
Predicting Defects in Software Using Grammar-Guided
Genetic Programming

Athanasios Tsakonas and Georgios Dounias

University of the Aegean, Department of Finance and Management Engineering,

Fostini 31 str., Chios, Greece
tsakonas@stt.aegean.gr, g.dounias@aegean.gr

Abstract. The knowledge of the software quality can allow an organization to
allocate the needed resources for the code maintenance. Maintaining the
software is considered as a high cost factor for most organizations.
Consequently, there is need to assess software modules in respect of defects
that will arise. Addressing the prediction of software defects by means of
computational intelligence has only recently become evident. In this paper, we
investigate the capability of the genetic programming approach for producing
solution composed of decision rules. We applied the model into four software
engineering databases of NASA. The overall performance of this system
denotes its competitiveness as compared with past methodologies, and is shown
capable of producing simple, highly accurate, tangible rules.

Keywords: Software engineering, defect prediction, genetic programming.

1 Introduction

Addressing software quality can ensure cost reduction and efficient resource
allocation. A major factor for the assessment of software code is whether the code
module is prone to defects in the future. To estimate the software quality several
metrics have been developed in the past. Static code metrics [9],[6] are inexpensive,
easy to calculate, and they are widely used. However, these measurements have been
criticized [4][5][16] on their effectiveness and efficiency, as standalone instruments.
Later work [11], has shown that applying data mining techniques can dramatically
increase the power of the aforementioned metrics. The main target of such a data-
mining task is to effectively predict whether modules will present code defects in the
future, so as the management could efficiently allocate resources for monitoring them.
Genetic programming (GP) [7] is a computational intelligence methodology which
carries expedient attributes such as variable length solution representation, and
functional solution nodes. It has been applied in numerous problems, and its domains
of applications are constantly increasing. This work inherits recent advances on
genetic operators’ adaptive rates [18]. The data mining task in this work is two-fold.
Firstly, we aim to produce simple and comprehensible rules that can be used without
the assistance of software. Secondly, we seek for high classification rates, if possible
better to those found in literature. The paper is organized as follows. Next section

mailto:tsakonas@stt.aegean.gr
mailto:g.dounias@aegean.gr

describes the background, presenting the software defects prediction domain and the
grammar guided genetic programming. Following this section, we deal with the
design and the implementation of the system. Next, the results and a following
discussion are presented. The paper ends with our conclusion and a description of
future work.

2 Background

2.1 Software Defects Prediction

 Among the principal tasks during software project management is the
assessment of the software cost. Additionally, extensive assessment is required for
high assurance software. This software cost is affected directly by the software
quality. To address this need, there have been developed various techniques of
software code assessment, such as the static code metrics. The available metrics for
the code derive from the work of [9] and [6].

2.2 Grammar-Guided Genetic Programming

 Genetic programming [7] is an extension to the genetic algorithms concept. The
main advance is the ability to maintain a population consisted of variable-length, tree-
structured individuals, in which each node can have functional ability. By applying
grammars, a genotype - a point in the search space- corresponds always to a
phenotype - a point in the solution space, an approach known as legal search space
handling method [9]. We apply legal search in this work using a context-free
grammar [2][3][8][13][17][18][19].

3 Design and Implementation

3.1 Data Pre-processing

 We have tested the methodology in four software engineering data sets: CM1,
KC1, KC2 and PC1. These datasets have been addressed in [11] and [12]. All
software modules come from NASA and their metrics have become recently available
by the PROMISE repository of public domain software engineering data sets. Table
1 summarizes the features of this data. Further details for each feature can be found in
[9] and [6].

3.2 Genetic Programming Setup

To improve the search process and control the solution size, an adaptive scheme
for the operation rates was followed. These parameters were adapted from past work
of the authors [18], and they do not necessarily represent the best values for these
datasets.

Table 1. NASA software metrics data examined

Name Data set Total
instances Defects No

defects Language

CM1 Spacecraft instrument 498 49 449 C
KC1 Storage management

for ground data
2109 326 1783 C++

KC2 Science data
processing

552 105 415 C++

PC1 Flight software for
earth orbiting satellite

1109 1032 77 C

During the run, the actual training data set is used to evaluate candidate solutions.

