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Abstract 
 

Climate is one of the key variables driving ecosystems at local to global scales. How 

and to what extent vegetation responds to climate variability is a challenging topic for 

global change analysis. Earth observation provides an opportunity to study temporal 

ecosystem dynamics, providing much needed information about the response of 

vegetation to environmental and climatic change at local to global scales. The European 

Space Agency (ESA) uses data recorded by the Medium Resolution Imaging 

Spectrometer (MERIS) in red / near infrared spectral bands to produce an operational 

product called the MERIS Terrestrial Chlorophyll Index (MTCI). The MTCI is related 

to the position of the red edge in vegetation spectra and can be used to estimate the 

chlorophyll content of vegetation. The MTCI therefore provides a powerful product to 

monitor phenology, stress and productivity.  

 

The MTCI needs full validation if it is to be embraced by the user community who 

require precise and consistent, spatial and temporal comparisons of vegetation condition. 

This research details experimental investigations into variables that may influence the 

relationship between the MTCI and vegetation chlorophyll content, namely soil 

background and sensor view angle, vegetation type and spatial scale. Validation 

campaigns in the New Forest and at Brooms Barn agricultural study site reinforced the 

strong correlation between chlorophyll content and MTCI that was evident from 

laboratory spectroscopy investigations, demonstrating the suitability of the MTCI as a 

surrogate for field chlorophyll content measurements independent of cover type. 

However, this relationship was significantly weakened where the leaf area index (LAI) 

was low, indicating that the MTCI is sensitive to the effects of soil background.   

 

In the light of such conclusions, this project then assessed the MTCI as a tool to monitor 

changes in ecosystem phenology as a function of climatic variability, and the suitability 

of the MTCI as a surrogate measure of photosynthetic light use efficiency, to model 

ecosystem gross primary productivity (GPP) at various sites in North America with 

contrasting vegetation types.Changes in MTCI throughout the growing season 

demonstrated the potential of the MTCI to estimate vegetation dynamics, characterising 

the temporal characteristics in both phenology and gross primary productivity. 
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Chapter 1: Introduction 

 

1.1 The need for monitoring of terrestrial vegetation 
The Earth’s atmosphere is strongly influenced by the biophysical state of the Earth’s 

surface and the atmospheric abundance of trace greenhouse gases, including carbon 

dioxide (Denman et al., 2007). Carbon dioxide (CO2) is a key greenhouse gas and its 

concentration in the atmosphere is influenced by complex interactions of natural 

fluctuations in geochemical cycles, anthropogenic release through the combustion of 

fossil fuels and the burning of biomass, and the uptake by sinks such as terrestrial 

ecosystems and the oceans (Matthews, 2007). The global atmospheric CO2 

concentration is currently c.370 μmol-1, and is expected to reach c.700 μmol-1 by the end 

of the Century (Lawson et al., 2001). Increasing atmospheric CO2 concentration affects 

the nature of the climate system, resulting in increased global mean temperatures and 

increased climate variability, including changes in precipitation distribution and 

frequency and the occurrence of extreme weather events (IPCC 2007). The latest IPCC 

report (2007) highlighted the trend of increasing of global surface temperatures and 

stated that eleven of the previous twelve years (1995-2006) were amongst the warmest 

since 1850. However, the rise in global temperatures is not uniform in time or space, 

with a near two-fold increase in global mean temperatures being observed over the fifty 

years from 1956 – 2005 compared with the period 1906-2005 (IPCC 2007). 

Geographically, there is a clear trend of increased warming at higher northern latitudes, 

where average mean temperatures rises are almost double the global mean over the past 

100 years (IPCC 2007). 

 

The observed and predicted change to the climate system has a marked impact upon the 

Earth’s physical cycles and biological systems, which will vary in magnitude in space 

and time in accordance with the regional variability in climate. The analysis and 

prediction of the effects of global climate change are very difficult to quantify due to 

feedback mechanisms and complex relationships between the chemical cycles, climate 

and biological cycles in oceanic and terrestrial ecosystems (IPCC 2007).  
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1.2 Effects of climate change upon terrestrial vegetation 
Documented changes in climatic conditions since the middle of the last century, coupled 

with our knowledge of the environmental controls that influence vegetation physiology, 

namely temperature, precipitation, atmospheric CO2 concentration and the associated 

availability of nutrients (Denman et al., 2007), may mean that the conditions under 

which vegetation has developed in the past will have changed now (Boisvenue and 

Running, 2006).Therefore, climatic variation may have an important bearing on growth, 

composition and structure of terrestrial ecosystems, influencing the timing and duration 

of growing seasons, plant vigor and productivity. The response of terrestrial vegetation 

to climate change is complex as physiological effects will be location and species 

specific (Hanhong and Sicher, 2004). CO2 fertilisation, warmer winter weather and 

longer growing season conditions may enhance growth. However, unfavorable 

conditions, such as drought and limiting temperatures, may increase physiological stress, 

consequently reducing productivity and growth rates and effecting the natural seasonal 

development of terrestrial ecosystems (Watkiss, 2009).   

 

1.3 Phenology and productivity 
The seasonal development of vegetation, or its phenology, refers to the natural growth 

or development of vegetation. Phenological timing and events, such as leaf development 

or greening up, senescence and growing season length, have the capacity to influence 

the productivity of terrestrial vegetation. The length of the growing season corresponds 

to the period when photosynthetic activity (and carbon assimilation) can occur (Xiao et 

al., 2004; Piao et al., 2007). The timing of phenological events has been shown to vary 

in relation to changes in local climate.Therefore, vegetation phenology is an important 

bio-indicator of the impact of climate change on ecosystem productivity (Schleip et al., 

2006).  

 

Our current understanding of climate forcing on vegetation phenology is largely limited 

to a few locations where extensive records exist (Fisher and Mustard, 2007). The 

climate–phenology models developed at such locations are often non-transferable to 

other locations either regionally or globally (Badeck et al., 2004). Therefore there is a 

pressing need to provide temporal observations of vegetation productivity and health, 

establishing phenological change and developing transferable phenological models. 
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1.4 Carbon budgets 
Vegetation covers almost three quarters of the Earths’ terrestrial surface, so an 

understanding of the effects of climate variation upon the functioning of vegetation and 

the timing of phenological events are critical to model ecosystem and energy cycles, 

such as the carbon cycle (Dixon, 1976; Dixon et al., 1994). Due to the uncertainty of the 

response of the Earth’s vegetation to future climatic conditions, changes to terrestrial 

ecosystem carbon sinks caused by climatic variations are poorly understood (Coa and 

Woodward, 1998; Matthews, 2007).  

Uncertainty of the relationship of vegetation productivity to climate has led to political 

debate, international discussion and treaties (Wylie et al., 2003). Terrestrial ecosystems 

have become an important economic commodity not only due to commercial practices, 

such as farming and timber production, but also as major sinks of carbon (especially 

forests). The global initiative of reducing carbon emissions through the Kyoto Protocol 

places a strong emphasis on the role of vegetation as a major carbon sink (Pfaff et al., 

2000; Clevers et al., 2001; Wylie et al., 2003). Therefore, understanding the processes 

effecting vegetation phenology and productivity, and determining the response of 

vegetation to variations in climate will have a direct bearing upon the goals set out in the 

Kyoto Protocol (Van Vilet et al., 2003).  

Global economic growth and an ever-increasing human population exert demands on the 

Earth’s natural and managed vegetated resources. Identifying, analyzing and interpreting 

the physical changes to terrestrial ecosystems that are occurring spatially and temporally 

are significant for land use management and securing food provision (at local to global 

scales) (Thomas, 2006). Moreover, vegetation phenology and productivity are also 

fundamental inputs into global climate and biochemical models (Kokaly and Clark, 

1999; Coppin et al., 2001).  
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1.5 Chlorophyll 
Plant productivity depends on leaf photosynthetic rate and the leaf life duration as well 

as the availability of such factors as nitrogen, water and temperature (Bindi et al., 2002). 

Research has confirmed that foliar biochemistry, including both photochemicals 

(including chlorophyll) and nitrogen, are closely related to maximum photosynthetic 

rates (Martin and Aber, 1997; Bacour et al., 2006). Chlorophyll is one of the most 

important and abundant photosynthetic pigments. The amount of chlorophyll within a 

canopy is positively correlated with vegetation productivity and plant health (Dash and 

Curran, 2007). Leaf chlorophyll content is also an indicator of stress at the leaf-to 

canopy-scale (Bacour et al., 2006), providing us with vital information regarding the 

response of terrestrial vegetation to unfavourable change in climate and associated 

nutrient provision. When a plant is under stress, small changes in chlorophyll content 

are evident in the initial stages. As the stress increases, chlorophyll content decreases 

more quickly than the other pigments. These changes in chlorophyll content are 

indicative of stress of a plant (Bannari et al., 2007). Chlorophyll content is therefore 

likely to decrease as a response of plant stress prior to observed physiological changes, 

such as leaf area. Field studies have also shown a close relationship between foliar leaf 

chemistry and litter decomposition rates (Demarez and Gastellu-Etchegorry, 2000), 

providing detail regarding the flux of carbon from the vegetation to the soil system, 

which is of vital importance in carbon sequestration studies.  

 

The ability to determine the photosynthetic pigment content of vegetation will therefore 

yield important information about vegetation productivity and health status and produce 

accurate estimates of plant vigour and environmental quality (Carter and Spiering, 2002). 

 

1.6 The role of remote sensing 
The unique viewpoint offered by remote sensing can help develop our understanding of 

the importance and dynamic nature of the fragile environment that supports all life on 

Earth. The field of remote sensing, and subsequently our understanding of the processes 

that shape and influence our planet, has improved with subsequent developments in 

technology and our understanding of the interactions of electromagnetic radiation with 

the Earth's surface and atmosphere.  

 

 24



 

Understanding vegetation / ecosystem dynamics has long been a priority of the scientific 

community with emphasis on the effects of land cover change on ecological processes 

and cycles as well as on Earth-atmosphere systems. Measurements from satellites 

provide the only feasible means of observing large portions of the Earth’s surface at a 

high temporal frequency in a consistent manner; therefore remote sensing is a key 

technology for quantifying landscape patterns and processes (Newton et al., 2009). 

 

Remote sensing provides an opportunity to study vegetation condition and observe 

seasonal vegetation dynamics, and offers the potential to understand vegetation – 

climate system interactions (Reed 2006). Remote sensing provides the unique 

opportunity to observe vegetation over large areas over time, giving us the potential to 

understand the effects of climatic change and management practices from local to global 

scales. 

 

An integrated observation strategy allows us to quantitatively understand the links and 

feedback mechanisms associated in the exchange of energy and matter between the 

vegetation canopy, atmosphere and soil on a variety of temporal and spatial scales. 

Furthermore, such understanding is essential for local to global scale applications related 

to vegetation monitoring and climate change (Houborg et al., 2007). Temporal and 

spatial monitoring on such scales enables us to understand the functioning of vegetated 

ecosystems (Demarez and Gastellu-Etchegorry, 2000). 

 

Remotely sensed data have been used in the study of vegetation condition and seasonal 

vegetation dynamics for many years (Reed, 2006). The ability to observe vegetation 

phenology remotely provides a unique opportunity to monitor temporally the effects of 

climatic change on vegetated canopies at local to global scales. The vast majority of 

studies have used data from the Advanced Very High Resolution Radiometer (AVHRR) 

sensor (Zhang et al., 2006). A new generation of remote sensing data sources are now 

available and they improve greatly our ability to identify changes in ecosystem 

phenology. Phenology observed using a time-series of satellite sensor data together with 

ground-based phenological observations could provide vital information about 

vegetation responses to climate forcing and changing geochemical and water regimes 

(Reed et al., 1994).  

There has been an intensive global effort in recent years to measure and model carbon 
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exchanges between the terrestrial ecosystems and the atmosphere using a combination 

of modelling, remote sensing and in-situ measurements. Earth observation is needed to 

derive global vegetation properties (Myneni et al., 2002) and combined with 

biogeochemical models to provide carbon exchange variables (Hill et al., 2006). Such 

variables are fundamental inputs to models of global climate and biogeochemical cycles 

(Coppin et al., 2004).  
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CHAPTER 2: THE REMOTE SENSING OF CANOPY 

CHLOROPHYLL CONTENT 

 



Chapter 1. Introduction   

 

Chapter 2 
Chapter 1 has documented the potential effects of global climate change on vegetation 

phenology, productivity, health and the terrestrial carbon cycle. The use of remote 

sensing to monitor terrestrial vegetation dynamics through the estimation of canopy 

chlorophyll content at the regional - globalscale is an emerging research area. The 

discussion in chapter 2 outlines the current understanding and methods for the 

estimation of chlorophyll content using remote sensing methods. Chapter 2 then 

introduces the Medium Resolution Imaging Spectrometer (MERIS), onboard the 

European Space Agency’s (ESA) environment monitoring Envisat platform, and the 

only operational product to estimate chlorophyll content in terrestrial vegetation; the 

MERIS Terrestrial Chlorophyll Index (MTCI). The focus of this thesis is to explore the 

potential of the MTCI as a tool to monitor vegetation dynamics at local – global scales. 

The principal aims of this research are detailed in section 2.8 following detailed 

discussion specific to the methods used to estimate chlorophyll content.

 

2.1 Reflectance at the leaf scale 
Remote sensing of foliar bio-chemicals has developed rapidly since the 1980s and 1990s 

(Curran et. al., 2001), utilising laboratory analysis, field measurements, and imaging 

spectrometers (Haboudane et al., 2008). Specialist programmes, such as NASA’s 

Accelerated Canopy Chemistry Program (ACCP), with the aim of understanding the 

interaction of radiation with leaves and canopies have made tremendous progress in 

developing approaches and methods to estimate chlorophyll content at both the leaf and 

canopy scale.   

 
2.1.1 Photosynthetic pigments and their radiometric signature 

The reflectance of vegetation in the visible region of the spectrum (400-700 nm) is 

dominated by the absorption properties of photosynthetic pigments (Asrar et al., 1989; 

Curran et al., 1991). Each photosynthetic pigment absorbs light more efficiently in a 

different part of the electromagnetic spectrum, Chlorophyll a absorbs strongly at 

wavelengths between 400-450 nm and 650-700 nm; chlorophyll b between 450-500 nm. 

However, none of the pigments absorb well in the green-yellow region, which is 

responsible for the high reflectance in the green region of the spectrum for vegetation 
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(Asrar, 1998). Chlorophyll a is the most common of the five photosynthetic pigments 

present in each plant. 

 

If chlorophyll concentrations are low then the leaf is unable to maximise its 

photosynthetic potential and reflectance in the visible region of the spectrum will be 

high. Conversely, at high chlorophyll concentrations there is increased absorption in 

visible wavelengths. According to the Beer - Lambert Law, a negative exponential 

relationship exists between chlorophyll concentration and absorption by chlorophyll. 

Thus, an increase in foliar chlorophyll content leads to an increase in absorption, leading 

to a broadening and deepening of the absorption feature (Filella and Peñuelas, 1994). 

 

Leaf reflectance is influenced by the ratio of the concentration of chlorophyll a and 

chlorophyll b as well as other pigments (Curran et al., 1991; Asner, 1998), and 

chlorophyll fluorescence (Blackburn and Milton, 1995). Typically, the concentration of 

chlorophyll a is approximately two to three times that of b, although this differs between 

species. Other than the photosynthetic pigments, various structural factors and bio-

chemicals influence reflectance; for example, lignin, nitrogen, cellulose and sugar 

concentrations have been shown to influence reflectance at the leaf scale (Curran et al.  

2001). Minor absorption features located between 400-2400 nm are the result of 

harmonics and overtones of the stronger absorption bands at longer wavelengths (Curran, 

1989).  

 

During photosynthesis part of the energy captured by chlorophyll is displaced, re-

emitted as light at a longer wavelength than the excitation energy (Grace et al., 2007). 

The emitted energy is in the waveband 650-800nm, with peaks at 690 and 740nm. Foliar 

fluorescence is a measure of light use efficiency in the photosynthetic process and is 

used as a diagnostic tool for the detection of stress. The fluorescence signal effectively 

represents ‘wasted energy’, surplus energy that is not used in photosynthesis (Zarco-

Tejada et al., 2000).  Typically, the fluoresced signal is less that 3% of the reflected 

signal. Modelling offers the potential to separate the fluoresced energy to determine 

photosynthetic rate and CO2 assimilation.  
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2.1.2 Leaf structure 

Visible light reflectance from a leaf is linked directly to chlorophyll concentration, 

whilst near infrared (NIR) reflectance is independent of chlorophyll concentration and 

governed by the internal structure of the leaf (Gausman, 1977). At the leaf scale various 

factors affect the reflectance in both the visible and NIR wavelengths. In the NIR 

spectral domain (701-1300 nm), leaf structure explains the optical properties. The NIR 

spectral region can be divided into two spectral sub-regions: (i) 701 - 1100 nm, where 

reflectance is high, bar two minor water-related absorption bands (centered at 960 and 

1100 nm) and (ii) between 1100 - 1300 nm, which corresponds to the transition between 

high NIR reflectance and water-related absorption bands of the middle infrared. The 

intensity of NIR reflectance from vegetation is commonly greater from vegetation than 

from most non-vegetated surfaces, so allowing vegetation to be discriminated against 

the ‘darker’ surrounding matter (soil, urban areas etc).  

 

Epidermis cells that make up the upper layers of the leaf are penetrable by all 

wavelengths (Figure 2.1). Internally, Palisade cells, that contain the chloroplasts, absorb 

strongly across all visible wavelengths, but to a lesser extent for visible green, reflecting 

approximately 10-30% of the total amount of visible radiation arriving at the leaf 

surface. Infrared wavelengths penetrate the Palisade cells into the underlying mesophyll. 

The mesophyll cells scatter much of the NIR radiation (approx 60%) reaching the leaf 

layer (Figure 2.2). This internal photon scattering at the air-cell interface leads to strong 

reflectance in the NIR region of the spectrum from a healthy vegetation canopy (Table 

2.1) (Woolley 1971).  
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Strong absorption at 

visible wavelengths  

Chloroplasts contain 

the photosynthetic 

pigments, such as 

chlorophyll  

Strong signal in  

NIR wavelengths 

Air space exchange 

of CO2 O2 and H2O 

between plant and 

atmosphere 

 

  Lower epidermis 

Mesophyll cells 

Palisade cells 

Upperepidermis 

Incident light 

Figure 2.1. Cross-section of a typical leaf. Major structural leaf components are 

highlighted and their interaction with light in the visible – NIR domain identified. 

 

For a leaf reflectance spectra, the absorption features corresponding to 400 nm and 700 

nm, in the green and red wavelengths (approx) are attributed to chlorophyll, whilst the 

troughs in the NIR wavelengths are due to absorption of water contained in the leaf 

mesophyll layers. 
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Figure 2.2Spectral reflectance of a green vegetation and dry bare soil in the visible – 

NIR region of the reflectance spectrum derived from laboratory spectroscopy of spinach 

leaves. 

 

Region of spectrum Wavelength (nm) Characteristics 
Relation to vegetation 

amount 

 

Green 

 

350-500 

 

Reduced pigment 

absorption 

 

Weak positive 

 

Red 

 

600-700 

 

Strong 

chlorophyllabsorption 

 

Strong negative 

 

Red edge 

 

700-740 

 

Transition between 

strong absorption and 

strong reflectance 

 

Weak negative 

 

NIR 

 

740-1300 

 

High reflectance 

 

Strong positive 

 

Table 2.1. Relationship between the reflectance and absorption characteristics of green 

vegetation at visible – NIR wavelengths 
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2.1.3 The red edge 

The red edge marks the boundary between red and NIR wavelengths and is a result of 

the combined effects of strong absorption in the visible red region by chlorophylland the 

reflectance maxima in the NIR region due to scattering caused by internal leaf structure 

(Horler et al., 1983, Dawson and Curran, 1998; Haboudane et al., 2008). An increase in 

foliar chlorophyll concentration produces molecular aggregation by chlorophyll 

molecules resulting in polymerization, or other forms of aggregation (Jago et al., 1999). 

The effect of increasing the amount of foliar chlorophyll is a minor deepening and 

significant broadening of the chlorophyllabsorption feature, shifting the boundary of the 

red edge to longer wavelengths (Dash and Curran, 2004; Jago et al., 1999). The amount 

of chlorophyll within the leaf / vegetation canopy has been shown to be positively 

related to the point of maximum slope at wavelengths between 690-740nm in the 

reflectance spectra (Horler et al., 1983; Jago et al., 1999). This change in red edge 

position (REP) can be used to estimate the amount of chlorophyll content at both the 

leaf and canopy scales (Munden et al., 1994). Thirty years after defining the relationship 

between the red edge and the chlorophyll concentration, research determining 

chlorophyll concentration using the red edge remains active. 

 

A strong correlation exists between the concentration of foliar photosynthetic pigments 

and a shift in the red edge position towards blue spectrum in stressed vegetation (Carter 

and Spiering, 2002). The total chlorophyll content in leaves decreases in stressed 

vegetation, changing the proportion of light-absorbing pigments and leading to less 

overall absorption due to lower chlorophyll a and b concentrations at the leaf level 

(Zarco-Tejada et al., 2004). Both the position and the slope of the red edge change under 

stress conditions (Clevers et al., 2001), inducing shifts in the long wavelength edge of 

the chlorophyll absorption feature to shorter wavelengths (Ustin et al., 2001). This 

suggests that the red edge position is a useful indicator of vegetation stress (Smith et al., 

2004), senescence, photosynthetic capacity and vegetation productivity (Davids and 

Tyler, 2003). Differences in reflectance between healthy and stressed vegetation due to 

changes in pigment content have been detected in the reflectance green peak and along 

the red edge. These difference provide the opportunity to derive remote detection 

methods to map and quantify vegetation stress through the influence of chlorophyll 

content variation 
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2.1.4 Middle-infrared region 

In the middle-infrared region (1300 - 2500 nm) absorption features are a function of 

bending and stretching vibrations of bonds between hydrogen-carbon and nitrogen-

oxygen atoms (Moorthy et al., 2003). This reflectance region provides information 

about the absorption of leaf components such as water, cellulose and lignin. Nitrogen 

status of vegetation can be inferred through the study of absorption features in this 

region of the electromagnetic spectrum (Baret and Fourty, 1997).  

 

2.2 Spectral properties of the vegetated canopy 
2.2.1 Canopy variables that influence observed reflectance 

Canopy reflectance is a function of Leaf Area Index (LAI), defined as the single sided 

area of the green elements per unit of ground area (Morisette et al., 2006). LAI strongly 

influences the reflectance signature of a vegetation canopy; with a significant effect in 

NIR and a smaller influence in visible reflectance. Of the many types of biophysical 

property that influence the radiation at optical wavelengths from a forest canopy, LAI is 

the most important (Boyd and Danson, 2005). An increase in canopy LAI leads to an 

increase in NIR scattering and enhanced canopy absorption at around 680nm and 780 

nm. Unlike chlorophyll concentration, LAI generates weak variations of the reflectance 

spectrum at 550 and 720 nm. LAI is therefore related negatively to red reflectance and 

positively related to NIR; therefore an increase in LAI will consequently increase NIR 

reflectance. It can be seen that high differences in the red (685–690 nm) to NIR (701 – 

1300 nm) region are observed at low LAI (0.1, 0.5, and 1.0) (Haboudane et al., 2008). 

This trend could be in connection with the influence of non-photosynthetic materials and 

leaf litter on canopy reflectance when the green biomass is represented in weak 

proportions. In open canopies, radiation will penetrate to the lower levels of the canopy 

and the response from the upper layers will not be as strong. Therefore, open canopies 

(typically with an LAI < 2) will reflect more visible and less NIR wavelengths. As the 

canopies close the contribution to reflectance from underlying canopy structure and 

surface material is reduced.  

 

Experimental approaches and canopy radiative transfer models (RTM) have been 

utilised to explore the contribution and affect of non-photosynthetic biomass on canopy 

reflectance (Asner, 1998). The structural component of the vegetation (stems, branches, 
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etc.) influences the reflectance characteristics by determining the orientation and spatial 

arrangement of the leaves and therefore the extent to which the photons interact with the 

understory, ground (litter, soil) and structural components of the vegetation. It can 

therefore be summarised that vegetation reflectance is a function of tissue optical 

properties (leaf, woody stem and standing litter) and canopy biophysical properties 

(such as leaf and stem area, leaf orientation and foliar clumping). Leaf angle and 

distribution play an important role in influencing the reflectance from a vegetative 

canopy, whereby overlapping leaves cause shadowing effects on underlying and 

adjacent leaf layers.  Shadowing can result in a reduction in overall reflectance as great 

as 50% in the visible and 75% in the NIR wavelengths (Gibson and Power, 2000). 

Unlike visible wavelengths, NIR wavelengths are able to penetrate through the upper 

canopy layers to the lower leaves, and depending upon canopy thickness, to the 

understory. Although transmittance will vary with vegetation species and canopy 

structure, generally, thinner canopies will have lower NIR reflectance than a canopy that 

consists of numerous layers (Gibson and Power, 2000).  Therefore the NIR reflectance 

from a thin canopy is likely to be composed of the signal from the vegetation as well as 

understory vegetation and soil.  

 

2.2.2 Non-canopy variables influencing observed canopy reflectance 

Remote sensing at the aircraft or satellite level will commonly involve complications 

caused by the exposure of the underlying soil surface and the understory, especially 

where the vegetation cover is less than 100% (Kokaly and Clark, 1999).  Rock et al. 

(1994) have shown that the change of background reflectance affects the reflectance 

slope between 550 and 700 nm. This reflectance region is closely linked to the 

variations of reflectance characteristics of background materials (soil and canopy 

structural components). Therefore it can be expected that a decrease in canopy LAI (i.e. 

to less than 1) will consequently lead to an increase in the reflectance slope between 550 

and 700nm. The reflectance and bi-direction reflectance from a vegetation canopy can 

be significantly affected by soil background conditions (Price, 1990). Soil type and 

moisture content can affect the spectral signature of a vegetated scene. In a less densely 

vegetated area, ground surface (i.e. rock and soil type) will affect the signature. For 

example, basalt will increase the amount of red reflectance. It has also been 

demonstrated that moisture decreases the reflectance in all wavelengths, therefore the 
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time lag between a precipitation event and image acquisition will influence the returning 

reflectance for a given canopy (Price, 1990).  

 

As vegetation grows (leading to a corresponding increase in LAI), the contribution of 

the soil background to the observed reflectance signature decreases. However, according 

to vegetation type, seasonality, agricultural practices, vegetation density, amongst other 

variables, the contribution of the soil may prove to be significant. The wide variation in 

soils by nature leads to problems of classification and interpretation. Typically, soil 

reflectance is low at shorter visible wavelengths, increasing at the longer NIR 

wavelengths. Reflectance characteristics vary with soil type and mineral content and 

organic composition. Organic matter can strongly influence reflectance characteristics. 

Increasing the organic component of the soil is shown to ‘darken the soil’ throughout the 

spectrum. This trend is also made more complex by the degree of decomposition of the 

organic matter, with litter in the early stages of decomposition having higher reflectance 

in the NIR (Rondeaux et al., 1996). Water content also plays an important role in 

influencing soil reflectance by decreasing the reflectance in the visible and NIR 

spectrum with increasing water content. Remote sensing in the optical domain has been 

shown to be sensitive to soil roughness (Baret et al., 1993). Rough, coarse soils have the 

effect of decreasing reflectance throughout the visible region of the electromagnetic 

spectrum due to multiple photon scattering and shadowing effects (Jacquemound et al., 

1992). 

 

Atmospheric path radiance can be a significant part of the observed canopy spectra 

(Kokaly and Clark, 1999). Path radiance contributions are an additive to the observed 

canopy reflectance. Detailed understanding of such contribution is paramount to 

successfully derive surface reflectance. In vegetation monitoring, the effects of the 

atmosphere are particularly important. The atmosphere degrades the remotely sensed 

signal by reducing the contrast in the red and NIR reflected signals. The red signal 

normally increases as a result of scattered, upwelling path radiance contributions from 

the atmosphere. The NIR signal tends to decrease as a result of atmospheric attenuation 

associated with scattering and water vapour absorption.  The net result is a drop in 

reflectance signals and an underestimation of the amount of vegetation at the surface 

(Huete and Justice, 1994).  The degradation of the signal is dependent on the aerosol 
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content of the atmosphere, with turbid atmospheres having the greatest effect. 

Atmospheric influences on remotely sensed vegetation canopies include the incomplete 

reflectance or removal of wavebands due to atmospheric absorptions. Such residual 

information is due to water, carbon dioxide and other trace gases in the atmosphere. 

 

Another effect of the atmosphere is the adjacency effect. The adjacency effect is a 

physical phenomenon caused by atmospheric scattering of radiation between fields of 

different surface reflectance, whereby reflected background radiation is scattered into 

the instantaneousfield of view (IFOV) of the sensor contributing to the measured signal 

from the surface target. The effects of this can be observed in medium-high spatial 

resolution (<100 m) imagery, especially in the 400–1000nm region (Richter and 

Schläpfer, 2002). The influence decreases with wavelength because atmospheric 

scattering efficiency decreases.  

 

2.2.3 Anisotropic Reflectance of the Earth’s Surface 

Canopy reflectance is further complicated by changes in viewing and solar geometry. 

Viewing geometry of the sensor and solar changes due to seasonality and time of day 

can cause statistically significant effects in the amount of reflectance from a vegetated 

canopy (Treitz and Howarth, 1999). Changes in the viewing geometry and higher solar 

zenith angle that are an issue in the higher latitudes during winter months will affect the 

spectral reflectance from a given canopy.  

 

In reality the Earth’s surface is a non-Lambertian reflector, a characteristic that means 

radiation is not reflected in all directions equally, and therefore is a function of viewing 

and illumination geometry.  The nature of the reflectance and its direction is controlled 

by the physical and optical properties of the surface being illuminated. In reality the 

direction of the scattering is linked to radiation wavelength and the nature of the three 

dimensional surface; object spacing, shape and size will produce distinct shadows as a 

function of viewing and illumination angle (Liang et al., 2000).  

 

As has been outlined in a previous section, over a vegetative canopy, the reflectance is a 

function of the interaction of the radiation and the canopy structure. The proportion of 

the leaves and canopy that are in direct sunlight as well as the amount of background in 
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view will lead to variation in the observed canopy reflectance. Reflectance will vary 

with the size, orientation and spacing of the scattering objects (leaves) as well as the 

orientation of the satellite and the position of the Sun. This relationship causes a 

complex interaction of scatterers and shadowing as a function of illumination and 

viewing angles. As satellites take measurements of the Earth’s surface from various 

view angles under differing illumination geometry, an understanding of these factors on 

the influence on a scene and surface anisotropy is needed in order to understand the true 

reflectance and subsequently the surface properties.  

 

Sensors with a large instantaneous field-of-view (IFOV), such as AVHRR or MERIS 

are ideal for global vegetation studies (Walter Shea et al., 1997). However, a low repeat 

image acquisition period due to large swath width is coupled with multiple look angles 

and that results in enhanced directional effects (Bacour et. al., 2006). Typically, the 

processing of data from the aforementioned sensors consists of sensor calibration and 

both geometric and atmospheric correction. However, there has been an increased focus 

within the field of vegetation remote sensing on the bidirectional reflectance properties 

of the surface. This effect on the MERIS sensor is largely absent from the research 

literature. The bidirectional reflectance distribution function (BRDF) describes the 

scattering of a parallel beam of incident light from one direction into another direction in 

the hemisphere (Schaepman-Strub et al., 2006) and accounts for the dependence of 

surface spectral reflectance on the geometry at which the surface is illuminated and 

viewed (Nicodemus et al., 1977).  
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Figure 2.3. Angular effect caused by sensor characteristics, orbital patterns and 

illumination geometry. Note that figures quoted in (a) are for  the MERIS sensor. 

 

The IFOV of MERIS at the satellite results in viewing angles with a range between 00 at 

nadir to angles in excess of 550 at the edge of a single scene (refer to Figure 2.3 a). This 

angular effect is further amplified by the curvature of the Earth. Angular variations will 

also be present in data acquired from MISR (Multi Angular Spectra Radiometer) and 

MODIS (Moderate resolution Imaging Spectroradiometer). Research using POLDER 

(Polarisation and Directionality of Earth Radiance) imagery, determined that vegetation 

indices exhibited variations in the range of 20-50% as a result of variation in spectral 

reflectance caused by changing viewing geometry (Leroy and Hautecoeur, 1999). Bi-

directional reflectance is one of the major sources of variation in short wavelength 

AVHRR imagery (Duchemin, 1999), whereby off-nadir viewing introduces sensor and 

geometry effects. Research into the effect of off-nadir viewing upon NDVI 

measurement demonstrated that increasing relative solar zenith angles increased the 

NDVI. Smaller solar zenith angles increased the NDVI, increasing the contrast between 

vegetation and background (Galvâo et al., 2004).  Angular variations will also be 

present in data acquired from a geographical location during different orbital phases. 

 39



Chapter 2. The remote sensing of canopy chlorophyll content 

 

Wide swath imagery means the same location can be imaged without a direct overpass 

(Figure 2.3 b shows this area highlighted in red.)  

 

Images sensed over the same area at a constant viewing angle but at different times of 

the day (for example by a geostationary sensor such as MSR onboard METEOSAT), or 

at different times of the year, will be affected by variations in the angle of illumination 

(as illustrated in Figure 2.3 c). These effects make the comparison of temporal series of 

remote sensing data or the analysis of data within a wide swath problematic (Blackburn 

and Pitman, 1999).  

