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Abstract

Many clustering algorithms have been developed and improved over

the years to cater for large scale data clustering. However, much of

this work has been in developing numeric based algorithms that use

efficient summarisations to scale to large data sets. There is a grow-

ing need for scalable categorical clustering algorithms as, although

numeric based algorithms can be adapted to categorical data, they do

not always produce good results. This thesis presents a categorical

conceptual clustering algorithm that can scale to large data sets using

appropriate data summarisations.

Data mining is distinguished from machine learning by the use of

larger data sets that are often stored in database management systems

(DBMSs). Many clustering algorithms require data to be extracted

from the DBMS and reformatted for input to the algorithm. This

thesis presents an approach that integrates conceptual clustering with

a DBMS. The presented approach makes the algorithm main memory

independent and supports on-line data mining.
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Chapter 1

Introduction

Clustering is a widely used data mining technique that has applications in areas

such as marketing, to identify similar customer behaviour, and the WWW, to

discover similar access patterns (Berry & Linoff, 2004; Dunham, 2003). The goal

of clustering is to discover natural clusters in unclassified data that can then be

studied to learn interesting rules (Everitt, 1993).

Many clustering algorithms have been developed and improved over the

years for the purpose of analysing large data sets. Some of the most successful

large scale clustering algorithms are numeric based algorithms that use efficient

summarisations of the data. However, large data sets often contain categorical

data that is not as easy to summarise.

Categorical clustering algorithms have proved more difficult to scale to large

data sets (Andritsos et al., 2004; Zhang et al., 2000). One approach to achieve

scalability when clustering categorical data is to use numeric based algorithms.

This solution is not always successful in discovering a good clustering as it may

fail to discover the natural clusters in the data (Guha et al., 2000).
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An alternative approach is to investigate scaling existing categorical cluster-

ing algorithms (Andritsos, 2004). A well known categorical clustering algorithm

is the conceptual clustering algorithm Cobweb (Fisher, 1987). As a conceptual

clustering algorithm, Cobweb organises data into categories that maximise the

similarity of data in the same category and minimise the similarity of data in

different categories (Michalski, 1980). Cobweb has been successfully used in pre-

dicting missing data (Biswas et al., 1998) and personalisation of internet services

(Paliouras et al., 1999). Furthermore, some of its features that work well with

large data sets have been used in more recent algorithms, for example Cobweb’s

ability to process data sequentially (Zhang, 1997).

The main disadvantage of Cobweb as a conceptual clustering algorithm is

its inability to scale to large data sets. The aim of this thesis is to investigate if

it is possible to scale conceptual clustering to large data sets of categorical data.

Most of the data used in clustering exists in databases. Unfortunately,

like other data mining techniques, clustering is performed, mainly, outside the

DBMS using algorithms that are restricted by the available resources (Dunkel

et al., 1997; Netz et al., 2000; Ordonez & Omiecinski, 2004). As a result, the

overall data mining task can be complex. The user has to extract the data

from its storage environment and be aware of any resource limitations (Kepner &

Kim, 2003) to be able to apply the clustering algorithm and obtain a clustering.

Another aim of this thesis is to investigate if it is possible to make conceptual

clustering main memory independent and applicable directly to data that exists

in a DBMS.

Data stored in a database is normally updated frequently creating a need

for dynamic or on-line data mining. Unfortunately, many of the data mining al-

2



1.1 Contributions

gorithms perform static data mining (Dunham, 2003). For clustering this means

that once an algorithm builds a set of clusters these cannot be updated. In ad-

dition, data stored in a database is of a variety of types. Therefore, clustering

algorithms that can handle different data types are more suitable. There are

clustering algorithms that can handle data of different data types (mixed data)

but the majority are one type algorithms, often numeric based. Also, data stored

in a database is structured data following a conceptual and logical model (Date,

1995; Elmasri & Navathe, 2000). There are already examples of work in the liter-

ature that attempted to use either one or the other model to support data mining

(Ketterlin et al., 1995), but most of the clustering algorithms in the literature are

applicable to data that exists in a flat file form. Another aim of this thesis is to

identify clustering algorithm properties that suit the characteristics of data that

exists in a DBMS.

Algorithms used in a DBMS, for example indexing algorithms (Sellis et al.,

1987), require minimum input from a database user. Another aim of this thesis

is to identify clustering algorithm properties that suit a DBMS.

1.1 Contributions

This thesis makes the following contributions:

• Proposes CLIMIS, a scalable conceptual clustering algorithm for categorical

data.

• Shows how conceptual clustering for categorical data can be scaled to large

data sets by using data summarisations appropriate for categorical data.

3



1.2 Organisation of the Thesis

• Shows how conceptual clustering for categorical data can be scaled to large

data sets without incurring any loss in the quality of the clustering results.

• Shows how to achieve main memory independence by using a cache that

integrates conceptual clustering with a relational DBMS.

• Uses an approach to clustering that supports on-line clustering.

• Uses an approach to clustering that can be extended to mixed data and has

immediate database applications.

• Uses an approach to clustering that can be applied to structured data.

• Uses an approach to clustering that is possible to apply directly to data

that exists in a DBMS.

1.2 Organisation of the Thesis

The organisation of this thesis is as follows. Chapter 2 presents a discussion of

representative clustering techniques and algorithms. Chapter 3 is a discussion of

our algorithm CLIMIS and how it scales to large data sets. Chapter 4 presents an

evaluation of CLIMIS and compares it with other algorithms that also have been

developed for clustering large categorical data sets. Chapter 5 presents designs

that reflect the implementation of CLIMIS. Chapter 6 is a discussion of different

motivations, approaches and considerations when integrating an algorithm with a

DBMS. Chapter 7 discusses how we integrated CLIMIS with a relational DBMS.

Chapter 8 presents an evaluation of the extended CLIMIS and the thesis ends

4



1.2 Organisation of the Thesis

with chapter 9, which includes the conclusions on this work and the ways we plan

to extent our work with future research.
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Chapter 2

Clustering

Clustering is a research area in the fields of machine learning, statistics, databases

and data mining. Clustering is employed in a number fields to infer knowledge

from data. For example, clustering is used in marketing for identifying customer

segments, in biology for grouping plants and animals based on their features, in

telecommunications and insurance for fraud detection and in relation to the world

wide web to discover groups of similar access patterns based on web log data.

The problem of clustering data sets is that, quite often, the available clustering

algorithms do not satisfy the clustering requirements of these fields. One of the

clustering requirements is to cluster large data sets as the data collected in these

fields increases every year. Dunham (2003) suggests that data doubles every year,

but useful information seems to be decreasing.

This chapter starts by discussing various approaches to clustering and their

problems with clustering large data sets. The chapter then presents how these

approaches have been adapted to cluster large data sets.

6



2.1 Definition

2.1 Definition

Clustering is the grouping of a set of data into subsets, called clusters, such that

the data are similar when they appear in the same cluster and dissimilar when

they appear in different clusters (Everitt, 1993; Fasulo, 1999; Fraley & Raftery,

1998; Hartigan, 1975; Hinneburg & Keim, 1999). A good clustering of a given

data set is one that maximises the similarity between data in the same cluster and

dissimilarity between data in different clusters. A clustering algorithm normally

seeks for a good trade off between the two.

2.2 Data Types

As already mentioned, earlier in this thesis, most of the data used in data mining

comes from a database. Interestingly, the data mining view of data, and therefore

clustering, is different to that of databases.

A database stores data as a set of relations. A relation is a set of tuples

and each tuple is a set of attribute values. Each attribute value has a data type

determined by the data type of the attribute.

Two major data types that are found in databases, particularly commer-

cial databases, are numeric and categorical data. The data mining view of data

is based on statistics and is more complex than the database view of data. A

statistical view of numeric and categorical data, identifies numeric and categor-

ical (also known as categoric) as two main categories of data that also include

subcategories. Two subcategories of numeric are ratio and interval data and two

subcategories of categorical are nominal and ordinal data (Hastie et al., 2001;

7



2.2 Data Types

Pyle, 1999; Stevens, 1946). Each subcategory indicates important characteristics

of the data.

• Numeric Data

– Ratio Data: Ratio data is numbers and is not categorised. Ratio

data is on a scale that has a meaningful zero and a common distance

between individual points. Data that can be counted such as money

and age is normally ratio data. For example, £50 is twice as much

compared to £25.

– Interval Data: Unlike ratio data, interval data is on a scale with no

common distance between individual points. For example, the Cel-

sius temperature scale is considered to be an interval scale because 50

degrees Celsius is not twice as hot as 25 degrees Celsius.

• Categoric Data

– Nominal Data: Data is considered to be nominal when it is possible

to put it into categories but these categories cannot be put into any

order. Examples of nominal data are: nationality, gender and religion.

– Ordinal Data: Ordinal data can be put into categories. Unlike nominal

data, ordinal data categories can be put into an order. Examples of

ordinal data are: -

∗ rates (A, B, C, D),

∗ attitudes (strongly agree, agree, disagree, strongly disagree), and

∗ body mass index categories (anorexic, slim, normal, overweight,

obese)

8



2.3 Similarity and Dissimilarity

This statistical view of data is important for data mining as each data

type may require different analysis and have different limitations when it comes

to large data analysis. For example, the analysis of nominal data is considered

more complex because it happens at attribute value level, whereas the analysis

of numeric data happens at attribute level.

2.3 Similarity and Dissimilarity

A clustering algorithm makes use of a similarity or dissimilarity measure to quan-

tify the quality of a clustering. The terms similarity and dissimilarity are often

used interchangeably (Han & Kamber, 2000; Milligan, 1996). This is because, in

the literature, particularly with numeric data, dissimilarity is viewed as another

aspect of similarity (Gowda & Diday, 1992). In general, a similarity measure

shows the strength of the relationship between two objects. A higher measure-

ment indicates a greater similarity between two objects. A dissimilarity measure

shows the distance between two objects. A lower measurement indicates a lesser

dissimilarity between two objects.

The suitability of a measure for the analysis of a data set depends on the

type of the data. For example, distance based measures are particularly suitable

for clustering numeric data as numeric data can be easily viewed as points in a

metric space, metric data.

9



2.4 Clustering Techniques

2.4 Clustering Techniques

Clustering algorithms follow different clustering techniques. This section dis-

cusses different clustering techniques and examples of algorithms that follow these

techniques.

2.4.1 Partitional and Hierarchical Clustering

A clustering algorithm can be described as partitional or hierarchical depending

on the approach it follows to produce a set of clusters (Jain & Dubes, 1988).

Partitional Clustering

Given a database D of n tuples and an input number k that represents the number

of desired clusters, a partitional algorithm applies a measure and partitions the

data into a flat arrangement of k clusters.

A well known partitional algorithm is the k-means algorithm (MacQueen,

1967). The k-means algorithm is a distance based algorithm that views data

as points in a metric space (discussed in detail in section 2.4.2). Furthermore,

k-means represents a cluster by a centroid. A definition of a centroid is given by

Al-Harbi & Rayward-Smith (2006) as follows:

Definition 1 Given any set of points, C, in a metric space, M , with metric, d,

a point ĉ ∈ M is called a centroid if

∑
x∈C

d(ĉ, x) is minimised, (2.1)

10



2.4 Clustering Techniques

where d(ĉ, x) represents the distance between two points. Note that the

centroid ĉ is not necessarily an element of C.

There are different variations and extensions of the k-means algorithm

(Huang, 1998; Kanungo et al., 2002; Pelleg & Moore, 2000). The original k-

means algorithm that other algorithms have been based on follows the steps

shown below:

1. Randomly select k initial centroids to represent k clusters.

2. Assign all tuples to their closest centroid using

a similarity/dissimilarity measure.

3. Recalculate the centroids of the clusters.

4. Reassign the tuples according to the new centroids.

5. Repeat 3 and 4 until the same tuples are assigned

to the same clusters in consecutive iterations.

Han & Kamber (2000) give the complexity of k-means as O(nkt), where

n is the number of tuples to be clustered, k is the number of clusters desired

and t is the number of iterations. To achieve the same clusters in consecutive

iterations and produce a set of clusters, the algorithm may require a high number

of iterations.

Another partitional algorithm, similar to k-means, is the k-medoids algo-

rithm, which is also known as PAM (Partitioning Around Medoids) (Kaufman &

Rousseuw, 1990). The k-medoids algorithm follows similar steps to k-means. It

looks for a good set of clusters through iterations and at every iteration it resets

the medoids and reassigns the points to the best clusters. The main difference

between the two algorithms is that k-means uses a mean to represent the centre of
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the cluster, whereas k-medoids uses a medoid. A medoid is an object that ideally

is the most central object in the cluster: A point m̂ ∈ M is called a medoid if

it minimises the objective function,
∑

x∈C d(m̂, x) (Mirkin, 2005). The medoid

must itself be an element of C.

An advantage of the k-medoids algorithms is that it is less sensitive to any

noise or outliers than the k-means algorithm (Al-Zoubi, 2009; Dehuri et al., 2006;

Han & Kamber, 2000; Zhang & Couloigner, 2005). The reason is that a medoid is

less affected by an outlier or other extreme values than a mean. A disadvantage

of the k-medoids algorithm is that it is costly and only applicable to small data

sets (Han & Kamber, 2000).

Part of the research on partitional algorithms has focused on scaling par-

titional algorithms to large data sets. An example of a partitional algorithm

designed to cluster large data sets is CLARA. CLARA is based on k-medoids

and uses a sampling based method to deal with large data sets (Kaufman &

Rousseuw, 1990). It draws a random sample from the original data set and then

applies the k-medoids algorithm. To produce a better clustering partition, the

algorithm applies the same process a number of times. According to Han &

Kamber (2000), CLARA’s effectiveness depends upon the size of the sample.

CLARANS is a more recent algorithm also based on k-medoids and sam-

pling (Ng & Han, 1994, 2002). Unlike CLARA, they use a dynamic approach

to sampling. The algorithm starts with an original clustering partition based

on a random sample that they call the current clustering. When the algorithm

replaces a single medoid with a medoid randomly drawn from the data set, the

new clustering partition, called neighbour, is compared to the current partition

and if it is better it replaces the current clustering. The algorithm tries a number
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of neighbours depending on an input parameter decided by the user. CLARANS,

according to Han & Kamber (2000), shows better quality than CLARA, but worst

complexity.

Hierarchical Clustering

Hierarchical clustering is different from the partitional approach in that, tradi-

tionally, it requires no input clusters and builds clusters at different levels of a

hierarchy. The output of the hierarchical approach is a dendrogram (tree) that

includes clusters at different levels of generalisation or specialisation.

A hierarchical algorithm can follow an agglomerative or divisive approach

to clustering.

2.4.1.1 Agglomerative Clustering

Agglomerative clustering follows a bottom up approach to clustering (Duda &

Hart, 1973). It starts with singleton clusters. If the data set contains n tuples, the

algorithm starts with n clusters. The algorithm gradually merges the most similar

pair of clusters to form a larger cluster until all data is covered by a universal single

cluster. An example of an agglomerative algorithm is AGNES (Han & Kamber,

2000; Kaufman & Rousseuw, 1990). AGNES starts with singleton clusters and

creates a dendrogram (tree) of clusters by gradually merging clusters whenever

the similarity between them is greater than a given threshold.

2.4.1.2 Divisive Clustering

A divisive clustering algorithm starts with one cluster that covers all the cases.

The algorithm splits clusters into smaller ones until every cluster is a singleton and

13



2.4 Clustering Techniques

covers only one tuple. An example of an early divisive algorithm is DIANA (Han

& Kamber, 2000; Kaufman & Rousseuw, 1990). The algorithm starts with a single

cluster that covers all the data and gradually splits it into smaller clusters by

applying a measurement function that indicates the furthest nearest-neighbours.

There are algorithms that have combined the partitional and hierarchical

approach in order to achieve applicability to larger data sets. For example, the

original agglomerative approach started with every point being a cluster on its

own. The evaluation process that indicated which clusters to merge was an ex-

pensive process. As a result, more recent algorithms that follow the agglomerative

approach start with k number of clusters, like the partitional approach, instead

of n clusters (Andritsos, 2004).

ITERATE (Biswas et al., 1998) is another example of an algorithm that

combines the hierarchical and partitional approach. ITERATE starts with a di-

visive algorithm that produces a clustering tree. Based on a measure of clustering

quality, a set of clusters are picked from a level of the tree and they are used as

an input to a partitional phase of the algorithm to improve the clustering quality.

The sections that follow discuss hierarchical algorithms or algorithms that

combine the partitional and hierarchical approach as they have been more suc-

cessful at clustering large data sets.

2.4.2 Distance Based Clustering

A large number of algorithms, including k-means, are described as distance based

clustering because they view data as points in a metric space. The similarity or

dissimilarity between two points x̂ and ŷ, both in a metric space M , is evalu-
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ated by measuring the distance between them, d(x̂, ŷ). To measure the distance

between points, measures that are known as metrics are used.

Given three data points x̂, ŷ and ẑ all in M , a distance metric should satisfy

the following (Han & Kamber, 2000; Kaufman & Rousseuw, 1990):

1. d(x̂, ŷ) ≥ 0

2. d(x̂, ŷ) = 0 if and only if x̂ = ŷ

3. d(x̂, ŷ) = d(ŷ, x̂)

4. d(x̂, ẑ) ≤ d(x̂, ŷ) + d(ŷ, ẑ)

The first condition says that distances are non-negative numbers. The

second condition says that the distance of a point to itself is 0. Number 3 in the

list is an axiom that reflects the symmetry of the distance function. Number 4 is

known as triangle inequality and reflects the fact that the direct distance from a

point x̂ to a point ẑ is always equal or shorter to the distance that includes point

ŷ.

Two well known and widely used distance metrics that satisfy the above re-

quirements are the Euclidean distance (equation 2.2) and the Manhattan distance

(equation 2.3).

Euclidean Distance

d(x̂, ŷ) =

√√√√ m∑
i=1

(xi − yi)2 (2.2)
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Manhattan Distance

d(x̂, ŷ) =
m∑

i=1

|xi − yi| (2.3)

The above equations (equations 2.2 and 2.3) can be used for numeric (real

valued) data. However, when the data is of the type categorical (nominal) then:

d(x̂, ŷ) =

 0 (x̂ = ŷ)

1 (x̂ 6= ŷ)
(2.4)

Given a database D with m attributes, A1, A2, . . . , Am, of the type real

valued and categorical (nominal) data, i.e. mixed data, the following extended

Euclidean metric can be used instead (Nguyen & Rayward-Smith, 2008):

d(x̂, ŷ) =
√

d2
1(x̂1, ŷ1) + d2

2(x̂2, ŷ2) + . . . + d2
n(x̂m, ŷm), (2.5)

where x̂ = (x̂1, x̂2, . . . , x̂m), ŷ = (ŷ1, ŷ2, . . . , ŷm) and di(x̂i, ŷi) is |x̂i − ŷi|

if x̂i, ŷi ∈ R, otherwise is the 0/1 metric. Generally, with mixed data, it is

important to ensure that no attribute m dominates another with respect to the

metric being used. Thus if, for example, one real valued attribute has values

in the range 0, . . . , 1, 000, 000 then the differences in values could be substantial

and other attribute values may be insignificant. Thus scaling of data prior to

clustering is necessary.

In light of the extended Euclidean metric, an object ĉ is called a centroid

if it minimises
∑

x∈C d2(ĉ, x). The centroid ĉ is not necessarily an element of C.
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2.4.3 Categorical Data Clustering

In the literature, often, the term categorical is used to refer to nominal data

(Cristofor & Simovici, 2002; Ganti et al., 1999). However, as discussed in section

2.2, there is also ordinal categorical data, which is different to nominal data and

requires different analysis. For instance, the 0/1 metric (see equation 2.4) may be

suitable for nominal and ordinal data but with ordinal data it ignores the ordering.

Ordinal data can be encoded into real values (Rayward-Smith, 2007) so that the

absolute difference between two encodings represents the distance between the

corresponding two ordinal data points (see equation 2.5). This thesis focuses on

the nominal categorical data type. In this section, as well as in the sections and

chapters that follow this section, the term categorical will refer to the nominal

data type only.

Most of the research in clustering has focused on the analysis of numeric

data. Less attention has been given to the analysis of categorical data. To make

the analysis of categorical data possible, often, the data is transformed to some

numeric representation as many of the existing clustering algorithms can deal

with numeric data only (Han, 1998).

A common transformation approach is to map the categorical data to binary

(also referred to as Boolean) data and analyse it as data that can be ordered

(metric data) (Pyle, 1999). A binary variable has only two states 0 and 1. The

variable 0 indicates that the variable is absent and 1 that it is present (Han &

Kamber, 2000; Li, 2005). For example, in figure 2.1, for attribute Scorsese, 1

indicates that Scorsese is present in t1 and 0 indicates that Scorsese is absent

from t2. An example of a mapping of categorical data to binary (Boolean) is

17



2.4 Clustering Techniques

Figure 2.1: Mapping Categorical Data to Boolean

shown in figure 2.1. As the figure shows a Boolean attribute is created for every

value in every attribute domain.

Categorical data analysis based on a Boolean mapping is a common ap-

proach but has the following disadvantages:

• It adds complexity to the KDD process as it involves more data preparation.

• It increases the number of fields.

• It requires knowledge of the entire domain of every attribute before the data

mining task starts and, therefore, data mining cannot happen in an ad hoc

manner (Chaudhuri et al., 1999).

• It may fail to discover the natural clusters hidden in the data or produce

clusters that are not meaningful (Huang, 1997; Li & Biswas, 2002).

Furthermore, Guha et al. (2000) gives the following example to demonstrate

that the use of distance metrics may be inappropriate for categorical data:
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Example 1: Consider a market basket database containing the following

transactions over items 1, 2, 3, 4, 5 and 6:

1. {1, 2, 3, 5}

2. {2, 3, 4, 5}

3. {1, 4}

4. {6}

A mapping of the transactions to Boolean (0/1) attributes for every item

(1, 2, 3, 4, 5 and 6) transforms them and the transactions can be viewed as points:

1. (1, 1, 1, 0, 1, 0)

2. (0, 1, 1, 1, 1, 0)

3. (1, 0, 0, 1, 0, 0)

4. (0, 0, 0, 0, 0, 1)

If the transactions above are viewed as points/clusters in a metric space,

following a centroid based agglomerative hierarchical algorithm (Jain & Dubes,

1988), we can apply the Euclidean distance (equation 2.2) and find that points

1 and 2 are the closest points:
√

(12 + 02 + 02 + 12 + 02 + 02) =
√

2. Points

1 and 2 are merged into one cluster with centroid (0.5, 1, 1, 0.5, 1, 0). Points 3

and 4 are also merged as they are closer to each other than to the cluster that

includes points 1 and 2. The Euclidean distance between 3 and 4 is
√

3, whereas

their distance from the cluster with the merged points is
√

4 in both cases. The
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problem in this case is that points 3 and 4 correspond to the transactions {1, 4}

and {6} respectively, which have nothing in common.

As the example above demonstrates, categorical data cannot always be

clustered properly by transforming it to Boolean and analysing it as metric data.

