

Hierarchical Classification Trees
Using Type-Constrained Genetic Programming

Athanasios Tsakonas and George Dounias, Member, IEEE

Abstract⎯In this paper we investigate the capability of the

genetic programming approach for producing hierarchical,
rule-based, classification trees. These trees can be seen as an
extension to the machine learning decision trees concept,
where the predicates here can be complex expressions rather
than just simple attribute-value comparisons. In order to
improve the search ability and to produce meaningful results,
type-constraints are applied to the genetic programming
procedure, expressed in a BNF grammar. The model is tested
in two well-known domains. In the Balance-Scale data, the
system achieves in revealing the data creation rule. In the E-
Coli Protein Localization Sites data, the system realizes a
competitive to the literature classification score, retaining the
solution comprehensibility. The training procedure is guided
by an adaptive fitness measure. The overall performance of
this system denotes its competitiveness to standard
computational intelligent procedures.

Index Terms⎯Classification Trees, Type-Constrained

Genetic Programming, Balance-Scale, E-Coli Protein
Localization Site

I.INTRODUCTION
The classification procedures can be divided in two types,
concerning the number of categories that are classified. The
first classification type separates the data between only two
classes (known as binary classification or two-class task),
and the second type classifies the data between more than
two classes (multi-class task). Today, there is a number of
intelligent classification methods which handle efficiently
the two-class task, such as the AdaBoost and the support
vector machines. On the other hand, there are intelligent
methodologies, such as the inductive decision trees or the
genetic algorithms, which can handle efficiently both types
of classification. In this paper, we are concerned, among
the various classification approaches, with the rule-base
production techniques for classification. Any multi-class
problem can be substituted by, more than one, two-class
problems. One such approach is to build independent
classification rules for each of the classes and then run
these -competitive- rules simultaneously [1]. However, it is
not clear how the case of possible classification conflicts
between some of the rules would be dealt with. Moreover,
it is not clear, how the absence of a positive classification
result, would be dealt with, among that kind of competitive
crisp rule-bases. This problem is addressed in [2] where the
construction of two-class (or two class-sets) rules is

A.Tsakonas is with the University of the Aegean, Dept. of Business
Administration, 82100 Chios, Greece, (telephone 30-93-789-1399, e-mail:
tsakonas@stt.aegean.gr)

G.Dounias is with the University of the Aegean, Dept. of Business
Administration, 82100 Chios, Greece, (telephone 30-271-035165, e-mail:
g.dounias@aegean.gr)

performed in a hierarchical way, creating a cooperative
crisp rule-base -rather a competitive one-which always
results in one class. A prime disadvantage, in both
techniques, is that, each of the rules demands a separate run
for the intelligent approach - in these cases, the genetic
programming [3]. Thus, these methods can be case-driven
and may involve heavy human interaction -and so, dubious
results in different problems-, preventing us from
characterizing them as generalizing approaches. The other
way of handling multi-class tasks, in order to build a rule-
base, is by using directly a multi-class approach. Among
the methodologies of this type, inductive decision trees and
genetic programming have been used with success in the
past, although the complexity of the classification task
often is increased when more than two classes are
separated. These multi-class methods can be further divided
in two types. The first type constructs fuzzy competitive
rule-bases using, for example, heuristic [4] or genetic
programming [5] techniques. The second type, constructs
crisp cooperative and hierarchical classification rule-trees,
such as Quinlan's inductive decision trees [6]. The
popularity of these decision trees may be explained by the
natural decision method that humans often follow. The
latter conclusion is demonstrated for example, in the
medical field, where physicians usually follow a form of a
complex decision/classification tree [7], showing that,
medical decision making often is similar to Quinlan's
approach. Although fast and robust, this algorithm is
however restricted in terms of each rule's (tree branch)
premise set, where the expression evaluated is an inequality
between an attribute (input variable) and a value (number).
Apparently, a more generic methodology could involve, in
the rules' premise sets, the incorporation of more complex
comparisons, such as combinations of expressions
including more than one attributes and values. The idea is
addressed in [3,8] where the genetic programming
approach is used to build a kind of decision trees. In
general, the genetic programming search, found with a
proper function set, has been proved capable in finding
optimal solutions in a reasonable time for a variety of
classification tasks [9]. Nevertheless, two problems arise,
when dealing with the construction of hierarchical
classification trees. First, as the number of classes
addressed is usually more than two, and the search space is
large, the methodology can be proved inefficient and slow.
Second, the form of the solution is not derived necessarily
in a comprehensive form. These problems are addressed in
this paper by applying syntax constraints in the genetic
programming trees, in order to improve the readability of
the solutions and speed up the search by reducing the
number of possible node combinations - thus the search
space. This paper is organized as follows. In the next
section, the design and implementation of the model is

discussed. Section 3 contains the results from the
application of the system in two databases, the Balance-
Scale and E-Coli Protein Localization Sites. Finally,
section 4 includes our conclusions and proposes further
research in this domain.