 

As sensors with a large IFOV build up a series of views of the same location on the 

Earth’s surface over a period of hours or days, the directional observations can be used 

to help investigate the issues that arise due to viewing and solar geometry. Semi-

empirical models can be based upon the angular information to describe the bi-

directional reflectance distribution function of a particular viewing geometry (Hu et al., 

1997). This function may be fitted using empirical or physical models (Liang et al., 

2000). Such models are used to correct viewing and illumination geometry and the 

associated effects of shadowing. The outcome of such models allows the scene to be 

viewed without the effects of solar and sensor changes, thus providing the surface 

reflectance at nadir observations (Schaaf et al., 2002). Applying empirical techniques 

(e.g. compositing algorithms) to index-derived data can normalise bidirectional 

reflectance effects. Numerous methods have been used to normalise reflectance; for 

example Holben (1986) used maximum value compositing to normalise view direction 

to nadir and thereby normalise surface reflectance in time series AVHRR.  
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2.3 Remote sensing of terrestrial vegetation 
This section will outline the types of imaging sensors that have significantly contributed 

to developing our understanding of terrestrial vegetated ecosystems, and more 

specifically, the monitoring of temporal vegetation dynamics and vegetation condition.  

 

Remote sensing has been used to determine vegetation spatial extent, cover type and 

biophysical and chemical properties. However, despite the different generations of 

remote sensing satellite sensors that have been launched since ERTS–1 in 1972, not one 

series of sensors provides the capacity to fully meet the requirements of the user 

community investigating temporal vegetation dynamics (Boyd and Danson, 2005).  

 

2.3.1 The role of ‘Moderate’ spatial resolution satellite sensors 

Satellite remote sensing can contribute to the field of terrestrial global change 

monitoring by providing a macroscopic view of the Earth’s vegetated ecosystems and 

systematically monitoring change over time and space. Coarse spatial resolution sensors 

have been defined as those with a spatial resolution between 250 m and 5km and until 

recently such sensors were referred to as ‘moderate’ resolution (Justice and Tucker, 

2009). ‘Moderate’ resolution sensors provide a unique perspective of Earth. Due to the 

characteristic wide IFOV (Figure 2.3 a) they allow repeat observations of the same point 

on the Earth’s surface within the desired maximum period for information updates 

(repeat pass) of around 10 days. Such a revisit period is necessary due to the potentially 

dynamic nature of vegetation (Gond et al., 1999).  

 

The drive for an alternative source of data to Landsat MSS in the mid 1980s explored 

the possibility of adopting the NOAA AVHRR sensor for vegetation. With a spatial 

resolution of 1.1km (in Local Area Coverage mode), and 4.4 km (in Global Area 

Coverage mode) and daily global observations, the AVHRR sensor, a system designed 

to support weather applications, operating broad bands in the visible – thermal infrared 

domain (400-2500nm), offered a unique way to monitor terrestrial surfaces over local to 

global scales (Baret et al., 2006). The successful application of vegetation index time 

series approach to grassland monitoring (Justice et al., 1985) meant AVHRR became a 

unique source of information characterising and detailing the temporal variability in 

land surface properties and vegetated ecosystems (Bacour et al., 2006).  
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The potential of deriving vegetation index time series from a sensor with a high 

temporal resolution was widely recognised. AVHRR NDVI time series were used to 

explore inter-annual variability of vegetation, coupling for the first time regional 

phenology with climate variation. Tucker et al. (1986) linked global photosynthetic rates 

to fluctuation in atmospheric CO2. The ability to determine vegetation phenology and 

temporal variation of productivity using vegetation indices has led to the adoption of 

‘moderate’ spatial resolution sensors as a tool for the measurement and monitoring of 

terrestrial environments at the regional to global scale. 

 

Deriving time series vegetation analysis from AVHRR data introduced a number of 

obstacles to the development of useable datasets (Justice and Tucker, 2009). The wide 

swath width of AVHRR meant that pixels at the scenes’ edge were viewed at large off 

nadir viewing angles (up to 55O).  The lack of on-board calibration also meant that 

methods were needed to correct satellite sensor performance. Such issues led the way 

for the development of MODIS and other ‘moderate’ resolution sensors, which were 

designed, in part, to exploit the potential demonstrated by AVHRR NDVI time series 

data.  

 

To date a number of ‘moderate’ resolution sensors have been launched, including the 

Along-Track Scanning Radiometer (ATSR), SPOT Vegetátion Program, and the 

Medium Resolution Imaging Spectrometer (MERIS). However, of the current sensors 

most of the terrestrial research activity has concentrated on MODIS data. This can be 

explained by the availability of information supporting the MODIS instrument and the 

availability of products, which have been extensively validated (Justice and Tucker 

2009). 

 

2.3.2 Imaging spectrometry 

Remote sensing has been used extensively to monitor and quantify changes in terrestrial 

vegetation across a broad range of spatial and temporal scales. What has become clear is 

that the type of remotely sensed data required for the monitoring of vegetation depends 

on the ecological questions being asked (Curran, 2001). Typically, terrestrial vegetation 

research can be categorised into three themes: 
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1. “What is the type of vegetation that is there?” 

2. “How much vegetation is there?” 

3. What is the condition of the vegetation?” 

 

Vegetation type and quantity investigations usually incorporate broad waveband 

remotely sensed data, whereas assessing vegetation condition typically utilises 

reflectance data acquired in narrow wavebands (Dash et al., 2008). Vegetation condition 

can be assessed by estimating foliar chlorophyll content from data recorded in narrow 

visible / NIR wavebands by imaging spectrometers.  

 

Spectrometry is the science of measuring the intensity of optical radiation in narrow, 

contiguous wavelength intervals (Schaepman, 2009). Imaging spectrometers, or 

hyperspectral sensors, are instruments used to acquire a spectrally resolved image of a 

scene in fine spectral and spatial resolution, whereby for each registered pixel radiance 

spectrum can be derived (Goetz et al., 1985).  

 

The application of narrow-band spectral methods for pigment detection using airborne 

and spaceborne spectrometers has been the intended goal of much of the leaf level 

research since the time of the (Advanced Canopy Chlorophyll Program) ACCP program 

(Ustin et al., 2009). Imaging spectrometers have been used to estimate foliar 

biochemical content of vegetation canopies due to contiguous narrow bands in 

wavelengths that sample individual absorption and reflectance features that are 

characteristic of green vegetation (Dash et al., 2008). A number of methods have been 

developed to exploit the reflectance properties of green leaves in the ‘red edge’ region of 

the reflectance spectrum.  

 

However, at present there are only two operational spaceborne imaging spectrometers, 

the Moderate Resolution Imaging Spectrometer (MODIS) onboard NASA’s Terra and 

Aqua satellites, and MERIS onboard ESA’s Envisat satellite.  
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2.4 Methods for the estimation of content using remote sensing 
Photosynthetic pigments have different spectral behaviour, with specific absorption 

features at different wavelengths, which permit remote sensing techniques to potentially 

discriminate their respective effects on vegetation reflectance spectra. Using laboratory 

analysis, field measurements, and remotely sensed data, scientists have made 

tremendous progress in developing approaches and methods to estimate chlorophyll 

content at both leaf and canopy levels, and over diverse vegetation species (Haboudane 

et al., 2008). 

 

Existing methods of extracting quantitative biophysical and biochemical information 

from optical imagery suggests that there are a limited range of methods (McDonald et 

al., 1998). Such methods can be physically based, including inversion of canopy models, 

or use empirical and semi-empirical methods, including vegetation indices to estimate 

the chlorophyll content at both the leaf and canopy scale (Haboudane et al., 2002). Both 

techniques have been used successfully and have captured the geographical and 

temporal variations in biochemical canopy content. 

 
2.4.1 Vegetation indices 

Vegetation Indices (VI) are designed to emphasise the differences in spectral reflectance, 

between the wavelengths and variables under study, which for vegetation applications 

are usually in the red and NIR regions of the reflectance spectrum. Indices based on 

optical wavebands exploit the fact that green vegetation absorbs radiation in the red 

wavelengths, due to the presence of chlorophyll and other photosynthetic pigments in 

leaves, and strongly scatters solar radiation in the NIR wavelength because of internal 

leaf structure. The output of such indices is anempirical measure of the biophysical 

variable being investigated. Due to their simplicity, ease of application and widespread 

familiarity, vegetation indices have a wide range of usage within the user community. 

 

During the past four decades vegetation indices using band combinations in the visible 

spectrum have been used to estimate total pigments. Based on simple combinations of 

visible and NIR reflectance, vegetation indices have been used to define vegetation 

status and condition. Such indices as the Normalised Difference Vegetation Index 

(NDVI) (Rouse et al., 1973) or the Simple Ratio (SR) (Jordan, 1969) have been 
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extensively used to monitor vegetation at local to global scales (Rondeaux et al., 1996). 

The NDVI is essentially a measure of ‘greenness’ and has been used to infer the LAI as 

well as casually linked to canopy chlorophyll content (Ustin et al., 2009). The NDVI 

bears a near linear relationship with LAI, the fraction of photosynthetically active 

radiation (fPAR) (Mynemi and Williams, 1994) and photosynthetic biochemical content 

(Jones et al., 2007). Generally, vegetation indices and normalised ratios have been 

shown to be a strong indicator of photosynthetically active biomass (Van Der Meer et 

al., 2001), and therefore show a correlation with canopy chlorophyll content.  

 

In reality, the shape of the reflectance spectra from a vegetated canopy will be a function 

of the scene characteristics and is influenced by leaf and canopy biochemical content 

composition, canopy structure, soil characteristics as well as view and solar geometry. 

Some research has shown that indices are not solely responsive to changes in the 

vegetation cover. For example, research into the response of six vegetation indices and a 

simple ratio concluded that indices did not respond linearly to vegetation cover change 

(McDonald et al., 1998). Vegetation indices have been shown to be sensitive to the 

effects of topography, LAI variations, solar and viewing geometry, background 

variation, and stand structure (McDonald et al., 1998). Vegetation indices such as the 

NDVI are particularly sensitive to atmospheric conditions and soil background, as well 

as solar and viewing geometry. A number of alternative methods utilising VI were 

developed to account for non-vegetation effects. Indices such as Soil Adjusted 

Vegetation Index (SAVI) (Huete, 1988) and Modified Soil Adjusted Vegetation 

Index(MSAVI) (Qi et al., 1994) attempt to compensate for the effects of soil 

background and soil moisture respectively. The ARVI (Atmospheric Resistant 

Vegetation Index) (Kaufman and Tanré, 1992) has been developed to reduce the 

contribution of atmospheric affects, with less associated noise than the NDVI 

(Rondeaux et al., 1996). The spectral position and breadth of the bands used in each VI 

significantly influence the suitability of the use of each vegetation index.  

 

The influence of sub-canopy soil background can be pronounced on intrinsic vegetation 

indices, such as the SR or NDVI, in instances where vegetation cover is low and the soil 

reflectance is unknown. The established linear relationship between NIR and visible 

reflectance from bare soils allows the influence of soils upon the vegetation reflectance 
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spectra to be minimised through assuming this linear relationship. Although 

significantly reducing the effects of soil background, soil adjusted vegetation indices 

required knowledge of the study area (such as LAI or soil reflectance characteristics). 

However, due to the variability in soil reflectance characteristics, because of the 

aforementioned mineral, roughness, organic matter and soil water content influences, 

case to case studies are always necessary to ensure soil effects are minimised 

(Roundeaux et al., 1996).   

 

The inherent problem with broad waveband vegetation indices based on the red and NIR 

region of the electromagnetic spectrum is the saturation that arises due to the asymptotic 

relationship with LAI and biomass (Mutanga and Skidmore, 2004).  NDVI has been 

shown in numerous studies to provide poor estimates of biomass where vegetation cover 

is equal to or greater than 100%. The use of NDVI as a monitoring tool is limited in 

tropical areas, high biomass ecosystems and in peak growing seasons for forested and 

agricultural areas, where LAI is underestimated due to saturation of NDVI (Zarco – 

Tajada et al., 2001).  

 

The problem of asymptotic saturation is common with vegetation products derived from 

multispectral imagery due to the broad wavebands in which reflectance is acquired. 

Studies using imaging spectrometers, evaluating the reflectance in individual narrow 

bands, have reduced biomass saturation issues (Blackburn, 1999). Narrow band VIs 

designed to estimate chlorophyll content use different combinations of spectral bands to 

minimise variations in non-foliar photosynthetic pigments, whilst maximising sensitivity 

to chlorophyll content (Haboudane et al., 2002). Such wavelengths are based upon the 

robust relationship between chlorophyll content and the red edge position (REP). The 

spectral regions that are identified as the most suitable to study chlorophyll effects are 

those around 680 nm, corresponding to the absorption peak of chlorophyll a, and around 

the red edge, 700 – 750 nm. Such wavelengths have been shown to provide significant 

correlations with LAI, biomass (Eitel et al., 2007) and chlorophyll content (Zarco–

Tejada et al., 2005). Detailed discussions and reviews concerning appropriate optimal 

wavelengths and chlorophyll indices can be found in publications such as those by 

Blackburn (1999). 
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Several narrow waveband leaf-level optical indices have been suggested for chlorophyll 

content estimation from contiguous reflectance data. Red Edge Reflectance Indices such 

as (R740/R720) and (R734+R747)/ (R715 + R726) (Vogelmann et al., 1993); (R750/R700) 

(Gitelson and Merzlyak, 1996); (R695/R760) (Carter, 1994); (R750/R710) (Zarco-Tejada et 

al., 2001), have been developed to estimate chlorophyll concentration. The 

aforementioned indices, however, do not show the same relationship at the leaf and at 

the canopy levels, due to the effects of scene components, such as soil, shadows and non 

photosynthetic biomass. Indices such as red edge and spectral and derivative indices 

were shown to be the best indicators for total chlorophyll content estimation at the leaf 

scale and canopy levels (Zarco-Tajada et al., 2004). Such narrow waveband indices 

were successfully tested on closed canopies with potentially large shadow effects and 

minimal influences of soil background, demonstrating insensitivity to the influence of 

shadows.  

 

An inherent issue with the application of VI to estimate canopy biophysical and bio-

chemical variables is their transferability. The shape and form of canopy reflectance 

spectra depend on a complex interaction of several canopy variables (e.g., vegetation 

structure, leaf biochemical composition, soil background) and viewing and illumination 

geometry and atmospheric factors (Baret and Guyot, 1991) that will vary over time and 

space and from one vegetation type to another. As a result, the relationship between a 

sought vegetation variable and a VI is likely to be a function of canopy characteristics, 

soil background effects and external conditions. 

 

2.4.2 Red edge position techniques 

The REP has been shown to be highly correlated with foliar chlorophyll concentration 

(Zarco - Tejada and Miller, 1999), and can be derive mathematically by 

 

Dλ(i) = Rλ(i) - Rλ(i-1) / Δλ   (2.1) 

 

Where Dλ(i) isthe REP derivative spectrum, Rλ(i) and Rλ(i-1) are reflectances at wavelength 

i and (i-1) respectively (Curran and Dash, 2005). The application of the first derivative 

method to estimate REP requires continuous reflectance spectra measured by a sensor 

with fine spectral resolution. To overcome the dependency on continuous spectra 
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numerous methods have been proposed for determining the slope and position of the 

REP including, linear interpolation (Guyot et al., 1988), Lagrangian interpolation 

(Dawson and Curran, 1998), polynomial fitting (Baret et al., 1992) and inverted 

Gaussian fitting (Bonham-Carter, 1998). However, each curve fitting technique derives 

a different location for the REP and therefore estimation of chlorophyll content (Dash 

and Curran, 2007; Cho and Skidmore, 2006).  

 

Curve-fitting techniques to derive the REP are complex, non-automated procedures 

(Verstraete et al., 1999) and time consuming for large data sets (Dash and Curran, 2007). 

REP techniques are not suitable for the estimation of chlorophyll content in high 

chlorophyll content canopies due to the asymptotic relationship between REP and 

chlorophyll content (Jago et al., 1999). In such instances, REP techniques saturate, 

therefore they are not suitable for global terrestrial vegetation monitoring in areas of 

high biomass. Moreover, REP methods are inappropriate for the use on current 

spaceborne sensors where reflectance is recorded in distinct bands (Dawson and Curran, 

1998). 

 

2.4.3 Modelling approaches 

This section briefly introduces the theory of modelling as it has been used to estimate 

canopy chlorophyll content. Remotely sensed vegetation reflectance models can be used 

to derive canopy biophysical variables (both structural and optical properties), or to 

describe or correct the reflectance variation caused by geometry (Lucht and Lewis, 

2000).Vegetation models are based upon a number of variables that simplify canopy 

components to make estimation computationally efficient. Canopy reflectance 

modelling takes one of two approaches, physical or empirical. Compared to (semi-) 

empirical regression models based on vegetation indices, physically based Radiative 

Transfer Models (RTM) have the advantage that they can be adapted to the prevailing 

observation geometry (viewing / illumination geometry) and site specific characteristics 

such as local background reflectance, atmospheric conditions, crop type, and phenology 

(Dorigo and Gerighausen, 2008). Physical models describe the transfer and interaction 

of radiation inside the canopy based on physical laws and thus provide an explicit 

connection between the biophysical variables, canopy structure and canopy reflectance 

(Houborg et al., 2009) and have proven to be an alternative to empirical–statistical 
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approaches that link VI and vegetation variables using experimental data. 

 

Inversion methods are one way in which to determine or derive biophysical and 

biochemical variables at the leaf and canopy scale. Such inversion can be achieved 

through utilizing look-up-tables, neural networks (Bacour et al., 2006b), and genetic 

algorithms amongst others (Myneni et al., 1992, Houborg et al., 2009). The goal of such 

models is to determine reflectance characteristics for a given view and illumination 

geometry and use this to account for surface characteristics.  

 

The canopy reflectance models, such as the turbid medium Markov chain canopy 

reflectance model (ACRM) (Kuusk, 1996) make assumptions regarding stand geometry 

and vegetation structure. ACRM assumes the canopy consists of a homogeneous layer 

of vegetation and a thin layer of vegetation on the ground surface. Similarly, the 

physically based PROSPECT is an example of an RTM based on the plate model that 

simplified the optical properties of plant leaves (in the region of the spectrum between 

400-2500nm) (Jacquemoud and Baret, 1990). Within this model scattering is defined 

and variables are individually mathematically described (such as photosynthetic 

pigments, pigment concentration, water content and mesophyll structure) and the model 

has been evaluated using independent datasets on a local scale successfully 

(Jacquemoud et al., 1996). Many RTM are available at different scales, from leaf level 

(1-D PROSPECT) to the canopy level (e.g. SAIL).   

 

Model inversion techniques, based on linked leaf-canopy radiative transfer models, have 

been shown to be a feasible method for biochemical estimation from canopy-level 

reflectance in closed canopies (Jacquemoud, 1993; Jacquemoud et al., 2000). However, 

complex modelling techniques when used on regional and global scales are more 

problematic. Issues of scaling, surface irregularities and difficulties in obtaining multi-

angular datasets limit the use in vegetation modelling (Asrar et al., 1992). Model 

applications have shown to be viable when defining biochemical and biophysical 

characteristics on relatively homogenous and spatially continuous vegetation. The 

estimation of leaf biochemistry in open vegetation canopies from remote sensing data 

requires modelling strategies which account for soil background and shadows which 

dominate the bidirectional reflectance (BRDF) signature.  
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Computation modelling allows the plant to be expressed as a geometric shape, which 

interacts with a series of others to make up a model of a vegetated canopy. Such models 

incorporate the physical scattering between the components of the plant (leaves, stems) 

and between soil and other adjoining plants. Such models are useful to interpret 

reflectance from open vegetation canopies, where information within a pixel is a 

combination of soil, shadow and vegetation. The simulated reflectance at different 

wavelengths and pixel sizes can be useful in the study of the effect of up-scaling on 

spectral vegetation indices (Zarco – Tejeda et al., 2001). Inversions of 3-D vegetation 

models allow canopy variables, such as LAI and chlorophyll content, to be estimated 

(Justice et al., 1998). Such models are complex, and like REP curve fitting techniques, 

time consuming for large data sets which means they are not suitable for monitoring 

vegetation dynamics at regional to global scales. 

 

2.5 The MERIS Sensor 
MERIS has been described in detail in a number of publications (Curran and Steele, 

2005; Delward et al., 2007). In this literature review details relating to the sensor’s role 

of monitoring terrestrial vegetation will be recalled. The MERIS sensor onboard the 

ESA Envisat satellite is potentially a valuable sensor for monitoring the Earth’s 

terrestrial environments at regional and global scales due to its moderate spatial 

resolution and three day repeat cycle (Curran and Dash, 2004). The MERIS repeat cycle 

is within the desired maximum period for information updates (repeat pass) of around 

10 days, due to the potentially dynamic nature of vegetation, where growth can be rapid 

in some ecosystems according to season (Gond et al., 1999).  

 

MERIS was originally designed for oceanographic applications (the measurement of 

phytoplankton and suspended matter) and atmospheric applications (including cloud 

properties, measurement of water vapor column content and aerosols) (Van Der Meer, 

2001). With a unique fine radiometric resolution MERIS is the most radiometrically 

accurate sensor in space (Curran and Steele, 2005) (Table 2.2). Unlike many spaceborne 

sensors, the MERIS platform has good spectral sampling in the visible / NIR 

wavelengths coupled with narrow wavebands that theoretically improve the accuracy of 

vegetation monitoring. MERIS is a push broom imager that acquires reflectance in 15 

programmable bands, 2.5 nm – 20 nm wide in the region of the spectrum between 390 
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nm – 1040 nm (Dawson, 2000) (Table 2.2). The radiometric requirement (fully 

programmable potential) and accuracy (maintained through on-board band-to-band 

calibration) of the MERIS sensor are far in excess of that of any sensor orbiting the 

Earth (Van Der Meer et al., 2001). The high radiometric accuracy will allow potential 

pigment identification and quantification in both oceanic and terrestrial applications.In 

the standard setting, MERIS has 5 discontinuous bands in the red and NIR wavelengths, 

nominally set to 665, 681.25, 705, 753.75 and 760 nm (Table 2.2).  

 
Band  

Number               Centre (nm)  Width (nm)   Environmental variables of interest 

1   412.5   10    Yellow substance turbidity 

2   442.5   10    Chlorophyll absorption 

3   490   10    Chlorophyll, other pigments 

4   510   10    Turbidity, suspended sediment, red tides 

5   560   10    Chlorophyll reference, suspended sediment 

6   620   10    Suspended sediment 

7   665   10    Chlorophyll absorption 

8*   681.25   7.5    Chlorophyll fluorescence 

9*   708.75   10    Atmospheric correction 

10*   753.75   7.5    Oxygen absorption reference 

11   760.625   3.75    Oxygen absorption R-branch 

12   778.75   15    Aerosols, vegetation 

13   865   20    Aerosols correction over ocean 

14   885   10    Water vapour absorption reference 

15   900   10    Water vapour absorption, vegetation 

*Indicates bands for calculating MTCI. 

 

Table 2.2. MERIS band properties adapted from Curran and Steele (2005). 

 

The pixel size at nadir are 260m across track by 300m along track. The sensor has a 

field-of-view (FOV) of 68.5º and a swath width of 1150 km on the ground. The FOV is 

divided between five cameras, each with a FOV of 14º. MERIS is in a Sun synchronous 

orbit, with a local time overpass at the Equator (descending limb of orbit) of 10.00 am 

(Dewald et al., 2007; Gao et al., 2004). Due to the wide swath, important consideration 
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should be given to the fact that MERIS imagery will compose of reflectance obtained at 

differing view and illumination angles (section 2.3.3). 

 

Prior to the launch of Envisat, the potential of the MERIS sensor as a valuable tool for 

monitoring terrestrial ecosystems was recognised. The radiometric resolution and 

narrow band width of the MERIS sensor were considered appropriate to derive the red 

edge position which marks the boundary between the chlorophyll absorption feature at 

red wavelengths and the NIR reflectance maxima due to leaf internal scattering (Gobron 

et al.,1999; Dawson, 1999).  

 

2.6 The MERIS Terrestrial Chlorophyll Index (MTCI) 
Methods used to determine chlorophyll content from remote sensing data have focused 

on locating the red edge position between the red absorption feature and the NIR 

reflectance maxima of a vegetation reflectance spectrum (Curran et al., 2007). However, 

such methods are time-consuming and are not accurate indicators of chlorophyll content 

at high contents. The MERIS Terrestrial Chlorophyll Index (MTCI) was designed to 

monitor vegetation condition via an estimation of chlorophyll content by exploiting the 

MERIS band positions in the chlorophyllabsorption feature and the red edge.  

 
Figure 2.4. Vegetation reflectance spectra at four chlorophyll contents, increasing 

content 1-4, together with the location of the MERIS bands 8, 9 and 10, located in the 

red edge region of the spectra. 
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With an increase in chlorophyll content the difference in reflectance between band 8 and 

9 decreases (Figure 2.4), whilst the difference in reflectance between bands 9 and 10 

increases. The MTCI is very simple to calculate, overcoming the potential limitations of 

using REP methods to derive chlorophyll content. It is calculated using the ratio of the 

difference in reflectance between band 10 and band 9 and the difference in reflectance 

between band 9 and band 8 of the MERIS standard band setting: 

 

MTCI = R753.75 - R708.75 / R708.75 - R681.25    (2.1) 

Or  

MTCI = Rband 10 – Rband 9 / Rband 9 – Rband 8    (2.2) 

 

Where R753.75, R708.75, R681.25 are reflectance in the centre wavelengths (nm) of the 

MERIS standard band setting in bands 10, 9 and 8 respectively (Table 2.2). The MTCI 

may be used to derive an estimate of the relative location of the reflectance ‘red edge’ of 

vegetation, yet it is sensitive to all values of chlorophyll content, unlike REP techniques 

that suffer from saturation problems at high chlorophyll contents. The MTCI combines 

information on leaf area index and foliar chlorophyll concentration to produce a metric 

for chlorophyll content (Dash et al., 2008). 

 

The MTCI has been adopted as an ESA Level 2 land product, whereby MTCI 8-day and 

monthly global composites are produced in near real time (Curran et al., 2007). Given 

that the MTCI is the only available chlorophyll index from a spaceborne sensor there is 

now a real opportunity for monitoring vegetation function and condition systemically 

and reliably. 
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2.6.1 Evaluation of the MTCI 

The Algorithm Theoretical Basis Document (ATBD) (Curran and Dash, 2005) outlines 

the criteria for the design of the MTCI as follows: 

 

1. Sensitive to a wide range of chlorophyll contents 

2. Estimation of the MTCI values, unlike REP techniques, requires minimal 

computational costs in terms of processing capacity. 

3. Estimation of chlorophyll with MTCI is independent of soil and atmospheric 

condition, spatial resolution and observation geometry.  

 

Data from model, laboratory and field measurements as well as MERIS data were used 

in the initial indirect evaluation of the MTCI to assess the MTCI in relation to points 1-3 

listed above.  Modelling the reflectance spectra, using LIBSAIL (a combination of Leaf 

Incorporating Biochemistry Exhibiting Reflectance and Transmittance Yield 

(LIBERTY) and Scattering by Arbitrary Inclined Leaves (SAIL) (Curran and Dash, 

2005)), simulated MERIS band positions over a wide range of chlorophyll contents. The 

modelled data revealed a near linear relationship between chlorophyll content and MTCI. 

The angle of the regression line between chlorophyll content and MTCI suggested 

sensitivity to high chlorophyll contents. Such sensitivity was confirmed using canopy 

reflectance spectra from Douglas-fir (Pseudotsuga menziesii) and big leaf maple (Acer 

macrophyllum) (Curran and Dash, 2005). The relationship between MTCI and 

chlorophyll content for Douglas-fir and big leaf maple had a coefficient of determination 

(R2) of 0.64 and 0.72 respectively (Dash and Curran, 2007).  

 

Further evaluation of the MTCI, again carried out by Dash and Curran (2007), using 

field derived chlorophyll content from various crops, demonstrated a strong positive 

relationship with ‘full resolution’ MTCI (R2of 0.8). The MTCI has now been used with 

success to estimate foliar and canopy chlorophyll content in several applications. To 

date, the MTCI has been used in a growing body of research to estimate chlorophyll 

content in a variety of environmental applications: estimating crop productivity (Dash 

and Curran, 2007) and GPP based upon the relationship between chlorophyll content 

and MTCI in six species of wheat (Wu et al., 2009). The MTCI has also been used as a 

surrogate to infer salt stress in coastal zones that were affected by the Indian Ocean 
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tsunami (Dash and Curran, 2006) and estimate environmentally induced stress in oak 

forests (Rossini et al., 2007).  Dash et al., (2007) show that the MTCI may also be used 

in land cover classification, whereby the variation in leaf chlorophyll content between 

high and low chlorophyll season was used to map eleven broad land cover classes. 

 
2.6.2 MTCI operational uncertainties 

Although modeled vegetation spectra and initial evaluation have demonstrated a strong 

relationship between chlorophyll content and MTCI, there are still several of 

uncertainties that need to be addressed if the MTCI is to be embraced by the user 

community. The MTCI, by design is sensitive to chlorophyll content, which is a 

function of foliar chlorophyll concentration and LAI. Therefore the MTCI will change 

in response to both the foliar concentration of chlorophyll and the amount of vegetation 

present. If chlorophyll concentration is constant, an increase in LAI will therefore 

increase chlorophyll content. However, a positive change in LAI is known to increase 

NIR reflectance, if chlorophyll content is controlled, there is uncertainty regarding the 

effect of LAI on the MTCI. Similarly, vegetation structure has been shown to influence 

canopy reflectance, particularly in NIR wavelengths (Soudani et al., 2006). The effect of 

canopy structure will be particularly relevant assessing the transferability of the MTCI 

between cover types and will have implications for estimating chlorophyll content in 

heterogeneous areas.  

 

The initial MTCI design and investigation process removed non-vegetated pixels from 

MERIS scenes (Curran and Dash, 2005). The process removed those pixels with high 

red reflectance to allow the interpretation of the vegetated reflectance spectra. As a 

result of this process the effect of non-vegetated areas has not been considered. As an 

operational product, an understanding of the effect of non-vegetated areas on the MTCI 

is of vital importance to permit the successful interpretation of scene properties.      

 

Although modeled data suggest the MTCI is insensitive to both viewing geometry and 

background reflectance, an operational understanding of both variables is required to 

lead to the further adoption of the MTCI as a tool for the monitoring of vegetation 

dynamics at local to global scales.  
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2.7 Chapter Summary 
This chapter reviewed a range of variables and techniques that are typically associated 

with the estimation of chlorophyll content. Particular reference has been made to the 

intrinsic problems associated with estimating chlorophyll content and the methods used 

to estimate it. Figure 2.5 summarises the variables that contribute to the observed 

reflectance recorded at the sensor. To successfully estimate chlorophyll content, all 

variables that may contribute to pixel reflectance need to be understood and accounted 

for.     

 
Figure 2.5. This flowline summarises the relationship between chlorophyll content and 

each factor that contributes to canopy reflectance observed at the sensor. 

 

Although chlorophyll content has been successfully estimated at local to regional scales 

utilising REP, indices and modelling techniques, such approaches are not feasible at the 

regional to global scale for use in environmental monitoring. Various limitations are 

associated with each method and these are summarised as follows: 
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Vegetation Indices  

Vegetation indices, such as the NDVI are designed to exploit the difference in 

reflectance between the visible and NIR in the vegetation reflectance spectra. The linear 

relationship between NDVI, LAI and chlorophyllbreaks down where the LAI / 

chlorophyll content of the canopy is high due to saturation caused by the asymptotic 

relationship with LAI. Furthermore, research has demonstrated that vegetation indices, 

such as the NDVI, are sensitive to background variation as well as changes in 

illumination and viewing geometry. 

 

Red Edge Position 

REP techniques require hyperspectral or continuous spectra to determine the maximum 

slope and exact location of the point of maximum slope at wavelengths between 690-

740 nm in the reflectance spectra. REP techniques are non-automated, computationally 

inefficient and therefore would be inappropriate for use on large datasets (e.g. spatial 

and temporal time series). Due to the current multi-spectral satellite sensors in orbit, 

REP is not feasible in estimating regional – global chlorophyll content.  

 

Modelling 

Computation modelling techniques have been shown to estimate canopy chlorophyll 

content accurately. Although modelling techniques have been proven to account for the 

non-Lambertian nature of the Earth’s surface, such methods do require prior knowledge 

of surface characteristics. Complex modelling techniques are limited when used on 

regional and global scales due to the non-homogeneity of the Earth’s surface and 

difficulties in obtaining multi-angular datasets.  

 

The MTCI 

In light of the limitations of existing techniques designed to estimate canopy chlorophyll 

content at the local – global scale the MTCI was proposed. Based on the unique 

radiometric characteristics of the MERIS sensor, acquiring reflectance in three narrow 

bands in the REP, the MTCI has been shown to be sensitive to all values of chlorophyll 

content, unlike REP techniques and the NDVI that suffer from saturation problems. 

Coupled with the orbiting characteristics of the Envisat platform, the MTCI offers the 

potential to monitor global vegetation health and condition every three days.
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2.8 Research Objectives 
Chlorophyll content is a key canopy variable that is related to quantity, productivity and 

canopy health. However, prior methods used to estimate chlorophyll content were 

computationally inefficient, time consuming and required reflectance measured in 

contiguous bands. The MTCI utilizes the unique bands(width and position) of the 

MERIS sensor that are located in the red edge region of the reflectance spectra to 

provide an estimation of canopy chlorophyll content. The preceding literature review 

highlighted the role that medium resolution sensors such as MERIS may play in 

providing a pivotal role to monitor global change in terrestrial ecosystems. Therefore 

there is true potential to monitor globally vegetation status with high temporal resolution. 

Such data is of vital importance to understanding global carbon cycles and the influence 

of climate change on terrestrial ecosystems. The challenge now is how to validate the 

MTCI, and understand the capacity to which global monitoring of chlorophyll content 

can provide information on local - global vegetation dynamics. There is a potential to 

define the MTCI’s operational use in routine monitoring programs and develop our 

understanding of terrestrial ecosystem. 