Nguyen & Rayward-Smith (2008) recommended using the extended Euclidean

metric (see equation 2.5) for categorical and mixed data. However, even with a

more suitable metric, the approach still suffers the Boolean mapping disadvan-

tages listed above.

The research interest on categorical data algorithms has been increasing

over the years so categorical data can be clustered without having to be trans-

formed (Barbará et al., 2002; Chen & Liu, 2005; Cristofor & Simovici, 2002;

Gibson et al., 2000; He et al., 2006). Section 2.6 gives a detailed discussion of

some examples of categorical data algorithms.

Mixed Data Clustering: As categorical data clustering is gradually at-

tracting more research interest, mixed data clustering, where categorical and

numeric data can be clustered together, becomes more feasible (Li & Biswas,

2002).

There are different approaches to mixed data clustering. One of the ap-

proaches involves clustering the categorical and numeric data separately using

suitable measurement functions. The resulting clusters are then combined to

produce mixed data clusters (He et al., 2005). Another approach to handling

mixed data clustering is clustering the categorical and numeric data together but

evaluating it separately. To decide on a clustering strategy, the algorithm merges

the results of the numeric data evaluation and the categorical data evaluation. An

example of an algorithm that follows this approach is the k-prototypes algorithm
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(Huang, 1997). To evaluate the similarity between two tuples of mixed data,

k-prototypes uses the k-means algorithm for evaluating the numeric data and the

k-modes algorithm for evaluating the categorical data (the k-modes algorithm is

discussed in section 2.6.1): if sn is the similarity measure of numeric data and

sc is the similarity measure of categorical data then the mixed data similarity is

given by: sn + γsc. Huang (1997) uses γ, a user defined parameter, to balance

the two parts.

A similar approach to that of Huang (1997) is used in Cobweb/3 (McKu-

sick & Thompson, 1990). The Cobweb/3 approach is based on Cobweb and its

extension CLASSIT (Gennari et al., 1989). Cobweb/3 evaluates the similarity

between tuples using the category utility (CU) measurement (discussed in chap-

ter 3, section 3.1). The algorithm calculates CU for categorical data and CU for

numeric data separately and then it combines the two to calculate the similarity

between tuples of mixed data: CUmixed = CUcategorical + CUnumeric.

2.4.4 Other Clustering Techniques

Other clustering techniques that will only be discussed briefly in this thesis include

the following:-

• Grid-based clustering

• Density based clustering

• Fuzzy clustering

• Semi-supervised clustering
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Grid-based clustering views data as points in space but its difference to

distance based clustering is that every dimension of the space is divided into

equal intervals to discover subspace clusters (Wang et al., 1997). Grid-based

clustering is mainly used with spatial data, which is 2D or 3D data, normally

found in geographic information systems.

Density based clustering (Ester et al., 1996) has been developed with spatial

data in mind. It uses the concept of density, which is defined as a minimum

number of points within a certain distance from each other. It aims to discover

clusters with the maximum of density connected points.

In conventional clustering, every tuple belongs to one cluster. Clusters

produced in a conventional way, however, may not be well separated. In that case,

fuzzy clustering, which allows a tuple to be a member of more that one cluster,

is more appropriate (Jain & Dubes, 1988; Kaufman & Rousseuw, 1990). In fuzzy

clustering, a tuple is assigned to a cluster with a degree of cluster membership.

Semi-supervised clustering happens when the data in a data set is not en-

tirely or accurately labeled (Bouchachia & Pedrycz, 2006). Supervised learning

algorithms (Liu et al., 2002; Martin, 1994) require an output field to guide the

analysis process. This output field labels the tuples and any evaluation to clas-

sify the tuples is done with regard to the output field. Unsupervised learning

algorithms (Iba & Langley, 2001; Oates, 2002; Song et al., 2003; Surdeanu et al.,

2005), on the other hand, do not require an output field to guide their analysis.

When the two learning approaches are combined, the learning is referred to as

semi-supervised learning (Basu et al., 2006; Kumar et al., 2005).
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2.5 Large Scale Clustering

Scalability is one of the main research areas in clustering. There are a number of

approaches used to scale clustering algorithms to large data sets:

• Scalability through summarisation

• Scalability through compression

• Scalability through parallelisation

• Scalability through sampling

• Scalability through data partitioning

Scalability Through Summarisation

One approach used to scale existing algorithms to large data sets makes use of

data structures that summarise the data set (Serazi et al., 2004). This approach is

based on the idea that if sufficient statistics about the clusters are made available,

then, the entire clusters are not needed in main memory.

Conventional distance based clustering algorithms, for instance k-means,

represent a cluster with the data points that the cluster covers. Unlike those

conventional distance based algorithms, there are more recent distance based al-

gorithms that summarise the cluster representation and reduce it to the following

sufficient statistics: i) a number that shows how many data points the cluster

covers, ii) the sum of the data points that the cluster covers, and iii) the sum of

the squared data points that the cluster covers. The work presented by Bradley

et al. (1998) falls under this category. They refer to the group of the data points
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to be summarised with the term sub-cluster and represent the sub-cluster with

statistics that are adequate for computing the metric measure the algorithm uses

(Bradley et al., 1998):

Definition 2 Let {x1, x2, . . . , xN} ⊂ Rn be a set of singleton points to be com-

pressed. The statistics that represent a sub-cluster are the triple (SUM, SUMSQ, N),

where SUM :=
∑N

i=1 xi ∈ Rn and (SUMSQ)j :=
∑N

i=1(x
i
j)

2 for j = 1, 2, . . . , d.

A similar cluster representation is used by Zhang (1997). Zhang (1997)

introduces the BIRCH algorithm. BIRCH relies on metrics such as the Euclidean

distance to evaluate the clusters and decide on a clustering strategy. BIRCH

represents each cluster as a clustering feature (CF) and provides in this way

adequate statistics for the calculation of the metric measure (note that Zhang

(1997) views each data point as a d-dimensional vector):

Definition 3 Given N d-dimensional data points in a cluster { ~Xi}, where i =

1, 2, 3, . . . , N , the Clustering Feature (CF) entry of the cluster is defined as a

triple: CF = (N, ~LS, SS), where N is the number of data points in the cluster,

~LS is the linear sum of the N data points, i.e.
∑N

i=1
~Xi and SS is the square

sum of the N data points, i.e.
∑N

i=1
~Xi

2
.

Both cluster summarisations, the clustering feature and the cluster sum-

marisation of Bradley et al. (1998), use a number, N , to represents the number

of points in a cluster. Also, both cluster summarisations have a similar way to

represent the sum of the data points in a cluster, ~LS of the clustering feature is

equivalent to the SUM of the cluster summarisation of Bradley et al. (1998). The

two cluster summarisations differ with regard to SS and SUMSQ. Zhang (1997)
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clearly states in her thesis that she views each data point as a d-dimensional

vector (Zhang, 1997) and that she makes use of the vector dot product operation.

With the application of the vector dot product, SS is represented by a number

and is more compact than the SUMSQ of Bradley et al. (1998) 1.

Scalability Through Compression

Both of the works that have been discussed above in relation to the summarisa-

tion approach (Bradley et al., 1998; Zhang et al., 1996) made use of additional

techniques to compress the data further and overcome the problem of limited

resources.

Bradley et al. (1998) introduced a system that is based on the idea that in

the data there are regions that are compressible, regions that must be available

in main memory and regions that can be discarded. The amount of compression

required in their system is determined by the size of the specified memory buffer in

the system. In a two phase compression approach, the system first discards from

the buffer points that appear unlikely to change cluster membership and then in

the second phase they compress the data to produce the cluster summarisations

described in the previous section. Unfortunately, Bradley et al. (1998) fail to

show any figures that clearly demonstrate the scalability of their algorithm.

The BIRCH algorithm (Zhang et al., 1996) makes use of the clustering

feature (discussed in the previous section) and builds a tree of clusters, the CF-

tree. A CF-tree is a height balanced tree with a user defined parameter called

the branching factor (B for non-leaf nodes and L for leaf nodes) that controls

1SUMSQ is represented with d numbers, where d is the number of dimensions (attributes)
in the data set, whereas SS is represented with a single number regardless the dimensions in
the data set.
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the number of entries in a node. A non-leaf node can fit at most B entries and a

leaf node can fit at most L entries. For example, in figure 2.2 B = L = 3 and a

node (non-leaf or leaf) can fit at most 3 entries. Every entry in a leaf node is a

clustering feature (CF). Every entry in a non-leaf node is a summarisation of its

children. Furthermore, a non-leaf node contains pointers to its children and a leaf

node contains pointers to the next and previous leaf nodes to support efficient

scans.

CF1+CF2+CF3 CF4+CF5

CF1 CF2 CF3 CF4 CF5 T

Figure 2.2: A CF-tree Example (Zhang, 1997)

To incorporate new data into the tree (new CF entry that represents one

data point or is the summary of many data points), the algorithm starts from the

root and using a metric measure gradually descends to the leaf node that contains

the closest CF. The algorithm checks if it can incorporate the new data into the

existing CF (sub-cluster). At this point, the algorithm uses a threshold T value.

If the diameter of the sub-cluster (the sub-clusters are assumed to be spherical)

after incorporation is less than the threshold value, the algorithm proceeds to
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update the higher levels of the tree. If the diameter of the sub-cluster after

incorporation exceeds the threshold value and there is a free space in the current

leaf node, the algorithm stores the new CF entry separately. If there is no free

space, the algorithm creates a new leaf node by performing a split of the current

leaf node. To perform a split, the algorithm finds the furthest pair of CFs in the

current leaf node and uses them as seeds to rearranges the rest of the CFs.

The threshold T affects the size of the CF-tree. The larger the threshold

value the smaller the tree as more new CF entries can be incorporated into existing

CFs and the algorithm has to perform less splits.

BIRCH achieves large scale clustering with limited resources by compress-

ing the size of the CF-tree by using a larger threshold value when BIRCH runs

out of main memory space. After the threshold value is changed, a new CF-tree

is built based on the old one. Starting from left to right, BIRCH reads one path

at a time from the old tree and creates the new smaller tree. While it creates the

new smaller tree, it gradually discards the old tree as it gets replaced.

The approach of Zhang et al. (1996) has its disadvantages. BIRCH performs

a node split when there is no free space in the current node. As a node split is

not caused by the clustering properties of the data, it is possible a node split to

have a negative impact on the quality of the clustering. To correct any negative

impact on the clustering quality, the algorithm evaluates a possible merge after

a split. Unfortunately, a merge may cause a new split as a merge happens in the

same way an incorporation happens (described above).

The use of the threshold T may have an additional disadvantage. As long

as the clusters in a data set are of spherical type and not larger in diameter than

the threshold T allows, the threshold is not a problem. However, in other cases,
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it may stop ’natural’ clusters being discovered. New data can be incorporated

into a sub-cluster only if the sub-cluster diameter after incorporation does not

exceeds the threshold value (Sheikholeslami et al., 1998).

Scalability Through Parallelisation

There are algorithms that achieve scalability through parallelisation (Goil et al.,

1999; Nittel et al., 2004; Skillicorn, 1999; Srivastava et al., 1999). MAFIA (Goil et

al., 1999) is an example of an algorithm that uses parallelisation to produce clus-

tering concepts on high dimensional data. MAFIA was compared with CLIQUE

(Agrawal et al., 1998), another algorithm for high dimensional data sets that is a

simpler sequential algorithm, and proved to be 40 to 50 times faster while produc-

ing clusters of better quality. The disadvantage of a parallel solution like MAFIA

is that it is an expensive solution to implement compared to other solutions (Liu

et al., 2008; Wu et al., 2005).

Scalability through parallelisation can be achieved through integration with

the DBMS (an example is discussed in chapter 6, section 6.3.3).

Scalability Through Sampling

Another solution to dealing with the scalability problem is sampling. When

sampling is used, the amount of data to be processed is first reduced by sampling

the large data set and analysing the smaller sample. There are a number of

sampling techniques that can be used to obtain a sample (Han & Kamber, 2000):

• Simple random sample without replacement: all tuples are equally likely to

be drawn.

28



2.5 Large Scale Clustering

• Simple random sample with replacement: any tuple that is drawn for the

sample is included in the data set and can be redrawn.

• ’Cluster’ sample: the term ’cluster’ here has a more general meaning. For

example, a DBMS retrieves tuples in units of blocks 1. The blocks can be

considered as ’clusters’ and instead of randomly drawing tuples the sampling

approach can be based on randomly drawing blocks.

• Stratified sample: the data set is divided into mutually exclusive sections

called strata and a sample is drawn from every strata to create the overall

sample. The method is used to create representative samples when the data

is skewed.

ROCK (Guha et al., 2000) is an example of an algorithm that uses sampling

to scale to large data sets. The use of sampling gives ROCK the ability to

cluster large categorical data sets. A disadvantage of ROCK’s approach is that

it may not be possible to have a small enough sample that is representative of

the population. With larger data sets a representative sample may be too large

to fit in main memory while a smaller sample may produce a misleading result

(Lee, 1993). There are algorithms like CLARA (Kaufman & Rousseuw, 1990),

for example, where the quality of the clusters returned depends upon the size of

the sample (Han & Kamber, 2000). Another possible disadvantage of sampling is

the objection that the owner of the data set may have about using it. Especially,

in cases where data have been acquired from valuable recourses at a considerable

expense, customers may insist on using the entire data set in the analysis (Wang

1Block is the amount of data transfered between secondary storage and main memory in a
single secondary storage access (Date, 1995).
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et al., 1998). Despite the possible disadvantages of sampling, it is a common

approach and often the only available option for achieving scalability (Barbará

et al., 2002; Guha et al., 2000).

Scalability Through Data Partitioning

An alternative to sampling when using memory dependent algorithms was pro-

posed by Chan (Chan & Stolfo, 1993). The solution involved partitioning the

data set into smaller sets so every subset fits in main memory and merging the

result of each partition to draw an overall conclusion. The weakness of this ap-

proach is that the aggregation of the partitions may not be as good as the output

of the whole data set.

Data partitioning, as well as the other approaches used to scale clustering

algorithms (discussed earlier in this section), may have the disadvantage of limited

main memory resources. The limited main memory resources may have an impact

on the quality of the clusters or the algorithm may run out of main memory. A

better approach is one that is main memory independent. In this thesis, we look

at the problem of scalability by following the summarisation approach. Unlike

other algorithms that follow the summarisation approach, our algorithm is main

memory independent.

2.6 Large Scale Clustering of Categorical Data

Scaling categorical data clustering algorithms has received less attention in the

literature. In this section, we discuss some representative and recent categorical

data clustering algorithms that can scale to large data sets. We give particular
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emphasis to the ROCK and LIMBO algorithms as we use them in chapter 4 for

the evaluation of our algorithm.

2.6.1 K-modes

A well known categorical data clustering algorithm is k-modes (Huang, 1998).

The k-modes algorithm extended the k-means algorithm to clustering large cat-

egorical data sets by:

1. employing a simple matching dissimilarity measure that allows comparison

of categorical data,

2. replacing the mean in a cluster, used by the k-means algorithm, with the

cluster’s mode

3. using a frequency based method to update a mode in the clustering process.

Dissimilarity Measure: Let x̂ and ŷ denote two categorical objects de-

scribed by m categorical attributes, A1, A2, A3....Am, the dissimilarity between

the two objects can be defined as:

d(x̂, ŷ) =
m∑

i=1

δ(xi, yi), (2.6)

where:

δ(xi, yi) =

 0 (xi = yi)

1 (xi 6= yi)
(2.7)

The smaller the number of mismatches between the two objects the more

similar they are considered.
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Mode of a Set: Huang (1997, 1998) defines mode in the following way.

Let x̂ be a set of categorical objects described by m categorical attributes,

A1, A2, . . . , Am.

Definition 4 A mode of x̂ is a vector Q = [q1, q2, . . . , qm] that minimises

D(x̂, Q) =
n∑

i=1

d(x̂i, Q), (2.8)

where x̂ = {x̂1, x̂2, . . . , x̂n} and d can be defined as in equation 2.6. Q is not

necessarily an element of x̂.

Huang (1997, 1998) defines a way to find a mode for a set in the following

theorem. Let nck,j
be the number of objects having category ck,j in attribute Aj

and fr(Aj = ck,j|x̂) =
nck,j

n
the relative frequency of category ck,j in x̂.

Theorem 1 1 The function of D(x̂, Q) is minimised iff fr(Aj = qj|x̂) ≥ fr(Aj =

ck,j|x̂) for qj 6= ck,j for all j = 1, . . . ,m.

The Algorithm

The k-modes algorithm produces a flat partition of clusters in a similar way to

that of k-means.

1. Select k initial modes to represent k clusters.

2. Assign all objects to their closest mode using

the dissimilarity measure.

3. Update the mode of the cluster after each allocation

according to Theorem 1.

1The proof of the theorem can be found in Huang (1998).
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4. Reassign the objects according to the new modes.

5. Repeat 3 and 4 until the same objects are assigned

to the same clusters in consecutive iterations.

The original version of k-modes selected k objects 1 from the data set

to represent the initial modes. The quality of the clustering produced by the

algorithm depended on the initial modes and the order the objects were presented

to the algorithm. To achieve better clustering, a newer version of the k-modes

algorithm was developed that uses an analysis of the frequencies of the values

in the attributes A1, A2, A3, ....Am, which indicates better initial modes (Huang,

1998).

k-modes has the same complexity as k-means: O(nkt), where n is the

number of objects to be clustered, k is the number of clusters to be produced and

t is the number of iterations that the algorithm will perform. Like many other

clustering algorithms, the number of clusters to be returned by the algorithm is

decided by the user. The number of iterations is a parameter that is also decided

by the user. According to Huang (Huang, 1998), in general, k-modes is a faster

algorithm than k-means because it needs less iterations to converge than k-means.

2.6.2 ROCK

ROCK (Guha et al., 2000) is another algorithm that has been introduced for

analysing large categorical data sets. The algorithm can be described as hierar-

chical agglomerative as it starts with a number of clusters, which then merges in

order to return the desired number of clusters. The algorithm is based on the

1Other terms used to refer to an object are tuple and data point.
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notions of neighbours and links.

Definition 5 Let sim(pq, pr) be a similarity function that shows how similar a

pair of points, pq and pr, are. The pair of points pq and pr are considered to be

neighbours if sim(pq, pr) ≥ θ, where θ is a user provided threshold and takes a

value between 0 and 1. The similarity function could be a metric 1 or non-metric

function.

The above definition does not determine clearly when two points should

belong to the same cluster as it is possible for points that belong to different

clusters to be neighbours. For that, Guha et al. (2000) introduces the notion of

links and defines link(pq, pr) as the number of common neighbours between pq

and pr. The higher link(pq, pr) is, the more probable that the points pq and pr

belong to the same cluster.

Criterion Function and Goodness Measure: The clustering aim in

ROCK is to maximise the sum of link(pq, pr) for data points belonging to the

same cluster and minimise the sum of link(pq, ps) for data point pairs belonging to

different clusters. Based on this, Guha et al. (2000) define the following criterion

function for k clusters:

El =

(
k∑

i=1

ni

) ∑
pq ,pr∈Ci

link(pq, pr)

n
(1+2f(θ))
i

 , (2.9)

where Ci represents cluster i of size ni and pq and pr represent data point pairs

belonging to the same cluster. f(θ) is a function that is dependent on the data

1When a metric function is used, ROCK normalises the results the metric function produces
and it is a larger sim that indicates two similar points as opposed to a lower sim.
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set as well as the desired clusters. It is usually set to 1−θ
1+θ

. The experiments in

Guha et al. (2000) use f(θ) = 1−θ
1+θ

.

The criterion function ensures that points with high number of links be-

tween them appear in the same cluster. To also ensure that points with few links

between them appear in different clusters, it divides the total number of links

in a cluster Ci by the expected number of links in Ci, n
(1+2f(θ))
i . The higher the

criterion function the better the clustering produced.

As the goal in ROCK is to find a clustering that maximises the criterion

function, they introduce the goodness measure, which is based on the criterion

function and determines the best pair of clusters to merge at every step of the

algorithm (Guha et al., 2000).

Given two clusters Ci and Cj with link[Ci, Cj] being the number of cross

links between the clusters Ci and Cj defined as
∑

pq∈Ci,pr∈Cj
link(pq, pr)

1, the

goodness measure for merging these clusters is:

g(Ci, Cj) =
link[Ci, Cj]

(ni + nj)1+2f(θ) − n
1+2f(θ)
i − n

1+2f(θ)
j

(2.10)

ROCK merges the pair of clusters with maximum goodness measure.

ROCK uses links to avoid merging clusters that appear to be similar but

actually share few common neighbours. While a pair of points that exist in two

different clusters that are ’not so well separated’ may appear to be neighbours

based on a similarity/dissimilarity function, it is unlikely that these two points

have a large number of common neighbours and, therefore, unlikely for ROCK to

merge these clusters.

1link(pq, pr) is the number of common neighbours between pq and pr (discussed earlier in
this section).
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The Algorithm

ROCK scales to large data sets by sampling the data. A sample is drawn from a

data set, then the algorithm builds k clusters based on the sample and finally it

assigns the rest of the data set points to the clusters.

The ROCK algorithm is a two-phase algorithm with phase 1 building clus-

ters based on a sample drawn from a data set and phase 2 assigning the rest of

the data in the original data set to the clusters:

PHASE 1 - BUILD A CLUSTERING ON THE SAMPLE

1. Assign each data point of the sample to a cluster.

2. Compute the links between all possible pairs of points.

3. Merge the pair of clusters with the highest goodness measure.

2. Keep merging the clusters until k clusters are produced.

PHASE 2 - ASSIGN THE REST OF THE DATA TO THE CLUSTERS BUILT

1. Extract a few points from every cluster.

2. Compute the neighbours that a data point has in a cluster

using the extracted cluster points.

3. Assign the point to the cluster with the highest number of

neighbours.

ROCK uses two user defined parameters in phase 1 and two user defined

parameters in phase 2. In phase 1, there is the k parameter, which determines how

many clusters the algorithm will produce and the threshold θ, which determines

if two points are neighbours (discussed earlier in this section). In phase 2, there is
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a user defined parameter that determines the number of points that are extracted

from every cluster (phase 2, step 1) and the threshold θ.

The points extracted from a cluster, in phase 2, are selected randomly and

represent the cluster. Let Li denote the extracted points from a cluster i. A data

point p is compared with Li to compute the number of neighbours. The point

p is assigned to the cluster with the maximum number of neighbours. At this

stage, the algorithm uses θ (phase 2, step 2) to decide the number of neighbours

(see definition 5). If a point p has Ni neighbours in Li then p is assigned to the

cluster with the maximum Ni

(|Li|+1)f(θ) . Guha et al. (2000) define (| Li | +1)f(θ) as

the expected number of neighbours for point p in Li.

ROCK can scale to large data sets but its approach is not without disadvan-

tages (Abdu & Salane, 2009; Barbará et al., 2002). It can only scale if sampling

is used and its clustering success depends on the clusters the sample produces.

Also, the algorithm may have to be applied a number of times as the quality

of the clusters produced on the sample depends on (i) the number of clusters

requested, and (ii) the value of the threshold θ.

