
Hybrid Modelling of Time-variant
Heterogeneous Objects

DENIS KRAVTSOV

A thesis submitted in partial fulfilment of the requirementsof

Bournemouth University for the degree of Doctor of Philosophy

July, 2011

This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright rests with its author

and due acknowledgement must always be made of the use of any material

contained in, or derived from, this thesis.

1

Abstract

Denis Kravtsov

Hybrid Modelling of Time-variant Heterogeneous Objects

The physical world consists of a wide range of objects of a diverse con-

stitution. Past research was mainly focussed on the modelling of simple ho-

mogeneous objects of a uniform constitution. Such researchresulted in the

development of a number of advanced theoretical concepts and practical tech-

niques for describing such physical objects. As a result, the process of mod-

elling and animating certain types of homogeneous objects became feasible.

In fact most physical objects are not homogeneous but heterogeneous in

their constitution and it is thus important that one is able to deal with such

heterogeneous objects that are composed of diverse materials and may have

complex internal structures. Heterogeneous object modelling is still a very

new and evolving research area, which is likely to prove useful in a wide

range of application areas. Despite its great promise, heterogeneous object

modelling is still at an embryonic state of development and there is a dearth

of extant tools that would allow one to work with static and dynamic het-

erogeneous objects. In addition, the heterogeneous natureof the modelled

objects makes it appealing to employ a combination of different representa-

tions resulting in the creation of hybrid models.

In this thesis we present a new dynamic Implicit Complexes (IC) frame-

work incorporating a number of existing representations and animation tech-

niques. This framework can be used for the modelling of dynamic multidi-

mensional heterogeneous objects. We then introduce an Implicit Complexes

Application Programming Interface (IC API). This IC API is designed to pro-

vide various applications with a unified set of tools allowing these to model

time-variant heterogeneous objects. We also present a new Function Repre-

sentation (FRep) API, which is used for the integration of FReps into com-

plex time-variant hybrid models. This approach allows us tocreate a practi-

cal multilevel modelling system suited for complex multidimensional hybrid

modelling of dynamic heterogeneous objects. We demonstrate the advan-

tages of our approach through the introduction of a novel setof tools tailored

2

to problems encountered in simulation applications, computer animation and

computer games. These new tools empower users and amplify their creativity

by allowing them to overcome a large number of extant modelling and anima-

tion problems, which were previously considered difficult or even impossible

to solve.

3

Contents

Abstract . 2

List of contents . 4

List of figures . 8

List of tables . 15

Acknowledgements . 16

Declaration . 17

Abbreviations . 18

1 Introduction 19

2 Related work 29

2.1 The boundary representation 29

2.1.1 The parametric representation 29

2.1.2 The polygonal representation 32

2.2 The representations for volumetric models 34

2.2.1 The voxel representation 34

2.2.2 Implicit surfaces 38

2.2.3 The Function Representation (FRep) 43

2.3 Heterogeneous objects modelling 53

2.3.1 Hybrid modelling 53

2.3.2 Implicit Complexes (IC) 56

2.4 A survey of computer animation techniques 62

2.4.1 Keyframe-based animation 63

2.4.2 Procedural animation 66

2.4.3 Conclusions . 71

3 Theoretical framework for Dynamic Implicit Complexes 72

3.1 Motivation . 72

3.2 Dynamic IC cells . 73

3.3 Dynamic IC attributes . 76

3.4 Extensions to FRep within the dynamic IC framework 78

3.4.1 Modelling domains 78

3.4.2 Space-time . 81

3.5 Dynamic IC relations . 85

4

3.6 Dynamic IC operations . 90

3.7 Dynamic IC states and their components. 94

3.8 Dynamic IC instances . 98

3.9 The IC-based model . 102

3.10 Conclusions . 107

4 Dynamic Implicit Complexes Framework: Technical Aspectsand

Tools. 110

4.1 Introduction . 110

4.2 A description of the IC entities and their properties 111

4.3 Methodology of model definition 113

4.3.1 The high-level notation for the definition of an IC

model . 114

4.3.2 IC model definition using the notation 119

4.3.3 The process of model evaluation 125

4.4 The technical details of model evaluation 127

4.4.1 Dependencies and the order of evaluation 127

4.4.2 Handling an event requesting a modification of time 138

4.5 A brief description of the IC API 140

4.6 The FRep API as a subset of the IC API 145

4.6.1 HyperFun . 146

4.6.2 Mapping FRep concepts to the FRep API 148

4.6.3 FRep API extensibility 158

4.6.4 FRep model manipulation 159

4.6.5 The FRep model format interchange 161

4.6.6 The FRep library 165

4.6.7 Integration of FReps into the IC framework 168

4.6.8 Performance . 170

4.7 Conclusions . 174

5 Applications and results 176

5.1 An introductory 2D dynamic IC model exemplar 176

5.2 An exemplar of a 2D dynamic IC model with dependencies . 184

5.3 Multidimensional dynamic models in the space-time domain 193

5.3.1 Introduction to space-time blending 193

5

5.3.2 The application of affine transformations in the space-

time domain. 194

5.3.3 Additional time-dependent deformations. 196

5.3.4 Non-linear sampling in the space-time domain. . . . 198

5.4 Implicit “Stand-ins”: a case of time-variant hybrid modelling 201

5.4.1 Introduction to the “stand-ins” technique 201

5.4.2 Background . 203

5.4.3 Problem statement and approach outline 205

5.4.4 The proposed approach 207

5.4.5 The IC model definition 211

5.5 The controlled metamorphosis of animated meshes 215

5.5.1 Introduction . 216

5.5.2 Method Outline . 216

5.5.3 Conclusions . 221

5.6 The “Andyhausen” experiment 221

5.6.1 Model overview 221

5.6.2 Model description 225

5.6.3 Conclusions . 230

5.7 An interactive modeller for the definition of volumetrichy-

brid models . 232

5.7.1 General description 232

5.7.2 Implementation overview 239

5.7.3 Future work . 240

5.8 Conclusions . 243

6 Conclusions and future work 246

6.1 Contributions . 248

6.2 Future work . 251

References 253

A A detailed description of IC entities and their components 270

B IC model description of a “Stand-in” case study 281

C IC description of “Andyhausen” experiment 287

6

D List of publications 295

7

List of Figures

1 An example of polynomial curve passing through a set of

control points. 30

2 A patch of a parametric surface. 31

3 The components of a polygonal model. 32

4 Voxel data. 35

5 Volumetric data stored as discretized distance field (a) Two

orthogonal slices of distance data (b) Volume rendering of

volumetric data with colour variation. 37

6 An example of adaptively sampled distance field in 2D and

the underlying adaptive data structure (Friskenet al., 2000). 38

7 A scalar field (defining function): (a) The sign of a scalar

field, (b) The extracted implicit surface (T=0) and (c) Differ-

ent iso-surfaces for different values ofT. 39

8 An example of an implicit object. 40

9 An example of a CSG tree. 41

10 Set-theoretic operations based on R-functions: (a) Union and

(b) Intersection. 46

11 The constructive Hypervolume model: (a) The original geo-

metric object, (b) A visualisation of the space partitions and

(c) The resulting Hypervolume object. 51

12 A set of cells present in the IC. 60

13 The topological relations of the IC. 60

14 A set of keydrawings reflecting important stages of a walk-

cycle (image courtesy of Jose Fonseca). 64

15 A set of key-poses defined by the computer animator (“Andy”mo-

del courtesy of John Doublestein). 64

16 A set of cells present in the IC. 75

17 The motion of the disk defined over time. 76

18 A space mapping used for attributes: (left) initial geome-

try and attributes; (centre) deformed geometry and initialat-

tributes (right) the same deformation applied to geometry and

attributes simultaneously. 77

19 The “reduce dimensionality” operation. 81

8

20 Meeting the requirements of a 3D Cartesian product. 82

21 Space-time object: (a) Two defining 2D projections (b) A set

of 2D geometric slices of the resulting space-time object. .. 83

22 A set of 2D cross-sections of the objects metamorphosed over

time. 84

23 A 3D objects defined in the space-time domain. 84

24 The dependency relation between the parameters of two cells. 89

25 The modification of the radius depends on the translation of

the rectangle. 90

26 Example definition of a simple deformation. 91

27 Example definition of an operation with constant parameters. 93

28 Example definition of an operation with time-dependent pa-

rameters. 93

29 Example definition of an operation with time-dependent pa-

rameters and time-dependent operands. 94

30 Transitions between the states of the cell through reactions

issued in response to external events and a set of generated

events. 97

31 Transitions between the IC instances of the IC-based model. 100

32 Dynamics of transitions between the structural states ofthe

model over time. 101

33 The structure of the dynamic IC model and its components. .106

34 The topological relations of the IC. 106

35 The set of cells at an intermediate modelling phase.107

36 The set of cells at an intermediate modelling phase.108

37 A set of instances reflecting the model at different time-spans. 108

38 A high-level UML diagram of IC entities. 112

39 The structure of the textual IC model definition. 115

40 The syntax diagram for the definition of entities present in the

model. 116

41 The syntax diagram for the definition of reactions to events. . 117

42 The syntax diagram for the definition of internal components

of the cell. 118

9

43 The syntax diagram for the definition of template ICs and IC

instances. 119

44 The initial set of cells and the dependencies between them. . 129

45 The lists of topologically sorted cells. 129

46 The list of concurrently evaluated cells. 130

47 A simple model of Newton’s cradle. 132

48 The four states of Newton’s cradle. 132

49 The two states of the cradle: (Left) One of the balls mov-

ing, no collision (Right), One of the balls moving (collision

situation). 133

50 A simple bi-directional dependency. 134

51 Two different evaluation orders. 135

52 Two different user-controlled evaluation orders. 135

53 The set of cells and dependencies between them. 136

54 Two different user-controlled evaluation orders. 136

55 The dependencies between the properties and the dependency

graph between the cells. 138

56 On-demand adjustment of time (a) Time-step back in time (b)

Going through all the previous states. 139

57 The structure of the IC API and related tools. 141

58 The UML diagram of the main classes present in the IC API. 142

59 The IC modelling work flow. 144

60 Full structure of the modelling environment and basic tools

for IC modelling. 144

61 A simplified UML diagram of an FRep entity 149

62 The high-level overview of the types of FRep entities. 150

63 Types of primitives available in the FRep API. 151

64 Types of entities available in the FRep API. 152

65 The difference between a primitive and an operation.153

66 The dynamic diagrams illustrating the evaluation of different

types of entities. 154

67 The FRep entity UML-diagram. 156

68 The first phase of the FRep tree evaluation. 157

69 The second phase of the FRep tree evaluation. 158

10

70 The interaction with the FRep API. 160

71 A Model-View-Controller diagram: (a) The general design

pattern (b) The MVC and FRep API 161

72 The entity serialiser. 162

73 The FRep entity and its XML definition. 164

74 The generation of the FRep API related components from an

entity description. 167

75 The generation of application specific code required for the

integration of FReps. 168

76 A set of application and platform specific translators. 168

77 The integration of the FRep entities into the IC API.169

78 The evaluation of the F-cell within the IC framework.170

79 A set of cells present in the IC. 177

80 The motion of the disk defined over time. 178

81 The topological relations of the IC. 179

82 The second IC instance. 180

83 The third IC instance. 182

84 A dynamic IC over time (here the time parameter of the IC is

its local time). 184

85 The cells and relations of the dynamic IC. 184

86 The cells and the dependency relations between them.185

87 The first IC instance. 187

88 The second IC instance. 187

89 The third IC instance. 189

90 The fourth instance. 190

91 The cells and relations of the fifth IC instance. 192

92 The IC instances and the transitions between them. 192

93 Space-time blending: (a) Two initial 2D objects (b) A set of

intermediate objects generated using space-time blending. . 193

94 The IC cells initially present in the model. 194

95 The result of the application of a space-time blending op-

eration: (a) Regular space-time blending (b) The proposed

space-time blending with an additional affine transformation. 195

11

96 The cross-sections of the shape generated using the improved

space-time blending: (a) a user guided rotation around the

time axis to align object features (b) A user guided scale along

the time axis. 195

97 The transition between 3D objects (a) Linear metamorphosis

(Paskoet al., 1995). (b) Improved space-time blending. . . . 196

98 Examples of transitions using space-time blending for 3Dob-

jects. 197

99 Problems caused by disjointed components appearing during

the transition: (a) Regular space-time blending (b) Space-

time blending with additional deformations. 197

100 The dependency relations for an improved space-time blend-

ing with additional deformations. 199

101 Examples of the extracted “thick features” (marked by cros-

ses). 199

102 Animated mesh information: (a) Polygonal mesh, (b) Rig-

ging skeleton, (c) Skinning information. Model ”Andy” cour-

tesy of John Doublestein. 206

103 Initial approximation: (a) The initial placement of bounding

volumes inside the mesh, (b) The shape produced by convo-

lution surface. 207

104 The synchronised motions of the embedded convolution sur-

faces during the animation process. 209

105 Phases of interaction between animated objects withoutblend-

ing (left) and with blending (right): (a) Two implicit surfaces

and a single blend shape during blending, (b) The boundary

case before the two shapes separate, (c) Two separate shapes

with some deformation showing the objects’ reciprocal at-

traction. 211

106 Viscosity: (a) low, (b) medium, (c) high. 211

107 Proposed approach outline. 212

108 The different states of the model. 212

109 The topological relations of the model. 213

110 The dependency relations of the model. 214

12

111 A set of examples of the dynamic hybrid modelling technique. 215

112 All IC instances of the controlled metamorphosis example to-

gether with the dependency relations. 217

113 The different stages of the projection of the BRep mesh to

the FRep shape of the “stand-in”: (a) Simplified example (b)

Projection of a character’s head to the appropriate “stand-in”. 218

114 The controlled metamorphosis of animated meshes: (a) Jump-

ing girl to a running zebra metamorphosis (b) Crawling mon-

ster to a levitating robot metamorphosis. 220

115 The different states of the model. 222

116 The cells initially present in the IC. 222

117 The first IC instance. 223

118 The boundary relations of the first IC instance.224

119 The containment relations of the first IC instance. 224

120 The dependency relations of the first IC instance.224

121 The boundary relations of the second IC instance.228

122 The containment relations of the second IC instance. 228

123 The dependency relations of the second IC instance. 229

124 The third IC instance of the model. 229

125 The boundary relations of the third IC instance.230

126 The dependency relations of the third IC instance. 231

127 The FRep shelf added to Maya. 233

128 The FRep proxy object representing a solid sphere in Maya. 234

129 Constructive FRep tree shown using the Maya Dependency

Graph or Hypergraph. 234

130 Two rendering options in Maya: (a) The rendering of proxy

primitives is enabled, (b) The rendering of proxy primitives

is disabled. 235

131 The parameters available for the blending union operation. . 235

132 Animating the available parameters of FRep entities using the

Maya animation tools. 236

133 Example of an FRep model created within Maya shown from

different angles. 236

13

134 An overview of the XML description of the model shown in

figure 133. 237

135 The FRep tree of the model shown in figure 133. 238

136 Examples of volumetric models produced using our modeller. 239

137 The FRep castle model: (a) Using the regular Marching Cubes

algorithm, (b) Using the Marching Cubes algorithm with post

processing extracting sharp features. 241

138 Screenshots of the working environment: (a) The definition

of the “Stand-in” model, (b) The setup of the improved space-

time blending model, (c) Exploring the FRep tree contained

in the IC F-Cell used for space-time blending. 242

139 Scanned voxel data of a patient blended with FRep entities. . 243

140 Examples of rapidly prototyped (through 3D printing) FRep

objects defined using the HyperFun package. 244

14

List of Tables

1 The list of available FRep modelling domains. 79

2 A list of dynamic IC entities and their properties. 278

3 The components of the animation entity. 280

15

Acknowledgements

First of all I would like to express my gratitude to my supervisors Prof. Peter

Comninos, Prof. Alexander Pasko and Dr. Valery Adzhiev for their continued

support and advice. I would also like to thank them for their help in improving

the readability of this document.

I would like to thank Oleg Fryazinov (NCCA) for his help and advice,

Elena Kartasheva (Russian Academy of Sciences) for useful discussions and

her contribution to the theory of dynamic ICs, Adam Vanner (NCCA) for

sharing his expertise in the latest techniques used in modern animation sys-

tems, Andreas Baerentzen (Technical University of Denmark) for the dis-

cussion regarding voxel representations and various approaches to volumet-

ric modelling, Jose Fonseca (NCCA) for providing the information regard-

ing traditional animation and computer animation techniques and John Dou-

blestein (Savannah College of Art and Design) for making the“Andy” char-

acter model publicly available.

Thanks also goes to the National Centre for Computer Animation and the

Media School at Bournemouth University for the scholarship, which made it

possible for me to undertake this research.

Last but not least I would like to thank my family, friends andfellow stu-

dents for their support during the years of my intense work onthis project.

16

Declaration

This thesis has been created by myself and has not been submitted in any

previous application for any degree. The work in this thesishas been un-

dertaken by myself except where otherwise stated. The materials related to

hybrid modelling technique based on “Implicit Stand-ins” have been pub-

lished in (Kravtsovet al., 2010b,a,c). The work regarding the improvements

of space-time blending appeared in (Paskoet al., 2010).

17

18

Abbreviations

API Application Programming Interface

BRep Boundary Representation

CAD Computer-Aided Design

CPU Central Processing Unit

CSG Constructive Solid Geometry

EM Empirical Modelling

FRep Function Representation

GPU Graphics Processing Unit

IC Implicit Complexes

LLVM Low Level Virtual Machine

MVC Model-View-Controller

PRep Parametric Representation

UML Unified Modelling Language

XML Extensible Markup Language

1. Introduction 19

1 Introduction

The physical world consists of a wide range of miscellaneousobjects of a

diverse nature. Models of these real entities can help us gain a better under-

standing of the physical world.

In the past a lot of research was focused on modelling simple homoge-

neous objects made of a uniform material. This research effort resulted in the

development of a number of advanced theoretical and practical methods for

describing physical objects. Specific mathematical representations, theoreti-

cal frameworks and modelling tools have been introduced over the years. As

a result, the process of modelling and animation of certain types of homoge-

neous objects became easier to do. However, not all physicalobjects can be

described as homogeneous objects.

In fact, the majority of physical objects are heterogeneousin nature and

it is necessary to be able to work with such objects. Heterogeneous objects

are composed of different materials and have a complex internal structure.

For instance, a walnut consists of a shell and a seed contained in the shell.

In its turn the shell has a number of inner layers and the seed has a complex

internal structure as well. Complex assembly of a set of dynamic objects

made of homogeneous matter can also be considered a heterogeneous object.

Heterogeneous object modelling is a very promising approach, which is likely

to be useful in a wide range of applications. This is still a new and evolving

research area. New specialised representations and theoretical frameworks

are being introduced and existing ones are still being refined. Despite all

the potential advantages of this new approach, there are no existing tools,

which would allow us to work with static and dynamic heterogeneous objects.

At the moment we can only conclude, that the heterogeneous nature of the

modelled objects makes it appealing to employ a combinationof different

representations using a hybrid model.

The latest advances in computer hardware resulting in an increase of com-

putational power, the introduction of modern 3D displays and of new types

of haptic devices make heterogeneous object modelling feasible. Recent re-

search has presented a number of ways allowing us to perform this type of

1. Introduction 20

modelling. In this thesis we present a new framework incorporating a num-

ber of existing representations and animation techniques.This framework

can be used for the modelling of dynamic multidimensional heterogeneous

objects. We believe that the new tools built upon this framework will prove

to be useful in various areas of computer graphics.

The Implicit Complexes (IC) Framework, developed earlier by our re-

search team1, provides us with a way of integrating models of different nature

within one hybrid model by combining both the geometry of objects and their

arbitrary properties. To date however, this framework has only been suitable

for the modelling of static heterogeneous objects. Howeverconsidering the

walnut example in more detail, we notice that its propertieschange over its

lifetime.

Most natural objects are not static but undergo certain modifications or

transitions over time. More importantly, these dynamic heterogeneous objects

can interact with each other over time in an unpredictable number of ways.

In general, the internal properties of time-variant objects may depend on the

properties of various external objects. Some of these interactions could be de-

fined manually or by using a higher-level procedural definition, while certain

behaviours could only be determined as a result of a simulation process.

In this thesis we describe a new IC-based framework, allowing us to model

time-variant multidimensional heterogeneous objects using the aforementioned

approaches. This dynamic IC framework provides a way of defining the ob-

jects using a number of existing representations and animation techniques.

Here we present a brief description of the existing representations and anima-

tion approaches that are combined in the new dynamic IC framework in order

to provide a set of tools for the definition of complex dynamichybrid models.

The modern world of computer graphics is mostly dominated byboundary

representation models (also known as BRep models). Such models can only

store information about an object’s boundary (as though theobject was hol-

low). An objects’ boundary information alone is sufficient for a wide range

of applications, such as certain types of computer animation, a large set of

1The list of collaborators includes Elena Kartasheva, Valery Adzhiev, Alexander Pasko,
Peter Comninos, Oleg Fryazinov and Benjamin Schmitt.

1. Introduction 21

computer games and even for a limited subset of CAD modellingapplica-

tions or physical simulations. One of the most popular typesof boundary

representation models are the polygonal models. With thesemodels planar

primitives such as triangles or quads are used as building blocks to represent

3D objects. Polygonal models provide a rich set of availableoperations and

are often highly scalable. One of the most important reasonswhy polygonal

models have gained such popularity in the past thirty years is the fact that

planar primitives can be rendered in a relatively easy way. This was quite an

important factor in the early years of computer graphics when existing hard-

ware resources were very limited. The extensive development of computer

graphics hardware was mostly oriented towards maximising the number of

planar primitives rendered per frame and the introduction of new rendering

techniques that could somehow enhance the visual quality ofthe resulting

images.

As was mentioned earlier, boundary representation models are only suit-

able for a limited set of applications. Naturally when the internal structure of

an object is required the limitations of the boundary representation become

apparent. For instance, the BRep description of a detailed walnut model,

mentioned earlier in the text, would be very limiting. The boundary represen-

tation would only allow us to create a finite set of surfaces representing the

shell and the seed contained within it. It would be next to impossible to ex-

plore the internal structure of such an object, if we were to cut or split the nut,

attempting to look at its contents hidden under the shell. A detailed model of

such an object requires a more powerful volumetric representation. A volu-

metric representation allows us to describe the surface as well as the interior

of some region of space. Thus, volumetric models allow us to overcome the

aforementioned limitations of the boundary representation. The volumetric

representation is more natural and provides us with the ability to store more

detailed information about an object’s interior, which is especially important

when dealing with heterogeneous objects (i.e. objects consisting of different

materials and having complex internal structures). The volumetric represen-

tation, unlike the boundary representation, affords us more freedom in terms

of our ability to design, explore and manipulate the model.

One of the many types of volumetric representations relies on discrete

1. Introduction 22

voxels, which are a 3D equivalent of pixels. Models of this type are able

to store significantly more detailed information about the represented objects

and their relations without the familiar restrictions found in BRep models.

But the main problem with voxels is that they are resolution dependent. It is

thus desirable to provide a model of the highest possible resolution to avoid

major aliasing artefacts. Increasing the model resolutionleads us to another

major problem with voxel representations: the significant storage requirement

caused by the necessity to store the information relating tothe entire discrete

volume set. There are different techniques allowing us to overcome this issue,

but they are not well suited for dynamic models.

There is another volumetric representation that we could employ. A Func-

tion Representation (FRep) is a generalised model representation allowing us

to define solid objects of arbitrary dimensionality and to mix objects of dif-

ferent dimensionalities within a single model. An FRep system comprises of

a set of geometric primitives, a set of operations and a set ofrelations. Primi-

tives are combined using operations. An FRep usually allowsus to represent

compactly advanced volumetric models in a resolution independent manner.

The resolution independence of the model is a rather important factor, mean-

ing that the model can easily be refined depending on the specific application

needs. A constructive tree used in combination with an FRep makes it eas-

ier to see how the model was assembled and to modify the model after it

was constructed. This is vital not only for static models butalso for dynamic

models, because it affords us the freedom to introduce dramatic changes to

the geometry and topology of the model. It is also important to note that an

FRep can be used to specify the arbitrary volumetric attributes of the mod-

elled objects so as to represent their internal structure indifferent contexts.

One of the significant shortcomings of FRep models is their computationally

expensive model evaluation procedure. Another issue is their limited support

in current software tools and the absence of certain methodsused in existing

computer animation systems, which can limit the use of FRepsin a number

applications.

Overall, we can see that the various model representations have distinct

advantages and disadvantages.

1. Introduction 23

We have mentioned a number of issues specific to BRep models, but BRep

models cannot easily be replaced by volumetric models for a number of rea-

sons. A large number of techniques for modelling and animation of BReps

was developed over the years. A wide range of applications and tools relying

on BRep models was introduced during the past thirty plus years. There is an

immense amount of content produced by a significant number ofprofession-

als trained to work with BRep models alone. Large groups of experts special-

ising in certain ever-narrowing areas of static or dynamic BRep modelling

do not have enough experience to work efficiently with other representations.

Besides, as was mentioned earlier, BRep models satisfy all the needs of many

existing applications. In these cases the definition of a more generic mod-

els would be unnecessary. It is thus apparent, that the complete rejection of

BReps as well as other existing model representations wouldbe inappropri-

ate. The necessity to introduce a generic hybrid modelling system allowing us

to combine objects of various representations thus becomesapparent. Such a

unified representation should allow us to exploit the best characteristics of the

various representations and of the ways in which objects expressed in these

diverse representations can be made to interact with each other.

The Implicit Complexes (IC) Framework allows us to combine models of

diverse nature within one hybrid model. ICs were introducedas a representa-

tion for a cellular-functional hybrid model of heterogeneous objects. The hy-

brid model described within ICs may contain entities of various dimensional-

ities and representations. IC models consist of valid topological descriptions

of heterogeneous objects and allow for the combination of different existing

representations of both the geometry of objects and the attributes describing

the objects’ properties. This framework provides the user with a set of power-

ful tools. Unfortunately, up to date the IC framework was only suited for the

definition of static hybrid models. Thus, it could only be used for a limited

set of applications.

As we have mentioned earlier in the text, the capability of defining time-

variant models is very important for an appropriate description of a large vari-

ety of applications. A large number of the existing animation systems provide

the user with a wide range of tools suitable for the definitionof dynamic mod-

els. But the majority of these systems are oriented towards one representation

1. Introduction 24

only. Most commonly, these systems support BRep models alone, as they are

mostly targeted to the visualisation or interaction with the object’s boundary.

Thus, it becomes apparent that in modern animation systems there is a neces-

sity for representing objects of different types that coexist in the same scene

and interact with each other in a seamless way.

There are several techniques commonly used in the production of anima-

tion sequences, such as keyframing and inbetweening. Thesetechniques are

similar to the ones used in traditional hand-drawn animation, making them

more accessible to users with an artistic background. Theseapproaches pro-

vide the artist with precise control over various aspects ofthe produced an-

imation sequence. Unfortunately, this workflow can still bea very arduous

and time-consuming process. Besides, major modifications of the animation

sequence require a lot of manual repetitive actions from theanimator.

Another way of defining a computer animation sequence is through a script

(also known as a procedural definition). Scripting in some sense can be seen

as a rather detailed breakdown of a screenplay. This description can then be

used by the animation system to produce the actual frames of the animation

sequence. This approach also allows the user to define the model and the

processes taking place within it in an appropriate way, without the necessity

of describing all the aspects manually. In certain circumstances, the com-

plex evolution of a model can be more easily described through a scripting

language incorporating high level terms used for animationproduction. This

approach is also better suited for the definition of real-life processes, when

the animator is more interested in the correctness of a model. The valid defi-

nition of a model can help the user produce a believable animation sequence

reflecting the desired behaviour of dynamic entities. In contrast, a similar se-

quence animated by hand (which may not always be possible) would only try

to laboriously reproduce a certain phenomenon aiming at visual resemblance

without a good understanding of the dynamic process. Compared to a proce-

dural definition, keyframing leaves little room for subsequent modifications

and extensions. A procedural definition on the other hand allows the user to

build a model iteratively, combining different objects andstates of the model

together, and thus creating a model with a behaviour that maynot be known

in advance. Another powerful feature of this approach is thepossible pres-

1. Introduction 25

ence of dependency relations between the entities of the model. This allows

the user to define a set of independent agents and their behaviour in a modular

fashion and to combine those, establishing dependencies between them. One

of the major issues of this approach is the high level of technical skills re-

quired of the person developing the procedural definition ofthe model. Many

artists find this approach rather hard to understand and difficult to direct in a

predictable way.

It is hard to give preference to any one of these methods as they are suited

to the solution of dissimilar problems. Keyframed animation is often easier

for artists to work with, while a procedural definition, which can be thought of

as a form of computer programming, may be much easier for technical people

collaborating with artists. Additionally, some low-levelanimation sequences

often have to be defined manually before being incorporated into the proce-

dural definition of a model. Certain complex models can only be defined in a

procedural way, as they would otherwise require a significant amount of labo-

rious and repetitive work. The combination of these approaches allows us to

get the best of both worlds, having precise artistic controlover some parts of

the model, while providing a high-level definition of other parts of the model

that can be evaluated on the fly.

