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Abstract

The automatic generation of volumes bounding the intersection of two implicit surfaces (isosurfaces of real functions

of 3D point coordinates) or Feature Based Volumes (FBV) is presented. Such FBVs are defined by constructive

operations, function normalization and offsetting. By applying various offset operations to the intersection of two

surfaces, we can obtain variations in the shape of an FBV. The resulting volume can be used as a boundary for blending

operations applied to two corresponding volumes, and also for visualisation of feature curves and the modelling of

surface based structures including microstructures.

Categories and Subject Descriptors (according to ACM CCS): Computational Geometry and Object Modeling [I.3.5]:

Curve, surface, solid, and object representations—

Keywords: implicit surfaces, function representation, intersection, offsetting, bounding volumes, feature based

volumes

1. Introduction

Automatic generation of bounding volumes is re-

quired in many applications in computer graphics and

computational geometry. In this paper we consider the

problem of automatic generation of bounding volumes

or Feature Based Volumes (FBV) for intersections of

implicit surfaces that can be applied for defining the

bounded blending regions for two intersecting surfaces,

rendering of feature curves and points in interactive

function-based modelling and in other applications. By

FBV we mean a volumetric object that encloses all in-

tersection components independent of their dimension-

ality, number and complexity.

Intuitive shape control and feature localization are

key points for widening applicability of implicit sur-

face and function-based modelling. Using a bounded

blending operation between two volumes [1] generates

a blend completely localized inside an additional third

bounding volume, which needs to be specified by the

user. An approach for the automatic generation of such

a bounding volume enclosing the intersection curve be-

tween two given implicit surfaces was proposed in [2].

A polyline, which approximates the intersection curve,

is extracted and then is used as a skeleton for generat-

ing the bounding volume with a convolution surface or

some other skeletal based object.

In the general case, the intersection of two implicit

surfaces includes multiple components of different di-

mensionality: points, curves and surface patches (e.g.,

the intersection of two cubes partially sharing a face).

It is difficult or impossible to handle such intersections

using the method described in [2]. In addition, han-

dling a large number of disjoint intersection compo-

nents (points and curves) can also be problematic or im-

possible - consider for example the intersection of two

solid noise primitives or a pair of complex metaball ob-

jects. In this paper we solve this problem by propos-

ing Feature Based Volumes (FBV) - a general function-

based definition for automatically locating and generat-

ing such bounding volumes.

2. Related Work

The main approach to defining an FBV for the

surface-surface intersection curve is to approximate the

curve by straight or curvilinear segments and then to use

them as a skeleton of FBV. Such a skeleton can serve for

a distance based volume definition (skeletal blobs [3])

or a convolution surface [4].
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There are several numerical approaches to implicit

surface-surface intersection. One can start with some

intersection point found analytically or numerically,

then trace the intersection curve by differential equation

solving, see, for example [5]. Another approach is to

approximate both surfaces by polygons and to intersect

two obtained polyhedrons. These methods treat both

surfaces equally. On the other hand, one could assume

that one of the defining functions can be much more

time consuming to evaluate. A polygonization-based

algorithm aiming to decrease the number of evaluations

of the more complex function, which substantially de-

creases the overall computation time, was proposed in

[6].

Within the level sets framework, [7] proposed to lo-

calize blends within the regions surrounding intersec-

tion curves of two isosurfaces. Bernhardt et al. [2] intro-

duced a method for the automatic generation of bound-

ing volumes for intersection curves between two skele-

tal implicit surfaces. An intersection curve can be either

approximated by a polyline or considered a set of points

satisfying a system of two non-linear equations repre-

senting initial surfaces. [2] describes a hybrid numerical

procedure generating a polyline approximation for one

or several intersection curves with the given precision.

In this work, we attempt to avoid numerical search or

approximation, and instead to provide direct function-

based definition of FBVs for multiple intersections.

Our proposed solution is based on treating implicit sur-

faces and their intersections as zero-thickness solids

within the Function Representation (FRep) framework

[8]. This allows for the application of set-theoretic inter-

section operation defined by R-functions [9, 10] as well

as other FRep operations such as offsetting and bounded

blending.

