
Evolutionary Neural Logic Networks in Two Medical Decision Tasks.

Athanasios Tsakonas, and Georgios Dounias
University of the Aegean, Dept. of Business Administration,

8 Michalon Str., 82100 Chios, Greece,
Phone: +30-271-35165, Fax: +30-271-93464

e-mail: tsakonas@stt.aegean.gr, g.dounias@aegean.gr

ABSTRACT: Two real-world problems of the medical domain are addressed in this work using a novel approach
belonging to the area of neural-symbolic systems. Specifically, we apply evolutionary techniques for the development
of neural logic networks of arbitrary length and topology. The evolutionary algorithm is consisted of grammar guided
genetic programming using cellular encoding for the representation of neural logic networks into population
individuals. The application area is consisted of the diagnosis of patient postoperative treatment and the diagnosis of the
Breast cancer. The extracted solutions maintain their interpretability into simple and comprehensible logical rules. The
overall system is shown capable to generate arbitrarily connected and interpretable evolved solutions leading to
potential knowledge extraction.

KEYWORDS: Neural logic networks, Genetic programming, Postoperative treatment, Breast cancer

INTRODUCTION

Although computational intelligence (CI), has nowadays substituted traditional artificial intelligence in major
applications, for a number of high-level decision tasks common expert systems remain still applicable. The reason can
be noticed into the need for symbolic representation of the knowledge into these systems, which is a feature that many
CI systems have unremarkable success. In other words, it is considered that symbolic representation can be of
significant value in these systems for humans, by making clear the inference process to users. Among CI
methodologies, neural networks are powerful connectionist systems that still lack the element of complete and accurate
interpretation into human-understandable form of knowledge and remain a black box for experts. To deal with this
situation, a number of alternative approaches have been proposed. Neural logic networks [1] belong to this category,
and by their definition can be interpreted into a number of Prolog rules that consist an expert system. Virtually every
logic rule can be represented into these networks and then transformed into Prolog commands. Although this model
offers excellent results when used within the AI framework (i.e. building a system in a top-down process), the
application of neural logic networks in CI’s data mining tasks – considered a bottom-up procedure- has undergone
limited success. The reason lies in that proposed systems suffered at least one of the following limitations:
· The extracted neural logic network cannot be interpreted into expert rules [1]-[2].
· The proposed methodology cannot express neural logic networks in their generic graph form [3].
· The user has to select topology and network connection model [1]-[2].
The application of neural logic networks into adaptive tasks seems promising: the extracted model will preserve its
interpretability into a number of expert rules and there is not needed any knowledge-acquiring step. Moreover, a
solution obtained this way, leads to potential knowledge extraction. Very recently, a new system, namely the
evolutionary neural logic networks (ENLN), has been proposed [4] that fulfils those requirements. The new approach
uses grammar-guided genetic programming to produce neural logic networks. The evolved solutions can be arbitrarily
large and connected networks, since an indirect encoding is adopted. Also, neural logic networks produced by this
methodology can always be interpreted into human-understandable expert rules, thus leading to potential knowledge
extraction. In this work, we present in brief the methodology and then we apply and test its effectiveness into two real-
world problems from the medical domain. In the first task, we examine the system for the diagnosis of Diabetes, and in
the second application, we use the system for the diagnosis of the course of Hepatitis patients. The paper is organized as
follows. Next section describes the theoretical background, presenting the neural logic networks concept and the
grammar guided genetic programming. Following this section, we deal with the design and the implementation of the
ENLN system. Next, the results and a following discussion are presented. The paper ends with our conclusion and a
description of future work.

BACKGROUND

Neural logic networks

The neural logic network is a finite directed graph. It is usually consisted by a set of input nodes and an output node. In
its 3-valued form, the possible value for a node can be one of three ordered pair activation values (1,0) for “true”, (0,1)
for “false” and (0,0) for “don't know”. Every synapse (edge) is assigned also an ordered pair weight (x,y) where x and y
are real numbers. An example neural logic and its output value (a,b) of node P is shown in Fig. 1. Different sets of
weights enable the representation of different logical operations. It is actually possible to map any rule of conventional
knowledge into a neural logic network. Neural logic networks can be expanded into fuzzy neural logic networks,
enabling this way the handling of real valued attributes [1].

