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Abstract: Artificial neural networks have been universally acknowledged for their ability on constructing forecasting 
and classifying systems. Among their desirable features, it has always been the interpretation of their 
structure, aiming to provide further knowledge for the domain experts. A number of methodologies have 
been developed for this reason. One such paradigm is the neural logic networks concept. Neural logic 
networks have been especially designed in order to enable the interpretation of their structure into a number 
of simple logical rules and they can be seen as a network representation of a logical rule base. Although 
powerful by their definition in this context, neural logic networks have performed poorly when used in 
approaches that required training from data. Standard training methods, such as the back-propagation, 
require the network’s synapse weight altering, which destroys the network’s interpretability. The 
methodology in this paper overcomes these problems and proposes an architecture-altering technique, which 
enables the production of highly antagonistic solutions while preserving any weight-related information. 
The implementation involves genetic programming using a grammar-guided training approach, in order to 
provide arbitrarily large and connected neural logic networks. The methodology is tested in a problem from 
the banking sector with encouraging results. 

1 INTRODUCTION 

Being a methodology that aims to the integration 
between artificial neural networks and AI’s rule-
based systems (Quah et al. 1996), the neural logic 
networks paradigm (Teh 1995) has been developed 
and applied nowadays, in a number of domains 
(Quah et al.1995). Neural logic networks have been 
proved successful when used in the AI framework, 
by providing network representations for nearly 
every logical rule base. The potential of using neural 
logic networks within the computational intelligence 
framework has been proposed since their first 
presentation (Teh 1995).  Various training methods 
have been developed since then. In (Teh 1995), a 
training methodology related to back-propagation 
was proposed. Later, the Supervised Clustering and 
Matching (SCM) algorithm (Tan and Teow 1997) 
was introduced. However, when used within the CI 

framework, the extracted networks almost always 
resulted into non-interpretable forms, eliminating 
this way their potential advantage over common 
neural network models. These early training 
methodologies used refinements of the edge weights, 
which resulted in non-interpretable solutions. This 
drawback led the research to alternative solving 
methodologies such as the genetic programming 
(Chia and Tan 2001). However, their system 
provided a model that was capable of producing 
only a limited set of neural logic network 
representations (Chia and Tan 2001), which were 
actually neural logic binary trees. The latter problem 
is solved in the methodology of this paper, by 
providing indirect representation of neural logic 
network architectures within the genetic 
programming framework. The indirect 
representation is based on the cellular encoding 
(Gruau 1994), and is applied into the genetic 
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programming (Koza 1992) using a context-free 
grammar system. The problem where the system is 
applied comes from the banking sector and involves 
the loan management for enterprises.  
The paper is organized as follows. In section 2 we 
introduce the theoretical background of the neural 
logic networks and the genetic programming 
framework. The paragraph covers also a review in 
grammar-guided methodologies for genetic 
programming and the cellular encoding advances for 
connectionist systems representation within genetic 
programming individuals. Section 3 contains the 
design and the implementation description of the 
proposed system. In section 4 we include the 
description of the problem domain, our system 
configuration and the obtained results together with 
a discussion. Finally, section 5 contains our 
conclusion regarding this work and proposes future 
directions for this domain.  

2 BACKGROUND 

2.1 Neural Logic Networks  

 
A neural logic network is defined as a finite directed 
graph. It consists of a set of input nodes and an 
output node. In its 3-valued form, the possible value 
for a node can be one of three ordered pair activation 
values (1,0) for true, (0,1) for false and (0,0) for 
don't know. Every synapse (edge) is also assigned a 
an ordered pair weight (x,y) where x and y are real 
numbers. An neural logic network and its output 
value (a,b) of node P is shown in Figure 1. It is 
possible to map any rule of conventional knowledge 
into a neural logic network by using different sets of 
weights, which enable the representation of different 
logical operations. In Figure 2, some examples of 
these logical operators and their implementation into 
neural logic networks are presented. The neural 
logic networks have not applied in many domains 

