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ABSTRACT: The paper presents a hybrid and adaptive intelligent methodology, based on neural logic networks and 

grammar-guided genetic programming. The aim of the study is to demonstrate how to generate efficient neural logic 

networks with the aid of genetic programming methods trained adaptively through an innovative scheme. The proposed 

adaptive training scheme of the genetic programming mechanism, leads to the generation of high diversity solutions and 

small sized individuals. The overall methodology is advantageous due to the adaptive training scheme proposed, for 

offering both, accurate and interpretable results in the form of expert rules. Moreover, a sensitivity analysis study is 

provided within the paper, comparing the performance of the proposed evolutionary neural logic networks methodology, 

with well-known competitive inductive machine learning approaches. Two financial domains of application have been 

selected to demonstrate the capabilities of the proposed methodology, (a) classification of credit applicants for consumer 

loans of a German bank and (b) the credit-scoring decision-making process in an Australian bank. Results seem 

encouraging since the proposed methodology outperforms a number of competitive existing statistical and intelligent 

methodologies, while it also produces handy decision rules, short in length and transparent in meaning and use.  

 

KEYWORDS: adaptive training, symbolic connectionist systems, neural logic networks, grammar-guided genetic 

programming, hybrid and adaptive intelligence. 

 
 
1. INTRODUCTION 

Evolutionary neural logic networks (ENLN) consititute a recent advance in the domain of 

grammar-driven genetic programming (Tsakonas et al., 2004). The ENLN approach, introduced 

the production of neural logic networks and fuzzy neural logic networks which can be arbitrarily 

large and connected, and have the capability to maintain their interpretability. The neural logic 

networks (NLN) generally are powerful connectionist systems that have been applied in various 
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domains (Teh, 1995), (Quah et al., 1995), (Quah et al., 1996), (Sfetsos, 2000) and by their 

definition can be easily interpreted in a number of expert rules. These networks can be considered 

as an integration between rule-based expert systems and neural networks (Quah et al., 1996). 

Although being powerful in their definition, the task of properly training a neural logic network 

has been problematic in the past. At first, in (Teh, 1995) a training methodology related to back-

propagation was proposed. Later, the Supervised Clustering and Matching (SCM) algorithm (Tan 

and Teow, 1997) was introduced for the purpose of NLN-training. All these training models 

however, aiming at the refinement of the edge weights, often made the neural logic networks 

suffer in terms of their interpretability. This drawback led the research to alternative solving 

methodologies such as genetic programming (GP), (Chia and Tan, 2001). However, (Chia and 

Tan, 2001) in their system, provided a model capable of producing only a limited number of 

neural logic network representations, which resembled to a binary tree. In (Tsakonas et al., 2004), 

these problems have been adequately overcome. However, in order for this GP-guided NLN-

algorithm to operate efficiently and effectively, several enhancements have been applied into the 

standard genetic programming training procedure.  

This paper presents these advances, which enable the proposed ENLN-system to provide small 

and easily interpretable solutions, by controlling the code-bloat (Angeline 1998) using adaptive 

operation rates. In addition to the adaptive training scheme used, in the paper is also presented a 

sensitivity analysis of the proposed ENLN-system in comparison to a well-known inductive 

machine learning approach, the C4.5 algorithm (Quinlan, 1992).  As a next step, the ENLN-

system is applied in two problems belonging to the financial domain. The first problem 

corresponds to the credit applicants’ classification for consumer loans of a German bank. The 

ENLN-based results obtained in this domain, demonstrate the ability of the proposed system to 

produce interpretable NLN-representations and facilitate the knowledge discovery process. The 

second selected financial application corresponds to a similar credit scoring decision problem of 

an Australian bank. Although feature details in the latter domain are not available, the application 

of the ENLN-system to this data enables conclusions to be drawn on its effectiveness in 

comparison to a number of statistical and intelligent approaches. Hence, the ENLN approach 

proved to be capable of investigating complex neural logic network structures with a high 
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classification rate, although it still maintains the ability of interpreting these networks into expert 

rules. 

The paper is organised as follows. In section 2 a short presentation of the theoretical background 

of the neural logic networks and the genetic programming framework is made. Section 3 contains 

the system analysis of the ENLN methodology, with respect to the adaptive operation rates during 

training, the use of a validation set and the sensitivity analysis. In section 4, is given the 

application of the ENLN into two problems from the financial domain. Finally, section 5 contains 

conclusions regarding this work and proposes future research directions. 

 

2. BACKGROUND  

2.1 NEURAL LOGIC NETWORKS 

 
A neural logic network can be represented as a finite directed graph. It usually consists of a set of 

input nodes and an output node. In its 3-valued form, the possible value for a node can be one of 

three ordered pair activation values (1,0) for true, (0,1) for false and (0,0) for don't know. Every 

synapse (edge) is assigned also an ordered pair weight (x, y) where x and y are real numbers. An 

example neural logic and its output value (a, b) of node P is shown in Figure 1.  

Figure 1. The general form of a neural logic network and its output value 
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The rationale behind neural logic networks is to provide a connectionist system in which the 

following properties apply: 

• The truth table of the output of a node corresponds to the truth table of a logical 

operation. 

• Three-valued logic is supported (true, false and don’t know). 
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• Any elementary network that corresponds to a basic logical operation may be combined 

with others to form larger networks that can perform complex logical decision tasks. 