3. Feature Based Volume Construction

We construct FBV for the intersection of two mod-

els defined by the Function Representation as follows:

first, we need to determine the point-set resulting from

the intersection of two surfaces represented as FRep ob-

jects (see Figs. 1a and 1b). The next step consists in

using an offset operation to define the solid object rep-

resenting the FBV (see Figs. 1c and 1d). In this section

we consider these steps in detail.

3.1. Construction of the intersection

For a given solid with the continuous defining func-

tion of point coordinates f (x) ≥ 0, the surface is usually

(a) (b)

(c) (d)

Figure 1: Feature Based Volume construction: a) Initial objects; b)

Intersection curve; c) Offset of the intersection curve; d) Initial objects

with Feature Based Volume.

defined by the set of points verifying f (x) = 0. We can

also use another formulation to define the surface:

g(x) = − f 2(x) ≥ 0 (1)

This function is equal to zero on the surface of the solid

defined by the function f and negative everywhere else.

Given two FRep objects: f1 ≥ 0 and f2 ≥ 0, by applying

the intersection operation to their surfaces, we obtain

the following definition for the point-set corresponding

to the surface-surface intersection:

fint = (− f1
2) ∧α (− f2

2) ≥ 0 (2)

Here ∧α denotes the intersection operation defined by

R-functions [9]. In our implementation, we use the R-

function with α = 0:

f1 ∧0 f2 = f1 + f2 −
√

f 2
1
+ f 2

2
(3)

While using this R-function for the intersection, we

can expect the resulting function to be C1-continuous in

the entire space with possible exception of the intersec-

tion points. The resulting function fint takes zero value

at the intersection of two surfaces and negative values

elsewhere. By surfaces here we consider closed sur-

faces, yet formally the same approach can be applied to

surfaces with boundaries in the case the defining func-

tions can be provided for them.

The volume enclosing the intersection point set can

then be defined using an offset operation:

fvol = offset( fint) (4)
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This operation typically generates a new point set com-

pletely including the initial point set. In the considered

problem, this is the volume enclosing the initial inter-

section point set between two surfaces.

3.2. Offsetting the intersection to obtain feature based

volume

Here we describe several possible methods for imple-

menting an offset operation for FRep objects. Note that

in the above formulation of offsetting functions, neither

dimensionality, nor the number of intersection compo-

nents were taken into account. Therefore, such a defined

volume has to enclose all intersection components with

its shape mainly defined by the initial functions and by

the type of the applied offset operation. The overall size

of the FBV is controlled by the parameters of the se-

lected offset.

3.2.1. Constant value offsetting

The simplest method for offsetting an FRep object de-

fined by f (x) is to change the iso-value of interest:

fconst(x) = f (x) + d (5)

where fconst(x) = 0 corresponds to the surface of the off-

set object and d is the offsetting amount. This approach

is simple to implement and extremely efficient. Its obvi-

ous drawback is that it heavily depends on the properties

of the function f (x).

If f (x) is defined by the Euclidean distance function

or behaves similarly (at least in the neighbourhood of

the surface of the object), then this approach will work

fine. In other cases, the offset object may not have an ex-

pected shape and the offset operation may be difficult to

control. Figure 2 illustrates this with an ellipse defined

by: 1 − (x/5)2 − (y/3)2
= 0 and the result of several off-

sets for values of d ranging from 0.1 to 0.5. The offset

curves are flatter than the original ellipse and stretched

horizontally.

Since the result of the constant value offsetting de-

pends on whether or not f (x) behaves like the distance

function, a possible solution is to apply transformations

to f (x) to make it behave like the distance function

while keeping the boundary ( fconst = 0) unchanged. We

discuss two methods to achieve this result in sections

3.2.2 and 3.2.3.

3.2.2. Normalization

A function f is said to be normalized to the order n

if
∂ f

∂ν
= 1 and

∂k f

∂νk
= 0 for k = 2...n where ν is the unit

normal to the surface. A normalized function behaves

like the distance function near its zero set. Methods for

(a)

Figure 2: Constant value offsetting of an ellipse. The ellipse and five

curves obtained by offsets ranging from 0.1 to 0.5 are shown. Offset

ellipses are horizontally stretched.