II.DESIGN AND IMPLEMENTATION
Genetic Programming is an extension to the original

concept of genetic algorithms where the existence of
chromosomes is substituted by variable length, tree-like
programs. The main genetic operators -such as crossover
and mutation- are applied in genetic programming too. The
hierarchical structure of a genetic programming candidate
solution, known as individual, enables to each independent
node to carry a functional code - thus, the solution can
behave like a program. These nodes may represent a
primitive operator -such as addition or multiplication- a
number, a variable, etc. Most favorite genetic programming
implementations are the steady-state ones, where only one
population is preserved and, usually, a tournament
selection between a small number of individuals replace the
worst of these in every iteration. Although powerful in its
definition, the genetic programming procedure may be
proved greedy in computational and time resources.
Therefore, when the syntax form of the desired solution is
already known, it is useful to restrain the genetic
programming from searching solutions with different
syntax forms [10,11]. The most advantageous method to
implement such restrictions, is to apply syntax constraints
to genetic programming trees, usually with the help of a
grammar, often declared in the Backus-Naur-Form (BNF)
[12]. The BNF-grammar consists of terminal nodes and
non-terminal nodes and is represented by the set {N,T,P,S}
where N is the set of non-terminals, T is the set of
terminals, P is the set of production rules and S is a
member of N corresponding to the starting symbol. Here,
the use of the terms terminal and non-terminal in a BNF-
grammar, is not corresponding to what Koza defines as
terminal and function. Rather, a function -a non-terminal
node in terms of the GP tree architecture- is expressed as
terminal in a BNF grammar. To avoid confusion, the use of
the terms GPFunction and GPTerminal -instead of the
ambiguous terms function and terminal- has been proposed
[13] and is adapted throughout this paper. The construction
of the production rules is the most critical point in the
creation of a BNF grammar, since they express the
permissible structures of an individual. In Table I, we show
the production rules for the implementation of hierarchical
rule-based classification trees into the genetic programming
architecture. A legal tree according to this grammar is
shown in Figure 1.

As seen by the grammar definition, a <clause> node may
be either a <class> node or a <if> (<if_less>, <if_equal>
etc.) node. If we examine more carefully this rule of the
grammar, we may notice that this design enables the
existence of one-node solutions, for example CLASS3.
Although this case is absolutely normal, it was proved in
our experiments that it can delay the solution search, by
creating many single-class individuals (as one such
individual may have good fitness in the beginning of the

run) and thus reducing the population diversification very
early, leading to local optima. To encounter this
phenomenon, we selected to apply two measures. First, we
tuned the selection probability for operations, between the
<clause> representatives (i.e. we gave more selection
probability to <if> rather than to <class> nodes). Second,
we modified the fitness measure as shown in the following
equations, in order not to promote very small-sized
solutions. This modified fitness measure performs a penalty
to small-sized solutions adapting the size of the solution
examined. Although these measures do not guarantee that
the run will not converge early, it was shown in our
experiments that the algorithm performed statistically better
(i.e. we did not encounter early convergence to local
optima). This fitness measure is given by the equations:

 F aφ= (1)

1

0

(1: | 0 :)
n

t t t t
t

f Y f Yφ
−

=

= = ≠∑ (2)

where F is the program fitness, t is a record in the
training set, n is the number of training records, ft is the
program output for the record t, and Yt is the value of the
record t. The a factor, is given by the following equation:

TABLE I
BNF GRAMMAR PRODUCTION RULES FOR HIERARCHICAL CLASSIFICATION

TREES IN GENETIC PROGRAMMING

Symbol 1. Quantity

<CLAUSE> ::= <CLASS>|<IF_LESS>| <IF_EQUAL>|….
<IF_LESS> ::=IF_LESS<EXPR> <EXPR> <CLAUSE><CLAUSE>
<EXPR> ::=<NUMB> | <OPER>
<OPER> ::=<PLUS>|<MINUS>|….
<PLUS> ::= + <EXPR> <EXPR>
<NUMB> ::=1 | 2 | 3 ….
<CLASS> ::=CLASS1|CLASS2|CLASS3|…

The trees are described in a prefix notation. Words in bold denote
program nodes (terminals).