 

The Committee on Earth Observation Satellites (CEOS) established the Working Group 

on Calibration and Validation (WGCV) to drive the validation of land products to 

produce higher-level global land products that can be embraced by the user community. 

Full validation is key to ensure a robust and widely used product that fulfils the users’ 

needs. As the MTCI is the only available chlorophyll index from a spaceborne sensor, 

comprehensive validation is mandatory to determine the reliability of the index (Baret et 

al., 2005). The criteria of a global vegetation index includes (after Huete and Justice, 

1999):  

 

1. The index should maximize sensitivity to plant biophysical variables (in this 

instance, chlorophyll content), preferably with a linear response in order that 

some degree of sensitivity is available for a wide range of vegetation 

conditions and to facilitate validation and calibration of the index. 

 

2. The index should normalise external effects such as Sun angle, viewing 

angle, and atmosphere for consistent spatial and temporal comparisons.  
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3. The index should normalize canopy background (brightness) variations for 

consistent spatial and temporal comparisons.  

 

4. The index should be applicable to the generation of a global product, 

allowing precise and consistent, spatial and temporal comparisons of 

vegetation conditions. 

 

5. The index should be coupled to key biophysical parameters as part of the 

validation effort, performance, and quality control. 

 

The principal aims of this research are defined in the context of the above requirements. 

These are stated as three objectives: 

 

1. Assessing the MTCI – chlorophyll content relationship. This thesis will explore 

not only the relationship between chlorophyll content and MTCI for different 

vegetation types, but will investigate through laboratory and field experiment the 

potential influence of non canopy variables on such a relationship. Laboratory 

based field spectroscopy wasused to investigate the influence of illumination and 

viewing geometry and soil background reflectance on the MTCI – chlorophyll 

content relationship.  

 

2. The development and application of a validation procedure to assess the 

relationship between MTCI and chlorophyll content in sites withcontrasting 

cover types, canopy structure and architecture (open and closed woodland and 

agricultural canopies).  

 

Only through understanding the relationship between MTCI – chlorophyll can the MTCI  

be used as a tool to monitor vegetation dynamics and environmental change. In the light 

of 1 & 2, the MTCI will be used to; 

 

3. Characterise and critically explore the role of the MTCIto monitor vegetation 

dynamics. The thesis will explicitly investigate the potential role the MTCI may 

 59



Chapter 2. The remote sensing of canopy chlorophyll content 

 

play in characterising vegetation phenology and gross primary productivity. 

Through exploring the MERIS data archive, 2002 – date, vegetation dynamics 

can be characterized over a six growing seasons for a variety of contrasting land 

cover types.  

 

The overriding aim of this thesis is to establish whether the MTCI meets the 

requirements related to prediction accuracy and consistency, regarding the need for 

specific spectral indices that are sensitive exclusively to a vegetation/canopy descriptor 

of interest, i.e. chlorophyll content. 

 

2.9 Thesis plan 
Chapter 3 investigates the relationship between chlorophyll content and MTCI using 

field spectroscopy and investigates the potential influence non-canopy variables may 

have on such a relationship. Experimental evaluation of factors that may influence the 

relationship between the MTCI and chlorophyll content involves the in situ 

measurement the MTCI from different vegetation types, soil background and 

illumination and view angles. Chapter 3 addresses research objective 1.  

 

The aim of Chapter 4 is to examine the methodological issues associated with 

aggregating chlorophyll content acquired from ground-based point measurements to the 

‘full resolution’ of the MTCI at 300m. The validation campaign assessed the MTCI as a 

tool for estimating chlorophyll in woodland and arable farming locations. Chapter 4 

addresses research objective two. 

Chapters 5 and 6 assess the temporal variability and sensitivity of the MTCI to estimate 

vegetation dynamics; addressing the suitability of the MTCI as a tool to monitor 

vegetation phenology and productivity across a variety of vegetation land cover types. 

As a benchmark, the sensitivity of the MTCI was compared against validated MODIS 

products. Conclusions in Chapter 5 and 6 will fulfill research objective three.  

 
Chapter 7 discusses the main findings made in the previous chapters, provides 

conclusions of the research objectives and identifies the potential for further work. 
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CHAPTER 3: EVALUATION OF THE RELATIONSHIPS 

BETWEEN CANOPY CHLOROPHYLL CONTENT AND 

THE MTCI AND THE EFFECT OF VIEW ANGLE AND 

SOIL BACKGROUND 
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Chapter 3 

 

3.1 Introduction 
Spectroscopy is widely used as a means of scaling up our understanding of the 

interactions between energy and vegetation canopies, from the scale of individual leaves, 

to coarser canopy-scale studies (Milton et al., 2007). Understanding the relationship 

between canopy and incident radiation can be thoroughly investigated through 

spectroscopy in the laboratory environment, which can provide meaningful insight into 

the observed reflectance recorded with airborne and satellite sensors. Field 

measurements may suffer from the effects of unstable atmospheric conditions (cloud 

cover, humidity etc), as well as consistently changing solar geometry. However, 

laboratory based spectroscopy allows better control over environmental conditions, 

allowing control of incoming radiation, atmospheric conditions, radiation geometry and 

canopy and sub canopy variables (Dangel et al., 2005). This approach allows thorough 

investigation of the effects of view angle and radiation geometry on canopy reflectance.  

 

As has been previously discussed (Chapter 2), canopy reflectance can be significantly 

affected by canopy background (Price, 1990). The effects of canopy background is 

relevant for vegetation monitoring since 70% of the Earth’s terrestrial surface consists of 

open canopies with significant canopy background signals exerting some effect on the 

canopy reflectance properties (Graetz, 1990). These open canopies include deserts, 

tundra, grasslands, shrub lands, savannas, woodlands, wetlands, and many open forested 

areas. One major contribution to canopy reflectance in open canopies can be attributed 

to the optical properties of the soil. 

 

Large field-of-view (FOV) sensors, such as MERIS, have the advantage of increasing 

spatial and temporal coverage. However, off-nadir viewing introduces changes in sensor 

signal in response to variations in Sun and view angles (Galvaõ et al., 2004). As a result 

of this spectral dependence, these effects are not removed by the calculation of 

vegetation indices. 

 

At present little work has been carried out to determine the influences of soil back 

ground and viewing geometry upon on the MTCI. Therefore, there is a pressing need to 
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evaluate the effect of these variables on the MTCI – chlorophyll content relationship. To 

understand the performance of the index and its utility in the provision of robust 

measures of canopy chlorophyll content there is a need to validate the index across a 

range of acquisition and environmental conditions.  

 

3.2 Chapter aims 
The aim of this chapter is to investigate the factors that may influence the relationship 

between the MTCI and chlorophyll content. The objectives of this investigation were to: 

(i) Evaluate the relationship between chlorophyll content and the MTCI and five 

other spectral indices and REP that can be derived from current, moderate spatial 

resolution spaceborne sensors. 

(ii) Evaluate the effect of two major non-canopy variables: soil background and 

view angle on the relationship between chlorophyll content and the MTCI.  

A series of spectral measurements employing laboratory-based spectroscopy were used 

to calculate the MTCI. The variability in MTCI as a result of the following variables 

was explored: 

 

(a) Chlorophyll content:  As a global product the MTCI will be use to estimate across a 

broad range of chlorophyll contents. In this experiment spinach, Spinacia oleracea 

(planophile type) was studied and grown under different fertilisation regimes to control 

chlorophyll content allowing the assessment of the sensitivity of the MTCI. 

 

(b) Soil background: The effect of vegetation cover on the MTCI may be dependent on 

the type of scene background. A robust global product will need to derive chlorophyll 

content across a range of soil types and background colours. A range of different soil 

types and moisture content was explored.  

 

(c) Sensor view angle: Little research has been undertaken into the influence of 

shadowing or illumination and viewing geometry on either MERIS data or the MTCI.  

With a FOV of 68.5º and a swath width of 1150km (Gao et al., 2004) MERIS can only 

provide limited angular observations at large view zenith angles. It would therefore not 

be feasible to create BRDF MERIS products to examine the effect of viewing and 

 63

 



Chapter 3. Evaluation of the canopy chlorophyll content and MTCI relationship  

illumination geometry on the MTCI. Therefore a range of reflectance measurements was 

used to examine the effect of sensor view angle on the MTCI.  

 

3.3 Method 
A series of experiments were undertaken in a greenhouse located at the School of 

Biological Sciences, University of Southampton. Spinach (Spinacia oleracea) was 

grown with different levels of fertilisation and soil backgrounds in twenty-one growing 

trays (measuring 30 cm x 50 cm). The climate-controlled greenhouse had a maximum 

temperature of 20 °C, a minimum temperature of 12 °C and daylight duration of 16 

hours.  

For the purpose of this experiment, four soil types were used in twelve trays:  

(i) Standard bare soil (mixture of 2/3 topsoil and 1/3 compost),  

(ii) Grey soil (same as standard bare soil but covered with silver sand),  

(iii) White soil (same as standard bare soil but covered in talc layer),  

(iv) Moist soil (standard bare soil that had a controlled amount of water applied 

prior to spectral measurements being taken).  

Two weeks after sowing and several days after germination the first set of 

measurements (SPAD, digital images and spectral reflectance) were undertaken and 

immediately after these measurements fertilisation was carried out using a foliar feed 

containing Nitrogen, Phosphorus and Potash.  

 

Spinach plants were manipulated to provide variation in scene properties, including 

chlorophyll concentration and leaf area. Using the standard soil mixture three trays were 

subjected to high fertilisation (100% foliar feed), low fertilisation (50% diluted foliar 

feed) treatment and three were unfertilised (Table 3.1). Trays were placed on a 

perforated elevated platform to reduce cross contamination from the seepage of water. 

Fertilisation was then carried out at weekly intervals up to a week before the end of the 

experiment. Spectral reflectance, chlorophyll concentration and LAI were measured 

weekly at the canopy level for four weeks. 
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Tray code Soil type Fertilisation regime 
Addition wetting prior to spectral 

measurements 

NF Standard bare soil No fertilisation None 

MF Standard bare soil 50% foliar feed None  

HF Standard bare soil 100% foliar feed None 

GS Grey soil No fertilisation None 

BS Standard bare soil No fertilisation None 

WBS 
Standard wet bare 

soil 
No fertilisation Yes, 500ml prior to measurements 

WS White soil No fertilisation None 

 

Table 3.1. Summary of the spinach trays used in this experiment. 

 

3.3.1 Spectral measurement 

A laboratory experiment was undertaken in which reflectance spectra were measured, 

four times over a period of four weeks, under controlled illumination conditions. The 

reflectance spectra were obtained using the Geophysical and Environmental Research 

Corporation’s single beam GER-1500 field spectrometer (on loan from the NERC Field 

Spectroscopy Facility). The GER 1500 had an angular FOV of 4°, the spectrometer was 

positioned on a tripod at 1.0m above the target, at nadir, giving a sampling area within 

the FOV of 10.6 cm diameter and area of 88.2 cm2. The illumination source was a 500W 

Kaiser video light positioned on another tripod, 2.0m away from the target at an 

inclination angle of 60o (Figure 3.1). Compared with sunlight, laboratory illumination is 

highly heterogeneous (Sandmeier et al., 1998). Therefore, maintaining a consistent 

illumination source was of vital importance, minimising methodological error in the 

reflectance measurements. The chosen illumination source, the 500W Kaiser video lamp, 

provides consistent spectral radiance, whilst minimising laboratory set-up costs 

(Malthus, personal communication, March 2007). To minimise the effects of stray light 

and inter laboratory reflectance from equipment, surfaces in the laboratory were covered 

in a black felt cloth. Spectroscopy was used to select a cloth based on its spectral 
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properties, i.e., it was important to select a suitable covering material that minimised 

reflectance in the visible and NIR regions of the reflectance spectra.  

 

The 50 cm growing trays allowed a maximum of 3 measurements per tray; therefore 3 

points were positioned 10 cm apart and were permanently marked on the tray at the 

centre of each FOV using a visible marker. The spectral reflectance of each data point 

was an average of 10 spectral measurements. One non-Lamberterian Spectralon panel 

was used as a reference target and spectral measurements were undertaken at regular 

intervals during the experiment to ensure consistency. Spectral measurements at seven 

sensor view angles (between -30o and +30o) were also recorded in the principle plane for 

weeks 1-4 for Spinach grown in medium fertilised soil (Figure 3.1).   
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Figure 3.1. Diagrammatic representation of the set up of the apparatus used in the laboratory experiment.
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Figure 3.2. The Minolta SPAD to estimate chlorophyll concentration in spinach leaves. 

where T is the transmittance and k is a calibration coefficient determined by the 

manufacturer (Uddling et al., 2007). The claimed accuracy of the meter output is ±1 

SPAD units (or ±1%). 

 

 

Chlorophyll concentration was measured instantaneously and non-destructively using 

the Minolta SPAD (Soil Plant Analysis Division) 502 chlorophyll metre. The Minolta 

SPAD 502 was used to estimate chlorophyll concentration in spinach due to the 

compact design, allowing quick and easy measurements in both the laboratory and field 

environment (Markwell et al., 1995) (Figure 3.2). Primarily designed for agricultural 

crop science applications, with a focus of measuring crop health, the Minolta SPAD 

measures leaf transmittance at two wavelengths: red (650 nm) where light absorption by 

chlorophyll is efficient and NIR (940 nm) where absorption by chlorophyll is 

insignificant. The SPAD-502 meter calculates a non-dimensional, relative chlorophyll 

content in SPAD units at a range of 0-99 (lowest – highest) according to: 

3.3.2 Chlorophyll measurement 

 

SPAD = k • log 10 * T940 / T650 
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Wet chemistry assay procedures were used for the conversion and calibration of the 

Minolta SPAD-502 readings to chlorophyll concentrations. For each leaf 5 discs were 

cut and their dimensions recorded, usually this equated to an area of 316.14mm2 for 

spinach leaves, and five SPAD measurements taken per leaf disc. Discs were 

immediately immersed in 1 ml of analytical grade N, N-dimethylformamide (DMF) to 

facilitate the complete extraction of the chlorophyll pigments. DMF overcomes the 

problems of incomplete extraction of chlorophyll (Wellburn, 1994) and eliminates the 

need of further sample preparation. Direct immersion in DMF is an equally efficient 

extraction procedure as pre-grinding of the samples and immersion (Moran and Porath, 

1980). All samples were kept refrigerated at 4oC in the dark to reduce pigment 

breakdown and for the extraction of leaf pigments. 

 

After refrigeration, samples were diluted 1:5 with DMF, allowing two samples to be 

taken from each original sample and to fall within the sensitivity and linear range of the 

spectrophotometer. The mean of three spectrophotometer readings was used to 

represent the sum of both chlorophyll a and b (µg ml-1) determined using the specific 

extinction coefficients for a spectrophotometer with a spectral resolution of 1nm 

(Wellburn, 1994).  

 

Chlorophyll a = 11.65* A664 – 2.69 * A647   (3.1) 

Chlorophyll b = 20.81* A647 – 4.53 * A664   (3.2) 

 

Where A664 and A647 are the recorded absorptions at 664 nm and 647 nm measured with 

a Cary 50, version 3.0, UV/VIS spectrophotometer. As samples had a known area 

chlorophyll concentration could be expressed as mg m-2. 

 

Chlorophyll concentrations corresponding to each SPAD value were plotted and 

correlated, with the coefficient of determination (R2) used to indicate the strength of 

relationship.  A regression model was used to describe the relationship between SPAD 

values and both chlorophyll a and b concentration. The regression models were then 

used to estimate spinach foliar chlorophyll concentrations based on SPAD results. In 

this instance, total chlorophyll concentration (mg m-2) in spinach can be estimated by 

the following regression equation: 
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Chlorophyll-a concentration (mg m-2) = 0.36* SPAD2 -12.44*SPAD+276.64  (3.3) 

Chlorophyll-b concentration (mg m-2) = 0.11* SPAD2 – 4.30*SPAD+100.22   (3.4) 

Total chlorophyll concentration = chlorophyll-a + chlorophyll-b   (3.5) 

 

Using the calibration equations spinach foliar chlorophyll concentration was monitored 

throughout weeks 1- 4 of the laboratory experiment. For each of the GER 1500 FOV 

measurements (three per tray), 10 leaves were chosen representing the variation in 

chlorophyll concentration and 10 SPAD measurements were taken for each leaf. 

 

The size, distribution and height of spinach plants were not suitable for LAI 

determination with the Delta–T Sunscan instrument. Therefore, digital photography was 

used to estimate LAI. An image of each tray was taken using a Panasonic LUMIX 

DMC-FZ10 digital camera and the regions of interest (ROI) corresponding to each of 

the trays three FOV were extracted. Individual leaves within the ROI were digitized, 

taking care to include those that were overlapping. After the digitisation, total leaf area 

was calculated using ArcGIS software (Figure 3.3). 

 

Chlorophyll content was calculated as; 

 

Chlorophyll content = LAI * chlorophyll concentration  

 

Within this thesis chlorophyll content is expressed as content per unit area, specifically 

mg m-2, rather than mass per pixel. Adopting this approach allows direct comparison of 

the relationship between MTCI and chlorophyll independent of the spatial resolution of 

the sensor used, i.e., GER 1500 Spectrometer (88.2 cm2), CASI-2 (2-300 m) and 

MERIS (300 m). 
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Figure 3.3. Illustration of the flow line that is used in ArcGIS to derive LAI.  The 

centre of the field of view of the GER 1500 was identified using the prepositioned 

markers; the FOV was then superimposed on the digital imagery. Each green leaf area 

was digitised in ArcGIS, allowing for leaf overlap. LAI was calculated as the ratio of 

total one sided leaf area divided by the area of the GER 1500 FOV. 
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3.3.3 Spectral indices 

Several optical indices have been reported in the literature to be strongly correlated with 

various vegetation parameters such as LAI, biomass, chlorophyll content, and 

photosynthetic activity. The sensitivity of vegetation indices to variations in observing 

geometry and soil properties has important bearings upon the performance and the 

suitability of a particular index to estimate the canopy variable of interest.  

 

Together with the MTCI, four spectral indices and a REP technique were selected to 

evaluate the relationship between chlorophyll content and the effect of view angle and 

soil background. Normalised Difference Vegetation Index (NDVI) (3.6) (Rouse et al., 

1973), Enhanced Vegetation index (EVI) (3.6), (Huete and Justice, 1999), optimized 

soil-adjusted vegetation index (OSAVI) (3.8) (Rondeaux et al., 1996), Red edge derived 

from MERIS data (MERIS REP) (3.9) (Clevers et al., 2002), Red edge position by 

linear interpolation (REP) (3.10) (Danson and Plummer, 1995; Guyot et al., 1988), 

Modified chlorophyll absorption ratio (MCARI) (3.11) (Daughtry et al., 2000) and 

MERIS Terrestrial Chlorophyll Index (MTCI) (2.1) (Dash and Curran, 2004).  

 

NDVI    (RNIR – Rred) / (RNIR + Rred)                (3.6) 

 

 

EVI  ((RNIR – Rred) / ((RNIR + C1 * Rred) – (L * Rblue + C2)) * G   (3.7)

   

Where, L = soil adjustment factor (7), C1 and C2 are aerosol scattering coefficients of 6 

and 1 respectively, G = gain factor of 2.5 (Matsushita et al., 2007). Bandwidth used in 

NDVI and EVI correspond to the band positioning of the MODIS sensor, where RNIR = 

841-876nm, Rred = 620-670nm, and Rblue  = 459 – 479nm (Justice and Huete 1999).  

 

OSAVI  (1+0.16)*(R800 – R670) / (R800 + R670 + 0.16)    (3.8) 

 

 

MERIS REP      (R705 = (48.77 * (((R665 + R775) / 2 – R705 / (R537 – R705))   (3.9) 

 

Where, Rx is the reflectance corresponding to the central positions of the MERIS 

spectral bands. 

 72

 



Chapter 3. Evaluation of the canopy chlorophyll content and MTCI relationship  

 

REP (linear interpolation)  

700+40*((R670/R780)/2 – R700) / (R740 – R700)            (3.10) 

 

MCARI  2*[(R800−R670) − 0.2*(R800−R550)]             (3.11) 

 

The continuous GER 1500 spectra data were re-sampled through (mean) aggregation to 

simulated broad spectral bands. Such a method permitted the formulation of the 

aforementioned vegetation indices (equations 3.6 – 3.9).    

  

3.3.4 Statistical analysis 

Bi-variant correlation analysis was used to describe the strength and direction of the 

relationship between chlorophyll content and spectral indices. Coefficient of 

determination (R2)was calculated to determine shared variance between the two 

variables, with, statistical significance where p = < 0.05 was satisfied. 

 

Spectral reflectance indices were analysed and experimental effects on them were 

assessed using analysis of variance (ANOVA). Mean value of the spectral reflectance 

indices were compared using Duncan’s multiple range test at p~0.05. The coefficients 

of determination were used to study the relationship between the spectral reflectance 

indices, calculated for different soil backgrounds and viewing geometry. All statistical 

analyses were conducted using standard SPSS procedures (Pallent, 2007). 
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3.4 Results and discussion 

Spinach plants exhibited the same growth characteristics for each soil medium. 

Chlorophyll concentration reached a maximum during the second week of measurement, 

after which it declined to levels that were equivalent to those recorded during the first 

week. LAI reached maxima during the third week, which can be clearly seen in Figure 

3.4, accounting for the increase in reflectance shown in Figure 3.5, where partial canopy 

closure reduced the effect of soil further and corresponds to increased reflectance 

principally in the green and NIR wavelengths. After the third week, LAI decreased as 

the plants started to bud and produce flowers. This also coincided with an observed 

decrease in foliar chlorophyll concentration and degradation in leaf tissue. Total 

chlorophyll content, a function of LAI and chlorophyll concentration, increased rapidly 

after the first week’s measurements, reaching a maximum during weeks 2-3, after 

which it decreased rapidly. 

Figure 3.4. The growth of spinach grown in non-fertilised soil. Chlorophyll 

concentration reaches a maxima at week two, whilst LAI during the third week. Leaf 

tissue degradation is evident during week 4, with an associated decrease in both LAI 

and chlorophyll concentration. 
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Figure 3.5. Mean spectral reflectance profiles for spinach grown on non-fertilised soils (NF), weeks 1-4. The spectral location of the MERIS 

bands used in the calculation of the MTCI superimposed on the reflectance spectra (N.B. MERIS band widths are not proportional to line width).
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3.4.1 Relationship between chlorophyll content and the MTCI 

The MTCI mirrors the change in chlorophyll content well for spinach canopies grown 

on most soils (Figure 3.6); the most notable exception is for the spinach grown on white 

soil, where the MTCI is greater than expected at low LAI during the early stages of the 

experiment and lower than expected during week 3. Spinach grown in medium and non-

fertilised soil also exhibited lower than expected MTCI in week 3, which did not reflect 

changes in measured chlorophyll content. Spinach grown on grey soil (sand) exhibited a 

marginally higher MTCI than expected for week 3 compared to the incremental increase 

in chlorophyll content. Aggregating chlorophyll content for all spinach showed that the 

MTCI and chlorophyll content exhibited the same temporal trend. These findings 

demonstrated that an increase in LAI (Figure 3.7) from weeks two to three did not result 

in an increase in MTCI (Figure 3.6). This suggests that for a given chlorophyll content, 

the MTCI is insensitive to variation in LAI across the range of LAI observed in this 

series of experiments.  

 

Correlation was used to examine the relationship between MTCI and chlorophyll 

content, LAI and chlorophyll concentration. Coefficient of determination shows that 

MTCI has a stronger relationship with chlorophyll content, compared to LAI and 

chlorophyll concentration (Figure 3.8). This result was expected as MTCI is a function 

of LAI*chlorophyll concentration. This relationship shows that the MTCI is coupled 

with a canopy variable, and can be used to infer such a variable even at low LAI where 

the influence of background reflectance on measured canopy reflectance is high.  
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Figure 3.6. Variation in MTCI (a), and chlorophyll content (b) for spinach grown in 

various soils as derived from GER 1500 reflectance. Points on graph represent mean 

values per tray (n=3). 
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Figure 3.7. Change in LAI (a) chlorophyll concentration (b) over the duration of the 

laboratory experiment for spinach plants.Points on graph represent mean values per tray 

(n=3). 
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Chlorophyll content (mg m-2)

Chlorophyll concentration (mg m-2) 

Figure 3.8. The relationship between MTCI and chlorophyll content (a), chlorophyll 

concentration (b) and LAI for all soil backgrounds. 
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Regression analysis was used to determine whether soil background affected the 

relationship between chlorophyll content and the MTCI (Figure 3.9). The four soil 

backgrounds, standard bare soil (NF, MF, HF and BS), wet standard bare soil (WBS), 

grey soil (GS) and white soil (WS).  The relationship between MTCI and chlorophyll 

content is weak where spinach is grown in a white soil, R2=0.14, where 14% of the 

variance in MTCI can be accounted for by chlorophyll content.  The relationship is 

strengthened when considering those cases where LAI > 1, R2 increased from 0.14 to 

0.48 (R2 =0.22 where LAI < 1). Although the sample size was small it suggests that LAI 

is an important factor when establishing the relationship between MTCI and chlorophyll 

content in reflective soils. A previous study using modelled spectra (Curran and Dash, 

2005) has shown that at an LAI greater than 2 the effect of soil background is minimal. 

The results show that highly reflective soils have a greater impact at a low LAI but 

suggest that soil moisture and other soil conditions have a limited effect on reflectance 

at a low LAI.  

 

The relationship between canopy chlorophyll content and MTCI was shown to be strong 

for all soil types, except white. The overall correlation between MTCI and chlorophyll 

content on all experimental soil types was R2=0.56, indicating a relatively strong 

relationship. When those results relating to white soils were omitted from the analysis, 

the relationship between MTCI and chlorophyll content was strengthened (R2=0.66) 

(Figure 3.10).  

 

ANOVA analysis examined whether there was more variability between the MTCI from 

the different soil backgrounds than the MTCI week on week (a function of chlorophyll 

content). At the 0.05 level of confidence, F values indicated that there was no difference 

in variability (F=0.652), suggesting that background does not have a significant effect 

on the MTCI. 
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Figure 3.9.The relationship between MTCI and total chlorophyll content for spinach 

grown on various soil backgrounds. 
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 Chlorophyll content (mg m-2) 

Figure 3.10. Relationship between total chlorophyll content and MTCI was increased 

when removing measurements from spinach grown on white soils. 

 

3.4.2 The effects of soil reflectance on the MTCI 

Four different soils were used to investigate the effect of soil background on the MTCI.  

Spectra taken from bare soils (prior to planting seeds) demonstrate that soil reflectance 

characteristics have an effect upon the MTCI. Figure 3.11 shows the reflectance in the 

MERIS spectral bands used in the MTCI from the four soils. The reflectance spectra 

from all the soils (except white) have a gentle positive slope in the red – NIR region, 

exhibiting higher reflectance in the NIR than red.  Therefore the smaller difference in 

reflectance between MERIS bands 8 and 9, compared to 9 and 10 result in a positive 

MTCI.  
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 Figure 3.11. The spectral reflectance profiles of a variety of bare soil sample used in 

this investigation. 
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The reflectance characteristics of the bare and wet bare soils result in MTCI values 

comparable to spinach canopies with a chlorophyll content of approximately 300 mg m-2. 

There is a marked variation between the MTCI values for different soils due to their 

varying spectral characteristics (Table 3.2). The effect of soil background alone on the 

MTCI is apparent, where bare bright soils (MTCI -0.8) have a low MTCI compared to 

bare and wet bare soils. 

 

The effect of bare soil reflectance on the MTCI therefore suggests it will be difficult to 

interpret vegetation chlorophyll content where LAI is low.  However, the reflectance 

from the white soil was less in MERIS bands 8 and 10 (red and NIR respectively) 

compared to MERIS band 9 (the red edge) (Figure 3.11), which resulted in a negative 

MTCI. Table 3.2, shows the effect of soil reflectance on the MTCI. 
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 Absolute reflectance (%) 

MERIS band White soil grey soil Standard bare 
soil 

wet standard 
bare soil 

band 8  101.1 51.7 4.1 3.6 

band 9 101.9 53.9 5.2 4.4 

band 10  101.2 56.6 7.5 6.2 

MTCI -0.8 1.3 2.1 2.1 

 

Table 3.2. Soil reflectance properties as measured in MERIS bands 8, 9 and 10 and the 

MTCI of bare soil as used in this experiment. 

 

3.4.3 Effect of view angle on the MTCI 

The MTCI for spinach plants from the GER 1500 spectra measured over four dates and 

seven sensor view angles are plotted in Figure 3.12. There was limited variability in 

MTCI over the viewing angle. ANOVA analysis examined whether there was more 

variability between the MTCI from week to week (i.e., a function of chlorophyll 

content) than MTCI across the viewing angles range. At the 0.05 level of confidence, F 

values indicated (F=196.3) that there was a difference in variability showing that the 

influence of sensor view angle at nadir ± 30o was less than that of chlorophyll content. 

The MTCI compounds the effects of viewing and illumination geometry. Dash (2005) 

also concluded a limited sensitivity of the MTCI to view angle within the nadir ± 30o 

range but sensitivity at angles beyond this.  
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Figure 3.12. MTCI at seven different sensor view angles for spinach: week 1 ( ); week 

2 (◆); week 3 ( ) and week 4 (+) 

 

3.4.4 Evaluating the performance of spectral indices to infer chlorophyll content 

The relationship between chlorophyll content and various spectral indices that are 

commonly used to estimate green biomass or chlorophyll were investigated. The 

MCARI proved insensitivity to variation in chlorophyll content (typical R2 =0.1 – 0.3), 

whilst responsive to variations in LAI (Haboudane et al., 2004). The MCARI was most 

resistant to chlorophyll and variation appeared independent of chlorophyll content 

changes, this may be in part due to the fact that MCARI is insensitive to low chlorophyll 

contents (Haboudane et al., 2002). Therefore, the MCARI was omitted from further 

investigation. 

 

Figure 3.13 shows the relationship between spectral indices and chlorophyll content. 

MTCI and MERIS REP had the strongest relationship with chlorophyll content 

(coefficient of determination R2 = 0.7) whilst NDVI and EVI had the weakest. This may 

be because both NDVI and EVI are more sensitive to green biomass and variation in 

LAI than chlorophyll content. The results of this investigation support the findings of 
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Oppelt and Mauser (2004) who concluded that NDVI and OSAVI were insensitive at 

chlorophyll contents below 300 mg m-2. Results suggest that the NDVI and OSAVI 

were insensitive across the range of chlorophyll contents in this series of experiments. 

These findings will have important bearings on studies that use these indices to monitor 

vegetated canopies with a low LAI.  Similarly, consideration must be given to the use of 

such indices to monitor vegetation phenology, particularly at the start and end of the 

growing seasons when chlorophyll contents and LAI are typically low.   

These results suggest that methods that utilise narrow reflectance bands in the REP 

region of the spectrum, such as MTCI and MERIS REP are the most sensitive to 

changes in canopy chlorophyll content.  

 
R2

Figure 3.13. Comparison of the performance of vegetation indices for the estimation of 

chlorophyll content. 
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3.4.5 The effect of soil background upon the relationship between chlorophyll and 

vegetation indices 

LAI values were low; typically 0.6 in week 1 to 1.2 in the week 3, therefore soil 

reflectance was a contribution to canopy spectral reflectance throughout the period when 

reflectance measurements were recorded. The relationship between spectral indices and 

soil background was explored further. Correlation analysis was used to determine the 

ability of the indices to estimate chlorophyll content when spinach was grown on 

varying soil backgrounds. Generally, the increase in reflectance from the soil, 

corresponding to increased soil brightness weakened the relationship between 

chlorophyll and the spectral indices. No indices performed well when spectral 

measurements were taken on a highly reflective white soil background, particularly 

when LAI were low.   

 

The observed relationship between VI and chlorophyll content did appear to vary as a 

function of soil reflectance (Figure 3.14). MTCI, MERIS REP, OSAVI and linear REP 

were robust maintaining a strong relationship with chlorophyll content on bare soil and 

wet bare soils, indicating that the observed spectral response is a result of vegetation 

change rather than soil moisture variation. For sandy soils the MTCI and MERIS REP 

still exhibited a relatively strong correlation with chlorophyll content (R2 of 0.62 and 

0.61 respectively) (weeks 1-4).   
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 R2

Figure 3.14. The effect of soil background upon the relationship between chlorophyll 

content and spectral indices. 

 

3.4.6 The influence of view angle on the relationship between chlorophyll content 

and vegetation indices 

Canopy reflectance is determined by a combination of vegetation reflectance, soil 

background, and illumination and viewing geometry (e.g. the position of the Sun or 

angle of view) (Aparicio et al., 2004). The spectra in Figure 3.5 show a typical pattern 

of canopy reflectance, with reflectance being relatively low throughout the visible 

wavelengths (400–700 nm) and increasing sharply up to the NIR plateau (750–1100 nm). 

However, with the sensor at +30 degrees more reflected radiation is recorded throughout 

the range of wavelengths (400–1100 nm) than when placed at nadir (Figure 3.15).  

 

The observed change in canopy reflectance will therefore lead to an increase in VI 

values towards the ‘hot spot’. This can be explained by the bidirectional properties of 

the canopy. Towards the ‘hot spot’, an increase in canopy forward scattering is coupled 

with a decreasing amount of background in view away from nadir, reducing the 

contribution of soil on reflectance. However, in the back scattering direction, shadowing 
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effects will increase with view angles away from nadir, leading to a reduction in visible 

and NIR reflectance, explaining the decrease in MTCI and EVI (Figure 3.15).  