We can see that over the years a wide range of different techniques have

been introduced for the creation of time-dependent models.The situation

in the world of animation is similar to the one we described inrelation to the

modelling of static objects. Each of the approaches has its distinct advantages

as well as disadvantages. In this thesis we describe a new framework allow-

ing us to combine the aforementioned animation techniques for the hybrid

modelling of time-variant heterogeneous objects. We provide a way of de-

scribing heterogeneous objects defined using different modelling techniques

involving boundary and volumetric representations as wellas their procedu-

ral variations. Interactions between objects of differentrepresentations de-

fined within the framework can take place seamlessly. The introduction of

these new capabilities requires the development of new mathematical struc-

tures able to represent diverse models - specifically in the context of computer

animation and simulation. A multilevel modelling system based on this math-

ematical framework allows us to create a set of practical tools tailored for

1. Introduction 26

complex multidimensional hybrid modelling of dynamic heterogeneous ob-

jects. These new tools will allow us to overcome a large number of existing

modelling problems and to provide the user with a number of new powerful

tools previously unavailable.

This thesis is structured as outlined below.

In Chapter 2, we present related work and we briefly describe existing

model representations. We discuss the advantages and disadvantages of the

various representations together with their application areas. The IC frame-

work is introduced as a common platform allowing us to incorporate all the

representations within one hybrid model. In the second partof this chapter we

provide a survey of existing animation techniques and methods used for the

definition of time-dependent models. In similar way to the discussion regard-

ing existing model representations we analyse the strengths and weaknesses

of the existing approaches for the definition of dynamic models. At the end

of the chapter we discuss the necessity for the extension to the IC framework

in order to use it for the definition of time-variant heterogeneous objects.

In Chapter 3, we discuss the set of extensions required for the Dynamic

IC framework. We provide extended definitions of the basic concepts and

we introduce the new notions required for the dynamic modelling of complex

time-variant heterogeneous objects. In this chapter we also discuss various

components of the framework, paying particular attention to the Function

Representation and the Constructive Hypervolume Framework. A number

of extensions to these frameworks are described in this chapter. These ex-

tensions provide us with a number of new tools useful for multidimensional

hybrid modelling.

In Chapter 4, we present a more detailed description of the ICframework

from a technical point of view. We describe the high-level notation used for

the definition of the models together with the methodology ofmodel defi-

nition. We outline the process of model evaluation with respect to complex

dynamic relations established between the objects. This information is re-

quired for the practical implementation of the framework. Further, in this

chapter we introduce the Implicit Complexes Application Programming In-

terface (IC API). The IC API is designed to provide various applications with

1. Introduction 27

a unified set of tools allowing them to perform modelling of time-variant het-

erogeneous objects. In the remainder of the chapter we discuss the problems

of integration of the existing representations into the framework. A practi-

cal implementation of the whole framework is outside the scope of this re-

search project. Thus we mainly focus on the integration of FReps into the

framework. Hence, the design and the implementation of the FRep API are

described in more detail in this chapter as well. At the end ofthe chapter we

consider further improvements of the APIs and we discuss a number of ways

to improve the performance of model evaluation.

In Chapter 5, we describe a number of applications of the proposed mod-

elling framework and discuss the results. We outline a set ofproposed im-

provements for space-time blending relying on multidimensional dynamic

models. Next we introduce our new method for the modelling ofinteractions

between dynamic objects and viscous materials using a time-dependent hy-

brid models. We also describe the extensions to this approach which allow us

to solve a number of other existing problems, including the partial metamor-

phosis of animated characters and the controlled metamorphosis of dynamic

meshes. Then we present an application involving a complex interaction se-

quence between a set of time-variant heterogeneous multidimensional objects

within one hybrid model. Finally, we describe our prototypeimplementation

of an interactive modelling system that can be used for the definition of dy-

namic heterogeneous objects or certain parts of a hybrid model. In addition,

we describe in detail practical methods that can be employedfor the acceler-

ation of model evaluation employing both the CPU and the GPU.

In Chapter 6, we examine the results of the presented work, discuss po-

tential solutions of the problems that have been investigated and outline our

conclusions. At the end of this chapter we summarise the contributions of our

work and propose directions for future work.

The main contributions of this research work are:

1. The introduction of a new dynamic IC framework.

2. The introduction of the new extensions to the Constructive Hypervol-

ume Framework.

1. Introduction 28

3. The design and detailed description of a new high-level language for

the definition of time-dependent mixed-dimensional hybridmodels.

4. The design and implementation of novel APIs and software tools re-

lated to the hybrid modelling of time-variant heterogeneous objects.

5. The introduction of new extensions to space-time blending within the

ICs.

6. The introduction of novel approaches based on an animated“stand-ins”

technique allowing us to overcome a set of known issues.

7. The retrieval and analysis of new experimental results using dynamic

hybrid models.

2. Related work 29

2 Related work

In the Introduction we have mentioned a number of the existing representa-

tions and computer animation techniques. In this chapter weprovide a more

detailed overview of these topics. We discuss the advantages and disadvan-

tages of the examined representations along with their mainapplication ar-

eas. We then outline the main features of the IC framework that can be used

to combine models defined in different representations and we show that the

IC framework can be used as a powerful platform for the definition of hybrid

models of heterogeneous objects.

In the second part of the chapter we provide a survey of the existing

computer animation techniques and methods used for the definition of time-

dependent models. We analyse the strengths and weaknesses of the existing

approaches for the definition of dynamic models. Finally, wediscuss the ne-

cessity for the extensions to the IC framework so that it can be used for the

modelling of time-variant heterogeneous objects.

2.1 The boundary representation

A boundary representation (BRep) model is used to representthe shape of an

object as a set of connected surface elements (i.e., the surface boundary of the

object). BRep models consist of both geometric and topological information.

The geometric information consists of the description of the points belonging

to the surface of an object, while the topological information specifies the

connections between points on its surface and allows us to specify the set of

components making up the shape of the object being represented. There are

a number of different types of BReps available for the definition of a model.

2.1.1 The parametric representation

Historically the parametric representation (PRep) provedto be useful for the

approximation of many natural and man-made objects. Parametric represen-

tations allow us to get a straightforward mapping from parametric space to

another (possibly higher dimensional) space :

2. Related work 30

F (P) : EM → EN ;P ∈ [a; b] ⊂ EM

The majority of existing mapping functions used in computergraphics are

variations of polynomial functions. A generalised form of a1D polynomial

function is defined as follows:

F (t) =
n

∑

i=0

bi,n(t) · Pi

The shape of curveF (t) is determined by a set of control pointsPi. A set

of intermediate points between the specified control pointsis computed using

the provided polynomial basis functionbi,n (see fig. 1).

Figure 1: An example of polynomial curve passing through a set of control
points.

The explicit relations between the evaluated values and a set of parame-

ters defined through the mapping rules greatly simplify the process of model

evaluation. This can be achieved through the application ofa mapping rule

that increases the dimensionality of the resulting object and through the com-

bination of the parametric objects.

For instance, the combination of parametric curves can be used for the def-

inition of surface patches (tensor products). Each of the curves has associated

with it a parameter allowing us to perform a mapping from a 2D parametric

space to a 3D space on the surface of the modelled object (see fig. 2). A

patch of the surface of the object can be defined by a set of control points and

an interpolation rule for a set of intermediate points on thesurface. A set of

patches of the modelled surface can be defined independentlymeeting certain

continuity constraints at the boundaries of a patch in orderto align it with its

neighbouring patches on the surface.

2. Related work 31

Figure 2: A patch of a parametric surface.

There exists a wide range of mapping functions suitable for the defini-

tion of such a model. These provide various degrees of control and can be

described using different types of user-defined constraints. The main differ-

ence between the wide variety of parametric surfaces is due to the use of

diverse polynomial basis functions. Some of the popular types of parametric

surfaces are Bezier (Bezier, 1986), Coons (Coons, 1967) andNURBS (Ver-

sprille, 1975) surfaces. The parametric representation also provides a way to

define complex deformations of surface data (Barr and Alan, 1984; Sederberg

and Parry, 1986).

The parametric representation has a large number of applications in the

CAD industry (Farin, 2002), including but not limited to theaerospace engi-

neering, in the design of vehicles and in product design. Unfortunately, this

representation has a number of limitations. The topology ofthe modelled ob-

ject cannot be easily modified and needs to be considered at anearly stages

of the modelling process. The combination of PRep objects inone model

is rather limited. There is no easy way to apply set-theoretic operations to

PReps. Another serious issue is the complexity of the procedure required

for the point membership classification and for the evaluation of the distance

from a point to a PRep object. The latter problem is common to the majority

of BReps, which significantly limits their application in solid modelling.

In classic modelling, parametric surfaces are a natural wayto represent a

modelled object. In the early modelling systems, a model could be rendered

as a set of discrete curves on the surfaces of the objects. With advances in

computer hardware, polygon rendering of a discretized patch became a more

2. Related work 32

common approach. Usually the resulting surface patches areconverted to a

set of planar polygons for the purposes of rendering.

2.1.2 The polygonal representation

The most widespread type of BRep is the polygonal representation. A polyg-

onal model (G) consists of a set of vertices (V), a set of edges (E) and a set of

faces (F) (Foleyet al., 1995):

G = {V,E, F}

V = {v1, ..., vn}

E = {e1, ..., el}; ei = {vj , vk}; 0 < j, k ≤ n

F = {f1, ..., fm}; fi = {ej , ek, ..., ep}; 0 < j, k, p ≤ l

A face usually consists of 3 or 4 edges (i.e.:m=3,4).

Figure 3: The components of a polygonal model.

Such representations of 3D models play a significant part in the world of

modern computer graphics. They are widely used due to the fact that indi-

vidual polygons, such as triangles and quads, provide a reasonable approxi-

mation of various surfaces that we come across in daily life.Unfortunately

BRep models are not well suited for certain types of operations (such as set-

theoretic and relational operations) and often require additional constraints if

the topology of an object needs to be changed subsequently. It is also impor-

tant to note that without additional custom data BRep modelsdo not provide

a history of the model building process. They only provide a description of

the resulting object model. This shortcoming may complicate iterative work

2. Related work 33

on the model, as well as preventing an understanding of how the model was

produced.

Significant research has already been conducted on fast and realistic tech-

niques for rendering BRep models. When using a BRep representation, a high

degree of realism is usually achieved by a significant increase of the number

of polygons constituting the model and by increasing the complexity and so-

phistication of the algorithms involved in the rendering process. Polygonal

BRep models are used in the majority of interactive applications and games,

as well as in the production of high quality computer graphics. Despite their

ability to result in realistic renderings, BRep models are only able to approx-

imate an object’s surface but are incapable of representingthe internal struc-

ture of the objects being modelled. This means that the modelled objects are

in effect hollow, so there is no easy way to represent or to explore their inter-

nal structure. To overcome this limitation of boundary representation models

some CAD systems allow the user to represent the interior of an object by

a homogeneous material. The addition of the limited homogeneous material

however lessens the usefulness of boundary representations in a significant

number of areas where information about the model’s surfacealone is not

sufficient. Another serious problem of BReps is the possibleintroduction of

errors of different nature over the course of the modelling process. Thus the

resulting model may have topological and geometric defects, which requires

additional post-processing in order to ensure the validityof the model (Shen

et al., 2001).

Even though BReps have a number of serious shortcomings, they are cur-

rently one of the most widely used representations. Variousmodelling and

animation techniques were developed for BRep modelling over the years.

There exists a substantial set of BRep modelling tools. These tools allow

people of diverse skills and abilities to produce BRep models of varying

quality and complexity. Vast groups of experts in the areas of static or dy-

namic BRep modelling do not have enough experience to work efficiently

with other representations. Thus, it is important to support BRep models in

a hybrid modelling system in order to make it accessible to a wider audi-

ence. Certain objects or their parts can be adequately defined using BReps in

a mixed-dimensional hybrid model. Besides, the support of Boundary Rep-

2. Related work 34

resentation models allows us to exploit the significant number of the models

that have been produced over four decades. Consequently it becomes appar-

ent that BReps can play a significant part in the definition of heterogeneous

objects and that BReps should be integrated into a generic hybrid modelling

framework. This will allow us to take advantage of their bestcharacteristics

and to overcome some of their shortcomings when used in conjunction with

other representations as the basis of a hybrid modelling framework.

2.2 The representations for volumetric models

Unlike BRep models volumetric models provide the description of the interior

of an object along with its surface. These types of model are better suited

for the modelling of real-life objects of a diverse nature, as objects defined

with a volumetric model are actually solid and contain important information

regarding the object’s properties. As we shall see, volumetric models are

essential for the description of real heterogeneous objects.

2.2.1 The voxel representation

One of the natural ways to represent a solid object is to storea set of samples,

called “voxels” (volume elements), of the volume of space occupied by the

object (Kaufmanet al., 1993). Each discrete sample can store a particular

property of the object at a given location:

O =
N
⋃

i

Si =

N1
⋃

i1

...

NM
⋃

iM

Si1,..,iM ;Si, Si1,..,iM ∈ S

whereO is a voxel object,Si is thei-th sample andSi1,..,iM is a sample of a

voxel data in M-dimensional space. In the simplest case eachsample stores

a binary value of “0” (indicating that the sample is outside the object) or

“1” (indicating that the sample is inside or on the surface ofthe object). In

the general case samples can store arbitrary information. 3D scenes repre-

sented in such a way can be captured from real life using different voxeli-

sation techniques (such as computer tomography (CT), magnetic resonance

2. Related work 35

imaging (MRI), ultrasonography, geophysical measurements, etc. (Nielson,

1999)) or be modelled on a computer (Bærentzen, 2002; Bremeret al., 2002;

3D Coat, 2010) allowing us to integrate models of a diverse nature. Models

of this type are able to store significantly more detailed information about the

represented objects and their relations, allowing the end-user to explore and

manipulate the objects (i.e. to analyse the objects’ interior structure or to ac-

cess properties assigned to various parts of the object’s interior) without the

familiar restrictions found in polygonal models.

Figure 4: Voxel data.

Voxel models support a number of important operations helping us to cre-

ate new models and to modify existing models (Kaufmanet al., 1993). Note

that the voxel representation is resolution dependent. It is thus desirable to

create a model of the highest possible resolution to avoid major aliasing arte-

facts. Various interpolation schemes are used for the interpolation of the dis-

crete voxel samples in the volume. One has a choice of a numberof interpo-

lating functions (Bartheet al., 2002). A specific interpolation scheme can be

selected depending on the desired result (Frisken, 1999; Kadoshet al., 2003):

F (P) =

Ne
x

∑

i=Ns
x

Ne
y

∑

j=Ns
y

Ne
z

∑

k=Ns
z

Gijk(P) · Sijk;P ∈ E3

whereF (P) is the interpolated value of the volumetric function,Gijk(P) is

2. Related work 36

the interpolation function,Sijk is the sample value of the element{i, j, k}

andN e
x − N s

x defines the number of samples required for the evaluation of

volumetric value at pointP .

Another major problem with voxel models is the necessity to store infor-

mation about the entire volume set. For instance, a grid of 512 x 512 x 512

units of volume requires the storage of approximately 134 million voxels.

There are some well-known techniques allowing us to compress this informa-

tion (Joneset al., 2006; Kommaet al., 2007; Forstmannet al., 2007). Most

of these techniques are suited for static data and cannot easily be applied to

dynamically changing models. One possible solution is the CROVE system

proposed in (Chenet al., 1999). This system allows us to organise hierarchi-

cal structures and store the voxel data set only on a per object basis (i.e. the

scene consists of objects each of which contains its own local voxel data set).

In the past, a number of computer games utilised a limited subset of the voxel

representation (Moby GamesTM, 2010). Thus, some of these games could

provide the user with more freedom in the interaction with the environment

and even let the user modify the game world.

A more advanced voxel representation provides us with additional infor-

mation regarding the modelled object. Instead of storing a simple binary

enumeration value, we could store a distance to object’s surface (see fig. 5).

Uniform distance information can be retrieved from binary voxel data through

the application of the Distance Transform (DT) (Frisken, 1999). The inter-

polation of distance values inside the volume could be retrieved using one of

the interpolation schemes (Bartheet al., 2002). Due to the discrete nature of

voxel data, a signed distance can only be defined within limited area of space.

For an arbitrary point in space a special blending of the “near field” (within

the bounds of the area providing the sample of distance values) and the “far

field” (outside the bounds) is required (Sigg, 2006):

F (P) = w · Fnear(P) + (1− w) · Ffar(P);w ∈ [0; 1];P ∈ EN

The signed distance information could be useful for the application of com-

plex shape modelling operations (Schroederet al., 1994; Adzhievet al., 2000),

physical simulation (Jones, 2003) and a number of other applications (Jones

2. Related work 37

(a) (b)

Figure 5: Volumetric data stored as discretized distance field (a) Twoor-
thogonal slices of distance data (b) Volume rendering of volumetric data with
colour variation.

et al., 2006). This voxel representation has even higher storage require-

ments, because instead of binary values, scalar or even vector distance values

(Kobbelt et al., 2001) need to be stored. There exists a number of ways to

compress this data. For instance, Frisken proposed the usage of Adaptively

Sampled Distance Fields (ADFs) (Friskenet al., 2000) and Bærentzen pro-

posed a similar method Bærentzen (2002), relying on the hierarchical adap-

tive storage of signed distance fields (see fig. 6). But these methods do not

guarantee lossless compression and generally introduce additional approxi-

mation errors to the model. These errors result in the introduction of disconti-

nuities, which may cause unacceptable artefacts during subsequent modelling

stages.

The voxel representation is still a good choice for the description of natural

objects. The volumetric data from real heterogeneous objects can be captured

using existing 3D scanning technologies commonly used in medicine and the

manufacturing industries. It is frequently important to beable to work with

real models. Models of man-made or natural objects should beable to be

2. Related work 38

Figure 6: An example of adaptively sampled distance field in 2D and the
underlying adaptive data structure (Friskenet al., 2000).

easily incorporated into a hybrid model in order to produce complex hetero-

geneous objects. Unlike BReps, voxels allow us to store information relating

to the object’s internal structure and certain physical properties. This allows

us to represent real heterogeneous objects at a predefined resolution. Thus,

voxel data retrieved from a specific field can be used in a hybrid model with-

out the necessity for the user to provide its description manually. Hence, the

proposed Dynamic IC framework needs to support the voxel representation.

2.2.2 Implicit surfaces

Another way to represent an object inn-dimensional space is to define a set

of points satisfying a specific condition:

S = {(x1, ..., xn) : F (x1, ..., xn) == true}

whereF (x1, ..., xn) is a predicate function returning a value indicating whether

a given point(x1, ..., xn) belongs to this set. A scalar function defined inn-

dimensional Euclidean space together with an inequality function can be used

to define an object (Bloomenthal, 1997):

P ∈ RN

F (P) = f(P) > T ;T ∈ R

2. Related work 39

f(P) : RN → R

Any pointP ∈ RN in this space can be classified according to following

conditions:

f(P) > T, P is inside the object

f(P) = T, P is on the object’s boundary

f(P) < T, P is outside the object

(1)

whereT is a threshold value or an iso-level.

(a) (b) (c)

Figure 7: A scalar field (defining function): (a) The sign of a scalar field,
(b) The extracted implicit surface (T=0) and (c) Different iso-surfaces for
different values of T.

In geometric modellingf(P) is usually defined in 3D Euclidean space. The

subset{P ∈ RN : f(P) ≥ T} is called a solid object and the subset{P ∈

RN : f(P) = T} is called an iso-surface.

It might be easier to understand how a scalar function is defined if we refer

to the previous section. A voxel representation allows us tostore discrete

samples of the volume contained in an object. In the simplestcase we know

that a sample is inside the object if the voxel stores a non-zero positive value.

The same approach can be extended for any point in space instead of only

discrete voxels. We can define a scalar field that uses point coordinates as

input parameters and returns a scalar value. The returned scalar value can

be interpreted in the same way as the value stored in a voxel. Finally, if the

scalar value returned for the point provided to the defining function as input

is greater than a threshold value, this point is located inside the object. If the

2. Related work 40

returned scalar value is equal to the threshold value, the point is located on the

surface of the object and finally if the scalar value is less than the threshold

value, the point is located outside the object. The scalar value returned by the

function can be interpreted as a distance to the surface of the object described

by the function. But this does not have to be a distance in a Euclidean sense.

For example, a defining function for a disk of radius two centred at the origin

of coordinate axes would look like:

f(x, y) = 22 − x2 − y2

In this particular case, we are interested in a disk with a threshold value of

zero, i.e. we are looking for values greater than or equal toT = 0.

Figure 8: An example of an implicit object.

The grey area in figure 8 is a subset of the 2D plane where the values

returned by the functionf(x, y) are positive (for instance,f(0, 0) = 4). The

dashed contour is a set of points where the functionf(x, y) returns the value

0 (for example, point(2, 0) lies on the perimeter of a circle andf(2, 0) = 0).

For any point of the 2D plane outside the dotted circlef(x, y) returns negative

values (e.g.f(3,−3) = −14). Hence any point on the 2D plane can be

classified. The set of points for which the functionf(x, y) returns values

greater than or equal to 0 describes the set of points that belong to the object

being described. In this fashion we can describe arbitrarily complex objects

in n-dimensional space using arbitrarily complex functions.

Implicit representations have been successfully employedin many dif-

2. Related work 41

ferent application areas, such as collision detection (Savchenko and Pasko,

1995), precise contact modelling (Desbrun and Gascuel, 1995), sketch mod-

elling (Tai et al., 2004), the design of natural shapes (McCormack and Sher-

styuk, 1998), virtual surgery (Franceet al., 2005), the modelling of anatomi-

cal structures (Oeltze and Preim, 2004), 3D point cloud approximation (Ohtake

et al., 2004), the simulation of natural phenomena (Storaet al., 1999), meta-

morphosis animations (Barbieret al., 2005), image recognition (Tonget al.,

2005) and in path-planning (Nguyen, 2007) among others.

Figure 9: An example of a CSG tree.

In Constructive Solid Geometry (CSG) it is possible to construct complex

objects using set-theoretic operations on a set of implicitobjects. The as-

sembled model is represented as a tree (fig. 9). Primitives orobjects are

stored in the leaf nodes of the CSG-tree, while operations used to combine

the primitives are stored in the interior nodes of the tree. Atree can be rep-

resented as a defining functionf(P) : RN → R. In which case, the sub-

set{P ∈ RN : f(P) ≥ T} defines the geometry of the resulting object.

Thus, one needs to traverse the CSG-tree for a set of points inorder to eval-

uate the geometry of the final model. Unlike BReps implicit representations

make it possible to store information about a solid model. Though usually

only binary point-membership classification information is provided (i.e. the

2. Related work 42

CSG-model can only be used to find out whether particular point in space

is inside or outside the object). CSG representations are widely used by the

CAD-community, partly because they represent a natural andsimple way to

construct solid objects. Also in some cases CSG-trees can beused as a guide

to the manufacturing process.

Wyvill et al. (Wyvill et al., 1999) incorporated the CSG approach with

skeletal-based implicit surfaces. They called this representation a “Blob-

Tree”. The “BlobTree” was used for the texturing of implicitsurfaces (Tigges

and Wyvill, 1998), the creation of an accurate biological model of the sea

shell (Galbraithet al., 2000), the modelling of smoothly branched trees (Gal),

the controlled metamorphosis (Galinet al., 2000; Barbieret al., 2005) and the

sketch-based modelling (Schmidtet al., 2005).

We can see that over the years implicit surfaces have found a large number

of applications in different areas of shape modelling and animation. Simple

point classification rules can be useful for the definition ofcomplex volu-

metric structures needed for the definition of space partitions occupied by

heterogeneous objects or their parts. Smooth shapes are often produced using

implicit surfaces and have proven to be especially useful for modelling of nat-

ural organic models. As we have already outlined many of the existing natural

models are heterogeneous, and their geometry could be adequately captured

using implicit surfaces. The internal structure and the geometric shape of nat-

ural objects can undergo significant modifications over time. It is desirable

to be able to reflect this process in our dynamic model. A knownfeature of

implicit surfaces (particularly important for time-variant heterogeneous ob-

ject modelling) is the ease of modelling of objects with changing topology.

This provides the user with additional flexibility for the definition of dynamic

objects without serious constraints of their topological properties. Integra-

tion of implicit surfaces into our hybrid modelling framework provides us

with another degree of freedom in the definition of complex time-dependent

heterogeneous objects.

2. Related work 43

2.2.3 The Function Representation (FRep)

An FRep is a generalised model representation allowing us todefine objects

of an arbitrary dimensionality and to mix objects of different dimensionali-

ties within a single model. An FRep may incorporate a number of implicit

surfaces, CSG models, voxel representations (Adzhievet al., 2000) and a rich

set of operations (Paskoet al., 1995). We can already see that FReps are a

powerful representation with some of the advantages of other representations

suitable for heterogeneous object modelling. An FRep system comprises a set

of geometric primitives, operations and relations. Primitives are combined to-

gether using operations. Relational operations can be usedto classify subsets

within the model. An FRep usually allows us to represent advanced models

compactly and in a resolution independent manner. A constructive tree used

with an FRep naturally simplifies iterative work on a model. It makes it easier

to see how the model was assembled and how to modify the model if required.

This is vital not only for static models but also for dynamic models, because

it gives us the freedom to introduce dramatic changes to boththe geometry

and the topology of the model. It is also important to note that an FRep can be

used to specify arbitrary volumetric attributes of the modelled objects so as to

represent their internal structure in different contexts (Schmittet al., 2001).

Hence even complex heterogeneous objects can be modelled using this kind

of representation.

The FRep model

FRep models can be specified inn-dimensional space, but the main mod-

elling domain is considered to be the 3D Euclidean space. An FRep can be

described as an algebraic system (Paskoet al., 1995):

(M,Φ,W)

whereM is a set of geometric objects,Φ is a set of geometric operations,W

is a set of relations specified for the set of objectsM .

FRep objects

An FRep geometric object is defined as a closed subset ofRN in the fol-

2. Related work 44

lowing way:

G = {(x1, ..., xn) : F (x1, ..., xn) == true}

F (P) = f(P) > T ;T ∈ R;P ∈ RN

f(P) : RN → R

wheref(P) is called the defining function. FRep objects can be divided

into two groups: primitives and complex objects (Pasko and Adzhiev, 2002).

Primitives are defined by a concrete function chosen from a predefined set or

created by the user. Any primitive can be interpreted as a black box, defined

by a function that can be evaluated in the modelling space. Inthe general

case, a complex object can be obtained by a combination of operations (as

described in section 3.6) applied to a set of primitives. A resulting complex

object can also be represented in the form of a defining function. Such objects

are defined within a model and are usually created using a CSG approach.

FRep operations

A set of FRep geometric operations consists ofn-ary operations closed on

the object representation (Pasko and Adzhiev, 2002):

Φi : M
1 +M2 +Mn → M

wheren is the number of operands of the operation. It should be apparent

that the result of an operation is an object defined on the object setM , thus

guaranteeing the closure property of FReps. A generaln-ary operation is

defined in the following manner:

Gn+1 = Φn(G1, .., Gn);G1, ..., , Gn, Gn+1 ∈ M

fn+1(P) = Ψ(f1(P), .., fn(P)); Ψ(R, .., R) : R× ...×R → R

f(P) : RN → R

whereΨ is a continuous real function ofn variables andfi(P) are defining

2. Related work 45

functions. An example a binary operation would be defined as follows:

G3 = Φ2(G1, G2);G1, G2, G3 ∈ M

f3(P) = Ψ(f1(P), f2(P)); Ψ(R,R) : R× R → R

f1(P), f2(P), f3(P) : RN → R;P ∈ RN

Functions used in an FRep are required to be at leastC0-continuous. But it is

preferable to use at leastC1-continuous functions. The first derivative of the

function can be used to compute the gradient and the normal onthe object’s

surface:

∇f(P) = (
∂f(P)

∂x1
, ..,

∂f(P)

∂xN

);∇f, P ∈ RN

~n(P) = −
∇f(P)

‖∇f(P)‖
;~n(P), P ∈ RN

The C1-discontinuity of the defining functions can lead to rendering arte-

facts and ambiguities of the model if further operations areapplied (Fayolle,

2006). In complex models theC1-discontinuity of the defining function can

even lead to the introduction ofC0-discontinuity of the objects, if the gradi-

ent is used for their defining function. In the original work on CSG modelling

(Ricci, 1973) the following functions were proposed for set-theoretic opera-

tions:
S1 ∪ S2 = max(d1(P), d2(P))

S1 ∩ S2 = min(d1(P), d2(P))

whereSi is a solid anddi(P) is a distance function to the boundary of

the solid. The application of min/max functions to analytical functions re-

sults in aC1-discontinuous function. FRep modelling provides at leastC1-

continuous set-theoretic operations based on the theory ofR-functions:

S1 ∪ S2 = f1(P) + f2(P) +
√

f 2
1 (P) + f 2

2 (P)

S1 ∩ S2 = f1(P) + f2(P)−
√

f 2
1 (P) + f 2

2 (P)

wherefi(P) is the defining function of the object. Both defining functions

f1(P) andf2(P) are expected to exhibit distance properties. Figure 10 shows

2. Related work 46

the plots of two set-theoretic operations. The values off1 are placed along

the x-axis, while these off2 are placed along they-axis and the height of

the surface at location(x, y) shows/represents the value returned by the set-

theoretic operationF (f1(P), f2(P)) = F (x, y). It should be apparent that the

union operation returns a positive value whenever either ofits operands are

positive (i.e. the resulting object consists of the space that lies in the interior

of either input object), while the intersection operation is positive only when

both of its arguments are positive (i.e. the resulting object consists of the

space that lies in the interior of both input objects).