However, in order to promote a candidate as the solution of the run, in our approach it
is required that at least one of the following conditions applies:

• this candidate achieves higher fitness score in the validation set too,
• the absolute difference between validation fitness and training fitness score

is smaller.
The first rule is the common approach used in all validation models; the second

rule is introduced in this work, and it was experimentally observed to produce
solutions that carried significantly higher generalization ability in the problems
encountered. In other words, this approach promotes solutions that demonstrate no
overfitting to one of the sets (either the actual training set or the validation set), but it
rather requires the fitness improvement in one set to be in step with the other [14].

3.3 Fitness Function

 In order to validate this software engineering data, various measures have been
proposed in literature. In [1], the following measures have been used, in a genetic
programming model for a number of generic problems encountered:

Recall= tppd
tp fn

=
+

 (1)

tnTNRate
tn fp

=
+

 (2)

support= Recallfitness TNRate= ⋅ (3)

In [10] the fitness measure that involves the accuracy, is proposed based on results
that show that this metric presented the smaller deviation in classification success
between the training and the test set, for a number of experiments. On the other hand,
in [1], when using the Recall and the TNRate, there is an equivalent treatment for both
classes as far as the classification reward is concerned, irrespectively of the relative
size for each class. Hence we adopted the latter measure for our fitness function.

Additionally, another metric is calculated in our experiments, precision, to allow
future comparisons:

tpprec
fp tp

=
+

 (4)

This precision measure is analogous to the support measure we have used in our
system, as it can be seen in the equation (5). Hence, using the support measure as a
fitness measure is also in concordance to literature that requires a system scoring also
high precision values (i.e. aiming for high support values can assist in qualifying high
precision rates).

1 1 1 1
support

fn fn fp
prec tn tp tn

⎛ ⎞⎟⎜= − ⎟⋅ + + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (5)

Having discussed the system design, in the following session we describe the
results of the application of our methodology in the four software engineering
databases.

4 Results and Discussion

 We performed 10-fold cross validation. Table 2 summarizes our best results found
for each measure during the 10-fold run, in the test set, and includes the mean and the
standard deviation of these results. The solution for the CM1 problem is as follows:

If count_of_lines_of _comments > -0.94 then true else false
The promoted solution for the KC1 data is:

If essential_complexity < 0.76 then
 (if total_operands < -0.95 then false else true)

else false
For the KC2 problem, the system derived the following rule:

If design_complexity = 0.46 then
(if line_count_of_code < 0.95 then false else true)else

 (if unique_operands > -0.90 then true else false)
Finally, the following rule was found for the PC1 data:

If program_length < -0.53 then
 (if difficulty > -0.21 then
 (if total_operators > -0.68 then true else false)
 else
 (if software_size_lines_of_code < -0.93 then true
 else false))

 else false
In all problems, our model succeeded in producing small, easily comprehensible

results that need not any further software to be applied in practice. In Table 3, we
compare the best-promoted solutions of our system during the 10-fold validation, to
the best models found in literature.

5 Conclusion and Further Research

 This paper described an effort to address the software quality domain, by using
computational intelligence for effective decision-making. Our approach makes use of

the genetic programming paradigm, in its grammar-guided advance, in order to
produce decision rules. Further tuning is enforced to the genetic operators, and special
use of the validation set fitness is applied. The model is applied on four databases that
are consisted of software metrics of NASA’s developed software. In two of the
databases, our model is proved superior to the existing literature in both comparison
variables, and in the rest two databases, the system is shown better in one of the two
variables.

Table 2. Grammar-guided GP, 10-Fold Cross Validation Results

 CM1 KC1
 Best Mean Std.Dev Best Mean Std.Dev
Support 0.7085 0.5982 0.0538 0.5731 0.5579 0.0107
PD 1.0000 0.5967 0.2344 0.8750 0.7544 0.0935
PF 0.2000 0.2719 0.0724 0.2569 0.3135 0.0399
PREC 0.3077 0.1905 0.0586 0.3553 0.3062 0.0312
Accuracy 0.8750 0.7295 0.0768 0.7393 0.6967 0.0309
Generation 38 60 55 77
Size 191 224 259 196
 KC2 PC1
 Best Mean Std.Dev Best Mean Std.Dev
Support 0.7127 0.6697 0.0304 0.7508 0.6442 0.0548
PD 0.8182 0.7482 0.0594 0.8750 0.7441 0.0615
PF 0.1428 0.1929 0.0400 0.0000 0.2911 0.2301
PREC 0.5714 0.5039 0.0488 1.0000 0.9728 0.0207
Accuracy 0.8302 0.7830 0.0336 0.8559 0.7414 0.0547
Generation 30 36 82 62
Size 260 203 296 201

Table 3. Results comparison.