• Any such neural logic network should be interpretable into logical rules by simply 

interpreting its architecture and nodes. 

In the example shown in Figure 1, we present the standard activation function for a neural logic 

node. As it can be seen, the output of such a node belongs to the set {(1,0), (0,1), (0,0)}.  By using 

specific weights, different logical operations can be applied to the input nodes. Then, the result to 

the output node will be the same as defined in the truth table of the corresponding logical 

operation.  
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Figure 2. Example logical operators in neural logic networks 

 

Different sets of weights enable the representation of different logical operations. It is actually 

possible to map any rule of conventional knowledge into a neural logic network. Figure 2 depicts 

two such networks and their corresponding logical rule.

 

 

2.2 GENETIC PROGRAMMING 

 

Currently, Genetic Programming (GP) has been applied in a wide range of real-world problems. 

GP-methodology, in its canonical form enables the automatic generation of mathematical 

expressions or, so-called, programs.  Usually, a population of candidate solutions is maintained, 

and after a “generation” is completed, the population is expected to have higher fitness for a given 
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problem.  The generic GP run algorithm can be summarized in the following steps (Koza et al., 

2003): 

1. Create an initial population at random consisted of individual computer programs. 

2. Perform the following sub-steps until a termination criterion is satisfied: 

a. Using a fitness measure assign a fitness value to each individual. 

b. Create a new population by applying the three operators that follow. These 

operators are applied either to one or two individuals. Their selection is done 

using a tournament. 

i. Copy (reproduce) an individual without affecting it. 

ii. Create two new programs  (offsets) by recombining sub-trees from two 

existing programs using the crossover operation at randomly selected 

tree points 

iii. Create a new program from an existing individual by mutating in one of 

the three following ways. 

iii-a. Mutate a node of the tree. 

iii-b. Mutate a number in a node of the tree. 

iii-c. Select a sub-tree and promote it to a higher node. 

       3.Extract the result (or the approximate result) and designate the best-so-far individual. 

Having presented in short, the basic elements of the GP-approach, we move into an in-depth 

analysis of the proposed ENLN-system, presenting its adaptive characteristics and its sensitivity to 

noise and missing data. 

 

3. ENLN SYSTEM ANALYSIS 

 

The evolutionary approach that is used for the ENLN-system is composed of a grammar-driven, 

steady state genetic programming scheme. This system makes use of indirect encoding (cellular 

encoding) to represent arbitrarily sized and connected neural logic networks within the genetic 

programming trees. The population initialization and the overall training procedure are controlled 

by a grammar expressed in BNF notation. For further details, regarding the basic system 

architecture and functionality, the reader is strongly encouraged to address to (Tsakonas et al., 
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2004). For the ENLN system, the population has been set to 2,000 individuals, a value that can be 

considered typical for GP (Koza, 1992) and is mainly related to hardware-memory constraint 

reasons. The selection of the individuals is accomplished using the tournament with elitist strategy 

(Koza, 1992), in which the individual to be selected is decided after a tournament among six 

members of a randomly selected population’s subset, in respect to their fitness values. The selected 

size of members in the tournament (i.e. six) is also considered a typical value for the GP 

procedures. In order to perform a more effective search and also to avoid premature convergence, 

we choose to apply a killing anti-tournament (Koza 1992), in which two members of the population 

are selected randomly and the member with the lower fitness substitutes the other. This procedure 

aims to disable any possible domination of a highly fitted individual in the population.  The 

maximum size of an individual is set to 650 nodes, which is a rather high value regarding 

common GP implementations, but permissible according to current hardware and memory 

capacities. The motivation for selecting a high maximum size of an individual is related to the 

requirements of the ENLN indirect encoding. Each run of the algorithm is applied at most up to 

200 generations. All the abovementioned experimentation parameters are summarized in Table I. 

 

 

 

Table I. GP training parameters 
 

Parameter Value 

Population  2,000 individuals  
Implementation Grammar-driven steady state genetic programming 
Selection Tournament with elitist strategy 
Tournament members 6 
Killing anti-tournament 2 
Maximum nodes allowed  650 nodes  
Maximum generations number 200 

 

 
3.1 ADAPTIVE TRAINING RATES FOR ENLN 

 

The idea behind the adaptive training rate for the genetic operations is to ensure two things: 

• To keep the diversity of the population in high levels 

• To keep the average size of the population individuals low. 
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The first property provides a beneficiary framework for the algorithm during the solution search. 

The second property, confronts the program code bloat of the population, which often results in 

very large and non-interpretable solutions. Hence the target of this procedure can be clarified into 

two statements, which are eligible for the evolutionary neural logic networks: 

• High classification rate 

• Small (interpretable) solutions 

In this regard, we examined three frameworks for the training process of the ENLN: 

• Training with fixed rates for genetic operations (i.e. no adaptation at all) 

• Training with adaptive rates based on threshold population values  

• Training with adaptive rates directly related on the population size and growth 

 The first approach uses standard values for the genetic operations. These values have been 

extensively tested in our experiments hence we consider them near optimum, regarding a non-

adaptive ENLN system. The values for these rates are shown in Table II. 