 

Figure 3.15. The change in observed canopy reflectance in visible and NIR wavelengths 

due to changing viewing geometry from ±30 degrees of nadir in the principle plane. 

 

Figure 3.16 represents the percentage change in the spectral indices from nadir to ±300 

for weeks 2 and week 3, periods where LAI was highest. As can be seen there was little 

change in the value of the spectral indices values within the viewing range. However, 

the MTCI shows most variation as a function in viewing geometry. There is a systematic 

decrease in MTCI values away from the sensor and a systematic increase in MTCI 

values away from nadir. 
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Figure 3.16. Change in spectral vegetation index values as a function of view angle 

 

Analysis of variance (one-way ANOVA) was used to determine if there was a 

statistically significant variation in each of the six indices across the viewing range. 

Removing the variation of soil background on canopy was necessary to examine the 

influence of view angle on the indices. Therfore angular measurents were taken from a 

single soil type.At the 0.05 level of confidence, there was no significant change in 

indices, indicating that the influence of sensor view angle at nadir to ± 30° did not 

significantly influence index values (Table 3.3). The small F ratio indicates the small 

variance between groups caused by variation in view angle. Appendix 5 shows the full 

results from the one-way ANOVA test.  

Although the investigation into the effects of view angle on the MTCI did not show any 

significant statistical effects, it was shown that the MTCI was influenced by view angle 

to a greater extent than the other vegetation indices were. View angle has been shown to 

effect the NDVI at the canopy scale. Airborne Hyperspectral Mapper (HYMAP) data 
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was used to examine the influence of view angle (±30° from nadir) on NDVI from 

various land cover types in the Amazonian basin. Normailsed surface reflectance was 

shown to increase in both red and NIR bands, from negative to positive view angles up 

to +40° (Galvao et al., 2004). Such variation in measured reflectance will lead to 

consequent variation in NDVI values (Walter-Shea et al., 1997). Therefore, further 

research is required to assess the influence of view angle variation on MTCI at the 

canopy scale.  

Vegetation index Levene’s test F ratio Significance 

MTCI 0.994 0.035 1.0* 

REP 0.989 0.062 0.999* 

NDVI 0.990 0.170 0.982* 

EVI 0.999 0.006 1.0* 

OSAVI 0.995 0.138 0.989* 

MERIS REP 0.996 0.38 1.0* 

*not significant > 0.05, df between groups = 6, within groups = 21 

 

Table 3.3. Results from one-way ANOVA assessing the significant of the influence of 

variation in view angle on the MTCI – chlorophyll content relationship. Levenes 

significance was included to show the data did not violate the assumption of 

heterogeneity of variance. 
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3.5 Conclusions 

Curran and Dash (2005) pinpointed a number of potential limitations with the 

operational use of the MTCI. One of the aims of this series of experiments was to 

examine the effect of changing LAI on the relationship between chlorophyll content and 

MTCI. Fertilisation was designed to influence foliar chlorophyll concentration, without 

effecting LAI. However, in practice this was hard to control as both LAI and chlorophyll 

concentration was influenced by fertilisation. Further modelling work needs to be 

conducted to determine the significance of LAI variation upon the MTCI - chlorophyll 

content relationship as the range of data derived from these experiments is insufficient 

to achieve meaningful conclusions. However, these experiments suggest that the MTCI 

will have limited sensitivity to an increase in LAI. The associated increase in LAI 

between measurements taken in weeks 2 and 3 shows a decrease in chlorophyll 

concentration resulted in a marginal decrease in MTCI, which was observed in 

measured chlorophyll content.  

 

In the MTCI Algorithmic Theoretic Basis Document (ATBD), the potential limiting 

effects of soil background and viewing geometry were stated. Leaf area throughout the 

series of experiments was typically low, therefore permitting the effects of soil 

background on the MTCI to be investigated. Results from this spectroscopy based 

investigation support the modelled (LIBSAIL) finding stated in the ATBD document 

(Curran and Dash 2004) indicating that soil background has little effect on the 

relationship between MTCI and chlorophyll content at the LAI observed in this series of 

experiments. For spinach grown on differing soil backgrounds, a strong correlation 

between MTCI and chlorophyll content was observed for all soils backgrounds except 

white.  

 

Results suggest that bare soils have MTCI values that are comparable to those observed 

in vegetated canopies. Bare soil reflectance from a mixture of topsoil and compost did 

have a positive MTCI, whilst white soils revealed a negative MTCI (typically -1.0). The 

experiments suggest that the presence of vegetation compounds the effects of soil 

reflectance even at low LAI (as were observed in week 1 of the series of experiments). 
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However, the effect of the bright background had a significant effect on the MTCI - 

chlorophyll content relationship across the observed range in LAI.  

 

From this study the major conclusions can be stated as: 

 

(i) The effect of soil on the MTCI was limited. The observed relationship 

between chlorophyll content and MTCI was found to be strong on all soil 

backgrounds, except white.  

(ii) View angle within ±30° of nadir had no significant statistical effect on the 

MTCI. However, as view angle is known to influence NDVI values at the 

canopy scale, further research is required to assess the potential effects on 

MTCI 

(iii) Among the six spectral indices, MTCI and MERIS REP had the strongest 

relationship with chlorophyll content.  

(iv) Soil backgrounds appeared to influence the relationships between 

chlorophyll content and a number of spectral indices much greater than the 

MTCI, however this influence was not statistically significant. 

(v) Bare soil has been shown to correspond to positive MTCI values, except 

white soil, which reflects higher in the visible than NIR regions and therefore 

has a negative MTCI. 
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Chapter 4 

 

4.1 Introduction 
The MTCI has started to be embraced by the user community and has been used in 

many applications, across numerous cover types (Espana-Boquera et al., 2006; Dash and 

Curran, 2006; Zurita-Milla et al., 2007; Foody and Dash, 2007; Rossini et al., 2007, 

Haboudaneet al., 2008). Therefore in understanding the performance of the index and its 

utility in the provision of robust measures of canopy chlorophyll content there is a need 

to assess the index across a range of vegetative types and environmental conditions 

through validation.  

 

Validation is the process of assessing the accuracy of data products through independent 

means (Justice et al., 2000; Morisette et al., 2006). The process of validation is driven 

by the need to deliver accurate products to the user community (Cohen and Justice 

1999). Validation procedures and frameworks have been largely co-ordinated in 

accordance with the Committee on Earth Observation Satellites (CEOS) by the Working 

group on Calibration and Validation (WGCV), sub-group on Land Product Validation 

(LPV). This provides the user community with consistent approaches to biophysical 

product validation (Baret et al., in press). 

 

The validation process of moderate resolution satellite products is a challenge (Morisette 

et al., 2006), as accurate field measurements are typically point based, and therefore are 

not directly comparable to the resolution of the sensor (Tian et al., 2002). At the pixel 

level, the (often) heterogeneous land cover will also make the validation procedure 

challenging. However, careful consideration must been given to account for surface 

heterogeneity in the validation design. Therefore, there is a requirement to define and 

refine an appropriate method to account for surface heterogeneity that aggregates point 

measurements to coarser scales and allows assessment of the performance of satellite 

sensor products.  

 

A major logistical difficulty associated with validation is scaling spatially variable 

canopy variables measured at points on the ground to a spatial resolution of the satellite 

sensor, (i.e., 300m for ‘full resolution’ or 1km for ‘reduced resolution’ of the MERIS 
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sensor). A proposed method is to scale-up from the ground to the sensor pixel using data 

acquired at an intermediate scale(s). This approach has been employed in the VALERI 

network of validation sites, where high resolution satellite or aerial imagery (e.g. SPOT-

HRV) is used to generate the high spatial resolution biophysical variable maps based on 

point based field measurements of a particular set of biophysical variables (Baret et al., 

in press). This is achieved through the use of a transfer function, which models the 

numerical relationship between the biophysical variable and high resolution imagery. 

For example, for the extensive validation of moderate resolution LAI products, the 

MODIS Land Discipline Team (MODLAND) utilises the relationship between LAI and 

the spectral values of high resolution imagery (e.g. NDVI, fPAR) (Morisette et al., 

2006b).  

 

4.2. Chapter aims 
In understanding the performance of MTCI and its utility in the provision of 

scientifically robust estimates of canopy chlorophyll content there is a need to validate 

the index across a range of vegetative types and environmental conditions. Validation at 

‘full resolution’ of 300m is necessary to provide a quantifiable relationship between 

MTCI and ground chlorophyll content for a range of vegetation types, including 

woodland and agricultural crops.  

 

This chapter will address the validation procedure carried out at both a woodland site in 

the New Forest, New Forest and an arable farming site at Brooms Barn, Higham, 

Suffolk, and assess the procedure and then gives feedback on the performance of the 

MTCI as a tool for estimating chlorophyll content within the two contrasting study sites.  

 

Several important issues will be addressed in this investigation:  

 

1. Examine the methodological issues with averaging chlorophyll contents acquired 

at one spatial resolution to coarser spatial resolutions (i.e., scaling-up); 

2. Determine the sensitivity of the MTCI to a greater range in chlorophyll content;  

3. Assess the transferability of the MTCI from one place to another (Foody et al., 

2003), specifically assessing both the relationship with canopy chlorophyll 
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content and use of the index to predict canopy chlorophyll content at other 

locations and cover types;  

4. Determine the operational influence of soil background on the relationship 

between MTCI and chlorophyll content. 

 

4.3 Study Areas 
4.3.1 New Forest 

The New Forest in southern England (0º 56' N, 01º 5' W) comprises of ancient semi-

natural and ornamental woodlands and managed coniferous plantations and adjacent 

open heath and grassland covered in heather and low scrub. The deciduous woodlands 

were dominated by white birch (Betula pubescens), oak (Quercus robur) and beech 

(Fagus sylvatica), whilst coniferous areas were dominated by scots pine (Pinus 

sylvestri) corsican pine (Pinus nigra var. Maritima), weymouth pine (Pinis strobus), 

sitka spruce (Picea sitchensis) and Douglas fir (Pseudotsuga menzieii). New Forest 

management practices have resulted in several defined woodland types, varying in 

species composition and vegetation density. The forest is largely unenclosed and permits 

the grazing of livestock across the National Park. This practice permits the formation 

open glades and mature forest with dense bracken and holly (Ilex aquifolium) under 

story. However, there are numerous inclosures within the New Forest. These timber 

plantations make up approximately one third of the total forested area. Both broadleaf 

and conifer species are grown in the inclosures, ranging from new plantations to those 

established in the early 17th Century (Forestry Commission 2006).  

 

The woodland study area, Frame Wood covers approximately 9 km2 of open woodland, 

which is composed of ancient semi-natural and ornamental woodlands and managed 

coniferous plantations and adjacent open heathland covered in heather and low scrub 

(Figure 4.1). The range of canopy structures and vegetation types provide a broad range 

and variability in chlorophyll content (Figure 4.2). In addition, the site was chosen for 

its topography. The site was essentially flat, minimising the effects of terrain in the 

remotely sensed data. 
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4.3.2 Brooms Barn 

The Brooms Barn study area is located in western Suffolk, England (52º 16'4 N, 0º34'55 

E)(Figure 4.2). The 9km2 area is dominated by arable agriculture, although some pig 

farming occurs on site. The arable crops grown on the site include grains; wheat 

(Triticum spp.), barley (Hordeum vulgare), vegetables; potatoes (Solanum tuberosum), 

parsnips (Pastinaca sativa), onions (Allium cepa), and sugar beet (Beta vulgaris). No 

single crop dominates, and the distribution of each crop is largely equal. The area is 

relatively flat, minimising the effects of topography upon the remotely sensed imagery.  
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Figure 4.1. Frame Wood, New Forest, MTCI validation study area in southern England 

showing the location of individual sampling units (ISU) used to derive ground 

chlorophyll content. The image backdrop is a true colour aerial image re-sampled to a 

nominal spatial resolution of 0.5m.   
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Metres 

Figure 4.2. Brooms Barn study area, Suffolk England showing the location of the 

individual sampling units (ISU) used to derive ground chlorophyll content. 
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4.4 Methods 
4.4.1 Sampling design 

To date, no sampling strategy has been proposed to sample chlorophyll content for 

MTCI validation at a spatial resolution of 300m. This is because the size of the 

validation site is directly comparable with the spatial resolution of the satellite product 

being validated (Morisette et al., 2006). The geolocation accuracy of MERIS and the 

point-spread function will result in a larger validation site being required, which would 

be approx 1km2. A 3 x 3 km site in each instance was chosen, which allowed for 

variability in cover type to be introduced, and allow for the analysis of statistical 

relationships. The main objective of the sampling scheme was to account for the 

variability in chlorophyll content across the validation site. Measurements at each 

individual sampling unit (ISU) within the validation site ensured that local variability 

was considered.  

 

The sampling protocol for ground data collection was driven by the need to:  

 

(i) Represent the spatial variability in canopy chlorophyll content across the 

spatial resolution of a MERIS pixel; and  

(ii) Use ground data in conjunction with CASI-2 imagery, with a nominal spatial 

resolution of 2 meters, to produce a chlorophyll content map of the site.  

The semivariogram based sampling method uses prior knowledge of the site to 

determine the spatial structure of the environment used to derive a sampling scheme 

(Curran, 1988). However, the rate at which chlorophyll content changed over time 

meant that the use of the direct semivariogram approach to sampling design was not 

feasible.  

 

Both the New Forest and Brooms Barn validation sites were visited prior to the field 

campaigns. These pre-limitary visits, together with OS maps and aerial photography 

permitted the creation of land cover maps that outlined the main deciduous, coniferous 

and mixed tree stands, in the case of the New Forest, and crop type at Brooms Barn. At 

New Forest the location of heath and grasslands were also noted.  In light of the 

preliminary field visit, the distribution and locations of the ISUs across the 9 x 9km 
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validation sites was carefully determined in order to account for heterogeneity in 

chlorophyll content between and within cover types. However, in reality, practical 

access considerations, including proximity to paths and roaming restriction had to be 

considered in the method design.  

 

A dedicated methodology was developed for the validation exercises. This method is 

based on clusters of local measurements that aim to represent an area of equivalent size 

to a small group of pixels of the high resolution aerial imagery. To achieve this the 9 

km2 study area was divided into nine 1 km by 1 km grids and within each grid 3 to 5 

individual sampling units (ISUs) (approximately 20 m x 20 m) were identified where 

practicable. This scheme lead to a total of 27 ISU within the 9 km2 study areas, equating 

to a total sampling rate of 0.12%.  

 

Depending on the features of the canopies at each ISU, two types of sampling methods 

were used to measure LAI and chlorophyll concentration. If the vegetation canopy was 

considered locally heterogeneous (at the ISU scale), the measurements followed 

analternative sampling method. An alternative sampling protocol was employed to 

account for species composition and stand structure variation within each ISU (Figure 

4.3a), such a technique relied on field measurements being taken at strategic locations 

that reflected the local species distribution, canopy closure and vegetation density within 

the ISU.  

 

A stratified sampling scheme was chosen to represent LAI and chlorophyll 

concentration variation in ISU’swith homogeneous canopies. This sampling strategy 

representedthe variability within each ISUdue to the systematic planting of the crops 

(both agricultural and coniferous plantations) and the presence of tractor lines(approx 

2.5 meters apart, and 0.8m in diameter) at the Brooms Barn validation site . Individual 

sampling points were systematically located along 3m (Figure 4.3b). Within ISU with 

homogeneous canopies four or five transects were defined.  
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a)  Alternative sampling strategy 

 

 

 

 

 

 

 

 

 

 

 

 

 b) Stratified sampling strategy 
 

Figure 4.3. Sampling procedures used to account for variation in LAI and chlorophyll 

concentration within each ISU according to canopy characteristics. The aboveare an 

illustration of the location at which measurements weretakenfollowing either an 

alternative (a) or stratified sampling scheme within a single ISU. 
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4.4.2 Remote sensing data 

Two sources of remotely sensed data were used in the New Forest validation project: 

Compact Airborne Spectrographic Imager (CASI-2) and full resolution MERIS imagery. 

The high resolution imagery used in this study were acquired with the Itres Research of 

Canada CASI-2. In spatial mode, this two-dimensional CCD array based pushbroom 

sensor records a swath width of 512 pixels over a 54.4° Field of View. CASI-2 spatial 

mode data have 18 programmable bands in the visible to NIR region of the 

electromagnetic spectrum (405nm – 950nm). The NERC ARSF collected CASI-2 data, 

on 20th July 2007 at a nominal spatial resolution of 2 metres. Image acquisition 

occurred around 13.00hrs (solar noon) and the study area was almost cloud free. Seven 

CASI-2 scan lines recorded in a north- south direction covered the study area, with 

allowance for overlap between each flight line. The data were re-sampled and Binned 

toreplicate the width and location corresponding to the 15 MERIS spectral bands (Table 

2.4, Chapter 2) prior to receipt of the data by the NERC Remote Sensing Group based at 

Plymouth Marine Laboratory.Such a process employed spectral binning techniques that 

simulated the spectral response curves of the MERIS instrument.  

 

The New Forest validation used a MERIS Level 2 image acquired on the 4th August 

2007 at ‘full resolution’ (300m). This image was the least cloud-contaminated image 

closest to the time of the field sampling campaign (see table 4.1). Within the image, the 

study area was located close to nadir, minimising the effects of illumination and sensor 

geometry on scene properties.  

 

The Brooms Barn validation project used ‘full resolution’ Level 2 MERIS image 

acquired on 13th May 2008 as this was the least cloud-contaminated image closest to the 

field sampling campaign. Eagle hyperspectral aerial imagery acquired on the 13th May 

2008 by NERC ARSF was deemed unsuitable due to the effects of cloud shadow 

distributed across the imagery that affected an estimated area greater than a third of the 

scene.  

 

4.4.3 Ground data collection 

For both study sites, ground data collection was completed within 8 days of the satellite 

overpass. This strict time frame was employed to minimise variation in canopy 
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chlorophyll and vegetation foliage that would reduce the strength of the MTCI 

chlorophyll content relationship.  

 

LAI can be determined directly using destructive methods. Although accurate, due to the 

scale of the New Forest and Brooms Barn validation exercises it was not logistically 

feasible to employ destructive methods or deploy foliar litter traps to estimate LAI. 

Time consuming wet chemistry assay procedures to determine chlorophyll concentration 

for all samples at each site was also unfeasible. Therefore chlorophyll concentration was 

estimated using the Minolta-SPAD chlorophyll meter, whilst Leaf Area Index (LAI) was 

estimated using a Delta-T Devices Sunscan Plant Canopy Analyser. 

 

For deciduous tree and crop species a set of leaf samples were collected for SPAD 

calibration. The leaf samples were stored and transferred to the laboratory in cool dark 

conditions to minimise chlorophyll degradation. The method outlined in chapter 3, was 

used in the calibration of the Minolta SPAD to estimate foliar chlorophyll. SPAD 

calibration regression equations for each of the deciduous tree and crop species found at 

the New Forest and Brooms Barn validation sites can be found in Appendix 1.  

 

Coniferous species needles were collected for each ISU and stored in dark cool 

conditions (black bags within a cool box) for later analysis. However, due to the 

relatively small size and narrow structure of the pine needles the SPAD 502 was not 

used to estimate chlorophyll concentration. Instead a wet chemistry assay procedure was 

employed to extract chlorophyll from coniferous species using the solvent Acetone. 

Sample preparation and measurement was undertaken in a dim room, to minimise 

chlorophyll degradation. The procedure required 0.1 g of fresh needle, along with 5.0ml 

of 90% aqueous acetone to be ground with a pestle. The leaf sample was ground until a 

colourless homogenate was produced. Using Whatman (number 1) filter paper, the 

homogenate suspension was filtered and fibrous material removed. 3.0 ml of the filtrate 

was then extracted and used to fill a curvette, whilst another curvette filled with 90% 

aqueous acetone was used as a reference.  

 

Absorption at the wavelengths 664nm and 647nm was used to determine both 

chlorophyll a and b concentrations (mg/l) using the following specific extinction 

coefficients: 
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Chlorophyll a = 12.25 * absorption 664nm – 2.55 * absorption 647nm    (4.1) 

Chlorophyll b = 20.31 * absorption 647nm – 4.91 * absorption 664mn   (4.2) 

Chlorophyll a + b = Chlorophyll a + Chlorophyll b  (4.3) 

 

Chlorophyll concentrations were converted into mass as the method required 0.1g of 

fresh needle; therefore, a simple calculation converted mg 1-1 into mg g-1. For each 

coniferous species, 20 x 0.1g of fresh needle samples were digitally imaged using a 

measuring rule as reference. These images were magnified allowing accurate sample 

area to be determined. Chlorophyll concentration was then expressed as a function of 

area (mg m-2).  

 

For deciduous tree and crop species, at both validation sites, within each ISU, 20 LAI 

readings and SPAD measurements were taken (each SPAD measurement was an 

average of 10 readings to reduce variability and account for variation in chlorophyll 

concentrations within leaves and canopy). Permission from the Forestry Commission 

permitted the use of limited destructive sampling to acquire leaves from the mid-canopy 

using portable ladder and secateurs although this approach was dependent on canopy 

structure and height. Where practicable, SPAD measurements were a combination of a 

twomid / upper canopy measurements with at least eight below canopy measurements to 

demonstrate chlorophyll concentration heterogeneity. Such an approach was used 

support the findings of O’Neil et al. (2002) who reported that limited variation in 

canopy biochemical concentrations throughout the tree canopy.   
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Table 4.1. Summary of the data and method used in the MTCI validation at the New Forest and Brooms Barn sites

Validation site Validation method 
High resolution data and 

acquisition date 
MERIS data and acquisition date 

Fieldwork date and 

duration 

New Forest 

 

VALERI type method using 

transfer equation derived from 

high resolution imagery 

 

CASI-2 imagery 

20th July 2007 

 

Full resolution Level 2 data 

Acquired 4th August 2007 
26th  – 30th July 2007 

Brooms Barn 

 

Direct MTCI – ground 

chlorophyll relationship 

evaluation 

 

Eagle – unused due to extent of 

cloud shadow within scene 

Full resolution Level 2 data 

Acquired 13th July 2008 
15th  – 18th May 2008 
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4.4.4 Data processing at the New Forest 

Data processing was undertaken in four distinct steps:  

1. CASI-2 data processing,  

2. Ground data processing 

3. Chlorophyll map production from CASI-2 data and  

4. Derivation of the relationship between MTCI and chlorophyll content at 

MERIS spatial resolution. 

 

4.4.4.1 CASI-2 data processing 

New Forest validation site was covered by seven overlapping flight lines of CASI-2 data. 

These were processed to create a single image, with a spatial resolution of 2 metres and 

spectral values calibrated to top of canopy reflectance (μWcm-2sr-1nm-1). This was 

achieved in a number of steps applied to individual flightlines; (i) atmospheric 

correction, (ii) radiometric normalisation for limb brightening, (iii) geometric correction, 

(iv) mosaicking and (v) CASI MTCI production.  

 

(i) Atmospheric correction 

The CASI-2 data provided by the ARSF had been partially radiometricly and 

geometrically corrected prior to receipt. Further data pre-processing was necessary to 

ensure the influence of the atmosphere was minimised, particularly the minor oxygen 

and water absorption features at 700nm and 800nm. Due to the absence of a ‘dark 

object’ in the field at the time of data acquisition, atmospheric correction was 

undertaken using the physical based FLAASH (Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercubes) software incorporated in ENVI (Research Systems Inc.) 

FLAASH is based on the MODTRAN (MODerate resolution atmospheric 

TRANsmission) model (Le Maire et al., 2008). Atmospheric correction reduces the 

effect of atmospheric aerosol scattering and absorption prior to the calculation of surface 

reflectance. Atmospheric correction was applied using the atmospheric observations 

contained in the ARSF flight log and the pre-defined atmospheric models within the 

FLAASH module.  
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(ii) Across-track normalisation of CASI-2 sensor data 

Visual examination of the individual flight lines highlighted limb-brightening effects. 

This was due to variations caused by viewing and solar geometry within and between 

flight lines. The CASI–2 data were acquired near to solar noon, to maximise solar 

irradiance and signal strength, whilst minimising canopy shadow caused by low solar 

angles (Beisl, 2001). All CASI–2 data were acquired in a north – south orientation. 

Limb brightening was asymmetrical about the nadir line of flight as a result of the 

changing viewing geometry across the sensor view angle (±54.4°).  

 

The CASI-2 flight lines were independently corrected to normalize cross track 

illumination that resulted in a general upward trend in the spectral response towards the 

edge of each flight line. Using ENVI, column averages was created for each band in the 

flight line. A second order polynomial function was fitted to the column average data. 

This method captured the overall limb brightening for each flight line. The second order 

polynomial curves were then used to normalise each band of the individual flight lines 

to their nadir values. This method minimised the limb brightening effect whist retaining 

local scene variability (Figure 4.4).  

 

(iii) Geometric correction 

The Azimuth Systems program (AZGCORR) was used to apply the aircraft navigation 

data to each line of the normalised image and project those onto a geoid-based 

projection to determine the exact intersection of each pixel’s view angle with a 5 metre 

resolution NEXTMAP DEM (accessed through NEODC). This produced a flight line 

that was geo-corrected to the British National Grid, using transform coefficients and 

algorithms provided by the Ordnance Survey of Great Britain (OSGB). The CASI-2 data 

were resampled to 2m pixel spatial resolution using a bicubic spline interpolation 

algorithm in AZGCORR (AZGCORR processing code found in Appendix 2).  

 

Each of the flight lines were overlaid on an OSGB 1:10 000 map to visually assess the 

accuracy the geo-correction. Using the road network in the study area as a reference, 

visual interpretation suggested all images were geo-corrected to sub-pixel accuracy.   
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a).  

b).  

 

Figure 4.4. Variation in top of canopy reflectance between adjacent CASI-2 flight lines 

prior to normalising reflectance gradient in the cross track direction (a), (b) after 

correction. 
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(vi) Flight line mosaicking 

Individual flight lines were mosaicked together to form a single image for the entire 

validation area (Figure 4.5). Mosaicking was completed using ENVI image processing 

software.  

 

(v) CASI MTCI image production 

Following this preprocessing, the mosaicked CASI-2 image, was used to produce a 2 

metre MTCI image. Band math function in the ENVI image processing software was 

used to derive an MTCI with a floating-point integer from the following band ratio: 

 

CASI MTCI = Rband 10 – Rband 9 / Rband 9 – Rband 8 

 
Figure 4.5. CASI-2 RGB mosaic comprised of seven geo-referenced flight scans that 

have been corrected for the effects of the atmosphere and radiometric variation. 
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4.4.4.2 Ground data processing 

For each ISU, chlorophyll content (mg m-2) was derived from LAI and SPAD derived 

chlorophyll concentration measurements. For each deciduous tree and crop species 

present within the ISU, leaf samples (covering the observed low to high SPAD range) 

were taken for the calibration of the Minolta SPAD instrument. The calibration 

equations produced for each species were then used to derive chlorophyll concentration 

for each SPAD measurement taken at each ISU (refer to Appendix 3). For coniferous 

species, chlorophyll concentration was determined using the wet chemistry assay 

method outlined in section 4.4.3. Chlorophyll content was derived as a function of 

chlorophyll concentration x LAI. Using weighted averaging, based on species 

percentage cover in the 20 x 20 metre ISU, a single chlorophyll content value was 

derived for each ISU.  

 

4.4.4.3 Chlorophyll map production 

The production of a biophysical variable map that incorporates the high spatial variance 

of a variable across the validation site allows for spatial aggregation up to the spatial 

resolution of satellite sensor data. This approach is widely adopted by the Terra MODIS 

(Yang et al., 2006) and the VALERI validation teams.  

 

In this case, chlorophyll map production was achieved using the CASI MTCI imagery 

and average chlorophyll content from the field measurements at each 20 x 20 metre ISU. 

The Global Positioning System (GPS) locations of theISUs were used to identify the 

100 CASI-2 pixels that corresponded to the 20 x 20 ISU location. Within each ISU, the 

CASI-2 pixels were aggregated allowing the relationship between CASI MTCI and 

average chlorophyll content of each ISU to be determined. Regression analysis was used 

to determine the relationship between CASI MTCI and chlorophyll content for all ISUs 

in the study area (Equation 4.1, section 4.5.1). 

 

Within the chlorophyll map, pixels with cloud cover, non-vegetated areas and those 

covered by grass, heathland gorse and heather were identified and removed from further 

analysis using a binary mask. The 2m CASI-2 chlorophyll map was re-projected to 

match the projection of the MERIS data, after which, pixels in the CASI-2 chlorophyll 

map were up-scaled to map chlorophyll content at the spatial resolution of MERIS data. 

The process of up-scaling needs to preserve the integrity of the information contained in 
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the higher resolution image. To achieve this a mean up-scaling method was used. Gupta 

et al., (1998) showed that for forests, a mean up-scaling method achieved comparable 

results to more complex procedures, such as employing local fractal dimensions, for 

preserving information content to coarser resolutions.  

 

4.4.4.4 Assessing the relationship between chlorophyll content and MTCI 

The area of interest, corresponding to the 3 x 3 km study area as derived from CASI-2 

imagery was overlain on the level 2 MERIS imagery. MTCI for pixels within the area of 

interest were extracted. The relationship between per-pixel MTCI and CASI-2 

chlorophyll content was then derived. Similarly, the 2 metre CASI MTCI was up-scaled, 

using the mean method outline previously, to match the spatial resolution of MERIS 

(Figure 4.6). This permitted sensor spatial resolution to be investigated and the results 

from MERIS and CASI MTCI to be compared.  
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Figure 4.6. Up-scaling process used in this study aggregated the original 2m CASI-2 chlorophyll map to derive the 300 m chlorophyll map. This 

process permitted direct pixel-to-pixel comparison with ‘full resolution’ MTCI to be made. 
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4.4.5 Data processing at Brooms Barn 

Due to the effects of cloud shadow, the Eagle aerial imagery of the Brooms Barn validation 

site was not used. The absence of high-resolution imagery to support the May field 

campaign, meant it was not feasible to adopt the same validation method as was used in the 

New Forest validation exercise.  

 

The Brooms Barn validation followed the ground data processing method outlined in 

4.4.4.2, deriving chlorophyll content for each ISU. Field boundaries were identified from 

1:10,000 OS raster maps that were overlaid with the (cloud contaminated) Eagle aerial 

imagery. Fields containing an ISU, or those that grew a crop that showed small statistical 

variation in chlorophyll content were digitised in ArcGIS. The vector layers produced were 

extracted and re-projected to overlay the ‘full resolution’ MTCI.  

 

Landscape heterogeneity at the 300m spatial resolution meant direct MTCI – ground 

chlorophyll content evaluation was only carried out on those MTCI pixels that fell within 

the boundary of a vector. Where a ‘full resolution’ MTCI pixel corresponded to an area 

covered by two or more adjacent vector layers, the chlorophyll content was determined by 

area of the vector within the MTCI pixel, and a weighting was given accordingly. This 

approach permitted the inclusion of more ISUs and therefore a larger sample size to assess 

the chlorophyll – MTCI relationship (Figure 4.7). 
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Figure 4.7. The method used to identify and extract MTCI field pixels in the Brooms Barn validation exercise 
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4.5 Results and discussion 
4.5.1 New Forest 

Variation in chlorophyll content between ISUs was principally due to variation in LAI 

rather than differences in chlorophyll concentration (Figure 4.8a and b). LAI was shown to 

vary between species and was also influenced by forest management practices leading to 

variation in tree planting densities, arrangement and felling practices. The heterogeneity in 

LAI at the New Forest validation site resulted in a wide range of chlorophyll contents 

(Figure 4.8c). 

 

The New forest validation site showed local variability in canopy structure, with closed 

mature forested areas and open immature coniferous inclosures. At the 20m ISU resolution, 

understory reflectance and shadowing will be dependent on local canopy closure. Figure 4.9 

shows the local variability in canopy closure and therefore influence of understory 

reflectance and shadowing present in the high resolution CASI-2 imagery. Depending on 

canopy closure, the aggregated MTCI at the scale of the 20 x 20 m ISU will be influenced 

by factors other than canopy chlorophyll content (Figure 4.10). 
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Figures 4.8. The variation in LAI (a), chlorophyll concentration (b) and chlorophyll content 

(c) between individual sampling units in New Forest study area. Sites with prefix D refer to 

deciduous, C = coniferous and M = mixed. 
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Figure 4.9. The local variability in canopy closure, which is representative of the New 

Forest study site and shown on CASI-2 2 metre RGB mosaic. 

 
Figure 4.10. The effect of scene component aggregation as a function of spatial resolution. 

In an open canopy, at 20 metre resolution, pixels are composed of crown, understory and 

soil. 
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Figure 4.11. Relationship between CASI MTCI and chlorophyll content derived from 

ground measurement for each ISU in the study area. 

Chlorophyll content (mg m‐2)

 

The relationship between mean CASI MTCI and chlorophyll content derived from each ISU 

had a coefficient of determination (R2) of 0.72, which was statistically significant at the 

95% confidence level (Figure 4.11). The strong relationship between ISU chlorophyll 

content and aggregated CASI MTCI for the same area suggests that local variability in 

background reflectance and canopy shadow were minimal.  

 

Using a linear regression model which defined the relationship between ISU chlorophyll 

content and average MTCI (Figure 4.11), a chlorophyll map (Figure 4.12) was produced at 

the 2 metre spatial resolution of the CASI-2 imagery using the transform equation: 

 

 Chlorophyll content (mg m-2) = 568.68*MTCI – 1382.1  (4.1) 

 

In open canopies, the increasing spatial resolution of the MTCI will aggregate the effects of 

canopy shadow and background reflectance. To explore this, the 2 m CASI MTCI and 

chlorophyll maps were up-scaled using pixel aggregation to a spatial resolution of 300 
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metres. The relationship between 300metre CASI MTCI and chlorophyll content was 

strengthened as the effects of background had been aggregated as a function of pixel size. 

