
Evolving Neural-Symbolic Systems Guided by Adaptive Training Schemes:
Applications in Finance

Athanasios Tsakonas a and Georgios Dounias b 1

a Aristotle University of Thessaloniki,

 Artificial Intelligence and Information Analysis Laboratory,
Dept. of Informatics, Thessaloniki, Greece

b University of the Aegean,
Dept. of Financial and Management Engineering,

31 Fostini Str., Chios, Greece

ABSTRACT: The paper presents a hybrid and adaptive intelligent methodology, based on neural logic networks and

grammar-guided genetic programming. The aim of the study is to demonstrate how to generate efficient neural logic

networks with the aid of genetic programming methods trained adaptively through an innovative scheme. The proposed

adaptive training scheme of the genetic programming mechanism, leads to the generation of high diversity solutions and

small sized individuals. The overall methodology is advantageous due to the adaptive training scheme proposed, for

offering both, accurate and interpretable results in the form of expert rules. Moreover, a sensitivity analysis study is

provided within the paper, comparing the performance of the proposed evolutionary neural logic networks methodology,

with well-known competitive inductive machine learning approaches. Two financial domains of application have been

selected to demonstrate the capabilities of the proposed methodology, (a) classification of credit applicants for consumer

loans of a German bank and (b) the credit-scoring decision-making process in an Australian bank. Results seem

encouraging since the proposed methodology outperforms a number of competitive existing statistical and intelligent

methodologies, while it also produces handy decision rules, short in length and transparent in meaning and use.

KEYWORDS: adaptive training, symbolic connectionist systems, neural logic networks, grammar-guided genetic

programming, hybrid and adaptive intelligence.

1. INTRODUCTION

Evolutionary neural logic networks (ENLN) consititute a recent advance in the domain of

grammar-driven genetic programming (Tsakonas et al., 2004). The ENLN approach, introduced

the production of neural logic networks and fuzzy neural logic networks which can be arbitrarily

large and connected, and have the capability to maintain their interpretability. The neural logic

networks (NLN) generally are powerful connectionist systems that have been applied in various

1 Corresponding author. Tel: +302-271-094-408, Fax: +302-271-093-464
 E-mail address: g.dounias@aegean.gr (Georgios Dounias)

 1

mailto:g.dounias@aegean.gr

domains (Teh, 1995), (Quah et al., 1995), (Quah et al., 1996), (Sfetsos, 2000) and by their

definition can be easily interpreted in a number of expert rules. These networks can be considered

as an integration between rule-based expert systems and neural networks (Quah et al., 1996).

Although being powerful in their definition, the task of properly training a neural logic network

has been problematic in the past. At first, in (Teh, 1995) a training methodology related to back-

propagation was proposed. Later, the Supervised Clustering and Matching (SCM) algorithm (Tan

and Teow, 1997) was introduced for the purpose of NLN-training. All these training models

however, aiming at the refinement of the edge weights, often made the neural logic networks

suffer in terms of their interpretability. This drawback led the research to alternative solving

methodologies such as genetic programming (GP), (Chia and Tan, 2001). However, (Chia and

Tan, 2001) in their system, provided a model capable of producing only a limited number of

neural logic network representations, which resembled to a binary tree. In (Tsakonas et al., 2004),

these problems have been adequately overcome. However, in order for this GP-guided NLN-

algorithm to operate efficiently and effectively, several enhancements have been applied into the

standard genetic programming training procedure.

This paper presents these advances, which enable the proposed ENLN-system to provide small

and easily interpretable solutions, by controlling the code-bloat (Angeline 1998) using adaptive

operation rates. In addition to the adaptive training scheme used, in the paper is also presented a

sensitivity analysis of the proposed ENLN-system in comparison to a well-known inductive

machine learning approach, the C4.5 algorithm (Quinlan, 1992). As a next step, the ENLN-

system is applied in two problems belonging to the financial domain. The first problem

corresponds to the credit applicants’ classification for consumer loans of a German bank. The

ENLN-based results obtained in this domain, demonstrate the ability of the proposed system to

produce interpretable NLN-representations and facilitate the knowledge discovery process. The

second selected financial application corresponds to a similar credit scoring decision problem of

an Australian bank. Although feature details in the latter domain are not available, the application

of the ENLN-system to this data enables conclusions to be drawn on its effectiveness in

comparison to a number of statistical and intelligent approaches. Hence, the ENLN approach

proved to be capable of investigating complex neural logic network structures with a high

 2

classification rate, although it still maintains the ability of interpreting these networks into expert

rules.

The paper is organised as follows. In section 2 a short presentation of the theoretical background

of the neural logic networks and the genetic programming framework is made. Section 3 contains

the system analysis of the ENLN methodology, with respect to the adaptive operation rates during

training, the use of a validation set and the sensitivity analysis. In section 4, is given the

application of the ENLN into two problems from the financial domain. Finally, section 5 contains

conclusions regarding this work and proposes future research directions.

2. BACKGROUND

2.1 NEURAL LOGIC NETWORKS

A neural logic network can be represented as a finite directed graph. It usually consists of a set of

input nodes and an output node. In its 3-valued form, the possible value for a node can be one of

three ordered pair activation values (1,0) for true, (0,1) for false and (0,0) for don't know. Every

synapse (edge) is assigned also an ordered pair weight (x, y) where x and y are real numbers. An

example neural logic and its output value (a, b) of node P is shown in Figure 1.

Figure 1. The general form of a neural logic network and its output value

1 1

1 1

(1,0) 1

(,) (0,1) 1

(0,0)

k k

j j j j
j j

k k

j j j j
j j

if a x b y

a b if a x b y

otherwise

= =

= =

⎧ − ≥⎪
⎪
⎪⎪= − ≤⎨
⎪
⎪
⎪
⎪⎩

∑ ∑

∑ ∑

(α1,β1) Q1

(α2,β2) Q2

(αk,βk) Qk

(x1,y1)

(x2,y2)

(xk,yk)

P
−

The rationale behind neural logic networks is to provide a connectionist system in which the

following properties apply:

• The truth table of the output of a node corresponds to the truth table of a logical

operation.