1 1

1 1

(1,0) 1

(,) (0,1) 1

k k

j j j j
j j

k k

j j j j
j j

if a x b y

a b if a x b y

= =

= =

 − ≥

= − ≤


∑ ∑

∑ ∑

 −

(α1,β1) Q1

(α2,β2) Q2

(αk,βk) Qk

(x1,y1)

(x2,y2)

(xk,yk)

P

(0,0) otherwise



Fig. 1. Example neural logic network and its output.

In Fig. 2, an example of two logical operators and their implementation in neural logic networks is shown. These
operations are part of the logical function set that is used to compose the solutions within the framework of this work.

(2,1/2)

(2,1/2)

(1/2,2)

(1/2,2)

Fig. 2. Example logical operations for operating conjunction and disjunction in neural logic networks.

In order to illustrate the interpretability of neural logic networks into expert rules, let us consider the following simple
neural logic network, consisting of the priority rule:

Richer (X,Y) priority (House_Owner, Car_Owner, M/C_Owner) ⇐

House_Owner (Χ,Υ) If House_Owner(Χ,Υ)=(1,0) then Richer(Χ,Υ)=(1,0)
If House_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1)
Supposing House_Owner (Χ,Υ)=(0,0)

If Car_Owner(Χ,Υ)=(1,0) then Richer (Χ,Υ)=(1,0)
If Car_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1)
Supposing House_Owner (Χ,Υ)=(0,0) and Car_Owner (Χ,Υ)=(0,0)

If M/C_Owner(Χ,Υ)=(1,0) then Richer (Χ,Υ)=(1,0)
If M/C_Owner (Χ,Υ)=(0,1) then Richer (Χ,Υ)=(0,1)

Supposing House_Owner (Χ,Υ)=(0,0) and Car_Owner (Χ,Υ)=(0,0)
and M/C_Owner (Χ,Υ)=(0,0) then Richer (Χ,Υ)=(0,0)

(4,4)

(1,1)

Car_Owner (Χ,Υ)
(2,2)

M/C_Owner (Χ,Υ)

Richer (Χ,Υ)

Fig. 3. Example neural logic network, corresponding to a priority rule and Prolog rules equivalent to this neural logic
network.

Fig.3 depicts the neural logic network corresponding to the above rule. The interpretation of the network into Prolog

rules is straightforward and the resulted Prolog commands are shown. Even though powerful in their definition, neural
logic networks are not widely applied. The main reason can be located in the fact that for the known training
methodologies [1]-[2], the refinement of the edge weights reduces significantly the interpretability of these networks to
expert rules, thus depriving these networks from their valuable feature. Some steps for the preservation of the
interpretability have been performed by [3], without however the ability to express arbitrarily large and connected
neural logic networks. For instance, a neural logic network, which performs the important logical operation of XOR,
cannot be represented using the direct encoding of [3].

Grammar Guided Genetic Programming

The ability to construct functional trees of variable length is a major advantage of genetic programming over genetic
algorithms. This property enables the search for very complex solutions that are usually in the form of a mathematical
formula - an approach that is commonly known as symbolic regression. Later paradigms extended this concept to
calculate any boolean or programming expression. Consequently, complex intelligent structures, such as fuzzy rule-
based systems or decision trees have already been used as the desirable target solution in genetic programming
approaches [5]-[8]. The main qualification of this solving procedure is that the feature selection, and the system
configuration, derive in the searching process and do not require any human involvement. Moreover, genetic
programming, by inheriting the genetic algorithms' stochastic search properties, does not use local search -rather uses
the hyper plane search-, and so avoids driving the solution to any local minimum. The potential gain of an automated
feature selection and system configuration is obvious; no prior knowledge is required and, furthermore, not any human
expertise is needed to construct an intelligent system. Nevertheless, the task of implementing complex intelligent
structures into genetic programming functional sets in not rather straightforward. The function set that composes an
intelligent system retains a specific hierarchy that must be traced in the GP tree permissible structures. This writing
offers two advantages. First, the search process avoids candidate solutions that are meaningless or, at least, obscure.
Second, the search space is reduced significantly among only valid solutions. Thus, a genotype - a point in the search
space- corresponds always to a phenotype - a point in the solution space. This approach -known as legal search space
handling method [9]- is applied in this work using context-free grammars. As we will discuss in the next paragraph, the
implementation of constraints using a grammar can be the most natural way to express a family of allowable
architectures. While each intelligent system -such as a neural logic network- has a functional equivalent -by means of
being composed by smaller, elementary functions-, what defines and distinguishes this system is its grammar.