(a)

(b)

Figure 3: Normalization: a) First order normalization of f and con-

stant value offsetting of the normalized function; b) Second order nor-

malization of f and constant value offsetting of the normalized func-

tion.
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normalizing functions have been proposed by Rvachev

[9] and discussed in details by Shapiro [11, 10]. A func-

tion f with non vanishing gradient on its zero set can be

normalized to the first order by the transformation:

fnorm(x) =
f (x

√

f 2(x) + (∇ f (x))2
(6)

Normalization to the order n is obtained recursively:

fn = fn−1 −
1

n!
f n
1

∂n fn−1

∂νn
(7)

Since R-functions preserve normalization, functions

constructed by applying R-functions to primitives can

be normalized by simply normalizing each primitive

[9, 12, 11].

The normalization of R-functions is related to the ap-

proximation of distance introduced by Taubin in [13]

for approximating the distance to the zero level-set of a

function. Given an algebraic distance function: f , the

Taubin approximation of distance is obtained as:
f

|∇ f | .

Figure 3a shows the previously discussed ellipse and

several offsets obtained by using a first order normal-

ization of f (x, y) = 1 − (x/5)2 − (y/3)2. Increasing the

normalization order improves the approximation qual-

ity of the distance function near the zero level-set and is

illustrated by Fig. 3b where the second order normal-

ization of f is used instead. This is in the agreement

with the work of Biswas and Shapiro [11]: increasing

the normalization order, improves the quality of the dis-

tance function approximation near the boundary.

The normalization may produce unexpected results

for functions with not well behaved gradient. As an ex-

ample, please consider the following function f (x, y) =

1 − (x/16.9)2 − (y/0.5)2. Its zero level-set corresponds

to a very thin ellipse. The constant value offsetting for

the first order normalization of f for values of d ranging

from 0.1 to 0.5 is illustrated in Fig. 4a. Artifacts can

be seen for some of the offset curves. The second order

normalization shown in Fig. 4b also introduces artifacts

in the offset curves.

Computing the first order normalization for a given

function is relatively simple. Higher order normaliza-

tion requires computing higher order derivatives at run-

time, which needs to be done by automatic differentia-

tion.

3.2.3. Distance function reinitialization

Distance to the boundary f (x) = 0 can be obtained by

solving numerically the following PDE to steady state

as first proposed by Sussman et al. in [14]:

∂φ

∂t
= sign( f )(1− | ∇φ |) (8)

(a)

(b)

Figure 4: Artifacts after normalization of a thin ellipse: a) Artifacts

on an offset thin ellipse when constant value offsetting is applied to

the first order normalization; b) Artifacts are also present on the offset

thin ellipse when the second order normalization is used.
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where φ((x), t = 0) = f (x) and sign( f ) is the sign func-

tion of f defined as:

sign( f ) =



















−1, f < 0

0, f = 0

1, f > 0

(9)

For numerical purposes, it is useful to smooth the sign

function as: sign( f ) =
f√

f 2+ε2
(see [14]); ε can be cho-

sen as the length of the edge of a cell of the grid where

the PDE is solved.

This approach for reinitializing a level-set to keep

it a distance function was first proposed in [14]; de-

tails of the numerical implementation can be found in

section 3.5 of their work. In [15] the authors show

that a problem may arise when the initial function f is

not close to the signed distance function and propose

to solve the reinitialization problem by using a modi-

fied sign function depending on the local gradient of f :

sign( f ) =
f√

f 2+|∇ f |2ε2
. Further improvements for solv-

ing Eq. 8 have also been discussed in [16].

An alternative approach for computing the signed dis-

tance function to the boundary f (x) = 0, consists in

solving Eq. 10 with the Fast Marching method [17].

{

|∇φ| = 1

sign(φ) = sign( f )
(10)

Figure 5 illustrates the previous thin ellipse obtained

by contouring φ(x, t) = 0 and several offset curves for

d ranging from 0.1 to 0.5. The PDE in Eq. 8 was

solved on a grid of size 150 by 150 using 25 itera-

tions. We follow [15] for the numerical implemen-

tation. Additionally, the first order normalization of

f = 1− (x/16.9)2 − (y/0.5)2 was used as the initial con-

dition for φ(x, t = 0), since the first order normalization

provides a better approximation to the distance function

(at least close to the boundary).