(a) (b)

Figure 10: Set-theoretic operations based on R-functions: (a) Union and (b)
Intersection.

If a particular type of continuity is required, the CSG operations can be

generalised in the following form (Pasko and Savchenko, 1994):

S1 ∪ S2 = f1(P) + f2(P) +
k

√

f
1
k

1 (P) + f
1
k

2 (P)

S1 ∩ S2 = f1(P) + f2(P)−
k

√

f
1
k

1 (P) + f
1
k

2 (P)

which guaranteesCk-continuity.

In addition to the traditional CSG operations FReps providea more flexible

way for the creation of complex models by blending set-theoretic operations.

2. Related work 47

These operations are also based on R-functions:

Fb(f1, f2) = f1 + f2 +
√

f 2
1 + f 2

2 + dispb(f1, f2)

dispb(f1, f2) =
a0

1 +

(

f1
a1

)2

+

(

f2
a2

)2

wherea1 controls the contribution of the first function,a2 controls the con-

tribution of the second function anda0 controls the overall “shift” of the re-

sulting function. Set-theoretic blending operations allow us to dramatically

change the resulting shape by controlling the influence of each of the initial

shapes being blended, as well as by controlling the overall offset from the

resulting shape.

Another important operation available in FReps is that of bounded blend-

ing operation (Paskoet al., 2005):

Fbb(f1, f2, f3) = f1 + f2 +
√

f 2
1 + f 2

2 + dispbb(r(f1, f2, f3))

dispbb(r(f1, f2, f3)) =

(1− r2(f1, f2, f3))
3

1 + r2(f1, f2, f3)
, r(f1, f2, f3) < 1

0, r2(f1, f2, f3) ≥ 1

r(f1, f2, f3) =

r21(f1, f2)

r21(f1, f2) + r22(f3)
, r2 > 0

1, r2(f3) = 0

r21(f1, f2) =

(

f1
a1

)2

+

(

f2
a2

)2

r22(f3) =

(

f3
a3

)2

, f3 > 0

0, f3 ≤ 0

wheref1 andf2 are the defining functions of the two objects being blended,

f3 is a defining function of the bounding solid, specifying the subset of space

where blending takes place;a1, a2 allow the user to control the blend sym-

2. Related work 48

metry anda3 defines the influence of the bounding solid on the shape of

the resultant blended object. Other operations available in FReps are affine

transformations, basic deformations (Barr and Alan, 1984), non-linear defor-

mations (Schmitt, 2002), metamorphosis and many others.

Unfortunately the use of R-functions changes the distance properties of the

scalar field produced by the defining function. If this is an undesirable effect,

an additional set of operations based on the Signed Approximate Distance

Functions (SARDF) can be employed (Fayolleet al., 2006). An SARDF pro-

vides a good and controllable approximation of the exact distance function,

which is alsoC1-continuous. All CSG and blending operations can be rede-

fined using SARDFs.

FRep relations

Relations in FReps are subsets of the setMN , which is a Cartesian product

of the setsM . They are generally defined asn-valued predicates:

S : M × ...×M → IK

whereIK = i1, ..iK is considered to be a set of integer values in a K-ary logic.

Relational operations can be used to classify subsets within the FRep model.

For example, the point membership relation allows us to find out whether an

arbitrary point in space belongs to an FRep object:

G1 = {P : f1(P) >= T}; f1(P) : RN → R

S3(P,G) :

0, f1(P) < T ; (P /∈ G1)

1, f1(P) = T ; (P ∈ ∂G1)

2, f1(P) > T ; (P ∈ G1)

(2)

Another important relation defined in FReps is the intersection relation. This

is defined by the two-valued predicate that can be used to determine if two

FRep objects intersect (i.e. if they have common points in the modelling

space). Such a relation can be employed for collision detection between FRep

objects. In practice one has to apply numerical methods performing discrete

sampling within the bounding volume of the objects in order to detect colli-

sions between complex objects (Savchenko and Pasko, 1995).

2. Related work 49

Hypervolume extensions for FReps

It is often desirable to be able to represent specific properties of the ge-

ometric model. In the simplest case one might want to associate a constant

colour or a texture with a geometric object. A wide range of texturing tech-

niques was developed in the past (Heckbert, 1986). Not all ofthe existing tex-

turing methods are applicable to volumetric objects. One ofthe approaches

suitable for arbitrary models requires the specification ofa solid procedu-

ral texture defined in the volume (Perlin, 1985). The definition of a global

complex solid texture is neither intuitive nor flexible enough. Because com-

monly such a texture can be created and modified only by an experienced

user. Another way to enhance a purely geometric model is to associate optical

attributes with the object’s geometry (Chenet al., 1999; Tigges and Wyvill,

1998). The necessity to associate the geometry of an object and its physical

properties is in some cases very limiting and is mostly suitable for simple

homogeneous objects. Many objects in the real world do not have an explicit

relation between their geometric and physical properties.An independent

representation of a point set and its attributes representsa more general ap-

proach, which allows us to have a more flexible representation of complex

volumetric heterogeneous models. Such a representation also provides the

user with more flexibility when specifying dynamic models.

When used in the constructive Hypervolume framework (Schmitt et al.,

2001), the expressive power of FReps had to be augmented in order to allow

us to model more than just geometric properties. An object isdefined as a

tuple of its geometric set and a set of its attributes:

M = (G,A1, .., Ak) : (f(P), S1(P), .., Sk(P));P ∈ RN

f : RN → R

Si : R
N → RM

whereG is a point set inRN andAi is a multidimensional attribute defined by

the functionSi, which can be interpreted as a space partition function defining

specific multidimensional attributes within its interior.The defining function

f has to be at leastC0-continuous, whileSi does not necessarily have to be

2. Related work 50

continuous. Space partitions can be specified using all of the existing FRep

primitives and operations.

An FRep definition of ann-ary operation is extended in the following way:

Φn(M1, ..,Mn) = Φn(G1, .., Gn, A11 , .., A1k , .., An1, .., Anm
)

Mn+1 = Φn(M1, ..,Mn);M1, ..., ,Mn,Mn+1 ∈ M

wheren is the number of operands of an operation. Such an operation re-

quiresn Hypervolume objects (each composed of a geometric object and the

set of its attributes) as its input and results in a new Hypervolume object:

(Gn+1, A(n+1)1 , .., A(n+1)p) =

Ψ(P, f1, S11 , .., S1k , .., fn, .., Sn1, .., Snm
),

Ω1(P, f1, S11 , .., S1k , .., fn, .., Sn1, .., Snm
),

...

Ωp(P, f1, S11 , .., S1k , .., fn, .., Sn1 , .., Snm
)

The resulting Hypervolume object is derived from a set of input Hypervol-

ume objects using the transfer functionΨ to define a geometric set and a set

of functionsΩ which in turn define the attributes of the object. The require-

ments forΨ andΩi are the same as for the defining function and the attribute

function of the Hypervolume object. It should be apparent that in the general

case attributes can affect and be affected by the geometry ofthe object. This

allows us to establish complex relations between the various properties of the

Hypervolume objects in the model. It is also important to note that Hyper-

volume objects involved in the operations are not required to have an equal

number of attributes.

Earlier we stated that all the existing FRep entities and their compositions

can be used to specify the space partitions used to define the set of attributes of

a Hypervolume object. Therefore the constructive approachtraditionally used

in geometric modelling can be employed to specify the various properties of

the modelled objects. Each attribute can have a corresponding constructive

FRep tree associated with it. Thus, an attribute value can beevaluated for

any given point in space. Attribute evaluation is, in a way, similar to point

classification in relation to the point set enclosed by the object (see equation

2. Related work 51

(2)):

M = (G,A1, .., Ak) : (f(P), S1(P), .., Sk(P));P ∈ RN

Ai :

Si(P), f(P) ≥ T or gi(P) ≥ 0

θ1i , f(P) ≥ T andgi(P) < 0

θ0i , f(P) < T andgi(P) < 0

wheref(P) defines theobjectgeometry andgi(P) defines a space partition

for thei-th attribute. Two default attributes need to be introduced. θ1i which is

used in cases where pointP is in the interior of the geometric object, but does

not belong to any space partition (i.e. a geometric object isnot fully covered

by the attribute space partitions).θ0i which is associated with the points out-

side the Hypervolume object. This default attribute usually has to conform to

the requirements of the volumetric rendering system (Schmitt, 2002), since

points outside the geometric set and space partitions are commonly treated

as fully transparent. Components of an example constructive Hypervolume

model are shown in the fig. 11.

(a) (b) (c)

Figure 11: The constructive Hypervolume model: (a) The original geomet-
ric object, (b) A visualisation of the space partitions and (c) The resulting
Hypervolume object.

Relations within the Hypervolume framework are defined as follows:

wi(O1, .., On, Q1, .., Qm) :

Γ(f1(P), S11(P), .., S1k(P), fn(P), Sn1(P), .., Snl(P), q1(P), .., qm(P));

P ∈ RN

whereqi(P) is a function representing a non-Hypervolume object (such as

the values returned by predicates) andΓ is a predicate function.

2. Related work 52

One of the most common relations is the point membership relation (Schmitt,

2002):

M = (G,A1, .., Ak) : (f(P), S1(P), .., Sk(P));P ∈ RN

PA = (P,A) : (P, a1, .., ak)

Γ(PA,M) =

0, f(P) < T or ∃j : Sj(P) 6= aj

1, f(P) = T andSj(P) = aj

2, f(P) > T and∀j ∈ [1, k] : Sj(P) = aj

A point PA in the Hypervolume space (i.e. a point and a set of attributes)

belongs to the Hypervolume objectM , if it is located in the interior or on the

boundary of the Hypervolume object and the attributes of thepoint are equal

to the attributes of the object.

This set of extensions allows us to use Hypervolumes for the definition

of heterogeneous objects and to describe the arbitrary set of their internal

properties.

Overall FReps allow the user to design, explore and interactwith mod-

els in a more natural manner, overcoming the limitations of the currently

widespread boundary representation models. FRep models have been used

in a wide range of applications, such as in: virtual sculpting (Schmittet al.,

2004), rapid prototyping (Adzhievet al., 2005), web-based modelling (Fay-

olleet al., 2005; Cartwrightet al., 2005), cultural heritage preservation (Shanat

et al., 2002; Vilbrandtet al., 2004), hair modelling (Sourinet al., 1996) and

in numerical analysis (Kartashevaet al., 2003) among others.

One of the significant shortcomings of FRep models is their computation-

ally expensive model evaluation procedure. Another issue is their inadequate

support in commercial packages and the absence of certain techniques used

in traditional computer animation, which limits the use of FReps in a number

applications. Additionally, given that there is an abundance of existing polyg-

onal object models it is often desirable to be able to use these in conjunction

with FRep models.

The Constructive Hypervolume extensions to FReps provide us with the

ability to define time-dependent heterogeneous objects. Natural support of

2. Related work 53

mixed-dimensional objects within the model makes FReps suitable for the

definition of multidimensional internal structures and relations between the

objects in a model. FReps can naturally incorporate implicit surfaces, solid

CSG models and voxels, which allows us to integrate models ofa diverse

nature into a single FRep model. There are methods availablefor a lim-

ited integration of BRep models into the Function Representation. But due

to these limitations at the moment the incorporation of BReps and FReps

seems more reasonable in terms of a hybrid model. It is important to note,

that volumetric attributes allow us to accurately define an arbitrary number of

properties of the heterogeneous objects. Unlike voxel representation, FReps

are well suited for the definition of dynamic models independent of the repre-

sentation used for the definition of the geometry of the object. Overall FReps

are one the most suitable and practical representations forheterogeneous ob-

ject modelling. FReps have to play a significant part in the hybrid modelling

framework that we are designing. Hence, a lot of attention isthis thesis is

paid specifically to Function Representations.

2.3 Heterogeneous objects modelling

2.3.1 Hybrid modelling

In previous sections we have outlined a number of the existing model rep-

resentations. We have provided a brief description of theiradvantages and

disadvantages. From this information it can be concluded that there is no best

representation suitable for the solution of the diverse problems inherent in

heterogeneous objects modelling. Each representation hasits applications in

various areas and allows us to resolve certain problems. This naturally led to

the idea of unified hybrid models, where objects in differentrepresentations

coexist within one model.

One of the early attempts to incorporate diverse representations in one

model was described in (Adzhievet al., 2000). The hybrid voxel-function

representation supports a two-way conversion between the FRep and voxel

representations, thus allowing us to combine these two representations in one

model. This can be a powerful approach for high-precision modifications

2. Related work 54

and modelling of acquired real-world volumetric objects. Unfortunately, this

work did not describe how other model representations couldbe integrated

into the proposed framework.

Allegre et al. introduced the concept of the HybridTree (Allègreet al.,

2004), where skeletal implicit surfaces and BRep meshes could be combined

in an extended CSG-tree. This allowed the inventors of the HybridTree to take

advantage of CSG, certain types of implicit surfaces and polygonal meshes.

In this fashion modelling of complex shapes could be performed through

the combination of objects of a diverse nature (Allègreet al., 2006). An-

other interesting application proposed by the authors is the partial restora-

tion of polygonal meshes. Similar to (Allègreet al., 2004) Fougerolle et al.

introduced a hybrid constructive tree (Fougerolleet al., 2005), which had

leaves with both implicit and parametric representations (the provided exam-

ples demonstrated usage of supershapes (Gieliset al., 2003)), while the nodes

of the tree are CSG operations based on R-functions.

Although both of the above methods support hybrid modelling, they are

mostly centred on the surfaces of the modelled objects. A structured volu-

metric layered model composed of different materials (Cutler et al., 2002)

is designed to work with solid objects. The authors used polygonal objects,

volumetric objects and implicit surfaces as input to their system. All these

models were converted to a tetrahedral mesh that could be used for further

editing and simulation using FEM. This approach provided limited informa-

tion about the topology of the model and did not provide sufficient tools for

the creation of complex dynamic heterogeneous objects. Theproposed frame-

work was tailored for specific modelling and simulation tasks, but it could be

further extended to be able to solve a larger set of problems.

In this research project we are concerned with the modellingof volumetric

heterogeneous objects. It is also important to note, that a hybrid model of a

heterogeneous object can be constructed from objects of different dimension-

alities, which the aforementioned approaches do not allow us to do. These

multidimensional objects can then be linked through different types of rela-

tions, allowing us to understand how these objects are boundto each other.

Rossignac and O’Connor (Rossignac and O’Connor, 1990) observed that het-

2. Related work 55

erogeneous objects may include components of different dimensionalities

and they employed the notion of a Topological Complex combining mixed-

dimensional cells to accommodate such components (Rossignac, 1997). A

working group of the British Geometric Modelling society developed a spe-

cial purpose application programming interface (API) for Solid Modelling,

called Djinn (Armstronget al., 2000) based on objects partitioned in a cellu-

lar fashion and containing cells of differing dimensionalities.

Kumar et al. (Kumaret al., 1999) proposed the usage of the so-called

fiber bundles, which allow them to independently represent the geometry and

an arbitrary set of attributes of the heterogeneous objects. Additional map-

ping functions associated with the attributes perform the mapping from the

geometry model to the attribute model. Biswas et al. presented a distance

field based approach for modelling heterogeneous objects inwhich space is

parameterised using the distance of a given point from the geometric bound-

aries of the object (Biswaset al., 2004). A thorough overview including the

requirements and comparisons of the existing heterogeneous objects mod-

elling systems is provided in (Kou and Tan, 2007).

Past research in the area of heterogeneous objects modelling was mostly

centred around static models. Dynamic hybrid models are still an on-going

research topic (Xiaoping and Dutta, 2003; Adzhievet al., 2002) with a large

set of unanswered questions. Kou and Tan (Kou and Tan, 2007) notice that

dynamic heterogeneity modelling can have a wide range of applications in

such areas as biomedicine, surgery simulation, mechanicalengineering and

others. We will present a more detailed discussion regarding this topic in

section 2.4.

We can see from the cited works that heterogeneous object modelling is

an important on-going research area. Naturally, heterogeneous objects mod-

elling was initially primarily focused on static objects. In this thesis we

mainly focus on the problems of time-dependent heterogeneous object mod-

elling. In order to achieve this, we rely on valid existing frameworks for

static heterogeneous object modelling. Modelling of time-variant heteroge-

neous objects was not thoroughly researched in the past and still remains a

challenging task.

2. Related work 56

2.3.2 Implicit Complexes (IC)

One of the available frameworks allowing us to perform modelling of het-

erogeneous objects is the Implicit Complexes Framework. In2002, Implicit

Complexes (ICs) (Adzhievet al., 2002) were introduced as a representation

for a cellular-functional hybrid model of heterogeneous objects. The hybrid

model described within ICs may contain entities of diverse dimensions and

representations. IC models include valid topological descriptions of hetero-

geneous objects and allow for the combination of cellular and functional rep-

resentations of both the geometry of objects and their attributes. Here we

provide a brief introduction to the IC framework; a more detailed and rigor-

ous description can be found in (Kartashevaet al., 2008).

Initially the concept of complexes was introduced in combinatorial topol-

ogy (Alexandrov, 1998). Now complexes are actively used in computer graph-

ics and computational geometry. Complexes provide a topologically correct

description of various point set subdivisions and composite objects. In com-

binatorial topology, abstract and geometric complexes aredistinguished. An

abstract complex is a collection of abstract entities and relations between

them. So “the abstract IC” is defined as a finite set of abstractelements called

cells. A cardinal number called “dimensionality” is associated with each ab-

stract cell. The entire set of the abstract ICs is subdividedinto subsets of the

cells of equal dimensionality. Then a finite set of binary relations on these

subsets is defined. Note that the relations defined within theabstract IC do

not have any geometric interpretation.

Thus, an abstract complex represents an abstract algebraicsystem. A ge-

ometric complex can be considered as an abstract complex associated with a

collection of point sets in Euclidean space. In geometric complexes all the re-

lations between the cells have geometric interpretations.An abstract complex

provides a robust system for the description of relationships between subsets

of composite objects. Using different associations of abstract complexes with

geometric subsets one can construct topologically correctmodels of multi-

component objects with different levels of detail of their relationships.

In (Kartashevaet al., 2008) a detailed and rigorous definition of the IC

2. Related work 57

based model was developed for the representation of multi-component geo-

metric objects with a full evaluation of mutual dispositions of its components.

The IC concept extends the well known notation of cellular complexes. Com-

pared with cellular complexes, ICs support additional relations between their

cells - namely the containment relations. ICs are suitable for the representa-

tion of collections of overlapping cells.

The IC based model presented in (Kartashevaet al., 2008) imposes very

strong restrictions on the relations between IC cells. These restrictions are

necessary for a full description of the mutual dispositionsof all the point sets

assigned to the cells. We will call such an IC model a cellularIC model.

Cellular IC models are useful in various numerical applications (e.g. FEA,

CAD and others). Note that in many applications of multi-component geo-

metric objects, such as animation, visualisation, etc., not all the information

regarding the mutual dispositions of the components is needed but some other

dependencies of the components are required.

The geometry of an IC

First of all, let us present a definition of a geometric objectrepresented in

the IC representation. A geometric objectG in Euclidean space contained in

a hybrid model is the union of cells in this space:

G = {gq11 , .., gqnn } : gqii ⊂ E3

wheregqii is a cell of dimensionalityqi. The point set enclosed in the cellgqii

is denoted as|gqii |. The following conditions must be satisfied for any object

present in such model:

1. The boundary of each cell is the union of a finite number of cells of

lower dimensions:

∂gqii =
N
⋃

j=1

hji : hji =

{

g
qj
j ; qj < qi

Ø;qj ≥ qi

2. Cells may overlap each other but the intersection of any two cells is

2. Related work 58

either the union of a finite number of cells or is empty:

gqii ∩ g
qj
j =

⋃

k=1

gqkk : k ∈ {k1, ..., kL} ⊂ {1..N};L ≤ N

Ø

3. Each cell must be unambiguously defined by an existing geometric rep-

resentation that allows us to perform a geometrically and topologically

correct discretisation of the cell. It is important to note that only repre-

sentations providing a way to convert into a mesh described by a poly-

hedral complex can be used. The ability to convert an IC into amesh

representation is usually required for the implementationof a range of

traditional numerical methods and for topological analysis.

The topology of an IC

The topology of an IC model is described by a number of relations. The

most important of these are:

1. The boundary relation, which is a relation between p-dimensional cells

and s-dimensional cells of an IC2:

Rbps =
p
⋃

i=1

s
⋃

j=1

(gpi , g
s
j) :

∣

∣gsj
∣

∣ ⊂ ∂ |gpi | ∧

∧
∣

∣gsj
∣

∣ 6⊂ |gpi | \∂ |g
p
i | ; s < p

This type of relation allows us to track which lower-dimensional cells

form the boundary of certain higher-dimensional cells.

2. The containment relation, which is a relation between p-dimensional

cells and s-dimensional cells of an IC:

Rcps =

p
⋃

i=1

s
⋃

j=1

(gpi , g
s
j) :

∣

∣gsj
∣

∣ ⊂ |gpi | ∧
∣

∣gsj
∣

∣ 6⊂ ∂ |gpi | ; s ≤ p

The containment relation allows us to gain an understandingof the mu-

tual dispositions of the cells enclosing other cells.

2The notation used here and further in the thesis is based on the notation used in (Karta-
shevaet al., 2008)

2. Related work 59

Four additional relations based on the boundary and containment relations

can also be introduced. These are the co-boundary, the “to becontained”,

the incidence and the adjacency relations (Kartashevaet al., 2008). A full

description of a k-dimensional IC consists of a collection of cells and the

corresponding relations between them:

K =<

N
⋃

i=1

gqii ,

k
⋃

p=1

Rbp(p−1),

k
⋃

p=1

p
⋃

s=1

Rcps >=< G,Rb,Rc >

The dimension of the IC is the maximal dimension of its cells.

As was mentioned earlier an IC can incorporate geometric models of dif-

ferent representations. Each IC cell can have a different geometric type. Five

types of IC cells have been introduced thus far:

• The P-cell representing a polyhedron;

• The B-cell representing a k-dimensional manifold defined byits bound-

ary (such as curve segments, surface patches and polygonal meshes);

• The F-cell representing an FRep model;

• The C-cell representing a composite cell which can aggregate cells of

different types;

• The T-cell representing a constructive tree containing cells of various

types mixed together using operations defined for IC cells.

Some of the provided definitions can be illustrated using a 2Dexample

(fig. 12). This simple model consists of a rectangle represented by a B-cell

and a disk represented by an F-cell. Apart from its geometry,the description

of the model consists of a set of topological relations (fig. 13). From these

relations we can see which of the 1D primitives create boundaries of 2D solid

primitives. For instance, polylineDEQS is a boundary of a rectangleDEQS.

These relations also reflect which cells are contained within other cells (which

do not necessary need to be of a lower dimensionality).

The IC framework also defines set-theoretic and trimming operations on

ICs. More details are provided in (Kartashevaet al., 2008).

2. Related work 60

Figure 12: A set of cells present in the IC.

Figure 13: The topological relations of the IC.

2. Related work 61

From this description we can see that all the representations described ear-

lier can be incorporated in an IC. This makes ICs suitable fora large set of

modelling tasks and allows us to integrate various existingmodels as well as

to define new complex hybrid models.

The attributes associated with an IC

The attributes representing different properties of a heterogeneous object

are described independently of its geometry and topology. Each attributeΛ is

described by a set of its values embedded into a multidimensional real num-

ber spaceRmΛ , i.e. an attribute is a vector of dimensionalitymΛ that can be

interpreted depending on the modelling context (e.g. colour, material, trans-

parency, simulation parameters, etc). Any point within themodelling domain

can be assigned a set of attributes using a collection of attribute functions:

SΛ =

J
⋃

j=1

SΛj
;SΛj

: Ω → RmΛ ; Ω ⊂ E3

SΛj
is an attribute mapping, defined in a of section 2.2.3 (”Hypervolume ex-

tensions for FReps”) which allows us to retrieve a scalar or avector value of

an attribute within the volume.

There are no specific constraints for attribute functions, which can be given

in analytical form and can have discontinuities. It is important to note that the

space-partitions associated with the attribute functionscan in general differ

from the geometric objects present in the IC. This means thatanother IC can

be used for the description of the attributes of the model. Attribute relations

are introduced in order to associate every cell of the IC withan attributeΛ:

RsΛ =

3
⋃

p=0

Rsp
Λ
;Rsp

Λ
⊂ Gp × SΛ

whereGp is a set ofp-dimensional cells. Thus, if(gpi , SΛj
) ∈ RspΛ the value

of the attributeΛ at any pointX ∈ |gpi | is defined asSΛj
(X).

The limitations of an IC framework

While the above IC framework goes a long way towards providing a uni-

fied way for model representation and manipulation, a numberof unanswered

2. Related work 62

questions remain. One of these is the question of optimal conversion between

different representations and the establishment of relations between these. In

particular scenarios when precision is of high importance we might want to

convert a BRep to an FRep (Fryazinovet al., 2011). In other cases, it might be

more appropriate to retrieve a polygonal representation ofthe FRep models.

It is also important to introduce new techniques and additional improvements

to make this model more flexible for the management of complexscenes and

to provide opportunities for user manipulation. Additionally, dynamic hybrid

modelling techniques need to be incorporated into ICs in order to make them

suitable for the modelling of dynamic heterogeneous objects. These exten-

sions to the framework will be described in detail in the nextchapter.

Not withstanding such questions, it is apparent that the IC framework is

well suited for heterogeneous object modelling. Various representations sup-

ported by the IC framework make it possible to define multidimensional com-

ponents of the objects using rich set of existing models. Newmodels can

be easily defined using a combination of the supported representations. The

available set of topological relations allows us to provideadditional important

information describing the mutual dispositions of objects. The independent

definition of an arbitrary set of attributes provides us withthe flexibility of

describing volumetric properties of multi-material objects. Altogether the IC

framework provides us with a set of powerful tools for heterogeneous objects

modelling. The main issue of concern with this framework is the absence of

the user tools necessary for the modelling of dynamic objects. A set of meth-

ods has been developed over the years allowing us to define time-dependent

models. These methods are suited for different types of models and prob-

lems being solved. In the following section we will outline the most com-

mon animation techniques which can be used for the definitionof dynamic

heterogeneous objects. These techniques need to be integrated into the IC

framework.

2.4 A survey of computer animation techniques

In this section we outline a number of approaches commonly used for the

definition of dynamic computer models. In a way similar to thediscussion re-

2. Related work 63

garding the existing static model representations we analyse the strengths and

weaknesses of the existing approaches for the definition of dynamic models.

At the end of the chapter we discuss the necessity to extend the IC framework

in order to use it for the definition of time-variant heterogeneous objects.

2.4.1 Keyframe-based animation

As was mentioned in the Introduction, we are interested in the modelling of

natural heterogeneous objects. This means that static models alone, which

we have been describing up to this point, are not adequate forthe definition

of time-varying objects. Even initially static heterogeneous objects could

interact with other objects in a virtual scene. In this section we will examine

existing techniques used for the definition of time-dependent models.

The transition from traditional animation to computer anim ation. Key-

framing.

One of the most common and powerful ways of dynamic model defini-

tion is through the so-called “keyframing” and “inbetweening” technique.

This technique is similar to the one used in traditional hand-drawn animation,

where the production commonly starts with a set of storyboards. These sto-

ryboards reflect the key moments of the animation being produced (Thomas

and Johnston, 1995). The next step is the preparation of a model sheet, which

ensures the consistency of the animated entities present inthe animation se-

quence. A senior animator then draws a necessary set of key drawings that are

considered important for the animation (see fig. 14). After this step the inbe-

tweeners add the intermediate frames “connecting” the key drawings. Most

computer animation systems present the user with the same workflow, al-

lowing the computer animator to define keyframes of the animation or more

high-level key poses of the characters (see fig. 15). The inbetweening is done

by the animation system. Such an approach provides the artist with a precise

control over every aspect of the produced animation sequence.

In the early years of computer animation a lot of research wasdone in the

area of 2D computer animation. It was important to automate the monotonous

work produced by the inbetweeners. Back then, computers were only used for

2. Related work 64

Figure 14: A set of keydrawings reflecting important stages of a walk-cycle
(image courtesy of Jose Fonseca).

Figure 15: A set of key-poses defined by the computer animator (“Andy”mo-
del courtesy of John Doublestein).

some simple tasks in the production of 2D animations (for instance, scanning

of hand drawings, colouring, background painting etc). Burtnyk and Wein

(Burtnyk and Wein, 1976) proposed the use of time-dependent2D skeletal

deformations, allowing them to apply motion to static or dynamic 2D draw-

ings, without the necessity to produce intermediate drawings 3. Implemen-

tation of a reliable general inbetweening of 2D drawings appeared to be a

very challenging task (Catmull, 1978). Edwin Catmull pointed out that 2D

drawings were actually projections of 3D objects, which means that certain

amount of information is lost at the projection stage. In order to restore the

lost information additional information relating to the 3Dappearance of the

time-dependent object was required. One of the natural and most promising

ways of providing this information was the definition of a time-dependent 3D

3The user still had to inbetween the skeleton into which the drawings were embedded.

2. Related work 65

model.

In a way similar to the CAD industry where line drawings were used for

the visualisation of static objects (as described in section 2.1.1), early com-

puter generated animations consisted of line drawings. As early as 1972 one

of the first so called “half-tone” animations was produced (Catmull, 1972),

in which the modelled object was represented by a set of shaded triangles.

