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Abstract

Concept drift is a challenge in supervised learning for sequential
data. It describes a phenomenon when the data distributions change
over time. In such a case accuracy of a classifier benefits from the selec-
tive sampling for training. We develop a method for training set selec-
tion, particularly relevant when the expected drift is gradual. Training
set selection at each time step is based on the distance to the target
instance. The distance function combines similarity in space and in
time. The method determines an optimal training set size online at
every time step using cross validation. It is a wrapper approach, it can
be used plugging in different base classifiers. The proposed method
shows the best accuracy in the peer group on the real and artificial
drifting data. The method complexity is reasonable for the field appli-
cations.

Keywords: concept drift; gradual drift; online learning; instance se-
lection

1 Introduction

Concept drift challenges building supervised learning models for sequen-
tial data. The data distribution might change over time due to, for exam-
ple, changes in user interests (recommender systems), external unobserved
variables (bankruptcy prediction) or adversary activities (fraud detection).
Thus adaptive learning models are required.

In supervised learning adaptivity can be achieved either by designing
specific base learners (e.g. [1]) or by manipulating training set over time
in instance or feature space, or both. Manipulating training set includes
instance selection (e.g. training windows [2], selective sampling [3]), instance
weighting [4] and dynamic feature selection [5]. Training set manipulation
strategies are wrapper approaches in a sense that they can be used for online
learning plugging in different types of base classifiers.

Sequential instance selection (training windows) is typically used at sud-
den concept drift. Training window strategies select the nearest neighbors
in time to form a training set. Selective sampling in space is particularly
beneficial when reoccurring concepts are expected. In such a case the closest
instances in the feature space to the target instance are selected to form a
training set.

In this study we present a concept of combining distances in time and
space for training set selection under concept drift. A combined view to



instance selection is required due to complex nature of the real data. There-
fore, a unified view to the training sample formation is proposed which is
flexible with respect to the actual changes.

Preliminary results were presented in a short conference paper [6]. That
study was delimited to the fixed proportion of the distance in time and
space.

Using time and space similarity concept we develop a method for classi-
fier training, especially relevant when the expected drift is gradual. Training
set selection is based on similarity to the target instance. Distances in space
and in time are linearly combined. The method determines an optimal train-
ing set size online at every time step using cross validation. It is used as a
wrapper approach, that means different base classifiers can be plugged in.

The proposed method shows the best accuracy in the peer group on the
real and artificial drifting data. The method complexity is reasonable for
the field applications. The method is expected to demonstrate a competitive
advantage under gradual drift scenarios in small and moderate size data
sequences.

The paper is organized as follows. We start by a motivation for combin-
ing time and space similarity for training set seletion in Section 2, followed
by fixing the framework and basic assumptions. Next we introduce and illus-
trate the concept of distance in time and space in Section 3. The following
Section 4 outlines particularly related work and maps the proposed concept
within the related work. In Section 5 we present the proposed methods.
Section 6 gives experimental setup and the results. Sections 8 and 9 discuss
the results and conclude.

2 Problem Set-up

In this section we present a motivation for combining similarity in time and
space for training set formation under concept drift and fix the set-up and
basic assumptions for this study.

2.1 Motivation

Assume an online recommender system where a user reads online news.
When she became more interested in real estate, market news were appearing
more and more often as the most interesting topic. At the same time she was
still interested in meat prices in New Zealand, but the relative interest was
declining. Thus the relevance of a given document to the reader’s interests
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depended on the age of the document (distance in time) and the content
(distance in space).

In order to build a classifier, which would react to a gradual concept drift,
we aim to select the most relevant historical instances to form a training
set. In the online news example, for each incoming document (unlabeled)
we would look for similar documents within the historical stock.

Similarity between two objects in instance based learning [7] is defined
as a function of distance in space. If the domain is non stationary distance
in time might be relevant as well. For an illustration see a snapshot of
Electricity data [8], which is provided in Figure 1.

We plot the distance of the historical instances to the target instance
over time against the distance in space (here we use the Euclidean distance
in the feature space). The target instance is the very last in time (denoted
‘now’), and its distance to itself in space is 0. The older instances are gen-
erally further from the target instance (declining slope along with x axis),
which indicates the relevance of similarity in time. Recent instances are
closer to the target instance. Moreover, there are notable recurrences in
space, indicated by circles. This advocates that sequential sampling (win-
dow) might miss relevant training instances. Thus both distances in space
and in time are to be taken into consideration.
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Figure 2: Gradual drift scenario.

2.2 Set-up and Basic Assumptions

Assume online classification task. One data instance X € RP is received at
a time, the corresponding discrete class label y is unknown. At time ¢ + 1
the task is to predict the class label y; 1 for the target instance X;11. It is
allowed to retrain a classifier at every time step if needed.

Any selected or all the historical labeled data Xi,...,X; with corre-
sponding known labels y1, ..., y: can be used as a training set for a classifier
at time ¢t + 1. At time ¢ + 2 after the classification decision the true label
can be received, we can add Xy to the training data and proceed with the
decision making for a target instance X;,o.

Consider a gradual drift scenario, illustrated in Figure 2. Up to time
t; data generating source Sy is active. Note, that the source is not the
same as class label. Each source can generate an instance from either of the
classes. A source can be considered to be a distribution. From time 9 + 1
on the source S is completely replaced by the source Syr. In time interval
(t1 + 1,t2) both sources are active and an instance comes from either one or
the other source with a prior probability. The probability of sampling from
Str increases with time. A designer does not know when the sources switch.

The task is to assign a class label to an instance X;11. It is expected
that a concept drift might have taken place, i.e. several sources were active
up to time ¢ + 1. In order to build an accurate classifier we would like the
training data to come from the same or as close as possible source as the
target data X;y;. We can find how similar X, is to the historical instances
even though the label of X} is not known. We aim to select a training set,



consisting of the instances, which are similar to the target instance.