• Three-valued logic is supported (true, false and don’t know).

 3

• Any elementary network that corresponds to a basic logical operation may be combined

with others to form larger networks that can perform complex logical decision tasks.

• Any such neural logic network should be interpretable into logical rules by simply

interpreting its architecture and nodes.

In the example shown in Figure 1, we present the standard activation function for a neural logic

node. As it can be seen, the output of such a node belongs to the set {(1,0), (0,1), (0,0)}. By using

specific weights, different logical operations can be applied to the input nodes. Then, the result to

the output node will be the same as defined in the truth table of the corresponding logical

operation.

(1/k,0)

(1/k,0)

(1/k,0)

Ρ1

Ρ2

Ρn

Vk (Ρ1,Ρ2,..,Pn)

at least k-yes

 (2,1/2)

(2,1/2)

1 2P P∨

P1

P2

 priority k-majority

Figure 2. Example logical operators in neural logic networks

Different sets of weights enable the representation of different logical operations. It is actually

possible to map any rule of conventional knowledge into a neural logic network. Figure 2 depicts

two such networks and their corresponding logical rule.

2.2 GENETIC PROGRAMMING

Currently, Genetic Programming (GP) has been applied in a wide range of real-world problems.

GP-methodology, in its canonical form enables the automatic generation of mathematical

expressions or, so-called, programs. Usually, a population of candidate solutions is maintained,

and after a “generation” is completed, the population is expected to have higher fitness for a given

 4

problem. The generic GP run algorithm can be summarized in the following steps (Koza et al.,

2003):

1. Create an initial population at random consisted of individual computer programs.

2. Perform the following sub-steps until a termination criterion is satisfied:

a. Using a fitness measure assign a fitness value to each individual.

b. Create a new population by applying the three operators that follow. These

operators are applied either to one or two individuals. Their selection is done

using a tournament.

i. Copy (reproduce) an individual without affecting it.

ii. Create two new programs (offsets) by recombining sub-trees from two

existing programs using the crossover operation at randomly selected

tree points

iii. Create a new program from an existing individual by mutating in one of

the three following ways.

iii-a. Mutate a node of the tree.

iii-b. Mutate a number in a node of the tree.

iii-c. Select a sub-tree and promote it to a higher node.

 3.Extract the result (or the approximate result) and designate the best-so-far individual.

Having presented in short, the basic elements of the GP-approach, we move into an in-depth

analysis of the proposed ENLN-system, presenting its adaptive characteristics and its sensitivity to

noise and missing data.

3. ENLN SYSTEM ANALYSIS

The evolutionary approach that is used for the ENLN-system is composed of a grammar-driven,

steady state genetic programming scheme. This system makes use of indirect encoding (cellular

encoding) to represent arbitrarily sized and connected neural logic networks within the genetic

programming trees. The population initialization and the overall training procedure are controlled

by a grammar expressed in BNF notation. For further details, regarding the basic system

architecture and functionality, the reader is strongly encouraged to address to (Tsakonas et al.,

 5

2004). For the ENLN system, the population has been set to 2,000 individuals, a value that can be

considered typical for GP (Koza, 1992) and is mainly related to hardware-memory constraint

reasons. The selection of the individuals is accomplished using the tournament with elitist strategy

(Koza, 1992), in which the individual to be selected is decided after a tournament among six

members of a randomly selected population’s subset, in respect to their fitness values. The selected

size of members in the tournament (i.e. six) is also considered a typical value for the GP

procedures. In order to perform a more effective search and also to avoid premature convergence,

we choose to apply a killing anti-tournament (Koza 1992), in which two members of the population

are selected randomly and the member with the lower fitness substitutes the other. This procedure

aims to disable any possible domination of a highly fitted individual in the population. The

maximum size of an individual is set to 650 nodes, which is a rather high value regarding

common GP implementations, but permissible according to current hardware and memory

capacities. The motivation for selecting a high maximum size of an individual is related to the

requirements of the ENLN indirect encoding. Each run of the algorithm is applied at most up to

200 generations. All the abovementioned experimentation parameters are summarized in Table I.

Table I. GP training parameters

Parameter Value

Population 2,000 individuals
Implementation Grammar-driven steady state genetic programming
Selection Tournament with elitist strategy
Tournament members 6
Killing anti-tournament 2
Maximum nodes allowed 650 nodes
Maximum generations number 200

3.1 ADAPTIVE TRAINING RATES FOR ENLN

The idea behind the adaptive training rate for the genetic operations is to ensure two things:

• To keep the diversity of the population in high levels

• To keep the average size of the population individuals low.

 6

The first property provides a beneficiary framework for the algorithm during the solution search.

The second property, confronts the program code bloat of the population, which often results in

very large and non-interpretable solutions. Hence the target of this procedure can be clarified into

two statements, which are eligible for the evolutionary neural logic networks:

• High classification rate

• Small (interpretable) solutions

In this regard, we examined three frameworks for the training process of the ENLN:

• Training with fixed rates for genetic operations (i.e. no adaptation at all)

• Training with adaptive rates based on threshold population values

• Training with adaptive rates directly related on the population size and growth

 The first approach uses standard values for the genetic operations. These values have been

extensively tested in our experiments hence we consider them near optimum, regarding a non-

adaptive ENLN system. The values for these rates are shown in Table II.