within the CI framework, although they are powerful 
by their definition. The main reason can be located 
in the fact that for the known training methodologies 
(Teh 1995), (Tan and Teow 1997), the adjustment of 
the synapse weights eliminates the ability to 
interpret the extracted solution into a number of 
logical rules, thus depriving these networks from 
their valuable feature. In Figure 3(a) it is shown an 
easily interpretable neural logic network, while in 
Figure 3(b), a network with adjusted synapse 
weights fails to be interpreted. Some steps for the 
preservation of the interpretability have been 
performed by (Chia and Tan 2001), which however 
proposed a system that lacks the ability to express 
arbitrarily large and connected neural logic 
networks. In Figure 4(a), a network that is produced 
by the methodology of by (Chia and Tan 2001) is 
shown. In Figure 4(b), it is shown a neural logic 
network, which performs the fundamental logical 
operation of XOR, and it cannot be represented 
using the direct encoding of (Chia and Tan 2001).  
In order to make the networks able to handle any 
real value (i.e. not only 3-valued pairs), the fuzzy 
extension for neural logic networks has been 
proposed (Teh 1995), a design that is also adapted 
here for the needs of the problem examined in this 
paper. 

Figure 1: Neural logic network and its output.

 
 
 
2.2 Genetic Programming 
 
 
Genetic programming (Koza 1992) is an 
evolutionary computation approach, which in its 
canonical form enables the automatic generation of 
mathematical expressions or programs. Genetic 
programming retains a significant position among 
successful evolutionary computation approaches due 
to its valuable characteristics, such as the flexible 
variable-length solution representation and the 
absence of population convergence tendency. In 
most implementations, a population of candidate 
solutions is maintained, and after a generation is 
accomplished, the population increases its fitness for 
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Figure 2: Example logical operations in neural logic networks

a given problem. The genetic operators that are 
mostly used in these algorithms are reproduction, 
recombination (crossover) and mutation. The first 
operation copies an individual without affecting it, 
the recombination exchanges genetic material 
between two individuals and mutation alters a part 
of a randomly selected genetic material. A genetic 
programming training cycle usually includes the 
following steps: 

1. Initialise a population of individuals at random. 
2. Evaluate randomly an individual and compare its 
fitness to other (this fitness determines how closely 
is an individual to the desired goal). 
3. Modify an individual with a relatively high fitness 
using a genetic operator. 
4. Repeat steps 2-3 until a termination criterion is 
met. 
Common termination criterions are the 
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                                     (a)                                                                                                  (b) 
Figure 3: (a) Interpretation of a neural logic network into logical rules. (b) a network with refined edge weights that 

cannot be interpreted. 
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accomplishment of a number of generations, the 
achievement of a desired classification error, etc.   
As previously stated, the genetic programming has 
been proved an advance over traditional genetic 
algorithms due to its ability to construct functional 
trees of variable length. This property enables the 
search for very complex solutions that are usually in 
the form of a mathematical formula - an approach 
that is commonly known as symbolic regression. 
Although later paradigms extended this concept to 
calculate any boolean or programming expression, 
the task of implementing complex intelligent 
structures into genetic programming functional sets 
in not rather straightforward. The function set that 
composes an intelligent system retains a specific 
hierarchy that must be traced in the genetic 
programming tree permissible structures. This 
writing offers two advantages. First, the search 
process avoids candidate solutions that are 
meaningless or, at least, obscure. Second, the search 
space is reduced significantly among only valid 
solutions.  Therefore, when the syntax form of the 
desired solution is well defined, it is useful to 
restrain the genetic programming from searching 
solutions with different syntax forms (Gruau et al. 
1996), (Montana 1995). One of the advantageous 
methods to implement such restrictions is to apply 
syntax constraints to genetic programming trees, 
usually with the help of a context-free grammar 
(Gruau 1994), (Janikow 1996), (Ryan et al. 1998). 
The execution of massively parallel processing 
intelligent systems such as the neural logic networks 
within the genetic programming framework is not 
considered a straightforward task. In order to 
explore variable sized solutions, it is required the 
application of an indirect encoding system. The most 
common one is the cellular encoding (Gruau 1994), 
in which a genotype - a point in the search space- 
can be realised as a descriptive phenotype  - a point 

in the solution space. More specifically, within such 
a function set, there are elementary functions that 
modify the system architecture together with 
functions that calculate tuning variables. Related 
implementations include encoding for feedforward 
and Kohonen neural networks (Gruau 1994), 
(Hussain and Browse 1998), (Tsakonas and Dounias 
2002) and fuzzy Petri-nets (Wong 2001). A similar 
technology, called edge encoding, developed by 
(Koza et al. 2003) is also today used with human 
competitive results in a wide area of applications. 