Similarity is a share of commonality. A detailed discussion on similarity
concept can be found in [9]. In the next section we define similarity as a
function of distances in time and space.

3 Similarity in Time and Space for Training Set
Selection

In this section we introduce and explore the concept of combining distances
in time and space for training set selection to achieve adaptive learning.
First we define how to measure similarity and then look how to use it for
training set selection.

3.1 The Concept of Similarity in Time and Space

Let the similarity in time and space between the target instance X, and a
historical instance X; be a distance function
S T
D(X;, X;) = f(dy),d)), (1)
where dl(-f) is the distance between the two instances in space and dZ(-T) is the
distance between the two instances in time. The smaller the distance, the
more similar are the instances.
Distance in time between the instances X; and X; in case of equally
spaced time intervals is defined as a function

D = f(i - j)). (2)

Different distance function can be chosen based on the domain knowledge
and visual inspection of the data. For instance, exponential function can be

(T) o s .
= el=Jl. In this study we

use a linear distance, which is the least complex option dg—) =i —j|.
Time intervals can be unequally spaced, e.g. stock prices are recorded
only on weekdays, thus there is a three days gap between the Friday value
and the Monday value. In that case dl(jT) = |7 (i) — 7(j)|, where T is the
function mapping indexes to actual time values.
Distance in space can have a number of alternative metrics (e.g. City-
block, Euclidean distances), a discussion of the most common metrics can

be found in [10,11]. A distance metric of designer’s choice can be used.

used aiming to emphasize the recent times, d
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Figure 3: Training set selection boundary cases: (a) selection based only on
the distance in time (training window), (b) only distance in space (instance
selection).

We use two terms, similarity and distance, which are inversely related.
The larger is distance, the smaller is similarity. We use the term similarity
when referring to a general concept and the term distance when referring to
an actual metric.

3.2 Combining Distances in Time and Space

The form of a combination function D depends on the expectations of a de-
signer related to the data at hand. The choice of time and space proportions
directly depends on the observed change types and the future expectations.
The goal is to select the training set in a way that it would represent the
current target instances well.

Let us look at the two boundary cases. If a designer selects training set
only based on the distance in time, that is a training window strategy (see
Figure 3(a)). The most recent instances are selected as a training set in
a sequential order. Another boundary case is to disregard time and select
training set only based on the distance in space (see Figure 3(b)).

In Figure 4(a) we illustrate a linear combination of the distances in
time and space, which we present in this study. Note that a designer is
not limited to linear combination. For instance, an example in Figure 4(b)
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Figure 4: Time and space based training set selection: (a) linear combina-
tion, (b) the second order combination.

might be considered if an emphasis of the boundary instances is to be made.
The linearly combined distance between the instances X; and X is

D(X;,X;) = ardy)) + aadl) (3)

where a1 and ao are the weight coefficients. If a3 = 0, it is a training
window, as in Figure 3(a). If ap = 0, it is an instance selection, as in Figure
3(b). As a design choice, the weights ag,as can be fixed based on the
domain knowledge or visual inspection of the data or they can be trainable
on a validation set or online.

For interpretation we normalize the proportions of time and space in the
distance function d®) and d(7). We scale the values of each feature in X to
the interval [0, %] in order to get d®) € [0,1]. We scale the time distances

to get dng) € [0,1] as well. For a single dataset scaling is not essential, since
the proportion can be regulated by the weights o1 and as. However, this
way time and space distances become comparable across different datasets.

For training set selection under concept drift we are interested in relative
distances (ranking). Thus, for simplicity, oy and g can be replaced by
A= g—f, assuming that oy # 0. We are interested in the ranks of distances
between the historical instances and the target instance X¢41. Thus, we can
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Figure 5: Training set size: (a) selection based on combined distance in time
and space, (b) training window.

simplify Equation 3 to

D (X, Xp41) = dz(':?!—l + Adz@rl =Dj. (4)

3.3 Training Set Size

We defined the distance in time and space D*, intended to be used for
ranking the historical data (Xi,...,X;) according to the distance to the
target instance X;y1. Another important choice in constructing a training
set is how many from the most similar instances to include into the training
set.

The training set size is specified applying a threshold to the distance
measure. After the distance measure D* is fixed, the training set size can be
decided by moving the decision threshold, as shown in Figure 5(a). Note,
that here the slope is fixed. It indicates the proportions of time and space
distances in the final distance measure, as described in Equation (3).

The threshold principle is the same as in variable window size selection,
the case is illustrated in Figure 5(b).

Thus, having an unlabeled target instance X;41, for ¢ = 1,...,¢ the
instance X is selected into a training set if D*(X;, X441) < h?, where h”



is the training set threshold. The threshold can be fixed by a designer or
trainable based on a validation set.

4 Positioning within the Related Work

In this section we present the related work and its relation to our approach.
We contribute to the field by generalizing training set selection using
time and space similarity. To our best knowledge the representation uni-
fying windowing and instance selection under concept drift has not been
formulated before. There are related techniques which are implicitly us-
ing instance forgetting when employing instance selection strategy, e.g. [12],
which is mainly to overcome computational challenges in data streams.

Our approach integrates windowing techniques and instance selection
techniques under unified framework of systematic training set selection.
Moreover, it extends the existing approaches to a combination of both win-
dowing and instance selection.

The issue of systematic training set selection in space under concept
drift has been brought up in [3,13-17]. Ganti et al. [13] give a generic
interpretation of systematic training data selection without a real plug-and-
play algorithm. The blocks (intervals) of training data can be picked using
moving window based templates.

The following two approaches use space based training set selection tech-
niques. Tsymbal et al. [15] use an ensemble, where the competence of the
base classifiers is determined by cross validation on the nearest neighbors
of the target instance. However, they use training windows to build the
individual base classifiers. Katakis et al [17] organize the training data into
clusters, derive prototypes for each cluster and then select the clusters for
training based on the distances between the target instance and the proto-
types. Since the main focus is on reoccurring concepts, time similarity is
not integrated there.