IF <
 *
 X1
 4

8
then CLASS1
else IF =
 X2
 X3
 then CLASS2
 else CLASS3

Fig. 1. Tree representation, according to our grammar, for the example
expression: IF ((X1*4)<8) then CLASS1 else (IF (X2=X3) then
CLASS2 else CLASS3)

)95.0:
05.0

94.0)5.0(21|95.0:1(≥
−−

−<= SSSa (3)

where S is the simplicity factor. This factor is presented

in [1] and its value is:

0.5 0.5

1
M NS

M
− −

=
−

 (4)

where M stands for the maximum size of trees allowed in

our application (in nodes), N stands for the examined
solution's size (in nodes). This value ranges from 0.5 to 1,
producing 0.5 when the expression has the maximum size
and 1 when the expression has only one node (the simpler
case). This fitness measure will reduce the actual fitness
value, when the simplicity's value of the solution is greater
than 0.95, in a linear manner, finally producing zero fitness
value when the simplicity's value is one.

III.RESULTS AND DISCUSSION

A.Balance-Scale Data
The first data set we selected to apply the system is the

Balance-Scale [14]. This data was generated to model
psychological experimental results. Each example is
classified as having the balance scale tip to the right, tip to
the left, or be balanced. The attributes are the left weight,
the left distance, the right weight, and the right distance.

The correct way to find the class is the greater of (left-
distance * left-weight) and (right-distance * right-weight).
If they are equal, it is balanced. The data set has 625
examples (49 balanced, 288 left and 288 right). As we
expect no numbers to appear in the solution formula and no
other operators except multiplication, we adapted the
function set shown in Table II. We separated the data set
into training and test sets with 313 and 312 examples
accordingly. Odd examples were assigned to training set
and even examples to test set. By applying this selection we
resulted into having 45 examples of balanced records in the

training set and only 4 of
kind of selection was not d
training phase is shown,
validation, the genetic p
almost accurate results earl
unusual outcome is howev
extracted formula of the tw

data set, that are these of Left and Right class.
The extracted solution, achieved after 6,757,670

iterations (~281 generations), classified correctly both the
100% of the training set examples and the 100% of the
testing set examples. As it is seen from Figure 3, the
formula is rather complex as compared to the original
determining formula of this data set. This is due to the fact
that the penalties concerning the solution size, that are
included in the algorithm -as discussed in the previous
paragraph- abet the generation of middle or large-sized
solutions. Nevertheless, this formula can easily be
simplified into the determining one as many of the formula
parts have constant sub-result -i.e. they have no effect to
the formula's value-, parts known as introns. This example
demonstrates that if a deterministic generation formula

100
150
200
250
300
350

10
00

0
51

00
00

1.
01

E+
06

1.
51

E+
06

2.
01

E+
06

2.
51

E+
06

3.
01

E+
06

3.
51

E+
06

4.
01

E+
06

4.
51

E+
06

5.
01

E+
06

5.
51

E+
06

6.
01

E+
06

6.
51

E+
06

Iterations

Fi
tn

es
s

Training Test

Fig. 2. Best individual during run for Balance-Scale.

GP PARAMETE

Parameters

Population: 12
GP implementation: S
Selection: T
Tournament size: 6
*Crossover Rate: 0.
*Overall Mutation Rate: 0.
*Node Mutation Rate: 0
*Shrink Mutation Rate: 0
Killing Anti-Tournament
size:

2

Maximum allowed
formula size:

25

GPFunction set If
If
If

GPTerminal set C
* operations are subject
to type-constraints

TABLE II
RS FOR BALANCE-SCALE

Values
,000 individuals

teady-state Type-Constrained GP
ournament with elitist strategy

6
4
.4
.6

0 tree-nodes per individual

Greater(x1,x2,y1,y2),
Less(x1,x2,y1,y2),
Equal(x1,x2,y1,y2), Multiplication (*)
lass Values, Attribute Values
them in the test set. While this
eliberate, in Figure 2, where the
it is seen that, in the test set
rogramming process achieved
ier than in the training set. This
er due to the coverage of the
o multitudinous classes in test

e
p
s
c
r

IF RW*RD < LW*LD
 then L
 else IF RW > RW
 then R
 else IF RD*RW = LW*LD
 then B
 else IF LW < RD
 then R
 else IF RW > LD
 then R
 else IF LW < RD
 then IF LD > RW
 then R
 else L
 else IF LW > LW
 then B
 else IF LD < RD
 then IF LW > LW
 then IF LW > LD
 then L
 else R
 else IF LW*LW > RD
 then R
 else R
 else IF RW > RW
 then R
 else IF RD*RW*RD > LW
 then B
 else L

Fig. 3. Hierarchical classification tree for the Balance-Scale produced by
our model
xists for the data involved, the proposed genetic
rogramming configuration, found with a proper function
et, will probably reveal it in an efficient amount of
omputational effort. The prime advantage of our solution
emains though, that it is easily comprehensive by humans,

and underlies the knowledge extraction.

