradient is that the entire swarm of agents respond to 

the detection of the target. In the real world each bacterium responds independently, 

nonetheless, since all of the bacteria encounter the nutrient the effect is of a coordinated 

response. This cooperative implementation deviates from the individual response since only 
one agent needs to encounter a target for the swarm to switch mode, however the overall 

effect remains - the individuals switch modes in response to target presence. One could 

envisage a need for more localised responses when searching a wide area. Therefore, the 
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bacterial search was explored using various neighbourhood sizes, to identify whether there is 

any advantage in this experiment environment to providing a more local switch between 

behaviours. Results (which are included in Appendix 1) show that there is no benefit to be 

gained, here, with a local mechanism, and a simple global switch from `tumbling' to 
`swimming' modes when any agent detects a target works well. 

if no targets detected by any of the agents 
then 

slow to half normal speed 
if in tumble mode 
then 

change the heading randomly -- tumble phase 
else 

apply Brownian motion search -- swim phase 
end if 
increment count 
if count >= duration 
then 

reset count 
toggle tumble mode 
if in tumble mode 
then 

duration := random duration (range [1,20]) 
end if 

end if 
else -- Chemotaxes (increase speed and swim length) 

move at normal speed 
if in tumble mode -- tumble phase 
then 

change the heading randomly 
else 

apply Brownian motion search -- swim phase 
end if 
increment count 
if tumble count >= tumble duration 
then 

reset count 
toggle tumble mode 
if in tumble mode 
then 

duration := random duration (range [1,20]) 
else 

duration = double the duration -- to maintain 2: 1 ratio 
end if 

end if 
end if 

Figure 22. Pseudo-code for bacterial search. 
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fly 

Figure 23. Typical movement pattern produced by bacterial search, left: no targets detected; right: 
targets detected. 

Fruit fly search (Figure 24) utilised representative movement patterns, i. e. overall patterns 

produced mimicked those presented in the literature (for example. Tammero and Dickinson 

2002), since the systems and stimuli to switch between phases of flight, such as the visual 

feedback from the environment described in the literature (Frye et al., 2003), are absent in 

this application. To reproduce the required behaviour the agent applies a repeated two phase 

movement consisting of a long, straight, movement followed by a series of saccades: the 

saccades being short legs separated by sharp angular turns of 100° ± 20° (note: these turn 

angles were relaxed from those given in the literature to allow for more realistic vehicular 

movement, however, the ratio of inter-saccade leg lengths to saccade leg lengths and the 

number of saccades prior to moving to another area were maintained as described by Frye et 

al., (2003). The resulting movement pattern is shown in Figure 25 (left). 

if phase = saccade 
then 

if saccade count < required saccades 
then 

if saccade time - saccade duration 
then 

maintain heading 
increment saccade time 

else 
change heading (range t 180°, 120°J) 
saccade duration := random duration (range (20,401) 
increment saccade count 

end if 
else 

phase := inter-saccade 
inter-saccade duration :- random duration (range [250,3501) 

else 
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if inter-saccade time < inter-saccade duration 

then 
maintain heading 
increment inter-saccade time 

else 
phase := saccade 
required saccades := random number (range [6,10]) 

saccade duration := random duration (range [20,40]) 

end if 

end if 

Figure 24. Pseudo-code for fruit fly search. 

Figure 25. Typical movement pattern produced by, left: fruit fly search; right: random search. 

The random movement search pattern was implemented to provide a relatively stable 

movement whilst maintaining sensor coverage. This was achieved by setting a uniformly 
distributed stochastic leg length in the range [1,20] prior to turning with a uniformly 
distributed random heading change in the range [-20°, 20°]; Figure 25 (right) shows a typical 

movement path (the implementation of this is trivial and so not included as pseudo-code). 
These settings were selected to provide movement that did not replicate natural random walks 

or deterministic paths yet still allowed the agents to range across the search area. 

Both deterministic patterns (spiral and systematic grid) were implemented by presenting the 

agents with different outbound and return routes, as illustrated in Figure 26. Both routes 
begin in the top left hand corner of the search space and follow a series of waypoints to a 
final destination; in the systematic pattern this is the bottom right of the space, and in the 

spiral it is the centre. Both strategies then take an alternative route back to the start. Agent 

positions are randomly initialised across the routes. To ensure complete space coverage it was 
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necessary for the sensor coverage to overlap. This was essential when searching for static 

targets and was identified as a weakness of the strategies: if an error in the pattern, or an 

obstacle, were to render an area occluded from the agents" field of view, then a target at that 

location could remain undetected. 

Figure 26 Deterministic search patterns (left: spiral, right: systematic grid). 

4.4.2 Reacquisition 

Five target reacquisition strategies were implemented, based on the behaviour of animals 

when a target becomes occluded, as identified in the background material (Section 3.10). 

Strictly speaking, only four actual strategies were employed since two of the five, predictive- 
V and predictive-C, are based on the same predictive tracking behaviour, but with different 

neighbourhood shapes (as discussed in Section 4.3.5). This section begins with a discussion 

of the four neighbourhood based strategies before looking at the implementation of the non- 

neighbourhood based saccadic search. 

In this implementation, each agent holds lists of currently detected targets, both their own and 

those reported by other agents. Periodically (i. e. following each stepwise move), the list for 

each agent is updated and compared with the previous version of the list. Where a difference 

occurs, the agent adds the missing target(s) to its occluded target list. When an agent is not 

currently detecting, or is unable to cooperate with any other agents that are detecting targets, 

it then attempts reacquisition based on its PMS as described in Section 4.3.5. The algorithms 

for predictive-V, predictive-C, crosswind, and direct strategies are similar and the pseudo 

code is presented in Figure 27. During predictive tracking, the agents record the target's last 
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known position, heading and speed; from this information the agent predicts the target 

location using simple speed and time calculations. Agents finding themselves within the PMS 

neighbourhood (circular or V shaped) then set course for the predicted target position. They 

continue to attempt reacquisition until they either find themselves outside the neighbourhood 

or the PMS GUT expires (this giving up strategy also applies to crosswind casting). 

When crosswind casting is employed, any agents finding themselves within aV shaped 

neighbourhood along the target's predicted path change their behaviour to a perpendicular 

sweeping movement about the target's predicted path, switching direction such that the 

predicted path is as covered often. In this implementation, the switch was made when the 

agent had moved beyond ±100 from the targets predicted position along its predicted path. 

This value of 10° was determined by the agent's capacity to search across the predicted path 

of the target, where longer range sensors are available the angle can be extended since the 

time spent with sensor coverage of the predicted path would be increased. This assumes that 

the agent would wish to spend as little time as possible located on, and perpendicular to, the 

path of the target because it could be vulnerable to counter attack. 

Direct search does not predict the target course but assumes that there is just as much chance 

of re-detecting the target at the location it was last seen at; hence, agents employing this 

strategy that find themselves within the circular PMS neighbourhood, change course for the 
last known target location. Once again, if the PMS GUT is exceeded the search is ceased; 
however, since the neighbourhood does not change, agents may also cease the direct search 

once they have ensured that the target is not at its last known location. 

Finally, saccadic PMS is implemented based on animal eye movements searching for fast 

moving lost prey items. In this implementation, a saccadic style prediction is made of the 

closest point the occluded target would pass by the agent's location at the time of initial 

occlusion. If the agent can move to that position before the target, given its last known speed, 
then it will attempt an interception. A more detailed description of the various PMS 
implementations follows. 

In the neighbourhood scheme based PMS, the agent first assesses whether it (the agent) is 
within the neighbourhood (which is PMS dependent) associated with a lost target. In the case 
of multiple lost targets, it then considers the fitness of its own position based on the Euclidean distance to the target positions in use (either predicted or last known, depending on 
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the reacquisition strategy). Once the decision has been made to attempt to re-acquire a target, 

the agent either sets course for it at its last known position for direct search or its predicted 

position for predictive searches, or, in the case of crosswind casting, starts perpendicular 

sweeping movements with respect to the target's predicted heading. 

It should be noted that, in all cases where the agent heads toward the target position, that is 

either the predicted position during reacquisition (e. g. not when heading for a saccade point 

or during crosswind casting in PMS) or actual position for detected and known targets 

(Sections 4.4.3 and 4.4.4 respectively), the agent does not move directly toward it, instead the 

agent's next position is set by difference between the target location and the agent's current 
location. This is a feature of the previous particle swarming research and hence retained in 

this implementation, the effect of the swarming on the results is examined in Section 5.5 

(page 137). 

fittest-target fitness := 99999.9 -- i. e. value > maximum distance 
for each occluded target 

if direct search 
then 

set target position to last known target position 
else 

set target position to predicted target position 
end if 
target-distance := Euclidean distance from the target position 
target fitness := Euclidean distance from the target position 
if PMS = predictive-V or PMS = crosswind casting 
then 

if target speed <= agent speed 
then 

neighbourhood_length sensor_range -c 
else 

neighbourhood_length sensorrange -c- (target_speed /agent speed) 
end if 
if target heading <I relative_target_bearing - 4001 and 

target_distance < neighbourhood_length 
then 

target is in the neighbourhood 
if target_fitness < fittest_target_fitness 
then 

required_agentjosition targetposition 
required_targetheading target 

- 
heading 

relative_target_bearing bearing of target from agent 
end if 

else 
target is not in the neighbourhood 

end if 
else if PMS = predictive-C or direct 
then 
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if target_distance < neighbourhood length 
then 

target is in the neighbourhood 
if target_fitness < fittest target-fitness 
then 

required_agent_position := target_position - current_agent_position 
end if 

else 
target is not in the neighbourhood 

end if 
end if 

end loop 
if fittest target fitness < 99999.9 -- i. e. agent is in a neighbourhood 
then 

if PMS = crosswind casting 
then 

if relative target_bearing < 100 and then relative target_bearing > 80 
then 

agent heading := required target heading - 90° 

else if relative_target_bearing < 280 and then relative_target_bearing > 260 
then 

agent heading := required_target_heading - 90° 

else if relative target bearing < 180 
then 

agent heading := required_target_heading - 900 

else 
agent heading = required_target_heading + 90° 

end if 
else 

required agentjosition := targetjrosition - current agentposition 
end if 

end if 

Figure 27. Pseudo-code of non-saccadic PMS algorithm. 

Where agents employ a saccadic PMS, the initial action on discovering target occlusion is to 
identify the closest point along the target's predicted path to their current position and record 
it as the saccade point (see pseudo-code in Figure 28). If the intercepting agent calculates that 
it could be within sensor range of the saccade point before the target, then it sets course for 

the saccade point, otherwise it continues with its initial search behaviour. If, on reaching 

sensor range of the saccade point, the agent has not detected a target, it alters course for the 
last known target position travelling back along the predicted path. This reflects the natural 

metaphor described in Section 3.10, where the animal searches back along the saccade in the 

absence of prey. Because the real-world saccadic tracking is based on a single target, it was 
not possible to implement a nature inspired solution to multiple occlusions. A common sense 
approach was therefore applied, where, when multiple targets are occluded concurrently, the 

agent selects the target with the closest saccade point. If the multiple occlusion occurs when 
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the agent is attempting a reacquisition and has gone beyond the saccade point of its current 
target, it moves on to the attempt to re-acquire the newly occluded target only if the new 

saccade point is closer than the last known position of the current target. 

for each occluded target 
if target is newly occluded -- i. e. first iteration 
then 

calculate saccade point 
if saccade point reachable before target passes by 
then 

target saccade_defined true 
target saccade_reached false 
target_fitness := Euclidean distance to saccade point 

else 
target saccade_defined false 
target-saccade-reached false 
remove target from occluded target list 
resume initial search 

end if 
else if target saccade_defined 
then 

if distance to saccade point < sensor_range 
then 

target_saccade_defined false 
target_saccade reached true 
target fitness := Euclidean distance to target 

end if 
else if target-saccade-reached 
then 

if distance to last known target position < sensor_range 
then 

target saccade_reached: = false 
remove target from occluded target list 
resume initial search 

end if 
end if 

end loop 
fittest_target fitness := 99999.9 -- i. e. value > maximum distance 
for each occluded target 

if target_fitness < fittest target_fitness 
then 

required_agent_position := target_position 
end if 

end loop 

Figure 28. Pseudo-code of saccadic intercept algorithm. 
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4.4.3 Detected Target Interception 

Once a target has been detected, an agent should attempt to get close enough to engage and 

destroy it as quickly as possible. However, where an agent is detecting multiple targets it 

must decide which would be the most appropriate to pursue. Such decisions are application 

specific. In this military inspired model, the criterion is based on the fact that a missile is 

most effective against targets that are moving in line with the agent (Figure 29). 

fittest-target-fitness :=0.0 
for each target (target) 

target distance := target distance from agent 
-- find the reciprocal of target bearing with respect to agent heading 

rec_relative target_bearing := 180 +I target_bearing - agent heading 

-- apply the fitness function 
target_fitness :=1.0 + COS(rec_relative_target_bearing)/target_distance 
if target_fitness > fittest target_fitness 
then 

required_agent_position := target_position - current_agent_position 
end if 

end loop 

Figure 29. Pseudo-code of detecting agents' target interception algorithm. 

4.4.4 Known Target Interception 

Assuming they are not already detecting a target, each agent calculates whether they have 

membership of the LSZ neighbourhood for any known targets (i. e. targets being detected by 

other agents, as described in Section 4.3.4); if they are in the LSZ, the target is pursued. 

Where an agent finds itself located in multiple LSZs, the fitness of all the relevant targets is 

calculated as indicated in the pseudo-code and the fittest pursued. Figure 30 provides the 

relevant pseudo-code. 
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fittest target fitness :=0.0 
for each target (target) 

target distance := target distance from agent 
if target distance < LSZ length (1) 

then 
-- find the bearing of the agent from the target using 

-- the target location relative to agent location 

agent bearing := target bearing + 180° 
if jagent bearing - target headings < LSZ angle (0) 

then 
rec_relative target bearing := 180 +I target bearing - agent heading 

-- apply the fitness function 
target fitness :=1.0 + COS(rec_relative_target bearing)/target distance 
if target_fitness > fittest target_fitness 
then 

required_agent_position := target_position - current_agent_position 
end if 

end if 
end if 

end loop 

Figure 30. Pseudo-code of known target interception algorithm. 

4.4.5 Behaviour Hierarchy 

The algorithms described above were constructed within an administrative behaviour 

hierarchy (see Figure 31) in which priority for target pursuit was determined by certainty of 
knowledge. Thus, targets being detected by the agent were given priority over those detected 

by other agents. Similarly, where an agent finds itself within one or more LSZ 

neighbourhoods due to other agents detecting targets, these are pursued in preference to any 

occluded targets. As an example, given a situation where an agent is detecting two targets, the 

agent should decide which one to pursue, this is decided by the fitness function described 

earlier and if that target then becomes occluded the agent should either try to reacquire it or 

pursue the other target still being detected. By applying the hierarchy the agent would change 
its focus to the remaining target being detected. The hierarchy implemented for this work is 

based on a simple `bird in the hand' principle; however, it would not be difficult to envisage 
the need for more complex decision making mechanisms (such as one based on Andrews et 

al., 2007), where, for example, the agent may need to consider other factors such as whether 

sufficient fuel remained or whether the target was of sufficient value for the agent to risk 
sacrificing itself in its pursuit and engagement. 
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if detected targets >0 
then 

remove known targets from memory 
calculate movement as described in 4.4.3 
broadcast all detected target information to the swarm 

else if known targets >0 
then 

calculate movement as described in 4.4.4 

else if PMS targets >0 
calculate movement as described in 4.4.2 

else 
search for a target using one of the initial 

search strategies described in 4.4.1 

end if 

Figure 31. Pseudo-code of the administrative behaviour hierarchy. 

4.4.6 Giving Up Time 

During any type of search, an autonomous agent should be able to decide when following a 

given strategy is proving sub-optimal, for example, due to diminishing returns or increased 

exposure to danger, and then change some element of their activity. This could be as simple 

as changing the time or location of the search, or indeed the search strategy itself. To examine 

issues such as strategy switching due to search success are beyond the scope of this work. 

However, some of the aspects of the research have intrinsic strategy switching that requires a 

mechanism that ensures that any required switching occurs in a timely manner. For the 

purposes of a simple experimental environment, a system based on time (see Section 4.5.2 for 

a description of the time metric) was developed. This consisted of a timer that was set at the 

start of a given agent behaviour and reset, along with the agent behaviour, once a specified 

time had elapsed. Aspects of agent behaviour that required such a mechanism were: the 

return, from intensive search, to extensive searching in ACS (the intensive search being 

entered after target destruction); and the switch to the initial search strategy from a 

reacquisition search. These ̀ giving up' times are tuned for best performance. Saltatory search 

also has a two-phase nature but is not tuned here because the strategy would only require 

tuning for operations in an environment that contained features where targets could hide (for 

example, areas of dense vegetation); for this work, the agent switches to intensive phase for 

sufficient time to thoroughly search the agent's vicinity. Whilst, due to the stochastic nature 

of the movement, complete coverage during intensive search could not be ensured, given its 

sensory capability which, in the simulation environment was assumed to be perfect, an 
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adequate period was allocated such that full coverage of the locale would be expected. This 

duration was selected following observations of agent behaviour and actual values used are 

provided in Figure 21 (page 77). In more demanding environments, where exhaustive local 

search may not be practical, work may be required to construct a mechanism for a giving up 

time that can adjust for factors such as varying degrees of vegetation density. 

4.5 Metrics 

Satisfactory analysis of search performance requires a variety of metrics and visualisations. 

For those scenarios where agents are defending the two fixed positions in the search space, a 

losses metric was designed to reveal the effectiveness of the defence. Whilst useful in this 

context, it does not allow performance in the other search scenarios, where there are no 

specific defended locations, to be evaluated. This led to consideration of time (to detect 

and/or intercept) as a suitable measure of performance. When relative performances were 

compared in the initial search scenario using both losses and time, it was evident that time 

was indicative of losses (see Figure 32). A notable feature of the comparison is the results of 

the spiral search, this occurs because agents turn more frequently toward the middle of the 

search area and so the chance of the targets being detected increases further into the scenario 

(agents always begin at the edges of the search area for deterministic attacks). 

