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Impacts of environmental change on ecological communities 
 

Sally A. Keith 

 

ABSTRACT 

The impacts of environmental change on ecological communities are poorly 

understood relative to impacts on species. Impacts on inter-community 

(beta-) diversity are particularly neglected. As a result, our ability to forecast 

the impacts of environmental change on communities, and on individual 

species constrained by those communities, is seriously limited. However, as 

conservation efforts increasingly emphasise broad-scale approaches in terms 

of multi-species coverage and spatial scale, it is imperative that 

understanding of biodiversity change at these scales is enhanced so that 

conservation can be based on appropriate scientific evidence. Within this 

thesis I aimed to conduct multi-species analyses over multi-decadal 

temporal scales at the spatial meso-scale to improve our understanding of 

such issues in both terrestrial and marine ecosystems. I discussed my 

findings in the theoretical context of Gleasonian and Clementsian views of 

species distributions (i.e. limitations to individualistic species responses) 

and their impact at the community scale. The temporal extent provided the 

opportunity to empirically test emerging concepts, including non-analogous 

communities, biotic homogenization, metacommunities and climate tracking 

responses at an appropriate meso-scale. Although no evidence for non-

analogous communities was found, biotic homogenization was supported 

and appeared to be caused by increased nitrogen and decreased light 

availability. An intertidal assemblage also converged but appeared to be 

driven by a reduced sea surface temperature gradient. Woodland plant 

metacommunity structure was demonstrated to be Clementsian for 

woodland plants despite experiencing biodiversity loss. Hydrodynamic 

features were demonstrated to act as meso-scale dispersal barriers that 

limited intertidal invertebrates in tracking of climate (sea surface 

temperature) over the last 20 years. These barriers appear to alter when 

modelled under a scenario of sea level rise. Overall, results suggest that 

species are responding individualistically but that these responses are 

bounded by extrinsic constraints. 
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Chapter 1 

Introduction 

 

1.1. ENVIRONMENTAL CHANGE AND BIODIVERSITY 

The complex and rapid environmental change that characterises the modern 

era represents a major challenge to ecological understanding and 

biodiversity conservation. Sala et al. (2000) determined the five biggest 

threats to terrestrial biodiversity according to scenarios of biodiversity 

change for 2100. These threats were listed as changes in land use, climate, 

nitrogen deposition, biotic exchange and atmospheric CO2 (Sala et al. 2000), 

and are largely echoed in the marine environment, with the notable addition 

of over-exploitation (Myers & Worm 2003; Worm et al. 2006). The impact 

of recent climate change on biodiversity is well documented (McCarty 

2001; Parmesan & Yohe 2003; Root et al. 2003; Rosenzweig et al. 2007; 

Sala & Knowlton 2006; Walther et al. 2002) and non-climatic change, such 

as habitat loss and modification, are also significant drivers affecting 

biodiversity (Pimm 2008). These drivers act additively and synergistically 

to exacerbate biodiversity loss (Travis 2003). For a broad overview of the 

evidence for environmental change and its impacts on biodiversity see 

Appendix I. 

The Gleasonian view of species distribution suggests species are 

organised individualistically along environmental gradients owing to species 

specific variation in physiological tolerance and life history traits (Gleason 

1926). This view implies that species are expected to respond to changes in 

those environmental gradients individualistically – an idea that is supported 

by palaeoecological evidence from past 'climate flickers' (Roy et al 1996). 

These responses are commonly manifested through changes in a species' 

geographical range extent as suitable environmental conditions are tracked 

(Walther et al 2005). In turn, this will contribute to altered biodiversity at 

higher organisational scales as community compositions and regional 

species pools are re-organised (Gilman et al. 2010; Walther 2010).  
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However, there are two substantial problems with this assumption: 

1) the current climate change episode differs from past 'climate flickers' 

because the additional impacts of habitat loss and degradation may prevent 

climate tracking, and, 2) inter-specific interactions are assumed to have no 

effect on species distribution. Consideration must be afforded to such 

limitations on species responses if we are to better understand and forecast 

impacts of environmental change on multiple scales of biodiversity. 

Although the second issue is well debated in community ecology and 

alternative hypotheses exist (e.g. Clements 1916), it is only recently that this 

has begun to be considered in the context of forecasted responses to 

environmental change (Gilman et al. 2010; Walther 2010). One way to 

achieve such consideration is to conduct analyses that encompass multiple 

species in an attempt to implicitly encapsulate these limitations.  

However, the vast majority of analyses regarding impacts of 

environmental change on biodiversity have focused on single species and 

evidence for impacts on higher levels of organization is scarce by 

comparison (Gilman et al. 2010; Walther 2010). Extrapolation of impacts 

from lower levels of organisation is not advisable because of the potential 

for emergent properties (Gaston & Blackburn 1999; Woodward et al. 2010). 

As conservation efforts increasingly emphasise broad-scale approaches in 

terms of multi-species coverage and spatial scale (Guichard et al. 2004; 

Hannah et al. 2002; Opdam et al. 1995; Opdam & Wascher 2004; Whittaker 

et al. 2005), it is imperative that understanding of biodiversity change at 

these levels is enhanced so that conservation can be based on appropriate 

scientific evidence (Sutherland et al. 2004).   

In this introductory chapter I will briefly clarify essential definitions 

and the spatial scale on which this thesis will focus. I subsequently review 

observed and expected impacts of environmental change on ecological 

communities, considering first the effect of individualistic species responses 

and, second the constraints imposed by inter-specific interactions. This is 

followed by an overview of impacts on multiple communities, with 

concentration on beta-diversity and the metacommunity concept. I 
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subsequently present an explanation for the use of terrestrial and marine 

data within this thesis. Finally, I outline my aims and objectives, and detail 

the structure of this thesis. 

 

1.1.1. Definition of biodiversity, community and scale 

Biodiversity has many different definitions (Botkin et al. 2007; Peters 

1991). The definition of biodiversity I adhere to throughout this thesis is 

provided by the United Nations Environment Programme (UNEP) Global 

Biodiversity Assessment: “‘Biological Diversity’ means the variability 

among living organisms from all sources, including, inter alia, terrestrial, 

marine and other aquatic ecosystems and the ecological complexes of which 

they are part; this includes diversity within species, between species and of 

ecosystems.” (Heywood et al. 1995).  

Throughout this thesis, a biological community shall be defined as: 

“The individuals of all species that potentially interact within a single patch 

or local area of habitat” (Holyoak et al. 2005). Communities are therefore a 

collection of interdependencies determined by complex intra- and inter-

specific interactions. To assume the implicit capture of these interactions it 

is necessary for data to encompass an entire community. When the 

community is only represented sparsely, one cannot assume interactions are 

implicitly captured and instead can only assume that this is a collection of 

species that share geographic space. This latter case is distinguished by the 

term ‘assemblage’. Within this thesis I refer to both communities and 

assemblages to reflect this difference. Explicit consideration of species 

interactions is outside the scope of this thesis.  

The scale at which biodiversity is analysed is an essential 

consideration (Schneider 2001). To assess impacts on multiple ecological 

communities it is appropriate to employ the spatial scale of landscapes 

(Urban et al. 1987) and seascapes (Ray 1991). These scales encompass 

spatially and temporally variable habitat mosaics. The inherent variability of 

these scales necessitates consideration of pattern and process across time 

and space. Therefore, pattern and process in landscapes and seascapes are 
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appropriately explored through hierarchical analyses of multiple abiotic or 

biotic (e.g. community, metacommunity, ecosystem) organizational levels 

and temporal extents (Poiani et al. 2000; Sala & Knowlton 2006; Urban et 

al. 1987). For brevity throughout this thesis I collectively refer to the 

landscape and seascape scales as the meso-scale. 

 

1.2. IMPACTS OF ENVIRONMENTAL CHANGE ON 

COMMUNITIES  

Species are expected to respond individualistically to environmental change 

through shifts in distributional range (Bush 2002; Huntley 1991). At the 

community level, these range shifts will be observed as emigration or local 

extinction of an existing species, or immigration and colonisation of a new 

species (Benning et al. 2002; Gritti et al. 2006; Hansen et al. 2001; 

Killengreen et al. 2007; Olden et al. 2004; Stachowicz et al. 2002; Truong et 

al. 2007; Ward & Masters 2007). Such changes subsequently impact upon 

community composition, structure and partitioning (Table 1). As a result, 

biodiversity loss is leading to changes in the composition and structure of 

communities (Poiani et al. 2000; Sala & Knowlton 2006; Walther et al. 

2002). 

Community composition can be regarded as mediated by four 

processes: speciation, dispersal, selection, and drift (Vellend 2010). The 

processes of dispersal and speciation add species to the community, whereas 

selection and drift shape the relative abundance of those species (Vellend 

2010). Although exceptions exist (Skelly et al. 2007), speciation and 

selection tend to occur over larger temporal scales than those examined 

within this thesis. Therefore, these processes will not be considered further 

here. Also important are processes of species loss from a community, which 

can occur through emigration and extinction. 
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Table 1. Examples of observed impacts of environmental change on communities 

 

Ecosystem & Community Impact 
Environmental 

correlate 
Reference 

Ocean    

Reef fish assemblage composition: 
↑ southern-adapted species 
↓ northern-adapted species 

Increase in SST 
and nutrient 
upwelling 

(Holbrook et al. 1997) 

Arid vegetation   

↑ shrub cover 
↓ in some previously abundant species 
↑ in new species  
↑ in some rare species 
Some species no change 

↑ average winter 
rainfall 

(Brown et al. 1997) 

Hawaiian forest   

↑ risk of avian malaria contraction for 
Hawaiian honeycreepers (Drepanidae) 

↑ air temperature = 
↑ access for malaria 
vectors to higher 
altitudes 

(Benning et al. 2002) 

Old-growth tropical forests   

↑ biomass in old-growth tropical forests ↑ atmospheric CO2 (Phillips et al. 2002) 

Marine invertebrates   

↑ recruitment of introduced species  
↓ recruitment of native species 

↑ water temperature 
(Stachowicz et al. 
2002) 

Mature tropical forests    

↑ tree recruitment, growth, mortality 10 drivers (Lewis et al. 2004) 

Tropical forests (synthesis)   

↑ turnover rates, biomass, stem number, 
mortality and growth in the Amazon 

↑ atmospheric CO2, 
solar radiation 
and/or air 
temperature 

(Malhi & Phillips 
2004) 

Ex-arable grassland    

↑ in summer precipitation led to ↑ total 
cover abundance the following summer 

↑/↓ summer 
precipitation 
(experimental) 

(Morecroft et al. 
2004) 

Northern Swedish forests    

Range of mountain birch (Betula 
pubescens) is expanding to higher 
altitudes, altering treeline and 
associated communities 

↑ air temperature (Truong et al. 2007) 
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Owing to the large body of research that suggests many species have or are 

expected to shift distributional range in response to environmental change 

(McCarty 2001; Parmesan et al. 1999; Root et al. 2003; Walther et al. 2005), 

dispersal, and local extinction are two sides of the same coin and are central 

to a thorough understanding of the effects of environmental change on 

communities.  

Different forms of environmental change affect biodiversity through 

impacting upon different ecological processes. Habitat loss is well 

associated with the process of local extinction because species-area curves 

suggest that a reduction in habitat area will reduce the carrying capacity and 

thus species richness will inevitably decrease (Koh & Ghazoul 2010; 

MacArthur & Wilson 1967), creating a depauperate community. Such 

extinctions often involve a time lag, occurring as sub-lethal effects reduce 

the survival probability and fecundity of individuals within a population 

(Kuussaari et al. 2009). These lags, during which time the patch owes an 

extinction debt, have been identified in response to habitat loss after 70 

years for calcareous grasslands (Helm et al. 2006) and 75 years for 

butterflies (Sang et al. 2010). Smaller areas of habitat at the meso-scale will 

normally result in larger gaps between habitat patches and therefore can be 

associated with reduced connectivity. This reduced connectivity is also a 

symptom of habitat fragmentation that can impact biodiversity through a 

compromised process of dispersal (Bennett 2003).  

Dispersal and associated immigration are frequently documented 

processes in the context of climate-induced range shifts (e.g. Mieszkowska 

et al. 2006) and result in biodiversity change at higher organizational levels. 

Differential species dispersal traits (Chapter 6) can lead to the development 

of non-analogous communities or biotic homogenization as some species 

continue to be capable of dispersal, whilst others are inhibited. In temperate 

regions of the northern hemisphere, warm-adapted southern species are 

shifting their ranges northwards towards higher latitudes (Hawkins et al. 

2009). Far less evidence has been accumulated for retreat from low latitude 

range boundaries, although this has been clearly demonstrated for three 
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species of British butterfly (Franco et al. 2006). In some cases, contraction 

of species from the low latitude edge of their boundaries may be masked by 

a compensating upwards shift in elevation to maintain environmental 

temperature (Wilson et al. 2005).  

A recent horizon scanning exercise of future threats and 

opportunities for biodiversity identified the need to “….facilitate species 

range change in the face of climate change” and listed “understanding range 

shifts” as a research requirement to enable the issue to be addressed 

(Sutherland et al. 2008). Range shifts can only be facilitated if we 

understand the constraints imposed on species dispersal and how an area can 

remain uncolonised despite suitable climatic conditions, due to 

inaccessibility of that area to propagules (Crisp & Southward 1953). This 

idea is captured within the dispersal barrier hypothesis for maintenance of 

range boundaries, which suggests that propagules are physically prevented 

from crossing the boundary (Gaines et al. 2009). An alternative mortality 

hypothesis suggests boundaries are maintained because although individuals 

of a species can disperse beyond the boundary, those individuals are not 

adapted to the conditions and cannot survive (Gaines et al. 2009).  

Hodgson et al. (2009) urge caution of over-reliance upon 

connectivity to deliver effective conservation. Uncertainty surrounding 

estimation of connectivity and its effects suggest that increased habitat area 

would be a less risky conservation action that is easy to quantify and 

demonstrates clear effects, however, connectivity remains a potentially 

useful tool (Hodgson et al. 2009). 

 

1.2.1. Community constraints on species responses 

The community can also constrain species responses as competition, 

pollination, predator-prey interactions, parasitism and mutualism create 

complex interdependencies (Montoya et al. 2006). One would therefore 

expect a diminished capability for some species to respond 

individualistically to climate change. For example, a species could be an 

obligate mutualist (Anstett et al. 1997), constrained by a competitor 
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(Morecroft & Paterson 2006; Southward & Crisp 1956) or constrained by 

requirements for habitat structure (Hansen et al. 2001). In such situations, a 

change in inter-specific interactions can cascade to produce a wider change 

in community composition, processes and functioning (Brooker et al. 2008; 

Gilman et al. 2010; Walther 2010). 

The loss of a species from a community can induce a trophic 

cascade, causing disruption of entire food webs. This effect has been 

documented in marine systems as over-exploitation has resulted in the 

ecological extinction of a trophic level, whereby the species is at such a low 

abundance it no longer has meaningful interaction within the ecosystem 

(Casini et al. 2008; Daskalov 2002; Frank et al. 2005; Jackson 2008; Myers 

& Worm 2003; Worm et al. 2006). Striking inverse abundance trends of 

predatory and planktivorous fishes in the Black Sea demonstrate well the 

effect of predator removal and subsequent trophic cascades on community 

structure (Daskalov 2002). Trophic interactions are also impacted by 

environmental change through altered phenology that is variable across 

trophic levels and can result in trophic mismatch (Both et al. 2006; Post & 

Forchhammer 2008; Walther 2010). Thompson et al. (2002) suggested that 

climatic warming impacts the biodiversity of intertidal communities by 

altering competitive relationships at species’ range boundaries. Similarly, 

facultative interactions can be affected by changes in environmental 

conditions (Brooker et al. 2008). Facilitation is also a potential factor in 

species invasions, which can be facilitated by other exotic or native species 

(Brooker et al. 2008). Temperature is also expected to have a more subtle 

effect through altering metabolic rate and subsequent activity levels, thus 

affecting encounter rates of species (Woodward et al. 2010).  

Therefore, evidence suggests that although species respond 

individualistically to environmental change, they do so within the bounds 

imposed by community interactions. For example, generalist species with 

many weak inter-specific connections are less likely to be constrained by the 

community due to a high redundancy of interaction. One would therefore 

expect the strength of individualistic response to vary amongst species 
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within the ecological community, producing more complex responses to 

environmental change than those projected by models that consider species 

in isolation from the community e.g. bioclimatic envelope models (see 

Appendix III). As a consequence of such responses to environmental change 

it is expected that recent climate change will trigger the formation of non-

analogous communities (Stewart 2009; Williams & Jackson 2007). The 

concept is based on palaeoecological ideas and describes novel assemblages 

that form as a consequence of individualistic species responses to 

environmental change (Chapter 2). However, the concept has only recently 

begun to filter through to modern ecology and its application is uncertain.  

 

1.2.2. Diversity of multiple communities 

Inter-community diversity is often referred to as beta-diversity, a scale in 

between that of alpha-diversity (intra-community diversity e.g. species 

richness) and gamma-diversity (regional species richness). However, the 

definition and measurement of beta-diversity is debateable (Jurasinski et al. 

2009; Tuomisto 2010a; Tuomisto 2010b; Whittaker et al. 2001). Recent 

reviews suggest that ‘true beta-diversity’ should measure the richness of 

compositional units to ensure it is in line with alpha- and gamma-diversity 

(Tuomisto 2010a; Tuomisto 2010b). However, the term is more commonly 

used to refer to the pairwise similarity amongst communities within a given 

area (Jurasinski et al. 2009), also called effective species turnover 

(Tuomisto 2010b). Owing to this commonality of use, I follow the latter 

definition throughout this thesis and apply it to communities or assemblages 

at the meso-scale (Jurasinski et al. 2009).  

The impacts of environmental change on beta-diversity are 

particularly neglected. The reason for the comparative lack of analyses on 

the impacts of environmental change at this scale is most likely because 

these impacts remain relatively hidden without the attainment of data at the 

appropriate scale, as alpha-diversity may not be altered (Hillebrand et al. 

2010). However, in recent years analyses at this scale have increased in 

frequency (e.g. Beck & Khen 2007; Devictor et al. 2008; Hobbs et al. 2006; 
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Olden & Poff 2004). Intra-community responses can collectively alter beta-

diversity. One of the simplest impacts of environmental change on beta-

diversity is biotic homogenization and convergence (Chapters 3 & 4; 

McKinney & Lockwood 1999; Olden et al. 2004). This is a pattern of 

increased similarity between assemblages or communities over time and 

therefore is not detectable with single site analyses. Increased similarity is 

caused by the differing responses of ‘winner’ (positively impacted) and 

‘loser’ (negatively impacted) species following environmental change or the 

introduction of exotic species (McKinney & Lockwood 1999). 

 

1.2.3. Metacommunities 

A useful framework within which to explore inter-community diversity is 

the metacommunity concept, within which a metacommunity is “..a set of 

local communities that are linked by dispersal of multiple potentially 

interacting species.” (Leibold et al. 2004). The concept of the 

metacommunity incorporates spatial dynamics within community ecology 

and describes a level of ecological organisation. It builds upon the idea of 

metapopulations whereby local populations of a single species are linked 

through the potential for dispersal between patches (Levins 1969). The 

spatial aspect acts at a regional scale and can be implicit (e.g. assuming 

global dispersal) or explicit (e.g. parameterisation of specific distances of 

dispersal) (Holyoak et al. 2005; Leibold et al. 2004).  

In a metacommunity, local and regional processes act jointly to 

explain dynamics that control community assembly and structure. This 

metacommunity concept has been successfully used as a framework for 

empirical analyses on, inter alia, plant-butterfly-parasitoid assemblages 

(Van Nouhuys & Hanski 2005); pitcher plant inquiline communities (Miller 

& Kneitel 2005); and bryophyte-based communities (Gonzalez 2005). Such 

studies suggest that spatial scales beyond the local may be best viewed as a 

hierarchical nested structure of different scales and are appropriate to the 

operation of different species (Kolasa & Romanuk 2005; Miller & Kneitel 

2005; Van Nouhuys & Hanski 2005). This notion demonstrates the 
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importance of exploring impacts of environmental change at organizational 

levels above that of the species and supports the focus on communities 

within this thesis.  

In a literature search on ISI Web of Knowledge with 

“metacommunit*” in the title, “metacommunity” was often used to describe 

an organisational level (Burns & Neufeld 2009; Questad & Foster 2007), 

with no invocation of dynamics or structures that are central to the concept. 

The concept appears, therefore, to be generally accepted for describing 

scale, however, it requires further empirical testing of its central 

assumptions before its unquestioned use is fully appropriate. Although the 

concept can describe an organisational level, the explicit spatial scale of 

metacommunity studies is highly variable ranging from microcosm test tube 

communities (Cadotte et al. 2006), to an area of interconnected rock pools 

with a radius of just 30 m (Azeria & Kolasa 2008), to landscape and 

national scales (Brooks et al. 2008).  

A central issue in the metacommunity concept is whether 

community level environmental factors or regional dispersal have the most 

influence on structure and dynamics. As a result of this, much work in the 

area focuses on only one of these aspects suggesting a false dichotomy 

(Boudell & Stromberg 2008). In fact, it is likely that metacommunities 

express a combination of local environmental and regional dispersal 

processes. For example, a microcosm approach suggested that dispersal 

maintains greater species richness on a local scale but has little effect on a 

regional scale; a more localised predation effect reduces species richness 

and an environmental resource amount is positively correlated with 

predation (Cadotte et al. 2006). Modelling has suggested that dispersal is a 

regional process capable of homogenizing a metacommunity because 

greater connectedness was associated with increased synchronicity of local 

communities (Koelle & Vandermeer 2005).  

The dynamics of metacommunities are described under four 

paradigms or models, two of which are strongly influenced by local 

environmental heterogeneity within patches and two of which are strongly 
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influenced by more regional spatial parameters. The paradigms describe the 

dynamics that determine the composition and spatial distribution of 

communities. The paradigms are species sorting, patch dynamics, mass 

effects, and neutral (Table 2). The four paradigms are not mutually 

exclusive but rather vary in relative importance (Mouillot 2007). There are 

also six metacommunity structures proposed that are indicative of various 

species distributional patterns. These structures are discussed fully within 

Chapter 5 and as such will not be discussed further here.  

The paradigms in the literature that most often conform to observed 

dynamics in natural systems are species sorting (Cottenie & De Meester 

2005; Kolasa & Romanuk 2005) and mass effects, therefore suggesting that 

local environmental factors are more important than inter-specific 

interactions and random dispersal. Analyses of freshwater interconnected 

ponds specifically support the importance of local environmental factors 

(Cottenie & De Meester 2003; Debout et al. 2009). For example, local fish 

predation pressure and macrophyte cover are key to the structure of 

communities (Cottenie & De Meester 2004). For more vagile assemblages it 

is likely that dispersal contributes more to the explanation of dynamics. For 

example, mass effects was the most important paradigm within a bat 

assemblage and bats are highly mobile species (Stevens et al. 2007).  

The patch dynamics paradigm (Leibold et al. 2004) builds on the 

ideas of Tilman (1982) who suggested a competition-colonisation trade-off 

as a mechanism for species co-existence. Species that compete with high 

success are slow to colonise uninhabited patches, whereas species that are 

relatively unsuccessful competitors colonise uninhabited patches much more 

quickly (Leibold et al. 2004). This means that even though poor competitor 

species cannot maintain a population in the presence of a superior 

competitor, the metapopulation of those species can be maintained by a high 

incidence of dispersal. This is supported by a modelling exercise that 

simulated the trade-off with the additional consideration of asymmetric 

dispersal (Salomon et al. 2010).  
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Table 2. The paradigms of metacommunity dynamics and implications for 

conservation (adapted from Leibold et al. 2004; Mouillot 2007) 

 

Characteristics 
(adapted from Leibold et al. 2004) 

Conservation Requirements 
(adapted from Mouillot 2007) 

Neutral paradigm 

• Species are equivalent 

• Communities are dispersal-assembled 

• Compositional drift maintains heterogeneity of 
metacommunity 

• Built on foundation of the null hypothesis 
(Hubbell 2001) 

• Moderate connectivity of local 
communities should be 
maintained. 

• High connectivity may lead to 
biotic homogenisation. 

Species sorting paradigm 

• Local community composition jointly affected 
by patch quality and dispersal 

• Spatial niche separation emphasised above 
spatial dynamics 

• Dispersal allows compositional changes to 
track changes in local environment 

• Maintenance of heterogeneity 
within patches. 

• Connectivity within patches 
vital, connectivity between 
local communities can be 
low to moderate. 

Patch dynamics paradigm 

• Patches are equivalent 

• Each patch is capable of containing 
populations 

• Patches may be unoccupied or occupied 

• Local species diversity is limited by dispersal 

• Spatial dynamics are dominated by local 
extinction and colonisation 

• Competition-colonisation trade-off 

• Ensure moderate to high 
connectivity of local 
communities is maintained. 

• Maintain abiotic variability. 

• Permit high turnover of 
individuals. 

Mass effects paradigm 

• Focus on the effects of immigration and 
emigration on local population dynamics 

• Species can be rescued from local 
competitive exclusion in communities where 
they are bad competitors, by immigration 
from communities where they are good 
competitors 

• Source-sink communities 

• Emphasises role of spatial dynamics 

• Maintain regional abundance 
of species, not just local 
abundance.  

• Ensure moderate connectivity 
of local communities is 
maintained. 

• Maintain heterogeneity of 
local communities to prevent 
biotic homogenization. 
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However, there is only limited empirical support for the patch 

dynamics paradigm (Driscoll 2008). Many other studies use the paradigm in 

order to set the context for an analysis of co-existence (Noda 2009). This 

limits the analysis to one aspect of metacommunity dynamics. However, as 

it can be become highly complicated it is worthy of separate exploration that 

can later improve an integrated approach. The neutral paradigm is generally 

accepted as only applicable for use as a null hypothesis, however, a recent 

analysis of fish metacommunities in the US supported its use as a predictor 

of diversity (Muneepeerakul et al. 2008).  

In addition to its effect on the capability of species to track climate, 

changes in dispersal between habitat patches can also impact 

metacommunity dynamics at the meso-scale. Metacommunity dispersal can 

be described in terms of internal and external dispersal whereby external 

dispersal is from a regional pool, and internal dispersal is between local 

communities (Fig. 1, Fukami 2005). Dispersal has been suggested as a 

process capable of reducing heterogeneity, and subsequently biodiversity, 

within a metacommunity. This would produce a pattern of biotic 

homogenization. Modelling analyses demonstrated that highly connected 

local communities create more synchronous local communities than those 

that are less connected (Koelle & Vandermeer 2005). However, the model 

was highly simplified, simulating only two habitat patches and therefore 

may not be representative of a multi-patch system. Fukami (2005) 

established through computer simulations of dispersal from the two sources 

that infrequent external dispersal led to a homogenization of the 

metacommunity. Alternatively, frequent external dispersal could also lead to 

a species rich metacommunity that was saturated and thus resistant to 

species invasions (Fukami 2005).  
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Fig.1. Internal and external dispersal of metacommunities (Fukami 2005) 

 

Furthermore, metacommunities can demonstrate specific 

competitive and mutualistic relationships that affect local and regional 

processes. This can be in terms of extinction rate, establishment, and 

propagule production either being increased or decreased in co-occupied 

patches (Klausmeier 2001).  These relationships can differ from local 

community relationships, for example, mutualists may be facultative at the 

local level whilst being obligate at the metacommunity level owing to the 

effects discussed above, specifically in terms of colonisation ability 

(Klausmeier 2001).  

 

1.2.4. Long-term impacts  

Data on multi-decadal time scales are extremely useful for exploration of 

the impacts of environmental change on communities because these time 

scales better encompass the temporal extent of community dynamics, and by 

definition are necessary for long-term studies (MacArthur & Wilson 1967; 

Urban et al. 1987; Willis et al. 2007). The time scale of community 

interactions can be constrained by the generation time of the longest-lived 

species within the community or the variability of the environmental factors 

acting upon it. Furthermore, time lags can occur between the point of 

disturbance and an observable impact, referred to as a relaxation time 

(Diamond 1972) or an extinction debt (Jackson & Sax 2010; Kuussaari et al. 
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2009). Failure to consider potential lags can lead to an underestimation of 

impacts.  

Time scales over which the impacts of environmental change in 

modern ecology are analysed rarely exceed 20 years, in part because most 

ecological monitoring programs have started since the 1970s (Morecroft & 

Keith 2009). This has hindered accumulation of evidence for the impacts of 

environmental change on higher organizational levels as a paucity of 

suitable long-term data inhibit the potential for multi-decadal analyses 

(Pullin & Salafsky 2010), particularly when multi-species assemblage data 

are required. This is reflected in the evidence base for biotic 

homogenization. Although it has rapidly gained empirical support over 

recent years (Devictor et al. 2008; Olden & Poff 2004; Rooney et al. 2004), 

the majority of analyses infer homogenization over time using 

environmental gradients (Devictor et al. 2007) or comparisons of exotic and 

non-exotic species at a single point in time (Castro & Jaksic 2008; Qian & 

Ricklefs 2006). These methods are used over the comparison of the same 

collection of sites at two points in time (Rahel 2000; Rooney et al. 2004) 

because suitable historical data are often unavailable (Olden & Rooney 

2006). Therefore, the evidence for this concept must be strengthened by 

direct comparison of communities at different points in time over relevant 

time scales. For further discussion of this point, see Chapter 3. 

Towards the other extreme of scale, palaeoecological time scales can 

be highly informative (see Chapter 2). However, the resolution of such data 

are coarse owing to time-averaged compositions (Jackson & Williams 2004; 

Roy et al. 1996) and poor taxonomic resolution of fossils (Bennett 1997). 

This means composition of assemblages using such data does not match up 

with the hypothesis of individualistic species responses. Furthermore, whilst 

the breadth of paleoecological evidence provides robust evidence for the 

impacts of climate change on communities in the past and strong 

suggestions for the future, the effect of other anthropogenic influences may 

confound extrapolations from palaeoecological evidence. For example, 

habitat fragmentation and loss will restrict the ability of species to respond 
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individualistically through the process of dispersal. Therefore, evidence 

from palaeoecological research must be supported by additional recent 

evidence. 

 

1.3. COMPARISON OF TERRESTRIAL AND MARINE 

ENVIRONMENTS 

Few papers discuss the comparisons between marine and terrestrial systems 

(Chase 2000; Steele 1985; Stergiou & Browman 2005), and even fewer 

compare multiple ecosystems with empirical data (Gray et al. 2006). A lack 

of multi-disciplinarity thus far is more widely revealed in an asymmetry in 

cross-citation, and thus perhaps in information exchange, between the 

disciplines – aquatic authors cite terrestrial papers ten times more often than 

the reverse (Menge et al. 2009). However, ecological theories and concepts 

are often applicable across the disciplines (e.g. Paine 1969). Analyses of the 

impacts of environmental change on biodiversity use data from a single 

ecosystem (i.e. terrestrial, freshwater, or marine). Therefore, this divide 

between the three broad environments is reducing our ability to fully 

understand environmental change because it is a universal phenomenon that 

requires assessment across ecological taxa. Comparing between different 

ecosystems may allow us to identify common processes and principles. 

Although findings from multiple environments have been combined 

within review papers (e.g. Parmesan 2006), analyses are from different 

geographical areas and, therefore, comparisons available as a result are 

likely to differ in the environmental change experienced. In contrast, 

comparisons of impacts on multiple environments in the same geographical 

area would determine whether we can expect to observe similar responses to 

environmental change. If similar changes are observed, this would suggest a 

common response of species to environmental change, regardless of the 

environment it inhabits. To the best of my knowledge, this has not been 

attempted prior to this thesis. Within this thesis I use data from the 

terrestrial and marine environments to explore biodiversity change and 
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permit a comparison of pattern, process and driver for impacts of 

environmental change on ecological communities (Cole 2005). 

There are known similarities between the two environments. For 

example, Gray et al. (2006) contrasted the assemblage structure of marine 

benthos and fish with terrestrial microfauna and ants and found that 

assemblages from both demonstrated lognormal species abundance 

distributions. Conversely, the differences in variability allude to the 

possibility that these structural distributions may become disparate over 

time as a result of responses to environmental change.  

 

1.4. THESIS FOCUS, OBJECTIVES AND STRUCTURE 

1.4.1. Knowledge gaps 

The preceding literature review identifies the lack of a substantial evidence 

base for the impacts of environmental change on diversity at the level of 

ecological communities, specifically: (i) focused on the meso-scale with 

specific reference to beta-diversity and metacommunities, (ii) focused on 

multi-decadal temporal scales, and (iii) comparisons of multiple biomes in 

the same geographical area. Therefore, within this thesis I focus on these 

knowledge gaps using a multidisciplinary approach. The exploration of the 

metacommunity concept focuses on metacommunity structure only because 

mutually exclusive hypotheses could not be formulated for the paradigms. 

 

1.4.2. Aim and Objectives 

My thesis aims to assess the impacts of environmental change on the 

diversity of ecological communities over multi-decadal temporal scales, 

using the spatial meso-scale. I will assess these changes in a terrestrial and a 

marine habitat, allowing cross-biome comparison. Furthermore, I will 

attempt to elucidate the relative importance of individualistic species 

response and community constraints. Specifically, my objectives are to: 

1. Apply the palaeoecological concept of non-analogous community 

formation to intra-community impacts of environmental change  
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a. Has this been addressed in conservation legislation? 

b. Is there evidence for its recent occurrence? 

2. Assess the extent of change in inter-community (or assemblage) 

diversity in southern England over multiple decades as a result of 

environmental change. 

a. Has inter-community diversity of woodland plant 

communities in southern England changed over 70 years?  

b. Has inter-assemblage diversity of temperature-sensitive 

intertidal rocky shore invertebrates in southern England 

changed over 50 years?  

For 2a & 2b: 

i. Is this reflected by intra-community diversity? 

ii. What are the environmental drivers of the observed 

change? 

3. Identify the metacommunity structure of woodland plants at two 

points in time, seventy years apart and determine how much the 

structure had changed. 

a. Does metacommunity structural change reflect community 

level changes? 

4. Determine whether the climatic tracking response can be 

individualistically limited by the presence of physical barriers to 

dispersal.  

a. Will the individualistic limitations alter under scenarios of 

future environmental change? 

 

1.4.3. Thesis Structure 

Chapter 2 addresses the first objective through discussion of the 

implications of the individualistic species responses on community 
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composition. I discuss the likelihood of non-analogous community (NAC) 

formation in the first direct adaptation of the concept to modern ecology 

(Keith et al. 2009). Within the following two chapters (3 & 4), I explore 

observed change in biodiversity within and between communities (objective 

2) with data obtained from surveys of the same sites at two points in time. 

Such data provides inevitable limitations, for example, comparability of the 

two surveys, ‘snap-shot’ data with no time series with which to assess 

variability on shorter timescales, and missing or sparse data (Peterken 

1992). Whilst these limitations are important considerations within my 

thesis they do not preclude the ability to achieve my objectives and provide 

valuable historical information. Specific limitations of each dataset are 

addressed within the relevant chapters. In Chapter 5 I address objective 

three through an exploration of whether the observed community changes 

(Chapter 3) have translated to changes in the metacommunity. Chapter 6 

will focus on the process of community level biodiversity change through 

species level responses, specifically on the role of dispersal in establishment 

and maintenance of beta-diversity. The final chapter discusses the findings 

of each previous chapter in the context of the impact of species responses to 

environmental change on communities, and compares findings in marine 

and terrestrial habitats. 
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Chapter 2 

Non-Analogous Community Formation in 

Response to Climate Change 

 

2.1. ABSTRACT  

Palaeoecological and current ecological evidence suggests that species will 

respond individualistically to future climate change. This is likely to lead to 

the formation of Non-Analogous Communities (NACs), which may be 

defined as communities that are different in species composition from any 

communities that can be recognised at a selected reference point in time. I 

explore the process of NAC formation, with reference to the key processes 

of immigration and extinction and the potential influence of landscape 

pattern, in the context of a metacommunity framework. NAC formation has 

considerable implications for the development and implementation of 

conservation policies, which frequently refer to the maintenance of current 

communities. The achievement of such an objective represents a substantial 

challenge in an era of rapid environmental change, and fails to accept the 

dynamic nature of communities. The discussion suggests that conservation 

policies should identify potential responses to community change based on 

an understanding of the processes of NAC formation. 

 

2.2. INTRODUCTION 

The complex and rapid environmental changes that characterise the modern 

era represent a major challenge to conservation management. Research 

evidence indicates that climate change is already having a major impact on 

global biodiversity (McCarty 2001; Parmesan & Yohe 2003; Root et al. 

2003; Rosenzweig et al. 2007; Thuiller 2007) but the implications of such 

impacts for conservation, and how best to address them, remain uncertain. 

Given the nature of the changes that are occurring, and are likely to occur in 

the future, the potential policy implications are profound. This is 



 35

exemplified by a recent horizon scanning exercise, which suggests that 

“nature conservation policy and practice will not keep pace with 

environmental change” (Sutherland et al. 2008).  

Palaeoecological evidence suggests that ‘non-analogous’ climates, 

different from any currently found, occurred in the past and are likely to 

occur in the future (Fox 2007; Jackson & Williams 2004; Williams et al. 

2007; Williams et al. 2001). Some currently recognised climates and 

environmental domains are also projected to disappear (Saxon et al. 2005; 

Williams et al. 2007). Based upon two Intergovernmental Panel on Climate 

Change (IPCC) emissions scenarios (Nakicenovic & Swart 2000), it has 

been estimated that by 2100, 17-100 % of global land area will experience 

novel climate (Williams et al. 2007). In the US, 53.6–63.1 % of 

environmental domains, defined by edaphic, topographic and climatic 

factors, are projected to have become non-analogous during the same 

period, and are considered to be at greatest risk of biodiversity loss (Saxon 

et al. 2005).  

Available evidence suggests that range shifts of individual species 

are likely to result in changes in community composition, as a result of local 

extinction and dispersal/migration (Benning et al. 2002; Hansen et al. 2001). 

Climate change would therefore be expected to cause changes in community 

composition and this is consistent with palaeoecological observations of 

previous climate change events (Williams & Jackson 2007). 

Maintenance of ecological communities is a central objective of 

many conservation policies. For example, the European Union Habitats 

Directive (HD) promotes conservation of habitat features, which are based 

upon the CORINE community classification system (Devillers et al. 1991) 

and consist of a list of expected species occurrences (DG Environment 

2007). Other national and international conservation strategies similarly 

focus on maintaining areas with a particular species composition, including 

the UK Habitat Action Plans (UK Biodiversity Group 1999), the US 

National Wildlife Refuges System (US Fish and Wildlife Service 2004), the 

National Strategy for the Conservation of Australia's Biological Diversity 
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(Department of the Environment Sport and Territories 1996) and the WWF 

‘Ecoregions’ (Olson et al. 2001). In this chapter I question whether 

maintenance of ecological communities, defined in terms of their species 

composition, may be possible or desirable in an era of rapid environmental 

change. I explore the topic through application and enhancement of ideas 

embedded in the palaeoecological literature to modern conservation 

ecology. I focus on climate change, as potentially the most important 

element of environmental change for global biodiversity. 