 

 

 

Table II. Rate values for fixed rate operation of a ENLN system 

Operation Rate  
Crossover 0.65 
Node mutation 0.07 
Constant mutation 0.07 
Shrink mutation 0.21 

 

Training using an adaptive rate based on threshold population values (called hereinafter as ‘level’ 

adaptation), can be considered as an alternative to fixed rates for operations, the aim being here to 

apply a penalty to specific operators when a given level (threshold) of the average population size 

is exceeded. Within this framework, we apply the following three simple rules during the training 

procedure, see, Eqs. (1)-(3) below: 

1 1
1 ,a d m cs s f s r r+ > ⋅ → m

m

m

     (1) 

2 2
2 ,a d m cs s f s r r+ > ⋅ →      (2)  

3 3
3 ,a d m cs s f s r r+ < ⋅ →      (3) 
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In the above equations,  is the average size of the individuals of the population, is the 

standard deviation of the population individuals’ size, is the maximum allowed size of an 

individual, 

as ds

ms

nf  is a constant for the n-case explained below, is the crossover rate for the n-case 

and is the total mutation rate for the n-case. These three rules maintain a different role in our 

system. The first rule (eq. (1)) reduces significantly the crossover operations vs. the mutation 

operations when the average size of the individuals exceeds a stated measure. The intention of the 

application of this rule is to beat the code bloat phenomenon that often arises after a number of 

operations. This rule takes precedence over rule of eq. (2). The second rule (eq. (2)) reduces mildly 

the crossover operations vs. the mutation operations when the average size of the individuals 

exceeds a stated measure. This is an auxiliary rule for rule of eq. (2), aiming to maintain the 

average size of the individuals in towardly levels. The third rule (eq. (3)) increases significantly the 

crossover operations vs. the mutation operations when the average size of the individuals goes 

below a stated measure. The intention of the application of this rule is to beat premature 

convergence that we may encounter in grammar-based systems if the population floods in the 

early stages of the algorithm with small, moderately good solutions. Individual values for the three 

mutation operators are obtained using a fixed analogy. More specifically, the following relations 

are used, (see Eqs. (4)-(6)): 

n
cr

n
mr

0.6s n
mr

n
mr= ⋅          (4) 

0.2c n n
mr mr= ⋅       (5) 

0.2n n n
mr mr= ⋅       (6) 

In the above equations, s n
mr  is the shrink mutation (Singleton 1994) rate for the n-case, while  

and  are the constant and node mutation rates accordingly. The constants 

c n
mr

n n
mr nf and the 

operation rates after experimentation take the values shown in Table III. 

 

 

Table III. Constants values and operator rates for the level adaptive training 

n 
nf  n

cr  
n

mr  

1 0.5 0.02 0.98 
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2 0.33 0.35 0.65 
3 0.16 0.95 0.05 

 

The next adaptive scheme tried on the ENLN is training with adaptive rates directly related on the 

population size and growth (called hereinafter as ‘continuous’ adaptation). The rationale behind 

this approach is to maintain an online and imminent rate for the genetic operations, during the 

training phase, based on current population status and a momentum size factor. We have applied 

therefore the scheme described by the following equations (7)-(10): 

1 2
2

1 t
m

sr f f s
f

⎛ ⎞
e= ⋅ + − ⋅⎜

⎝ ⎠
⎟

mr

    (7) 

1cr = −       (8) 

t
a w

t
w

s ss
s
−

=       (9) 

1

1

t t
a a

e t
a

s ss
s

−

−

−
=       (10) 

In the above equations, 1f is the “starting value” mutation rate, set here to 0.7, 2f  is the 

“adjusting” factor, set here equal to 1.2 (a value of 1.0 corresponds to equal impact of the  and 

parameters),  is the relative increment size (a momentum value),  is the relative trend size, 

 is the size where we prefer that the average population is being driven to (set here to 150 

nodes), and finally, and are the average population sizes at the t and t-1 generations. In 

this scheme, shrink mutation rate is additionally adapted within the total mutation rate, using the 

following relation given by eq. (11): 

ts

es es ts

ws

t
as 1t

as −

t
s s a

m m
w

sr R
s

= ⋅      (11) 

In the above relation, s
mR  is the maximum allowed relative mutation rate for the shrink mutation 

operator (set here to 0.9), is the average population size at the t-generation, t
as s

mr  is the shrink 

mutation rate relative to the overall mutation rate. The above relations form a framework in 

which crossover and mutation rates are adapted after every generation. However, in order to 

perform more effectively, we form a limit to the overall mutation rate, disabling values higher 
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than 0.9, thus enabling always the existence of crossover in a sensible amount. Additionally, we 

apply the same constraints to the shrink mutation rate relative to the overall mutation rate (i.e. 

maximum allowed rate set to 0.9). 