Current thinking is, however, that it is not just the effectiveness of a defensive system in 

detecting and removing intruders that makes the system effective; it is also the appearance of 

defending the area (as confirmed by the authors' personal experience over the course of 22 

years service in the Royal Air Force). This then led to consideration of the coverage of the 

search space, being both essential for the appearance of a well defended space, as well as for 

the ability to detect targets throughout the space. The coverage metric allows quantifiable 

comparison of each strategy's defensive posture. Finally, given the various turn rates 

involved in the search patterns, it was evident that a metric was required that would illustrate 

whether performance gains were at the cost of energy efficiency. 
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Figure 32. Comparison of mean time and losses metric for 20 agents acting independently against 4 
targets travelling at maximum agent speed. 

4.5.1 Losses 

As described in Section 4.3.1, two non-central locations were identified as defended positions 

within the search space. Each time an intruder got close enough (within 2.5 units) to either of 

the defended positions to release a weapon, the losses metric was incremented by 1. 

4.5.2 Time 

The time, measured in search iterations. from the when targets appear in the search area to 

when the last one is located and/or destroyed or has left the area (depending on the specific 

scenario). Chronological time and CPU time are not suitable mechanisms, since available 

resources would not permit isolating software processes such that operating system 
background tasks cannot he guaranteed not to interfere during experimentation. 

4.5.3 Coverage 

The coverage metric was designed to quantify contiguous areas of uncovered space - large 

contiguous areas of search space are considered undesirable because of the potential for 

exploitation by observant intruders. To assess effective agent coverage across the search area, 

the number of uncovered areas is assessed with respect to their proximity to other uncovered 

areas. For the purposes of this metric, the search area is divided in squares of area 25 units2 
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(i. e. the search area contained 80 x 60 such squares). These had no influence on the 

simulation, but recorded the presence of an agent on every cycle of the swarm movement; 

that is, once all agents had moved, their presence in the squares was recorded. Once the 

simulation has completed the squares that did not record an agent presence were given a 

score that reflected their adjacency to other uncovered squares as follows: beginning at the 

top left hand square and working from left to right, and from top to bottom, each uncovered 

location scored a value of I plus the value of the preceding location (if uncovered) plus the 

value of the location above (if uncovered). The individual scores are then summed to provide 

an overall score for comparison with other strategies, with lower scores indicating better 

coverage quality. Using the example in Figure 33, square Al scores I and each subsequent 

square on that row scores I plus the value in the previous square since there are no adjacent 

squares above (so the total score for that row is 10). Square A2 scores I plus the value in the 

adjacent square above (M) only since there is no adjacent square to its left but B2 scores I 

plus values of the adjacent squares above and to the left (B2 and Al respectively); however, 

C2 scores nothing and so D2 scores only I+ the value of D 1. 

ABCn 

1 

2 

3 

1 2 34 

2 5 5 

3 9 

71mi 

Figure 33. Coverage metric calculation example (green indicates area covered by an agent). 

For a larger scale example, consider the two search areas depicted in Figure 34, both agents 
covered the same amount of search space (18 out of 100 squares) but the quality of coverage 

on the left would be considered superior because it contains less contiguous uncovered space; 
i. e. the right hand area has a very large uncovered area that would be easier to exploit. This is 

reflected in the coverage scores of 11,094 (left) and 82,038 (right). 
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Figure 34. Two example coverage quality scores (green indicates area covered by an agent), 
left total score = 11094 and right total score = 82038. 

4.5.4 Efficiency 

The assessment of energy efficiency depends on the characteristics of the vehicles involved. 

Since these vary significantly from application to application, indicative values for aircraft 

were used as an example. Two Royal Air Force navigators were interviewed and a consensus 

reached that given an energy consumption of I unit per stepwise movement at maximum 

speed, I% would he added per 1° of turn, and energy could be reduced on a pro rasa basis 

with speed. Therefore, an agent travelling for 100 steps performing a 10° turn at 75% of 

maximum speed would consume (100 + (100 x 0.1)) x 0.75 = 82.5 units. 

4.6 Statistical Analysis 

Statistical tests were conducted on the results to assess their significance. Kolmogorov- 

Smirnov normality tests (Kolmogorov, 1933, and Smirnov. 1939) were initially used to 

assess the normality of the distributions of results. These concluded, unsurprisingly, that the 
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results were not normally distributed but were positively skewed (Figure 35 and Figure 36 

show representative histograms). Such distributions arise because where agents were located 

near to targets on initialisation those targets were located and/or destroyed quickly, but where 

agents were remote, relatively long periods of time could pass before encounters occurred. 

This was especially true for Brownian motion targets, since they would not range across the 

search area, decreasing the likelihood of encounter still further. Evidence of this can be seen 

when comparing the histograms in Figure 37. These show two specific strategy results from 

the same experiment as the Brownian motion histogram (Figure 35, left) The spiral strategy, 

because it ranges throughout the search area enhancing the likelihood of encountering the 

remote and non-ranging target, clearly performs better than the bacterial search, which, due to 

the reduction in agent speed and high turn rate when no targets are being detected, has some 

instances that take twice as long to complete the search. This non-normality of results meant 

that results could not be compared reliably using parametric methods and, therefore, for the 

experiments exploring the initial search strategies, Kruskal-Wallis mean rankings (Kruskal 

and Wallis, 1952) were used to compare performance. Whilst these rankings are valid for 

non-normally distributed data, they remove the magnitude of the difference between 

approaches. Therefore, means and related box plots, are used where necessary to provide 

context for the discussion, although these must be treated with caution. 
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Figure 35. Distribution of results for all search strategies, 20 agents against 4 targets with a relative speed 
of 1.5 times agent maximum speed (left: target movement = deterministic, right: target movement = 
Brownian motion). 
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Figure 36. Distribution of results for all search strategies, 20 agents against 4 targets with a relative speed 
of 1.5 times agent maximum speed (left: target movement = random, right: target movement = fruit fly). 
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Figure 37. Distribution of results for bacterial (left) and spiral (right) search strategies, 20 agents against 
4 Brownian motion targets with a relative speed of 1.5 times agent maximum speed. 

Interestingly, examination of Figure 35 (left) reveals the time taken for the targets to 

complete the various deterministic routes to the defended locations. This information is 

revealed by the three peaks in the histogram tail (the fourth route is the smaller bar adjoining 

the final peak). In shortest (approximate) time order, the end of the shortest route, route 4, 

appears at a time of 1150; the next, route 2, at 1425; and the last two, route 3 and route 1, at 
1650 and 1700 respectively. This phenomenon is exaggerated further where only 10 agents 

are present since there is more chance of the targets completing their routes (see Figure 38, 

left). 
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Figure 38 (right) shows that the same positively skewed distributions occur where 10 targets 

search for Brownian motion targets as for 20 targets. Other combinations were also tested 

such as 10 agents searching for single targets, and all were found to have similarly skewed 

distributions. 
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Figure 38. Distribution of results for all search strategies, 10 agents against 4 targets with a relative speed 
of 1.5 times agent maximum speed (left: target movement = deterministic, right: target movement = 
Brownian motion). 

Normality tests results from the efficiency experimentation results indicated mostly normal or 

near normal distributions (see Table 1) and so arithmetic means and standard deviations were 

used for comparison. 

Search Kolmogorov-Smirnov 

Statistic Significance 
Energy ACS 0.07 0.02 

Bacteria 0.25 0.00 

Brownian 0.05 0.20* 

F_Fly 0.05 0.20* 

Levy 0.06 0.05 

Random 0.06 0.05 
Salt 0.05 0.20" 

Spiral 0.09 0.00 

Straight 0.08 0.00 
System 0.05 0.20* 

*This is a lower bound of the true significance. 

Table 1. Kolmogorov-Smirnov normality test results for efficiency experiment results. 

:m 

; r. ICO) ýcn _D). 

95 of 240 



The large difference observed in the test statistic for bacterial search in 1 able I is caused by 

the relatively high degree of variance in agent movement under no target conditions, i. e. the 

rapid switching between swimming and tumbling. This is illustrated in Figure 39 where the 

energy requirements of agents applying ACS has a higher mean with lower standard 

deviation than the bacterial search. 
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Figure 39. Frequency of agent energy requirements under no target conditions (left: ACS, right: bacterial 
movement). 

For reacquisition searches (exploring PMS performance), arithmetic means were used despite 

non-normal results (Figure 40 shows indicative distribution). This was because the 

experimentation aimed to assess whether the various PMS could improve on system 

performance during occlusion or communications failures. Furthermore, because all initial 

search strategies were employed and results combined to provide general improvement 

trends, mean rankings were less meaningful since a worse performing PMS could attain some 
better ranking positions because of its initial search, thus obscuring results. 
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Figure 40. Histogram of results of all reacquisition searches during permanent occlusion against 

Brownian motion targets with a relative speed of 1.5 times agent maximum speed. 

To evaluate whether results were statistically significant, Mann-Whitney U tests (Mann and 

Whitney, 1947) were used, as appropriate for non-normally distributed data. As evaluating 

the significance of each possible pair of strategies and configurations is both infeasible and 

unnecessary, samples from the best and worst performing strategies in each experiment are 

taken. For the initial search strategies, the top three were compared with the bottom three in 

turn (9 tests per experiment) and, for the PMS strategy experiments, comparisons between the 

top two and bottom two were made (4 tests per experiment). Generally, the mid-table 

performers did not perform significantly differently and were not of interest to the discussion. 

Results were deemed to be significant where there was less than 5% probability of the null 

hypothesis, i. e. that the results were drawn from the same underlying distribution. To reduce 

the combinatorial explosion still further, only one relative speed was selected for the dynamic 

target results and a mid-range number of failing agents from the communications failure 

scenarios. In the former case, the relative speed selected was decided by the point on the 

results table where the difference was largest since this was the main aspect used for 

discussion; in the latter case the scenario where 8 agents failed was used, again representing 

the mid-point in experimentation. 
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4.7 Schedule of Experiments 

Experimentation begins with a series of configuration trials to ensure that settings are tuned 

such that fair comparison can be made between strategies. It is recognised that the settings 

provided by the tuning may not be optimal for all the experimentation but without adaptive 

learning strategies, which are beyond the scope of this work, or separate tuning for every 

scenario, this is inevitable. Settings tuned are: 

9 LSZ neighbourhood. Despite tuning for earlier work (Banks 2005, Banks et al. 
2008b), the LSZ neighbourhood settings for length (c) and angle (0) are re-assessed to 

ensure continued suitability when applied in conjunction with the natural search 

strategies. 

PMS neighbourhood. Settings for both circular and V shaped neighbourhoods are 

examined. In the former case the circle radius (c) is tuned and, for the latter, it is the 
length (c) and angle (0). 

ACS GUT. Agent ACS Giving Up Time is adjusted to ensure that the periods of time 

spent in intensive search following the destruction of a target are suitable for the 

environment and any likely clustering. 

" PMS GUT. Too long spent trying to re-acquire a target that has either moved away 
from the area or been destroyed by another agent could be a waste of resources. A 

range of times were therefore tested using indicative scenarios. 

Following tuning, experiments to provide evidence of initial search strategy performance 

against static and dynamic targets are carried out as follows: 

" Static, locate-only. Where agents are not required to destroy targets they can mark the 
location and continue searching without disruption to the search pattern. For this 

series of experiments, targets were randomly initialised in the search area (with both 

uniform and clustered distributions) and removed from the search as soon as agents 
detected them. 

" Static, locate-and-destroy. Where target destruction is required, it would be unlikely 
that an agent would have the ability to do so as soon as the target was located, i. e. 

sensor range can be much greater than effective weapon range. So, to assess 
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performance where, following target location, agents have to get into weapon range to 

engage, the locate-only experiments are repeated except agents are required to get 

much closer to the target in order to destroy them, possibly disrupting their search 

path to do so. 

" Dynamic, deterministic targets. Whilst static target searching can be a non-trivial task, 

searching for dynamic targets represents a much more difficult search problem. In the 

first series of dynamic target search experiments, targets (operating at a range of 

speeds) follow pre-determined paths in an attempt to attack locations defended by the 

agents who locate-and-destroy targets' at all times. Agent performance is compared 

using both the losses and time metric. 

" Dynamic, non-deterministic targets. To compare search performance against a range 

of target movement types, targets (again operating at a range of speeds) are randomly 

initialised in the search area and then moved non-deterministically using behaviours 

ranging from high turn rate Brownian motion, through fruit fly movement to the more 
ranging random movement. In these scenarios the targets do not attempt to destroy 

specific defended locations and therefore only the time metric is used for comparison. 

" Effect of swarming. This work builds on previous work that introduced particle 

swarm guidance for autonomous vehicles; the influence of the existing swarming 
mechanism on the performance of the search strategies is assessed, in a representative 
scenario, against each of the target types used in the dynamic target experiments. 

Two further elements of the initial search patterns are then investigated: coverage and 

efficiency. These experiments are not intended to be exhaustive but to allow general insight 

into two major factors that could influence their selection for implementation. 

" Coverage. Oftentimes, when defending a given area, the perception of strong defence 
is as important as the actual defensive capability. To assess how effectively the swarm 
of agents move about the search area, experiments are conducted where a number of 
agents are permitted to move about the search area for fixed periods of time. 

1 Note: Agents are required to locate-and-destroy all dynamic targets and so this element is not further included 

in experiment settings although it always applies. 
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Strategies are then compared using the coverage metric, which quantifies the 

contiguous areas of uncovered search space. Following these experiments, a 

qualitative view is taken by plotting indicative sensor coverage for each of the 

strategies, with the aim of further understanding performance, particularly during the 

search for static targets. 

" Efficiency. A given search strategy may be more effective but incur such large energy 

requirements make it less attractive in practice. To examine whether any of the search 

behaviours perform better at the cost of additional energy requirements, a fixed size 

swarm is initialised and then agents are allowed to move for a fixed period in the 

absence of any targets. This target free scenario is designed to reflect the mode that 

searching swarms would be expected to spend the majority of the time in, looking for 

targets. The energy requirements are then recorded and compared. 

Finally, experiments are conducted to assess whether the performance of the agents applying 

the initial search strategies can be further enhanced in scenarios where real world limitations 

occur on sensory capability and communications. PMS strategies are applied in an attempt to 

reacquire targets following loss of detection or communication. Two basic scenarios are 

examined (note: in the second series, only the best performing PMS is compared to ensure 

results held from the occlusion experiments): 

" Occlusion. Performance of PMS strategies in scenarios where a target becomes 

occluded from the detecting agent either temporarily or permanently, whilst other 

agents can still detect the target. 

" Communications failures. To assess performance during communications failure, the 

best performing strategy from the occlusion experiments was tested using two types 

of failure. First, agents may lose their ability to communicate their knowledge 

permanently, for example, following equipment failure. In the second scenario, agents 
lose communication temporarily; simulating situations where, for example, 

environmental features interfere or high levels of electro-magnetic noise interfere 

intermittently. All communications failures simultaneously affect both transmission 

and reception channels although agents may fail at different times. 
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5 Research Findings 

This section begins, in Section 5.2, with the findings of the tuning experiments prior to 

presentation and discussion of main research findings2 that commence, in Section 5.3.1, with 

strategy performance using the time metric to locate static targets. This is followed in Section 

5.3.2 by the same experiments repeated with agents having to locate-and-destroy static 

targets. Section 5.4 investigates performance against dynamic targets, which is subdivided 

between deterministic and non-deterministic targets (actual results are presented in Appendix 

2). A brief foray into the effect of swarming on the results is included in Section 5.5. Section 

5.6 reports on coverage experiments and Section 5.7 reviews the energy requirements of the 

strategies to assess whether the more successful behaviours are higher energy consumers. 

Finally, Sections 5.8 to 5.10 present the results of PMS experimentation for scenarios where 

targets become occluded and agents experience communication system failures. 

5.1 General Considerations 

Research findings for all experiments begin with a more detailed description of experiment 

configurations than provided in the gcncral Schcdulc in Section 4.7, followed by discussion 

of the results. 

Experiment results are then provided graphically3, due to the large quantity of data, with all 

graphs of dynamic target results shown as 2"a order polynomial trend lines to highlight result 
trends. Trend lines were used because noise in the actual plots (provided in Appendix 2) 

made it difficult to observe trends in search performance; a comparison between Figure 41 

and Figure 42 indicates that such an approach is reasonable. 

All experiments were repeated 200 times per search strategy (for example, in dynamic target 
experiments each experiment was repeated 200 times for each of the 10 search strategies over 
20 relative target speeds giving 40,000 simulation runs for each experiment configuration). 
Although sample sizes are necessarily limited by computation effort, to ensure that the 

'The statistical analysis methods used in the research findings are discussed in Section 4.6. 

' Graphs are presented with different scales so that differences in strategy performance for a particular scenario 
are highlighted and, therefore, care should be exercised when comparing results between different experiments. 

101 of 240 



chosen sample size was sufficient for reliable comparison, representative experiments using a 

fixed configuration were also performed using larger sample sizes of 2000 runs per strategy 

(400,000 runs in total). This experiment used 10 agents, applying all initial search strategies, 

against a single target moving deterministically following route 1 (see page 64) at relative 

speeds of {0.1,0.2,... , 1.9,2.0}. Swarming was enabled with LSZ neighbourhood. Results 

are reported for 2,000 and 200 runs per strategy for each relative target speed. 

The results of the extended runs are shown in Figure 41 with the 2"d order polynomial trend 

lines shown in Figure 42, which can be compared with the same experimental set up, over 

200 runs, results shown in Figure 43. Small differences can be observed, but these graphs 

indicate that a sample size of 200 is a sufficient basis on which to make comparative 

assessments of the various experiment results, and all results are reported for that number of 

runs. 
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Figure 41. Actual mean rankings of 10 agents against I target moving deterministically (2000 runs per trial). 

102 of 240 



13000 - 

12000 - 

0 11000 
00 
c 

Y 
C 

2 10000 
C 
t0 
G1 

2 9000 

8000 -' 

7000 +-- - 
O r1 NM to lP 00 01 O -1 M V1 l0 Iý 00 Q1 O 
000000000 0-4 -A -I r-1 . --I -I r-1 N 

Target speed relative to agent speed 

Poly. (ACS) 

-Poly. (Bacteria) 

-Poly. (Brownian) 

-Poly. (F_Fly) 

-Poly. (Levy) 

-Poly. (Random) 

Poly. (Salt) 

Poly. (Spiral) 

Poly. (Straight) 

Poly. (System) 

Figure 42.2nd order polynomial trend lines of mean rankings of 10 agents against 1 target moving 
deterministically (2000 runs per trial). 

