
AN ARCHITECTURE-ALTERING AND TRAINING
METHODOLOGY FOR NEURAL LOGIC NETWORKS

Application in the banking sector

Athanasios Tsakonas
Department of Production and Management Engineering, Demokritus University of Thrace,12 Vas.Sofias St.,Xanthi,Greece

Email: tsakonas@stt.aegean.gr

Georgios Dounias
Department of Financial and Management Engineering, University of the Aegean, 31 Fostini St., Chios, Greece

Email: g.dounias@aegean.gr

Keywords: Neural logic networks, Grammar-guided genetic programming, Credit scoring

Abstract: Artificial neural networks have been universally acknowledged for their ability on constructing forecasting
and classifying systems. Among their desirable features, it has always been the interpretation of their
structure, aiming to provide further knowledge for the domain experts. A number of methodologies have
been developed for this reason. One such paradigm is the neural logic networks concept. Neural logic
networks have been especially designed in order to enable the interpretation of their structure into a number
of simple logical rules and they can be seen as a network representation of a logical rule base. Although
powerful by their definition in this context, neural logic networks have performed poorly when used in
approaches that required training from data. Standard training methods, such as the back-propagation,
require the network’s synapse weight altering, which destroys the network’s interpretability. The
methodology in this paper overcomes these problems and proposes an architecture-altering technique, which
enables the production of highly antagonistic solutions while preserving any weight-related information.
The implementation involves genetic programming using a grammar-guided training approach, in order to
provide arbitrarily large and connected neural logic networks. The methodology is tested in a problem from
the banking sector with encouraging results.

1 INTRODUCTION

Being a methodology that aims to the integration
between artificial neural networks and AI’s rule-
based systems (Quah et al. 1996), the neural logic
networks paradigm (Teh 1995) has been developed
and applied nowadays, in a number of domains
(Quah et al.1995). Neural logic networks have been
proved successful when used in the AI framework,
by providing network representations for nearly
every logical rule base. The potential of using neural
logic networks within the computational intelligence
framework has been proposed since their first
presentation (Teh 1995). Various training methods
have been developed since then. In (Teh 1995), a
training methodology related to back-propagation
was proposed. Later, the Supervised Clustering and
Matching (SCM) algorithm (Tan and Teow 1997)
was introduced. However, when used within the CI

framework, the extracted networks almost always
resulted into non-interpretable forms, eliminating
this way their potential advantage over common
neural network models. These early training
methodologies used refinements of the edge weights,
which resulted in non-interpretable solutions. This
drawback led the research to alternative solving
methodologies such as the genetic programming
(Chia and Tan 2001). However, their system
provided a model that was capable of producing
only a limited set of neural logic network
representations (Chia and Tan 2001), which were
actually neural logic binary trees. The latter problem
is solved in the methodology of this paper, by
providing indirect representation of neural logic
network architectures within the genetic
programming framework. The indirect
representation is based on the cellular encoding
(Gruau 1994), and is applied into the genetic

mailto:tsakonas@stt.aegean.gr
mailto:g.dounias@aegean.gr

(α1,β1) Q1

(α2,β2) Q2

(αk,βk) Qk

(x1,y1)

(x2,y2)

(xk,yk)

P

1 1

1 1

(1,0) 1

(,) (0,1) 1

(0,0)

k k

j j j j
j j

k k

j j j j
j j

if a x b y

a b if a x b y

otherwise

= =

= =

⎧ − ≥⎪
⎪
⎪⎪= − ≤ −⎨
⎪
⎪
⎪
⎪⎩

∑ ∑

∑ ∑

programming (Koza 1992) using a context-free
grammar system. The problem where the system is
applied comes from the banking sector and involves
the loan management for enterprises.
The paper is organized as follows. In section 2 we
introduce the theoretical background of the neural
logic networks and the genetic programming
framework. The paragraph covers also a review in
grammar-guided methodologies for genetic
programming and the cellular encoding advances for
connectionist systems representation within genetic
programming individuals. Section 3 contains the
design and the implementation description of the
proposed system. In section 4 we include the
description of the problem domain, our system
configuration and the obtained results together with
a discussion. Finally, section 5 contains our
conclusion regarding this work and proposes future
directions for this domain.