Computing the distance function by the reinitializa-

tion method is more computationally intensive than nor-

malizing the function as it requires solving numerically

a PDE on a discrete grid. For the two-dimensional prob-

lem above, sampling the first order normalization of f

on a 150 by 150 grid took: 0.015 sec while solving Eq. 8

on the same grid took: 0.2 sec. Both computations were

run on a Sun workstation with an Intel Xeon processor

(2.8 GHZ).

The solution of Eq. 8 is known on the nodes of a grid

only. If a continuous function is needed in the appli-

cation, then we also need to apply an interpolation or

extrapolation method to the node values.

(a)

Figure 5: Correct offset curves are produced by reinitializing the dis-

tance function.

(a) (b)

Figure 6: FBV construction by constant value offset of the intersection

line: a) offset to a curve resulting from the intersection of two spheres.

b) offset to curves resulting from the intersection of the surfaces of two

metaball objects.

3.3. Comparison of methods for the creation of FBVs

We apply and compare the different methods pro-

posed above for creating an FBV by applying an off-

set operation to the intersection of various implicit sur-

faces. Figure 6 corresponds to the constant value offset

with value 0.1 applied to the intersection of two spheres

of radius 1.0 (see Fig. 1) and to the intersection of two

metaballs objects (see Fig. 10). It can be seen that for

simple initial objects constant value offsetting provides

good FBV, however the more complex objects we use

for FBV construction the farther the result from the ge-

ometric offset.

In Fig. 7, the FBV constructed with normalization of

the resulting function defined by the intersection of two

implicit surfaces is shown. Figure 7a corresponds to an

offset (with value 0.1) applied to the normalized inter-

section of two spheres and Figure 7b was obtained by

offsetting (offset value 0.2) the normalized intersection

of two metaball objects.
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(a) (b)

Figure 7: FBV construction by normalization of the intersection func-

tion

(a) (b)

Figure 8: FBV construction by normalization of each primitive before

constructing the intersection between the objects’ surfaces.

For comparison, Fig. 8 illustrates the result of nor-

malizing each primitive first by using Eq. 6 and then

computing the intersection of the normalized primitives.

The resulting function is normalized as a consequence

of the fact that properly selected R-functions keep the

normalization order of their primitives [9, 10, 11].

Finally, Fig. 9 is obtained by computing the unsigned

distance to fint = 0 by using the reinitialization method.

Note that the previous approximation illustrated in Fig.

8 produces relatively similar results while being simpler

to implement and faster to compute.

4. Applications and Results

In function-based modelling, FBVs can be used to

define the bounding solid needed in the bounded blend-

ing operation as well as a separate solid object for other

modelling purposes. In this section, we present the re-

sults of our experiments with some of the possible ap-

plications of FBVs.

(a) (b)

Figure 9: Computation of the unsigned distance to the intersection by

the reinitialization method.

(a) (b)

(c) (d)

Figure 10: Bounded blending applied to two metaball models: a) and

b) Initial models; c) Metaballs with the FBV obtained by offsetting the

intersection curve (in red); d) Result of the bounded blending union

operation using the FBV.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Bounded blending applied to two models with complex

topology: a) and b) Initial models: sphere and internal procedurally

defined microstructure; c) FBV; d) Initial objects together with FBV;

e) Result of the bounded blending union operation using the FBV; f)

Zoom to the blend area between the microstructure and the external

shell.

(a) (b) (c)

(d) (e)

Figure 12: Using FBVs for different blending set operations: a) Two

initial superellipsoids; b) Superellipsoids with the FBV obtained by

offsetting the intersection curve (in red) of their surfaces; c) Result

of the bounded blending union operation using the generated FBV;

d) Result of the bounded blending intersection operation using the

FBV; e) Result of the bounded blending subtraction operation using

the FBV.

(a) (b) (c)

Figure 13: Feature based volumes obtained by offsetting different in-

tersection components: a) Intersection component is a point; b) Inter-

section component is a face of the cube, FBV itself is shown in c).

4.1. Bounding volume for the bounded blending opera-

tion

The FBV constructed for two intersecting objects can

be used to localize the bounded blending defined in [1].

