ECOSYSTEM SERVICES, AGRICULTURE AND TRACE METALS

Dr Iain Green & Tilak Ginige

Argoecosystem services

- Ecosystem services the goods and services provided by ecosystems that are required for human well being, but which do not have a direct market value.
- For example
- nutrient cycling
- the provision of habitat (e.g. for harvestable species or beneficial predators)
- biocontrol
- production (e.g. food)

Trace metals

- Some essential for life required as enzyme cofactors
- 10% of enzymes require Zn, 1 % Cu
- Some have no biological function Cd, Hg,
 Pb
- Some have very limited biological function Ni required by 1 enzyme

•ALL can be toxic when a threshold concentration is reached

Trace metals

Metals enter agroecosystems:

- From the atmosphere smelting emissions, mining dust, burning fossil fuels & volcanoes
- From mining activities
- From agricultural materials
- Phosphate fertiliser
- Liming agents
- ≻Animal manures
- Sewage sludge

Trace metal concentrations (mg kg⁻¹) in sludges and in the soils of England and Wales

metal	10 %ile	%ile			90	90 %ile	
	Soil	Sludge	Soil	Sludge	Soil	Sludge	
Cd	0.2	0.8	0.7	1.6	1.4	3.4	
Cr	15	12	39	24	64	158	
Cu	9	192	18	373	37	758	
Pb	20	40	40	99	131	288	
Ni	7	11	23	20	42	65	
Zn	38	347	82	559	147	1076	

A hidden problem

- Woburn market garden experiment (Giller et al. 1998) – sewage sludge applied between 1942 and 1961
- Clover seeded for first time since 1942 in 1985
- Clover was stunted and chlorotic (yellow)
- Yield 60 % lower than control
- Due to a lack of N fixation by Rhizobium
- *Rhizobium* suffered toxicity due to metal contaminated organic matter

Protection of agroecosystems

- Potential harm to crop production recognised, e.g. phytotoxicity
- Therefore, regulation:

➢Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture

➢UK law – The sludge (use in agriculture) regulations, Statutory instrument N0. 1263

➤US - 40 CFR Part 503 – Standards for the use or disposal of sewage sludge Comparison of the maximum concentration of trace metals (mg kg⁻¹) allowed to accumulate in agricultural soils as a result of sewage sludge application in the EU, US and UK (McGrath *et al.*, 1994).

	Cd	Cu	Ni	Pb	Zn	Hg
EU	1-3	50-140	30-75	50-300	150- 300	1-1.5
UK	3	135	75	300	300	1
USA	20	750	210	150	1400	8

•The aim of the regulations is to prevent the input of trace metals reaching levels that may cause phytotoxicity to crops, or that may cause harm to human and animal health

•Nothing about ecosystem services –

Not thought of back then

•But some services are covered – e.g. production

The Bradshaw report

- Review of the rules for sewage sludge application to agricultural land; soil fertility aspects of potentially toxic elements*
- Concluded that current UK limit on Zn in UK for all but alkaline (>7.0) soils was too high
- *Rhizobium* spp. affected at 300 mg kg⁻¹, but 200 mg kg⁻¹ should protect them

 Concern expressed about deleterious effects of mycorrhizal fungi – but no appropriate studies conducted!

* -MAFF/DoE, 1993. *Review of the rules for sewage sludge application to agricultural land; soil fertility aspects of potentially toxic elements (PB156),* HMSO, London.

The Bradshaw report

- New advisory limit of 200 mg kg⁻¹ for soil with a pH between 5.0 – 7.0 set
- Not within the committee's remit to assess controls on metal concentrations for other waste materials!
- Recommended further consideration to contribution of animal wastes!

* -MAFF/DoE, 1993. *Review of the rules for sewage sludge application to agricultural land; soil fertility aspects of potentially toxic elements (PB156),* HMSO, London.

Time taken (yrs) for organic fertiliser applications to raise an average UK rural soil to the Cu limit.

	Mean conc. fer	tiliser	High conc. fertiliser		
	180 kg N ha ⁻¹	250 kg N ha ⁻¹	180 kg N ha ⁻¹	250 kg N ha ⁻¹	
Sewage sludge (153	110	115	83	
Diary slurry	1527	1100	270	195	
Dairy manure	1261	908	847	610	
Pig slurry	546	394	238	171	
Pig manure	147	106	71	51	
Layer manure	1619	1167	1403	1011	
Broiler manure	1018	733	569	410	

Time taken (yrs) for organic fertiliser applications to raise an average UK rural soil to the UK code of practice limit for Zn.

	Mean conc. fertiliser			High conc. fertiliser			
	180 kg N ha ⁻¹	250 kg N ha ⁻¹		180 kg N ha ⁻¹	250 kg N ha ⁻¹		
Sewage sludge (112	81		83	60		
Diary slurry	473	340	C	136	98		
Dairy manure	321	231	<	206	149		
Pig slurry	346	250	\langle	80	57		
Pig manure	133	96	<	80	58		
Layer manure	237	171	C	172	124		
Broiler manure	271	195		216	156		

Conclusion

- Soil fertility can be negatively effected by metals from sources from other than sludge
- i.e. the ecosystem service of nutrient provision can be negatively affected by disruption of important plant symbionts
- No legal regulation to prevent this!

But, there is more...

- Korthals et al. (2000) found that some nematode genera (*Thonus*, *Alaimus* & *Aporcelaimellus*) affected at low Cu and Zn concentrations
- Disappeared from experimental mesocosms at soil concentrations above 50 mg kg⁻¹
- Effect on ecosystem function and therefore ecosystem services not know
- But, nematodes important in biological control, predation of microorganisms & detritus breakdown
- But also parasites of plants and animals

Comparison of the maximum concentration of trace metals (mg kg⁻¹) allowed to accumulate in agricultural soils as a result of sewage sludge application in the EU, US and UK (McGrath *et al.*, 1994).

	Cd	Cu	Ni	Pb	Zn	Hg
EU	1-3	50-140	30-75	50-300	150- 300	1-1.5
UK	3	135	75	300	300	1
USA	20	750	210	150	1400	8

American soils may be at greater risk!

But, there is more...

Food chain transfer:

- Only domestic animals and humans considered in legislation
- What about biocontrol agents like ladybirds, other beetles, lacewing larvae and hoverfly larvae?
- Aphids biomagnify Cd and Zn
- Ladybirds and beetles accumulate Zn (Winder et a I., 1999; Green et al. 2010)
- Lacewing larvae biomagnify Cd (Green et al.2006)
- Are they Safe?
- Who knows!!!