Table II. Rate values for fixed rate operation of a ENLN system

Operation Rate
Crossover 0.65
Node mutation 0.07
Constant mutation 0.07
Shrink mutation 0.21

Training using an adaptive rate based on threshold population values (called hereinafter as ‘level’

adaptation), can be considered as an alternative to fixed rates for operations, the aim being here to

apply a penalty to specific operators when a given level (threshold) of the average population size

is exceeded. Within this framework, we apply the following three simple rules during the training

procedure, see, Eqs. (1)-(3) below:

1 1
1 ,a d m cs s f s r r+ > ⋅ → m

m

m

 (1)

2 2
2 ,a d m cs s f s r r+ > ⋅ → (2)

3 3
3 ,a d m cs s f s r r+ < ⋅ → (3)

 7

In the above equations, is the average size of the individuals of the population, is the

standard deviation of the population individuals’ size, is the maximum allowed size of an

individual,

as ds

ms

nf is a constant for the n-case explained below, is the crossover rate for the n-case

and is the total mutation rate for the n-case. These three rules maintain a different role in our

system. The first rule (eq. (1)) reduces significantly the crossover operations vs. the mutation

operations when the average size of the individuals exceeds a stated measure. The intention of the

application of this rule is to beat the code bloat phenomenon that often arises after a number of

operations. This rule takes precedence over rule of eq. (2). The second rule (eq. (2)) reduces mildly

the crossover operations vs. the mutation operations when the average size of the individuals

exceeds a stated measure. This is an auxiliary rule for rule of eq. (2), aiming to maintain the

average size of the individuals in towardly levels. The third rule (eq. (3)) increases significantly the

crossover operations vs. the mutation operations when the average size of the individuals goes

below a stated measure. The intention of the application of this rule is to beat premature

convergence that we may encounter in grammar-based systems if the population floods in the

early stages of the algorithm with small, moderately good solutions. Individual values for the three

mutation operators are obtained using a fixed analogy. More specifically, the following relations

are used, (see Eqs. (4)-(6)):

n
cr

n
mr

0.6s n
mr

n
mr= ⋅ (4)

0.2c n n
mr mr= ⋅ (5)

0.2n n n
mr mr= ⋅ (6)

In the above equations, s n
mr is the shrink mutation (Singleton 1994) rate for the n-case, while

and are the constant and node mutation rates accordingly. The constants

c n
mr

n n
mr nf and the

operation rates after experimentation take the values shown in Table III.

Table III. Constants values and operator rates for the level adaptive training

n
nf n

cr
n

mr

1 0.5 0.02 0.98

 8

2 0.33 0.35 0.65
3 0.16 0.95 0.05

The next adaptive scheme tried on the ENLN is training with adaptive rates directly related on the

population size and growth (called hereinafter as ‘continuous’ adaptation). The rationale behind

this approach is to maintain an online and imminent rate for the genetic operations, during the

training phase, based on current population status and a momentum size factor. We have applied

therefore the scheme described by the following equations (7)-(10):

1 2
2

1 t
m

sr f f s
f

⎛ ⎞
e= ⋅ + − ⋅⎜

⎝ ⎠
⎟

mr

 (7)

1cr = − (8)

t
a w

t
w

s ss
s
−

= (9)

1

1

t t
a a

e t
a

s ss
s

−

−

−
= (10)

In the above equations, 1f is the “starting value” mutation rate, set here to 0.7, 2f is the

“adjusting” factor, set here equal to 1.2 (a value of 1.0 corresponds to equal impact of the and

parameters), is the relative increment size (a momentum value), is the relative trend size,

 is the size where we prefer that the average population is being driven to (set here to 150

nodes), and finally, and are the average population sizes at the t and t-1 generations. In

this scheme, shrink mutation rate is additionally adapted within the total mutation rate, using the

following relation given by eq. (11):

ts

es es ts

ws

t
as 1t

as −

t
s s a

m m
w

sr R
s

= ⋅ (11)

In the above relation, s
mR is the maximum allowed relative mutation rate for the shrink mutation

operator (set here to 0.9), is the average population size at the t-generation, t
as s

mr is the shrink

mutation rate relative to the overall mutation rate. The above relations form a framework in

which crossover and mutation rates are adapted after every generation. However, in order to

perform more effectively, we form a limit to the overall mutation rate, disabling values higher

 9

than 0.9, thus enabling always the existence of crossover in a sensible amount. Additionally, we

apply the same constraints to the shrink mutation rate relative to the overall mutation rate (i.e.

maximum allowed rate set to 0.9).

The results from the training process are illustrated in Figures 3, (a)-(h). In Figure 3(a) and (b), is

shown the number of the performed crossover and mutations accordingly. One may easily observe

the different operating behavior of these three approaches, and especially the high mutation rates

adapted by the level and the continuous adapting scheme. Figure 3(c) depicts the shrink mutation

operations, demonstrating the special handling of this operator in the continuous adapting

training, in an attempt to control the population size. Figure 3(d) shows the average population

size of the ENLN system during training. It is clearly shown that the adaptive approaches handle

better the code bloat effect by reducing the average population size to the desirable levels. Between

the two adaptive approaches, the continuous adaptation scheme succeeds in keeping the

population in constant levels more effectively than the level adaptation. It is shown also that

delays the increment of the code significantly during the early stage of training. In Figure 3(e), we

present the standard deviation of the population size. This feature can be a measure of population

diversity. In this respect, the continuous adaptation seems to perform poorer in the early stage of

training, than the level adaptation and the no-adapt scheme. Figure 3(f) shows the average fitness

of the population during training. Suggesting that best individual’s fitness is equal, or nearly equal,

high values of the average fitness may denote a low-diversity population. As it is shown in this

figure, the no-adapting scheme has performed worst in this case, having the level-adaptation

performing better after the early training stage. In Figure 3(g), we depict the standard

 10

Crossover

0

500

1000

1500

2000

2500

3000

3500

4000

4500

8000

24000

40000

56000

72000

88000

104000

120000

136000

152000

168000

184000

200000

216000

232000

248000

264000

280000

296000

312000

328000

344000

360000

376000

392000

Iterations

of

 o
pe

ra
tio

ns
No Adapt

Level

Continuous

(a) Mutation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

8000

24000

40000

56000

72000

88000

104000

120000

136000

152000

168000

184000

200000

216000

232000

248000

264000

280000

296000

312000

328000

344000

360000

376000

392000

Iterations

of

 o
pe

ra
tio

ns

No Adapt

Level

Continuous

(b)

Shrink Mutation

0

500

1000

1500

2000

2500

3000

3500

4000

8000

20000

32000

44000

56000

68000

80000

92000

104000

116000

128000

140000

152000

164000

176000

188000

200000

212000

224000

236000

248000

260000

272000

284000

296000

308000

320000

332000

344000

356000

368000

380000

392000

404000

Iterations

of

 o
pe

ra
tio

ns

No Adapt

Level

Continuous

(c) Average Size

0

50

100

150

200

250

300

350

400

450

500

8000

24000

40000

56000

72000

88000

104000

120000

136000

152000

168000

184000

200000

216000

232000

248000

264000

280000

296000

312000

328000

344000

360000

376000

392000

Iterations

of

 n
od

es
No Adapt

Level

Continuous

(d)