 

2.3. NON-ANALOGOUS COMMUNITIES 

Evidence from palaeoecology suggests that the majority of species will 

respond individualistically to changes in climate (e.g. Bush 2002; Huntley 

1991).  This may result from contrasting physiological tolerances of 

different species, or climatic effects on interactions between species or with 

the physical environment. Where non-analogous climates develop, the 

formation of communities that are different from anything currently 

recognised is likely. Such communities can be referred to as ‘non-analogous 

communities’ (NACs), a designation which may be applied at global or 

regional scales (Bennett 1997). The fossil record of the Quaternary period, 

most specifically during the Pleistocene Epoch, contains much evidence of 

individualistic species responses to climate change from a range of taxa 

including plants (e.g. Huntley 1991), insects (e.g. Coope 1987) and 

mammals (e.g. Graham et al. 1996). Furthermore, evidence from analysis of 

Quaternary fossil and palynological assemblages indicates non-analogy to 

assemblages observed in modern ecology (Williams & Jackson 2007), as in 

the case of European and North American plant communities from the late 

glacial period (e.g. Williams et al. 2001).  

 Methods of detecting NACs are important for understanding climate 

change impacts and developing appropriate policy and management 

responses.  Such detection depends critically on how NACs are defined.  
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Two explanations (the second providing an explicit definition) were 

identified for the NAC concept in the palaeoecological literature: 

(1) “Communities emerge as temporary assemblages of taxa whose 

components will dissociate as they respond individualistically to 

environmental change, and will form new associations under new 

environmental conditions. …some past assemblages of taxa must be 

expected to differ from any that we can find today. This is 

manifested by so-called ‘no-analogue’ assemblages of fossils…” 

(Huntley 1991, p.18) 

(2) “No analog communities consist of species that are extant today, but 

in combinations not found at present. “No-analog” is therefore 

shorthand for “no present analog” and can refer to both past and 

potential future communities.” (Williams & Jackson 2007, p.477) 

In these explanations, present communities provide the point of 

reference. This is exemplified by the use of the term “no analogue” as short-

hand for communities with “no modern analogue”, and applies to 

comparisons of past and future communities with those occurring currently 

(Williams & Jackson 2007). However, this takes no account of changes in 

community composition that may have already occurred in response to 

recent climate change, which could potentially be revealed by long-term 

monitoring studies. Given this, I propose the following definition of NACs: 

“Non-analogous communities differ in species composition from any 

communities that can be recognised at a selected reference point in time.” 

This more flexible definition permits comparison of current communities 

with those that have occurred at any selected reference point in the past, 

which should be made explicit. The magnitude of difference required to 

qualify as an NAC is discussed in the following section. 

NACs may be usefully differentiated from other related concepts in 

the scientific literature, such as ‘recombinant communities’ (Angold et al. 

2006), ‘invasive communities’ (Sutherland et al. 2008), the ‘highly modified 

community’ (Masters & Ward 2005), ‘emerging ecosystems’ (Milton 2003) 
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and ‘novel ecosystems’ (Hobbs et al. 2006) (Table 3). The proposed 

definition provides a concept that is not habitat specific, recognises all 

species and has practical applicability to conservation management.  

Two different types of NACs can be recognised based on the 

hypotheses proposed by Williams (2000). One type can be considered 

transitional, resulting from differential time-lags in response to the changing 

environment arising from differences between species in, for example, 

dispersal ability, reliance on mutualistic or facilitative relationships with 

other species, or abiotic requirements (Coope 1987). This idea focuses on 

the concept that NACs are communities that are at disequilibrium with their 

environment. Alternatively, Williams & Jackson (2007) propose a type of 

NACs that are not simply an extended state of transition but communities in 

which a new equilibrium is established with a non-analogous climate.  To 

some extent all communities are transitional, but there is a meaningful 

distinction between communities which are developing towards a new, but 

already recognised, community and those which are developing in a novel 

direction. 
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Table 3. Differentiation of Non-Analogous Communities from other apparently 

related concepts in the scientific literature. Non-analogous communities differ in 

species composition from any communities that can be recognised at a selected 

reference point in time. 

Concept Definition/Explanation 
Difference from NAC 

concept 

 
Recombinant 
communities  
(Angold et al. 
2006) 

 
Referred to in the abstract: 
“….cities provide habitats for a 
rich and diverse range of plants 
and animals, which occur 
sometimes in unlikely 
recombinant communities” 
 

Invasive 
communities 
(Sutherland et 
al. 2008) 

Identified as a potential future 
threat and refer to a community 
where each new invader 
facilitates invasion by another 
species and so on, resulting in 
‘invasional meltdown’  
 

Highly modified 
community 
(Masters & 
Ward 2005) 

An altered community resulting 
from the Arriver and Leaver 
conceptual models developed by 
the MONARCH project 
 

 
These concepts do not impinge 
on my proposed NAC definition 
and could be encompassed 
within the proposed NAC 
definition as additional aspects 
for consideration.   

 
Emerging 
ecosystems  
(Milton 2003) 

 
“An ecosystem whose species 
composition and relative 
abundance have not previously 
occurred within a given biome.” 
 

Novel 
ecosystems  
(Hobbs et al. 
2006) 

“An ecosystem whose species 
composition and relative 
abundance have not previously 
occurred within a given biome.” 
(following definition of Milton 
2003) 

 
These concepts are close to 
my proposed definition of 
NACs, but refer explicitly to 
community colonisation from a 
blank starting point as a 
consequence of human 
disturbance. Following 
conventional definitions of the 
term ‘ecosystem’ (O’Niell 
2001), these concepts would 
also include biophysical 
variables and system-level 
processes, in addition to the 
species present. 
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2.4. DETECTION AND PREDICTION  

Detection and prediction of NAC formation would facilitate the adaptation 

of conservation to climate change in many ways, including the identification 

of vulnerable habitats, setting of realistic management objectives and 

development of appropriate measures to increase habitat connectivity 

(Hannah et al. 2007; Hill et al. 1993; Wilson et al. 2005). The determination 

of which communities qualify as NACs depends on comparing species 

composition with a community at a selected reference point in time, then 

selecting a threshold of similarity. One method with the potential to achieve 

this is the palaeoecological ‘modern analogue technique’ (MAT; Gavin et 

al. 2003; Jackson & Williams 2004; Williams & Shuman 2008). The MAT 

is used in palaeoecology to determine objective thresholds for distinguishing 

between fossil and modern pollen assemblages (Gavin et al. 2003; Jackson 

& Williams 2004; Williams & Shuman 2008). The MAT determines this 

threshold by resolving the optimum resemblance measure to distinguish 

recognised community (vegetation) types at a single point in time (see 

Gavin et al. 2003 for further detail). The method is therefore dependent on 

the reference point that is selected. This resemblance measure could be used 

to objectively determine the threshold resemblance measure to distinguish 

NACs. When the resemblance measure is applied in combination with a 

multivariate statistical technique, NACs can be identified (Fig. 2). 
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Fig. 2. Example of Non-analogous community (NAC) detection using multivariate 

analysis in conjunction with adaptation of the ‘Modern Analog Technique’ (MAT). 

NACs differ in species composition from any communities that can be recognised 

at a selected reference point in time. The threshold of similarity (dashed line) is 

determined by the MAT. The diagram represents a scenario where the MAT has 

determined the similarity measure as NAC = <85% similarity. Therefore, 

communities F, I, J and G are analogous to past communities.  Community H is 

non-analogous. 

 

 

2.5. PROCESS OF NON-ANALOGOUS COMMUNITY FORMATION  

NAC formation could occur through direct or indirect effects of climate 

change on individual species. Direct effects involve the impacts of changes 

in the abiotic environment of the species whereas indirect effects involve 

change in the biotic environment of the species through altering inter-

specific interactions. Palaeoecology proposes similar notions regarding 
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immediate causes of community composition change. Webb (1986) 

identified an ‘Immediate Type A’ response that alters the competitive 

balance within the community, and a ‘Full Type B’ response that involves 

range extensions and/or soil development as a necessary prerequisite for 

community change (Webb 1986).  

Knock-on events following such direct or indirect effects may ensue 

in response to environmental change. There are many documented examples 

of ‘extinction cascades’ whereby the extinction of one species leads to 

secondary extinctions of other species within the same community, a 

process that is particularly evident following the extinction of a top predator 

or a keystone species (Borrvall & Ebenman 2006; Frank et al. 2005; Paine 

1969). Knock-on events have also been observed for immigration, for 

example facilitation in the form of soil development or shade provision 

during succession (Baumeister & Callaway 2006). Research on the effect of 

extreme climatic events can yield insight into NAC formation in response to 

climate change. Thibault and Brown (2008) recorded a complete 

reorganisation of a rodent community following a flood event, and noted the 

importance of immigration of individuals from surrounding communities in 

causing dramatic changes in species dominance.  

Immigration and local extinction (hereafter referred to as extinction) 

are key processes governing the species composition of communities within 

an area and, therefore, NAC formation. These processes are influenced by 

the spatial characteristics of landscapes such as the size and connectivity of 

habitat patches and the influence of the landscape matrix on dispersal, as 

demonstrated through developments in metapopulation theory (Hanski 

1998; Hanski 1999) and landscape ecology (Dunford & Freemark 2005; 

Lindenmayer et al. 2008; Turner 2005).  The resistance and resilience of 

existing communities will also play a critical role (e.g. Grime et al. 2000).  

Stable inter-specific interactions coupled with low rates of immigration 

and/or extinction will tend to maintain the same community. Dispersal and 

subsequent immigration and establishment of a novel species from one 

community to another will result in either formation of a NAC or an 
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alternative analogous community. Local extinction will produce a 

depauperate version of the original community, which may be considered as 

an NAC if it is sufficiently different from other communities with which it 

is being compared. However, these situations are simplified; in reality, gains 

and losses of multiple species are likely to occur from a given community 

depending on the timescale considered. Immigration and extinction will 

therefore act in combination to produce NACs, with the balance between the 

processes shifting under different external influences such as landscape 

pattern.    

The rate of the process of NAC formation also requires 

consideration. It could be continuously gradual, subject to a threshold or a 

combination of both of these. Thresholds represent a point at which a small 

change in environmental variables, such as the spatial configuration of 

habitat, can cause a large and abrupt change in ecological processes (With & 

Crist 1995). For example, sea level rise could cause a breach of coastal 

barriers (e.g. headlands), allowing propagules of intertidal species to rapidly 

immigrate into previously inaccessible communities. For NAC formation, 

thresholds might occur in cases where a particular climatic change causes 

idiosyncratic responses of species to become markedly more evident, or 

spatial variables influence a switch between immigration and extinction as 

the primary process of NAC formation.  

The recently developed metacommunity concept could provide an 

appropriate ecological framework for understanding the spatial dynamics of 

NAC formation at the landscape scale. A metacommunity is defined as “...a 

set of local communities that are linked by dispersal of multiple potentially 

interacting species” (Leibold et al. 2004). Metacommunity dynamics have 

been examined with respect to four paradigms: Species Sorting, Patch 

Dynamics, Mass Effects, and Neutral (Leibold et al. 2004).  The four 

paradigms are not mutually exclusive, although it is likely that the relative 

importance of the paradigms will vary in different situations. Depending on 

which paradigm is dominant, different conservation responses will be 

required (Mouillot 2007). Identification of metacommunity paradigms 
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associated with particular landscapes could help identify local communities 

that are vulnerable to conversion to NACs. For example, the patch dynamics 

paradigm stresses the necessity of species turnover and fragmentation in the 

co-existence of competing species. Therefore, one can hypothesise that a 

reduction in flow of individuals between local communities increases their 

vulnerability to NAC formation through extinction. Conversely, the species 

sorting paradigm emphasises the importance of heterogeneity of 

microhabitats within patches for maintenance of species richness, the patch 

becoming ‘saturated’ when all microhabitats are filled. Under this paradigm, 

if climate change results in production of new microhabitats within a 

community, that community is vulnerable to immigration and subsequent 

NAC formation. 

The metacommunity concept may therefore assist with identification 

of communities vulnerable to NAC formation at the landscape scale. 

Conservation management can be informed by identification of the 

metacommunity paradigms acting on a focal community (Mouillot 2007). 

Development of conservation responses at a landscape scale could provide a 

buffer to local climate change impacts through a functionally networked 

metacommunity. 

 

2.6. IMPLICATIONS AND FUTURE DIRECTIONS 

Evidence suggests that NACs will form in response to climate change and 

this presents a major challenge to conservation policy and practice. 

Adaptation of conservation policy to climate change has been the subject of 

much academic and policy-orientated discussion, over the last 25 years 

(Heller & Zavaleta 2009). However, this discussion has often been 

conducted in general terms and led to broad, high-level recommendations.  

There remains an urgent need to develop and test adaptation strategies that 

can be applied to specific situations. The NAC concept and metacommunity 

framework can be used to provide a structured approach to reviewing 

conservation strategies and management plans addressing community 
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composition.  Where a particular community composition is a stated 

conservation objective it will initially be necessary to consider the point at 

which a community is considered to have changed significantly.   

If a designated community was to be maintained, changes beyond 

proposed limits would need to be addressed by appropriate conservation 

responses, the choice of which depends on understanding the process of 

NAC formation. For example, NACs formed by immigration might be 

addressed by species removal, whereas NACs formed by extinction might 

be addressed by reintroduction or assisted migration (McLachlan et al. 

2007). However, prevention of NAC formation may prove to be 

prohibitively expensive, impossible, or undesirable.   

Alternatively, NAC formation may be a positive development for 

wider conservation objectives, for example, where a species immigrating 

into a community is experiencing loss of, or decline in, its historical range. 

In these circumstances amending policy and management objectives to 

accommodate change would be desirable and necessary. Accommodation of 

change has been accepted in principle by many conservation organisations. 

For example, the government conservation agency Natural England states in 

a position paper on climate change that “…designations need to become 

more dynamic to enable species to move to more suitable habitats…” 

(Natural England 2008). However, practicalities surrounding the application 

and implementation of these principles have not been established. Good 

practice is demonstrated in the management of marine and coastal areas, 

where identification and classification of marine biological assemblages has 

the facility to define transitional biotopes, primarily through reducing the 

detail of classification (Connor et al. 2004; Olenin & Ducrotoy 2006). The 

development of spatially and temporally appropriate management responses 

would depend upon adequate monitoring of community composition to 

detect NAC formation, supported by analysis of its potential causes. In order 

to determine spatially appropriate responses and to prioritise action, the rate 

of NAC development must be considered. 
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Examination of the process of NAC formation provides a broad 

research agenda, involving a shift in focus from species-specific responses 

to climate change, to examining the potential impacts of climate change on 

community composition. Potential lines of enquiry regarding NAC 

formation include: (1)   analysis of immediate effects (e.g. altered inter-

specific interactions), (2)   analysis of processes responsible for NAC 

formation (i.e. immigration and extinction), (3)   analysis of the rate of NAC 

formation, i.e. gradual change or rapid transitions (thresholds), (4) analysis 

of the influence of spatial variables (e.g. habitat configuration), 

(5) vulnerability analysis, and (6) analysis of the desirability of NACs. 

Improved understanding would support the development of tools for 

detection of NACs for use in environmental monitoring, and for prediction 

of vulnerability to NAC formation at various spatial and temporal scales. In 

parallel, it is imperative to consider how to incorporate the concept into 

conservation policy and practice. Conservation managers require guidance 

on the degree of community change that might be considered acceptable, in 

terms of achieving their specific management objectives. This guidance 

should be provided by appropriate policy. There is therefore an urgent need 

for dialogue among policy makers and other relevant stakeholders to define 

the limits of community change that are deemed acceptable. These limits 

should be based on an understanding of the processes of NAC formation.  
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Chapter 3 

Taxonomic Homogenization of Woodland Plant 

Communities over Seventy Years 

 

3.1. ABSTRACT 

Taxonomic homogenisation is the increasing similarity of the species 

composition of ecological communities over time. Such homogenisation 

represents a form of biodiversity loss and can result from local species 

turnover. Evidence for taxonomic homogenisation is limited, reflecting a 

lack of suitable historical datasets, and previous analyses have generated 

contrasting conclusions. I present an analysis of woodland patches across a 

southern English county (Dorset) in which I quantified 70 years of change 

in the composition of vascular plant communities. I tested the hypotheses 

that over this time patches decreased in species richness; homogenised, or 

shifted towards novel communities. Although mean species richness at the 

patch scale did not change, I found increased similarity in species 

composition among woodlands over time. I concluded that the woodlands 

have undergone taxonomic homogenisation without experiencing declines 

in local diversity or shifts towards novel communities. Analysis of species 

characteristics suggested that these changes were not driven by non-native 

species invasions or climate change, but instead reflected re-organisation of 

the native plant communities in response to eutrophication and increasingly 

shaded conditions. These analyses provide the first direct evidence of 

taxonomic homogenisation in the UK, and highlight the potential 

importance of this phenomenon as a contributor to biodiversity loss. 
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3.2. INTRODUCTION 

Biodiversity loss is occurring widely at local and regional scales, leading to 

changes in the composition of biological communities (Poiani et al. 2000). 

Altered composition can result from local species loss, which reduces the 

number of species present within a habitat patch (lower α-diversity), or from 

immigration, which increases species richness. At larger spatial scales, such 

processes can lead to biotic homogenisation (BH). BH refers to increasing 

similarity among communities over time, reflecting changes in species 

composition caused by local immigration and extinction (Castro & Jaksic 

2008b; McKinney & Lockwood 1999). It is generally caused by an increase 

in the abundance of cosmopolitan or widespread species, which may be 

accompanied by a decrease in the abundance of more specialist or rare 

species (Castro & Jaksic 2008a). BH has attracted increasing research 

interest in the context of understanding the impacts of environmental change 

on biodiversity because of its potential role in the loss of specific 

community types and biotic impoverishment (Olden et al. 2004; Rooney et 

al. 2007). Despite such interest, understanding of BH remains limited.  

The evidence for BH is highly variable and sometimes conflicting. 

Such variation can be attributed partly to the occurrence of different types of 

BH: genetic, taxonomic and functional (Olden & Rooney 2006). Genetic 

homogenisation refers to an increased similarity between gene pools as a 

result of hybridisation or genetic bottlenecks. Functional homogenisation 

(FH) refers to an increase in the similarity of species’ functional ‘roles’ 

across communities, and is the most strongly supported by evidence (Olden 

& Poff 2004; Olden & Rooney 2006). FH has been observed in plant 

communities in Britain, being attributed to expansion of historically 

contingent species with ‘winning’ traits in response to land-use change 

(Smart et al. 2006). 

Taxonomic homogenisation (TH) refers to an increase in similarity 

of species composition across a set of communities (Olden & Rooney 

2006). If TH occurs this will often indicate FH, but also indicates a decrease 

in species’ β-diversity. Most commonly, TH has been documented as the 
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result of the spread of non-native species across a region, resulting in the 

loss of native species (McKinney & Lockwood 1999). Evidence for TH 

comes primarily from regional or national comparisons of the similarity 

between introduced and native species pools (Castro et al. 2007; Hoagstrom 

et al. 2007; Magee et al. 2008; McKinney & La Sorte 2007), and 

community similarities along large-scale spatial gradients (Blair & Johnson 

2008; Dormann et al. 2007; Kuhn & Klotz 2006). However, contrasting 

evidence is also available (Beck & Khen 2007). For example, species 

invasions were found not to simplify taxonomic composition of 

Mediterranean floras (Lambdon et al. 2008), and the flora of two US states 

showed more instances of differentiation than homogenisation (Qian et al. 

2008). 

Conflicting evidence for TH partly reflects variation in the methods 

used. The most powerful method for detecting TH involves the comparison 

of complete species pools from the same sites at different times (Olden & 

Rooney 2006). This method has rarely been employed because it is 

dependent on the availability of suitable historical data, which are usually 

lacking (Olden & Rooney 2006). Application of this approach demonstrated 

TH over five decades in Wisconsin (USA) woodland plant communities as a 

result of local extinction (Rooney et al. 2004). In contrast Smart et al. 

(2006) found no evidence of taxonomic impoverishment in a sample of 

plant communities throughout Britain over a 20 year period. Different 

results have therefore been obtained both in terms of the occurrence of TH 

and the processes responsible. Variation among studies might also be 

attributable to the contrasting timescales investigated.    

In this investigation I analysed changes in the composition of 

woodland vascular plant communities using surveys undertaken at an 

interval of seven decades. This represents the longest time period over 

which TH has been assessed by examining changes in composition at the 

same sites. Specifically, I tested the following (not mutually exclusive) 

hypotheses: (1) habitat patches from the two survey times do not differ 

significantly in species composition (null hypothesis); (2) species richness 
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of patches has decreased over time; (3) patches have become significantly 

more similar to each other over time (demonstrating TH); (4) communities 

present in 2008 are a subset of those present in the 1930s, and therefore 

novel communities have not developed over this time period. I examined the 

potential processes responsible for any observed composition changes by 

testing whether: (5) plant traits indicate that environmental conditions (soil 

fertility, the degree of shading, soil pH, soil moisture, air temperature) had 

changed between the two surveys; and (6) the proportion of non-native 

species had increased over time. 

 

3.3. METHODOLOGY 

3.3.1. The “Good” Survey 

I used a data set created in the 1930s, which provides a rare opportunity to 

examine changes in species composition over seven decades. The use of 

long-term data is imperative if we are to understand changes over time. 

However, such data should be used with an awareness of the caveats, which 

in this case concern the snapshot nature of the data (i.e. only two points in 

time) and differences in sampling effort between the two surveys. For 

discussion of these points I refer the reader to Chapter 7 of this thesis 

(section 7.4.1, p.174).  

From 1931-1939 Ronald Good undertook a survey of vascular plant 

species at 7,575 sites throughout the southern English county of Dorset. 

Good selected sites using what he referred to as the “stand” method. Stands 

were “…reasonably distinct topographical and ecological entit[ies]…” and 

were required to be “…as evenly scattered as possible” across Dorset (Good 

1937).  Stands varied in size from 0.5 to 20 ha and were surveyed by 

recording all vascular plant species encountered during a survey of 

approximately one hour. Stand locations were recorded on a series of six 

inch Ordnance Survey (OS) maps (Webb 1999), which were subsequently 

digitised by the Dorset Environmental Records Centre (DERC). Each patch 
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was visited once, generating presence-absence data that are relatively robust 

to sampling error (Hirst & Jackson 2007).  

 

3.3.2. Resurvey of woodland patches 

For clarity, henceforth I refer to Good’s stands as ‘patches’ and the species 

list for a patch as a ‘community’. I resurveyed a selection of the patches 

classified as woodland by Horsfall (1989). I selected a sample of patches for 

potential resurvey by determining which were still extant and had not been 

re-planted, using current maps of woodland habitat provided by DERC. 

Selected woodlands corresponded to ancient semi-natural woodland habitats 

(Natural England 2003) and priority habitats of lowland mixed deciduous 

woodland, lowland beech and yew, wet woodland, and wood-pasture and 

parkland (BRIG 2008). Of the resulting 592 selected patches, a sample of 86 

were randomly selected for resurvey. During the survey process, 21 patches 

were found to be inaccessible and were replaced by new samples.  

Patches were relocated in the field using a Global Positioning 

System (eTrex venture, Garmin Ltd., Southampton, UK) supported by 

digital maps of the Good patches derived from DERC and 1:25000 scale 

raster OS tiles. Each patch was surveyed on a day and month as close as 

possible to the dates employed by Good in the 1930s, and was searched over 

approximately two hours to minimise errors of species loss. A single person 

carried out all surveys. All vascular plant species were identified in situ or 

by removing or photographing specimens for expert determination. A few 

plants were identified only to genus by Good and were assumed to be the 

same species as specimens of that genus found in a patch in 2008. 

 

3.3.3. Data Analysis 

To identify any bias caused by different sampling dates, changes in species 

number within each patch between the two surveys were correlated against 

the number of days between the Good survey date and the resurvey date. I 

performed Analysis of Similarity (ANOSIM) with 1,000 permutations using 

the ‘vegan’ package (Oksanen et al. 2008) in R version 2.8.1 (R 
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Development Core Team 2008) to determine whether species composition 

of patches differed between the two surveys. I then used Sørensen similarity 

indices (S) to assess homogenisation of, and any shift in, community 

composition within patches between the surveys (Shaw 2003). 

  

cba

a
S

++
=

2

2
 

 

where a is the total number of species present in both patches being 

compared, b is the number of species present only in patch 1 and c is the 

number of species present only in patch 2.  

To determine changes in variation among the communities, I 

calculated the Sørensen index between all community pairs using the Good 

data. This resulted in 85 indices for each community from which I 

calculated the mean Sørensen index for each community x, which was 

designated x

iS . I repeated these steps for the 2008 resurvey data, which 

provided measures of the variation among the communities in 2008, x

jS . To 

determine the extent of the changes between the Good survey and the re-

survey, I calculated the mean of the indices for each 2008 community 

compared to all 1930s communities x

kS . In the event of homogenisation, one 

would expect x

jS > x

iS . In the event of differentiation, one would 

expect x

iS > x

jS . In the event of a shift in community composition, x

kS  would 

have the lowest value. The non-parametric Kendall’s W test for multiple 

related dependent samples was used to compare x

iS , x

jS and x

kS .   

I also assessed community changes by multivariate Detrended 

Correspondence Analysis (DCA) using the ‘vegan’ package (Oksanen et al. 

2008) in R version 2.8.1 (R Development Core Team 2008). The number of 

axis rescalings was set at the default of four and segments as 26 (Oksanen 

2008). Outliers were detected by the Mahalanobis distance of the four DCA 

axes on the first run (Tabachnick & Fidell 2001). Communities that 

(Equation 1) 
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exceeded the critical Mahalanobis value of 18.47 (for p<0.001 d.f.=4) were 

removed, along with their corresponding patch pair. As a result the number 

of samples included in the analysis was reduced by five patches and the 

number of species was reduced by sixteen. The ‘ellipse’ package (Murdoch 

et al. 2007) was used to create bivariate standard deviational ellipses for 

DCA axes 1 and 2 at 90% confidence intervals. Ellipses were created for the 

Good data and for the resurvey data. 

I examined the potential processes behind observed composition 

changes by using scores of plant traits that indicate tolerance of different 

environmental conditions. Trait scores for all species were obtained from 

PLANTATT (Hill et al. 2004) and were used to create a mean value for 

each trait for each patch in each survey. The traits examined provide an 

indication of soil fertility (Ellenberg N), the degree of shading (Ellenberg 

L), soil pH (Ellenberg R), soil moisture (Ellenberg F) and climate (mean 

January and mean July temperatures; see Hill et al. 2004 for calculation 

details). In addition, species were classified as either native or non-native 

(archaeophytes, neophytes and casuals), to determine any changes in the 

proportion of non-native species between the surveys.  

 

3.4. RESULTS  

There was no correlation between the changes in species number within 

each patch and the number of days (i.e. time of year) between the dates of 

the two surveys (rs = 0.11; p = 0.33), suggesting that any differences in 

survey date did not bias the results. The ANOSIM suggested a highly 

significant difference between habitat patches from the two survey times (R 

= 0.026, p = 0.001). Comparison of species lists across all sites showed that 

117 species were lost and 47 species were gained between the 1930s and 

2008 surveys. However, the mean (± SE) number of species per patch did 

not change significantly between the 1930s (57 ± 2.8) and 2008 (53 ± 1.6) 

(χ
2
 =

 
0.145, d.f. = 1, p = 0.70), indicating no significant biotic 

impoverishment at the patch level. Patches with a relatively high species 
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number in the 1930s tended to show decreased species number by 2008, but 

the converse was also true (Fig. 3). As a result, the species number of 

patches converged between the surveys. This was demonstrated by linear 

regression which indicated a significant influence of species number per 

patch on values obtained in the 1930s on that in 2008 , with the gradient of 

the regression line being less than 1 (Fig. 3).   

 

 

 

Fig. 3. Species numbers at each survey time. The dashed line represents the null 

hypothesis of no change in species number of a community between the two 

surveys. The solid line represents the fitted relationship (r
2
 = 0.209; d.f. = 85; p < 

0.001), which suggests that sites with communities with high species number in the 

1930s have tended to decrease over time and those with a low species number in 

the 1930s have increased over time. The gradient of the regression was 

significantly different to 1 (gradient 0.27; 95% confidence intervals 0.16, 0.39).
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The Sørensen indices for the 1930s (mean across all x patches, iS = 

32.8), for 2008 ( jS = 46.6) and for the 1930s vs. 2008 ( kS = 35.1) were 

significantly different from each other (W = 0.728, d.f. = 2, p < 0.001). This 

suggests greater taxonomic homogeneity in 2008 than in the 1930s, a 

finding supported by the DCA, which indicated both a reduction in variation 

and a shift in composition between the surveys (Fig. 3). Eigenvalues for the 

DCA were 0.25 and 0.17 for axes 1 and 2 respectively. Wilcoxon tests 

showed that the difference between the median sample scores for the 1930s 

and 2008 surveys were significant for axis one (T = 159, p < 0.001) and axis 

two (T = 542, p < 0.001). The 90% confidence interval ellipses for axes 1 

and 2 showed strong overlap of the 1930s and 2008 communities, indicating 

that novel communities have not developed over this time period (Fig. 4).  

 

 

Fig. 4. Detrended correspondence analysis (DCA) bi-plot for samples. Filled circles 

are 1930s samples, open circles are 2008 samples. The plot depicts bivariate 

standard deviational ellipses for axes 1 and 2 at a confidence interval of 90% for 

each survey time. The ellipse to the right is for 1930s communities and to the left is 

for 2008 communities. The ellipses overlap and show a shift of communities to the 

left of the plot over time.
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Changes in the mean plant trait values per patch between the two 

surveys suggested highly significant (p < 0.001, Wilcoxon matched pairs 

tests) increases in soil fertility and in shading (Table 4), but there were no 

significant differences in traits relating to air temperature, soil pH or soil 

moisture. The proportion of non-native species within a patch increased 

significantly over time (p = 0.019, Wilcoxon matched pairs test), but the 

proportion was extremely low in both surveys (≤ 0.03). 

 

 

Table 4. Wilcoxon’s matched pairs test on mean trait scores for patches. Overall 

mean patch scores for each survey are provided to indicate the direction of change 

in traits. 

 

Trait 
Mean 1930s 

patch score 

Mean 2008 

patch score 
T p 

Ellenberg L (Light) 5.80 5.44 465 < 0.001 

Ellenberg N (Fertility) 5.02 5.44 229 < 0.001 

Ellenberg R (pH) 5.87 5.93 1434 0.060 

Ellenberg F (Moisture) 5.57 5.55 1814 0.808 

Mean January temperature 

(˚C) 
3.52 3.52 1787 0.719 

Mean July temperature (˚C) 14.51 14.52 1779 0.694 

Proportion of non-native 

species 
0.02 0.03 981 0.019 
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3.5. DISCUSSION 

This study provides clear evidence of changed community species 

composition of the woodland flora over a 70-year period. The effect of this 

change has been taxonomic homogenisation (TH), as indicated by the 

increase in Sørensen indices over time and the reduction in variation 

detected by DCA. I therefore accept the hypothesis that patches have 

increased in similarity in terms of their species composition, demonstrating 

TH. To our knowledge, this is the first time that taxonomic homogenisation 

has been documented in the UK. Our result contrasts with the analysis of 

Smart et al. (2006), which found no evidence for TH among a large number 

of habitats throughout Britain over 20 years, but did find evidence for 

functional homogenisation, which was attributed to the expansion of species 

with similar ‘winning’ traits. The contrasting results obtained here may 

reflect the different time spans over which the comparison was made, with 

the current study being longer than that of any previous study using the 

same method. 

Contrary to previous studies where TH has been identified (Rooney 

et al. 2004), the observed TH was not associated with a decline in mean 

number of species per habitat patch. However, there was a decline in species 

number at the landscape-scale between the surveys. While losses of α-

diversity have been detected in some previous studies of changes in British 

plant communities (e.g. Stevens et al. 2004), others have not. Smart et al. 

(2006) observed increased floristic species richness in some habitat patches 

over two decades in Britain, which was attributed to initial habitat 

productivity and disturbance. Within the Dorset woodland patches, the 

spread of species with traits more suited to the changed environment 

appears to have been matched by declines in other species, leading to a 

balance between the number of colonisations and extinctions. 

The large overlap of DCA ellipses and the relatively high similarity 

of communities between the two surveys ( kS ) supports the hypothesis that 

the woodland communities have not shifted towards novel compositions, an 
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expected response to climate change (Keith et al. in press; Williams & 

Jackson 2007), and that those communities found in 2008 were a sub-set of 

those occurring in the 1930s. This result suggests that the Dorset woodlands 

are not yet showing any response to recent climate change, a conclusion 

supported by the lack of climate-related changes in the plant trait analyses.  

Analysis of plant traits suggested that the TH observed reflected re-

organisation of the native plant communities in response to eutrophication 

(Ellenberg N) and increasingly shaded conditions (Ellenberg L).  

Eutrophication has previously been associated with local extinctions 

(Walker & Preston 2006) and changes in communities of native plant 

species (Portejoie et al. 2002) in the UK, and Smart et al. (2006) implicated 

eutrophication and changes in anthropogenic disturbance in the functional 

homogenisation of British plant communities. The increasingly shaded 

conditions of woodlands in the UK can be attributed to the widespread 

decline in traditional woodland management since the 1930s (Kirby et al. 

2005). Van Calster et al. (2007) showed similar management-driven TH 

within a Belgian forest in a comparison of coppice-with-standards forest 

with high forest. 

The results of the current investigation therefore indicate that TH 

can be caused by environmental change without contribution from non-

native species. While the proportion of non-native species increased 

significantly between the surveys, it was extremely low in both. Much 

previous research into different types of BH has focused on invasion by 

non-native species as a principal cause (Castro et al. 2007; Hoagstrom et al. 

2007; Magee et al. 2008; McKinney & La Sorte 2007). Whilst non-native 

species can cause large losses of native species in some circumstances 

(Maskell et al. 2006a), national surveys accord with the results of this study 

in showing that non-natives are minor components of many British plant 

communities (Maskell et al. 2006b).  

In conclusion, Dorset woodlands have undergone taxonomic 

homogenisation over the last 70 years with no floristic impoverishment at 

the patch scale, nor any shift towards new community compositions. 
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Changes are attributable to a re-organisation of native plant communities, 

possibly in response to increasing eutrophication and more shaded 

conditions. The contrast between scales of measurement illustrates the value 

of landscape-scale (β-diversity) analyses in detecting biodiversity loss that 

might otherwise go unnoticed. Our findings also highlight the importance of 

changes in native species distributions, which is a more subtle floristic 

change than invasion of non-natives, but is of equal consequence to 

biodiversity loss at higher levels of organisation (Cassey et al. 2008). 
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Chapter 4 

Reduced thermal gradient as a possible driver of 

invertebrate assemblage convergence at a 

biogeographic boundary zone 

 

4.1. ABSTRACT 

Evidence is rapidly mounting for the loss of beta-diversity. I provide one of 

the first empirical attempts to elucidate the mechanisms and drivers of the 

process. The assessment of a role of temperature in beta-diversity loss was 

optimized through use of a model rocky shore assemblage composed of 

temperature-sensitive invertebrate species situated at a biogeographic 

boundary zone between warm temperate and cold temperate waters.  Long-

term change in relative abundance and composition of the model 

assemblage surveyed at two discrete times, five decades apart, at 28 sites 

was assessed with Analysis of Similarity (ANOSIM) and mean Bray-Curtis 

similarity indices (B). Indices were tested for assemblage conversion. 

Analyses were repeated on inter-annual (2002-04) data.  Mean change in 

annual sea surface temperature range over time was tested with a 

Spearman’s Rho correlation. Non-metric multi-dimensional scaling 

determined the spatial pattern of change in assemblage similarity. 

McNemar’s test determined whether there was significant change in the site 

occupation of individual species and a Wilcoxon’s matched pairs test 

assessed change in the site abundance of species. Model assemblage relative 

abundance significantly changed and spatially converged over time, whilst 

the inter-annual (2002-04) difference did not. Mean annual sea surface 

temperature range had a significant negative correlation with time (rs = -

0.516; p < 0.001). Species site occupation did not significantly change 

between survey times and species abundance changed significantly for two 

species.  Convergence of the assemblage over time was linked with the 

mechanistic responses of individual species to greater similarity in thermal 
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regime among sites. I hypothesise that reduced thermal gradient has led to 

improved winter survival, higher fecundity and consequential increase in 

larval supply of southern species, as the biogeographic boundary zone has 

become more diffuse. Future research should test whether the mechanisms 

and driver of beta–diversity loss in this model assemblage can be applied to 

higher organizational levels that experience biotic homogenization.  

 

4.2. INTRODUCTION 

Biodiversity loss is a global phenomenon in terrestrial, freshwater and 

marine environments. Throughout the world’s oceanic and coastal habitats, 

which represent some of the most species-rich areas, this loss is a cause for 

great concern (Spence et al., 1990; Stokstad, 2006; Worm et al., 2006). 

Altered locality and extent of species distributional ranges in response to 

environmental change have been implicated in biodiversity loss (Ling, 

2008) and have been documented in numerous habitats (Holbrook et al., 

1997; Thompson et al., 2002; Herbert et al., 2003; Mieszkowska et al., 

2005; Mieszkowska et al., 2006; Lima et al., 2007; Mieszkowska et al., 

2007; Hawkins et al., 2008; Parmesan 2006; Walther et al. 2002; Wethey & 

Woodin, 2008). Changes in the abundance and distribution of individual 

species can lead to changes in assemblage composition (Poiani et al. 2000; 

Holbrook et al., 1997). Although species richness within assemblages can 

remain stable during species flux, large-scale patterns of biodiversity can be 

dramatically altered through changes in the degree of similarity between 

assemblages. Inter-assemblage variability is referred to as beta-diversity 

and, relative to intra-community (α-) diversity, is a cryptic aspect of 

biodiversity. The change in beta-diversity is best observed with multi-

species assemblages surveyed at two discrete points in time (Olden & 

Rooney 2006). Unfortunately, availability of such datasets is scarce, thereby 

imposing a limit on current knowledge in this area (Olden & Rooney 2006).  

The most commonly discussed form of beta-diversity loss is biotic 

homogenization whereby inter-community similarity increases over time 

(Castro & Jaksic, 2008a). Biotic homogenization is a process of 



 72

conservation concern because it often indicates large-scale biodiversity loss 

through reduced species richness and the demise of unique assemblages 

(Olden et al. 2004; Rooney et al. 2007). It can be defined “..as an increase in 

the spatial similarity of a particular biological variable over time...” (Olden 

et al. 2004). The most common biological variable to be analysed in the 

context of biotic homogenization is the ecological community (e.g. Rooney 

et al., 2004; Britton et al., 2009; Keith et al., 2009), however, analysis of 

functional groups (e.g. Smart et al., 2006; Devictor et al., 2007; Winter et 

al., 2008), assemblages (e.g. La Sorte & McKinney, 2006; Beck & Khen, 

2007) and population genetic units (e.g. Oliveras et al., 2005; Puillandre et 

al., 2008) can also provide useful insight (Olden & Rooney, 2006). 

