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1 Introduction 2 Background

Radial basis functions (RBFs) are a popular variationa'¢ reader is probably2 fa;niliag Wizth the well known
neral elliptical formxs/as+y“/b® = 1. This 2D

representation of volumes and surfaces in compuﬂﬁ

graphics. In general, an RBF is a real-valued fun@_rmulation assumes the ellipse is centered at the ori-

tion whose value depends only on the distance from {g¥: @ and b are the lengths of the major and mi-

center. A special class of these functions hesmpact nor axes which are aligned wit_h the Cartesian axes.

support— in this case the function decays smoothly § 9eneral we use the quadratic form for an ellipse

zero as the radius approaches 1. In this way, only a r@f‘z+ By* JF_CX+ Dy+Exy+F =1. This can be rewrit-

atively small number of RBF's influence any particuldf" in matrix form

point in space, which in turn greatly improves compu- T

tational efficiency. f(x) = (x—a) Qix—g) =1 @)
However, certain features are not best representediéyellipse center] and shape matriQ. Note that for

radial basis functions, such as in Figure Consider real roots,Q must be positive semi—definite, i.eQ &

two parallel lines — if they are close enough togethen™ and(x,Qx) > 0 for all x € R"). Q can be factorized

you will need many RBF’s in order to ensure that thigto Q = MT M.

two features are separated. In comparisorgléptical ~ An alternative, more compact formulation is to use

shape can better represent this structure. homogeneous coordinatés= [x,1]" and combineq
andQ into a single matrix with a translational compo-
nent:
B B T { Q0 0 ]
i A=
e e e -9 1
(a) (b) so that Equatiorl becomes
A AT A
Figure 1: On certain features (a), basic radial basis f(%) =% Ax=1 (2)

functions are inefficient at capturing the surface prog—

; ; e . In general we refer to the ellipse by the p&; Q].
erties. In comparison (b), very few elliptical function hg expression in Equatioh coFr)nputgs the peéltllir;)%]cal
would be needed to represent this feature.

P radius. Note that the volume of an ellipse is given by
o _ ) _ _ - v=,/detQ).

Elliptical (also anisotropic radial) basis functions
have already been used to reconstruct surfaces andjn- . . .
terpolate volumes], 10, 5] 21 Radial Basis Functions

In this technical report | present a method to recoRadial Basis Functions (RBF) provide a simple method
struct a surface representation from a a set of EBHs, construct smooth implicit surfaces from data of ar-
and in addition present an efficient top—down methodbdtrary dimension. Given a matrix of sample points
build an EBF representation from a point cloud repr&= [xy, ..., Xn] which we assume are generated by sam-
sentation of a surface. | also discuss the advantages piialy on the smooth implicit surfacé(x) =0, we esti-
disadvantages of this approach. mate this function using the a standard RBF formulation



gression. The problem can be stated in matrix form
f) =Y aigg (Ix—al)+bTp(x), (3

4w /S Prm p(a1)][ o1 f(01)
whereo is the local basis function radius for compactly ; : : N
supported RBF'sp;(r) = ¢(r/o), ¢(r) is a radial ba- 1 o Bam P(Am) | | Gki| | f(dic)
sis function,b = [By,...,Bpx ", ai and B; are un- p(az)’ -+~ Pp(dm) 0 JLb 0

(4)
whereq j = @ (||gi — q;]|). Using Equationt we can
Ive for the coefficients; andb, and using these the

known coefficients angh(x) is some polynomial irx
with |p(x)| terms". The seté = {q,...,qm} contains

the chosen RBF centers, and for a compact approxi licit surf b luated at it usi
tion we assumen < n. implicit surface can be evaluated at any point using
Equation3.

The choice of the basis functiap(r) depends on the
I 's functiap(r) dep Defining the locations of external centetg re-

application — we have used globally supported spline : . .
PP 9 Y SUPP P guires some concept of the orientation of the surface.

r) = r?log(r), near compactly supported Gaus ) o
(p.( ) B gErg d ptl y ptp d Wend| ften[14, 15, 17] an associated normal field is assumed.
?|ant§p(r) — € and compactly supporte endianth these cases, an external cerntgis simply defined in
unctions[Lg] terms of the center on the surfagg ge = gs+ Yns, for

@(r)=(1—r)(4r+1).2 somey > 0.