B.Protein Localization Sites : the E-Coli database
The second data set we applied our system is the E-Coli

Protein Localization Site [15]. The aim is to classify the
localization site of the protein. There are seven predictive,
real-valued, attributes (see Table III) and eight different
localization sites.

The data set has 336 examples and the class distribution
is not uniform (see Table IV).

We separated the data in two halves. The first half was
used to compare the classification ability of our system to

previous work such as in [15], where a 81% classification
accuracy was achieved with an ad hoc structured
probability model. Furthermore, we tested the extracted
prediction formula of our system to unknown data (the
second half of the data set), in order to reveal the
generalization abilities of the formula. As with the Balance-
Scale data, in separating the data set in two halves we
selected for the first data set the odd examples and for the
second data set the even examples.

The genetic programming parameters are shown in Table
V. The solution presented in Figure 4 was obtained after
44,010,000 iterations (~1833 generations). It succeeded in
classifying correctly 143 out of the 168 data examples
given (accuracy: 85.12 %). Furthermore, when this formula
was applied to unknown data it correctly classified 119 out
of 168 examples (accuracy: 70.83 %).

These outcomes denote that this intelligent model
achieves competitive results in classification scores and at
the same time preserves the solution comprehensibility.
Moreover, this formula can be further simplified, while
they exist parts of the classification tree that produce
constant values.

TABLE V
GP PARAMETERS FOR THE E-COLI PROTEIN LOCALIZATION SITE

Parameters Values

Population: 12,000 individuals
GP implementation: Steady-state Type-Constrained GP
Selection: Tournament with elitist strategy
Tournament size: 6
*Crossover Rate: 0.6
*Overall Mutation Rate: 0.4
*Node Mutation Rate: 0.4
*Shrink Mutation Rate: 0.6
Killing Anti-Tournament
size:

2

Maximum allowed
formula size:

250 tree-nodes per individual

GPFunction set IfGreater(x1,x2,y1,y2),
IfLess(x1,x2,y1,y2),
IfEqual(x1,x2,y1,y2), Addition (+),
Subtraction (-), Multiplication (*),
Protected Division (%)

GPTerminal set Class Values, Attribute Values, Numbers
* operations are subject to type-constraints

IF ALM1>CHG
 then IF 92%(-29)>ALM2
 then IM
 else IF MCG>CHG
 then IF LIP<120
 then IF 60%(-29)>ALM2
 then CP
 else IF GVH>ALM1
 then OM
 else IF ALM1<MCG
 then IMU
 else IF 85<CHG
 then PP
 else IF AAC>CHG
 then IM
 else IF ALM1>LIP
 then IF GVH>CHG
 then PP
 else IF PP=-57
 then IM
 else IMU
 else CP
 else IF GVH>CHG
 then PP
 else IF MCG>CHG
 then PP
 else IML
 else IF ALM1<MCG
 then IMU
 else IF AAC>CHG
 then IM
 else IF MCG>GVH
 then CP
 else IM
 else IF MCG>CHG
 then IF MCG>AAC
 then IF MCG=GVH
 then IF GVH>CHG
 then PP
 else CP
 then IF MCG=GVH
 then IF OML<-57
 then OML
 else OM
 else IF GVH>CHG
 then PP
 else CP
 else OM
 else IF MCG>CHG
 then IMU
 else IF ALM1>LIP
 then PP
 else CP

Fig. 4. Hierarchical classification tree for the the E-Coli Protein
Localization Site produced by our model

TABLE III
E-COLI PROTEIN LOCALIZATION SITE ATTRIBUTE INFORMATION

Symbol Value
MCG McGeoch's method for signal sequence recognition
GVH von Heijne's method for signal sequence recognition
LIP von Heijne's Signal Peptidase II consensus sequence score
CHG Presence of charge on N-terminus of predicted lipoproteins
AAC score of discriminant analysis of the amino acid content of

outer membrane and periplasmic proteins
ALM1 score of the ALOM membrane spanning region prediction

program
ALM2 score of the ALOM program after excluding putative

cleavable signal regions from the sequence

TABLE IV
E-COLI PROTEIN LOCALIZATION SITE CLASS DISTRIBUTION

Symbol Value Number of
Examples

CP cytoplasm 143
IM inner membrane without signal sequence 77
PP periplasm 52
IMU inner membrane, uncleavable signal

sequence
35

OM outer membrane 20
OML outer membrane lipoprotein 5
IML inner membrane lipoprotein 2
IMS inner membrane, cleavable signal sequence 2

IV.CONCLUSIONS AND FURTHER RESEARCH
This paper addressed the creation of hierarchical

classification trees using genetic programming. These trees
are composed by comprehensible cooperative rules and
achieve a competitive classification score. Moreover, each
rule's premise set is allowed to be arbitrary complex. In
order to implement such a system, we embedded
constraints' grammar into the common genetic
programming procedure. The model was tested in two
domains.

