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AbstractThis work presents the application of a new 

methodology for the production of neural logic networks into 
two real-world problems from the medical domain. Namely, 
we apply grammar guided genetic programming using 
cellular encoding for the representation of neural logic 
networks into population individuals. The application area is 
consisted of the diagnosis of Diabetes and the diagnosis of the 
course of Hepatitis patients. The system is proved able to 
generate arbitrarily connected and interpretable evolved 
solutions leading to potential knowledge extraction. 
 

Index TermsNeural logic networks, Genetic 
programming, Diabetes, Hepatitis  

I. INTRODUCTION 

Computational intelligence (CI), as a rapid growing 
technology has nowadays substituted traditional artificial 
intelligence (AI) and expert systems in a wide range of 
applications. The main advantage of these new techniques 
over AI’s symbolic processing, lies in the ability of the CI 
systems to adapt to the problem environment, hence 
bypassing the stage of human knowledge acquiring - a 
mandatory step using expert systems. However, in a 
number of high-level decision tasks, common expert 
systems remain still applicable. The reason can be noticed 
into the need for symbolic representation of the knowledge 
into these systems, which is a feature that many CI systems 
have unremarkable success. In other words, it is considered 
that symbolic representation can be of significant value in 
these systems for humans, by making clear the inference 
process to users. Among CI methodologies, neural 
networks are powerful connectionist systems that still lack 
the element of complete and accurate interpretation into 
human-understandable form of knowledge and remain a 
black box for experts. To heal this situation, a number of 
alternative approaches have been proposed. Neural logic 
networks [1] belong to this category, and by their definition 
can be interpreted into a number of Prolog rules that consist 
an expert system. Virtually every logic rule can be 
represented into these networks and then transformed into 
Prolog commands. Although this model offers excellent 
results when used within the AI framework (i.e. building a 
system in a top-down process), the application of neural 
logic networks in CI’s data mining tasks – considered a 
bottom-up procedure- has undergone limited success. The 

reason lies in that proposed systems suffered at least one of 
the following limitations: 
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• The extracted neural logic network cannot be 
interpreted into expert rules [1]-[2]. 

• The proposed methodology cannot express neural 
logic networks in their generic graph form [3]. 

• The user has to select topology and network 
connection model [1]-[2]. 

The application of neural logic networks into adaptive 
tasks seems promising: the extracted model will preserve 
its interpretability into a number of expert rules and there is 
not needed any knowledge-acquiring step. Moreover, a 
solution obtained this way, leads to potential knowledge 
extraction. Very recently, a new system, namely the 
evolutionary neural logic networks (ENLN), has been 
proposed [4] that fulfills those requirements. The new 
approach uses grammar-guided genetic programming to 
produce neural logic networks. The evolved solutions can 
be arbitrarily large and connected networks, since an 
indirect encoding is adopted. Also, neural logic networks 
produced by this methodology can always be interpreted 
into human-understandable expert rules, thus leading to 
potential knowledge extraction. In this work, we present in 
brief the methodology and then we apply and test its 
effectiveness into two real-world problems from the 
medical domain. In the first task, we examine the system 
for the diagnosis of Diabetes, and in the second application, 
we use the system for the diagnosis of the course of 
Hepatitis patients. The paper is organized as follows. Next 
section describes the theoretical background, presenting the 
neural logic networks concept and the grammar guided 
genetic programming. Section III deals with the design and 
the implementation of the ENLN system. The results and a 
following discussion are presented in Section IV. The paper 
ends with our conclusion and a description of future work 
in Section V.  

II. BACKGROUND 

A. Neural Logic Networks 
The neural logic network is a finite directed graph. It is 

usually consisted by a set of input nodes and an output 
node. In its 3-valued form, the possible value for a node 
can be one of three ordered pair activation values (1,0) for 
“true”, (0,1) for “false” and (0,0) for “don't know”. Every 
synapse (edge) is assigned also an ordered pair weight (x,y) 
where x and y are real numbers. An example neural logic 
and its output value (a,b) of node P is shown in Fig. 1. 



 

Different sets of weights enable the representation of 
different logical operations. It is actually possible to map 
any rule of conventional knowledge into a neural logic 
network. Neural logic networks can be expanded into fuzzy 
neural logic networks, enabling this way the handling of 
real valued attributes [1]. 
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Fig. 1. Example neural logic network and its output value. 