2 BACKGROUND

2.1 Neural Logic Networks

A neural logic network is defined as a finite directed
graph. It consists of a set of input nodes and an
output node. In its 3-valued form, the possible value
for a node can be one of three ordered pair activation
values (1,0) for true, (0,1) for false and (0,0) for
don't know. Every synapse (edge) is also assigned a
an ordered pair weight (x,y) where x and y are real
numbers. An neural logic network and its output
value (a,b) of node P is shown in Figure 1. It is
possible to map any rule of conventional knowledge
into a neural logic network by using different sets of
weights, which enable the representation of different
logical operations. In Figure 2, some examples of
these logical operators and their implementation into
neural logic networks are presented. The neural
logic networks have not applied in many domains

within the CI framework, although they are powerful
by their definition. The main reason can be located
in the fact that for the known training methodologies
(Teh 1995), (Tan and Teow 1997), the adjustment of
the synapse weights eliminates the ability to
interpret the extracted solution into a number of
logical rules, thus depriving these networks from
their valuable feature. In Figure 3(a) it is shown an
easily interpretable neural logic network, while in
Figure 3(b), a network with adjusted synapse
weights fails to be interpreted. Some steps for the
preservation of the interpretability have been
performed by (Chia and Tan 2001), which however
proposed a system that lacks the ability to express
arbitrarily large and connected neural logic
networks. In Figure 4(a), a network that is produced
by the methodology of by (Chia and Tan 2001) is
shown. In Figure 4(b), it is shown a neural logic
network, which performs the fundamental logical
operation of XOR, and it cannot be represented
using the direct encoding of (Chia and Tan 2001).
In order to make the networks able to handle any
real value (i.e. not only 3-valued pairs), the fuzzy
extension for neural logic networks has been
proposed (Teh 1995), a design that is also adapted
here for the needs of the problem examined in this
paper.

Figure 1: Neural logic network and its output.

2.2 Genetic Programming

Genetic programming (Koza 1992) is an
evolutionary computation approach, which in its
canonical form enables the automatic generation of
mathematical expressions or programs. Genetic
programming retains a significant position among
successful evolutionary computation approaches due
to its valuable characteristics, such as the flexible
variable-length solution representation and the
absence of population convergence tendency. In
most implementations, a population of candidate
solutions is maintained, and after a generation is
accomplished, the population increases its fitness for

(2,1/2)

(2,1/2)

(1/2,2)

(1/2,2)

(1/k,0)

(1/k,0)

(1/k,0)

Ρ1

Ρ2

Ρn

Vk (Ρ1,Ρ2,..,Pn)

(0,1/k)

(0,1/k)

(0,1/k)

Ρ1

Ρ2

Ρn

Λk (Ρ1,Ρ2,..,Pn)

(2n-1,2n-1)

(2n-2,2n-2)

(20,20)

Ρ1

Ρ2

Ρn

∆ (Ρ1,Ρ2,..,Pn)

(1/k,1/k)

(1/k,1/k)

(1/k,1/k)

Ρ1

Ρ2

Ρn

Mk (Ρ1,Ρ2,..,Pn)

1 2P P∨
at least k-

yes

1 2P P∧ at least k-false

 priority k-majority

Figure 2: Example logical operations in neural logic networks

a given problem. The genetic operators that are
mostly used in these algorithms are reproduction,
recombination (crossover) and mutation. The first
operation copies an individual without affecting it,
the recombination exchanges genetic material
between two individuals and mutation alters a part
of a randomly selected genetic material. A genetic
programming training cycle usually includes the
following steps:

1. Initialise a population of individuals at random.
2. Evaluate randomly an individual and compare its
fitness to other (this fitness determines how closely
is an individual to the desired goal).
3. Modify an individual with a relatively high fitness
using a genetic operator.
4. Repeat steps 2-3 until a termination criterion is
met.
Common termination criterions are the

(1/2,0)

(1/2,2)

(1/2,2)

V4
P1

P0

V8
P2

(1/2,0) (2,2)

(1,1)

(1,3)

(1,4)

(-2,3)

V4
P1

P0

V8
P2

(2,0) (3/2,-2)

(0,1)

Q1⇐At least 2-yes(V4,V8)
Q2⇐Conjunction(V4,V8)
Q3⇐Priority(Q1,Q2)

?

 (a) (b)
Figure 3: (a) Interpretation of a neural logic network into logical rules. (b) a network with refined edge weights that

cannot be interpreted.