Evidence is rapidly mounting for homogenization, however, knowledge 

would be improved if empirical studies were expanded to a greater variety 

of ecological environments. Existing analyses have disproportionately 

focused on plant (Rooney et al., 2004; Kuhn & Klotz, 2006; La Sorte & 

McKinney, 2006; Smart et al., 2006; Castro & Jaksic, 2008a, b; Britton et 

al., 2009; Keith et al., 2009), bird (Devictor et al., 2008) and freshwater fish 

communities (Radomski & Goeman, 1995; Rahel, 2000; Marchetti et al., 

2006; Hoagstrom et al., 2007; Leprieur et al., 2008). In the marine 

environment biotic homogenization has been largely overlooked (Airoldi et 

al., 2008) and is yet to be quantitatively assessed.  

Many previous analyses in other environments have identified the 

driver of beta-diversity loss as non-native species immigration and this was 

the origin of the concept of biotic homogenization (La Sorte & McKinney, 

2006; Schaffelke et al., 2006; McKinney & La Sorte, 2007; Castro & Jaksic, 

2008a; Manor et al., 2008). However, recent evidence within woodland and 

alpine plant communities has shown that changing environmental conditions 

can also drive the process, with non-native species having little effect 

(Britton et al., 2009; Keith et al., 2009). If changing environmental 

conditions can drive biotic homogenization, it is possible that the current 

rapid climate change event (Solomon et al., 2007) will contribute to an 
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increasing incidence of beta-diversity loss, through both immigration of 

non-native species and reorganisation of native species.  

Despite the rapidly accumulating evidence for the occurrence of 

beta-diversity loss through biotic homogenization, understanding of 

underlying causes and mechanisms remains limited (Olden, 2006). To 

predict future consequences of beta-diversity loss the process must be better 

understood. Advancement of understanding and assessment of ecological 

processes is often best achieved through the use of variables (e.g. species, 

assemblages) that are well-studied, easily identifiable, cost effective to 

measure and sufficiently sensitive to provide an early warning system for 

wider change (Noss 1990). In combination with the necessity of suitable 

historical datasets, finding suitable model assemblages is difficult. However, 

a rare dataset for intertidal rocky shore invertebrate assemblages along the 

south coast of the UK, surveyed at two discrete times 50 years apart (Crisp 

& Southward, 1958; Mieszkowska et al., 2005), fulfil these demands and 

provide the data for this analysis paper. Unfortunately, the cost of such data 

is that the historical survey is incomplete in its coverage of rocky shore 

species and so cannot provide a baseline with which to assess 

homogenization of the entire community. The model assemblage comprises 

ten native temperature-sensitive animal species, including those with key 

structural and functional roles in rocky shore ecosystems such as barnacles 

and limpets (Hawkins et al., 2009). The sensitivity of the assemblage 

increases the possibility of detecting the role of temperature in the process. 

Analyses further optimize the elucidation of process because the 

model assemblage straddles a biogeographic boundary zone between 

western warm temperate and eastern cold temperate waters on the south 

coast of the UK (Forbes, 1858; Fischer-Piette, 1936; Crisp & Southward, 

1958; Herbert et al., 2009). The impacts of climate change on assemblages 

are more readily detected at biogeographic boundary zones, where groups of 

co-occurring species reach their range limits (Blanchette & Gaines, 2007; 

How & Kitchener, 1997; Gaston, 2009). Such zones provide a sensitive 

system within which to evaluate the impacts of climate change events on 
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groups of species. In the marine environment, surface isotherms describe a 

gradient of temperature change with latitude and have long been recognised 

as a key factor in the maintenance of biogeographic boundaries (Forbes, 

1858; Crisp & Southward, 1958; Lewis, 1964). In light of this, sea surface 

temperature would be expected to be an important driver of beta-diversity 

loss in the coastal marine environment. In single species studies, warm-

temperate species within the model assemblage have demonstrated 

eastwards range expansions, including Osilinus lineatus (Mieszkowska et 

al., 2006; Mieszkowska et al., 2007) and Perforatus perforatus (Herbert et 

al., 2003). 

The aim was to investigate evidence for convergence of a 

temperature sensitive suite of species (referred to as the model assemblage), 

containing those with key functional roles, during a period of climatic 

change, and seek to elucidate mechanisms that enable such change. I 

addressed the following hypotheses: (1) assemblages from the two discrete 

times do not differ significantly in species relative abundance along the 

south coast (null hypothesis), (2) inter-assemblage similarity has 

significantly increased, demonstrating assemblage convergence in the study 

region, (3) there was a significant change in number and location of sites 

where species were present, and in their relative abundance, and (4) sea 

surface temperature change indicates a convergence in thermal regime in the 

study region. 

 

4.3. METHODOLOGY 

4.3.1. Study Area  

The study area on the south coast of Great Britain extends from Cape 

Cornwall in the west (50.1284oN, 05.7070oW) to Dover in the east 

(51.1558oN, 01.3937oE), a distance of approximately 1,000 km along the 

coast. For 2008, HadISST data (Rayner et al., 2003) showed minimum and 

maximum mean monthly sea surface temperature (SST) of 7.4 ˚C and 17.8 

˚C respectively for the western English Channel and 5.2 ˚C and 18.6 ˚C 

respectively for the eastern English Channel, demonstrating wider SST 
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variation in the east. The area is characterised by a complex coastline with 

strong prevailing winds from the west and south-west (Barne et al., 1996a; 

Barne et al., 1996b, c; Barne et al., 1998a; Barne et al., 1998b).  

 

 
Fig. 5. (a) Annual mean sea surface temperatures (SST) from 1950 – 2008, and (b) 

annual mean SST range, along the south coast of England, r = -0.525; p < 0.001; 

[data sourced from HadISST (Rayner et al., 2003)]. Region A = Land’s End to 

Lizard Point; Region B = Lizard Point to Start Point; Region C = Start Point to 

Portland Bill; Region D = Portland Bill to Selsey Bill; Region E = Selsey Bill to 

Dover. 
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In the English Channel SST has fluctuated considerably since 1950, with a 

particularly cold period from the early 1960s to the mid 1980s followed by a 

rapid increase over the last decade (Hawkins et al. 2009; Fig. 5a). The 

coastline of the English Channel has been assigned to coastal cells based 

upon movement and retention of sediment (Motyka & Brampton, 1993). 

There is also increasing evidence for hydrodynamic barriers to larval 

dispersal along the English Channel caused by headlands that form the 

boundaries of these cells (Gilg & Hilbish, 2004; Herbert el al 2007). I use 

these coastal separations as a basis for spatial analysis. 

 

4.3.2. The Historical Survey and Re-survey Data 

The dispersal phase of rocky shore species is predominantly pelagic causing 

the continued survival of populations to be dependent upon open sea, 

therefore, rocky shore species are useful indicators for the wider marine 

environment (Hawkins et al. 2009). Crisp & Southward (1958) recorded the 

abundance of 23 intertidal animal species at over 200 sites along the south 

coast of Britain, the Channel Isles and the French coast from 1949-1957. A 

mean of 9.5 species were sampled per site, ranging from 3 to 23 species, 

although absence was not always recorded. The Marine Biodiversity and 

Climate Change (MarClim) project (www.mba.ac.uk/marclim; 

Mieszkowska et al., 2005) revisited a selection of the sites in 2002-2005, to 

record the abundance of 59 species, including the 23 species in the base-line 

survey.  

Use and resurvey of historical datasets must be accompanied by 

appropriate caveats. In this case there are three potential issues: (i) snapshot 

data i.e. only two points in time, (ii) difference in sampling effort and 

comparability of the method, and (iii) missing values. The methodology was 

not an issue here because it was comparable with the historical survey. 

Furthermore, it used the ACFORN abundance scale devised by Crisp & 

Southward (1958), which increases by orders of magnitude making it less 

susceptible to error. For full discussion of these long-term data issues I refer 
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the reader to section 7.4.1 of Chapter 7 (p. 174). Inter-surveyor reliability 

was greatly facilitated by the fact that one surveyor (Alan Southward) was 

involved in the historical survey and resurvey, and actively taught his 

methodology to the re-survey team. Four sites in the eastern region sampled 

in 2006 by Roger Herbert using the same sampling protocol were included 

to increase the site replicates in region E. 

 

4.3.3. Data Selection 

Historical survey and resurvey data from 28 sites were selected along the 

entire south coast of Britain between Lands End and Dover (Fig 6). Sites 

were selected on the basis of maximum number of species sampled. Low, 

mid and high water barnacle data for sites were merged. Species were 

excluded from the original list if ≥ 25 % of records were missing within the 

sample of 28 sites. This resulted in a final assemblage of ten consistently 

surveyed invertebrate species (Table 5). Prior to 1976, Chthamalus was 

regarded as a single taxon (Southward, 1976), therefore, C. montagui and C. 

stellatus records have been combined in the resurvey data. Coastal regions 

were delineated by headlands sensu Motyka & Brampton (1993; Fig. 6) for 

consideration of spatial patterns of change in the analyses.  
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Fig. 6. The south coast of England (coastline data source: National Geophysical 

Data Center, 2009) indicating extent of coastal regions delineated by major 

headlands (A-E). Site locations are numbered and marked with closed circles. 

Region A: 1 = Cape Cornwall, 2 = Nanjizal, 3 = Sennen Cove, 4 = Porthgwarra, 5 = 

Lamorna Cove, 6 = Mousehole, 7 = Porthleven Harbour, 8 = Poldhu Cove, 9 = 

Lizard Point. Region B: 10 = Polkerris, 11 = Wembury, 12 = Salcombe, South 

Sands. Region C: 13 = Brixham, 14 = Budleigh Salterton, 15 = Lyme Regis, 16 = 

West Bay. Region D: 17 = Portland Bill, 18 = Osmington Mills, 19 = Lulworth Cove, 

20 = Peveril Point, 21 = Freshwater Bay, 22 = Brook (Hanover Point), 23 = St. 

Catherine’s Point. Region E: 24 = Eastbourne, Beachy Head, 25 = Bexhill, 26 = 

Fairlight, 27 = Folkestone, 28 = Dover. Projected on the British National Grid 

(GCS_OSGB_1936). 
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Table 5. Biome association of species included within the temperature sensitive 

assemblage. 

 

Species 
Nomenclature 

authority 
Biome association 

Actinia equina  Linnaeus     Boreal 

Chthamalus spp.  Southward Lusitanian 

Semibalanus balanoides Linnaeus Boreal 

Perforatus perforatus Poli Lusitanian 

Patella ulyssiponensis  Gmelin Lusitanian 

Patella depressa  Pennant Lusitanian 

Patella vulgata Linneaus Boreal 

Gibbula umbilicalis  da Costa Lusitanian 

Osilinus lineatus  da Costa Lusitanian 

Melarhaphe neritoides  Linneaus Lusitanian 

 

 

4.3.4. Data Analysis 

The species data were ordinal categories from the ACFORN abundance 

scale (Crisp and Southward 1958), ranging from 0 = ‘not found’ to 5 = 

‘abundant’. Unless specified otherwise, analyses were performed with 

PRIMER v.6 (Clarke & Gorley, 2006). I tested for significant differences in 

inter-annual variability within a three year sample (2002-04) to compare 

with inter-decadal variation. Thirty-three assemblage samples from twenty 

different sites were used. Analysis of Similarity (ANOSIM) with a one-way 

design was employed to compare year of survey.  

The dataset for inter-decadal analyses included 80 records of missing 

values, imputed using multiple imputation (Schafer, 1999) with NORM v. 

2.03 (Schafer, 2000), which employs a Markov Chain Monte Carlo 

(MCMC) method to create a small number of independent draws and is 

suitable for ordinal data. One thousand iterations were run to obtain ten 

simulated datasets (Barnard & Meng, 1999) and rounded to the nearest 

observed value. Each simulated dataset was subjected to all analyses and 

mean values across simulated datasets with 95 % confidence intervals (CI) 
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where possible, and standard errors where C.I. was not possible, were 

reported. 

ANOSIM was performed to compare surveys and determine whether 

assemblages differed significantly in relative abundance between the two 

surveys. I followed the methodology of Chapter 3 to calculate mean (with 

95 % C.I.) Bray-Curtis indices (i.e. similarity) amongst assemblages at each 

survey time for each of the 10 simulated datasets, to determine whether 

assemblages had converged and/or shifted. The mean Bray-Curtis index for 

the historical survey is referred to as B1950 and for the resurvey as B2000. In 

the event of beta–diversity loss (i.e. convergence), one would expect B1950 < 

B2000. Non-metric multi-dimensional scaling (NMMDS) was used to 

determine the spatial pattern of change. NMMDS used the rounded mean of 

the ten simulated datasets. Fifty restarts were used to create a 2-dimensional 

bi-plot of all assemblages.  

 

4.4. RESULTS 

The ANOSIM of the inter-annual variability from 2002-2004 suggested 

there was no significant inter-annual difference (Global R = -0.115, p = 

0.80). The series plots for the worst linear function parameter created as an 

output of the multiple imputation confirmed that the value set for k was 

appropriate and highly conservative. The ANOSIM of the two survey times 

demonstrated a highly significant difference between the two surveys (mean 

Global R = 0.32 (± 0.014), mean p = 0.001 (± 0)). The Bray-Curtis indices 

for the historic survey (B1950 = 68.26; C.I. lower 65.36, upper 71.15) and for 

the resurvey (B2000 = 72.96; C.I. lower 71.03, upper 74.89) showed increased 

similarity, and therefore beta–diversity loss over time (B1950 < B2000), 

although there was a very slight overlap of 0.12 in confidence intervals. I 

repeated this analysis with the inter-annual (2002-04) dataset and found no 

evidence for beta–diversity loss.  

The non-metric multi-dimensional scaling (2D stress 0.07) 

demonstrated far western assemblages and central assemblages had become 

more similar to other mid-western regions (Fig. 7). The eastern Channel 
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sites varied in their response from convergence to differentiation. Only one 

site significantly decreased in similarity (Site 13 – Brixham; p = 0.025 (± 

0.008)) to all other sites, whilst ten sites (Sites 4, 5, 7, 9, 19, 22-26) 

increased significantly (p < 0.05). Sites 4 and 22-26 experienced a high 

influx of new species relative to other sites.  

 

 
Fig. 7. NMMDS bi-plot (2D stress: 0.07) depicting similarity between assemblages 

(rounded mean of 10 simulated datasets). Assemblages are labelled by survey 

(filled = 1950s; open = 2000s) and by coastal region. 

 

 

Species site turnover across different coastal regions was not 

significant for any of the species within the assemblage in McNemar’s tests 

(Table 6), however, the majority of species experienced an increase in the 

number of sites occupied over time. The exceptions were Actinia equina, 

which experienced a decrease; and Chthamalus spp. and Patella vulgata, 

which showed no change in site occupation. Perforatus perforatus was the 

only species to demonstrate turnover in sites occupied, with five gains and 

two no longer found. There was much change in the abundance of species at 

different sites (Fig. 8), including significant change in the abundance of 
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Semibalanus balanoides (T = 42.50; p = 0.033) and P. vulgata (T = 10.00; p 

= 0.018), demonstrated by a Wilcoxon matched pairs test. The other species 

did not change significantly in their abundance, however, the patterns of 

change warrant description.  

 

Table 6. Change in the number of sites occupied for each species with McNemar’s 

test for significance of change in sites occupied. Numbers are means of 10 

simulated datasets, standard errors are included where datasets did not agree. 

  

n1950 n2000 Sites gained Sites lost p 

 

Actinia equina 

27.7 (± 0.15) 26.0 0.3 (± 0.15) 2.0 0.650 (± 0.076) 

Chthamalus spp. 

23.0 23.0 0.0 0.0 1.000 

Semibalanus balanoides 

23.0 28.0 5.0 0.0 0.063 

Perforatus perforatus 

21.0 24.0 5.0 2.0 0.453 

Patella ulyssiponensis 

22.9 (± 0.10) 24.0 1.1 (± 0.10) 0.0 0.950 (± 0.13) 

Patella depressa 

22.0 23.0 1.0 0.0 1.000 

Patella vulgata 

28.0 28.0 0.0 0.0 1.000 (± 0.16) 

Gibbula umbilicalis 

21.0 23.9 (± 0.10) 3.0 0.1 (± 0.10) 0.288 (± 0.04) 

Osilinus lineatus 

15.0 19.0 4.0 0.0 0.125 

Melarhaphe neritoides 

21.7 (± 0.15) 23.3 (± 0.30) 3.6 (± 0.31) 0.0 0.797 (± 0.07) 
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Fig. 8. Change in the abundance of rocky shore intertidal invertebrate species of 

(a) barnacles, (b) limpets, (c) anemone and molluscs, along sites in the English 

Channel. Sites are organised from west to east along the x axis. Change in 

abundance is represented by the difference in ACFORN (A = abundant, C = 

common, F = frequent, O = occasional, R = rare, N = not found) abundance scale 

category between the historic 1950s survey and 2000s resurvey. The ACFORN 

abundance scale is semi-logarithmic. Species key: ‘Chth’ = Chthamalus spp.; 

‘Sem’ = Semibalanus balanoides; ‘Per’ = Perforatus perforatus; ‘Puly’ = Patella 

ulyssiponensis; ‘Pdep’ = P. depressa; ‘Pvul’ = P. vulgate; ‘Act’ = Actinia equina; 

‘Gumb’ = Gibbula umbilicalis; ‘Olin’ = Osilinus lineatus; ‘Mner’ = Melarhaphe 

neritoides. 
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The barnacles (Fig. 8a) overall showed an increase in abundance, 

particularly the boreal Semibalanus balanoides, which increased in the 

eleven most westerly sites whilst slightly decreasing in abundance within 

Lyme Bay and maintaining abundance at eastern sites. The boreal limpet 

species, Patella vulgata, increased in eleven sites whilst only decreasing in 

one site. The southern Chthamalus spp. barnacles remained abundant in the 

western Channel and occasional at its range boundary on the Isle of Wight. 

Perforatus perforatus, a warm-water barnacle, decreased in abundance in 

the west and became locally extinct in the furthest western site, whilst 

colonising four eastern sites. Patella depressa increased in abundance at 

eight sites and decreased in four sites, with most changes occurring in the 

western regions (Fig. 8b). P. ulyssiponensis abundance increased and 

decreased in a similar number of sites, however, the magnitude of decreases 

was slightly higher, and eastern sites remained uncolonised. The sea 

anemone, Actinia equina, decreased in abundance in three times as many 

sites as those in which it increased, with no obvious spatial pattern (Fig. 8c). 

Gibbula umbilicalis colonised three eastern sites and increased in abundance 

at sites on the Isle of Wight - the location of its range boundary. However, 

the species showed decreases in abundance at a higher number of sites 

overall along the coast. Osilinus lineatus colonised some sites east of 

Portland Bill, previously the location of the species’ range boundary. 

Finally, Melarhaphe neritoides changed in abundance at many sites but with 

no obvious pattern. 

There was a highly significant negative correlation between the 

annual mean sea surface temperature range along the south coast of England 

and time over the last five decades, tested with a Pearson’s correlation (r = -

0.525; p < 0.001; Fig. 5b). 
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4.5. DISCUSSION 

4.5.1. Beta-diversity 

Assemblages from the two discrete times differed significantly in relative 

abundance, indicated by the ANOSIM, therefore, the null hypothesis can be 

rejected. There was no significant recent inter-annual (2002-04) difference 

in relative abundance, increasing confidence that the difference found 

between the historical survey and the resurvey represents a long-term trend. 

I accept the hypothesis that inter-assemblage similarity has increased, 

demonstrating beta-diversity loss through assemblage convergence for this 

model assemblage; a conclusion that is supported by the comparison of 

mean Bray-Curtis indices and the NMMDS. No convergence was found 

within the inter-annual analyses. 

Biotic homogenization is generally recognised as convergence 

amongst entire communities (i.e. all species that share geographical space 

and potentially interact), despite the definition (see introduction) simply 

referring to increased similarity between “biological variables” (Olden et al. 

2004). Therefore, I recognise that the results do not permit a claim to the 

occurrence of biotic homogenization of the wider community because data 

was unavailable for some key species, such as canopy forming macroalgae. 

Rather, I only claim to provide evidence for a more specific case of beta-

diversity loss. However, the results provide empirically testable hypotheses 

regarding whether the same mechanisms and drivers that here influence 

assemblage convergence can be applied to explain the process of biotic 

homogenization. 

 

4.5.2. Drivers of assemblage convergence 

Sea surface temperature (SST) range along the south coast of England has 

decreased over time indicating a convergence in thermal regime (Fig. 5). 

The reduction in the SST gradient has caused the biogeographic boundary 

zone, which is primarily delineated by isotherms, to become more diffuse. 

Such a shift in boundary zone conditions explains the convergence of 

assemblages as warm-temperate species increased in abundance, potentially 
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leading to increased connectivity with the eastern Channel. I suggest that 

sites that were previously population sinks for southern species due to 

inhibition of reproduction by unsuitable temperatures were enabled as 

source populations as temperatures became more suitable over time. In 

essence, the decreased SST gradient across the Channel is liable to have 

reduced variability in thermal regime and, in doing so, reduced variation in 

reproductive success across sites, thus driving convergence of assemblages. 

The association between SST and beta-diversity is highly suggestive, 

although, as it is not possible to unequivocally establish cause and effect, I 

now explore other possible drivers.  

Over the past 50 years, other environmental changes have affected 

species and assemblages of rocky shores in our study area and may have 

also contributed to assemblage convergence. For example, pollution from 

tributyltin (TBT) has caused depletion of populations of the predatory 

dogwhelk Nucella lapillus (Bryan et al., 1986; Gibbs et al., 1987, 1990; 

Langston et al., 1990; Spence et al., 1990; Bryan et al., 1993; Smith et al., 

2008), a predator of limpets, potentially releasing some species from 

predation. However, evidence suggests that for inherently stable exposed 

and sheltered shores on the south coast of England, dogwhelk predation has 

little impact (Spence et al. 1990). Severe oil spills seriously impacted some 

shores close to the wreck of the Torrey Canyon in the west of the region, 

made worse by application of dispersants (Smith, 1968; Southward & 

Southward, 1978) with recovery taking over ten years (Hawkins & 

Southward, 1992; Hawkins et al., 2002; Southward et al., 2005). More 

recent research has demonstrated that for some species the recovery period 

from TBT was much longer (Smith et al., 2008). Eventual recovery means 

that oil spills are unlikely to have contributed to assemblage convergence. In 

contrast, TBT pollution may be a contributing factor, but would require 

consideration of individual species responses that lie outside the scope of 

this paper.  

The severe winter of 1962-63 seriously curtailed the distribution and 

abundance of southern species including Osilinus lineatus and Perforatus 
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perforatus in the eastern Channel (Crisp 1964). Eastern sites in our study 

have tended to gain species over time, suggesting the recovery from 

curtailment of ranges in the 1960s. The recovery from all of the above 

environmental changes infers that these can be largely ruled out as the cause 

of assemblage convergence, although equilibrium may still not have been 

reached at some of the most disturbed sites. Therefore, the reduction in SST 

gradient across the Channel, reflected in convergence of thermal regime 

across sites provides the most parsimonious explanation for assemblage 

convergence, particularly in this case because our model assemblage is 

temperature sensitive. Furthermore, SST is strongly implicated in range 

shifts of individual species, including some within our subset (Holbrook et 

al., 1997; Thompson et al., 2002; Mieszkowska et al., 2006; Lima et al., 

2007; Wethey & Woodin, 2008; Hawkins et al. 2009), therefore, explaining 

the colonisation of eastern sites by some species. Although I did not detect 

significant changes in site occupation, such changes could be anticipated for 

the future (Hawkins et al 2009; Mieszkowska et al. 2005).  

I emphasize that the model assemblage does not include any non-

native species, which could have had an effect on wider community 

similarity, and has been inferred as the driver of community-wide 

convergence (biotic homogenization) in previous analyses (La Sorte & 

McKinney, 2006; Schaffelke et al., 2006; McKinney & La Sorte, 2007; 

Castro & Jaksic, 2008a; Manor et al., 2008). Localised introductions of 

species can initially lead to biotic differentiation. However, fast-spreading, 

dominant species have the capacity to progress to rapid colonisation and 

establishment throughout a region and cause convergence (McKinney & 

Lockwood, 1999). The warm-temperate barnacle Elminius modestus is an 

example of localised introduction followed by prevalent spread in our study 

area (Crisp, 1958), and has an indirect effect on native barnacles.  
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4.5.3. Mechanism of assemblage convergence 

The increased SST and reduced gradient would be expected to drive 

assemblage convergence through increased reproductive success of the 

southern species. In addition, the colonisation of eastern sites may have 

occurred due to increased larval supply and connectivity, facilitated by 

exploitation of the increasing number of artificial coastal structures as 

‘stepping stones’, uniting previously separated sites and making it possible 

for species to track changing environmental conditions such as increased 

SST (Mieszkowska et al., 2005). Observed changes in species abundance 

are strongly supported by analyses of some individual species from our 

model assemblage (Kendall et al. 2004; Southward 1991; Wethey & 

Woodin 2008), as are eastward range shifts of warm temperate species 

(Herbert et al., 2003; Mieszkowska et al., 2006; Mieszkowska et al., 2007), 

therefore, I will not discuss this in depth but refer the reader to the cited 

literature for further information. 

The non-metric multi-dimensional scaling bi-plot suggests the far 

west of the Channel and region D became more similar to the area between 

Lizard Point (site 9) and Portland Bill (site 17). This area has extensive 

rocky shores and large populations, making it potentially a critical source of 

larvae for communities throughout the English Channel (Herbert et al. 

2007). Increased temperatures would permit warm temperate species to 

achieve greater reproductive success, increasing larval output from 

established sites, enabling colonisation of new sites. Increased SST could 

simultaneously create competitive release from cold temperate species 

(Southward 1991). The cold-temperate barnacle Semibalanus balanoides is 

a competitor of warm temperate Chthamalus spp. and the abundance of both 

barnacles is primarily determined by an interaction between temperature and 

competition (Connell 1961; Wethey 1984). Increased SST is predicted to 

lead to a decreased S. balanoides population and increased Chthamalus spp. 

populations (Hawkins et al. 2009; Poloczanska et al. 2008; Southward 

1991). Our data demonstrates a significant increase in S. balanoides and 

continued abundance of Chthamalus spp. in the western English Channel, 
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where SST has increased. Time series data for these species demonstrate 

annual fluctuations concurrent with SST and are consistent with our results 

(Mieszkowska et al., 2005). 

I reject the hypothesis that there was a significant change in the 

number and location of sites in which species of the model assemblage were 

present, indicated by the McNemar’s tests. Despite the lack of significance 

at the individual species level, over half of the sites that experienced 

significant change were the sites that had the highest influx of new species, 

suggesting that eastwards range expansions of individual species did 

contribute to the assemblage convergence. Range expansions, driven by an 

increase in SST in the eastern Channel, can be attributed to increased 

reproductive success that provided greater numbers of larvae with the 

potential to colonise new sites, together with reduced winter mortality. 

Hutchins (1947) notes that the ability of propagules to reach suitable sites 

and successfully recruit as an important factor in the ecological limits of 

species at range edges.  

 

4.5.4. Conclusion 

Assemblage convergence in the intertidal animal community has occurred in 

a comparison of two points in time 50 years apart amongst our model 

assemblage of ten native temperature-sensitive intertidal invertebrate 

species on the south coast of England. The use of a temperature sensitive 

model assemblage has enabled detection of a link for convergence with the 

responses of individual species to greater similarity in thermal regime across 

sites, regionally demonstrated by a reduced gradient of SST throughout the 

English Channel. Therefore, SST change is the most parsimonious 

underlying cause of the convergence and indicates a diffusion of the 

biogeographic boundary zone as Lusitanian elements previously 

characteristic of the western Channel now prevail throughout the English 

Channel. The mechanism is concordant with changed reproductive success 

influencing larval supply of southern species, altering abundance at 

established sites and, in some cases, enabling colonisation of eastern sites. 
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Sites that experienced the greatest change in similarity tended to have an 

increased number of species, therefore, despite beta-diversity loss, local 

species richness was not dramatically reduced. I suggest that future research 

empirically test whether the same mechanisms and driver can explain the 

process of biotic homogenization at a higher hierarchical scale of ecological 

organization. Furthermore, it would be extremely useful to explore the role 

of connectivity between rocky shore sites to gain greater understanding of 

the mechanisms of beta–diversity loss. This would improve our predictions 

of future threats to biodiversity.  
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Chapter 5 

Plant metacommunity structure remains 

unchanged during biodiversity loss in English 

woodlands 

 

5.1. ABSTRACT 

The metacommunity concept provides important insights into large-scale 

patterns and dynamics of distributions of interacting species. However, 

temporal change of metacommunity structure is little studied and has not 

been previously analysed in the context of biodiversity change. As 

metacommunity structure is determined by multiple species distributions, it 

is expected to change as a result of biodiversity loss. To examine this 

process, I analysed structural change of a southern English woodland 

metacommunity at two points in time, seven decades apart. During this 

interval, the metacommunity lost β-diversity through taxonomic 

homogenization. I performed an Elements of Metacommunity Structure 

(EMS) analysis (Leibold & Mikkelson 2002) to examine metacommunity 

structure, based upon three structural elements: coherence (i.e. gaps in 

species range along a structuring gradient), spatial turnover (replacements), 

and species range boundary clumping. I predicted that metacommunity 

structure would decrease in spatial turnover and thus become more nested 

over time. I tested for change in individual structural elements with z scores 

and examined the role of spatial and environmental variables as potential 

structuring mechanisms through correlation with EMS ordination axes. The 

results demonstrated that the metacommunity had a Clementsian structure 

that was maintained over time. Despite no change in broad structure, 

coherence and species range boundary clumping increased. Spatial turnover 

increased along the first structuring gradient but decreased on the second 

gradient. I hypothesise that this difference between gradients may reflect the 
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presence of competing processes affecting spatial turnover. The mechanisms 

of biological structuring involved both environmental and spatial factors at 

the scale of the individual woodland. Therefore, the results suggest that 

broad metacommunity structure would not be a good landscape-scale 

indicator for conservation status. Conversely, knowledge that 

metacommunity structure does not change over time could assist in long-

term conservation strategy because fundamental metacommunity structural 

processes are resistant to environmental change. 

 

5.2. INTRODUCTION 

The metacommunity concept is an important theoretical advance that has 

unified spatial and community ecology (Holyoak et al. 2005; Leibold et al. 

2004; Presley et al. 2010), and has attracted much research interest over the 

last decade (e.g. Cadotte et al. 2006; Cottenie & De Meester 2005; Kolasa & 

Romanuk 2005; Miller & Kneitel 2005). As a result, a strong empirical 

foundation for the concept is emerging. A metacommunities is defined as 

“..a set of local communities that is linked by dispersal of multiple 

potentially interacting species” (Leibold et al. 2004) and are relevant to 

understanding large-scale patterns of multiple species distributions and their 

dynamics.  

Spatial structure of a metacommunity is dependent upon three 

structural elements: coherence, species turnover in space (replacements), 

and species range boundary clumping (Leibold & Mikkelson 2002; Fig. 9). 

An Elements of Metacommunity Structure (EMS) analysis simultaneously 

tests multiple hypotheses of idealised structural patterns based on 

consideration of these elements (Leibold & Mikkelson 2002). Within EMS, 

the coherence element is the degree to which species occurrence, and 

therefore community composition, is structured by dominant axes of 

variation (Leibold & Mikkelson 2002). Axes of variation reflect structuring 

factors, for example climatic variables or geographic distance. Species 

turnover, in the context of EMS analysis, is a spatial property that describes 

replacement, or swapping, of one species with another between 
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communities. Throughout I will refer to this element as spatial turnover to 

clearly distinguish it from temporal species turnover. The converse of 

spatial turnover is when species richness changes amongst sites, negating 

replacements. This situation would create a pattern of nestedness amongst 

communities. The third element is species range boundary clumping and 

represents coincidence of species’ range boundaries in space and thus 

degree to which sets of species co-occur. EMS analysis has been 

successfully applied to animal metacommunities, specifically invertebrates 

and bats (Azeria & Kolasa 2008; Bloch et al. 2007; Ellis et al. 2006; Heino 

2005; McCauley et al. 2008; Presley et al. 2009; Presley & Willig 2010). 

The combined state of each of these three elements has been 

interpreted in terms of six metacommunity structures that represent idealised 

patterns of species distributions among communities (Leibold & Mikkelson 

2002; Fig. 9). Previous analyses of animal metacommunities have indicated 

a Clementsian structure for larval odonates (McCauley et al. 2008), a 

Gleasonian structure for stream midges (Heino 2005) and largely 

Clementsian distributions for Paraguayan (Presley et al. 2009) and 

Caribbean bats (Presley & Willig 2010). Clementsian communities are 

strongly delineated into specific community types because species are 

constrained by inter-specific interactions (Clements 1916). In contrast, 

Gleasonian communities represent a situation whereby species respond 

individualistically to environmental gradients and, as a result, community 

composition falls along a continuum (Gleason 1926). These concepts are 

highly applicable to metacommunity structure because both describe spatial 

organisation of multiple communities. 
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Fig. 9. Elements of the analytical approach examining metacommunity structure. 

The flow chart depicts the steps of the method and the conclusions (capitalised) 

associated with each outcome. The outcome depends upon three structural 

elements of coherence, species turnover and range boundary clumping (Leibold & 

Mikkelson 2002). Species distributions within the metacommunity can be 

structured by dominant axes of variation, and the amount of structuring is termed 

coherence. Species turnover refers to spatial replacement, or swapping, of one 

species with another between communities. Within the text, I refer to this element 

as spatial turnover to distinguish from temporal turnover. Range boundary 

clumping is the coincidence of species’ range boundaries in space. 

 



 105

Because the three structural elements describe aspects of species’ 

distributions one would expect changes in biodiversity to impact 

metacommunity structure. Biodiversity loss is occurring widely at multiple 

scales (Mace et al. 2005; Rosenzweig et al. 2007) and the rate of loss is 

expected to accelerate in the current era of rapid environmental change 

(Botkin et al. 2007; Thomas et al. 2004; Thuiller 2007). Incidences of large-

scale biodiversity loss (β-diversity and γ-diversity) are most appropriately 

explored at a large scale of organisation with due consideration of spatial 

organisation (Whittaker et al. 2005). 

Furthermore, use of landscape-scale strategies in conservation is 

growing, stimulating research into large-scale biodiversity patterns and 

processes. Biodiversity loss would be expected to elicit different impacts on 

different metacommunity structures. Idiosyncratic species loss within a 

Clementsian structure could reduce delineation between specific community 

types, whereas a Gleasonian structure would be unaffected. On the other 

hand, systematic species loss could increase community delineation within a 

Clementsian structure and perhaps drive a Gleasonian structure towards 

increased range boundary clumping and a more Clementsian configuration. 

Few analyses have explicitly investigated impact of biodiversity loss 

on metacommunity structure, and none have done so using the EMS 

approach, despite its considerable advantages (Presley & Willig, 2010). In 

addition, to my knowledge, only two previous analyses have assessed 

change of metacommunity structure over time: in terrestrial gastropod 

metacommunities over 13 years (Bloch et al. 2007); and in tree hole 

mosquitoes over 26 years (Ellis et al. 2006). Bloch et al. (2007) state that 

comparison of temporal dynamics of structural elements in EMS analysis 

cannot be compared at different times owing to methodological limitations 

and therefore focus on only a comparison of nestedness. Here I introduce 

new methodology to permit such comparisons.  

An understanding of metacommunity structural change could 

contribute to prediction of wider impacts of biodiversity loss in response to 

environmental change because different metacommunity structures vary in 
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dynamic stability of the community and in reliance on local or regional 

processes to maintain biodiversity (Leibold et al. 2004). For example, a 

metacommunity structured by individualistic species responses to 

environmental gradients (e.g. Gleasonian) may be predicted to respond to 

environmental change through individualistic species range shifts. In 

contrast, a structure defined by species co-occurrence may be more likely to 

respond to environmental change through loss of species or coincident range 

shifts because species occurrence is constrained by inter-specific 

interactions or common environmental limitations, such as particular range 

of soil acidities or shade tolerance.  

In this study I aimed to determine change in metacommunity 

structure over time. I applied EMS analysis to a dataset comprised of 

species presence-absence data for 86 sample communities from a southern 

English woodland metacommunity surveyed at two time periods, 70 years 

apart. During this time the metacommunity lost β-diversity through 

taxonomic homogenization, which was probably caused by increased 

nitrogen availability and increased shade (Chapter 3; Keith et al. 2009a). 

Biodiversity loss was also reflected by reduced γ–diversity, with a reduction 

from a total of 391 species in the 1930s to 324 species in 2008 (Chapter 3; 

Keith et al. 2009a). It was expected that this pattern of biodiversity loss 

would result in a metacommunity structure of nested subsets. Whilst there 

was loss of diversity overall, some species became more widespread. 

Therefore, I hypothesised that there were two possible impacts on 

coherence. If species that increased in patch occupation over time were not 

woodland specialists (i.e. generalists) one would expect coherence to have 

decreased because influence of the dominant axes of variation would be 

reduced. In contrast, if increasing species were woodland specialists, one 

would expect an increase in coherence as gaps in species occurrences were 

filled. Therefore, in the assessment of coherence I tested the hypothesis that 

(1) species that increased in patch occupation over time were generalists, 

and therefore that (2) metacommunity coherence decreased. Generalist 

species were those that were not species associated with only the 
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‘Broadleaved, mixed and yew woodland’ broad habitat type on the 

PLANTATT database (Hill et al. 2004). I predicted that (3) species 

replacements between patches, and therefore turnover through space, 

decreased because there was greater similarity in species composition 

between patches, resulting in fewer inter-patch species replacements. This 

scenario would cause structure to become one of nested subsets. I also 

expected (4) species range boundary clumping to decrease because number 

of different community types decreased over time (Keith et al. 2009a). 

Finally, I aimed to determine structuring factors represented by dominant 

axes of variation. I therefore tested hypotheses that metacommunity 

structure was ordered by (5) spatial variables (patch area, patch perimeter, 

patch shape, patch isolation) and (6) local environmental variables (soil 

acidity, soil texture, soil fertility, drainage and elevation). 