Size Standard Deviation

0

20

40

60

80

100

120

140

160

180

8000

24000

40000

56000

72000

88000

104000

120000

136000

152000

168000

184000

200000

216000

232000

248000

264000

280000

296000

312000

328000

344000

360000

376000

392000

Iterations

of

 n
od

es

No Adapt

Level

Continuous

Average FItness

40

50

60

70

80

90

100

110

120

8000

24000

40000

56000

72000

88000

104000

120000

136000

152000

168000

184000

200000

216000

232000

248000

264000

280000

296000

312000

328000

344000

360000

376000

392000

Iterations

of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

No Adapt

Level

Continuous

(f) (e)

Standard Deviation FItness

0

5

10

15

20

25

30

35

8000

24000

40000

56000

72000

88000

104000

120000

136000

152000

168000

184000

200000

216000

232000

248000

264000

280000

296000

312000

328000

344000

360000

376000

392000

Iterations

of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

No Adapt

Level

Continuous

Best FItness

70

80

90

100

110

120

130

8000

24000

40000

56000

72000

88000

104000

120000

136000

152000

168000

184000

200000

216000

232000

248000

264000

280000

296000

312000

328000

344000

360000

376000

392000

Iterations

of

 c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

No Adapt

Level

Continuous

(h) (g)

Figure 3. Performance of the training schemes: (a) crossover operations, (b) overall mutation operations, (c) shrink
mutation operations, (d) average population size, (e) size std. deviation, (f) average fitness, (g) fitness std. deviation and (h)

best fitness.

 11

deviation of the population fitness. High values of standard deviation are positive sign of

population diversity. In this respect, the level adaptation has performed better, with the no-adapt

scheme having the lowest standard deviation. Finally, Figure 3 (h), shows the best individual’s

fitness during training process. As it is seen in this figure, the level adaptation prevails to the other

two approaches, with the continuous adaptation having slightly lower values than those of the no-

adapting approach. In respect to the above experimentations, we selected to apply the level

adaptation throughout our work.

Having described the adaptive training schemes for the ENLN, in the next paragraph we continue

with the methodology used in order to guide the search process and avoid overfitting to the

training data set. The methodology selected to be applied, is the incorporation of a validation set.

3.2 VALIDATION SET

Currently, the most popular procedure in literature to avoid overfitting in the training set is the use

of a validation set. This technique consists of the partition of the subset used for training into two

parts. The first part is used for the main training of the algorithm, and the second part is used for

validation. In this respect, as best solution is selected the one that maintains the lowest

classification error in both the training and the validation set. More specifically, this procedure in

ENLN is applied as follows.

Suppose , where is the fitness value of the best individual in the training set

after generations, is the fitness value of the best individual in the validation set after i

generations and is the maximum number of generations, we get the following equation (12):

, , 1,..,t v
i iF F i n= t

iF

i v
iF

n

, {() ()}t t v v
best i i best i bestV V iff F F F F⇐ > ∧ ≥ (12)

where is the (final) best solution, is the best solution after i generations, is the

fitness value of the (final) best individual in the training set and s the fitness value of the

(final) best individual in the validation set. In fact, aiming to obtain smaller size of the solutions

we slightly modify the above equation (12) to the following one (13):

bestV iV t
bestF

v
bestF

 12

() ()
,

() () (

t t v v
i best i best

best i
t t v v

i best i best i best

F F F F
V V iff

F F F F K K

⎧ ⎫> ∧ ≥
⎪ ⎪⇐ ∨⎨ ⎬
⎪ ⎪= ∧ ≥ ∧ <⎩ ⎭

)

 (13)

In the above equation (13), is the size (in nodes) of the best solution after i generations, and

 is the size (similarly in nodes) of the final best solution acquired.

iK

bestK

3.3 SENSITIVITY ANALYSIS

In data mining tasks, an essential property for a system is the ability to learn by incomplete and

imperfect data sets. The usual types of imperfections encountered are (Wong, 2001):

• Random noise to the data.

• Very small data size.

• The distribution of the training data, which fails to represent the underlying distribution

of the data domain.

• The use of improper language description and the selection of wrong features.

• It is possible to fail to represent important features or to accentuate irrelevant data

features. It is also possible that the language description cannot include an exact

description of the data domain.

• The existence of missing values in the training set.

Existing inductive learning systems apply various techniques to manage noise in order to

encounter the first five imperfections above. The management of the missing values is usually

performed in a different manner. The noise management techniques have been designed in such

way in order to prevent the overfitting of the system to the imperfect training data set, by

excluding the non-important elements of the data (Lavrac and Dzeroski, 1994). Techniques of this

kind are the pruning of the decision trees in CART, the rule cutting in AQ15 (Leung and Wong,

1991) and the meaningfulness checking in CN2 (Clark and Niblett, 1989). However, these

techniques may ignore some important features of the data domain, just because they are not of

statistical importance. Moreover, the above learning systems use a limited feature-value language

to represent the training data sets and the connoted knowledge. Today, only a limited number of

 13

learning systems like FOIL (Quinlan 1990), (Quinlan, 1991), mFOIL (Lavrac and Dzeroski, 1994)

and C4.5 (Quinlan, 1992) handle the task of learning by imperfect data. In order to obtain an

analytic description of the ENLN system behaviour under different environment conditions, we

investigate its performance in comparison to a well-known computational intelligence algorithm.