1300 

1200 

1100 
IN, 

11::: 

- 

800 

700 
oNm Uý 1o I* oo rn ONM "t Un tR oo rn 
OOOOOOOOOO . -i -4 , --i . --i 

Target speed relative to agent speed 

Poly. (ACS) 

Poly. (Bacteria) 

Poly. (Brownian) 

Poly. (F_Fly) 

Poly. (Levy) 

Poly. (Random) 

Poly. (Salt) 

Poly. (Spiral) 

Poly. (Straight) 

Poly. (System) 

Figure 43.2"" order polynomial trend lines of mean rankings of 10 agents against I target moving 
deterministically (200 runs per trial). 

103 of 240 



LI 

5.2 Tuning Results 

To ensure that agents were operating with settings that would not obscure the potential of the 

search behaviours, tuning was carried out on giving up times and neighbourhood settings, 

although caution should be applied with these settings since they would need to be assessed 

for different search environments. For all tuning experiments the arithmetic mean of the time 

metric was used rather than the more statistically correct (due to the non-normal distribution 

of results) Kruskal-Wallis mean rankings used to analyse the main experiments, this was 

because it was important to maintain the scale of performance differences caused by 

parameter adjustment. These differences would have been lost using the statistically weaker 

alternatives. 

5.2.1 LSZ Neighbourhood 

Experimentation was performed to optimise the LSZ neighbourhood settings 0 and c (see 

Equation 16, page 65). Two values of s (Equation 16) were selected, both faster than 

maximum agent speed since speeds of equality or below would not require LSZ cooperation, 

where s=2.0 represents the maximum relative target speed and s=1.5 the midpoint between 

maximum agent speed and maximum relative target speed. Fruit fly movement was selected 
as the target behaviour movement because of its two-phase nature, i. e. the combination of 
ranging and intensive saccadic patterns, provided a range of turn angles and leg lengths. The 
following experiment settings were used to provide a wide range of LSZ behaviours: 10 and 
20 agents, applying all initial search strategies using swarming with LSZ neighbourhood 
enabled against 4 fruit fly movement targets at relative speeds of 1.5 and 2.0; LSZ 

neighbourhood angle, 0, was set to (60,80,100)and length constant, c, to 11.0,1.5,2.0,2.5}. 

The summary of results (produced by finding the mean time of all agent behaviours tested), 
shown in Figure 44, indicates that whilst the setting of 0= 60° and c=2.0 was competitive 
for large swarms it was not for smaller groups; this is because with smaller groups there is 
insufficient opportunity for cooperation. This contrasted with 0= 100°, where performance 
was relatively better with smaller swarms; in this case, where the swarm was larger, too much 
cooperation occurred, drawing in too many agents and leaving the search area exposed to 

multiple targets. Notably, all experiments with short LSZs were poor performers regardless of 
0 and swarm size, due to the ranging aspect of target movement often placing the target 

beyond the LSZ within a short period. The optimal balance was found to occur at 0= 80° and 
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c=2.0 and, therefore. for all further experiments an agent is considered a member of an LSZ 

neighbourhood if it is ±40° from the target and the target distance is less than the sensor 

range multiplied by twice the ratio of target to agent speed. 
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Figure 44. Summary of LSZ tuning re. ult%. 

5.2.2 PMS Neighbourhood 

As for LS!, neighbourhood settings, the PMS neighbourhood may vary between applications 

and therefore require investigation on a case by case basis. For the purposes of this work. 

experimentation was conducted to find reasonable sizes for circular and V shaped 

neighbourhoods (the same settings were applied to all PMS strategies employing each 

neighbourhood). The saccadic {'MS does not have a neighbourhood shape and therefore does 

not require tuning. In the experiments. 10 and 20 agents applied all of the initial search 

strategies with LSZ neighbourhood swarming enabled against fruit fly movement targets at 

relative speeds of 1.5 and 2.0. The switch from initial search to the application of the PMS 

(predictive-C and predictive-V were used) was triggered by permanent occlusion. PMS 

neighbourhood settings tested were angle. 0. of 160.80.100,120) (V shaped neighbourhood 

only) and length, c, of {0.5,1.0.1.5.2.0.2.5.3.0 - where required). The giving up time was 
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fixed (heuristically) at 50. Later tuning of this parameter found this value to be reasonable for 

both this and V shaped neighbourhoods against fruit fly targets (see Section 5.2.4). 

The results shown in Figure 45 indicate that the constant c multiplier was not necessary for 

this implementation of the circular neighbouhood (the best performing setting of c being 1.0); 

however, c was retained in the implementation for consistency across neighbourhoods and in 

recognition that it could be utilised in other scenarios. 
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Figure 45. Summary of circular PMS neighbourhood tuning results. 
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The tuning results for V shaped neighbourhoods, presented in Figure 46, indicate that angles 

of 0= 80° provide large improvements in performance, although these were less notable at 
small and large values of c. The unusual reduction in performance where 0= 60° /c=2.0 and 
0= 120° /c=1.5 were due to the two phase nature of the targets, with the settings on either 

side being suited to the ranging, inter-saccadic, movements and the high turn rate saccade 

phases respectively. Settings of 0= 80° and c=2.5 were selected for use in all further 

experiments. 

106 of 240 



940 

920 

900 6 

880 II 

860 E 

840 

820 a 
r 800 swarm=20 

790 
a, 'T° Swarm=10 

4 760 

740 
4- 720 

L'I C? Looo Lr? o 41 o It! o"1 111 oo UI Q 
'-I rl NNMO -4 

NNMONNNONNN 

pfý0 pR pA pY6 pfV pf0 pf0 pfO p10 pýO pA pN pN pf0 pf6 pf0 pfE 
f0 (O 

f0 
f0 f0 

l0 l0 lD t0 l0 1D CO 00 00 00 00 00 OOOOO0N00N 
ý4 14 -4 -4 

LSZ Angle and Length 

Figure 46. Summary of V shaped PMS neighbourhood tuning results. 

More detailed examination of the circular neighbourhood results indicated that over- 

commitment, i. e. too many agents being drawn in to attack the target, affected the 

performance of higher turn rate strategies especially at higher relative speeds and where 
larger swarms are operating more than those that ranged farther. For example, Figure 47 

shows that the difference in mean times between c=2.0 and 2.5 for high turn rate strategies 

such as bacteria and saltatory are much larger than those for ranging types such as fruit fly 

and straight-line searches. This effect was caused by the large numbers of agents being drawn 

toward the target taking a relatively long time to re-disperse across the search area to locate 

any remaining targets. 
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Figure 47. Summary of circular PMS neighbourhood tuning results for differing values of c where swarm 

size = 20 and s=2.0. 

5.2.3 ACS Giving Up Time 

ACS GUT in the natural world can depend on a wide variety of factors such as risk of 

predation and prey patchiness, and in real implementations such factors should play a part in 

the development of autonomous search strategies. In the non-threatening simulation 

environment the former does not require consideration although, given that, in the 

experimental environment, the goal is to complete the search and destroy task in the shortest 

time, it is important to consider the ACS GUT, since fruitless intensive search is inefficient 

and, conversely, insufficient intensive search in a patchy environment can also be detrimental 

to performance due to the missed opportunity of locating a nearby target. 

To ensure good performance against both uniform and clustered targets, experimentation was 

performed with the goal of providing a balanced GUT that would not be too short for 

clustered targets nor too long for uniform targets. Further experiments against indicative 

dynamic (fruit fly) targets were performed to ensure that the chosen settings did not 
disadvantage the strategy when applied in a dynamic setting. For static target experiments, 5 

and 10 agents searched for 20, uniformly distributed and clustered, targets whilst for dynamic 

targets 10 and 20 agents were pitted against fruit fly targets moving at relative speeds of {0.5, 

1.0,1.5}. For both static and dynamic experiments, the ACS strategy was applied with LSZ 

neighbourhood swarming enabled and giving up times of 1100.150,200,250,300,350,400} 

were used. 
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Results of ACS GUT tuning, compared using the mean time, are indicated at Figure 48. 
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Figure 48. Effect of GUT on time taken to destroy 20 targets by agents employing an ACS strategy. 

Based on these results a GUT of 350 was selected for the ACS strategy. The tuning 

experiments were repeated for dynamic (fruit fly movement) targets and differences in 

performance between the settings were found to be marginal (results are shown in Figure 49). 
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Figure 49. Effect of GUT on time taken to destroy 4 fruit fly targets by 10 and 20 agents employing an 
ACS strategy. 
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5.2.4 PMS Giving Up Time 

When a target being tracked by an agent may become occluded, it is important that neither 

the agent nor any cooperating agents forget its existence. Conversely, when an occluded 

target is being sought, it is important that agents do not spend too long on the task in case the 

target is no longer in the area being searched. The decision to give up could be based on 

several factors such as the level of sensory visibility at the time (longer periods could be 

spent in areas where targets could hide more easily) or the level of search area coverage (if 

several agents were covering the area, time spent could be reduced). Hence the GUT for the 

PMS can be thought of as the memory span of the system, agents finding themselves in the 

PMS neighbourhood continue to search for a `lost' target before returning to their original 

search strategy and tuning was required to ensure that, given the simulation environment, 

agents were spending a reasonable amount of time attempting to re-acquire lost targets. 

Initially, experimentation was performed using fruit fly movement targets; however, this 

work was found to be unsuitable due to the unpredictable movement of the targets post- 

detection loss. A series of additional experiments were conducted to confirm the findings 

against less predictable targets. These experiments were conducted using 10 agents only 

(performance of 20 agent swarms mirrored that of 10 agent swarms in all other PMS GUT 

scenarios). To overcome problems of unpredictability, deterministic target behaviour was 

applied and further tuning experiments performed. To summarise, 10 and 20 agents4 applied 

all of the initial search strategies, with LSZ neighbourhood swarming enabled, against 4 fruit 

fly movement targets, 4 Brownian motion targets and 4 deterministic targets at relative 

speeds of {0.5,1.0,1.5}. Predictive-C and predictive-V PMS were used and permanent 

occlusion enabled; the giving up times used varied depending on the scenario as follows: 

" Predictive-C against fruit fly targets = {0,25,50,75,100}. 

" Predictive-V against fruit fly targets = {0,25,50,75,100}. 

" Predictive-C against Browian motion targets = {0,25,50,75}. 

' Note: only 10 agents were used against Brownian motion targets since those experiments were only used to 

confirm problems against unpredictable targets. 
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0 Predictive-V against Brownian motion targets 1 , 0.25.50.75 ;. 

0 Predictive-C against deterministic targets =tO, 25,50,75,100). 

9 Predictive-V against deterministic targets = {50,100.150,200.250,300,350,400}. 

The results of circular and V shaped neighbourhood PMS GUT tuning using fruit fly targets 

can be seen in Figure 50 and Figure 51 respectively. From these surprisingly similar results, it 

can be seen that it is difficult to tune giving up time using random movement driven targets, 

even targets that have periods of stable movement such as that provided through fruit fly 

emulation. Given the level of unpredictability, the shorter times of 25 and 50 were shown to 

perform marginally better with the former being better suited to smaller swarms. This was 

due to the reduced time spent looking for targets that had made direction changes away from 

the predicted path and thus reduced likely of valuable assets being unnecessarily drawn 

toward non-existent targets. 
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Figure 50. Summary of predictive-C PMS tuning results against 4 fruit fly targets. 
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Figure 51. Summary of Predictive-V PMS tuning against 4 fruit fly targets. 

ý Swarm=20 

Swarm=10 

When comparing the overall performance. i. e. the mean of both swarm sizes and all three 

relative speeds, in Figure 52 the GUT of 25 was found to be the best setting, indicating it was 
better for the swarm to give up after shorter periods against unpredictable targets. 
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Figure 52. Comparison of overall performance of PMS GUTs against 4 fruit fly targets. 
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In experiments to confirm the difficulty in using unpredictable targets for a predictive 

mechanism's tuning, the findings shown at Figure 53 indicate that shorter times remained 

advantageous although optimal times for V shaped neighbourhoods were slightly longer 

because targets did not move completely away from the area and the additional time meant 

that agents were more likely to reach the area. This confirmed the findings from the tuning 

against fruit fly targets: where targets are unpredictable it is advantageous to give up trying to 

predict target behaviour quickly and thus the behaviour is unsuitable for tuning such a 

mechanism for environments where more predictable targets may exist. 
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Figure 53. Comparison of performance of 10 agents' PMS GUTS against 4 Brownian motion targets. 

Where targets moved more predictably, as was the case for the deterministic targets, the 

results indicate that significantly longer giving up times were more profitable for V shaped 

neighbourhoods whereas circular neighbourhoods still preferred shorter ones (detailed results 

are shown in Figure 54 and Figure 55 with a summary for comparison in Figure 56). The 

complete range of tuning values applied to the V shaped neighbourhood, shown in Figure 57, 

show the marked improvement in performance between the shorter GUT as used in the 

circular neighbourhood and those used as the final settings. 

113 of 240 

0 25 50 75 



2400 

ö 2200 - 

2000 

1800 - 

1600 

c 1400 - 
a 1200 - 

1000 - 

PMS GUT at Relative Target Speed 

1300 

1200 ö 

1100 II 
E 

r 1000 

900 

800 E 
i-- 

r 700 'm 

600 

500 

Figure 54. Summary of predictive-C PMS tuning results against 4 deterministic targets. 
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Figure 55. Summary of predictive-V PMS tuning results against 4 deterministic targets. 
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Figure 56. Comparison of overall performance of PMS CUTs against deterministic targets. 
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Figure 57. Summary of V Shape neighbourhood PMS tuning results against 4 deterministic targets. 

Final settings for the PMS GUT were selected from the deterministic target results (i. e. 50 

and 350 for the circular and V shaped neighbourhoods respectively) since the results 
indicated that the PMS would be more useful against predictable targets. 
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5.3 Static Target Search 

Initial search experiments were based on the two relevant search components, locate-only 

; for static targets only) and locate-and-destroy. In locate-only assessment the target was 

removed immediately on detection whilst locate-and-destroy required the agent to move to 

weithin 10 units of the target before it could be removed; both types of experiment were 

aerformed to allow assessment of whether the period between detection and `capture' was 

influential on the performance of any of the strategies. Static targets could either be clustered 

: )r uniformly distributed. Cooperative swarm behaviour using the LSZ neighbourhood was 

not enabled against static targets because the cooperative behaviour would not provide any 

benefits. 

Experiments using static targets were configured with small and large groups of agents (5 and 

20 respectively) tasked with detecting (locate-only) or detecting and `destroying' (locate-and- 

destroy) low and high numbers of targets (4 and 20 respectively) that were either uniformly 

distributed or arranged in clusters of 4. Larger agent group sizes were tested but were found 

to mask the effect of the search strategy, i. e. there were so many agents that the targets were 

being detected regardless of strategy, with results dictated largely by the random initial 

positions of the agents and targets. 

Static target results have been subdivided into locate-only and locate-and-destroy scenarios 
for clarity. 

5.3.1 Locate-only 
Against uniformly distributed targets (see Figure 5g5), strategies that ranged more extensively 

outperformed those with high turn rates; this was most significant where small numbers of 

agents were searching for large numbers of targets because of scenarios where the targets and 

agents were not initialised in proximity to each other the high turn rate agents took longer to 

move to the regions containing targets, a problem that was less likely where agent numbers 

were large enough to increase the likelihood of agents being well dispersed across the search 

area. 

S In figures where the key indicates the relationship between agents and targets the number of agents are 
presented first, therefore a key of `5 Against 20' represents where 5 agents operated against 20 targets. 
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Figure 58. Summary of results for strategies in locate-only search against static uniformly distributed 

targets. 

Where targets were clustered and agent density was low, the findings described above 

generally held (see Figure 59), although, somewhat surprisingly, the expected improvement 

in comparative performance of ACS did not occur; this was due to the targets being removed 

immediately upon detection. Under normal conditions, i. e. when the ACS driven agent 

discovers a target it will track it until destruction. after which it will enter an intensive search 

phase. In this scenario. locate-only experimentation, the agent will often be located some way 
from the cluster centre (due to the range of sensory perception) when entering the intensive 

search phase and therefore may not reach other targets in the cluster. Also notable in this 

series of experiments was the contrast between the spiral strategy's excellent performance 

when few agents were seeking large numbers of targets and its poor performance where agent 

numbers were high and target numbers low. The former being due to the efficient manner in 

which small numbers of agents eventually cover the whole search area whilst the latter was a 

result of the agents rarely turning within a cluster, so targets were passed by despite agents 
discovering others nearby. 

117 of 240 



2000 - 
1800 

1600 - 
AA 

1400 - 
C 

1200 

ä 1000 

800 - 

600 

400 Ih4! L1mIIIII1IiIIII 
0. 

(n 

O 
-o C 
r6 

N 
v Q C 

a+ N 

LL 

LL. 

4J 
N 
>, 

N 

rp - > 
v J 

c 
C 
3 
O 

2 
ý4. +1 
V 
fC 

Co 

 5Against4 

 5 Against 20 

  20 Against 4 

  20 Against 20 

Figure 59. Summary of results for strategies in locate-only search against static clustered targets. 

5.3.2 Locate-and-destroy 

Generally, the results for uniformly distributed targets held when agents were required to 

move close enough to the target to destroy it (compare Figure 58 and Figure 60). Bacterial 

search may have been expected to improve its relative performance since its agents would 

switch to a wider ranging search during target detection (Figure 23). This failure to improve 

was relative to other strategies using mean rankings- its actual performance improved 

significantly; for example comparing the mean time (20 agents against 20 targets) the 

performance improved by 23.6% whilst all other strategies remained at similar levels (the 

next largest change was Brownian motion, with 6.5% improvement). 
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Figure 60. Summary of results for strategies in locate-and-destroy search against static uniformly 
distributed targets. 