 
In Fig. 2, an example of a logical operator and its 

implementation in neural logic networks is shown.  

Fig. 2. An example logical operation for operating conjunction in neural 
logic networks. 

 
In order to illustrate the interpretability of neural logic 

networks into expert rules, let us consider the following 
simple neural logic network, consisting of the priority rule: 

 
Richer (X,Y)  priority (House_Owner, Car_Owner, 

M/C_Owner) 
⇐

 
Fig.3 depicts the neural logic network corresponding to 

the above rule. The interpretation of the network into 
Prolog rules is straightforward.  

 
Fig. 3. Example neural logic network, corresponding to a priority rule. 

 
The resulted Prolog commands are shown in Fig.4. Even 

though powerful in their definition, neural logic networks 
are not widely applied. The main reason can be located in 
the fact that for the known training methodologies [1]-[2], 
the refinement of the edge weights reduces significantly the 
interpretability of these networks to expert rules, thus 
depriving these networks from their valuable feature. 

Some steps for the preservation of the interpretability 
have been performed by [3], without however the ability to 
express arbitrarily large and connected neural logic 
networks. For instance, a neural logic network, which 
performs the important logical operation of XOR, cannot 
be represented using the direct encoding of [3]. 
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If House_Owner(Χ,Υ)=(1,0) then Richer(Χ,Υ)=(1,0) 
If House_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1) 
Supposing House_Owner (Χ,Υ)=(0,0) 

If Car_Owner(Χ,Υ)=(1,0) then Richer (Χ,Υ)=(1,0) 
If Car_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1) 
Supposing House_Owner (Χ,Υ)=(0,0) and Car_Owner (Χ,Υ)=(0,0)

If M/C_Owner(Χ,Υ)=(1,0) then Richer (Χ,Υ)=(1,0) 
If M/C_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1) 

Supposing House_Owner (Χ,Υ)=(0,0) and Car_Owner (Χ,Υ)=(0,0)  
and M/C_Owner (Χ,Υ)=(0,0) then Richer (Χ,Υ)=(0,0) 

Fig. 4. Prolog rules equivalent to the neural logic network of Fig.3. 
 

B. Grammar guided Genetic Programming 
The prime advantage of genetic programming over 

genetic algorithms, is the ability to construct functional 
trees of variable length. This property enables the search 
for very complex solutions that are usually in the form of a 
mathematical formula - an approach that is commonly 
known as symbolic regression. Later paradigms extended 
this concept to calculate any boolean or programming 
expression. Thus, complex intelligent structures, such as 
fuzzy rule-based systems or decision trees have already 
been used as the desirable target solution in genetic 
programming approaches [5]-[8].  The main qualification 
of this solving procedure is that the feature selection, and 
the system configuration, derive in the searching process 
and do not require any human involvement. The potential 
gain of an automated feature selection and system 
configuration is obvious; no prior knowledge is required 
and, furthermore, not any human expertise is needed to 
construct an intelligent system. Nevertheless, the task of 
implementing complex intelligent structures into genetic 
programming functional sets in not rather straightforward. 
The function set that composes an intelligent system retains 
a specific hierarchy that must be traced in the GP tree 
permissible structures. This writing offers two advantages. 
First, the search process avoids candidate solutions that are 
meaningless or, at least, obscure. Second, the search space 
is reduced significantly among only valid solutions. Thus, a 
genotype - a point in the search space- corresponds always 
to a phenotype - a point in the solution space. This 
approach -known as legal search space handling method 
[9]- is applied in this work using context-free grammars.  
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C. Context-Free Grammars 
Although powerful in its definition, the genetic 
programming procedure may be proved greedy in 
computational and time resources. Therefore, when the 
syntax form of the desired solution is already known, it is 

(4,4) 

Car_Owner (Χ,Υ) 

(1,1) 
 

Richer (Χ,Υ) (2,2) 

M/C_Owner (Χ,Υ) 



 

useful to restrain the genetic programming from searching 
solutions with different syntax forms [10]-[11]. The most 
advantageous method to implement such restrictions among 
other approaches [12], is to apply syntax constraints to 
genetic programming trees, usually with the help of a 
context-free grammar declared in the Backus-Naur-Form 
(BNF) [13]. The BNF-grammar consists of terminal nodes 
and non-terminal nodes and is represented by the set 
{N,T,P,S} where N is the set of non-terminals, T is the 
set of terminals, P is the set of production rules and S is a 
member of N corresponding to the starting symbol. The 
construction of the production rules can be the most critical 
point in the creation of a BNF grammar, since these 
production rules express the permissible structures of an 
individual.  
 

