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Abstract⎯In this paper we investigate the capability of the 

genetic programming approach for producing hierarchical, 
rule-based, classification trees. These trees can be seen as an 
extension to the machine learning decision trees concept, 
where the predicates here can be complex expressions rather 
than just simple attribute-value comparisons. In order to 
improve the search ability and to produce meaningful results, 
type-constraints are applied to the genetic programming 
procedure, expressed in a BNF grammar. The model is tested 
in two well-known domains. In the Balance-Scale data, the 
system achieves in revealing the data creation rule. In the E-
Coli Protein Localization Sites data, the system realizes a 
competitive to the literature classification score, retaining the 
solution comprehensibility. The training procedure is guided 
by an adaptive fitness measure. The overall performance of 
this system denotes its competitiveness to standard 
computational intelligent procedures. 

 
Index Terms⎯Classification Trees, Type-Constrained 

Genetic Programming, Balance-Scale, E-Coli Protein 
Localization Site 

 

I.INTRODUCTION 
The classification procedures can be divided in two types, 
concerning the number of categories that are classified. The 
first classification type separates the data between only two 
classes (known as binary classification or two-class task), 
and the second type classifies the data between more than 
two classes (multi-class task). Today, there is a number of 
intelligent classification methods which handle efficiently 
the two-class task, such as the AdaBoost and the support 
vector machines. On the other hand, there are intelligent 
methodologies, such as the inductive decision trees or the 
genetic algorithms, which can handle efficiently both types 
of classification. In this paper, we are concerned, among 
the various classification approaches, with the rule-base 
production techniques for classification. Any multi-class 
problem can be substituted by, more than one, two-class 
problems. One such approach is to build independent 
classification rules for each of the classes and then run 
these -competitive- rules simultaneously [1]. However, it is 
not clear how the case of possible classification conflicts 
between some of the rules would be dealt with. Moreover, 
it is not clear, how the absence of a positive classification 
result, would be dealt with, among that kind of competitive 
crisp rule-bases. This problem is addressed in [2] where the 
construction of two-class (or two class-sets) rules is 
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performed in a hierarchical way, creating a cooperative 
crisp rule-base -rather a competitive one-which always 
results in one class. A prime disadvantage, in both 
techniques, is that, each of the rules demands a separate run 
for the intelligent approach - in these cases, the genetic 
programming [3]. Thus, these methods can be case-driven 
and may involve heavy human interaction -and so, dubious 
results in different problems-, preventing us from 
characterizing them as generalizing approaches. The other 
way of handling multi-class tasks, in order to build a rule-
base, is by using directly a multi-class approach. Among 
the methodologies of this type, inductive decision trees and 
genetic programming have been used with success in the 
past, although the complexity of the classification task 
often is increased when more than two classes are 
separated. These multi-class methods can be further divided 
in two types. The first type constructs fuzzy competitive 
rule-bases using, for example, heuristic [4] or genetic 
programming [5] techniques. The second type, constructs 
crisp cooperative and hierarchical classification rule-trees, 
such as Quinlan's inductive decision trees [6]. The 
popularity of these decision trees may be explained by the 
natural decision method that humans often follow. The 
latter conclusion is demonstrated for example, in the 
medical field, where physicians usually follow a form of a 
complex decision/classification tree [7], showing that, 
medical decision making often is similar to Quinlan's 
approach. Although fast and robust, this algorithm is 
however restricted in terms of each rule's (tree branch) 
premise set, where the expression evaluated is an inequality 
between an attribute (input variable) and a value (number). 
Apparently, a more generic methodology could involve, in 
the rules' premise sets, the incorporation of more complex 
comparisons, such as combinations of expressions 
including more than one attributes and values. The idea is 
addressed in [3,8] where the genetic programming 
approach is used to build a kind of decision trees. In 
general, the genetic programming search, found with a 
proper function set, has been proved capable in finding 
optimal solutions in a reasonable time for a variety of 
classification tasks [9]. Nevertheless, two problems arise, 
when dealing with the construction of hierarchical 
classification trees. First, as the number of classes 
addressed is usually more than two, and the search space is 
large, the methodology can be proved inefficient and slow. 
Second, the form of the solution is not derived necessarily 
in a comprehensive form. These problems are addressed in 
this paper by applying syntax constraints in the genetic 
programming trees, in order to improve the readability of 
the solutions and speed up the search by reducing the 
number of possible node combinations - thus the search 
space. This paper is organized as follows. In the next 
section, the design and implementation of the model is 