The improvement expected from the ACS strategy against clustered targets was evident when 

the agents were required to move close enough to destroy the target. This was because the 

switch to intensive search generally occurred closer to the cluster centre and, therefore, 

provided the agent had sufficient sensory acuity, increased the likelihood of other localised 

targets being detected. Where a priori knowledge exists regarding the level of likely 

clustering then strategic decisions can be made regarding the intensive search; for example, if 

clustering is wider than can be detected by normal sensor range then more speed could be 

maintained to allow the agents to range further whilst having the high turn rate required to 

cover the area. The two phase approach of bacterial search also paid dividends in the 

clustered environment; this time with sufficient improvement to markedly improve 

comparative performance provided sufficient agents were present to achieve an initial 

detection. 
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Figure 61. Summary of results for strategies in locate-and-destroy search against static clustered targets. 

Closer examination of the actual results, Figure 62 and Figure 63, shows that whilst some 

strategies improved others performed less well when required to interrupt their search 
behaviour to get close enough to destroy the target. In particular, strategies with high turn 

rates (e. g. bacterial, Brownian motion and Levy path) gained most because when one target 

was detected the agent was drawn closer to the other clustered targets faster than would have 

been the case following the usual, generally tortuous, path. The systematic grid pattern's 

performance suffered because following the move to destroy a target an agent would 

generally resume its search on a different part of the grid pattern, potentially taking it away 
from detecting the other targets in the cluster. 
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Figure 63. Comparison of actual results for 5 agents against 20 static clustered targets, left: locate-only 
and right: locate-and-destroy (note: these are full scale versions of Figure 62). 

121 of 240 



5.4 Dynamic Target Search 

Dynamic targets either represented non-deterministic intruders looking for targets of 

opportunity or deterministic attackers following pre-set attack profiles against two, non- 

central, defended positions. Opportunistic attackers could assume three representative 

movement patterns based on those available to the defenders; these were Brownian motion 

(to represent targets with high turn rates), the fruit fly inspired pattern (to represent strategies 

that ranged further) and random movement. To assess performance across a range of agent- 

target speed relationships, dynamic experiments were repeated for targets at constant relative 

speeds in the range 0.1 to 2.0 times the maximum agent speeds, at intervals of 0.1. During 

dynamic testing, the small defensive group size was increased to 10 agents, since 5 agents 

was found to be too few for the large search space, and target encounters were more through 

random chance than engineered by the search strategies. Swarming with the LSZ 

neighbourhood was enabled for these experiments, allowing the agents to cooperate on the 

interception of detected targets. Neither PMS nor occlusion were enabled for any of the initial 

search, to prevent them from influencing the performance of the search strategies. To 

summarise, 10 and 20 agents applied all of the initial search strategies with LSZ 

neighbourhood swarming enabled against 1 and 4 deterministic targets, 1 and 4 Brownian 

motion movement targets and 1 and 4 fruit fly targets, all with relative target speeds of {0.1, 

0.2,0.3,... , 
1.9,2.0). 

Results are reported first for deterministic targets then for non-deterministic targets; in the 
former case, the losses metric is also reported to give an indication of the effectiveness of the 
swarms in defending the two locations in the search area against coordinated attack. 

5.4.1 Deterministic Targets 

In the dynamic environment where targets followed deterministic routes, the results presented 
in Figure 64 show that as the targets speed up the ranging search techniques become less 

effective whilst those with higher turn rates become more attractive. This was most notable 

with Brownian and bacterial making large gains in relative performance at the expense of 

spiral and random searches. All three of the highest turn rate strategies generally outperform 

the ranging strategies, except at the slowest target speeds, where the target movement is 

insufficient to bring the opposing individuals into close proximity. As target speed increases 
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beyond agent speed, the performance difference once again reduces as target-agent 

encounters become more inevitable through chance; although, the high turn rate strategies 

remained influential, as can be seen from the generally better performance at the fastest target 

speeds. 

These trends are also apparent with more targets and larger defensive swarms (Figure 65, 

Figure 67 and Figure 68), although the differences in performance is more pronounced. 

Where more targets were present the difference was amplified as the influence of the strategy 

on performance rather than chance meetings between agent and target became more apparent. 

The mean losses results presented in Figure 66 and Figure 69 confirm the time-based 

performance results. In the first of these, the random and systematic movement perform less 

competitively throughout the range of relative speeds whilst bacterial search, due to its 

limited ability to range about the search area, performed less well compared to the ranging 

strategies at low speeds but as the relative speeds increased it quickly became one of the most 

competitive due to its high turn rate. Interestingly, the high turn rate strategies that did not 

slow down managed to effectively defend the area even at low speed (although Figure 65 

shows they took longer to destroy the intruders). 

With higher agent numbers the low speed of the bacterial search was less problematic and, 

whilst the mean rankings of the time-based metric results (Figure 68) show that the strategy 
did not perform well at the low speeds, the losses indicate that, due to the swarm size, it was 

still effective at defending the locations shown in Figure 12, page 64. 
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Figure 64. Summary of mean ranking results for 10 agents against 1 target moving deterministically. 
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Figure 65. Summary of mean ranking results for 10 agents against 4 targets moving deterministically. 
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Figure 66. Summary of mean losses results for 10 agents against 4 targets moving deterministically. 
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Figure 68. Summary of mean ranking results for 20 agents against 4 targets moving deterministically. 
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Figure 69. Summary of mean losses results for 20 agents against 4 targets moving deterministically. 

Statistical analysis was also performed using Pearson's correlation tests (Pearson, 1896) to 

determine whether a relationship existed between time and the number of times targets 

successfully attacked the defended positions using deterministic attack profiles. As can be 
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seen from Figure 70, a correlation exists between time taken and losses, increasing with 

relative speed until a peak is reached. This occurs earlier with smaller swarms since the 

difference in the number of losses remain consistant between strategies from lower speeds. 

The correlation then begins to reduce slightly since as the speed increases the likelihood of 

the mean number of losses increases whilst the mean time does not increase at the same rate 

due to the cap on time taken imposed by the furthest travelled target. Returning to the lower 

speeds, the lower correlation values occur because some of the strategies are still successfully 

defending the two guarded locations. 

These results support the losses results shown in Figure 69; the lower correlation between 

time and losses at lower speeds mean that the high turn rate strategies can still effectively 

defend specific locations against attack despite taking longer to detect targets at lower speeds. 
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Figure 70. Pearson correlation coefficient for time and losses where 10 and 20 agents search for 4 
deterministic targets (note: 20 agents incur no losses at relative speed of 0.1 and therefore correlation 
coefficients cannot be calculated). 

5.4.2 Non-deterministic Targets 

Where the targets moved randomly (Figure 71), the increased performance of the high turn 

rate strategies was less pronounced, and advantages over ranging strategies did not occur 

until the targets were moving at just over half the speed of the agents. after which relative 

performance generally held steady regardless of speed. This effect was again amplified with 

more targets (Figure 72) because at lower speeds the agents had to wait longer to encounter 
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the targets. At the faster end of the relative speed scale the effect of chance meetings is 

evident from the re-converging of the strategies' performances although it should be noted 

that even though the ranging behaviour of the targets had increased such that encounters were 

partially a result of chance, the likelihood of detection was still increased in strategies such as 

Brownian, bacterial and Levy searches due to their high turn rates. This last point is further 

evidenced where the swarm size is increased (Figure 73). In this scenario, the high turn rate 

strategies perform better from quite low speeds since the systemic coverage of the area is 

sufficiently high that targets do not have to travel far before an encounter occurs, although 

this did not occur at such low speeds where more targets were present (Figure 74) since there 

was an increased likelihood of at least one of the targets being in an area sparsely populated 
by agents. 

1300 -, 

1250 -ý, 
1200 - 

1150 
W 

1100 - _1L 

C 
T 1050 - 
c 

1000 - 
950 - 
900 - 

850 - 
800 - 

0 '-1 NM V1 lD I, 00 al 0 -4 NM V1 l0 1,00 Q1 O 

Target speed relative to agent speed 

Poly. (ACS) 

Poly. (Bacteria) 

Poly. (Brownian) 

Poly. (F_Fly) 

Poly. (Levy) 

Poly. (Random) 

Poly. (Salt) 

Poly. (Spiral) 

Poly. (Straight) 

Poly. (System) 

Figure 71. Summary of mean ranking results for 10 agents against I target moving randomly. 
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Figure 72. Summary of mean ranking results for 10 agents against 4 targets moving randomly. 
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Figure 73. Summary of mean ranking results for 20 agents against I target moving randomly. 
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Figure 74. Summary of mean ranking results for 20 agents against 4 targets moving randomly. 

The movement of Brownian motion targets was such that even at high speeds the targets 

ranged very little across the search space (Figure 75). This impacted on the bacterial search 

because its reduced speed under `no-target-detection' scenarios reduces its ranging 
behaviour. The low rate of performance gains of the high turn rate strategies can also be 

attributed to this phenomenon; the rate is proportional to the increase in the Brownian targets' 

movement across the search area. Where swarm sizes were larger this was much less 

problematic (Figure 77); however, the added advantage of increased speed, e. g. Brownian 

motion, and slightly reduced turn rate, e. g. Levy paths, provide an advantage such that they 

were the best performers across the relative speed range. 
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Figure 75. Summary of mean ranking results for 10 agents against I Brownian motion target. 
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Figure 76. Summary of mean ranking results for 10 agents against 4 Brownian motion targets. 
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Figure 77. Summary of mean ranking results for 20 agents against I Brownian motion target. 

The results shown in Figure 77, whilst indicating that the general comparative performance of 

the high turn rate strategies was superior, may appear to be counter intuitive since, despite 

increased agent numbers, the search area is still significant and there still may be occasions 

where there are no agents in the vicinity of a target (which would not be expected to range 

far). Figure 78 (left) shows that the high turn rate strategies can suffer due to their lack of 

ranging as indicated by the higher numbers and values of their outliers against targets that do 

not range compared with targets that do (Figure 78, right). This was especially evident in 

bacterial search since it also slows down agents, reducing their ranging behaviour still 

further, under no target detection conditions. The zoom of the lower part of the y axis shown 
in Figure 79 reinforces these findings; due to the large swarm size many of the targets are 
detected early (hence the similarity of the means), it is the amount of time taken for the 

targets, which are not close to any agents, and the agents to move together that makes the 

difference in the strategies' actual performance. 
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Figure 78. Actual results of 20 agents against 1 target travelling at maximum agent speed (left: Brownian 

motion, right: fruit fly movement). 
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Figure 79. Lower axis zoom of actual results of 20 agents against I target travelling at maximum agent 
speed presented in Figure 78 (left: Brownian motion, right: fruit fly movement). 
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Where more targets were present (Figure 76 and Figure 80) the lack of movement across the 

search space highlighted the difference in the reduction in the likelihood of agents getting 

close enough to detect a target, especially with smaller swarms. With larger swarms the high 

turn rate strategies did become dominant, but only once targets were moving relatively fast. 
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Figure 80. Summary of mean ranking results for 20 agents against 4 Brownian motion targets. 

Performance against targets that utilise fruit fly type movement (Figure 81 and Figure 82) 

was remarkably similar to that of random movement (Figure 71 and Figure 72); this was due 

to the similarities in the overall ranging properties of the movement (compare Figure 25, page 
80, left and right). However, actual performance against both movements were the not the 

same. Figure 83 illustrates that, with the exception of spiral search, all strategies took less 

time to destroy fruit fly targets; this was because the two phase nature of the fruit fly 

movement made it more susceptible to both the high and low turn rate search types (inter- 

saccade and saccade phases respectively). 

Also notable from the actual results of the fruit fly target movement was the change in result 

consistency compared to those of Brownian motion (Figure 78, left and right). This may be 

attributed to the target's increased movement about the search space reducing the chances of 
it remaining outside agent sensor range. 
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Figure 81. Summary of mean ranking results for 10 agents against I fruit fly target. 

1600 

1400 

Ln 00 C 
Y 1200 
c 

1000 

800 

600 --- T -r T ----ý -r 
Q . --f NMUl lD 00 Ql q e-1 NM Ln lD ^ 00 c1 O 

0000000000 rl -4 .1 . --1 . --4 . --I , --4 , -i r-q r-I nj 

Target speed relative to agent speed 

Poly. (ACS) 

Poly. (Bacteria) 

Poly. (Brownian) 

Poly. (F_Fly) 

Poly. (Levy) 

Poly. (Random) 

Poly. (Salt) 

Poly. (Spiral) 

Poly. (Straight) 

Poly. (System) 

Figure 82. Summary of mean ranking results for 10 agents against 4 fruit fly targets. 
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Figure 83. Summary of mean times for 10 agents to destroy 4 targets moving at maximum agent speed. 

In keeping with the similarity of 10 agent performance with that of deterministic search. 

where much larger numbers of agents were present (Figure 84 and Figure 85) the high turn 

rate strategies became dominant at slower relative speed and remained so for faster speeds. 
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Figure 84. Summary of mean ranking results for 20 agents against I fruit fly target. 
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Figure 85. Summary of mean ranking results for 20 agents against 4 fruit fly targets. 

5.5 Effect of Swarming 

This section examines the effect of the LSZ based swarming element of the agent reaction to 

target detection, comparing the performance of a swarm of agents using cooperation against 

one where they act independently. For the comparison, 20 agents were employed to detect 

and destroy 4 deterministic targets moving 50% faster than agent maximum speed (20 agents 

were selected to emphasize the relationship). The experiment was then repeated using the 

remaining 3 target movement types: random, Brownian motion and fruit fly. It can be seen 
from Figure 86 that for deterministic targets, generally, the same relationships held between 

the search strategies whether or not swarming was employed: the application of the 

cooperative element simply improved swarm response upon target detection. This 

relationship also held where the agents searched for random targets (Figure 87) although the 

improvement was not as significant because targets turned more frequently. Targets turning 

during detection can reduce their chances of outrunning an agent because the latter will take a 

direct route, reducing the gap between itself and the target, possibly allowing itself to get 

close enough to attack the target in the process. The effect of the target turning is amplified 

still further against Brownian motion targets (Figure 88) where very little difference exists 

between cooperating and non-cooperating swarms. In Figure 89, however, the straight line 
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inter-saccade movement provides periods where the target can move out of sensor range of 

the detecting agent and so cooperation once more generally reduces time taken to destroy the 

targets. 
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Figure 86. Comparison of 20 agents acting independently (left) and cooperatively using LSZ (right) 
against 4 deterministic targets travelling at 1.5 times maximum agent speed. 
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Figure 87. Comparison of 20 agents acting independently (left) and cooperatively using LSZ (right) 
against 4 random movement targets travelling at 1.5 times maximum agent speed. 
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Figure 88. Comparison of 20 agents acting independently (left) and cooperatively using LSZ (right) 
against 4 Brownian motion movement targets travelling at 1.5 times maximum agent speed. 
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Figure 89. Comparison of 20 agents acting independently (left) and cooperatively using LSZ (right) 
against 4 fruit fly movement targets travelling at 1.5 times maximum agent speed. 
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5.6 Coverage Quality 

Quantitative and qualitative investigations were conducted to assess the coverage of the 

search area by the initial search strategies over a given period of time in the absence of 

targets. As described in Section 4.5.3, where the coverage metric was introduced, this 

element of performance is important to the capability of the system where a visual deterrent 

to intruders is required, and to evaluate whether a given strategy results in poor coverage of 

the search area, that could be exploited or would otherwise be problematic in a given 

scenario. The experiments were performed in two parts; the first, based on agent position, 

quantified the amount of search space not occupied over a given period of time for a swarm 

of agents initialised across the search area in four rows of five agents. The agents were then 

allowed to move freely in the absence of targets for a number of moves; 1,000,5,000 and 

10,000 were selected to provide a range of time periods. The shorter periods allow the 

assessment of how movement may appear to the casual observer, whilst the longest period 

allows the deterministic patterns time to move fully across the search area. The second 

experiment scenario involved the production of indicative sensor coverage plots of a single 

agent, initialised at the centre of the search area, over 5,000 moves. This approach was taken 

because of the infeasibly large computational effort required to capture sensor coverage 

across the larger range of movements used in the agent coverage experiments. Sensor 

coverage would, of course, vary with target implementations where sensors would have 

different capabilities, but was conducted to provide an insight into the effect of the agent 

movement on search area sensor coverage. For example, an agent employing a high turn rate 

strategy could be expected to re-cover already searched space. 

Strategies with slower speeds and high turn rates performed poorly in terms of how much 

coverage they provided of the search space across all three time periods. Although Figure 90 

indicates slightly different performance, straight-line search and ACS can be regarded as 

offering the same level since ACS uses the straight-line strategy to search in the absence of a 

recently detected target. These differences were purely due to the stochastic nature of the 

search. Brownian search was outperformed by its near relative, Levy search, due to Brownian 

motion's higher probability of direction change whereas Fruit fly search left less uncovered 

area than Saltatory search due to its increased speed during the intensive search phase 

(compare Figure 20, page 76, and Figure 25, page 80). In a reversal of the Levy / Brownian 
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relationship, random search covered the area more effectively than straight-line because the 

long leg lengths of the latter left large areas uncovered. 

It should be noted that since these results represent actual agent presence, rather than sensor 

coverage, the performance of the deterministic agents reduced as time increased because they 

began to recover space. although. as the indicative sensor coverage plots below show; sensor 

coverage would be more complete. 
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Figure 90. Summary of mean ranking results for strategy coverage quality over short (1000 moves), 
medium (5000 moves) and long (10000 moves) periods. 

Indicative sensor coverage maps (Figure 91 to Figure 96) of a single agent over a given 
period were produced for all search algorithms. The plots clearly illustrate that strategies with 
faster speeds and reduced turn rates cover the search area with less repeat coverage than 

slower, high turn rate strategies, these findings generally supported the quantitative coverage 

quality results shown above. Worthy of note from these results is the increase in coverage 

shown by the bacterial search upon detection of a target (Figure 95). 
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Figure 91. Indicative sensor coverage of a single agent using, left: random search movement; right: 
systematic search movement. 
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Figure 92. Indicative sensor coverage of a single agent using, left: Brownian movement search; right: 
Levy path search movement. 
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Figure 93. Indicative sensor coverage of a single agent using, left: straight-line search movement; right: 
saltatory search movement. 



Figure 94. Indicative sensor coverage of a single agent using, left: ACS in extensive search phase (prior to 

target detection); right: ACS in intensive search phase (lost target capture). 

10 1ý k- 

Figure 95. Indicative sensor coverage of a tingle agent using, left: bacterial search (prior to target 
detection; right: bacterial search (during target detection). 