 
Fig. 5. Example genetic programming tree for the expression (a-
8)+7*(a/b). 
 
An example grammar expressing a class of individuals, 
which (among other grammars) may produce the program 
shown in  Fig. 5, is composed by the following sets: 
 
 

N = {EXPR, OP} 
T = {-,*,/,a,b,7,8} 

S = <EXPR> 
 

Then, P is expressed as shown in Table I. 
 

TABLE I 
GRAMMAR USED FOR A SIMPLE EXAMPLE TREE 

 

D. Cellular Encoding 
Although mapping decision trees or fuzzy rule-based 

systems to specific grammars can be relatively easy to 
implement, the execution of massively parallel processing 
intelligent systems -such as the neural logic networks- is 
not forthright. In order to explore variable sized solutions, 
we applied indirect encoding. The most common one is the 
cellular encoding [15], in which a genotype can be realized 
as a descriptive phenotype for the desired solution. More 
specifically, within such a function set, there are 
elementary functions that modify the system architecture 

together with functions that calculate tuning variables. 
Current implementations include encoding for feed forward 
and Kohonen neural networks [16], [17] and fuzzy Petri-
nets [18], [17]. In his original work, Gruau also used a 
context-free grammar - a BNF grammar- to encode 
indirectly the neural networks. On the other hand, in [18] a 
logic grammar - a context-sensitive one- is adapted to 
encode fuzzy Petri-nets. In our work, we show that as long 
as the depth-first execution of the program nodes of a GP 
tree is ensured -which is the default-, a context-free 
grammar such as a BNF grammar is adequate for 
expressing neural networks. Gruau's original work has been 
facing some skepticism [19] on the ability to express 
arbitrarily connected networks. Later developments [10] 
seem to offer less restrictive grammar, though the cut 
function in those implementations still maintained bounded 
effect. A similar technology, called edge encoding, 
developed by [20] is also today used with human 
competitive results in a wide area of applications.  
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III. DESIGN AND IMPLEMENTATION 

A. Data Preprocessing and Genetic Programming Setup 
 
 

We split each data set into a training set, a validation set 
and a test set. The training set consists of 50% of the data 
and the rest 50% is divided equally between the validation 
set and the test set. The separation of the examples into 
training, validation and test sets is performed in a loop 
manner. Specifically, for every four samples, the first two 
samples are assigned to the training set, the third sample is 
assigned to the validation set, and the fourth one is assigned 
to the test set. This process is repeated until all the 
examples are assigned a set. During the training phase, the 
validation set is typically used to avoid over-fitting. In all 
experiments, we used the same GP parameters. 

Without claiming optimality, the GP parameters are 
presented in Table II. This optimization was decided after 
experimentation, since it is not possible to obtain a general 
principle regarding the most proper probability values for 
every case. 

 
TABLE II 

GENETIC PROGRAMMING PARAMETERS Symbol Rule 
<EXPR> ::= <EXPR> <OP> <EXPR> | <VAR> | <NUMBER> 
<OP> ::=- | * | / 
<VAR> ::= a | b 
<NUMBER> ::= 7 | 8 

 

Parameter Value 
Population:  2,000 individuals  
GP implementation: Steady-state G3P 
Selection:  Tournament with elitist strategy 
Tournament size:  6 
Crossover Rate:  0.35 
Overall Mutation Rate:  0.65 
Node Mutation Rate: 0.4 
Shrink Mutation Rate: 0.6 
Killing Anti-Tournament size:  2 
Maximum allowed individualsize:  650 nodes  
Maximum number of generations: 100 

 
 

As it can be observed in Table II, the setup denotes our 
preference for significantly high mutation rates, especially 
shrink mutation [22] that slows down the code bloat caused 
by crossover operations. 