The results from the training process are illustrated in Figures 3, (a)-(h).  In Figure 3(a) and (b), is 

shown the number of the performed crossover and mutations accordingly. One may easily observe 

the different operating behavior of these three approaches, and especially the high mutation rates 

adapted by the level and the continuous adapting scheme.  Figure 3(c) depicts the shrink mutation 

operations, demonstrating the special handling of this operator in the continuous adapting 

training, in an attempt to control the population size. Figure 3(d) shows the average population 

size of the ENLN system during training. It is clearly shown that the adaptive approaches handle 

better the code bloat effect by reducing the average population size to the desirable levels. Between 

the two adaptive approaches, the continuous adaptation scheme succeeds in keeping the 

population in constant levels more effectively than the level adaptation. It is shown also that 

delays the increment of the code significantly during the early stage of training. In Figure 3(e), we 

present the standard deviation of the population size. This feature can be a measure of population 

diversity. In this respect, the continuous adaptation seems to perform poorer in the early stage of 

training, than the level adaptation and the no-adapt scheme. Figure 3(f) shows the average fitness 

of the population during training. Suggesting that best individual’s fitness is equal, or nearly equal, 

high values of the average fitness may denote a low-diversity population. As it is shown in this 

figure, the no-adapting scheme has performed worst in this case, having the level-adaptation 

performing better after the early training stage. In Figure 3(g), we depict the standard  
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(c) Average Size 
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Figure 3. Performance of the training schemes: (a) crossover operations, (b) overall mutation operations, (c) shrink 
mutation operations, (d) average population size, (e) size std. deviation, (f) average fitness, (g) fitness std. deviation and (h) 

best fitness. 
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deviation of the population fitness. High values of standard deviation are positive sign of 

population diversity. In this respect, the level adaptation has performed better, with the no-adapt 

scheme having the lowest standard deviation. Finally, Figure 3 (h), shows the best individual’s 

fitness during training process. As it is seen in this figure, the level adaptation prevails to the other 

two approaches, with the continuous adaptation having slightly lower values than those of the no-

adapting approach. In respect to the above experimentations, we selected to apply the level 

adaptation throughout our work. 

Having described the adaptive training schemes for the ENLN, in the next paragraph we continue 

with the methodology used in order to guide the search process and avoid overfitting to the 

training data set. The methodology selected to be applied, is the incorporation of a validation set. 

 

3.2 VALIDATION SET 

 

Currently, the most popular procedure in literature to avoid overfitting in the training set is the use 

of a validation set. This technique consists of the partition of the subset used for training into two 

parts. The first part is used for the main training of the algorithm, and the second part is used for 

validation. In this respect, as best solution is selected the one that maintains the lowest 

classification error in both the training and the validation set. More specifically, this procedure in 

ENLN is applied as follows. 

Suppose  , where is the fitness value of the best individual in the training set 

after  generations,  is the fitness value of the best individual in the validation set after i  

generations and  is the maximum number of generations, we get the following equation (12): 

, , 1,..,t v
i iF F i n= t

iF

i v
iF

n

, {( ) ( )}t t v v
best i i best i bestV V iff F F F F⇐ > ∧ ≥     (12) 

where is the (final) best solution,  is the best solution after i  generations,  is the 

fitness value of the (final) best individual in the training set and  s the fitness value of the 

(final) best individual in the validation set. In fact, aiming to obtain smaller size of the solutions 

we slightly modify the above equation (12) to the following one (13): 

bestV iV t
bestF

v
bestF
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,

( ) ( ) (

t t v v
i best i best

best i
t t v v

i best i best i best

F F F F
V V iff

F F F F K K

⎧ ⎫> ∧ ≥
⎪ ⎪⇐ ∨⎨ ⎬
⎪ ⎪= ∧ ≥ ∧ <⎩ ⎭

            
)

   (13) 

In the above equation (13),  is the size (in nodes) of the best solution after i  generations, and 

 is the size (similarly in nodes) of the final best solution acquired. 

iK

bestK

 

3.3 SENSITIVITY ANALYSIS 

 

In data mining tasks, an essential property for a system is the ability to learn by incomplete and 

imperfect data sets. The usual types of imperfections encountered are (Wong, 2001): 

• Random noise to the data.   

• Very small data size.   

• The distribution of the training data, which fails to represent the underlying distribution 

of the data domain.  

• The use of improper language description and the selection of wrong features.  

• It is possible to fail to represent important features or to accentuate irrelevant data 

features. It is also possible that the language description cannot include an exact 

description of the data domain.  

• The existence of missing values in the training set.  

Existing inductive learning systems apply various techniques to manage noise in order to 

encounter the first five imperfections above. The management of the missing values is usually 

performed in a different manner. The noise management techniques have been designed in such 

way in order to prevent the overfitting of the system to the imperfect training data set, by 

excluding the non-important elements of the data (Lavrac and Dzeroski, 1994). Techniques of this 

kind are the pruning of the decision trees in CART, the rule cutting in AQ15 (Leung and Wong, 

1991) and the meaningfulness checking in CN2 (Clark and Niblett, 1989).  However, these 

techniques may ignore some important features of the data domain, just because they are not of 

statistical importance. Moreover, the above learning systems use a limited feature-value language 

to represent the training data sets and the connoted knowledge. Today, only a limited number of 
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learning systems like FOIL (Quinlan 1990), (Quinlan, 1991), mFOIL (Lavrac and Dzeroski, 1994) 

and C4.5 (Quinlan, 1992) handle the task of learning by imperfect data.  In order to obtain an 

analytic description of the ENLN system behaviour under different environment conditions, we 

investigate its performance in comparison to a well-known computational intelligence algorithm. 