2.6.3 LIMBO

LIMBO (scaLable InforMation BOttlneck) is a scalable hierarchical categorical

data clustering algorithm introduced by Andritsos (2004). LIMBO is based on

the Agglomerative Information Bottleneck (AIB) algorithm (Slonim & Tishby,

2000). According to Andritsos et al. (2004), AIB requires a number of operations

with high computational complexity, O(n2m2 log n), where n is the number of

clustered tuples and m is the number of different values of all attributes. The
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high computational complexity makes AIB unsuitable for large data sets. LIMBO

improves on AIB by using summarisation, discussed earlier in this chapter (see

section 2.5).

Quality Measure and Clustering Objective: To define a quality mea-

sure for categorical clustering, LIMBO uses mutual information (Andritsos, 2004)

and considers a good clustering one where the clusters are informative of the data

they contain. According to Andritsos et al. (2004) when the data is in the form

of tuples of attribute values, a good clustering is one where the clusters are infor-

mative of the attribute values in the cluster. The quality measure is the mutual

information of the clusters and the attribute values.

Definition 6 Given a set of tuples T over a set V of attribute values, let C

denote a clustering of the tuples in T. For a cluster C ∈ C and an attribute

value V ∈ V, the mutual information I(V ; C) measures the information about

the values in V provided by the knowledge of a cluster in C.

According to Andritsos et al. (2004), clustering is a summary of the data

and some information is generally lost. The clustering objective of LIMBO is to

minimise this information loss. Merging two clusters ci and cj in the clustering C

will produce a clustering of a smaller size, C′. The information that C′ contains

about the values in V decreases and I(V ; C ′) ≤ I(V ; C). The information loss

of merging clusters ci and cj is given by the following equation:

δI(ci, cj) = I(V ; C)− I(V ; C ′) (2.11)

If c is the new cluster after merging ci and cj, then c has the following

properties (Andritsos et al., 2004):

38



2.6 Large Scale Clustering of Categorical Data

p(c) = p(ci) + p(cj) (2.12)

p(V |c) =
p(ci)

p(c)
p(V |ci) +

p(cj)

p(c)
p(V |cj) (2.13)

where p(c) = n(c)/n: n is the number of tuples clustered and n(c) is the

number of tuples in c. p(V |c) is the conditional probability distribution of the

attribute values given the cluster c.

Information loss can also be expressed in the following way Andritsos

(2004):

δI(ci, cj) = [p(ci) + p(cj)] ·DJS[p(V |ci), p(V |cj)], (2.14)

where DJS is the Jensen-Shannon (JS) divergence. Let pi = p(V |ci) and pj =

p(V |cj) and let p̄ = p(ci)
p(c)

pi +
p(cj)

p(c)
pj. Then, according to Andritsos et al. (2004),

DJS[pi, pj] =
p(ci)

p(c)
DKL[pi‖p̄] +

p(cj)

p(c)
DKL[pj‖p̄]1 (2.15)

LIMBO chooses to merge the clusters that minimise information loss.

The Distributional Cluster Feature: The LIMBO algorithm tries to

build cluster representations that are informative of the attribute values they

cover. A cluster c is represented with a Distributional Cluster Feature, DCF(c):

DCF (c) = (p(c), p(V |c)), (2.16)

1DKL[pi‖p̄]: Relative Entropy, DKL[pj‖p̄]: Relative Entropy (Andritsos et al., 2004; Cover
& Thomas, 1991).
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where p(c) = n(c)/n: n is the number of tuples clustered and n(c) is the

number of tuples in c. p(V |c) is the conditional probability distribution of the

attribute values given the cluster c. The DCF summarisation contains enough

information to calculate the information loss when merging two clusters ci and cj

as shown in the equation 2.14. If cluster c is the result of merging two clusters ci

and cj, the DCF of the new cluster is given by the equations 2.12 and 2.13. This

property of the DCF is similar to the additivity property of the clustering feature

in Zhang et al. (1996) and has the advantage that the merging of two clusters

involves only a few computations.

The DCF Tree: The LIMBO algorithm makes use of the distributional

cluster feature and builds a DCF tree. The DCF tree resembles a CF-tree pro-

posed in Zhang et al. (1996) (see figure 2.2). The DCF tree has the following

characteristics:

• It is a height balanced tree.

• Every entry in a leaf node is a distributional cluster feature (DCF).

• Every entry in a non-leaf node is a summarisation of its children.

• Every non-leaf node points to its children.

• A leaf node contains pointers to the next and previous leaf nodes.

• Every node in the tree can fit at most B entries.

B is a user defined parameter known as branching factor. For example, if

B equals 3 then at most 3 entries can fit in a node of the DCF tree.
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The algorithm uses two parameters to control the size of the tree. The first

parameter is φ. The algorithm uses φ as a threshold that controls the minimum

information loss that is allowed when two clusters are merged. The larger the

value of φ, the more merges the algorithm is allowed to perform. The second

parameter S controls the maximum memory size available for the DCF tree.

The Algorithm

LIMBO builds a clustering in three phases. Phase 1 builds a tree of cluster

summarisations in an approach similar to Zhang et al. (1996). Phase 2 uses

the AIB algorithm to produce an improved set of clusters based on the cluster

summarisations from phase 1, and phase 3 assigns the tuples to the clusters so

they can be used for interpreting the clusters.

• Phase 1 - Insert tuples into the DCF tree: This phase summarises the

tuples. Starting from the root, the algorithm traces a path down the DCF

tree. At each non-leaf node it meets, the algorithm computes the distance

between DCF(t) (the new tuple) and every DCF entry of the node finding

the closest DCF entry to the DCF(t). The distance is calculated using

information loss. The algorithm then follows the child pointer of the entry

to the next level of the tree and repeats the same process until it gets to a

leaf node. When at a leaf node, the algorithm finds the DCF that is closest

to the DCF(t). The algorithm has to decide, then, if merging the DCF(t)

with that DCF is the best strategy.

The decision is affected by the parameter the algorithm uses: φ or S. If,

for example, the used parameter is S, then LIMBO’s steps are controlled
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according to the available memory. If the algorithm finds an empty space

in the leaf node, then DCF(t) is placed in the empty space. If there is no

empty space and there is available memory (according to the S parameter)

then the algorithm splits the leaf node into two. The way the algorithm

performs the split is as follows:-

– Check the DCFs stored in the leaf node and find the DCFs that are

furthest apart (using information loss).

– Create two new leaf nodes with the furthest apart DCFs.

– Insert the rest of the DCFs in the new leaf nodes according to the

DCF to which they are closest. DCF(t) is one of those DCFs.

If there is no empty space in the leaf node and no available memory, then

the algorithm performs a merge in one of the following ways, depending on

which merge offers the minimum information loss: -

– Merge DCF(t) with the DCF in the leaf node to which it is closest.

– Merge two other clusters in the leaf node by merging their DCFs.

When the algorithm finishes inserting a new tuple into a leaf node, it up-

dates the higher levels of the tree. If a new leaf node was created because of

lack of empty space in an existing leaf node, the algorithm checks the leaf

node’s parent for empty space. If there is an empty space in the non-leaf

node, the algorithm adds a new DCF entry into the non-leaf node. Oth-

erwise, the algorithm splits the non-leaf node in the same way it splits a

leaf node, described above. The same process continues upward in the tree
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until the root node is updated or split itself. If the root node is split, then

the tree height increases by one level.

• Phase 2 - Clustering AIB is applied on the DCFs at the leaf nodes. This

speeds up AIB as normally AIB starts with every tuple as a singleton cluster.

The algorithm gradually merges the clusters, using the information loss

measure, until the desired number of clusters is reached. As the number

of DCFs at the leaf nodes is relatively small, the AIB has significantly less

operations to perform and, therefore, shows better performance.

• Phase 3 - Associating tuples with the clusters LIMBO performs a scan over

the data set and assigns each tuple to one of the clusters produced.

2.6.4 Summary

The algorithms discussed in the section above (section 2.6) can scale to large

categorical data sets but are quite complex to apply for being parametric and,

some of them, multi-phase algorithms. For example, all of them require a user to

have an understanding of the data in order to decide the best number of clusters

that should be requested. ROCK and LIMBO use further parameters that affect

the quality of the clustering produced. ROCK uses the θ parameter, and LIMBO

the B and φ 1 parameters, which determine which clusters will be merged. Also,

ROCK and LIMBO have the additional complexity, in the way they are applied,

for being multi-phase algorithms with the first phase affecting the quality of the

next phase.

1Depending on the version of the LIMBO algorithm, instead of the φ parameter, the algo-
rithm may require setting of the S parameter.
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Mining large databases requires algorithms that are simple to apply (Dunkel

& Soparkar, 1999; Lu, 2001). We discuss conceptual clustering in the next section

as conceptual clustering provides a framework for clustering, where the clustering

quality does not depend on user defined parameters and and the clustering process

involves a single phase.

2.7 Conceptual Clustering

Conceptual clustering is based on numerical taxonomy (Fisher & Langley, 1986)

and was originally introduced by Michalski & Stepp (1983). Gennari et al. (1989)

described the problem of conceptual clustering in the following way:

Given: a sequential presentation of instances and their associated

descriptions;

Find: clusterings that group those instances in categories;

Find: an intentional definition for each category that summarises its

instances;

Find: a hierarchical organisation for those categories.

As it is stated above, conceptual clustering organises instances (tuples) into

categories. This makes conceptual clustering suitable for categorical data that

cannot be ordered and can only be put into categories (discussed in section 2.2).

A successful conceptual clustering algorithm that has been the basis for many

other algorithms, for example LABYRINTH (Thompson & Langley, 1991) and

ITERATE (Biswas et al., 1998), is Cobweb (Fisher, 1987). This thesis focuses on

Cobweb with the aim to extend it and scale it to large data sets of categorical

data that cannot be ordered.
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2.7.1 Cobweb

Cobweb is a conceptual clustering algorithm developed by Fisher (1987) for the

analysis of categorical data that cannot be ordered. The algorithm builds a

hierarchy of clusters following the divisive approach to clustering. The goal of

Cobweb, like all conceptual clustering algorithms, is to build a model that can

be used for future predictions (Gennari, 1989).

Cobweb is a relatively old algorithm but since it was introduced its rele-

vance to solving data mining problems has remained important. Biswas et al.

(1998) use Cobweb for predicting missing values. Perkowitz & Etzioni (2000)

discuss the suitability of Cobweb for data mining on the web, Hurst et al. (2003)

and Paliouras et al. (1999) use Cobweb on the web, while Li et al. (2005) com-

bine Cobweb with k-means (MacQueen, 1967) to present an algorithm for large

scale clustering 1. The algorithm is, also, part of a number of popular general

purpose data mining tools. Two of these data mining tools are (i) Weka (Garner,

1995), which provides an implementation of Cobweb that is applicable to cate-

gorical and numeric data, and (ii) OIDM (Chen et al., 2004), which provides an

implementation of Cobweb based on the original Fisher’s paper.

Cobweb builds clusters with high intra-cluster similarity and inter-cluster

dissimilarity so a tuple in a cluster is similar to the tuples in the same cluster

and different to the tuples in other clusters. The algorithm uses category utility

to build a clustering that maximises intra-cluster similarity and inter-cluster dis-

similarity (discussed in detail in section 3.1). The computation of category utility

relies on the probability distribution of the tuple attribute values that the clus-

ters cover. To support the computation of category utility, Cobweb represents a

1The paper fails to show scalability results.
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cluster C as a probability distribution of the tuple attribute values in the cluster.

Definition 7 Given a set of tuples T over a set V of attribute values, let C

denote a clustering of the tuples in T. For a cluster C ∈ C and an attribute

value V ∈ V, the Cobweb cluster representation is defined by the pair:

Cobweb cluster representation = (p(C), p(V |C)), (2.17)

where p(C) = n(C)/n: n is the number of tuples clustered and n(C) is the

number of tuples in C. p(V |C) is the conditional probability distribution of the

attribute values given the cluster C.

The Cobweb cluster representation is the same as the distributional cluster

feature used by the more recent algorithm LIMBO discussed earlier in this chapter

(see section 2.6.3).

The Algorithm

The Cobweb algorithm is an incremental clustering algorithm that clusters one

tuple at a time in a top down manner. It starts clustering a tuple by inserting

it into the root cluster of the tree (figure 2.3 is an example of a Cobweb tree).

Inserting a new tuple in a cluster involves updating the probabilities the cluster

covers.

The algorithm uses four operators to evaluate and improve the quality of

the tree. The quality measure in Cobweb is category utility (see equation 3.2,

section 3.1). The four operators are: (i) incorporate, (ii) disjunct, (iii) split, and

(iv) merge. The incorporate and disjunct operators are used to build the tree
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Figure 2.3: The Cobweb Tree

while the merge and split operators are used to correct any data ordering bias in

the clusters by reordering the hierarchy.

• Incorporate: Cobweb tries a new tuple in every cluster of the assessed level

to identify the best cluster to incorporate the new tuple. It also records the

second best cluster as it is needed by other operators.

• Disjunct: Cobweb tries a new tuple in a new cluster that covers only the

tuple.

• Split: Cobweb replaces the best cluster, identified by the incorporate op-

erator, with its children and tries the new tuple in every child of the best

cluster.

• Merge: Cobweb merges the best and second best clusters, identified by the

incorporate operator, and tries the new tuple in the merged cluster.

According to Fisher et al. (1992), the incremental property can have an
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impact on the quality of the clusters as incremental algorithms are sensitive to

the order of the data (Langley, 1995). With the merge and split operators the

algorithm corrects the ordering effect by restructuring the tree.

As it descends down the tree, at every level of the tree, Cobweb tries all

four operators - incorporate, disjunct, split and merge - and identifies which is

the best operator to implement by measuring the category utility of the clustering

produced by each operator. Category utility favours the operator that when

implemented produces a clustering that maximises the potential for inferring

information (Fisher, 1987; Gennari et al., 1989) (a more detailed discussion of

category utility is given in section 3.1).

Function Cobweb (tuple, root)

Incorporate tuple into the root;

If root is a leaf node Then

Expand leaf node;

Return expanded leaf node with the tuple;

Else

Get the children of the root;

Evaluate operators and select the best:

a) Try incorporate the tuple in every child;

b) Try creating a new cluster with the tuple;

c) Try merging the two best clusters;

d) Try splitting the best cluster into its children;

If (a) or (c) or (d) is best operator Then

call Cobweb (tuple, best cluster);

If the best operator is incorporate, the algorithm inserts the new tuple in
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the best cluster and proceeds to the next level. If the best operator is disjunct,

the algorithm creates a new cluster in the tree. If the best operator is split, the

algorithm re-arranges the tree by replacing the best cluster with its children and

moves to the next level. If the best operator is merge, the algorithm merges the

best and second best cluster (best and second best cluster are indicated by the

incorporate operator) and moves to the next level. Figure 2.4 shows how the

operators are implemented.

Cobweb has an additional operator used to predict missing values, the

predict operator. The predict operator classifies a tuple down the tree using the

incorporate operator but it does not add the tuple to the clusters in the tree.

2.7.2 Discussion

LIMBO, BIRCH and Cobweb are all incremental algorithms as they all allow

new tuples to be inserted to an existing model. The incremental property is

an advantage because clusters can be updated locally and updating the clusters

does not involve all the previously seen tuples. ROCK, on the other hand, is

not an incremental algorithm as, before it starts building the clusters it needs to

compute the links between all the possible pairs of points in the sample. The k-

modes algorithm, also, is not incremental. The algorithm follows the partitional

approach to clustering, which involves all the tuples in the clustering process.

As hierarchical incremental algorithms, LIMBO, BIRCH and Cobweb re-

quire one scan of the data from the disc. However, LIMBO involves an additional

scan of the data from the disc as after it builds a clustering it needs to associate

the tuples to the clusters.
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Figure 2.4: Cobweb Operators
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The algorithms LIMBO, BIRCH and ROCK are all parametric algorithms.

They require, for example, the user to define the number of clusters to be pro-

duced by the clustering process. The parametric characteristic of an algorithm

can be a disadvantage as the user may not have knowledge of a good parameter

setting with regard to a data set. In that case, the user may have to perform a

large number of clustering trials to reach a good set of clusters. The only incre-

mental algorithm that has been discussed in this chapter which is non-parametric

is Cobweb (Kilander, 1993; Talavera & Roure, 1998; Theodorakis et al., 2004).

Dunham (2003) gives a database perspective of data mining and suggests

that for data mining algorithms to be effective in databases, it is not enough for

them to work well but they also have to be perceived by the users as easy to

use and interpret. Cobweb as a non-parametric algorithm is the simplest of the

incremental algorithms mentioned here. Cobweb, also, produces clusters that are

simple to interpret because it produces clusters at different levels of specialisation

or generalisation.

Cobweb has been implemented as a mixed data algorithm and remained

incremental. The original category utility (CU) measurement (Fisher, 1987) used

by Cobweb (defined in chapter 3, section 3.1), was extended to numeric data in

CLASSIT (Gennari et al., 1989). The two versions of CU were then combined to

provide a mixed data implementation. McKusick & Thompson (1990) combined

CU categorical with CU numeric and implemented a version of Cobweb for

mixed data clustering that is incremental.

From a database perspective, Cobweb is a good algorithm to use for the

additional reason that it has immediate application to database problems. The

algorithm offers:-
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• Accurate prediction of missing values (Biswas et al., 1998). Missing val-

ues is an important problem of databases. Cobweb treats missing data

as another attribute value, which is considered in the evaluation process

(Fisher, 1989). According to Fisher, using the predict operator and relying

on the information in the clusters, the algorithm can successfully predict

the missing values.

• Ability to cluster structured data. Data stored using a DBMS follow a

structure and can be described as structured data. Cobweb has already

been used in clustering structured data. Two examples are the work of

Ketterlin et al. (1995) and Sison & Shimura (1996). Both works researched

the area of clustering database relations and are based on Cobweb.

The only database requirement that Cobweb does not support, and all the

other algorithms mentioned here do, is the ability to scale. The algorithm is not

able to scale because it does not use efficient data summarisations that reduce the

computations it has to perform. One of the aims of this thesis is to scale Cobweb

to large data sets. We focus on scaling Cobweb for categorical data. We, also,

make the algorithm memory independent with the use of a cache that allows the

algorithm to interact with a relational DBMS.
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Chapter 3

CLIMIS Clustering

This chapter introduces CLIMIS, a scalable conceptual clustering algorithm that

is based on Cobweb (Fisher, 1987). The objectives of this chapter are as follows:

1. To show a conceptual cluster summarisation that requires minimum updat-

ing and main memory space.

2. To show that the cluster summarisation proposed supports the computation

of category utility.

3. To present a data structure that stores the cluster summarisation.

4. To show that the CLIMIS algorithm uses the proposed cluster summarisa-

tion and data structure to implement the same operators as Cobweb.

Section 3.1 presents category utility, the measure that the CLIMIS algo-

rithm uses to build a clustering. Section 3.2 presents the CLIMIS algorithm

starting with a discussion of its properties. Section 3.2.1 discusses the cluster

summarisation CLIMIS uses to avoid detailed cluster descriptions at every level
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of the clustering tree. Section 3.2.2 presents the data structure that the algorithm

uses to build a conceptual clustering tree. Section 3.2.3 presents the operators

that the CLIMIS algorithm implements using the proposed cluster summarisa-

tion and data structure. The chapter ends with a discussion of the contributions

of this thesis.

3.1 Category Utility

CLIMIS uses category utility to evaluate a clustering. Category utility is a measure

that has its roots in Information Theory (Shannon & Weaver, 1949). It was

introduced by Gluck & Corter (1985) with the aim of predicting the basic level

in human classification hierarchies. The basic level is considered to be the most

natural level of categorisation, for example, dog is the basic level in the hierarchy

animal-dog-poodle. Gluck & Corter (1985) suggested that certain categories or

concepts, like basic level categories, are easier to learn and remember because

they reduce the uncertainty about the instances they cover.

Gluck & Corter (1985) based category utility on (i) the definition of un-

certainty by Shannon & Weaver (1949) and (ii) a hypothetical communication

game, where a person transmits information about an item’s attributes to another

person. Within the hypothetical communication game, they defined uncertainty

as “..an inability to predict attributes, and analyze how category membership in-

formation can be used to transmit information about the attributes of object or

events”.

According to Fisher (1987), category utility favours clusters that maximise

information inference. In doing this, category utility aims to maximise intra-
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3.1 Category Utility

class similarity and inter-class dissimilarity and achieve the best trade-off between

them. Given an attribute value pair Ai = Vij and a cluster Ck,

• Intra-class similarity is reflected by the conditional probability P (Ai =

Vij|Ck). The larger the intra-class similarity, the greater the number of the

cluster members that share Ai = Vij and the more predictable the attribute

value is given that an instance is a member of Ck.

• Inter-class dissimilarity is reflected by the conditional probability P (Ck|(Ai =

Vij). The larger the inter-class dissimilarity the fewer the members of differ-

ent clusters that have Ai = Vij and the more predictive the attribute value

pair is of the cluster.

The above measures of intra-class similarity and inter-class dissimilarity of

individual attribute value pairs are combined into an overall measure of cluster-

ing quality across all clusters (k), attributes (i) and values (j). The measure

also includes P (Ai = Vij), which is used to weight all values so that frequently

occurring values play a more important role in the clustering quality than less

occurring values (Gennari et al., 1989):

∑
k

∑
i

∑
j

P (Ai = Vij)P (Ck|Ai = Vij)P (Ai = Vij|Ck) (3.1)

The application of Baye’s rule in 3.1 replaces P (Ai = Vij)P (Ck|(Ai = Vij)

with P (Ck)P (Ai = Vij|Ck) and produces the measure of category utility defined

by Fisher (1987). Given a partition of clusters {C1, C2, ...Cl}
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3.2 The CLIMIS Clustering Algorithm

CU =

∑l
k=1 P (Ck)

∑
i

∑
j P (Ai = Vij|Ck)

2 −
∑

i

∑
j P (Ai = Vij)

2

l
(3.2)

The denominator l in the CU equation represents the number of clusters

in a partition and is used to allow comparison of different size partitions.

3.2 The CLIMIS Clustering Algorithm

CLIMIS is a hierarchical algorithm that builds clusters at different levels of sum-

marisation making clustering easier to interpret. CLIMIS is incremental and as

such it allows incorporation of new data into an existing clustering. The algo-

rithm clusters one tuple at a time having to adjust a clustering only locally and

for that it requires one scan of the data from the disk. CLIMIS normally produces

a skewed tree of clusters with the leaf clusters being singletons.

The properties of CLIMIS mentioned here are also properties of the Cobweb

algorithm. The main difference between the two algorithms relates to the number

of operations they have to perform in order to build a clustering.

The Cobweb algorithm relies on clusters represented as discrete probability

distributions. The algorithm fails to scale to large data sets (see chapter 4, figure

4.3) because the four operators it evaluates and the category utility measure it

uses involve a number of complex operations for every tuple that is clustered.