Figure 96. Indicative sensor coverage of a single agent using, left: fruit fly search; right: spiral search 
(note: the gaps would be covered by agents travelling on the opposite spiral). 

However, notable are the deterministic search patterns which, where a single agent is 

employed, appear to cover the search area much better than Figure 90 would suggest. This 

was because where more agents were in use, as for the agent coverage experiment, the 
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deterministic searches included significant amounts of path re-coverage because all the 

agents were following the same routes. Figure 97 shows how, where a single target is in use, 

spiral is, as Figure 96 suggests, easily the most effective method of covering a given search 

area. 
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Figure 97. Summary of mean ranking results for sensor coverage of a single agent over 5,000 step wise 
moves. 

Comparing the results of the sensor coverage experiments with those of the static and 

dynamic target search experiments, it can be seen that the strategies that provide good 

coverage perform well in small swarms looking for static targets whilst those that applied 

high turn rates (and therefore lower search area sensor coverage) performed better in larger 

groups against dynamic targets. 

5.7 Energy Efficiency 

To assess the relative fuel efficiency of the strategies, 20 agents were initialised in a fixed 

pattern across the search area in the same manner as the agent coverage experiments (as 

described in Section 5.6). All agents moved for 1000 iterations without the presence of a 

target and the energy requirements recorded, the lowest score being the most efficient (see 

Section 4.5.4, page 92, for a description of the metric calculation). Efficiency information is 

important since the agents could be required to defend the search space for long periods 

without the presence of targets and more efficient strategies would enable agents to remain 

operational for longer before returning to base for refuelling. 
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Search Mean Std. Dev. Search Mean Std. Dev. 

Bacteria 540.66 0.56 ACS 1009.83 0.72 

Salt 691.57 7.54 Straight 1009.90 0.74 

System 1002.85 0.23 F_Fly 1012.67 0.41 

Spiral 1007.41 0.29 Levy 1032.11 1.02 

Random 1007.51 0.15 Brownian 1037.75 0.60 

Table 2. Mean energy consumption. 

In search energy efficiency tests (without the presence of targets), bacterial and saltatory 

search dominate due to the reduction in velocity (Table 2). Aside from those two cases, all 

other strategies maintained a constant speed, and, therefore, the high turn rates of Levy and 

Brownian predictably had the highest energy requirements. The saccade phase of the fruit fly 

search imposed heavy energy needs % hen compared with the two deterministic patterns that 

were the only other strategies to include in-built straight legs. Whilst ACS and straight line 

searches were almost identical due to ACS utilising straight line searching during pre- 
detection search. Conversely, spiral and random search requirements were similar since, 

although random search turned more frequently, all other things being equal, it had a smaller 

mean turn angle. Standard deviations were all similar with the exception of saltatory search 

whose increased deviation was due to the stochastic, chronological switch between low and 
high turn rates. 

It should be borne in mind that this test covers a limited period, and as search times increase, 

the differences would grow wider. Furthermore, in a target-laden environment ACS 

efficiency would increase on detection since although an agent increases its turn rate, it 
decreases its speed at the same time. 

In real terms these results indicate that, using the energy requirements implemented for this 

research, there should be a direct correlation between time taken to destroy the targets and the 

energy requirements for the search, since no strategy has significantly larger energy 

consumption. To verify this, Pearson correlation coefficients were calculated for a cross 

section of scenarios (see Table 3) and the strength of the correlation confirms that increased 

performance (i. e. shorter times) does not come at the expense of energy. 
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Single target Four targets 

10 at 0.5 10 at 1.5 20 at 0.5 20 at 1.5 10 at 0.5 10 at 1.5 20 at 0.5 20 at 1.5 

Brownian 0.948 0.956 0.949 0.963 0.933 0.940 0.939 0.957 

Deterministic 0.982 0.983 0.982 0.985 0.968 0.956 0.978 0.980 

Fruit fly 0.964 0.984 0.974 0.983 0.937 0.970 0.949 0.978 

Random 0.952 0.977 0.974 0.980 0.928 0.966 0.955 0.975 

Table 3. Pearson Correlation Coefficients between time and energy results for swarms of 10 and 20 

agents against Brownian, deterministic, fruit fly and random movement targets travelling at 0.5 and 1.5 
times agent maximum speed. 

5.8 Predictive Memory System Where No Occlusion or Communication 

Failures Occur 

In previous sections, the performance of the agents has been shown to improve through the 

application of a variety of nature inspired search strategies without memory of targets that 

were lost following detection. This section reports findings of applying the PMS in 

conjunction with those search strategies in scenarios where no occlusion or communication 
failures occur; that is, detection loss only occurs due to the target moving faster than the 

agent can track. The five PMS strategies (predictive-C, predictive-V, direct search, crosswind 

casting and saccadic) were applied to examine the effect of maintaining target memory on 

overall performance. For this purpose, 10 agents searched for 4 dynamic targets having 

relative speeds greater than maximum agent speed and a range of movement patterns. Only 

faster than agent target speeds were considered for PMS experiments where no other factors 

influenced detection (i. e. no occlusion or communication failures) since agents are able to 

maintain detection of targets moving at relative speeds equal or less than the agents' 

capability without the use of a PMS. In summary, 10 agents applied all of the initial search 

strategies with LSZ neighbourhood swarming enabled and predictive-C PMS, predictive-V 
PMS, direct PMS, crosswind casting PMS and saccadic PMS against 4 deterministic targets, 
4 Brownian motion movement targets and 4 fruit fly targets each having a relative target 

speed of (1.5,2.0). 
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To illustrate general findings results from all initial search strategies and relative target 

speeds have been combined and presented below. the full breakdown of results can be found 

in Appendix 3. 

The first series of experiments applied the search strategies. LSZ and PMS against 4 

Brownian motion targets; Figure 98 indicates that only crosswind casting PMS improved 

performance, whilst the remainder actually performed less well than the system with no 

memory. These results indicate that for higher speed targets. under circumstances where 

targets are only likely to `disappear' due to their destruction. committing valuable assets to 

find lost targets can be counter productive since the agents would be better employed 

continuing to search for other targets. Crosswind casting was the exception since agents 

engaging in the reacquisition search continued to search space away from the predicted 

position and each of them could be searching a different area. That is, the search was not 

wasted since there was just as much chance that other targets may be found, and in cases 

where the target had not been destroyed. the losing agent and any other nearby agents would 
be likely to redetect it due to the casting movement of the search. 
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Figure 98. Summary of overall target reacquisition performance against 4 Brownian motion targets 
where no occlusion or communcation failures occur. 

Where targets moved more predictably, the strategies that were most dependent on targets 
following the same path performed best (see Figure 99). It should be noted that in this 
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scenario, due to their more ranging movement. targets were likely to outrun initially detecting 

agents and as such agents engaging in reacquisition activities were more likely to looking for 

an existing target than where targets followed Brownian motion movement patterns. 

Again the circular strategies performed worse than no PMS due to over commitment. despite 

shortened giving up times, whilst crosswind casting still performed better than none although 

by a smaller margin. This time, however, the improved performance was produced due to the 

occasions where the agents were moving toward the predicted path as the target passed by. 

allowing redetection to occur. 
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Figure 99. Summary of overall target reacquisition performance against 4 deterministic targets where no 
occlusion or communcation failures occur. 

As noted during the parameter tuning experiments, predictive-V PMS performance against 
fruit fly targets was particularly weak due to a combination of the targets' propensity to 
deviate large distances from their predicted path and the large giving up time selected to give 
the advantage against predictable targets (see Figure 100). Although using the same giving up 

time, crosswind casting did not suffer in the same way; in fact, it was the best performer, due 

to the agents that were engaged in reacquisition search spending larger periods of time 

searching areas away from the predicted path, as noted for Brownian motion targets. The 

circular neighbourhood strategies (direct and predictive-C) also performed better. This was 

due to a combination of their short giving up time, which meant that in cases where the target 
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had moved out of the area following an inter-saccade move, they did not waste time 

searching for targets that were not there, and where targets remained in the locality but were 

behaving very unpredictably the circular neighbourhood meant that agents approached the 

area from several directions. 
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Figure 100. Summary of overall target reacquisition performance against 4 fruit fly movement targets 
where no occlusion or communcation failures occur. 

5.9 Predictive Memory System Where Targets Become Occluded 

Following experimentation without any additional factors, the five PMS strategies were 

applied to examine the effect of maintaining target memory on overall performance against 

occluded targets. Again, 10 agents were pitted against 4 dynamic targets having a range of 

relative speeds and movement patterns; in this part of the study, however, relative speeds of 
less than agent capability were included since occlusion could occur under any agent - target 

relationship. Upon initial detection, the targets were occluded from the detecting agent either 

permanently (permanent occlusion), simulating agent sensor failure during detection, or 

temporarily (temporary occlusion), which simulates temporary obscuration of the target to the 

detecting agent. In summary, 10 agents applied all of the initial search strategies with LSZ 

neighbourhood swarming enabled and predictive-C PMS, predictive-V PMS, direct PMS, 

crosswind casting PMS and saccade PMS against 4 deterministic targets, 4 Brownian motion 
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movement targets and 4 fruit fly targets each having a relative target speed of {0.5,1.0,1.5, 

2.0} with permanent and temporary occlusion applied. 

The following sections present the results of the application of the various PMS strategies for 

permanent and temporary occlusion. Findings have been combined in the same manner as the 

those of the PMS strategies where no occlusion or communication failures occur, with full 

results presented in Appendix 4 for permanent occlusion and Appendix 5 for temporary 

occlusion. 

5.9.1 Permanently Occluded Targets 

Against Brownian motion targets (Figure 101) the two predictive tracking strategies and the 

direct search were shown to perform the best. Where results are further broken down into the 

four target speeds (see Appendix 4) it can be seen that the V shaped neighbourhood of 

predictive-V was stronger at slower target speeds. This variation was caused by the over 

commitment of the direct swarm at slower speeds; i. e. there was no need for the relatively 

large numbers of agents to commit to the reacquisition search since the target would not have 

moved far from where it was last detected. Where speeds were increased, the target would 

still not have moved far from its last known location and thus the direct search was more 

profitable since the predictive-V would have been unreliable due to the high turn rate of the 

target. This same rationale explains the predictive-C strategy's competitive performance 

across the range of relative speeds; at lower speeds it ensured that cooperating agents were 
directed to the area (although moving them away from areas that may have contained as yet 
undetected targets), conversely, at higher speeds the prediction of the occluded target was 
more likely to be inaccurate and thus agents would have been directed away from the actual 
target location but the extended neighbourhood area increased the likelihood of the target 
being re-detected. 
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Figure 101. Summary of overall target reacquisition performance against 4 Brownian motion targets 

where permanent occlusion occurs. 

Where target behaviour was more predictable, as for deterministic targets (see Figure 102), 

the strategies that only committed agents that were likely to be able to re-detect held the 

advantage, whilst techniques that committed agents that were unlikely to succeed. That is, the 

circular neighbourhoods (predictive-C and direct search), were less successful because they 

needlessly moved agents away from areas that may have contained other, undetected, targets. 
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Figure 102. Summary of o. crall target reacquisition performance against 4 deterministic targets where 
permanent occlusion occurs. 

Unsurprisingly, following the tuning experiments reported in Section 5.2.4, the predictive-V 

strategy did not perform well against fruit fly targets (Figure 103). Such performance 

occurred because, despite the movement type's long inter-saccade leg lengths, the 

unpredictable heading changes and switches to the short saccades mean the target is unlikely 

to be in the vicinity of its predicted location. This was in contrast to the other predictive 

neighbourhood, predictive-(', which, although not the best, remained competitive due to the 

target's propensity to switch into its intensive search mode (and therefore agents being drawn 

in from behind the target's last known position would be likely to detect it on their way to the 

predicted position. as was the case against Brownian motion targets). Agents applying 

saccadic reacquisition search were successful fier similar reasons, except where targets 

remained on a long leg the agents that were able to intercept them changed their route to do 

so; where the target switched to intensive search - or was already in that phase when they 
became occluded - the agents would have moved back along the predicted track to the 
intensive search area, thus increasing the likelihood of re-detecting the target. 
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Figure 103. Summary of overall target reacquisition performance against 4 fruit fly targets where 

permanent occlusion occurs. 

5.9.2 Temporarily Occluded Targets 

When occlusion was less permanent, as simulated in temporary occlusion, the direct search 

became more prominent against Brownian targets (Figure 104, full results can be found in 

Appendix 5) because the agent that last detected the target maintained its focus on the area 

where the target was lost; in Brownian motion targets this was likely to remain a good area to 

search because the target would not move far away from the area. 
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Figure 104. Summary of overall target reacquisition performance against 4 Brownian motion targets 
where temporary occlusion occurs. 

Against deterministic targets (Figure 105), the results remained similar to permanent 

occlusion due to the predictability of the targets. Although, the direct search strategy did not 

perform as strongly for the same reason that it improved against the Brownian targets: the 
losing agent remained in the area, this time unproductively, where it could have moved on to 
detect other targets. 
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Figure 105. Summary of overall target reacquisition performance against 4 deterministic targets where 
temporary occlusion occurs. 
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Finally, where the targets once again present an element of intensive searching. as found in 

fruit fly movement, the memory systems that lead agents to the memorised location, whether 

that be the last known or predicted new location perform best (see Figure 106). 
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Figure 106. Summary of overall target reacquisition performance against 4 fruit fly targets where 
temporary occlusion occurs. 

5.10 Predictive Memory System When Communications Failure Occurs 

Similarly to the occlusion experiments, the PMS was again applied to examine the effect of 

maintaining target memory on performance, this time in a scenario where differing levels of 

communications failure occurred. Also, since the relative merits of the PMS type to target 

movement have already been ascertained for the occlusion experiments, only the best overall 

performing strategy (predictive-V) was applied against deterministic targets for this 

comparison. To allow a wide range of failure to occur, 20 agents were employed in the 

swarm, varying numbers of which suffered communications failures. These were pitted 

against 4 deterministic targets moving at various relative speeds. Communications failures 

were either intermittent or permanent; where they were intermittent each random outage 

period (in the range [10,20]) was followed by an equal period of serviceable communication. 

In summary: 20 agents applied all of the initial search strategies with LSZ neighbourhood 
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swarming and predictive-V PMS enabled; 4 deterministic targets moved with a relative target 

speed of (0.5,1.0,1.5,2.0); and temporary and permanent communication failures occurred 

where 4,8 and 12 agents were affected. 

Subsection 5.10.1 provides results where differing numbers of agents have permanent 

communication failures and Subsection 5.10.2 those where agents temporarily lose contact as 

might be the case in environments where electromagnetic noise or physical features 

intermittently interfere with the agents' ability to send or receive signals. Full results that 

were combined for presentation here can be found at Appendix 6 for permanent failures and 

Appendix 7 for failures that were temporary. 

5.10.1 Permanent Failure 

Figure 1076 shows that, where targets were moving slower than the agents, failures made no 
difference due to the detecting agent always being able to get sufficiently close to the target 

without the need to cooperate with other agents. At equal target speeds or greater, the system 

always took longer to detect and destroy targets with fewer cooperating agents (those with 

serviceable communications systems). At greater speeds, the cooperation requirement is 

obvious since the target could simply outpace the detecting agent; at equal speed, cooperation 
was still required since the only time an agent could reduce the distance between it and the 
target sufficiently for the agent to get close enough to destroy it was when the target turned 

and the agent could `cut the corner'. Furthermore, and possibly counter-intuitively, at greater 

speeds, the PMS had a greater advantage with fewer failing agents. This was because the 
PMS can only operate when potential cooperators have received a signal informing them of 
the target presence prior to it escaping detection, thus with more communicating agents the 
likelihood of this occurring was greater. 

6 It should be noted that the significance analysis, reported in Appendix 11, indicates that the differences 

between the PMS and the non-PMS results at equal and lower speeds were not significant. 
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Figure 107. Summary of performance where permanent communication failure occurs in 4,8 and 12 

agents against targets moving at 0.5,1.0,1.5 and 2.0 times agent speed. 

5.10.2 Temporary Failure 

Where temporary failure occurs (see Figure 108), performance is not improved at target 

speeds of less than or equal to that of the agent. At slower speeds, cooperation was not 

required and at equal speeds the target could not out pace the agent and therefore intermittent 

communication was sufficient to enable cooperation. Once targets could out pace agents the 

memory system held a clear advantage since, in scenarios where target speed was faster, 

reacquisition can assist agent cooperation because their continued active pursuit during the 

intermittant communications loss places them in a stronger position to intercept, or at least 

redetect, the target. Notable in Figure 108 is the PMS strategy's consistent performance 

regardless of the numbers of failing agents. This was because of the intermittent nature of 

signal loss, when communication was restored the agents could update their knowledge and 
behaviour based on known data rather than prediction. 
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Figure 108. Summary of performance where temporary communication failure occurs in 4,8 and 12 

agents against targets moving at 0.5, I. 0,1.5 and 2.0 times agent speed. 

If the actual results for an indicative scenario are examined (Figure 109), it can be seen that 

some initial search strategies benefit more than others from the application of the PMS. This 

is because strategies such as straight-line (and therefore also ACS, because it initially applies 

straight-line search) and fruit fly search would continue on the same path for a short period of 

time following loss of detection. Hence, cooperating agents that behave in this manner, i. e. 

continuing on the same path during intermittant detection loss, have a secondary benefit of 

increased likelihood of intercepting targets where information regarding their location is lost 

intermittantly without having to apply a PMS. 
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Figure 109. Results for 20 agents against 4 determinstic targets travelling at 2.0 agent speed where 
temporary comunication failure occurs in 8 agents. 

5.11 Statistical Significance 

Statistical significance analysis was performed on the test results as described in Section 4.6 

(page 92) and tables of significance test outcomes are included in Appendix 8 to Appendix 

11. Findings are summarised here. 

Results for all static target experiments were significant, as were dynamic targets with the 

exception of the results where the difference between better and worst performers were 

compressed, for example, in cases where targets applied Brownian motion movement. In 

such instances, the differences between best and worst performers were always significant; 
however, comparisons between strategies that were less differentiated became less 

significant, sometimes to the point of being insignificant. 