Valizadegan and Tan [16] use intelligent training set selection procedure
after a change is detected. They aim to acquire more samples from the
regions where classification is unreliable. They call the strategy differed-
boosting and deferred active approach, where deferred means that resam-
pling is triggered by a change detection.

The above approaches limit the history in time from which the instances
can be selected. That is an implicit assumption in data stream mining,
where the data streams in principle are endless. The approaches overviewed
here have a clear cut in history, without incorporating time features into
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instance selection procedure.

Beringer and Hullermeier [3] organize training data into prototype clus-
ters, referred to as case bases. In contrast to the peer works, they exclude
the instances which are too similar to the ones already present in the train-
ing set. They explicitly address relevance in time and space, as well as
consistency. The major difference in our and their approach is in the fu-
ture assumption. They assume continuous concept (and call it consistency).
Track the concept itself and drop out inconsistent data. The approach would
be unfavorable to reoccurring concepts and robust to noise. In our approach
we determine the concept for a target instance without tracking the change.
This way relevant training set might be found as well in case of reoccurring
concepts and even in case of noise.

Lazarescu and Verkantesh [14] use time and space dimensions to deter-
mine the relevance of a given historical instance. The idea is closely related
to the work by Beringer and Hullermeier [3] and has the same limitations
regarding following the current concept. The former work was presented
four years later than the latter.

Adaptive nearest neighbor classification [12, 18] is related to our ap-
proach. Ueno et al [18] focus on the computational complexity issues in
streaming kNN application, not on training set selection directly. Their
idea is to introduce an order in which the comparison of the distances be-
tween the instances is processed, that is likely to give more accurate results
than random order, if the comparison is stopped before the end of the histor-
ical data is reached. Law and Zaniolo [12] use exponential weighting of the
instances in time. They use the grid to divide the space into neighborhood
region and adapt only the grids, where the newly arrived instances belong.
Building the neighborhood can be viewed as instance selection in space, but
their approach is kNN classifier specific. The griding mechanism is explicitly
oriented towards forming a single class cells, while generalization to different
base classifiers would require an opposite strategy.

Finally, Black and Hickey [19] use the idea of augmenting the feature
space by adding a time stamp feature. Then they use training window ap-
proaches, thus they do not employ space based selection. In principle the
time feature can be integrated with space based instance selection. Aug-
menting the feature space and then measuring distances in the new space
can be more flexible with respect to base classifier related adaptivity, than
the combination we are taking. For instance, time related splits in a decision
tree can be organized. We choose the explicit combination of distances in
time and space for training set selection mainly because it can be easier to
control and interpret.
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We propose an approach for training set selection based on similarity to
target instance. There are multiple classifier methods (e.g. [15]) employing
similarity aspect but only in the classifier selection phase. However, the
needed classifier might not be present among the ensemble members. From
similarity in space perspective our approach is related to a lazy learning
[20], but the main difference is that the latter does not construct explicit
generalization and makes classification based on direct comparison of the
target and training instances. Our approach can be used as a wrapper with
different base classifiers. The closest approaches [3,14] try to follow the
concept changes, thus are not straightforward to generalize to reoccurring
concepts.

5 FISH Method Family

To support our approach of combining distance in time and space, we pro-
pose a family of methods called FISH (uniFied Instance Selection algo-
ritHm), which incorporates the ideas presented above. Training instances
are systematically selected at each time step. The methods can be used with
different base classifiers.

The family includes three modifications: FISH1, FISH2 and FISH3. In
FISH1 the size of a training set is fixed and set in advance, the extension
FISH2 operates using variable training set size. In FISH2 the proportion
of time and space distances (o and «ay in Equation 3) in the final distance
measure are fixed in advance as a design choice. We present a modification
of FISH3, where this proportion is trainable online.

We consider FISH2 to be the central in the family. We believe that
in many cases the optimal proportions of time and space in the distance
function are domain dependent and can be fixed offline (for instance, using
an offline validation set). On the other hand, the drifts might take non
uniform speeds, thus online adjustable training set size is relevant.

Next we give pseudo code and explain the details and intuition for each
of the three FISH methods.

5.1 FISH1

We start with presenting FISH1 in Figure 6. The pseudo code includes the
steps for training set selection for decision making at time ¢ + 1.

The method ranks the historical instances (without their labels) accord-
ing to their distance to the target instance and picks N the most similar
instances to form a training set. Since the size of the training set is fixed, if

12



THE TRAINING SET SELECTION METHOD (FISH2)

INPUT

Data: historical instances X = (Xy,...,X;) with labels y*, target instance
X¢+1 without a label.

Parameters: training set size N, time/space proportion A (Equation (4)).
Base learner type: L.

ALGORITHM

1. Calculate distances in time and space D} (Equation (4)) for i=1:¢.

2. Sort the distances from minimum to maximum D}, < Di, <
.. < Di,. Indexes z1,...,zt define the permutation (Xy,...,X;) —
(X1, ooy Xst)e

3. Pick N instances having the smallest distances D.
4. Output the indexes {21,...,2N}.

OouTPUT
The indexes Z; = {z1,...,zN} to form a training set X = (X.1,...,X.n).

Figure 6: FISH1 method for fixed size training set.

it happens to be to small, the instances from a single class might end up in
a training set. To insure from this, we suggest selecting a stratified training
set. It means that % most similar instances are selected from each class,
altogether forming a training set of size N.

5.2 FISH2

FISH1 uses fixed training set size N. FISH2 is an extension, where the
training set size is learnable online. To implement a variable training size
we incorporated the ideas inspired by two windowing methods [21] (KLI)
and [15] (TSY). FISH2 is presented in Figure 7.

We start by calculating the distances in time and space between the
target instance Xy 41 and every historical instance in X as in Equation (4).
The distances to each historical instance are ranked based on the distance.