Many of the operations that Cobweb performs are scans of the clusters to

calculate CU for the incorporate, disjunct, merge and split operators. The ex-

cessive complexity of the algorithm is due to the cluster representation it uses:
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3.2 The CLIMIS Clustering Algorithm

(p(C), p(V |C)). This is the same cluster representation that LIMBO uses. How-

ever, this cluster representation does not have the same impact on LIMBO as

LIMBO employs a tree reduction approach that improves the complexity of the

algorithm. LIMBO reduces its complexity further by only applying two opera-

tors, split and merge (distinct from Cobweb’s split and merge operators), instead

of four operators.

Our approach to conceptual clustering uses a more compact cluster repre-

sentation and is based on the idea that in hierarchical clustering it is not necessary

to store detailed statistics at all levels of a hierarchy as long as detailed statistics

are provided at the leaf node level of the tree.

3.2.1 Cluster Summarisation

We introduce the cluster summarisation (CS) that compresses the original Cob-

web cluster representation and maintains Cobweb’s important property of being

incremental.

Definition 8 Given a set of tuples T over a set V of attribute values, let C de-

note a clustering of the tuples in T. For a cluster C ∈ C, Cluster Summarisation

(CS) is defined by the pair:

Cluster Summarisation = (p(C), SUMSQ), (3.3)

where p(C) = n(C)/n: n is the number of tuples clustered and n(C) is the

number of tuples in C. SUMSQ is the sum of the squared conditional proba-

bilities of the attribute values given the cluster C: SUMSQ =
∑

i

∑
j P (Ai =

Vij|C)2. Every cluster in the tree is represented with a cluster summarisation.
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3.2 The CLIMIS Clustering Algorithm

Leaf Cluster Representation: A leaf cluster is represented with a cluster

summarisation (defined above) like every other cluster in the tree. Our approach

uses an additional cluster representation for a leaf cluster and that is a p(V |C).

A p(V |C) is the conditional probability distribution of the attribute values in

a leaf cluster. This additional cluster representation at leaf clusters provides

detailed statistics that can be used in all the levels of the tree that CLIMIS

builds. A p(V |C) for a non-leaf cluster can be computed from the p(V |C) of the

corresponding leaf clusters.

Properties of the Cluster Summarisation: Our cluster summarisation

has the following properties:

• Incremental: The incorporation of a new tuple in a cluster C involves ad-

justing the cluster summarisation of C. Let T ′ be a new tuple to be incorpo-

rated into C. The new tuple is presented to the algorithm with the cluster

representation: (p(C ′), p(V ′|C ′)), where p(C ′) = n(C ′)/n (n is the number

of tuples clustered and n(C ′) is the number of tuples in C ′). p(V ′|C ′) is the

conditional probability distribution of the attribute values in the cluster C ′.

To adjust the cluster summarisation of C, the algorithm has to perform the

following:

– P (C) + P (C ′),

–
∑

i

∑
j P (Ai = Vij|C)2 + p(v′|C ′)2 + 2p(v|C)p(v′|C ′),

where p(v′|C ′) is the conditional probability of an attribute value in C ′

that matches an attribute value in C. p(v|C) is the conditional probability

of that attribute in C. The algorithm gets p(v′|C ′) from the new tuple’s

cluster representation and p(v|C) from the leaf clusters.
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3.2 The CLIMIS Clustering Algorithm

If an attribute value in C ′ matches no attribute value in C then the algo-

rithm performs the following computation:

–
∑

i

∑
j P (Ai = Vij|C)2 + p(v′|C ′)2

• Predictable: The size of the cluster summarisation remains constant as the

amount of data increases.

• Compact: Regardless of the number of attributes, tuples or the size of

the attribute domains in the data set, the cluster summarisation is always

represented by two numbers and it requires minimum main memory space.

• Representative: The CLIMIS cluster summarisation can be used by other

categorical data algorithms that are based on Cobweb such as ITERATE

(Biswas et al., 1991) and algorithms that are hierarchical and use a proba-

bility distribution to represent a cluster, for example LIMBO.

3.2.2 CLIMIS Tree

The CLIMIS algorithm makes use of the cluster summarisarion (CS) (defined in

section 3.2.1) and builds a CLIMIS tree. A CLIMIS tree (see figure 3.1) has the

following characteristics:

• There is one root node and every other node in the tree is one of two types:

internal or leaf node.

• Every internal and leaf node in the tree can fit as many entries as required

by the clustering.

• All entries in an internal or leaf node represent children of the same cluster.
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3.2 The CLIMIS Clustering Algorithm

• The root node has one entry of the type [CSi, childi], where CSi is the

cluster summarisarion of the cluster the entry represents and childi is a

pointer to the child node of the root node.

• Every entry in an internal node is of the type [CSi, childi] if the entry

represents an internal cluster or [CSi, pi] if the entry represents a leaf cluster,

where CSi is the cluster summarisarion of the cluster the entry represents

and pi is a pointer to the leaf cluster’s p(V |C).

• Every entry in a leaf node is of the type [CSi, pi].

• An entry of the type [CSi, pi] that represents a leaf cluster may describe a

singleton or non-singleton cluster.

CS5

CS0

CS4CS3CS2CS1

CS6 CS7 CS8 CS9 CS10 CS11 CS12 CS13

CS14 CS15

Figure 3.1: CLIMIS Tree
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3.2 The CLIMIS Clustering Algorithm

The PD-structure

As it has already been mentioned (page 57), our approach to conceptual clustering

uses a more compact cluster representation and is based on the idea that in

hierarchical clustering it is not necessary to store detailed statistics at all levels

of a hierarchy as long as detailed statistics are provided at the leaf node level of

the tree. This section presents the PD-structure, which is an auxiliary structure

to the CLIMIS tree and provides detailed statistics at leaf cluster level.

CLIMIS uses the PD-structure to store additional cluster representations

at leaf cluster level (see section 3.2.1). The PD-structure is a matrix that stores

the conditional probability distribution of the attribute values, p(V |C), in every

leaf cluster.

p(V|C)

V1

V2

...

V3

Vj

C1 C2 ... Ck

p(V |C )1 1 p(V |C )1 2 p(V |C )1 k

p(V |C )2 k

p(V |C )3 k

p(V |C )j kp(V |C )j 2p(V |C )j 1

p(V |C )3 1

p(V |C )2 1 p(V |C )2 2

p(V |C )3 2

Figure 3.2: PD-Structure

Let {V1, V2, V3, . . . , Vj} denote the attribute values in T, where T is a set of

tuples. Also, let C denote a clustering of the tuples in T and {C1, C2, C3, . . . , Ck}

denote the clusters in C. The PD-structure stores a conditional probability

p(Vj|Ck) of an attribute value Vj in a cluster Ck. Figure 3.2 shows the PD-
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3.2 The CLIMIS Clustering Algorithm

structure.

If a new tuple reaches a leaf cluster Ck then p(Vj|Ck) can be easily updated.

If p(Vj′|Ck′) is the conditional probability of an attribute value Vj′ in the new

tuple that matches the attribute value Vj in Ck then p(Vj|Ck) is updated with

p(Vj|Ck) + p(Vj′|Ck′).

As it is discussed in section 3.2.1, a leaf cluster is also represented with a

cluster summarisation (CS). Therefore, if a new tuple reaches a leaf cluster Ck

then the leaf cluster’s CS is also updated as shown in section 3.2.1.

3.2.3 CLIMIS Algorithm

The CLIMIS algorithm implements the same operators as Cobweb:

• Incorporate: CLIMIS tries a new tuple in every cluster of the assessed level

to identify the best cluster to incorporate the new tuple. It also records the

second best cluster to be used by other operators.

• Disjunct: CLIMIS tries a new tuple in a new cluster that covers only this

tuple.

• Split: CLIMIS replaces the best cluster, identified by the incorporate op-

erator, with its children and tries the new tuple in every child of the best

cluster.

• Merge: CLIMIS merges the best and second best clusters, identified by the

incorporate operator, and tries the new tuple in the merge cluster.

As it descends down the tree, CLIMIS decides the best operator based on

category utility. The operator that is indicated by CU to be the best is the
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3.2 The CLIMIS Clustering Algorithm

operator that the algorithm implements. To evaluate the operators, the algorithm

needs the p(Vj|Ck) of the attribute values of the clusters, in the assessed level,

that match the attribute values in the new tuple. The algorithm performs one

search of the PD-structure in order to find the attribute value probabilities that

match the attribute values of a new record.

Function CLIMIS (tuple, root)

Get the p(Vj|Ck) that match the new tuple from PD-structure.

Incorporate tuple into the root by adjusting the root CS;

If root is a leaf cluster Then

Return expanded leaf cluster with the tuple;

Update PD-structure and add new p(Vj|Ck)

Else

Get the children of the root;

Evaluate operators and select the best:

a) Try incorporate the tuple in every child;

Temporarily adjust every child’s CS

b) Try disjunct;

Create a new CS with the tuple;

c) Try merging the two best clusters;

Create merge CS from the PD-structure;

d) Try splitting the best cluster into its children;

Replace best cluster CS with its children CS.

Temporarily adjust every child’s CS

If (a) or (c) or (d) is best operator Then

Replace best cluster CS with adjusted CS

Call CLIMIS (tuple, best cluster);
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3.2 The CLIMIS Clustering Algorithm

The merge operator is the only operator that involves an additional search

of the PD-structure to compute the merge cluster summarisation.

Prediction Algorithm: Like Cobweb, CLIMIS can be used to perform

predictions based on a built clustering. Also like Cobweb, the prediction aspect

of our algorithm uses only the incorporate operator. The algorithm applies the

incorporate operator to decide the best cluster to incorporate the tuple and then

moves to the next level of the tree. CLIMIS records the cluster the tuple has

been incorporated into at every level of the tree. The prediction algorithm does

not update the CLIMIS tree or the PD-structure.

Avoiding the Proliferation of Clusters

The Cobweb algorithm builds a tree with every leaf cluster covering a single tuple,

singleton cluster. When a new tuple is incorporated into a singleton cluster, the

algorithm expands the tree by making the singleton cluster an internal node and

the parent of two singleton clusters, one containing the old tuple and the other

containing the new tuple. As a result, when Cobweb is applied to large data sets

the algorithm can return a large tree.

To avoid the proliferation of the clusters produced by Cobweb, we use the

cutoff parameter (Witten & Frank, 2005). The cutoff parameter is a threshold

that the algorithm uses to suppress growth. The cutoff is determined in terms

of category utility. When the addition of a new tuple into a cluster does not

improve the category utility then that cluster is cut off.

When assessing the clusters at a level of a tree, the algorithm first tries

the incorporate, disjunct, split and merge operators to find the best CU (CUbest)
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3.2 The CLIMIS Clustering Algorithm

Figure 3.3: Application of the Cutoff Operator

that indicates the best operator. The cutoff is applied as an operator like the

other operators of CLIMIS. Before implementing the best operator in the assessed

level, the algorithm compares CUbest to the cutoff threshold, using the cutoff

operator. If CUbest >cutoff the algorithm continues as normal and implements

the best operator. If CUbest <cutoff the algorithm removes the assessed level and

any clusters below that (see figure 3.3).

Applying the cutoff parameter means that the leaf cluster in that path is

no longer a singleton. It also means that a number of leaf clusters have been

removed from the tree. CLIMIS updates the PD-structure accordingly. The

algorithm removes all the previous leaf clusters from the PD-structure and adds

the new leaf cluster.

When the cutoff parameter is set to zero, the CLIMIS algorithm operates

like Cobweb as the threshold is ignored. When CUbest is zero the algorithm favours

CUbest. If the cutoff parameter is set to anything greater than zero, the CLIMIS

algorithm tries and if appropriate implements the cutoff. After implementing the
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cutoff operator, if the algorithm reaches a leaf cluster that is not a singleton,

then the algorithm expands the leaf cluster in the same way it would expand a

singleton. It makes the leaf cluster the parent of two new leaf clusters.

According to Fisher (1987), Cobweb seeks clustering trees in which the first

level is optimal with respect to a measure of clustering quality. The root level is

level zero and the first level is the children of the root. As CLIMIS follows the

same clustering approach as Cobweb, and therefore also seeks clustering trees in

which the first level is optimal, we only apply the cutoff operator to tree levels

below the first level.

3.3 Contributions

This thesis set out to investigate if it is possible to scale conceptual clustering to

large categorical data sets (see chapter 1). The contributions of this thesis with

regard to scalability are as follows:

• Proposes CLIMIS, a scalable clustering algorithm for categorical data. CLIMIS

is the only conceptual clustering algorithm that uses a compact cluster rep-

resentation, its cluster representation requires minimum memory space and

updating to incorporate new data, while maintaining the quality of the

clustering.

• Shows an empirical evaluation of the scalability of CLIMIS by comparing it

to i) Cobweb, and ii) categorical data algorithms developed for large data

sets: a) LIMBO and b) ROCK. We demonstrate that CLIMIS shows better

scalability compared to Cobweb, LIMBO and ROCK and, unlike ROCK, it
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does not need sampling to scale.

• Shows an empirical evaluation of the quality of CLIMIS clustering by com-

paring it to the quality of (i) Cobweb, (ii) LIMBO, and (iii) ROCK.
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Chapter 4

Evaluation of CLIMIS

This chapter presents an evaluation of CLIMIS using a comparative experimental

analysis. CLIMIS is evaluated against other algorithms for its quality and ability

to scale to large data sets.

4.1 Algorithms

We have used three algorithms in our evaluation. These algorithms are: (i)

Cobweb (Fisher, 1987), (ii) LIMBO (Andritsos et al., 2004) and (iii) ROCK (Guha

et al., 2000).

Cobweb

We have used Cobweb in our evaluation because Cobweb is the algorithm on

which CLIMIS is based. In particular, we have used Weka’s implementation of

Cobweb (Garner, 1995; Witten & Frank, 2000, 2005). Weka is a widely used data

mining environment that includes a number of different data mining algorithms.
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One of these algorithms is Cobweb. Weka’s Cobweb is an implementation of

the algorithm in Fisher (1987). It implements the four operators - incorporate,

disjunct, split and merge - to build and correct a clustering tree and evaluates

these operators against each other with the use of the category utility. To support

clustering of more data, Weka uses the cutoff parameter in the same way as

CLIMIS (Witten & Frank, 2005).

LIMBO

We have used LIMBO in our evaluation because it is a recent algorithm devel-

oped for the analysis of large categorical data. The implementation of LIMBO

was provided by the developer of the algorithm, Periklis Andritsos. The im-

plementation includes all three phases of the algorithm (discussed in chapter 2,

section 2.6.3): (i) the summarisation of the data, (ii) the AIB algorithm, and (iii)

the linking of the records to the clusters. The algorithm makes use of one of two

parameters, φ or S, (also discussed in chapter 2, section 2.6.3), to scale to large

data. In our evaluation, we only made use of the φ parameter when we compared

LIMBO’s scalability to CLIMIS. We avoided the S parameter as it was not been

fully implemented in the implementation provided.

LIMBO was considered a good algorithm to use in the evaluation of CLIMIS

because it has similar characteristics with CLIMIS. These characteristics are the

following:

1. LIMBO is an algorithm developed for categorical data that cannot be or-

dered,

2. it uses a measure that can discover the natural clusters in categorical data,
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3. it is a hierarchical algorithm, and

4. it can be applied to large data sets of categorical data.

ROCK

We have used ROCK in our evaluation because it is a widely cited algorithm

developed for the analysis of large categorical data. ROCK relies on sampling to

scale to large data sets. We used random sampling without replacement to select

a sample for ROCK (Han & Kamber, 2000). We used 1% of the original data set

in the sample following the suggestion in Guha et al. (2000).

The implementation of ROCK used in this work has been provided by the

developer Guha et al. (2000). The implementation includes only one phase of

the algorithm, which is the phase that builds a clustering based on a sample

(see chapter 2, section 2.6.2). The second phase of the algorithm, which assigns

the rest of the data to the clusters produced from phase 1 is not included. We

have implemented the second phase of the algorithm following the algorithm

described by Guha et al. (2000) in order to test the overall performance of ROCK’s

clustering.

The current implementation of ROCK as presented in Guha et al. (2000)

uses a metric measure and requires categorical data to be transformed to binary.

This thesis used a simple conversion algorithm developed to fit the ROCK algo-

rithm that converts categorical data to the required binary representation. The

conversion process was not part of the evaluation.

ROCK was considered a good algorithm to use in the evaluation of CLIMIS

because it has similar characteristics with CLIMIS. These characteristics are the
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following:

1. ROCK is an algorithm developed for categorical data that cannot be or-

dered,

2. it uses a measure that can discover the natural clusters in categorical data,

3. it can be applied to large data sets of categorical data, and

4. it is a hierarchical algorithm.

4.2 Data Sets

We have used real and synthetic data sets in our evaluation. The real data sets

are: (i) congressional votes, and (ii) mushroom. These data sets were taken from

the UCI machine learning repository 1. We selected these two real data sets

because they are often used for categorical data analysis (Andritsos et al., 2004;

Barbará et al., 2002; Biswas et al., 1998; Ganti et al., 1999; Guha et al., 2000;

Zaki et al., 2005).

Congressional Votes

The congressional votes data set contains U.S. House of Representatives votes on

16 issues from 1984:

1. handicapped-infants

2. water-project-cost-sharing

1http://mlearn.ics.uci.edu/databases/
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3. adoption-of-the-budget-resolution

4. physician-fee-freeze

5. el-salvador-aid

6. religious-groups-in-schools

7. anti-satellite-test-ban

8. aid-to-nicaraguan-contras

9. mx-missile

10. immigration

11. synfuels-corporation-cutback

12. education-spending

13. superfund-right-to-sue

14. crime

15. duty-free-exports

16. export-administration-act-south-africa

Every tuple in the data set represents the votes of a congressperson in the

form of yes/no values. It contains 435 tuples each one classified as republican

or democrat. There are 168 republicans and 267 democrats. The data set has a

number of missing values in most of the attributes (see table 4.1). The missing
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Attribute Missing Values
1 12
2 48
3 11
4 11
5 15
6 11
7 14
8 15
9 22
10 7
11 21
12 31
13 25
14 17
15 28
16 104

Table 4.1: Missing Values

values were treated as another yes/no value. We checked our approach by com-

paring the clustering result we produced using ROCK with the result in Guha et

al. (2000) and it was very similar.

Mushroom

The mushroom data set contains data about gilled mushrooms in the Agaricus

Lepiota Family. Each entry is described according to 22 attributes that describe

the colour, shape and habitat and class of the mushrooms. The attributes all

contain nominal values (see table 4.2). There are 8124 tuples in the data set each

one classified as edible or poisonous. There are 4208 edible and 3916 poisonous

mushrooms. The data set has 2480 missing values denoted by ? and they are all

in the attribute 11. We treated the missing values as another value.
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4.2 Data Sets

Synthetic Data Sets

To evaluate the scalability of CLIMIS, we also used a synthetic data set generator

called datgen 1. This data set generator is the same generator that Andritsos

(2004) and Barbará et al. (2002) have employed in their work. The generator

produces data sets with varying number of tuples, attributes, attribute domains

and classes (clusters). To produce a data set, the user simply specifies the desired

number of tuples, attributes, classes (clusters) and the attribute domain size. The

number of classes (clusters) in a data set can be specified using conjunctive rules

of the type: att1 = a1 ∧ att2 = a2 ∧ . . . ⇒ class = c1.

The data sets produced for this work were created considering the fact that

the algorithms used in the experiments had different ability to scale. Two sets

of groups of data sets were created. The first set was created to be used with

algorithms that cannot scale:

• Group 1: the data sets contain 10 attributes, 10 clusters and varying number

of tuples: 500 to 2500 tuples. The number of tuples was increased by 500

tuples.

• Group 2: the data sets contain 1000 tuples, 10 clusters and varying at-

tributes: 10 to 50 attributes. The number of attributes was increased by

10 attributes.

• Group 3: the data sets contain 10 attributes, 10 clusters and varying number

of tuples: 5,000 to 25,000 tuples. The number of tuples was increased by

5,000 tuples.

1See appendix D for a simple example of a data set produced with datgen.
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4.2 Data Sets

The second set was created to be used in large scale experiments:

• Group 4: the data sets contain 10 attributes, 10 clusters and varying number

of tuples: 25,000 to 150,000 tuples. The number of tuples was increased by

25,000 tuples.

• Group 5: the data sets contain 100,000 tuples, 10 clusters and varying

number of attributes: 10 to 50 attributes. The number of attributes was

increased by 10 attributes.

• Group 6: the data sets contain 100,000 tuples, 10 attributes and varying

number of classes (clusters): 10 to 50 classes (clusters). The number of

classes (clusters) was increased by 10 clusters.

• Group 7: the data sets contain 10 attributes, 10 clusters and varying number

of tuples: 50,000 to 800,000 tuples. From 200,000 tuples, the number of

tuples was increased by 200,000.

The size of the attribute domains in all the data sets, described above,

varied between 7 and 30. This variation as well as the attribute number variation

is similar to the domain size and attribute number variation used in Andritsos

(2004). With regard to tuple number variation, Andritsos (2004) used larger data

sets to test the scalability of the LIMBO algorithm. LIMBO is a multi-phase

algorithm and the data sets with varying number of tuples were used to test the

performance of phase 1 of the algorithm only 1, whereas we evaluated LIMBO

as a multi-phase algorithm as phase 1 on its own does not produce a usable set

1See section 2.6.3 for a discussion of the different phases of LIMBO. Also, figure 4.5, page
89, shows the performance of LIMBO phase 1 and LIMBO as a multi-phase algorithm.
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4.3 Quality

of clusters. The variation in number of clusters we used here is the same as

the variation used by Andritsos (2004). Barbará et al. (2002) shows information

about the attribute and tuple number variation used, which is similar to that of

Andritsos (2004).

4.3 Quality

We evaluated the quality of the clusters produced by CLIMIS by following the

evaluation approach used in Guha et al. (2000). In their paper, they evaluate

the quality of clustering produced by ROCK using a well known data set with

clear clusters. They applied the ROCK algorithm on the data set to see if ROCK

could identify the known clusters. The clearer the clusters ROCK produced, and

closer to the known clusters, the better the quality of the algorithm.

In our experiment, we also employed well known data sets with clear clus-

ters. To evaluate the quality of the CLIMIS algorithm, we applied CLIMIS and

three other algorithms - Cobweb, LIMBO and ROCK - on the chosen data sets.

Two things were of interest in this experiment to evaluate quality:

1. how well CLIMIS identified the known clusters, and

2. how it compared to the other algorithms in that respect.