Context-free grammars

The genetic programming procedure may be proved greedy in computational and time resources. Consequently, when
the syntax form of the desired solution is already known, it is useful to restrain the genetic programming from searching
solutions with different syntax forms [10]-[11]. The most advantageous method to implement such restrictions among
other approaches [12], is to apply syntax constraints to genetic programming trees, usually with the help of a context-
free grammar declared in the Backus-Naur-Form (BNF) [13]. The BNF-grammar consists of terminal nodes and non-
terminal nodes and is represented by the set {N,T,P,S} where N is the set of non-terminals, T is the set of terminals, P is
the set of production rules and S is a member of N corresponding to the starting symbol. The use of the terms terminal
and non-terminal in a BNF-grammar, does not correspond to what is usually referred in genetic programming as
terminal and function. Rather, a function -a non-terminal node in terms of the GP tree architecture- is expressed as
terminal in a BNF grammar.

Cellular Encoding

Although mapping decision trees or fuzzy rule-based systems to specific grammars can be relatively easy to implement,
the execution of massively parallel processing intelligent systems -such as the neural logic networks- is not forthright.
In order to explore variable sized solutions, we applied indirect encoding. The most common one is the cellular
encoding [15], in which a genotype can be realized as a descriptive phenotype for the desired solution. More
specifically, within such a function set, there are elementary functions that modify the system architecture together with
functions that calculate tuning variables. Current implementations include encoding for feed forward and Kohonen
neural networks [16], [17] and fuzzy Petri-nets [18], [17]. In his original work, Gruau also used a context-free grammar
- a BNF grammar- to encode indirectly the neural networks. On the other hand, in [18] a logic grammar - a context-
sensitive one- is adapted to encode fuzzy Petri-nets. In our work, we show that as long as the depth-first execution of

the program nodes of a GP tree is ensured -which is the default-, a context-free grammar such as a BNF grammar is
adequate for expressing neural networks. Gruau's original work has been facing some skepticism [19] on the ability to
express arbitrarily connected networks. Later developments [10] seem to offer less restrictive grammar, though the cut
function in those implementations still maintained bounded effect. A similar technology, called edge encoding,
developed by [20] is also today used with human competitive results in a wide area of applications.

DESIGN AND IMPLEMENTATION

Data Pre-processing and Genetic Programming Setup

It is accepted that the genetic programming procedure may suffer size problems during initialisation [21]. Although the
fine-tuning of our algorithm was not the main concern of this paper, we investigated various initialisation approaches.
Without claiming optimality, the GP parameters are presented in Table II. This setup, together with function selection
probability optimisation, offered for the presented grammar stable and effective runs throughout experiments. The
optimisation of function selection probabilities is consisted of giving more selection probability to GPTerminals rather
than GPFunctions. Although the initialisation of the population is random, using this probability bias the algorithm is
forced to generate individuals of acceptable size. This optimisation was decided after experimentation, since it is not
possible to obtain a general principle regarding the most proper probability values for every case. As it can be observed
in Table II, the setup denotes our preference for significantly high mutation rates, especially shrink mutation [22] that
slows down the code bloat caused by crossover operations.

System Grammar and Operating Functio

Par

Population:
GP implementat
Selection:
Tournament size
Crossover Rate:
Overall Mutatio
Node Mutation
Shrink Mutation
Killing Anti-Tou
Maximum allow
Maximum numb

The proposed system grammar is shown
type <PROG>. The function set is as fo

• Function PROG: The function
S2, P1 and P2 to be expande
the term “CNLN”.

• Function S1: The function S1
• Function P1:The function P1

nodes..
• Function S2: The function S2

nodes.
• Function P2: The function P2

layer nodes. This mechanism, c
S2), is used to ensure that popu
Table II. GP parameters for ENLN

ameter Value
2,000 individuals

ion: Steady-state Grammar Guided GP
Tournament with elitist strategy

: 6
 0.35
n Rate: 0.65
Rate: 0.4
 Rate: 0.6
rnament size: 2
ed individual size: 650 nodes
er of generations: 100
ns

 in Fig 4. Initial symbol (root) of a genetic programming tree can be a node of
llows:
PROG creates the embryonic network that is used later by the functions S1,

d. An alternative name for this function, which is used throughout this paper, is

enters a node in serial to the node that is applied, and is applied to input nodes.
enters a node in parallel to the node that is applied, and is also applied to input

 enters a node in serial to the node that is applied, and is used for hidden layer

enters a node in parallel to the node that is applied, and is also used for hidden
onsisting of two different sets of expanding functions (P1 and S1 vs. P2 and
lation individuals will include at least one input node.