In this animation sequence the motion of a hand was defined using the hier-

archical links between the various components of the hand. Time-dependent

transformations could be controlled through a set of mathematical functions,

producing certain motions over predefined intervals of time. The definition

of a complex 3D sequence was still a rather laborious task. Itwas not until

mid 80s when complex computer generated animation sequences could be

produced by the artists rather than computer scientists. The application of

fundamental principles used in traditional animation (Thomas and Johnston,

1995) to computer animation (Lasseter, 1987) was an important step in the

history of computer graphics. Finally, artistic skills andknowledge applied

to traditional animation could be transferred to and assisted by the computer.

This allowed artists to have faster iteration times concentrating more on the

creative side of the production, rather than on the unavoidable but necessary

details of the animation. This change helped to improve the quality of the

produced animations and to achieve effects that could not beproduced in any

other way.

The high level of control over dynamic entities and over various aspects

of the sequence provided by the keyframe-based approach allows the artist to

produce expressive and believable animation sequences. Onthe other hand,

the definition of the keyframes and the set-up of the inbetweening parame-

ters can still be a very arduous and time-consuming process.This process

requires a lot of repetitive actions from the user over a number of iterations.

Alternatively, major modifications of the sequence requirenumerous manual

repetitive actions from the animator.

Although keyframing can be a very time consuming process, itis still one

of the most commonly used animation techniques. For a large number of

people it is easier to think of a dynamic model as of a set of static snapshots.

2. Related work 66

Each aspect of the snapshot can be adjusted over time, thus resulting in a

time-dependent sequence with simplified control over the intermediate states

of the model. Such an approach can be used to create fairly complex dynamic

models with predefined behaviour. The majority of animatorsis used to this

animation technique and find it very useful. If we wish to provide them with

the ability to define time-dependent heterogeneous objects, keyframing needs

to be supported by the new heterogeneous object modelling framework.

2.4.2 Procedural animation

In fact, historically a purely keyframed-based approach could not be easily

used by the animators. Apart from the system described in (Burtnyk and

Wein, 1976), there were no appropriate tools allowing the person without a

specific knowledge of computer programming to define a dynamic model. On

the other hand researchers producing computer animation sequences could

provide a definition of a relatively simple process as a computer program. A

number of high-level domain specific languages were developed (Hackathorn,

1977; Reynolds, 1982; Comninos and Webster, 1980; Fiumeet al., 1987).

These languages provided special metaphors making it easier to direct the

initially static entities in a relatively simple way. A high-level definition of

the animation sequence can be seen as a form of screenplay; i.e. the creator

does not need to define every single aspect of the process. Instead a high-

level description is provided to the animation system. The animation system

can then produce the actual frames of the animation sequence. In certain cir-

cumstances, complex evolution of a model could be more easily described

through a scripting language incorporating high level terms used for anima-

tion production.

Let us refer to CGAL language (Comninos, 1986) illustratingthe idea of a

Domain Specific Language (DSL) oriented towards definition of an animated

sequence. CGAL is a Pascal-like language (Wirth, 1971). It provides such

abstractions as affine transformations of the objects, camera, different types

of light sources, shapes and deformations, keyframes, events, procedural geo-

metric modelling etc. One of the important concepts of CGAL is the concept

of events, which allow us to perform certain actions only within specified time

2. Related work 67

intervals, i.e. time-dependency coupled to imperative statements is inherent

to the language. This is similar to a detailed film script, where every action

happens at certain time. This allows us to perform tight synchronisation of

various events occurring in the model and to precisely plan the timing of all

the actions.

Here is a simple example demonstrating definition of a basic animation:

(* A typeless definition of an object, duration of a sequence *)
(* and a scale event *)
var object, duration, scaleDuration;

begin

object := inof ’mesh.obj’; (* load external mesh *)
duration := 60;(* the sequence will take 60 frames *)
scaleDuration := 40;(* scaling will take 40 frames *)
...(* set-up a model *)

script 1 to duration do

begin
(* actions defined inside this block will only take *)
(* place from 1st to 60th frame*)

(* event A: shift the object along x between frames 1 and 20*)
from 1 to 20 do tx {object} 1;

(* event B: rotate the object around z between frames *)
(* 10 and 30*)
from 10 to 30 do rz {object} 15/20;

(* event scale: scale the object for scaleDuration frames*)
from 20 to 20+scaleDuration do sc {object} 1.1 1.1 1.1;

end;
end.

The description of a model does not require any low-level definitions and

initialisation code, which would be mandatory in a general purpose program-

ming language. The user works with high-level 3D modelling and animation

metaphors, concentrating on essential aspects of the modelthat can easily be

modified. From this example we can see that a user can define a set of frames

he wants to work with. Within these frames he or she can describe events oc-

curring simultaneously or sequentially. The starting and finishing times and

the duration of events can be defined in a parametric manner, which allows the

user to easily adjust the animation sequence. We should takeadvantage of this

flexibility of model definition in the system for heterogeneous objects mod-

elling. A high-level DSL incorporating concepts specific totime-dependent

hybrid models could simplify the process of model definitionand make the

modelling itself more accessible and efficient.

May introduced the notion of Encapsulated models in (May, 1998). These

2. Related work 68

models contain a set of attributes including but not limitedto shape, motion

surface properties, user interfaces (UI) for controlling the model and sounds.

All these attributes can be described using a procedural definition. A special

DSL called “AL” was developed in order to provide these high-level procedu-

ral definitions of static and dynamic models. The main focus of the approach

proposed by May was the creation of interactive tools available to the end

user. These visual tools could be defined or parameterised bya more expe-

rienced user through the “articulation functions” implemented in “AL”. This

method provided a multi-level tool for model definition, which allowed the

user to manipulate complex models in real-time.

Another interesting approach to modelling the natural world is so called

“Empirical Modelling” (Beynon, 1987). Empirical models donot require us

to define a precise physical model of the process we want to simulate. We

can define a simplified model of the phenomenon with a number ofavailable

parameters. In the process of interaction with the model through the pro-

vided parameters, the model can be further refined or adjusted. This allows

us to reproduce in our own model the behaviour of the system that is being

modelled. Empirical modelling has been used for the definition of geometric

models (Beynon and Cartwright, 1989), where the constructive history of the

modelled object could be defined using a symbolic description incorporating

different geometric representations. In theory this allows the user to define

complex geometric objects of different representations and relations between

them within a single framework.

Generally a procedural approach is more flexible and extendable as it

allows us to incorporate a large set of problems that can be solved using

physically inspired models of the real world. Certain typesof animation

involving simulation of natural phenomena are next to impossible to pro-

duce using keyframed-based approaches. For instance, rigid-body simula-

tion (Witkin and Baraff, 1997), particle-based systems (Reeves, 1983) for

fluid simulations (Monaghan, 1988), dynamic simulation of natural plants

(Prusinkiewicz, 1986), cloth simulation (Terzopouloset al., 1987) and many

more. Overall this approach becomes indispensable when theanimator is in-

terested in the verisimilitude of the modelled event or phenomenon. Witkin

and Kass (Witkin and Kass, 1988) proposed a hybrid approach which allows

2. Related work 69

the animator to define certain constraints for the animated model similar to

rough keyframes. Their system then finds a solution satisfying the specified

constraints and produces an animation sequence that looks physically correct.

A procedural definition assumes the existence and development of a con-

ceptual model of the event or phenomenon. This implies that the modeller

makes an effort to understand the underlying process and adequately describe

it, rather than to simply reproduce it. This is a very important aspect of the

heterogeneous objects modelling system. As our main aim is not to solely

reproduce the observed phenomenon (which can be a valid modelling task

too), but a desire to provide a modeller with a platform whichcan be used

for the definition of an accurate physical model of time-dependent heteroge-

neous objects. The behaviour of this model can then be simulated according

to specific requirements. This would allow us to produce a newsystem for

the dynamic modelling of heterogeneous objects of varying complexity and

will allow the user to interact with such objects. This is different compared

to mimicking and predefining the dynamic characteristics ofheterogeneous

objects. Unlike in keyframed-based animation, the behaviour of the defined

model may not be known in advance. An iterative definition of standalone

components of the model allows the user to combine differentobjects and

states of the model together, resulting in new behaviours. Kalra and Barr

proposed a similar concept allowing them to introduce thesefeatures to the

modelling system (Kalra and Barr, 1992). In this type of models it is often

natural to operate in terms of such metaphors as events. Events occur in the

model over time and result in transitions between the statesof the model in

an order that is not known in advance (i.e. event-driven animation). Another

powerful feature of this approach is the possible presence of dependency re-

lations between the entities of the model. This allows the user to define a

set of independent entities and their behaviour in a modularfashion and to

combine these, thus establishing dependencies between their properties. For

instance, the LSD-engine (Adzhiev and Beynon, 1999) allowsthe user to ex-

periment with a multicomponent interactive model and to refine it on the fly

in a stepwise manner.

Events provide semantic information about the model. A sequence of

events can be used to determine the current state of the modeland to help

2. Related work 70

us gain a better understanding of the intermediate phases that the model went

through. Initiating reactions and behaviours depending onthe occurrence of

events is a natural way of thinking for modellers, as it is similar to their in-

herent thinking process. This makes modelling more accessible and intuitive.

Events reflect certain critical points in the simulation process, which provides

the user with meaningful information about the model over time. Besides,

it helps to approach modelling in a systematic manner, subdividing possible

states and composing them together in an unlimited number ofways.

Although procedural model definition is a very powerful way of dynamic

model definition it has certain limitations. First of all, even an iterative pro-

cedural definition of a model can be a very tedious and error-prone method.

There is no formal way to define a model in a certain way. A validand ad-

equate model definition may require a high-level of expertise from the user.

The procedural definition of a model requires an experiencedmodeller with a

solid technical background. Secondly, some types of animation require strong

artistic control and cannot be appropriately defined in a procedural manner.

For instance, to date a complex walk cycle animation of a biped character or

a believable facial animation cannot be produced without the assistance of an

experienced artist. It is quite common to incorporate certain low-level ani-

mation sequences into the procedural definition of a model. This can only be

done through the combined efforts of both an artistic and a technical special-

ist.

Overall, we can see that the procedural approach to dynamic objects mod-

elling is a rather powerful and versatile technique. It is very important to

support this method of model definition in the dynamic heterogeneous ob-

jects modelling framework, as we are interested in providing the means of

defining non-deterministic systems with complex behaviours. This can be an

Empirical model of a time-dependent heterogeneous object,refined and in-

teracted with on the fly, or by the physical simulation of a natural process

that allows us to describe the behaviour of some complex phenomenon. The

procedural approach offers us the flexibility to define dynamic models in a

number of different ways, without significant constraints on the type of model

being described. Unlike the keyframed time-dependent model, a procedural

definition allows us to retrieve new results and behaviours based on the initial

2. Related work 71

description of the model without the necessity to redefine the key states of the

time-dependent model.

2.4.3 Conclusions

From the above discussion it should be apparent that, similar to static object

modelling, time-dependent modelling does not have an ultimate technique

that can be used for the definition of different models. Both approaches are

suited to the solution of dissimilar problems and need to be intermixed. The

combination of methods described in this section allows us to get the best of

both methods, having precise artistic control over some parts of the model,

while providing a high-level definition of other parts of themodel that can be

evaluated on the fly.

Earlier in this chapter we described the existing approaches to heteroge-

neous objects modelling. Current research is mostly centred around static

models. Dynamic hybrid models are still an on-going research topic (Xi-

aoping and Dutta, 2003; Adzhievet al., 2002) with a large set of unanswered

questions. As Kou and Tan (Kou and Tan, 2007) note, dynamic heterogeneity

modelling can have a wide range of applications in such areasas biomedicine,

surgery simulation, mechanical engineering and others.

In this research project we wish to combine the currently available tech-

niques for static heterogeneous objects modelling, incorporating a number

of the existing representations, with a set of methods used for the definition

of time-variant models. In order to achieve this, the currently available IC

framework needs to be extended. The proposed extensions to the framework

are described in the next chapter.

3. Theoretical framework for Dynamic ICs 72

3 Theoretical framework for Dynamic Implicit

Complexes

In this chapter we introduce a new dynamic IC framework allowing us to

deal with mixed-dimensional hybrid models whose structureand properties

change over time.

3.1 Motivation

In previous chapters we have outlined a number of the existing representa-

tions and methods used for the definition of time-dependent models. Each

representation and dynamic model definition has a number of strengths and

weaknesses. There have often been good reasons for some of these methods

to be used in various applications over the years. There is nocompelling rea-

son to abandon previous approaches in favour of a new one. Preferably we

should be able to accommodate the entire set of existing representations. We

need to introduce a new framework allowing us to incorporateexisting rep-

resentations while overcoming their existing limitations. The IC framework

described in the previous chapter allows us to combine models of a diverse

nature within one hybrid model. Unfortunately, to date the IC framework

was only suited for the definition of static hybrid models. Thus, it could only

be used for a limited set of applications. Here we introduce anew dynamic

IC framework allowing us to deal with time-dependent hybridmodels along

with the production of their corresponding animations. This new framework

is partly based on the static IC framework. Our new dynamic framework

provides a means to describe complex behaviours of a model ina relatively

simple way. This is achieved through the combination of procedural time-

dependent model definitions, based on event-driven dynamics, with widely-

used traditional keyframe-based approaches.

Next we provide an extensive description of the components of the frame-

work together with some simple examples.

3. Theoretical framework for Dynamic ICs 73

3.2 Dynamic IC cells

First, we need to introduce the concept of time within the IC framework in

order to allow us to define an appropriate behaviour for the entities present in

the model and to describe both their structural and parametric changes over

time. A basic set of the dynamic IC definitions is as follows:

• One of the basic concepts required for the definition of a dynamic

model is that of a time span:

Ti =

Ni
⋃

j

(

tiaj , t
i
dj

)∣

∣

Sti
; tiaj, t

i
dj ∈ E

wheretiaj andtidj define the start and end times of the span accordingly

andSti is the scale factor of this time span, i.e. it defines the rate at

which time changes within the span. Unique values ofSti allow us to

define local time spaces and to measure arbitrary time intervals.

• Each cell present in the model has a life span associated withit. The

life span of a cell is defined in a way similar to the time span:

Li = Ti =

Ni
⋃

j

(

tiaj , t
i
dj

)∣

∣

Sti
; tiaj , t

i
dj ∈ E

wheretiaj andtidjdefine the activation and deactivation times of an en-

tity. Within the life-span, every active entity has access to both its local

time and the global time associated with the entire IC. In certain cases

the life-span of entities can be evaluated on the fly during the process

of the model evaluation, thus providing a way for dynamic model mod-

ification.

• To take into account the time dependency of the cells we consider the

point set of each cell as a function of timegqii = gqii (t). We define the

initial point setgqii (0) of a cell and its bounding domainDqi
i
(t) ⊂ En,

such thatgqii (t) ⊂ Dqi
i
(t) for any given timet. To describe a dynamic

point setgqii (t) we introduce the following functions:

3. Theoretical framework for Dynamic ICs 74

– The shape functionH(t) : En × T → En, which defines a point

set. For each time moment the shape function of a cell gives a

representation of the cell shape in a form corresponding to the

cell type;

– The deformation functionW (t) : En × T → En, which modifies

a point set. This function provides descriptions of variousdefor-

mations of a geometric object (for instance, this can be a bend

operation, a taper operation or a more complex non-linear space

mapping operation). Deformations are applied to the geometry of

the cell in its local space and perform an arbitrary space mapping

of the initial point set;

– The motion functionM(t) : En × T → En, which represents

an affine transformation of a point set. A time-dependent affine

transformationM(t) allows us to define the mapping of the initial

point set of a cell from its local coordinate system to the global

modelling space.

Thus, a dynamic point setgqii (t) is defined as follows:

gqi
i
(t) := {gqii (0), H

qi
i (t),M

qi
i (t),W r

i (t), D
r
i (t), Li}

whereLi is the life-span of the cell.

In the definition of a particular geometric cell some of its components

may be omitted. For example, we could describe a dynamic set using a

shape function alone or using an initial set and a motion applied to it,

and so on.

We also introduce global parameters that are defined in the frame of

the object and in the global life-span of the object. Global parameters

and global time are used for event-driven control of the cells and their

synchronisation in the frame of a multi-component object.

• Apart from the set of predefined properties mentioned above,each cell

can be assigned a set of arbitrary parameters meaningful within the

context of the cell (e.g., radius or density). The “local” parameters are

3. Theoretical framework for Dynamic ICs 75

Figure 16: A set of cells present in the IC.

only available within the scope of the cell while the “global” parame-

ters can be exposed and can be made available outside the cell. These

parameters are defined as expressions involving other parameters, thus:

P i
c (t) =

N i
PG
⋃

j

piGj
(t),

N i
PL
⋃

j

piLj
(t)

;

wherepiGj
is thej-th global parameter andpiLj

is thej-th local parame-

ter of thei-th cell. These are the predefined types of parameters (scalar,

vector, set of polyhedrons, etc). The values of the parameters over time

are either defined by a set of entity reactions or through the assignment

of a predefined animation curve. This allows us to define complex dy-

namic dependencies between parameters associated with different en-

tities (see section 3.5).

To make our description of the dynamic point sets more flexible, we

introduce a parameterisation of all the components. We define a pa-

rameterised time-depended point set in the following way:

gqi
i
(t, P i

c (t)) =
{

gqii (0, P
i
c(t)), H

qi
i (t, P

i
c (t))

M qi
i (t, P i

c (t)),W r
i (t, P

i
c (t)), D

qi
i (t, P

i
c (t)), Li(P

i
c (t))}

For every time moment the proposed dynamic model of a geometric cell

provides the corresponding values of the parameters and theresulting

point set associated with this cell.

We will now refer to a simple example shown in figure 16. We have

3. Theoretical framework for Dynamic ICs 76

used this example earlier in the text to demonstrate a simpleIC mode.

Now we can define the motion of the diskLHKF over time (see fig.

17).

Figure 17: The motion of the disk defined over time.

The translation transformation of the diskLHKF is defined by a set of

parameters:

pLHKF (t) = p0LHKF + vLHKF · t

wherep0LHKF is the initial position of the centre of the disk (this initial posi-

tion can be defined usingMi(t)) andvLHKF is the velocity of the disk, which

is a custom parameter added by the user to the setP i
c (t). In this example we

assume that the rectangleDEQS is a static cell with its centre at the point

p0DEQS (i.e. itsMi(t) is constant over time).

3.3 Dynamic IC attributes

Attributes play an important part in the definition of a heterogeneous object.

As in the static case, attributes representing the properties of heteroge-

neous objects are described independently of its geometry and its topology.

Attribute vectors are now defined using time dependent mappings:

3. Theoretical framework for Dynamic ICs 77

SΛ(X, t) =

J
⋃

j=1

SΛj(X̃Λj(X, t), t);X ∈ Ω

SΛj(X̃Λj(X, t), t) : Ω× TΛj → RmΛ; Ω ⊂ EN ;

X̃Λj(X, t) : Ω× TΛj → Ω

where the attributeΛj is a vector of dimensionalitymΛ,SΛj is a time-dependent

attribute mapping,TΛj is the life span of the attributeΛj andX̃Λj(X, t) is a

time-dependent space mapping.

As in the case of cells, a point in space is first mapped to the global space

using a deformation and an affine transformation:

X̃Λj(X, t) = MΛj(t) ·WΛj(X, t) : EN × TΛj → EN

The mapping of the input point-set is required in order to provide a way

of linking the time-dependent properties of the cells with its attributes. For

instance, the attributes can be defined in the local space of adynamic cell

(with its geometry acting as a dynamic space partition) thatvirtually follows

its motion. Figure 18 illustrates this idea by using a simpletaper deformation

applied to a static geometry and its attributes.

Figure 18: A space mapping used for attributes: (left) initial geometry and
attributes; (centre) deformed geometry and initial attributes (right) the same
deformation applied to geometry and attributes simultaneously.

A dynamic attribute mapping associated with a space mappingis defined

by the dimensionality of the attribute, its attribute mapping, its time-dependent

transformation and deformation, a set of attributes and thelifetime of the at-

3. Theoretical framework for Dynamic ICs 78

tribute

AΛ(X, t) = {mΛ, SΛ(X, t),WΛ(X, t),MΛ(t), LΛ}

In a way similar to cells, attributes can have a set of custom parameters al-

lowing us to perform their parameterisation:

AΛ(X, t, Pc(t)) = {mΛ, SΛ(X, t, Pc(t)),WΛ(X, t, Pc(t)),

MΛ(t, Pc(t)), LΛ(t, Pc(t))}

As was shown in fig. 18, this mapping is useful for the association of a

dynamic geometry with its attributes.

3.4 Extensions to FRep within the dynamic IC framework

We have already outlined the basic concepts needed for the definition of a

dynamic cell within the IC framework. We have also mentionedthat the

Constructive Hypervolume Framework (CHF) provides a powerful way for

heterogeneous object modelling. In order to accommodate Hypervolume ob-

jects in IC cells, we need to introduce certain extensions tothe CHF. These

extensions will allow us to simplify the integration of heterogeneous models,

defined using FReps, into our hybrid mixed-dimensional modelling frame-

work. We will describe the extensions introduced in this thesis in the follow-

ing sections.

3.4.1 Modelling domains

Currently the conceptual model of FReps is very broad. It cansupport multi-

dimensional modelling functions, thus allowing us to create models of various

dimensionalities according to the definitions in section 2.2.3:

f(P) : En → E

For instance, FReps allow us to define a 2D object on a plane or 4D models

in a space-time domain (Fausettet al., 2000; Paskoet al., 2004a). However

at the moment the FRep library is mostly oriented towards thecreation of

3. Theoretical framework for Dynamic ICs 79

3D models. Most of the available primitives and operations are defined in

3D Euclidean space. The creation of models of mixed dimensionalities can

be a complex and laborious task. Additionally, FRep objectspresent in this

model can not be classified according to their modelling space and dimen-

sionality, which may lead to cases of superposition of incompatible entities4.

It is highly desirable to explicitly introduce the concept of permitted mod-

elling spaces. This is an important requirement for the correct definition of

mixed-dimensional models. Additionally a set of primitives and operations

available for the creation of complex multidimensional models would greatly

enhance the modelling capabilities of FReps and increase the number of areas

where FReps could be applied.

In order to correctly accommodate FRep defining functions within IC cells

of different dimensionalities we need to explicitly define the domain of the

defining function:fn(P) : En → E. When using FRep objects inside F-

cells within the dynamic IC framework we can use this domain information

to match FRep entities to IC cells:

gqii (t) : H
qi
i (t) = fn(P) : En → E; qi = n

A modelling domain is a specific set over which an FRep model isdefined.

Each modelling domain has a specific dimensionality associated with it. Do-

mains available in an FRep model are listed in table 1.

Domain Dimensionality Available coordinates
X 1D (x)
T 1D (t)

XY 2D (x, y)
XT 2D (x, t)

XYZ 3D (x, y, z)
XYT 3D (x, y, t)

XYZT 4D (x, y, z, t)

Table 1: The list of available FRep modelling domains.

The domain of an IC cell is then a subset of the modelling domain of an

4For instance, this may be a CSG operation between a 2D circle and a 3D block object.

3. Theoretical framework for Dynamic ICs 80

FRep defining function:

Dqi
i (t) ⊂ En; qi = n

As can be seen from table 1, a predefined set of available domains provides

the option to create models in seven domains from 1D to 4D. “Multimedia do-

mains” of higher dimensionalities (Fausettet al., 2000) can be introduced via

arbitrary additional parameters existing within the model. Each modelling

domain provides a specific number of variables that are available for the def-

inition of the shape or attributes of a model. Timet is present in the model

explicitly (see section 3.4.2). Particular types of primitives and operations

can access and modifyt, while static geometric entities can only get access

to a number of geometric coordinates according to their dimensionality.

In the general case, an FRep model can be constructed from objects of

different dimensionalities and we need to correctly establish relationships be-

tween these. Hence, each FRep entity has a specific input and output domain.

Some entities of higher dimensionality can use entities of lower dimensional-

ity for their definition and vice versa. Specific operations designed to change

the dimensionality of an object should be available as well.For instance, we

may need to project an object to a lower-dimensional space orto construct an

object of a higher dimensionality.

In some situations, a lower dimensional primitive may be expected to be

defined in one of the domains which are not available (e.g. (y), (y,z) or (x,z)).

This may be the case for particular FRep entities constructed from lower di-

mensional primitives (such as the “Cartesian product” usedas an example

later in this section). In this case, a “reduce dimensionality” operation can be

used. This operation performs a mapping of a specified set of coordinates to

another set of coordinates:

gn(P) : En → Em;m < n

This operation can be interpreted as a “re-projection” of a higher dimensional

coordinate set to one of the existing lower dimensional domains. Such an

operation allows the user to define all the lower dimensionalFRep entities in

3. Theoretical framework for Dynamic ICs 81

one of the predefined domains and to transfer the resulting object to another

domain required by the higher dimensional primitive (fig. 19).

Figure 19: The “reduce dimensionality” operation.

This operation can be illustrated by the example of a 3D “Cartesian prod-

uct” operation. Such an operation may require a 2D primitiveto be defined

on theXZ -plane and a 1D primitive on theY-axis (fig. 20). The initial 2D

shape is defined on theXY -plane and then transferred to theXZ -plane. A

line segment is defined on theX-axis and transferred to theY-axis.

At the same time a Cartesian product can be considered as an operation

increasing the dimensionality of the entity (gn(P) : En → Em;m > n).

This operation produces a new object with a dimensionality higher than the

dimensionalities of both entities used as input to this operation. A new set of

built-in primitives and operations for all of the domains will be introduced in

the next chapter.

F-cells can be used for the definition of heterogeneous objects of differ-

ent dimensionalities. We can see that the explicit introduction of modelling

domains allows us to build complex multi-dimensional objects used for the

definition of IC cells and attributes.

3.4.2 Space-time

In simple models affine transformations or global deformations changing over

time are applied to static geometric objects. Such an approach can sometimes

3. Theoretical framework for Dynamic ICs 82

Figure 20: Meeting the requirements of a 3D Cartesian product.

be limiting, especially when dramatic changes to the model occur over time.

Some of the existing time-dependent FRep models were animated with the

introduction of general “multimedia” coordinates (Fausett et al., 2000; Pasko

et al., 2004b), which were changed independently of the model. Theexplicit

introduction of time to the model (see previous subsection)introduces new

concepts and FRep objects. One of our main aims is to simplifythe process

of dynamic model definition and to provide new opportunitiesfor modelling

in the space-time domain.

If time is present in an FRep model, it can be manipulated in the same way

as any other geometric coordinate (see section 3.4.1). The explicit presence

of time in the model allows the user to define a geometric modeland to es-

tablish complex dependencies between objects over time. Anobject defined

in the space-time domain can be interpreted as the union of lower dimen-

sional geometric objects defined on a set of space-time hyper-planes. Thus,

3. Theoretical framework for Dynamic ICs 83

a custom projection of a time-dependent object onto a lower dimension (i.e.

onto a geometric space) can be used to specify a geometric object and vice

versa. Thus, one can imagine a geometric FRep object defined on a plane and

a “profiling” object defined on a space-time plane (see lower portion of fig.

21a). The intersection of extrusions (or sweeps along an infinite line segment

parallel to one of the axes) performed in orthogonal hyper-planes generates

a 3D space-time object (see fig. 21a). This object can be thought of as a

time-dependent 2D object, whose deformation is specified bya “profiling”

projection defined in the space-time hyper-plane (see fig. 21b)

(a)

(b)

Figure 21: Space-time object: (a) Two defining 2D projections (b) A set of
2D geometric slices of the resulting space-time object.

Another example would be that of space-time blending (Paskoet al., 2004a,

2010). This type of operation allows us to perform advanced blending oper-

ations in higher-dimensional space. Blended objects are defined in a purely

3. Theoretical framework for Dynamic ICs 84

geometric domain (see fig. 22), while their higher dimensional “prototypes”

are blended in a space-time domain of a higher dimensionality. The resulting

higher-dimensional object is shown in fig. 23. Slices of thisspace-time object

put together can be used to achieve smooth transition between complex 2D

or 3D objects. We provide more information on this operationand introduce

a number of improvements to this operation later on in this thesis.

Figure 22: A set of 2D cross-sections of the objects metamorphosed over
time.

Figure 23: A 3D objects defined in the space-time domain.

This operation is similar to the domain switching operations defined in

previous sections. This operation allows us to easily switch between purely

geometric domains and space-time domains. The explicit presence of time al-

lows us to define the time-dependent components of dynamic heterogeneous

objects through F-cells. The availability of time in the IC framework, intro-

duced to the F-cells, allows us to keep all the entities of ourhybrid model in

sync. These extensions are crucial for the correct integration of FReps into

the dynamic IC framework and for the definition of valid hybrid models.

3. Theoretical framework for Dynamic ICs 85

3.5 Dynamic IC relations

From the extensions presented in the previous section we canconclude that

all the relations defined in an IC become dynamic as well. Thismeans that

relations may be established and removed over the course of the modelling

process. Depending on the mutual locations of the cells and the modifications

to their geometry any topological relation of the IC can become invalid. Thus,

it should be possible to provide a description of the topological relations of

the model within different time intervals. As was mentionedearlier in the

text (see section 3.5), the explicit enumeration of the topological relations or

their automatic establishment can be omitted, if they are not considered to be

crucial to the definition of the model.