 The first test showed that the system is capable of
extracting underlying knowledge in a comprehensive form
and the second test showed that the learning capability of
this system is high. The overall results are encouraging,
denoting the effectiveness of our system. Further research
could involve the application of this system to other real-
world data as well as the incorporation and testing of
different function sets. On the other hand, tuning
investigation of the algorithm can be proved valuable in
terms of speed efficiency.

REFERENCES
[1] Célia C.Bojarczuk, Heitor S.Lopes, Alex A.Freitas, "Genetic

Programming for Knowledge Discovery in Chest-Pain Diagnosis", in
IEEE Engineering in Medicine and Biology, pp. 38-44, July 2000

[2] G. Dounias, A.Tsakonas, J.Jantzen, H. Axer, B. Bjerregaard, D. G.
v.Keyserlingk, "Genetic Programming for the Generation of Crisp
and Fuzzy Rule Bases in Classification and Diagnosis of Medical
Data", in Proc. of NF-2002, Habana, Cuba, 2002

[3] John R.Koza, "Genetic Programming - On the Programming of
Computers by Means of Natural Selection", The MIT Press, 1992

[4] Nauck Detlef and Kruse Rudolf, “NEFCLASS – a Neuro-Fuzzy
approach for the classification of data”, In K. M. George, J. H.
Carrol, Ed. Deaton, D. Oppenheim, J. Hightower, (eds.), Applied
Computing, ACM Symposium on Applied Computing, Nashville,
Feb. 26-28, pp. 461-465, ACM Press, New York, February 1995.

[5] E.Alba, C.Cotta, J.M.Troya, "Type-Constrained Genetic
Programming for Rule-Base Definition in Fuzzy Logic Controllers",
in John R. Koza, David E. Goldberg, David B. Fogel, Rick L. Riolo
(eds.), Proc. of the 1st Ann. Conf. on Genetic Programming,
Stanford Univ., Cambridge, MA. The MIT Press, pp. 255-260, 1996.

[6] Quinlan, J.R., “Induction of Decision Trees”, Machine Learning,
Vol. 1, pp. 81-106, 1986.

[7] Elstein A. S., Shulman Lee S., Sprafta S. A.,“Medical problem
solving: an analysis of clinical reasoning“, Cambridge, Harvard
University, 1978

[8] John R.Koza, "Genetic Programming II - Automatic Discovery of
Reusable Programs", The MIT Press, 1994

[9] John R.Koza, Forrest H.Bennett III, David Andre, Martin A. Keane,
"Genetic Programming III", Morgan Kaufmann Publishers, Inc.,
1999

[10] F.Gruau, "On Using Syntactic Constraints with Genetic
Programming", in P.J.Angeline, K.E.Jinnear,Jr. (eds.), "Advances in
Genetic Programming", MIT,1996

[11] D.J.Montana, "Strongly Typed Genetic Programming", in
Evolutionary Computation, vol. .3, no. 2, 1995

[12] C.Ryan, J.J.Collins, M. O'Neil, "Grammatical Evolution: Evolving
Programs for an Arbitrary Language", in W.Banzhaf, R.Poli,
M.Schoenauer, T.C.Fogarty (eds.), "Genetic Programming", Lecture
Notes in Computer Science, Springer, 1998

[13] P.Whigham, "Search Bias, Language Bias and Genetic
Programming", in Genetic Programming 1996, pp. 230-237, MIT
Press, 1996

[14] Siegler, R.S., "Three Aspects of Cognitive Development", Cognitive
Psychology, vol. 8, pp. 481-520, 1976

[15] Paul Horton and Kenta Nakai, "A Probabilistic Classification System
for Predicting the Cellular Localization Sites of Proteins", Intelligent
Systems in Molecular Biology, pp. 109-115, St.Louis, USA, 1996

	Introduction
	Design and Implementation
	Results and Discussion
	A.Balance-Scale Data
	B.Protein Localization Sites : the E-Coli database

	Conclusions and Further Research