                            (a)                                                                                         (b) 
Figure 4: (a) Tree-like neural logic networks as generated in (Chia and Tan 2001). (b) a neural logic network that 
performs the XOR operation needs the general structure of a finite graph and cannot be described directly by the 

approach of (Chia and Tan 2001). 

 
 
3 DESIGN AND IMPLEMENTATION 
 
 
As mentioned in the previous paragraph, the 
characteristic feature of neural logic networks 
should be the ability to interpret any network 
architecture into a set of logical rules. For this 
reason, the cellular encoding is used in our model to 
represent the candidate solutions into genetic 
programming trees. One cellular encoding scheme 
includes (I) functions for architecture altering and 
(II) functions for parameter tuning. The functions for 
parameter tuning have common properties with the 
usual genetic programming functions, which operate 
as procedures or program elements. The functions 
that are used for architecture altering however are 
not used in standard genetic programming systems. 
They comprise a function set that alters an 
embryonic neural logic network, by entering nodes 
sequentially or in parallel onto an initial 
(elementary) neural logic network, in order to form 
the final / desirable architecture. Hence, among the 
architecture altering functions we may discriminate 
between (I-a) functions that enter a node serially, 
and (I-b) functions that enter a node in parallel. The 
problem that has arisen during the prime 



 

implementations of cellular encoding concerns the 
grammar description, which enabled the existence of 
networks without inputs (Gruau 1994), a situation 
that can easily lead into premature population 
convergence.   
Thus, in order to be able for a system to include at 
least one input, we incorporated different functions 
for the architecture altering on the system inputs, 
than those used for the architecture altering on 
internal nodes. Hence, we may further divide the 
architecture altering functions into two additional 
sub-classes, (I-1) functions that are applied on the 
system inputs and (I-2) functions that are applied on 
internal nodes. To conclude with, we use a function 
that enters a node in serial to an input node (S1), a 
function that enters a node in parallel to an input 
node (P1), a function that enters a node in serial to 
an internal node (S2) and, finally, a function that 
enters a node in parallel to an internal node (P2). In 
Figure 5, we demonstrate the operation regarding 
function S1. The application of this function on the 
B node in Figure 5(a), results in the construction of 
the network shown in Figure 5(b). The grey-
coloured arrow shows the running cursor, which 
marks the point from which any further network 
expansion will occur. Figure 6 illustrates the 
operation of P1 function. Application of this 
function on the B node in Figure 6(a), results 
to the network shown in Figure 6(b). Table 1 
depicts in short the functions that we used in 
order to describe the evolutionary neural 
logic networks. The system grammar is 
presented in Table 2. Initial symbol (root) of a 
tree can be a node of a type  <PROG>. The 
logical functions that construct in this work 

the operator set for the neural logic networks 
expressed in our system are shown in Table 
3. 
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(a)                (b) 
Figure 5: Application of the function S1 on the Β node. 

(a)                (b) 
Figure 6: Application of the function P1 on the Β node. 
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Table 1: GP- function set for neural logic networks
ss Function Operation 
P1 Enters a node in parallel to an 

input node 
S1 Enters a node in serial to an input 

node 
P2 Enters a node in parallel to an 

internal node 
S2 Enters a node in serial to an 

internal node 

hi-
ure 
ring 

PROG Initial function. Creates the 
embryonic network 

CNR Applies logical operator based on 
the  CNRSEL and Κ values 

LNK Cuts links based on the NUM and 
CUT values 

IN Enters an input parameter value 
into the network 

NUM Supplementary to the LNK 
function, selects the link to cut 

CUT Supplementary to the LNK 
function, determines whether the 
link will be cut or not 

a-
er 
ing 

CNRSEL Supplementary to the CNR 
function, its value determines the 
operator that will be applied to a 
node 



 

Κ Supplementary to the CNR, 
function, its value determines the 
logical operator’s parameter 
(determined by CNRSEL). 