All efficiency results were significant, as were the PMS results where no occlusion or 

communication failures occurred, with the one exception of none against predictive-V where 

targets were moving using Brownian motion. Similarly, results were significant for 

permanent and temporary occlusion. Communication failures were found to provide the least 

significant results of all the experiments, with relative speeds of 1.0 or less not being 
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significant, and only the largest relative speeds always producing significant differences. 

These finding were to be expected, since the agents could still detect the targets even if they 

could not communicate the information, so at lower speeds the cooperation was less 
important. 
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6 Discussion 

This section reviews the findings of the research. It should be borne in mind that these 

findings can only be regarded as general trends that should hold across a broad spectrum of 

autonomous vehicle search. In real-world applications a variety of practical considerations, 

including environmental conditions, vehicle characteristics and sensor capabilities would 

need to be made. 

Before pursuing the main body of the investigation, a variety of tuning experiments were 

carried out. This work in itself yielded some surprising results, particularly the sensitivity of 

the V shaped PMS neighbourhood compared to that of the LSZ neighbourhood. When 

viewed as if the predictive tracking of the PMS were an agent tracking the target and 

communicating the target location to cooperating agents, one would expect the optimal 

settings for both mechanisms to be similar, given the identical environments, with the PMS 

possibly requiring a wider arc of inclusion to allow for target heading changes. This did not 

prove to be the case; both wider and narrower angles producing only small gains that were 

very different from the optimal, whereas in the LSZ mechanism the settings produced much 

smaller differences from the optimum. The difference between the two can be explained by 

the fact that in the LSZ case, the target is definitely present. Agents finding themselves in the 
LSZ have a good chance of detecting the target, wider or narrower angles simply reduce the 

availability of agents for further target detection (less agents in initial search mode, although 
once the target is destroyed they immediately return to initial search mode) and reduce the 
likelihood of an agent receiving cooperative assistance respectively. When the PMS was in 

operation, the target was not guaranteed to be at the predicted location and, therefore, whilst a 
wider angle may have assisted when the target did not remain on the predicted path but only 
moved a short distance away, e. g. for a switch to intensive search, where the target changed 
direction completely, the additional resources were being committed needlessly. To 

compound matters further, the agents were committed to the search for the entire giving-up 
period. When the angle was narrowed the effectiveness was reduced due to the 

unpredictability of the target; common sense would dictate that where targets can be 

guaranteed to follow a given path then narrower angles would be suitable. 

During GUT tuning it became necessary to switch from fruit fly target behaviour to 
deterministic movement. This was again due to unpredictability; where an occluded target is 
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unlikely to continue on its path it becomes more effective to give up quickly and re-allocate 

resources to initial search behaviour than to continue with prediction. Following the switch of 

target behaviour to a more predictable movement pattern the optimal GUT increased 

substantially. These findings held for V shaped neighbourhoods (predictive-V and crosswind 

casting); where circular neighbourhoods were employed, both direct search and predictive-C, 

shorter GUT times remained optimal. For direct search, this was because the search focuses 

on where the target was last detected; the only requirement is that agents conduct a passing 

search of that area. These findings are in keeping with observed natural behaviours such as 

observed with the short-tailed hawk (Ogden, 1974). In circular predictive tracking, 

predictive-C, the GUT time had been expected to increase with target predictability inline 

with that of the predictive-V neighbourhood. However, this did not occur because the 

additional resource commitment required by the neighbourhood in situations where targets 

were no longer present, or unassailable because they were moving away from the agents, 

incurred a penalty for the extended GUT that made it less attractive. 

Moving on to the findings from the static target search, results indicate that where items are 

clustered, the switch to an intensive search strategy increased performance markedly. 

However, the difference in performance between the locate-only and locate-and-destroy 

results for the ACS indicate that it is not effective to switch strategy until any other potential 

targets are likely to fall within sensor range. This was the factor that separated the ACS 

performances in the two experimental settings; during locate-only the agents switched to 

intensive search and unless the additional targets happened to be close by, the intensive 

search did not range sufficiently for the additional clustered targets to be detected. Where the 

agents were required to get closer to the target to destroy them the switch occurred nearer to 

the centre of the cluster and the short ranging nature of the intensive search was sufficient to 
detect targets most of the time. Comparison of actual results (as opposed to mean rankings) 
between locate-only and locate-and-destroy indicated that where search strategies did not 

move agents across the search space quickly, for example in Brownian motion search, if 

targets were clustered the strategies benefited from being drawn into the cluster. This was 
because once the target was destroyed, the agent returned to the high turn rate movement and 

generally located other nearby targets. 

In ACS, the switch to a more appropriate search technique was based on the knowledge that 

there was an increased likelihood of target presence; however, the switch does not have to be 
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restricted to target detection. Saltatory search in the simulation %,. -as time based, and whilst 

this does occur in nature, as seen in polecats (Lode, 2000), other factors could be used. For 

example, Zamon (2001) describes seals switching to a more localised intensive search based 

on tidal patterns (to exploit salmon runs), whilst some animals switch itch to stationary intensive 

search due to sensory deficiencies whilst moving (O'Brien, 1989) and others due to 

environmental factors such as vegetation densities, as occurs in marmosets (Souto, 2007). As 

noted in the Section 4.2, saltatory search was denied its ideal environment where targets are 

hidden. Considering this, the strategy performed consistently across the range of agent - 

target relationships investigated. This consistent 'mid-table' performance was due to the two- 

phase nature of the behaviour, with the extensive search using straight-line search and the 

intensive phase using Brownian motion. It would have been possible to improve the overall 

performance using a Levy path intensive search, which would have maintained some 

plausibility but would have moved away from the literature and arguably could also have 

been misleading since the marginal difference in performance gain in this environment could 

be lost in a target environment where the more intensive nature of Brownian motion could be 

more effective in finding hidden targets in, for example, dense vegetation. 

When searching for dynamic targets, the results could be considered counter-intuitive in that 

where a target ranges about the search area at faster speeds it becomes more effective for the 

agent to range less and expend more energy in ensuring that when a target does enter within 

sensor range that it is detected, i. e. the sensor is covering the maximum new area in each 

move. This should not be confused with the overall search coverage as described in Section 

5.5; in the case under discussion it refers to the amount of coverage within a small number of 

time steps. For a given time step there will be an amount of repeated sensor coverage; where 

an agent is travelling in a straight line the repeated coverage will be higher than if it turns 
(assuming sensor range is longer than its field of view). Where a target is moving quickly 

through the search area it is more likely to be detected the more sensor coverage that is 

achieved during the short time it could be detected. This relationship holds across the entire 

range of dynamic experiments: it is the amount of target ranging across the search area rather 

than the actual target speed that dictates the most appropriate strategy to detect it. A 

comparison of the strategies' performance against deterministic targets and Brownian motion 

targets highlights this. 
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The ratio of swarm size to target numbers was also found to influence relative strategy 

effectiveness, which was particularly evident against random moving targets. Compare 

Figure 71 and Figure 72 (page 128), where high turn rate strategies became more effective at 

much lower speeds when only one target was present than against four. Observations of the 

searches in progress revealed that this was because there was a higher chance of at least one 

of the targets operating in a sparsely populated area of the search space. This was supported 

where greater numbers of agents were in use; the crossover point where high-turns become 

more profitable occurred at slower speeds because there was less chance of targets being 

remote from all agents. This was particularly true when the bacterial movement search 

strategy was in use because of its reduced speed prior to target detection. 

When agents applied a Predictive Memory System to attempt target reacquisition, with no 

occlusion or communications failures occuring, it was found that oftentimes the PMS 

retarded search performance. This was usually where the target was moving unpredictably 

and fast such that where detection was lost the agents prediction of target location was 
innaccurate. Where targets behaved more predictably, strategies that had been tuned to take 

advantage of predictability increased agent performance dramatically. Conversely, where that 

predictability was not forthcoming strategies that relied less heavily on prediction accuracy, 

particularly crosswind casting, held the advantage. 

During permanent occlusion, and where the target was following Brownian motion, it was 

seen that all PMS types improved performance over using no memory. Intuitively for 

Brownian motion targets one might have expected a direct strategy to be the best performer 

since the target would not move far from the last detection location. However, the agent to 
target ratio was low and therefore the neighbourhood shape could commit a relatively large 

number of the agents to the reacquisition search. In the predictive-V, although the target may 
have changed direction, it would not have moved far, therefore, the co-operating agents 
would move into the right area, and as such, even where the reacquisition search was 
unsuccessful the switch back to the initial search could re-detect the target. These arguments 

are supported by the performance of the predictive-C system which, having the drawbacks of 
both related systems, performed worse than both. The two other systems, crosswind and 

saccadic suffered because of the unpredictable nature of the target, the former would not 

move the agents toward the target's location and the latter altered the agents' route down the 

route least probable to encounter the target for the target movements adopted. 
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Against deterministic targets the predictive-V continued to dominate since the agent was 

usually predicting the target's path. Crosswind and saccadic systems performed relatively 

better because the target was now moving toward the agents. Unfortunately, for the 

crosswind system the agents were often not facing the target as it passed by. In nature, 

crosswind casting is used to re-detect targets that have a broad signature (e. g. a plume of 

odour) by changing to a perpendicular movement the animal increases its chance of regaining 

detection. Where the target is relatively small, as in the simulation, such behaviour actually 

reduces the possibility as the target passes by. A further noteworthy point to be made 

regarding the positioning of the agent during crosswind casting (in a real implementation) is 

that it could place the vehicle in a position vulnerable to counter-attack by the target since the 

search places the vehicle perpendicular to the target track. The direct and predictive-C 

systems once again suffered due to the over commitment of system resources, with the latter 

performing better due to the generally correct prediction of the target location. 

The surprisingly poor performance of the V shaped system against fruit fly targets where 

permanent occlusion occurred could be regarded as a warning about over-tuning a system to a 

particular type of target. During the tuning experiments the GUT was found to be very short 

against fruit fly targets but very long against deterministic targets. Since the agents did not 
have a learning mechanism that allowed them to select an appropriate GUT based on the 

target movement type they applied an inappropriately long amount against targets that were 

often not following the path they were last detected on. This was not so problematic for the 

saccadic system since those agents gave up after finding the target was not following the 

predicted path from its last known location. However, oftentimes the fruit fly targets did 

apply long leg lengths which meant that the saccadic system was worthwhile. The other three 

systems, whilst better than nothing, still suffered from the same issues as discussed for other 
target types (over commitment, agents facing wrong direction, etc. ). 

When an agent could re-detect the target it had lost, results changed significantly. Against 

Brownian motion targets the direct approach worked best because the agent remained 

searching in the area that it last detected the target and when the occlusion ceased it was able 

to attack; of course, the same was true for permanent occlusion except that re-detection never 

occurred and the opportunity was lost. 

Continuing with temporary occlusion scenarios, where deterministic targets were operating, 

the predictive-C system held the advantage over the predictive-V system because when an 
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gent detected a target that was moving away from it, remembering that results include 

irgets moving slower than agents, it remained in the reacquisition neighbourhood; in the 

predictive-V system that was not the case and even when an agent was capable of `chasing 

town' a target it had lost it would not attempt to because it was not in the qualifying 

ieighbourhood. The remainder of the systems held their relative positions. 

[n the final occlusion based PMS experiments, against fruit fly targets where temporary 

occlusion occurred, the circular neighbourhoods were best performers. Again, this was 

because of the inter-saccade phase where targets did not range far (in the case of direct 

search) and the ability of the predictive-C scheme to chase down targets travelling away from 

them at the time of occlusion. V shaped neighbourhood systems did not suffer as much where 

targets could be reacquired by the losing agent because quite often the agent would be in the 

neighbourhood and be able to reacquire the target before it moved out of sensor range. 

Looking at situations where communications failure occurs, the benefits of applying a PMS 

are diminished where target speed is less than that of the agent. At these lower target speeds, 

the initally detecting agent has the capability to continue with the interception without the 

assistance of other agents; it is at faster relative speeds where cooperation becomes necessary. 

Where cooperation is required, the use of the PMS allows cooperating agents to continue 

with the interception, with the same caveats as placed on reacquisition with occluded targets. 

That is, the success of the strategy is dependent on target predictability and speed, and, where 

a PMS is applied unnecessarily, the commitment of cooperating agents can reduce the overall 

performance of the system because those agents would have been better used searching for 

other possible targets. Where the information supplied to cooperating agents is intermittant, it 

was found that some strategies did not benefit from applying the PMS, since their intial 

search behaviour ensures their movement continues toward a target and the intermittant 

information is sufficient to keep them on course to intercept the target. 

Efficiency of operation is vital for all vehicles working in hostile environments, even more so 

for autonomous vehicles. Indeed, in an interview with Avionics magazine (Carey 2007) Dr 

Darryl Pine, Professor and Chair of the Department of Aerospace Engineering at Maryland 

University, argued that the biggest challenge in developing NAVs was the "efficiency in 

power conversion, whatever the power source... ". In this work, a generic vehicle model was 

implemented based loosely on existing aircraft heuristics. These would not hold in many 

target applications and could vary largely; e. g. a tracked ground based vehicle would have 
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larger turn penalties than Honeywell's, ducted fan driven, T-Hawk. Such considerations 

could assist potential natural search implementers in their strategy selection. For example, let 

us consider a ground based search problem where the target is likely to be following straight 

trajectories, could be moving faster than the search vehicle and the terrain is such that a 

tracked vehicle would be most appropriate. Reviewing the search results for deterministic 

targets (Figure 64 et al., page 124), Brownian motion would seem to be the most appropriate 

selection. However, in terrain that requires tracked vehicles, it is likely that refuelling could 

be a non-trivial task and therefore a Levy path based search may be attractive since it offers 

similar performance with lower turn rates and is thus more efficient. Where turning is less 

expensive, a bacterial inspired search could be a more favourable option despite being 

slightly sub-optimal in terms of the search scenario, since it requires almost 50% less energy 

due to its speed reduction. 
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7 Summary and Conclusions 

This section provides a general summary of the research conducted, key conclusions, and a 

review of the contribution to knowledge. 

7.1 Summary 

This work has reviewed some of the natural search strategies that have evolved to assist 

animal predatory behaviour; it then implemented the more pertinent behaviours in a simple 2- 

dimensional simulation environment %%here their performance was compared against a variety 

of target movement types (agents had no a priori knowledge of target behaviour). 

Performance against static targets was shown to be dependent on target distribution, swarm 

size and, to a lesser extent, target density. Furthermore, there arc conditions upon which the 

type of search becomes irrelevant, such as where defensive groups arc oversized and target 

speeds are too fast; it could be argued that under these circumstances it would be most 

profitable to use the most fuel efficient strategy. 

Against uniformly distributed static targets, agents that apply strategies to cover unchecked 

space performed best (i. e. spiral for small groups and straight line for large groups). 

Somewhat surprisingly, the systematic grid pattern did not perform well; this was considered 

to be due to the amount of path crossing, and, hence, overlapping search effort. 

Where items were clustered, ACS dominated due to its switch to intensive search following 

target destruction, supporting previous results from research in ecological modelling (Baum 

and Grant, 2001). In keeping with its natural inspiration, the initial ACS search phase was 
implemented as the ranging straight line search (hence, the two strategies had similar 

performance against uniformly distributed targets); however, where the goal is to produce the 

most effective overall strategy, initial target detection for small groups would be more 

expedient using the spiral search, as discussed above. 

Giving-up-time (GUT) is important when implementing a bi-phase intensive-extensive 

strategy, since fruitless intensive search is temporally inefficient and, conversely, insufficient 

intensive search in a patchy environment can also be detrimental to performance. GUT is not 

the only factor in a bi-phase strategy's success and, although generally competitive, saltatory 

search was not as successful as may have been expected, since it is designed to work where 
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targets are hidden. It could have been improved by including a switch to intensive search 

based on experience as well as time. Nature does provide examples of this (e. g. harbour seals 

utilising a combination of tidal pattern and ocean topography to switch foraging strategy 

(Zamon, 2001)). A priori information is useful in such situations, although long term searches 

in stable environments could implement a learning strategy based on experience. Krakauer 

and Rodriguez-Girones (1995) indicated that such an approach was possible using a Bayesian 

learning rule. 

Consistently high turn rates are not good in search of uniformly distributed static targets 

because they tend to re-cover search space. Bacterial search particularly suffers due to its low 

effective speed. This effect is not so problematic against clustered targets, since the low turn 

rate strategies tend to miss targets, whereas higher turn rates will usually result in the 

destruction of the whole cluster. 

In dynamic environments, the increase in sensor coverage caused by the increased turn rates 

of some strategies made them more effective. As target speed increased with respect to the 

agents' maximum speed this became more important since the targets were more likely to 

move into sensor FOV. Where targets were slower, i. e. less than the agents' speed, the 

agents' speed was also influential, since it increased the likelihood of the agent moving to an 
area containing a target. Across all ranging target movement strategies it can be seen that 
high turn rate search strategies improved their relative performance rapidly, and dominance 

was maintained though to target speeds that were twice that of the agents. Saltatory search, 
with its time based bi-phase search, maintained good performance across all target types and 
speeds. In addition, it was noted that this strategy conserved energy through slower search 
speed, and, therefore, could increase efficiency with minimal loss of effectiveness. 

Where detection was lost, the application of predictive memory systems was shown to 
improve systemic capability, although once again the agent - target relationship was seen to 
be important in how much improvement was gained. When targets behaved predictably, then 

predictive tracking only applied by agents finding themselves in aV shaped neighbourhood 

performed best. This was also true for targets that were less predictable but did not range far 
from their last known position. Targets that did move away from the area quickly were best 

dealt with by predictive tracking with circular neighbourhoods or saccadic behaviour with 

shorter giving up times. However, the application of a PMS was seen to be inefficient when 

applied unnecessarily since, once committed to the pursuit of a memorised target, the 
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likelihood of an agent detecting other targets is diminished due to the reduction in the turn 

rate of the agent; i. e. the agent starts to move in a straight line to intercept the target which, it 

has been found, is generally less effective in scenarios with moving targets. 

It should also be noted that this study was not intended to be exhaustive in its exploration of 

natural search strategies. For example, it could be beneficial to model local enhancement 

(Hinde, 1956), in which animals monitor other animals (not necessarily conspecific) for 

successful foraging in environments where prey is dense but patchy and those patches are 

widely dispersed, to improve the reaction to the location of clustered targets. 