More specifically, we examine the system’s behaviour with respect to the following attributes: 

• Ability to learn from noisy data 

• Ability to learn from data with missing values  

• Ability to perform feature selection 

The algorithm we have selected to compare to, is the well-known C4.5, belonging to inductive 

machine-learning, which produces inductive decision trees (Quinlan, 1992). The methodology of 

the inductive decision trees uses as a key-measure the information entropy. C4.5 is a very popular 

methodology and one of the most frequently applied intelligent systems in data mining tasks. The 

problem addressed is composed by synthetic data artificially constructed for this reason. For the 

generation of the data sets, we applied the DataGenerator (DataGen, 2004), a system that uses 

rules to produce random records. The data produced by DataGenerator are mainly addressed by 

rule-building systems (like the C4.5 and the ENLN), and they can be used to obtain comparative 

values of their performance. For the creation of the data, it is used a rule set in conjunctive and 

disjunctive form, with a complexity degree defined by the user. It is possible to select the 

embedment of different noise levels and/or different number of missing values in the data set. We 

selected to create a data set consisting of 300 records, from which the first 200 are used for the 

systems’ training phase and the rest 100 as testing data set (unknown data). For the conducted 

experiments, we used a validation set consisting of the last 20 records of the 200-record training 

data set. Summarizing, the proposed ENLN-system in each experiment used the first 180 records 

as training set, the next 20 records as validation set and the last 100 as a test set. The C4.5 system 

used the first 200 records as training set and the last 100 as test set2.  

Two classes compose the examined domain. We set the distribution of these classes to be 

uniformly random. We also decided to include four features (A, B, C and D), from which one (D) 

will not participate in the rules that define the classes, aiming to check the ability of ENLN to 

                                                 
2 The data used and the analytic results are available to download from: http://decision.fme.aegean.gr/analysis/  
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perform feature selection, in which the presence of the D in every solution is undesirable. The 

problem is composed by the following two rules: 

• If A=[5,6] and B=[5,6] then c1 (53.0%)  

• If A=[9,10] and B=[5,6] and C=[8,9] then c2 (47.0%)  

We created the following data sets using the aforementioned properties. A 'noisy' record is 

consisted here of a partially false predicate (i.e. If A=9 and B=6 then c1) whereas a 'missing' value 

record is a record with partially unknown predicate (i.e. If A=? and B=6 then c1). 

• Sets with noise 0%, 5%, 10%, 20%, 33%, 50%, 80% and 100% 

• Sets with missing values 0%, 5%, 10%, 20%, 33%, 50% and 80% 

We performed the training procedure for each algorithm once for every data set. In Table IV we 

present the classification error in data sets with noise. 

 

Table IV. Classification error in noisy data sets 

Data noise % Classification error of ENLN in test set % Classification error of C4.5 in test set 
0% 0 0 
5% 3 3 

10% 3 5 
20% 6 4 
33% 13 11 
50% 14 29 
80% 36 47 

100% 38 41 

 

In this table we may observe that the ENLN system performs better in 5 out of the 7 cases than 

C4.5. Specifically C4.5 is shown to maintain lower error rates in the “middle” noise levels (20% 

and 33%), while the ENLN system succeeds in low and high noise levels. These results are shown 

in Figure 4.  It is worth to note that the success of C4.5 can be modified only if we modify the 

algorithm parameters; on the contrary, by performing repetitive runs, and still maintaining the 

same ENLN system setup, there is a potential of achieving better results, which is due to ENLN ’s 

stochastic nature. 
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Figure 4. Classification error in noisy data for ENLN and C4.5 

 

The next experimentation was performed in a data set with missing feature values. The results are 

presented in Table V. 

 

Table V. Classification error rate in data sets with missing feature values. 

Missing values 
percentage 

% Classification error of ENLN 
     in test set 

% Classification error of C4.5  
     in test set 

0% 0 0 
5% 3 4 

10% 3 6 
20% 7 18 
33% 17 11 
50% 25 32 
80% 40 43 

 

 

In this table we may observe that the proposed ENLN-system outperforms the C4.5 with the 

exception of the case where the missing values comprise 33% of the total. In 5 out of the 6 cases 

the ENLN approach achieved lower error rates than those of the C4.5. These results are shown in 

Figure 5. 
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Figure 5. Classification error rate in data sets with missing values for ENLN and C4.5 

 

By definition, the ENLN system during the training phase tries to select only those features, which 

are considered to participate in the data domain. Hence, the user is not bound to pre-select a 

number of the features as the system inputs, and moreover, after the training process the user may 

extract useful conclusions based on the inclusion or the rejection of specific features. This property 

is known as feature selection, and is usually a characteristic met in machine learning systems. 

More specifically, the C4.5 algorithm is also used for feature selection. As previously shown, we 

entered to our experimental datasets a variable which does not participate to the classes 

definitions, in order to investigate the performance of ENLN in feature selection. The results are 

shown in Table VI. As it can be seen, the undesirable variable is present in the ENLN solution in 8 

out of 14 cases. Respectively, this undesirable variable is present in the C4.5 solution in 7 out of 

the 14 cases. Six of the cases that involve the undesirable variable are common to both systems. 

Hence, the performance of the ENLN-system should be considered a highly competitive one, 

since systems such as C4.5 are widely used for years as smart feature selection tools. 

 

 

 

 

Table VI. Inclusion of undesirable variable in ENLN and C4.5 systems 

Data set Undesirable variable included  Undesirable variable included  
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in the ENLN solution in the C4.5 solution 
0% noise No No 
5% noise Yes No 

10% noise Yes No 
20% noise No No 
33% noise No No 
50% noise No No 
80% noise Yes Yes 

100% noise Yes Yes 
5% missing values Yes Yes 

10% missing values Yes Yes 
20% missing values Yes Yes 
33% missing values No No 
50% missing values No Yes 
80% missing values Yes Yes 

 

As a concluding remark, the ENLN system, compared to the C4.5 algorithm proved: 

• Better in handling noisy data in 5 out of the 7 of the examined cases. 