More specifically, we examine the system’s behaviour with respect to the following attributes:

• Ability to learn from noisy data

• Ability to learn from data with missing values

• Ability to perform feature selection

The algorithm we have selected to compare to, is the well-known C4.5, belonging to inductive

machine-learning, which produces inductive decision trees (Quinlan, 1992). The methodology of

the inductive decision trees uses as a key-measure the information entropy. C4.5 is a very popular

methodology and one of the most frequently applied intelligent systems in data mining tasks. The

problem addressed is composed by synthetic data artificially constructed for this reason. For the

generation of the data sets, we applied the DataGenerator (DataGen, 2004), a system that uses

rules to produce random records. The data produced by DataGenerator are mainly addressed by

rule-building systems (like the C4.5 and the ENLN), and they can be used to obtain comparative

values of their performance. For the creation of the data, it is used a rule set in conjunctive and

disjunctive form, with a complexity degree defined by the user. It is possible to select the

embedment of different noise levels and/or different number of missing values in the data set. We

selected to create a data set consisting of 300 records, from which the first 200 are used for the

systems’ training phase and the rest 100 as testing data set (unknown data). For the conducted

experiments, we used a validation set consisting of the last 20 records of the 200-record training

data set. Summarizing, the proposed ENLN-system in each experiment used the first 180 records

as training set, the next 20 records as validation set and the last 100 as a test set. The C4.5 system

used the first 200 records as training set and the last 100 as test set2.

Two classes compose the examined domain. We set the distribution of these classes to be

uniformly random. We also decided to include four features (A, B, C and D), from which one (D)

will not participate in the rules that define the classes, aiming to check the ability of ENLN to

2 The data used and the analytic results are available to download from: http://decision.fme.aegean.gr/analysis/

 14

http://decision.fme.aegean.gr/analysis/

perform feature selection, in which the presence of the D in every solution is undesirable. The

problem is composed by the following two rules:

• If A=[5,6] and B=[5,6] then c1 (53.0%)

• If A=[9,10] and B=[5,6] and C=[8,9] then c2 (47.0%)

We created the following data sets using the aforementioned properties. A 'noisy' record is

consisted here of a partially false predicate (i.e. If A=9 and B=6 then c1) whereas a 'missing' value

record is a record with partially unknown predicate (i.e. If A=? and B=6 then c1).

• Sets with noise 0%, 5%, 10%, 20%, 33%, 50%, 80% and 100%

• Sets with missing values 0%, 5%, 10%, 20%, 33%, 50% and 80%

We performed the training procedure for each algorithm once for every data set. In Table IV we

present the classification error in data sets with noise.

Table IV. Classification error in noisy data sets

Data noise % Classification error of ENLN in test set % Classification error of C4.5 in test set
0% 0 0
5% 3 3

10% 3 5
20% 6 4
33% 13 11
50% 14 29
80% 36 47

100% 38 41

In this table we may observe that the ENLN system performs better in 5 out of the 7 cases than

C4.5. Specifically C4.5 is shown to maintain lower error rates in the “middle” noise levels (20%

and 33%), while the ENLN system succeeds in low and high noise levels. These results are shown

in Figure 4. It is worth to note that the success of C4.5 can be modified only if we modify the

algorithm parameters; on the contrary, by performing repetitive runs, and still maintaining the

same ENLN system setup, there is a potential of achieving better results, which is due to ENLN ’s

stochastic nature.

 15

Figure 4. Classification error in noisy data for ENLN and C4.5

The next experimentation was performed in a data set with missing feature values. The results are

presented in Table V.

Table V. Classification error rate in data sets with missing feature values.

Missing values
percentage

% Classification error of ENLN
 in test set

% Classification error of C4.5
 in test set

0% 0 0
5% 3 4

10% 3 6
20% 7 18
33% 17 11
50% 25 32
80% 40 43

In this table we may observe that the proposed ENLN-system outperforms the C4.5 with the

exception of the case where the missing values comprise 33% of the total. In 5 out of the 6 cases

the ENLN approach achieved lower error rates than those of the C4.5. These results are shown in

Figure 5.

 16

Figure 5. Classification error rate in data sets with missing values for ENLN and C4.5

By definition, the ENLN system during the training phase tries to select only those features, which

are considered to participate in the data domain. Hence, the user is not bound to pre-select a

number of the features as the system inputs, and moreover, after the training process the user may

extract useful conclusions based on the inclusion or the rejection of specific features. This property

is known as feature selection, and is usually a characteristic met in machine learning systems.

More specifically, the C4.5 algorithm is also used for feature selection. As previously shown, we

entered to our experimental datasets a variable which does not participate to the classes

definitions, in order to investigate the performance of ENLN in feature selection. The results are

shown in Table VI. As it can be seen, the undesirable variable is present in the ENLN solution in 8

out of 14 cases. Respectively, this undesirable variable is present in the C4.5 solution in 7 out of

the 14 cases. Six of the cases that involve the undesirable variable are common to both systems.

Hence, the performance of the ENLN-system should be considered a highly competitive one,

since systems such as C4.5 are widely used for years as smart feature selection tools.

Table VI. Inclusion of undesirable variable in ENLN and C4.5 systems

Data set Undesirable variable included Undesirable variable included

 17

in the ENLN solution in the C4.5 solution
0% noise No No
5% noise Yes No

10% noise Yes No
20% noise No No
33% noise No No
50% noise No No
80% noise Yes Yes

100% noise Yes Yes
5% missing values Yes Yes

10% missing values Yes Yes
20% missing values Yes Yes
33% missing values No No
50% missing values No Yes
80% missing values Yes Yes

As a concluding remark, the ENLN system, compared to the C4.5 algorithm proved:

• Better in handling noisy data in 5 out of the 7 of the examined cases.

• Better in handling data with missing values in 5 out of the 6 of the examined cases.

• Competitive to C4.5, with respect to its ability to perform feature selection tasks.

Having examined the algorithm in terms of its sensitivity to noise and missing data, we now

proceed in presenting the application of the system into two problems from the area of financial

decision-making.

4. APPLICATIONS IN FINANCE: RESULTS AND DISCUSSION

4.1 GERMAN BANK CREDIT SCORING PROBLEM

In this section we proceed in testing the proposed ENLN algorithmic approach, into a real-world

classification problem from the financial domain. The problem addressed, is related with the

creditability of the applicants of a German bank for consumer loans (Fahrmeir and Tutz, 1994).

Available features are financial and personal properties of the applicant, like real estate, sex etc.