• Function IN: The operation of function IN is to assign a variable to the input node that it is applied.

<PROG> : = PROG <PLACE1><SYNAPSE>
<PLACE1> : = S1 <PLACE1><SYNAPSE><PLACE2>
 | P1 <PLACE1><PLACE1>
 | IN
IN : = Data attribute (system input)
<PLACE2> : = S2 <PLACE2><SYNAPSE><PLACE2>
 | P2 <PLACE2><SYNAPSE><PLACE2>
 | E
E : = ∅
<SYNAPSE> : = LNK <NUM><CUT><SYNAPSE>
 | CNR <CNRSEL><K>
<NUM> : = NUM
<CUT> : = CUT
<CNRSEL> : = CNRSEL
<K> : = K
NUM : = Integer in [1,256]
CUT : = Integer in [0,1]
CNRSEL : = Integer in [0,10]
K : = Integer in [0,9]

Fig. 4. Context free grammar for the production of neural logic networks within genetic programming framework.

• Function E: The operation of function E is to mark the end of the expansion of the network.
• Function LNK: This function provides the framework for the application of cut function. It actually enables

the non-full connectivity of the network, a feature that offers larger solution search space.
• Function CNR: This function performs the node inference. Based on the first parameter, the corresponding

calculation is performed. The second parameter assists the calculation for the at-least-k and majority-of-k
operators. Possible computations are shown in Table III. An alternative name for this function, which is used
throughout this paper, is the term “Rule”. In order to be able to process values other than true, false and don’t
know, we applied the fuzzy propagation algorithm [1], which allows us to process any real valued variables
(using proper normalization).

• Function NUM: The function NUM returns an integer in the interval [1,256] to be used by the calling LNK
function.

• Function CUT: The function CUT returns an integer in the interval [0,1] to be used by the calling LNK
function. If the returned value is 1, then the link will be ignored in the calculations (considered "cut").

• Function CNRSEL: The function CNRSEL returns an integer in the interval [0,8] to be used by the calling CNR
function as its first parameter.

• Function K: The function K returns an integer in the interval [1,256] to be used by the calling CNR function if
the returned value of the CNRSEL is 3,4 or 6 (corresponding to the calculation of the at least k-true, at least k-
false and majority of k functions).

Having discussed the system design, in the following session we shall apply the methodology in two medical domains.

Table III. Operations for Function CNR
Parameter Calculation
0 Conjunction
1 Disjunction
2 Priority
3 At least k-true
4 At least k-false
5 Majority influence
6 Majority influence of k
7 2/3 Majority
8 Unanimity
9 If-Then operation,

Kleene’s model
10 Difference

RESULTS AND DISCUSSION

Postoperative Treatment

This problem is concerned with the decision whether a patient who is in a postoperative phase, should stay in the
hospital or sent home. The database contains 64 patient that must stay in hospital, 2 patients that must be put in
intensive care and 24 patients that must be sent home. [25]. In order to develop a classification system we consider as
decision task whether a patient should be sent home or stay in the hospital in general. By using this assumption, we
include the extremely small class of ‘intensive care’ patients (2 records) to those of ‘usual care in hospital’ patients.
Thus, the class of ‘stay in hospital’ patients includes 66 records, and the class of patients sent home the rest 24 [26]. In
order to avoid overfitting during the training phase, we applied the minimum description length principle. According to
the literature, the target is to develop a system with high accuracy and potential knowledge extraction. Table IV
presents the domain characteristics, and Table V shows the input features in detail.

Table IV. Domain description for the Postoperative treatment problem.

Domain Patient Postoperative
Treatment

Data Base Post-operative
Input Features 8
Continuous 8
Discrete 0
Binary 0
Anti-Overfitting Method Minimum Description Length
Total Records 88
Training Set Records 66
Validation Set Records 0
Test Set Records 22
Missing Data Yes, 3 values
Data Normalization Yes

The solution that was extracted using our system, although it achieves a 72.72% (16/22) accuracy in unknown data, it
additionally enables the interpretation of the solution. The accuracy in the training data was 74.24% (49/66).

Table V. Input features of the Postoperative data.