Model PD PF PD PF
 CM1 PC1
Menzies et al. [11] 0.350 0.100 0.240 0.240
Menzies et al. [12] 0.710 0.270 0.480 0.170
This paper (#8) 1.000 0.311 (#3) 0.757 0.125
 KC1 KC2
Menzies et al. [11] 0.500 0.150 0.450 0.150
This paper (#6) 0.818 0.275 (#7) 0.800 0.142

Moreover, the system managed to produce small and comprehensible solutions that

do not require a computing environment to apply. The application of our system to
such data is a straightforward process, and adds little complexity to the classification
task of the modules. Hence we believe that software engineers can easily adapt such a
data mining system, which can then be used in an inexpensive way, combined with

the static metrics calculation. Further investigation involves the application of our
methodology into more software quality problems, involving other databases, in an
attempt to provide a transparent view on its effectiveness for this class of problems.

References

1. Berlanga F.J., del Jesus M.J., Herrera F.. Learning compact fuzzy rule-based classification
systems with genetic programming. 4th Conference of the European Society for Fuzzy
Logic and Technology (EUSFLAT05). Barcelona, 2005, pp. 1027-1032.

2. Blickle T. and Theile L., A mathematical analysis of tournament selection, in: L.J.
Eshelman, ed., Proc. of the 6thInternational.Conference on Genetic Algorithms, Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1995, pp. 9-16.

3. Eads D., Hill D., Davis S., Perkins S., Ma J., Porter R. and Theiler J., Genetic Algorithms
and Support Vector Machines for Time Series Classification, in Proc. SPIE 4787, 2002, pp.
74-85.

4. Fenton N. and Ohlsson N., “Quantitative Analysis of Faults and Failures in a Complex
Software System”, IEEE Trans. Software Eng., pp. 797-814, Aug. 2000.

5. Fenton N.E. and Pfleeger S., Software Metrics: A Rigorous and Practical Approach. Int’l
Thompson Press, 1997

6. Halstead M., "Elements of Software Science". Elsevier, 1977.
7. Koza J.R.,"Genetic Programming: On the Programming of Computers by Means of Natural

Selection", Cambridge, MA, MIT Press,1992.
8. Koza J., Bennett F., Andre D.and Keane M., Genetic Programming III: Automatic

Programming and Automatic Circuit Synthesis, Morgan Kaufmann, 2003.
9. McCabe T., “A Complexity Measure”, IEEE Trans. Software Eng.,2:4, pp. 308-320, Dec.

1976.
10. Menzies T., Dekhtyar A., Distefano J., Greenwald J., "Problems with Precision: A

Response to "Comments on; Data Mining Static Code Attributes to Learn Defect
Predictors", IEEE Trans. on Soft. Eng., 33: 9, Sept. 2007 pp. 637 - 640.

11. Menzies T., DiStefano J., Orrego A., and Chapman R., “Assessing Predictors of Software
Defects,” Proc. Workshop Predictive Software Models, 2004.

12. Menzies, T., Greenwald, J., Frank A., “Data Mining Static Code Attributes to Learn Defect
Predictors”, IEEE Trans. on Soft. Eng., 32:11, Jan 2007.

13. Montana D.J., "Strongly Typed Genetic Programming", Evolutionary Computation, vol. .3,
no. 2, 1995.

14. Quinlan J.R., Bagging, boosting, and C4.5, in Proc. 13th Nat.Conf. Art. Intell., 1996,
pp.725-30.

15. Singleton A., "Genetic Programming with C++", BYTE Magazine, Feb 1994.
16. Shepperd M. and Ince D., “A Critique of Three Metrics,” J. Systems and Software, vol. 26,

no. 3, pp. 197-210, Sept. 1994.
17. Tsakonas A., Dounias G., "Hierarchical Classification Trees Using Type-Constrained

Genetic Programming", Proc. of 1st Intl. IEEE Symposium in Intelligent Systems, Varna,
Bulgaria, 2002.

18. Tsakonas A. and Dounias G., “Evolving Neural-Symbolic Systems Guided by Adaptive
Training Schemes: Applications in Finance”, App. Art. Intell. 21:7, 2007, pp. 681-706.

19. Yu T. and Bentley P., "Methods to Evolve Legal Phenotypes", Lecture Notes in Comp.
Science 1498, Proc. of. Parallel Problem Solving from Nature V, 1998, pp 280-291.

	Grammar-Guided Genetic Programming