The strong relationship between CASI MTCI and chlorophyll at the both high resolution 

(20 metres) (R2 0.72) (Figure 4.11) and 300m scales (R2 0.87) (Figure 4.13) confirms that 

the MTCI is a useful tool is estimating chlorophyll content in open woodlands. 

 

The observed relationship between CASI MTCI and chlorophyll content, at both the full 

resolution and 300 m scales, suggests that the sampling strategy adopted in this study 

successfully accounted for the heterogeneity in cover type and variation of chlorophyll 

content in the study area. However, the relationship between ‘full resolution’ MERIS MTCI 

and the chlorophyll content resampled to 300 m was weaker than the CASI MTCI – ground 

derived chlorophyll content relationship, with an R2 of 0.57 (significant at the 95% 

confidence level) (Figure 4.14). This relationship was not as strong as reported in previous 

studies (Zhang et al. 2008; Curran and Dash, 2007). Although the relationship is significant, 

the relationship between 300m chlorophyll map and ‘full resolution’ MERIS MTCI will 

need further investigation to assess why it is not as strong as chlorophyll - CASIMTCI. A 

concern with MERIS data is the geolocation accuracy. Subpixel geolocation accuracy is 

necessary in order to accurately retrieve biophysical variables of the land surface 

(Townshend et al. 1992). Studies have suggested the MERIS sensor has inherent 

geolocation accuracy of ± 150m and within scene accuracy of ± 50.1m (Dewart et al., 2007). 

The aggregated CASI-2 imagery has much greater geolocation accuracy than the MERIS 

imagery. Therefore, given the geolocation uncertainty of MERIS, a MERIS pixel covers 

(potentially) 0-100% of the ground area compared to a correspondingresampled 300m 

CASI-2 pixel. Therefore the potential overlap caused by the geolocation accuracy of 

MERIS will lead to variation between ground and MTCI scene chlorophyll content.  
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Figure 4.12. Chlorophyll content map of the study area derived from the modelled relationship between CASI MTCI data and chlorophyll. 

Black areas represent no data, where a binary mask was applied to remove missing data or areas covered by heathland or non-vegetated areas

 
Chlorophyll content (mg m-2) 
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Figure 4.14. The relationship between MERIS ‘full resolution’ MTCI imagery and the 

chlorophyll content map derived from CASI-2 imagery and field based chlorophyll 

measurements resampled to a spatial resolution of 300 m.  

Figure4.13. The relationship between CASI MTCI and the chlorophyll content map 

derived from CASI-2 imagery and field based chlorophyll measurements (refer to 

Figure 4.12).Both datasets were resampled to a spatial resolution of 300m. 
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4.5.2 Brooms Barn 

The variability in chlorophyll content between ISUs of the same crop type was 

established. Table 4.2 shows the standard deviation in canopy chlorophyll for various 

crop types found in the Brooms Barn study area. Determining the variation in 

chlorophyll content for each crop type allowed an increase in the number of MERIS 

MTCI pixels to be included in evaluating the MTCI - chlorophyll content relationship.  

 

Crop 

 

Number of ISU Standard deviation (chlorophyll content mg m-2) 

Wheat 5 153.1 

Barley 3 385.5 

Sugar beet 3 9.9 

Onions 2 3.3 

Wooded area 5 87.6 

Potatoes 6 42.0 

 

Table 4.2 The variability in chlorophyll content according to crop type in the Brooms 

Barn study site. 

 

The direct ground chlorophyll content – MTCI relationship for all cover types showed a 

weak correlation, with an R2 of 0.33 (Figure 4.15).  This relationship was significantly 

weaker than shown in the New Forest study. Investigation into the likely cause of the 

weak relationship suggests that the presence of bare fields and those fields that grew 

sugar beet, onion and pixels that have very low LAI (Figure 4.16) had larger MTCI 

values than expected. The reflectance of those fields with low LAI and bare soil as 

measured in MERIS bands 8, 9, and 10 are summarised in Table 4.3.  The high MTCI 

values are a result of the optical properties of the soil rather than chlorophyll content. It 

was found that removing those pixels with an LAI < = 0.3 (highlighted with an ellipse 

on Figure 4.15) from further analysis greatly improved the relationship between MTCI 

and chlorophyll content from R2 = 0.33 to R2 = 0.71 (Figure 4.17).  
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Chlorophyll content (mg m-2)

Figure 4.15. The relationship between chlorophyll content and MTCI for all cover types. 

Highlighted points refer to measurements where LAI <= 0.3. 

 

 

 
Figure 4.16. Photographs showing the stage of crop development of a typical onion (a) 

and sugar beet crop (b). Images were taken during the Brooms Barn validation campaign 

during May 2008. 
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MERIS band 
Onion field 
LAI = 0.03 

Bare soil  
LAI = 0 

Beet field 
LAI = 0.1 

Band 8  14.9 16 11 
Band 9  19.7 20.2 15.6 
Band 10 29.4 28.9 30.2 
MTCI 2.0 2.1 3.2 

 

Table 4.3. Surface reflectance from onion, sugar beet and bare soil as measured in 

MERIS bands 8, 9 and 10 that are used to derive the MTCI. 

 

 

 

Chlorophyll content (mg m‐2)

Figure 4.17. The relationship between chlorophyll content for agricultural crops and 

MTCI where LAI => 0.3. Error bars indicate the standard deviation for a particular 

cover type to which that pixel relates. 
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4.6 Discussion of chapter aims 
The aims of this chapter were to: 

 

1. Examine the methodological issues with averaging chlorophyll contents acquired 

at one spatial resolution to coarser spatial resolutions (i.e., scaling-up); 

2. Determine the sensitivity of the MTCI to a greater range in chlorophyll content;  

3. Assess the transferability of the MTCI from one place to another (Foody et al., 

2003), specifically assessing both the relationship with canopy chlorophyll 

content and use of the index to predict canopy chlorophyll content at other 

locations and cover types;  

4. Determine the operational influence of soil background on the relationship 

between MTCI and chlorophyll content. 

 

A global product will be required to estimate biophysical variables across a range of 

contrasting vegetation cover types throughout the growing season. Therefore, in this 

instance, the MTCI must demonstrate sensitivity to a range of chlorophyll contents and 

transferability between locations permitting the spatial comparison between sites. The 

relationship between MTCI and chlorophyll content observed at Brooms Barn supports 

the MTCI evaluation carried out at a study site near Dorchester by Dash and Curran 

(2005). The Dorchester evaluation site involved different crops to the Brooms Barn site 

(including grasses, beans, oats and maize). Although in this study chlorophyll content 

was expressed as g per MERIS pixel, comparisons can be drawn from the strong 

positive correlation between MTCI and chlorophyll content, as shown in Figure 4.18, at 

the Dorchester evaluation site (a) and the Brooms Barn validation site (b) suggesting 

that there is a consistent and strong relationship between MTCI and chlorophyll content 

for a variety of agricultural crops. Wu et al. (2009) examined the relationship between 

canopy chlorophyll content and MTCI for six varieties of wheat. Species showed 

variation in canopy structure, with differences in leaf orientation (including planophile, 

erectophile and spherical). Regression models explaining the relationship between 

chlorophyll content and MTCI suggested that the influence of vegetation structure 

between the variants was limited. Such relationships suggest that variation in canopy 

structure between crop species has a limited effect on MTCI.  
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The chlorophyll content map of the New Forest validation site was derived using one 

MTCI - chlorophyll content relationship for the entire study area without considering the 

effect of land cover type or variation in canopy structure. It had been assumed that the 

relationship between MTCI and chlorophyll content is independent of land cover type. If 

the relationship does vary with canopy structure then this will have decreased the 

accuracy of the chlorophyll map derived from CASI-2 data. The distinct clustering in 

Figure 4.19 between vegetation types suggests that canopy structure may influence the 

relationship between MTCI and chlorophyll content where there is a distinct variation in 

canopy structure (i.e., between deciduous and coniferous trees species and crops) 

(Figure 4.18). The relationship between MTCI and cover type suggests that the MTCI 

may be sensitive to cover type, therefore effecting the transferability of the index as the 

relationship between MTCI and chlorophyll content will be a function of cover type. 

The self-shadowing of conifer canopies results from the size and arrangement of trees, 

Canopy self-shadowing on flat terrain strongly correlates with the canopy's geometric 

complexity (Kane et al., 2008). Because stands with trees of different sizes, shapes, and 

arrangements cast different amounts of shadow, self-shadowing as a fraction of the 

image correlates with the complexity of the canopy structure. Although topographic 

shade was minimised in the CASI-2 imagery (solar noon acquisition, topographical 

effects minimised with site selection), the effects of tree shade is a function of the shape 

and spacing of trees. Reflectance in both the red and NIR regions has been shown to 

vary according to vegetation type (Soundani et al., 2006). Using PROSAIL, combining 

leaf optical properties and canopy level bi-directional models, for a given chlorophyll 

content and LAI there was shown to be variation in red and NIR reflectance between 

coniferous (Scots pine) and deciduous species (beech and oak) for three different 

sensors. However, caution should be shown with such findings as such sensors acquired 

reflectance in broad wavebands compared to the narrow MERIS bands. It should be 

noted that further work is required to understand the influence of canopy structure on the 

relationships between chlorophyll content and MTCI between various cover types.  

 

The experimental design adopted in this chapter suggests that canopy architecture does 

have an influence on the MTCI. However, results suggest that the effects are limited and 

only apparent where comparisons are made between vegetation types that have 

significant differences in canopy structure. Caution should be taken when making direct 

comparisons between the MTCI – chlorophyll content relationship between trees and 
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crops (as seen in Figure 4.19) as these may be influenced by the radiometric properties 

of CASI-2 and MERIS. The comparison between trees and crops may be affected by the 

increased reflectance in MERIS band 8 (red), giving higher values for MTCI derived 

from CASI-2 data. However, both deciduous and coniferous MTCI were derived from 

the same sensor, permitting direct comparisons. The method used to derive LAI (using 

Sunscan) might incorporate systematic positive bias for forested areas as a result woody 

biomass. This may lead to overestimation in chlorophyll content that contributes to the 

trends shown in Figure 4.19.  

 

Variation in LAI on the MTCI – chlorophyll content relationship was highlighted in the 

MTCI Algorithm Theoretical Basis Document (Curran and Dash, 2005) as an area of 

operational uncertainty. The effect of variation in LAI for given chlorophyll content on 

the MTCI was unknown. Figure 4.20 shows MTCI – chlorophyll content for each of the 

types of vegetation investigated in this study as a function of LAI. Figure 4.19 shows no 

distinct clustering in LAI, suggesting that the differences in Figure 4.18 are a function of 

canopy structure rather than LAI. Such results support the results from the laboratory-

based spectroscopy experiments (Chapter 3) suggesting that for a given chlorophyll 

content, variation in LAI has no evident effect on the MTCI. Further research is required 

to assess the effects of canopy structure and LAI on the MTCI. Physically-based models 

describing the transfer and interactions of radiation inside the canopy based on physical 

laws (Houborg et al., 2009) provide an opportunity to determine the influence that 

structural variables have on canopy reflectance and the MTCI.  
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a) 

 

 

b) 

Figure 4.18. The relationship between MTCI and chlorophyll content in agricultural 

crops as determined at the Dorchester study site (a) from Dash and Curran (2007), and 

(b) Brooms Barn validation. 
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 Chlorophyll content (mg m-2) 

Figure 4.19. The relationship between chlorophyll content and MTCI for various cover 

types. 

 Chlorophyll content (mg m-2)

Figure 4.20. The relationship between MTCI and chlorophyll content as a function of 

LAI. 

The effects of background reflectance on the MTCI needs to be understood in if MTCI 

is to be used to capture the spatial and temporal dynamics of terrestrial vegetation. The 
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fundamental objective of the MTCI is to isolate the chlorophyll content from the 

spatially and temporally variable ’mixed’ pixels, to allow meaningful spatial and 

temporal comparisons of vegetation activity. The results from Brooms Barn suggest that 

where LAI is low, the soil background reflectance was a significant contributor to the 

canopy reflectance signal (Houborg et al., 2009) and therefore MTCI value. Due to the 

effects of bare soil on the MTCI Bannari et al. (2008) suggested it would be very 

difficult to interpret the MTCI at very low LAI and sparse vegetation cover.  However, 

results from both Chapter 3 and the Brooms Barn study have shown that the effect of 

soil reflectance on the MTCI are compounded at relatively low LAI. The Brooms Barn 

study suggests that vegetation cover with an LAI >=0.3 were able to compound the 

effects of soil reflectance.  
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4.7 Limitations of the study 
The geolocation accuracy associated with the MERIS sensor meant that it was not 

possible to obtain a 100% pixel match between the aggregated CASI-2 re-sampled 

chlorophyll content map and the MERIS pixels. Therefore, the MTCI estimated from 

MERIS data did not represent the exact ground over which chlorophyll content was 

estimated. Also the point-spread-function for MERIS was not considered in the 

degradation, or up-scaling of CASI-2 data, nor were adjacency effects from 

neighbouring pixels considered. This might have introduced some further uncertainty in 

the ‘full resolution’ MERIS MTCI - chlorophyll content relationship. 

 

The radiometric sensitivity of MERIS and CASI-2 has been assumed to be similar, and 

any differences between them ignored. A similar approach was adopted by Clevers et al., 

(2001) who simulated MERIS imagery from high resolution AVIRIS imagery. Further 

investigation is necessary to determine whether differences in radiometric sensitivity 

between sensors contributed toward the relationship between MERIS MTCI and CASI 

MTCI, where a greater range in MTCI values were observed in CASI-2 data (Figure 

4.21).  However, scatter plots between the bands 8 – 10 and the MTCI show that there 

was greater reflectance in the red band of CASI-2 compared with MERIS, whilst bands 

10 and 9 showed a similar spread in points (Appendix 3). Therefore, results suggest that 

the increase in red reflectance in CASI-2 band 8 resulted in a smaller difference between 

band 9 and 8, which consequently resulted in higher CASI MTCI at higher chlorophyll 

contents. The increase in reflectance in CASI-2 band 8 could be related to the 

radiometric differences between sensors, or an artefact of adjacency effects that can be 

observed in high spatial resolution imagery (Richter and Schläpfer, 2002) from which 

the CASI MTCI was derived.  
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1:1

 
Figure 4.21. Relationship between MERIS MTCI and that derived from CASI-2 

imagery 

 

The process of validation requires the assessment of the accuracy of data products 

through independent means (Justice et al., 2000; Morisette et al., 2006). However, in 

this investigation, the MTCI was evaluated through direct comparison with ground-

based chlorophyll measurements without employing independent estimates. The method 

used to validate the MTCI was used as opposed to canopy modelling as estimates of leaf 

chlorophyll derived using inverse modelling techniques have been associated with 

reasonably large uncertainties (Houborg et al., 2009). Jacquemoud et al. (2000) reported 

inaccuracies when four canopy reflectance models were inverted with airborne CASI-2 

reflectance spectra over corn and soybean fields. Similarly vegetation indices that have 

been used to estimate chlorophyll content successfully have generally been based upon 

the reflectance in the red edge. Due to the high correlation between REP techniques and 

MTCI (Haboudaneet al., 2008) direct, chlorophyll content to CASI-MTCI evaluation 

was adopted in this investigation. Moreover, REP methods have been shown to be 

sensitive to variations in LAI, particularly at low LAI (Clevers et al., 2001).  

 

 134

 



Chapter 4. Multi-scale analysis and validation of the MTCI 

There are potential limitations associated with the use of the SunScan instrument that 

was used to derive LAI. Although the apparatus has been used to estimate LAI in 

croplands with success (95% agreement with destructive LAI measurements in cereals 

and sugar cane) the estimation of LAI in woodlands is limited in the literature 

(Oguntunde et al., 2007). The SunScan requires an above canopy reference signal to 

derive accurately LAI, however the height of the woodland canopy may introduce 

practical difficulties for acquiring above canopy reference. Although attention was paid 

to locate the PAR sensor in clearing, the potential limitation associated with LAI 

retrieval in woodlands may introduce systematic bias / error into the results. The 

Sunscan apparatus (and the LAI-2000) does not distinguish between photosynthetic 

material and structural or non-photosynthetic biomass. This would be particularly 

relevant to the New Forest study, and would have consistently over-estimated LAI. The 

inclusion of woody biomass into the LAI estimates will therefore be a systematic error 

in the calculation of chlorophyll content, and therefore not effect the relationship 

between chlorophyll content and MTCI for a homogenous cover type. Such a factor 

would need to be considered when assessing the transferability of the MTCI. (Numerous 

Sunscan measurements were taken of dead pine trees to examine the effect of woody 

biomass on chlorophyll content estimations). To overcome the potential limitation of 

estimating LAI from the SunScan future consideration should be given to alternative 

methods of LAI retrieval in woodlands. Hemispherical  photography has been 

demonstrated to provide good estimates of LAI regardless of illumination conditions 

and provides the opportunity to remove the influence of woody biomass (using image 

processing techniques).  

 

4.8 Conclusions 
MTCI was validated with ground chlorophyll content for a woodland area in Southern 

England, adopting the validation method similar to that employed in the ESA VALERI 

campaign; employing high resolution imagery to produce a transfer function between 

MTCI and canopy chlorophyll content. Ground chlorophyll concentration and LAI data 

were obtained for 31 ISU (20 m x 20 m) and these, in conjunction with CASI-2 data 

were used to derive a high spatial resolution chlorophyll content map. There was a 

strong correlation between CASI MTCI and chlorophyll content for each sampling plot; 

with an overall R2 of 0.72 (0.78 for deciduous plots and 0.68 for coniferous). The MTCI 
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was therefore proved successful in estimating total chlorophyll content for woodland 

environments. 

 

At both the New Forest and Brooms Barn validation sites, the main variability in 

chlorophyll content between ISUs was due to the variations in LAI, as chlorophyll 

concentration between species was found to be relatively consistent. The strong 

correlation between MTCI and chlorophyll content suggests that the change in canopy 

reflectance due to variation in LAI had little effect on the MTCI.  

 

The chlorophyll map was aggregated to the spatial resolution of MERIS and then related 

to MERIS MTCI. The positive relationship between chlorophyll content and MTCI was 

weakened to R2 0.57. Although results were promising and align with earlier studies, the 

effect of land cover type was not considered. LAI was potentially over-estimated by the 

use of the Delta-T Sunscan instrument in some areas and these alone introduced a large 

degree of variability into the MTCI – chlorophyll content relationship.  

 

Direct chlorophyll content – ‘full resolution’ MTCI relationship was investigated at the 

Brooms Barn study site, Suffolk.  The Brooms Barn site is an agricultural area in 

Eastern England, growing a variety of crops. The field collection of chlorophyll content 

was timed to permit a wide range of LAI, so that the effects of surface reflectance could 

be assessed. The presence of immature crop canopies, with very low LAI, significantly 

weakened the MTCI – chlorophyll content relationship. In such cases MTCI vales were 

related to the optical properties of bare soils, and, therefore, it was very difficult to 

interpret this index at low LAI. Removing those areas with an LAI <=0.3 greatly 

improved the MTCI - chlorophyll relationship (R2=0.71). A linear relationship was 

observed, indicating that variations in canopy structure between crop types was not a 

significant factor in estimating chlorophyll content in crops using the MTCI. 
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Chapter 5. MTCI as a tool to monitor phenological change 

Chapter 5 

 

5.1 Introduction 
5.1.1 Vegetation phenology and productivity 

Natural vegetation is finely tuned to the seasonality of the environment; therefore 

variations in seasonal temperature are likely to influence activity. There is mounting 

evidence to suggest that climate change will have many impacts on terrestrial 

ecosystems (Nigh, 2006); including changes in ecosystem productivity, shifts in the 

distribution of species (including migration of the tree line towards the polar regions) 

and variation in the natural timing of phenological phases. 

Interest in terrestrial ecosystem phenology has been driven, in part, by the focus upon 

ecosystem productivity and atmospheric modelling of carbon dioxide (CO2) 

concentration and the role vegetation plays on the timing and magnitude of carbon 

uptake through photosynthesis. It is widely accepted that global climate change could 

alter plant phenology significantly because temperature influences the timing of leaf 

development, both alone and through interaction with other climate variables, such as 

photoperiod (Cleland et al., 2007). In temperate and higher latitudes, temperature is a 

limiting factor to vegetation growth, and precipitation and photoperiod have a less 

pronounced effect on phenology (Chen et al., 2005). The effects of temperature alone 

on phenology are difficult to isolate, as both leaf development and senescence occur 

during seasons where air temperature, day length and rainfall, often change at the 

same time (Rosenthal and Camm, 1997). Therefore, an ability to couple vegetation 

phenology with climatic variation over large areas is vitally important to predict and 

manage the impact of climatic change on ecosystems. Higher spring temperatures 

have been shown to trigger both growth and early leafing in deciduous trees (Sparks 

et al., 2005; Fisher et al., 2006) and growth in grasslands (Piao et al., 2006), whilst 

autumnal temperature decrease is one of the triggers for the onset of senescence 

(Fisher et al., 2007). 

Changes in global climate will influence not only the timing of leaf development and 

senescence but the length of the growing season (Rosenzweig et al., 2008). Analysis 

of long term phenological trends and meteorological data suggest that enhanced plant 

growth and the duration of the growing season in northern high latitudes since the 
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1980s increased as a result of elevated global temperatures (Denman et al., 2007). 

Therefore, the forecast change in climate is likely to have consequences for ecosystem 

productivity (Myneni et al., 1997).  

Remote sensing studies have indicated that forest primary productivity in the 

Northern Hemisphere has increased substantially as a direct response to increased 

growing season temperatures (Myneni et al., 1997; Coa and Woodward, 1998). 

Likewise, phenological modelling has demonstrated the positive relationship between 

extended growing season and net carbon fixation in northern latitude deciduous 

forests. 

Phenology remains one of the most difficult processes to parameterise in the 

terrestrial ecosystem component of climate and biochemical process models due to a 

relatively poor understanding of the physical processes that initiate leaf growth and 

senescence (Arora and Boer, 2005). In the light of this, coupling phenological 

observations with those climatic factors that are believed to play an important role in 

vegetation growth and seasonal development can help to develop our understanding 

of vegetation phenology and provide important inputs to climate models.  

 

5.1.2 Remote sensing and phenology 

Traditionally, phenological networks rely on volunteers collecting in situ observations 

related to vegetation growth, such as first leaf and leaf fall, to determine change in the 

physiological development of vegetation. Most of these networks are located in 

populous regions in Europe and North America and therefore are focused on 

temperate ecosystems (Cleland et al., 2007). For example long-term point-based 

observations, by the UK Phenology Network (UKPN), are crucial in developing an 

understanding of the factors that influence vegetation phenology. 

 

Numerous methods have been used to estimate the onset of spring growth, including 

modelling and field observation. The most accurate models for the prediction of 

spring growth accumulate temperatures (after a trigger date) by species and 

geographical location. However, such models often fail to capture the spring growth 

detected by satellite sensors, as the underlying mechanisms triggering vegetation 
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growth are not well understood (Fisher et al., 2007). Research utilising remote 

sensing shifts the emphasis from point observations, to regional and global scales and 

provides an opportunity to couple climate variables with the mechanics of vegetation 

phenology (Zhang et al., 2003). Such a perspective is crucial in analysing, interpreting 

and predicting the effects of climate variation on vegetated ecosystems. 

Satellite sensor observations have been used study of seasonal vegetation dynamics 

for over thirty years (Reed et al., 1994; Reed and Bradley, 2006). Due to the temporal 

sampling and synoptic coverage, remote sensing has become increasingly important 

in studies of phenological change, the forcing effect of climate on ecosystems 

(Petorelli et al., 2005) and vegetation dynamics at regional to global scales (Cleland et 

al., 2007). Vegetation indices (e.g., NDVI) that are correlated with green leaf area and 

total green biomass have been the most popular method for inferring vegetation 

phenology from remote sensing platforms (Asrar et al., 1989). Until the turn of the 

millennium, AVHRR provided the only source of global data for this purpose (due to 

temporal coverage and spatial resolution). However, because AVHRR was not 

designed for land applications, these data are not well suited for vegetation 

monitoring purposes. Because of the lack of precise calibration, poor geometric 

registration, and difficulties involved in cloud screening, AVHRR NDVI data contain 

high levels of noise (Zhang et al., 2006). Saturation at relatively low levels of biomass 

will also mean that the NDVI is limited as a tool to monitor phenology (Zarco – 

Tajada et al., 2001). In recent years a new generation of remote sensing data sources 

have become available that greatly improve the potential to identify changes in 

ecosystem phenology (Zhang et al., 2003). In particular, MODIS, at spatial 

resolutions of 250 m, 500 m and 1 km globally, has provided data for the study of 

ecosystem dynamics due to greatly improved geometric, radiometric properties and 

atmospheric correction when compared with AVHRR. Similarly, MERIS, with spatial 

resolutions of 300 m and 1 km globally, offers great potential to monitor global 

vegetation dynamics.  

Satellite sensor records of phenology provide an important opportunity to develop and 

test ground-based phenological models. Despite active research in satellite sensor 

based phenological studies and the availability of data, there have been few studies to 

parameterise simple models using remotely sensed phenological time series and 

surface meteorological data (Fisher et al., 2007). 
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5.1.3 Vegetation phenology 

Field-based ecological studies have demonstrated that vegetation phenology tends to 

follow relatively well-defined temporal patterns. The annual growth cycle of 

vegetation is characterised by phenological transition phases, where vegetation 

growth enters a distinct stage (Figure 5.1). For example, in deciduous vegetation and 

many crops, leaf emergence tends to be followed by a period of rapid growth, 

followed by a relatively stable period of maximum leaf area. The transition to 

senescence and dormancy follows a similar pattern in reverse. 

Such transition phases are (adapted from Reed et al., 2003): 

1. Greenup, the beginning of measurable photosynthetic activity.  

2. Maturity, where photosynthetic potential is maximised.  

3. Senescence, where photosynthetic activity rapidly decreases. 

4. Dormancy, or end of growing season, where photosynthetic activity is 

minimised. 

Length of growing season is the period when photosynthetic activity occurs. 

 

 
Figure 5.1. Field and satellite sensor studies have demonstrated that vegetation 

growth exhibits distinct temporal trends. For illustrative purposes, intensity has been 

labelled on the Y-axis. However, as the phenological profile is related to 

leafdevelopment and associated chlorophyll content, MTCI can be substituted for 

intensity. 
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5.1.4 Determining phenological phases using remote sensing 

The potential of remote sensing to estimate phenological transition phases and, using 

time series data, identify the dates when phenological change occurred will provide 

information on the effect of climate change on vegetation (Zhang et al., 2003). There 

is a need to remove noise from the remotely sensed time series while preserving the 

phenological content. Research into the smoothing of temporal data has used 

numerous statistical approaches, including amongst others Gaussian filtering, Median 

filters, splines and inverse Discrete Fourier Transformation. However, inter-

comparison between smoothing techniques has shown that the smoothing method 

does not lead to significant variation in the day of year estimates in phenological 

transition dates (White et al., 2009). Much of the variability is therefore associated 

with the method employed to estimate those transition dates. 

Various analytical methods have been employed on smoothed temporal data to 

determine phenological transition dates. The identification of thresholds identifies a 

pre-defined reference value for extracting information relating to phenological 

transition dates, e.g., the start or end of the growing season. White et al. (1997) used 

an NDVI threshold of 0.5 of seasonal amplitude as measured from the start of year 

minima, which defines the period between canopy dormancy and maturity. Although 

suitable for determining inter-annual variability for a single location, such approaches 

are not transferable to other locations with differing vegetation types, as the position 

of the threshold does not relate to an observable ground based phenomena and lacks 

physical meaning (Fisher et al., 2006).  

The inflection point method detects the points (dates) with maximum curvature in a 

time series dataset (Zhang et al., 2003). The point where the rate of curvature is 

maximal indicates the occurrence of phenological phases. For example, the start of the 

growing season is defined as the point in the time series where the rate of change 

becomes positive from local null values (Zhang et al., 2006). This method has the 

advantage of being transferable, as well as identifying multiple or complex growing 

seasons (e.g., in mixed arable agricultural areas) (Zhang et al., 2003). However, the 

inflection point method is sensitive to the addition of noise in sparse time series. 
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5.1.5 The relationship between MTCI and phenology 

Vegetation growth cycles can be characterised through changes in chlorophyll 

concentration and leaf area index, which determine chlorophyll content (Curran et al., 

2007). The start of vegetation growth (i.e., greenup) will lead to a rapid increase in 

either or both chlorophyll concentration and LAI (species dependant), therefore 

increasing foliar chlorophyll content. Similarly, autumnal senescence, and the 

associated breakdown in photosynthetic pigments, reduces leaf chlorophyll content. 

The ability of a vegetation index to monitor phenological change is reliant on its 

sensitivity to changes in LAI and chlorophyll concentration alike. 

 

Spectroscopy on fresh deciduous leaves during the transition from late summer to 

autumn senescence has shown a significant shift in REP to shorter wavelengths 

(Cipour et al., 2008), whilst numerous vegetation indices, including NDVI, only 

exhibit a slight decrease. As discussed in previous chapters, the REP is correlated 

strongly to the content of foliar photosynthetic pigments (Carter and Spiering, 2002) 

and can be used to indicate the onset of senescence before structural changes (e.g., in 

LAI) are evident (Miller et al., 1991; Davids and Tyler, 2003). As the MTCI is 

designed to exploit the spectral reflectance in red edge wavelengths, the MTCI should 

be sensitive to the early decrease in chlorophyll content at senescence. Therefore, it is 

expected that estimating growing season length using the MTCI will yield different 

results to EVI or NDVI, which are primarily sensitive to variation in LAI. 

 

5.2 Chapter aims 
A goal of global change research is to quantify the influence of a changing climate 

(i.e., elevated temperature) on vegetation phenology (Cleland et al., 2007).The aim of 

this research is to examine inter-annual in variability woodland phenology and 

investigate the abiotic factors that drive this variability. This research will develop our 

understanding of woodland phenological variability through coupling the MTCI time-

series to meteorological observations of temperature and precipitation. This in turn 

will develop our understanding of the link between estimated foliar chlorophyll 

content and climatic variation.  

The MERIS archive allows continual phenological observations to be made from the 

start of the 2003 growing season to date. The analysis of the temporal variability of 
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MTCI to date will provide an insight into the possible effects of predicted climate 

variation on phenology in terrestrial ecosystems located in mid latitudes, where 

temperature can be a limiting factor to vegetation growth.  

5.3 The study areas 
5.3.1 The New Forest 

This chapter focuses on the phenological variability of study areas within the New 

Forest National Park. A full description of the study area can be found in Chapter 4, 

section 4.2. 

Land use practices and vegetation heterogeneity at the pixel level (1 km2 ‘reduced 

resolution’ of the MERIS sensor) meant that study areas were composed of a number 

of species, therefore study areas were selected according to landcover type. Woodland 

study areas consisted of both deciduous and coniferous species and their understory 

vegetation. The distribution of grasses and heath vegetation was also variable at the 

MERIS ‘reduced resolution’ pixelscale and so defined another class (Figure 5.3).  

The phenological profile from the study areas will be an aggregated response of the 

species present within a given area. Field surveys were used to determine the species 

in each study area and their percentage cover (Figure 5.2); Table 5.1a for woodland 

study areas, and table 5.1b for grass and heathland study areas.  