Next we decide how many of the most similar training instances to pick
using cross validation. For that we build a set of classifiers (£, £2,...,£Y)
using different training set sizes. The validation set is formed using k histor-
ical instances, which were found to be the most similar to the target instance
Xi¢y1. We select the training size N*, which has given the best accuracy on

13



THE TRAINING SET SELECTION METHOD (FISH2)

INPUT
Data: XH yH X, ;. Param.: neighborhood size k, A . Base learner type: L.
ALGORITHM

1. Calculate distances in time and space D} (Equation (4)) for i=1:t.

2.
3.

4.
S.

Sort the distances from minimum to maximum D}, < D}, < ... < D},.
For N =k : step : t select the training set size

(a) pick N instances having the smallest distances D,

(b) using cross-validation® build a classifier £V using the instances
(X:1,...,X,n) as the training set,

(c) test LN on the k nearest neighbors (X.1,...,X.z), record testing
error ey .

Find the minimum error classifier £V*, where N* = argmin’y,_, (en).

Output the indexes {z1,...,zN*}.

OUTPUT
The indexes Z; = {z1,...,2zN*} to form a training set X{.

“when test on the instance X, this instance is excluded from the validation set

Figure 7: FISH2 method for variable training set selection.
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the validation set. The method works similarly to windowing in [21] (KLI).
They use sequential instances in time to form the windows. We employ a
combined distance metric in time and space.

Leave-one-out cross validation needs to be employed. It means that we
repeat the validation process k times for every training set size N being
checked. Each time we leave out one validation instance from the training
set and then test on it. Without cross validation the training set of size k is
likely to give the best accuracy, because in that case training set would be
equal to the validation set.

The outcome of the method is a set of N* indexes Z; = {z1,...,zN*}.
They indicate the historical instances to be picked as a training set XI =
(X.1,--.,X.n). Using the original instances X a classifier LN*t is trained
for the final prediction of the label y; 1, for the target instance Xy 1.

5.3 FISH3

FISHS is a extension of FISH2. FISH2 uses a prefixed proportion A of
distances in time and space. FISH3 can learn the proportion online using an
additional loop of cross validation. FISH3 is presented in Figure 8. Instead
of fixing the proportion between time and space distances in D in Equation
(3) we try a number of options and pick the learner which is the most
accurate on the validation set, the same principle as in FISH2.

6 Experimental Evaluation

In order to verify the properties of FISH methods we carry out extensive
numerical experiments. The main goal is to illustrate the advantage of
combining distances in time and space as compared to using only time or
only space criterion. We implement two peer methods and run them in
parallel to FISH on six datasets. In order to minimize the bias of base
classifier selection we run the experiments using four different base classifiers
and two alternative distance in space measures.

6.1 Datasets

We use six data sets with potential gradual drift. Three datasets are real
(Luxembourg, Ozone, Electricity), three other are real with an artificially
introduced drift (German, Vote2, Iono2). The expectations of the drift are
related to the domain of the real data and the way artificial drift is intro-
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THE TRAINING SET SELECTION METHOD (FISH2)

INPUT
Data: XH, yH X, ,;. Parameters: k. Base learner type: L.
ALGORITHM

e For j=0:step:1, a1 =7 as =1 — a7 every time and space proportion

1. calculate distances D’/ = ozldl(-izrl + agdgil (Equation (3)) for

1=1:1.
2. Sort the distances from minimum to maximum Dj:zl < D'jjz2 <
J
. <Dy

3. For N =k : step2 : t select the training set size

(a) pick N instances having the smallest distances D7,
(b) using cross-validation® build a classifier £/V using the in-
stances (X,1,...,X,.n) as the training set,

(c) test L7V on the k nearest neighbors (X1, ..., X;.x), record
testing error e .

e Find the minimum error classifier £/V* — where jN* =
1 o, J
arg min;_q miny_, (ey).

e Output the indexes {jz1,...,jzN*}.

ouTPUT
The indexes Z; = {jz1,...,72N*} to form a training set Xy .

“when test on the instance X, this instance is excluded from the validation set

Figure 8: FISH3 method with learnable training set size and distance pro-
portion.
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duced. All the datasets imply binary classification task. The characteristics
of the datasets are summarized in Table 1.

Table 1: Summary of the used datasets.

Name Dimen-  Size Class Type of  Source Type of
sions balance data of drift drift
Luxembourg 31 1901 0.51:0.49 real real gradual
Ozone 72 2534 0.94:0.06 real real gradual
Electricity 6 2956 0.57:0.43 real real gradual
German 23 1000 0.70:0.30 real simulated gradual
Vote2 16 435  0.61:0.39 real simulated gradual
Tono2 43 435 0.61:0.39 real simulated gradual

We constructed! Luxembourg dataset using social survey data from [22—
24)2. Each instance is a person. The task is to predict if she is a heavy
internet user. It is relevant for marketing purposes. Ozone dataset [25]
consists of air measurements, the task is to predict ozone level eight hours
ahead. Electricity data [8] characterizes electricity demand in Australia, the
task is to predict electricity market price.

German credit data [25] consists of individual credit application records,
the task is to predict bankruptcy. We introduced artificial drift in German
credit data by hiding the age feature. We do not introduce any synthetic drift
in Tono and Vote datasets [25]. However, we refer to the drift as artificial,
since we assume the data is presented in a time order, although it is not
explicitly stated. Can we claim that there is a drift? If a selective sampling
gives better classification accuracy than a growing window in incremental
learning process, this can be treated as the drift evidence.

In Figure 9 we visualize all the datasets on time against distance in space
axes. Note that the distances to one data point are visualized, which is rather
a snapshot than a representation of the whole dataset. For illustration we
use cosine distances in space.

6.2 Experimental Scenario

We perform three series of experiments related to FISH1, FISH2 and FISH3
correspondingly.