The data set used in the evaluation of Guha et al. (2000) is the congressional

votes data set. An analysis of the frequency of the yes/no values against the two

classes (democrat and republican) showed that there are two clear clusters in the

congressional votes data set (see table 4.3). As table 4.3 shows, on 12 issues

the majority of democrats voted differently to republicans. On only 3 issues
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4.3 Quality

Cluster 1 (Republicans) Cluster 2 (Democrats)
(immigration,y,0.51) (immigration,y,0.51)

(export-administration-act-south-africa,y,0.55) (export-administration-act-south-africa,y,0.7)
(synfuels-corporation-cutback,n,0.77) (synfuels-corporation-cutback,n,0.56)

(adoption-of-the-budget-resolution,n,0.87) (adoption-of-the-budget-resolution,y,0.94)
(physician-fee-freeze,y,0.92) (physician-fee-freeze,n,0.96)

(el-salvador-aid,y,0.99) (el-salvador-aid,n,0.92)
(religious-groups-in-schools,y,0.93) (religious-groups-in-schools,n,0.67)

(anti-satellite-test-ban,n,0.84) (anti-satellite-test-ban,y,0.89)
(aid-to-nicaraguan-contras,n,0.9) (aid-to-nicaraguan-contras,y,0.97)

(mx-missile,n,0.93) (mx-missile,y,0.86)
(education-spending,y,0.86) (education-spending,n,0.9)

(crime,y,0.98) (crime,n,0.73)
(duty-free-exports,n,0.89) (duty-free-exports,y,0.68)

(handicapped-infants,n,0.85) (handicapped-infants,y,0.65)
(superfund-right-to-sue,y,0.9) (superfund-right-to-sue,n,0.79)

(water-project-cost-sharing,y,0.51)

Table 4.3: Congressional Votes Frequency Analysis (Guha et al., 2000)

the majority vote is the same for both democrats and republicans. Within both

groups, democrats and republicans, the majority vote (yes or no), on each of the

12 issues, is quite high. This is evidence that there are two clear clusters within

the data set that have high intra-cluster similarity and inter-cluster dissimilarity.

This is also supported by the evaluation by Andritsos (2004) on the congressional

votes data set. Andritsos used various measures to identify the most natural

clustering size for a given data set and his conclusion was that there are two

natural clusters in congressional votes. We used the congressional votes data

set to compare CLIMIS to Cobweb (the Cobweb implementation in the Weka

environment), ROCK and LIMBO.

The number of clusters produced by LIMBO and ROCK is determined by a

user specified parameter and not by the algorithm. Cobweb and CLIMIS, on the

other hand, return the best clustering the algorithm can produce from the data

set. Furthermore, LIMBO and ROCK return a flat organisation of clusters while
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Table 4.4: Congressional Votes - 2 Clusters
COBWEB - Level 2 Clusters

Cluster No. No. of Democrats No. of Republicans
1 45 158
2 222 10

ROCK - θ = 0.7
Cluster No. No. of Democrats No. of Republicans

1 12 132
2 255 36

LIMBO
Cluster No. No. of Democrats No. of Republicans

1 53 161
2 214 7

CLIMIS - Level 2 Clusters
Cluster No. No. of Democrats No. of Republicans

1 44 159
2 223 9

Cobweb and CLIMIS return a hierarchical organisation of clusters. To compare

the results of Cobweb and CLIMIS with the other algorithms, we used the clusters

from level 2 in the Cobweb output as that is considered by Fisher (1987) to be

the best level.

Table 4.4 shows the clustering results produced after applying Cobweb,

ROCK, LIMBO and CLIMIS on congressional votes. There are 168 republicans

and 267 democrats in congressional votes and as the table shows all four algo-

rithms have produced clear clusters, one containing a majority of republicans and

the other containing a majority of democrats. ROCK has produced a republicans

cluster (cluster 1) with only 12 democrats. LIMBO, CLIMIS and Cobweb have

produced between 44 and 53 democrats in that cluster. ROCK has produced the

worst democrats cluster (cluster 2) with 36 republicans. The democrats cluster

produced by the other algorithms is similar as it has 7 to 10 republicans.
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We can see that Cobweb and CLIMIS produced almost identical results,

which was expected. Both algorithms were run using zero cutoff, they imple-

ment the same operators and use the category utility measure in their evaluation

approach. The small difference in the results is explained by the fact that they

are different implementations. For example, Fisher’s description of the algorithm

does not state how the best operator is selected when more than one operator

produces the same category utility. This is left to the implementation. An in-

teresting observation is that both algorithms discovered two clusters at level 2,

matching the natural clustering of the data.

The ROCK algorithm has been developed to rely on sampling but as the

data set used in this experiment is small, we used the entire data set. ROCK had

to be applied a number of times in order to produce a good clustering. ROCK’s

quality depends upon the θ threshold (see section 2.6.2). Two records can only

be considered neighbours if their similarity is above the θ threshold. We noticed

that the algorithm is quite sensitive to the value of θ. A large or small θ can lead

to clusters of poor quality. Appendix A shows the results of applying ROCK on

the same data set with varying θ. As it is clear from the appendix and is also

discussed in Barbará et al. (2002), ROCK requires considerable tuning in order

to produce a good clustering.

The LIMBO algorithm is a multi-phase algorithm. The algorithm sum-

marises the data in phase 1 using the φ parameter in order to achieve scalability

in phase 2. When the φ parameter is increased, the algorithm tends to trade off

quality for scalability. Phase 2 involves the application of the AIB algorithm. As

congressional votes is a small data set, we set the φ parameter, which can range

from 0 to 1, to 0. With φ = 0 LIMBO applies the traditional AIB algorithm.
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Table 4.5: Mushroom - 3 Clusters
ROCK - θ = 0.9

Cluster No. No. of Edible Mushrooms No. of Poisonous Mushrooms
1 4208 2152
2 0 36
3 0 1728

LIMBO
Cluster No. No. of Edible Mushrooms No. of Poisonous Mushrooms

1 4208 892
2 0 1296
3 0 1728

CLIMIS - Level 2 Clusters
Cluster No. No. of Edible Mushrooms No. of Poisonous Mushrooms

1 4208 915
2 0 1312
3 0 1689

Therefore, the results we present in table 4.4 represent the best clustering quality

the LIMBO algorithm can produce on congressional votes.

Apart from the congressional votes data set, we also used the mushroom

data set to compare the clustering quality between CLIMIS, LIMBO and ROCK.

Unfortunately, the size of the mushroom data set did not allow this data set

to be used in the clustering quality comparison between CLIMIS and Cobweb as

Cobweb cannot handle large data sets. Also, we had to tune the ROCK algorithm

to find the θ value that produces the best clustering, which in this case was 0.9.

The congressional votes experiment produced the best clustering with θ = 0.7.

Appendix B shows the results of applying ROCK on the mushroom data set with

varying θ.

To draw our conclusions based on the mushroom data set, we relied on An-

dritsos (2004) analysis of the mushroom data set, which indicated that the most

natural clustering size of the mushroom data is 3 clusters. Interestingly, when
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we applied CLIMIS on the mushroom data set the algorithm produced 3 clusters

at level 2. Table 4.5 shows the results of applying LIMBO, CLIMIS and ROCK

on the mushroom data set. It is evident that CLIMIS and LIMBO produced the

best edible mushrooms cluster (cluster 1) with 915 and 892 poisonous mushrooms

in cluster 1 respectively. ROCK has almost twice as many poisonous mushrooms

in the edible mushrooms cluster, 2152 poisonous mushrooms.

Using the Cutoff

The cutoff parameter provides a threshold, which the algorithm uses to decide

whether a cluster is of any value. If the algorithm decides that the cluster below a

current cluster C does not improve category utility, it removes the cluster from the

tree. The cutoff parameter should have little impact on the quality of CLIMIS as

the algorithm performs conceptual clustering, which favours level 2 and we only

apply the parameter below level 2.

To see the impact that the cutoff parameter has on a clustering produced

by CLIMIS, we applied CLIMIS on the congressional votes and mushroom data

sets with and without the cutoff. As tables 4.6 and 4.7 show, the cutoff threshold

has little impact on the quality of the clusters. The results shown in table 4.6

were obtained when we applied CLIMIS with cutoff 0.05 − 0.5. The mushroom

result is based on cutoff = 0.05.

4.4 Scalability

This section presents an evaluation of the scalability of CLIMIS by comparing

it with Cobweb, LIMBO and ROCK. In all three cases, the scalability of the
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Table 4.6: Congressional Votes - Using Cutoff
CLIMIS - Level 2 Clusters Using Cutoff

Cluster No. No. of Democrats No. of Republicans
1 41 158
2 226 10

CLIMIS - Level 2 Clusters
Cluster No. No. of Democrats No. of Republicans

1 44 159
2 223 9

Table 4.7: Mushroom - Using Cutoff
CLIMIS - Level 2 Clusters Using Cutoff

Cluster No. No. of Edible Mushrooms No. of Poisonous Mushrooms
1 4208 915
2 0 1312
3 0 1689

CLIMIS - Level 2 Clusters
Cluster No. No. of Edible Mushrooms No. of Poisonous Mushrooms

1 4208 915
2 0 1312
3 0 1689

algorithms has been compared with regard to (i) increasing the number of tuples,

(ii) increasing the number of attributes, and (iii) increasing the number of clusters.

Our evaluation follows the approach used in the well cited scalable algo-

rithm BIRCH (Zhang, 1997). Zhang (1997) applied BIRCH and other algorithms,

with similar characteristics, on the same data sets that varied in: (i) number of tu-

ples, (ii) number of attributes, and (iii) number of clusters. Zhang (1997) recorded

the performance of the algorithms as the tuples in the data sets increased, then

as the attributes in the data sets increased and finally as the clusters in the data

sets increased.

In our evaluation of the CLIMIS scalability, we used the same variations
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in the data sets to evaluate (i) how the performance of CLIMIS is affected from

an increase in either tuples, attributes or clusters, and (ii) how the performance

of CLIMIS compares to the other algorithms that have similar characteristics.

CLIMIS was compared to Cobweb using one collection of data sets due to the

limitation of Cobweb. With this comparison, we intended to show the difference

that CLIMIS has made to the scalability of conceptual clustering. CLIMIS was

compared to LIMBO and ROCK using another collection of data sets. With this

experiment, we intended to show how well CLIMIS performs when compared to

algorithms developed for large scale clustering of categorical data.

4.4.1 CLIMIS versus Cobweb

To compare CLIMIS to Cobweb, we used synthetic and real data. We performed

three experiments. The first experiment used zero cutoff and tested the scalability

of the algorithms with regard to the number of tuples (see figure 4.1). This

experiment used relatively small data sets as with larger data sets Cobweb runs

out of main memory. The real data sets were subsets of the mushroom data

set and had smaller attribute domains than the synthetic data sets. All data

sets used had 10 attributes. The second experiment, which also used zero cutoff,

tested the scalability of the algorithms with regard to number of attributes (see

figure 4.2). This experiment used synthetic and real data sets. The real data

sets were created based on mushroom and had smaller attribute domains than

the synthetic data sets. All the data sets had 1000 tuples. The third experiment

(see figure 4.3) used cutoff = 0.4 and tested the scalability of the algorithms

with regard to larger number of tuples. All the data sets in this experiment were
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Figure 4.1: CLIMIS versus Weka (Cobweb): Increasing the number of tuples

synthetic and had 10 attributes.

As figures 4.1, 4.2 and 4.3 show, in all cases, CLIMIS outperformed Cobweb.

In figures 4.1 and 4.2, both algorithms show better scalability on the mushroom

data sets. The scalability on larger data sets using the cutoff threshold, shown

in figure 4.3, is very different between the two algorithms. CLIMIS performance

appears to have little fluctuation, whereas Cobweb becomes significantly slower

as the size of data increases.

The reason CLIMIS shows better scalability than Cobweb is because it per-

forms less cluster scans to calculate category utility. For example, when Cobweb

computes category utility for the incorporate operator, it has to compute the sum

of the squared conditional probabilities for each cluster at a level every time it

tries a new tuple in each cluster. This involves a lot of main memory scans, which

increase as more data is clustered. The size of the clusters and the number of
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Figure 4.2: CLIMIS versus Weka (Cobweb): Increasing the number of attributes

clusters get larger as more data is clustered. An increase in the size of clusters

means that Cobweb has to scan more conditional probabilities in a cluster. A

larger number of clusters results in more attribute value probability reads.

The increase in the amount of data has smaller impact on CLIMIS’s per-

formance as CLIMIS uses a different cluster representation, which provides the

sum of the squared conditional probabilities for every cluster.

4.4.2 CLIMIS versus LIMBO

The data sets we used to compare CLIMIS scalability to LIMBO were all syn-

thetic. With regard to increasing number of tuples, we used data sets of a varying

number of tuples with 10 clusters and 10 attributes. With regard to increasing

number of attributes, we used data sets of a varying number of attributes with

100K tuples and 10 clusters. With regard to increasing number of clusters, we
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Figure 4.3: CLIMIS versus Weka (Cobweb): Using the cutoff parameter

used data sets of a varying number of clusters with 100K tuples and 10 attributes.

We used cutoff = 0.4 for CLIMIS as it produced reasonable clusters and

varying φ and B parameters for LIMBO depending on the data set requirements.

With regard to increasing the number of tuples, we ran a number of experiments

with LIMBO in order to decide on the φ and B parameters as we aimed to use

the same values for all trials to make the results more comparable. The value of

φ was varied from 0 to 1.5 and the value of B from 4 to 50 1. We used φ = 0.7

and B = 4. A larger B value produced only 1 cluster with data sets less than

100K. As figure 4.4 illustrates, CLIMIS shows better performance than LIMBO.

The LIMBO approach separates the summarisation from the clustering process.

We tried to increase the number of tuples to more than 150K tuples but LIMBO

failed to return any number of clusters as it either crashed or stopped. This was

1The same variations of the φ and B parameters were used by Andritsos (2004)
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Figure 4.4: CLIMIS versus LIMBO: Increasing the number of tuples

despite trying different values of φ and B. With any more than 150K tuples, the

φ value caused either over summarisation and the clustering result contained one

cluster or not enough summarisation to complete the process within the available

memory. Even with 100K, it was difficult to tune the algorithm to return the

specified clusters. Appendix C shows an example of the trials performed on 100K.

Unlike LIMBO, CLIMIS summarises the data while clustering the data.

The effect CLIMIS’s approach has on its performance is shown in figure 4.4.

It is evident that compared to LIMBO, CLIMIS has better performance. The

CLIMIS approach supports better performance because it processes every record

only once. LIMBO, on the other hand, has to process every record three times

as it involves 3 phases (see chapter 2, section 2.6.3). Phase 3 only takes a few

seconds in all cases. Phase 2, on the other hand, which is the application of

the AIB algorithm, suffers from the complexity of the AIB algorithm and unless
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Figure 4.5: CLIMIS versus LIMBO Phase 1: Increasing the number of tuples

phase 1 is very successful in producing an appropriate number of nodes - not too

many to allow the algorithm to scale and not too few to allow the algorithm to

produce a ’good’ clustering - the algorithm either fails to produce a clustering or

produces a single cluster. The scalability of phase 1 of LIMBO is comparable to

CLIMIS but phase 1 does not produce a set of usable clusters (see figure 4.5).

Figure 4.6 presents a comparison between LIMBO and CLIMIS with regard

to increasing number of attributes. CLIMIS performance is better compared to

LIMBO and can be predicted. LIMBO, on the other hand, is less predictable

as less attributes may require more time to produce a clustering. For example,

it consistently took the algorithm more time to produce a clustering with 10

attributes than with 20 attributes. The reason behind the performance of LIMBO

is that we had to use different values of φ and B on different attribute sizes to

achieve a clustering. The values of φ used were 0.7 to 0.9 and the values of B
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Figure 4.6: CLIMIS versus LIMBO: Increasing the number of attributes

varied from 4 to 50.

We applied CLIMIS and LIMBO to data sets with increasing clusters. The

effect the increasing clusters had on the performance of CLIMIS was small. The

time it took CLIMIS to complete the clustering process increased only a few

seconds (see figure 4.7). The effect on the performance of LIMBO, however, was

quite important. LIMBO failed to return a clustering when we run it on a data

set with more than 10 clusters. This was despite running the experiment with

varying values of φ and B. We have checked Andritsos (2004) for his results but,

unfortunately, it includes no experiments that test the effect of increasing clusters

on the algorithm’s performance. We conclude that LIMBO is very sensitive to

data sets with large number of clusters. A data set with a large number of clusters

will require more splits in phase 1. More splits increase the number of nodes phase

1 produces making the AIB algorithm more expensive, which causes the failure
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Figure 4.7: CLIMIS: Increasing clusters in the data set

of LIMBO to produce a clustering within the available memory.

4.4.3 CLIMIS versus ROCK

The data sets we used to compare the scalability of CLIMIS to ROCK were the

same as the data sets used in the LIMBO comparison. With regard to increasing

number of tuples, we used data sets of a varying number of tuples with 10 clusters

and 10 attributes. With regard to increasing number of attributes, we used data

sets of a varying number of attributes with 100K tuples and 10 clusters. With

regard to increasing number of clusters, we used data sets of a varying number

of clusters with 100K tuples and 10 attributes. We used cutoff = 0.4 for CLIMIS

and varied θ (0− 1) for ROCK depending on the data set requirements. CLIMIS

was applied on full data sets. ROCK in phase 1 was applied on samples drawn

from the data sets and in Phase 2 the rest of the data sets were used.
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Figure 4.8: CLIMIS versus ROCK: Increasing the number of tuples

A comparison between CLIMIS and ROCK with regard to increasing num-

ber of tuples is illustrated in figure 4.8. As expected, phase 1 of ROCK is faster

than CLIMIS. The experiment with phase 1 of ROCK involved quite small data

sets as they were samples of the original data sets. The samples used were 1%

of the original data sets so the largest sample with regard to number of tuples

was about 1500 tuples. Figure 4.8 also shows a comparison between CLIMIS

and the overall performance of ROCK. It is evident that CLIMIS shows bet-

ter performance than ROCK. Also, phase 2 adds a large overhead to ROCK’s

performance.

ROCK phase 1 involves more complex operations compared to ROCK phase

2. Phase 1 has to evaluate the similarity of all pairs of points before starting to

merge the clusters while phase 2 compares a point to a few extracted points from

the clusters (we used 10% of the points) to decide the best cluster the point
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Figure 4.9: CLIMIS versus ROCK: Increasing the number of attributes

should be assigned. The only reason that phase 1 takes so little time compared

to the overall performance of ROCK is that the data set used in phase 1 is of a

small size.

With regard to increasing the number of attributes, as figure 4.9 illus-

trates, the performance of ROCK is better in phase 1 and worst overall com-

pared to CLIMIS. However, an interesting observation is that we did not manage

to complete the experiment with ROCK. When the algorithm was applied to 50

attributes it run out of main memory. The current implementation of ROCK in-

volves a metric measure so we had to convert the categorical data to binary. The

conversion created a very large number of attributes. The increase in number of

attributes increases the number of operations that the algorithm has to perform.

To compute the similarity between two points, the algorithm has to compute the

distance between the points according to their dimensions. The larger the num-

93



4.4 Scalability

1

10

100

1000

10 15 20 25 30 35 40 45 50

R
u
n
n
in

g
T

im
e

(s
ec

on
d
s)

Number of Clusters

CLIMIS

♦ ♦ ♦ ♦ ♦

♦
ROCK phase 1

+ + + + +

+
ROCK phase 1 and 2

�
� � � �

�

Figure 4.10: CLIMIS versus ROCK: Increasing the number of clusters

ber of dimensions, the more comparisons the algorithm has to perform, which

explains the result shown in figure 4.9.

The effect the increase in number of clusters had on ROCK’s performance

was less compared to the increase in number of attributes (see figure 4.10). The

increase in number of clusters caused more distinct attribute values in the data

set. However, there were less attribute values and the conversion to binary created

a smaller data set. The largest binary data set used in figure 4.10 had 252

attributes, whereas the largest binary set used in figure 4.9 had 500 attributes.

Therefore, the algorithm had to perform less operations.

When comparing ROCK’s overall performance to CLIMIS in figure 4.10,

CLIMIS has better performance despite the fact that it does not use sampling.

With CLIMIS being a simpler and more scalable algorithm, we also tried

it on larger data sets with regard to increasing the number of tuples (see figure

94



4.5 Discussion

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800

R
u
n
n
in

g
T

im
e

(s
ec

on
d
s)

Number of Tuples (x 1000)

CLIMIS

♦
♦

♦

♦

♦♦

Figure 4.11: CLIMIS: Increasing the number of tuples

4.11). With larger data sets the algorithm appears to show the same performance

that LIMBO and ROCK have on smaller data sets.

4.5 Discussion

The complexity of LIMBO relates to the way the algorithm is applied. LIMBO

requires tuning to find a good combination for the φ and B parameters when it is

applied to large data sets. The algorithm completes the first phase successfully in

a reasonable time but it is not always successful with phase 2. Unfortunately, it

may take LIMBO considerable time before it stops without returning a clustering

result because of a main memory limitation. Appendix C shows the results of

running LIMBO on a data set of 100K tuples with variations of φ. The algorithm

produced a clustering only when φ = 0.7. In all the other cases, the algorithm
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did not produce a clustering and in almost half of those cases it took considerable

time before it stopped. Because of the LIMBO approach, it took considerably

more time to find a good parameter setting than the time it took the algorithm

to complete a successful trial - it took hours to find a good parameter setting,

whereas most of the trials took minutes to complete. Also, in our experiments, we

knew the clusters in the data sets. Applying the algorithm to data sets that do

not have known clusters would be difficult as it is not obvious when the optimal

parameter values have been set. An advantage of the LIMBO algorithm is that

it scaled the AIB algorithm to large categorical data sets.

The complexity of the ROCK algorithm also relates to the way it is used.

There are two aspects of the algorithm that make its application complex: (i) the

algorithm’s parameters, and (ii) the algorithm’s multi-phase nature. The current

implementation of ROCK also adds to the application complexity as the data

may have to be converted to binary.

ROCK requires two user defined parameters: the θ threshold parameter and

the number of desired clusters. The θ parameter determines when two instances

are considered similar as their similarity has to be larger than θ. The tuning

process to find the best θ is not as difficult in phase 1 when the number of

clusters in the data set is known in advance. When the number of clusters in

the data set is not known in advance, the process becomes quite complex mainly

because phase 1 must produce a good set of clusters for the successful completion

of phase 2. An advantage of the ROCK algorithm is that it uses sampling and it

can return a first set of clusters from phase 1 in minimum time.

The experiments show that CLIMIS is more scalable and simpler in its

application for the following reasons:-
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• The algorithm involves no data conversion from one data type to another.

• It does not require as much knowledge of the most natural clustering size in

a data set as it builds the best clustering it can produce based on category

utility.

• It does not have multiple phases that might depend on each other to produce

good results or better performance.
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Chapter 5

Implementation

The current version of CLIMIS has been implemented using java. The correctness

of the implementation was confirmed when the quality of the CLIMIS output was

compared to that of Cobweb shown in section 4.3. Furthermore, the computed

category utility as well as CLIMIS’s selection of best operator were compared, at

every step, with results reached by applying the algorithm on small data sets

manually. At every step, CLIMIS’s results matched the results reached manually.

This chapter presents the real world structure of CLIMIS in a number

of packages and, class diagrams that reflect different aspects of the algorithm’s

implementation (section 5.1). The chapter also discusses the input that CLIMIS

receives and the output that the algorithm produces (section 5.2).