The static IC framework did not provide an explicit dependency relation

between the cells or attributes present in the model. The simplest form of

a dependency relation is that of a relation between a “masterentity” and a

“dependent entity”. Any modification of the state of the master entity affects

the state of the dependent entity5. Here we introduce additional dependency

relations to the framework:

1. The establishment of the dependency relations between the appropriate

parameters of the cells/attributes leads to the implicitlydefined depen-

dency relations between the cells/attributes. More formally, two IC

cells/attributes belong to a dependency relation, if any parameter of the

cell/attributeCj is defined using any parameter or set of parameters of

the cell/attributeCi:

Rdp =
⋃

i∈I
i,p
m

⋃

j∈I
i,p
d

(Ci, Cj)|pRdp
ij

(3)

wherepRdp
ij

is the priority of the dependency relation between the cells/

attributesi andj, I i,pm is the set of indices of the master cells/attributes

and I i,p
d

is the set of indices of the cells/attributes dependent on the

cell/attributeCi. Priorities provide an additional tool that can be used

for the resolution of certain model evaluation ambiguities. The values

5A detailed description of the states is provided in section 3.7.

3. Theoretical framework for Dynamic ICs 86

of the priorities associated with dependencies can be employed by the

user in order to provide information about the desired evaluation order

of the entities present in the model. Overall, parametric dependencies

provide a powerful way for model parameterisation.

Parametric dependencies can be used to define both the geometry and

attributes of an IC entity. But we need to introduce dependencies be-

tween the geometry and the attributes in order to provide a flexible way

of defining more complex relations between the IC entities.

2. Another dependency relation that is established in the framework is the

dependency between the geometry of the cells:

Rdg =
⋃

i∈I
i,g
m

⋃

j∈I
i,g
d

(Ci, Cj)|pRdg
ij

wherepRdg
ij

is the priority of the dependency relation between the cells

i andj, I i,gm is the set of indices of the master cells andI i,g
d

is the set of

indices of the cells dependent on the cellCi. In this case, the state of a

dependent cell can be modified using the geometry of the master cell.

This type of dependencies is important for geometry manipulation and

for the definition of complex deformations within the IC framework.

3. We also introduce the dependency relation between attributes, in order

to be able to define complex dependencies between dynamic attributes:

Rda =
⋃

i∈I
i,a
m

⋃

j∈I
i,a

d

(HΛi, HΛj)|pRda
ij

wherepRda
ij

is the priority of the dependency relation between the at-

tribute entitiesHΛi andHΛj, I i,am is the set of indices of the master

attributes andI i,a
d

is the set of indices of the attributes dependent on the

attribute entityHΛi. This type of dependency can be used for the defini-

tion of compound attributes composed of simpler attribute definitions.

4. Next, we introduce the relation establishing dependencies between the

3. Theoretical framework for Dynamic ICs 87

geometry and the attributes:

Rdga =
⋃

i∈I
i,g
m

⋃

j∈I
i,a
d

(Ci, HΛj)|pRdga
ij

wherepRdga
ij

is the priority of the dependency relation between the ge-

ometry of cellCi and attributeHΛj , I i,gm is the set of indices of the

master cells andI i,a
d

is the set of indices of the attributes dependent on

the cellCi. This type of dependency can be used for the definition of

attributes based on geometry. For instance, this could be the definition

of a complex space partition defining the values of the attribute in the

volume.

5. Finally, we introduce the relation establishing dependencies between

the attributes and the geometry:

Rdag =
⋃

i∈I
i,a
m

⋃

j∈I
i,g
d

(HΛi, Cj,)|pRdag
ij

wherepRdag
ij

is the priority of the dependency relation between the at-

tributeHΛi and the geometry of the cellCj , I i,am is the set of indices of

the master attributes andI i,g
d

is the set of indices of the geometric cells

dependent on the cell attributeHΛi. This type of dependency can be

used for the definition of geometry based on attributes. For instance,

this dependency can be used for the description of material-aware de-

formations (Popaet al., 2006), where the influence of a deformation is

evaluated using the attributes associated with the shape ofthe object.

The generic set of dependency relations is defined as a superposition of all

the aforementioned relations:

Rd = Rdp ∪ Rdg ∪Rda ∪ Rdga ∪ Rdag

Any of the master entities can, in its turn, depend on a set of other entities,

i.e. i ∈ I∗m; ∃j : i ∈ Ij,∗
d
; i 6= j is valid. This means that we can combine

dependency relations and build a complex dependency graph.This allows the

user to describe sophisticated models using relatively simple building blocks

3. Theoretical framework for Dynamic ICs 88

and to provide the description of connections between them.Additionally,

this allows us to localise the behaviour of the cell within its reaction function

(see section 3.7). We can then dynamically modify the dependencies of the

cell without actually modifying the reactions of the cell (i.e. only the depen-

dency need be changed, not the reaction procedure of the cell). This can also

simplify iterative work on the model, when the user “clones”pre-configured

cells and only modifies the context they reside in via the introduction of new

dependency relations6. Thus each property is treated as a custom “interface”

of the cell to the “outer world”. The establishment of dependencies between

the properties of the cells is similar to the connection of the appropriate inter-

faces.

We also provide the user with a predefined dependency relation called the

hierarchical dependency. This relation reflects the dependency between the

transformations of the cells, automatically performing evaluations of the child

transformation based on the up-to-date transformation of the parent. This is

a very common and important relation in computer animation,greatly sim-

plifying the definition of a large set of natural models. Dependency relations

can also be used for the definition of complex deformations. In this case the

master cell defines the initial geometry, while a dependent cell applies a de-

formation to this geometry. The resulting deformed shape becomes available

through the geometry of the dependent cell.

Let us now consider the specifics of the geometric interpretation of the

relations within the dynamic IC framework. The boundary relation relates

cells of different dimensionalities. If the pair of abstract cells(gpi ,g
r
j) belongs

to the boundary relation, this means that the point set|grj |, corresponding to

the abstract cellgrj , belongs to the boundary of|gpi |, which itself corresponds

to the abstract cellgpi . Note that the inverse condition is not required for the

framework to be consistent. In other words, for some point sets there are no

established pairs in the form of the abstract boundary relation despite the fact

that these point sets are actually related within Euclideanspace. This is the

principal difference between the dynamic IC and the cellular IC introduced

6For instance, if we create N balls bouncing off M different surfaces, we do not have to
define the behaviour of every ball separately taking into account the surface it is bouncing
off. Instead we define the behaviour of one ball having an input parameter used to specify
the collision object.

3. Theoretical framework for Dynamic ICs 89

in (Kartashevaet al., 2008). This is a compromise that allows us to simplify

the actual description of IC models omitting certain details, which might be

required for a valid definition of an IC from a theoretical point of view.

The relations within the dynamic ICs framework do not necessarily pro-

vide a complete description of the corresponding relationsbetween the ge-

ometric point sets. Their set only includes those pairs of cells (i.e. those

relations) that are explicitly evaluated during the dynamic process which is

defined as the application specifics dictate. The same is trueregarding other

types of relations between point sets. Thus, some containment relations such

as the “to contain” and the “to be contained” relations, as well as dependency

relations of different kinds, do not need to be explicitly defined unless it is

necessary. Note that if a pair of cells belongs to the boundary relation, it can-

not belong to any containment relation at the same time. However, any pair

of cells constituting both the boundary and the containmentrelations can also

be related by dependency relations.

Figure 24: The dependency relation between the parameters of two cells.

We will refer to the example shown in figure 16 again. This timethe ex-

ample is extended through the introduction of a new dependency relation (fig.

24). A dependency relation is established between the translational compo-

nent of rectangle DEQS and the radius of the disk LHKF. This results in the

modification of the radius of the disk LHKF whenever the rectangle DEQS

3. Theoretical framework for Dynamic ICs 90

Figure 25: The modification of the radius depends on the translation of the
rectangle.

is moved along the X-axis (fig. 25). In this case the cell LHKF is implicitly

dependent on the cell DEQS. This is a simple example of a dependency re-

lation. In the general case, the evaluation of a dependent parameter can be

defined by a complex evaluation procedure.

3.6 Dynamic IC operations

The IC framework described in (Kartashevaet al., 2008) allows us to define

set-theoretic operations on cells. This is an important feature allowing us to

construct composite geometric objects from a set of existing cells. The set-

theoretic operations include the union, intersection and trimming of cells. In

fact, we can also use a subset of the operations available forB-Reps (a set of

deformations) and for FReps (set-theoretic blending and bounded blending).

Theoretically the IC framework supports application of these operations for

cells of an arbitrary representation, though, currently, these additional opera-

tions can only be applied to a set of cells of the same type. It is possible to

perform an approximate conversion of a cell to an FRep or a BRep in order to

apply the aforementioned operations between the cells of the same type. Ex-

act conversion between the available representations is the subject of further

research.

A new cell resulting from the application of an operation hasan implicitly

defined dependency relation with the cells that were used as operands (see

section 3.5). For ann-ary operation the established dependency relations are

defined as follows:

Rdix =
⋃

j∈I
i,x
m

(Cj, Ci)|pRdx
ij

3. Theoretical framework for Dynamic ICs 91

Figure 26: Example definition of a simple deformation.

wherepRdx
ij

is the priority of a dependency relation between the cell/attribute

Ci andCj, I i,xm is the set of indices of the master cells (n operands of the

operation in this case), i.e.Ci is a cell/attribute containing the operation that

depends on the operand cells/attributesCj. The application of an operation

results in the modification of the components ofCi (including its geometry,

attributes, parameters, etc.).Rdix can be any type of dependency described

in section 3.5, which means that operations can be applied tocells, attributes

or combinations of these. The definition of operands throughdependencies

provides the user with the flexibility of the automatic tracking of changes in

the model. Whenever the state of an operand cell is modified, the cell/attribute

with the operations will be automatically updated. This allows us to define

time-dependent CSG operations, blending operations, complex shape-driven

deformations (Schmittet al., 2003) as well as various types of operations for

attributes.

Fig. 26 depicts this idea. Here the initial geometry is defined by the cell

“Cylinder”, which can be defined by either a BRep, an FRep or any alterna-

tive suitable representation. The geometric dependency relations established

between the cells allow us to define a deformation which generates its ge-

ometry based on the provided input geometry (the “Initial Geometry” in this

case). This allows us to store the constructive tree used to define compound

objects.

3. Theoretical framework for Dynamic ICs 92

It is important to note, that operations can be time-dependent in different

ways:

1. The parameters of the operation remain constant but its operands are

time-dependent:

∀pj(t) ∈ P i
c (t) ⇒ pj(t) = const

∃t1, t2 : H
qk
k (t1) 6= Hqk

k (t2); t1 6= t2

or

∃t1, t2 : SΛk
(X, t1) 6= SΛk

(X, t2); t1 6= t2

For instance, if we blend two moving objects the resulting shape will

also be changing over time, even when the blending parameters remain

unchanged (see fig. 27).

2. The parameters of the operation are changed over time, while its operands

are not time-dependent:

∃t1, t2 : P
i
c (t1) 6= P i

c (t2); t1 6= t2

∀t1, t2 : H
qk
k (t1) = Hqk

k (t2)

or

∀t1, t2 : SΛk
(X, t1) = SΛk

(X, t2)

In fig. 28 we can see that both the ball and the cube do not move.

But blending parameters are increased over time which results in the

modification of the resulting shape.

3. The parameters of the operation together with its operands are time-

dependent:

∃t1, t2 : P
i
c (t1) 6= P i

c (t2); t1 6= t2

∃t1, t2 : H
qk
k (t1) 6= Hqk

k (t2); t1 6= t2

or

∃t1, t2 : SΛk
(X, t1) 6= SΛk

(X, t2); t1 6= t2

3. Theoretical framework for Dynamic ICs 93

Figure 29 demonstrates a model where two blended cells are moving

in opposite directions while at the same time their blendingparameters

are adjusted.

Figure 27: Example definition of an operation with constant parameters.

Certain dependency relations can be defined as persistent, i.e. they cannot

be removed or modified. This type of relations appears to be useful for com-

pound objects that set certain constraints on the modification of the resulting

complex object. For instance, in the example shown in figure 27, if we remove

the cell “Cell1” or remove the dependency relation, the T-cell “Cell3” would

become invalid. This means that the shape of “Cell3” cannot be defined if no

input geometry is provided to perform the evaluation.

Figure 28: Example definition of an operation with time-dependent parame-
ters.

3. Theoretical framework for Dynamic ICs 94

Figure 29: Example definition of an operation with time-dependent parame-
ters and time-dependent operands.

3.7 Dynamic IC states and their components.

In this subsection we introduce a number of new terms that arerequired for

the description of time-dependent states of IC entities.

We introduce the notion of the state of the dynamic IC cell. For an i-th

IC cell we distinguish between the parametric stateSp
i (tj) and the structural

stateSs
i (tj) of a cell:

Sp
i (tj) = P i

c (tj)

Ss
i (tj) = {gqi

i
(tj), Li}

whereSp
i (tj) is a parametric state reflecting values of a set of parametersP i

c

of the i-th cell (defined in section 3.2) at the moment of timetj andSs
i (tj)

is a structural state reflecting the modifications of the point set enclosed by

thei-th cell (defined in section 3.2) together with its lifetime.The lifetime is

included in the structural state as the point set enclosed bya cell outside of

its lifetime is empty.

The state of the cell is then defined as a union of the two definedstates:

Sji = Sp
i (tj) ∪ Ss

i (tj)

The change of a structural state would commonly result in a new para-

metric state of the cell as well. Transitions between the structural states can

help distinguish between the changes of the geometry and thetopology of the

shape of the cell. Note that for the general definition of the geometry of any

dynamic cell we can use functions of different types. For example, we can

combine discrete shape functions with continuous motions or with deforma-

3. Theoretical framework for Dynamic ICs 95

tions and so on.

In order to define a method for the definition of transitions between the

available states we introduce a set of other terms. First, weintroduce the

concept of events. The occurrence of an event, normally but not necessarily,

in a non-decreasing order of time, means that upon meeting certain conditions

the behaviour of a model changes. The type of the event and a set of optional

parameters are used to determine the condition :

Ei =

U i,

N i

⋃

j

P i
j , Ti, p

i

whereU i is the name of the event,
N i
⋃

j

P i
j is the set of parameters of the event,

Ti is the time-span of the occurrence of an event andpi is the priority of

the event. Events with higher priorities are handled beforeevents with lower

priorities. The time-span of a predetermined event can be defined explicitly,

otherwise it is set to the time of the actual existence of the event, if this period

of time is not known in advance. Events can be created and processed by the

“interested” cells (see the notion of reaction below). The predefined events

include a change of time, the initialisation and the termination of an entity.

User-defined events allow us to describe a set of events meaningful within

a particular model, thus reflecting the consequence of modifications of the

model state. Events may lead to both the modification of parametric and

structural states of the entities.

In the example shown in figure 17 an event could occur when the disk

first touches the perimeter of the rectangle or when the distance between the

centres of the two objects falls below a certain value.

Each cell in the IC has a set of reactions associated with it. Areaction to

an event is a mapping resulting in the transition of a cell from one state to

another, which may produce a new set of events:

∆i =

⋃

Ej∈Ei

δiEj(S
i
j(t), t, Pj, Ẽ

j)

; δiEj(S
i
j (t), t, Pj) : SU × T →SU

3. Theoretical framework for Dynamic ICs 96

whereδiEj is one of the “reaction” functions to the eventEj , Ei is the set of

events which thei-th cell reacts to,Pj is the priority of the reactionδiEj, SU is

the set of states of thei-th cell andẼj is a set of events generated as a result

of reactionδiEj. A reaction can be defined using global time, local time and

all the parameters of the cell. A set of new eventsẼ
j may be generated within

the reaction. In addition to dependency relations this allows the IC entities

to interact with each other within the model and to initiate reactions of other

entities within the IC model.

Reactions are issued in response to events occurring in the system. The

most common reaction is a reaction to the passage of time, initialisation and

destruction events. Another predefined type of event is the request for an ex-

plicit modification of time (e.g., return to an earlier instance in time). Such an

event can be used in order to adjust the time-step of the model, which would

be required in order to retrieve the correct results of a physical simulation.

The priorities of reactions provide a simple device for modifying the order of

the reaction evaluation of the cells within a certain interval of time.

The motion of the disk shown in figure 17 is defined as a reactionto the

passage of time, i.e. the position of the cell is modified at every instance of

modification of global time.

Finally, a dynamic cell is defined as a composition of its initial state, its

set of states and its set of reactions:

Ci =
{

Si
0, S

i
U ,∆i

}

Figure 30 illustrates the state transition graph of the states within the dy-

namic cell. Reactions of the cell are issued in response to external events.

New events may be generated within the reactions in order to initiate further

interaction with the model.

Any modification of global time results in the occurrence of an event. Re-

actions to this event are issued in the subset of the “interested” cells. This

could result in global transitions between the states of theIC. Generally, time

is modified automatically according to the specific requirements of the model.

It is important to note that cells can request modifications of time in order to

3. Theoretical framework for Dynamic ICs 97

Figure 30: Transitions between the states of the cell through reactions issued
in response to external events and a set of generated events.

evaluate their state correctly according to an active behaviour (e.g. in a phys-

ical simulation where the time step may need to be adjusted).

Analogously to the state of the geometric cell, we introducethe notion of

the parametric state of a dynamic attribute at the time moment tj :

SΛp
i (tj) = PΛ

c (tj)

which is defined by the values of attribute parametersPΛ
c , defined in sec-

tion 3.3, at the time instanttj . The custom parametersPΛ
c (t) can be used

to modify certain properties of the attribute mapping or forother purposes.

The structural state of the attribute over thei-th time spanTi is defined by

the mappingAΛ(X, t), defined in section 3.3, and by the life spanLi of the

attribute:

SΛs
i (tj) = {AΛ(X, tj), Ti, Li}

The state of the attribute at the time instanttj is defined as follows:

SΛ
i (tj) = SΛp

i (tj) ∪ SΛs
i (tj)

In a way similar to geometric cells, attribute entities can have their own

reactions and a number of states (see fig. 30). Finally, a dynamic attribute

is defined as a composition of its initial state, a set of states and a set of

reactions:

HΛ
i =

{

SΛ
0 (tj), S

Λ
∪ (tj),∆i

}

3. Theoretical framework for Dynamic ICs 98

Associations of attributes and cells (attribute relations) are defined the

same way as in the static case with the addition of prioritiespRs:

RsΛ =
3
⋃

p=0

Rsp
Λ
|pRS ;Rsp

Λ
⊂ Gp × SΛ

RsΛ ⊂ Rdga

whereGp is a set ofp-dimensional cells. Thus, if(gpi , SΛj
)|max pRS

ij
∈ RspΛ,

the value of the attributeΛ at any point is defined asSΛj
(X, t). The priorities

of the attributes are used to resolve ambiguities, when certain point sets be-

long to a number of subsets of the geometry of the dynamic cells. In the case

where more than one point set encloses the space, the attribute mapping with

the highest priority value is chosen in order to evaluate theattribute value.

Attribute relations can be thought of as a subset of dependency relations be-

tween the geometry and the attributes introduced in section3.5.

3.8 Dynamic IC instances

In the previous sections we have proposed a set of extensionsfor the cells,

attributes and relations, which constitute the basic building blocks used to

define an IC.

Similarly to dynamic cells and attributes the entire dynamic IC model can

be characterised by a set of states. “Structural states” within the IC model

have a different meaning. If two states of a dynamic object are described by

the same IC, then they are considered to have the same “structural state” de-

spite any changes in the relative dispositions of the cells constituting the IC.

The characteristic feature of a new structural state is the change in the de-

scription of the abstract IC relations. So it is possible, for instance, that some

point sets of a pair of cells intersect in Euclidean space butthe corresponding

pair of the cells is not present in the sets of the boundary or containment rela-

tions, as those may not have been defined for that particular dynamic model.

If we add this pair of cells into some abstract relation, thenwe effectively get

a new structural state of the model without changing its point sets.

3. Theoretical framework for Dynamic ICs 99

To reflect the structural changes of an IC based model over time (i.e. either

by the establishment of new relations or by the removal of existing relations,

or by the creation or destruction of some cells) we introducethe notion of an

IC instance. Note that certain parametric modifications of the state can oc-

cur within an IC instance, but the structural state always remains unchanged

within the life-span of an IC instance. The IC instance becomes invalid when

a model undergoes such a structural change that it is no longer accurately

described by the set of cells, attributes and relations usedin the initial de-

scription of the IC instance. The validity of an IC instance is defined by a

time-dependent predicate:

F Ij(tIj (t)) = true ⇒ Ij(t
Ij(t)) is valid

whereIj is aj-th instance of an IC,tIj (t) is a transfer function used to retrieve

the local time of the instanceIj7 andF Ij is a Boolean predicate associated

with the IC instance. Every IC instance has its own local timestarting at the

instance in time when the IC instance became valid. Once an ICinstance is

found to be invalid, a transition to the next IC instance is performed (see fig.

31). The predicate of an IC instance implicitly has its own life-span (in a way

similar to a cell). Only one IC instance can be valid at any given instance in

time:

∀i, j(j 6= i) : T Ii ∩ T Ij = ∅

In section 3.7 we have provided a description of a reaction associated with

a cell. Every instance has a set of reaction functions associated with it. These

functions allow us to define the dynamic activities of an instance, to provide

high-level reactions to external events and to generate newevents (similar to

those of the cells).

Note that the reactions of the cells and attributes can be customised within

an IC instance. Thus if required, a new set of reactions can bedefined for any

cell or attribute present in the IC instance:

∃Cm ∈

Nj
⋃

i=1

CIj
i : Cm ∈

Nk
⋃

i=1

CIk
i ⇒ CIj

m
.∆m 6= CIk

m
.∆m; j 6= k

7A transfer function is used in order to take into account the time span of an IC instance
and the rate at which its local time is modified.

3. Theoretical framework for Dynamic ICs 100

Figure 31: Transitions between the IC instances of the IC-based model.

where∆m is a reaction of the cellCm. This allows us to alter the behaviour

of any cell or attribute depending on the current state of themodel.

Every IC instance can have its own set of parameters (P
Ij
c) together with

a set of parameters for its components. Both these sets of parameters can

be used for the manipulation of the model, as well as for the tracking of

the state of the model over time. Thus, we provide a way to define a set of

state parameters “linked” either to a set of instance parameters or to a set of

parameters of any cell present in the IC instance:

P Ij
s = PGΛ

s,Ij ∪

NIs
j
⋃

k

P
Ij
c,k

An example of such parameters could be the velocity of some geometric

cell that is important in the context of the model or the distance between the

shapes of two cells (introduced as a parameter of an IC instance).

Finally, an IC instance is defined by a set of cells and a set of relations

present in it, a set of attributes and the attribute relations for the cells, a set

of internal parameters of the instance, its life span, as well as its predicate

3. Theoretical framework for Dynamic ICs 101

Figure 32: Dynamics of transitions between the structural states of the model
over time.

function and reactions (PGΛ
s,Ij):

Ij =

{

N
⋃

i=1

CIj
i ,RbIj , RcIj, RdIj,

M
⋃

k=1

HIj
Λk, RsIj

Λ
, P Ij

c , LIj , F Ij,∆Ij

}

There is no need for an explicit definition of the structural state of the

IC instance. The IC instance embodies the structural state as a collection

of components of the dynamic IC-based model. Any change of the state of

the intrinsic components of the IC instance results in a transition between the

parametric states of the IC instance itself (see fig. 32). Thetransition between

the parametric states is performed through reactions of entities within the cur-

rent IC instance and through the reactions of the dynamic IC instance itself.

Transitions between the IC instances, which are equivalentto the transitions

between structural states, occur only when a set of components constituting

the model at a specific moment of time is modified (see figure 32). Such

a modification is indicated by the value of the predicate of the IC instance,

which allows us to determine if a transition to a new structural state is re-

quired.

3. Theoretical framework for Dynamic ICs 102

3.9 The IC-based model

In this section we introduce a set of terms used for the description of the entire

model.

Using the definition of dynamic point sets we formulate the definition of

a dynamic IC-based model as a collection of dynamic cells, attributes and

relations between these:

Q(t) =

n
⋃

r=0

Nr(t)
⋃

i=0

gri (t, P
i
c(t)),

M
⋃

k=1

HΛ
k (t, P

i
c (t)), Rb, Rc, Rd

All the cells, attributes, relations between these as well as with the number

of these relations can be time dependent. We do not impose anyrestrictions

on the mutual dispositions of the geometric cells.

Another important aspect of the model definition is the parameterisation

of the model. Every cell or attribute in an IC instance has a set of parameters

that may have some higher level semantic meaning within the model. We

collect a subset of these parameters into a special set:

PGΛ
s,Ij =

NG
j

⋃

k

NPG
k,j
⋃

i

gIjk .Pc,i ∪

NΛ
j

⋃

k

NPΛ
k,j
⋃

i

ΛIj
k .Pc,i

wheregIjk andΛIj
k are the k-th cell and attribute belonging to the IC instance

Ij , NPG
k,j is the number of the meaningful model state parameters of thecell

gIjk belonging to the instanceIj andNPΛ
k,j is the number of meaningful model

state parameters of the attributeΛIj
k belonging to the instanceIj .

An abstract dynamic IC is defined as the set of its IC instances. Each in-

stance includes a set of the cells along with the establishedrelations between

these. As the IC is a discrete entity (i.e. the set of its cellsis discrete as well as

its relations are subsets of the Cartesian products of discrete sets of cells), then

its dependency on time can be considered as a change of its consequent states

which are associated with the instances of the IC. Two approaches could be

used here.

3. Theoretical framework for Dynamic ICs 103

The first approach requires the introduction of “the IC template” which

includes the union of all the cells and relations belonging to all the static IC

instances. The set of time-dependent predicates associated with the cells, its

attributes and their relations are also necessary. Thus to define the IC in-

stance at any given time, one needs to evaluate all the predicates and then to

remove all the cells and relations which are not “valid”. This results in the

IC instance for that time instant. The main advantage of thisapproach is the

uniform description of all the states. Its obvious drawbackis the redundancy

of the representation. Additionally, it is difficult to define the validity of all

the possible states in terms of the restrictions imposed onto the relations be-

tween the cells, especially when the complete set of the states is not known

in advance.

The second approach assumes the existence of a succession ofIC in-

stances. All the ICs from this well-ordered finite set include the relations

which are common to all of them. To define the dynamic IC one only needs

to set the equivalence relations between the cells of those IC instances that are

adjacent in terms of time. This will allow for comparisons between relations

in terms of cell pair numbers and compositions. The advantages of such an

approach are twofold:

• all the states are known in advance and their validity can easily be

checked;

• there is no need for redundant cells in each static IC.

The drawbacks include the necessity to store the descriptions of all the ICs

and the impracticality of defining the intermediate states on the fly.

It makes more sense to combine both outlined approaches. We could de-

fine the IC template with some predicates and each state (“IC instance”) could

be defined on the basis of this template with the option to add the cells, at-

tributes and relations which were not present in the template. Certain cells,

attributes and relations could also be removed from the template, in order to

define a new IC instance. One could also introduce the predicates associ-

ated with each IC instance. This would allow for an easier evaluation of the

validity of the IC instance as a whole.

3. Theoretical framework for Dynamic ICs 104

Let TI be a template of the IC that is used to create various instances of

that IC. The IC template can be seen as the IC instance prototype. New in-

stances are created through the addition or removal of some components of

the IC template (e.g. new cells or relations). This simplifies the process of

model definition, as in most cases the model undergoes a set ofminor mod-

ifications over time. Hence, most of the entities are presentin many IC in-

stances, which means that we do not need to provide an exhaustive definition

of every instance from scratch. Instead, we add or remove some components

using the templateTI:

∃j : Ij = TI \

{

Nl
⋃

i=1

CTI
i ,RbTI , RcTI , RdTI ,

Ml
⋃

k=1

HTI
Λk , R

TI
sΛ
, P TI

c , F TI ,∆TI ,

}

∪

{

Nm
⋃

i=1

C ′
i,Rb′, Rc′, Rd′,

Mm
⋃

k=1

H ′
Λk, R

′
sΛ
, P ′

c , F ′,∆′

}

Additionally, we need to provide a definition of an animationentity. This

entity can be used to define a key-frame-based animation for any parameter

present in the model (i.e.: it is “attached” to the parameter):

Ai(t) =

N i
F

⋃

j=1

(tij , v
i
j),

N i

E
⋃

k=1

(tiEj, v
i
Ej
), T i, F in

Ai
(t), F out

Ai
(t)

whereN i
F is the number of key-frames of the animationAi(t), (tij , v

i
j
) is the

set of tuples of time moments and parameter values at these time moments,

(tiEj, v
i
Ej
) is the set of possible additional values required for a specific type of

interpolation,T i is the time-span of the animation (i.e. the interval including

the time of the first and last key-frames),F in
Ai

is the function performing the

evaluation of the parameter values within the time-span of the animation (e.g.

this can be one of the predefined polynomials or a custom evaluation proce-

dure) andF out
Ai

is is the function performing the evaluation of the parameter

values outside the time-span of the animation (e.g. constant, linear, custom,

etc).