 

discussed. Section 3 contains the results from the 
application of the system in two databases, the Balance-
Scale and E-Coli Protein Localization Sites. Finally, 
section 4 includes our conclusions and proposes further 
research in this domain. 

 

II.DESIGN AND IMPLEMENTATION 
Genetic Programming is an extension to the original 

concept of genetic algorithms where the existence of 
chromosomes is substituted by variable length, tree-like 
programs. The main genetic operators -such as crossover 
and mutation- are applied in genetic programming too. The 
hierarchical structure of a genetic programming candidate 
solution, known as individual, enables to each independent 
node to carry a functional code - thus, the solution can 
behave like a program. These nodes may represent a 
primitive operator -such as addition or multiplication- a 
number, a variable, etc. Most favorite genetic programming 
implementations are the steady-state ones, where only one 
population is preserved and, usually, a tournament 
selection between a small number of individuals replace the 
worst of these in every iteration. Although powerful in its 
definition, the genetic programming procedure may be 
proved greedy in computational and time resources. 
Therefore, when the syntax form of the desired solution is 
already known, it is useful to restrain the genetic 
programming from searching solutions with different 
syntax forms [10,11]. The most advantageous method to 
implement such restrictions, is to apply syntax constraints 
to genetic programming trees, usually with the help of a 
grammar, often declared in the Backus-Naur-Form (BNF) 
[12]. The BNF-grammar consists of terminal nodes and 
non-terminal nodes and is represented by the set {N,T,P,S} 
where N is the set of non-terminals, T is the set of 
terminals, P is the set of production rules and S is a 
member of N corresponding to the starting symbol. Here, 
the use of the terms terminal and non-terminal in a BNF-
grammar, is not corresponding to what Koza defines as 
terminal and function. Rather, a function -a non-terminal 
node in terms of the GP tree architecture- is expressed as 
terminal in a BNF grammar. To avoid confusion, the use of 
the terms GPFunction and GPTerminal -instead of the 
ambiguous terms function and terminal- has been proposed 
[13] and is adapted throughout this paper. The construction 
of the production rules is the most critical point in the 
creation of a BNF grammar, since they express the 
permissible structures of an individual. In Table I, we show 
the production rules for the implementation of hierarchical 
rule-based classification trees into the genetic programming 
architecture. A legal tree according to this grammar is 
shown in Figure 1. 

As seen by the grammar definition, a <clause> node may 
be either a <class> node or a <if> (<if_less>, <if_equal> 
etc.) node. If we examine more carefully this rule of the 
grammar, we may notice that this design enables the 
existence of one-node solutions, for example CLASS3. 
Although this case is absolutely normal, it was proved in 
our experiments that it can delay the solution search, by 
creating many single-class individuals (as one such 
individual may have good fitness in the beginning of the 

run) and thus reducing the population diversification very 
early, leading to local optima. To encounter this 
phenomenon, we selected to apply two measures. First, we 
tuned the selection probability for operations, between the 
<clause> representatives (i.e. we gave more selection 
probability to <if> rather than to <class> nodes). Second, 
we modified the fitness measure as shown in the following 
equations, in order not to promote very small-sized 
solutions. This modified fitness measure performs a penalty 
to small-sized solutions adapting the size of the solution 
examined. Although these measures do not guarantee that 
the run will not converge early, it was shown in our 
experiments that the algorithm performed statistically better 
(i.e. we did not encounter early convergence to local 
optima). This fitness measure is given by the equations: 
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where F is the program fitness, t is a record in the 
training set, n is the number of training records, ft is the 
program output for the record t, and Yt is the value of the 
record t. The a factor, is given by the following equation: 
 