The strategies explored can be divided broadly into high turn rate searches that do not explore 

the search area widely and low turn rate strategies that range the area with less repeated 

coverage. The results from the sensor based agent simulations concur with the findings from 

ethological research: agents employing high turn rate strategies were more effective against 

faster targets that had low turn rates, and agents using low turn rate strategies were more 

effective against targets that were slower or had high turn rates (ranged less). Furthermore, 

agents that applied multiple strategies, switching between them based on environment 
knowledge could harness the benefits of each. For example, against static targets the agent 

may search for an initial target using a low turn rate strategy before switching to a high turn 

rate where target clustering was suspected. 

The variety of behaviours found in natural systems is reflected in the vast amount of research 
that has only just begun to reveal the complexities that make some species so successful, even 
in challenging environments. As the examples have shown, the success of such species can be 

exploited to produce effective artificial solutions to large and/or complex computing 
problems, such as solving abstract mathematical problems or robot control. In keeping with 
Wolpert and Macready's "No Free Lunch Theorems" (1997), there is no solution that is 
better than any other across all problems, but there may be a given class of problem for which 

an optimal solution can be identified. For example, in an environment where prey items are 

clustered, predators have phylogenetically developed ACS strategies that maximise their 

exploitation of the prey behaviour. Such predatory behaviour, however, is only useful 
because it matches the likely distribution of the prey. If the environment becomes less 

predictable, the predator must be able to adapt or it may well die out. The same could be 

argued when looking to solve the problem of autonomous vehicles search for potential 

targets: where a priori knowledge is available, the most suitable strategy could be employed, 
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but where there is a paucity of such information, either more general strategies have to be 

applied or the vehicles need the ability to learn from the environment in order to be able to 

select or adapt a suitable strategy; where this is not possible the approach may well be sub- 

optimal or not succeed at all. 

7.2 Conclusion 

The aim of this work was to look to naturally occurring search strategies, which have evolved 

over millenia to assist predators in locating prey, apply them in a simulated environment and 

assess whether such strategies could be used to guide autonomous vehicle search. From the 

outset, it was not supposed that there would be a single strategy that would outperform all 

others across the range of target types but that where analogous predator - prey relationships 

existed for a given vehicle - target relationship then, where a priori knowledge exists of the 

target type, that the vehicle (generally termed ̀ agent' during this work) could apply the 

behaviour seen in nature to improve its search performance. The overall conclusions for the 

most appropriate search types are shown in Table 4, for static targets and Table 5, for 
dynamic targets. 

Target 
Distribution 

Agent / Target 
Ratio 

Search Type Example 
Search 

Uniform Low Ranging Spiral 

High High turn rate 
Levy 
flight 

Clustered Low Ranging Spiral 
High Ranging switching to high turn 

rate following target destruction 
ACS 

Table 4. Summary of the most appropriate search types for static target scenarios. 
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Target Type Example Target To Agent Initial Search Example Reacquisition 

Target Speed Ratio Type Search Search 

Predictable 
ranging Deterministic Low High turn rate Le flight Predictive-V 

Brownian 
High High turn rate motion Predictive-V 

Unpredictable fruit fly 

ranging movement tow Ranging ACS Saccadic 
Brownian 

High High turn rate motion Predictive-C 

Brownian Straight 

High turn rate motion Low Ranging line Predictive-V 

High High turn rate levy flight Direct 

Table 5. Summary of the most appropriate search types and reacquisition strategies for dynamic targets. 

In general, it can be concluded that nature inspired search behaviours are potentially valuable 

for autonomous vehicle control, across a wide variety of agent - target relationships. 

Although the cxpcrimcnts rcportcd hcrc arc bascd on sccnarios drawn from a particular 

(military) application domain, it is felt that the use of a minimal simulation environment 

would render the findings more generally applicable to a wide range of domains, military or 

otherwise. 

7.3 Contribution To Knowledge 

This work has provided the first exploratory investigation into the use of natural search 

strategies for improving the initial search performance of autonomous vehicles operating in a 

search role. It has contributed the first review of ethological research into natural search 

strategies from the perspective of potential utilisation in natural computing paradigms. 
Building on that review, and previous work in autonomous vehicle search, advances in 

knowledge have been made in understanding how natural search strategies can be used to 

improve the initial search of autonomous vehicles for a range of target types. Moreover, 

where target detection is lost, either to the detecting vehicle due to sensor failure or 

occlusion, or to cooperating vehicles due to communication failure, novel contributions have 

also been made in understanding how natural reacquisition strategies can assist in re- 

detection. 
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g Further Work 

Considering the richness of the underlying natural metaphors and complexities of the target 

application one can easily imagine many directions for further work. These can be loosely 

grouped into: further development of the strategies directly researched in this thesis; 

extension of the ideas into improved modelling; application of the research into physical 

vehicles; and further mining of ethological research for additional metaphors that could 

improve performance still further. More specifically, further work could include: 

" Further development of the simulation environment to model the 3-dimensional 

world, including environmental features, and 6 degree of freedom vehicle models. 

The difference in performance between initial search and reacquisition strategies 

across the various target movements and relative speeds indicate that an intelligent 

target could exploit knowledge of agent behaviour to employ movement patterns that 

would decrease the likelihood of detection (the development of which could also be 

an area for further work). Development of agent based learning strategies could 

enable swarm agents to switch their own strategy accordingly, making it more 
difficult to exploit the search area. 

" The giving up time of the ACS was fixed and, whilst that was sufficient to show the 

strategy's strength in the simulated environment, in target applications target 

patchiness may be less predictable. Under such circumstances, it would be beneficial 
for the agents to dynamically adjust their GUT based on their experience of 
encountered target distribution or other relevant factors as observed in the natural 
world; for example, inter alia, likelihood of predation upon the predator, as in the 
juvenile plaice (Hill et al., 2000), or seasonal prey abundance, as in European polecats 
(Lode, 2000). 

" Bi-phase strategies were seen to benefit from the advantages of each component 
behaviour and could be employed by all the strategies where a priori information 

indicted that target clustering (or other features that could be exploited by phase 

switching) was likely. 

" The search strategies had to be adapted to suit the scale of the model; the adoption of 

scale-free dynamics (see Reynolds 2005) could produce robust algorithms for use 
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across a variety of platforms operating at different scales, from nanobots to large 

vehicles. 

" Notably, none of the search strategies discussed make use of pre-detection 

cooperation (cooperation is only used post target detection). Searching cooperatively 

could improve the effectiveness of the search but relies on adequate communication. 

If cooperative modifications were applied the results from this work could be used to 

identify effective reversionary strategies for situations in which inter-agent 

communication was lost through environments that were subject to heavy jamming, 

other intense levels of electro-magnetic noise, or other causes of practical 

communications difficulties. 

" In the simulation environment there is nowhere for the target to hide after escaping 

detection, and as such the direct search is much simplified. In more complex 

environments, where the target may be able to hide, it could be beneficial to search 

for longer, possibly including a switch to an intensive search. 

" In this work, GUT and inter-search movements for saltatory and ACS search were 

adapted for the simulation environment. More complex relationships can be observed 
in nature, and these may be of further benefit to autonomous vehicle search. For 

example, in an ACS such as that of hawk owls (Sonerud, 1992) the search variables 

such as move distance between searches and GUT were assigned dynamically 

depending on the bird's current search environment, e. g. a higher perch position led to 

longer GUT and larger move distances between searches. This correlation between 

height and time meant that the available area was searched for a sufficient time but 

not excessively. Moreover, the positive correlation between perch height and inter- 

search move yielded very little overlap occurred between search areas. This strategy 

was believed to have developed because of the bird's poor ability to search whilst 

moving. 

" Finally, the linear prediction model used by the PMS is simplified, and several more 

realistic models are available such as those applied by Erwin (2004) to model sonar 

tracking in bats. Erwin's biomemetic model was unsuccessful in its predictive 

tracking due to the real-time response requirements, which were too short for the 

unscented Kalman filter, and the implementation model, which again was too slow to 

react. However, these issues would be unlikely to present themselves in the typical 
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target applications due to larger timeframes and as such the utilisation of more 

elaborate predictive models could improve system performance still further. 
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Appendices 

Appendix 1- Analysis of Bacterial Search Behaviour 

As described in the background literature, in nature, each bacterium in a group of bacteria 

responds individually on detecting a positive nutrient gradient. HHowever, because the nutrient 

usually extends quickly across the environment containing the bacteria the overall response 

appears to be cooperative with all of the bacteria changing behaviour, to longer and faster 

periods of swimming, almost simultaneously. In this work, the agent behaviour during 

bacterial search was cooperative and as such whilst the group response was arguably the 

same, in that the whole group responds in the presence of a target (where a target represents a 

positive nutrient gradient), the individual behaviour is not the same, since the agents do not 

have to be experiencing the targets to respond to their presence in the search area. 

To assess the impact of including all agents in the switch from a non-target mode of slow 

speed and high tumbling rates to the faster more ranging movement when any of the agents 

detect a target, representative experiments were carried out that applied circular 

neighbourhoods ranging in size around the detected target simulating nutrient patches of 

differing sizes. Neighbourhood sizes began at zero, l. e. as per the natural behaviour where 

only individual bacterium responded to positive nutrient gradients, then increased in size as 

multiples of the sensor range, finally the full agent swarm was included as used in the main 

body of experiments. In the static target scenario a medium sized swarm of 10 agents 

searched for 20 uniformly distributed targets. This setup was used to highlight differences in 

the ranging across the search space during target detection, which could affect system 

performance. For dynamic targets, 20 agents searched for 4 fruit fly targets travelling at 

maximum agent speed (I. e. relative target speed of 1.0). These targets were used because of 

their two phase movement that both ranged across the search area and included periods of 
high turn rates. To summarise: 10 agents were used against 20 uniformly distributed static 

targets and 20 agents against 4 fruit fly targets with a relative target speed of 1.0; all initial 

search strategies were applied in each scenario (for comparison) along with LSZ 
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ighbourhood swarming: and bacterial scarch used either a circular neighbourhood 

us of {0,1,2,3,4.5) times sensor range or a whole search area response. 

ults shown in Figure 1-I indicate that, in this simulation environment, the changes from 

natural behaviours made no difference to the performance of the group in both static and 

is target configurations. 

35000 

30000 

25000 
Q) Z, 20000 
c 
v 15000 

10000 

5000 

0 

Figure 1-1. Comparison of performance for 10 agents against 20 uniformly distributed static targets 
including a range of bacterial search neighbourhood sizes. 

In the dynamic target scenario (see figure I- 2). differences in the mean time were less 

obvious although the difference between the ranging search behaviours and the bacterial 

search were still apparent. 

. ri_, _ 

F 
... 

t -ý 1ýýý 
, ý,, 5 

.ý5. 

,ý 

189 of 240 

V) 'U N0 41 C! -CT ±' cv L 
o <cc3>Q ýa ,ýoNa Qop f- r U- LA- I 'c vn I- N ZI 

(V mý ~ý 
rod ý°ý 

fs 3 LL N+ 
in 'C 'C (V "ý 'C 4J 0 

Gl NC Gý W ýi m 

co mmm co 
CID 



Q) E 

c 
a 

1100 

1000 

900 

800 

700 

600 

500 
VCCG! >>QMu. > ýp L 
az 0I 1--I Lu.. -I 

TC LLI 
(L) 0 

CN f`9 4A 
mm ~I 

mI my0 
ýj 

N 
ßc 4) mm 

tp co 

co 
CO °D mm co 

Figure 1-2. Comparison of performance for 20 agents against 4 fruit fly movement targets including a 

range of bacterial search neighbourhood sizes. 

To examine the comparative differences in the dynamic target environment, the mean 

rankings were also produced for all the initial search strategies on each of the experiment 

runs. For this analysis, the bacterial neighbourhoods are compared with the mean rankings for 

each of the other strategies in that experimental run, the rankings for bacterial search being 

for the neighboourhood size shown in the key. It can he seen that the results (Figure 1- 3) 

were as consistent as could he expected from a stochastic environment. 
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Figure 1-3. Summary of mean ranking results for 10 agents against 20 uniformly distributed static 
targets including a range of bacterial search neighbourhood sizes. 

These consistent results may seem surprising, it may be expected that a switch in behaviour 

would affect the overall performance in some manner, especially against static targets where 

the additional ranging provided during detection could move the agents closer to remote 

targets. However, the detection period is relatively short before the target is destroyed and, 

furthermore, the switch to a ranging movement does not occur. The overall effect of the 

switch, therefore, is insufficient to impact on the results in this research and as such any of 

the behaviours could have been used without affecting the results. 

The individual response as seen in nature was not used because the detecting agent, upon 

detection, moves directly to destroy the target. This would effectively remove the 'nutrient 

present' bacterial behaviour from the simulation which was undesirable in terms of modelling 

the natural behaviour. Neighbourhoods were also not applied since, although it could be 

argued that they could simulate the spread of a nutrient gradient across the search space, it 

would be difficult to reconcile the size of the neighbourhood with the natural metaphor, a 

nutrient patch could be any size. Hence, a decision was made in light of these findings to 

maintain the overall group response to a nutrient gradient and for the experimentation all 

agents respond to the presence of detected targets. 
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Appendix 2- Results or Initial Search Experiments. 

This appendix reports the actual results of initial search experimentation that were described 

in the main thesis using bar graphs for static target results (Figure 58, page 117 to Figure 61, 

page 120) and 2nd order polynomial trend lines (Figure 64. page 124, to Figure 85, page 137). 

The results arc shown in tabular form for the static results and as graphs for the dynamic. 

This latter format was select to present the actual results due to the significant amounts of 

data. 

5A ainct 4 5A ainst 20 10 A Rainst 4 10 Against 20 

ACS 774.77 818.66 822.00 732.31 

(Bacteria 1743.38 1864.10 1562.39 1846.15 

Brownian 1342.58 $493.15 1161.29 1429.67 
F Fl *51.94 823.04 897.07 785.24 

Levy 1221.56 1402.13 1129.86 1274.10 

Random 773.96 580.95 772.58 596.06 

Salt 1051.16 1153.13 1020.22 1144.72 
S iral 658.03 427.50 870.57 603.87 
Straight 651.23 729.03 718.36 723.36 
System 932.39 713.31 1050.69 869.53 

Table 2-1. Actual results of locate-only strstcUics against static uniformly distributed targets. 

5A 
, ain. t 4 5A 

. ainst 20 10 A ainst 4 10 Against 20 
ACS 700.46 742.32 819.07 698.91 
(lacicri3 1393.33 1788.06 1266.65 1731.31 
flrannian 1026.80 1329.88 962.32 1265.58 
F F) 902.87 787.35 952.93 793.55 
I 984.03 1181.44 861.97 1040.29 
Random 966.90 798.0.1 1076.51 799.87 

Salt 1021.53 1093.74 960.38 1031.83 
Spiral 952�72 638.37 1080.42 847.20 

Straight 918.38 767.14 856.22 716.38 

S stem 1077.96 878.66 1168.55 1080.10 

Table 2-2. Actual n'uiti of locate-only strategics against static clustered targets. 

192 of 240 



SAySA aims 20 I to A aittu 4 10 A ind 20 

ACS 807.82 76436 767.30 736.86 
f3adcria 1670.01 1832.01 1627.64 1791.89 

13ttmnian 1363.19 1411.44 1162.15 1392.01 

F FFv 811.93 7-1112 964.08 783.89 

levy 1119.4 1353.55 1023.65 1195.86 
Random 6 1.51 835.71 623.79 

Satt 103i. 79 1 1077.12 1045.42 1115.75 

-. 
Spiral ; 36. 3 835.41 729.62 

Straf ht 714.1 Q{ 
9 

9M. 73 760.22 679.84 
S 'itcm gVh. pj 1 X. & 1082.44 955.79 

Table 7. - 3. Actual molts of {ocaft"awd-ckstroy strategies against static uniformly distributed targets. 

5A. aint*4 5A ain'20 10A. aimt4 10 Aainst20 
ACS 641110 SIQM 678.03 543.31 
f arut i. 1076,83 1516.94 904.96 1353.09 
11rcm-nian Q26.29 1122.19 788.10 1019.21 

979,! L4 X19.95 1037.77 883.19 
1 Rý, ýý, RB 104.26 893.20 968.48 
Ran&" 1. " º7'8 984,89 1286.76 1064.17 
Salt RrJ7, nt 92:, 07 950.79 891.34 

,i irsl I[X0`12 911.70 1079.69 972.53 
Stt_i pht wx)RLt I0ttO2 1142.33 1031.00 
5 wpm I: cK. tt 1146.85 1242.46 1278.68 

Tybtt 2-4. Actual mulls of local e uad. d ttrt y strategics against static clustered targets. 
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Figure 2-1. Summary of mean ranking results for 10 agents against I target moving deterministically. 
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Figure 2-2. Summary of mean ranking results for 10 agents against 4 targets moving deterministically. 
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Figure 2-3. Summary of mean ranking results for 20 agents against 1 target moving deterministically. 
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Figure 2-4. Summary of mean ranking results for 20 agents against 4 targets moving deterministically. 
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Figure 2-5. Summary of mean ranking results for 10 agents against I target moving randomly. 
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Figure 2-6. Summary of mean ranking results for 10 agents against 4 targets moving randomly. 
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Figure 2-7. Summary of mean ranking results for 20 agents against I target moving randomly. 
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Figure 2-8. Summary of mean ranking results for 20 agents against 4 targets moving randomly. 
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Figure 2-9. Summary of mean ranking results for 10 agents against I Brownian motion target. 
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-e 2- 10. Summary of mean ranking results for 10 agents against 4 Brownian motion targets. 

198 of 240 

'A 



1300 

1250 

1200 

1150 
N 

C: 1100 

to 1050 

fd 1000 GJ 

950 

900 

850 

800 
0 

-Aa 
Bacteria 

Brownian 

F_Fly 

Levy 

Random 

Salt 

Spiral 

Straight 

System 

Figure 2-1I. Summary of mean ranking re"uh% for 20 agents spinst I ßro'n nisn motion target. 

1400 

1300 

1200 

1100 

ro 
1000 

900 

800 

0 

-ACS 

- Bacteria 

Brownian 

-F_Fly 

- Levy 

Random 

-Salt 

- Spiral 

Straight 

- System 

. Summary of mean ranking results for 20 agents against 4 Brownian motion targets. 