Finally, the entire model is defined by a set of IC instances valid over

different periods of time, a set of global parameters, a set of custom events

3. Theoretical framework for Dynamic ICs 105

and a set of animations used in the model:

M(t) =

{{

L
⋃

j=1

Ij(t
Ij(t));F Ij(tIj(t)) = true

}

,

M
⋃

k=1

P g
k (t),

N
⋃

u=1

Ẽu,

Q
⋃

s=1

As(t)

}

The description of a set of IC instances should be provided bythe user

of the system after the process of model decomposition. As was outlined in

section 3.8, an IC instance embodies the structural state ofthe model. The

parametric state of the model is defined through a set of dynamic cells and

attributes together with their parameters and the global model parameters:

SP
M(tj) =

N(tj)
⋃

i=1

C
IM(tj)

i (tj),

M(tj)
⋃

k=1

H
IM(tj)

Λk (tj), Pc(tj), P
g
c (tj)

The parametric state of the IC model is simply a snapshot of the model at

the moment of timetj. Figure 32 illustrates transitions between the IC in-

stances and transitions within the internal parametric states of these instances

over the course of the modelling process. Figure 33 outlinesvarious compo-

nents of the model and the relations between them.

We refer to a simple motion illustrated in figure 17 once again. All the

cells and relations initially present in the IC are outlinedin figures 16 and

34. Both the set of cells and the set of relations are modified over time. For

instance, when the disk touches the rectangle a new cell is introduced (fig.

35).

Observe that a new constructive tree cell F has been added at the intersec-

tion of the two initial cells. Also, two new cells and a set of new relations are

added at a subsequent moment of time (fig. 36).

All these descriptions of the intermediate states of the model are repre-

sented using different instances. Each of the instances also has a predicate

associated with it, allowing us to distinguish between the different states of

the IC model over time.

The transitions between the IC instances analogously to thediagram in fig-

3. Theoretical framework for Dynamic ICs 106

Figure 33: The structure of the dynamic IC model and its components.

Figure 34: The topological relations of the IC.

3. Theoretical framework for Dynamic ICs 107

Figure 35: The set of cells at an intermediate modelling phase.

ure 32 are shown in figure 37. This illustration depicts the different structural

states of the model at different time instants. We can see that these intermedi-

ate structural states of the dynamic model remain valid overdifferent periods

of time.

3.10 Conclusions

In this chapter we have introduced a new theoretical framework which can be

used for the definition of mixed-dimensional time-dependent heterogeneous

objects. This new framework is based on the previously available IC frame-

work that was used for the definition of static hybrid models.The static IC

framework served as the basis for the introduction of the newconcepts and

for the extension of the existing notions. We have consistently extended the

definitions of IC cells and attributes in order to accommodate their new dy-

namic features. Each entity can now be characterised by its two-fold state,

namely its structural and its parametric state. We have thenintroduced a set

of new dependency relations which are crucial for complex dynamic mod-

els. The introduction of events and reactions of the IC entities to these events

allows us to define complex dynamic models through event-driven dynamics.

3. Theoretical framework for Dynamic ICs 108

Figure 36: The set of cells at an intermediate modelling phase.

Figure 37: A set of instances reflecting the model at different time-spans.

3. Theoretical framework for Dynamic ICs 109

The new set of features available in the dynamic IC frameworkallows us

to combine the definition of heterogeneous objects togetherwith their com-

plex behaviour in different ways. Apart from the definition of the behaviours

of individual objects we can also specify compound relations between these

objects. Topological relations allow us to build and retrieve information about

the mutual dispositions of dynamic objects over time. Dependency relations

make it possible to define elaborate hybrid models in a modular fashion,

building complex dependency graphs between entities present in the model.

In the next chapter we will provide a more detailed description of this

framework, its internal structure and its implementation.

4. Dynamic ICs framework: technical aspects and tools 110

4 Dynamic Implicit Complexes Framework: Tech-

nical Aspects and Tools.

In this chapter we describe the system design of the framework introduced

in the previous chapter. The provided description deals with a more detailed

definition of a number of internal aspects of the framework. Here we provide

descriptions of various components of the hybrid model and we describe the

process of the model evaluation. We introduce a high-level notation which

can be used for the definition of a time-dependent hybrid mode. We then

focus on the part of the framework related to FReps. Finally,we discuss tech-

niques that can help us improve performance of the IC framework evaluation.

4.1 Introduction

In the previous chapter we have introduced a new framework allowing us

to deal with mixed-dimensional dynamic hybrid models whosestructure and

properties change over time. This theoretical framework makes it possible to

incorporate the existing representations and to overcome some of their lim-

itations. Our new dynamic framework allows us to combine a procedural

definition of time-dependent model, based on event-driven dynamics, with

the widely-used traditional keyframe-based approaches. However the theo-

retical description of the framework so far is not detailed enough to allow

us to start building actual hybrid models. We need a practical system which

can evaluate a mixed-dimensional hybrid model and can output the results

given a valid description of a model. The definition of a modelshould rely

on all the terms introduced in the theoretical description of the dynamic IC

framework (see chapter 3). Further in this chapter we will provide a detailed

description of the components of the framework and their appropriate coun-

terparts in a practical system. After this we present a notation and introduce

a new language for the definition of hybrid dynamic IC models.We will also

describe the algorithms required for correct model evaluation together with

important details required for the implementation of the proposed dynamic

IC framework. The information provided should be sufficientto allow for

4. Dynamic ICs framework: technical aspects and tools 111

a full-featured implementation of the IC framework based onthe theoretical

groundwork provided in the previous chapter.

4.2 A description of the IC entities and their properties

In the previous chapter we have introduced the theoretical groundwork for

the new dynamic IC framework. Our theoretical description should be suffi-

cient for a basic understanding of the concepts behind hybrid modelling. The

conceptual dynamic hybrid model can be defined using the set of available

notions that we have introduced earlier. But we need a more practical way of

describing the IC-based models.

Here we provide a description of all the entities present in the framework

from the perspective of system design in an object-orientedmanner (Booch,

2004). We map an entire set of notions introduced in sections3.2-3.9 to a

set of entities available to the user for the definition of a dynamic hybrid

model. The high-level UML diagram shown in figure 38 allows usto map all

the theoretical concepts, presented in the previous chapter, into a set of more

concrete practical terms. A description of a hybrid model can be developed

through the composition of the descriptions of entities such as events, cells,

attributes and IC instances. Entities, in their turn, are defined through the

values of their components. This makes the step-by-step iterative definition

of a complex IC-based model possible in a natural manner. A more detailed

specification of the entities and their components is presented in Appendix A.

In order to provide a valid description of the model, definitions of all its

components need to be provided. Initially we describe all the cells of the IC

independently. Then, for each instance of the IC, we add cells that only exist

within this instance. All IC instances also have access to any cell described

within the entire IC definition (see fig. 38). The state of certain T-cells needs

to be validated by the instances, i.e. the T-Cells remain “invalid” unless their

state has been updated by some evaluation procedure defined in the instance,

which means that instead of an explicit definition of parameter values, the

user can provide a specific description or an evaluation procedure allowing us

to evaluate the actual parameter values.

4. Dynamic ICs framework: technical aspects and tools 112

Figure 38: A high-level UML diagram of IC entities.

There are supplementary methods available for the user to determine any

intersections/collisions between the objects. These are needed to simplify

topological queries for dynamic objects - for instance, findout whether the

objects are touching or intersecting each other.

The information presented in Appendix A in tables 2 and 3 can be used

as an initial guidance for the implementation of the described dynamic IC

framework.

The independent definition of the components of an IC-based model is

not sufficient for a valid description of the model. The user needs to follow

a specific methodology in order to map his mental image of the model to a

practical model description, which can be used for evaluation. In the next

section we describe the set of steps necessary for the definition of a dynamic

hybrid model.

4. Dynamic ICs framework: technical aspects and tools 113

4.3 Methodology of model definition

There is no easy way to decompose a complex heterogeneous object or set of

objects in a set of IC cells and attributes. There may exist a number of ways

to achieve this. Nevertheless, here we provide a sequence ofactions typically

required for the definition of a dynamic IC model using the entities depicted

in fig. 38. The steps commonly required for the definition of the model are as

follows:

• Define a set of custom events having a specific meaning within the

model (see section 3.7), if such events are required.

• Define the “independent” cells initially present in the IC template (see

section 3.2). A list of IC cells can be retrieved after the decomposition

of the conceptual model. Each cell reflects an entity in the original

model with a set of properties. The list of these cells can be modified

over the course of the iterative model definition. The properties of the

cells and their optional reactions to a set of default or custom events

should also be defined here.

• Define the “independent” attributes initially present in the IC template

(see section 3.3). The list of these attributes can be modified over the

course of the iterative model definition. The properties of the attributes

and their optional reactions to a set of default or custom events should

also be defined here.

• Define the IC template(s) that will be used as the basis for thedefinition

of all the IC instances (see section 3.8). At this stage the cells and at-

tributes defined previously as well as the relations betweenthem should

be defined. Additional events and some predefined cells and attributes

from the library can be used at this stage. A set of relations between

the cells and between the attributes can also be defined here.A detailed

description of the IC template can greatly simplify the definition of all

the IC instances, because new instances can be described through the

introduction of minor modifications to an IC template definition.

• Define a set of IC instances over time. As we mentioned before (see

section 3.8), IC instances reflect states of the model which are struc-

4. Dynamic ICs framework: technical aspects and tools 114

turally different from each other (in terms of the cells, their attributes

or relations present in them as well as different behavioursof their com-

ponents). The user also provides a description of the periodof time over

which the modelling is performed as well as the list of sampling param-

eters of the model. Each instance can include a set of IC template cells,

attributes and relations. New cells, attributes and relations relevant only

to the current instance are also introduced here. Moreover,the reaction,

introduced in section 3.7, of any cell/attribute can be altered in order to

modify the behaviour of any cell/attribute over the life-span of the IC

instance. The relations between the attributes and the cells are also pro-

vided at this stage. Finally, the predicate providing the ICinstance with

validity information should also be defined here.

• Add a set of parameters specific to certain IC instances and global pa-

rameters reflecting the state of the model. These parameterscan be

used to gain a better understanding of the state of the model or to alter

its behaviour if it changes on the fly, as was outlined in section 3.9.

• Define the set of the modelling parameters (i.e. the modelling time

domain, the desired parameters of the model, the rendering parameters,

the simulation step and others).

The dynamic IC framework engine can now start model evaluation using

the provided model description. The result of the evaluation may include a

set of parameters evaluated over time, the complete states of all the entities

over the course of the modelling process or a sequence of the rendered frames

with a visual representation of the model at consecutive instances in time.

4.3.1 The high-level notation for the definition of an IC model

In this section we present a brief description of the new highlevel notation

used to describe a dynamic IC model.

Once a conceptual model has been designed according to the general method-

ology presented in the previous section, it needs to be transformed into a de-

scription which can be provided to the IC framework. This description can

then be used to build the internal data structures and to set up the algorithms

4. Dynamic ICs framework: technical aspects and tools 115

Figure 39: The structure of the textual IC model definition.

required for the evaluation of the hybrid model. Here we provide the most

relevant sections of a symbolic model description using syntax diagrams.

According to the definition of the dynamic IC model, described in section

3.9, the textual description of the model consists of the description of custom

events, dynamic cells and attributes, a template IC and a setof IC instances

(see fig. 39). Additionally, custom time-spans and commonlyused functions

(described in section 4.3.2) can be defined for the ease of modelling.

Let us now provide syntax diagrams for the most important parts of the

textual model description.

Custom events and their parameters are described first (see left of fig. 40).

The names of the events are used later by the cells and the instances in order

to provide reactions to these events. Additionally the time-spans of these

events can be defined here, if the moments and intervals of their occurrence

are known in advance.

After the events and time-spans the “persistent” cells8 present in a number

of instances of the IC are described. The user can define all the components

of the cells according to the definition in section 3.7 (see right of fig. 40).

“Source” operator “<-” is used to indicate that the description of the cell is

8These are entities that exist in all or a number of instances of the IC-based models.
Cells/attributes present in only one IC instance can be included within the description of an
instance, as the references to these cells won’t be used in any other IC instance of the model.
Otherwise, descriptions of the cells may become too complicated and overloaded with the
details of the model relevant only at specific moments of time. In a way this is similar to a
well known separation between global and local variables.

4. Dynamic ICs framework: technical aspects and tools 116

Figure 40: The syntax diagram for the definition of entities present in the
model.

4. Dynamic ICs framework: technical aspects and tools 117

Figure 41: The syntax diagram for the definition of reactions to events.

4. Dynamic ICs framework: technical aspects and tools 118

Figure 42: The syntax diagram for the definition of internal componentsof
the cell.

based on the definition of another cell (i.e. undefined valuesof the proper-

ties will be equal to the values of the “sourced” cell). The syntax for the

description of a set of important components of the cell is depicted in fig.

42. “Persistent” attributes are defined in a similar manner,according to the

definitions provided in section 3.3. The reactions of all IC entities are defined

in a similar fashion according to the definition in section 3.7. The syntax for

the description of these reactions is provided in fig. 41. Thereact function

allows the user to define reactions to custom events referenced by name. The

reactionParams include information regarding both the global and local

times at the time instant when a reaction is issued. Theupdate the reaction

is a predefined type of reaction to the modification of time, while init and

term reactions are issued when an entity is created and terminated respec-

tively.

Before all the IC instances are defined an optional definitionof an IC tem-

plate (see section 3.8) can be provided for the ease of further modelling. Fig.

43 illustrates the syntax used for the definition of the IC template and a set

4. Dynamic ICs framework: technical aspects and tools 119

Figure 43: The syntax diagram for the definition of template ICs and IC
instances.

of IC instances. In this case the “source” operator “<-” is used in order to

indicate that a particular IC template should be used as a prototype of an IC

instance (see section 3.9).

In the next section we will provide a brief overview of the language con-

structs which should help the reader gain a better understanding of the nota-

tion used for the definition of dynamic hybrid models presented later in the

text.

4.3.2 IC model definition using the notation

Here we provide a high level overview of each IC component in the order that

would be commonly used for the definition of a model. This is the same order

as the one used in the previous chapter when introducing the general dynamic

IC notation. This order is also reflected in syntax diagram offig. 39. Here

we use a pseudo Extended Backus-Naur Form (EBNF) notation toprovide an

illustrative description of the syntax.

4. Dynamic ICs framework: technical aspects and tools 120

Custom events and their parameters are described first (see diagram in fig.

40). The names of events are used later by the cells and the IC instances

in order to provide reactions to these events. Additionallythe time spans of

these events can be defined here. For instance:
// custom time-spans used in the model
TIMESPANS {

// span identifier and actual span parameters (default span is an
// infinite interval with time scale = 1.0)
spanName1 : TIMESPAN(...);

}

// description of events that can occur in a model
EVENTS {

// list of events.
EVENT NAME { // name of the event is used to provide a reaction

// set of parameters/properties describing this event (optional)
parameters {

paramName ::= TRANSFORM | VECTOR(...) | REAL(...) ...;
...

}
[priority ::= REAL;] // optional priority
}

}

The “independent” cells described in the previous section are defined next.

All the terms used for the definition of all the components of the cells are

taken from section 3.2. Here we provide the syntax used for the definition of

dynamic IC cells according to syntax diagrams depicted in figures 40 and 42:

CELLS { // list of cells starting with the name of the cell
// "<-" operator means to make an initial copy of a cell
cellName [<- sourceCell] {

// representation
type ::= P-CELL | F-CELL | C-CELL | B-CELL | T-CELL;
// actual shape (can be a composition of existing cells)
shape :: = MESH | FREP TREE | PREP PRIMITIVES |

COMPOSITION OF CELLS | ...;

dim ::= 0D | 1D | 2D | 3D | 4D; // // dimensionality
// domain of a this cell (e.g. bounding box)
domain ::= (VECTOR OF VALUES; VECTOR OF VALUES);
// optional life span parameter
[lifespan ::= (REAL VALUE;REAL VALUE) U

(REAL VALUE;REAL VALUE)...];
[priority ::= REAL VALUE] // optional priority value
// set of parameters/properties describing this cell
parameters {
// predefined parameters can be initialized too
[

translation(...);
rotation(...);
scale(...);

]
// define new parameters and their initial values:
paramName ::= VECTOR4(...) | VECTOR3(...) | REAL(...) ...;
...

4. Dynamic ICs framework: technical aspects and tools 121

}
// optional description of a deformation (can be external)
[deformation ::= ...]
...

Apart from the description of the static properties of the cell, the default

time-dependent reactions of the entities can also be described within the cell

definition (see fig. 41). If a different reaction of the entityis provided within

the description of an IC instance, this reaction is used instead of the default

one.
REACTIONS { // reactions to events

// default reactions (can be redefined in an IC instance).
init(REAL globalT) {...}

terminate(REAL globalT) {...}
// the framework provides the current global and local time
// within different time-spans for all reactions
update(REAL globalT, REAL localT, REAL lifeT, REAL dt){...}
// reactions to custom events.
react(EVENT NAME eventX, REAL globalT, REAL localT, REAL lifeT)
{

param = eventX.paramS;
...

}
...

}

Attributes are described in a similar fashion (according tothe definitions

in section 3.3). Unlike cells, attributes need to be associated with a mapping

to the N-dimensional space of attribute values rather than the definition of a

point set:

ATTRIBUTES { // list of attributes (defined similar to cells)

attrName [<- sourceAttr] {

//actual mapping from E
3 to E

N (can reference external funcs)
mapping :: = MAPPING;
// dimensionality of the attribute
dim ::= 0D..ND;
...

}

}

The template IC is described next. The template IC can be usedas a plat-

form for the subsequent description of the instances (see section 3.8). Thus,

an IC can reference a set of cells and attributes described previously (see

figure 43). Additionally, descriptions of relations between the cells and at-

tributes are provided, thus defining volumetric space partitions present in the

model.

4. Dynamic ICs framework: technical aspects and tools 122

TEMPLATE IC NAME : TEMPLATE IC {

CELLS {...} // references to a set of previously described cells

ATTRIBUTES {...} // the same for attributes
// relations between cells and attributes

ATTRIBUTES { ...
// default attribute (for any point outside any of the defined
// space partitions)
default ::= ATTRIBUTE NAME X;
// establish relations between the cells and the attributes
RELATIONS { cellNameA attributeNameU; ... }

}

The template IC can also include an enumeration of the topological and

dependency relations specific to the model being described.This is a template

of an IC that can be used as a platform for the subsequent description of the

instances. Thus, this section includes references to a set of cells/attributes

described previously and a description of relations between them9, 10 (see

diagram in fig. 43).

RELATIONS { // relations between the cells from CELLS
// list of containment relations (may provide names for them)
containment { cellName1 cellName2 [relationName]; ... }

boundary { ... // similar to continment }

dependency { // list of dependency relations between parameters
// dependency and its priority (optional - default being 1.0)
// or a HIERARCHICAL specifier - may also provide names.
cellNameA.paramNameX cellNameB.paramNameY [REAL | HIERARCHICAL]

[relationName];
// geometric dependencies
cellNameC.shape cellNameD.shape [REAL | HIERARCHICAL]

[relationName];
// attribute dependencies
attrNameU.mapping attrNameV.mapping [REAL | HIERARCHICAL]

[relationName];
// mixed dependency
attrNameS.mapping cellNameT.shape [REAL | HIERARCHICAL]

[relationName];
...

}

} // RELATIONS

Two simplified examples of model definition demonstrating how a tem-

plate IC can be used for an easier definition of a model are presented in sec-

tions 5.1 and 5.2.
9It is preferable to provide only a single description of the relations that remain unchanged

over the course of the modelling process. Every instance canin its turn have its own set of
relations valid over its lifetime.

10In certain models it could be useful to define a number of IC templates. The user could
then introduce minor modifications to these descriptions inorder to define new instances.
This is similar to inheritance in object-oriented programming, with an additional option to
remove components which are not present in any particular instance.

4. Dynamic ICs framework: technical aspects and tools 123

Finally, after all the preliminary steps the actual model description can

be provided. As was mentioned earlier in section 3.9, this model descrip-

tion includes the definition of different states of the modelreflected in IC

instances. The definition of IC instances is similar to that of template IC (see

fig. 43). The main difference being that the components of earlier introduced

templates and IC instances can be used for the definition of new IC instances.

IC INSTANCE NAME {

CELLS { // references to a set of previously described cells
CELL X CELL Y; // reference earlier described cells
USE TEMPLATE1.CELLS [\ { CELL1 CELL2}]; // from IC template
...
ATTRIBUTES {...} // similar to cells

REACTIONS { ... } // custom REACTIONS of cells/attributes
...

}

RELATIONS {

dependency {

// define new relations
cellNameU.paramNameS cellNameV.paramNameT [REAL] [NAME];
// use the IC template removing/adding relations
USE TEMPLATE1.RELATIONS.dependency [\{relX ...}] [U relY...];

USE instA.Rd[cellNameW, cellNameZ]; // use unnamed relations
...

}
...

}

The collection of parameters of cells/attributes that are considered impor-

tant or meaningful within this IC instance is defined in orderto provide a

better understanding of the state of the model. Such parameters can also be

defined for the whole dynamic model. These parameters can be used to track

the state of the model and for high-level interaction with it11.

STATE PARAMETERS {

stateParamsName ::= VECTOR(...) | REAL(...) ...;
// new alias for nested parameters
cellNameW.paramNameP newParamNameX;
instanceParamNameU newParamNameY;
...

}

As we mentioned earlier, custom reactions of IC entities canbe defined

with the description of IC instances. Finally, the predicate of an IC instance

is defined in a way similar to reactions of the IC entities.

REACTIONS { // reactions to default events

11This can be considered as one of the ways of parameterising the model.

4. Dynamic ICs framework: technical aspects and tools 124

init(REAL globalT) {...}

terminate(REAL globalT) {...}

update(REAL globalT, REAL localT, REAL lifeT, REAL dt) {...}
...

}

PREDICATE { // predicate of this instance

bool evaluate(REAL globalT, REAL localT, REAL dt) {...}

}

Real examples of model definitions using the aforementionedsyntax can

be found in chapter 5.

It is worth noting that certain lower-dimensional cells andrelations are

introduced into the IC “implicitly”. This happens when lower-dimensional

cells, boundary and containment relations can be evaluatedautomatically. For

instance, a surface of a volumetric F-Cell and a boundary relation between its

surface and an FRep object; edges and points of a mesh and the appropriate

relations between them, etc. These automatically added cells can be refer-

enced using a postfix. For instance, we may have a cell calledCellA in 3D,

its implicitly added cells (if any) can be referenced asCellA2D, CellA1D.

Loading of the shape (which may be a mesh or an FRep model) leads to an

implicit definition of the domain of the object (or a boundingvolume around

the object).

It is also worth mentioning that parameters have a special syntax for the

assignment of their values. By default the assignment of a value to a parame-

ter sets an absolute value. But it is possible to define a “relative value” using

a suffix after the name of the parameter. For instance:

translate.relative = globalT * velocity12

This construction means that only the relative value of thetranslate

will be modified (i.e., it will be added to the initial value oftranslate pa-

rameter). This can prove to be useful for the definition of motion/modification

that does not itself depend on the initial state of the object. For instance, when

the definition of the motion law does not require knowledge ofthe object’s

initial position.

A similar approach could be used for shapes. When we want to find the

12Alternatively, a special assignment operator syntax couldbe used (e.g. “a #= b” or “a ˆ=
b”).

4. Dynamic ICs framework: technical aspects and tools 125

global position of the geometry in space, we could use the “shape” property

for the shape defined in local coordinates and “shape.global” for the

transformed geometry in global space.

Additionally, there is an opportunity to define functions, which can be

bound to IC instances and thus use components defined in them (e.g. to mod-

ify the parameters of the cells). Certain parts of the predicate of an IC instance

can be identical to the predicate of another instance, thus an “attachable”

function could be used to reduce definition duplication.

function partialPredicate()
{

cell1.translate = ...;
cell2.shape = combine(cellX, cellY);

}

In this example the function issued by the instance can gain access to the

cells associated with it. If the referenced cells are not available, a compile-

time error occurs.

This augmented notation should be sufficient to allows us to start creat-

ing descriptions of time-dependent hybrid models (see chapter 5 for a set of

models described in this manner). These descriptions are parsed and con-

verted into intermediate model descriptions which can be passed to the IC

engine in order to evaluate the model over time. In the following sections we

will provide a more detailed description of the algorithms and data structures

used within the IC engine.

4.3.3 The process of model evaluation

Model evaluation is mostly hidden from the user. Users can customise certain

steps using custom reactions, but the main process of model evaluation is the

responsibility of the IC engine. The process of model evaluation can be fine-

tuned and parameterised through the provided model definition. This is more

of a declarative rather than an imperative description of the model. The main

focus here is on the definition of all model components and on the relations

between them. Reactions to events are also of a more declarative nature, as

often they simply provide the descriptions of the dependencies between dif-

ferent properties of the IC entities over time. The generation and processing

4. Dynamic ICs framework: technical aspects and tools 126

events and the issuing of reactions and transitions betweenthe instances is

performed by the IC engine.

Below we outline a high-level view of the processes occurring inside the

IC engine during the model evaluation process.

1. Update the global time of the IC using the parameters provided.

2. Call the update reaction of the IC (pre-update).

3. Update the local time of currently active instance.

4. Invalidate all the cells/attributes .

5. Evaluate the currently active instance.

(a) Issue a reaction of the IC instance to the modification of time (pre-

update);

(b) For every cell/attribute of this instance (in the order defined by the

dependency graph together with cell/attribute priorities):

i. Issue a reaction to the modification of time (pre-update),

ii. Evaluate the current transformations/deformations ofthe cell/attribute,

iii. Evaluate the new values of the time-dependent parameters

contained in the cell/attribute,

iv. Evaluate the shape of the cell,

v. Issue a reaction to the modification of time (post-update),

vi. Issue a reaction to other events (if any occurred);

(c) Issue a reaction of the IC instance to the modification of time

(post-update);

(d) Issue a reaction of the IC instance to other events (if anyoc-

curred);

(e) Evaluate the IC instance predicate/constraints:

i. If the IC instance is still valid, go to step1,

ii. If the IC instance is invalid, go to step6;

6. Call the custom update reaction of the IC (if it was provided).

7. Choose an appropriate instance from the dynamic IC:

(a) Evaluate the predicates of the available IC instances;

(b) Find a valid IC instance;

(c) Perform the transition from the previous IC instance to the new

IC instance:

4. Dynamic ICs framework: technical aspects and tools 127

i. Issue a reaction to the transition,

ii. Issue a reaction to the transition of all the active cells/attributes

present in the new instance;

(d) Enable the new instance.

8. Go to step1.

Some steps of this evaluation require additional detail as they present a

number of issues, which need to be resolved. We consider these details in the

next section.

4.4 The technical details of model evaluation

In the previous section we have outlined the high-level overview of the steps

required for the evaluation of the model. In this section we discuss some of

these steps in more detail expanding the description of the algorithms required

for the correct evaluation of a dynamic IC-based model.

4.4.1 Dependencies and the order of evaluation

The dynamic IC framework provides the means of establishingdifferent types

of dependency relations of the dynamic entities within the model. These re-

lations play an important part in a dynamic hybrid model, as they allow us

to compose assemblies of objects and to create complex dynamic structures

that change over time. We can define system components in a modular fash-

ion and integrate these into various models of higher complexity through the

application of dependency relations. Dependent entities are affected by their

master entities, which in their turn may depend of other entities, thus forming

complex dependency graphs reflecting semantic relationships existing within

the conceptual model. State transitions of master entitiesautomatically result

in the modification of the state of their dependent counterparts. One of the

challenging problems of model evaluation is related to the correct order of

evaluation of the entities that affect each other. Special algorithms taking into

consideration the mutual dependency relations between theentities need to

be described. Otherwise we cannot guarantee the validity ofthe evaluation of

4. Dynamic ICs framework: technical aspects and tools 128

correctly defined dynamic hybrid models. Here we provide an overview of

the issues relating to dependencies and discuss how these can be resolved.

The case of unidirectional dependencies

In a simple case only unidirectional dependencies are present in the model.

Thus, we need to resolve a set of dependencies between dynamic objects.

These are dependencies in which none of the dependent entities are used for

the definition of the state of the master entity. According toequation 3 in

section 3.5 this can be formulated as:

∀i ∈ Ii,Xm ⇒ ∀j ∈ Ii,Xd : (Cj, Ci) /∈ RdX

i.e. if the entityCi is a master entity in any of the existing dependency rela-

tions, none of its dependent entitiesCj is used as a master cell in any depen-

dency relation whereCi is a dependent entity.

For instance, this could be defined in the following way:

dependency {
cell Ci.paramX cell B.paramY; // cell Ci is a master cell
cell B.paramY cell Cj.paramZ; // cell B is a master cell

}

It is worth noting thatCj does not affect the state ofCi even through a set

of intermediate entities (i.e. through a dependency graph). In this case we can

retrieve a set of acyclic graphs representing dependenciesin the model. We

then apply topological sort (Cormenet al., 2001) to each individual depen-

dency graph in order to define the evaluation order for each ofthe entities. The

first node of every graph is then considered to be the root node. This root node

of the graph is the main master entity of the dependency graph. For any entity

in this graph we can find their “dependency depth”, i.e. the minimal number

of entities that need to be evaluated before the evaluation of this entity can be

invoked. We start the evaluation of the entities going from the root node of

the graph down to its leaves. Entities with equal “dependency depths” can be

arranged in a list of entities which can be evaluated concurrently. Addition-

ally, each entity can be assigned a priority value to modify its default order

of evaluation. This priority is taken into account when generating the list of

entities which require an update. This list is initially generated depending

4. Dynamic ICs framework: technical aspects and tools 129

on the order of the entity definition and the provided dependency relations.