Field surveys revealed four woodland inclosures were sufficiently large and covered 

an area greater than one reduced resolution MERIS pixel (Figure 5.4). Such inclosures 

were dominated by either coniferous or deciduous species, whilst the presence of 

other cover types was minimal (below 15% threshold). These largely homogeneous 

inclosures were used to estimate the contribution that coniferous and deciduous 

species made to the aggregated phenological profiles of individual study areas in the 

New Forest.  
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Figure 5.2. Photographs illustrating the species composition at four of study areas in 

the New forest. Deciduous tree species and understory vegetation typical of the Deny 

Wood inclosure (a), coniferous inclosure at Bolderwood (b). The mixed grass and 

heathland study area of Ridley Plain (c). The local distribution of grasses and heather 

at Picket plain study area (d) is typical of the species composition and distribution 

found in the grass and heathland study sites in the New Forest.
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Woodland study areas 
Area  Area name Area 

km2 

Number of 

MERIS pixels  

Co-ordinates 

(WGS) 

Dominant cover type Approximated species 

composition  

(% cover)  

Presence of homogenous cover type 

within study area (>1km2) 

1 Island Thorns and Amberwood 

Inclosures 

3.1 1 10 43’ 43.85” W 

500 52’ 37.83” N 

Mixed deciduous and 

coniferous woodland 

Oak, birch, beech, sweet 

chestnut 50% 

Coniferous sp. Scots pine, 

Corsican pine, Douglas fir 50% 

No 

2 Red Shoot Wood and Roe Inclosure 2.7 1 10 41’ 47.71” W 

500 55’ 34.05” N 

Mixed deciduous and 

coniferous woodland 

Oak, birch, beech, sweet 

chestnut 60% 

Coniferous sp. Scots pine, 

Corsican pine, Douglas fir  40% 

No 

3 Church place and Longdown Inclosure  3.28 2 10 30’ 16.78” W 

500 52 ’48.09” N 

Coniferous woodland Corsican pine, scots pine, sitka 

spruce 90% 

Deciduous sp. Birch 10% 

Yes  - Coniferous area 

 

4 Denny wood, Park Ground Inclosure 

and Kings Hat  

9.1 7 10 33’ 13.05” W 

500 50 ’44.1” N 

Mixed deciduous and 

coniferous woodland 

Oak, birch, beech, sweet 

chestnut 60% 

Coniferous sp. scots pine, 

Corsican pine, Douglas fir 40% 

Yes – 2 deciduous areas  

Oak, birch, beech, sweet chestnut 80% 

Coniferous sp. Scots pine, Corsican 

pine, Douglas fir 20% 

5 Shave Green Inclosure 2.3 1 10 35’ 19.21” W 

500 54 ’38.3” N 

Mixed deciduous and 

coniferous woodland 

Oak, birch, beech, 40% 

Coniferous sp. Scots pine, 

Corsican pine 60% 

No 

6 Bolderwood 5.1 3 10 38’ 19.15” W 

500 52 ’ 46.3” N 

Mixed deciduous and 

coniferous woodland 

Oak, birch, beech, 30% 

Coniferous sp. Scots pine, 

Corsican pine 70% 

Yes – Coniferous area 

Scots pine, Corsican pine, Douglas fir, 

sitka spruce 90% 

Deciduous sp. Birch, oak 10% 

 

Table 5.1a. Location and composition of woodland study areas within the New Forest
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Grass and heathland study areas 

Area  Area name Area 

km2 

Number of 

MERIS pixels 

Co-ordinates 

(WGS) 

Dominant cover type Approximated species 

composition  

(% cover)  

Presence of homogenous 

cover type within study area 

(>1km2) 

7 Yew Tree Heath and Black 

Down 

4.7 4 10 28’ 48.35” W 

500 51’ 33.81” N 

Grass and heathland Heathers 60%, grasses 

35% and bracken 5% 

No 

8 White Moor 2.6 2 10 32’ 52.4” W 

500 52’ 14.5” N 

Grass and heathland Heathers 40%, grasses 

and bracken 60% 

No 

9 Chibden Bottom and Great 

Bottom 

3.7 2 10 44’ 42.2” W 

500 53’ 44.3” N 

Grass and heathland Heathers 60%, grasses 

and bracken 40% 

No 

10 Ridley Plain 2.2 1 10 41’ 59.5” W 

500 51’ 42.95” N 

Grass and heathland Heathers 40%, grasses 

50%, bracken and gorse 

10% 

No 

11 Picket Plain 2.8 2 10 43’ 27.4” W 

500 50’ 43.4” N 

Grass and heathland Heathers 40%, grasses 

55% and bracken 5% 

No 

 

Table 5.1b. Locations and estimated composition of grass and heathland study areas within the New Forest. 
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5.3.2 Ancillary study areas 

Ancillary study areas were located in Cornwall and Kent in Southern England (Table 5.2). 

Sites were selected according to three criteria; relatively flat (to minimise topographical 

effects), near homogeneous vegetation cover and close (within 25km) to a meteorological 

weather station.  

 

The Kings Wood study area (00 54’52.0” E, 510 13’11.4” N) was selected due to the 

similarities in species composition with the woodland areas in the New Forest. Kings Wood 

comprises both ancient deciduous woodland and mixed deciduous and coniferous 

woodland and covers 7.2km2.  The main species of tree species include oak, sweet chestnut, 

corsican pine and Douglas fir. The low-lying heathland found within the boundary of 

Bodmin Moor (40 36’72.3” W, 500 34’14.1” N) is similar to the heath and grassland study 

areas in the New Forest. This study area comprises open moorland with of coarse grassland, 

distinct areas of bracken, gorse and wet heathland.  

 

The Kings Wood and Bodmin study areas were used to compare and support those findings 

made at the New Forest. Coupling the phenology of each study area to local meteorological 

observations made it possible to determine the extent to which phenology is driven by 

changes in local climatic variation.  

 

Study areas Vegetation type Area 
Co-ordinates  

(WGS 84) 

Number of 

Full MERIS pixels 
 

Bodmin Moor, 

Cornwall  

 

Low lying grass and 

heathland 

 

14.0km2 

 

40 36’72.3 W 

500 34’14.1 N 

 

7 

 

Kings Wood, Kent 

 

Mixed forest and ancient 

woodland 

 

7.2km2 

 

00 54’52.02E 

510 13’11.37N 

 
4 

 

Table 5.2. Location, area and vegetation type of the auxiliary study areas. 
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Figure 5.3. Woodland and heath and grassland study areas used in the phenology 

study in the New Forest, Hampshire, UK. For illustrative purposes, these are 

superimposed upon a Landsat TM image. Numbers 1-11 relate to area descriptions in 

tables 2a and 2b. 

 
 

Figure 5.4. Vector layers used to select MTCI pixels located within the boundary of 

each study area in the New Forest.  Also shown are the locations of the homogenous 

coniferous and deciduous woodland pixels. 

 149



Chapter 5. MTCI as a tool to monitor phenological change 

5.4 Methods 
5.4.1 Study area selection 

Study areas had to cover an area greater that one ‘reduced resolution’ MERIS pixel 

(consideration was also given to the geolocation accuracy of the MERIS sensor). True 

colour aerial photographic imagery of the New Forest, acquired during July 2005 and 

re-sampled to a spatial resolution of 5 metres was used to find representative study 

areas.  These were located on an OS Outdoor Leisure 22 map of the New Forest 

(1:25,000 scales). This permitted co-ordination of site visits to validate study area size 

and the vegetation type present at each study area. GPS co-ordinates were taken in the 

field at the boundaries of homogenous vegetation types (i.e., woodland or grass and 

heathland areas). GPS co-ordinates from the field visits and high resolution imagery 

were used to refine study area boundaries in ArcGIS and produce area datasets for 

both woodland and grass and heathlands. 

 

The locations of ancillary study areas were derived using an alternative method. 

Digital boundary vector layers produced by English Nature were initially used to 

determine both cover type and study area size (http://www.gis.naturalengland.org.uk/). 

The shapefile boundary datasets that corresponded to the location of indicator species 

indicative of given land cover type were used to identify potential study areas. After 

suitable areas had been identified, Landat TM data were used to verify the location, 

extent and heterogeneity of the study areas. Only study areas with an area greater than 

2x1 km were selected as this corresponded to the ground area covered by two reduced 

resolution MERIS pixels.  
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5.4.2 Remotely sensed data 

MERIS data 

Envisat MERIS ‘reduced resolution’ (1 km) data were used. Level 2 MERIS imagery 

was to produce 8-day MTCI composites for the growing season of 2005 and for 

January – May 2006. An arithmetic mean composite was produced for each 8-day 

period during January – December 2005 and January – May 2006 from cloud free 

MTCI imagery. Flux conserving re-sampling level 3 binning was used to create a 

composite Level 3 product. The accumulation of EO data samples into geocoded 'bins' 

is a commonly used method for creating Level 3 weekly and monthly composite 

products (Lankester et al., 2003). Binning refers to the process of distributing the 

radiance within Level 2 pixels to a fixed Level 3 grid using a geographic reference 

system.  

These data were complemented with pre-processed 8-day composites for the growing 

seasons of 2003, 2004, and for May – December 2006, 2007 and 2008 generated by 

the UK Multi-Mission Product Archive Facility (UK-MM-PAF) at Infoterra Ltd., 

accessed through NEODC, that has been batch processed using the same method. 

Inforterra Ltd. minimised cloud contamination through omission of cloud-flagged 

MERIS data. Together, both sources of MTCI composites provided a complete time 

series from February 2003 to December 2008. Within ENVI the MTCI composites 

were stacked chronologically to produce a time series layer stack for each growing 

season (Figure 5.5).  

The vector shapefiles defining the boundaries of the study sites where imported into 

ENVI software to identify those MTCI pixels located within each chosen study area. 

Pixels corresponding to each study area were extracted for growing seasons 2003 - 

2008. For both woodland and grass and heathland sites at the New Forest, Bodmin 

and Kings Wood sites pixels values were aggregated (to reduce noise in the 

phenological profile), producing a single value for each 8-day composite within the 

growing season.  
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Figure 5.5. Diagrammatic representation of the layer stacked MTCI 8-day composites. 

 

MODIS data 

MODIS vegetation (MOD13A2) 16-day product, including both MODIS EVI and 

NDVI vegetation at 1km spatial resolution, was accessed through the NASA 

Warehouse Inventory Search Tool (WIST) (accessed at 

https://wist.echo.nasa.gov/api/). MODIS-VI products are made from the level 2daily 

MODIS surface reflectance (MOD09), corrected for molecular scattering, ozone 

absorption, and aerosols. The maximum value composite (MVC) algorithm operates 

on a per-pixel basis and relies on multiple observations over a 16-day period to 

generate a composited value (Van Leeuwen et al., 1999; Cheng 2006). This method 

was suitable for AVHRR NDVI that had not been atmospherically corrected. In the 

MODIS case, surface anisotropy effects are more pronounced since reflectance values 

are atmospherically corrected prior to compositing and VI computation. The MVC 

method, in this case, will dramatically increase the selection of off-nadir pixels, 

particularly over open canopies, which exhibit higher NDVI values when viewed 

obliquely. To address this, the MODIS-VI compositing algorithm utilizes the 

constrained view angle (CV-MVC) criterion, with the VI value at the view zenith 

angle from the two highest filtered VI values that is closer to the nadir being selected 

(Huete et al., 2002). 

 

Layer stacks were produced from the 16-day composites for both EVI and NDVI to 

span the 2006 and 2007 growing seasons. Therefore a direct comparison between the 

MODIS VI and MTCI can be made. 
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5.4.3 Auxiliary data 

Climate data, local to each study area, were obtained from the Meteorological Office 

UK weather station network.  Weather station observations within 25 km of each 

study area (Table 5.3), together with the Central England Temperature (CET) series 

were provided by the Meteorological Office (UK). Average daily temperature (Tmean) 

was calculated as a mean of the daily maximum (Tmax) and the daily minimum (Tmin) 

(Perry and Hollice 2005). Eight day average temperatures were derived from the daily 

temperature dataset for each weather station to correspond with the temporal format 

of the MTCI composites. 

 

The long-running CET (http://badc.nerc.ac.uk/data/cet/) was used to describe national 

weather, rather than averaging data from each site. The CET is strongly correlated 

(with a strong statistical significance where p < 0.001) with local station observations 

throughout England (Croxton et al., 2006; Sparks, 2006).  

 

Weather Station Study area Proximity 

Hurn New Forest 12 km  

St Mawgan Bodmin Moor 7 km 

Manston Kings Wood 25 km 

 

Table 5.3. Location of weather stations in relation to the study areas. 

 

The UK Phenology Network (UKPN),run jointly by the Woodland Trust and the 

Centre for Ecology and Hydrology (CEH), provides point based phenological ground 

observations from sites around the UK (http://www.naturescalendar.org.uk/). The 

UKPN records first leaf and leaf fall dates of several indicator species, including the 

oak, birch and beech that were abundant in the woodland sites in the New Forest 

study area. For the purpose of this investigation, mean first leaf and leaf fall dates 

have been calculated for the pre-mentioned species. Data were used to compare and 

support the phenological trends inferred from the MTCI time series.  
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5.4.4 Estimating phenological phases from MTCI time series data 

Although cloud contamination was minimised by compositing noise was added as a 

result of both compositing and re-sampling. Data smoothing was used to remove 

noise in time series data whilst maintaining phenological information.  

 

Harmonic analysis (specifically using Fourier series) has been shown to produce an 

accurate representation of a single year phenology across a range of land cover 

(Bradley et al., 2006). In this study, the MTCI phenological profiles were smoothed 

using Discrete Fourier Transformation (DFT). The DFT method decomposes the 

complex waveform into individual sinusoids, and omits noise introduced in the 

compositing procedure (Jakubauskas et al., 2001). Amalgamating the sinusoids 

inversely using the first five harmonics removes noise from the phenological profile 

and produces a smoothed MTCI time series (Figure 5.6) (Geerken et al., 2005). This 

approach has been used successfully to remove noise in the composite data whilst 

preserving phenological information (Jakubauskas et al., 2001; Dash personal 

communication). Inverse Fourier Transformation was employed on the MTCI time 

series data using a MATLAB script. 

 

The inflection point method was used to derive the phenological transition dates. 

Dates were identified using the rate of change in the curvature of the cumulative curve 

derived from the DFT smoothed data (Figure 5.7). Transition dates correspond to the 

location in time where the rate of change in the MTCI phenology profile exhibits local 

maxima or minima (Zhang et al., 2003).  
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Figure 5.6. Discrete Fourier Transformation (DFT) was used to remove noise 

(smooth) from the MTCI phenological profile. 

 

 
 

Figure 5.7. Phenology transition dates were determined using maximum and 

minimum values in the rate of change of the (DTF smoothed) MTCI phenology 

profile. 
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5.4.5 Predicting MTCI using mean temperature observations 

Understanding the physiological response of vegetation to predicted climatic change 

would aid in our knowledge of potential changes in ecosystem productivity and 

terrestrial carbon budgets. 

Prediction of MTCI values for the 2008 growing season used a regression model 

based on the relationship between MTCI and 8 day mean local temperature for each 

study area for the growing seasons 2003 – 2007. Estimates made using this regression 

model were compared with the 8-day MTCI composites for the 2008 growing season. 

This approach offers an insight into the potential changes that could arise in 

ecosystem phenology (and productivity) as a result of climate-induced changes in 

canopy chlorophyll content. 

 

5.5 Results and Discussion 
5.5.1 Woodlands 

The presence of large (greater than one ‘reduced resolution’ MERIS pixel) woodland 

inclosures enabled phenological investigation of the estimated chlorophyll content of 

deciduous and coniferous canopies. Figure 5.8 shows the phenological profiles of 

deciduous and coniferous canopies for the 2003 – 2007 growing season. Coniferous 

species maintained a minimum greenness during the winter and did not shed all of 

their needles each year as deciduous species did (Fisher et al., 2006) accounting for 

the higher MTCI values during the early and later growing seasons. Coniferous 

species have been shown not to exhibit large seasonal variation in photosynthetic 

biomass (Kimball et al., 2004), so observed changes in estimated coniferous 

chlorophyll content was due to changes in chlorophyll concentration rather than LAI. 

The phenological profiles show that the timing and rate of greenup was consistent 

between coniferous and deciduous species. This suggests that leaf development in 

deciduous species and bud burst, a period where new needles emerge in some 

coniferous species (Cannell and Smith, 1983), and the associated increase in foliar 

chlorophyll content in both deciduous and coniferous species is triggered by similar 

environmental variables. Similarly, the timing of senescence between deciduous and 

coniferous species is similar, although during the 2004 and 2006 growing seasons the 

rate of chlorophyll content decrease was less in coniferous stands. At maturity, the 

deciduous woodland had a greater MTCI compared to coniferous woodland, which 
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was maintained throughout the peak of the growing season. Generally, coniferous 

species became dormant later in the growing season in comparison with the deciduous 

woodland (Figure 5.9).   

 

Satellite sensor phenological studies of woodland stands at moderate to coarse spatial 

resolution are likely to include both deciduous and coniferous species. Site visits 

confirm a mixed species assemblage in the New Forest study areas. In this study, 

canopy dormancy is defined as the date at which coniferous species exhibit minimum 

estimated chlorophyll content and this date is likely to be after deciduous species have 

become dormant. In mixed coniferous and deciduous study areas, the presence of 

coniferous species limits the minimum MTCI value during the winter months as 

observed in the temporal MTCI profiles, where MTCI values fluctuated between 1.3 – 

1.7. The aggregated woodland MTCI temporal profiles revealed a clear seasonal 

pattern, which was characterised by a trapezoid phenology curve. This general pattern 

is evident for all six years of data, indicating that the MTCI was a reliable tool for 

determining the phenological development of the woodland study areas (Figure 5.8). 

In general terms, the MTCI increased rapidly from mid April, this rapid greenup 

corresponded to an inferred period of increased foliar chlorophyll content. The curve 

stabilised during June, followed by a decrease in MTCI from the end of August, 

marking the onset of the senescence. The MTCI reached a minimum during early 

winter, denoting canopy dormancy.  
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Figure 5.8. Seasonal MTCI phenological profiles for woodland study areas in the 

New Forest National Park; 2003 - 2007. 
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Figure 5.9. Comparison between deciduous and coniferous woodland MTCI profiles in the New Forest study site for growing seasons 2003 - 2007.
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The shape of the phenological profile can be attributed to the growing characteristics 

of heath and grassland vegetation, where foliar construction and shedding in distinct 

events at the start and end of the growing season is largely absent. The major 

phenological trends observed in heath and grassland areas were a gradual greenup, 

where chlorophyll content increased until maturity. In the absence of leaf fall, 

chlorophyll concentrations decreased in the grass and heath species during senescence. 

Therefore, heath and grassland phenology curves exhibited a gradual start and end to 

the growing seasons.  

 

Figure 5.10. Seasonal MTCI phenological profile for heath and grassland sites in the 

New Forest National Park; 2003 - 2007. 

MTCI derived grassland phenology exhibited a different phenological profile to that 

of the woodland sites. Ground based observations made by Kodani et al. (2002) 

support the shape of the convex MTCI phenology profile. The MTCI gradually 

increased (at a much slower rate than woodland MTCI), stabilised, and then gradually 

decreased in the autumn (Figure 5.10).  

5.5.2 Grass and heathlands 
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5.5.3 Accounting for inter-annual variation 

This research will couple phenological observations derived utilising the MTCI with 

temperature observations made by Meteorological Office weather stations. 

Meteorological data revealed a clear warming trend in the long running CET average, 

e.g., years 2003 to 2008 (Figure 5.11).  During the period 2003 – 2008 there were 

documented variations from the average expected climate that resulted in changes to 

vegetation phenology. For example, elevated autumnal temperatures were observed 

across Northern and Western Europe during the 2006 growing season. The 

Meteorological Office and the Royal Netherlands Meteorological Institute recorded 

May to October 2006 as the warmest on record in the UK since 1659. These observed 

temperatures led to reports of an extended growing season (and thus delayed 

senescence) (www.eumetsat.int/Home/Main/Media/News, accessed 6th March 2007; 

BBC News accessed 30th October 2006; Van Oldenborgh, 2006). 

 

Va
ri
at
io
n 
fr
om

 m
ea
n 
CE

T 
(%

) 

Figure 5.11. Variation between the long term CET (1669-2002) monthly mean 

temperature and the years 2003-2008. A clear trend of milder winters is apparent as is 

elevated spring and autumnal temperatures for all years 2003 –2008. 

 

The temporal phenology profile for all sites indicated an increase in MTCI (and thus 

inferred chlorophyll content) for the autumnal period of 2006 compared to the same 

period for each of the earlier three years. Late October 2006 MTCI values were 

comparable with mid September values for the years 2003 and 2004, indicating a 

delay in vegetation canopy senescence 
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Both the local Tmean and CET Tmean data were correlated with MTCI for each study 

area. A strong positive correlation between local T mean and MTCI was observed for 

both woodland (Figure 5.12 a) and heath and grassland (Figure 5.12 b) in the New 

Forest. Coefficient of determination shows a strong positive relationship between 

Tmean local and MTCI for all three woodland study areas (mean R2 for period 2003 – 

2007; Bodmin moor R2 = 0.92, and Kings Wood R2= 0.88), indicating that the 

inferred chlorophyll canopy content is correlated strongly with mean temperature. 

Such a relationship suggests that changes in observed MTCI are a response to 

temperature rather than the availability of nutrients or water table height. Results 

indicate that Tmean is potentially a limiting factor to chlorophyll content development 

and therefore productivity, suggesting that water, nutrients, carbon dioxide and light 

were not limiting the development of foliar chlorophyll content of woodland or heath 

and grassland species for the years 2003 - 2007. 

 

The relationship between MTCI and CETmean for the 2006 growing season and also 

the growing seasons of 2003 - 2005 revealed a marked increase in temperature and 

MTCI for all study areas. From July – November 2006 the high MTCI values were 

maintained, indicating a delay in autumnal senescence. During mid-October the mean 

inferred chlorophyll content for all sites was approximately 54% greater than the 

average of the previous three years. Figure 5.13 shows a response lag of 

approximately two weeks between Tmean and MTCI response, suggesting that foliar 

chlorophyll content adjusts, albeit with a time lag, to local climate conditions. The 

2006 MTCI profile also reveals a delay in reaching canopy maturity as MTCI values 

were below average until early July, as a result of lower mean temperatures 

throughout the early growing season (February – May).  

 162



Chapter 5. MTCI as a tool to monitor phenological change 

 

 

a) 

 

 

 

 

b) 

Figure 5.12. Relationship between MTCI and local Tmean for woodland and heath and 

grassland sites, New Forest, using 2003 - 2007 data; woodland sites (a) 2003-2007; 

grass and heathland sites (b). 
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Change in temperature has been shown to affect the phenology of woodland species 

(Deng et al., 2007), leading to earlier spring greenup in woodlands in the mid- and 

higher latitudes (Menzel et al., 2006). Findings in this chapter support the notion of 

delayed senescence due to favourable growing conditions; this was particularly 

evident in the MTCI growing season temporal profile for 2006.  
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Figure 5.13. Variation in MTCI and mean monthly temperature (CETmean) in 2006 

compared to the running average 2003 –2005 and 2007 for both woodland and heath 

and grassland study areas at all three study areas. 

 

An early greenup was observed in 2007 for both woodland and heath and grassland 

areas. This coincided with elevated mean temperatures (in relation to 2003 – 2006) at 

the local weather stations and CET. These findings support the findings of Fisher et al. 

(2006) and Sparks et al. (2005) who related increased cumulative temperatures to leaf 

development of deciduous woodland in temperate latitudes. Bassow and Bazzaz 

(1998) linked an increase in seasonal temperature with increased photosynthetic rates, 

as ecosystems modify their photosynthetic capacity in relation to a change in limiting 

factors through changes in foliar chlorophyll content (Dawson et al., 2003). The 

MTCI values would suggest that foliar chlorophyll content was higher in early 2007 
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in comparison with previous years, indicating that higher seasonal temperatures can, 

indirectly, increase the photosynthetic potential of the vegetation canopy.  

 

Heath and grasslands exhibit a distinct phenological profile and clear responses to a 

change in seasonal temperatures. Such change has been observed in temperate 

grasslands and linked to variations in annual weather patterns (Kammer, 2002). The 

results suggest early spring growth, as inferred by increased MTCI, supporting the 

findings of Yang et al. (1998) who suggested that early spring warming leads to 

enhanced photosynthetic activity and growth rates.  

 

5.5.4 Variation in phenological transition dates 

Changes in temperature corresponded to change in the derived phenological transition 

dates in the New Forest study areas. Figure 5.14 shows the inter-annual variability in 

estimated phenological transition dates derived from the inflection point methodology 

using MTCI temporal data from woodland study areas. Delayed senescence is shown 

during the 2006 growing season as a result of climatic variability. Whilst the early 

spring growth associated with elevated spring 2007 temperatures is indicated by an 

earlier estimated greenup and maturity date.   

Figure 5.14.  Variation in key phenological transition dates through the growing 

season as determined by the rate of change in curvature in the MTCI profile for the 

New Forest woodland study areas. 
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                                                            Year 

Phenology markers 2003 2004 2005 2006 2007 

Greenup 11th April 12th April 12th April 23rd April 11th April 

Dormancy 23rd November 2nd December 8th December 3rd December 26th November 

Season length (days) 226 234 240 224 229 

 

Table 5.4. Phenological transition dates derived from the UK Phenology Network. 

 

UKPN observations use a network of point-based ground observations around the UK 

to record the first leaf and leaf fall date of several indicator species, including oak, 

birch and beech. These species are abundant in the woodland sites in the New Forest 

study area. For the purpose of this investigation, greenup corresponds to the date the 

first leaf appeared for any of the species listed above. Dormancy relates to latest 

recorded leaf fall (of any species).  Observations by the UKPN (Table 5.4) support the 

early onset of spring growth as inferred by the 2007 MTCI time series in woodland 

study areas (Table 5.5). Although such results cannot be used as a direct comparison, 

due to differences in geographical scale and the presence of coniferous species in the 

New Forest study area, trends in phenology are apparent and can be linked to seasonal 

temperature. 

 

Similar trends in phenological transition dates were observed between woodland and 

grass and heathland study areas (Table 5.6) in the New Forest. Growing season length 

showed similar trends between years, except the growing season of 2004 for the grass 

and heathland study area that was shorter than expected. The delay in senescence 

during the 2006 growing season and the early greenup of 2007 were observed in the 

phenological transition dates for the grassland study areas.  
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 Year 

Phenology Markers 2003 2004 2005 2006 2007 

Greenup onset 11th April 30th March 24th April 16th April 21st March 

Maturity onset 3rd July 3rd July 21st July 30th July 19th June 

Senescence onset 11th August 14th August 30th August 11th September 21st August 

Dormancy onset 26th November 8th December 14th December 20th December 6th December 

Greenup duration (days) 83 95 88 105 90 

Peak growing season duration (days) 39 42 40 43 63 

Season length (days) 229  253  234  248  260  

 

Table 5.5. Inter-annual variability in phenological transition dates as derived from the MTCI time series for woodland study areas in the 

New Forest. 
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 Year 

Phenology Markers 2003 2004 2005 2006 2007 

Greenup onset 31st March 8th April 16th April 16th April 7th March 

Maturity onset 7th August 29th July 6th August 22nd July 11th June 

Senescence onset 18th September 11th September 7th September 17th October 6th August 

Dormancy onset 10th November 10th November 4th December 4th December 18th November 

Greenup duration (days) 129 112 112 97 96 

Peak growing season duration (days) 42 44 32 87 56 

Season length (days) 224 216 232 232 256 

 

Table 5.6. Inter-annual variability in phenological transition dates as derived from the MTCI time series for grass and heathland study 

areas in the New Forest. 
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5.5.5 Comparison of MTCI and MOD13 phenological profiles 

The Aqua and Terra satellites, hosting the MODIS sensor, provide daily observations 

of the land surface at moderate spatial resolution (250m–1000m). MODIS has been 

used to monitor vegetation phenology using both the MOD13 validated vegetation 

indices, i.e., the NDVI and EVI (Xiao et al., 2004, 2005; Zhang et al., 2003, 2006). 

The majority of satellite sensor phenological investigations utilise the NDVI 

vegetation index. However, the EVI has been widely used to monitor vegetation 

phenology due to its insensitivity to background effects. This section will evaluate the 

MTCI as a tool to estimate phenology in relation to the MOD13 vegetation indices.  

 

MTCI is sensitive to variation in chlorophyll content, whereas the NDVI is principally 

sensitive to green biomass (LAI), therefore explaining the shape of the phenology 

curve. NDVI has an operational range of -1 to 1, where values which approach the 

upper limits correspond to dense vegetation, whereas low values indicate low 

vegetation densities or non vegetated surfaces (Wulder, 1998). However, in this study 

the NDVI demonstrates a small amplitude between summer maxima and winter 

minima compared to the MTCI temporal profile (Figure 5.15 a). Due to mixed species 

stands in the New Forest, pixels will contain coniferous and deciduous species. 

Therefore, the small seasonal variation in photosynthetic biomass demonstrated by 

coniferous areas results in a small change in LAI throughout the growing season 

(Kimball et al., 2004) compared to deciduous areas. Compared to the NDVI, the 

MTCI is more suited to determine phenological change in mixed tree pixels as total 

chlorophyll content will be more variable between seasons than LAI. The NDVI will 

therefore respond to the aggregated change in seasonal LAI between coniferous and 

deciduous species. The effect of background reflectance will be a function of 

vegetation phenology and linked directly to foliar development of deciduous species. 

Therefore, during the period, late autumn – early spring, which coincides with ‘leaf 

off’ of deciduous tree species, the positive NDVI values are the result of background 

reflectance (including leaf litter, understory vegetation and soil) as well as the 

presence of coniferous species within the study area.     
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a) 

b) 

Figure 5.15. Comparison between MTCI and the phenological profiles derived from 

MODIS NDVI (a), and MODIS EVI (b). 
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Growing season Greenup Maturity onset Senescence End of growing season VI 

2006 22nd March 18th June 16th October 19th December NDVI 

 7th April  18th June 29th August 19th December EVI 

 7th April 12th July 14th September 21st December MTCI 

2007 6th March 8th June 30th September 19th November NDVI 

 14th March 10th June 29th August 3rd December EVI 

 6th March 2nd June 13th August 3rd December MTCI 

 

Table 5.7. Comparison between estimated transition dates derived from NDVI, EVI 

and MTCI time series. 

 

Saturation in high biomass ecosystems and during the peak of the growing season 

where saturation occurs below typical LAI (Zarco-Tajada et al., 2001) limits the use 

of the NDVI as a tool for phenological monitoring. A number of studies have shown 

that the NDVI saturates at LAI of 3-4 (Ustin et al., 2001), whilst LAI during peak 

growing season exceeds this for the study areas (this is confirmed from validation 

fieldwork of the same study areas completed during July 2007). The MTCI is based 

upon the relationship between chlorophyll content and REP, both of which have a 

strong correlation with green biomass (Eitel et al., 2007).  

 

The associated decrease in MTCI from late August 2007 was considerably earlier than 

the observed senescence observed by the MODIS NDVI time series (Table 5.7). This 

supports the assumption that chlorophyll content declines prior to a decrease in leaf 

area, during autumnal senescence (Millar et al., 1991).  

 

Whereas the NDVI is chlorophyll sensitive and responds mostly to the visible or red 

band variations, the EVI is more sensitive to variation in near-infrared reflectance and 

therefore responsive to canopy structural variations, including LAI, canopy type, and 

canopy architecture (Gao et al., 2000). 
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The EVI temporal profiles reveal earlier senescence when compared with MTCI 

results, but does not capture the extended 2006 growing season (Figure 5.15b). This 

opposes the expected trend, which is related to earlier canopy chlorophyll decrease. 

Similarly, the greenup in the 2007 growing season revealed by the MTCI temporal 

profile, and supported by UKPN field observations, was also delayed in the EVI 

temporal profile. The EVI profiles of 2006 and 2007 reveal similar greenup and 

canopy maturatation dates, a trend that was unsupported by the UKPN and MTCI 

phenolgy profiles.  

 

EVI and NDVI data from MODIS utilize Maximum Value Composite (MVC) data. 

The MVC filter (Holben, 1986) is designed to find the highest VI value (and therefore 

lowest noise) in a fixed time period. The MVC introduces temporal uncertainty when 

the acquisition period falls within a week- to month-long window (in this instance the 

composting period is 16 days). Such uncertainty therefore means that MVC data 

cannot be used to determine phenological events with an accuracy of a week or two 

(Fisher et al., 2006). 
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5.5.6 Predicting MTCI using temperature data 

The linear relationship between season mean temperature and MTCI enables the use 

of a simple regression model to predict MTCI for a given future seasonal temperature. 

A regression model was used to predict MTCI values for the 2008 growing season 

from aggregated 8-day mean surface temperatures observations recorded at the Hurn 

weather station (Figure 5.16). The regression model was derived for both grassland 

and woodland sites in the New Forest. The fit of this model was tested using actual 

MTCI data for the 2008 growing season (Figure 5.17a, woodland study area, and 

Figure 5.17b, grass and heathland). 

 

0 

Figure 5.16. The relationship between temperature (T mean local) and MTCI at the 

New Forest woodland sites, 2003-2007. 
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a) 

 

b) 

Figure 5.17. Employing the linear relationship observed between MTCI and 

temperature (Tmean local) 2003 – 2007 for all study areas a simple regression was used 

to predict MTCI based upon observed mean season temperature for the New Forest 

woodland sites (a) and heath and grassland sites (b). 
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The New Forest validation campaign established an important quantifiable 

relationship between MTCI and ground based chlorophyll content. Such findings will 

have an important bearing upon the observed relationship between MTCI and mean 

seasonal temperature. They will also enable estimates of canopy chlorophyll content 

to be made based upon observed and predicted seasonal temperature. The sensitivity 

of the MTCI to inferred changes in canopy chlorophyll content is an important step in 

understanding carbon capture and sequestration by foliar chlorophyll as a function of 

observed temperature in future climate scenarios. However, the linear relationship 

only holds true for temperature observed in this study. Higher temperatures may result 

in physiological stress and a subsequent decrease in foliar chlorophyll content and 

therefore MTCI. 

 

5.6 Conclusions 
The MTCI is sensitive to chlorophyll content, which allows first leafing as well as 

pigment breakdown associated with autumnal senescence to be identified. The MTCI 

has proven useful for estimating seasonal variation in chlorophyll content of both 

woodland canopies and heath and grassland. The sensitivity of the MTCI in 

estimating change in foliar chlorophyll during late summer, earlier than the onset of 

senescence as observed by changes in plant structure and physiology as determined 

through field observations (phenology networks) suggests that the MTCI would be 

useful for assessing canopy productivity and therefore changes in ecosystem 

productivity as a function of climatic variability.  

 

The observed relationship between MTCI and mean temperature enables the effect of 

climate variability upon vegetation dynamics to be established. The influence of 

higher than average autumnal temperatures of 2006 and the early spring of 2007 were 

clearly evident in the seasonal MTCI profiles (whilst delayed senescence was not 

evident in the MODIS EVI phenological profile).  

 

A relationship between seasonal mean temperature variability and phenological 

changes suggest that long-term observations in canopy chlorophyll content can serve 

as a proxy for mean temperature over time and space. Establishing the relationship 

between MTCI and mean seasonal temperature permits the modelling of chlorophyll 
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content based upon future temperature estimates. Although in reality this relationship 

is complex due to other factors such as photoperiod, or the availability of water and 

nutrients. At the study areas, the most significant limiting factor is temperature. 