Dinh and Turk [f] propose the use of the spline formus .. . .

lation of Chen and Sutef] due to the ability to locally 3 Elli ptlcal basis functions

control the smoothness of the resulting surface. This

formulation requires two additional smoothness pararhbe isotropic behavior of RBF interpolation and result-

eters which must currently be chosen in an ad—hoc faghg smoothness is often not a desirable property. Con-

ion. As we will define locally anisotropic basis funcsider the bunny’s ear in Figud(a). Because a single

tions, the derivation of locally adaptive variants @f RBF center with a large; is used to represent the flat

adds an unnecessary layer of complexity that is b&&rt of the ear, the reconstruction does not reproduce

avoided. this flat region. This problem could be solved by using
many smaller centers to encode the flat region, but this
can dramatically increase the size of the left matrix in

2.2 Variational Implicit Surface Approxi- Equationd, making the problem expensive to solve.
mation
M

RBF’s have been used extensively for the interpolation 7~
of volumetric data, neural networks and smooth surface
approximations[7, 3]. For surface approximation, a
subset ok input points are chosen as RBF centers ar
chosen from the input daté, andl additional centers
are added which are known to be on the exterior of the
object%e, € = 65U Ge.
We use the fact that

f(q) = { _2’ 32? Figure 2: Anisotropic radial basis functions compute
’ € distances in the warped space, computed by applying

in order to evaluate the coefficiends using linear re- the transformation matrikl.

ia ; U For flat oriented regions aallipse better approxi-

good choice fop(x) is typically x + 1. . .
2The f(r), operator ensures positivity, i.e. #i(r) <0 then Mates shape. Rec?—” that the §hape mz{pmke.scrlbes

f(r), =0, elsef(r), = f(r). the shape of the ellipse. In particular, becaQss pos-



itive semi-definite and symmetric, we can factofiiie that o here is used to both scale the radius in Equa-
Q= MTM. In Figure2 we warp the input space by tion 5 and to determine the weights in Equatigrand
transforming the input points using the ellipse shajea measurement of tliegion of influencef a compact
matrix, i.e.X’ = M(x—q) +q. This space warping pro-elliptical basis function.
cedure is a method for local anisotropic interpolation. So in summary, given a set of elliptical centéfs
consisting of the position, shape matriXQ and radius
3.1 Formulation of influenceo of each center, we construct a variational
implicit surface using elliptical basis functions as fol-
For an elliptical basis function formulation we defingows:
our set of centers as
e Foreach center [qx, Qk, 0k] € ¢, compute the co-
¢ ={[91,Q1,01], .-, [qm, Qm, Om| } efficientsa x, by using Equatiord as a preprocess.

, consisting of tuples containing the elliptical informa- o For an input poink, compute each of the weights
tion. We can incorporate this local space warping ma- , using Equatiory.

trix M in the RBF definition of EquatioB:
e Computeg(x) using these weights in Equatiobs

fi(x) =3 dikd (IMk(x—a)l)) +bgp(x).  (5) and6.
qe?

Note that we use a subscriptto denote which trans- -
formation function is used. The coefficients must no@' BUI|dII’]g an EBF surface from
be computed for each EBF center (and hence &é4gh poi nt data
using Equatiort.

The problem of locally anisotropic RBF’s is resolveh this section we focus on the construction of EBF sur-
using apartition of unityapproach. Loosely speakingfaces from point cloud data in any dimension without
the coefficientsoi and Bj are deduced for each of theany shape information, such as surface normals. In or-

elliptical centergq,Q, 0] € €. In order to evaluate ander to construct an EBF surface we need a number of
isovalue at some, we compute a weight based on thgomponents:

proximity of x from each center in the locally warped
space. Then, the final isovalue is computed by comput-e The elliptical shape properties of each cerjgr
ing the sum of these locally computed weighted func- andQ,
tions.
More formally, we compute the isovalue by defining ® The radius of influence of each centsy;

a new isosurface function ) L
e A normal field for the determination of external

_ ke W) fi(x) 6 centersé,, and
9) i1 Wk(X) ©)

with the isosurface aj(x) = 0. By choosing a smooth o _ _
weight functionwi (x) we ensure that the reconstructiofror our application, we choose the radius of influence
results are of Equatio6 is also smooth. Casciola et alarbitrarily as the minimum radius needed to enclose

e Some radial basis functiop(r).