 

5.3. METHODOLOGY 

Please refer to Chapter three (3.3.1 and 3.3.2) for details of the “Good” 

survey and resurvey (Fig. 10).  Owing to the potential influence of patch 

size on temporal species turnover, I tested whether there was a correlation 

between temporal species turnover and patch area using Spearman’s rank 

correlation. I tested for spatial autocorrelation of community composition 

with a mantel test using Pearson’s method and 1,000 permutations in R 

software ver. 2.9.2 (R Development Core Team 2009). The difference in the 

proportions of woodland specialist species at each survey was assessed with 

a Mann Whitney U test.  
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Fig. 10. Location of resurveyed patches (closed circles) within Great Britain and 

Dorset (adapted from Ordnance Survey 2009a, b). Woodland (excluding 

coniferous) throughout Dorset (grey patches) is from the National of Woodland and 

Trees - Interpreted Forest Type (NIWT-IFT; Forestry Commission 2009) and 

Ancient Woodland Priority Habitat data (English Nature 2003). County boundary 

excludes the boroughs of Poole and Bournemouth, which were not part of Dorset 

in the 1930s. 
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5.3.1. Metacommunity Structure  

The metacommunity structure analysis included all species found at more 

than one patch (n1930 = 311, n2008 = 235). Two species-by-site incidence 

(presence-absence) matrices were created, one for the 1930s and one for 

2008. Species that occurred only at one site were excluded because these 

have a strong positive effect on coherence and boundary clumping, which 

can bias the EMS result (Presley et al. 2009). I used the methodology 

described in Leibold & Mikkleson (2002), modified by Presley et al. (2009), 

to determine the idealised patterns of distribution within the woodland plant 

metacommunity in the 1930s and in 2008. The method tests multiple 

metacommunity structure hypotheses representing six spatial distribution 

patterns within a single analysis of coherence, spatial turnover and species 

boundary clumping (Fig. 9). I compared data from the 1930s and 2008 to 

assess temporal change of metacommunity structure. To perform the 

analysis, I ran a MATLAB v. 2008b Student (Mathworks 2008) script 

designed by Presley et al. (2009) 

(http://www.tarleton.edu/~higgins/EMS.htm). The null model used to 

generate a random null matrix treated species richness per site as fixed and 

species occurrence as fixed – EMS model 9 - with 1,000 iterations. 

Boundary clumping was assessed by species ranges rather than 

communities, following the recommendations of Presley et al. (2009). 

 The first step of the MATLAB analysis ordered the matrix using 

reciprocal averaging (RA; Hill 1973), which reflected the dominant axes of 

variation. RA achieves an objective order of sites and species that are 

maximally packed by placing the species with the most similar distributions, 

and sites with the most similar compositions, near to each other and so 

striving for maximum correspondence between species scores and samples 

scores. The original Leibold & Mikkleson (2002) methodology advocates 

using only the first ordination axis of the RA. However, I followed Presley 

et al. (2009), who found that the second axis can also represent significant 

biological structuring.  
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5.3.2. Structural elements 

Whilst comparison of individual structural elements is appropriate for 

assessment of differences over time, it is not appropriate to compare 

magnitude of these elements between axis 1 and 2 because of the nature of 

RA. This is because one would expect a randomly-generated null matrix to 

have little internal structure, so the majority of structure that does exist by 

chance will be captured by the primary axis. On creation of the second axis, 

which is orthogonal and therefore constrained to be uncorrelated with the 

first axis, there is less structure left to capture. Therefore it is likely that the 

second axis will show lower coherence than axis 1. In contrast, matrices 

generated from biological data are likely to be structured by multiple 

biologically important gradients. As axes generated from the observed 

matrix are compared to axes generated from the corresponding null matrix, 

the second biological gradient will appear much stronger in comparison to 

the second null axis, generating a much higher z score. 

Coherence is measured by the number of gaps (absences) in species 

occurrence across and within communities when the metacommunity is 

ordered along the RA axes (Leibold & Mikkleson 2002). If this number of 

embedded absences was significantly different from that expected by chance 

(i.e. the mean number in the null incidence matrices), the distributions 

would be coherent, and otherwise the distributions would be random. I then 

used the results of the ordination to determine whether distributions showed 

spatial turnover (with species replacement throughout the matrix) or 

nestedness (with no replacement). It should be noted that the observed β-

diversity loss does not equate to spatial turnover, as utilised within EMS 

analysis, which refers to turnover in space, not over time. Finally, boundary 

clumping was assessed with a chi-squared test of the difference between the 

observed Morisita’s Index (Morisita 1959) and that from the expected 

distribution. A value that was significant and >1 would indicate clumped 

boundaries while <1 would indicate unclumped boundaries.  

 Results for each structural element of the two surveys are based on 

different null models because each null model is generated from a different 
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sized starting matrix. To enable comparison, I converted the embedded 

absences and species replacements for each survey into z scores. A z score 

(z = (X-µ)/σ; where X = observed value, µ = mean, σ = standard deviation) 

represents the number of standard deviations from the mean and is the 

standard way of normalising variables to allow comparison (Shaw 2003). 

For my purposes, the experimental value is the actual number of embedded 

absences or species replacements, and the mean and standard deviations are 

the embedded absences and species replacements obtained from the 1,000 

null matrix simulations. The difference in z scores was deemed significant if 

scores were separated by twice the standard deviation (i.e. 2 x 1.96 = 3.92). 

Although the z scores for the secondary axes were much further from the 

mean, this does not invalidate the comparison between z scores on that axis 

between surveys. Unfortunately, this technique for comparison was not 

possible for use on Morisita’s index because the index is not based on null 

matrices. Therefore I could not assess significance of change for this 

structural element. 

 

5.3.3. Structuring mechanisms 

To determine the structuring mechanism of the 2008 metacommunity I 

performed Spearman’s rank correlations between RA sample scores for axes 

1 and 2 (i.e. the order of community arrangement along the dominant axes 

of variation) of the 2008 metacommunity, and environmental and spatial 

predictor variables. The necessary spatial and environmental data were not 

available for the 1930s. Because the analyses involved multiple correlation 

tests on the same data sets, significance levels were assessed in light of a 

Dunn-Ŝidák correction for experiment-wise error (  ; 

where αe = new significance value, αr  = the required significance value, and 

k = number of independent tests). 

Environmental and spatial independent variables were calculated 

using ArcGIS v. 9.2 (ESRI 2006). Good’s patches were often part of a 

larger woodland, therefore, I used the characteristics of that encompassing 

woodland. Woodland distribution was based on current maps from the 
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National Inventory of Woodland and Trees provided by the Forestry 

Commission (www.forestry.gov.uk/inventory). A point layer was created 

with a centroid for each woodland patch polygon and used the intersect tool 

to obtain soil and topographic data for community environmental variables. 

Variables used were soil acidity, soil texture, soil fertility, drainage (all 

obtained from the National Soil Resources Institute 1:250,000 NATMAP 

data) and elevation (as a proxy for multiple climatic variables). Elevation 

was determined for each patch centroid with OS map contours, taking the 

lowest contour if the patch centroid fell between contour lines. I used 

Hawth’s Analysis Tools (Beyer 2004) to calculate woodland area, 

perimeter, and isolation (i.e. distance to the nearest woodland), and from 

these calculated the perimeter:area ratio to represent shape (the smaller the 

ratio, the more compact the shape).  

  

5.4. RESULTS 

There was no significant correlation between temporal species turnover and 

woodland area (rs = 0.099, p = 0.365). The geographic distance between 

patch centroids and pair-wise community similarity were not significantly 

autocorrelated in the 1930s (r = -0.038; p = 0.802) or in 2008 (r = -0.136; p 

= 0.990). The proportion of species that were woodland specialists in the 

1930s was 0.13 and in 2008 was 0.15. Of those species that became 

significantly more widespread (McNemar’s test, p < 0.05), 40% were 

woodland specialists. There was no significant difference in the number of 

patches occupied by woodland specialist species during each survey (U = 

2327.5; p = 0.730). 
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Table 7. Elements of metacommunity structure in the 1930s and 2008 on primary 

and secondary ordinated (reciprocal averaging) axes. Means and standard 

deviations (S.D.) are calculated from 1,000 iterations of a null matrix created with a 

conservative fixed-fixed approach. P values represent the significance of the 

difference between actual number of embedded absences and mean number of 

embedded absences in the null matrices. EA = embedded absences; R = species 

replacements; MI = Morisita’s Index. Significant p values (<0.05) are in bold. Z 

scores are only supplied for the primary axis. 

 

  
1930s 2008 

 
 Axis 1 Axis 2 Axis 1 Axis 2 

 
EA 

 
16,794 

 
17,071 

 
12,069 

 
11,875 

Mean 18,159 20,639 12,617 15,162 
p < 0.001 < 0.001 < 0.001 < 0.001 

S.D. 370.5 160.8 245.3 96.4 

Coherence 

z -3.68 -22.19 -2.23 -34.10 

 
R 

 
4,862,634 

 
5,136,554 

 
3,019,872 

 
2,334,853 

Mean 4,204,400 3,386,600 1,865,900 1,879,900 
p 0.017 < 0.001 < 0.001 0.004 

S.D. 316,320 269,030 165,770 169,990 

Spatial 
turnover 

z 2.08 6.50 6.96 2.68 

 
MI 

 
2.25 

 
2.60 

 
3.31 

 
3.06 Boundary 

clumping 
p < 0.001 < 0.001 < 0.001 < 0.001 

Best fit 
structure 

 
Clementsian Clementsian Clementsian Clementsian 

 

   

5.4.1. Metacommunity structure  

The EMS analysis suggested that woodland metacommunity structure was 

Clementsian at both survey times, demonstrated by significant coherence, 

spatial turnover in space and species range boundary clumping (Table 7). 

Coherence was indicated by a significantly lower number of embedded 

absences than the mean of the null simulations. Spatial turnover was 

significantly more than the null simulations, indicating that structure was 

not nested. In all cases Morisita’s index was significantly different from the 
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expected distribution of boundaries and the direction of the value suggested 

clumping of species range boundaries.  

 

5.4.2. Structural elements 

Although metacommunity structure maintained a Clementsian gradient, 

there were changes in magnitude of individual structural elements indicated 

by the change in z scores (Table 7). There was no significant change in the 

number of embedded absences on the primary axis over time, indicating no 

change in coherence. In contrast, the secondary axis showed fewer 

embedded absences, indicating significantly increased coherence, changing 

by > 6 standard deviations from a z score of -22.19 to -34.10. Despite this, 

lack of change on the primary axis suggests this may be due to a statistical 

artefact. Number of species replacements between communities was 

significantly higher in the resurvey than in the historical survey on the 

primary axis according to the change in z scores, indicating an increase in 

spatial turnover along the first structuring gradient. However, the secondary 

axis demonstrated the opposite pattern whereby spatial turnover 

significantly decreased along the second structuring gradient. Morisita’s 

index demonstrated highly significant species range boundary clumping 

within both surveys.  

 

5.4.3. Structuring mechanisms 

The primary axis for the 2008 survey was not correlated with any of the 

spatial variables, but of the five environmental variables, the axis was 

significantly correlated with soil drainage (rs = 0.422, p < 0.001) and soil 

fertility (rs = -0.443, p < 0.001) (Table 8). In contrast, the secondary axis 

was not correlated with any of the environmental variables, but was 

correlated with two spatial variables, namely woodland area (rs = 0.347, p = 

0.001) and perimeter:area ratio (rs = -0.381, p < 0.001).  
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Table 8. Spearman’s rank correlations for RA axes scores, and spatial and 

environmental variables. Significant p values (Dunn-Ŝidák correction indicates p 

value of 0.006 required for original significance of 0.05) are in bold. 

  

 Axis 1 Axis 2 

 rs p rs p 

Spatial variables 

Area 0.130 0.233 0.347 0.001 

Perimeter 0.203 0.060 0.267 0.013 
Perimeter:Area 0.108 0.321 -0.381 < 0.001 
Nearest patch distance 
 

0.082 
 

0.451 
 

0.192 
 

0.076 
 

Environmental variables 

Acidity -0.278 0.009 0.090 0.412 
Texture 0.004 0.974 -0.134 0.217 
Drainage 0.422 < 0.001 -0.142 0.192 
Fertility -0.443 < 0.001 -0.013 0.906 
Elevation -0.219 0.043 0.039 0.721 

 

 

5.5. DISCUSSION 

5.5.1. Metacommunity structure  

The woodland vascular plant metacommunity maintained a Clementsian 

structure at two discrete points in time 70 years apart, despite significant β-

diversity loss through taxonomic homogenization (Keith et al. 2009a). This 

is the first time temporal change in metacommunity structure has been 

assessed in plants. Lack of a significant relationship between temporal 

species turnover and patch area suggested that the results were not 

attributable to sampling effort differences where larger patches were 

searched for longer periods. The longer searching times during the re-survey 

in comparison with the historical survey could have led to sampling bias 

which might have led to increased coherence and decreased spatial turnover 

as a greater number of species may have been discovered and recorded. 

However, the results indicate that coherence did not change and spatial 

turnover increased over time, which suggests that the difference in sampling 
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effort did not bias the results. In addition, woodland specialist species did 

not greatly decrease in proportion over time relative to generalist species. 

 Metacommunity structure was Clementsian on both axes, indicated 

by significant coherence, spatial turnover and species range boundary 

clumping. Clementsian structure reveals that the metacommunity is 

organised into specific community types and species occur together with 

high fidelity (Clements 1916). A Clementsian structure was similarly 

identified for Paraguayan bats (Presley et al. 2009) and larval odonates 

(McCauley et al. 2008) at single points in time, using the same method as 

that employed here. In contrast, analyses of a tropical rock pool invertebrate 

metacommunity indicated a nested structure that remained stable over 

twelve years (Azeria & Kolasa 2008). A terrestrial gastropod 

metacommunity was also found to have a stable nested structure over 

thirteen years, however the degree of nestedness was reduced by hurricane 

disturbance (Bloch et al. 2007). Results from the few studies that have 

examined metacommunity dynamics over time are therefore consistent with 

those of the current investigation in that they indicate stability. However, 

this is the first investigation that has documented unchanged 

metacommunity structure during biodiversity loss. 

 A Clementsian structure requires presence of distinct community 

types as groups of species respond in a similar way to structuring factors. 

The cause of distinct woodland vascular plant community types throughout 

the study area (Dorset) is most parsimoniously explained by high 

geodiversity, in particular, the broad spectrum of acidic to calcareous soils 

(Dorset County Council 2005). Such soils are associated with particular 

types of plant communities (Rodwell 1991) and this is supported in this 

study by significance of soil acidity as a component of the dominant axis of 

variation. Another explanation is that different woodland management 

strategies (e.g. coppicing, maintenance of high-forest) have been a more 

influential factor in generation of different woodland community types. 

Traditional woodland management has declined across Britain over recent 

decades (Kirby et al. 2005), potentially explaining loss of a particular subset 
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of ‘managed’ woodland community types. Although there is no direct 

support for this hypothesis, lack of autocorrelation amongst woodland 

communities supports a spatially idiosyncratic mechanism such as this.  

 

5.5.2. Structural elements 

I reject the hypothesis for both axes that coherence decreased, as indicated 

by the z score comparison and consideration of statistical issues. Generalist 

species did not greatly increase in proportion over time. Of species that 

significantly increased in patch occupation from the historical dataset, 40% 

were woodland specialists, despite the fact that proportion of woodland 

specialists over the whole metacommunity was only 0.15. This may reflect 

changing management history of woodlands in Dorset. A decrease in 

frequency of disturbances would benefit woodland specialists that require 

shaded conditions.  

Spatial turnover increased significantly over time causing 

metacommunity structure to become less nested. Therefore hypothesis 3 

must be rejected. In a nested pattern, species are lost or gained from one 

community to another and so species swapping cannot occur (Leibold & 

Mikkleson 2002). The reduced species pool and increased inter-community 

similarity in a situation of taxonomic homogenization would result in less 

frequent swapping of species. However, a convergence in species richness 

of communities, also observed for this metacommunity (Chapter 3; Keith et 

al. 2009a), would simultaneously reduce incidence of species loss or gain 

from one patch to another because nestedness would be reduced. Therefore, 

it is feasible that these two changes could interact to produce increased 

spatial turnover. I reject the hypothesis that species clumping decreased over 

time, indicated by Morisita’s index.  

Continuation of a Clementsian structure in the face of biodiversity 

loss can therefore be explained by two key points. (1) Homogenization 

resulted in communities that were a subset of those types represented within 

the historical data and were not novel, non-analogous communities (Keith et 

al. 2009a; Keith et al. 2009b). Therefore, distinct community types were 
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retained within the metacommunity but number of types decreased (Keith et 

al. 2009a). (2) Species replacements became more frequent in space because 

a convergence of species richness among patches outweighed reduced 

number of replacements as a result of a smaller species pool and greater 

similarity between communities. Therefore, metacommunity structure is not 

simply a function of the species pool but is the outcome of inter-patch 

relationships and multiple ecological processes (Hillebrand & Matthiessen 

2009).  

 

5.5.3. Structuring mechanisms 

Factors contributing to structure of the 2008 metacommunity differed on 

primary and secondary axes, but both were coherent and indicated multiple 

biologically-important gradients. Primary axis sample scores were 

correlated with environmental variables of soil drainage and soil fertility. 

Therefore, environmental factors contribute to Clementsian structure of the 

metacommunity. Environmental factors were also found to have a 

significant structuring effect on: a zooplankton metacommunity subjected to 

experimental manipulations of macroalgal cover and fish predation 

(Cottenie & De Meester 2004); a bat metacommunity that was influenced by 

temperature and precipitation (Presley et al. 2009); and at multiple spatial 

scales in a reef-fish metacommunity (MacNeil et al. 2009). In contrast, the 

secondary axis was correlated with spatial variables; namely area and shape 

(area:perimeter), whilst sharing no correlation with environment. This 

opposing result is not unexpected because RA axes are orthogonal (Hill 

1973). Lack of significance in distance to nearest woodland patch is 

consistent with lack of autocorrelation, and indicates that spatial 

configuration at the scale of individual woodlands rather than the entire 

metacommunity is the important factor.  

Significant coherence demonstrated on both axes therefore suggests 

that both environmental and spatial factors contribute to metacommunity 

structure. Multiple structuring mechanisms of environmental and spatial 

factors were also observed in freshwater diatom (Verleyen et al. 2009) and 
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pond snail (Zealand & Jeffries 2009) metacommunities. In the diatom 

metacommunity, the importance of spatial factors increased as spatial scale 

was extended (Verleyen et al. 2009), a pattern that could usefully be 

explored in other metacommunities such as that described here. The results 

also provide evidence that large-scale biodiversity patterns are influenced by 

multiple local factors and that EMS methodology permits rigorous 

description of these features.  

 

5.5.4. Conclusion  

This analysis has demonstrated that a woodland metacommunity has a 

Clementsian structure at two points in time 70 years apart, despite 

significant γ– and β–diversity loss. This suggests that broad Clementsian 

metacommunity structure is robust to diversity loss, however, individual 

structural elements did change. Difference in spatial turnover demonstrated 

on axes one and two highlights that multiple processes can simultaneously 

contribute to metacommunity structure. This complexity is further 

accentuated by association of axes 1 and 2 with different structuring 

mechanisms and suggests that future metacommunity analyses would be 

strengthened by consideration of multiple structural and mechanistic 

hypotheses.  

Lack of change over time in metacommunity structure reveals that it 

may not be a useful indicator for broad conservation status. On the other 

hand, continuity of structure suggests that knowledge of structural type 

could assist in long-term conservation planning because it provides insights 

into fundamental processes that influence landscape-scale community 

organization. 

For a broader critique of the metacommunity concept I refer the 

reader to section 7.4.2. within Chapter 7 (p. 176).  
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Chapter 6 

Larval dispersal of rocky shore invertebrates 

 

Part I. Individualistic species limitations of climate-

induced range expansions generated by meso-scale 

dispersal barriers 

 

6.1. ABSTRACT 

Evidence indicates that species are responding to climate change through 

distributional range shifts that track suitable climatic conditions. I aim to 

elucidate the role of meso-scale dispersal barriers in climate tracking 

responses. Historical distributional data were obtained for five intertidal 

invertebrate species on the south coast of England (the English Channel). I 

logistically regressed these data on sea surface temperature to determine a 

climate envelope. This envelope was used to estimate the expected climate 

tracking response since 1990 along the coast and this was compared with 

observed range expansions. A hydrodynamic modelling approach was used 

to identify dispersal barriers and explain disparities in expected and 

observed climate tracking. Range shifts detected by field survey over the 

past 20 years were less than those predicted by the changes that have 

occurred in sea surface temperature. Hydrodynamic model simulations 

indicated that physical barriers produced by oceanic circulation have 

variably restricted dispersal of pelagic larvae among the five species. I 

provide the first evidence that meso-scale hydrodynamic barriers have 

limited climate-induced range shifts, and demonstrate that life history traits 

affect the ability of species to overcome such barriers. This suggests that 

current forecasts may be underestimating the potential impacts of climate 

change on global biodiversity.  
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6.2. INTRODUCTION 

Climate change is widely recognised as presenting a major threat to global 

biodiversity that is expected to intensify over time (Rosenzweig et al. 2007). 

Evidence indicates that species are responding to this threat through changes 

in behaviour (Post et al. 1999), phenology (Sims et al. 2001) and abundance 

(Barbraud & Weimerskirch 2001), with consequences for community 

composition (Hiddink & ter Hofstede 2008; Holbrook et al. 1997; Walther 

et al. 2002). The distributional range of many species also appear to be 

shifting to track suitable climatic conditions through space and time 

(Mieszkowska et al. 2006; Walther et al. 2005). Future projections of 

climate-induced range shifts indicate massive potential biodiversity loss as 

suitable climatic envelopes for many species decreases (Thomas et al. 2004; 

Thuiller et al. 2005). Forecasts suggest that 21–52% of species will be 

“committed to extinction” owing to non-viable populations by 2050 on a 

global scale (Thomas et al. 2004).  

Such projections are based on bioclimatic envelope modelling 

approaches that predict distributions of species based on the concurrent 

distribution of suitable climatic conditions. Such approaches do not 

realistically incorporate dispersal, which is a process fundamental to shifts 

of range boundaries (Gaylord & Gaines 2000; Southward 1967; Wethey & 

Woodin 2008). Although bioclimatic envelope models are beginning to 

incorporate more realistic dispersal in terms of maximum dispersal distance 

(Midgley et al. 2006), information is lacking on the potential role of 

physical barriers in impeding dispersal. I am unaware of any previous 

studies that have demonstrated the inhibitory nature of physical dispersal 

barriers on climate-induced range shifts of species, although the remarkable 

stability of range edges of some species of barnacles in the focal area of 

study, the eastern English Channel, has been demonstrated (Herbert et al. 

2009). I address this critical knowledge gap through a field-based analysis 

of five intertidal invertebrate species, supported by a hydrodynamic 

modelling approach.  

Until the last decade, marine environments were considered to have 

unrestricted or ‘open’ exchange of propagules amongst populations. In 
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contrast, recent evidence has suggested that this assumption is simplistic and 

often inaccurate as there is a continuum from fully open to fully closed 

populations (Cowen et al. 2007; Cowen et al. 2000; Hill 1990; James et al. 

2002; Jessopp & McAllen 2008; Largier 2003; Lefebvre et al. 2003; Mitarai 

et al. 2008). This has served to highlight the importance of connectivity, 

which can be defined as representing “..the dynamic interactions between 

geographically separated populations via the movement of individuals” 

(North et al. 2009). Many marine species achieve propagule dispersal 

through pelagic larvae that are exchanged with other populations by water 

movements on a variety of scales from local tidally mediated flow up to 

oceanic currents (Nybakken & Bertness 2005). Some larvae, for example, 

those of crustacea and fish, are capable of active swimming and hence 

vertical positioning behaviour in the water column (Sponaugle et al. 2002). 

Even for swimming larvae, however, when currents exceed the swimming 

speed, advection and diffusion become the prominent factors controlling 

larval transport. Therefore, hydrographic features are of great consequence 

to the connectivity of populations for species with a planktonic larval phase.  

Attention has focused in recent years on larval transport (Gaines et 

al. 2007; Kinlan & Gaines 2003; Pineda et al. 2007), building on earlier 

studies (Crisp 1985; Scheltema 1968). Most research has relied on the use of 

hydrodynamic models within which one can introduce particles from areas 

of suitable habitat and track their movement. To date, such research has 

focused on model development and the creation of marine protected areas 

(e.g. Colby 1988; James et al. 2002; Mitarai et al. 2008); few analyses have 

applied such models to ecological questions related to climate change. I 

begin to address this gap by utilising a hydrodynamic modelling approach to 

elucidate observed range expansions of intertidal invertebrate species in the 

English Channel along the south coast of England.  

I combined historical and recent species distribution data to examine 

range expansions of intertidal invertebrate species along the south coast of 

England. The area is highly suitable for this analysis because it is a 

biogeographic boundary zone between warm-temperate and cold-temperate 

waters (Crisp & Southward 1958; Herbert et al. 2009). The region has a sea 

surface temperature (SST) gradient that declines from the western to eastern 
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Channel. Over the last two decades SST has increased along this gradient as 

a result of climate change (Joyce 2006), resulting in previously unsuitable 

eastern sites becoming climatically suitable for warm-temperate species. As 

a consequence, eastward range expansions of southern intertidal invertebrate 

species have been observed (Herbert et al. 2003; Mieszkowska et al. 2006; 

Mieszkowska et al. 2005; Wethey & Woodin 2008), whereas northern 

species have stayed constant (Herbert et al. 2009). I used this information to 

assess whether physical barriers have limited climate-induced range shifts, 

by testing the following hypotheses: (1) species ranges have not expanded to 

all areas that are climatically suitable and therefore have not fully tracked 

SST change; (2) connectivity amongst suitable rocky shore habitat patches 

is interrupted by barriers to larval transport and; (3) these barriers coincide 

with 2009 species range boundaries, indicating hydrographic features have 

posed significant barriers to larval transport. 

 

6.3. METHODOLOGY 

6.3.1. Study area  

The study area on the south coast of Great Britain extends from Start Point 

in the west (50.2139oN, 03.6936oW) to Dover in the east (51.1558oN, 

01.3937oE), a coastline distance of approximately 720 km. The area is 

characterised by a complex coastline with strong prevailing winds from the 

west and south-west (Barne et al. 1996a; Barne et al. 1998a; Barne et al. 

1996b; Barne et al. 1996c; Barne et al. 1998b; Southward et al. 1995). In the 

English Channel, sea surface temperature (SST) has been highly variable 

since 1950, with a cool period from the early 1960s to the mid 1980s and a 

clear increase over the last decade (Hawkins et al. 2009; Joyce 2006). 

Although North West European waters can be highly stratified (Austin et al. 

2006), SST represents water column temperatures because neritic waters are 

well-mixed. This region also encompasses the northern range boundary for 

southern warm temperate species at the edge of their thermotolerance (Crisp 

& Southward 1958; Lewis 1964; Southward et al. 1995).  
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6.3.2. Species distribution data and temperature envelopes 

Species range boundary location data before and after 1990 were collated 

for five species that were known to have range boundaries eastwards of 

Lyme Regis (50.7080oN, 02.9764oW) along the south coast (Fig. 11) and to 

represent different pelagic larval durations (MarLIN 2008).  

 

 

 

 

Fig. 11. Range extent of four warm temperate intertidal rocky shore invertebrate 

species along the south coast of England (Hawkins et al. 2009; Herbert et al. 2009; 

Mieszkowska et al. 2006). Solid line = range extent to before 1990; dotted line = 

eastwards range expansion 1990-2009. Chthamalus spp. experienced no range 

expansion during this period. Grey circles are locations of CEFAS monitoring 

stations along the south coast used to predict expected range boundaries. 

Numbers listed below the locations are annual mean sea surface temperatures 

(SST) in degrees centigrade for, from top to bottom, time-averaged periods of 

1991-1995, 1996-2000, 2001-2004. Frequency and length of monitoring varies 

amongst stations. 
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These species were the molluscs Gibbula umbilicalis (larval duration 

≤ 7 days), Osilinus lineatus (larval duration ≤ 7 days) and Patella depressa 

(larval duration ≤ 14 days) and barnacles Chthamalus montagui and C. 

stellatus (larval duration ≤ 28 days). The barnacles have similar range 

boundaries and have been combined. Despite differences in the estimated 

pelagic larval duration of the barnacles (Burrows et al. 1999), both represent 

an extended larval phase relative to the other three species. Range boundary 

data were collated from published literature (Hawkins et al. 2009; 

Mieszkowska et al. 2006) and field surveys conducted in 2008-2009 that 

involved 5 x 3 minute searches for Osilinus and Gibbula and quadrat 

surveys for Patella and Chthamalus montagui and C. stellatus. I defined the 

edge of the range as the most easterly breeding population. Range expansion 

was examined from 1990 for two reasons: (1) 1961-1990 baseline climate 

data is a widely accepted time average (Jenkins et al. 2009) because the 

constant trend of rising SST began after 1990, supported by the use of these 

data as a baseline for all UKCP09 future forecasts (Murphy et al. 2009) and, 

(2) recent SST data were only available up to 2004.  

Temperature boundaries were determined for each of the four 

species based on the pre-1990 distribution and UKCP09-derived SST data 

time-averaged for 1961-1990 at a resolution of 12 km (Lowe et al. 2009). 

Shapefiles were interpolated using nearest neighbour to produce a 

continuous surface of SST, and rocky shore centroids were intersected with 

this layer to determine SST at each shore during the historical time-averaged 

period. I tested which of three SST variables (mean annual SST, mean 

winter SST and mean summer SST) was the best indicator of historical 

species presence-absence with a point-biserial correlation (Tate 1954). This 

method is appropriate when one variable is dichotomous and the other 

variable is continuous. Only one of these variables was used to indicate 

distribution because there was very high multi-colinearity amongst them. 

Logistic regression was performed for species presence-absence regressed 

on the best indicator using the ‘glm’ function with binomial family in R (R 

Development Core Team 2008). The regression result was used to obtain 

the SST at a 0.5 probability of occurrence (where SST0.5 = - α/β), which is a 

typical cut value (Pampel 2000). Using this cut value, here representing SST 
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tolerance, for southern species I predicted that species will be present at SST 

above the tolerance value and absent below. 

  

 

 

Fig. 12. Centroid locations of 86 rocky shore patches along the south coast of 

England from the western, central and eastern Channel. The centroid for each of 

these 86 patches were larval release locations within the particle tracking model 

simulations. Patches represented in panels overlap to provide full representation of 

the coastline. 
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To determine the expected distribution if species had effectively 

tracked the change in SST, I first calculated shortest geographic distance 

through water between all rocky shore patches digitally mapped within 

ArcGIS v.9.2 (Fig. 12; ESRI 2006). Mean speed of water flow was 

calculated from the hydrodynamic model (see below) and was combined 

with the shortest geographic distance and pelagic larval duration to establish 

potential connectivity of rocky shore populations in the absence of barriers. 

Finally, these tolerance values were combined with SST data for 1990 – 

2004 to determine the expected distribution for three time-averaged periods: 

1991-1995; 1996-2000; 2001-2004. Current SST was obtained from CEFAS 

(Joyce 2006). These point data are used by UKCP09 reports when exploring 

trends since the 1961-1990 baseline, and represent the best available for the 

area. The CEFAS SST data was obtained from five monitoring stations in 

the study region (Fig. 11), which from west to east were Weymouth; 

Bournemouth; Eastbourne; Dungeness and Dover.  

 

6.3.3. Hydrodynamic model and particle tracking module 

Hydrodynamics were simulated with a well validated and calibrated 

hydrodynamic model (ABP Marine Environmental Research 2008) supplied 

by ABP Marine Environmental Research Ltd (ABPmer) MIKE21 Flow 

Model version 2008 from the MIKE Zero software, as developed by the 

Danish Hydraulic Institute (DHI). Model bounds were 51°33’N 05°35’W, 

51°15’’N 03°00’E, 48°23’N 05°34’W, and 48°60’N 02°28’E. The 

resolution of the model was 1200 m x 1200 m. Model parameters included a 

time step of 30 secs and an eddy viscosity (µ) of 0.5 m2s-1 was used based on 

a velocity based Smagorinsky formula (Table 9). The projection used was 

the British National Grid OSGB_1936. The first 12 hours of the simulation 

were used as a necessary warm-up period. Bathymetry data were compiled 

from numerous sources and boundary conditions were derived from the 

Proudman Oceanographic Laboratory’s CS3 continental shelf model. Use of 

the HD simulation offline within the particle-tracking module (PT) ensured 

standardised hydrodynamics for all PT simulations. Particles were released 

at a rate of 100 particles per time step (30 secs) for the first 50 minutes, so 

every time step after this tracked 10,000 particles.  
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Table 9. Hydrodynamic model parameter settings (ABPmer) 

 

Parameter Value or Range 

Time-step 30 secs 

Bed Friction  (space varying Manning number)  17-40 m
-3

s
-1
 

Eddy Viscosity (velocity based Smagorinsky formula)  0.5 m
2
s

-1
 

Flooding depth 0.3 m 

Drying depth   0.2 m 

 

 

Larval transport simulation was achieved with the MIKE 21/3 

Particle-Tracking module (DHI), which uses a Lagrangian ‘random walk’ 

technique. The HD simulation was used offline to provide the advection 

term for the particle tracking module (PT), from a start point of 00:00:00 1st 

August 2009, coinciding with seasonality of larval production. I simulated 

release of 10,000 larvae from each of 86 rocky shore patch centroids along 

the south coast of England (Fig. 11). This model was suitable for studying 

larval transport because it included the minimal requirements for assessing 

connectivity, which are an accurate flow field, locations and time of larval 

release, location of potential settlement sites, pelagic larval duration, pre-

competency and competency periods (North et al. 2009; Siegel et al. 2003). 

Larval mortality rate and specific numbers of larvae released from each site 

were not included in the model because of the large errors surrounding the 

estimated values.  

Particle (larval) mass and horizontal dispersion coefficient were 

tested for sensitivity using simulations in which individual parameter values 

were varied. Sensitivity simulations were based on larval release from eight 

rocky shore source locations that were the shores used for recruitment 

surveys (see Appendix IV). The starting value for larval mass was based on 

0.75µg dry mass (minimum wet mass; O'Riordan 1992), which was then 

converted to  wet mass using factor of 9.1 based on wet/dry ratio of 

zooplankton (Kjelson et al. 1975). This formulation yielded a larval mass of 

6.825 µg. The sensitivity test was conducted over five orders of magnitude 

from 0.0625 µg to 682.5 µg. Initial horizontal dispersion is notoriously 
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difficult to determine without the use of extensive field-testing with drogues 

(Gawarkiewicz et al. 2007), therefore the initial value was set to 0.1 m2s-1 

following expert advice (personal communication, HR Wallingford). The 

sensitivity test varied the dispersion coefficient over five orders of 

magnitude, from 0.01 m2s-1 to 100 m2s-1. This model was suitable for 

studying larval transport because it included the minimal requirements for 

assessing connectivity, which are an accurate flow field, locations and time 

of larval release, location of potential settlement sites, pelagic larval 

duration, pre-competency and competency periods (North et al. 2009; Siegel 

et al. 2003). Larval mortality rate and specific numbers of larvae released 

from each site were not included in the model because of the large errors 

surrounding the estimated values. 

For further critique of the hydrodynamic model and its particle 

tracking module, I refer the reader to section 7.4.3 within Chapter 7 (p. 

178). 

 

6.3.4. Recruitment surveys and particle tracking validation 

The particle tracking module was validated with Chthamalus spp. 

recruitment data for eight rocky shore patches. These were visited in June 

2009 and 45 areas of 5 cm x 5 cm were cleared of adult barnacles at each of 

three tidal heights on each shore. On each shore I cleared 45 areas at five 

locations at each of three tidal heights on each shore. The clearings ensured 

that adult barnacles did not prevent recruitment through a lack of space – 

one of the key resources for sessile intertidal invertebrates. These sites were 

revisited during September and October 2009 following the August 

breeding season, during which time larvae would have completed the 

pelagic phase and settled. Cleared areas were digitally photographed within 

a quadrat and number of Chthamalus spp. recruits were later counted from 

these photographs.  

During the validation process the observed recruitment was 

compared to expected recruitment according to the simulations combined 

with an estimated larval release for each shore. Such comparisons can 

provide highly consistent validation of larval transport models without 

explicit knowledge of larval origin (Werner et al. 2007). Estimated larval 
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release was calculated by estimating the area (actual length x 50 m), 

multiplying this by adult density per m2, and then multiplying this by an 

expected brood size per adult of 1,000 larvae (Herbert et al. 2007). The 

settlement of larvae estimated for each of the eight shores and the 

recruitment were tested for rank order correlation with a Spearman’s test. 

 

6.3.5. Identification of dispersal barriers 

The particle tracking simulation results provided the geographical location 

of each larva at each time step. From these data I extracted the larval 

locations from time steps for 5 – 7 days, 12 – 14 days and 26 – 28 days from 

the start of the simulation to represent the competent larval phases of the 

model species (MarLIN 2008). Larvae were, therefore, only recorded as 

enabling connectivity between populations if they reached the other rocky 

shore during the competent phase (Gaylord & Gaines 2000). Settlement on a 

shore was recorded if a particle moved within a 500 m buffer zone 

surrounding a rocky shore patch. Only the first patch reached within this 

competency period was recorded for each particle. Following the 

recommendation of North et al. (2009) this information was used to 

populate a matrix where sources (i) were across the top of the matrix and 

endpoints were down the side of the matrix (j), with number of larvae from 

patch i that reach patch j at a competent larval stage recorded in cell i,j.  

This matrix was converted to a transition probability matrix (TPM) 

by dividing the number of particles by 10,000. I created a TPM for each 

pelagic larval duration (North et al. 2009). The TPMs were used to create 

three corresponding networks using a combination of Pajek (Batagelj & 

Mrvar 1998) and the ‘igraph’ package (Csadri & Nepusz 2006) in R. The 

use of networks to assess connectivity is increasingly advocated as an 

appropriate tool for use in ecological studies (Treml et al. 2008; Urban & 

Keitt 2001). The networks provided a visual representation of connectivity 

amongst rocky shore patches and were assessed for the number of network 

components, which are self-contained sections of the network. The number 

of larval transport barriers equals the number of components minus 1.  
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6.4. RESULTS 

6.4.1. Climate tracking 

Point biserial correlation coefficients indicated that time-averaged SST data 

were highly related to pre-1990 distribution limits (Table 10). Mean annual 

SST was the best indicator of historical distribution for all species. The two 

topshells, Osilinus lineatus (rs = 0.876, p < 0.001) and Gibbula umbilicalis 

(rs = 0.833, p < 0.001), showed the highest correlation with mean annual 

SST, followed in order by Patella depressa (rs = 0.736, p < 0.001) and 

Chthamalus spp. (rs = 0.509, p < 0.001).  

 

 

Table 10. Point biserial correlation coefficients (rpb) and associated significance 

values. Significant results at p < 0.001 are marked in bold. 

 

 
Osilinus 

lineatus 

Gibbula 

umbilicalis 

Patella 

depressa 

Chthamalus 

spp. 

Annual mean SST (°C) 

rpb 0.876 0.833 0.736 0.509 

p <0.001 <0.001 <0.001 <0.001 

Winter mean SST (°C) 

rpb 0.873 0.742 0.644 0.415 

p <0.001 <0.001 <0.001* <0.001 

Summer mean SST (°C) 

rpb -0.086 0.024 0.040 0.113 

p 0.429 0.822 0.717 0.302 

 

 

 

Logistic regression analysis provided a model with which to predict SST 

minimum tolerance values for species occurrence along the south coast (Fig. 