Determining the relationship between temperature and canopy chlorophyll content, 

for a given vegetation type or geographical area, provides an insight into the effects of 

future climatic regimes on phenology, vegetation productivity and vegetation health.   
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Chapter 6 

 

6.1 Introduction 
As was stated in the previous section, global climate change is a topic of vital 

importance to the scientific community.  Atmospheric carbon dioxide concentration 

has risen by 31% since 1750 (Heinsch et al., 2006), mainly due to the burning of 

fossil fuels and changing land use practices, including the burning of biomass in 

tropical forests associated with deforestation (IPCC 2007). The observed increase in 

atmospheric carbon dioxide concentration has not been as great as predicted once all 

the identified sources and sinks have been considered.  The difference between the 

observed and expected concentration of atmospheric CO2 can be partially explained 

through a process of sequestration by terrestrial vegetation. Terrestrial vegetation is an 

important sink of carbon dioxide, especially in the mid-latitudes (Turner et al., 2004), 

driving the research community to investigate the use of terrestrial carbon sinks to 

offset industrial CO2 emissions. However, predictions of the ability of terrestrial 

vegetation to sequester carbon are uncertain and related to global climate variations. 

The ability to quantify net carbon uptake by terrestrial vegetation is of vital 

importance. However, such understanding will only be possible at the global scale if 

we are able to monitor terrestrial vegetation productivity. 

 

Gross primary productivity (GPP) is a measure of photosynthetic activity of terrestrial 

vegetation and is an important variable in the global carbon cycle as it defines the rate 

at which an ecosystem will accumulate biomass (Wu et al., 2009). Estimates of gross 

primary productivity at the regional to global scale are important indicators of 

ecosystem response to elevated atmospheric carbon dioxide levels and the associated 

increase in global temperatures. Additionally, GPP is a useful measure of ecosystem 

health and is relevant in understanding the impact of human activity on ecosystems.  

 

Eddy covariance techniques, employing flux tower measurements, provide the best 

method of estimating ecosystem GPP. Extensive flux tower networks have been 

established in North America (Ameriflux and FLUXNET) and Europe (Euroflux). 

However, this method of deriving GPP only provides CO2 flux estimates over an area 

that varies in size and shape according to the physical height of the tower, canopy 
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physical characteristics and wind velocity. Eddy covariance techniques also have the 

inherent problem of partitioning autotrophic respiration and heterotrophic respiration 

as well as being expensive to establish and maintain (Gilmanov et al., 2005). 

 

Remote sensing allows systematic and consistent observations of vegetated 

ecosystems, providing the opportunity to overcome the problems of limited 

measurement of GPP at flux tower sites; thus permitting the monitoring of ecosystem 

productivity across the Earth's land surface.  

 

Estimating terrestrial vegetation GPP using remote sensing is a major challenge in 

global change research. Satellite sensors measuring in the visible and NIR 

wavelengths have the ability to provide quantitative estimates of GPP, providing the 

opportunity to monitor the spatial and temporal variability of vegetation productivity.  

The Moderate Resolution Imaging Spectrometer (MODIS) is mounted on both the 

Aqua and Terra satellites and was designed, in part, to address the need for global 

estimates of vegetation productivity.  Together, the MODIS sensors provide repeat 

temporal coverage of the Earth’s surface at 1km spatial resolution. Many products 

have been developed to exploit the sensor’s radiometric resolution to infer vegetation 

productivity. The MOD17 product is based on the theories of Monteith (1972) that 

relate gross photosynthetic potential to the amount of absorbed photosynthetically 

active radiation (APAR). The ability of vegetation to utilise radiation for 

photosynthesis is termed its light use efficiency (LUE).  Daily GPP estimates are 

easily computed in the MODIS productivity algorithm from this logic using: 

 

GPP = e * PAR * fPAR              (6.1) 

 

Where GPP equals daily gross primary productivity (kg cm-2), e is the LUE, PAR is 

photosynthetically active radiation in the visible region between 400 nm – 700 nm 

and fPAR is the fraction of PAR absorbed by the canopy. However, to derive e, the 

MOD17 product uses a regionally assigned LUE using a look-up table (LUT) based 

on biome type classification, which is modified if additional inputs of temperature and 

high pressure vapour deficit are suboptimal (Nightingale et al., 2007). Such additional 

inputs are obtained from coarse spatial resolution datasets from the NASA Data 

Assimilation Office (DAO). Although the MOD17 algorithm includes variables to 
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account for short-term inhibition of photosynthetic rates, the accuracy of the MOD17 

product is limited by the coarse spatial resolution of the meteorological inputs and the 

accuracy of the land classifications that are used to define biome type.  Studies have 

suggested that significant errors in the estimated carbon fluxes are a result of coarse 

resolution data or estimations of LUE.  Variations in LUE have been shown to exist 

within heterogeneous landscapes, whereby significant variation between species was 

observed (Ahl et al., 2004). This species specific variation in LUE would therefore 

not be represented at the biome level, and may potentially effect GPP estimates.    

 

Due to such shortcomings, it is important to explore methods that estimate GPP which 

do not require as many additional input variables (Wu et al., 2009). Many recent 

studies have focused on the empirical relationship between spectral reflectance and 

GPP through the use of vegetation indices. Such approaches will have the spatial 

resolution of the sensor and are not reliant upon additional inputs such as 

meteorological data and land cover classification to determine LUE. The simplicity of 

vegetation indices will consequentially mean that short-term variations in 

photosynthetic activity will be untracked, as rapid changes in PAR, temperature and 

the availability of moisture are likely to have an effect on vegetation productivity.  

However, studies have demonstrated that vegetation indices are able to infer carbon 

flux over a period of several days as vegetation is able to respond and adapt to 

changing environmental conditions (Harris and Dash, 2009).  Vegetation indices that 

are related to vegetation greenness, such as the NDVI, have been correlated with GPP 

to varying degrees of success in grasslands (Harris and Dash, 2009; Wylie et al., 

2003). The simplicity of NDVI and its inherent link to photosynthetic activity, make 

NDVI a popular tool for monitoring crop activity (Reeves et al., 2005).   

 

The photochemical reflectance index (PRI) was developed as a proxy for LUE. The 

PRI was developed to estimate LUE without the use of LUT and therefore increase 

the spatial performance of GPP models. The PRI is defined as: 

 

PRI = (R531 – R570) / (R570 + R531)            (6.2) 

 

Reflectance changes at R531 are theoretically linked to irradiance associated with 

foliar pigment energisation that is closely related to photochemical efficiency (Gamon 

 180



Chapter 6. Relationship between GPP and MTCI in various ecosystems 

et al., 1992). Reflectance measured at R570 reduces the reflectance produced by the 

movement of chloroplasts (Gitelson et al., 2006). The relationship between LUE and 

PRI has been mixed. Whilst a linear relationship has been observed for a number of 

species, the PRI is mostly sensitive to variation in LAI (Barton and North, 2001). 

 

6.2 Chapter aims 
A growing body of interest into the role that foliar chlorophyll may play in the 

estimation of GPP is emerging in the scientific literature. According to the logic of 

Monteith (1972), vegetation GPP is linearly related to the amount of absorbed 

photosyntheticly active radiation and the ability of the vegetation to utilise the light in 

photosynthesis (LUE).  In this investigation, it will be hypothesised that foliar 

chlorophyll content is a surrogate for LUE given the fact that plant physiological 

status is related closely to chlorophyll content (Sellers et al., 1992). As chlorophyll 

content is one of the main requirements for photosynthesis (Dash et al., 2009), 

vegetation productivity will be related to the foliar chlorophyll content. Laboratory 

studies have shown that variation in canopy total chlorophyll content of miniature 

Douglas fir canopies was significantly correlated with photosynthetic rates (Yoder 

and Waring, 1994). Given that vegetation responds to changes in the availability of 

nutrients and favourable environmental conditions through its photosynthetic capacity, 

the productivity of vegetation will be related to foliar chlorophyll content (Dawson et 

al., 2003). Similarly, vegetation stress caused by unfavourable conditions, leading to 

physiological stress, corresponds to negative change in foliar chlorophyll content, 

which will subsequently affect photosynthetic rates and productivity. Waring et al., 

(1995) found a strong correlation between canopy leaf chlorophyll concentration of 

deciduous species and maximum LUE at the primarily deciduous Harvard Forest flux 

site. Their findings support the link between chlorophyll content and LUE in 

deciduous forests.  

 

Gitelson et al. (2006) demonstrated that remotely sensed estimates of foliar 

chlorophyll content, measured in the NIR and either the red or green regions has, a 

strong correlation with the day to day variation in GPP. Therefore, with reflectance 

measured in narrow bands in the red and NIR region, the MTCI as a tool to estimate 

GPP will be explored.  
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Using field spectroradiometers, Gitelson et al. (2006) demonstrated that remote 

sensing techniques used to estimate canopy chlorophyll content could be used to drive 

models that estimate GPP in both Soya bean and maize fields employing the rationale 

that LUE is proportional to GPP/PAR. Wu et al. (2009) assessed the suitability of 

various vegetation indices to estimate chlorophyll content and GPP in six wheat 

species. Both investigations provided accurate assessment of GPP in crops using 

chlorophyll indices and have indicated the potential of using such techniques to derive 

estimates of GPP. To date, the approach adopted by Gitelson et al. (2006) and later 

adopted by Wu et al. (2009) has not been applied to estimate GPP in other vegetation 

types nor has the suitability of such a technique been assessed using satellite sensor 

data. This investigation explored the potential of the MTCI to estimate GPP in four 

vegetation types, including temperate deciduous forest, coniferous boreal forest, 

mixed temperate forest and grass rangelands.  

 

6.3 Study sites 
Study sites were selected to explore the relationship between GPP and MTCI for a 

range of vegetation types (Figure 6.1). Sites consisted of a single dominant vegetation 

type and were required to be at least 3x3 km to allow for potential geolocation errors 

in imagery, reducing any errors associated with mixed pixels. Careful consideration 

was given to minimise the effects of topography, therefore only small scale 

topographic variations were permitted in selecting the sites.  

 

6.3.1 Grassland site 

Grasslands make up 40% of the Earth's terrestrial surface within which temperate 

grasslands contain about 18% of global carbon reserves (Wylie et al., 2007). Given 

the expansive areas of rangelands, how rangelands respond to climatic variation is of 

great importance to global carbon budgets (Gilmanovet al., 2005). Fort Peck (48° 

30’77” N and 105° 10’19” W) is located in Montana, USA, forming part of the Great 

Northern Plains (Zhang et al., 2008). The Fort Peck flux towers lie within the heart of 

the Northern Plain eco-region. The site is characterised by grassland species. The 

Northern Plain grass species include wheatgrass (Agropyron sp.), green needlegrass 
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(Stipa spartea), grama grass (Bouteloua sp.), and buffalo grass (Buchloe dactylides) 

with a canopy height of 20-30 cm (Zhang et al., 2007).  

 

6.3.2 Coniferous boreal site 

Boreal forests constitute over 10% of the Earths terrestrial surface occupying the 

circumpolar region between 50° and 70° North (Sanchez et al., 2009). The extent and 

biophysical properties of Boreal forests mean that these ecosystems have great 

potential to impact on the Earth's climate. The University of California, Irvine (UCI) 

1850 site (55° 87’ N and 98° 48’ W) is located in a continental boreal forest, 

dominated by black spruce (Picea mariana) with an open understorey composed of 

alders (Rosa sp.), Labrador tea (L. groenlandicum), and willow (V. oxycoccus). The 

mature spruce forest was last cleared by fire in 1850, and is located within the Boreal 

Ecosystem-Atmosphere Study (BOREAS) northern study area in central Manitoba, 

Canada (Goulden et al., 2006).  

 

6.3.3 Deciduous study site 

The Harvard Forest Environmental Monitoring Station (EMS) hosts one of the longest 

operational eddy flux towers, providing turbulent flux estimates since 1991. The site 

(42° 54’ N and 72° 18’ W, 180–490 m elevation) is located in western Massachusetts, 

USA. The deciduous broadleaf forest is 50–70 years old and is dominated by oak 

(Quercus rubra), red maple (Acer rubrum), birch (Betula lenta) and Hemlock (Li et 

al., 2009). There was approximately 12% coniferous cover within the forest. The 

canopy height is approximately 20–24 m (Zhang et al., 2005). 

 

6.3.4 Mixed woodland site 

The Fort Dix flux tower is located (39° 97’ N and 74° 43’ W) in New Jersey, USA. 

The New Jersey Pinelands encompass 1.1 million acres of pine, oak and wetland 

forests, covering 23% of New Jersey (Skowronski et al., 2007). The Fort Dix study 

site is dominated by white pine (Pinus strobus)with oaks (Quercus rubra) in the 

canopy, and relatively dense understorey vegetation. Canopy height is approximately 

13m. 
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Figure 6.1. The location of the flux tower sites that were used in this study. 

Map derived from ESRI maps. 

 

6.4 Method 
6.4.1 Flux and site data 

This study uses GPP data, which were obtained from the Ameriflux network 

(http://public.ornl.gov/ameriflux/), providing continuous observations of ecosystem 

level exchanges of CO2 between a vegetated canopy and the atmosphere. Ameriflux is 

part of FLUXNET (http://www.fluxnet.ornl.gov/fluxnet/index.cfm) that coordinates 

regional and global analysis of observations from micrometeorological tower sites 

across the USA and Canada (Wylie et al., 2007). There are about 53 Ameriflux sites 

with data available through FLUXNET. The U.S. Department of Energy (DOE) runs 

the Ameriflux network with support from the National Aeronautics and Space 

Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), 

National Science Foundation (NSF), US Department of Agriculture (USDA) and U.S. 

Geological Survey (USGS).  

 

Ameriflux Level 4, gap filled data includes estimates of GPP based upon Net 

Ecosystem Exchange, LAI and local metrological measurements according to the 
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partitioning algorithm used. 30 minute GPP time series data for each site were used 

from January 2004 to December 2005, except for the Fort Dix location, where only 

2005 data were available. 8 day GPP aggregates were produced to calculate mean 

daily GPP rates for the compositing period. This approach was adopted as this 

corresponded with the MTCI and MODIS compositing time period, allowing direct 

comparison between MTCI, flux tower GPP measurements and MOD17 GPP 

estimates. The flux tower data collection differs from optical remote sensing as data 

are collected regardless of cloud cover. To make a direct comparison only GPP for 

active photosynthesis was used, which represents a positive flux and CO2 uptake from 

the atmosphere by the vegetation.  

 

Flux towers also housed point quantum sensors (LI-190, LI-COR Inc.) to measure 

incoming PAR (µmol photons m-2 s-1). Diurnal PAR data was measured at 30-minute 

intervals, however only data recorded during 10.00 and 15.00 hrs were used in this 

investigation, which corresponded to positive photon flux. PAR was aggregated to 

correspond with the MTCI, MOD17 GPP and MOD15 fPAR 8-day compositing 

period. Gaps in the PAR time series were filled using interpolation.  

 

6.4.2 Remotely sensed data 

MERIS data 

MTCI 1km ‘reduced resolution’ 8 day composites of central and northern North 

America were accessed through the NEODC server and made into layer stacks in 

ENVI that covered the growing seasons of 2004 and 2005. Details of the compositing 

period are found in chapter 5, page 136.  

 

MODIS data 

All 1km spatial resolution MODIS Data were accessed through the NASA WIST 

(Warehouse Inventory Search Tool (https://wist.echo.nasa.gov)).  

 

MOD17 is computed using the LUE type model as proposed by Monteith (1972). The 

MOD17 product is an eight-day summation of GPP, a period that is the result of the 

orbiting characteristics of the Terra and Aqua platforms that carry the MODIS 

instrument (Reeves et al., 2005). The summation is computed by adding all eight days 
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of productivity estimates (kg C m-2), therefore it was necessary to derive a mean daily 

GPP rate (g C m-2 d-1) to allow comparison between flux tower observations.  

 

The MOD15 fPAR product is derived from the Surface Reflectance Product 

(MOD09), Land Cover Product (MOD12) and ancillary information on surface 

characteristics such as land cover type and background. MOD15 fPAR is derived 

from a three-dimensional formulation of the radiative transfer, describing the 

propagation of light within a vegetation canopy (Nemani et al., 2003) to derive 

spectral and angular biome specific signatures of vegetation canopies. The RTM 

estimates fPAR as a function of NDVI, and is therefore related to canopy LAI 

(Running et al., 2004). Should the main fPAR algorithm fail, a back-up algorithm is 

triggered to estimate LAI and fPAR using NDVI. The NDVI has been shown to be 

sensitive to both increases in the amount of chlorophyll visible to the sensor, either 

through an increase in foliar or understorey chlorophyll content (Dawson et al., 2003). 

Due to the linear relationship between NDVI - fPAR, such sensitivity has been shown 

to account for significant errors in remotely sensed estimates of fPAR and therefore 

estimations of GPP. 

 

All MODIS land products have quality assurance data associated with each pixel for 

each composite period. The quality assurance layer provides a means for screening all 

pixels that are not suitable for analysis as a result of sensor or algorithm performance 

or atmospheric conditions. In this study, only the best quality MOD17 and 15 pixels 

were retained for further analysis. This procedure meant that fPAR estimated using 

the back-up algorithm based on NDVI were not used.  

 

Temporal layer stacks were produced for each MOD15 fPAR and MOD17 scene 

relating to each study area to cover the growing seasons 2004 and 2005.  

 

6.4.3 Calculation of site specific light use efficiency 

LUE is derived to determine the relationship between remotely sensed and flux tower 

estimates of GPP and will indicate the role that factors other than PAR and foliar 

chlorophyll (such as metrological factors) have in defining ecosystem GPP. LUE was 

estimated from flux tower PAR (µmol m2 s-1), aggregated to mean daily PAR to 

match the 8–day compositing of MOD17 and MTCI and MOD15 fPAR product. Only 
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MOD15 fPAR flagged as excellent were used in the calculation of LUE. Two 

methods were used to estimate LUE following the methods of Monteith (1972) and 

Gitelson et al. (2006). 

 

LUE = GPP / PAR (Gitelson et al., 2006)               (6.3) 

LUE = GPP / APAR (Monteith, 1972)               (6.4)

     

Where APAR = fPAR * PAR                 (6.5) 

 

 

6.5 Results and discussion        
6.5.1 Inter-annual variability in the relationship between flux tower GPP and 

MTCI 

The first step to establishing whether the method proposed by Gitelson et al. (2006), 

where GPP can be estimated through canopy chlorophyll content and incident 

radiation in the 400 – 700nm region, can be applied to other vegetated ecosystems is 

to determine the relationship between flux tower GPP and MTCI. The observed GPP 

in 2004 and 2005 had similar seasonal dynamics with MTCI in the plant growing 

season (Figure 6.2), with a peak value in an 8-day period of late June for the Harvard 

Forest and Fort Dix, whilst a peak in GPP was slightly later (July) at UCI 1850 and 

Fort Peck due to latitude. The temporal variability in carbon flux as measured at the 

flux tower sites is matched closely by MTCI for all four sites. This trend was expected 

as canopy chlorophyll content has been shown to relate to day-to-day variations in 

GPP in cereal crops (Gitelson et al., 2006), and Canadian boreal peatland sites (Harris 

and Dash, 2009). The close relationship between GPP and MTCI was shown at all 

four sites and for both years where data were available.  
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Figure 6.2 (a and b). The temporal variation in flux tower GPP as measured using eddy covariance techniques for UCI 1850 (a) and Harvard 

Forest (b) sites and corresponding MTCI values. 
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Figure 6.2 (c and d). The temporal variation in flux tower GPP as measured using eddy covariance techniques for Fort Peck (c) and Fort Dix (d) 

sites and corresponding MTCI values. 
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Correlation coefficients were derived to determine the strength of the relationship 

between MTCI and GPP for each site (Figure 6.3). Generally, the MTCI – GPP 

relationship was strong enough to enable MTCI to be, in turn, used as a robust proxy 

to infer GPP in a range of cover types. The relationship between MTCI and GPP was 

particularly strong for the deciduous Harvard Forest site (Figure 6.3 (b)), where MTCI 

accounted for 89% and 84% of the variation in GPP (for 2004 and 2005 respectively).  

The correlation between GPP and MTCI for Fort Peck (grassland site) (Figure 6.3 c) 

varied markedly from 2004 – 2005, as indicated by the slope of the regression, which 

showed a degree of divergence at low rates of GPP. The slope of regression between 

sites and years were similar, therefore permitting the regression model to be applied to 

all sites, for both years (except Fort Dix, 2005 only). The MTCI showed a strong 

correlation with tower GPP, with a coefficient of determination (R2) of 0.73. The 

strong relationship has shown that the MTCI can be used to estimate GPP across a 

range of vegetation cover types. These results indicate that the MTCI is a useful tool 

in estimating ecosystem productivity.   
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Figure 6.3 (a and b). The relationship between tower GPP and MTCI for UCI 1850 (a) and Harvard Forest (b). The relationships are based on 

data from both years. 
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Figure 6.3 (c and d). The relationship between tower GPP and MTCI for Fort Peck (a) and Fort Dix (b). The relationships are based on data 

from both years, where available. 
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6.5.2 The relationship between flux tower GPP estimates, MTCI and PAR 

The method proposed by Gitelson et al., (2006) and later adopted by Wu et al., (2009) 

estimates GPP based on the remote estimation of chlorophyll content. This approach 

is based on the underlying hypothesis that total chlorophyll content is related closely 

to the low frequency, i.e. day-to-day, variation of GPP that is associated with 

vegetation phenological stage and physiological status (Gitelson et al., 2006). Figure 

6.4 Shows a relatively strong correlation between flux tower GPP and MTCI*PAR, 

with an overall R2 of 0.67. This result can be compared to that of Wu et al., (2009), 

who showed a coefficient of determination R2 of 0.66 for canopies of various species 

of corn. The similarities between the results given the contrasting cover types, 

suggests that chlorophyll content, and more specifically MTCI, is able to provide 

robust estimates of GPP for various vegetation cover types. The spread of points from 

the line of best fit suggest that the MTCI*PAR model only has limited species-

specific sensitivity (Figure 6.4 below). However, it should be noted, that the model 

incorporating variation in incident light use as MTCI*PAR did not correlate as closely 

with flux tower measurements of GPP compared to MTCI alone. 

 
Figure 6.4. Relationship between flux tower GPP and MTCI*PAR for all sites and 

both years where data were available. 

 

6.5.3 The relationship between GPP and MTCI and APAR 
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Given that vegetation canopies change throughout the growing season according to 

their phenological development, the incorporation of PAR alone will not explain the 

amount of radiation made available for use in photosynthesis. For example, during the 

‘leaf off’ stage in deciduous vegetation the canopy absorbs no PAR. Whilst at canopy 

maturity, maximum PAR is absorbed. The fraction in the amount of absorbed PAR is 

not accounted for in the model developed by Gitelson et al. (2006) and therefore will 

be unsuitable is estimating GPP throughout the growing season given that variation in 

PAR absorbed by vegetation will be a function of leaf area. Given that only absorbed 

PAR (APAR) is used for photosynthesis, it could be argued that APAR would be 

more suitable than PAR to provide remote estimations of GPP. With this considered, 

MOD15 fPAR was used to assess the amount of PAR absorbed throughout the 

growing season from flux tower PAR measurements for all study sites.  

 

GPP = MTCI*(PAR*fPAR) model was developed for each of the four sites and each 

year (where data were available) (Figure 6.5 a – d). Coefficient of determination R2 

values for the MTCI*APAR – GPP relations were calculated for all sites and years; 

resultsare shown in table 6.1. Results show that there was consistency in the 

relationship between flux tower measured GPP and the MTCI*APAR models 

between 2004 and 2005 growing seasons for all sites except UCI 1850, which showed 

a relatively strong relationship between MTCI*APAR and flux tower GPP for 2005. 

Excluding UCI 1850 2005, such consistencies suggest that the models successfully 

accounts for variation in GPP between years. The similar regression slopes between 

years and study sires suggest that the approach to estimate GPP using MTCI*APAR 

is independent of cover type. This permitted a regression model to be applied to all 

the available data, where the relationship between flux tower GPP measurements and 

MTCI*APAR could be assessed. The MTCI*APAR regression model took the form;  

 

GPP = 0.004*(MTCI*(PAR*fPAR) + 0.057               (6.4) 

 

The above regression model successfully accounted for 82% of the variation in flux 

tower GPP (Figure 6.6). The scatter of points from the regression line was reduced 

compared to the MTCI*PAR model, suggesting that MTCI*APAR successful 

accounts for small variation in GPP attributed to environmental stress.   
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The model performance was evaluated through the relationship between predicted and 

flux tower GPP measurements. Generally there is good agreement between predicted 

and actual GPP, as was indicated Figure 6.6. The MTCI*APAR model underestimates 

GPP in deciduous species during the peak growing season as measured at the Harvard 

Forest flux tower. The spread of the points around the 1:1 line indicate the generally 

satisfactory performance of the model in estimating GPP (Figure 6.7). However, the 

model underestimates GPP for both coniferous and grassland species as measured at 

the UCI 1850 and Fort Peck flux towers.  
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Figure 6.5 (a and b). The relationship between flux tower GPP measurements and MTCI*APAR at UCI 1850 (a) and Harvard Forest (b). 

Except (d) 2005 only. The relationship MTCI*APAR using all data (e). 
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Figure 6.5 (c and d). The relationship between flux tower GPP measurements and MTCI*APAR at Fort Peck (c) and Fort Dix (d) (2005 only). 
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Figure 6.6. The relationship MTCI*APAR using all data from 2004 and 2005 (except Fort Dix, 2005 only). 
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1:1 

Figure 6.7. Relationship between predicted GPP based on the MTCI*APAR model 

and flux tower GPP for all four sites. 

 

6.5.4 Accounting for the relationship between expected and actual GPP using 

LUE 

The photosynthetic efficiency (LUE) of the contrasting cover types shows temporal 

profiles that correspond with canopy phenological development (as inferred through 

temporal profile in MTCI) reaching a maximum during early summer and decreasing 

toward the winter months (Figure 6.8 a). The temporal trends observed in LUE were 

matched by APAR and MTCI (Figure 6.8 b). Showing that chlorophyll content 

(inferred though MTCI) increases in line with APAR (PAR*fPAR). Similar trends 

were observed for all sites for both years of data used in this study. However, the UCI 

1850 data revealed differences in LUE within the growing seasons and marked 

differences between years.  

 

The temporal variation in LUE at the coniferous UCI 1850 study site is shown in 

Figure 6.9 (a). The variation within and between years is clearly visible; LUE for 

much of the 2005 growing season is greater than observed during the growing season 

of 2004. Variation in LUE throughout the 2005 growing season is not accounted for 
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by the MTCI*APAR model and offers an explanation to the underestimation of GPP 

at the UCI 1850 study site. This can be demonstrated in Figure 6.9 (b), where 

predicted GPP accounts for 41% of the observed variation in LUE. Further 

investigation into the causes of such variation is required. However, the results 

suggest that LUE is an important factor in determining GPP and will reduce error in 

estimating GPP where vegetation may be stressed. Further work will need to assess 

whether stress was specific to the UCI 1850 site, where environmental stress was 

evident only during 2005. If stress conditions were apparent at other location the 

model described it well, through short-term variation in canopy chlorophyll content. If 

this is the case, then the MTCI*APAR model will be unable to account for GPP 

variation bought on by short-term environmental stress in coniferous species. This 

may suggest that variation in LUE rather than chlorophyll content is more important 

in estimating GPP in coniferous vegetation. Assessing the relationship between 

environmental factors known to affect LUE, e.g., temperature, available soil moisture, 

at each site will help determine the importance of LUE in GPP models driven by 

chlorophyll content. Including LUE estimates into the MTCI*APAR model will 

therefore improve the model performance to provide increasingly accurate estimates 

of GPP. 
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Figure 6.8. Variation in LUE as defined by Monteith (1972) and Gitelson et al (2006) across the 2005 growing season at Fort Dix (a). Variation 

in APAR and MTCI throughout the growing season of 2005 for the Fort Dix study site (b). 
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Figure 6.9. Variation in photosynthetic LUE for UCI 1850 site for 2004 and 2005 

growing seasons (a). The relationship between predicted GPP (MTCI*APAR) and 

LUE (b). 
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6.5.5 Comparison of developed models with MODIS GPP product 

The results from the various models used in this study suggested that chlorophyll 

content, as estimated using MTCI, was able to successfully drive simple models to 

estimate GPP in contrasting cover types. The MODIS sensor provided near real-time 

estimates of gross primary production (GPP) since March 2000 (Heinsch et al., 2006). 

However, the ability to derive accurate estimates of GPP is necessary across a range 

of cover types. For each study site MOD17 GPP was able to follow the temporal trend 

in productivity throughout the growing seasons. However, the data displayed more 

temporal variability than was measured in-situ at the flux tower sites. Scatter plots 

between flux tower GPP and MOD17 show consistent discrepancies at each site, 

where for both UCI 1850 (coniferous site) and Harvard Forest (deciduous) peak 

growing season GPP was either under or overestimated (Figure 6.10 a and b 

respectively). However, both the Fort Peck (grassland) and Fort Dix (mixed 

temperature woodland) study sites were systematically over and underestimated 

throughout the growing seasons of 2004 and 2005 (Figure 6.10 c and d). Large 

discrepancies between predicted GPP from the MOD17 algorithm and observed GPP 

from the Harvard flux tower were observed by Xiao et al. (2004). Supporting the 

findings that MOD17 underestimates GPP during the peak growing season. Further 

work has demonstrated bias associated with GPP estimates using MOD17. Heinsch et 

al. (2006) stated that the bias is dependent upon the productivity of the ecosystem, 

whereby MOD17 tends to overestimate tower GPP for most sites. However, for the 

most productive sites MOD17 underestimates GPP (Turner et al., 2006).  

 

Overall, the correlation between flux tower and MOD17 GPP estimates were not as 

strong as those methods used to derive GPP using MTCI. Table 6.1 shows the R2 

values for the relationship between each contrasting cover type, for both the growing 

seasons of 2004 and 2005. The results suggest that GPP estimates made using MTCI 

and MTCI*APAR model describe flux tower GPP better that MOD17 which is 

dependent on additional meteorological data and land cover LUT to define site 

specific LUE.  
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Figure 6.10 (a and b). The relationship between flux tower GPP and MOD17 estimates at UCI 1850 (a) and Harvard Forest (b). 
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Figure 6.10 (c and d). The relationship between flux tower GPP and MOD17 estimates for Fort Peck (c) and Fort Dix (d). 
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 UCI 1850 (n) Harvard (n) Fort Peck (n) 
Fort Dix 

(n) 

All data 

(n) 

GPP model 
2004 

(24) 

2005 

(22) 

2004 

(36) 

2005 

(39) 

2004 

(33) 

2005 

(28) 

2005 

(35)  
(217) 

MTCI 0.7* 0.81* 0.89* 0.84* 0.78* 0.55* 0.79* 0.74* 

MTCI*PAR 0.61* 0.52* 0.89* 0.75* 0.75* 0.6* 0.61* 0.66* 

MTCI*APAR 0.74* 0.55* 0.92* 0.90* 0.65* 0.67* 0.81* 0.82* 

MOD17 GPP 0.50* 0.69* 0.82* 0.63* 0.51* 0.56* 0.74* 0.64* 

* = p <0.05 

 

Table 6.1 Comparison of the coefficients of determination between modelled and in-

situflux tower GPP measurements for UCI 1850, Harvard, Fort Peck and Fort Dix 

study sites.The table shows the R2 values of the various methods used to estimate 

GPP in this investigation. 

 

6.5.6 Potential limitations and further work 

Almost all terrestrial ecosystem models require incident PAR. However, the current 

PAR products developed for climate studies have much coarser spatial resolution and 

are therefore not suitable for estimating terrestrial GPP (Liang et al., 2007). At present, 

there is no high resolution PAR (1km) satellite sensor product and PAR inputs in to 

the MOD17 algorithm have a 1˚ – 1.5˚ degree resolution (Running et al., 2004). 

Therefore, there is a requirement to fulfil the needs of the user community and 

develop a 1km global PAR product with a suitable temporal resolution to complement 

the 8-day compositing of the MTCI and MODIS fPAR (MOD15) and GPP (MOD17) 

products. The potential shown through the utilisation of MTCI to estimate GPP will 

be unrealised without a fine spatial resolution source of incident PAR. Further work 

will be required to address the suitability and variation in GPP estimates introduced 

through the use of MODIS high-level land products that can be used for calculating 

incident PAR at 1˚ – 1.5˚degrees.  

 

The MOD15A2 algorithm provides essential inputs to the GPP = MTCI*(PAR*fPAR) 

model. The fPAR is used to directly calculate the APAR of a pixel. In this study, the 
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calculation of APAR was dependent upon the use of MOD15 fPAR product. 

Following the rational of Monteith (1972), fPAR is an important biophysical variable 

in defining LUE, and GPP. Errors in fPAR will lead to errors in the estimate of GPP. 

However, few tower sites measure site-specific fPAR over the areas necessary for 

comparison with MODIS data; therefore it was not possible to assess the accuracy of 

the MOD15 fPAR product. However, it is beyond the remit of this research to 

diagnose potential errors in MOD15 fPAR algorithm.  

 

Chlorophyll driven GPP models, where chlorophyll content is a surrogate for LUE, 

will not account for limitations due to short-term environmental extremes so variation 

in LUE attributed to environmental stress may still need to be considered. 

Furthermore, photosynthesis of evergreen conifer forests are less sensitive to changes 

in chlorophyll content than are broadleaf forests as evidenced by the continuous green 

colour of conifer forests even during the coldest periods of winter. Results from UCI 

1850 2005 growing season suggest that LUE in coniferous species is an important 

factor to consider in order to minimise error in GPP estimates. Further investigation 

utilising local meteorological data is required to address this issue.  

 

One such climate variable that potentially can be attributed to vegetation stress could 

be addressed in the future with data from the new ESA Soil Moisture and Ocean 

Salinity (SMOS) Living Planet mission as this provides global estimates of soil 

moisture. The potential to include data related to soil moisture may prove to be a 

better indicator of vegetation stress that precipitation data due to issues associated 

with local soil moisture deficit and the availability of water for vegetation. However, 

it could be argued that chlorophyll-based estimates of GPP have the potential to 

indirectly account for environmentally-induced stress and associated decrease in 

productivity via temporal variations in chlorophyll content. This direct approach 

reduces uncertainty in estimating temperature, vapour pressure deficit, and soil 

moisture for specific pixels, which limits the accuracy of MOD17 GPP estimations.  