V0

V4

(1/2,1/2)

(2,1/2)

(2,1/2)

P1

P0

P2

(1/2,1/2) (-2,0)

(1,1)

V1

V3

(1/2,1/2)

(2,1/2)

(2,1/2)

V0
P1

P0

V1
P2

(1/2,1/2) (-2,0)

(1,1)
V0

accomplishment of a number of generations, the
achievement of a desired classification error, etc.
As previously stated, the genetic programming has
been proved an advance over traditional genetic
algorithms due to its ability to construct functional
trees of variable length. This property enables the
search for very complex solutions that are usually in
the form of a mathematical formula - an approach
that is commonly known as symbolic regression.
Although later paradigms extended this concept to
calculate any boolean or programming expression,
the task of implementing complex intelligent
structures into genetic programming functional sets
in not rather straightforward. The function set that
composes an intelligent system retains a specific
hierarchy that must be traced in the genetic
programming tree permissible structures. This
writing offers two advantages. First, the search
process avoids candidate solutions that are
meaningless or, at least, obscure. Second, the search
space is reduced significantly among only valid
solutions. Therefore, when the syntax form of the
desired solution is well defined, it is useful to
restrain the genetic programming from searching
solutions with different syntax forms (Gruau et al.
1996), (Montana 1995). One of the advantageous
methods to implement such restrictions is to apply
syntax constraints to genetic programming trees,
usually with the help of a context-free grammar
(Gruau 1994), (Janikow 1996), (Ryan et al. 1998).
The execution of massively parallel processing
intelligent systems such as the neural logic networks
within the genetic programming framework is not
considered a straightforward task. In order to
explore variable sized solutions, it is required the
application of an indirect encoding system. The most
common one is the cellular encoding (Gruau 1994),
in which a genotype - a point in the search space-
can be realised as a descriptive phenotype - a point

in the solution space. More specifically, within such
a function set, there are elementary functions that
modify the system architecture together with
functions that calculate tuning variables. Related
implementations include encoding for feedforward
and Kohonen neural networks (Gruau 1994),
(Hussain and Browse 1998), (Tsakonas and Dounias
2002) and fuzzy Petri-nets (Wong 2001). A similar
technology, called edge encoding, developed by
(Koza et al. 2003) is also today used with human
competitive results in a wide area of applications.

 (a) (b)
Figure 4: (a) Tree-like neural logic networks as generated in (Chia and Tan 2001). (b) a neural logic network that
performs the XOR operation needs the general structure of a finite graph and cannot be described directly by the

approach of (Chia and Tan 2001).

3 DESIGN AND IMPLEMENTATION

As mentioned in the previous paragraph, the
characteristic feature of neural logic networks
should be the ability to interpret any network
architecture into a set of logical rules. For this
reason, the cellular encoding is used in our model to
represent the candidate solutions into genetic
programming trees. One cellular encoding scheme
includes (I) functions for architecture altering and
(II) functions for parameter tuning. The functions for
parameter tuning have common properties with the
usual genetic programming functions, which operate
as procedures or program elements. The functions
that are used for architecture altering however are
not used in standard genetic programming systems.
They comprise a function set that alters an
embryonic neural logic network, by entering nodes
sequentially or in parallel onto an initial
(elementary) neural logic network, in order to form
the final / desirable architecture. Hence, among the
architecture altering functions we may discriminate
between (I-a) functions that enter a node serially,
and (I-b) functions that enter a node in parallel. The
problem that has arisen during the prime

implementations of cellular encoding concerns the
grammar description, which enabled the existence of
networks without inputs (Gruau 1994), a situation
that can easily lead into premature population
convergence.
Thus, in order to be able for a system to include at
least one input, we incorporated different functions
for the architecture altering on the system inputs,
than those used for the architecture altering on
internal nodes. Hence, we may further divide the
architecture altering functions into two additional
sub-classes, (I-1) functions that are applied on the
system inputs and (I-2) functions that are applied on
internal nodes. To conclude with, we use a function
that enters a node in serial to an input node (S1), a
function that enters a node in parallel to an input
node (P1), a function that enters a node in serial to
an internal node (S2) and, finally, a function that
enters a node in parallel to an internal node (P2). In
Figure 5, we demonstrate the operation regarding
function S1. The application of this function on the
B node in Figure 5(a), results in the construction of
the network shown in Figure 5(b). The grey-
coloured arrow shows the running cursor, which
marks the point from which any further network
expansion will occur. Figure 6 illustrates the
operation of P1 function. Application of this
function on the B node in Figure 6(a), results
to the network shown in Figure 6(b). Table 1
depicts in short the functions that we used in
order to describe the evolutionary neural
logic networks. The system grammar is
presented in Table 2. Initial symbol (root) of a
tree can be a node of a type <PROG>. The
logical functions that construct in this work

the operator set for the neural logic networks
expressed in our system are shown in Table
3.