TABLE I 
BNF GRAMMAR PRODUCTION RULES FOR HIERARCHICAL CLASSIFICATION 

TREES IN GENETIC PROGRAMMING 

Symbol 1. Quantity 

<CLAUSE> ::= <CLASS>|<IF_LESS>| <IF_EQUAL>|…. 
<IF_LESS> ::=IF_LESS<EXPR> <EXPR> <CLAUSE><CLAUSE> 
<EXPR> ::=<NUMB> | <OPER> 
<OPER> ::=<PLUS>|<MINUS>|…. 
<PLUS> ::= + <EXPR> <EXPR> 
<NUMB> ::=1 | 2 | 3 …. 
<CLASS> ::=CLASS1|CLASS2|CLASS3|…  

The trees are described in a prefix notation. Words in bold denote 
program nodes (terminals). 
 

 
IF < 
  * 
   X1 
   4  

8 
then CLASS1 
else IF = 
   X2 
   X3 
  then CLASS2 
  else CLASS3 

 
Fig. 1. Tree representation, according to our grammar, for the example 
expression: IF ((X1*4)<8) then CLASS1 else (IF (X2=X3) then 
CLASS2 else CLASS3) 
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where S is the simplicity factor. This factor is presented 

in [1] and its value is: 
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where M stands for the maximum size of trees allowed in 

our application (in nodes), N stands for the examined 
solution's size (in nodes). This value ranges from 0.5 to 1, 
producing 0.5 when the expression has the maximum size 
and 1 when the expression has only one node (the simpler 
case). This fitness measure will reduce the actual fitness 
value, when the simplicity's value of the solution is greater 
than 0.95, in a linear manner, finally producing zero fitness 
value when the simplicity's value is one. 

III.RESULTS AND DISCUSSION 

A.Balance-Scale Data 
The first data set we selected to apply the system is the 

Balance-Scale [14]. This data was generated to model 
psychological experimental results. Each example is 
classified as having the balance scale tip to the right, tip to 
the left, or be balanced. The attributes are the left weight, 
the left distance, the right weight, and the right distance.  

The correct way to find the class is the greater of (left-
distance * left-weight) and (right-distance * right-weight). 
If they are equal, it is balanced. The data set has 625 
examples (49 balanced, 288 left and 288 right). As we 
expect no numbers to appear in the solution formula and no 
other operators except multiplication, we adapted the 
function set shown in Table II. We separated the data set 
into training and test sets with 313 and 312 examples 
accordingly. Odd examples were assigned to training set 
and even examples to test set. By applying this selection we 
resulted into having 45 examples of balanced records in the 

training set and only 4 of 
kind of selection was not d
training phase is shown, 
validation, the genetic p
almost accurate results earl
unusual outcome is howev
extracted formula of the tw

data set, that are these of Left and Right class.  
The extracted solution, achieved after 6,757,670 

iterations (~281 generations), classified correctly both the 
100% of the training set examples and the 100% of the 
testing set examples. As it is seen from Figure 3, the 
formula is rather complex as compared to the original 
determining formula of this data set. This is due to the fact 
that the penalties concerning the solution size, that are 
included in the algorithm -as discussed in the previous 
paragraph- abet the generation of middle or large-sized 
solutions. Nevertheless, this formula can easily be 
simplified into the determining one as many of the formula 
parts have constant sub-result -i.e. they have no effect to 
the formula's value-, parts known as introns. This example 
demonstrates that if a deterministic generation formula 
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Fig. 2. Best individual during run for Balance-Scale. 