Data consist of both, continuous and discrete features, and there are no missing values. We used

the encoding proposed by the data base creators (Fahrmeir and Tutz 1994) since a large number of

these features are already encoded properly for the system input variables. Table VII shows details

of the domain data, while the corresponding attribute descriptions are presented in Table VIII. We

have adopted the encoding scheme use by the data base creators. It is worth to note however, that

this encoding includes a number of problematic cases, in which variables with discrete

 18

independent values are encoded into non- independent values. Such case is for example the value

T7. As a consequence, the results in all algorithms are expected poorer than the potential.

Table VII. Data domain description for the German credit-scoring problem

Domain German credit scoring problem
Database name German
Input features 20
Continuous input features 2
Discrete input features 18
Binary input features 0
Anti – Overfitting method Validation set
Total records 996
Training set records 498
Validation set records 249
Test set records 249
Missing data No
Data standardization/normalization No

Table VIII. Feature description for the German credit-scoring problem

Variable Feature Values / Value range Encoded features
T1 Current account status

(salaries for at least one
year) , in thousands

2: x < 0 DM,

3: 0≤ x < 200 DM,

4: x 200 DM, ≥
1: no account

1 (discrete) 0...1

T2 Month duration Continuous 1 (continuous) 0...1
T 3 Credit history 2: no credits / all credits paid in time

4: all credits in this bank paid in time
3: existent credits paid in time up to now
0: delay in the past to pay
1: problematic account / there are other
credits (not in this bank)

1 (discrete) 0...1

T 4 Credit size Continuous 1 (continuous) 0...1
T 5 Savings account / income

bonds, in thousands
2: x < 100 DM,

3: 100 ≤ x < 500 DM,

4: 500 ≤ x < 1000 DM,

5: x 1000 DM, ≥
1: no account / unknown account

1 (discrete) 0...1

T 6 Current occupation 1: unemployed,
2: x < 1 year,

3: 1 year ≤ x < 4 years,

4: 4 years ≤ x < 7 years,

5: x 7 years, ≥

1 (discrete) 0...1

T 7 Personal status and sex 1: male, married
2: female, divorced / widowed / married
2: male, unmarried
3: male, divorced / widowed
4: female, unmarried

1 (discrete) 0...1

T 8 Current home 1: x < 1 year,

2: 1 year ≤ x < 4 years,

3: 4 years ≤ x < 7 years,

4: x 7 years, ≥

1 (discrete) 0...1

T 9 Property 4: real estate
3: if without real estate: savings contract of
construction company / life insurance �
2: if without real estate: car
1: without real estate / unknown

1 (discrete) 0...1

1: x ≤ 25 years, T 10 Age in years

2: 26 years ≤ x ≤ 39 years,

3: 40 years ≤ x ≤ 59 years,

5: 60 years ≤ x ≤ 64 years,

4: x 65 years, ≥

1 (discrete) 0...1

T 11 Other accounts 0: in other bank
1: in other branches
2: none

1 (discrete) 0...1

 19

Variable Feature Values / Value range Encoded features
T 12 Number of existing

accounts in this bank
(including current)

1: one
2: two or three
3: four or five
4: six or more

1 (discrete) 0...1

T 13 Number of people being
liable to provide
maintenance

2: from 0 to 2
1: 3 or more

1 (discrete) 0...1

T 14 Telephone 1: no
2: yes, at the name of potential customer

1 (binary) 0...1

T 15 Foreign worker 1: yes
2: no

1 (binary) 0...1

T 16- T 18 Reason for loan 0: new car purchase
1: used car purchase
2: furniture purchase
3: TV/radio purchase
4: local use
5: repairs
6: education
7: holidays
8: reeducation
9: business reasons
10: other reasons

1 (discrete)
3 binaries 0-1

T 19-T 20 Other guarantees 0: none
1: co-applicant
2: guarantee

1 (discrete)
2 binaries 0-1

T 21- T 22 Residence 2: hire
3: privately owned
1: residence for free

1 (discrete)
2 binaries 0-1

T 23- T 24 Work 0: unemployed – non permanent
1: uneducated permanent
2: skilled employee / officer
3: management/ self-employed / high
ranking employee

1 (discrete)
2 binaries 0-1

The solution achieved is shown in Figure 6. This network classified successfully 72.69% (181/249)

of the test data set (i.e. unknown data). The classification score in the training and validation set

reached 72.69% (362/498) and 69.1% (172/149) respectively.

(CNLN (P1 (S1 (P1 (P1 (P1 (In T20) (P1 (S1 (P1 (In T21) (In T24)) (Rule 0 0) E) (In T17))) (P1 (S1 (P1 (P1 (In T7) (S1 (In
T13) (Link 214 0 (Rule 0 0)) E)) (In T24)) (Link 106 0 (Rule 0 0)) (S2 E (Rule 0 0) E)) (In T21))) (In T6)) (Rule 0 0) (S2 (S2

E (Rule 0 0) E) (Rule 0 0) E)) (In T3)) (Rule 0 0))

Figure 6. Neural logic network (description and representation) created for the German credit-scoring problem.

 20

The above network corresponds to the following set of rules:

• Q1⇐Conjunction (��D) (personal status and sex, Number of people being liable to

provide maintenance for, Skilled employee/officer)

• Q2⇐ Conjunction (��D) (Own housing, Skilled employee/officer)

• Q3⇐ Conjunction (��D) (Q1, Q2)

• Q Conjunction (��D) (Q3, Credit history) ⇐

In the abovementioned rule set we may draw the following further conclusions:

• The credit history has significant importance for the decision-making process, since its

value is applied in a conjunctive rule with the result of all previous logical operations

from the rest of the features used.

• Another important feature, for the bank’s decision-making task, seems to be the

professional status of the applicant. Its value is applied in two logical operations (Q1 and

Q2)

• Only 5 out of 24 available features were selected in total to be applied by the ENLN-

system

• Complex decision rules seem not to be necessary, since the produced set of decision rules,

uses only conjunctions (i.e. “AND” operations).