13; Table 11). When these tolerance values were combined with 1990-2004 

SST data, all four species were projected to occur along the entire southern 

English coast by 1996. The current distributions indicate that this is not the 

case, therefore, predicted species distributions based on annual mean SST 

have not been fulfilled.   
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Fig. 13. Logistic Regression plots for all four species. Presence-absence of species 

is regressed on sea surface temperature (SST). The association of Osilinus 

lineatus with SST is not as clear cut as for Gibbula umbilicalis and Patella 

depressa. Chthamalus spp. occurs almost ubiquitously, therefore the regression 

line does not reach a probability of 0. 
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Table 11. Sea surface temperature (SST) tolerance values for the four study 

species according to logistic regression results and associated expected range 

expansions. Range expansion prevented is the percent of the expected range 

expansion that was not achieved. 

 

Mean annual 
SST tolerance 
value (ºC) 

Expected range 
expansion (km) 

Observed 
range 

expansion 
(km) 

Percentage of 
expected range 

expansion 
achieved (%) 

Osilinus lineatus 

12.03 384 63 16 

Gibbula umbilicalis 

11.53 243 141 58 

Patella depressa 

11.48 225 23 10 

Chthamalus spp. 

11.41 202 0 0 

 

 

6.4.2. Dispersal Barriers 

Larval settlement of Chthamalus spp. predicted by the model was found to 

be significantly positively correlated with recruitment (rs = 0.786, p = 

0.028) observed in the field in 2009, providing verification of model output. 

The simulations indicated that there are hydrodynamic barriers to larval 

dispersal. The number of barriers reduced as pelagic larval duration 

increased (Fig. 14), as revealed by network analysis. For species with a PLD 

of 7 days there were 28 barriers, for 14 days there were 17 barriers and for 

28 days there were 8 barriers. A particularly large barrier was found 

separating the eastern sites from all other sites. Model simulations 

demonstrate that this is due to a circular hydrodynamic feature (gyre) east of 

the Isle of Wight causing larvae to be deflected to sea rather than return to 

shore (Fig. 15). The larval transport barriers suggested by the model all 

coincided with species range boundaries, which are all located immediately 

westwards of a barrier. 
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Fig. 14. Locations of larval transport barriers along the south coast of England for species 

with pelagic larval duration of a) 5-7 days (Osilinus lineatus, Gibbula umbilicalis), b) 12-14 

days (Patella depressa) and c) 26-28 days (Chthamalus spp.). Barriers are represented in 

black along a bar that corresponds to the length of the English Channel with the coastline 

illustrated above. Black barriers that do not reach the top or bottom of the bar are those 

where one patch is unconnected but patches around it are connected to each other. Within 

the network, barriers are divisions between network components. Network components with 

≥ 4 nodes are illustrated and are enclosed within a dashed line on the seaward side of the 

coastline with the approximate geographical location indicated with an arrow. The Isle of 

Wight is shown as a horizontally split section of the bar where the top section represents the 

coast above the Isle of Wight and the bottom section represents the Isle of Wight and 

waters to the south. Eastern Channel patches are not connected to any other patches. 
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Fig. 15. Model output depicting movement of particles (black circles) at four points 

in time following release from rocky shore patch 72 (red star; Fig. S1) on the 

eastern tip of the Isle of Wight. Larval movement is influenced by a hydrodynamic 

barrier in the form of a gyre to the east of the Isle of Wight, which separates 

eastern Channel sites from all other sites. Larvae form an arc shape as the gyre 

creates a circular movement of water. Blue colours indicate water depth (light blue 

= shallow, dark blue = deep). 
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6.5. DISCUSSION 

This study is the first to explicitly demonstrate long-suspected (Crisp & 

Southward 1958) limitations imposed by physical barriers to climate-

induced range shifts of species, by a combined approach of long-term 

empirical data and hydrodynamic modelling. The results indicate that 

bioclimatic envelope models may be currently overestimating climate-

induced range shifts by 42% to 100% over the 20 year timescale examined 

here. Therefore, bioclimatic envelope models are likely to have 

overestimated the ability of species to track climate change and 

underestimated the magnitude of the threat to biodiversity (Botkin et al. 

2007; Pearson 2006). The potential magnitude of this effect is demonstrated 

by the analyses presented by Thomas et al. (2004) based on bioclimatic 

envelope modelling of a wide range of species. Their results suggested 

species loss of 21-23% when unlimited dispersal was assumed, which rose 

sharply to 38-52% with the assumption of zero dispersal. The analysis has 

also demonstrated the individualism of species responses according to 

differential life history traits, highlighting that connectivity is species 

specific.  

In addition, it could be argued that the presence of dispersal barriers, 

as demonstrated here, could lead to underestimates of the ability of species 

to tolerate changing conditions. In the past, a species may have failed to 

reach a climatically suitable area owing to dispersal barriers preventing 

spread to all suitable locations from the site of speciation. This issue is 

routinely considered in the context of species richness gradients and has 

received much support (Willig et al. 2003). Therefore, climate envelopes 

based on current distributions without reference to dispersal barriers are 

likely to underestimate the extent of tolerable conditions.  

The study species have not expanded to all climatically suitable 

areas according to logistic regression modelled on sea surface temperature 

(SST) and historical distribution. Therefore, I accept the hypothesis that 

these species have not fully tracked climate change. However, the use of 

one variable to create an envelope for the climate tracking analysis was not 

ideal (see section 7.4.3 of Chapter 7, p. 180) and the location of range 
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boundaries along an established gradient will inevitably lead to a correlation 

with species distribution, regardless of whether it is causal. Despite this, I 

am confident that in this case SST was the primary causal factor owing to 

previous analyses of range boundaries for these species that indicate SST-

limited northern and eastern boundaries in Great Britain (Hawkins et al. 

2009; Mieszkowska et al. 2006). The strongest evidence comes from the 

temporal ‘sign-switching’ (i.e. opposite responses to cooling and warming 

periods) demonstrated during the severe winter of 1962-63 when southern 

species experienced a southwards and westwards retraction of range 

boundaries (Crisp 1964) because this is a recognised diagnostic for climate 

change responses (Parmesan & Yohe 2003). 

According to our model simulations, connectivity amongst rocky 

shore patches is interrupted by barriers to larval transport, indicated by the 

network analysis of model output. The most prominent barrier to the east of 

the Isle of Wight also coincides with a lack of suitable rocky shore habitat 

(Herbert & Hawkins, 2006). The relative importance of hydrodynamic 

barriers and habitat availability in determining range shifts is difficult to 

elucidate using the approaches adopted here, although clearly both factors 

could have been influential. Limitations in habitat availability can have 

strong effects on the ability of species to shift range distribution (Poyry et 

al. 2009). A coincidence of limited habitat availability and hydrodynamic 

features can potentially strengthen the impact of such barriers. However 

lack of habitat availability does not negate the hydrodynamic basis of this 

barrier, because animation frames of model output demonstrate that the 

hydrodynamic impact on the track of larval transport would prevent onshore 

settlement, even in the presence of suitable habitat.  

Larval transport barriers suggested by the hydrodynamic model 

coincide with 2009 species range boundaries, which are all located 

immediately westwards of a barrier. This implies that hydrographic features 

have posed barriers to larval transport over the past 15 years, supporting 

previous suggestions that range borders can be limited by oceanographic 

boundaries (Byers & Pringle 2006). However, the strength of these barriers 

varies amongst species. Osilinus lineatus traversed the barrier of Chesil 

Beach and Portland Bill (patches 50 - 52) and Gibbula umbilicalis has 
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achieved larval transport into the eastern Channel (beyond patch 78). Both 

of these species have short pelagic phases and have experienced increased 

reproductive success with increased temperature at the northern range edge 

(Mieszkowska et al. 2007; Mieszkowska et al. 2006). The range expansion 

of these trochids may have been facilitated by a short pelagic larval 

duration. Byers & Pringle (2008) suggest this life history trait increases 

retention and decreases the influence of prevailing current, which in turn 

increases the likelihood of range expansions upstream. This is further 

supported as barriers to connectivity in the ocean are recognised as ‘leaky’ 

(Gaines et al. 2007; Gaylord & Gaines 2000). Rather than preventing all 

propagule movement, act by allowing greater flow of propagules in one 

direction than another (Gaines et al. 2007; Gaylord & Gaines 2000). In 

contrast, the longer larval durations of the limpet and barnacles experience a 

greater influence from meso-scale hydrodynamics, which in this case would 

transport larvae away from the coast and prevent range expansion. Once G. 

umbilicalis overcame the hydrodynamic barrier, the species would have 

been further inhibited by the lack of suitable rocky shore settlement sites in 

the vicinity. A possible explanation lies in the recent construction of 

artificial sea defences along this stretch of coast, which could potentially be 

used as additional habitat. G. umbilicalis has been observed on these 

structures, which have been previously suggested to facilitate range 

expansion, acting as stepping stones between rocky shores (Hawkins et al. 

2009; Mieszkowska et al. 2006; Mieszkowska et al. 2005).  

The limitations on the climate tracking response due to dispersal 

capability were suggested as a limiting factor in range shifts of Proteaceae 

in the Cape Floristic Region of South Africa (Midgley et al. 2006), and 

migration rates of tree species towards the end of the glacial period in 

Europe (Pearson 2006). Therefore, dispersal limitations based on maximum 

dispersal distance according to life-history traits have been demonstrated 

within these analyses. However, in these analyses, environmental barriers 

were not considered. This paper demonstrates that consideration of this 

additional factor can lead to the opposite outcome, whereby the species with 

shortest dispersal distance in fact has the greatest capacity for range 

expansion. Thus, in addition to consideration of maximum dispersal 
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distances, explicit consideration of dispersal barriers, and individualistic 

species responses to these barriers, is crucial to increasing the understanding 

of range shifts.  

The crucial factor determining the number of dispersal barriers 

appears to be the pelagic duration of the dispersive larval stage of the 

species. However, increased connectivity with longer larval duration does 

not account for the influence of life history traits. This is clearly here 

because the species with the longest pelagic larval duration (Chthamalus 

spp.) was less able to overcome hydrodynamic barriers and track climate 

than species with short larval durations. Furthermore, other factors are likely 

to influence the ability of a species to settle successfully, for example, 

barnacle larvae settle gregariously and as a result may experience Allee 

effects.  

Results suggest that hydrographic features can limit to the ability of 

species to track climate change and that these limitations are species 

specific. The widely held assumption that marine species will be able to 

track climatic change must be rethought and alternatives considered. 

Connectivity is dynamic and could be altered by climate change, for 

example, SST is negatively correlated with pelagic larval duration 

(O'Connor et al. 2007). Future climate change has the potential to modify 

dynamic barriers further through altered ocean currents, sea level rise and 

changing weather patterns (Solomon et al. 2007).  

Bioclimatic envelope models should be improved through inclusion 

of physical barriers in addition to maximum dispersal distance, to increase 

their value for managing future threats to biodiversity. Greater awareness is 

also needed of the potential limitations of envelope models, which as noted 

here, could lead to either overestimation or underestimation of future range 

shifts, given the potential presence of dispersal barriers. In addition, these 

results demonstrated the individualism of species responses to climate 

change as a result of differential life history traits. Habitat connectivity is 

species specific, and this should be borne in mind when developing 

conservation strategies and plans (Grantham et al., 2003; Hodgson et al., 

2009).  
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Part II. Sea level rise alters population connectivity  

of marine larvae  

 

6.6. ABSTRACT 

I demonstrate that projected sea level rise may alter larval connectivity 

among marine populations. I used a hydrodynamic modelling approach to 

simulate larval dispersal and tested the impact of bathymetric changes, 

comparing low and high scenarios for 2050 to 2009. Bray-Curtis similarity 

coefficients and network analysis demonstrated that connectivity between 

populations of rocky shore invertebrates increased with projected sea level 

rise in the English Channel, dependent on the duration of the pelagic larval 

phase. Sea level rise is therefore likely to affect patterns of distribution of 

pelagic species within four decades. 

 

6.7. INTRODUCTION 

Impacts of sea level rise on biodiversity have been little explored in 

comparison with other aspects of climate change. However, estimates of the 

magnitude of projected sea level rise are being rapidly revised upwards 

(Rahmstorf 2007), emphasizing the importance of evaluating its potential 

impacts on biodiversity. Whilst analyses of the impact of sea level on 

reduction of intertidal habitat area are readily available (Keller et al. 2009; 

Virah-Sawmy et al. 2009), to my knowledge, no analyses have addressed 

the potential impacts of forecasted sea level rise on larval transport and the 

connectivity of marine habitats. This suggests there is a critical knowledge 

gap regarding projected effects of sea level rise on marine realms beyond 

the intertidal. 

The consequences of sea level rise on marine realms are most likely 

to be experienced through an impact on connectivity. Recent evidence has 

demonstrated that species within marine populations lie on a continuum 

from fully open, connected populations to fully closed, unconnected 

populations (Cowen et al. 2007). Connectivity is an essential requirement 

for ensuring continued propagule supply for sink populations and the 
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persistence of metapopulations (Cowen et al. 2007). Munday et al. (2009) 

suggested that sea level rise could alter local current patterns on reef flats, 

subsequently affecting larval connectivity. To my knowledge, sea level rise 

has received no research attention in the context of connectivity.  

Here I determine whether sea level rise will alter population 

connectivity in the English Channel, by testing the hypothesis that 

simulations of larval connectivity for species with varying pelagic larval 

durations (time spent in water column prior to settlement) with 

hydrodynamics modelled with sea level observed in 2009 are different to 

those modelled on low and high UKCP09 emission scenarios for 2050 sea 

level rise. I then use network analysis to further quantify differences in 

connectivity with increasing sea level, to test whether changes would be 

observed in (i) larval exchange, (ii) the number of connections into and out 

of rocky shore patches, (iii) the number of larvae supplied and received by 

each rocky shore patch, and (iv) the number and location of cut-nodes in the 

network.  

 

6.8. METHODOLOGY 

For information on the hydrodynamic modelling approach, including 

validation and sensitivity analysis, see Chapter six Part I and Appendix IV. 

Sea level rise projections were incorporated into the model by increasing the 

bathymetry at all grid cells by the projected value for UKCP09 low (+ 190 

mm) and high (+ 270 mm) emissions scenarios (Lowe et al. 2009) for the 

year 2050 for the south coast of England. Particle tracking simulations were 

run for the three scenarios, from 86 rocky shore patches, releasing 10,000 

particles in each simulation. Mean proportion of larvae exchanged between 

rocky shore patches during larval competency windows (i.e. larvae capable 

of settlement) for three pelagic larval durations (PLD; 7 days, 14 days, 28 

days) were recorded.  

 

6.8.1. Connectivity and network analysis 

Results from the particle tracking simulations were used to complete 

transition probability matrices (TPM) for each scenario for three pelagic 
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larval durations, assuming larval competency in the final two days of the 

larval phase (5-7 days, 12-14 days, 26-28 days). The nine TPMs (2008 x 3 

PLDs, 2050 Low x 3 PLDs, 2050 High x 3 PLDs) were tested for any 

differences by determining the Bray-Curtis similarity coefficient (Clarke et 

al. 2006), where similarity amongst the three sea level scenarios based on 

cell values (i,j) were compared for each larval duration.  

 TPMs were imported to Pajek (Batagelj & Mrvar 1998) and R (R 

Development Core Team 2009) to create connectivity networks (Treml et al. 

2008). Networks consisted of nodes (rocky shore patches) and edges 

(directed probability of connectivity i.e. proportion of released larvae 

exchanged). To determine the effect of sea level rise on the network, metrics 

were calculated for individual nodes on edge strength (mean strength of 

edges connected to that node), node betweenness (number of edges 

connected to that node), larvae received and larvae supplied. Wilcoxon tests 

were used to compare these metrics amongst the networks. Global network 

metrics were also compared, namely total number of edges (indicating larval 

exchange between patches), number of network components, proportion of 

nodes with loops (indicating larval retention), and proportion of 

reciprocated edges (indicating two-way larval exchange). Cut-nodes, when 

removed from the network, cause division of a component. I identified cut-

modes that created bi-components of ≥ 3 to ensure that this represented 

substantial disruption to the network (O'Connor et al. 2007).  

 

6.9. RESULTS 

Bray-Curtis similarity measures demonstrate differences between the 

scenarios for 7, 14 and 28 day pelagic larval durations (Table. 12). The 

greatest similarity for all larval durations was between the two 2050 

scenarios. The greatest difference for all larval durations was between the 

2009 sea level and the high 2050 scenario but 2009 and low 2050 scenarios 

also differed.  
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Table 12. Bray-Curtis similarity for matrix comparisons based on similarity of 
proportions within cells (i,j). PLD = pelagic larval duration. 

 

PLD 
2009 & 

Low 2050 

2009 & 

High 2050 

Low 2050 & 

High 2050 

7 88.6 84.4 94.4 

14 86.5 83.6 94.1 

28 92.5 89.4 95.9 

 

 

The majority of network metrics were not significantly different 

between scenarios (Table 13). However, edge strength was significantly 

different between the 2009 sea level and both sea level rise scenarios for the 

28d larval duration (2009 vs. low scenario V = 1232, p = 0.030; 2009 vs. 

high scenario V = 1271 p = 0.047). The 2050 sea level rise scenarios both 

had a greater number of positive ranks than the 2009 sea level, indicating an 

increase in edge strength with increased sea level. The only other significant 

node-based difference was the number of larvae received for the 2009 sea 

level and low 2050 sea level rise scenario for the 7d larval duration (V = 

1145 p = 0.049). 
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Table 13. Network metrics for individual nodes assessed for difference with 
Wilcoxon Matched Pairs tests. PLD = pelagic larval duration. 

 

Edge strength Betweenness Received Supplied 
PLD 

V p V p V p V p 

2009 & Low 2050 

1277 0.100 188.5 0.128 1145 0.049 1183 0.886 

2009 & High 2050 
7 

1362 0.117 167 0.637 1261 0.060 1132 0.654 

2009 & Low 2050 

2030 0.277 175 0.483 1237.5 0.860 1666 0.134 

2009 & High 2050 
14 

1994 0.467 122 0.432 1188 0.929 1515 0.367 

2009 & Low 2050 

1232 0.030 239 0.234 924.5 0.130 1184 0.107 

2009 & High 2050 
28 

1271 0.047 136 0.130 994 0.147 1146 0.071 

 

Global network metrics demonstrated a difference between pelagic 

larval duration but not between sea level scenarios. As time spent in the 

pelagic environment increased, model simulations demonstrated an 

increased number of connections between rocky shores (Fig. 16a), a 

decreased number of components (Fig. 16b), a decrease in rocky shores with 

loops (Fig.16c) and an increase in the number of edges that were 

reciprocated between nodes (Fig. 16d). The proportion of nodes with loops 

was much higher for the 7d larval duration than for either the 14d or 28d 

larval duration. In contrast, the edge reciprocity was much higher for the 

28d larval duration than for the other two durations.  
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Fig. 16. Network metrics for three pelagic larval durations (7 day = 7d; 14 day = 

14d; 28 day = 28d) and three sea levels (2009, Low 2050 scenario, High 2050 

scenario). Edges represent exchange of larvae between rocky shore patches, 

components are stand-alone sections of the network, proportion of nodes with 

loops represents rocky shore patches that show larval retention, and proportion of 

reciprocal edges represents those connections that go two ways. 
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Cut nodes were not present for the 7d or 14d larval duration but were 

identified for the 28d larval duration (Fig. 17). These cut nodes were centred 

around the western English Channel and Lyme Bay. No cut nodes occurred 

on the Isle of Wight or in the eastern Channel.  

 

 

 

Fig. 17. Cut nodes for bi-components of minimum size 3 nodes for species of 28 

day pelagic larval duration. Cut nodes were determined for each sea level rise 

scenario: 2009, Low 2050, and High 2050. Area of interest is shown in relation to 

its location within Great Britain (Ordnance Survey 2009). 
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6.10. DISCUSSION 

Sea level rise altered the connectivity of rocky shore patches, suggested by 

Bray-Curtis similarity coefficients. Although the magnitude of this 

dissimilarity is small, it is based on bathymetric changes only because the 

model resolution prevented consideration of coastal morphology change. 

The addition of this supplementary factor is likely to result in much greater 

hydrodynamic change because it could lead to breached dispersal barriers. 

However, this does not invalidate the usefulness of this study because the 

results demonstrated for the first time that sea level change has the potential 

to impact on the process of larval dispersal and recruitment of marine 

organisms.  

The increased proportion of exchanged larvae appeared to at least 

partially explain the difference in connectivity for species with a 28 day 

pelagic larval duration, as indicated by the Wilcoxon test on edge strength. 

This suggests that sea level rise will result in increased connectivity for 

these species. However, the use of graph theory for this analysis did not 

provide as much insight into connectivity changes as was originally 

anticipated (see section 7.4.3 of Chapter 7, p. 178). The number of rocky 

shore patches that were essential to maintain network connectivity was few, 

indicated by the cut-nodes analysis. Three patches split the network in one 

scenario and four patches split the network within all three scenarios. This 

suggests that establishing these shores as protected areas would be 

conducive to maintenance of connectivity and would be robust to forecasted 

sea level rise and its effect on bathymetry.  

Finally, one must consider the synergistic or additive effects of 

multiple climate change variables. Sea surface temperature increase has 

been demonstrated to decrease larval development time and thus decrease 

the length of pelagic larval duration (O'Connor et al. 2007). The difference 

suggested here in network metrics between pelagic larval durations suggests 

that a reduced larval duration combined with sea level rise could have a 

powerful synergistic effect on connectivity, and therefore the dynamics of 

metapopulations of pelagic species.  
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Chapter 7 

Discussion 

 

The impacts of environmental change on ecological communities are poorly 

understood relative to impacts on species (Gilman et al. 2010; Walther 

2010). As a result, our ability to forecast the impacts of environmental 

change on communities, and on individual species constrained by those 

communities, is seriously limited (Gilman et al. 2010). This forces the 

undesirable situation where conservation must act on the basis of limited 

scientific evidence (Sutherland et al. 2004). In particular, analyses of change 

in inter-community (beta-) diversity over time have remained elusive owing 

to a lack of suitable data with which to tackle these questions (Olden & 

Rooney 2006; Pullin & Salafsky 2010). In turn this has led to a paucity of 

conservation attention at the inter-community (beta-diversity) level. This 

thesis aimed to undertake a programme of research on the impact of 

environmental change on communities to contribute to this required 

evidence, and was novel in three key areas: (i) focus on long-term change, 

(ii) parallel investigations of marine and terrestrial ecosystems in same 

geographical area, and (iii) meso-scale.  

Compositional and relative abundance changes were detected in both 

the marine and terrestrial environment that led to a reduction in beta-

diversity revealed through biotic homogenization and assemblage 

convergence. Identification of these changes was facilitated by the 

application of a spatial meso-scale approach. I found no evidence for non-

analogous community formation from my analyses. The pattern of change 

was similar within both environments, however, differences were evident in 

the drivers and processes of the observed change in beta-diversity. In 

particular, woodland plant community composition was altered by non-

climatic environmental change whereas relative abundance of key structural 

and functional species within a rocky shore assemblage was closely 

correlated with an increase in sea surface temperature.  

 Rocky shore species appeared to demonstrate greater individuality of 

response in contrast to terrestrial species, indicated by the analysis of 
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community composition and abundance change. Further support for this 

supposition was obtained from the analysis of woodland metacommunity 

structure. Unfortunately, metacommunity structure could not be analysed 

for rocky shores owing to insufficient data. This exemplifies the role of data 

availability in the lack community level analyses and will be discussed 

further in a later section. Individualistic responses of rocky shore species 

were also evident in the analysis of climate tracking as different species 

tracked the rise in sea surface temperature to different extents owing to 

varying abilities to traverse potential barriers. These individualistic 

responses would result in changes in composition and relative abundance 

within communities. Larval connectivity was also affected by model 

simulations of sea level rise projected for 2050, adding to the case for a need 

to understand potential impacts of climate change to ensure robustness of 

protected area networks and diversity at higher levels of organisation. 

 In this chapter I will combine findings from across chapters to 

discuss impacts on environmental change within communities, between 

communities and within metacommunities. I follow this with a critique of 

the quality of evidence obtained within this thesis, with particular focus on 

the use of long-term data. Finally I conclude to what extent the aim of this 

thesis was achieved and suggest future research directions. 

 

7.1. INTRA-COMMUNITY CHANGE 

7.1.1. Objective 1. Apply the palaeoecological concept of non-analogous 

community formation to intra-community impacts of environmental 

change  

Has this been addressed in conservation legislation? 

Following a review of the literature it was clear that although the formation 

of non-analogous or novel communities had been considered, the concept 

had not been applied explicitly to modern ecology and its potential 

consequences for conservation had not been outlined. Despite this, the 

palaeoecological evidence provided a strong suggestion that such 

communities would form in the current era of environmental change 

(Williams & Jackson 2007; Williams et al. 2007). I considered the 



 

 163

consequences of non-analogous communities (NACs) for conservation 

legislation, which had not been considered previously (Keith et al. 2009b).  

Prior to this thesis, NACs had only received brief mention within 

recent climate change impacts literature (e.g. Berry et al. 2002). However, 

recent literature appears to have recognised the importance of this 

consequence as focus on community level impacts of environmental change 

has increased. A recent forum paper suggested that attempts to maintain 

existing community composition will inhibit effective conservation 

(Hodgson et al. 2009). In addition, Walther (2010) reviewed community 

responses to recent climate change and emphasised the formation of NACs 

as a result of range shifts and changes in community composition. Finally, 

Gilman et al. (2010) advocate a community module framework to 

understand the potential impacts of environmental change on species 

interactions, and suggest we can expect a ‘re-mixing’ of interactions, which 

could itself create changes in species distributions and thus NACs. This 

view of altered interactions as a precursor to altered composition and NACs 

is extremely interesting and would be enlightening to pursue. Furthermore, 

novel species combinations would lead to novel interactions between 

species that have not co-evolved and therefore could have dramatic effects 

on species fitness (Gilman et al. 2010).  

 

Is there evidence for its recent occurrence? 

Despite the expectation for NACs to be detectable after 70 years of 

environmental change, the analysis of communities within the woodland 

dataset found no evidence of NAC formation (Chapter 3; Keith et al. 

2009a). This was especially unexpected because beta-diversity loss is 

associated with a reshuffling of communities, although in this case, it 

occurred within the bounds of existing community types (Keith et al. 

2009a). In contrast, a rare analysis identified NACs on Marion Island as 

plant species individualistically shifted their altitudinal range in response to 

warming temperatures since 1966 (le Roux & McGeoch 2008). This 

suggests that the time-scale of my analysis does not explain the lack of NAC 

detection. The relative isolation of species in the modern era compared with 



 

 164

during previous climate change episodes could partly explain this result 

because individualistic responses may be restricted through inhibition of 

dispersal (e.g. Clark et al. 2010). On Marion Island this was unlikely to be 

restrictive because the Island is remote.  

The Marion Island analysis and Chapter 3 findings are in 

contradiction and thus highlight the requirement for conservation to be 

based on a substantial foundation of evidence. Although NAC formation is 

thought likely in light of palaeoecological evidence, the vulnerability of 

communities to its occurrence appears to be variable because the results 

from these two analyses are contrasting. Therefore, a future direction for 

research may be to determine the factors that contribute to vulnerability of a 

community to convert to a NAC. An additional area of interest here is the 

scaling up of NACs to the metacommunity level. It would be interesting to 

determine whether NACs at the local scale result in a non-analogous 

metacommunity. The results of Chapter 5 demonstrate robustness of 

metacommunities to change in community composition and beta-diversity 

loss, therefore, in the absence of introduced species, one could expect that 

metacommunities are resistant to non-analogy. 

 

7.2. INTER-COMMUNITY CHANGE 

7.2.1. Objective 2. Assess the extent of change in inter-community (or 

assemblage) diversity in southern England over multiple decades as a 

result of environmental change. 

Comparative to intra-community change, inter-community change has been 

little considered. Within a recent review of community and ecosystem 

responses to climate change there was no mention of beta-diversity (Walther 

2010), despite increasing support for its loss (Olden 2006). An explanation 

may be sought in the use of space for time substitutes and comparison of 

extant species pools for the majority of this evidence. Such methods of 

analyses are necessary given the lack of suitable data but are not as clear as 

comparisons of two points in time and therefore may not be as easily 

assimilated into conservation. Chapter 3 and 4 have contributed to direct 

evidence for beta-diversity loss. 
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Has inter-community diversity of woodland plant communities in southern 

England changed over 70 years? Has inter-assemblage diversity of 

temperature-sensitive intertidal rocky shore invertebrates in southern 

England changed over 50 years?  

Woodland plant communities (Chapter 3) and intertidal invertebrate 

assemblages (Chapter 4) experienced a reduction of beta-diversity, 

demonstrated by biotic homogenization or assemblage convergence. The 

expectation is that this pattern will be observed across taxa and will be 

global phenomenon (Olden 2006; Olden et al. 2004), however, there is a 

need for more supporting evidence from the marine environment before this 

expectation is shown. Evidence is accumulating across many terrestrial 

habitats and taxa, including plants (Britton et al. 2009; Castro & Jaksic 

2008b; Magee et al. 2008; Van Calster et al. 2007; Vellend et al. 2007), 

birds (Devictor et al. 2008; Van Turnhout et al. 2007), and freshwater fishes 

(Olden & Poff 2004), and here I provide a step towards evidence for biotic 

homogenization in the marine environment. In contrast to the results within 

this thesis, a substantial proportion of previous analyses demonstrate a 

pattern of biotic differentiation (Marchetti et al. 2006; Olden et al. 2008; 

Qian et al. 2008) or no change, known as biotic tracking (Castro & Jaksic 

2008a). This highlights the need to test the concept in as many different 

habitats and with as many different taxa as possible because responses are 

likely to differ (Dormann et al. 2007).  

I hesitate to refer to the convergence of intertidal invertebrates as 

biotic homogenization because although the definition of biotic 

homogenization is such that it refers to a “biological variable” (Olden et al. 

2004), there was a common misconception that it can only refer to a 

community. This misconception does make ecological sense, however, 

because the importance of a selected group of species converging in their 

presence and relative abundances is most likely to have little significance. 

However, although the assemblage was comprised of only ten species 

(owing to data limitations that will be expanded upon in a later section), 

these species have key structural and functional roles in the rocky shore 

community, thus their convergence may be indicative of wider biotic 
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homogenization. Furthermore, these species are temperature sensitive and 

can therefore be recognised as indicators of species for the community. To 

avoid unconventional usage I shall continue to refer to the observed change 

as assemblage convergence but suggest consideration of its wider 

implications. Despite this, no evidence currently exists for biotic 

homogenization within the marine environment (although habitat 

homogenization has been demonstrated; Airoldi et al. 2008; Olden et al. 

2004) and therefore this work is a valuable start to the biotic 

homogenization research agenda (Olden 2006). 

 

Is this reflected by intra-community diversity? 

Regardless of this loss of beta-diversity from woodland plant communities 

and a loss of species from the regional pool (gamma-diversity), the species 

richness within communities (alpha-diversity) did not significantly change. 

The analysis of intertidal assemblages demonstrated a pattern of slightly 

increased alpha-diversity. Gamma-diversity could not be assessed in this 

case because I did not have data on all species within the pool. Therefore, 

there was no loss of alpha-diversity in either environment. This is in contrast 

with other research on biotic homogenization that identified local extinction 

and reduced alpha-diversity as the process of homogenization (Rooney et al. 

2004) and demonstrates that the conservation implications of changes in 

beta-diversity are unclear.  

It has been previously acknowledged that parallel trends are not 

necessarily indicated by different measures of biodiversity (Sala & 

Knowlton 2006), and that measures of only point diversity (i.e. alpha) can 

cause beta-diversity changes to remain unnoticed (Hillebrand et al. 2010). 

Taken together, this exemplifies the need for meso-scale analyses that 

consider multiple organisational levels. Whittaker et al. (2001) suggested a 

hierarchical top-down approach to species diversity that considers alpha, 

beta and gamma-diversity. However, one could alternatively argue that 

large-scale patterns are the result of a collection of smaller scale processes 

and therefore understanding will come from a bottom-up approach. In 
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criticism, this argument ignores the potential for emergent properties 

(Gaston & Blackburn 1999; Woodward et al. 2010). 

 

What are the environmental drivers of the observed change? 

Although there was similarity in pattern, the drivers and processes behind 

the loss of beta-diversity demonstrated differences. Homogenization of the 

woodland communities appeared to be driven by increased nitrogen 

deposition and decreased light availability, with no discernable impact of 

climate. This was, however, based on indirect measurements of the 

environment, i.e. Ellenberg indicator values, suggesting a potentially 

circular argument. However, the use of indicator species as environmental 

proxies is a well established practice (Hill et al. 2004). The degradation 

appeared to be across the majority of communities and therefore 

environmental gradients were also homogenized. More specifically, the 

change in environment is indicative of habitat degradation rather than loss, 

and this is supported by the lack of change in alpha-diversity which would 

be expected according to species-area relationships if habitat had reduced 

(MacArthur & Wilson 1967), assuming there was no extinction debt 

(Jackson & Sax 2010). However, extinction debt is a possibility in this case 

because it was demonstrated to still be owed after 70 years of habitat 

fragmentation by a grassland plant community (Helm et al. 2006).  

The convergence of intertidal assemblages was correlated with 

increased sea surface temperature. Use of a temperature sensitive 

assemblage increased confidence in the attribution of these changes to 

increased sea surface temperature, however, the attribution is nonetheless 

based on correlation preventing definitive cause and effect. The changes are 

affected because the range distributions of southern species have expanded 

eastwards, appearing to track the gradient of sea surface temperature, which 

in the English Channel grades from warm waters in the west to colder 

waters in the east. Evidence is available from single species analyses that 

support this view (Hawkins et al. 2009; Lima et al. 2007; Mieszkowska et 

al. 2007; Mieszkowska et al. 2006; Mieszkowska et al. 2005). Therefore, the 

process and driver in this case is well-supported by previous analyses and 
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the work within this chapter. The analyses from Chapter 4 of this thesis used 

data from Crisp & Southward (1958) and the MarClim Project 

(Mieszkowska et al. 2005) and was therefore was a collaborative effort.  

Therefore, homogenization of the woodland communities was 

correlated with non-climatic changes in the environment, whereas 

convergence of intertidal assemblages was correlated with increased sea 

surface temperature, further supported by climate tracking analysis of 

Chapter 6. Both the gradient of temperature across intertidal assemblages, 

and differences in inferred nitrogen and shade were reduced, indicating 

environmental homogenization. This supports the recognition that 

homogenization of the abiotic environment can be a promoter of biotic 

simplification (Olden et al. 2004). The abiotic environment, as the driver, 

differs from the original descriptions of biotic homogenization that were put 

forward in the context of species introductions as biotic drivers of change 

(McKinney & Lockwood 1999). Therefore, my thesis offers support to the 

potential for abiotic, rather than biotic, drivers of beta-diversity loss. Whilst 

I stress the caveat that direct attribution in both my analyses is not possible 

because suppositions are based on correlation and indirect evidence, the 

observation of this relationship in both terrestrial and marine environments 

adds weight to this support. 

A mechanistic consideration of beta-diversity loss in each 

environment becomes more divergent. The woodland communities lost rare 

species in tandem with a spread of already common species that were more 

tolerant of nitrogen and shade, suggesting the involvement of competition 

whereby new species immigrated and outcompeted the rare species. A 

contrasting hypothesis is that the rarer species may have become locally 

extinct due to reduced survival rates in changed environmental conditions, 

creating an under-saturated environment that then became colonised by 

species more suited to the conditions. If the latter was true, the situation of 

community assembly would be a demonstration of the metacommunity 

species sorting paradigm (see Chapter 5). To test this hypothesis, however, 

would require time series data or experimental analysis.  

In contrast, intertidal assemblages appear to have been altered 

through increased abundance and colonisation of southern (Lusitanian) 
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species. However, this does not exclude the possible influence of 

competition. Two barnacle species within the studied assemblage are known 

competitors whose interaction is mediated by temperature because one is a 

cold adapted northern species and the other is warm adapted southern 

species (Poloczanska et al. 2008; Wethey 1984). Therefore, the process of 

increased abundance of this particular warm adapted species may have 

occurred through the mechanism competitive release. A similar pattern was 

found by A similar pattern was also found in temperate reef fish 

assemblages, which experienced an increase in southern adapted species 

(Holbrook et al. 1997). However, the fish assemblage also experienced a 

loss of northern adapted species (Holbrook et al. 1997) that has not yet been 

observed within the south coast intertidal assemblage.  Therefore, in 

contrast to the woodland communities, beta-diversity loss was not 

influenced by extinction.  

To summarise, both ecosystems experienced beta-diversity loss 

without loss of diversity within assemblages (Table 14). This was most 

likely driven by homogenization of the abiotic environment. In the case of 

marine assemblages the abiotic variable was sea surface temperature, which 

drove a process of range expansion and increased abundance of southern 

species, and in woodland communities were nitrogen concentration and 

shade, which drove a process of loss of rare species from the regional pool 

and increased patch occupation by common species.  
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Table 14. Comparison of meso-scale impacts of environmental change on 
biodiversity in terrestrial and marine ecosystems based on thesis results 

 

 Terrestrial Marine 

 
Alpha-diversity  
 

 
No change 

 
Slight increase 

Beta-diversity Decreased resulting in biotic 
homogenization 

Decreased resulting in 
assemblage convergence 

Gamma-
diversity  

Decreased through loss of 
rare species 

Unknown, data insufficient 

Driver of  
change 

Abiotic homogenization of 
soil nitrogen concentration 
and light availability 

Abiotic homogenization of sea 
surface temperature  

Process of  
change 

Loss of rare species 
 

Increased patch occupation 
by common species 

Increased abundance and 
range expansion of southern 
species 

 

 

7.3. INDIVIDUALISTIC RESPONSES OR COMMUNITY 

CONSTRAINTS? 

7.3.1. Objective 3. Identify the metacommunity structure of woodland 

plants at two points in time, seventy years apart and determine how 

much the structure had changed. 

Does metacommunity structural change reflect changes in beta-diversity? 

Metacommunity structure was identified as Clementsian at both points in 

time for woodland plants, indicating that communities exist within 

particular bounds (Chapter 5). The lack of change was unexpected owing to 

the identification of beta-diversity loss within this metacommunity and did 

therefore not reflect community level changes. As with the consideration of 

alpha-diversity, this result supports the lack of parallel trends across levels 

of organisation (Sala & Knowlton 2006) and that findings from one spatial 

scale cannot be extrapolated to another (Gaston & Blackburn 1999). On the 

other hand, the Clementsian structure fits well with the lack of evidence for 

non-analogous community formation because it suggests that communities 

are distinct entities owing to high interdependency (Clements 1916), rather 

than assembled through individualistic species responses to environmental 



 

 171

gradients (Gleason 1926). The latter would create a Gleasonian structure. 

Although this suggests a constraint on species responses, Appendix II 

provides evidence for widespread individualistic species responses. 