• Better in handling data with missing values in 5 out of the 6 of the examined cases. 

• Competitive to C4.5, with respect to its ability to perform feature selection tasks. 

Having examined the algorithm in terms of its sensitivity to noise and missing data, we now 

proceed in presenting the application of the system into two problems from the area of financial 

decision-making. 

 

4. APPLICATIONS IN FINANCE: RESULTS AND DISCUSSION 

 

4.1 GERMAN BANK CREDIT SCORING PROBLEM 

 

In this section we proceed in testing the proposed ENLN algorithmic approach, into a real-world 

classification problem from the financial domain. The problem addressed, is related with the 

creditability of the applicants of a German bank for consumer loans (Fahrmeir and Tutz, 1994).  

Available features are financial and personal properties of the applicant, like real estate, sex etc. 

Data consist of both, continuous and discrete features, and there are no missing values. We used 

the encoding proposed by the data base creators (Fahrmeir and Tutz 1994) since a large number of 

these features are already encoded properly for the system input variables. Table VII shows details 

of the domain data, while the corresponding attribute descriptions are presented in Table VIII. We 

have adopted the encoding scheme use by the data base creators. It is worth to note however, that 

this encoding includes a number of problematic cases, in which variables with discrete 
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independent values are encoded into non- independent values. Such case is for example the value 

T7. As a consequence, the results in all algorithms are expected poorer than the potential. 

Table VII.  Data domain description for the German credit-scoring problem 

Domain German credit scoring problem 
Database name German 
Input features 20 
Continuous input features 2 
Discrete input features 18 
Binary input features 0 
Anti – Overfitting method Validation set 
Total records 996 
Training set records 498 
Validation set records 249 
Test set records 249 
Missing data No  
Data standardization/normalization No  

 

Table VIII. Feature description for the German credit-scoring problem 

Variable  Feature  Values / Value range Encoded features 
T1 Current account status 

(salaries for at least one 
year) , in thousands 

2: x < 0 DM,  

3: 0≤  x < 200 DM, 

4: x 200 DM, ≥
1: no account 

1 (discrete)    0...1 

T2 Month duration Continuous  1 (continuous)   0...1 
T 3 Credit history 2: no credits / all credits paid in time 

4: all credits in this bank paid in time 
3: existent credits paid in time up to now 
0: delay in the past to pay 
1: problematic account / there are other 
credits (not in this bank) 

1 (discrete)    0...1 

T 4 Credit size Continuous 1 (continuous)    0...1 
T 5 Savings account / income 

bonds, in thousands 
2: x < 100 DM, 

3: 100 ≤  x < 500 DM, 

4: 500 ≤  x < 1000 DM, 

5: x 1000 DM, ≥
1: no account / unknown account 

1 (discrete)   0...1 

T 6 Current occupation 1: unemployed, 
2: x < 1 year, 

3: 1 year ≤  x < 4 years, 

4: 4 years ≤  x < 7 years, 

5: x 7 years, ≥

1 (discrete)   0...1 

T 7 Personal status and sex 1: male, married 
2: female, divorced / widowed / married  
2: male, unmarried 
3: male, divorced / widowed 
4: female, unmarried 

1 (discrete)    0...1 

T 8 Current home 1: x < 1 year, 

2: 1 year ≤  x < 4 years, 

3: 4 years ≤  x < 7 years, 

4: x 7 years, ≥

1 (discrete)    0...1 

T 9  Property  4: real estate 
3: if without real estate: savings contract of 
construction company / life insurance � 
2: if without real estate: car   
1: without real estate / unknown 

1 (discrete)    0...1 

1: x ≤  25 years, T 10 Age in years 

2: 26 years ≤  x ≤  39 years, 

3: 40 years ≤  x ≤  59 years, 

5: 60 years ≤  x ≤  64 years, 

4: x 65 years, ≥

1 (discrete)    0...1 

T 11 Other accounts 0: in other bank   
1: in other branches   
2: none 

1 (discrete)   0...1 
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Variable  Feature  Values / Value range Encoded features 
T 12 Number of existing 

accounts in this bank 
(including current) 

1: one 
2: two or three   
3: four or five   
4: six or more  

1 (discrete)   0...1 

T 13 Number of people being 
liable to provide 
maintenance  

2:  from 0 to 2 
1: 3 or more 

1 (discrete)   0...1 

T 14 Telephone  1: no 
2: yes, at the name of potential customer 

1 (binary)   0...1 

T 15 Foreign worker 1: yes 
2: no 

1 (binary)   0...1 

T 16- T 18 Reason for loan 0: new car purchase 
1: used car purchase 
2: furniture purchase 
3: TV/radio purchase 
4: local use 
5: repairs 
6: education 
7: holidays 
8: reeducation 
9: business reasons 
10: other reasons 

1 (discrete)     
3 binaries 0-1 

T 19-T 20 Other guarantees 0: none 
1: co-applicant 
2: guarantee 

1 (discrete)     
2 binaries 0-1 

T 21- T 22 Residence  2: hire 
3: privately owned 
1: residence for free 

1 (discrete)     
2 binaries 0-1 

T 23- T 24 Work  0: unemployed – non permanent   
1: uneducated permanent 
2: skilled employee / officer 
3: management/ self-employed / high 
ranking employee 

1 (discrete)     
2 binaries 0-1 

 

The solution achieved is shown in Figure 6. This network classified successfully 72.69% (181/249) 

of the test data set (i.e. unknown data).  The classification score in the training and validation set 

reached 72.69% (362/498) and 69.1% (172/149) respectively. 