5.1 Logical Architecture Packages

There are three logical packages in CLIMIS: (i) Data Clustering, (ii) Prediction,

and (iii) Data Management.
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5.1 Logical Architecture Packages

5.1.1 Data Clustering

Data clustering is the core package of CLIMIS. It performs the clustering evalua-

tion and builds the clustering tree. Data clustering contains the following parts:

1. Cluster: It provides operations for the calculation of category utility (CU)

and the evaluation of the four operators: (i) incorporate, (ii) disjunct, (iii)

split, and (iv) merge. It decides the best CU and implements an operator

accordingly by calling for changes in the Tree and, if necessary, the PD-

structure (see figure 5.1).

2. Tree: It manages any updates to the clustering tree, for example, the addi-

tion of a new node to the clustering tree due to the implementation of the

disjunct operator. Figure 5.2 is a break down of the Tree design.

3. PD-structure: It provides the conditional probability distribution of a leaf

cluster. It manages any updates to the PD-structure, for example, the

removal of a leaf cluster that has ceased being a leaf cluster. Figure 5.3 is

a break down of the PD-structure design.

5.1.2 Prediction

Prediction is another package of CLIMIS. This package allows the clustering of

tuples with missing data using an existing clustering tree for prediction purposes.

Prediction includes the following parts:

1. Predict: It provides operations for the calculation of category utility for the

incorporate operator. It decides the best CU and incorporates a tuple to
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TreeParentNodes

lest: LinkedList
treeflag: int

addParent(TreeParentNode, Database, Record)
getClusterFromTheList(int, int, Database)
getTreeParentNodes()
remove(TreeParentNode)
removeForSplit(TreeParentNode)
flush(Database)
copyLeafNodeToPDStruct(TreeParentNode, PDStructure, Database)
setTreeFlag()
checkTreeSize(Database, TreeParentNode, Record)
getTreeFlag()

TreeParentNode

dbChildren: LinkedList<Cluster>
newChildren: LinkedList<Cluster>
updatedChildren: LinkedList<Cluster>
node: int
pnodeflag: int

addDatabaseChild(Cluster, Database, LinkedList)
addNewChild(Cluster, TreeParentNodes, Database, Record)
addNewChildren(List, TreeParentNodes, Database)
addSplitChild(Cluster)
addSplitChildren(TreeParentNodes, Database, Record)
checkTreeSize(TreeParentNodes, Database, Record)
deleteChild(Cluster)
deleteChildFromMainMemory(Database)
getallChildren(Database, TreeParentNodes)
getDBChildren()
getUpdatedChildren()
getNewChildren()
getNode()
getpnodeFlag()
setpnodeFlag()
updateCurrentCluster(Cluster, TreeParentNodes, Database)

Tree

list: TreeParentNodes

cacheChild(Cluster, Database, Record)
emptyCache(Database)
getChildren(int, Database)
getTreeFlag()
updateCluster(int, Cluster, Database, Record)
cacheCreateChild(CreateChild, Database, Record)
updateCacheForSplit(SplitChild, Database, Record)
updateCacheForMerge(MergeChild, Database, Record)

Figure 5.2: Tree - Class Diagram
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5.2 Input/Output

the cluster indicated by the CU. Predict is the same as Cluster without

the disjunct, split and merge operators and without changing the value of a

cluster when incorporate happens.

5.1.3 Data management

The data management package manages any data that is read from or written to

a DBMS and data that is read from a file. This package has the following parts:

1. Record: It provides a new tuple to be clustered.

2. Database: It is the interface between the data clustering as well as predic-

tion package and the DBMS.

3. Parameter: It provides the parameters that the algorithm uses. For exam-

ple, the cutoff parameter and the size of the CLIMIS tree.

Figure 5.4 shows a class diagram of the data management aspect of the

CLIMIS implementation.

5.2 Input/Output

5.2.1 Input

One input to the CLIMIS algorithm is the raw data. This input comes from

a database relation that may be stored in any relational DBMS. CLIMIS, also,

takes one file as its input called parameters that contains the parameter settings

for running the algorithm. The parameters that can be specified in the file include

the following:
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Cluster

node: int
nodetype: int
sumrows: long
sumcounts: long
probability: double
cu: double
una_sumrows: long
una_sumacounts: long
una_probability: double
children: Vector<Cluster>
splitchildren: Vector<Cluster>
tree: Tree
treeflag: int
pdstructure: PDstructure

classifyRecord(Record, Database)
createCluster(Record, Database)
getClusterChildren(Database)
findBestOp(Record, Database)
getCluster()
calcCU(Database)
getProbability()
getSumRows()
getSumCounts()
adjustProb(Record, Database)
adjustSumCounts(long, Record, Database)
tryIncorporate(Record, Database)
tryDisjunct(Record, Database)
tryMerge(Cluster, Cluster, Record, Database)
trySplit(Cluster, Record, Database)
unadjustProb()
implementBestOp(BestOp, Record, Database)
insertIntoYourself(Record, Database)

Database

connection: Connection

deleteForSplit(int)
deleteMergingClusters(int, int, int)
getAttValObject(int, String, Record)
getChildren(int, TreeParentNode, Vector)
getDBChild(int, TreeParentNode)
updateChild(Cluster)
writeChild(int, int, int, long, long, String)
writeChildren(TreeParentNode)
flushRootObject(Cluster)
flushChildren(TreeParentNode, int)

Parameter

properties: Properties

getCutoff()
getTablename()
getTreeSize()
getXaxissize()
getYaxissize()
setParameters(Properties)

Record

record: Map<Integer,String>
recordID: String
noOfAttibutes: int
attributes: String[]

getAtts()
getRecord()
getRowid()
setNoOfAtts(int)
setRecord(Map<Integer, String>)
setRowid(String)

Figure 5.4: Data Management - Class Diagram
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1. The name of the database relation that contains the tuples to be clustered.

2. The size of the CLIMIS tree structure.

3. The size of the PD-structure.

4. The size of the cutoff parameter.

5.2.2 Output

CLIMIS stores its output in database relations. There are two relations that

store the output of the data clustering package: (i) the tree relation, and (ii) the

cluster content relation.

1. The tree relation, tree(Parent, Child, Type, Probability, SUMSQ). This

relation stores the clusters. A cluster is represented with its parent’s iden-

tifier, its own identifier, its type (leaf cluster or internal cluster), its proba-

bility and its cluster summarisation (SUMSQ) (see figure 5.5).

2. The cluster content relation, cluster content(Leaf, Recid). This is a rela-

tion that relates a leaf cluster to the original tuples (see figure 5.5). Only

the leaf clusters are related to the tuples they cover as the other clusters

can be related to tuples through the tree relation.
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Figure 5.5: Relations Used by CLIMIS
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Chapter 6

Integrating Data Mining with the

DBMS

Data mining is used in areas where large volumes of data are collected, such as

marketing, telecommunications, biology and the world wide web. Large collec-

tions of data are normally stored with the use of a relational database manage-

ment system (DBMS), for example marketing databases are used in marketing

analysis, yet most data mining technology is not aware of the DBMS making data

mining difficult to apply.

Dunham (2003) suggests that the complexity of the data mining applica-

tion is similar to the complexity of databases in the 1960s - then application

programmers had to create an entire database environment each time they wrote

a program - and data mining may evolve in the next decades in a similar way

database technology has evolved to become easy to use and develop. Research in

the areas of data mining and databases identified the significance of integrating

data mining with a DBMS in making data mining a technology available to the
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non-expert user (Deogun et al., 1997; Holsheimer et al., 1995; Netz et al., 2000).

This chapter presents a discussion of the reasons that have motivated in-

tegrating data mining with a DBMS (section 6.1). The chapter then discusses

a number of considerations when integrating data mining with a DBMS (section

6.2). The chapter continuous with a discussion of different approaches followed

in integrating data mining with a DBMS (section 6.3). The chapter ends with a

discussion of the reasons that integrating clustering with a DBMS has received

less attention (section 6.4).

6.1 Reasons for Integrating Data Mining with a

DBMS

Research that has looked at integrating data mining with databases has been

motivated by a number of reasons including:

• Simplifying the Knowledge Discovery in Databases (KDD) process.

• Achieving main memory independence.

• Supporting on-line data mining.

6.1.1 Simplifying the KDD Process

Data mining is part of a larger and more complex process known as Knowledge

Discovery in Databases (KDD) (Béjar et al., 1997; Michalski & Kaufman, 1998).

The CRoss-Industry Standard Process for Data Mining (CRISP-DM) (Chapman

et al., 1999; Harper & Pickett, 2006; Shearer, 2000) model reflects the complexity
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6.1 Reasons for Integrating Data Mining with a DBMS

of the overall KDD process (see figure 6.1). As the model shows, a number of

subprocesses have to be completed and often repeated before a useful data mining

result is produced. The database appears in the middle of the model as it plays

an important role in all the subprocesses of KDD.

Business
Understanding

Data

Data
Understanding

Data
Understanding

Data
Preparation

Modelling

Evaluation

Deployment

Figure 6.1: Cross-Industry Standard Process for Data Mining (Shearer, 2000)

A fuller integration of data mining and databases could improve the overall

KDD process. For example, by running data mining and storing the results in

the DBMS, the repetitiveness of KDD could become more manageable. This is

because all the data and the data structure are available in each stage of KDD.

At the evaluation stage (see figure 6.1), for instance, the user could employ the

data dictionary or other data in the DBMS to reach better conclusions.

Part of CRISP-DM is the data understanding and data preparation stages.

These two stages are considered quite expensive because of the repetition they

involve (Brackman & Anand, 1996; Fayyad et al., 1996; Frawley et al., 1992).

The two stages have become even more complex as the data sets that must be
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extracted from a DBMS are larger. Chaudhuri (1998), Lu et al. (1996) and Freitas

& Lavington (1996) are examples of work where the motivation has been to make

the data understanding and data preparation stages simpler. Their work made

use of SQL to identify data more relevant to a data mining problem, to summarise

data for data mining or to make data available for data mining.

6.1.2 Achieving Main Memory Independence

Many data mining algorithms are main memory dependent (Boley, 2001; Dougherty

et al., 1995; Jonyer et al., 2002; McCallum et al., 2000). As data mining is applied

to larger and more complex data sets, it is important to remove main memory

limitations on the performance of the algorithms.

Main memory limitations can be removed by mapping the complex calcu-

lations of an algorithm to SQL operations. Work in this area often follows the

classification data mining technique (Sousa et al., 1998). Classification involves a

training set and a testing set. The algorithm is applied on the training set, which

contains a number of attributes. One of the attributes is considered to be the

class that labels the data and guides the learning process. The resulting model is

tested using the test data. An example of work that translates the classification

problem into a DBMS problem by mapping the algorithm’s processes into SQL,

and achieves in this way main memory independence, is MIND (Wang et al.,

1998). MIND is discussed in section 6.3.3.
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6.1.3 Supporting On-line Data Mining

On-line data mining is defined in this thesis as the ability to mine data as it

reaches the DBMS and provide a solution while the algorithm is running (Berkhin,

2002; Bradley et al., 1998).

Traditionally, the data mining task is performed off-line. Dunham (2003)

refers to this as static data mining. Static data mining algorithms require a

data set to be extracted from the DBMS and presented to the algorithm. The

problem with this approach is that it is difficult to incorporate new tuples into

the resulting model, particularly, with operational databases where data updates

are common.

Dragut & Nichitiu (2004) offers the advantage of analysing data in real

time. They have identified certain characteristics of an algorithm that support

on-line data mining. For example,

• the ability to update an existing data mining model, and

• the ability to build a model requiring every tuple to be scanned and pro-

cessed once.

Achieving on-line data mining through an integration with the DBMS has

the advantage that some data mining solution can be made available to the user

during running time. The DBMS offers the advantage of storing the data mining

result alongside the data in the database as relation(s) that can be accessed using

standard query tools. So while the algorithm is running some output is accessible

and ready to be evaluated by the user. The problem with Dragut & Nichitiu

(2004) is that a data mining model is only made available when the data mining

process ends.
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There are algorithms (Ordonez, 2006; Sousa et al., 1998; Wang et al., 1998)

that can perform on-line data mining and present some solution to the user at run

time. These algorithms have a better approach to on-line data mining because

they are integrated with the DBMS. However, these algorithms require excessive

disk accesses that limit their scalability.

6.2 Considerations when Integrating an Algo-

rithm with a DBMS

When integrating data mining with a DBMS there are a number of issues that

should be considered. These issues relate to two areas: (i) the data, and (ii) the

resources.

6.2.1 The Data

Data stored in a DBMS is complex. Two aspects of this complexity are: (i)

dynamic data, and (ii) structured data.

Dynamic Data: Data in a database is regularly updated. DBMS algo-

rithms like indexing algorithms have the ability to update the underlying struc-

ture when new tuples arrive (Deschler & Rundensteiner, 2001; Katayama & Satoh,

1997; Sellis et al., 1987). Unfortunately, data mining algorithms often assume that

the data set is static. By and large, to incorporate new data into an existing data

mining model, a new data set must be extracted, which involves going back to

the database, incorporating the new data into the data set and building a new

model. To work with dynamic data an algorithm should allow an existing model
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to be updated.

A classification of data mining algorithms, already discussed in this thesis

in relation to clustering (see chapter 2), splits them into incremental and non-

incremental, based on their ability to update an existing model (Lebowitz, 1987;

Roure & Talavera, 1998; Sison & Shimura, 1996; Talavera, 2000; Weng et al.,

2003). Incremental algorithms allow incorporation of new tuples into an existing

model, whereas non-incremental algorithms can only incorporate new cases if a

new model is constructed.

Lebowitz (1987) recognises that real world data, like most data stored in

a database, is regularly updated and suggests that learning from real world data

needs to be incremental. The reason being that with real world data the whole

input data set is not necessarily known in advance. New data may be made

available during or after the completion of the learning process. Incremental

learning overcomes this problem by requiring every tuple to be processed without

revaluating all the data and offers fast updating of an existing model. Therefore,

algorithms that support incremental learning are better suited to the analysis of

real world data.

Structured Data: Data mining algorithms normally expect the data to

exist in the form of a flat file. Data stored in a DBMS tends to be structured

as it follows a certain database model, whereas a flat file shows no structural

relationships.

With the most popular database model being the relational model (Date,

1995; Elmasri & Navathe, 2000), a number of algorithms have been developed for

mining relational databases. One example proposes interpreting simple relation-

ships between relations to discover new knowledge about the database (Ketterlin
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et al., 1995). The authors set out a method for using the entity relationship model

(Connolly et al., 1996; Date, 1995) to discover knowledge at different levels of ab-

straction based on one-to-many (1:M) relationships. Clusters are built based on

the instances in the many entity (components). Clusters are also built based on

the instances in the 1 entity (composites). The second set of clusters is then

expressed in terms of clusters of components supporting, in this way, discovery

at several levels of abstraction simultaneously.

The work of Ketterlin et al. (1995) is using the Cobweb algorithm. They

recognised that data stored in a database is structured following an entity rela-

tionship design. They also recognised that the entity relationship model is more

expressive than a flat file and extended Cobweb to use the entity relationship

model in its learning process. In doing so, they achieved mining structured data

(structural learning) using an unsupervised learning algorithm 1 when most of

the structural learning was done using supervised learning algorithms 2.

Another example proposes integrating knowledge resulting from analysing

individual relations (Ribeiro et al., 1995). Their work uses the structure in the

data to support data mining across multiple relations. A number of related

relations are mined individually first and then the collective results are integrated

and analysed further to discover knowledge that is based on all the relations.

All the examples discussed in this section have a common limitation. Al-

though, the examples are proposing a method for applying data mining to rela-

tional databases as opposed to a flat file, they still require the data to be separated

1Cobweb is described as an unsupervised learning algorithm because it does not require
knowledge of a class.

2Classification is described as supervised learning as it requires data to be labeled according
to a class.
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from the database as they rely on algorithms that are not DBMS aware. One of

the aims of this thesis is to make conceptual clustering applicable directly to data

that exists in a DBMS (see section 1). This will benefit the work of Ketterlin et

al. (1995), in particular, as Ketterlin et al. (1995) proposed a system for clustering

structured data that is based on Cobweb but their clustering system requires the

data to be extracted from the DBMS. The work of Ketterlin et al. (1995) can also

benefit from the fact that we scaled Cobweb to large data sets. In their paper,

they mention that their clustering system would build better clusters if applied

to large data sets.

6.2.2 The Resources

In-memory algorithms tend to be faster as disk access is slower than main mem-

ory access. When a DBMS is used, it is therefore important to maximise main

memory usage and minimise database storage. An approach where the algorithm

heavily relies on the DBMS even when there is adequate main memory (Sousa et

al., 1998; Wang et al., 1998) may not be as good as one that allows the algorithm

to adapt to the resources and only use the DBMS when it is absolutely necessary

(Shafer et al., 1996).

An approach that adapts to the available resources and only uses the DBMS

if it runs out of main memory must consider the I/O transfers between main

memory and DBMS. The number of I/O transfers required relates to (i) the

algorithm’s data structure, and (ii) the evaluation it performs. This is because

these two things determine the algorithm’s ability to:

• exclude parts of data from main memory,
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• keep in main memory the most requested data, and

• complete the analysis process with one disk scan of the raw data.

When making use of the DBMS to overcome main memory limitations,

it is interesting to look at how the DBMS itself manages data. A DBMS works

constantly between main memory and disk. The task of transferring data between

the two environments is expensive. However, the DBMS reduces the cost of

transferring data using various techniques such as (i) transferring the data in

units of blocks to reduce the number of disk reads, and (ii) using caching to keep

the most requested data in main memory. These techniques allow a DBMS to

reduce the I/O cost, scale well to large data sets and be adaptable to changing

resources.

6.3 Approaches to Integrating Data Mining with

a DBMS

Sarawagi et al. (1998) defines five levels of integration between a data mining

algorithm and a DBMS (Sarawagi et al., 1998, 2000):

1. loose-coupling through a SQL cursor interface or ODBC 1,

2. encapsulation of a mining algorithm in a stored procedure, 2

1Open Database Connectivity (ODBC) provides a standardised API for accessing different
DBMSs (Ramakrishnan, 2003).

2A stored procedure is a program stored in the database data dictionary available to all
database applications to use (Koch & Loney, 1995).
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3. caching the data to a file system on-the fly and mining,1

4. tight coupling using primarily user-defined functions and

5. SQL implementations for processing in the DBMS.

The levels of integration vary from loose integration, where the algorithm

gets the data from the DBMS directly but the DBMS is treated as a data repos-

itory (Rajamani & Cox, 1999), to tight coupling integration, where part or all

of the data processing is mapped to SQL and executed in the DBMS (see figure

6.2).

Figure 6.2: Sarawagi’s Alternatives to Integrating a Data Mining Algorithm with
a DBMS

Although, Sarawagis’s levels of integration are good for understanding the

degree of integration between data mining and databases, his classification does

1A cache is a temporary storage used to speed up the retrieval of frequently accessed data.
Caching is a standard technique used in a DBMS to improve upon data access (Anton et al.,
2002).
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not lend itself well to understanding the type of changes in the underlying algo-

rithm to achieve the integration. A different classification of the work that looked

at integration is the following:-

• Integration that treats the DBMS as a repository.

• Integration that involves changing the DBMS.

• Integration that maps data mining to SQL.

The first approach involves no changes to the algorithm or the DBMS and is

the same as Sarawagi’s loose-coupling through a SQL cursor interface or ODBC.

The second approach aims to support data mining by changing or enhancing the

DBMS environment. The final approach involves changing an algorithm in order

to make it SQL or DBMS aware.

6.3.1 Treating the DBMS as a Repository

This is the simplest and first type of integration tried in the literature. It is a loose

connection between data mining and databases and normally uses an application

programming interface (API) such as the Open Database Connectivity (ODBC).

This type of connection with the DBMS has been employed by many data mining

systems and algorithms, all using an API to read the data from the DBMS and

make it available to the algorithm. Clementine (Clementine, 2005) and WEKA

(Witten & Frank, 2005) are some examples of systems that use this type of

connection.

The main advantage of using an API is that the system or algorithm has

access to a wide range of DBMSs. For example, Clementine can extract data
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from DB2 and Oracle without requiring any change in the application level or

the DBMS. Another advantage is that this approach is very simple to implement

because it only uses standard SQL to extract data from the DBMS. In addition,

it provides the ability to access multiple databases and bring together data from

different sources at the application level. Despite all the advantages, however, the

use of an API does not allow an algorithm to take full advantage of the DBMS

as discussed in the next section (section 6.3.2).

The algorithm treats the DBMS as a repository from where it retrieves the

data. Once the data is read the entire process runs in main memory.

6.3.2 Changing the DBMS

This approach aims to support a range of data mining algorithms by implementing

a common set of data mining operations in the DBMS (Clear et al., 1999; Geist

& Sattler, 2002; Gray et al., 1997).

Sattler & Dunemann (2001) introduced primitives for supporting decision

tree classifiers. These primitives are intended to serve a range of classification

algorithms. Their approach looked at common functions between classification

algorithms and developed primitives that support these functions, for example,

the computation of the measure, gini-index (Wang et al., 1998).

Freitas & Lavington (1996) introduced primitives to support classification

algorithms. They speed up the KDD process by reducing the interaction between

the algorithm and the database. For example, their Count by Group primitive

counts the number of tuples in each group of tuples with the same value (for the

Group By attributes) using group by SQL statements.
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6.3.3 Mapping Data Mining to SQL and Database Rela-

tions

This approach maps data mining operations to SQL and/or the data mining

model to database relations. MIND (Wang et al., 1998) is an example of this

approach. MIND builds a decision tree based on a training set (see figure 6.3) by

operating in a DBMS.

Figure 6.3: Example of Decision Tree

A leaf node in the decision tree (see figure 6.3) represents a class name,

whereas an internal node is a decision node that represents an attribute value

test that determines the path to the next level of the tree. To grow the decision

tree, MIND has to decide the attribute value that best splits the data and best

predicts the class. To decide the best split point at a node, MIND computes the

gini index (Wang et al., 1998). The attribute containing the split point achieving

the smallest gini index value is selected to be split the node.
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MIND uses database relations in the process of deciding the best split point.

It queries the relation that contains the training set and collects statistics about

the data. It then uses the statistics to compute the gini index. The main database

relations that MIND uses are:

1. A relation that stores the training set that is called DETAIL. A tuple in

the DETAIL relation is an example of a known class:

DETAIL(attr1, attr2, . . . , attrd, class, leaf num), where attri is the ith at-

tribute, for 1 ≤ i ≤ d and class is the classifying attribute. leaf num is

the leaf node in the decision tree that a tuple belongs to.

2. A set of relations that store statistics necessary to compute the gini index,

Dimi. The Dimi set of relations store attribute counts against a class:

Dimi(leaf num, class, attri, count). leaf num is a leaf node in the decision

tree that represents a class. A Dimi relation is created for every attribute

in the training set.

3. A relation that stores best split values and the corresponding gini in-

dex measurements for each leaf node in the tree with respect to attri:

MIN GINI(leaf num, attri, attr value, gini).

MIND queries the DETAIL relation to insert the necessary statistics in the

Dimi relations. An example of that query is shown in figure 6.4. After populating

the Dimi relations, the algorithm uses the statistics in the Dimi relations and

computes the gini index for each leaf node at each possible split value of the attri.