Therefore, species seem to be able to respond individualistically within the 

bounds of community constraint, analogous to the stretching permitted by 

an elastic band, which is likely to vary amongst species. This species 

variation is also suggested by Chapter 6, which will be discussed further 

below.  

Although the broad Elements of Metacommunity Structure (EMS) 

analysis used an existing method (Leibold & Mikkelson 2002; Presley et al. 

2009), determination of how much the structure had changed required a new 

way to compare the results from two EMS analyses, which I achieved with 

the use of z scores. This enabled identification of changes within the 

individual structural elements, three of which are combined to determine 

overall structure. Using this analysis I found that although the 

metacommunity was Clementsian at both times, there was greater spatial 

turnover of species in 2008 than in the 1930s. This initially seemed to 

contradict the pattern of homogenization observed within Objective 2a, 

however, this discrepancy was due to a difference in definition of species 

turnover (Keith et al. accepted). In a situation of reduced beta-diversity, one 

would expect there to be less change in species between communities and 

thus less turnover. However, the definition of turnover in EMS is that 

species are replaced between communities rather than there being an 

increase or decrease in species richness between communities. Therefore, 

the EMS definition of species turnover refers to differences in alpha-

diversity between communities and was different in Dorset woodlands 

because alpha-diversity, represented by species richness, had converged. It 

would be helpful to rectify this confusion of definition to improve the 

communication of metacommunity literature.  

A further issue with the analysis within Chapter 5 was that there was 

no control landscape that had not experienced biodiversity loss with which 

to compare the results of the metacommunity. This means I cannot be sure 

that the changes in individual structure observed were not a symptom of 

biodiversity loss but instead represented natural variation. Once more, time 
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series data would have assisted with this assurance and would have provided 

unambiguous proof on whether the structure changed in the intervening 

years.  

 

7.3.2. Objective 4. Determine whether the climatic tracking response 

can be individualistically limited by the presence of physical barriers to 

dispersal.  

Chapter 4 (Objective 2a) identified assemblage change that was thought to 

be a consequence of range expansions in response to rising sea surface 

temperature. Rocky shore species were known to have undergone range 

expansion in recent decades and this expansion was strongly correlated with 

an increase in sea surface temperature (Hawkins et al. 2008; Hawkins et al. 

2009; Mieszkowska et al. 2007; Mieszkowska et al. 2006). Such range 

expansions would be dependent upon dispersal to newly suitable areas via 

larvae. The analysis I conducted in Chapter 6 (Part I) suggested that climate 

tracking had been limited by meso-scale hydrographic barriers to larval 

dispersal and that these limitations varied amongst species. Differential 

species dispersal capabilities are an individualistic species response, 

indicating the process of assemblage convergence of intertidal invertebrates 

(Chapter 4). Of particular note was that the species with the shortest pelagic 

phase was most able to expand its range owing to consolidation of adult 

populations and reduced hydrodynamic influence (Byers & Pringle 2008). 

This would be contrary to expectation of previous models that have not 

considered meso-scale dispersal barriers and rather consider range 

expansion as a function of maximum dispersal distance (e.g. Midgley et al. 

2006).  

Together, these findings demonstrate that dispersal as a process of 

biodiversity change is complex and requires greater understanding if we are 

to make accurate forecasts. Furthermore, variation in species dispersal 

capabilities is critical to changes at the community level (Gilman et al. 

2010). However, the individualism may be reduced at southern boundaries 

because theory suggests that while northern boundaries are determined by 

abiotic factors, southern range boundaries are primarily determined by 
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biotic interactions (Brown et al. 1996). In the latter case, therefore, species 

are expected to be constrained by the community. Owing to this supposition 

I clarify that results from this thesis are only in reference to northern range 

boundaries. 

This was the first attempt to move beyond the use of the 

hydrodynamic modelling approach of larval connectivity in a static sense, to 

its use in the context of species responses to climate change. However, the 

findings within Chapter 6 must be considered in light of model limitations 

discussed below (see Quality of Evidence) and recognised as a first step 

towards combining long-term empirical data with hydrodynamic modelling 

to achieve greater understanding of marine connectivity.  

Unfortunately, it was not possible to conduct this analysis for 

woodland species because the spatial extent of the data coverage did not 

include range boundaries. Terrestrial populations are thought to be relatively 

closed and marine populations to be relatively open. The sea was thought to 

provide an unrestricted medium, through which propagules could spread 

unhindered. In contrast, terrestrial species are thought to encounter many 

barriers to dispersal. However, analyses in Chapter 6 (Objective 4) add to 

the recent evidence that suggests marine environments are less open than 

previously assumed and local retention of propagules is common. Although 

I did not test the impact of dispersal barriers on terrestrial species, it is 

already recognised as an important factor in the ability of terrestrial species 

to adapt through dispersal and subsequent range changes (Sutherland et al. 

2008) and therefore did not require further demonstration. Chapter 6 of this 

thesis therefore highlights the similarity of climate tracking limitations for 

terrestrial and marine species.   

 

Will the individualistic limitations alter under scenarios of future 

environmental change? 

According to the hydrodynamic model, sea level rise scenarios have the 

potential alter connectivity of rocky shore species (Chapter 6, Part II). 

However, further tests are required that use better validated models before 

this can be more definitively established. The indicated difference in 
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connectivity was small but the model only accounted for bathymetric 

changes and did not account for changes in coastal morphology. 

demonstrated that climate change have a direct effect on the medium of 

marine propagule dispersal through sea level rise. However, to the best of 

my knowledge, such a possibility has not been considered for terrestrial 

plants. I suggest that for those plants that disperse via seeds, this possibility 

would be interesting to explore. For example, climate change can affect 

dispersal of riparian species due to increased frequency of high-flow events 

(Truscott et al. 2006) and wind dispersed species, for which long distance 

dispersal is positively correlated with temperature (Kuparinen et al. 2009). 

For those species that depend on animal dispersers, particularly highly 

specialised co-evolved species such as the fig tree and fig wasp (Anstett et 

al. 1997), the ability of the animal vectors to track climate or escape 

changing environmental conditions may outpace that of long-lived plants, 

potentially resulting in the loss of a dispersal vector. An example of such a 

situation was observed through reduction in the recruitment for an endemic 

tree following the loss of bird dispersers from forest fragments in Tanzania 

(Cordeiro & Howe 2003). This analysis has been submitted to Biology 

Letters. 

 

7.4. QUALITY OF EVIDENCE 

7.4.1. Long-term data 

Long-term data aided identification of biodiversity change that may not 

have been evident on shorter time scales. The multi-decadal time scales are 

very likely to have contributed to the detection of homogenization of the 

woodland plant communities because a similar analysis of Countryside 

Survey data over two decades demonstrated functional homogenization, a 

more coarse increase in similarity caused by homogenization of the 

presence of functional groups, (Smart et al. 2006) but did not find evidence 

for the more subtle taxonomic homogenization I observed with the 70 year 

time scale. This suggests that datasets that span longer time scales will be 

more likely to demonstrate an impact of environmental change. This may be 

particularly likely when long generation times are present within the 

community and when the underlying drivers of change are gradual. The 
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comparison of inter-annual and inter-decadal assemblage change (Chapter 

4) showed that intertidal assemblage change was not evident on a short time 

scale. I have gained new insights into metacommunity structure through the 

availability of long-term data, which led to establishment of methodology to 

compare two points in time (Chapter 5). Data on past and present range 

boundary locations also permitted an assessment of physical dispersal 

barriers on climate tracking (Chapter 6).  

Despite the insights afforded by the long term data within this thesis, 

fully parallel comparisons of these marine and terrestrial ecosystems were 

prevented because of differences in data that were available for each. Long-

term data is often imperfect and has missing values and the data I used in 

this thesis was no exception. The plant data did not contain missing values, 

however, the intertidal data contained many. This necessitated a reduction 

of the species and sites that were usable because not enough data were 

available for a robust analysis. Even with the reduced number it was 

necessary to perform multiple imputation to fill in missing values. 

Imputation was the best available option and statistically valid but 

nevertheless was no substitute for complete data. This highlights a trade-off 

between insights potentially gained from long-term data and its quality. 

Barnard & Thuiller (2008) stated “As we pursue greater methodological 

refinement, greater rigour, more comprehensive datasets and additional 

robustness, we are also at risk of a tragic complacency” with regard to 

global change and biodiversity research, suggesting we must take advantage 

of rare long-term data as best as possible. Therefore, the problems of the 

data were outweighed by the insights gained. 

A further caveat regards the use of snapshot data representing only 

points in time. Therefore, I explored differences between two points in time 

rather than changes over time, which would have required time series data. 

Snapshot data contains no information of presence or abundance in between 

these two points in time and this is problematic. For example, time series 

data would have allowed greater understanding of the process of change 

because it would have been possible to determine whether differentiation 

occurred prior to homogenization, which would suggest the common 

species immigrated prior to the loss of the rare species, indicating a 
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potentially strong role for competition. However, even seven decades may 

not be long enough to capture the true extent of woodland change because 

generation times of some woodland tree species exceeds this. For the 

analyses within this thesis the vast majority of species recorded were herbs, 

reducing the potential effect of tree species generation time issue within this 

thesis. 

Time series data would also have permitted greater certainty in the 

attribution of sea surface temperature (SST) as the likely cause for 

assemblage convergence because SST has fluctuated over the last 50 years 

with the warming trend only apparent in the last two decades. The 1950s 

were a warm period so the snapshot data provided a conservative estimate 

of change, which would very likely have demonstrated greater difference if 

the historical comparison data were from the colder decades of the 1960s or 

1970s. Furthermore, it may have shown the impact of disturbance as a result 

of an oil spill (Hawkins & Southward 1992; Smith 1968) and TBT pollution 

(Matthiessen et al. 1995; Smith et al. 2008; Spence et al. 1990). Although 

TBT pollution did not directly affect the species within our assemblage, it 

may have had an indirect effect through species interactions or resource 

(most often space on rocky shores) availability. 

 

7.4.2. Metacommunity approach 

Despite its shortcomings, the Elements of Metacommunity Structure 

analysis is extremely useful because it provides a single test for multiple 

structures (Presley et al. 2009). Unfortunately, such a test is not yet 

available for determining the dynamics that operate within a 

metacommunity according to the four paradigms of neutral, mass effects, 

species sorting and patch dynamics (Leibold et al. 2004; see Chapter 1). 

Although analyses of these dynamics are available within the literature, the 

paradigms are tested separately (e.g. Noda 2009). Even when multiple 

paradigms are tested within a single paper, this involves multiple analyses 

(Ellis et al. 2006).  

Furthermore, paradigm conformity is often complex because the 

paradigms are not mutually exclusive. The lack of mutual exclusivity 

explains why metacommunity paradigms were not assessed alongside 
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structure within this thesis – I was not able to generate testable hypotheses 

that would identify metacommunity dynamics. Ellis et al. (2006) concluded 

that tree hole mosquito dynamics did not fit into any single paradigm but 

spanned expectations of all four. Invertebrate rock pool communities were 

assessed for paradigm importance using a comparison of community pair 

matrices based on similarity, actual distance, connected neighbours and 

environmental distance (Vanschoenwinkel et al. 2007). The rock pool 

metacommunity was best explained by the species sorting paradigm, 

however, results also alluded to a mixture of paradigms observed at 

different amounts of dispersal (Vanschoenwinkel et al. 2007).  

The question of which paradigm is most important becomes further 

complicated in comparisons of regions. Analogous amphibian 

metacommunities in two regions were structured by different paradigms, 

despite their apparent similarity in species composition (Richter-Boix et al. 

2007). The paradigms were species sorting and mass effects so both were 

ultimately controlled by local environmental factors but the difference was 

in the dispersal amount (Richter-Boix et al. 2007). In light of this and other 

similar analyses, there have been calls to integrate the species sorting and 

mass effects because they are often both identified as important dynamics in 

such analyses (Parris 2006; Urban 2004). 

The overlap of paradigms highlights a wider problem with the 

approach, which is that some taxa or assemblages may form community 

modules that act in relative isolation from the rest of the community, with 

each module subject to a different paradigm. The conclusion of this idea is 

that it may be impossible to test the structure of metacommunities for all but 

the simplest because data are not obtainable for all species within the 

community. To exemplify this point, I refer to Chapter 5 of this thesis where 

I analysed a woodland plant metacommunity. Limitation of the analysis to a 

plant metacommunity disregards the impact of other species, for example, 

herbivores, soil microbes and fungi, which are strongly linked to plant 

survival and fecundity. Other metacommunity analyses have also followed 

this compartmentalised approach out of necessity (e.g. Brooks et al. 2008; 

Cottenie et al. 2003; MacNeil et al. 2009; Presley & Willig 2010) and none, 

other than highly controlled species-poor microcosm experiments (e.g. Hunt 
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& Bonsall 2009), have tackled the entire metacommunity. This is a fatal 

flaw within metacommunity analyses and suggests that the concept may be 

more appropriately termed the ‘meta-assemblage’ concept. 

However, I do not advocate that the concept be dismissed but instead 

that it be discussed in light of the relevant caveats. Cautious use of results 

from metacommunity studies has the potential to inform conservation. For 

example it would be useful for conservation managers to account for 

metacommunity dynamics, even if these are multiple, when devising 

strategies to increase species richness or resist invasive species (Fukami 

2005). Mouillot (2007) applied the metacommunity concept to biodiversity 

management of brackish lagoons. The application discussed the process, 

ecological attributes and management strategies of three of the paradigms 

(neutral theory was rejected outright because of the high functional 

variability of species in the habitat) and demonstrates that, although the 

metacommunity concept is still in its early stages, it can be utilised to 

inform conservation management (Table 1). It is also important to note that 

the dynamics of metacommunities are open to alterations under climate 

change. Daphnia species were found to have altered colonisation rates 

following hotter, drier summers, therefore potentially affecting 

metacommunity dynamics (Altermatt et al. 2008). Knowledge of such 

patterns could aid predictability of colonisation and extinction (Baldi 2003). 

    

7.4.3. Hydrodynamic modelling and graph-theoretic approach 

Modelling approaches often include high uncertainty as a result of, inter 

alia, resolution, estimated parameter values and stochasticity (e.g. Pearson 

et al. 2006). Despite the limitations, models are an extremely useful way to 

explore theory and hypotheses in a situation where variables can be 

controlled. This is particularly useful for ecological research on the impacts 

of environmental change, which would be difficult or unethical to explore 

through experimental manipulation of the environment (Witman & Roy 

2009). Furthermore, models can provide predictions or forecasts of future 

biodiversity impacts that can be vital for conservation planning (Gilman 

2009).  
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The modelling approach used in Chapter 6 allowed assessment of 

larval dispersal but, as with all models, was also subject to limitations. The 

background on larval dispersal modelling is included within Chapter 6 and 

suggests that larval dispersal modelling is increasingly including individual 

based components that can incorporate larval behaviour. This advance is of 

great importance for fish and decapod larvae, which are capable of strong 

horizontal swimming behaviour (North et al. 2009). Smaller invertebrate 

larvae carry out vertical positioning within the water column to align with 

different currents and inclusion of this within the model would have 

improved the accuracy of the output.  

In developing the model I considered whether to include specific 

numbers of larvae, however, to determine the correct input for the model 

would require adult density, fecundity, area for each release site, and larval 

mortality. Mortality is largely unknown for these species because it is 

extremely difficult to track a cohort of larvae throughout its pelagic phase 

and record mortality. These data were not available for the majority of sites 

and would have led to over-parameterization. Another improvement to the 

model would have been achieved by running the hydrodynamic simulation 

over multiple years. Although I do not know of any particular anomalies in 

2009, water movement is subject to stochasticity and therefore will vary 

between years. Furthermore, an issue with my model was that the spring 

tide occurred approximately two weeks into the simulation so did not affect 

the seven day and fourteen day larval durations. However, it could be 

argued that this necessarily reflects reddening within the marine 

environment i.e. greater variation with greater time period.  

The hydrodynamic component of the model was sufficiently 

validated by ABPmer, however, the particle tracking component was 

validated for only the 28 day larval duration. This was due to a lack of 

suitable data to achieve validation from the other larval durations and 

limited my approach. The best approach to model validation would be to 

compare the genetic similarity to the connectedness of populations. This 

type of validation has been used by other larval modelling approaches with 

high success (Gilg & Hilbish 2003; Hedgecock et al. 2007). However, this 

does not invalidate the whole model because one would expect that an 
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accurate 28 day larval duration in the model would mean the time leading 

up to that point would also have to be accurate.  

The use of graph theory and network analysis to explore the 

differences in connectivity was unsatisfactory for my analysis because it did 

not provide a function to compare two graphs in their entirety within the 

software I used (Pajek and igraph in R). Although the analysis was useful 

for individual metrics, the lack of an overall comparison suggests that use of 

this method would not be appropriate for rapid comparison, as might be 

desired by conservation. Furthermore, although the method allows capture 

of some emergent properties (e.g. graph diameter), the lack of overall graph 

comparison suggests that any emergent property that encapsulate a 

combination of multiple graph characteristics may be missed. The method 

therefore requires further modification before it can be readily and rapidly 

applied to ecological problems. 

 

7.4.4. Climate tracking 

The use of only one variable to create an envelope for the climate tracking 

analysis was potentially problematic. Although SST is thought to be the 

primary influence on range boundary for these species in the study area, it is 

certain other factors are involved to some extent. Another potential problem 

is that the approach assumes species distributions were in equilibrium with 

SST prior to 1990. This represents a more general problem of BEM 

techniques because many communities and populations are in 

disequilibrium due to recent disturbance, evolutionary factors or historical 

events. However, these limitations did not invalidate the results because the 

critique for BEM still holds regarding the need to include meso-scale 

physical barriers. 

 

7.5. CONCLUSION AND FUTURE RESEARCH 

I achieved my aim to undertake a programme of research on the impact of 

environmental change on communities and have contributed to knowledge 

in this area of ecology. The novel time scales provided the opportunity to 

test and find evidence for emerging concepts and the meso-scale provided 

an appropriate spatial scale for this. Although useful comparisons could be 
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drawn amongst marine and terrestrial environments, the difference in data 

from the two environments prevented fully parallel analyses, perhaps 

providing explanation for the lack of such analyses in the literature. 

Therefore, in addition to multi-disciplinary analyses, baseline data 

collection and monitoring must also become multi-disciplinary to enable 

cross-ecosystem comparisons in the future. However, despite limitations, I 

have presented a first attempt at the combination of ecosystems from 

terrestrial and marine environments within the same geographical area to 

investigate the impacts of environmental change. 

 This thesis has highlighted numerous avenues for future research. In 

the area of NACs, it would be very interesting to consider inter-specific 

interactions within their formation because this may explain the mechanism 

of formation and/or explain the lack of evidence for them within the 

woodland communities. The area of biotic homogenization would benefit 

from an investigation of whether indicator assemblages could provide a 

method for rapid assessment of beta-diversity loss because indicators are a 

current topic of great interest (UNEP-WCMC 2009).    

Unfortunately, this thesis was not able to conduct analyses of 

limitations to plant dispersal owing to a lack of range boundary data. In 

particular it would be interesting to determine whether a similar pattern 

exists for plants whereby species that have short dispersal distances are 

more able to consolidate populations and therefore extend range boundaries. 

This would be a very useful result to inform bioclimatic envelope models. 

Further ideas for research are listed below but will not be expanded here: 

 

• Determine whether biotic homogenization has occurred in marine 

environments through use of full community data, even if evidence 

must come from space for time substitutes  

• Greater understanding of the mechanisms of biotic homogenization 

(using time series data) 

• Identify dataset suitable for analysis of metacommunity structure in 

marine environment 

• Genetic validation of the hydrodynamic model 
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• Establish parallel monitoring and surveying efforts for marine and 

terrestrial environments  

• Synergistic effect of sea surface temperature rise and sea level rise 

on connectivity of rocky shore invertebrate species  

 

In conclusion, this thesis adds to the growing call for consideration 

of impacts at the community level, inclusive of inter-specific interactions 

and individualistic responses in analyses of environmental change impacts. 

 

 



 

 183

7.6. REFERENCES 

Airoldi, L., Balata, D. & Beck, M. W. 2008 The Gray Zone: Relationships 
between habitat loss and marine diversity and their applications in 
conservation. Journal of Experimental Marine Biology and Ecology 
366, 8-15. 

Altermatt, F., Pajunen, V. I. & Ebert, D. 2008 Climate change affects 
colonization dynamics in a metacommunity of three Daphnia 
species. Global Change Biology 14, 1209-1220. 

Anstett, M. C., Hossaert-McKey, M. & McKey, D. 1997 Modeling the 
persistence of small populations of strongly interdependent species: 
Figs and fig wasps. Conservation Biology 11, 204-213. 

Baldi, A. 2003 Extinction disorders the species composition of 
metacommunities. Acta Zoologica Academiae Scientiarum 

Hungaricae 49, 159-165. 

Barnard, P. & Thuiller, W. 2008 Introduction. Global change and 
biodiversity: future challenges. Biology Letters 4, 553-555. 

Berry, P. M., Dawson, T. P., Harrison, P. A. & Pearson, R. G. 2002 
Modelling potential impacts of climate change on the bioclimatic 
envelope of species in Britain and Ireland. Global Ecology and 
Biogeography 11, 453-462. 

Britton, A. J., Beale, C. M., Towers, W. & Hewison, R. L. 2009 
Biodiversity gains and losses: Evidence for homogenisation of 
Scottish alpine vegetation. Biological Conservation 142, 1728-1739. 

Brooks, D. R., Perry, J. N., Clark, S. J., Heard, M. S., Firbank, L. G., 
Holdgate, R., Mason, N. S., Shortall, C. R., Skellern, M. P. & 
Woiwod, I. P. 2008 National-scale metacommunity dynamics of 
carabid beetles in UK farmland. Journal of Animal Ecology 77, 265-
274. 

Brown, J. H., Stevens, G. C. & Kaufman, D. M. 1996 The geographic range: 
Size, shape, boundaries, and internal structure. Annual Review of 
Ecology and Systematics 27, 597-623. 

Byers, J. E. & Pringle, J. M. 2008 Going against the flow: how marine 
invasions spread and persist in the face of advection. ICES Journal 
of Marine Science 65, 723-724. 

Castro, S. A. & Jaksic, F. M. 2008a How general are global trends in biotic 
homogenization? Floristic tracking in Chile, South America. Global 
Ecology and Biogeography 17, 524-531. 



 

 184

Castro, S. A. & Jaksic, F. M. 2008b Role of non-established plants in 
determining biotic homogenization patterns in Pacific Oceanic 
Islands. Biological Invasions 10, 1299-1309. 

Clark, R. W., Brown, W. S., Stechert, R. & Zamudio, K. R. 2010 Roads, 
Interrupted Dispersal, and Genetic Diversity in Timber Rattlesnakes. 
Conservation Biology 24, 1059-1069. 

Clements, F., E. 1916 Plant succession: an analysis of the development of 
vegetation. Washington, DC: Carnegie Institution of Washington. 

Cordeiro, N. J. & Howe, H. F. 2003 Forest fragmentation severs mutualism 
between seed dispersers and an endemic African tree. Proceedings 
of the National Academy of Sciences of the United States of America 
100, 14052-14056. 

Cottenie, K., Michels, E., Nuytten, N. & De Meester, L. 2003 Zooplankton 
metacommunity structure: Regional vs. local processes in highly 
interconnected ponds. Ecology 84, 991-1000. 

Crisp, D. J. & Southward, A. J. 1958 The distribution of intertidal 
organisms along the coasts of the English Channel. Journal of the 
Marine Biological Association of the United Kingdom 37, 157-208. 

Devictor, V., Julliard, R., Clavel, J., Jiguet, F., Lee, A. & Couvet, D. 2008 
Functional biotic homogenization of bird communities in disturbed 
landscapes. Global Ecology and Biogeography 17, 252-261. 

Dormann, C. F., Schweiger, O., Augenstein, I., Bailey, D., Billeter, R., de 
Blust, G., DeFilippi, R., Frenzel, M., Hendrickx, F., Herzog, F., 
Klotz, S., Liira, J., Maelfait, J. P., Schmidt, T., Speelmans, M., van 
Wingerden, W. & Zobel, M. 2007 Effects of landscape structure and 
land-use intensity on similarity of plant and animal communities. 
Global Ecology and Biogeography 16, 774-787. 

Ellis, A. M., Lounibos, L. P. & Holyoak, M. 2006 Evaluating the long-term 
metacommunity dynamics of tree hole mosquitoes. Ecology 87, 
2582-2590. 

Gaston, K. J. & Blackburn, T. M. 1999 A critique for macroecology. Oikos 
84, 353-368. 

Gilg, M. R. & Hilbish, T. J. 2003 The geography of marine larval dispersal: 
Coupling genetics with fine-scale physical oceanography. Ecology 
84, 2989-2998. 

Gilman, M. 2009 An introduction to mathematical models in ecology and 
evolution: time and space, 2nd Edition. Ecological concepts and 
methods. Oxford: Wiley-Blackwell. 



 

 185

Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. 
2010 A framework for community interactions under climate 
change. Trends in Ecology & Evolution 25, 325-331. 

Gleason, H. A. 1926 The individualistic concept of the plant association. 
Bulletin of the Torrey Botanical Club 53, 7-26. 

Hawkins, S. J., Moore, P. J., Burrows, M. T., Poloczanska, E., 
Mieszkowska, N., Herbert, R. J. H., Jenkins, S. R., Thompson, R. C., 
Genner, M. J. & Southward, A. J. 2008 Complex interactions in a 
rapidly changing world: responses of rocky shore communities to 
recent climate change. Climate Research 37, 123-133. 

Hawkins, S. J. & Southward, A. J. 1992 The Torrey Canyon oil spill: 
recovery of rocky shore communities. In Restoring the Nation’s 
Marine Environment (ed. G. W. Thayer), pp. 584–631. Maryland: 
Maryland Sea Grant College. 

Hawkins, S. J., Sugden, H. E., Mieszkowska, N., Moore, P. J., Poloczanska, 
E., Leaper, R., Herbert, R. J. H., Genner, M. J., Moschella, P. S., 
Thompson, R. C., Jenkins, S. R., Southward, A. J. & Burrows, M. T. 
2009 Consequences of climate-driven biodiversity changes for 
ecosystem functioning of North European rocky shores. Marine 
Ecology Progress Series 396, 245-259. 

Hedgecock, D., Barber, P. H. & Edmands, S. 2007 Genetic approaches to 
measuring connectivity. Oceanography 20, 70-79. 

Helm, A., Hanski, I. & Partel, M. 2006 Slow response of plant species 
richness to habitat loss and fragmentation. Ecology Letters 9, 72-77. 

Hill, M. O., Preston, C. D. & Roy, D. B. 2004 PLANTATT. Attributes of 
British and Irish Plants: Status, Size, Life History, Geography and 

Habitats for use in connection with the New atlas of the British and 

Irish flora: Centre for Ecology and Hydrology. 

Hillebrand, H., Soininen, J. & Snoeijs, P. 2010 Warming leads to higher 
species turnover in a coastal ecosystem. Global Change Biology 16, 
1181-1193. 

Hodgson, J. G., Thomas, C. D., Wintle, B. A. & Moilanen, A. 2009 Climate 
change, connectivity and conservation decision making: back to 
basics. Journal of Applied Ecology 46, 964–969. 

Holbrook, S. J., Schmitt, R. J. & Stephens, J. S. 1997 Changes in an 
assemblage of temperate reef fishes associated with a climate shift. 
Ecological Applications 7, 1299-1310. 

Hunt, J. & Bonsall, M. B. 2009 The effects of colonization, extinction and 
competition on co-existence in metacommunities. Journal of Animal 
Ecology 78, 866-879. 



 

 186

Jackson, S. T. & Sax, D. F. 2010 Balancing biodiversity in a changing 
environment: extinction debt, immigration credit and species 
turnover. Trends in Ecology & Evolution 25, 153-160. 

Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E. & Bullock, J. 
M. 2009a Taxonomic homogenization of woodland plant 
communities over 70 years. Proceedings of the Royal Society Series 
B-Biological Sciences 276, 3539-3544. 

Keith, S. A., Newton, A. C., Morecroft, M. D., Golicher, D. J. & Bullock, J. 
M. in press Plant metacommunity structure remains unchanged 
during biodiversity loss in English woodlands. Oikos. 

Keith, S. A., Newton, A. C., Morecroft, M. D., Herbert, R. J. H. & Bealey, 
C. E. 2009b Non-analogous community formation in response to 
climate change. Journal for Nature Conservation 17, 228-235 

Kuparinen, A., Katul, G., Nathan, R. & Schurr, F. M. 2009 Increases in air 
temperature can promote wind-driven dispersal and spread of plants. 
Proceedings of the Royal Society Series B-Biological Sciences 276, 
3081-3087. 

le Roux, P. C. & McGeoch, M. A. 2008 Rapid range expansion and 
community reorganization in response to warming. Global Change 
Biology 14, 2950-2962. 

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., 
Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., 
Loreau, M. & Gonzalez, A. 2004 The metacommunity concept: a 
framework for multi-scale community ecology. Ecology Letters 7, 
601-613. 

Leibold, M. A. & Mikkelson, G. M. 2002 Coherence, species turnover, and 
boundary clumping: elements of meta-community structure. Oikos 
97, 237-250. 

Lima, F. P., Ribeiro, P. A., Queiroz, N., Hawkins, S. J. & Santos, A. M. 
2007 Do distributional shifts of northern and southern species of 
algae match the warming pattern? Global Change Biology 13, 2592-
2604. 

MacArthur, R. & Wilson, E. 1967 The Theory of Island Biogeography: 
Princeton University Press. 

MacNeil, M. A., Graham, N. A. J., Polunin, N. V. C., Kulbicki, M., Galzin, 
R., Harmelin-Vivien, M. & Rushton, S. P. 2009 Hierarchical drivers 
of reef-fish metacommunity structure. Ecology 90, 252-264. 

Magee, T. K., Ringold, P. L. & Bollman, M. A. 2008 Alien species 
importance in native vegetation along wadeable streams, John Day 
River basin, Oregon, USA. Plant Ecology 195, 287-307. 



 

 187

Marchetti, M. P., Lockwood, J. L. & Light, T. 2006 Effects of urbanization 
on California's fish diversity: Differentiation, homogenization and 
the influence of spatial scale. Biological Conservation 127, 310-318. 

Matthiessen, P., Waldock, R., Thain, J. E., Waite, M. E. & Scrope-Howe, S. 
1995 Changes in periwinkle (Littorina littorea) populations 
following the ban on TBT-based antifoulings on small boats in the 
United Kingdom. Ecotoxicology and Environmental Safety 30, 180-
194. 

McKinney, M. L. & Lockwood, J. L. 1999 Biotic homogenization: a few 
winners replacing many losers in the next mass extinction. Trends in 
Ecology & Evolution 14, 450-453. 

Midgley, G. F., Hughes, G. O., Thuiller, W. & Rebelo, A. G. 2006 
Migration rate limitations on climate change-induced range shifts in 
Cape Proteaceae. Diversity and Distributions 12, 555-562. 

Mieszkowska, N., Hawkins, S. J., Burrows, M. T. & Kendall, M. A. 2007 
Long-term changes in the geographic distribution and population 
structures of Osilinus lineatus (Gastropoda : Trochidae) in Britain 
and Ireland. Journal of the Marine Biological Association of the 
United Kingdom 87, 537-545. 

Mieszkowska, N., Kendall, M. A., Hawkins, S. J., Leaper, R., Williamson, 
P., Hardman-Mountford, N. J. & Southward, A. J. 2006 Changes in 
the range of some common rocky shore species in Britain - a 
response to climate change? Hydrobiologia 555, 241-251. 

Mieszkowska, N., Leaper, R., Moore, P., Kendall, M. A., Burrows, M. T., 
Lear, D., Poloczanska, E., Hiscock, K., Moschella, P. S., Thompson, 
R. C., Herbert, R. J., Laffoley, D., Baxter, J., Southward, A. J. & 
Hawkins, S. J. 2005 Marine biodiversity and climate change: 
assessing and predicting the influence of climatic change using 
intertidal rocky shore biota. Final report for United Kingdom 
funders. In Marine Biological Association occasional publications 
(ed. Marine Biological Association), pp. 55. 

Mouillot, D. 2007 Niche-assembly vs. dispersal-assembly rules in coastal 
fish metacommunities: implications for management of biodiversity 
in brackish lagoons. Journal of Applied Ecology 44, 760-767. 

Noda, T. 2009 Metacommunity-level coexistence mechanisms in rocky 
intertidal sessile assemblages based on a new empirical synthesis. 
Population Ecology 51, 41-55. 

North, E. W., Gallego, A., Petitgas, P., Ådlandsvik, B., Bartsch, J., 
Brickman, D., Browman, H. I., Edwards, K., Fiksen, Ø., Hermann, 
A. J., Hinckley, S., Houde, E., Huret, M., Irisson, J.-O., Lacroix, G., 
Leis, J. M., McCloghrie, P., Megrey, B. A., Miller, T., van der 
Molen, J., Mullon, C., Parada, C., Paris, C. B., Pepin, P., Rose, K., 



 

 188

Thygesen, U. H. & Werner, C. 2009 ICES cooperative research 
report: Manual of recommended practices for modelling physical – 
biological interactions during fish early life. Report No. 295. In 
Rapport des Recherches Collectives (ed. E. W. North, A. Gallego & 
P. Petitgas), pp. 118. Copenhagen: International Council for the 
Exploration of the Sea (ICES). 

Olden, J. D. 2006 Biotic homogenization: a new research agenda for 
conservation biogeography. Journal of Biogeography 33, 2027-
2039. 

Olden, J. D., Kennard, M. J. & Pusey, B. J. 2008 Species invasions and the 
changing biogeography of Australian freshwater fishes. Global 
Ecology and Biogeography 17, 25-37. 

Olden, J. D. & Poff, N. L. 2004 Ecological processes driving biotic 
homogenization: Testing a mechanistic model using fish faunas. 
Ecology 85, 1867-1875. 

Olden, J. D., Poff, N. L., Douglas, M. R., Douglas, M. E. & Fausch, K. D. 
2004 Ecological and evolutionary consequences of biotic 
homogenization. Trends in Ecology & Evolution 19, 18-24. 

Olden, J. D. & Rooney, T. P. 2006 On defining and quantifying biotic 
homogenization. Global Ecology and Biogeography 15, 113-120. 

Parris, K. M. 2006 Urban amphibian assemblages as metacommunities. 
Journal of Animal Ecology 75, 757-764. 

Pearson, R. G., Thuiller, W., Araujo, M. B., Martinez-Meyer, E., Brotons, 
L., McClean, C., Miles, L., Segurado, P., Dawson, T. P. & Lees, D. 
C. 2006 Model-based uncertainty in species range prediction. 
Journal of Biogeography 33, 1704-1711. 

Poloczanska, E. S., Hawkins, S. J., Southward, A. J. & Burrows, M. T. 2008 
Modeling the response of populations of competing species to 
climate change. Ecology 89, 3138-3149. 

Presley, S. J., Higgins, C. L., Lopez-Gonzalez, C. & Stevens, R. D. 2009 
Elements of metacommunity structure of Paraguayan bats: multiple 
gradients require analysis of multiple ordination axes. Oecologia 
160, 781-793. 

Presley, S. J. & Willig, M. R. 2010 Bat metacommunity structure on 
Caribbean islands and the role of endemics. Global Ecology and 
Biogeography 19, 185-199. 

Pullin, A. S. & Salafsky, N. 2010 Save the Whales? Save the Rainforest? 
Save the Data! Conservation Biology 24, 915-917. 



 

 189

Qian, H., McKinney, M. L. & Kuhn, I. 2008 Effects of introduced species 
on floristic similarity: Comparing two US states. Basic and Applied 
Ecology 9, 617-625. 

Richter-Boix, A., Llorente, G. A. & Montori, A. 2007 Structure and 
dynamics of an amphibian metacommunity in two regions. Journal 
of Animal Ecology 76, 607-618. 

Rooney, T. P., Wiegmann, S. M., Rogers, D. A. & Waller, D. M. 2004 
Biotic impoverishment and homogenization in unfragmented forest 
understory communities. Conservation Biology 18, 787-798. 

Sala, E. & Knowlton, N. 2006 Global marine biodiversity trends. Annual 
Review of Environment and Resources 31, 93-122. 

Smart, S. M., Thompson, K., Marrs, R. H., Le Duc, M. G., Maskell, L. C. & 
Firbank, L. G. 2006 Biotic homogenization and changes in species 
diversity across human-modified ecosystems. Proceedings of the 
Royal Society Series B-Biological Sciences 273, 2659-2665. 

Smith, J. E. 1968 'Torrey Canyon' pollution and marine life. A report by the 
Plymouth Laboratory of the Marine Biological Association of the 

United Kingdom. Cambridge: Cambridge University Press. 

Smith, R., Bolam, S. G., Rees, H. L. & Mason, C. 2008 Macrofaunal 
recovery following TBT ban. Environmental Monitoring and 
Assessment 136, 245-256. 

Spence, S. K., Bryan, G. W., Gibbs, P. E., Masters, D., Morris, L. & 
Hawkins, S. J. 1990 Effects of TBT contamination on Nucella 
populations. Functional Ecology 4, 425-432  

Sutherland, W. J., Bailey, M. J., Bainbridge, I. P., Brereton, T., Dick, J. T. 
A., Drewitt, J., Dulvy, N. K., Dusic, N. R., Freckleton, R. P., Gaston, 
K. J., Gilder, P. M., Green, R. E., Heathwaite, A. L., Johnson, S. M., 
Macdonald, D. W., Mitchell, R., Osborn, D., Owen, R. P., Pretty, J., 
Prior, S. V., Prosser, H., Pullin, A. S., Rose, P., Stott, A., Tew, T., 
Thomas, C. D., Thompson, D. B. A., Vickery, J. A., Walker, M., 
Walmsley, C., Warrington, S., Watkinson, A. R., Williams, R. J., 
Woodroffe, R. & Woodroof, H. J. 2008 Future novel threats and 
opportunities facing UK biodiversity identified by horizon scanning. 
Journal of Applied Ecology 45, 821-833. 

Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. 2004 The 
need for evidence-based conservation. Trends in Ecology & 
Evolution 19, 305-308. 

Truscott, A. M., Soulsby, C., Palmer, S. C. F., Newell, L. & Hulme, P. E. 
2006 The dispersal characteristics of the invasive plant Mimulus 
guttatus and the ecological significance of increased occurrence of 
high-flow events. Journal of Ecology 94, 1080-1091. 



 

 190

UNEP-WCMC. 2009 International Expert Workshop on the 2010 
Biodiversity Indicators and Post-2010 Indicator Development. 
Cambridge: UNEP-WCMC. 

Urban, M. C. 2004 Disturbance heterogeneity determines freshwater 
metacommunity structure. Ecology 85, 2971-2978. 

Van Calster, H., Baeten, L., De Schrijver, A., De Keersmaeker, L., Rogister, 
J. E., Verheyen, K. & Hermy, M. 2007 Management driven changes 
(1967-2005) in soil acidity and the understorey plant community 
following conversion of a coppice-with-standards forest. Forest 
Ecology and Management 241, 258-271. 