Cla
Arc
tect
alte

Par
met
tun

A

B

C
A B

(a) (b)
Figure 5: Application of the function S1 on the Β node.

(a) (b)
Figure 6: Application of the function P1 on the Β node.

A

B A B

C

.
Table 1: GP- function set for neural logic networks
ss Function Operation
P1 Enters a node in parallel to an

input node
S1 Enters a node in serial to an input

node
P2 Enters a node in parallel to an

internal node
S2 Enters a node in serial to an

internal node

hi-
ure
ring

PROG Initial function. Creates the
embryonic network

CNR Applies logical operator based on
the CNRSEL and Κ values

LNK Cuts links based on the NUM and
CUT values

IN Enters an input parameter value
into the network

NUM Supplementary to the LNK
function, selects the link to cut

CUT Supplementary to the LNK
function, determines whether the
link will be cut or not

a-
er
ing

CNRSEL Supplementary to the CNR
function, its value determines the
operator that will be applied to a
node

Κ Supplementary to the CNR,
function, its value determines the
logical operator’s parameter
(determined by CNRSEL).

which are encoded into independent binary
features for further processing by our system.
The percentage of cases for which the
application was finally accepted, reaches 44.5
% of the total (307 records). A total of 37
records have one or more missing values (5%
of total data). After the training process was
accomplished (200 genetic programming

 Table 2: Context-free grammar for neural logic networks.
T

<PROG> : = PROG <PLACE1><SYNAPSE>
<PLACE1> : = S1 <PLACE1><SYNAPSE><PLACE2>
 | P1 <PLACE1><PLACE1>
 | IN
IN : = Data attribute (system input)
<PLACE2> : = S2 <PLACE2><SYNAPSE><PLACE2>
 |P2 <PLACE2><SYNAPSE><PLACE2>
 | E
E : = ∅
<SYNAPSE> : = LNK <NUM><CUT><SYNAPSE>
 | CNR <CNRSEL><K>
<NUM> : = NUM
<CUT> : = CUT
<CNRSEL> : = CNRSEL
<K> : = K
NUM : = Integer in [1,256]
CUT : = Integer in [0,1]
CNRSEL : = Integer in [0,10]
K : = Integer in [0,9]

3 RESULTS AND DISCUSSION

The proposed system was applied in a
banking sector aiming to both provide high
classification rates and the ability to
interpret the extracted solution. This data is
acquired by an Australian bank (Quinlan,
1992). The features in this data are given as
simple elements and their interpretation is
not known, since this data set has been
considered as classified information.
However, the application of our methodology
to this problem may provide useful
conclusions regarding the system’s
effectiveness, since enough successful
applications of other approaches exist
(Quinlan, 1987), (Statlog, 2005), in related
literature. The data is consisted of 688
records from which 344 were randomly used
as training set, 172 as validation set and
another 172 as test set (unknown data).
There are 67 missing values in total, which
were substituted with zeroes. Table 4
presents the related attributes and the
encoding that was used. This data is
primarily composed by discrete attributes,

generations), our algorithm generated the
neural logic network shown in Figure 7.

Var
T1-

T4-

Τ6
Τ7-

Τ12

Τ16

Τ31

Table 3: Implemented logical functions.
able 4: Feature description for the Australian bank
credit-scoring problem

Conjunction (AND)
Disjunction (OR)
Priority
At least k-true
At least k-false
Majority influence
Majority influence of k
2/3 majority
Unanimity
IF-Then (Kleene’ s model)
(logical) Difference
Exclusive OR (XOR)
Negative exclusive OR (XΝOR), or equivalence (EQV)
Negative conjunction (NAND)
Negative disjunction (ΝOR)
Exactly k-true

iable Values Encoded features
Τ3 discrete (b, a, ?), 12

missing values
1 (discrete) 3
binaries, 1 of 3 (b="1 0
0", a="0 1 0", ?="0 0 1")