Variable Feature Values / Value range
T1 L-CORE (internal patient temperature) High (> 37), Medium (>= 36 and <= 37), Low (<

36)
T2 L-SURF (surface patient temperature) High (> 36.5), Medium (>= 36.5 and <= 35),

Low (< 35)
T3 L-O2 (oxygen saturation in %) Excellent (>= 98), Good (>= 90 and < 98), Fair

(>= 80 and < 90), Bad (< 80)
Τ4 L-BP (τελευταία µέτρηση πίεσης αίµατος) High (> 130/90), Medium (<= 130/90 and >=

90/70), Low (< 90/70)
Τ5 SURF-STBL (surface patient temperature stability) stable, mod-stable, unstable
Τ6 CORE-STBL (internal patient temperature stability) stable, mod-stable, unstable
Τ7 BP-STBL (blood pressure stability) stable, mod-stable, unstable
Τ8 COMFORT (patient's perceived comfort at discharge) 0-20

From the solution that is shown in Fig. 5, we may extract the following simple rule system:

Q conjunction (Internal patient temperature) ⇐

The above rule can be freely interpreted into a simple rule statement, like “the higher is Internal patient temperature,

the more likely is to keep the patient in the hospital”.

(CNLN (In T1) (Rule 0 0))

Fig. 5. Solution description and the corresponding neural logic network for the Postoperative problem.

Diagnosis of Breast Cancer

This database of Breast cancer patients has been created in the Medical University of Winsconsin [27,28]. The
diagnosis is concerned with the classification of a tumor as benign or malignant. In the past, a part of this data has been
investigated using linear programming [29,30] and the accuracy in a total of 169 records varies between 93.5% and
95.9% depending on the system tuning. In a later data set we investigate (369 records in total), they have been applied
machine learning techniques [31]. The accuracy, in a test set of 169 records, varies between 92.2% and 93.7%
depending on the system tuning. In the full data that are available today (699 records), 458 (65.5%) concern benign
tumors and the rest 241 (34.5%) malignant ones. The missing data percentage is low (1 ‰).

Table VI. Domain description for the Breast cancer diagnosis.
Domain Diagnocis of Breast cancer
Data Base Cancer
Input Features 9
Continuous 9
Discrete 0
Binary 0
Anti-Overfitting Method Validation Set
Total Records 696
Training Set Records 348
Validation Set Records 174
Test Set Records 174
Missing Data Yes, 16 values
Data Normalization Yes

The database features are laboratory measurements of the cells. More specifically, these features are presented in Table
VII. To avoid overfitting during training we made use of a validation set.

Table VII. Input features of the Breast cancer database.

Variable Feature Values / Value range
T1 Clump Thickness 1-10 -> 0..1
T2 Uniformity of Cell Size 1-10 -> 0..1
T3 Uniformity of Cell Shape 1-10 -> 0..1
Τ4 Marginal Adhesion 1-10 -> 0..1
Τ5 Single Epithelial Cell Size 1-10 -> 0..1
Τ6 Bare Nuclei 1-10 -> 0..1
Τ7 Bland Chromatin 1-10 -> 0..1
Τ8 Normal Nucleoli 1-10 -> 0..1
Τ9 Mitoses 1-10 -> 0..1

The extracted solution is shown in Fig. 6. This solution achieved accuracy 94.25% (164/174) in unknown data (test set).
The solution was extracted after 26,000 iterations and the accuracy in the training set and in the validation set was
97.99% (341/348) and 97.12% (169/174) correspondingly. Although this solution is consisted of a relatively large

neural logic network, it still maintains its interpretability a (large) number of logic rules. In this solution, only 7 out of 8
features are used. Specifically, the variable of ‘Marginal Adhesion’ is not used.

(CNLN (P1 (P1 (In T3) (S1 (In T7) (Rule 0 0) E)) (P1 (P1 (P1 (P1 (P1 (In T1) (S1 (In T5) (Link 257 2
(Rule 6 6)) E)) (S1 (S1 (In T2) (Link 115 0 (Link 179 0 (Rule 0 0))) E) (Link 115 0 (Rule 0 0)) E))
(S1 (In T6) (Rule 0 0) E)) (P1 (S1 (In T1) (Rule 0 0) (S2 E (Rule 0 0) (S2 E (Rule 0 0) E))) (S1 (P1
(S1 (In T2) (Rule 0 0) (P2 (S2 E (Rule 0 0) E) (Rule 0 0) E)) (P1 (In T8) (S1 (In T6) (Rule 6 6)
E))) (Rule 0 0) (P2 E (Rule 0 0) (S2 (S2 E (Rule 2 4) E) (Rule 0 0) E))))) (P1 (P1 (In T3) (S1 (In
T7) (Rule 0 0) E)) (P1 (P1 (In T1) (In T7)) (S1 (In T2) (Link 115 0 (Rule 0 0)) E))))) (Rule 6 6))

Fig. 6. Solution description and the corresponding neural logic network for the Breast cancer diagnosis problem.