4.2 AUSTRALIAN BANK CREDIT SCORING PROBLEM

In the second financial application selected to demonstrate the effectiveness of the proposed

ENLN-system, we investigate a similar with the previous credit applicants’ evaluation problem,

this time using a set of data acquired by an Australian bank (Quinlan, 1992). The features in this

data are given as simple elements and their interpretation is not known, since this data set has

been considered as classified information. However, the application of the ENLN system to this

decision-making problem may provide useful conclusions regarding the system’s effectiveness,

since there exist enough successful applications of other approaches (Quinlan, 1987), (Statlog,

2002), in related literature. Table IX provides the description of the domain, while Table X presents

the related attributes and the encoding that was used.

 21

Table IX. Data domain description for the Australian bank credit-scoring problem

Domain Australian bank credit scoring
problem

Database name Australian / CRX
Input features 14 encoded to 51
Continuous input features 6 encoded to 6
Binary input features 3
Discrete input features 6 encoded to 42
Anti – Overfitting method Validation set
Total records 688
Training set records 344
Validation set records 172
Test set records 172
Missing data Yes, 67 values
Data standardization/normalization No

This data is primarily composed by discrete attributes, which are split into independent binary

features for further processing by our system. The percentage of cases for which the application

was finally accepted, reaches 44.5 % of the total (307 records). A total of 37 records have one or

more missing values (5% of total data). After the training process, the ENLN-algorithm finally

generated the specific neural logic network shown in Figure 7. The classification rate of this

solution in the test set (unknown data) reaches 89.53% (154/172) which is higher than those

reported in literature (Quinlan, 1992). The corresponding classification rates in the training and

the validation set were 85.47% (294/344) and 87.21% (150/172) respectively.

Table X. Feature description for the Australian bank credit-scoring problem

Variable Values / value range Encoded features
T1-T3 discrete (b, a, ?), 12 missing values 1 (discrete) 3 binaries, 1 of 3 (b="1 0 0", a="0 1

0", ?="0 0 1")
T4-T5 continuous (13.75...80.25) 1 (continuous) 2 (1 continuous 0..1,

1 binary, 1: absent 0: non-absent)
T6 continuous (0...28) 1 (continuous) 0..1
T7-T11 discrete (u, y, l, t, ?), 6 missing values 1 (discrete) 5 binaries, 1 of 5
T12-T15 discrete (g, p, gg, ?), 6 missing values 1 (discrete) 4 binaries, 1 of 4
T16-T30 discrete (c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff,

?), 9 missing values
1 (discrete) 15 binaries, 1 of 15

T31-T40 discrete (v, h, bb, j, n, z, dd, ff, o, ?), 9
missing values

1 (discrete) 10 binaries, 1 of 10

T41 continuous (0...28.5) 1 (continuous) 0..1
T42 Binary 1 (binary) 0..1
T43 Binary 1 (binary) 0..1
T44 continuous (0...67) 1 (continuous) 0..1
T45 Binary 1 (binary) 0..1
T46-T48 discrete (g, p, s) 1 (discrete) 3 binaries, 1 of 3
T49-T50 continuous (0...2000), 13 missing values 1 (continuous) 2 (1 continuous 0..1,

1 binary, 1: absent 0: non-absent)
T51 continuous (0...10000), 13 missing values 1 (continuous) 0..1

 22

(CNLN (P1 (P1 (In T42) (P1 (In T15) (P1 (In T15) (P1 (P1 (In T42) (P1 (In T44) (P1 (P1 (P1 (In T42) (P1 (In T43) (P1 (In
T15) (In T27)))) (In T15)) (In T12)))) (In T49))))) (In T49)) (Rule 0 0))))

Figure 7. Neural logic network (description and representation) generated for the Australian credit-scoring problem

The generated neural logic network can be described by the following extremely simple decision

rule:

Q Conjunction (AND) (T12, T15, T15, T15, T15, T27, T42, T42, T42, T43, T44, T49, T49) ⇐

The main conclusions regarding this extracted decision-rule follow:

• Only simple attribute conjunctions (AND operations) are contained in the resulting

NLN, a fact showing that no complex decision-rules should be expected for building up

an effective decision –making strategy from the bank’s viewpoint, regarding credit

applicants’ evaluation.

• Getting into greater detail, attribute (feature) T15 seems to be of significant importance

for the overall decision-making process. This feature is binary. The initial data feature

from which T15 was derived, receives values from the set {g, p, gg, ?}, with T15

corresponding to the last value.

• Feature T42 is also of significant importance for the decision-making process.

• Another significant feature is the T49, which in the initial data set receives values within

the range [0,2000].

 23

The Australian bank data problem is particularly interesting, since it enables the comparison of

the ENLN with a number of competitive statistical and intelligent approaches. Table XI presents

the ENLN-results as compared with 22 other competitive approaches. Among the provided

methodologies of Table XI, the ENLN-approach succeeded to obtain the highest classification

score using the specific neural logic network presented above (Fig. 7).

Table XI. Classification rates in unknown data for the Australian credit-scoring problem. Results from (Statlog 2002).

Methodology Classification rate in unknown
data (%)

Cal5 86.9
Itrule 86.3
LogDisc 85.9
Discrim 85.9
Dipol92 85.9
Radial 85.5
Cart 85.5
Castle 85.2
Bayes 84.9
IndCart 84.8
BackProp 84.6
C4.5 84.5
Smart 84.2
BayTree 82.9
KNN 81.9
Ac2 81.9
NewId 81.9
LVQ 80.3
Alloc80 79.9
Cn2 79.6
QuaDisc 79.3
Default 56.0
�NLN 89.5

5. CONCLUSIONS AND FURTHER RESEARCH

The paper discussed the effectiveness of an innovative hybrid and adaptive intelligent

methodology, based on neural logic networks and grammar-guided genetic programming. Initially

the proposed overall methodology was discussed, for generating efficient neural logic networks

with the aid of genetic programming methods trained adaptively through an innovative scheme.