Van Turnhout, C. A. M., Foppen, R. P. B., Leuven, R., Siepel, H. & 
Esselink, H. 2007 Scale-dependent homogenization: Changes in 
breeding bird diversity in the Netherlands over a 25-year period. 
Biological Conservation 134, 505-516. 

Vanschoenwinkel, B., De Vries, C., Seaman, M. & Brendonck, L. 2007 The 
role of metacommunity processes in shaping invertebrate rock pool 
communities along a dispersal gradient. Oikos 116, 1255-1266. 

Vellend, M., Verheyen, K., Flinn, K. M., Jacquemyn, H., Kolb, A., Van 
Calster, H., Peterken, G., Graae, B. J., Bellemare, J., Honnay, O., 
Brunet, J., Wulf, M., Gerhardt, F. & Hermy, M. 2007 
Homogenization of forest plant communities and weakening of 
species-environment relationships via agricultural land use. Journal 
of Ecology 95, 565-573. 

Walther, G. R. 2010 Community and ecosystem responses to recent climate 
change. Philosophical Transactions of the Royal Society Series B-
Biological Sciences 365, 2019-2024. 

Wethey, D. S. 1984 Sun and shade mediate competition in the barnacles 
Chthamalus and Semibalanus - a field experiment. Biological 
Bulletin 167, 176-185. 

Whittaker, R. J., Willis, K. J. & Field, R. 2001 Scale and species richness: 
towards a general, hierarchical theory of species diversity. Journal of 
Biogeography 28, 453-470. 

Williams, J. W. & Jackson, S. T. 2007 Novel climates, no-analog 
communities, and ecological surprises. Frontiers in Ecology and the 
Environment 5, 475-482. 

Williams, J. W., Jackson, S. T. & Kutzbacht, J. E. 2007 Projected 
distributions of novel and disappearing climates by 2100 AD. 
Proceedings of the National Academy of Sciences of the United 

States of America 104, 5738-5742. 



 

 191

Witman, J. D. & Roy, K. 2009 Experimental marine macroecology: 
Progress and prospects. In Marine Marcoecology (ed. J. D. Witman 
& K. Roy), pp. 341-356. Chicago: University of Chicago Press. 

Woodward, G., Perkins, D. M. & Brown, L. E. 2010 Climate change and 
freshwater ecosystems: impacts across multiple levels of 
organization. Philosophical Transactions of the Royal Society B-
Biological Sciences 365, 2093-2106. 

 
 

 



 

 

 192

Appendix I 

Evidence for Environmental Change and its  

Impacts on Biodiversity 

 

The literature on environmental change is vast and a fully comprehensive 

review would be much larger than a thesis will allow. Therefore, below I 

provide an overview of the most salient evidence for environmental change. 

All issues are revisited in more detail throughout thesis chapters.  

 

I.1. EVIDENCE FOR ENVIRONMENTAL CHANGE 

I.1.1. Climate Change 

There is strong evidence that the Earth’s climate is undergoing rapid 

change, exemplified by a mean rise in air surface and sea surface 

temperatures, greater cloud cover and increased frequency and ferocity of 

stochastic weather events (Solomon et al. 2007). ‘Climate change’ is a 

commonly used phrase with a wide range of definitions. For the purpose of 

this study I use the definition provided by the Intergovernmental Panel on 

Climate Change (IPCC) as follows: “Climate change refers to a change in 

the state of the climate that can be identified (e.g., by using statistical tests) 

by changes in the mean and/or the variability of its properties, and that 

persists for an extended period, typically decades or longer.” (Solomon et al. 

2007). Historically, the Earth has experienced many major climate change 

events, some associated with mass extinctions or mass radiation events, thus 

illustrating the power of climate over biological systems.  Substantial 

changes in climate have been experienced at various scales from global (e.g. 

K-T, 65 mya) to regional (e.g. Little Ice Age, Europe, N. America and N. 

Asia ~A.D.1550-1850), and at various durations from decades to millennia. 

Typically, past events have occurred slowly enough for genetic adaptation 

or movement of individual species to prevent mass extinctions, however, 

some events have occurred too rapidly for widespread adaptation. For 

example, the Paleocene-Eocene thermal maximum saw temperature 
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increases of 4-5 ºC, possibly comparable to those expected in the 21
st
 

century (Zachos et al. 2003) and coincided with a worldwide decline in 

palms (Morley 2000). 

An increase in global average surface air temperature of 0.6 ˚C (± 

0.2 ˚C) is believed to have occurred over the last 100 years (Harley, 2005; 

IPCC, 2001).  The last 50 years have shown an even more dramatic 

warming, with global air surface temperature increasing by 0.13 ˚C (± 0.3 

˚C) decade
-1

 over this period (Solomon et al. 2007). Temperature changes 

are accompanied by alterations in patterns of precipitation, with the northern 

hemisphere generally experiencing 10-15 % higher amounts now as 

compared to the 1961-1990 average whilst some areas, particularly Africa 

and Asia, are experiencing prolonged drought conditions and greater 

unpredictability of annual precipitation cycles (Houghton et al. 2001). CO2 

concentrations have undergone a dramatic increase, rising from a level of 

280ppm in pre-industrial times to 370 ppm currently (Harley 2005) and are 

now the major political focus for mitigation of climate change effects (e.g. 

Kyoto Protocol). 

In addition to global changes, there have also been observable 

changes at the national scale. UK land and sea temperatures have both 

increased following a similar trend as compared to the 1961-1990 average. 

The UK now experiences higher winter precipitation with increased 

intensity. In addition, average sea level around the UK has increased by 10 

cm in the last decade. This figure incorporates adjustments for natural land 

movements (Hulme et al. 2002). Although the evidence for climate change 

appears conclusive, climatologists are first to acknowledge the limitations of 

available climate data. Measurements rely on a globally standardised system 

and as a result of the demands for representative measurements, systems are 

expected to operate in extreme conditions (Le Treut et al. 2007). Gaps and 

errors in data can be caused by processes such as snowfall gauges damaged 

by ice; lost oceanographic floats; and satellite changes altering carefully 

calibrated trends (Schiermeier 2007). Therefore, uncertainty and potential 

error is an inherent part of climatic data. 

The cause of the observed climate changes are the subject of debate. 

According to the IPCC Fourth Assessment Report (AR4) (Parry et al. 2007), 
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temperature variability about seven centuries prior to 1950 is very likely to 

be attributable to natural external forcing because models of climate change 

over this period that include only natural forcing match the observed 

changes. A combination of solar activity indicators show that a peak of solar 

activity was reached in 1985 (Lockwood & Frohlich 2007; Stott et al. 

2000b). Prior to this there is likely to have been a solar impact on global 

temperatures. However, since this date, solar activity is unlikely to be 

associated with warming of average global temperatures (Lockwood & 

Frohlich 2007). Overwhelming consensus of opinion is that although solar 

radiation has influenced climate change, anthropogenic activity has also 

played a key role (Solomon et al. 2007). The comparison of observed global 

mean surface temperature over the last 100 years with modelled simulations 

for the same period for natural external forcing only and for natural external 

forcing combined with anthropogenic forcing, indicates anthropogenic 

forcing as a likely explanation (Solomon et al. 2007). It is specifically noted 

that this explanation is particularly for the last 50 years, concurrent with the 

points above. The IPCC alludes to a > 90 % probability that observed 

climate change in the last 50 years has been caused by the production of 

high concentrations of greenhouse gases, particularly CO2, CH4 and NO2 

(Solomon et al. 2007; Stott et al. 2000a; Stott et al. 2001; Zamostny et al. 

1999).  

Conversely, IPCC assessment reports are open to criticism. 

Oppenheimer et al. (2007) suggest AR4 includes some vague points that are 

not explored in depth because of the risk of losing consensus and therefore 

advocate that scientific debate becomes stifled. However, the AR4 is not a 

substitute for original data and debate but rather seeks to synthesise the 

scientific literature to identify consensus. The data deadline for AR4 was in 

2005 so data obtained since then are not included or considered 

(Schiermeier 2007). Furthermore, comparison of observed warming with 

potential forcings are problematic because of a statistical phenomena called 

degeneracy (Ingram 2006). Degeneracy is where different physical 

processes (e.g. solar radiation, volcanic activity) are too similar in shape to 

be accurately distinguished. Therefore, although caution should be taken, on 

balance the evidence suggests that climate change during the last 50 years is 
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attributable to a combination of anthropogenic forcing and natural external 

forcing.  

Climate change impacts have been recorded across the globe but 

most strongly in the Northern Hemisphere. This can be exemplified by the 

rapid depletion of sea ice coverage in the Arctic, both in thickness and in 

extent, in comparison with the possible slight cooling of surface temperature 

over the Antarctic and thickening in its ice sheet (Alley et al. 2005; 

Johannessen et al. 2004). However, the Antarctic air is now beginning to 

become warmer above the surface (in the troposphere), recent weather 

balloons have recorded a 0.5 - 0.7 ºC increase every 10 years for the past 30 

years (Turner et al. 2006). The Greenland ice sheet is also retreating 

dramatically, and in some areas is slipping into the sea at a rate of up to 14 

km yr
-1

 (Chen et al. 2006; Henson 2006). 

Permafrost is below the active layer (that which contains ice/snow 

that regularly thaws and re-deposits) within which ice crystals bond with 

soil particles to form a permanently frozen layer. Increasing global 

temperatures have already resulted in observable decreases in the active 

layer depth and melting of the permafrost layer (Frauenfeld et al. 2004; 

Solomon et al. 2007). The melting of permafrost layers is problematic 

because it disrupts the structural stability of the ground, removes a potential 

water source for local vegetation, and can release greenhouse gases and 

other pollutants thus amplifying warming (Callaghan et al. 2004; Eugster et 

al. 2000).  

The oceans, in addition to increases in sea surface temperature, have 

demonstrated a surface pH decrease of 0.1 indicating increased acidity and 

increased salinity, accompanied by a rise in sea level from 1961 – 2003 of 

1.8 mm (± 0.5 mm) yr
–1
 (Solomon et al. 2007). The rise in sea level is 

attributed to thermal expansion and ice sheet melt (Solomon et al. 2007). 

Regionally, the English Channel has increased in both sea surface and sea 

bottom temperatures since the 1920s, although there was a slight cooling 

period in the 1950s and the 1970s (Southward & Butler 1972; Southward 

1960; Southward & Roberts 1987). 

An increased frequency of category four and category five Atlantic 

hurricanes has been observed between 1970 and 2004, correlating strongly 
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with rising sea-surface temperatures (Hoyos et al. 2006). Additional 

environmental impacts, inter alia, are increased duration of heat-waves 

(Solomon et al. 2007), desertification (Foden et al. 2007) and increased 

precipitation variability with increases in rainfall reported primarily in the 

northern hemisphere paralleled by rainfall decreases primarily reported in 

the southern hemisphere (Dore 2005; Solomon et al. 2007)   

 

I.1.2. Forecasts for future climate change 

Scenarios for future climate change generally infer a further increase in 

global temperatures (AR4 – 99 % probability that hot days will become 

more intense and frequent; Solomon et al. 2007), particularly in the northern 

hemisphere. The worst case scenario shows an average global surface air 

temperature increase of up to 4 ºC above the current global average within 

the next century. In addition, precipitation will continue to alter and extreme 

weather events are likely to be more frequent and of greater intensity 

(Solomon et al. 2007).  

Climate change scenarios should always be viewed with the caveat 

that climate prediction is not an exact science. Incidences have been shown 

whereby a seemingly insignificant change to a variable or parameter fed into 

a climate model can result in large global changes of the model outcome. 

An example of such an incidence is in the consideration of cloud cover. 

Comparisons between model outcomes showed a strong dependency on the 

model used (Cess et al. 1989). Senior & Mitchell (1993) demonstrated a 

temperature outcome range of 1.9-5.4 ºC simply by altering cloud radiative 

properties in a model. This exemplifies the fact that climatology remains a 

science of tentative forecasts rather than of certainties. 

A variety of climate models have been have been developed by 

climatologists and six different models were employed to create the SRES 

scenarios. A few models incorporate biotic feedbacks, such as the effect of 

deforestation on atmospheric carbon dioxide concentrations. However, this 

is still a relatively new development and is extremely difficult to model 

owing to its inherently dynamic nature (Schiermeier 2007). Climate 

forecasts are improving because instead of simply running a single model 

based on a single baseline of variables, models are run many times. Each 
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iteration is based on a slightly different baseline of variable values, 

eventually creating a ‘forecast ensemble’. The ensemble allows the relative 

uncertainty to be assessed for each outcome dependent on how many times 

that outcome is presented as a solution in the model (Murphy et al. 2009).  

Projected environmental changes become increasingly severe in line 

with increases in temperature, with changes in water availability and 

increased storm and flood damage are the major environmental changes 

projected by Parry et al. (2007). Climatologists expect a rise in sea level, 

consistent with a rise in global average surface temperature (Cabanes et al., 

2001). The specific amount of sea level rise is contentious, with AR4 stating 

18-59 cm by 2100 (Solomon et al. 2007), despite the fact that this does not 

account for the potential rapid and dynamic process of the melting of the 

Greenland ice sheet and West Antarctic Ice Sheet (WAIS). The WAIS 

potential has been witnessed through the rapid degradation of the Larsen B 

ice shelf that disintegrated within three months during 2002. This allowed 

glaciers behind the ice sheet to subsequently accelerate into the ocean, 

demonstrating powerful processes that are as yet not captured by ice-sheet 

models (Oppenheimer et al. 2007; Schiermeier 2007). 

Oceanic processes also require further elucidation. In particular, the 

effect of CO2 absorption by the ocean is unknown, specifically with respect 

to feedback mechanisms. Such mechanisms are expected to be heavily 

influenced by marine organisms that employ calcification in shell and 

skeletal formation (Schiermeier 2007). It is expected that oceans can act as a 

sink for carbon but consideration of the effect on marine ecosystems is 

negligible. Recent evidence of ocean acidification suggests the impact of 

carbon sequestration on the oceans will be considerable (Feely et al. 2004). 

The carbon absorption potential of established forests is high, and 

can result in increased soil carbon even after trees reach maturity. For 

example, a forest reserve in Guangdong, China, containing an established 

forest has increased its soil carbon by 68 % in 25 years (Zhou et al. 2006). 

Conversely, models suggest that increased atmospheric CO2 reduces the 

amount of water lost from plants via transpiration. Therefore, although trees 

may be effective carbon sinks, this sinking effect has the potential to reduce 

water availability (Gedney et al. 2006). This places in doubt the long-term 
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sustainability of trees as a carbon sink because reduced water availability 

may negatively feedback into the system. In addition, calculations of 

expected carbon emissions discussed by Mahli & Phillips (2004) suggest 

that even with a 25 % increase in all vegetative Amazonian biomass, 

anthropogenic warming would only be delayed by 4-5 years. ‘Extreme 

events’, for example flooding, heat-waves, storms, and ice sheet collapse are 

predicted to increase in frequency in the next century (Mitchell et al. 2006).  

 

I.1.3. Non-climatic environmental change 

A simplified model of species dispersal and colonisation ability under 

habitat destruction and climate change suggested the creation of a “deadly 

anthropogenic cocktail” and forecasts a significantly reduced ability of 

species to deal with multiple disturbances (Travis 2003). The combination 

of these threats is culminating in rapid global biodiversity loss (Ehrlich & 

Pringle 2008; Mace et al. 2005). Therefore, in addition to the impacts of 

climate change, we must also consider other drivers of environmental 

change. These drivers are many and varied so here I provide only a brief 

overview of the most salient for biodiversity loss, concentrating on the “evil 

quartet” of habitat loss, over-exploitation, extinction cascades and 

introduced species (Brook et al. 2008).  

Habitat change, often equated with habitat loss, and fragmentation 

were the subjects most analysed in the three largest conservation biology 

journals from 2001-2005 (Fazey et al. 2005) and are recognised as 

significant drivers of environmental change and biodiversity loss (Haila 

2002; Sala et al. 2000). However, analyses of fragmentation are hindered by 

the continuing debate over its definition. Fragmentation can describe loss of 

habitat and change in configuration (Haila 2002), or alternatively is used 

only to describe the latter (Fahrig 2003). Regardless of precise definition, 

habitat fragmentation and loss are usually explored from either a species-

oriented or a pattern-oriented approach (Fischer & Lindenmayer 2007). The 

first approach is from the perspective of individual species and is useful for 

providing insight into impacts on native species. In contrast, the pattern 

approach uses a human perspective to assess habitat loss and fragmentation 

across an entire landscape, providing applicability to multiple species but 
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losing the finer detail of the species oriented approach (Fischer & 

Lindenmayer 2007). The best results would inevitably be achieved by 

synergistic approaches that combine the perspectives.  

Most habitat loss occurs through human exploitation of natural 

resources and urban development (Brook et al. 2008). Globally, in 2008 

mapping studies demonstrated that 50 % of all temperate grasslands, 

tropical dry forests, and temperate broad-leaved forests have been converted 

to human dominated uses (Hoekstra et al. 2005). During 2000-2005, South-

east Asia experienced annual percentage deforestation of 1.5 %, closely 

followed by Sub-Saharan Africa with 1.4 % (Sodhi et al. 2010). Projections 

have estimated that South-east Asia will experience further loss of 72-90 % 

habitat area by 2100 (Brook et al. 2003). Many fragmentation or habitat loss 

scenarios are associated with thresholds at which biodiversity is disrupted 

(Betts et al. 2007; With & Crist 1995). For example, Bascompte & 

Rodriguez (2001) observed a significant drop in species richness when 

matrix cover increased to 65 %.  

In marine environments, habitat degradation is more common than 

complete loss, and is often related to reduced structural complexity, such as 

a shift from canopy forming algae to turf forming algae (Airoldi et al. 2008). 

This is particularly a problem in coral reef habitats, some of which have 

become flattened since the 1980s owing to a mass bleaching event, and the 

decline of sea urchin and the structurally complex Acropora hard corals 

throughout the Caribbean (Alvarez-Filip et al. 2009). Destructive fishing is 

also a cause of severe habitat degradation, ranging from dynamite fishing to 

trawling (Mace et al. 2005). 

In Europe, habitat loss primarily occurs through the conversion of 

natural or semi-natural habitats into agricultural or urban land. Urban 

development does not always equate with low biodiversity. Angold et al. 

(2006) found urban habitat patches to be rich in biodiversity but note the 

importance of connectivity and green corridors for dispersal of urban 

species. Agricultural land is more problematic and often takes the form of 

intensive monocultures. However, it is not only the direct conversion 

process that elicits environmental change. Agricultural practice can have a 

strong impact on the surrounding environment. Fertiliser run-off and 
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intensive livestock farming has led to nitrogen enrichment of soil (Keith et 

al. 2009), and toxic eutrophication of rivers, lakes (Khan & Ansari 2005) 

and coastal seas (Howarth 2008). In addition, this surrounding land is often 

subject to management. Very little of the UK landscape is natural owing to a 

long history of management, reflected in the fact that most woodlands are 

referred to as semi-natural. Changes in management regimes, which 

constitute an integral part of some ecosystems, can therefore create 

environmental change. Management strategies have begun to deal with 

human introduced non-native species (Waage & Reaser 2001), many of 

which were introduced to fuel trades in ornamental plants and fish (Chang et 

al. 2009), and fish stocking for angling (Stokstad 2010). Some of these 

species have become established in the wild and can drive environmental 

change, particularly habitat forming plants such as the rhododendron 

(Thomson et al. 1993).  

Over-exploitation is thought to be the most important driver of 

environmental change in marine ecosystems, having a direct impact on 

biodiversity (Nelson 2005). To prevent confusion, I discuss over-

exploitation as a driver separate from habitat loss, for example, the 

extraction of non-timber forest products (Ticktin 2004), the bushmeat trade 

(Barrett & Ratsimbazafy 2009) and over-fishing (Pauly et al. 2005; Worm et 

al. 2006). In the marine environment, over-exploitation is a critical issue and 

has led to a rapid worldwide decline of predatory fish (Pauly et al. 2005; 

Worm et al. 2006), in turn creating a trophic cascade (Heithaus et al. 2008) 

that has generated large-scale environmental change (Casini et al. 2008; 

Frank et al. 2005). 

 

I.2. IMPACTS OF ENVIRONMENTAL CHANGE ON 

BIODIVERSITY 

Owing to the character of environmental change whereby controlled 

experiments are generally not a possibility for large scale phenomena, many 

analyses of such impacts are based on correlational evidence (Parmesan & 

Yohe 2003; Thuiller 2007). Correlations cannot establish cause and effect 

(i.e. attribution). However, it is the volume of such correlations, the issue of 

parsimony and the use of long-term datasets that begin to add weight to the 
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suggestion that environmental change is a powerful driver of biodiversity 

change (McCarty 2001; Parmesan et al. 2005; Thuiller 2007).  

Climate change has already had an impact on biodiversity at the 

global scale. Two syntheses, one of 143 studies, and one of 1,700 species, 

demonstrated that a ‘fingerprint’ of global warming already exists in the 

sense of a long-term, unidirectional and large-scale shift in densities, 

phenology, morphology and genetic frequencies (Parmesan & Yohe 2003; 

Root et al. 2003).  Community, temporal and spatial shifts were validated 

using the diagnostic pattern of ‘sign-switching’. This involves comparing 

shifts occurring under warmer temperatures to shifts under previous cool 

periods. The synthesis of 1,700 species provided validation of climate 

change as the cause of range shifts because 84 % of species showed ‘sign-

switching’ in the direction predicted by climate change (Parmesan & Yohe 

2003). Globally, some butterfly and marine species have shown range shifts 

in the direction anticipated by climate change validated by sign-switching 

(Mieszkowska et al. 2006; Parmesan et al. 1999). A review by McCarty 

(2001) further supports large-scale, unidirectional changes. It is useful to 

note that range shifts do not necessarily indicate a movement from a lethal 

environment but there can be movement from an environment in which the 

species shows a reduced ability to reproduce or grow (Southward 1958; 

Thompson et al. 2002).  

Climate scenarios can be used in conjunction with associated models 

of biome and species range shifts to explore the potential impacts of climate 

change on biodiversity. These models can be used to forecast rates of range 

shifts and extinctions. The specific methodologies surrounding model 

production vary but all come with caveats and limitations (Araujo & New 

2007; Araujo et al. 2005a; Araujo et al. 2006; Araujo et al. 2005b; Botkin et 

al. 2007; Hansen et al. 2001; Pearson & Dawson 2003; Pearson et al. 2006). 

Risk assessment estimates from the most all-encompassing study so far 

provide estimates of the percentage of endemic and ‘near endemic’ species 

“committed to extinction” by 2050 at ~18-35 % (Thomas et al. 2004). 

Further to this, climate change was identified as a greater risk than habitat 

destruction in many regions when working from the IUCN Red List criteria 

(Thomas et al. 2004).  However, this study was based on the range change 
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depicted by climate-envelope models and largely failed to include biotic 

factors. The assessment only covers terrestrial species, excluding both 

marine and freshwater, and so cannot be seen as a comprehensive ‘global’ 

assessment.  

In European forests, it is thought that nemoral herbs will lose a 

median of 31-33 % of their range and, perhaps more importantly, that the 

range lost will be concentrated in the most genetically diverse southerly 

area, thus affecting phylogenetic diversity (Svenning & Skov 2006). A 

study of threats to plant diversity in Europe concluded that, although there is 

the potential for over half the studied species to become vulnerable or 

extinct by 2080 under the most extreme scenario tested, the figures of 

Thomas et al., (2004) are an overestimation of extinction risk (Thuiller et al. 

2005). In addition, Thuiller et al. (2005) produced results indicating that 

areas with the lowest predicted species diversity loss, namely the Boreal 

region, were also the areas with the highest predicted species turnover. This 

therefore suggests that species diversity loss within a region can only be 

averted via a high turnover level of species, presumably from the invasion 

of non-native species. The severity of impacts of climatic change on rocky 

intertidal species is expected to increase by 2020, resulting in shifts in 

competitive ability at temperature boundaries between northern and 

southern species (Thompson et al. 2002). Range shifts, extensions and 

contractions are expected to continue in the same direction as observed 

since the 1980s (Mieszkowska et al. 2005), contributing to shifts in 

community composition (Thompson et al. 2002).  

Land use change can result in habitat alteration and loss, 

consequently creating a degraded and/or fragmented landscape (Fahrig 

2003). The effect of this threat to biodiversity can be complex and is often 

associated with thresholds of habitat cover at which impacts occur on 

species richness (With & Crist 1995). This was demonstrated empirically by 

the decline in woody vegetation cover observed at a Kansas prairie that only 

occurred above a threshold of 65 % matrix cover (Bascompte & Rodriguez 

2001). This type of environmental change is also strongly associated with 

extinction debt, whereby a time lag is experienced from the disturbance 



 

 

 203

event to the final resultant species extinction (Jackson & Sax 2010; 

Kuussaari et al. 2009). 

A key impact of land use change on biodiversity is through its effect 

on connectivity and subsequent dispersal, a property that is increasingly 

recognised as essential to maintenance of biodiversity (Sutherland et al. 

2006). Most work on land use change is focused on the terrestrial and 

freshwater environments. However, the marine environment is also subject 

to modification for anthropogenic use. Offshore wind farms, aquaculture 

and shipping are some of the most obvious examples of marine use that 

impact biodiversity by altering the physical environment. The building of 

large offshore structures further impacts the hydrodynamics of the 

surrounding ocean, on which marine species are often highly dependent for 

dispersal of pelagic larvae (Cowen et al. 2007). Recent evidence has 

suggested that instead of the marine species experiencing unrestricted 

dispersal as was previously thought, there is in fact a continuum from fully 

open to fully closed communities, determined by a large extent by 

hydrodynamics (Cowen et al. 2007; Cowen et al. 2000; Hill 1990; James et 

al. 2002; Jessopp & McAllen 2008; Largier 2003; Lefebvre et al. 2003; 

Mitarai et al. 2008). This issue is discussed in greater depth within Chapter 

6 of this thesis. 

The concentration of organic nitrogen in the soil can have a strong 

impact on biodiversity, particularly for primary producers such as terrestrial 

plants and aquatic algae. Plant species vary in their tolerance of nitrogen, 

with species that thrive in a high nitrogen environment referred to as 

nitrophiles (Hill et al. 2004). Nitrogen deposition over time has been 

associated with decreased biodiversity of plants within Europe (Dupre et al. 

2010) and coastal ecosystems globally (Howarth 2008; Sala & Knowlton 

2006). The influx of nitrogen from rivers to coastal environments is 

predicted to increase by 13 % globally over the next 30 years following 

increased food production requirements (Bouwman et al. 2005). Such a 

large increase will lead to problematic eutrophication in coastal areas and 

can create dead zones through hypoxia and stratification as plankton blooms 

are decomposed (Bouwman et al. 2005). I discuss the role of nitrogen 

deposition further in Chapter 3 of this thesis.  
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The issue of biotic exchange refers to the influx of non-native 

species. These species arrive via many different routes including purposeful 

anthropogenic introduction (Gozlan et al. 2010), accidental introduction via 

ballast water (Crisp 1958) and range shifts in response to climate change 

(Parmesan & Yohe 2003). Non-native species can affect an area positively, 

negatively or have no observable effect. Only those exchanges that result in 

a negative effect are threats to biodiversity. Within the UK, the proportion 

of non-native species that are threats to native biodiversity is low and these 

species illicit such threats through, inter alia, competition, predation, 

herbivory and disease (Manchester & Bullock 2000). Impacts of non-native 

species on β-diversity are discussed Chapter 3 of this thesis in the context of 

biotic homogenization (Keith et al. 2009; McKinney & Lockwood 1999). 
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Appendix II 

Additional Analyses in Support of Chapter 3 

II.1. INTRODUCTION 

Greater depth of analysis was conducted on the woodland resurvey data than 

was presented in Chapter three. This additional analysis was exploratory and 

provided further detail on: (1) individual species responses and, (2) the 

contribution of individual species and associated traits to the observed 

patterns. Within this appendix I provide some additional information on the 

Good data, and methods, results and a brief conclusion for these analyses.  

 

II.2. METHODOLOGY 

II.2.1. Additional information on the Good Archive 

The Good Archive resides with the Dorset Environmental Records Centre 

(DERC) and consists of approximately 7575 stands surveyed for presence of 

vascular plant species from 1931-1939. The species lists for each stand have 

now been digitised by DERC. The dataset consists of 285,864 records in a 

variety of habitats (Table A1). The maximum number of species recorded in 

any one stand was 130, whilst the average number of species per stand was 

forty (Horsfall 1979). All loci were revisited during the 1980s by Horsfall 

and assigned a status of change revealing 53 % were unchanged, 14 % were 

partly changed and 33 % were totally changed (Horsfall 1979; Horsfall 

1980; Horsfall 1981; Horsfall 1984a; Horsfall 1984b; Horsfall 1986). No 

species lists were recorded during these surveys.  

Some resurvey work recording species presence has been carried out 

on heathland (Byfield & Pearman 1996) and hedgerow loci (Button 2003). 

In addition to these specific resurveys, some of Good’s loci overlap with 

Sites of Special Scientific Interest (SSSI) and National Nature Reserves 

(NNR) and therefore may have been ‘resurveyed’ unintentionally as part of 

regular monitoring. In addition, approximately 1250 loci overlap with Sites 

of Nature Conservation Importance (SNCI). However, these data are 
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mismatched in size and extent, often with a single SNCI, SSSI or NNR 

covering multiple Good loci.  

 

 
Table. A1. The Prof. R. Good Archive Dataset – Habitats included in stands 

and number of stands surveyed per habitat 
(http://www.derc.org.uk/projects/goodHabitat.htm)  

 
 

Habitats 
Stands 
surveyed 

 
Aquatic vegetation: Rivers, Riversides, Streams, Lakes, Ponds, 
Pools 

 
350 

Marshes, Marshy meadows, Swamps 315 
Maritime stands: Cliffs, Undercliffs, Rocky shores, Shingle Mud flats, 
Salt marsh. Sand Dunes 

240 

Heathland stands: Grass heath, Boggy heath, Bracken heath, Heath 
tracks 

505 

Grassland stands: Meadows, Pastures and hayfields, 
Embankments, roadsides 

1504 

Hedgebanks, Boundaries, Drove roads and Trackways 1700 
Thickets: (Scrub) mixed with grassland 431 
Woodland: Deciduous and Coniferous woodland, Parkland and 
copses etc 

1535 

Arable fields 365 
Walls 111 
Other stands: Quarries, Rabbit warrens, Fallow fields 572 

 

 

II.2.2. Data Analysis 

Responses of individual species were assessed by plotting bar charts to 

illustrate changes in number of sites occupied over time. A SIMPER 

analysis was then performed on the data matrix to identify which species 

contributed most to the discrimination between survey times. SIMPER 

analysis uses high-dimensional resemblance measures between species and 

between groups to complete two stages. We used a cut-off point of 25 % of 

variable (species) contributions to ensure a manageable variable list length. 

The two stages of SIMPER are: 

1) Calculation of the average similarity value for each survey 

time and production of a list of species that provide the 

largest relative contribution to similarity within survey times. 
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2) Calculation of the average dissimilarity across survey times 

and identification of species that provide the highest 

contribution to discrimination between the two survey times. 

Only the second stage is fully detailed within the results section here 

because the first stage duplicates information already provided in Chapter 3. 

We classified species as ‘winners’ (species that have increased in the 

number of sites occupied) or ‘losers’ (species that have decreased in the 

number of stands occupied) in line with previous publications regarding the 

effect of environmental change on species (e.g. Berry 2003). Standard linear 

regression was performed to look for a relationship between vascular plant 

species outcome and predictor variables. Only those species that showed a 

significant change in the number of sites occupied over time through 

McNemar’s test were included in the model, providing a total of 129 species 

(78 losers, 51 winners). The Empirical Log Odds Ratio (eLOR) (McCullagh 

& Nelder 1989) for species change in sites occupied over time allowed 

conversion to a continuous variable with normally distributed residuals, 

therefore making a suitable dependent variable (DV) for linear regression. 

The ratio is calculated as below:  

 

 

 

Where n1 is the total number of sites at time 1, r1 is the number of 

sites occupied at time 1, n2 is the total number of sites at time 2, and r2 is 

the number of sites occupied at time 2. ELOR has a different precision for 

species dependent on the number of sites occupied at both times. To check 

the severity of the precision differences we calculated the Var(ELOR).  
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A min/max ratio of more than two would render the ELOR 

unsuitable, however, less than two means the ELOR is suitable. For our 

analysis the Var(ELOR) min/max ratio was 0.09 / 2.69 and therefore was 

acceptable.  The ELOR residuals for each model were tested for normality 

using the Shapiro-Wilk test (Life History Traits model: W = 0.985; p = 

0.201; Distribution model: W = 0.988; p = 0.348). Normality of the ELOR 

residuals indicated the ratio was suitable for use in linear regression. It was 

not possible to use ELOR for a Patch model because we were testing a 

different dependent variable. Linear regression was also not appropriate 

because the dependent variable (change in species number within a patch) 

was not normally distributed (W = 0.954; p = 0.004). 

Independent variables (IVs) were split into two subsets (Table 2). 

This also allowed avoidance of a large ratio of predictor variables to cases in 

the model, preventing inflated error values and failure of convergence 

(Tabachnick & Fidell 2001). Categorical IVs were made suitable for linear 

regression by the creation of dummy variables. IVs were tested for 

correlation using Spearman’s Rho and a correlation matrix was created 

using SPSS syntax. An IV was removed if a pair of variables were 

correlated with a value of r ≥ 0.7 (Pallant 2007). IVs were checked for 

multicollinearity by whether they had a tolerance value of < 0.10 and/or VIF 

of > 10 required removal of an IV (Pallant, 2007). In the event of correlation 

or multicollinearity, the IV with the highest correlation with all other IVs 

was removed. Mahalanobis distance critical value for p < 0.001 was used to 

detect outliers (Pallant 2007; Tabachnick & Fidell 2001). The β coefficient 

was deemed reliable if the 95% confidence intervals did not encompass the 

value zero because a zero value would indicate that the direction of the 

coefficient in indicating a decrease or increase in DV with change in IV was 

unreliable. 

The usefulness of individual variables in model fit was tested using 

the change in r
2
. When using dummy variables this test is more appropriate 

than the default t-test (Tabachnick & Fidell 2001). Variables provide a 

unique significant contribution to the model if the change in unique r
2
 value 

is significant at an α value of 5 %, and if the 95 % confidence intervals for 

the β coefficient did not encompass a value of zero (Pallant 2007). Standard 
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deviations of the DV were provided to aid interpretation of the β 

coefficients, because with one standard deviation increase in the IV, the DV 

will change in value the amount of the β coefficient (Pallant 2007). Percent 

of variance in the DV explained by each uniquely contributing variable was 

determined from the change in unique r
2
 value. 

The IVs included in the Life History Traits model were obtained 

from PLANTATT (Hill et al. 2004) and Grime (1988) and represent life 

history traits associated with each species (Table A2). Ellenberg indicator 

values are associations with habitat characteristics and are therefore 

representative of life history traits rather than traits in their own right 

(Diekmann 2003; Hill et al. 1999). Some categories in PLANTATT were 

amalgamated for the purpose of this regression to increase effective sample 

sizes and reduce problems of small samples (Tabachnick & Fidell 2001). 
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Table A2. Independent variables used in linear regression models. All variables 
apart from ‘Competitive’, ‘Ruderal’ and ‘Stress-tolerant’ are sourced from 

PLANTATT (Hill et al. 2004). 
 

 

Independent 
variable 

Description Categories 

 
DISPERSAL 

 
Mode of dispersal 

 
Abiotic 
Biotic 
Unspecialised 
Unknown 

COMPETITIVE Plant strategy (Grime et al. 1988) Yes/No 
RUDERAL Plant strategy (Grime et al. 1988) Yes/No 
STRESS-
TOLERANT 

Plant strategy (Grime et al. 1988) 
Yes/No 

PERRENATION Perrenation Annual 
Biennial 
Perrenial 

LIFE FORM Modifed from the original Raunkiaer system Chamaephyte 
Geophyte 
Hemicryptophyte 
Hydrophyte 
Phanerophyte 
Therophyte 

WOODINESS (woody and semi-woody categories were 
amalgamated) 

Woody/semi-woody 
Herbacious 

CLONALITY Vegetative reproduction combined with lateral 
spread (clonal categories were amalgamated) 

Clonal  
Not clonal 

LIGHT Ellenberg indicator value for light Scale of 1 to 10 
MOISTURE Ellenberg indicator value for moisture Scale of 1 to 10 
pH Ellenberg indicator value for pH (reaction) Scale of 1 to 10 
NITROGEN Ellenberg indicator value for nitrogen Scale of 1 to 10 
BIOME Biogeographic element. Broad occurrence 

(Wide-temperate and temperate categories 
were amalgamated) 

Boreo-temperate 
Wide-
temperate/Temperate 
Southern-temperate 

EASTERN 
LIMIT 

Biogeographic element. Eastern limit of 
occurence 

Suboceanic 
European 
Eurosiberian 
Eurasian 
Circumpolar 

WOOD Broad habitat association with ‘Broadleaved, 
mixed and yew woodland’ and ‘Coniferous 
woodland’ 

Associated 
Not associated 

GRASS Broad habitat association with ‘Neutral 
grassland’, ‘Calcareous grassland’ and ‘Acid 
grassland’ 

Associated 
Not associated 

MARSH Broad habitat association with ‘Fen, marsh 
and swamp (not wooded)’ 

Associated 
Not associated 

URBAN Broad habitat association with ‘Built-up areas 
and gardens’ 

Associated 
Not associated 
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II.3. RESULTS 

By 2008, 47.7 % of the sites had increased in species number by a mean of 

45.78 %, and 50 % had decreased in number by a mean of 27.3 % (Table 

A3). The mean magnitude of increases was therefore larger than that of 

decreases.  

 

Table A3. Summary statistics for terrestrial survey of vascular plants 

 
 1930s 2008 

 
Total number of species across all sites 

 
391 

 
324 

Mean number species per site 57 53 
Standard Deviation 25.63 15.16 
Coefficient of Variation 44.79 % 28.71 % 
Range 116 (17-133) 77 (19-96) 
% stands increased in species number - 48.84  
     Mean % increase -      45 
% stands decreased in species number - 48.84  
     Mean % decrease -      -28 
% stands no change in species number - 2.33 

  

 

A greater number of species decreased in the number of patches 

occupied since the 1930s than increased (Fig. A1). For those species that 

were present for both surveys, 68.8 % showed either no change or changed 

occupation by ≤ 10 sites indicating that the majority of species did not 

experience dramatic changes. Out of those species that demonstrated a 

change of > 10 sites, the species with the largest increase was holly (Ilex 

aquifolium), which increased from 23 sites occupied in the 1930s to 71 sites 

occupied in 2008, an increase of 209 %. The species with the largest 

decrease was wild strawberry (Fragaria vesca), which decreased from 57 

sites occupied in the 1930s to 21 sites occupied in 2008, a decrease of 63 %. 