CONCLUSIONS AND FURTHER RESEARCH

Neural networks are powerful connectionist systems that have been introduced in areas where symbolic processing
systems of traditional artificial intelligence used to be applied. As a tool of computational intelligence, the adaptation of
the neural network to the problem domain using an inductive method, offers advantage over expert systems where the
knowledge must be acquired first, before the system development. Ever since their first application, interpretation of the
obtained knowledge was a research target for neural networks. In the scope of this area, the neural logic networks have
been proposed as a class of networks that by their definition preserve their interpretability into symbolic knowledge.
Until recently however, the application of an effective training / production method within the CI framework has not
been successful. A novel system that uses genetic programming with indirect encoding that has been proposed recently
[4], overcomes these problems, producing automatically designed and tuned neural logic networks, which always
preserve their interpretability. In this work we applied the system into two real-world medical problems, the
Postoperative treatment diagnosis and the diagnosis of the Breast Cancer. In both problems, the system has been proved
capable of producing competitive to the literature results, which maintain their interpretability and lead to potential
knowledge extraction.
Future work involves the application of the system in other areas, as well as the incorporation of recursive structures
into the neural logic network architecture. Moreover, the minimum description length principle will be developed to be
included as an anti-overfitting measure into the Breast cancer problem. Finally, parameter-tuning optimization of the
underlying genetic programming algorithm is expected to offer better efficiency, hence it will be of primary importance
among our future work.

REFERENCES

[1] Teh H.H., Neural Logic Networks: A New Class of Neural Networks, World Scientific Pub Co, 1995.

[2] Tan A-H. and Teow L-N., “Inductive neural logic network and the SCM algorithm”, Neurocomputing, Vol. 14, 2 :
5, pp.157-176, 1997

[3] Chia H.W-K. and Tan C-L.,"Neural logic network learning using genetic programming", Intl. Journal of Comp.
Intelligence and Applications, 1:4, 2001, pp 357-368.

[4] Tsakonas A., Aggelis V., Karkazis I. and Dounias G., “An Evolutionary System for Neural Logic Networks using
Genetic Programming and Indirect Encoding”, Journal of Applied Logic, accepted for publication, Elsevier, Spring
2004.

[5] Alba E., Cotta C. and Troya J.M., "Evolutionary Design of Fuzzy Logic Controllers Using Strongly-Typed GP",
Proc. 1996 IEEE Int'l Symposium on Intelligent Control, pp. 127-132. New York, NY., 1996.

[6] Tsakonas A., Dounias G., "Hierarchical Classification Trees Using Type-Constrained Genetic Programming",
Proc. of 1st Intl. IEEE Symposium in Intelligent Systems, Varna, Bulgaria, 2002.

[7] Tsakonas A., Dounias G., Axer H., and von Keyserlingk D.G., "Data Classification using Fuzzy Rule-Based
Systems represented as Genetic Programming Type-Constrained Trees", Proc. of the UKCI-01, Edinbourgh, UK,
pp 162-168, 2001.

[8] Tsakonas A. and Dounias G., "A Scheme for the Evolution of Feedforward Neural Networks using BNF-Grammar
Driven Genetic Programming", Proc. of Eunite-02, Algarve, Portugal, 2002.

[9] Yu T. and Bentley P., "Methods to Evolve Legal Phenotypes", Lecture Notes in Comp. Science 1498, Proc. of.
Parallel Problem Solving from Nature V, pp 280-291,1998.

[10] Gruau F., Whitley D. and Pyeatt L., "A Comparison between Cellular Encoding and Direct Encoding for Genetic
Neural Networks", in Koza J.R., Goldberg D.E., Fogel D.B., Riolo R.L., Eds.,, Genetic Programming 1996:
Proceedings of the First Annual Conf., pp 81-89, Cambridge, MA, MIT Press, 1996.