GP PARAMETE

Parameters 

Population:  12
GP implementation: S
Selection:  T
Tournament size:  6 
*Crossover Rate:  0.
*Overall Mutation Rate:  0.
*Node Mutation Rate: 0
*Shrink Mutation Rate: 0
Killing Anti-Tournament 
size:  

2 

Maximum allowed 
formula size:  

25

GPFunction set  If
If
If

GPTerminal set  C
* operations are subject 
to type-constraints 

 

 

TABLE II 
RS FOR BALANCE-SCALE 

Values 
,000 individuals  

teady-state Type-Constrained GP 
ournament with elitist strategy 

6 
4 
.4 
.6 

0 tree-nodes per individual 

Greater(x1,x2,y1,y2), 
Less(x1,x2,y1,y2), 
Equal(x1,x2,y1,y2), Multiplication (*) 
lass Values, Attribute Values 
them in the test set. While this 
eliberate, in Figure 2, where the 
it is seen that, in the test set 
rogramming process achieved 
ier than in the training set. This 
er due to the coverage of the 
o multitudinous classes in test 

e
p
s
c
r

 

IF RW*RD < LW*LD 
 then L 
 else IF RW > RW 
    then R 
    else IF RD*RW = LW*LD 
       then B 
       else IF LW < RD 
          then R 
          else IF RW > LD 
             then R 
             else IF LW < RD 
                then IF LD > RW 
                   then R 
                   else L 
                else IF LW > LW 
                   then B 
                   else IF LD < RD 
                      then IF LW > LW 
                         then IF LW > LD 
                            then L 
                            else R 
                         else IF LW*LW > RD 
                            then R 
                            else R 
                      else IF RW > RW 
                         then R 
                         else IF RD*RW*RD > LW 
                            then B 
                            else L 

 
Fig. 3. Hierarchical classification tree for the Balance-Scale produced by
our model 
xists for the data involved, the proposed genetic 
rogramming configuration, found with a proper function 
et, will probably reveal it in an efficient amount of 
omputational effort. The prime advantage of our solution 
emains though, that it is easily comprehensive by humans, 



 

and underlies the knowledge extraction. 
 

B.Protein Localization Sites : the E-Coli database 
The second data set we applied our system is the E-Coli 

Protein Localization Site [15]. The aim is to classify the 
localization site of the protein. There are seven predictive, 
real-valued, attributes (see Table III) and eight different 
localization sites.  

The data set has 336 examples and the class distribution 
is not uniform (see Table IV).  

We separated the data in two halves. The first half was 
used to compare the classification ability of our system to 

previous work such as in [15], where a 81% classification 
accuracy was achieved with an ad hoc structured 
probability model. Furthermore, we tested the extracted 
prediction formula of our system to unknown data (the 
second half of the data set), in order to reveal the 
generalization abilities of the formula. As with the Balance-
Scale data, in separating the data set in two halves we 
selected for the first data set the odd examples and for the 
second data set the even examples.  

The genetic programming parameters are shown in Table 
V. The solution presented in Figure 4 was obtained after 
44,010,000 iterations (~1833 generations). It succeeded in 
classifying correctly 143 out of the 168 data examples 
given (accuracy: 85.12 %). Furthermore, when this formula 
was applied to unknown data it correctly classified 119 out 
of 168 examples (accuracy: 70.83 %).  

These outcomes denote that this intelligent model 
achieves competitive results in classification scores and at 
the same time preserves the solution comprehensibility. 
Moreover, this formula can be further simplified, while 
they exist parts of the classification tree that produce 
constant values. 