[4] use the local weight function a user specified number of neighboring centers in the
warped elliptical space. For the radial basis function
Wi(X) = <(0k —[[Mk(X = aw)l]) ) * 7) ¢(r) we make use of one of the standard RBF functions

Ok |[Mk (X — aw) || ’ from Section3.1, depending on the application. In the

following sections we will present a method for geo-

where o is, the region of influence of each locaj,eically identifying the EBF centers and the the local
anisotropic center angk is a local regularization ex- region of influence for each center.

ponent. We have usegl = 1 for all our results. Note In the following section we will discuss our method

3Factorization is through singular value decompositipnA] = 10 deduce the location and orientation of the elliptical
eig(Q), M = Vdiag(vVA)VT. centers.




4.1 Flatnessclustering

Other authors have made use of either randomiZexi|
bottom—upfl] approaches to selecting surface centers.
Unfortunately these either yield unpredictable results,
or are expensive because of the need to compute local
curvature information at every input point.

Algorithm 1 ¢ = flatClust(P,i, &,n): Clusters the in-
put point cloud into flat ellipsesP is the list of points,
i is a subset of the points to cluster (required for recur-
sion) andn defines the number of clusters to diviBe Figure 3: Constructing EBF’s over a 3D point cloud.
into at each step.
2 <={}
% Compute the minimum volume bounding ellipse
[g, Q] <= Khachiyan(R, €)
V.A] < eig(Q)
% Compute the flatness of our local ellipse
A <= sort(A,'descending
£« )\d/z(jjzl)\j
if € > € then
% Our ellipse is not flat enough, so we clusterthg 2 Consistent orientation
data and recurse

returns the se¥” = {i1,...,in} with eachij containing

the indices oP belonging to each of the clusters. We
have usedh = 2 for best results, although convergence
is often faster when using a larger number of clusters.
This approach can easily be applied to 3D data, as in
Figure3.

. < kmeans(P,i) In order to determine the external elliptical cent&ts
for all i € .# do we require a local surface normal. We can easily
& « £ UflatClust(P)i) deduce amnorientednormal from the eigenvector 6J

end for associated with it's smallest eigenvalue.
else A popular method for orienting these normals is by

% Our ellipse is flat enough, so we return it using the propagation method of Hoppe et ]. [In

Z <{[q,Q]} brief, this method constructs a Riemannian graph by
end if defining each normal (tangent plane) as the nodes and
return % edges connecting them are deduced using some prox-

imity metric (in [9] this is the distance between the cen-

We define a recursive top—down algorithm for partfers). A cost associated with an edge connecting node
tioning an input set of point@into flat regions. Loosely Ni to Nj is defined as Z-|n; - nj|. The tree is traversed
speaking, we compute a minimum volume ellipse froffiith @ minimal spanning tre&p|]. Whenever an edge
the current list of points and measure the flatness. \Wej) is traversed, the orientation of is corrected if
measure the “flatness” by using the ratio of the mini - N1j < 0, wheref has already been corrected.
mum ellipse axis length over the sum of all elliptical In order to approximate the Riemannian graph, and
axis lengths, similar to the the method of Luiz et athereby reduce the computation time and errors arising
[13). If the surface is not sufficiently flat we subdividgrom using a minimal spanning tree, we instead deter-
the list of points by using a standard clustering algoaine neighboring centers by using ellipse intersection.
rithm, and append the results of recursive calls to thgaditional ellipse intersection techniques require com-

same function on each cluster. puting the roots of a quadratic polynomial, which can
Algorithm 1 makes use of the Khachiyan method fdpe time—consuming to compute numerically.
finding the minimum volume ellips&hachiyan(P, €), Alfano and Greer]] present a method to test for the

further discussed in Appendi&. The eigenanalysisintersection of two ellipse# and B (in the homoge-
functioneig returns both the eigenvectdvsand eigen- neous form of Equatio®). The roots of the intersec-
valuesA. kmeans(P,i) uses the method of LloydlP] tion can be found by determiningy,A] = eig(A~1B)

to cluster only the points i with the indicesi, and and testing eigenvectors associated with non—real or re-



peated eigenvalues. This approach is easy to implement Wavelet filter bank has a limited number of filter

and very efficient a®\~! can be precomputed for all orientations. In fact, an interesting idea for future
ellipses. work is to deduce an algorithm that adaptively de-

termines the best orientations of a limited number
4.3 Consolidation of EBF’s in order to represent the shape.