 

(CNLN (P1 (S1 (P1 (P1 (P1 (In T20) (P1 (S1 (P1 (In T21) (In T24)) (Rule 0 0) E) (In T17))) (P1 (S1 (P1 (P1 (In T7) (S1 (In 
T13) (Link 214 0 (Rule 0 0)) E)) (In T24)) (Link 106 0 (Rule 0 0)) (S2 E (Rule 0 0) E)) (In T21))) (In T6)) (Rule 0 0) (S2 (S2 

E (Rule 0 0) E) (Rule 0 0) E)) (In T3)) (Rule 0 0)) 
 

Figure 6.  Neural logic network (description and representation) created for the German credit-scoring problem. 
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The above network corresponds to the following set of rules: 

• Q1⇐Conjunction (��D) (personal status and sex, Number of people being liable to 

provide maintenance for, Skilled employee/officer) 

• Q2⇐  Conjunction (��D) (Own housing, Skilled employee/officer) 

• Q3⇐  Conjunction (��D) (Q1, Q2) 

• Q  Conjunction (��D) (Q3, Credit history) ⇐

In the abovementioned rule set we may draw the following further conclusions: 

• The credit history has significant importance for the decision-making process, since its 

value is applied in a conjunctive rule with the result of all previous logical operations 

from the rest of the features used. 

• Another important feature, for the bank’s decision-making task, seems to be the 

professional status of the applicant. Its value is applied in two logical operations (Q1 and 

Q2) 

• Only 5 out of 24 available features were selected in total to be applied by the ENLN-

system 

• Complex decision rules seem not to be necessary, since the produced set of decision rules, 

uses only conjunctions (i.e. “AND” operations). 

 

4.2 AUSTRALIAN BANK CREDIT SCORING PROBLEM 

 

In the second financial application selected to demonstrate the effectiveness of the proposed 

ENLN-system, we investigate a similar with the previous credit applicants’ evaluation problem, 

this time using a set of data acquired by an Australian bank (Quinlan, 1992). The features in this 

data are given as simple elements and their interpretation is not known, since this data set has 

been considered as classified information. However, the application of the ENLN system to this 

decision-making problem may provide useful conclusions regarding the system’s effectiveness, 

since there exist enough successful applications of other approaches (Quinlan, 1987), (Statlog, 

2002), in related literature. Table IX provides the description of the domain, while Table X presents 

the related attributes and the encoding that was used. 
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Table IX. Data domain description for the Australian bank credit-scoring problem 

Domain Australian bank credit scoring 
problem 

Database name Australian / CRX 
Input features 14 encoded to 51 
Continuous input features 6 encoded to 6 
Binary input features 3  
Discrete input features 6 encoded to 42 
Anti – Overfitting method Validation set  
Total records 688 
Training set records 344 
Validation set records 172 
Test set records 172 
Missing data Yes, 67 values 
Data standardization/normalization No  

 

This data is primarily composed by discrete attributes, which are split into independent binary 

features for further processing by our system. The percentage of cases for which the application 

was finally accepted, reaches 44.5 % of the total (307 records). A total of 37 records have one or 

more missing values (5% of total data).  After the training process, the ENLN-algorithm finally 

generated the specific neural logic network shown in Figure 7. The classification rate of this 

solution in the test set (unknown data) reaches 89.53% (154/172) which is higher than those 

reported in literature (Quinlan, 1992). The corresponding classification rates in the training and 

the validation set were 85.47% (294/344) and 87.21% (150/172) respectively. 

Table X.  Feature description for the Australian bank credit-scoring problem 
 

Variable Values / value range Encoded features 
T1-T3 discrete (b, a, ?), 12 missing values 1 (discrete)    3  binaries, 1 of 3  (b="1 0 0", a="0 1 

0", ?="0 0 1") 
T4-T5 continuous (13.75...80.25) 1 (continuous)    2 ( 1 continuous 0..1, 

1 binary, 1: absent 0: non-absent) 
T6 continuous (0...28) 1 (continuous)    0..1 
T7-T11 discrete (u, y, l, t, ?), 6 missing values     1 (discrete)    5  binaries, 1 of 5   
T12-T15 discrete (g, p, gg, ?), 6 missing values        1 (discrete)    4  binaries, 1 of 4   
T16-T30 discrete (c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff, 

?), 9 missing values 
1 (discrete)    15  binaries, 1 of 15   

T31-T40 discrete (v, h, bb, j, n, z, dd, ff, o, ? ), 9 
missing values 

1 (discrete)    10  binaries, 1 of 10   

T41 continuous (0...28.5) 1 (continuous)    0..1 
T42 Binary 1 (binary)    0..1 
T43 Binary 1 (binary)    0..1 
T44 continuous (0...67) 1 (continuous)    0..1 
T45 Binary 1 (binary)    0..1 
T46-T48 discrete (g, p, s) 1 (discrete)    3  binaries, 1 of 3   
T49-T50 continuous (0...2000), 13 missing values 1 (continuous)    2 ( 1 continuous 0..1, 