 
 

which are encoded into independent binary 
features for further processing by our system. 
The percentage of cases for which the 
application was finally accepted, reaches 44.5 
% of the total (307 records). A total of 37 
records have one or more missing values (5% 
of total data).  After the training process was 
accomplished (200 genetic programming  
 
 Table 2: Context-free grammar for neural logic networks.
T

 
<PROG>  : = PROG <PLACE1><SYNAPSE> 
<PLACE1> : = S1 <PLACE1><SYNAPSE><PLACE2> 
      | P1 <PLACE1><PLACE1> 
      | IN 
IN    : = Data attribute (system input) 
<PLACE2> : = S2 <PLACE2><SYNAPSE><PLACE2> 
      |P2 <PLACE2><SYNAPSE><PLACE2> 
      | E 
E    : = ∅  
<SYNAPSE> : = LNK <NUM><CUT><SYNAPSE> 
      | CNR <CNRSEL><K> 
<NUM>  : =  NUM 
<CUT>  : = CUT 
<CNRSEL> : = CNRSEL 
<K>   : = K 
NUM   : = Integer in [1,256] 
CUT   : =  Integer in [0,1] 
CNRSEL  : = Integer in [0,10] 
K    : =  Integer in [0,9] 
 
 
3 RESULTS AND DISCUSSION 
 
The proposed system was applied in a 
banking sector aiming to both provide high 
classification rates and the ability to 
interpret the extracted solution. This data is 
acquired by an Australian bank (Quinlan, 
1992). The features in this data are given as 
simple elements and their interpretation is 
not known, since this data set has been 
considered as classified information. 
However, the application of our methodology 
to this problem may provide useful 
conclusions regarding the system’s 
effectiveness, since enough successful 
applications of other approaches exist 
(Quinlan, 1987), (Statlog, 2005), in related 
literature. The data is consisted of 688 
records from which 344 were randomly used 
as training set, 172 as validation set and 
another 172 as test set (unknown data). 
There are 67 missing values in total, which 
were substituted with zeroes. Table 4 
presents the related attributes and the 
encoding that was used. This data is 
primarily composed by discrete attributes, 

generations), our algorithm generated the 
neural logic network shown in Figure 7.  
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Table 3: Implemented logical functions.
able 4: Feature description for the Australian bank 
credit-scoring problem 

Conjunction (AND) 
Disjunction (OR) 
Priority 
At least k-true 
At least k-false 
Majority influence 
Majority influence of k 
2/3 majority 
Unanimity 
IF-Then (Kleene’ s model) 
(logical) Difference 
Exclusive OR (XOR) 
Negative exclusive OR (XΝOR), or equivalence (EQV) 
Negative conjunction (NAND) 
Negative disjunction (ΝOR) 
Exactly k-true 

iable Values  Encoded features 
Τ3 discrete (b, a, ?), 12 

missing values 
1 (discrete)    3  
binaries, 1 of 3  (b="1 0 
0", a="0 1 0", ?="0 0 1") 

Τ5 continuous 
(13.75...80.25) 

1 (continuous)    2 ( 1 
continuous 0..1, 1 
binary, 1: absent 0: 
non-absent) 

continuous (0...28) 1 (continuous)    0..1 
Τ11 discrete (u, y, l, t, 

?), 6 missing values 
1 (discrete)    5  
binaries, 1 of 5 

-Τ15 discrete (g, p, gg, ?), 
6 missing values     

1 (discrete)    4  
binaries, 1 of 4   

-Τ30 discrete (c, d, cc, i, j, 
k, m, r, q, w, x, e, 
aa, ff, ?), 9 missing 
values 

1 (discrete)    15  
binaries, 1 of 15   

-Τ40 discrete (v, h, bb, j, 
n, z, dd, ff, o, ? ), 9 
missing values 

1 (discrete)    10  
binaries, 1 of 10   



 

Τ41 continuous 
(0...28.5) 

1 (continuous)    0..1 

Τ42 binary 1 (binary)    0..1 
Τ43 binary 1 (binary)    0..1 
Τ44 continuous (0...67) 1 (continuous)    0..1 
Τ45 binary 1 (binary)    0..1 
Τ46-Τ48 discrete (g, p, s) 1 (discrete)    3  

binaries, 1 of 3   
Τ49-Τ50 continuous 

(0...2000),13 
missing  values 

1 (continuous)    2 ( 1 
continuous 0..1, 
1 binary, 1: absent 0: 
non-absent) 