The computation results are inserted in the MIN GINI relation.

The MIN GINI relation contains the best split value and the correspond-

ing gini index measurement for each leaf node in the tree with respect to the
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INSERT INTO DIM_i

SELECT leaf_num, class, attr_i, COUNT(*)

FROM DETAIL

WHERE leaf_num <> STOP

GROUP BY leaf_num, class, attr_i

Figure 6.4: MIND: Data Summarisation

CREATE VIEW BEST_SPLIT (leaf_num, attri, attr_value)

AS

SELECT leaf_num, attri, attr_value

FROM MIN_GINI a

WHERE a.gini = (SELECT MIN(gini)

FROM MIN_GINI b

WHERE a.leaf_num=b.leaf_num)

Figure 6.5: MIND: Best Split

attri. The algorithm queries the MIN GINI table and produces views 1 that

help it decide the best split point for a leaf node. An example of a view is the

BEST SPLIT view (see figure 6.5), which shows the overall best split value for

each leaf node: BEST SPLIT (leaf num, attr name, attr value).

MIND has the advantage of requiring very little data in main memory as

most data used in the decision tree growing process is stored in the database.

There is only one data structure that the algorithm requires in main memory and

that represents the growing decision tree. The data structure represents a node

with a unique number and uses little main memory space. The disadvantage of

MIND’s approach is the execution of a large number of SQL statements. Most

data mining algorithms use SQL to read the raw data from the database (Mehta

et al., 1996). MIND, on the other hand, executes SQL statements at different

1A view is a stored SQL statement that the DBMS user can treat as another table (Koch
& Loney, 1995).
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steps in the analysis process and often the same SQL statement many times. For

example, the query in figure 6.4 is executed many times in order to collect the

necessary statistics for all the attributes in the DETAIL relation.

MIND achieves scalability to large data sets by using the DBMS’s parallel

processing. The parallel DBMS supports scalability through concurrent execu-

tions of SQL. For example, the queries that populate the Dimi relations above

can happen in parallel. Parallelisation of the SQL may achieve scalability but

a parallel DBMS implementation may not be available or it may be considered

expensive. Furthermore, it is an approach to scaling data mining algorithms that

can be described as orthogonal to other approaches to scalability. For example,

the work in Shafer et al. (1996) achieves scalability through the use of efficient

data structures. Their work can immediately benefit from a parallel DBMS im-

plementation without any changes to the algorithm they present.

Classification involves a relatively small numbers of operations. Every eval-

uation that the algorithm carries out is performed with regard to a known class.

Clustering, on the other hand, considers different classes in the data as it looks for

a natural classification. As a result, clustering has to perform more computations

and is a more difficult to map to SQL. For this reason, most examples of data

mining and DBMS integration do not use clustering.

The work of Ordonez (2006) is an example of a clustering algorithm that

is integrated with a DBMS. The integration approach that Ordonez (2006) fol-

lows is similar to that of MIND as it employs a number of tables to summarise

the data, which are then used to perform the clustering evaluation and follow

a clustering strategy. Ordonez recognises that integrating data mining with a

DBMS has many advantages but also that the extensive use of SQL queries can
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have a negative effect on performance as SQL has high overhead. Ordonez’s work

achieves scalability by assuming that the number of the desired clusters is small.

A better solution would reduce the number of the required SQL queries.

6.4 Discussion

The work in the area of integrating data mining with a DBMS has mainly focused

on the data mining techniques of association and classification (Agrawal et al.,

1996; Chaudhuri et al., 1999; Hipp et al., 2001; Lu, 2001). The reason that

clustering has received less attention is related to its ability to scale.

Association and classification algorithms are normally less expensive be-

cause they involve a simpler analysis process than clustering. As we mentioned

earlier in this thesis, classification uses an output field to guide the learning pro-

cess. In clustering, where data is unlabelled, different alternatives have to be

considered to form the best groups. As a result, clustering is often considered

a more expensive data mining technique and is not favoured for an integration

with the DBMS.

There are examples in the clustering area that prove that clustering algo-

rithms can successfully scale to large data sets. An interesting example is BIRCH

(Zhang et al., 1996), already discussed in chapter 2. BIRCH scales to large data

sets and shows good performance with restricted resources. However, BIRCH has

been developed for numeric data and scalability of numeric data is not considered

as difficult as numeric data summarisations are more effective. Other examples of

scalable clustering are the categorical data algorithms ROCK and LIMBO. Both

algorithms have shown that categorical data clustering is scalable. However, from
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a database perspective, ROCK and LIMBO have their disadvantages. They both

involve different phases in their clustering approach and require user input that

affects the quality of clustering (see chapter 2). CLIMIS, on the other hand, is

a scalable clustering algorithm for categorical data with properties that suit a

DBMS.

One of the aims of this thesis was to identify clustering algorithm properties

that suit a DBMS (see chapter 1). The properties of CLIMIS that make it suitable

to a DBMS are being incremental, non-parametric and involving a single phase in

its clustering approach. All these properties make CLIMIS suitable to a DBMS

because they require minimum user input and make the algorithm easy to use.
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Chapter 7

Integrating CLIMIS with a

DBMS

In this chapter, we discuss how we have extended CLIMIS to integrate the algo-

rithm with a DBMS. The chapter starts with a discussion of a first attempt to

integrate conceptual clustering with a DBMS and describes some of the lessons

learned. The original approach had many advantages but the algorithm executed

too many SQL statements and its performance was poor. CLIMIS has been

designed to overcome this limitation.

7.1 The Cobweb/IDX Approach

The goal of this implementation was to improve the user’s interaction with the

data mining process. Cobweb/IDX (Lepinioti & McKearney, 2007, 2008) stores

its clusters in standard database relations in a similar manner to Wang et al.

(1998), discussed in chapter 5. The core of the Cobweb tree is stored in three
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tables. First, the tree structure itself is stored as a two column table using

a traditional parent/child hierarchical relationship, cw tree(parent, child). The

second table is the cluster values structure that describes the attribute/value

probabilities for each cluster, cw values(cluster, att, value, probability). Finally,

the cluster content table, cw cluster content(cluster identifier, primary key),

describes the content of each cluster using a pair and links the cluster hierarchy

to the original data. In addition to these three tables, there are a number of

tables that improve the ease of use or performance of the algorithm.

Category utility is calculated using a series of aggregate queries. For exam-

ple, the calculation of the sum of the squared conditional probabilities in cluster

10 uses the query:

select sum(probability*probability)

from cw_values

where cluster=10

One advantage of this approach is that the algorithm can be implemented

using stored procedures that are optimized for use in the database management

system. A second advantage of storing the clusters in relations is that the clusters

can be queried using existing SQL interface tools.

Implementing the Operators

Implementing Cobweb in PL/SQL (Procedural Language/Structured Query Lan-

guage (Koch & Loney, 1995)) allowed many of the algorithm’s calculations to

be performed as database queries within the database management system. For

example, counting the number of attribute values across the data set can be
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executed efficiently using an aggregate query and a full table scan. Similarly,

counting a subset of attribute values can be performed equally efficiently using

an indexed search.

The standard Cobweb algorithm has four operators as discussed in chapter

2. A single controlling procedure, add_instance, is responsible for iteratively

stepping down the cluster tree and applying a preview procedure to evaluate

each of the four operators and to select the best operator at each level. As the

algorithm evaluates each operator, it changes the Cobweb data tables and assesses

the quality of the resulting clusters. After each step, the changes to the data tables

must be reversed. The changes are applied to a set of temporary tables and the

tables are merged using standard SQL set operators. Standard database views

are used to combine the contents of the main Cobweb tables and the temporary

tables. For instance, the following is an example of one of the views:

CREATE OR REPLACE VIEW

CW_TREE_PSEUDO_ALL (PARENT,CHILD)

AS

SELECT parent, child

FROM cw_tree

UNION ALL

SELECT parent, child

FROM cw_tree_pseudo
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User Interface Design

The interface to Cobweb/IDX supports two processes: updating the clustered

data set and predicting similar records using the cluster hierarchy. The update

process monitors the indexed relation for new records and incorporates them into

the cluster hierarchy. The prediction process takes a sample record and proposes

similar records or missing values using the cluster hierarchy.

From the user’s perspective, updating Cobweb/IDX was intended to be

similar to updating existing database index structures. Typically index structures

run in the background and are updated automatically when the data is changed.

For example, the B+-Tree index (Knuth, 1973) is created using the CREATE

INDEX command and requires no further intervention from the user. To achieve

this level of integration, Cobweb/IDX is created or dropped using a script and the

update process is triggered when new records are inserted into the indexed relation

Ceri et al. (2000). This design also allows the update process to be separated

from the data insertion process and helps to improve overall performance. The

architecture of the update process is shown in figure 7.1.

Figure 7.1: Cobweb/IDX Update Process

Predicting missing values using Cobweb/IDX is modeled on the Query By

Example (Zloof, 1975) approach to querying relational databases.

The prediction process uses two tables: input and output. The input table

is empty except when the user inserts (incomplete) records into it. These records

are removed from the input during the prediction process. When Cobweb/IDX
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reads a new input record, it uses the predict operator to process the record and

identify any missing values. At present, missing values are indicated by null values

in the input record. The predict operator proposes values for the null attributes

based on the other values in the identified cluster. The output table contains the

input record but with the missing values replaced with the value predicted by the

Cobweb/IDX index. At present, the index predicts one value for each null but

could be adapted to predict more than one value with an appropriate probability.

The architecture of the search process is shown in figure 7.2.

Figure 7.2: Cobweb/IDX Search Process

This input/output structure provides a convenient method of using the

index and fits well with existing database query tools. For example, the in-

put/output tables can be directly linked into a Microsoft Access database through

the linked table facility and a convenient form-based interface built on top for non-

technical users. Predicting missing values is simply a matter of inserting records

into the input table and reading the results as they appear in the output table.

Advantages/Disadvantages

The original implementation of Cobweb in a DBMS had many advantages:

• It supported simple data mining. Data in the database could be indexed
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and clusters queried using standard SQL. In this way, the running of the

algorithm was hidden from the a user.

• The DBMS maintained the data structures without user intervention.

• It provided logical and physical independence as it was possible to add or

drop the Cobweb/IDX index without affecting any other DBMS structure

or operation.

• It achieved memory independence. As the algorithm uses the DBMS for

computing category utility it requires very little data in main memory.

• It was based on a good incremental algorithm that did not suffer from

ordering effects in the data.

The implementation of Cobweb/IDX was important, mainly, because it

supported a simple application of data mining from a user’s point of view. How-

ever, the algorithm had some disadvantages that must be considered:

• It had to perform a large number of complex queries to cluster a tuple,

which affected the performance of the algorithm. For example, to calculate

the CU and evaluate a clustering, one of the queries the algorithm had to

perform was the aggregate query on the cw values relation described above.

This query was executed to evaluate:

– the incorporate operator for each cluster,

– the split operator for the best cluster, and

– the merge operator for the best and second best clusters.
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• It made insufficient use of the available resources. The algorithm made

limited use of main memory even when the entire data set could fit in

memory.

7.2 The CLIMIS Approach

The CLIMIS approach achieves a looser integration with a DBMS and avoids

the disadvantages of Cobweb/IDX by using a cache (Stierhoff & Davis, 1998).

It implements the two data structures that CLIMIS uses, CLIMIS tree and PD-

structure (both discussed in chapter 3), as a cache. A cache is a temporary storage

used to speed up the retrieval of frequently accessed data (Anton et al., 2002).

By using a cache, CLIMIS reduces the number of queries executed and makes

efficient use of main memory.

7.2.1 CLIMIS Tree

We will refer to a tree built by the CLIMIS algorithm as the conceptual clustering

tree. The conceptual clustering tree is different to the CLIMIS tree. The CLIMIS

tree stores all or part of the conceptual clustering tree depending on the amount of

main memory available. If the algorithm runs out on main memory, the conceptual

clustering tree exists in the CLIMIS tree and in the database (see figure 7.3).

The size of the CLIMIS tree is controlled by a user specified parameter.

This can change in the future as the size of the cache could be proportional to

the amount of memory available to the algorithm. The parameter controls the

maximum number of tree objects that are allowed in the CLIMIS tree. If the

maximum number of tree objects is exceeded, the algorithm stores clusters in the
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Figure 7.3: Conceptual Clustering Tree

database.

Figure 7.4 shows how the CLIMIS tree is implemented as a cache. The

example is based on the tree shown in figure 7.3. The cache stores two types of

objects: parent objects and child objects. A parent object represents a cluster in

the CLIMIS tree that has children. A parent object represents a cluster with its

unique identifier and points to a list that stores all of the cluster’s children, child

list.

A child object represents a cluster in the tree with its cluster summarisation

(CS). All parent objects are stored in one list, parent list. The algorithm adds

new parent objects at the beginning of the list and removes objects from the end

of the list. Similarly, the algorithm adds a child object at the beginning of the

list and removes child objects from the end of the list.

When a leaf cluster is expanded, the algorithm adds a new parent object in

the parent list and two child objects in a new child list. When the disjunct operator
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Figure 7.4: CLIMIS Tree as a Cache

is implemented, the algorithm adds a new object to the child list of the parent

object representing the current cluster. When the split operator is implemented,

the algorithm removes the split parent object from the parent list and merges its

child list with the child list of the parent of the split cluster. When the merge

operator is implemented, the algorithm removes two parent objects, merges their

child lists and adds a new parent object to the parent list, which points to the

merged child lists.

When a new object is added, parent or child, the algorithm checks to see if

there is a free space in the cache. If there is a free space, the algorithm adds the

new object in the cache. If there is no free space, the algorithm writes an object

to the database and creates a free space. The algorithm always removes objects

from the child list of the last parent object in the parent list. If all the children of

the last parent object have been removed, then the algorithm creates a free space
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by removing the last parent object.

A parent object requested by the algorithm is moved to the beginning of the

parent list. In this way, the algorithm ensures that the removed object represents

the least recently accessed cluster.

Before reading the children of a parent from the cache, the algorithm always

checks a flag in the parent object to see if it has all its children in the cache. If

the parent is missing children, the algorithm reads the missing children from the

database.

7.2.2 Mapping the CLIMIS Tree to the Relational Data

Model

CLIMIS uses two relations to store data in the database (see section 5.2.2):

1. The tree relation, tree(Parent, Child, Type, Probability, SUMSQ).

2. The cluster content relation, cluster content(Leaf, Recid).

A tuple is represented in the cluster content relation and in main memory

with its rowid, which is a unique identifier the DBMS provides for every tuple.

Each time the tree relation is queried to get a leaf cluster, the tree relation is

joined with the cluster content relation to get the leaf cluster’s tuples.

DBMS accesses: In the development of the CLIMIS tree cache, we aimed

to use low cost queries to reduce the I/O traffic between the DBMS and the

algorithm. Low cost means that the accesses relate to a small number of tables

and they read or update only a small number of tuples. Queries that relate to

the CLIMIS tree and read data from the DBMS are:
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• Reading a parent with its children when a parent is not found in the cache.

• Reading the child of a parent when a cached parent is missing a child.

Both queries involve a join between the tree relation and the cluster content

relation to relate a cluster to its tuples:

select child, type, probability, sumsq_probability, recid

from tree, cluster_content

where tree.child = cluster_content.child

and parent = current cluster

Other types of database accesses that relate to the CLIMIS tree include:-

1. Insert a child cluster into the tree relation to make space in the cache. If the

cluster is a leaf it will also involve inserts into the cluster content relation.

2. Delete a cluster that is removed by a split from the tree relation. This is

never a leaf cluster and, therefore, the delete only involves the tree relation.

3. Update the tree relation to change the parent of children after a split.

4. Update the tree relation after a merge as merged clusters become children

of the new cluster.

Indexing can be employed to support faster execution of the above queries,

deletes and updates. This is because all these database accesses involve searching

a relation (or two relations) against some criteria. For example, to delete a cluster

that does not exist due to a split, the algorithm has to find the corresponding

tuple in the tree relation and remove it. The only database access described
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above that is not supported by an index is the insert but this is the simplest

operation to perform in a database as new tuples are added in the end of the

table. Also, most of the database accesses described above involve a single table.

Database accesses that involve more than one table tend to be more complex as

joining two tables together requires searching the tables to base the join on a

primary, foreign key relationship.

Unlike the Cobweb/IDX implementation, which accesses the tree relation

every time category utility is calculated, CLIMIS accesses to the tree relation via

the cache and so it makes less requests to the database. The most often requested

data exists in main memory as the experimental analysis of the CLIMIS tree hit

rate will show in the next chapter.

7.2.3 Cache Replacement Policies

The most common cache replacement policies are: (i) least recently used (LRU),

and (ii) least frequently used (LFU) (Gan & Suel, 2009; Jaragh & Hasswa, 2005;

Selvakumar et al., 2004). LRU involves keeping track of the time an object is

accessed. When the cache runs out of free space, the object that is replaced is

the least recently accessed object (Gan & Suel, 2009; Lee et al., 2001; Venketesh

et al., 2006). The LFU replacement policy involves keeping a counter for every

object. The counter indicates the frequency of accesses to an object. The least

frequently accessed object is the object that is replaced (Gan & Suel, 2009; Lee

et al., 2001; Venketesh et al., 2006).

LFU does not have a mechanism to know if an object was accessed recently

even if an object has high frequency of accesses. It is possible for an object to build
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high frequency and then never be accessed again. However, because of the object’s

high frequency, this object will remain in the cache ’polluting’ it (Selvakumar et

al., 2004; Sokolinsky, 2004). This scenario is possible with CLIMIS. As CLIMIS

is based on Cobweb, it has inherited many of Cobweb characteristics one of them

being Cobweb’s tendency to produce a skewed tree (Zhang, 1997). With a skewed

tree, it is possible certain objects (clusters) to be accessed (visited) frequently at

the beginning of the clustering process but never again later on. These objects

(clusters) would ’pollute’ the cache if the LFU policy was followed.

Considering the nature of CLIMIS, LRU was thought as a more appropriate

replacement policy and is the policy followed in this work. The policy that was

implemented is a variation of LRU. The objects in the cache are ordered according

to the time they were accessed. The most recently accessed objects appear at

the beginning of the list, whereas the least recently accessed objects appear at

the end of the list (discussed in section 7.2.1). The object that is replaced is the

least recently accessed object.

7.2.4 PD-structure

As discussed in chapter 3, the PD-structure stores conditional probabilities of

attribute values in the leaf clusters. The PD-structure has been implemented as

a cache to ensure that frequently requested attribute values exist in main memory.

In a database index, all accesses to the database happen through a common

structure so there is never more than one copy of the same block in main mem-

ory. Similarly, CLIMIS uses the PD-structure to ensure that there is never more

than one copy of a probability distribution in main memory. The PD-structure
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stores all or part of the attribute value probabilities depending on main memory

availability. When the cache stores part of the conditional probabilities then the

rest of the conditional probabilities can be found in the database.

The PD-structure uses two lists - AttVal list and cluster list - and a matrix

that shows the relationship between entries in the two lists. The AttVal list stores

attribute value objects (AttVal object) that represent attribute values covered in

the leaf clusters. The cluster list stores cluster objects. A cluster object represents

a leaf cluster with its unique identifier.

When an attribute value appears in a leaf cluster for the first time, the

algorithm relates the cluster object (Ck) to the AttVal object (Vj) by storing the

conditional probability in the matrix (see figure 7.5).

p(V|C)

V1

V2

...

V3

Vj

C1 C2 ... Ck

p(V |C )1 1 p(V |C )1 2 p(V |C )1 k

p(V |C )2 k

p(V |C )3 k

p(V |C )j kp(V |C )j 2p(V |C )j 1

p(V |C )3 1

p(V |C )2 1 p(V |C )2 2

p(V |C )3 2

Figure 7.5: PD-structure

Objects are added at the beginning of the cluster list and removed from the

end of the cluster list. When a new leaf cluster is created the algorithm checks if

there is a free space in the cluster list. If there is a free space the algorithm adds

a new cluster object at the beginning of the cluster list. If there is no free space
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the algorithm creates one by removing a cluster object from the end of the list.

Similarly, objects are added at the beginning of the AttVal list and removed from

the end of the AttVal list.

DBMS Accesses: The PD-structure is space bound. The size of the

cluster list and AttVal list is controlled by a user specified parameter. This can

change in the future as the size of the cache could be proportional to the amount

of memory available to the algorithm. The parameter controls the maximum

number of cluster objects and AttVal objects that are allowed in the PD-structure.

If the maximum number of AttVal objects and cluster objects is exceeded, the

algorithm removes an object.

When the PD-structure gets full, the algorithm checks if the information is

in the PD-structure and if it is not, it updates the PD-structure using the DBMS.

The accesses to the database that relate to the PD-structure are mainly reads

from the original data set. The accesses to the database happen for the following

reasons:

1. To get the conditional probabilities of a leaf cluster: This happens when the

PD-structure is missing a requested leaf cluster.

2. To get an attribute value’s conditional probability in the leaf clusters. This

happens when the PD-structure is missing a requested attribute value.

The second query above is a lot more expensive than the first query as an

AttVal object may relate to many clusters. The algorithm removes an AttVal

object only after all the cluster objects have been removed from main memory.
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Find the current parent cluster in the CLIMIS tree
If parent cluster not found in the tree

Look in the database
Add parent with its children at the beginning of
the CLIMIS tree
Return the children of the current parent cluster

Else if parent found but missing children
Get the children that do not exist in the tree from
the database
Add children to the parent
Return the children of the current parent cluster

Else if parent found
Return the children of the current parent cluster

End

Figure 7.6: Get Children

7.2.5 Interaction with the CLIMIS Algorithm

The CLIMIS algorithm relies on the CLIMIS tree cache and the PD-structure

cache to compute the category utility and evaluate the operators. The algorithm

updates the two structures, if appropriate, when one of the operators is imple-

mented.

To evaluate the incorporate, disjunct, split and merge operators at a level,

the algorithm reads the children of the current cluster from the CLIMIS tree once

(see figure 7.6). When the algorithm identifies the best operator, it updates the

CLIMIS tree and PD-structure:

• If incorporate is the best operator, the algorithm updates the CLIMIS tree

and the PD-structure as shown in figure 7.7.

• If disjunct is the best operator, the algorithm updates the CLIMIS tree and
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If incorporate = best operator
Update the Cluster Summarisation of the best cluster in the CLIMIS tree
If best cluster is a leaf

Expand best cluster
Create a new parent in the CLIMIS tree with two
new leaf children
Remove the old leaf cluster from the PD-structure
Add the new leaf children in the PD-structure

Else
Move to the next level of the tree

End
End

Figure 7.7: Implement Incorporate

If disjunct = best operator
Add the new child in the CLIMIS tree
as a child of the current cluster
Add the new child in the PD-structure as a leaf cluster

End

Figure 7.8: Implement Disjunct

PD-structure as shown in figure 7.8.

• If split is the best operator, the algorithm updates the CLIMIS tree as shown

in figure 7.9. Leaf clusters are never split and, therefore, the split operator

does not update the PD-structure.

• If merge is the best operator, the algorithm updates the CLIMIS tree as

shown in figure 7.10. Like split, the merge operator does not update the

PD-structure.