Priorities are then used to locally sort cells within the “concurrent lists”13.

Additional optimisations relating to a number of actual state transitions of

the master entities affecting its dependent entities couldalso be considered.

Cartwright discusses a number of ways which can be used in order to reduce

a number of redundant evaluations keeping the model up-to-date considering

all the dependencies (Cartwright, 1998). One of the proposed algorithms is

theblock redefinitionalgorithm, which allows us to minimise the number of

model re-evaluations coupling a number of state transitions in a block instead

of performing state transitions of the model whenever any state parameter is

modified. A detailed overview of this topic is outside of the scope of this

thesis.

Figure 44: The initial set of cells and the dependencies between them.

Figure 45: The lists of topologically sorted cells.

13Additional hints can be provided by the user in order to determine whether he/she wishes
certain entities to be evaluated on the same processor or on adifferent one. This is similar
to the usage of CPU affinity masks for every running process that can be set by the user
on different operating systems. In theory concurrent cellscould also be evaluated using a
distributed architecture, which would be beneficial for IC models requiring a lengthy dis-
cretisation procedure.

4. Dynamic ICs framework: technical aspects and tools 130

Figure 46: The list of concurrently evaluated cells.

A simple example illustrating an approach for the model re-evaluation pro-

cess is presented in figure 44. Let us describe the dependencies of this model:

dependency {
cell 1.param cell 2.param;
cell 3.param cell 2.param;
cell 4.param cell 1.param;
cell 4.param cell 2.param;
cell 4.param cell 3.param;
cell 5.param cell 6.param;

}

In this example we have a set of six cells and a number of dependency

relations between them. For instance,cell 1 is a master cell for a dependent

cell cell 2 andcell 4 in its turn is a master cell for a dependent cell

cell 1. From the illustration we can see that there is a complex combination

of dependencies between the cells1 to 4. In order to resolve the order in

which these cells need to be evaluated we apply the topological sort algorithm

mentioned earlier (see fig. 45). The resulting sorted dependency graphs are

used to generate lists of entities that can be evaluated concurrently (see fig.

46).

The case of bidirectional and circular dependencies

The problem of dependencies becomes even more complex, if bi-directional

or circular dependencies are allowed. In this case the topological sort men-

tioned earlier cannot help us resolve the order of evaluation. According to

4. Dynamic ICs framework: technical aspects and tools 131

equation 3 in section 3.5, the presence of circular dependencies can be for-

mulated as:

∃i ∈ Ii,Xm , ∃j ∈ Ii,Xd : (Cj, Ci) ∈ RdX

i.e. if the entityCi is a master entity in any of the existing dependency

relations, any of its dependent entitiesCj may be used as a master cell in a

dependency relation whereCi is a dependent entity.

In the simplest case the presence of circular dependencies in a model could

be forbidden in order to avoid ambiguities. But bi-directional or circular de-

pendencies can also be a powerful tool for the definition of dynamic IC-based

models. Before going into a description of the issues arising from the pres-

ence of circular dependencies, let us consider a simple example illustrating

the usefulness of this type of dependencies.

Bi-directional dependencies can prove their usefulness ina model with

two or more interacting objects14. Figure 47 demonstrates the simplest case

of Newton’s cradle. This cradle consists of two pendulums. When the two

balls at the ends of these pendulums collide, they exchange their momenta.

This system could be defined within the dynamic IC framework using four

IC states (fig. 48). The first IC instance reflects the state of the model when

there is no interaction between the objects and only the firstball on a thread

is moving. The second IC instance reflects the moment when thetwo balls

touch each other and the impulse of the first ball is transferred to the second

one. In the third IC instance only the second ball is moving, while the first

one remains static. The forth IC instance is where the two balls are touching

again. This time the impulse of the second ball is transferred to the first

ball. Impulse transfer can be modelled through a unidirectional dependency

relation between the moving and a static ball. So that the velocity of one of

the balls is set to be equal to the velocity of the ball that is represented as a

master entity within the dependency relation.

The definition of four IC instances for such a simple model is unneces-

sarily complex and excessive. The description of the model would become

even more redundant with the increase of the number of pendulums present

14Here we refer to what is called a coupled systems in physics.

4. Dynamic ICs framework: technical aspects and tools 132

Figure 47: A simple model of Newton’s cradle.

Figure 48: The four states of Newton’s cradle.

in it. This is due to the fact that each state of the model has toreflect the

distinct behaviour of each individual component within it.The description

of the model we have presented above does not adequately reflect the nature

of the model, but it tries to mimic the behaviour of the entities at different

periods of time. Alternatively, we may apply the concept of bi-directional

dependency in order to provide an alternative definition of the model. This

new description only has two IC instances defined in it (fig. 49).

The update of the first IC instance leads to the change of the position of

both balls using their current velocities. In the second IC instance, a transfer

4. Dynamic ICs framework: technical aspects and tools 133

Figure 49: The two states of the cradle: (Left) One of the balls moving, no
collision (Right), One of the balls moving (collision situation).

of momenta of the two balls needs to be performed. The transfer of momen-

tum simply means that the velocities of the balls need to be exchanged at the

moment of time when they collide (and optionally reduced dueto natural en-

ergy losses). In terms of the dynamic IC framework, this means that there

is a dependency relation between these two entities, i.e. parameter value of

each entity depends on the parameter of the other entity. Thus, the set of

dependency relations (RdP) for this model consists of two pairs:

RdP = (B1, B2) ∪ (B2, B1)

As can be seen this IC model has a circular dependency betweencells B1

andB2, as bothB2 depends onB1, while B1 is being a master cell forB2

at the same time. The presence of circular dependencies poses the following

questions which need to be answered:

1. Which of the cells participating in a bi-directional dependency relation

should be evaluated first?

2. Which value should be provided to the dependent cell if thevalue eval-

4. Dynamic ICs framework: technical aspects and tools 134

uated by the master cell depends on some value of the dependent cell?

In fact, the same questions arise when we have a more complex model

where there are circular dependencies created through a chain of dynamic

entities. Some of these issues could be resolved automatically. For instance,

the cells participating in circular dependencies could retrieve values reflecting

the previous state of the cells they depend on, though the user should be given

the option to define the desired behaviour of the system in such situations.

One of the ways to achieve this is to use the aforementioned priorities. This

means that each dependency relation should be defined along with its priority.

If the priority is not defined explicitly, a default value is assigned to each

dependency relation.

Figure 50: A simple bi-directional dependency.

Let us consider the pendulum example shown, in figure 49, in more de-

tail taking its dependency relations into consideration. Figure 50 depicts the

dependency relation between the cellsB1 andB2:

dependency {
B1.paramX B2.paramY p1;
B2.paramV B1.paramW p2;

}

In this example cellB2 depends on cellB1. The priority of this depen-

dency relation isp1. Cell B1 in its turn depends on the cellB2. The priority

of this relation isp2. This circular dependency can be resolved if we distin-

guish between the different states of the cells at differentmoments of time.

Fig. 51 illustrates two different evaluation orders depending on the relation

priorities. If both priority values are equal, a higher priority value is assigned

to the dependency relation which was defined first.

Another option is to allow the user to request the re-evaluation of the cells

using all up-to-date states (fig. 52). In this case states of the cells need to

be evaluated more than once in order to reflect all changes occurring in the

4. Dynamic ICs framework: technical aspects and tools 135

Figure 51: Two different evaluation orders.

Figure 52: Two different user-controlled evaluation orders.

model as a reaction to an event. In the “Newton’s cradle” example, it is

sufficient to use previous states of the cells only. In the second IC instance,

ball represented by the cellB1 retrieves the velocity of ballB2 (implicitly the

velocity from previous state is provided), while ballB2 retrieves the velocity

of ball B1 (also using the previous state). Positions of both balls areupdated

accordingly (see fig. 49). After the evaluation of the predicate of this IC

instance, a transition is performed to the first instance, asthere are no further

interactions between the two balls. Only this time the initial velocities of the

balls are different, while description of their behaviour remains unchanged.

As we have mentioned before a topological sort cannot be applied. This al-

gorithm can be modified in order to resolve the dependencies in a model with

existing cyclic dependencies. We perform a modified topological sort algo-

rithm using priority values to “cut” the graph in order to retrieve the acyclic

4. Dynamic ICs framework: technical aspects and tools 136

dependency graph giving preference to the relations with the higher priorities.

The cells involved in a cyclic dependency relation with a lower priority are

evaluated using the previous state of the cells they depend on or by issuing a

second evaluation with up-to-date states as outlined above.

Let us illustrate this approach with a more complex example of cyclic de-

pendencies in order to illustrate how the evaluation order of the entities can

be determined. We modify the example shown in figure 44 by adding an addi-

tional dependency (see. fig 53). Now this dependency graph has a cycle in it.

In order to build an acyclic graph from it we use the values of the dependency

relation priorities. Figure 54 depicts two possible evaluation orders for this

case. The dashed cells refer to previous states of master entities.

Figure 53: The set of cells and dependencies between them.

Figure 54: Two different user-controlled evaluation orders.

More detailed information and possible solutions to the aforementioned

problem are outlined in (Cartwright, 1998; Adzhiev and Beynon, 1999). Cartwright

(Cartwright, 1998) additionally accounts for the improving performance of

4. Dynamic ICs framework: technical aspects and tools 137

model evaluation through the application of ablock redefinitionalgorithm,

which allows him to minimise the number of model re-evaluations coupling

a number of state transitions in a block, instead of performing the state tran-

sition of the model whenever any state parameter is modified.

A more elaborate example involving circular dependencies between mixed-

dimensional components of a time-dependent model will be provided in the

next chapter.

Additional tools related to dependencies

The dependency graph built after the establishment of the dependency re-

lations between the properties of the objects can be visualised to help the user

gain a better understanding of the dynamic model structure (fig. 55).

When dependency relations are established between properties, the val-

ues of the properties of the master entities are automatically reflected in their

dependent properties. Thus, a dependent entity does not need to be aware

of which precise cell it depends on. Dependent cells only request a value

for a property which can either come from a master entity, be defined by

the user during the modelling process or be a default value set at the initial-

isation phase. In the end, the behaviour of an entity is defined only using

its properties and we do not need to modify it every time a dependency is

changed. This allows us to “localise” the behaviour of an entity, so that it can

be put into a different model without being fully aware of thecontext of its

surrounding. On the other hand if such knowledge is required, an implicitly

defined dependency can be provided within the reaction of an entity. This is

achieved through the definition of a behaviour of a cell or of an attribute using

parameters of other entities “visible” to the entity15.

Another concept which may prove to be useful is that of visualdebugging.

A selected set of properties of the IC entities could be visualised automati-

cally. These values can be shown next to the cells or attributes (as numbers

or rendered as vectors) or printed using dynamic spreadsheet. This technique

could be useful for reflecting the changes of the property values over time.

For instance, the velocity or the acceleration direction could be rendered next

15“Visible” refers to a set of entities being active within current IC instance.

4. Dynamic ICs framework: technical aspects and tools 138

Figure 55: The dependencies between the properties and the dependency
graph between the cells.

to a cell as well as the path travelled by the cell or its trajectory defined by the

animation curve. These features require additional consideration and need to

be further investigated in the future.

4.4.2 Handling an event requesting a modification of time

In section 4.3 we mention that custom events can be defined in an IC model.

In the majority of cases these events are used within the model as a result of

meaningful state transitions. These events are only processed by the entities

defined within the model. The IC framework automatically fires time modifi-

cation events in order to signal that time has changed and allcomponents of

the model need to update their state. As we have mentioned in the description

of the framework, a reaction to the modification of time is invoked before

all states of the entities were validated (“pre-update”) and after all the values

have been validated (“post-update”). The required time step can be defined

by the user during the modelling session. It is also important to provide a

way which allows for specific modifications of time controlled by the entities

present in the model. This is an important feature required for simulation ap-

plications (Witkin and Baraff, 1997), where the required time step needs to

meet the simulation requirements. Otherwise significant precision errors will

4. Dynamic ICs framework: technical aspects and tools 139

(a) (b)

Figure 56: On-demand adjustment of time (a) Time-step back in time (b)
Going through all the previous states.

be introduced to the model which may lead to incorrect simulation results. In

the next chapter we also demonstrate an application where a time-step adjust-

ment of the model allows us to improve the results of space-time modelling

(see section 5.3.4).

Thus, we provide a mechanism allowing any entity to notify the IC frame-

work of a required modification of time. Entities can notify the system whether

they “accept” or “reject” the time currently set in the model. In response to

this, the IC framework retrieves the required time-step andmodifies the cur-

rent time unless a newly set time is accepted by all active entities. The noti-

fication of the IC framework is achieved through the generation of an event

by the entity (see fig. 56a). The framework then analyses the event. If the

change of time was requested and an exact time-step was defined, it waits for

the end of all the evaluations being performed at the moment (i.e., concurrent

update of other cells), it saves the current state of the IC instance (i.e., all the

entities whether they have already been validated or not) and it updates the

time, restarting the whole update procedure again. After the evaluation at the

requested moment of time, a valid instance needs to be evaluated at the mo-

ment of time originally requested by the system (fig. 56b). That is the reason

why the state of the IC instance needs to be saved beforehand.This is needed

in order to satisfy the requirements of the external system that could have

requested the state of the IC model at this particular momentof time. This

could be the rendering system reflecting the state of the IC using a specific

frame rate.

4. Dynamic ICs framework: technical aspects and tools 140

A textual description of the request for the modification of time is provided

in a very simple way:

// fire special event
// provide a relative step from current moment of time
IC::fireEvent(TIME REJECTED, newTime);

We use a function provided by the IC framework, which acceptsthe type

of event required to occur and a set of parameters of this event. In this case

the parameter is a relative time step from the current time instant. This mech-

anism is used for the definition of non-linear sampling in thespace-time do-

main described in section 5.3.4.

If during the evaluation process there was a request to step back to a mo-

ment of time earlier than the last correctly evaluated time,the evaluation pro-

cedure is terminated. Such a dynamic IC model is considered invalid because

of its non-deterministic behaviour. Let us demonstrate this by using the ex-

ample shown in fig. 56a. Here the model was successfully evaluated at the

moment of timet2K1. The IC framework increased the time to the moment of

timet3K1. One of the entities requested a step back in time a number of times.

If the newly requested time is before the moment of timet2
K1, the provided

IC model is considered to be invalid.

4.5 A brief description of the IC API

In previous chapters we have presented a description of the dynamic IC frame-

work. We have also described a high-level notation which could be used for

the definition of the actual hybrid models. In order to evaluate the IC model

using its textual definition we need to perform a translationfrom this defi-

nition to a set of programming terms. This means that we need aprogram-

ming interface allowing us to map the conceptual model to a computer model,

which can then be evaluated by the IC engine using the algorithms described

in this chapter. This programming interface is called an IC API (Application

Programming Interface). As mentioned earlier in the text, ICs allow the in-

corporation of an object defined in a number of diverse representations. The

behaviour of such objects can be defined using predefined animations, pro-

cedural descriptions or a mixture of both. This means that the IC API has to

4. Dynamic ICs framework: technical aspects and tools 141

support a number of techniques for static and dynamic modelling. Figure 57

illustrates the structure of the underlying components of the IC API allowing

us to achieve this.

Figure 57: The structure of the IC API and related tools.

The IC framework allows us to incorporate a number of the existing rep-

resentations within one model. Thus, it requires the support of FRep, BRep,

PRep and possibly other representations. Primitives and operations specific

to each representation are implemented as separate independent components.

The animation API allows us to provide additional functionality for the def-

inition of complex animation sequences of heterogeneous objects. Addi-

tional component implementing IC relations and dynamic dependency rela-

tions helps us to build compound relations between the objects in a dynamic

hybrid model. The IC API uses all these components in order toaccommo-

date hybrid models in a unified way and to provide the user witha set of tools

required for the actual modelling. IC API allows the user to mix models of

different representations using the tools available for each of them.

In section 4.2 we have outlined the main entities incorporated in the IC.

The IC API reflects all the terms introduced in this thesis andprovides a way

of working with IC entities in order to be able to define and evaluate the

model. The object-oriented paradigm was chosen as one of theappropriate

approaches for implementing this framework. Each type of entity is mapped

onto a separate class in the API. These classes and relationsbetween them

are depicted in figure 58 (see fig. 38 in section 4.2 for an overview of the

components of IC entities). Each class has a set of properties and methods to

manipulate the entities.

4. Dynamic ICs framework: technical aspects and tools 142

Figure 58: The UML diagram of the main classes present in the IC API.

The high-level UML class diagram (Booch, 2004), shown in figure 58 re-

flects the relations between the main classes of the IC API. Aswas outlined

earlier aCell encapsulates aShape, aDeformation, a Timespan/Life

span, a Space domain , sets of Parameters and Reactions. An

IC Instance includes sets of Cells, Reactions, Attributes,

Parameters and Relations as well as aSpace domain, aPre-

dicate and aTimespan/ Life span. Finally, a Model is composed

of Instances, and Parameters reflecting the state of theModel and

Events, occurring in the model at any moment of time, and a globalSpace

domain within which the model is defined.

A more detailed description of every entity and its components is pre-

sented in table 2 in Appendix A. All the components present inthis table are

available to the user and can be set-up accordingly. All the entities reflected

in the API are provided to the user in order to allow him to directly map a

theoretical description of the model, defined in chapter 3, to an actual model

definition that can then be evaluated . But the main idea of providing the API

is the abstraction of the exact application that the IC API isused for. This

means that the functionality provided by the IC framework can be integrated

4. Dynamic ICs framework: technical aspects and tools 143

into different applications.

The model can be defined explicitly using the API implementedfor a gen-

eral purpose object oriented programming language. We havechosen C++

(Stroustrup, 2000) as the main programming language used for the imple-

mentation of the IC API. C++ is still one the most widely-usedprogram-

ming languages, providing a good trade-off between the high-level features

present and the performance that can be achieved with it. Another impor-

tant factor is the availability of a large number of third-party libraries allow-

ing the easier integration of existing static and dynamic modelling techniques

(Overmars, 1996; Cignoniet al., 2008; McNeel and Associates, 2010; Lavoie,

2010; Junker, 2006).

A domain specific language (see section 4.3.1) can be used to provide a

higher level description of the model, while a translator performs the map-

ping from the DSL to the C++ IC API. This DSL can be implementedusing

ANTLR (Parr, 2007) for both the lexer and the parser. The output can then

be a set of appropriately set-up IC data structures or an abstract syntax tree

(AST) describing the IC-based model. An IC-based model can then be built

using this description. The evaluation of the AST could be performed using

a simple stack-based virtual machine with additional memory storage. In-

stead of our own implementation of this VM, the Low Level Virtual Machine

(LLVM) infrastructure could be used (LLVM Developer Group,2010). The

LLVM can help us significantly reduce the development times and to improve

the performance through its run-time compilation to nativecode (see section

4.6.8).

A special modelling environment is needed in order to provide a powerful

way of working with the model. This environment should include a way of

defining and refining a model on the fly, which assumes the availability of

a discretisation and rendering engines reflecting the states of the model over

time, along with an advanced scripting engine allowing the user to modify the

model description (see figure 59). The process of model definition and analy-

sis can be simplified using a set of visual metaphors reflectedin a specialised

Graphical User Interface (GUI). The complete modelling environment based

on the IC API is depicted in figure 60.

4. Dynamic ICs framework: technical aspects and tools 144

Figure 59: The IC modelling work flow.

Figure 60: Full structure of the modelling environment and basic toolsfor
IC modelling.

4. Dynamic ICs framework: technical aspects and tools 145

4.6 The FRep API as a subset of the IC API

In the previous section we have described the IC API allowingus to perform

modelling using the dynamic IC framework. The dynamic IC framework in

its turn incorporates a number of the existing representations. The framework

has to provide full support for the majority of the existing representations in

order to allow the user enough flexibility for the definition of diverse hybrid

models. A full implementation of the framework requires significant human

and time resources. Thus, a full implementation of the framework is outside

of the scope of this thesis. Here we specifically focus on the implementation

details relating to the definition of the underlying FRep models incorporated

in a hybrid model. We have already mentioned that the FRep is avery pow-

erful representation in its own right, which is highly suitable for the defini-

tion of dynamic heterogeneous objects (see section 2.2.3).Hence, support

of FReps in the IC framework significantly enriches the feature set avail-

able for the definition of dynamic multi-dimensional heterogeneous objects.

Another important reason to pay particular attention to theimplementation

of FRep components, within the IC framework is the absence ofa common

FRep toolkit, which would allow us to take advantage of all the significant

aspects of this representation. Unlike the case of BReps andcertain types

of PReps, there is only a limited set of tools available for FRep modelling.

These tools have been developed for a number of specific applications and

cannot be used outside of them. These FRep-related tools were not designed

for integration into other applications and cannot easily be plugged into an

IC framework. This effectively means that there is no commonway to work

with FRep models outside of the set of existing tools (more details are pro-

vided in section 4.6.1). In order to be able to define FRep models we need to

provide an FRep API allowing us to define Hypervolume objectswhich can

be integrated into our hybrid model.

In this section we will describe the existing approaches to FRep model

definition. We then propose and describe our novel FRep API allowing us

to work with FRep models within the IC framework or independently. We

present details regarding our design decisions, implementation details, case

studies and specifics of the integration of our FRep API into the IC API. Fi-

4. Dynamic ICs framework: technical aspects and tools 146

nally, we describe an easy way of multilevel extensions introduced to the

FRep API together with possible performance improvements of the FRep

model evaluation.

4.6.1 HyperFun

At the moment the main modelling tool used for the creation ofFRep mod-

els is a high-level programming language calledHyperFun (Adzhievet al.,

1999).HyperFun is a C-like language supporting a set of built-in FRep prim-

itives and operations. The available set of FRep entities can be extended by

the introduction of new primitives and operations to the core FRep library.

Another way to extend the modelling system is to define new entities using

the HyperFun language. HyperFun is an interpreted language. It is thus

a platform independent language (obviously one needs to compile the inter-

preter itself for the target platform). The interpreter canalso be integrated into

external applications if required.HyperFun is a powerful language allowing

us to describe complex Hypervolume objects in multidimensional space. Un-

fortunately it has a number of drawbacks as well:

1. The interpreter is strongly tied to the part of the programthat constructs

the model tree. It is hard to create and manipulate an FRep model

without actually describing it in theHyperFun language. There is no

intermediate layer between the internal model representation and the

interpreter building this representation from the textualdescription of

the model. Such an intermediate layer could allow third party applica-

tions to create or modify the model in a unified way. This problem also

complicates the process of FRep modelling.

2. As HyperFun is an interpreted language, it is relatively slow (Uhlir

and Skala, 2003), which is especially noticeable with complex mod-

els. Even though the textual model definition is parsed only once and

converted into custom byte code, evaluation of the FRep models re-

quires this byte code to be executed a large number of times. Direct

compilation of an FRep model to platform specific native codecould

significantly decrease the time needed for model evaluation. It is also

important to note thatHyperFun interprets each definition of the model

4. Dynamic ICs framework: technical aspects and tools 147

irrespective of the results of previous evaluations. In theory tracking

the changes between different iterations of the working process with

the same model could be used to determine which parts of the model

require re-evaluation. Partial model evaluation is also crucial for inter-

active modelling, so that the model is subsequently evaluated only in

the areas locally modified by the user.

3. HyperFun was designed to be a simple lightweight language. Users

are mostly working with functions, using a set of simple built-in geo-

metric primitives and operations. Each of these functions is evaluated

for each point in the modelling space. Thus it is not possibleto define

an object which would require a particular type of pre-processing that

only needs to be performed once. The definition of complex models

requiring non-trivial space transformations and inter-object relations

forces the user to think of the model in terms of a constructive tree. An

object-oriented approach on the other hand could hide some of these

concepts and let the user work with the model at a higher levelof ab-

straction. FRep entities could be manipulated through the modification

of their properties and combined together creating new entities. At the

same time, there could also be another intermediate layer between the

model and the user allowing him/her to manipulate the model at a lower

level.

4. TheHyperFun language can be used for multidimensional modelling.

The user can get access to an arbitrary number of “multimedia” coor-

dinates, but FRep entities within the model do not have an associated

property characterising their dimensionality. Moreover,the library of

FRep primitives is limited to only 3-dimensional objects. This over-

complicates the process of mixed dimensional modelling.

From the above enumeration of the most notable limitations of HyperFun

it is clear that we need a more general and extensible way for the FRep model

definition. We need to directly map all the existing formal FRep concepts to

a programming paradigm, so that every part of the FRep framework could be

available to the end-user, regardless of the application area and the type of the

problem being addressed. We call such a programming framework the FRep

4. Dynamic ICs framework: technical aspects and tools 148

Application Programming Interface (FRep API).

4.6.2 Mapping FRep concepts to the FRep API

The basic structures in this section are defined in UML (Booch, 2004) and can

be implemented in various object-oriented programming languages. How-

ever, in this work we decided to use the C++ programming language for our

implementation, as was explained in section 4.5. C++ can also be more easily

tied to other applications through the use of dynamic linking. This is impor-

tant both for the integration of the API and its on-the-fly extension. In that

way even FRep entities defined in a different programming languages can be

used together.

The mapping of all the FRep concepts to programming terms allows us to

flexibly define FRep models in a unified way. Concrete FRep models can be

built directly from a theoretical description. Such a capability can be used by

a new interpreted language supporting the entire set of FRepfeatures (both

existing and those that may be introduced in the future), a custom interactive

FRep modeller or a third party modelling software packages and a wide range

of other applications that could benefit from the use of FRep models. Every

FRep entity (be it a primitive, an operation or a complex object) needs to be

directly mapped to the FRep API. We intend to allow the user tomanipulate

any entity in a unified way and also to have access to its customproperties.

The FRep entity

All concepts available in the FRep and Hypervolume modelling theoreti-

cal frameworks are mapped to a set of technical terms, in order to provide a

transparent way of model definition using the API. We start the FRep API de-

scription with the introduction of a base interface used by all the actual FRep

entities present in the model. The basic model definition andmanipulation is

done using FRep entities. These entities are inherently functions with a set of

additional properties and methods.

An ENTITY BASE T is an interface reflecting all the properties common

to FRep entities (see fig. 61). Since all of the entities can berepresented as

functions, each entity has anevaluatemethod which retrieves a coordinate

4. Dynamic ICs framework: technical aspects and tools 149

vector (input parameter) defined in the modelling space of the appropriate di-

mensionality, performs a custom function mapping (evaluation), based on its

internal parameters and provided coordinates, and returnsits result for a spec-

ified dimensionality (fig. 61). This method can have more thanone instance

allowing us to evaluate all possible intervals of function values within certain

area using interval or affine methods (Junioret al., 1999; Flórezet al., 2008;

Knoll et al., 2009; Fryazinovet al., 2010). This may be needed in order to

estimate the function values within provided region of space.

Figure 61: A simplified UML diagram of an FRep entity

All the important properties of an entity are stored in its parameters. The

PARAMETER TYPE is an important data type which allows us to manipu-

late values of different types in a uniform way. For instance, the radii of an

ellipsoid or the line segments of a convolution surface can be stored and ma-

nipulated in the same way. The user-defined data types can also be wrapped

around. ThePARAMETER TYPE also allows us to distinguish between differ-

ent data types stored within it, which makes it possible to perform robust run-

time type checks validating the data structures (i.e. guaranteed type-safety)

and the connections established between them. Another important factor re-

garding the exposed universal parameters is that they can beused within a

hybrid model. Parameters of entities defined in an FRep modelcan be manip-

4. Dynamic ICs framework: technical aspects and tools 150

Figure 62: The high-level overview of the types of FRep entities.

ulated and shared by entities specified in different representations in a unified

way (see details of integration of the FRep API into our IC APIin section

4.6.7). For instance, the line segments defining convolution surfaces can be

driven by the skeleton used for the animation of a polygonal characters. An-

other example could involve a non-linear fitting procedure,which modifies

the weights of distinct convolution surfaces in order to embed the resulting

FRep geometric object into a polygonal shape (see. details in 5.4). There is

also the possibility of coupling traditional computer animation techniques to

define the values of particular parameters over time. These values can sub-

sequently be interpolated using one of the existing interpolation techniques.

Alternatively values of these parameters can be defined in a procedural man-

ner through the same unified interface. This complies with the requirements

for IC entities defined in a hybrid model.

Figure 61 only reflects the main characteristics of theENTITY BASE T

class. Additionally, each entity provides a method for analytical intersection

with a ray (if such method is available for this type of entity), a method for

classification of the entities (see figures 62, 63 and 64) and some other func-

tionality required for flexible manipulation of FRep models.

As explained in section 2.2.3, there are a number of fundamentally differ-

ent entity types available in FReps. We will a provide description of each of

these outlining their specifics.

The FRep primitives

4. Dynamic ICs framework: technical aspects and tools 151

Figure 63: Types of primitives available in the FRep API.

4. Dynamic ICs framework: technical aspects and tools 152

Figure 64: Types of entities available in the FRep API.

4. Dynamic ICs framework: technical aspects and tools 153

Figure 65: The difference between a primitive and an operation.