1 binary, 1: absent 0: non-absent) 
T51 continuous (0...10000), 13 missing values 1 (continuous)    0..1 
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(CNLN (P1 (P1 (In T42) (P1 (In T15) (P1 (In T15) (P1 (P1 (In T42) (P1 (In T44) (P1 (P1 (P1 (In T42) (P1 (In T43) (P1 (In 
T15) (In T27)))) (In T15)) (In T12)))) (In T49))))) (In T49)) (Rule 0 0)))) 

 

Figure 7. Neural logic network (description and representation) generated for the Australian credit-scoring problem 
 

The generated neural logic network can be described by the following extremely simple decision 

rule: 

Q Conjunction (AND) (T12, T15, T15, T15, T15, T27, T42, T42, T42, T43, T44, T49, T49) ⇐

The main conclusions regarding this extracted decision-rule follow: 

• Only simple attribute conjunctions (AND operations) are contained in the resulting 

NLN, a fact showing that no complex decision-rules should be expected for building up 

an effective decision –making strategy from the bank’s viewpoint, regarding credit 

applicants’ evaluation. 

• Getting into greater detail, attribute (feature) T15 seems to be of significant importance 

for the overall decision-making process. This feature is binary. The initial data feature 

from which T15 was derived, receives values from the set {g, p, gg, ?}, with T15 

corresponding to the last value. 

• Feature T42 is also of significant importance for the decision-making process. 

• Another significant feature is the T49, which in the initial data set receives values within 

the range [0,2000].  
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The Australian bank data problem is particularly interesting, since it enables the comparison of 

the ENLN with a number of competitive statistical and intelligent approaches. Table XI presents 

the ENLN-results as compared with 22 other competitive approaches. Among the provided 

methodologies of Table XI, the ENLN-approach succeeded to obtain the highest classification 

score using the specific neural logic network presented above (Fig. 7). 

  

Table XI. Classification rates in unknown data for the Australian credit-scoring problem. Results from (Statlog 2002). 
 

Methodology Classification rate in unknown 
data  (%) 

Cal5 86.9 
Itrule 86.3 
LogDisc 85.9 
Discrim 85.9 
Dipol92 85.9 
Radial 85.5 
Cart 85.5 
Castle 85.2 
Bayes 84.9 
IndCart 84.8 
BackProp 84.6 
C4.5 84.5 
Smart 84.2 
BayTree 82.9 
KNN 81.9 
Ac2 81.9 
NewId 81.9 
LVQ 80.3 
Alloc80 79.9 
Cn2 79.6 
QuaDisc 79.3 
Default 56.0 
�NLN  89.5 

 

 

5. CONCLUSIONS AND FURTHER RESEARCH 

 

The paper discussed the effectiveness of an innovative hybrid and adaptive intelligent 

methodology, based on neural logic networks and grammar-guided genetic programming. Initially 

the proposed overall methodology was discussed, for generating efficient neural logic networks 

with the aid of genetic programming methods trained adaptively through an innovative scheme. 

Then description and discussion of a proposed novel adaptive training scheme of the GP-process 

followed, which successfully leads to the generation of high diversity solutions and small sized 

individuals, in other words to the achievement of highly accurate, short in length and easily 

interpretable results, having the form of logical expert rules. Then, a sensitivity analysis study was 

provided, for comparing the performance of the proposed ENLN-methodology, with well-known 
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competitive inductive machine learning approaches (C4.5 was selected to be the tool for 

comparison). The comparison was made on artificially produced datasets with varying conditions 

of embedded noise, missing values and insertion of dummy variables for checking the ability for 

feature selection. Results were encouraging according to the comparison performed, with the 

ENLN-system outperforming C4.5 in noisy conditions and missing values and performing 

comparatively in feature selection tasks.  

Finally, two financial domains of application were selected to demonstrate the capabilities of the 

proposed methodology:  

(a) Classification of credit applicants for consumer loans of a German bank  

(b) A credit-scoring decision-making process concerning an Australian bank. 

Results were encouraging as well, for both domains, since the proposed ENLN-methodology 

achieved the highest classification accuracy among, a large number of competitive existing 

statistical and intelligent methodologies, while it also generated a rather small set of particularly 

meaningful and handy decision rules for the management of the credit applicants’ decision-

making problem.  

The authors currently extend their research work towards a number of open problems regarding 

the proposed ENLN methodology, such as:  

• the attempt to construct evolutionary recursive high-order neural networks with 

interpretable outcome,  

• further investigation on the adaptive training methodologies within the ENLN 

framework 

• the application of the ENLN-approach in specific multi-class and multivariate time-series 

forecasting problems,  

• the incorporation of the minimum description length principle or other metrics into the 

training procedure. 

Additionally, as shown in Table III, after experiments, we concluded that these parameters are 

optimal for our ENLN system setup. Hence, these values are heuristically obtained. We believe 

that it would be worthwhile however, in a future work to obtain a relationship between all major 

ENLN system parameters (including grammar size, population size, maximum allowed 

individual size etc.) and these tuning values. 
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