Τ5 continuous
(13.75...80.25)

1 (continuous) 2 (1
continuous 0..1, 1
binary, 1: absent 0:
non-absent)

continuous (0...28) 1 (continuous) 0..1
Τ11 discrete (u, y, l, t,

?), 6 missing values
1 (discrete) 5
binaries, 1 of 5

-Τ15 discrete (g, p, gg, ?),
6 missing values

1 (discrete) 4
binaries, 1 of 4

-Τ30 discrete (c, d, cc, i, j,
k, m, r, q, w, x, e,
aa, ff, ?), 9 missing
values

1 (discrete) 15
binaries, 1 of 15

-Τ40 discrete (v, h, bb, j,
n, z, dd, ff, o, ?), 9
missing values

1 (discrete) 10
binaries, 1 of 10

Τ41 continuous
(0...28.5)

1 (continuous) 0..1

Τ42 binary 1 (binary) 0..1
Τ43 binary 1 (binary) 0..1
Τ44 continuous (0...67) 1 (continuous) 0..1
Τ45 binary 1 (binary) 0..1
Τ46-Τ48 discrete (g, p, s) 1 (discrete) 3

binaries, 1 of 3
Τ49-Τ50 continuous

(0...2000),13
missing values

1 (continuous) 2 (1
continuous 0..1,
1 binary, 1: absent 0:
non-absent)

Τ51 continuous
(0...10000), 13
missing values

1 (continuous) 0..1

The classification rate of this solution in the
test set (unknown data) reaches 89.53%
(154/172) which is higher than those reported
in literature (Quinlan, 1992). The
corresponding classification rates in the
training and the validation set were 85.47%
(294/344) and 87.21% (150/172) respectively.
The generated neural logic network can be
described by the following extremely simple
decision rule:

Q ← Conjunction (ΑΝD) (Τ12, Τ15, Τ15, Τ15,
Τ15, Τ27, Τ42, Τ42, Τ42, Τ43, Τ44, Τ49, Τ49)

The main conclusions regarding this
extracted decision-rule follow:
· Only one simple attribute conjunction
(AND operation) is contained in the resulting
network, a result showing that no complex
rules should necessarily be expected for
building up an effective decision – making
strategy from the bank’s viewpoint, regarding
credit applicants’ evaluation.
· Getting into greater detail, attribute
(feature) T15 seems to be of significant
importance for the overall decision-making
process. This feature is binary. The initial
data feature from which T15 was derived,
receives values from the set {g, p, gg, ?}, with

T15 corresponding to the last value.
· Feature T42 is also of significant
importance for the decision-making process.

Methodology Classification rate in unknown
data (%)

Cal5 86.9
Itrule 86.3
LogDisc 85.9
Discrim 85.9

(CNLN (P1 (P1 (In T42) (P1 (In T15) (P1 (In T15) (P1 (P1 (In T42) (P1 (In T44) (P1 (P1 (P1 (In T42) (P1 (In T43)
(P1 (In T15) (In T27)))) (In T15)) (In T12)))) (In T49))))) (In T49)) (Rule 0 0))))

Figure 7. Neural logic network (description and representation) generated for the Australian credit-scoring

problem

Dipol92 85.9
Radial 85.5
Cart 85.5
Castle 85.2
Bayes 84.9
IndCart 84.8
BackProp 84.6
C4.5 84.5
Smart 84.2
BayTree 82.9
KNN 81.9
Ac2 81.9
NewId 81.9
LVQ 80.3
Alloc80 79.9
Cn2 79.6
QuaDisc 79.3
Default 56.0
This work (NLN) 89.5

· Another significant feature is the T49,
which in the initial data set receives values
within the range [0,2000].
The Australian bank data problem is
particularly interesting, since it enables the
comparison of our model with a number of
competitive statistical and intelligent
approaches. Table 5 presents our results as
compared with 22 other competitive
approaches presented in (Statlog, 2005).
Among the provided methodologies of Table
5, the proposed approach succeeded in
obtaining the highest classification score
using the specific neural logic network.