TABLE V 
GP PARAMETERS FOR THE E-COLI PROTEIN LOCALIZATION SITE 

Parameters Values 

Population:  12,000 individuals  
GP implementation: Steady-state Type-Constrained GP 
Selection:  Tournament with elitist strategy 
Tournament size:  6 
*Crossover Rate:  0.6 
*Overall Mutation Rate:  0.4 
*Node Mutation Rate: 0.4 
*Shrink Mutation Rate: 0.6 
Killing Anti-Tournament 
size:  

2 

Maximum allowed 
formula size:  

250 tree-nodes per individual 

GPFunction set  IfGreater(x1,x2,y1,y2), 
IfLess(x1,x2,y1,y2), 
IfEqual(x1,x2,y1,y2), Addition (+), 
Subtraction (-), Multiplication (*), 
Protected Division (%) 

GPTerminal set  Class Values, Attribute Values, Numbers 
* operations are subject to type-constraints 

IF ALM1>CHG 
 then IF 92%(-29)>ALM2 
    then IM 
    else IF MCG>CHG 
       then IF LIP<120 
          then IF 60%(-29)>ALM2 
             then CP 
             else IF GVH>ALM1 
                then OM 
                else IF ALM1<MCG 
                   then IMU 
                   else IF 85<CHG 
                      then PP 
                      else IF AAC>CHG 
                         then IM 
                         else IF ALM1>LIP 
                            then IF GVH>CHG 
                               then PP 
                               else IF PP=-57 
                                  then IM 
                                  else IMU 
                            else CP 
          else IF GVH>CHG 
             then PP 
             else IF MCG>CHG 
                then PP 
                else IML 
       else IF ALM1<MCG 
          then IMU 
          else IF AAC>CHG 
             then IM 
             else IF MCG>GVH 
                then CP 
                else IM 
 else IF MCG>CHG 
    then IF MCG>AAC 
       then IF MCG=GVH 
          then IF GVH>CHG 
             then PP 
             else CP 
          then IF MCG=GVH 
             then IF OML<-57 
                then OML 
                else OM 
             else IF GVH>CHG 
                then PP 
                else CP 
       else OM 
    else IF MCG>CHG 
       then IMU 
       else IF ALM1>LIP 
          then PP 
          else CP 
 
Fig. 4. Hierarchical classification tree for the the E-Coli Protein 
Localization Site produced by our model 

TABLE III 
E-COLI PROTEIN LOCALIZATION SITE ATTRIBUTE INFORMATION 

Symbol Value 
MCG  McGeoch's method for signal sequence recognition 
GVH von Heijne's method for signal sequence recognition 
LIP  von Heijne's Signal Peptidase II consensus sequence score  
CHG  Presence of charge on N-terminus of predicted lipoproteins  
AAC  score of discriminant analysis of the amino acid content of 

outer membrane and periplasmic proteins 
ALM1  score of the ALOM membrane spanning region prediction 

program 
ALM2 score of the ALOM program after excluding putative 

cleavable signal regions from the sequence 
 

TABLE IV 
E-COLI PROTEIN LOCALIZATION SITE CLASS DISTRIBUTION 

Symbol Value Number of 
Examples 

CP cytoplasm  143 
IM inner membrane without signal sequence 77 
PP periplasm 52 
IMU inner membrane, uncleavable signal 

sequence 
35 

OM outer membrane 20 
OML outer membrane lipoprotein 5 
IML inner membrane lipoprotein 2 
IMS inner membrane, cleavable signal sequence 2 

 



 

IV.CONCLUSIONS AND FURTHER RESEARCH 
This paper addressed the creation of hierarchical 

classification trees using genetic programming. These trees 
are composed by comprehensible cooperative rules and 
achieve a competitive classification score. Moreover, each 
rule's premise set is allowed to be arbitrary complex. In 
order to implement such a system, we embedded 
constraints' grammar into the common genetic 
programming procedure. The model was tested in two 
domains. 

 The first test showed that the system is capable of 
extracting underlying knowledge in a comprehensive form 
and the second test showed that the learning capability of 
this system is high. The overall results are encouraging, 
denoting the effectiveness of our system. Further research 
could involve the application of this system to other real-
world data as well as the incorporation and testing of 
different function sets. On the other hand, tuning 
investigation of the algorithm can be proved valuable in 
terms of speed efficiency. 
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