!The dataset is available at
http://sites.google.com/site/zliobaite/resources-1

*Norwegian Social Science Data Services (NSD) acts as the archive and distributor of
the ESS data.
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6.2.1 FISH1 and fixed training set size

First, we run controlled FISH1 experiments. We vary the proportion of time
and space A = Z—f in the distance function (Equation 3) to analyze the effect
to the final classification accuracy. We use fixed training set size N. The
extreme a1 = 0 corresponds to a fixed training window. Contrary, as = 0
corresponds only the distance in space.

We include a baseline ALL, which is using all the historical data as the
training set. Thus it does not select training data, every time step the
training set is growing. The classifier is retrained using all the past data. If
the data happens to be stationary, ALL should be the most accurate.

The pseudo code for ALL is provided in Appendix A.

6.2.2 FISH2 and variable training set size

We present FISH2 as a flagman in the FISH family and perform an exten-
sive experimental evaluation for it. We test FISH2 by plugging in four al-
ternative base classifiers: a parametric Nearest Mean classifier (NMC), non-
parametric k Nearest Neighbors classifier (kNN) (for which we take k = 7),
Parzen Window classifier (PWC) and not pruned decision tree (tree), see
e.g. [26] for details. In addition to different base classifiers, we run the tests
using two alternative distance in space measures: the Euclidean distance
and cosine (the details will follow in the next section).

To support the viability of FISH2, we implement and run two peer
methods for training set selection under concept drift: Klinkenberg and
Joachims [21] (KLI) and Tsymbal et al. [15] (T'SY). KLI method tries out
a set of different training windows and selects the one showing the best
accuracy on the validation data. The most recent training data is chosen
as a validation set. TSY method builds a number of classifiers on different
sequential training subsets. The final classifier is also selected based on the
performance on a validation set. Contrary to a time based selection, used
in KLI, the latter method employs distance in space (to the target instance)
criterion to select a validation set. Both methods use windows to form the
individual classifiers. In contrast, FISH builds individual classifiers using
systematic instance selection based combining distance in time and space.
The summary of KLI and TSY with the options and interpretations chosen
are presented in Appendix A.

The motivation for choosing this peer group is to observe the effect of
integrated instance selection (time and space) which is done in FISH. The
chosen methods are able to determine training set size using cross validation,
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they use no explicit change detection and are base classifier independent and
do not require complex parametrization.

We also include a baseline ALL, which uses all the historical data. If the
data happens to be stationary, ALL should be the most accurate.

6.2.3 FISH3 and variable time and space ratio

Finally, we compare the performances of FISH1,FISH2 and FISH3 to see
what benefits in accuracy are brought by online parameter selection at a
cost of increased computational complexity (as compared to FISH1 and
FISH2).

We also analyze the progress of the training set size and the proportions
of time and space in the distance function over time.

6.3 Implementation Details

For FISH, FISH2, FISH3 and TSY we use the Euclidean distance in space

p . .
dP(X;, %) = | D% - xVP2, (5)
=1

where xgi) is the " feature of the instance X, and p is the dimensionality.
We also test FISH2 using an alternative cosine distance (inverse similar-

ity) in space

(X5 X)) = 1 B \/Zfﬂ(xy))z\/Zfﬂ(Xl(i))Q (6)
P T s X0l T e xx

The features are scaled to the interval [0, 1] before calculating the dis-
tance in space. We use linear distance in time, as defined in Equation (2).
Distances in time and space are scaled to d%), d(7) ¢ [0, 1] before calculating
the proportion a1 : as.

We use the following setting for the methods.

e For FISH1 and TSY we use training set size N = 40, FISH2, FISH3
and KLI have adaptable set size, ALL has a growing set size.

e KLI and TSY operate in batch mode, we use batch size 15 for both.

e For TSY we set maximum ensemble size to 7, and use 7 nearest neigh-
bors for error estimation.
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e The fixed weights proportions of time and space in the distance func-
tion for FISH1 and FISH2 are a1 : g = 1 : 1 for all the data. In the
first series of experiments we used variable ration of aq : as.

e For FISH2 and FISH3 we took training set sizes for cross validation
with a step 5 to speed up the experiments.

e If there are too few instances from one class in a formed sample, the
label is assigned according to the major class.

For Ozone, Elec and LU data backward search for FISH2, FISH3, KLI
and TSY was limited to 1000 instances to reduce the complexity of the
experiment. For testing with the decision tree using Elec and Ozone data
we subsampled taking every 5 instance to speed up the experiments.

7 Evaluation

We evaluate FISH2 performance based on the testing error and complexity.
We analyze the progress of the experiments to draw qualitative conclusions.
To evaluate the accuracy, we calculate the ranks of the peer methods.
The best method for a given data set is ranked 1, the worst method is ranked
4. The ranks for each data set sum up to 10. An average rank over all the
datasets is calculated for each classifier and used as performance measure.

In order to estimate a statistical significance of the differences between
the error rates of the methods, for real datasets we used the McNemar [27]
paired test, which does not require assumption about i.i.d. origin of the
data.

To evaluate the applicability, we calculate the worst case and the average
complexity of the six peer methods. We count the number of data passes
required to make a classification decision for one observation at time ¢. The
results (approximations) are presented in Table 2. Granularity g is a step of
the time and space proportion®. We also present the parameters that need
to be prefixed in advance for each method.

The run time of FISH2 is reasonable for sequential data, for all five
methods it takes up to 1 min for NMC, kNN and PWC and for the decision
tree it is ~ 5 times longer to cast a classification decision for one time
observation on a 1.46 GHz PC, 1GB RAM. For implementation MATLAB
7.5 is used.