4 CONCLUSIONS AND FURTHER
RESEARCH

Neural logic networks are a family of artificial
neural networks designed with the aim to provide
network interpretation into simple logical rules.
Although successful in representing any set of
logical rules into a network structure, the opposite
has been proved unsuccessful. This result derived
from the training procedures used so far which,
based on edge tuning, destroyed the network’s
interpretation. Aiming to successfully use the neural
logic networks family in the CI framework, this
paper presented an architecture-altering and training
methodology. This methodology overcomes the
problems encountered in previous approaches and
succeeds in producing highly accurate and
interpretable neural logic networks. The

methodology is tested in a problem from the banking
domain with very encouraging results. It is
acknowledged that further experiments are needed in
similar or different domains in order to obtain a
wider valuation of the examined methodology.
Further research includes the application of the
system into more domains, especially from the
financial sector where the neural networks have been
proved an effective classifying and forecasting
methodology and at the same time, the interpretation
of a network has always been a desirable target.
Moreover, the research will be driven to implement
higher order recursive neural logic network, in an
attempt to develop neural logic networks for
financial problems dealing with time-series data.

REFERENCES

Chia H.W-K., Tan C-L., 2001. Neural logic network
learning using genetic programming, Intl. Journal of
Comp. Intelligence and Applications, 1:4, pp 357-368

Gruau F., 1994. Neural Network Synthesis using Cellular
Encoding and the Genetic Algorithm, Ph.D. Thesis,
Ecole Normale Superieure de Lyon, ftp:lip.ens-lyon.fr
(140.77.1.11) pub/Rapports/PhD PhD94-01-E.ps.Z

Gruau F., Whitley D., Pyeatt L., 1996. A Comparison
between Cellular Encoding and Direct Encoding for
Genetic Neural Networks, in Koza J.R., Goldberg
D.E., Fogel D.B., Riolo R.L. (eds.), Genetic
Programming 1996: Proceedings of the First Annual
Conf., pp 81-89, Cambridge, MA, MIT Press

Hussain T., Browse R., 1998. Attribute Grammars for
Genetic Representations of Neural Networks and
Syntactic Constraints of Genetic Programming, in
AIVIGI’98:, Workshop on Evol.Comp., Vancouver
BC.

Janikow C.Z., 1996. A Methodology for Processing
Problem Constraints in Genetic Programming, in
Computers Math.Applic. Vol.32:8,pp 97-113.

Koza J.R., 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, Cambridge, MA, MIT Press.

Koza J.R., Keane M.A., Streeter M.J., 2003. Genetic
Programming Human-Competitive Results, IEEE
Intelligent Systems, May/June 2003, pp 25-31.

Montana D.J., 1995. Strongly Typed Genetic
Programming, Evolutionary Computation, vol. .3, no.
2.

Quah T-S., Tan C-L., Teh H-H.,Sriniivasan B., 1995.
Utilizing a Neural Logic Expert system in Currency
Option Trading, Expert Systems with Applications,
9:2, pp 213-222.

Quah T-S., Tan C-L., Raman K., Sriniivasan B., 1996.
Towards integrating rule-based expert systems and
neural networks, Decision Support Systems, 17, pp 99-
118.

Quinlan, J.R., 1987. Simplifying decision trees.
International Journal of Man-Machine Studies, 27,
December: pp. 221-234.

Quinlan J.R. 1992. C4.5: Programs for Machine Learning,
Morgan Kaufmann.

Ryan C., Collins J.J., O'Neil M. , 1998. Grammatical
Evolution: Evolving Programs for an Arbitrary
Language, in W.Banzhaf, R.Poli, M.Schoenauer,
T.C.Fogarty (Eds.), Genetic Programming, Lecture
Notes in Computer Science, Springer.

Statlog 2005. Statlog Use, Test of Australian Credit
Scoring data, available online:
http://www.liacc.up.pt/ML/statlog/datasets/australian/a
ustralian.use.html, date of last access:05/22/05.

Tan A-H., Teow L-N., 1997. Inductive neural logic
network and the SCM algorithm, Neurocomputing 14,
pp 157-176

Teh H-H., 1995. Neural Logic Networks, World Scientific.
Tsakonas A. Dounias G., 2002. A Scheme for the

Evolution of Feedforward Neural Networks using
BNF-Grammar Driven Genetic Programming, in Proc.
of Annual Workshop of European Network of
Excellence on Smart Adaptive Systems 2002, Eunite-
02, Algarve.

Wong M.L., 2001. A flexible knowledge discovery system
using genetic programming and logic grammars,
Decision Support Systems, 31, pp 405-428

	1 INTRODUCTION
	2 BACKGROUND
	2.1 Neural Logic Networks

	REFERENCES