Τ51 continuous 
(0...10000), 13 
missing values 

1 (continuous)    0..1 

The classification rate of this solution in the 
test set (unknown data) reaches 89.53% 
(154/172) which is higher than those reported 
in literature (Quinlan, 1992). The 
corresponding classification rates in the 
training and the validation set were 85.47% 
(294/344) and 87.21% (150/172) respectively. 
The generated neural logic network can be 
described by the following extremely simple 
decision rule: 
 
Q ← Conjunction (ΑΝD) (Τ12, Τ15, Τ15, Τ15, 
Τ15, Τ27, Τ42, Τ42, Τ42, Τ43, Τ44, Τ49, Τ49) 
 

The main conclusions regarding this 
extracted decision-rule follow: 
· Only one simple attribute conjunction 
(AND operation) is contained in the resulting 
network, a result showing that no complex 
rules should necessarily be expected for 
building up an effective decision – making 
strategy from the bank’s viewpoint, regarding 
credit applicants’ evaluation. 
· Getting into greater detail, attribute 
(feature) T15 seems to be of significant 
importance for the overall decision-making 
process. This feature is binary. The initial 
data feature from which T15 was derived, 
receives values from the set {g, p, gg, ?}, with 

T15 corresponding to the last value. 
· Feature T42 is also of significant 
importance for the decision-making process. 
 
 
 
 

Methodology Classification rate in unknown 
data  (%) 

Cal5 86.9 
Itrule 86.3 
LogDisc 85.9 
Discrim 85.9 

(CNLN (P1 (P1 (In T42) (P1 (In T15) (P1 (In T15) (P1 (P1 (In T42) (P1 (In T44) (P1 (P1 (P1 (In T42) (P1 (In T43) 
(P1 (In T15) (In T27)))) (In T15)) (In T12)))) (In T49))))) (In T49)) (Rule 0 0)))) 

 
Figure 7. Neural logic network (description and representation) generated for the Australian credit-scoring 

problem



 

Dipol92 85.9 
Radial 85.5 
Cart 85.5 
Castle 85.2 
Bayes 84.9 
IndCart 84.8 
BackProp 84.6 
C4.5 84.5 
Smart 84.2 
BayTree 82.9 
KNN 81.9 
Ac2 81.9 
NewId 81.9 
LVQ 80.3 
Alloc80 79.9 
Cn2 79.6 
QuaDisc 79.3 
Default 56.0 
This work (NLN) 89.5 

 
· Another significant feature is the T49, 
which in the initial data set receives values 
within the range [0,2000].  
The Australian bank data problem is 
particularly interesting, since it enables the 
comparison of our model with a number of 
competitive statistical and intelligent 
approaches. Table 5 presents our results as 
compared with 22 other competitive 
approaches presented in (Statlog, 2005). 
Among the provided methodologies of Table 
5, the proposed approach succeeded in 
obtaining the highest classification score 
using the specific neural logic network. 
 
 
 
4 CONCLUSIONS AND FURTHER 
RESEARCH 
 
 
Neural logic networks are a family of artificial 
neural networks designed with the aim to provide 
network interpretation into simple logical rules. 
Although successful in representing any set of 
logical rules into a network structure, the opposite 
has been proved unsuccessful. This result derived 
from the training procedures used so far which, 
based on edge tuning, destroyed the network’s 
interpretation. Aiming to successfully use the neural 
logic networks family in the CI framework, this 
paper presented an architecture-altering and training 
methodology. This methodology overcomes the 
problems encountered in previous approaches and 
succeeds in producing highly accurate and 
interpretable neural logic networks. The 

methodology is tested in a problem from the banking 
domain with very encouraging results. It is 
acknowledged that further experiments are needed in 
similar or different domains in order to obtain a 
wider valuation of the examined methodology.  
Further research includes the application of the 
system into more domains, especially from the 
financial sector where the neural networks have been 
proved an effective classifying and forecasting 
methodology and at the same time, the interpretation 
of a network has always been a desirable target. 
Moreover, the research will be driven to implement 
higher order recursive neural logic network, in an 
attempt to develop neural logic networks for 
financial problems dealing with time-series data.  
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