3The number of options tried out, we use 10. Option 1: a; = 0,z = 1, option 2:
a1 = 0.1, =0.9,..., option 10: a1 =1, a2 =0
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Table 2: Method complexities. b - batch size; M - ensemble size; k - test-
ing neighborhood size; N - training set size; A - time/space weight; g -
granularity of the time and space proportion; ¢ - time since the start of the

sequence.
Method Worst case Average Parameters
ALL t the same —
KLI iy L b
TSY t(k+1)+ N tk+1)+ % | b,MkN
FISHL | ¢(N +2)+ Y2 | the same AN
FISH2 t%k' + @ the same A,k
FISH3 g(t%k + @) the same k

Finance, biomedical applications are the domains where the data is
scarce, imbalanced, while concept drift is very relevant. For example, in
bankruptcy prediction an observation might be received once per day or
even per week, while the model needs to be constantly updated and eco-
nomic cycles imply concept drift. In supermarket stock management, stock
quantity needs to be predicted once per week, thus only 52 observations are
received per year. In such application cases even one hour of the method
run for the decision would not be an issue.

8 Results and Discussion

In this section we present and discuss experimental results.

8.1 FISHI1 results

We run controlled experiments with FISH1 varying the proportion of time
and space contribution in the distance measure. By controlled we mean that
we fix the setting except one parameter, which is the proportion of time and
space in the distance function. We investigate the effect of the proportion
to the testing accuracy on the six real dataset. We allow the proportion
a1 : ag change from 0: 1 to 1: 0 with a step 0.01.

We use NMC as the base classifier to simplify the setup as much as
possible to analyze the effect of the proportions of time and space in the
distance function to the testing accuracy.

The testing results for each of the six datasets are provided in Figure 10.
We plot the testing accuracy against the proportion of time and space in
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Figure 10: FISH1: testing errors. * on x axis denote minimum error.

the distance function. ay = 0 means that only the distance in time is used,
which corresponds to a training window of a fixed size. «; = 1 (implies
as = 0) means that only the distance in space is used. All the values in
between indicate different proportions of time and space in the distance
function in training set selection.

In Table 3 we provide the numerical results using a step 0.1 for oy values.
Although the primary purpose of the experiment is to analyze the relation
between the proportions of time and space in the distance function and
accuracy, we also indicate statistical significance of the difference between
FISH1 and the baseline ALL using McNemar test.

The results both in Figure 10 and in the table show that already using a
primitive fixed size N technique the best accuracy is achieved in combination
of distances in time and space. The minimum error is heavily shifted towards
distance in space in most of the datasets (‘Ozon’,‘Cred’,'Tono’ and ‘LU’),
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Table 3: Testing errors. The best accuracy for each column is underlined.
Symbol ‘e’ indicates that the method performed significantly better than
ALL, ‘o’ indicates that the method performed significantly worse than ALL,

and ‘—’ indicates no difference (at a = 0.05).
space time
wght. wght. | Luxe  Ozon  Elec Cred Vote Tono
(5] (6%

FISH1 0 1 36.53e 38.29e¢ 14.86e 41.540 11.98— 20.00e
FISH1 0.1 0.9 24.42e 27.75e 14.75e¢ 41.740 11.29— 20.29e
FISH1 0.2 0.8 19.00e 26.92¢ 15.13¢ 41.940 10.37— 19.43e
FISH1 0.3 0.7 17.21e 27.48e¢ 15.13e¢ 42.240 10.60— 18.86e
FISH1 | 04 0.6 | 14.84e 26.29¢ 15.91e 42.040 10.14— 17.43e
FISH1 0.5 0.5 13.42e¢ 24.91e 16.75e¢ 41.440  8.76e  16.86e
FISH1 | 0.6 0.4 | 12.79e¢ 24.04e¢ 17.46e 42.240 9.22— 16.57e
FISH1 | 0.7 0.3 | 11.74e 23.69¢ 17.53e¢ 40.540 8.76— 16.57e
FISH1 | 0.8 0.2 | 10.95e¢ 23.25e¢ 17.70e 40.94— 9.91— 14.00e
FISH1 0.9 0.1 9.53e 21.71e 19.66e 40.94— 10.83— 14.29e
FISH1 1 0 8.58¢ 23.02¢ 19.83¢ 41.340 11.52— 14.00e
ALL 39.68 86.70 24.84 37.84 11.52 31.71

which is explainable by the data origin. The datasets were picked expecting
heterogeneous structure in space and also to have a temporal order. ‘LU’
data has it’s minimum testing error at the very extreme distance in space
proportion (time proportion is 0), which we could observe in the data plot
in Figure 9. Visually, the time order in ‘LU’ data is weak. On the contrary,
‘Elec’ data has visually strong time order and that correlates with the testing
results. One can observe in Figure 10 that the minimum testing error for
‘Elec’ is close to the time proportion extreme. It suggests the training based
on windowing would be preferable. Change detection technique, which is
in principle variable sized windowing, was applied by Gama et al [28], who
introduced this data set for concept drift problems.

The dashed lines in Figure 10 indicate the baseline testing error, which
is achieved by using full history as a training set (ALL). The primitive
FISH1 using a fixed training size already outperforms ALL in five out of six
datasets. Absolute error in ‘Ozon’ is so high since the classes are heavily
unbalanced (major class makes 94%). In ‘Cred’ FISH1 is worse than ALL
in all the time and space proportions. It suggests that either the data is
stationary, or the fixed size of the training set is very much non optimal.
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Table 4: FISH2: testing errors, Euclidean distance in space. The best ac-
curacy for each column is underlined. Symbol ‘e’ indicates that the method
performed significantly worse than FISH2, ‘o’ indicates that the method
performed significantly better than FISH2, and ‘-’ indicates no difference