 



 

B. System Grammar and Operating Functions 
The system grammar is presented in Fig.6. Initial symbol 

(root) of a genetic programming tree can be a node of type 
<PROG>. The function set is as follows: 

Function PROG: The function PROG creates the 
embryonic network that is used later by the functions S1, 
S2, P1 and P2 to be expanded. An alternative name for 
this function, which is used throughout this paper, is the 
term “ENLN”. 

Function S1 and S2: These functions enter a node in 
serial to the node that is applied. 

Function P1 and P2: These functions enter a node in 
parallel to the node that is applied. 

Function IN: The operation of function IN is to assign a 
variable to the input node that it is applied. 

 

Fig. 6. Context free grammar for the production of neural logic networks 
within genetic programming framework. 

 
Function E: The operation of function E is to mark the 

end of the expansion of the network. 
Function LNK:  This function provides the framework 

for the application of cut function. It actually enables the 
non-full connectivity of the network, a feature that offers 
larger solution search space. 

 
TABLE III 

OPERATIONS FOR FUNCTION CNR 
 

Function CNR: This function performs the node 
inference. Based on the first parameter, the corresponding 
calculation is performed. The second parameter assists the 
calculation for the at-least-k and majority-of-k operators. 

Possible computations are shown in Table III. An 
alternative name for this function, which is used throughout 
this paper, is the term “Rule”. 

Function NUM, CUT, K, CNRSEL: These functions 
return an integer to be used by the corresponding calling 
functions. 

Having discussed the system design, in the following 
session we shall apply the methodology in two medical 
domains. 

IV. RESULTS AND DISCUSSION 

A. Diagnosis of Diabetes  
The desirable diagnosis in this problem is whether the 
patient has the diabetes symptoms, according to the criteria 
of World Health Organization. The population that was 
used for the collection of data lives near Phoenix in 
Arizona, US. A number of constraints have been applied 
for the selection of medical cases. Specifically, all the 
patients are female, at least 21 years old and originated 
from the race of Pima Indians [23]. The input features 
correspond either to physiological human features (f.ex. 
number or times being pregnant, body mass index etc.) or 
laboratory tests (f.ex. plasma glucose concentration a 2 
hours in an oral glucose tolerance test). Table IV presents 
the domain characteristics, and Table V shows the input 
features in detail. This problem is interesting since there is 
unknown number of missing values, which is unknown 
data noise. 

<PROG> : = PROG <PLACE1><SYNAPSE> 
<PLACE1> : = S1 <PLACE1><SYNAPSE><PLACE2> 
      | P1 <PLACE1><PLACE1> 
      | IN 
IN  : = Data attribute (system input)
<PLACE2> : = S2 <PLACE2><SYNAPSE><PLACE2>   
      | P2 <PLACE2><SYNAPSE><PLACE2>
      | E 
E  : = ∅ 
<SYNAPSE> : = LNK <NUM><CUT><SYNAPSE> 
      | CNR <CNRSEL><K> 
<NUM> : =  NUM 
<CUT> : = CUT 
<CNRSEL> : = CNRSEL 
<K>  : = K 
NUM  : = Integer in [1,256] 
CUT  : =  Integer in [0,1] 
CNRSEL : = Integer in [0,10] 
K  : =  Integer in [0,9]    
 

 
TABLE IV 

DOMAIN DESCRIPTION FOR THE DIABETES PROBLEM 
 

Parameter Value 
Domain Diagnosis of Diabetes 
Data Base Diabetes 
Input Features 8 
Continuous Input Features 8 
Discrete Input Features 0 
Binary Input Features 0 
Total Records 764 
Training Set Records 382 
Validation Set Records 191 
Test Set Records 191 
Missing data Yes, unknown number 
Normalized data Yes 

In literature [23], there is an application of the ADAP 
algorithm which works like a perceptron and is referred a 
76% accuracy in unknown data. The solution that was 
extracted using our system, although it achieves a 72.3 % 
(138/191) accuracy in unknown data, it additionally enables 
the interpretation of the solution. The accuracy in the 
training data and in the validation set was 69.4% (265/382) 
and 69.7% (133/191) correspondingly. 