Then description and discussion of a proposed novel adaptive training scheme of the GP-process

followed, which successfully leads to the generation of high diversity solutions and small sized

individuals, in other words to the achievement of highly accurate, short in length and easily

interpretable results, having the form of logical expert rules. Then, a sensitivity analysis study was

provided, for comparing the performance of the proposed ENLN-methodology, with well-known

 24

competitive inductive machine learning approaches (C4.5 was selected to be the tool for

comparison). The comparison was made on artificially produced datasets with varying conditions

of embedded noise, missing values and insertion of dummy variables for checking the ability for

feature selection. Results were encouraging according to the comparison performed, with the

ENLN-system outperforming C4.5 in noisy conditions and missing values and performing

comparatively in feature selection tasks.

Finally, two financial domains of application were selected to demonstrate the capabilities of the

proposed methodology:

(a) Classification of credit applicants for consumer loans of a German bank

(b) A credit-scoring decision-making process concerning an Australian bank.

Results were encouraging as well, for both domains, since the proposed ENLN-methodology

achieved the highest classification accuracy among, a large number of competitive existing

statistical and intelligent methodologies, while it also generated a rather small set of particularly

meaningful and handy decision rules for the management of the credit applicants’ decision-

making problem.

The authors currently extend their research work towards a number of open problems regarding

the proposed ENLN methodology, such as:

• the attempt to construct evolutionary recursive high-order neural networks with

interpretable outcome,

• further investigation on the adaptive training methodologies within the ENLN

framework

• the application of the ENLN-approach in specific multi-class and multivariate time-series

forecasting problems,

• the incorporation of the minimum description length principle or other metrics into the

training procedure.

Additionally, as shown in Table III, after experiments, we concluded that these parameters are

optimal for our ENLN system setup. Hence, these values are heuristically obtained. We believe

that it would be worthwhile however, in a future work to obtain a relationship between all major

ENLN system parameters (including grammar size, population size, maximum allowed

individual size etc.) and these tuning values.

 25

.

6. REFERENCES

Angeline P.J., Subtree crossover causes bloat, Genetic Programming 1998: Proceedings of the

Third Annual Conference, J.R.Koza, W.Banzhaf, K.Chellapilla, K.Deb, M.Dorigo, D.B.Fogel,

M.H. Garzon, D.E.Goldberg, H.Iba, R.Riolo (Eds.), pp. 745-752, University of Winsconsin,

Winsconsin, 1998, Morgan Kaufmann

Chia, H.W-K., Tan, C-L. 2001. Neural logic network learning using genetic programming.

International. Journal of Computational Intelligence and Applications: 1:4, pp. 357-368

Clark, P., Niblett, T., 1989. The CN2 induction algorithm, Machine Learning, 3: 261-283

DataGen. 2004. DataSet Generator, http://www.datasetgenerator.com/overview.html

Fahrmeir, L., Tutz, G. 1994. Multivariate Statistical Modeling Based on Generalized Linear

Models. New York: Springer.

Koza, J.R. 1992. Genetic Programming: On the Programming of Computers by Means of Natural

Selection, Cambridge, MA, USA: MIT Press.

Koza, J., Bennett, F., Andre, D., Keane, M. 2003. Genetic Programming III: Automatic

Programming and Automatic Circuit Synthesis. Morgan Kaufmann.

Lavrac, N., Dzeroski, S. 1994. Inductive Logic Programming: Techniques and Applications. Ellis

Horwood Series in Artificial Intelligence. Ellis Horwood, Chichester.

Leung, K.S., Wong, M.L. 1991. Automatic refinement of knowledge bases with fuzzy rules,

Knowledge-Based Systems, 4, pp 231-246.

 26

http://www.datasetgenerator.com/overview.html

Quah, T-S., Tan, C-L., Teh, H-H., Sriniivasan, B. 1995. Utilizing a Neural Logic Expert system

in Currency Option Trading. Expert Systems with Applications, 9:2, pp 213-222.

Quah, T-S., Tan, C-L., Raman, K., Sriniivasan, B. 1996. Towards integrating rule-based expert

systems and neural networks. Decision Support Systems, 17, pp 99-118.

Quinlan, J.R. 1987. Simplifying decision trees. International Journal of Man-Machine Studies 27,

December: pp. 221-234.

Quinlan, J.R. 1990. Learning logical definitions from relations. Machine Learning, 5, pp. 239-

266.

Quinlan, J.R. 1991. Determinate literals in inductive logic programming, Proceedings of the 8th

International Workshop on Machine Learning. pp 442-446, California, USA: Morgan Kaufmann.

Quinlan J.R. 1992, C4.5: Programs for Machine Learning, Morgan Kaufmann.

Singleton A., 1994, Genetic Programming with C++, BYTE Magazine, February 1994

Sfetsos, A., 2000, A comparison of various forecasting techniques applied to mean hourly wind

speed time series. Renewable Energy, 21: pp 23-25

Statlog 2002. Statlog Use, Test of Australian Credit Scoring data,

(http://www.liacc.up.pt/ML/statlog/datasets/australian/australian.use.html)

Tan, A-H., Teow, L-N. 1997. Inductive neural logic network and the SCM algorithm.

Neurocomputing: Vol. 14, 2 : 5, pp.157-176.

Teh, H-H. 1995. Neural Logic Networks, World Scientific.

 27

http://www.liacc.up.pt/ML/statlog/datasets/australian/australian.use.html

Tsakonas, A., Aggelis, V., Karkazis, I., and Dounias, G. 2004. An Evolutionary System for

Neural Logic Networks using Genetic Programming and Indirect Encoding. Journal of Applied

Logic: 2 (3), pp. 349-379.

Wong, M.L., 2001. A flexible knowledge discovery system using genetic programming and logic

grammars. Decision Support Systems, 31: pp. 405-428.

 28

	KEYWORDS: adaptive training, symbolic connectionist systems, neural logic networks, grammar-guided genetic programming, hybrid and adaptive intelligence.
	1. INTRODUCTION
	2. BACKGROUND
	3.1 ADAPTIVE TRAINING RATES FOR ENLN
	3.2 VALIDATION SET
	3.3 SENSITIVITY ANALYSIS

	4.1 GERMAN BANK CREDIT SCORING PROBLEM
	4.2 AUSTRALIAN BANK CREDIT SCORING PROBLEM
	Variable
	5. CONCLUSIONS AND FURTHER RESEARCH

	6. REFERENCES