[11] Montana D.J., "Strongly Typed Genetic Programming", Evolutionary Computation, vol. .3, no. 2, 1995.

[12] N.Paterson and M.Livesey,"Evolving Caching Algorithms in C by GP", Genetic Programming 1997, pp 262-267,
MIT Press, 1997.

[13] Naur P., "Revised report on the algorithmic language ALGOL 60", Commun. ACM, Vol 6, No 1, pp 1-17, Jan
1963.

[14] Whigham P., "Search Bias, Language Bias and Genetic Programming", Genetic Programming 1996, pp 230-237,
MIT Press, 1996

[15] Gruau F., "Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm", Ph.D. Thesis, Ecole
Normale Superieure de Lyon, anonymous ftp:lip.ens-lyon.fr (140.77.1.11) pub/Rapports/ PhD PhD94-01-E.ps.Z.

[16] Gruau F., "On Using Syntactic Constraints with Genetic Programming", in P.J.Angeline, K.E.Jinnear,Jr., Eds.,
Advances in Genetic Programming, MIT,1996.

[17] Tsakonas A. and Dounias G., Decision Making in the Medical Domain: Comparing the Effectiveness of GP-
Generated Fuzzy Intelligent Structures, Proc. of Eunite-03, Oulou, Finland, 2003.

[18] Wong M.L., "A flexible knowledge discovery system using genetic programming and logic grammars", Decision
Support Systems, 31, 2001, pp 405-428.

[19] Hussain T., "Cellular Encoding: Review and Critique", Technical Report, Queen's University, 1997,
http://www.qucis.queensu ca/home/hussain/web/1997_cellular_encoding_review.ps.gz

[20] J.Koza, F. Bennett, D. Andre and M. Keane, Genetic Programming III: Automatic Programming and Automatic
Circuit Synthesis, Morgan Kaufmann, 2003.

[21] Ratle A. and Sebag M., "Genetic Programming and Domain Knowledge: Beyond the Limitations of Grammar-
Guided Machine Discovery", Schienauer et al., Eds., Proc. of the 6th Conf. on Parallel Problems Solving from
Nature, LNCS, Springer, Berlin, 2000, pp 211-220

[22] Singleton A., "Genetic Programming with C++", BYTE Magazine, Feb 1994.

[23] Smith,J.W., Everhart,J.E., Dickson,W.C., Knowler,W.C., and Johannes,R.S., “Using the ADAP learning algorithm
to forecast the onset of diabetes mellitus”, Proc. of the Symposium on Computer Applications and Medical Care,
pp. 261--265. IEEE Computer Society Press, 1988.

[24] Diaconis,P. and Efron,B. “Computer-Intensive Methods in Statistics”, Scientific American, Vol. 248, 1983.

[25] A. Budihardjo, J. Grzymala-Busse, L. Woolery. Program LERS_LB 2.5 as a tool for knowledge acquisition in
nursing, Proceedings of the 4th Int. Conference on Industrial & Engineering Applications of AI & Expert Systems,
pp. 735-740, 1991

[26] L. Woolery, J. Grzymala-Busse, S. Summers, A. Budihardjo .The use of machine learning program LERS_LB 2.5
in knowledge acquisition for expert system development in nursing. Computers in Nursing 9, pp. 227-234, 1991.

[27] O. L. Mangasarian and W. H. Wolberg, Cancer diagnosis via linear programming, SIAM News, Volume 23,
Number 5, September 1990, pp 1 - 18.

[28] O. L. Mangasarian, R. Setiono, W.H. Wolberg, Pattern recognition via linear programming: Theory and application
to medical diagnosis", in: "Large-scale numerical optimization, Thomas F. Coleman and Yuying Li, editors, SIAM
Publications, Philadelphia 1990, pp 22-30.

[29] W.H. Wolberg and O.L. Mangasarian, Multisurface method of pattern separation for medical diagnosis applied to
breast cytology, Proceedings of the National Academy of Sciences, U.S.A., Volume 87, December 1990, pp 9193-
9196.

[30] K. P. Bennett, O. L. Mangasarian: "Robust linear programming discrimination of two linearly inseparable sets",
Optimization Methods and Software 1, 1992, 23-34,Gordon & Breach Science Publishers.

[31] Zhang,J., Selecting typical instances in instance-based learning. In Proceedings of the Ninth International
Machine Learning Conference, pp. 470-479, 1992, Aberdeen, Scotland: Morgan Kaufmann.