The Cost of the Merge Operator: The merge operator is an expen-

sive operator when running CLIMIS using the DBMS because of the number of
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If split = best operator
Update the Cluster Summarisation of the best cluster in
the CLIMIS tree
Add the children of the split cluster to the children of
its parent in the CLIMIS tree
Remove the split cluster with its children from the CLIMIS tree

End

Figure 7.9: Implement Split

If merge = best operator
Add new parent for merge cluster with children best and second
best clusters in the CLIMIS tree
Remove best and second best clusters from current cluster child list
Add merge cluster in the child list of current parent

End

Figure 7.10: Implement Merge

Get att val probability for merge.
Go through the list of attribute values in the PD-structure.
For every attribute value in the PD-structure,
match the leaf clusters corresponding to the best and
second best nodes to the leaf clusters in the PD-structure.

If a leaf cluster not in the PD-structure check the database.
If a leaf cluster is found, add 1 to the att val count.

End
End

Figure 7.11: Getting Attribute Value Probabilities for Merge from the PD-
structure
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attribute value probabilities the algorithm has to compute for the merge clus-

ter summarisation. The computation of every attribute value probability for the

merge cluster summarisation may involve accesses to the database (see figure

7.11).

A possible way of solving the problem is avoiding the merge operator by

replacing it with the Not-Yet strategy (Talavera & Roure, 1998). This is a strategy

for improving the quality of incremental clustering. Talavera & Roure (1998) have

compared the Not-Yet strategy with Cobweb’s merge and split operators and found

it to be more effective in correcting the ordering effect in the data. The strategy

avoids including a tuple in a clustering if the tuple does not improve category

utility. The tuple is kept aside and is clustered again when more tuples have

been clustered. We would like to explore this strategy and use it in the CLIMIS

implementation as it is expected to have a lower cost than merge and split.

7.2.6 Size of the Cache Data Structures

It is possible to calculate the maximum size of the CLIMIS tree when the algo-

rithm runs entirely in main memory. We consider the worst case scenario, where

the cutoff parameter is zero as this will produce singleton leaf clusters (see figure

7.12).

In the same way, the maximum size of the PD-structure can be calculated

(see figure 7.13) if we assume that the size of the data set and the size of the

attribute domains are known.
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Size of Conceptual Tree = 2n-1 clusters

Size of Tree Relation = 2n-1 tuples

Size of Cluster_Content Relation =

Size of CLIMIS Tree = (2n-2) + (n-1)

(n = number of clustered tuples)

Figure 7.12: Size of the CLIMIS Tree

Size of Cluster List = n

Size of AttVal List = av

Size of Matrix = n*av

(where, n = number of clustered tuples and

av=number of attribute value pairs)

Figure 7.13: Size of the PD-structure
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7.2.7 Full DBMS Interface

CLIMIS satisfies the criteria identified in Bradley et al. (1998) and Berkhin (2002)

as important when integrating data mining in a DBMS: These criteria require that

an algorithm:-

1. needs a maximum of one scan of the database,

2. utilises different scanning modes, if necessary (sequential, index, sample),

3. incorporates additional data incrementally,

4. processes every tuple once,

5. can be suspendable, stoppable and resumable,

6. can provide an on-line solution (some solution in progress should always be

available).

CLIMIS reads data directly from the database so it can make use of the dif-

ferent scanning modes a DBMS offers. CLIMIS processes every tuple once when

it builds the cluster summarisations. When new a tuple arrives, the summarisa-

tions can be adjusted without reference to previous tuples. This characteristic of

CLIMIS is important as (i) the algorithm needs one scan of the database, and

(ii) its interface can be implemented in a similar way to that of Cobweb/IDX

(see section 7.1), which supports on-line data mining. Finally, the mapping of

the CLIMIS data structure to relations means that CLIMIS can be implemented

to be suspendable, stoppable and resumable.
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Chapter 8

Evaluation of the CLIMIS Data

Structures

This chapter presents an evaluation of the data structures that CLIMIS uses to

interact with the DBMS:-

• The CLIMIS tree

• The PD-structure

According to Shatdal et al. (1994), a good cache has minimum cache misses

and, therefore, maximum hit rate. The hit rate represents the number of suc-

cessful calls to the cache out of the total number of calls made. The missed calls

cause a disk access to retrieve data. We evaluate the cache structures CLIMIS

tree and PD-structure by measuring percentage hit rate during data clustering.

In the evaluation of the CLIMIS tree, the hit rate is shown against the ratio be-

tween the size of CLIMIS tree and the size of Conceptual Clustering Tree. In the

evaluation of the PD-structure, the hit rate is shown against the ratio between
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the size of the PD-structure and the total probability distributions at leaf cluster

level.

8.1 CLIMIS Tree

Hit Rate

In this section, we evaluate the performance of the CLIMIS tree cache by mea-

suring the hit rate - the number of successful calls out of the total number of calls

made to the cache - with regard to the following:

1. the size of the CLIMIS tree cache,

2. the number of tuples in the data set,

3. the number of attributes in the data set, and

4. the type of the conceptual clustering tree produced by the CLIMIS algo-

rithm.

With regard to the size of the cache, we applied the CLIMIS algorithm to

the same data set a number of times while reducing the size of the cache. With

regard to the number of tuples and attributes in the data set, we kept the size of

the cache constant and applied the CLIMIS algorithm to different data sets with

increasing number of tuples and attributes respectively. Finally, with regard to

the type of conceptual clustering tree, we kept the size of the cache constant and

applied the CLIMIS algorithm to two data sets, one producing a skewed and the

other a balanced conceptual clustering tree.
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8.1 CLIMIS Tree

The data sets used in the evaluation are real data sets and include the

mushroom data set and subsets of the mushroom data set. We used zero cutoff,

which meant that the CLIMIS algorithm built the maximum possible tree.

The experiment in figure 8.1, used different sizes of the CLIMIS tree so

the ratio CLIMIS tree cache/Conceptual tree varied from 75% to 5%. 75% ratio

means that the size of the CLIMIS tree allows only 75% of the clusters built by

the algorithm to exist in main memory.

Figure 8.1: Hit Rate with Regard to Reducing Size of Cache

In all cases apart from one, the CLIMIS tree cache shows hit rate above

96% (see figure 8.1). Even when only a 1
4

(25% ratio) of the conceptual tree fits

in main memory, the hit rate is above 96%. This means that for more than 96%

of the calls made to the cache the algorithm has found the required clusters in
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8.1 CLIMIS Tree

main memory. The only time that the hit rate drops significantly is when the

ratio is 5%. 5% ratio means that only a small portion of the conceptual tree fits

in main memory. The hit rate drops to 68% because the cache fits very few of

the clusters and must query the database to load required clusters.

All new clusters are stored in the cache. It takes time for a new cluster

that is not important to become least recently accessed and be removed from

the cache. With ratio of 5%, the algorithm does not have enough cache space to

clear new non-important clusters and maintain a good number of older important

clusters in the cache. As a result, the hit rate drops to 68%.

The same experiment was applied changing three other parameters:-

• Increasing the number of tuples.

• Increasing the number of attributes.

• Skewed versus balanced tree.

Doubling the number of tuples in the data set had little impact on the hit

rate. As figure 8.2 shows the larger data set has a hit rate of 98% and 99%, which

is similar to the hit rate of the smaller data set. The larger data set shows only

slightly worse hit rate when 50% of the clusters fit in the cache (see figure 8.2).

The difference in the hit rates can be explained by the larger number of singletons

the algorithm produces with the large data set. Doubling the number of tuples,

doubles the singletons created as every clustered tuple reaches a singleton. The

more singletons the algorithm has to manage in the cache, the greater the chance

important clusters will be discarded from main memory. The problem has been

solved with the cutoff parameter, which reduces the number of singletons that

CLIMIS produces.
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8.1 CLIMIS Tree

Figure 8.2: Hit Rate with Regard to Increasing No. of Tuples
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8.1 CLIMIS Tree

Figure 8.3: Hit Rate with Regard to Increasing No. of Attributes
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8.1 CLIMIS Tree

Increasing the number of attributes had less impact on the hit rate than

increasing the number of tuples. As shown in figure 8.3, increasing the number

of attributes had little effect on the hit rate. In all cases, the hit rate is more

than 99%. The increase in number of attributes has a smaller impact on the hit

rate because more attributes in the data set do not result in a large increase in

clusters. Unlike increasing the number of tuples, where every tuple causes the

creation of a singleton, when cutoff = 0, adding an attribute to the data does not

result in more singletons. It may even produce less singletons. It is interesting to

see that 22 attributes produced better hit rate than 11 attributes. In this case,

the 22 attribute data set has only 2
3

of the clusters being singletons, whereas with

11 attributes, 4
5

are singletons.

The final parameter that was varied in the evaluation of the CLIMIS tree

cache was the data distribution. This was the only time a synthetic data set was

used in this evaluation. The synthetic data set was produced with the data set

generator discussed in chapter 4. We created a synthetic data set that had the

same size as the mushroom data set but in comparison to the mushroom data

set, it produced a balanced tree.

Figure 8.4 shows that the balanced tree has a lower hit rate than the skewed

tree. As discussed in section 7.2.3 the CLIMIS tree follows the LRU replacement

policy, which means that it replaces the least recently accessed object. When

the algorithm builds a balanced tree and all the clusters are visited more or less

equally, there is a lower chance that a cluster visited recently will be visited again

soon. Therefore, there is less chance that a cluster (object) will be found in the

cache next time it is requested. With a skewed tree, on the other hand, the hit

rate is better because a recently visited cluster will most likely be visited again
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8.1 CLIMIS Tree

Figure 8.4: Skewed versus Balanced Tree
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8.2 PD-structure

soon. Therefore there is a good chance it will exist in the cache when requested

again.

Zhang (1997) criticised Cobweb (see section 2.7.1) for building a skewed

tree of clusters as this is considered bad for performance. Part of her solution to

the problem of scalability was to build a balanced tree so that when clustering a

tuple, the path from root to a leaf is always the same. The same approach was

also used in Andritsos (2004). Andritsos (2004) LIMBO algorithm builds a tree

that is balanced for performance reasons. In this thesis, we recognise the skewed

property of Cobweb, inherited by CLIMIS, as an advantage for performance as

thanks to the skewed property there is a more efficient use of main memory. In

addition, forcing the creation of a balanced tree may stop natural clusters from

being discovered, which goes against the purpose of clustering. It has been shown

that the way BIRCH (Zhang, 1997) builds a tree may stop natural clusters from

being discovered (Han & Kamber, 2000; Sheikholeslami et al., 1998).

8.2 PD-structure

The size of data in the PD-structure is dependent upon the domain of the at-

tributes in the data set. Unlike CACTUS Ganti et al. (1999), which assumes that

the domain of a categorical data set can fit in main memory, in this thesis we

avoided making this assumption as we wanted to achieve a memory independent

algorithm. In this section, we evaluate the PD-structure with regard to hit rate.

The data sets used in the evaluation are real data sets that include the mushroom

data set and subsets of the mushroom data set.
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8.2 PD-structure

Hit Rate

The factors considered in order to evaluate the PD-structure are:

• The size of the PD-structure.

• The number of tuples.

• The number of attributes.

A first look at figures 8.5, 8.6 and 8.7 indicates that varying the parameters

- cache size, tuples and attributes - has a higher impact on the hit rate of the

PD-structure compared to the CLIMIS tree. In all cases, the hit rate of the PD-

structure is lower than 90%. This happens despite using exactly the same data

sets in both cases.

Figure 8.5: Hit Rate with Regard to Reducing Size of PD-structure
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8.2 PD-structure

Figure 8.5 shows that as the size of the PD-structure is reduced, there is a

quite large hit rate drop. The experiment was based on the worst-case scenario

as every tuple in the algorithm stops at a singleton. A data set of 8,000 tuples

produced 8,000 singleton clusters.

The effect that singletons have on the PD-structure relates to the number of

leaf clusters that the PD-structure has to make available to the algorithm. When

a new tuple is added in the tree, the algorithm has to find the leaf clusters that

have values that match the new tuple. Many of the singleton clusters will match

a new tuple. The cutoff parameter, discussed in chapter 4, reduces the clusters

at leaf level and, therefore, the number of clusters the algorithm has to find in

the PD-structure.

Figure 8.6: Hit Rate with Regard to Increasing No. of Attributes
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8.2 PD-structure

Figure 8.6 illustrates the relationship between hit rate and increasing num-

ber of attributes. It is interesting that despite the difference in number of at-

tributes, 11 attributes have more or less the same hit rate with 22 attributes. In

this experiment, we keep the ratio 1 constant and vary the number of attributes.

Because the ratio is the same for all experiment trials, the hit rate depends upon

the probability distributions and how they are requested by the algorithm. More

attributes does not necessarily mean a large increase in the probability distribu-

tions as that depends on the domains of the attribute values.

Figure 8.7: Hit Rate with Regard to Increasing No. of Tuples

Figure 8.7 shows the hit rate when increasing the number of tuples. Here,

the hit rate of both data sets is almost identical when the ratio is between 75%

1The ratio between the size of the PD-structure and the total probability distributions at
leaf cluster level.
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8.3 Conclusion

and 50%. The reason is that the attribute domains are very similar for both data

sets as they are subsets of the mushroom data. This means that increasing the

number of tuples does not affect the type of clusters built. The result is a similar

hit rate despite the difference in tuples.

8.3 Conclusion

The evaluation of the CLIMIS tree shows that the cache is effective even when

its size is small in relation to the clusters produced. When the size of the cache is

relatively good, an increase in number of tuples or number of attributes has little

effect in the hit rate. This proves that CLIMIS makes efficient use of the main

memory and does not require many SQL queries and updates to be performed

each time a new tuple is clustered. The evaluation of the CLIMIS tree also shows

that the cache performs better when the produced tree is skewed rather than

balanced. This proves that the cache complements the nature of the CLIMIS

algorithm.

The evaluation of the PD-structure shows that increasing the number of

tuples or attributes has an impact on the hit rate but it may not be significant

as it depends on the attribute domains and how they change as the tuples or

attributes increase. The parameter that has the biggest effect on the hit rate is

the size of the PD-structure. Although, the hit rate of the PD-structure is good,

it is not as good as that of the CLIMIS tree when the size of the structure is

reduced. This means that the algorithm requires more SQL queries to get the

required probabilities. The hit rate recorded was down to the substantial number

of singletons. Singletons can be easily avoided with CLIMIS, which proves that
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8.3 Conclusion

the PD-structure is also an efficient structure and performs well even in the worst

case scenario.
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Chapter 9

Conclusions

One aim of this thesis was to investigate if it is possible to scale conceptual

clustering to large data sets of categorical data. We introduced CLIMIS, a scal-

able conceptual clustering algorithm for categorical data. CLIMIS makes use of

efficient data summarisations that allow the algorithm to scale conceptual clus-

tering to large data sets. CLIMIS was evaluated against Cobweb and was found

to have the same quality as Cobweb. Unlike Cobweb, however, CLIMIS can scale

to large data sets. CLIMIS was also evaluated using comparable clustering al-

gorithms developed for large data sets, LIMBO and ROCK, and was proven to

have the same quality as both algorithms but better performance. In addition,

compared to LIMBO and ROCK, CLIMIS is simpler to use.

Another aim of this thesis was to investigate if it is possible to have a

scalable clustering algorithm with properties that suit data stored in a DBMS.

CLIMIS is a scalable algorithm with properties that suit characteristics of data

stored in a DBMS (data stored in a DBMS may be frequently updated, be of

mixed data types and structured). CLIMIS is an algorithm that has been based

on Cobweb and has maintained Cobweb’s properties. Like Cobweb, CLIMIS is

incremental and, therefore, applicable to frequently updated data. CLIMIS, also,
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9.1 Contributions

is extensible to mixed data and applicable to structured data as Cobweb has

already been extended to mixed data and used for clustering structured data

(Ketterlin et al., 1995).

Another aim of this thesis was to investigate if it is possible to make con-

ceptual clustering main memory independent. CLIMIS was extended and a cache

was used to integrate the algorithm with a DBMS and gain main memory inde-

pendence. The cache was evaluated using hit rate analysis and was found having

good hit rate even when the cache’s size is small.

9.1 Contributions

This thesis contributes to the area of data mining and knowledge discovery in the

DBMS in the following ways:-

• Proposes CLIMIS, a scalable conceptual clustering algorithm for categorical

data (see section 3).

• Shows how conceptual clustering for categorical data can be scaled to large

data sets by using data summarisations appropriate for categorical data

(see section 3.2).

• Shows how conceptual clustering for categorical data can be scaled to large

data sets without incurring any loss in the quality of the clustering results

(see section 3.2 and 4.3).

• Shows how to achieve main memory independence by using a cache to

interact with a relational DBMS (see section 7.2).

162



9.2 Limitations

• Uses an approach to clustering that supports clustering of dynamic data

(see section 2.7.2 and 7.2.7).

• Uses an approach to clustering that supports clustering of structured data

(see section 2.7.2).

• Uses an approach to clustering that can be extended to mixed data and has

immediate database applications (see section 2.7.2).

9.2 Limitations

A limitation of the CLIMIS algorithm is the cost of the merge operator when

the algorithm uses the DBMS. To compute the cluster summarisation for the

merge cluster, CLIMIS has to compute every attribute value probability for the

merge cluster, which involves many calls to the cache. This makes the merge

operator the most expensive operator of CLIMIS (see section 7.2.5). A possible

way of solving the problem is avoiding the merge operator by replacing it with

the Not-Yet strategy, which is an alternative to the merge operator for improving

the quality of the conceptual clustering tree (Talavera & Roure, 1998).

9.3 Future Work

CLIMIS can be used to cluster large categorical data sets, it can work with lim-

ited resources and it can be applied to static or dynamic data that exists in a

DBMS. Our main contribution to the community is scaling conceptual cluster-

ing of categorical data. We intend to build on our current research and extend

CLIMIS to scale other existing algorithms.
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9.3 Future Work

9.3.1 Using CLIMIS to Scale ITERATE

The data structure used in CLIMIS can be used by algorithms such as ITERATE

(Biswas et al., 1998), which are hierarchical and probability based. We intend to

implement ITERATE using the CLIMIS data structures and show that ITERATE

can scale to large data sets.

9.3.2 Extending CLIMIS to Relational Data Mining

There is an increasing interest in the area of relational data mining and evi-

dence that interesting information can be learned from the relationships between

database relations. Cobweb has already been extended to learn from structured

data (Ketterlin et al., 1995; Lebowitz, 1987). Of particular interest is the work of

Ketterlin et al. (1995), which used the entity relationship model in the clustering

process. One of the limitations discussed in their paper is applying their cluster-

ing system to large data sets. We intend to use CLIMIS to scale the clustering

system of Ketterlin et al. (1995).

9.3.3 Extending CLIMIS to Numeric and Mixed Data

CLIMIS is based on Cobweb, which already has been extended to numeric data

(Gennari, 1991) and mixed data (McKusick & Thompson, 1990). Numeric data

algorithms are easier to scale and, therefore, we believe that the implementation

of CLIMIS as a numeric data algorithm will be more scalable than the categorical

data version of CLIMIS.

The mixed data conceptual clustering algorithm by McKusick & Thompson

(1990) computes category utility for numeric data, category utility for categori-
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9.3 Future Work

cal data and then adds the two numbers to obtain mixed data category utility:

CUmixed = CUcategorical + CUnumeric. For its categorical data aspect, the algo-

rithm uses the same cluster representation as Cobweb and, therefore, suffers the

same complexity as Cobweb. We believe that using our cluster summarisation

can scale the algorithm proposed by McKusick & Thompson (1990) substantially.

We intend to extend CLIMIS to numeric and mixed data.
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Appendix A

Experiments with ROCK and the

Congressional Votes Data Set

The following table shows clustering results on the congressional votes data set

with different values of θ 1.

1See chapter 2, section 2.6.2.
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Table A.1: θ variation, 2 Clusters
θ = 0.0

Cluster No. No. of Democrats No. of Republicans
1 140 71
2 127 97

θ = 0.1
Cluster No. No. of Democrats No. of Republicans

1 4 0
2 263 168

θ = 0.2
Cluster No. No. of Democrats No. of Republicans

1 0 2
2 267 166

θ = 0.3
Cluster No. No. of Democrats No. of Republicans

1 224 9
2 43 159

θ = 0.4
Cluster No. No. of Democrats No. of Republicans

1 0 1
2 267 167

θ = 0.5
Cluster No. No. of Democrats No. of Republicans

1 1 0
2 266 168

θ = 0.6
Cluster No. No. of Democrats No. of Republicans

1 19 9
2 248 159

θ = 0.7
Cluster No. No. of Democrats No. of Republicans

1 255 36
2 12 132

θ = 0.8
Cluster No. No. of Democrats No. of Republicans

1 267 158
2 0 10

θ = 0.9
Cluster No. No. of Democrats No. of Republicans

1 267 158
2 0 10

θ = 1.0
Cluster No. No. of Democrats No. of Republicans

1 267 158
2 0 10
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Appendix B

Experiments with ROCK and the

Mushroom Data Set

The following table shows clustering results on the mushroom data set with dif-

ferent values of θ 1.

1See chapter 2, section 2.6.2.
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Table B.1: θ variation, 3 Clusters
θ = 0.5

Cluster No. Edible Poisonous
1 41 152
2 13 23
3 4154 3741

θ = 0.6
Cluster No. Edible Poisonous

1 3743 2529
2 13 23
3 452 1364

θ = 0.7
Cluster No. No. of Edible Poisonous

1 3765 2595
2 13 23
3 430 1298

θ = 0.8
Cluster No. No. of Edible No. of Poisonous

1 3765 2595
2 13 23
3 430 1298

θ = 0.9
Cluster No. No. of Edible No. of Poisonous

1 4208 2152
2 0 36
3 0 1728
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Appendix C

Experiments with LIMBO and

Different φ Values

The following table shows results after running LIMBO with different values of

φ 1.

1See chapter 2, section 2.6.3.
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Table C.1: φ variation - 100K tuples - Requested Clusters = 10
φ No. of Nodes Phase1 Produced Returned requested clusters?

0.0 core dumped No
0.1 core dumped No
0.2 core dumped No
0.3 core dumped No
0.4 core dumped No
0.5 core dumped No
0.6 1 No
0.7 81 Yes
0.8 1 No
0.9 1 No
1.0 1 No
1.1 1 No
1.2 1 No
1.3 1 No
1.4 1 No
1.5 1 No
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Appendix D

Data Set Example Produced with

the Datgen Data Generator

The following table shows a simple data set with 20 tuples, 5 attributes and 2

clusters produced with the datgen data generator.
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A B C D E Class
a d c c b c2
c a b d a c1
c a b d a c1
c a b d a c1
c a b d a c1
c a b d a c1
c a b d a c1
c a b d a c1
a d c c b c2
c a b d a c1
c a b d a c1
c a b d a c1
a d c c b c2
a d c c b c2
a d c c b c2
c a b d a c1
a d c c b c2
a d c c b c2
c a b d a c1
a d c c b c2

Table D.1: Simple Synthetic Data Set Example
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