199 of 240 

ý. , ý"ýý y _. 
,. -ý... 

0. S 1 1.5 2 

Target speed relative to agent speed 

0.5 1 1.5 2 

Target speed relative to agent speed 



" ý fry 'ý4 

}}yJýwý. 
f'. 

1300 

1200 - 

1100 

1000 
c 
cc i 
a 

900 

800 

700 

0 0.5 1 1.5 2 

Target speed relative to agent speed 

Figure 2- 13. Summary of mean ranking results for 10 agents against I fruit fly target. 
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Figure 2- 14. Summary of mean ranking results for 10 agents against 4 fruit fly targets. 
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Figure 2- 15. Summary of mean ranking results for 20 agents against I fruit fly target. 
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Appendix 3- Results of Reacquisition Search by PMS Enabled Agents 

where No Occlusion or Communication Failures Occur. 

This appendix contains the complete results of the experiments used to analyse the 

perforrnance of the reacquisition strategies against Brownian motion, deterministic and fruit 

fly naovement targets where no occlusion or communication failures occurred. 
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Figure 3-I. Mean time for 10 agents against 4 Brownian motion targets travelling at 1.5 agent speed 
(left) and 2.0 agent speed (right). 
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Figure 3-2. Mean time for 10 agents against 4 Ikterminstic targets travelling at 1.5 agent speed (left) 
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Appendix 4- Results of Reacquisition Search by PMS Enabled Agents 

Where Permanent Occlusion Occurs. 

This appendix contains the complete results of the experiments used to analyse the 

performance of the reacquisition strategies against Brownian motion, deterministic and fruit 

fly movement targets where permanent occlusion occurred. 
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Figure 4-I. Mean time for 10 agents against 4 Brownian motion targets travelling at 0.5 agent speed 
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Figure 4-2. Mean time for 10 agents against 4 Brownian motion targets travelling at 1.5 agent speed 
(left) and 2.0 agent speed (right). 
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Figure 4-4. Mean time for 10 agents against 4 deterministic targets travelling at 1.5 agent speed (left) 

and 2.0 agent speed (right). 
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Figure 4-S. Mean time for 10 agents against 4 fruit fly targets travelling at 0.5 agent speed (left) and 1.0 

agent speed (right). 
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Figure 4-6. Mean lime for 10 agents against 4 fruit fly targets travelling at 1.5 agent speed (left) and 2.0 

'gent speed (right). 
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Appendix 5- Results of Reacquisition Search by PHIS Enabled Agents 

'Where Temporary Occlusion Occurs. 

'; 'his appendix contains the complete results of the experiments used to analyse the 

performance of the reacquisition strategies against t3ro«nian motion, deterministic and fruit 

fly movement targets %%hcrc temporary occlusion occurred. 
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Figure 5-2. Mean time for 10 agents against 4 Brownian motion targets travelling at 1.5 agent speed (left) 
and 2.0 agent speed (right). 
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Figure 5-4. Mean time for 10 agents against 4 deterministic targets travelling at 1.5 agent speed (left) and 
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Figure 5-6. Mean time for 10 agents against 4 fruit fly targets travelling at 1.5 agent speed (left) and 2.0 
agent speed (right). 
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Appendix 6- Results of Reacquisition Search by PM S Enabled 

Agents Where Permanent Communication Failures Occur. 

`1-his appendix contains the complete results of the expenments used to analyse the 

performance of the reacquisition strategies applied by 20 agents against 4 

deterministic where permanent communication failures occurred. 
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Fitere 6-1. Mean time for 20 agenh against 4 determinstk targets travelling at 0.5 agent speed 
where permanent con. nnkatbn failure occurs in 4 agents. 
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Figure 6-2. Mean time for 20 agents against 4 determinstic targets travelling at 1.0 agent speed 
where permanent comunication failure occurs in 4 agents. 
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Figure 6-3. Mean time for 20 agents against 4 determinstic targets travelling at 1.5 agent speed 
where permanent comunication failure occurs in 4 agents. 
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Figure 6-4. Mean time for 20 agents against 4 determinstic targets travelling at 2.0 agent speed 
where permanent comunication failure occurs in 4 agents. 
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Figure 6-5. Mean time for 20 agents against 4 determinstic targets travelling at 0.5 agent speed 
where permanent comunication failure occurs in 8 agents. 

222 of 240 



1000 

900 

a) 800 
E 

700 
a 

600 

500 

400 - 
U L fß 

' 
LL 

E tE vý ýo E >> tE 
CL) C) 

2 fC Ui 
ý N Q d C LL, 

-1 -0 NQeNQ ; 
LLI -a a '-o 1 

N Co 

m m 
41 

Nýý 
tr- 

V) mmI 
None I Predictive-V 

Figure 6-6. Mean time for 20 agents against 4 determinstic targets travelling at 1.0 agent speed 
where permanent comunication failure occurs in 8 agents. 
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Figure 6-7. Mean time for 20 agents against 4 determinstic targets travelling at 1.5 agent speed 
where permanent comunication failure occurs in 8 agents. 
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Figure 6-8. Mean time for 20 agents against 4 determinstic targets travelling at 2.0 agent speed 
where permanent comunication failure occurs in 8 agents. 
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Figure 6-9. Mean time for 20 agents against 4 determinstic targets travelling at 0.5 agent speed 
where permanent comunication failure occurs in 12 agents. 
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Figure 6- 10. Mean time for 20 agents against 4 determinstic targets travelling at 1.0 agent speed 
where permanent comunication failure occurs in 12 agents. 
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Figure 6- 11. Mean time for 20 agents against 4 determinstic targets travelling at 1.5 agent speed 
where permanent comunication failure occurs in 12 agents. 
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Figure 6- 12. Mean time for 20 agents against 4 determinstic targets travelling at 2.0 agent speed 
where permanent comunication failure occurs in 12 agents. 
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Appendix 7- Results of Reacquisition Search by PMS Enabled 

Agents Where Temporary Communication Failures Occur. 

This appendix contains the complete results of the experiments used to analyse the 

performance of the reacquisition strategies applied by 20 agents against 4 

deterministic where temporary communication failures occurred. 
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Figure 7-1. Mean time for 20 agents against 4 determinstic targets travelling at 0.5 agent speed 
where temporary comunication failure occurs in 4 agents. 
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Figure 7-2. Mean time for 20 agents against 4 determinstic targets travelling at 1.0 agent speed 
where temporary comunication failure occurs in 4 agents. 

800 
750 
700 
650 
600 

m 550 , 
500 
450 
400 
350 i 

to fC CTTI ! -' L 
V f0 

' L: d " 
E to I t0 C 

c _T 
?IE 

" o te 
±+ I a+ 
( !a Q c ýv `^ ä , a , LIOI N 

c vn miII m r 
i I 

None Predictive-V 

Figure 7-3. Mean time for 20 agents against 4 determinstic targets travelling at 1.5 agent speed 
where temporary comunication failure occurs in 4 agents. 
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Figure 7-4. Mean time for 20 agents against 4 determinstic targets travelling at 2.0 agent speed 
where temporary comunication failure occurs in 4 agents. 
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Figure 7-5. Mean time for 20 agents against 4 determinstic targets travelling at 0.5 agent speed 
where temporary comunication failure occurs in 8 agents. 
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Figure 7-6. Mean time for 20 agents against 4 determinstic targets travelling at 1.0 agent speed 
where temporary comunication failure occurs in 8 agents. 
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Figure 7-7. Mean time for 20 agents against 4 determinstic targets travelling at 1.5 agent speed 
where temporary comunication failure occurs in 8 agents. 
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Figure 7-8. Mean time for 20 agents against 4 determinstic targets travelling at 2.0 agent speed 
where temporary comunication failure occurs in 8 agents. 
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Figure 7-9. Mean time for 20 agents against 4 determinstic targets travelling at 0.5 agent speed 
where temporary comunication failure occurs in 12 agents. 
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Figure 7- 10. Mean time for 20 agents against 4 determinstic targets travelling at 1.0 agent speed 
where temporary comunication failure occurs in 12 agents. 
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Figure 7- 11. Mean time for 20 agents against 4 determinstic targets travelling at 1.5 agent speed 
where temporary comunication failure occurs in 12 agents. 
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Figure 7- 12. Mean time for 20 agents against 4 determinstic targets travelling at 2.0 agent speed 
where temporary comunication failure occurs in 12 agents. 
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Appendix 8- Mann-Whitney U Significance Results for Static Target 

Experiments. 

This appendix reports the results of Mann-Whitney U significance tests for all 

experiments that were described in the main thesis for initial search against static 

targets. 

Bacterial Brownian Levy 

Spiral x x x 

Random x x x 

_Systematic 
x x x 

I 
Bacterial Systematic Brownian 

ACS x xx 

Straight x xx 

F_Fly x xx 

Table 8-1. Locate only strategies against 
static uniformly distributed targets (5 
agents against 4 targets). 

Bacterial Brownian Levy 

Spiral x x x 

Random x x x 

Systematic x x x 

Table 8-2. Locate only strategies against 
static uniformly distributed targets (5 
agents against 20 targets). 

Bacterial Systematic Spiral 

Straight x x x 

F FI x x x 

ACS x x x 

Table 8-3. Locate only strategies against 
static uniformly distributed targets (20 
agents against 4 targets). 

Bacterial Brownian Levy 

Straight x x x 

ACS x x x 

Random x x x 

Table 8-4. Locate only strategies against 
static uniformly distributed targets (20 
agents against 20 targets). 

Table 8-5. Locate only strategies against 
static clustered targets (5 agents against 4 
targets). 

Levy Brownian Bacterial 

Spiral x x x 

Random x x x 

F FI x x x 

Table 8-6. Locate only strategies against 
static clustered targets (5 agents against 20 
targets). 

Spiral Random Systematic 

Salt x x x 

Levy x x x 

Brownian x x x 

Table 8-7. Locate only strategies against 
static clustered targets (20 agents against 4 
targets). 

Bacterial Systematic Brownian 

ACS x x X 

Straight x x x 

F_Fly x x x 

Table 8-8. Locate only strategies against 
static clustered targets (20 agents against 20 
targets). 
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Bacterial Brownian Levy 

Spiral xxx 

Random xxx 

Straight xxx 

Table 8-9. Locate-and-destroy strategies 
against static uniformly distributed targets 
(5 agents against 4 targets). 

I 
Bacterial Brownian Levy 

Spiral xx x 

Systematic xx x 

Random xx x 

Table 8- 10. Locate-and-destroy strategies 
against static uniformly distributed targets 
(5 agents against 20 targets). 

Bacterial Systematic Random 

ACS xxx 

Straight xxx 

Levy xxx 

Table 8- 11. Locate-and-destroy strategies 
against static uniformly distributed targets 
(20 agents against 4 targets). 

Bacterial Brownian 
I 

Systematic 

ACS xxx 

Straight xxx 

Random xxx 

Table 8- 12. Locate-and-destroy strategies 
against static uniformly distributed targets 
(20 agents against 20 targets). 

Random Straight Systematic 

ACS xxx 

Saltato xxx 

le xxx 

Table 8- 13. Locate-and-destroy strategies 
against static clustered targets (5 agents 
against 4 targets). 

Bacterial Brownian Systematic 

ACS xxx 

Spiral xxx 

F Fly xxx 

Table 8- 14. Locate-and-destroy strategies 
against static clustered targets (5 agents 
against 20 targets). 

Random Systematic Spiral 

ACS xxx 

Brownian xxx 

Levy xxx 

Table 8- 15. Locate-and-destroy strategies 
against static clustered targets (20 agents 
against 4 targets). 

Systematic Random Spiral 

ACS xxx 

Levy xxx 

Brownian xxx 

Table 8- 16. Locate-and-destroy strategies 
against static clustered targets (5 agents 
against 4 targets). 
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Appendix 9- Mann-Whitney U Significance Results for Dynamic 

Target Experiments. 

This appendix reports the results of Mann-Whitney U significance tests for all 

experiments that were described in the main thesis for initial search against dynamic 

targets. 

Systematic Random Spiral 

Brownian x x x 

Levy x x x 

Bacterial x x x 

Systematic Random Spiral 

Brownian x x x 

Levy x x x 

Bacterial x x x 

Table 9-1. Search strategies against 
deterministic targets travelling at 1.0 times 
maximum agent speed (10 agents against I 
target). 

Systematic Random Spiral 

Brownian x x x 

I LM x x 

Bacterial x x x 

Table 9-2. Search strategies against 
deterministic targets travelling at 1.1 times 
maximum agent speed (20 agents against I 
target). 

Systematic Random Spiral 

Brownian x x x 

I LM x x 

Bacterial x x x 

Table 9-3. Search strategies against 
deterministic targets travelling at 1.0 times 
maximum agent speed (10 agents against 4 
targets). 

Table 9-4. Search strategies against 
deterministic targets travelling at 0.9 times 
maximum agent speed (20 agents against 4 
targets). 

S stematic Random Spiral 
Brownian x x x 

Le x x x 

Bacterial x x x 

Table 9-5. Search strategies against 
random targets travelling at 1.3 times 
maximum agent speed (10 agents against 1 
target). 

S stematic Random Spiral 

Brownian x x x 

Levy x x x 
Bacterial x x x 

Table 9-6. Search strategies against 
random targets travelling at 1.5 times 
maximum agent speed (20 agents against 1 
target). 
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Systematic Random Spiral 

Brownian xx- 

Le xxx 

Bacterial xxx 

Table 9-7. Search strategies against 
random targets travelling at 1.3 times 

maximum agent speed (10 agents against 4 
targets). 

Systematic Random Bacterial 

Levy xxx 

ACS xxx 

Straight xxx 

Table 9- 12. Search strategies against 
Brownian motion targets travelling at 1.0 
times maximum agent speed (20 agents 
against 4 targets). 

Systematic Random Spiral Systematic Random Spiral 

LBrownian 
xxx Brownian xxx 

Le xxx Levy xxx 

Bacterial xxx Bacterial xxx 

Table 9-8. Search strategies against 
random targets travelling at 1.3 times 
maximum agent speed (20 agents against 4 
targets). 

I Systematic Random Bacterial 

Straight xx 
Levy xx- 

Saltatory xx 

Table 9-9. Search strategies against 
Brownian motion targets travelling at 1.0 
times maximum agent speed (10 agents 
against I target). 

Table 9- 13. Search strategies against fruit 
fly targets travelling at 1.4 times maximum 
agent speed (10 agents against 1 target). 

Systematic Random Spiral 

Brownian x xx 

Le x xx 

Bacterial x xx 

Table 9- 14. Search strategies against fruit 
fly targets travelling at 1.4 times maximum 
agent speed (20 agents against 1 target). 

Bacterial Systematic Brownian Systematic Random Spiral 

ACS xxx Brownian xxx 

Straight xxx levy xxx 

Spiral xxx Bacterial xx 

Table 9- 10. Search strategies against 
Brownian motion targets travelling at 1.1 
times maximum agent speed (20 agents 
against I target). 

Random Systematic Spiral 

Levy xxx 

Brownian x-- 

Saltatory x-- 

Table 9- 11. 
Brownian motion 
times maximum 
against 4 targets). 

Table 9- 15. Search strategies against fruit 
fly targets travelling at 1.3 times maximum 
agent speed (10 agents against 4 targets). 

I 
Systematic Random S iral 

Brownian xxx 

Levy xxx 

Bacterial xxx 

Search strategies against Table 9- 16. Search strategies against fruit 
i targets travelling at 1.0 fly targets travelling at 1.3 times maximum 
agent speed (10 agents agent speed (20 agents against 4 targets). 
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Appendix 10 - Mann-Whitney U Significance Results for Efficiency 

Experiments. 

This appendix reports the results of Mann-Whitney U significance tests for all 

experiments that were described in the main thesis for efficiency. 

F_Fly Levy Brownian 
Bacterial x x x 
Saltatory x x x 

Systematic x x x 

Table 10 - 1. Efficiency tests. 
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Appendix 11 - Mann-Whitney U Significance Results for Predictive 

Memory System Experiments. 

This appendix reports the results of Mann-Whitney U significance tests for all 
experiments that were described in the main thesis for PMS strategies during 
permanent occlusion, temporary occlusion and both permanent and temporary 
communications failures. 

Crosswind None 
Saccade x x 

Predictive-V x 

Direct None 
Saccade x x 

Predictive-V x x 

Table 11- 1. Reacquisition search strategies 
against Brownian motion targets shere no 
occlusion or communication failures occur. 

Predictive-V Saccade 
Direct x x 

Predictive-C x x 

Table 11 - 2. Reacquisition search strategies 
against deterministic targets %here no 
occlusion or communication failures occur. 

Crosswind Saccade 
Predictive-V x x 

None x x 

Table 11 - 3. Reacquisition search strategies 
against fruit fly mosement targets %here no 
occlusion or communication failures occur. 

Crosswind None 
Direct x x 

Predictive-V x x 

Table 11 - 4. Reacquisition search strategies 
against Brownian motion targets where 
permanent occlusion occurs. 

Table 11 - S. Reacquisition search strategies 
against deterministic targets where 
permanent occlusion occurs. 

None Predictive-V 
Saccade x x 

Crosswind x x 

Table 11 - 6. Reacquisition search strategies 
against fruit fly targets where permanent 
occlusion occurs. 

Crosswind None 
Direct x x 

Predictive-V x x 

Table 11 - 7. Reacquisition search strategies 
against Brownian motion targets where 
temporary occlusion occurs. 

None Direct 
Predictive-C x x 
V 

_Shaped x x 

Table 11 - 8. Reacquisition search strategies 
against determinsitic targets where 
temporary occlusion occurs. 
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Crosswind None 

Predictive"C xx 
Direct xx 

Table 11 - 9. Reacquisition search strategies 
against fruit fly targets Nhere temporary 
occlusion occurs. 

Predictive-V against 
None 

0. S Permanent - 
1.0 Permanent - 
1.5 Permanent - 
2.0 Permanent x 
0.5 Temporary 
1.0 Tem ora - 
1.5 Temporary x 
2.0 Tem ora x 

Table 11 - 10. Reacquisition search 
strategies against deterministic targets 
where permanent and temporary 
communications failures occurs in 8 agents. 
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