(at a = 0.05).
base Luxe Ozon Elec Cred Vote Tono RANK
FISH2 11.89 34.31 15.16 36.94 8.53 17.43 1.33
KLI | NMC | 30.89¢ 22.90c 19.97e¢ 36.24— 11.29e¢ 21.71e 2.08
TSY 35.8e¢  37.23e 15.47— 40.64e 11.29e¢  20.57— 2.75
ALL 39.68¢  86.70e  24.84e 37.84— 11.52e¢ 31.71e 3.83
FISH2 14.63 7.03 15.06 30.13 8.76 22.00 2.08
KLI kNN | 15.74— 7.11— 18.98e¢ 30.03— 9.68— 22.86— 3.00
TSY 28.79¢  7.03— 13.160 31.43— 10.60— 23.14— 3.25
ALL 11.840 6.99— 19.86e  28.83—  8.29— 22.29— 1.67
FISH2 12.37 70.79 41.08 34.33 8.99 12.86 1.75
KLI | PWC | 14.42¢ 38.8lc 46.06e 34.63— 10.37— 15.14e | 3.00
TSY 26.42e¢  54.720 43.62e¢ 36.54— 9.68—  19.71e 3.25
ALL 11.68— 84.88e¢  43.62¢ 34.43— 8.53— 12.86— 2.00
FISH2 0.37 9.99 13.54 31.03 7.37 18.00 1.42
KLI tree 0.37— 11.69¢ 17.36e 36.34e¢  9.68— 20.86— 3.25
TSY 0.37— 12.63¢  8.970 37.04e¢ 10.14— 20.29— 3.08
ALL 0.37— 10.50— 16.99e¢ 32.83— 7.83— 18.57— 2.25

The training set size was chosen to be equal for all the data sets to keep the
settings uniform and the results comparable. Next we look at the results
when the training size is learnable online.

8.2 FISH2 results

We test FISH2 along with two peer methods KLI and TSY as well as the
baseline ALL. We test using four alternative base classifiers and two alter-
native distance in space measures for the six datasets. Thus all in all we
run 4 x 2 X 6 = 48 experiments for each of the methods. The results are
provided in Tables 4 and 5. We use McNemar paired test to estimate the
statistical significance of the difference between FISH2 and the peers.

The five methods were ranked as presented in Section 7 with respect to
each data set, and then the ranks were averaged (last column in Table 4).

FISH2 has the best rank by a large margin with NMC and tree classifiers,
for KNN and PWC either FISH2 or ALL prevails, depending on the distance
measure. The final scores averaged over all four base classifiers and two
alternative distance measures are: 1.68 for FISH2, 2.83 for KLI, 3.07 for
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Table 5: FISH2: testing errors, cosine distance in space. The best accu-
racy for each column is underlined. Symbol ‘e’ indicates that the method
performed significantly worse than FISH2, ‘o’ indicates that the method
performed significantly better than FISH2, and ‘-’ indicates no difference

(at a = 0.05).
base Luxe Ozon Elec Cred Vote Tono RANK
FISH2 12.68 35.25 15.57 38.14 8.76 16.86 1.67
KLI | NMC | 30.89¢ 22.900 19.97e¢ 36.24— 11.29e¢ 21.71e 2.08
TSY 35.80e¢  37.23— 15.47— 40.64— 11.29e¢ 20.57— 2.58
ALL 39.68¢  86.70e 24.84e 37.84— 11.52e¢ 31.71e 3.67
FISH2 14.79 6.99 15.19 29.93 8.53 21.71 1.75
KLI kNN | 15.74— 7.11— 18.98e¢ 30.03— 9.68— 22.86— 3.17
TSY 28.79¢  7.03— 13.160 31.43— 10.60e 23.14— 3.38
ALL 11.840  6.99— 19.86e 28.83— 8.29— 22.29— 1.75
FISH2 12.68 72.25 39.26 34.83 8.29 13.34 2.00
KLI | PWC | 14.42¢ 38.81c 46.06e 34.63— 10.37e¢ 15.14— 2.83
TSY 26.42¢  54.720 43.62¢ 36.54— 9.68— 19.71e 3.25
ALL 11.680 84.88e¢  43.62¢ 34.43— 8.53— 12.86— 1.92
FISH2 0.37 10.03 12.79 31.34 7.60— 17.71 1.71
KLI tree 0.37— 11.69¢ 17.36e 36.34e¢  9.68— 20.86— 2.83
TSY 0.37— 12.63¢  8.970 37.04e¢ 10.14— 20.29— 3.06
ALL 0.37— 10.50— 16.99e¢ 32.83— 7.83— 18.59— 2.40
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TSY and 2.42 for ALL.

Using kNN, PWC and tree as a base classifier, ALL method outperform
TSY and KLI according to the rank score. It implies, that under this setting
there would be little point in employing those concept drift responsive meth-
ods and increasing complexity, as simple retraining (ALL) would do well.
The results in favor of FISH2 are significant in about half of the cases. Some
of the results indicate no statistical difference, however, it should be taken
into account that the datasets are not large and the test is non parametric.

FISH2 method is designed to work where concept drift is not clearly
expressed. These are the situations of gradual drift, reoccurring concepts.
ALL method outperforms all the drift responsive methods but not FISH2
with kNN as a base classifier.

Windowing methods work well on Elec data, because the drifts in this
data are more sudden. Elec data shows the biggest need for concept drift
adaptive methods, because for these datasets ALL method performs rela-
tively the worst from the peer group.

The credits for FISH2 performance in the peer group shall be given to
similarity based training set selection. KLI addresses only similarity in time
(training window). TSY uses only similarity in time for classifier training,
but then they use similarity in space for classifier selection. We employ
a combination of distance in time and space already in classifier building
phase.

It is interesting to look why FISH2 outperforms KLI and TSY in terms of
accuracy even on the datasets demanding training windows. This is because
FISH2 uses adaptive validation set as compared to KLI and variable training
set size as compared to TSY.

In FISH2 experiments we fixed equal proportion of time and space in
the distance function a; : ap = 1 : 1, in order to have uniform comparable
setups for all the datasets. In the next section we look if FISH2 results
can be improved by allowing the time and space proportion to be learnable
online.

8.3 FISHS3 results

FISH3 implements variable training set size and variable proportions of time
and space in the distance function, both are learnable online. Recall, that we
had different time and space proportions in FISH1 experiments. However,
in FISH1 the proportion is fixed for all the experiment. In FISH3 we have
a variable proportion for every time step and it is learnable online.