25 species did not change in the number of sites occupied over time. More 

species showed a decrease than an increase, illustrated by the concentration 

of bars to the left of the graph (Fig. A1). The mean change in number of 

sites occupied was – 0.86 with a variance of 91.44. 
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Fig. A1. Change in the number of patches occupied since the 1930s for all species 
that were present for both surveys. Each bar represents one species. 

 

 

In light of the fact that species show individual responses, a 

SIMPER analysis was used on the data matrix to aid interpretation of the 

differences between the survey dates. The similarity value for all samples 

within the 1930s survey is 32.58 and for all samples within the 2008 survey 

is 46.36. Average dissimilarity between the two surveys is 64.93. Ilex 

aquifolium is the highest contributor to discrimination, contributing 0.99 % 

of the total (Fig. A2). Although this sounds like a small percentage, there 

are 441 species in total and therefore I. aquifolium contributed a four-fold 

higher proportion than expected if all species contributed equally. 

Of the nine species contributing > 80 % to discrimination between 

the 1930s and 2008, eight have increased the number of sites occupied over 

time (Fig. A3). Fragaria vesca is the only one of the top nine discriminatory 

species to have decreased. Therefore, the largest discriminatory changes are 

increases. All the top nine species show a large change in number of sites 

occupied over time, with the top discriminator also being the species that 

has experienced the most change. Many of these species are also common. 

Carex sylvatica has experienced the least change but is common overall. 
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Fig. A2. Contribution of species to discrimination between the 1930s and 2008 

surveys. Cumulative contribution of above species is 25.02 %. 
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Fig. A3. Change in the number of sites occupied by species contributing > 0.80 % 

to discrimination between the 1930s and 2008 surveys.  
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Site occupation in the 1930s of lost and decreased species in 

comparison with gained and increased species was significantly different (U 

= 16364, p = 0.020). Mean rank was higher for the loser species (218.06) 

than winner species (188.82) indicating that loser species generally 

occupied a higher number of sites in the 1930s than winner species. Only 

those species that significantly increased (51 species) or decreased (78 

species) according to McNemar’s test (p < 0.05) were included in analysis 

of winner and loser characteristics (Table A4). 

 

Table A4.  Species that have significantly changed in number of sites occupied 
between survey times according to McNemar’s test (p < 0.05). n1 = number of sites 
occupied at time 1 (1930s); n2 = number of sites occupied at time 2 (2008); n1-2 = 
change in number of sites occupied from 1930s to 2008. Empirical log odds ratio 

(LOR) used in linear regression is listed. 
 
 

SPECIES n1 n2 n2-1 
McNemar's 

(p) 

Empirical 

LOR 

WINNERS      

Ilex aquifolium 23 71 48 0.000 1.10 

Crataegus monogyna 39 75 36 0.000 0.90 

Geranium robertianum 35 70 35 0.000 0.79 

Stachys sylvatica 19 53 34 0.000 0.74 

Taraxacum 15 48 33 0.000 0.76 

Urtica dioica 46 78 32 0.000 0.91 

Veronica montana 24 56 32 0.000 0.67 

Arum maculatum 28 58 30 0.000 0.62 

Rumex sanguineus 46 73 27 0.000 0.68 

Galium aparine 37 63 26 0.000 0.55 

Hedera helix 51 77 26 0.000 0.75 

Stellaria holostea 22 48 26 0.000 0.56 

Dactylis glomerata 29 50 21 0.000 0.43 

Digitalis purpurea 14 35 21 0.000 0.54 

Ribes rubrum 17 37 20 0.000 0.48 

Phyllitis scolopendrium 15 33 18 0.009 0.46 

Potentilla sterilis 26 44 18 0.003 0.38 

Rosa arvensis 22 40 18 0.000 0.40 

Alliaria petiolata 2 19 17 0.000 0.99 

Carex remota 12 29 17 0.000 0.49 

Geum urbanum 56 73 17 0.003 0.47 

Fagus sylvatica 16 32 16 0.001 0.41 

Glechoma hederacea 46 62 16 0.002 0.35 

Poa nemoralis 0 16 16 0.000 1.61 

Circaea lutetiana 48 63 15 0.007 0.33 

Allium ursinum 10 24 14 0.003 0.46 

Stellaria media agg. 7 21 14 0.015 0.54 
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WINNERS      

Fraxinus excelsior 61 74 13 0.011 0.39 

Juncus effusus 21 34 13 0.026 0.30 

Pteridium aquilinum 53 66 13 0.001 0.31 

Ranunculus repens 50 63 13 0.030 0.29 

Anemone nemorosa 22 34 12 0.031 0.28 

Carex pendula 20 32 12 0.002 0.29 

Hyacinthoides non-scripta 60 72 12 0.012 0.34 

Lonicera periclymenum 57 69 12 0.011 0.31 

Rubus fruticosus agg. 69 81 12 0.004 0.57 

Acer pseudoplatanus 20 31 11 0.019 0.27 

Cardamine flexuosa 4 15 11 0.013 0.60 

Lamiastrum galeobdolon 32 43 11 0.013 0.22 

Rhododendron ponticum 1 12 11 0.001 0.98 

Rumex obtusifolius 8 19 11 0.013 0.43 

Aegopodium podagraria 0 10 10 0.002 1.38 

Equisetum sylvaticum 0 10 10 0.002 1.38 

Spiraea salicifolia agg. 0 10 10 0.002 1.38 

Anthriscus sylvestris 6 15 9 0.035 0.43 

Corylus avellana 69 78 9 0.004 0.37 

Prunus avium 0 9 9 0.021 1.33 

Malus sylvestris sens.lat. 4 12 8 0.039 0.49 

Prunus cerasifera 0 6 6 0.031 1.15 

Poa trivialis 0 3 3 0.016 0.86 

Hypericum maculatum 0 1 1 0.000 0.48 

LOSERS         

Fragaria vesca 57 21 -36 0.000 -0.77 

Centaurium erythraea 31 1 -30 0.000 -1.51 

Prunella vulgaris 51 21 -30 0.000 -0.65 

Brachypodium sylvaticum 38 11 -27 0.000 -0.72 

Myosotis arvensis 38 11 -27 0.000 -0.72 

Bellis perennis 37 11 -26 0.000 -0.70 

Agrimonia eupatoria 25 1 -24 0.000 -1.37 

Salix cinerea 35 13 -22 0.000 -0.57 

Poa pratensis sens.lat. 22 2 -20 0.000 -1.07 

Potentilla reptans 26 6 -20 0.000 -0.73 

Sagina procumbens 20 0 -20 0.000 -1.73 

Succisa pratensis 20 0 -20 0.000 -1.73 

Arctium minus 50 31 -19 0.005 -0.39 

Veronica serpyllifolia 24 5 -19 0.000 -0.76 

Viburnum lantana 23 5 -18 0.000 -0.74 

Viburnum opulus 23 5 -18 0.000 -0.74 

Clinopodium vulgare 18 1 -17 0.000 -1.19 

Stachys officinalis 21 4 -17 0.000 -0.78 

Angelica sylvestris 23 7 -16 0.000 -0.59 

Athyrium filix-femina 19 3 -16 0.000 -0.84 

Euonymus europaeus 21 5 -16 0.000 -0.69 

Scrophularia nodosa 47 31 -16 0.026 -0.33 

Bromopsis ramosa 29 14 -15 0.003 -0.41 
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LOSERS      

Hypericum pulchrum 22 7 -15 0.001 -0.57 

Listera ovata 26 12 -14 0.005 -0.42 

Persicaria hydropiper 15 1 -14 0.000 -1.09 

Viola riviniana 61 47 -14 0.027 -0.30 

Polystichum aculeatum 15 2 -13 0.000 -0.86 

Viola hirta 19 6 -13 0.001 -0.55 

Cerastium fontanum 29 17 -12 0.045 -0.31 

Ligustrum vulgare 36 24 -12 0.017 -0.27 

Potentilla erecta 32 20 -12 0.026 -0.29 

Rubus caesius 12 0 -12 0.003 -1.46 

Torilis japonica 13 1 -12 0.000 -1.02 

Anagallis arvensis 13 2 -11 0.007 -0.79 

Anthoxanthum odoratum 24 13 -11 0.035 -0.33 

Cerastium glomeratum 11 0 -11 0.001 -1.42 

Hypericum tetrapterum 15 4 -11 0.003 -0.60 

Lotus pedunculatus 19 8 -11 0.013 -0.43 

Mentha arvensis 17 6 -11 0.013 -0.49 

Milium effusum 11 0 -11 0.013 -1.42 

Scrophularia auriculata 15 4 -11 0.004 -0.60 

Crepis capillaris 11 1 -10 0.002 -0.94 

Galium palustre 25 15 -10 0.031 -0.28 

Odontites vernus 10 0 -10 0.002 -1.38 

Poa annua 17 7 -10 0.006 -0.43 

Pulicaria dysenterica 11 1 -10 0.000 -0.94 

Ranunculus acris 12 2 -10 0.002 -0.75 

Chamerion angustifolium 12 3 -9 0.012 -0.60 

Dipsacus fullonum 10 1 -9 0.004 -0.89 

Euphrasia 9 0 -9 0.004 -1.33 

Juncus acutiflorus 11 2 -9 0.039 -0.71 

Teucrium scorodonia 19 10 -9 0.022 -0.32 

Veronica arvensis 11 2 -9 0.004 -0.71 

Achillea millefolium 8 0 -8 0.008 -1.27 

Aphanes arvensis 10 2 -8 0.008 -0.67 

Gnaphalium uliginosum 9 1 -8 0.021 -0.84 

Helianthemum nummularium 8 0 -8 0.008 -1.27 

Hypochaeris radicata 10 2 -8 0.039 -0.67 

Lathyrus pratensis 12 4 -8 0.008 -0.49 

Leontodon saxatilis 8 0 -8 0.021 -1.27 

Ranunculus flammula 9 1 -8 0.021 -0.84 

Rumex crispus 11 3 -8 0.021 -0.56 

Trifolium dubium 11 3 -8 0.039 -0.56 

Moehringia trinervia 17 10 -7 0.049 -0.26 

Veronica beccabunga 7 0 -7 0.001 -1.21 

Adoxa moschatellina 6 0 -6 0.031 -1.15 

Callitriche 6 0 -6 0.031 -1.15 

Chaerophyllum temulum 7 1 -6 0.031 -0.73 

Galium saxatile 9 3 -6 0.031 -0.47 

Juncus bufonius 10 4 -6 0.021 -0.40 

Juncus bulbosus 7 1 -6 0.039 -0.73 
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LOSERS      

Molinia caerulea 6 0 -6 0.016 -1.15 

Sonchus oleraceus 10 4 -6 0.039 -0.40 

Ulmus   7 1 -6 0.016 -0.73 

Potentilla anglica 8 4 -4 0.031 -0.30 

Hypericum montanum 2 0 -2 0.003 -0.71 

Carex viridula subsp.oedocarpa 2 1 -1 0.000 -0.23 

 

 

 

Standard linear regression assessed the ability of plant and patch 

attributes to predict species outcome i.e. empirical log odds ratio (LOR). 

Three models were created, one with independent variables representing life 

history traits (Table A5) and one with independent variables representing 

distributional information (Table A6) to determine which suite of 

information was a better predictor. 

The total variance explained by the model ‘Life History Traits’ 

overall was 50 % (44 % adjusted), predicting species outcome significantly 

better than the intercept only model (F = 9.041; df 12, 110; p < 0.001). The 

model had two outliers but these were not largely above the maximum 

Mahalanobis distance and therefore were accepted in the model. No 

independent variables required removal due to multicollinearity. Four 

independent variables made a significant unique contribution to the model, 

whereby coefficient 95% confidence intervals did not include the value zero 

and therefore the direction of the coefficient is reliable. These variables in 

order of importance were Nitrogen (p < 0.001; β = 0.56; 12.4% of DV 

variance), pH (p < 0.001; β = - 0.37; 7.7 % of DV variance), Light (p = 

0.056; β = - 0.30; 5.6 % of DV variance), and Perrenation (p = 0.046; β = 

0.28; 1.9 % of DV variance). The β coefficient represents the amount and 

direction of change in the IV with one standard deviation change in the DV. 

Therefore, with increasing LOR, nitrogen and perrenation will increase 

whilst light and pH will decrease. 

The total variance explained by the model ‘Distribution’ overall was 

30 % (27 % adjusted), predicting species outcome significantly better than 

the intercept only model (F = 8.31; df 6, 114; p < 0.001). The model had no 

outliers. No independent variables required removal due to 
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multicollinearity. Three independent variables made a significant unique 

contribution to the model, whereby coefficient 95 % confidence intervals 

did not include the value zero. These variables in order of importance were 

Wood (p = 0.001; β = 0.34; 7.4 % of DV variance), Grass (p = 0.015; β = - 

0.23; 3.7 % of DV variance) and Urban (p = 0.036; β = 0.18; 2.7 % of DV 

variance). Therefore, with increasing LOR, wood and urban will increase 

whilst grass will decrease.  

 

 

Table A5. Linear regression model information for ‘Life History Traits’ model and for 
each independent variable included. Variables that made a unique significant 

contribution to the model are in bold. 
 

 

Unique r
2
 

 
Coefficient 

 
Independent 
Variable Change (p)  B 

CI 
Lower 

CI 
Upper 

Tolerance 

Dispersal 0.000 0.820  0.02 -0.11 0.14 0.76 

Competitive 0.000 0.806  0.02 -0.25 0.32 0.52 

Ruderal 0.000 0.925  0.01 -0.26 0.29 0.54 

Stress-tolerant 0.003 0.460  -0.06 -0.33 0.15 0.73 

Perrenation 0.019 0.046  0.28 0.01 0.60 0.24 

Life form 0.005 0.281  0.14 -0.59 0.29 0.26 

Woodiness 0.002 0.494  -0.08 -0.17 0.33 0.35 

Clonality 0.002 0.529  0.05 -0.15 0.04 0.66 

Light 0.056 0.001  -0.30 0.18 0.39 0.61 

Moisture 0.006 0.274  -0.08 -0.06 0.22 0.76 

pH 0.077 0.000  -0.37 -0.38 -0.13 0.55 

Nitrogen 0.124 0.000  0.56 -0.29 -0.08 0.40 

 

1 S.D. of Empirical LOR (DV) 0.76 
dfs for Mahalanobis 12 
critical value for Mahalanobis (at p < 0.001) 32.91 
Maximum Mahalanbois value in model 40.14 

 

 

 

 

 

 

 



 

 229

Table A6. Linear regression model information for ‘Distribution’ model and for each 
independent variable included. Variables that made a unique significant 

contribution to the model are in bold. 
 
 

Unique r
2
  Coefficient 

 
Independent 
Variable Change (p) 

 

B 
CI 

Lower 
CI 

Upper 

Tolerance 

Biome 0.000 0.777  0.03 -0.17 0.23 0.77 

Eastern limit 0.009 0.225  -0.11 -0.18 0.04 0.80 

Wood 0.074 0.001  0.34 0.22 0.80 0.65 

Grass 0.037 0.015  -0.23 -0.68 -0.07 0.69 

Marsh 0.013 0.151  -0.13 -0.64 0.10 0.80 

Urban 0.027 0.036  0.18 0.03 0.97 0.89 

 

1 S.D. of Empirical LOR 0.75 
dfs for Mahalanobis 6 
critical value for Mahalanobis (at p < 0.001) 22.46 
Maximum Mahalanobis. value in model 18.19 

 

 

 

The models both predict significantly better than the intercept only 

model, however, the ‘Life History Traits’ model accurately predicted more 

variance and therefore was the superior model. The models allow 

characteristics of attributes to be associated with increasing and decreasing 

species (Table A7).  

 

Table. A7. Summary of characteristics of attributes associated with winner and 
loser species determined from linear regression models ‘Life History Traits’ and 

‘Distribution’, and Patch characteristic correlations. 
 

Model Attribute 
Increased species 
Characteristic 

Decreased species 
Characteristic 

Light Semi-shade conditions Well lit conditions 

Nitrogen Richly fertile soils 
Intermediately fertile 
soils 

pH Moderately acidic Weakly acidic 

Life History 
Traits 

Perrenation Perrenial Annual 

Wood 
Associated with 
woodland broad habitat 

 

Grass  
Associated with 
calcareous/ neutral/acid 
grassland broad habitat 

Distribution 

Urban 
Associated with built-up 
areas and gardens broad 
habitat 
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CONCLUSION 

The analyses presented within this appendix demonstrate the individualistic 

responses of woodland plant species. Species that provided the greatest 

contribution to discrimination of the two survey times were overwhelmingly 

species that had increased in site occupation, suggesting that increases were 

more important to overall community composition than decreases. Those 

species that have increased in site occupation are more characteristic of 

cooler, semi-shaded woodland or urban areas with richly fertile, weakly 

acidic soils. In contrast, decreased species are more characteristic of 

warmer, well-lit grassland with intermediately fertile, moderately acidic 

soils.  
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Appendix III 

Additional Literature Review in Support of 

Chapter 6 

 

III.1. LARVAL TRANSPORT AND CONNECTIVITY 

III.1.1. Intertidal invertebrate dispersal 

There are three larval types pertaining to different reproductive strategies: 

direct developers (or non-pelagic larvae), lecithotrophic larvae, and 

planktotrophic larvae (Vance 1973). Direct developers progress through all 

larval stages within an egg that remains in the intertidal environment and 

emerge onto the shore as juveniles. The strategy has low risk of predation 

and a reliable food supply, however, fewer young can be produced because 

it is more energetically costly and dispersal is severely curtailed (Nybakken 

& Bertness 2005). Lecithotrophic species produce larvae that have a self-

contained yolk supply and develop within the pelagic environment. Such 

larvae are liberated from dependence on plankton for food whilst being able 

to disperse efficiently, however, few larvae can be produced because of the 

associated energetic cost (Nybakken & Bertness 2005). Planktotrophic 

larvae are dependent on plankton in the pelagic environment for food. Many 

larvae can be produced because food supplies are not required, however, the 

risk of predation and unreliability of food is increased (Nybakken & 

Bertness 2005). The length of the pelagic phase varies from days to weeks, 

and can be up to one year (Dibacco et al. 2006; Nybakken & Bertness 

2005).  

Therefore, the majority of marine species have a pelagic larval phase 

early in their life history that is the dispersing propagule (Dibacco et al. 

2006; Nybakken & Bertness 2005). The term ‘larval dispersal’ is inclusive 

of brooding and release of larvae, pelagic transport, settlement and 

recruitment (Pineda et al. 2007). The evolutionary purpose behind larval 

dispersal is uncertain but may include competition reduction, increased food 
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supply, increasing resilience to stochastic catastrophes, and avoidance of 

parental predators (Gaines et al. 2007). An alternative possibility is that the 

pelagic phase evolved to take advantage of the rich nutritional resources 

available offshore, and transport is simply a by-product (Gaines et al. 2007).  

Larval transport, although just one aspect of dispersal, is arguably 

one of the most important areas for current research because it is key to 

effective planning of marine reserve networks (Jones et al. 2007; Warner & 

Cowen 2002). In the current era of rapid environmental change, unhindered 

dispersal is essential for the persistence of species. Traditionally larval 

transport was viewed as a diffusive process, with equal distance of larval 

movement in all directions from a source point. However, the influence of 

advection (along-shore directional transport) and hydrodynamic features 

such as currents and eddies is critical (Alexander & Roughgarden 1996) and 

are an integral consideration in larval transport. Some larvae can actively 

swim vertically through the water column to position themselves within 

particular currents, and/or horizontally in search of food or suitable 

settlement sites (Pineda et al. 2007). Larval choice is thought to be 

stimulated by a variety of environmental and biochemical stimuli, including 

phototaxis and pheromone release from adult populations (Jenkins 2005; 

Keough & Downes 1982; Kingsford et al. 2002; Nybakken & Bertness 

2005; Sponaugle et al. 2002). However, when currents exceed the 

swimming speed of larvae, advection and diffusion become the prominent 

factors controlling larval transport. 

Larval development is highly variable among marine species and can 

include multiple developmental stages, such as the nauplii and cyprid stages 

of barnacle larvae, each of which has different life history characteristics 

(Tapia & Pineda 2007). Stages are often referred to as ‘pre-competent’ 

when first released and later as ‘competent’ once they have reached a stage 

capable of settlement (Jackson & Strathmann 1981; Rilov et al. 2008). The 

duration of competent stage(s) generally exceed or are equal to pre-

competent stages (Jackson & Strathmann 1981). Furthermore, the duration 

of pelagic larval development can be influenced by environmental factors 

and has been explicitly linked to temperature as a constant quantifiable 
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effect across many species, revealing a predictable effect of ocean 

temperature on larval development (O'Connor et al. 2007).  

Pelagic larval duration varies greatly between marine species. The 

duration of the pelagic larval phase affects larval retention by keeping larvae 

closer to its natal population (Sponaugle et al. 2002) and mortality rates 

because the longer a larva is in the plankton, the more likely it is to be 

predated upon (Dibacco et al. 2006; Jackson & Strathmann 1981). The 

concepts of the “growth-mortality hypotheses” have been offered as an 

explanation of larval survival whereby those larvae that are large, fast 

growing and rapidly move through stages of development are the most 

likely to survive (Hawn et al. 2005; Pineda et al. 2007).  

 

III.1.2. Connectivity 

Connectivity is important to consider when seeking understanding of 

changes in community composition because colonisation is not possible 

unless connectivity exists between a reproductive population and the 

currently unoccupied patch. Furthermore, the concept is essential in 

determining spatially explicit management strategies for marine systems 

(Cowen et al. 2007; Jones et al. 2007).  

The connectivity of intertidal invertebrate communities is largely 

dependent upon the dispersal of pelagic larvae during the early stages of the 

life-cycle (Cowen et al. 2007). This is particularly true when the adult form 

of the species is sessile because it is often the only dispersive part of the life 

cycle. Occasionally adults raft to new locations; however, this is thought to 

be a chance event and not the primary mode of dispersal. Connectivity for 

terrestrial species can be defined for a wealth of spatial and temporal scales 

(Crooks & Sanjayan 2006), however, there is no single clear definition for 

connectivity of marine systems owing to the plethora of different spatial and 

temporal scales (Gaines et al. 2007; Pineda et al. 2007).  

In a recent overview, Cowen et al. (2007) suggest there are four 

prongs to developing our grasp of the currently understudied field of marine 

connectivity: “Observation, explanation, consequences, and application”. 

Furthermore, in order to make useful predictions, we must gain a process-
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based understanding of larval dispersal (Cowen et al. 2007). Marine systems 

were originally assumed to be open because pelagic larval phases were not 

subject to barriers (Cowen et al. 2000). However, it is becoming 

increasingly obvious that this is not the case and that local retention of 

larvae is common (Cowen et al. 2007; Cowen et al. 2000; Hill 1990; James 

et al. 2002; Jessopp & McAllen 2008; Largier 2003; Lefebvre et al. 2003; 

Mitarai et al. 2008). Complete and semi-permeable barriers to larval 

transport affect the connectivity and subsequently the recruitment of rocky 

shore invertebrates (Gaines et al. 2007; Gaylord & Gaines 2000; Rilov et al. 

2008), therefore, an area may remain uncolonised despite suitable climatic 

conditions because of its inaccessibility to propagules (Crisp & Southward 

1953).  

Headlands separating bays are often associated with hydrodynamic 

features such as eddies (Largier 2003) that create turbulence, causing high 

larval mortality, thus amplifying the barrier effect of the landmass (Jessopp 

2007). For example, Start Point on the south-west coast of England was 

shown to pose a significant barrier to the westward movement of Mytilus 

edulis larvae (Gilg & Hilbish 2003). Upwelling is another hydrographic 

feature that can affect larval transport (Alexander & Roughgarden 1996). It 

is often followed by a relaxation event and it is the timing and duration of 

each of these events that can carry larvae either away from or onto the shore 

(Alexander & Roughgarden 1996; Schiel 2004). 

Larvae must overcome additional barriers as they are transported 

onshore. The surf zone is one example of a semi-permeable barrier that was 

suggested as the reason for a decoupling of near-shore larval abundance and 

onshore recruitment of mussel larvae (Rilov et al. 2008). The final approach 

of larvae to shore is much understudied but is likely to be affected by the 

presence of reefs, kelp forests and the rocky shore (Gawarkiewicz et al. 

2007). 

Connectivity between protected areas is especially important in 

ensuring an ecologically coherent reserve network. In the English Channel, 

there are eight Special Areas of Conservation (SACs) and nine Special 

Protected Areas (SPAs) with marine components (Marine Natura Project 

Group 2007). The two designations often overlap on the same site, 
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exemplified by a focal point of protected areas around Southampton and the 

Solent. A focus on this area is particularly interesting because it is central 

along the southern England coastline, and therefore is likely to be an 

important connective area between west and east. However, it is also an area 

of low recruitment in some intertidal invertebrates leading it to be suggested 

as a bottleneck to larval transport (Herbert et al. 2007). An ‘ecologically 

coherent’ national network of such marine protected areas, with any 

shortfall in network design addressed through newly designated marine 

conservation zones (MCZs) is under development in accordance with the 

UK Marine Bill, with site designations expected to be completed by 2012 

(JNCC 2009; Parliamentary Office of Science and Technology 2008).  

 

III.1.3. Methods in Larval Transport Research 

The major data required to study larval transport is data on source 

populations and larval destinations (Cowen et al. 2007). The availability of 

such data at present is limited and requires much effort to enhance. 

However, studies of larval movement in the open ocean are difficult. The 

need for empirical data to inform models is essential (Pineda et al. 2007) 

and much of what we currently have should be treated as steps on the way to 

a full understanding and capability to predict larval transport.  

Larval transport is currently studied using a variety of approaches: 

visual tracking, isolated or point source larval release sites, inference of 

dispersal profiles, modelling, geographic surveys of genetic variation, and 

tagging of larvae using artificial or natural tags (Dibacco et al. 2006). Visual 

tracking is only suitable for large, easily visible larvae and therefore is not 

possible for most species. Isolated or point source larval release is site-

specific and therefore is not applicable to most species/regions. Grantham et 

al (2003) inferred dispersal profiles for 91 species based on their life history 

characteristics and grouped by habitat. Although this may provide a useful 

base-line estimate there are many assumptions to this approach. In light of 

these limitations, the other three methods are the most common. 

Numerical models that have been described to date are often 

‘advection-diffusion models’, however, such models have neglected to 

incorporate biological parameters (e.g. Marinone et al. 2008). Colby (1988) 
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advocated that passive advection and diffusion should be the null hypothesis 

for larval transport studies, with larval behaviour acting as the experimental 

‘treatment’. Gaylord & Gaines (2000) also note that some models are 

limited because they do not incorporate the lag between pre-competent and 

competent larvae, and non-reproducing juveniles and reproducing adults. 

More dynamic ‘advection-diffusion-mortality’ models provide a more 

accurate picture of larval transport (Hill 1990). For example, Norway 

lobster larvae retention and mortality was found to be best explained by 

advection and could not be explained by simple diffusion (Hill 1990). In a 

study of regional scale dynamics of reef fish metapopulations, larvae were 

simulated with a passive larval stage before moving onto an actively motile 

larval phase allowing accurate estimates of larval retention (James et al. 

2002). Rule-based models may be able to incorporate larval behaviour, 

however, prior to establishing these models further empirical information is 

required on those behaviours (Pineda et al. 2007). Gilg & Hilbish (2003) 

combined the use of oceanographic modelling with genetic analysis to 

assess connectivity of two mussel species around a hybrid zone and found 

good agreement between the two methods. Genetic analysis is a useful 

method in assessing connectivity, however, it may not be appropriate for 

small spatial and temporal scale studies (Hedgecock et al. 2007). One of the 

most recent advances in modelling larval transport used a graph-theoretic 

approach to model larval transport in an area of coral reef (Treml et al. 

2008). The method allows connectivity metrics to be readily gained for 

models with various assumptions, however, the methodology surrounding 

such modelling is still in its infancy and is not yet user-friendly. 

Tagging allows mark-recapture studies and can be achieved using 

artificial or natural tags. Artificial tags are very difficult to use with the 

often microscopic larvae of intertidal invertebrates. However, artificial 

marks applied through immersion of larvae in marker chemicals (e.g. 

fluorescent compounds) or from environmental perturbations (e.g. thermal 

signals on otoliths) can be efficient, cost effective and highly robust 

(Thorrold et al. 2002). Alternatively, natural markers can be harnessed. 

Genetic markers can be artificially bred into selected individuals prior to 

release or transgenic individuals can be created, although the effort required 
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for such a method is large (Thorrold et al. 2002). ‘Elemental fingerprinting’ 

has much potential in enhancing larval transport studies and involves 

identifying chemical signatures indicative of source areas that are 

incorporated into the tissues of the focal species, primarily into their hard 

body parts (Becker et al. 2007; Thorrold et al. 2002). The method has been 

used to demonstrate the difference in connectivity of two mussel species 

(Becker et al. 2007).  

 

III.1.4. Graph-theoretic approach 

Connectivity of intertidal rocky shore patches could be modelled using a 

graph-theoretic approach (Treml et al. 2008; Urban & Keitt 2001; Urban et 

al. 2009; Urban et al. 2008). The approach has been used with increasing 

frequency in the terrestrial environment (Urban et al. 2009) but only once in 

the marine environment (Treml et al. 2008). Connectivity models are 

created based upon distance, probability and/or adjacency matrices. For the 

intertidal environment, a null connectivity model can be based on 

geographic distances, therefore assuming only the influence of distance with 

no influence of barriers (Treml et al. 2008). Experimental connectivity 

models can be based on distance (days) between patches determined 

through the hydrodynamic model described in the following section, which 

incorporates potential barriers to dispersal (Treml et al. 2008). The 

hydrodynamic model simulates the number of days required for larvae to be 

transported from each patch (i) to every other patch (j) (Treml et al. 2008). 

This information will create a distance matrix Dij and/or a probability matrix 

Pij. Distances will need to account for settlement competency so larvae must 

reach the patch within their competency window for those patches to be 

considered connected.  

A graph based upon these matrices is then created whereby patches 

of intertidal shore are termed ‘nodes’ and connections between patches are 

termed ‘edges’ (Fig. A4). Edges can vary in their strength of connectedness, 

for our purpose representing probability of dispersal between nodes. Graphs 

can be unidirectional or directional, the latter is called a ‘digraph’ (Urban & 

Keitt 2001). Each node can be assigned specific attributes e.g. spatial 

coordinates, area, size, productivity. Once the graph is created it can be used 
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to explore various graph properties that equate to connectivity metrics and 

scenarios, for example, least-cost pathways and the effects of removing 

particular edges and/or nodes (Treml et al. 2008; Urban & Keitt 2001). 

 

 

 

Fig. A4. Example of a graph of connectivity used for in the graph theoretic 

approach. Grey circles represent ‘nodes’ (patches), lines between nodes are 

‘edges’ (connections between patches). In application to meso-scale ecology, it 

depicts potential dispersal pathways. 

 

Using this approach it is possible to generate connectivity model for 

various scenarios and for species with different dispersal modes (direct, 

short planktonic, long planktonic) and use the models to identify which 

scenario best explains observed range shifts or to predict future range shifts. 

 

III.2. BIOCLIMATIC ENVELOPE MODELLING 

Models of species bioclimatic envelopes (i.e. required environmental 

parameters for survival of a species) are an oft used method to examine 

potential range shifts as an impact of environmental change, for example, 

‘Modelling natural resource responses to climate change’ (MONARCH 1, 2, 

3) (Hossell et al. 2003; Walmsley et al. 2007) and ‘Assessing Climate 

Change Effects on Land use and Ecosystems; from Regional Analysis to 

The European Scale’ (ACCELRATES) (Rounsevell et al. 2006). However, 

these models are based on many assumptions that have not been tested with 
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empirical data. It is vital that we are aware of and understand the potential 

flaws within these models to enable improvements to be made to their 

predictive capability. I outline the main criticisms of bioclimatic envelope 

models (BEMs) here. 

BEMs generally do not include biotic interactions such as 

competition and predator-prey relationships that are major factors 

influencing a species’ range. Although this may provide an acceptable 

projection of future range at a large scale, this technique is inappropriate at 

the local scale (Pearson & Dawson 2003). Model outputs of projected red 

squirrel (Sciurus vulgaris) range exemplifies the limitations. Red squirrels 

have been projected by BEMs to disperse across the entire UK under 

climate change. However, we know that this is not possible because of 

competition and viral transmission from the grey squirrel (Sciurus 

carolinensis) (Tompkins et al. 2003). The extension to ACCELERATES 

incorporates dispersal into the model at a categorical level, improving the 

realism. However, with so many interactions unaccounted for, these models 

cannot provide robust community composition predictions. Conversely, it 

would be an impossible task to account for every community interaction 

within a community and, although improvement is possible, the limits of our 

understanding should be recognised. 

BEMs can only use observed realised niche as a basis to create a 

species envelope, creating an immediate paradox with Hutchinson’s 

definition of the niche: “The niche is a set of biotic and abiotic conditions in 

which a species is able to persist and maintain stable population sizes.” 

(Hutchinson 1957). The fundamental niche is determined by abiotic 

conditions, whereas the realised niche is further constrained by biotic 

conditions. Therefore, the paradox lies in the use of the realised (i.e. 

observable) niche to provide model outputs for a fundamental niche. BEM 

can only use observed realised niche as a basis to create a species envelope 

and therefore must assume equilibrium with the climate (Pearson & Dawson 

2003). Although this may be the case for some species, we know that at 

least for herptiles this is unlikely (Araujo & Pearson 2005; Araujo et al. 

2006). As further illustration, amphibian and reptile distribution is suggested 

to be more a function of past ice-age refugia than a function of current 
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climate (Araujo & Pearson 2005; Webb 1986; Williams et al. 2001). 

Therefore, BEM outputs may fail to include potential future range areas. 

Niche conservatism is a principle of BEMs. This conservatism 

assumes the species will have no evolutionary potential in the projected 

amount of time. This may well be the case for species with a long 

generation time and species restricted by land use barriers (Opdam & 

Wascher 2004). However, short generation species may be capable of 

adapting to altered climate in the time-frame used in these projections. 

Adaptations to climate have already been observed in bush crickets, 

butterflies and navelwort (Pearson & Dawson 2003). Furthermore, if niches 

are conserved, by what process can speciation occur? Conversely, niche 

conservatism can be used to argue against individualistic species responses 

because it states that species cannot move geographically because they are 

limited by their niche and exist in ‘niche-assembled communities’ (Alonso 

et al. 2006). Therefore, it may be more pertinent to induce neutral theory to 

explain individualistic response whereby species community is ‘dispersal-

assembled’ (Hubbell 2001). However, if this is done, this fundamentally 

contrasts with the use of BEMs based on niche theory. Although neutral 

theory has received criticism (Alonso et al. 2006), it was originally created 

as a null theory. It also highlights the plethora of conceptual theory 

surrounding range determination of species, which through only considering 

niche-assembled communities, BEMs have disregarded.  

The scale at which such models are used is important and the most 

appropriate scale has a dependence on characteristics of the target species 

(Guisan & Thuiller 2007). For example, a highly mobile species would be 

best examined at a larger scale than a relatively sessile species. Opdam and 

Wascher (2004) suggest such modelling should be at the landscape scale. 

Midgley et al. (2002) expand on this issue by noting the discrepancies of 

using a single species model versus a biome scale model. The study 

concluded that the biome level significantly underestimated species loss 

although it was much faster and more pragmatic to run.  

Finally, most BEMs clearly delineate different habitat types while in 

practice, habitats often show a gradual transition. The quality of surrounding 

habitat is suggested to be high importance to the survivability of the core 
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habitat for species (Moilanen & Wintle 2007). This was manifested as the 

‘boundary-quality penalty’ (BQP) and could be incorporated into future 

BEMs. 

In conclusion, the usefulness of current modelling studies for 

analysis of community composition must be treated cautiously. However, 

BEMs do provide a good coarse estimate of individual species occurrence in 

the future on large scales (Araujo & New 2007; Araujo & Pearson 2005; 

Araujo et al. 2005; Pearson & Dawson 2003; Pearson et al. 2006; Thuiller et 

al. 2003; Thuiller et al. 2004), and although ecological traits have a 

significant effect on accuracy of the models, this effect is suggested to be 

small (McPherson & Jetz 2007). Therefore, whilst not providing evidence 

for or against individualistic species responses, these models could give a 

course estimate of species assemblages in particular areas in the future.  
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Appendix IV 

Sensitivity Analyses for Particle Tracking Module 

 

The particle tracking module used within the hydrodynamic modelling 

approach to larval transport required parameter values (Table A8). The 

decay parameter was not used because estimates of larval mortality were 

subject to very large errors. Particle mass within ‘Class’ and horizontal 

dispersion were subjected to sensitivity analysis. This involved variation of 

the parameter values across five orders of magnitude to determine whether 

there was a substantial effect on the model output. Model output was 

represented by the number of particles that settled on each rocky shore.  

 
Table A8. Larval input parameters available in particle tracking module 

 

Parameter Description 
Option 

Chosen 
Input Value 

EUM Specify unit of measurement of 
particle e.g. Kg, milligram… 

Particle 
mass 

Specify particle mass 

Class Class of 
particles i.e. 
larvae 

Maximum 
particle age 

If particle became older than this 
it will be excluded from the 
simulation. 

Fixed 
location 

Grid coordinates. Specify 
projection, in this case British 
National Grid, and ensured it’s the 
same projection as that used for 
HD model. Also required depth of 
larval release. 

Source The source 
location of the 
particles i.e. 
rocky shore 
centroids 

Varying in 
time 

dfs0 file with time series data. 
Input flux value for each time 
step. For this application this 
represents brooding season. 

Decay Decay rate of 
particle i.e. 
larval mortality 
rate 

None  

Dispersion Horizontal 
 

Dispersion 
coefficient 
formulation 

Value estimate measured by m s
-1

 

Drift profile Movement of 
particles 

 Selected ‘from HD’ 
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Particle mass was not substantially altered when the values were 

varied from 0.06825 µg to 682.5 µg (Fig. A5). Therefore it can be concluded 

that error in this parameter would not greatly effect the result. This also 

suggested that the model was suitable for the entire larval duration inclusive 

of numerous larval stages of increasing mass, and was applicable to a wide 

variety of species because larvae of different mass would experience the 

same transport. In contrast, horizontal dispersion coefficient did 

substantially impact the model output (Fig. A6). This parameter is 

notoriously difficult to estimate. To address this issue I sought expert advice 

from a contact at HR Wallingford. Sensitivity analyses were conducted for 

10 rocky shore sites that corresponded to those used for recruitment 

validation (see Chapter six). Here I present the sensitivity analysis results 

from one site only because all sites demonstrated a similar pattern. 
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Fig. A5. Particle mass sensitivity analysis for larval release from rocky shore site 21 
at each pelagic larval duration. Values tested are measured in µg. 

 

  

  



 

 253

 
 

Fig. A6. Horizontal dispersion coefficient sensitivity analysis for larval release from 
rocky shore site 21 at each pelagic larval duration. Values tested are measured in 

m s
-1

 

 