Parameter Calculation 
0 Conjunction 
1 Disjunction 
2 Priority 
3 At least k-true 
4  At least k-false 
5 Majority influence 
6 Majority influence of k 
7  2/3 Majority 
8 Unanimity 
9 If-Then operation, 

Kleene’s model 
10 Difference 

 

We observe that from the 8 available features, the system 
selected to use only 2 of them. From the solution that is 
shown in Fig. 7, we may extract the following simple 
expert system: 

 
Q1 ⇐  conjunction (Body Mass Index) 
Q ⇐  conjunction (Plasma Glucose Concentration a 2 

Hours in an Oral Glucose Tolerance Test, Q1) 
 



 

TABLE V 
PARAMETER DESCRIPTION FOR THE DIABETES PROBLEM 

 

The interpretation of the above expert rules based on the 
fuzzy system inference, proposes the positive diagnosis of 
diabetes if two features are “high”: the body mass index 
and the plasma glucose concentration a 2 hours in an oral 
glucose tolerance test. This expert system may be 
simplified, roughly speaking, into a proposition similar to  
“the higher is the plasma glucose concentration a 2 hours 
in an oral glucose tolerance test and the larger is the body 
mass index, the more likely is the positive diabetes 
indication”. Moreover, is notable for the non-expert, the 
absence in this neural logic network of other distinguishing 
features -like the patient’s age or the diabetes pedigree 
function - which might be expected to be included in the 
solution. 

 

 
(ENLN (P1 (S1 (In T7) (Rule 0 0) E) (In T2)) (Rule 
0 0)) 

Fig. 7.  Solution description and the corresponding neural logic network 
for the Diabetes problem. 

 

B. Diagnosis of the course of Hepatitis patients 
This problem is concerned with the diagnosis of the 

course of Hepatitis to patients, based on the physiological 
and laboratory tests [24]. More specifically, with the aid of 
the given data, we need to predict whether the patient will 
survive or not. This domain is interesting since there is 
unequal distribution between the two classes, that is only 
20,64 % (32/155) of the data correspond to patients that 
will live while the rest data is referred to patients that are 
expected to die. Moreover, there is about 5% of missing 
values, and a combination of binary and continuous input 
features. Since the data is composed by features having 
different value ranges, we preprocessed the data by 
normalizing them into the [1,2] interval in order to be able 
to apply the fuzzy neural logic networks model. 
Specifically, using this scheme, a value of 1 denotes the 
‘false’, a value of 2 denotes the ‘true’, while a value of 0 
signifies the ‘unknown’. In the non-binary features, values 
between 1 and 2 (which are the normalization borders) are 
also allowed. This coding is only a convention scheme 
since input values are actually decoded during the 
evaluation into the system to the usual (x,y) neural logic 

pairs. Table VI summarizes the characteristics of the 
Hepatitis domain, and Table VII shows in detail the input 
features of this database. In the literature, solutions that are 
proposed achieve an accuracy ranging from 80% [24] to 
83% [25]. 

Variable Feature Values/  
Value 
range 

T1 Number of times being pregnant          0-17   
T2 Plasma glucose concentration a 2 hours in an oral 

glucose tolerance test 
0-199   

T3  Diastolic blood pressure (mm Hg) 0-122   
Τ4 Triceps skin fold thickness (mm) 0-99   
Τ5 2-Hour serum insulin (mu U/ml) 0-846   
Τ6 Body mass index (weight in kg/(height in m) 2) 0-67.1   
Τ7 Diabetes pedigree function 0.078-2.42  
Τ8 Age (years) 21-81   

 
TABLE VI 

DOMAIN DESCRIPTION FOR THE HEPATITIS PROBLEM 

Parameter Value 
Domain Diagnosis of the course for Hepatitis 

patients 
Data Base Hepatitis 
Input Features 19 
Continuous Input Features 6 
Discrete Input Features 0 
Binary Input Features 13 
Total Records 152 
Training Set Records 76 
Validation Set Records 38 
Test Set Records 38 
Missing data Yes, 146 values 
Normalized data Yes 

The solution that was extracted using our system 
achieves accuracy 81.6 % (31/38) to unknown data (test 
set). The accuracy to the training data and validation set 
was 94.8% (72/76) and 68.4 % (26/38) correspondingly. 
The produced neural logic network is shown in Fig. 8. 