 

Only PAR absorbed by chlorophyll is used for photosynthesis (Zhang et al., 2005). 

Therefore, the presence of non-photosynthetic biomass, including leaf tissue, in the 

canopy has been shown to significantly overestimate the value of fPAR. Therefore, 

developing the research of Zhang et al. (2005, 2009), who using an RTM partitioned 
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fPARchlorophyll from fPAR, will permit the possibility of deriving fPARchlorophyll based 

on canopy chlorophyll content as estimated using MTCI. Such theoretical applications 

are the first step in defining an integrated approach to estimate GPP using chlorophyll 

content data.  

 

6.6 Conclusions 
This investigation has trialled a number of approaches to the use of MTCI data for the 

estimation of GPP over a number of contrasting cover types. Ameriflux data were 

used to provide ground eddy flux covariance methods to estimate GPP, thus allowing 

the relationship between MTCI and flux tower GPP to be established. Utilising flux 

tower measurements of PAR (day time only) and MOD15 estimates of fPAR, 

different approaches were used to establish a robust estimation of GPP across four 

contrasting cover types. The MTCI*PAR method to estimate GPP as used by Gitelson 

et al. (2006) and Wu et al. (2009) demonstrated a relatively strong correlation with 

flux tower GPP. The results were in line with Wu et al. (2009) where they 

successfully estimated GPP in a variety of corn canopies. This approach therefore 

allows the potential to estimate GPP for a number of contrasting cover types. 

However, the relationship between MTCI and flux tower GPP is stronger than that 

derived using the MTCI*PAR model; simple linear regression analysis showed an R2 

of 0.73 compared to 0.63 when data from all sites and both years were included.  The 

accuracy of the MTCI*PAR model was increased when only PAR absorbed by the 

canopy was incorporated into the model. MTCI*APAR (where APAR = 

(PAR*fPAR)) proved to be the best model to estimate GPP in most of the study sites, 

and provided the best predictions of GPP when considering all data.  

 

The simple model, GPP = 0.004*(MTCI*(PAR*fPAR) + 0.057, is based on the 

hypothesis that chlorophyll content is a proxy for LUE. The relationship between 

MTCI*APAR and GPP indicates that the method is not cover type specific. Further 

work will need to be carried out to determine whether variation in canopy chlorophyll 

content can successfully account for vegetation stress and therefore limit the need for 

additional inputs that characterise environmental conditions. The GPP = 

MTCI*(fPAR*PAR) model accounts successfully for short-term variation in PAR that 

can effect photosynthetic rates that limit the use of VI alone in GPP estimations.  
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The benefit of the model is that it is based on minimal inputs and easy to derive 

compared to MOD17, which is dependent on several meteorological datasets to 

estimate GPP. For the study sites used, our model showed an increased accuracy of 

GPP estimation across all four contrasting cover types when compared to MOD17 

product.  Such results demonstrate the potential of GPP estimates using MTCI data 

and APAR. Further work is required to develop a suitable method to estimate GPP 

using the MTCI*APAR model given there is no current high resolution PAR product.
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Chapter 7 

 
The focus of the first half of this thesis has been to assess the effects of canopy and 

non-canopy variables on the MTCI and examine the relationship between canopy 

chlorophyll content and MTCI through laboratory based spectroscopy and field based 

validation. Such findings have been applied to provide an insight into the potential of 

the MTCI to monitor vegetation dynamicsat the local – global scales; specifically 

vegetation phenology and ecosystem gross primary productivity; which is the focus of 

the second half of the thesis. This chapter draws the main conclusions from the work 

presented in Chapters 3 – 6, with a specific view of assessing the objectives of the 

research stated in Chapter 1. 

 

7.1 Summary of work 
Chapter 2 has provided a review of the methods traditionally applied to the estimation 

of chlorophyll content from remote sensing data. The limitations of these are 

discussed and the requirements for a novel approach for the estimation of chlorophyll 

content introduced. As a result of the limitations of existing techniques to estimate 

chlorophyll content at the regional to global scales the MTCI was developed (Curran 

and Dash, 2005). Optimising the unique spectral resolution of the MERIS sensor, with 

reflectance measured in narrow wavebands positioned in the red / NIR regions, the 

MTCI is positively related to canopy chlorophyll content, a function of foliar 

chlorophyll concentration and canopy LAI. Initial validation and application of the 

MTCI has demonstrated a strong correlation with canopy chlorophyll content and has 

proved sensitive to variation in chlorophyll content. The MTCI has also been shown 

to provide estimates of canopy chlorophyll content in areas of high biomass that REP 

and other VIs, such as the NDVI often saturate (Curran and Dash, 2005). The 

potential of the MTCI to monitor regional – global vegetation dynamics (vegetation 

condition, stress and productivity) is currently in its infancy, partly due to the lack of 

validation across a variety of land cover types and operational conditions. Such a 

point was addressed in Chapters 3 and 4; which explored the relationship between 

MTCI and foliar / canopy chlorophyll content and the effects of canopy and non-

canopy variables on this relationship. Laboratory spectroscopy was used to investigate 

the relationship between MTCI and chlorophyll content whilst assessing the effect of 
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view angle geometry and background reflectance on the MTCI.  

 

Validation of the MTCI was necessary to determine the accuracy of data products, in 

so allowing the delivery of accurate products to the user community. Chapter 4 

outlined procedures that permitted the validation of the MTCI in heterogeneous 

woodland and agricultural study areas.   

 

Chapter 5 focused on the potential of the MTCI to monitor vegetation phenology for 

contrasting land cover types in the New Forest National Park. The sensitivity of the 

MTCI to seasonal variations in estimated chlorophyll content meant that variations in 

vegetation phenology could be identified between growing seasons for both woodland 

and grass and heathland study areas. The influence of seasonal climate variability on 

vegetation phenology was assessed through the comparison of temporal MTCI 

profiles. It was established that mean seasonal temperature was strongly correlated 

with MTCI, suggesting that vegetation adapts to climate variability through adjusting 

foliar chlorophyll content and the timing of key phenological transitions, i.e. greenup, 

maturity, senescence and dormancy. The MTCI proved a robust tool for estimating 

phenological variation between growing seasons, inferring that growing season length 

increased as a result of elevated autumnal mean temperature observed during 2006. 

Similarly, an early greenup was inferred in the temporal MTCI profile, supporting 

meteorological records and point-based ground observations of tree phenology made 

by the UK Phenology Network.  

 

Canopy chlorophyll content is closely related to vegetation productivity (Gitelson et 

al., 2006), therefore the relationship between MTCI – chlorophyll content provided an 

opportunity to investigate temporal variation in GPP. Flux tower estimates of GPP 

were highly correlated with MTCI for a number of vegetation types, suggesting that 

estimating chlorophyll content over the growing season provided accurate estimates 

of ecosystem productivity. Only PAR absorbed by chlorophyll is used for 

photosynthesis, and chlorophyll is the key ingredient in photosynthesis, the temporal 

variability in canopy chlorophyll content can be used to estimate vegetation 

productivity. Coupling the temporal variation in both MTCI with fluctuation in APAR 

provided an opportunity to produce a simple model that will account for both 

variations in both canopy chlorophyll content and incident radiation. Such a model 
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provided better correlation with ecosystem GPP compared to MTCI, MTCI*PAR and 

the standard MOD17 GPP product.  

 

7.2 Objectives of the thesis 
The principal objectives of the research were stated in Chapter 1 as: 

 

1. Assessing the MTCI – chlorophyll content relationship and the effects of 

illumination geometry and soil background reflectance on this relationship. 

 

2. Development and application of validation procedure to assess the relationship 

between MTCI and chlorophyll content in woodland and agricultural regions. 

 

3. The characterization and analysis of vegetation dynamics using MTCI over a 

number of growing seasons for a variety of contrasting vegetation types.  

 

The following sections assess the accomplishment of these objectives in this thesis. A 

discussion of the key issues associated with each is provided, and conclusions are 

drawn. 

 

Objective 1: Explaining the relationship between MTCI and chlorophyll content 

and the effect of viewing geometry and background reflectance on this 

relationship.  

The relationship between MTCI and chlorophyll content was thoroughly investigated 

in Chapters 3 and 4. In these chapters the effects of vegetation type as well as a 

number of canopy and viewing variables were investigated. The linear response of the 

MTCI to canopy chlorophyll content was demonstrated, supporting initial findings of 

Curran and Dash (2005). The research investigated spinach, woodland and 

agricultural crops, demonstrating the sensitivity of the MTCI to estimate chlorophyll 

content across a wide range in chlorophyll contents.  

 

Bringing together the results from the laboratory and validation exercises, it was 

demonstrated that the relationship between chlorophyll content and MTCI is affected 

by vegetation structure, although analysis of results as detailed in Chapter 4 suggest 
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the effect is limited. When considering the relationship between MTCI and 

chlorophyll content for all vegetation types investigated in those chapters, the 

correlation between MTCI and chlorophyll content was still strong (R2=0.60).  Such 

findings suggest that the MTCI is a valuable tool in estimating chlorophyll content for 

a range of vegetation types. Such a characteristic allows temporal and spatial 

comparisons in vegetation health and status to be made.   

 

Laboratory experiments were designed to assess the influence of both variation in 

viewing geometry and background reflectance on the relationship between MTCI and 

chlorophyll content. Statistically, it was shown than variation in viewing geometry did 

not significantly influence the MTCI – chlorophyll content relationship.  Similarly, 

for a spinach canopy, it was shown soil reflectance properties did not significant 

effect the ability of the MTCI to estimate canopy chlorophyll content. However, bare 

soil reflectance was shown to influence MTCI, whereby all soils except white, 

resulted in positive MTCI values. The Booms Barn site included a number of fields 

without significant vegetation cover. It was shown that bare soil resulted in MTCI 

values that were higher than expected. However, the effects of background reflectance 

were readily compounded as vegetation cover increased. Objective 1 can be fulfilled 

with the findings of Chapters 3 and 4.   

 

 

Objective 2: Development and application of procedure to validate MTCI in 

woodland and agricultural study areas. 

The robust relationship between MTCI and chlorophyll content has been established, 

coupling the MTCI to a measurable canopy variable permits the evaluation and 

quality control of the index through validation. Validation is necessary to assess the 

accuracy of satellite products and deliver accurate products to the user community.  

The MTCI was validated using two approaches:  

 

New Forest validation used high-resolution aerial imagery to derive a transfer 

function to produce a chlorophyll map of the woodland study area. A very strong 

relationship between high resolution CASI MTCI, 300m CASI MTCI and chlorophyll 

content was observed. The scaling up of the chlorophyll map allowed the relationship 

between canopy chlorophyll content and ‘full resolution’ MTCI to be investigated. 
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The coefficient of determination between ‘full resolution’ MTCI and the 300m 

chlorophyll map was weaker than those derived from CASI-2 imagery. The 

geolocation of the MERIS imagery and radiometric characteristics between MERIS 

and CASI-2 may help explain the variability in the relationships.  

 

Direct MTCI validation, employed at the Brooms Barn site as a result of cloud 

shadow in the high resolution aerial imagery, established the relationship between 

MTCI and chlorophyll content in crops a range of crop types.  Results highlighted the 

ability of the MTCI to successfully estimate chlorophyll content for a range of 

chlorophyll content in both woodland and agricultural study areas.  

 

The validation methods employed were successful in scaling up field chlorophyll 

content measurements, accounting for heterogeneity in chlorophyll content across the 

3 x 3 km study sites, allowing the assessment of the accuracy of the MTCI. The 

findings from Chapter 4 fulfil research Objective 2.   

 

Objective 3: Characterisation and analysis of vegetation dynamics using the 

MTCI 

The conclusions drawn from Chapters 3 and 4 suggest that the MTCI is sensitive to a 

range of chlorophyll content for different vegetation types, whereby canopy structure 

exerts a limited influence. The experiments show that the effect of view angle and 

background reflectance has no significant statistical effects on the MTCI. Such 

conclusions suggest that the MTCI demonstrates the required properties to be a robust 

global product, allowing precise and consistent, spatial and temporal comparisons of 

vegetation conditions. Such properties coupled with the orbiting characteristics of 

MERIS provide the potential to monitor vegetation dynamics with a high temporal 

resolution.  

 

The strong relationship with a biophysical canopy permits the use of the MTCI to 

monitor temporal vegetation dynamics providing information on vegetation condition, 

health and status throughout the growing season. Such conclusions demonstrate the 

suitability of the MTCI as a tool to infer the phenological characteristics of both 

mixed woodland and grass and heathland study sites over the duration of a growing 

season. Changes in chlorophyll content throughout the growing season can be 
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estimated from temporal MTCI composites, chronologically stacked to cover the 

growing season.  

 

The MTCI is sensitive to a range of chlorophyll contents, allowing the identification 

of canopy greenup as well as pigment breakdown associated with autumnal 

senescence. The MTCI has proven useful for estimating seasonal variation in 

chlorophyll content of both woodland canopies and heath and grassland. Due to the 

lack of ground based validation data the MTCI temporal profiles for the growing 

seasons 2003 – 2007 were compared against the three independent data sources 

commonly used to infer vegetation phenology; these were (i) MODIS NDVI (ii), 

MODIS EVI and (iii) phenological observations made by the UK Phenology Network. 

The results demonstrate the sensitivity of the MTCI in estimating change in foliar 

chlorophyll during late summer, earlier than the onset of senescence as observed by 

changes in plant structure and physiology as determined through field observations 

(phenology networks). However, the MTCI mirrors the results of the UK Phenology 

Network, which showed both the extended growing season of 2006 and the early 

greenup of 2007, which were a result of variation in seasonal temperature. Such 

results suggest that the MTCI would be useful for assessing canopy productivity and 

therefore changes in ecosystem productivity as a function of climatic variability. Such 

findings provided the opportunity to estimate ecosystem gross primary productivity 

for a range of vegetation types. Chapters 5 and 6 have demonstrated the potential of 

the MTCI to estimate vegetation dynamics, characterising the temporal characteristics 

in both phenology and GPP through estimation of canopy chlorophyll content, 

therefore fulfilling Objective 3. 
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7.3 Limitations and uncertainties introduced by experimental design 
Limitations have been addressed in previous sections, and therefore will not be 

thoroughly discussed at this point. However, it is worth noting that the experimental 

approach employed in this study (rather that modeling techniques) does have 

limitations. The approach used in this thesis to understand the relationship between 

MTCI and chlorophyll content and was limited in addressing the influence of both 

canopy and non-canopy variables that may influence such a relationship. The 

laboratory experiments (chapter three) employed variable application of fertilizer to 

explore LAI variation and the extent to which MTCI - chlorophyll content is affected. 

Further research will be necessary to understand the effect of increase LAI on MTCI 

due to the limited influence the fertilizer had on spinach LAI. Furthermore, due to the 

experimental approach employed, it was not possible control LAI whilst maintaining 

total canopy chlorophyll content. Therefore, although results suggest LAI does not 

influence MTCI (where chlorophyll content is constant), the results are inconclusive. 

MTCIwas shown to have limited sensitivity to variation in viewing geometry (±30° in 

the principal plane). Although statistical analysis suggested such sensitivity was 

insignificant, the MTCI did show more sensitivity to viewing geometry than other VI 

to which it was compared. A number of studies have shown that viewing geometry 

lead to significant variation in NDVI, especially in open canopies, therefore field 

experiments utilizing aerial imagery will go some way to understand the operational 

effects of viewing geometry on the MTCI.  

 

Limitations to the approach used in chapter four have already been address, however, 

the SunScan instrument used to estimate LAI at the woodland validation site could 

influence error that may subsequently influence the MTCI – chlorophyll content 

relationship. Alternative methods that have been proved to be robust in estimating 

LAI in woodland environments would have added extra confidence to results. 

Similarly the sampling strategy used in heterogeneous canopies as part of the field 

validation of the MTCI was dependent on personal judgment regarding the location of 

measurements within each ISU. Such a method may not be the most suitable approach 

to represent the variation in both LAI and chlorophyll concentration within each ISU. 
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7.4 Principal contributions 
This thesis has made contributions to the fields of estimating canopy chlorophyll 

content utilising the MTCI, validation methodology of standard products at the scale 

of ‘moderate resolution’ satellites and study of ecosystem dynamics. Such 

contributions have been the basis for research presented in conference proceedings 

and journal papers (Appendix 4). 

 

Multi-scale MTCI validation is an important step in understanding the relationship 

between MTCI and canopy variables. The finding in this thesis relating to the 

influence of background reflectance on the MTCI will have implication for the 

estimation of chlorophyll content using not only the current MERIS sensor, but also 

the future ESA Sentinel missions. Sentinel 2 data will have the MTCI as a standard 

Level 2 product, providing the opportunity to estimate chlorophyll content at the 

spatial resolution of 30 meters. An understanding of the influence of soil reflectance 

will be relevant to the interpretation of MTCI at higher spatial resolution in open 

canopies, where the likelihood of soil / background composing a significant 

proportion of the pixel is greater. Within open canopies, the contribution of 

background reflectance at the 30 metre pixel resolution will be a greater consideration 

than at the 300 metre pixel resolution of MERIS. The finding in this thesis relating to 

the MTCI value of bare soil will also be important when studying vegetation 

dynamics in an agricultural context using MTCI, where bare soil will be present prior 

to crop growth at the start of the growing season.  

 

This research has contributed to the field of understanding vegetation dynamics 

though the estimation of chlorophyll content. The sensitivity of the MTCI to variation 

in canopy chlorophyll content permits key phenological transition phases to be 

monitored. Comparing the MTCI with other VI used to estimate vegetation phenology, 

it was shown that the MTCI was able to successfully monitor the changes in growing 

season length that were a result of variation in seasonal mean temperature. The MTCI, 

being coupled to key biochemical variables, provides the ability to monitor vegetation 

dynamics with spatial and temporal consistency and is vitally important to the field of 

global change research. Chapter 6 introduced novel approaches to estimate GPP using 

the MTCI. The ability to estimate vegetation productivity is of vital importance to 
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understand changes in carbon budgets due to changes in global climate. The models 

utilizing the MTCI and PAR have been shown to provide more reliable estimates of 

GPP compared to MOD17 GPP product. The relationship between MTCI*APAR and 

GPP indicates that the method is not cover type specific, permitting the temporal and 

spatial monitoring of vegetation productivity. The benefit of the model is that it is 

based on minimal inputs and is easy to derive compared to MOD17, which is 

dependent on a number of meteorological datasets to estimate GPP. 

 

7.5 Further Research 
The work documented in this thesis has show the provision of the MTCI to estimate 

chlorophyll content for a range of chlorophyll contents from a number of contrasting 

vegetation types. This research has shown the MTCI as a useful and sensitive tool for 

the estimation of chlorophyll content throughout the growing season and 

demonstrated the potential to use the MTCI to monitor vegetation phenology and 

drive GPP ecosystem models. The research has identified exciting new avenues of 

research that would provide an opportunity to develop our understanding of 

vegetation dynamics at the local to global scales.  

 

The experimental approach to investigate the effect of canopy variables on the MTCI 

did not provide the complete understanding of the effects of canopy LAI on the MTCI.  

Although laboratory results suggest the influence is limited, further research is 

required to thoroughly explore the effects of increasing canopy LAI whilst 

maintaining constant canopy chlorophyll content. Canopy modelling provides an 

opportunity to identify the effects of variation in LAI and canopy structure on the 

MTCI.

 
The ability to estimate ecosystem GPP from MTCI is an exciting opportunity. Further 

research is required to assess whether the model developed in Chapter 6 can be 

transferred to estimate GPP at other sites. This ‘validation’ is possible using the other 

flux sites to provide GPP measurements with which to correlate MTCI*APAR 

estimates.  However, a major limiting factor in the further development of such a 

model would be the remotely sensed estimates of PAR. Top of atmosphere radiance 

and surface incident PAR based on an atmospheric radiative transfer model provides 



Chapter 7. Thesis summary 

one avenue to explore to derive a PAR product with suitable spatial resolution. This 

method was adopted by Liang et al. (2006) to estimate PAR at 1 km using MODIS 

data. The adoption of such a technique to estimate PAR for the inclusion in the 

MTCI*APAR model is the necessary step to develop the model further.  

 

Developing the research of Zhang et al., (2005, 2009), who using RTM partitioned 

fPARchlorophyll from fPAR, will permit the possibility of deriving fPARchlorophyll based 

on canopy chlorophyll content as estimated using MTCI. Research identifying the 

relationship between APAR and chlorophyll content could eliminate the effect of non-

photosynthetic biomass, including leaf tissue, in the canopy that has been shown to 

significantly overestimate the value of fPAR. Such theoretical applications are an 

important step in defining an approach to estimate GPP using chlorophyll content data.  

 

7.6 Concluding comments 
This thesis has demonstrated the MTCI to be a valuable tool in estimating vegetation 

dynamics across multiple cover types, independent of variations in view geometry and 

soil background. The robust relationship between MTCI and chlorophyll content 

provides the opportunity to monitor variations in both vegetation phenology and gross 

primary productivity. The MTCI offers a macroscopic view of temporal vegetation 

dynamics, offering the opportunity to understand the effect that climate change is 

having on the health of our planet.  
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Appendices 

 

Appendix 1 (a).Example of the wet chemistry assay results to derive chlorophyll content in coniferous species in the New Forest.
 

Appendix 2 – Wet chemistry assay results 



Appendices 

 

Appendix 1 (b). SPAD calibtartion equation derived from wet chemistry assay 

methods. 

 

Species Model equation R2 

Wheat y = 0.118x2 + 0.919x + 7.925 0.97 

Grass y = 0.019x2 + 6.814x - 49.249 0.80 

Maize y = 0.091x2 + 1.594x + 32.41 0.92 

Potato y = 5.384x + 76.35 
0.73 

 

Onion y = 8.365x - 75.42 
0.82 

 

Barley y = 26.40x - 693.4 0.75 

Sugar Beet y = 8.70x + 5.62 0.92 

Oak y = 10.08x -77.61 0.81 

Beech y = 0.047x + 26.52 0.87 

Birch y = 0.002x2 + 0.1299x -17.599  0.71 

Common lime y = 0.128x + 10.10 0.79 

Sycamore y = 0.0545x + 17.331 0.88 

Fern y = 13.47x -91.50 0.71  
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Appendix 2 – AZGCORR code 
 
# 
azgcorr -mUK99 osgb02.cgrf  -p 2 2 -1 c192b011b.hdf -3 c192b013a_2m.hdf -eb 

NFdem.bsq -edx 1 8000 8000 410000 90005 449995 130000 5 0 1 3 1 -1 -v 

azgcorr -mUK99 osgb02.cgrf  -p 2 2 -1 c192b021b.hdf -3 c192b023a_2m.hdf -eb 

NFdem.bsq -edx 1 8000 8000 410000 90005 449995 130000 5 0 1 3 1 -1 -v 

azgcorr -mUK99 osgb02.cgrf  -p 2 2 -1 c192b031b.hdf -3 c192b033a_2m.hdf -eb 

NFdem.bsq -edx 1 8000 8000 410000 90005 449995 130000 5 0 1 3 1 -1 -v 

azgcorr -mUK99 osgb02.cgrf  -p 2 2 -1 c192b041b.hdf -3 c192b043a_2m.hdf -eb 

NFdem.bsq -edx 1 8000 8000 410000 90005 449995 130000 5 0 1 3 1 -1 -v 

azgcorr -mUK99 osgb02.cgrf  -p 2 2 -1 c192b051b.hdf -3 c192b053a_2m.hdf -eb 

NFdem.bsq -edx 1 8000 8000 410000 90005 449995 130000 5 0 1 3 1 -1 -v 

azgcorr -mUK99 osgb02.cgrf  -p 2 2 -1 c192b061b.hdf -3 c192b063a_2m.hdf -eb 

NFdem.bsq -edx 1 8000 8000 410000 90005 449995 130000 5 0 1 3 1 -1 -v 

azgcorr -mUK99 osgb02.cgrf  -p 2 2 -1 c192b071b.hdf -3 c192b073a_2m.hdf -eb 

NFdem.bsq -edx 1 8000 8000 410000 90005 449995 130000 5 0 1 3 1 -1 -v 

 

# 

#Now generate GeoTIF colour composites of bands 9,6 and 4 for visual check 

#Also useful for ENVI header data 

# 

#azexhdf -h c192b013a_2m.hdf -bl 9 6 4 -1 -G c192b013a_2m.tif 

# 

# 

#Finally, create BIL files containing all of the bands 

# 

#azexhdf -h c192b013a_2m.hdf -B c192b013a_2m.bil 
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Appendix 3 – Radiometric variation between MERIS and CASI-2 
 

a) MERIS     b) CASI 

 
 

Appendix 3. The radiometric response from MERIS (a) and CASI (b) sensors for 

reflectance measured in bands 10, 9 and 8. Note that on the x axis MERIS units are in 

reflectance, CASI DN values 
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Appendix 4 - Publications 
 

ALMOND, S.F., BOYD, D.S., CURRAN, P. J. and DASH, J.(2007). The response of 

UK vegetation to elevated temperatures in 2006: Coupling Envisat MERIS Terrestrial 

Chlorophyll Index (MTCI) and mean air temperature.Challenges for Earth 

Observation: Technical and Commercial.Proceedings of the 2008 Annual Conference 

of the Remote Sensing and Photogrammetry Society (RSPSoc 2007),Remote Sensing 

and Photogrammetry Society, Nottingham(CD ROM). 

ALMOND, S., BOYD, D.S., CURRAN, P.J., and DASH, J. (2008). Evaluation of the 

relationships between vegetation indices and canopy chlorophyll content for different 

view angle and soil backgrounds. Proceedings of the 2008 Annual Conference of the 

Remote Sensing and Photogrammetry Society (RSPSoc 2008), 10-12 September 2008, 

University of Exeter. The Remote Sensing and PhotogrammetrySociety, Nottingham 

(CD ROM). 

 

DASH, J., ALMOND, S., BOYD, D.S., and CURRAN, P.J. (2008). Multi-scale 

analysis and validation of the Envisat MERIS Terrestrial Chlorophyll Index (MTCI) 

in woodland and arable farmland. Proceedings of the 2nd MERIS / (A)ATSR User 

Workshop, Frascati, Italy, 22 - 26 September, 2008. 

 

ALMOND, S., BOYD, D.S., DASH, J., CURRAN, P.J. (2009). Multi-scale analysis 

and validation of the Envisat MERIS Terrestrial Chlorophyll Index (MTCI) in 

woodland. New Dimensions in Earth Observation. Proceedings of the 2009 Annual 

Conference of the Remote Sensing and Photogrammetry Society (RSPSoc 2009). 

Remote Sensing and Photogrammetry Society, Nottingham(CD ROM). 

ALMOND, S., BOYD, D.S., CURRAN, P.J., DASH, J. and HILL, R. (2009). 

Phenological trends of vegetation in Southern England from Envisat MERIS 

Terrestrial Chlorophyll Index (MTCI) data. International Journal of Remote Sensing. 

Submitted.  
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ALMOND, S., BOYD, D.S., CURRAN, P.J., DASH, J. and HILL, R. (2009). Multi-

scale analysis and validation of the Envisat MERIS Terrestrial Chlorophyll Index 

(MTCI) in woodland and arable farmland. Sensors. Submitted. 

 

Appendix 5 – SPSS Results 
 

One-way ANOVA examining the effect of view angle on MTCI 

 

Descriptives

MTCI

4 1.8950 .53929 .26964 1.0369 2.7531 1.45 2.68
4 1.8900 .53260 .26630 1.0425 2.7375 1.48 2.67
4 1.8950 .50613 .25306 1.0896 2.7004 1.49 2.63
4 1.8325 .49406 .24703 1.0463 2.6187 1.42 2.55
4 1.8000 .43962 .21981 1.1005 2.4995 1.48 2.45
4 1.8025 .39920 .19960 1.1673 2.4377 1.58 2.40
4 1.8900 .39657 .19828 1.2590 2.5210 1.62 2.47

28 1.8579 .42170 .07969 1.6943 2.0214 1.42 2.68

1
2
3
4
5
6
7
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

 

Test of Homogeneity of Variances

MTCI

.109 6 21 .994

Levene
Statistic df1 df2 Sig.

 

ANOVA

MTCI

.048 6 .008 .035 1.000
4.754 21 .226
4.801 27

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.
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One-way ANOVA examining the effect of view angle on REP 

 

Descriptives

REP

4 717.7125 2.05437 1.02718 714.4435 720.9815 716.13 720.73
4 717.4925 1.90041 .95021 714.4685 720.5165 715.90 720.25
4 717.5750 1.78012 .89006 714.7424 720.4076 716.19 720.16
4 717.3150 1.85563 .92782 714.3623 720.2677 715.77 720.00
4 717.1975 1.59406 .79703 714.6610 719.7340 716.10 719.55
4 717.2875 1.48296 .74148 714.9278 719.6472 716.46 719.51
4 717.7500 1.39052 .69526 715.5374 719.9626 716.59 719.69

28 717.4757 1.54529 .29203 716.8765 718.0749 715.77 720.73

1
2
3
4
5
6
7
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

 
 Test of Homogeneity of Variances 
 
REP  

Levene 

Statistic df1 df2 Sig. 

.140 6 21 .989

 

 
 ANOVA 
 
REP  

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups 1.120 6 .187 .062 .999 

Within Groups 63.354 21 3.017  

Total 64.474 27  
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One-way ANOVA examining the effect of view angle on NDVI 

Descriptives

NDVI

4 .7725 .05500 .02750 .6850 .8600 .72 .85
4 .7700 .05354 .02677 .6848 .8552 .71 .84
4 .7750 .04655 .02327 .7009 .8491 .72 .83
4 .7750 .04203 .02102 .7081 .8419 .73 .83
4 .7775 .04113 .02056 .7121 .8429 .73 .83
4 .7900 .03742 .01871 .7305 .8495 .75 .84
4 .7950 .04123 .02062 .7294 .8606 .75 .85

28 .7793 .04127 .00780 .7633 .7953 .71 .85

1
2
3
4
5
6
7
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

 
 ANOVA 
 Test of Homogeneity of Variances 
 

NDVI  

Levene 

Statistic df1 df2 Sig. 

.135 6 21 .990

 

 
 
NDVI  

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups .002 6 .000 .170 .982 

Within Groups .044 21 .002  

Total .046 27  
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One-way ANOVA examining the effect of view angle on EVI 

 

Descriptives

EVI

4 2.1275 .29792 .14896 1.6534 2.6016 1.72 2.43
4 2.1100 .29360 .14680 1.6428 2.5772 1.73 2.44
4 2.1350 .28781 .14390 1.6770 2.5930 1.75 2.44
4 2.1250 .29011 .14506 1.6634 2.5866 1.75 2.45
4 2.1125 .28826 .14413 1.6538 2.5712 1.77 2.47
4 2.1075 .22515 .11257 1.7492 2.4658 1.83 2.38
4 2.1300 .23409 .11705 1.7575 2.5025 1.84 2.40

28 2.1211 .24301 .04592 2.0268 2.2153 1.72 2.47

1
2
3
4
5
6
7
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

 
 Test of Homogeneity of Variances 
 
EVI  

Levene 

Statistic df1 df2 Sig. 

.062 6 21 .999

 

 ANOVA 
 
EVI  

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups .003 6 .000 .006 1.000 

Within Groups 1.592 21 .076  

Total 1.594 27  
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One-way ANOVA examining the effect of view angle on OSAVI 

Descriptives

OSAVI

4 .9325 .04573 .02287 .8597 1.0053 .88 .99
4 .9375 .04500 .02250 .8659 1.0091 .88 .99
4 .9400 .03916 .01958 .8777 1.0023 .89 .98
4 .9400 .03559 .01780 .8834 .9966 .89 .97
4 .9400 .03559 .01780 .8834 .9966 .89 .97
4 .9475 .03862 .01931 .8860 1.0090 .91 .99
4 .9550 .03416 .01708 .9006 1.0094 .92 1.00

28 .9418 .03539 .00669 .9281 .9555 .88 1.00

1
2
3
4
5
6
7
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

 
 Test of Homogeneity of Variances 
 
OSAVI  

Levene 

Statistic df1 df2 Sig. 

.103 6 21 .995

 

 ANOVA 
 

OSAVI  

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups .001 6 .000 .138 .989 

Within Groups .033 21 .002  

Total .034 27  
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One-way ANOVA examining the effect of view angle on MERIS REP 

 

Descriptives

MERIS REP

4 721.7075 2.85419 1.42710 717.1658 726.2492 719.43 725.81
4 721.6850 2.76493 1.38246 717.2854 726.0846 719.32 725.53
4 721.7225 2.73443 1.36721 717.3714 726.0736 719.20 725.46
4 721.4550 2.54863 1.27431 717.3996 725.5104 719.54 725.10
4 721.1575 2.50948 1.25474 717.1644 725.1506 719.04 724.76
4 721.3000 2.46666 1.23333 717.3750 725.2250 718.55 724.55
4 721.8200 1.91797 .95898 718.7681 724.8719 720.52 724.67

28 721.5496 2.26861 .42873 720.6700 722.4293 718.55 725.81

1
2
3
4
5
6
7
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

 
 Test of Homogeneity of Variances 
 
MERIS REP  

Levene 

Statistic df1 df2 Sig. 

.094 6 21 .996

 

 ANOVA 
 
MERIS REP  

 

Sum of 

Squares df Mean Square F Sig. 

Between Groups 1.485 6 .248 .038 1.000 

Within Groups 137.473 21 6.546  

Total 138.958 27  
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