The FBV can be constructed for simple objects such as

superellipsoids (see Fig. 12) or cubes (see Fig. 13) as

well as for more complex objects such as metaballs (see

Fig. 10) and models with very complex topology, such

as models with microstructure (see Fig. 11). The con-

stant value offset was used in the example with meta-

balls and the normalization was used in all other ex-

amples. Any set operation (union, intersection, sub-

traction) with bounded blending can be applied using

the corresponding R-functions [9, 8, 10] and the FBVs

generated as described above. In Fig. 12d and Fig.

12e we illustrate the bounded blending intersection and

bounded blending subtraction for two objects. The FBV

generation is independent from dimensionality of inter-

section components as can be seen in Fig. 13.
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(a) (b)

Figure 14: FBV for feature curves: a) Superellipsoid with an FBV for

feature curves created by the intersection of the superellipsoid with

three planes orthogonal to each axis of the coordinate system. b) Com-

plex object with several feature curves generated by the intersection

of the object with construction planes.

(a)

Figure 15: Modelling of on-surface microstructure: FBV created by

intersection of superellipsoid with a periodical cellular structure.

4.2. Rendering feature curves

In interactive function-based modelling, it is impor-

tant to provide rendering and selection of feature points

and curves defined by the intersection of the modelled

object with a given set of planes. For example, in Fig.

14a a superellipsoid object is rendered as well as the

FBVs corresponding to an offset around the intersec-

tion of the superellipsoid with each of the three orthogo-

nal coordinate planes. The FBV is defined as described

above with f1 ≥ 0 corresponding to the superelliptic

solid and the union of three orthogonal planes defined

directly by:

(− f2
2) = (−x2) ∨α (−y2) ∨α (−z2) (11)

where ∨α is an R-function corresponding to the union

operation. In Fig. 14b a complex object constructed

from several primitives with using of blending subtrac-

tion, blending union and twist operations. This exam-

ple also illustrates a complex topology for the FBV that

would be difficult to construct with existing methods.

4.3. Modelling of on-surface microstructures

On-surface structures and microstructures are becom-

ing widely used in design with the development of dig-

ital fabrication hardware. Traditionally, implicit mod-

els were not popular in fabrication because of the need

in an intermediate polygonization step required for the

fabrication. However, this problem can be solved by

using direct fabrication of FRep models. Therefore the

creation of on-surface or surficial structures can also be

used as an example of usage of FBVs for design pur-

poses. We can model on-surface microstructures by

intersecting the initial modelled object with periodical

cellular microstructures presented in [18]. The exam-

ple shown in Fig. 15 was obtained by constructing an

FBV for the intersection of a superelliptic surface from

Fig. 14 with a cellular microstructure surface obtained

by procedurally replicating a sphere in the modelling

space.

5. Conclusions and Discussion

We presented in this paper an approach to automat-

ically constructing feature based volumes for the in-

tersection of two implicit surfaces. We can apply dif-

ferent offsetting methods depending on application of

the FBV. Our experiments show that in general offset-

ting methods can provide fast to evaluate functions by

applying the constant value offset, but in this case the

shape of the FBV highly depends on the distance prop-

erty of the initial models and can result in an unexpected

shape when a poor approximation is used. On the other

hand, offsetting by using the distance function reinitial-

ization provides good shape of the FBV, but the function

is harder to evaluate. In the presented results we mostly

use offsetting with normalization as the compromise be-

tween speed and quality of the shape. Other offset-

ting methods can also be used and provide better shape

from the point of view of most CAD applications, how-

ever in general they are even harder to evaluate. Thus,

the Minkowski sum of the intersection point set with a

sphere, provides an ideal offset, but is more expensive

to compute because of the projection operation that re-

quires methods of global optimization for search of the

global maximum of the function. A possible solution

can be to use primitives with distance property and op-

erations maintaining this distance property. However,

this would restrict the number of possible operations

and primitives to be used in the modelling process.

Methods for computing an offset operation for im-

plicit surfaces that can provide good and intuitive results

from the CAD point of view and can be relatively fast

to compute is a task for future research. Also in some

cases we need to control the shape of the FBV, espe-

cially in cases when the resulting FBV is far from the

distance offsetting of the intersection curve because of
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the restrictions of the selected offset operation. In this

case we need to perform fitting of the parameters of the

offset operation to obtain the needed shape, and this also

can be a direction for future research.
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