 
TABLE VII 

PARAMETER DESCRIPTION FOR THE HEPATITIS PROBLEM 

Variable Feature Values/Value range 
T1 Age              10-80   
T2 Sex (male/female)  0-1   
T3  STEROID (true/false) 0-1   
Τ4 ANTIVIRALS (true/false) 0-1   
Τ5 FATIGUE (true/false) 0-1   
Τ6 MALAISE (true/false) 0-1   
Τ7 ANOREXIA (true/false) 0-1   
Τ8 LIVER BIG (true/false) 0-1   
Τ9 LIVER FIRM (true/false)           0-1   
Τ10 SPLEEN PALPABLE (true/false) 0-1   
Τ11 SPIDERS (true/false) 0-1   
Τ12 ASCITES (true/false) 0-1   
Τ13 VARICES (true/false) 0-1   
Τ14 BILIRUBIN 0.39-4.00 
Τ15 ALK PHOSPHATE 33-250 
Τ16 SGOT 13-500 
Τ17 ALBUMIN 2.1-6.0 
Τ18 PROTIME 10-90 
Τ19 HISTOLOGY (true/false) 0-1   

Although the extracted solution is large and prevents 
obvious interpretation, the neural logic network maintains 
still its ability to be transformed into a (large, in this case) 
set of expert rules. Additionally, it is worth to note that, in 
order to make a decision, this proposed solution makes use 
of only 5 features from the available 19 ones. 

The selected features are AGE, SEX, ASCITES  
(abnormal accumulation of clear yellow fluid in the 
peritoneal cavity), SGOT (enzyme tests of liver function / 
serum glutamic oxaloacetic transaminase), and ALBUMIN 
(protein found in blood and maintains the proper amount of 
water in it / serum albumin) 

From the above decisive features, it is notable for the 
non-expert, the existence of both the age and the sex for the 
diagnosis of the course of Hepatitis. 



 

 
(ENLN (S1 (P1 (P1 (S1 (In T2) (Rule 8 7) E) (P1 
(S1 (In T16) (Rule 3 7) (P2 E (Link 3 4 (Link 15 3 
(Rule 4 6))) (P2 E (Rule 2 5) E))) (P1 (S1 (In T1) 
(Link 236 4 (Rule 4 4)) E) (P1 (In T16) (P1 (In 
T17) (In T12)))))) (P1 (S1 (In T1) (Rule 8 7) E) 
(In T1))) (Link 6 2 (Link 3 3 (Link 10 2 (Rule 2 
8)))) (P2 E (Rule 2 9) (P2 E (Rule 5 11) E))) 
(Rule 5 3))   

 
Fig. 8.  Solution description and the corresponding neural logic network 
for the Hepatitis problem. 

V. CONCLUSION AND FURTHER RESEARCH 
Neural networks are powerful connectionist systems that 

have been introduced in areas where symbolic processing 
systems of traditional artificial intelligence used to be 
applied. As a tool of computational intelligence, the 
adaptation of the neural network to the problem domain 
using an inductive method, offers advantage over expert 
systems where the knowledge must be acquired first, before 
the system development. Ever since their first application, 
interpretation of the obtained knowledge was a research 
target for neural networks.  In the scope of this area, the 
neural logic networks have been proposed as a class of 
networks that by their definition preserve their 
interpretability into symbolic knowledge.  

Until recently however, the application of an effective 
training / production method within the CI framework has 
not been successful. A novel system that uses genetic 
programming with indirect encoding that has been 
proposed recently [4], overcomes these problems, 
producing automatically designed and tuned neural logic 
networks, which always preserve their interpretability. In 
this work we applied the system into two real-world 
medical problems, the Diabetes diagnosis and the diagnosis 
of the course of Hepatitis patients. In both problems, the 
system has been proved capable of producing competitive 
to the literature results, which maintain their interpretability 
and lead to potential knowledge extraction. 

Future work involves the application of the system in 
other areas, as well as the incorporation of recursive 
structures into the neural logic network architecture. 
Moreover, the minimum description length principle will be 
developed to be included as an anti-overfitting measure. 
Finally, parameter-tuning optimization of the underlying 
genetic programming algorithm is expected to offer better 
efficiency, hence it will be of primary importance among 
our future work. 
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