Becausekmeans clustering is not flatness sensitive, ® Accuracy: While some of the shapes in the re-
flat regions may become fragmented due to this pro- Sults of Figure4 are promising, | am very con-
cedure. An additional consolidation step is required ~cerned about the bottom row — as the EBF thins,
to merge neighboring elliptical centers which exhibit ~ the shape of the contour deteriorates significantly,
the same flatness. We deduce the neighborhood of which may cause numerical instabilities when the
each ellipse by using the same intersection method de- EBF’s are not chosen correctly. How to fit EBF's
scribed in Sectiorb.2, and use a simple bottom-up 1O a surface without excessive thinning is a difficult
method to combine elliptical centers the elliptical error ~ Problem, and certainly not addressed here.

= /\d/zjd:l)\j is less than some user specified toler-

ances. .. .
A Minimum Volume Enclosing El-
5 Results lipse
Givenn pointsx;, i = 1,...,n, find the minimum vol-

| have applied this method reconstruct the curve silhou- . . I ; .
R ume enclosing ellipsoid. This is effectively the opti-

ette of the bunny model from sample points in 2D _thne1ization roblem

results are given in Figuré As the compact RBF rep- P

resentation gradually transforms into an EBF represen- min[log (de(Q))] st. (x _q)TQ(X, —g)<1

tation, the contours sharpens — the best result probably o ' -

is given in (c). However, note that as the ellipse thins,

the i_nternal and external contours deteriate, potentia}'i)(gorithm 2[9,Q] = Khachiyan(P,€): The Khachiyan

leading to unpleasant numerical artefacts. method for finding a minimum volume ellipse. Given a
d x mmatrix of pointsP and an target errag, compute

6 Conclusion the minimum volume bounding ellipse, Q].

A=[PqT

In this technical report | have demonstrated a methodu < (1/m)e

to build and represent point set surfaces using a scaty < Yo

tered data interpolation technique based on compactlywhile y < € do

supported elliptical basis functions (EBF’s). While the % Find the index of the farthest point

technique has been successfully employed elsewhere in X < Adiag(u) AT

representing volume (and image) data, it's application M <« diag(ATX~1A)

to surfaces is largely unexplored. j <= max M;

While this initial finding does show promise, my sus- % Updating the barycentric coordinates u
picion is that this approach has a number of consider- 6 < (Mj—d—1)/((d+1)(M;—1))

able failings: U< (1-0)u+ Oe;
. : : y<=|la-ull2
e Computation: It is computationally very expen- U<

sive to solve the variational system in Equatn  onq while

for every elliptical basis function — which is the ¢ Computing the ellipsfg, Q|
reason for no 3D results being included in this re- j diag(u) '
port. | believe that one possible option is to signif- q < Pu

icantly improve the performance of the interpola- T -1
tion if only a limited subset of EBF’s are used to ?etiri/c[jq(%fp a9 )
represent a shape, in the same way that a Gabhar ’




Figure 4: Gradually transforming the compact EBF shape iogstrfrom radial (RBF) to elliptical. From (a)
to (c), the sharpening of the resulting contour is clearkible at the bunny foot. The shape contour begins to

deteriorate in (d) to (e), as ellipses that are orthogontilésurface begin influencing the interior of the shape. In
this examplegy is chosen to include the 10 nearest centers.



This problem

is solved using the Khachiyan

method[L1], also known asarycentric coordinate as-
cent This approach finds the barycentric coordinates

of a center of the ellipse in terms of the input poiRts

by an iterative algorithm which shifts closer to the
farthest point from the centeq = Pu. The optimal
step—sized is deduced using the method presented by
Khachiyan [L1]. This approach is presented in Algo- 8]
rithm 2, wheree is anm-length vector of ones arg

is the ji, basis vector. This method is typically greatly
accelerated by using only the points on the convex hull
of P. For this we use th@Hull methodp].
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