In Table 6 we compare the accuracies of the three FISH methods using
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Table 6: FISH3: variable proportion of time and space. The best accuracy

for each column is underlined.
Luxe Ozon Elec Cred Vote Iono

FISH1 | 14.63 26.49 15.74 41.44 876 16.86
FISH2 | 11.89 34.31 15.16 36.94 853 17.43
FISH3 | 10.53 37.47 13.77 36.34 8.53 15.43
mean ;1 | 0.77 0.62 041 046 0.32 0.52
ALL 39.68 86.70 24.84 37.84 11.52 31.71

simple settings: NMC classifier and Euclidean distance in space. We use
the same fixed proportion of time and space as before for both FISH1 and
FISH2 (aj :ag =1:1).

FISH3 has the best accuracy in all cases except for Ozone data, which
is very highly imbalanced. We include a baseline ALL to verify if our con-
cept drift responsive methods make sense. The differences between ALL
and FISH accuracies are statistically significant everywhere except in Credit
data.

It might be argued that improvement in accuracy shown by FISH3 as
compared to FISH2 is marginal. In fact, the differences between FISH2 and
FISH3 are statistically significant in three out of six datasets (Luxembourg,
Ozone and Electricity) which are more than twice longer than the remaining
ones, besides they have a natural temporal order, while the remaining three
have assumed temporal order.

Let us look at the time and space proportion. In Table 6 we provide
averaged space proportion (mean ;). Luxembourg and Ozone datasets are
inclined towards distance in space, while Vote and Electricity data shows
preference to distance in time. That is not fully consistent with the obser-
vations in FISH1 experiments, Section 8.1. Note that in FISH1 experiments
the time and space proportion was fixed for all the run on a dataset, while
here we allowed the proportion to vary every time step. In Figure 11 we
plot the progress of the time and space proportion for all six datasets. The
line is smoothed using a moving average of 5 to emphasize the tendencies
against individual peaks.

It can be concluded that if the domain allows increased complexity vari-
able training set size and variable time and space proportions are worth
applying to gradually drifting datasets.

The FISH family of methods should be regarded as an extension to
existing techniques. It emphasizes that time and space relations are not
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Figure 11: Progress of the time and space proportions in FISH3.

discrete, but can be viewed in a continuous space.

9 Conclusion

We formulated a concept of similarity in time and space in for adaptive
training set selection. It leads to a range of training set selection strategies
from based on training window based to instance selection in space.

Based on the formulated concept we developed a family of methods for
training set selection under concept drift. FISH1 uses a preset proportion of
time and space in the distance function and preset training set size. FISH2
learns the training set size online at every time step using cross validation
on the historical data. FISH3 learns online both the training set size and
the proportions of time and space in the distance function.

With FISH1 we demonstrate that for a gradually drifting data com-
bination of distances in time and space can lead to a better classification
accuracy than using a single technique.

FISH2 shows the best accuracy in the peer group on the datasets exhibit-
ing gradual drifts and a mixture of several concepts. The method complexity
is reasonable for field applications.

FISH3 demonstrates that the proportion of time and space in the dis-
tance function is learnable online.

We show the advantages of combination of the distances in time and
space. Combining time and space for training instance selection contributes
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to improvement of classifier generalization performance under gradual con-
cept drift, since this way heterogeneous nature of the drifting data can be
captured.
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ALL HISTORY TRAINING SET (ALL)

INPUT

Data: historical instances XH = (Xy,...,X;) with labels yH, target instance
X1 without a label. Base learner type: L.

ALGORITHM

Train the classifier £; using a training set X§ = (Xy,...,X;). OUTPUT
Trained classifier £; to be applied to the testing instance X;11.

Figure 12: All history training set (ALL).

A Peer Methods

In this Appendix we present pseudo codes and the settings used for the peer
methods, which we implemented and used in experimental evaluation.

In Figure 12 we provide a pseudo code for the incremental growing win-
dow, which is used as a baseline.

Klinkenberg and Rentz [29] method is presented in Figure 13. The orig-
inal work used Support Vector Machines (SVM) as the base classifier. We
use the method with different base classifiers.

Tsymbal et al [15] method is presented in Figure 14.
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WINDOW SELECTION METHOD (KLI)

INPUT

Data: historical instances XH = (X;,...,X;) with labels yH, target instance
X¢+1 without a label.

Parameters: batch size m. Base learner type: L.

ALGORITHM

1. For j =1 to t (all the batches),

(a) for k=1 to m (all the instances in the last batch),

i. build a classifier on the data in {X;,...,X;}, using cross-
validation,
ii. test the classifier on the excluded instance,
if correctly classified e = 0, else e, =1,
(b) calculate the error E; = L ™" | ¢, for past window of size w; =
jxm.

2. Find minimum error j* = arg min;:1 E;.

OUTPUT
The index j* to form a training set X§ = (X, ..., X¢).

Figure 13: Window Selection method (KLI).
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DYNAMIC ENSEMBLE METHOD (TSY)

INPUT

Data: historical instances XH = (Xq,...,X}) with labels yH . target instance
X¢41 without a label.

Parameters: training set size N, batch size m, maximal ensemble size M,
neighborhood size k.

Base learner type: L.

ALGORITHM

1. Build classifier £; using X;_n41,--., X labeled instances.

2. If ensemble size < M then add L; to the ensemble, else replace the
ensemble member which showed the largest error on the latest batch.

3. Find k nearest neighbors to X;y1: {X.1,...,X,x} using Heterogeneous
Euclidean overlap measure d¥, which is the Euclidean distance with
normalized features.

4. For j = 1 to M, calculate weights (for each ensemble member
ﬁl,...,cﬂ[z
o Gr e o i (Xzs)
wlly) = SR

s=1 dH(Xt+1«Xzs)
where if L; is correct in predicting the label of X,
then 1;(X,s) =1, else 7;(X,s) = —1.
5. Select £L* = L;*, where j* = argmax | w(L;).

ouTPUT
Classifier £* for decision making.

Figure 14: Dynamic ensemble method (TSY).
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