An FRep primitive simply returns the result of the functional mapping as-

sociated with it. This result only depends on the values of the internal param-

eters of a particular primitive. These can be simple parameters of algebraic

surfaces (e.g. the radii of an ellipsoid or the dimensions ofa box) or sets

of parameters calculated by the primitive during a pre-processing step (e.g.

the coefficients used by interpolating implicit surfaces).The list of available

primitives is shown in fig. 63.

The FRep operations

Unlike FRep primitives FRep operations required a set of dependent in-

put parameters, i.e. values of these parameters depend on the result of the

evaluation of other FRep entities, be it primitives or operations (see fig. 65).

An FRep operation initiates a request for the evaluation of the entities it is

applied to (see fig. 66). An FRep operation does not depend on the type of

FRep entity it works with, as it only needs to retrieve the values resulting

from the evaluation of the entity it is applied to. The coordinates provided to

other evaluated entities can be modified. That is how affine transformations

or non-linear space mappings are implemented.

4. Dynamic ICs framework: technical aspects and tools 154

Figure 66: The dynamic diagrams illustrating the evaluation of different
types of entities.

4. Dynamic ICs framework: technical aspects and tools 155

All the connections between the entities are done with the help of an ad-

ditional data structure described in detail later. This approach allows us to

separate the concepts of the FRep entities and the constructive FRep tree de-

scribing the model. An entity located at the root of a constructive tree implic-

itly initiates the evaluation of the whole tree when requesting the evaluation

of the entities that it works with. These entities in turn request the evaluation

of the entities that they work with. This process is repeateduntil primitives

are requested to be evaluated. The list of available operations is shown in the

fig. 64.

Attributes

The combination of geometric objects and attributes allowsthe user to

construct Hypervolume objects. This is a crucial feature for the definition of

complex heterogeneous objects. Attribute objects can be added to the tree

just as any other regular FRep entity. After such integration the FRep tree is

treated as a Hypervolume object. Evaluation of such an FRep tree results in

a geometric object (a space partition) and a set of attributes assigned to it. A

brief list of the available entities working with attributes is shown in fig. 64.

The FRep tree structure

It has already been mentioned that we aim to provide different levels of

model representation. This will allow us to work with the model in terms

of geometric modelling, in order to create new geometric primitives, and to

combine these using operations. Equally, there should be anoption to ma-

nipulate the model at a lower level in terms of the constructive tree and its

nodes. Constructive tree nodes are used to establish connections between

the entities (seeENTITY NODE T in fig. 67). The nodes are elements of

the entire tree structure. They also perform the validationof the connections

being established between entities and they ensure that non-compatible enti-

ties are not combined together. TheENTITY FACTORY T is used to create

the FRep entities registered in the API (more details are provided in section

4.6.3). Additionally, the FRep tree can be easily modified onthe fly through

the replacement of entities stored inside its nodes. This can be used for quick

modification and parameterisation of the model.

4. Dynamic ICs framework: technical aspects and tools 156

Figure 67: The FRep entity UML-diagram.

4. Dynamic ICs framework: technical aspects and tools 157

Once a tree structure has been validated, its actual evaluation can begin.

Evaluation of the tree is performed in two phases. Each entity is provided

with the current coordinates of a point where the function orattribute values

need to be evaluated. In the first phase each entity modifies the coordinates

of the point passed to it, if it is required to do so (see fig. 68). The modified

coordinates are then passed to the entities contained in a node down the FRep

tree. This procedure is repeated recursively until a leaf ofthe tree is reached.

At this point the second phase of the process is initiated (see fig. 69). Each

entity evaluates a value or a set of values associated with the supplied point in

space and other parameters. The evaluated results are then transmitted to the

entity contained at the higher levels of the tree, until the root node is reached.

The result evaluated by the root node is considered to be the result of the

FRep tree evaluation.

Figure 68: The first phase of the FRep tree evaluation.

The tree or sub-tree structure, which is built using nodes, provides addi-

tional functionality allowing us to work with an FRep tree. This functional-

ity includes searching for particular entities or entity types, the modification

of the tree structure, tree manipulations (such as copying,subtree replace-

4. Dynamic ICs framework: technical aspects and tools 158

Figure 69: The second phase of the FRep tree evaluation.

ment and replications), the per-node application of user-defined algorithms

and other functions.

4.6.3 FRep API extensibility

The standard interface for an FRep entity described in 4.6.2helps unify the

whole set of currently available entities as well as any new ones that could po-

tentially be added in the future. For any new entity we will need to implement

an interfaceENTITY BASE T (see fig. 67). If this is done, any such new en-

tities can be used in an FRep tree as any other entity. Hence the addition of a

new FRep entity is pretty straightforward.

One of the important features we need to provide is the dynamic creation

of concrete instances of FRep entities at run-time. It is also important to

be able to work with diverse entities in an abstract manner; so that we do

not need to access the source code of the implementation of the entity. This

mechanism can be implemented with the help of a design pattern “factory

method” (Gammaet al., 1995). Each entity needs to be registered with a

4. Dynamic ICs framework: technical aspects and tools 159

global factory object of typeENTITY FACTORY T. Registration means that

each entity has to provide its unique identifier, its internal parameter descrip-

tions and the method which can be used to create a new instanceof this entity.

All the entities are later created through requests to the factory object that only

needs the identifier of the entity being created. Further modifications of the

entity can be performed through changes to its parameter values in a unified

manner. This allows us to extend an existing set of FRep entities through

their dynamic registration with a global factory object. This can be done at

run-time allowing us to use the entities which were unknown at compile time

(in a way similar to plug-ins in some software packages). Newentities devel-

oped by third parties can be added without any modification orrecompilation

of the core FRep source code. This conforms to the concept that each FRep

entity should be thought of as a black box with a common set of inputs and

outputs.

4.6.4 FRep model manipulation

One of the essential goals of the FRep API is to provide the user with a soft-

ware framework which can be employed by a number of external applications

depending on their specific needs (see fig. 70). It should be possible to in-

tegrate the produced FRep models into a hybrid model defined within an IC

framework or to use the resulting FRep models independently. This also im-

plies that there should be different ways to define the actualFRep model using

the underlying features provided by the FRep API.

An FRep model could be created and manipulated directly using a high-

level programming language. On the other hand the functionality provided

by the API could also be exposed to a scripting language. Herewith the

user is given the ability to define a model at a higher level of abstraction

without the need to recompile the code in order to see the results of the

model evaluation. Support for one of the widely-used scripting languages

can be provided in a relatively simple way. For instance, allof the registered

FRep entities can be exposed to Python (Python Software Foundation, 2009)

with the help of the Boost.Python library (Abrahams and Grosse-Kunstleve,

2009). It might be easier for users unfamiliar with high-level programming

4. Dynamic ICs framework: technical aspects and tools 160

languages to define FRep models using such a popular interpreted language.

Another advantage of this approach is the fact that modification of the source

code written in Python does not require recompilation. Obviously, compared

to compiled C++ code, poorer performance of the model evaluation will be

achieved. This is acceptable at the proof of concept stage. Alternative script-

ing languages could be used including a custom domain specific language

built around FReps. This could be a language similar toHyperFun or Hy-

perJazz(Adzhievet al., 1996).

Figure 70: The interaction with the FRep API.

Another way to define an FRep model is to provide a user with a graphical

user interface (GUI). According to a“Model-View-Controller” design pat-

tern (Gammaet al., 1995) (see fig. 71a) can be introduced to the model (in

this case the FRep model) via a controller (in this context a layer performing

the processing the user input and mapping it to calls of the FRep API). The

current state of the model is reflected in a view. This can be a GUI or spe-

cific textual information reflecting particular propertiesof the FRep model.

4. Dynamic ICs framework: technical aspects and tools 161

This is the standard method of de-coupling the specific modeldomain layer

from the presentation layer. The separation of responsibilities between the

model between the view and the controller allows us to concentrate on each

task independently and to change existing components or to introduce new

components to the system more easily.

A custom GUI built around an FRep API could be designed to provide a

way to create and to manipulate the FRep model (fig. 71b). A generic GUI of

existing third party software packages could also be used tomanipulate the

FRep model. In this case we need to provide an intermediate layer between

the FRep API and the specific API of the modelling applicationwe wish to

extend. We provide a concrete example of the FRep API integration into

a third party modelling software package, namely AutodeskR© MayaTM, in

section 5.7.

Different ways of FRep model manipulation are reflected in figure 70.

(a) (b)

Figure 71: A Model-View-Controller diagram: (a) The general design pat-
tern (b) The MVC and FRep API

4.6.5 The FRep model format interchange

The Function representation is a universal model representation which can be

implemented in different programming languages. In specific cases we might

wish to convert a particular FRep model from its internal representation to an

FRep model described in an alternative fashion. This is important in order

4. Dynamic ICs framework: technical aspects and tools 162

to allow the user to exchange FRep models between different modelling en-

vironments and available programming languages. This might be beneficial

from a performance point of view or it might be required for a specific appli-

cation area. Thus, we need to provide a simple way that allowsus to store an

FRep model, which can then be mapped to the required representation.

In order to achieve this we can borrow a technique from computer science

called serialisation. Serialisation is a technique used toconvert a computing

object into a set of data, which can then be used to reconstruct the original

object, so that the object can be stored into a storage mediumfor later re-

trieval. The piece of program code that performs this serialisation is called

the serialiser. In our framework, the serialiser can be thought of as the com-

ponent that is responsible for the serialisation of an abstract FRep entity. The

serialiser is aware of the particular type of an FRep entity and its parameters

and it provides the functionality that converts this information to an appro-

priate representation (fig. 72). The serialiser manager retrieves information

concerning the internal connections between various FRep entities and the

global properties of the model and maps this information to an appropriate

representation.

Figure 72: The entity serialiser.

A number of serialiser managers can be registered. Each suchmanager is

responsible for the conversion to a specific representation. It is important to

note that the FRep API itself has no information about other possible repre-

4. Dynamic ICs framework: technical aspects and tools 163

sentations. It only provides a common way to get access to theinformation

regarding the entities and the structure of the model, whichin turn can be

converted into another representation by a set of concrete serialisers. The

serialisers are registered in a way similar to the entity registration. Each seri-

aliser is required to provide the unique type identifier of anentity that it can

serialise. During the process of the FRep model conversion,the methods of

this serialiser will be invoked and it will be provided with an entity which re-

quires conversion. A set of serialisers and serialise managers can be extended

at any time to support the ability to export a description of the FRep models

to other specific representations.

One interesting application of run-time FRep model serialisation is related

to model compilation. The description of an FRep model can beexported to

one of the languages allowing compilation of the code to a dynamically linked

library. In this instance the entire model can be serialisedand compiled for

efficient evaluation. The compiled model can then be registered as a single

FRep entity at run-time and be used in the FRep model instead of a complex

constructive tree. In some cases this could lead to a performance boost, since

an advanced compiler would produce native code which is highly optimised

for a specific target platform. Fig. 70 illustrates this idea.

The serialisation approach is also a natural way to convert the internal rep-

resentation of FRep models to hardware specific descriptions. For instance, a

constructive tree consisting of FRep primitives and operations can be directly

converted to a programmable hardware shader that can be usedto perform fast

ray-tracing on the GPU (Fryazinov and Pasko, 2008). Such a conversion and

shader compilation can happen on the fly, which would allow the user to see

the model he or she is working on in real-time (or near-real time depending

on the model complexity).

We also need a unified way of model representation in order to allow

various applications to exchange the produced models. Thisshould be a

lightweight format, which can easily be loaded and saved. Itis preferable to

take advantage of a human readable format, to allow the usersmake manual

modifications of the model. We have chosen the Extensible Markup Lan-

guage (XML) (W3C, 2010) as our main format for FRep model interchange.

4. Dynamic ICs framework: technical aspects and tools 164

This is a widespread format which can be used for storage of arbitrary data.

Working with XML can be done using a large set of libraries available for

different programming languages and hardware platforms. An FRep tree is

saved in a hierarchical structure. Parameters of the entities are saved as XML-

attributes of different data types. An exemplar FRep model and its serialised

definition are shown in fig. 73.

Figure 73: The FRep entity and its XML definition.

FRep models saved in FRep XML format can be directly loaded bythe

dynamic IC framework through the IC API. Such integration ofFRep models

into an IC API simplifies the way of handling the F-cells within the IC frame-

work and makes the process of integration of FReps into a hybrid model rather

trivial.

4. Dynamic ICs framework: technical aspects and tools 165

4.6.6 The FRep library

In section 4.6.3 we described the requirements for the extension of the FRep

API. This is a straightforward process, which requires onlya basic knowledge

of the FRep API. Apart from adding the entities to the API we need to provide

a way for them to be serialised in order to be able to save and restore the

state of the FRep model (see section 4.6.5). Certain types ofaction required

the addition of the FRep entities to the API and their serialisation could be

automated, thus allowing us to avoid repetitive work. In this section we will

describe the approach that allows us to achieve this.

One of the essential goals of the FRep API is to provide the user with a

software framework which can be employed by a number of external applica-

tions depending on their specific needs (see fig. 70). The mainapplication we

are concerned with is the dynamic IC framework. But we need toconsider a

way of simplifying the integration of the FRep API into otherapplications as

well. The main and most common way of communication between the FRep

API and higher-level applications using FReps is through the parameters of

the FRep entities and through the creation of complex FRep trees contain-

ing the aforementioned entities. As was mentioned before there is often a

necessity for the presence of an intermediate level of the application, which

performs the mapping of the FRep entities to application specific terms. Here

we propose an approach which allows us to simplify the process of interme-

diate layer generation.

Each entity encapsulates a predefined set of its characteristic properties

which include16:

1. Internal parameters. These parameters are a primary way of manip-

ulating the entity and adjusting the resulting shape or its volumetric

attributes.

2. A set of input parameters. Input parameters are required by FRep

operations in order to combine the function values of the operands.

This parameter set is empty for FRep primitives.

16Each parameter and procedure may have its counterpart required for the evaluation of
function interval. Functions performing interval evaluation may be specialised depending on
the interval estimation method or the specific mathematicalfunctions being used.

4. Dynamic ICs framework: technical aspects and tools 166

3. A set of temporary parameters. Temporary parameters are normally

those that depend on the internal parameters and need to be re-evaluated

only when the internal parameters they depend upon are modified.

4. The main evaluation procedure. In this procedure the resulting func-

tion value is evaluated. Each FRep entity provides this procedure in

order to perform a mapping of the coordinates from the modelling do-

main to a scalar or a vector value.

5. The coordinate modification procedure. This procedure performs

the space-mapping. This is required for the first phase of theFRep tree

evaluation (see fig. 68).

6. The operand-dependent coordinate modification procedure. This

procedure is similar to previous one. The main difference being them

is the fact that this procedure needs a value provided by its operand(s)

in order to modify the coordinates of a point (for instance, it may be

used for shape-driven deformations (Schmittet al., 2003)).

7. The temporary parameters evaluation procedure. A procedure de-

scribing how temporary parameters should be evaluated.

This description can be provided in a human readable format,which is

then parsed and transformed into an Abstract Syntax Tree (AST) or even into

an Abstract Semantic Graph (ASG). Having a valid description of the entity

in this format, we can produce the code necessary for the implementation of

FRep API for different software and hardware platforms. In order to do so,

we need to provide a specific translator which traverses the AST and converts

it into the desired format. Figure 74 illustrates how entities for the C++ FRep

API can be added. This is useful for the initial code generation where a certain

amount of manual work is required. But more importantly, this simplifies the

maintenance of the APIs across different platforms ensuring that they are all

consistent. Otherwise any modification introduced to any entity requires a

careful manual update of all the code-base.

Apart from reducing the burden of the manual work required for each FRep

entity, we also simplify the maintenance of third party applications over time.

As we mentioned in section 4.6.4, an intermediate layer is required to bridge

4. Dynamic ICs framework: technical aspects and tools 167

Figure 74: The generation of the FRep API related components from an entity
description.

the gap between the FRep API and the third party application.This bridging

process can in fact be rather tedious and time-consuming. This applies to

situations where new entities are added or where existing entities are modi-

fied in any way17. To simplify the integration process an application specific

translator needs to be created. This translator does not necessarily need to

generate the code for the actual implementation of the FRep entities, if the

application can rely on the FRep API in existence for a particular platform.

The translator could take advantage of the aforementioned descriptions in

order to generate the necessary intermediate code requiredfor the smooth in-

tegration of the FRep functionality. For instance, to reflect parameters of the

entities and to retrieve or modify states of the entities using application spe-

cific methods (see fig. 75). This way the FRep API could be integrated in a

number of applications in a relatively easy way, through a set of translators

aware of the application specific needs (see fig. 76). Any modification in the

description of any entity would be automatically reflected in all the dependent

17This may be required when new features are added to existing entities, in order to re-
solve discovered issues or in other situations that we mightnot be aware of at the time of
implementation.

4. Dynamic ICs framework: technical aspects and tools 168

applications through an automated translation process. This way, keeping all

the applications in sync with the up-to-date state of the FRep API should be

rather straightforward.

Figure 75: The generation of application specific code required for theinte-
gration of FReps.

Figure 76: A set of application and platform specific translators.

4.6.7 Integration of FReps into the IC framework

It is important to provide the users with the appropriate tools required for the

definition of an FRep model which can be integrated into a hybrid model. De-

pending on the specific needs of the users a different set of modelling tools

may be more suitable for the definition of the actual FRep model. The result-

ing model can be exported from any of these applications using a common

4. Dynamic ICs framework: technical aspects and tools 169

Figure 77: The integration of the FRep entities into the IC API.

storage format (see section 4.6.5). The exported FRep modelcan then be

integrated into a hybrid model as an F-cell or its attributes, since the IC API

relies on the FRep API to provide the functionality requiredfor handling these

models. IC entities represented by FRep cells or attributescan expose these

parameters and subtrees to the hybrid model, making it possible to change

their state using the same set of tools as for any other IC entity (see figure

77), provided that the parameters and other properties of the IC cells can be

used for the evaluation of the shape or of the mapping defined by an FRep en-

tity contained in a an F-cell. In this case the resolution of all the dependencies

and dynamic modification of the properties of the F-cells areperformed in the

same way as for all other IC entities (see figure 78). The discretisation engine

allows us to provide a polyhedral representation of any F-cell as required by

the IC framework.

The flexibility of the FRep API allows us to work with standalone function

representation models and to easily integrate them into complex hybrid mod-

els. F-cells and attributes integrated into our dynamic IC framework greatly

enhance our ability to model time-variant multi-dimensional heterogeneous

objects.

4. Dynamic ICs framework: technical aspects and tools 170

Figure 78: The evaluation of the F-cell within the IC framework.

4.6.8 Performance

One of the most significant shortcomings of FRep models is their computa-

tionally expensive model evaluation procedure. Here we will discuss a num-

ber of ways to alleviate this problem.

LLVM compilation

We have already outlined a number of advantages of the FRep API which

allows us to flexibly define mixed-dimensional models of varying complexity.

But the flexibility of the API also results in an abstraction penalty, i.e. when

we compose complex models and have the ability to modify themon the fly,

we establish and set up a set of internal structures which need to be traversed

at run-time. The discretisation system then has to traversethese structures

and to perform heavy computations. Once these structures are set up, we

can convert them to a more efficient representation that provides us with less

flexibility but can be evaluated faster. Building a single monolithic FRep

function could help us greatly enhance performance. This can be done using

the approach described in section 4.6.6. Figure 76 illustrates the possible

conversion of an FRep AST to a program defined in terms of LLVM byte-

code. The LLVM definition of the entities can then be converted to the native

4. Dynamic ICs framework: technical aspects and tools 171

code of various hardware platforms taking into consideration their specifics

and using them for the optimisations. Target platforms could include both

CPUs and GPUs.

Parallel execution

FRep models are well suited for parallel evaluation. The modelling space

can be divided into a number of non-intersecting subsets. Each of the subsets

can thereafter be evaluated independently. FRep entities store some specific

data needed during the tree traversal procedure (for instance, the modified co-

ordinates of a point in modelling space are propagated down the tree). If we

wish to evaluate these entities in different threads, collisions might occur, that

will lead to invalid results of the model evaluation. It is thus preferable to pro-

vide each thread with a separate copy of the same FRep tree in order to avoid

multi-threading issues. Parallel evaluation of the model can be performed on

one machine. Another possible way to evaluate a model is to convert it to a

hardware specific representation and to employ one of the existing General-

Purpose computations on the GPU (GPGPU) methods. We can export the

internal model representation to an NVIDIA CUDA kernel (NVIDIA, 2010),

which would subsequently be compiled directly into GPU native code rely-

ing on the CUDA FRep library. This CUDA-specific FRep librarycan be

generated using our generic approach described in section 4.6.6. The ker-

nel produced after export would be executed on hundreds of GPU ALUs in

parallel. Two approaches could be used:

1. The application could export the model that could be processed and

translated into specialised data sets and CUDA kernels, which are ex-

ecuted on the GPU. This can be easily implemented through a cus-

tom serialiser as described in 4.6.5. This serialiser simply traverses the

FRep tree and exports it as a set of calls to FRep library implemented

through CUDA. We have provided a more detailed description of the

application of this approach in (Paskoet al., 2010).

2. The application could generate input data sets (parameters of entities),

which could be fed as input data to an existing generic kernel. This ker-

nel would traverse the constructive tree, calling appropriate functions

with parameters extracted from the provided data. This could be less

4. Dynamic ICs framework: technical aspects and tools 172

efficient compared to the former approach in terms of execution time

and memory usage, but a description of relatively complex segmented

models could still fit in shared memory or be cached in read-only mem-

ory.

Further research is needed to determine which of these methods is best

suited for particular situations. However it is already clear that the compact

representation of FRep models is also well suited for execution on a GPU,

which has a limited amount of shared memory available for each kernel. Re-

sults of the model evaluation on the GPU can be fed back to RAM or used

to render the model on the GPU (see 4.6.8). Alternatively, the evaluation of

complex FRep models can be distributed across different computers on a net-

work. In such a case the “server” would store the initial FRepmodel and

would send its description to a number of “client” machines.The “clients”

would evaluate parts of the model and send the results back tothe “server”,

which in turn would arrange all the retrieved results together and return them

to the user. If all the “clients” are ran on the same operatingsystem, the

“server” could send a compiled dynamically-linked librarycontaining the

model, which is compiled into native code, instead of a modeldescription.

In this case, the entity stored in the dynamic library could be registered by all

the “clients” and evaluated as any other generic entity.

Tree pruning

Complex FRep models are represented by constructive trees of significant

depth. This means that the evaluation of such models is computationally

expensive. It is apparent that for some of the models the majority of the

FRep entities do not intersect. Distinct entities occupy specific subsets of

the modelling space but do not exert any influence in distant regions of this

space (i.e. a scalar field produced by such an entity does not contribute to the

regions outside the specific bounding volume of such an entity). Tree pruning

(Fox et al., 2001) is a method that lets us “simplify” constructive trees for

particular subsets of the modelling space. Tree pruning cancreate a set of

FRep trees characterised by a lesser depth compared to the tree describing

the entire model. Each tree approximates the model for a given subset of the

modelling space. If we wish to exploit this approach, each FRep entity is

4. Dynamic ICs framework: technical aspects and tools 173

required to provide a method allowing us to determine its bounding volume.

The calculation of the bounding volume is simple for a numberof known

primitives but can be a complex task for non-trivial operations (such as for

blending or for non-linear deformations). Thus, further research in this area

is required. This technique might be especially useful for complex models

such as those of virtual environments where the user is giventhe freedom to

move around and to modify the model of the scene.

Discretisation optimisations

Discretisation of the model can be performed using one of theexisting

polygonisation methods (Lorensen and Cline, 1987; Bloomenthal, 1994; Hilton

and Stoddart, 1996). Polygonisation allows us to retrieve apolygonal ap-

proximation of a particular iso-level of an FRep model. The quality of the

resulting approximation depends on the size of the step chosen for the dis-

cretisation. Standard techniques used to control the quality of the model ap-

proximation, based on some heuristic (Clark, 1976), can also be employed

for an FRep model. For instance, a geometric object located in the subset of

space within a given proximity to the viewer needs to be approximated with

a higher precision than an object located further away from the viewer. Such

view-dependent techniques can significantly decrease the evaluation time re-

quired to visualise an FRep model (Kazakovet al., 2001). Special care needs

to be taken at the boundaries of the regions discretized withdifferent pre-

cision, otherwise cracks between such regions may appear. Additional op-

timisations can be introduced when polygonising dynamic FRep models, in

which case we need to track changes to the model that have taken place af-

ter the previous polygonisation stage. This implies that weneed to track the

transformations applied to all the entities over time and toperform a partial

polygonisation of the regions affected by these changes. Inthe more general

case, re-polygonisation only needs to be performed in the proximity of the

areas where the surface was tracked in previous frames. Additional attention

must be paid to the objects appearing in the scene at specific moments in

time. A higher frame-rate during the visualisation of a dynamic FRep model

can be achieved if the polygonisation is not performed for each frame. Iso-

surfaces can be extracted at predefined moments in time (e.g.only on each

third or fourth frame). In such a situation, the intermediate visual represen-

4. Dynamic ICs framework: technical aspects and tools 174

tation of the model can be constructed through traditional alpha-blending of

iso-surfaces extracted at adjacent moments in time. In any case, employ-

ing time-coherence for dynamic models can lead to a significant performance

boost. If only static models are present in the environment,re-polygonisation

only needs to be performed in the areas of local change introduced by the

user.

Direct rendering

Polygonisation is not the only method available for the visualisation of

FRep models. Real-time or near real-time ray casting of the model can be

performed on the GPU (Fryazinov and Pasko, 2008). This requires the con-

version of an FRep model to a hardware specific representation (as mentioned

in 4.6.5). The FRep API provides a relatively easy way to perform a conver-

sion from the internal representation to one of the existingshading languages

or to a set of CUDA kernels (see 4.6.8). This means that not only a specific

iso-level of the model can be rendered but also a full-blown GPU volume ren-

dering technique can be utilised. Another option would be the voxelisation of

the model in the camera frustum.

4.7 Conclusions

In this chapter we have presented a detailed description of the implementation

aspects of the new dynamic IC framework. A set of components constituting

the framework were defined and described in detail. We have also consid-

ered issues related to the evaluation of a dynamic hybrid model. Along with

all the aforementioned aspects of the IC framework we have introduced a

high-level notation, which can be used for the definition of actual IC-based

models. Using this notation the user can provide a detailed description of

the model and request its evaluation using the IC framework.We have paid

particular attention to the FRep components of the IC framework because

of the high importance of this representation for the definition of heteroge-

neous objects and because of the limitations of the existingtools required for

FRep modelling. We proposed a methodology for the definitionof a multi-

platform software framework for FRep modelling, which can be implemented

4. Dynamic ICs framework: technical aspects and tools 175

in a number of ways. We described our implementation of the FRep API,

thus making FRep more accessible to a wider group of users. Weprovided

an overview of the methods which can be used for the acceleration of the

evaluation of the aforementioned models. Apart from the main description

of our newly developed software tools we have outlined possible directions

for future developments. The provided description of the ICframework and

its FRep components should be sufficient for further implementation and im-

provements.

In the next chapter we will provide a set of detailed case studies. These

case studies demonstrate how the proposed dynamic IC framework can be

used in a number of different applications in order to solve aset of existing

problems.

5. Applications and results 176

5 Applications and results

In this chapter, we describe a number of applications of the proposed mod-

elling framework and discuss some results. The problems under discussion

are formulated in terms of dynamic hybrid models, which allows us to take

advantage of the expressiveness and power of the IC framework. We outline

a set of improvements proposed for space-time blending relying on multidi-

mensional dynamic models in section 5.3. Next we introduce our new method

for the modelling of interactions between dynamic objects and viscous mate-

rials using time-dependent hybrid models (see section 5.4). We also describe

the extensions to this approach which allow us to solve a number of other ex-

isting problems, including partial metamorphosis of animated characters and

the controlled metamorphosis of dynamic meshes presented in section 5.5.

Then we present an application involving a complex interaction sequence be-

tween a set of interdependent time-variant heterogeneous multidimensional

objects within one hybrid model (see section 5.6). Finally,we describe our

prototype implementation of an interactive modelling system in section 5.7.

This system can be used for the definition of dynamic heterogeneous objects

and certain parts of a hybrid model. In addition, we describein detail practi-

cal methods that can be employed to accelerate model evaluation employing

both the CPU and the GPU.

Overall, we demonstrate that heterogeneous object modelling is a powerful

way of overcoming a set of existing problems, some of which are next to

impossible to solve using other existing methods.

5.1 An introductory 2D dynamic IC model exemplar

We start with a simple example before proceeding to more advanced prob-

lems. This example will help demonstrate what is involved ingenerating a

detailed and complete description of even a very simple hybrid model. For

this example we will produce a full model definition as described in previous

chapters.

The simple model consists of two geometric entities: a disk and a rectangle

5. Applications and results 177

(see fig. 79).

Figure 79: A set of cells present in the IC.

The disk LHKF moves over time. According to the definition of the cell

in section 3.2, we need to provide a set of parameters values and to define the

way these parameters will change over time. The translationtransformation

of the diskLHKF is defined by the set of parameters:

pLHKF (t) = p0LHKF + vLHKF · t

wherep0LHKF is the initial position of the centre of the disk (which is defined

usingMi(t)) andvLHKF is the velocity of the disk18 (see fig. 80). In this

example we assume that the rectangleDEQS is a static cell with its centre

at the pointp0DEQS.(i.e. itsMi(t) is constant over time). The shape, of the

rectangleDEQS is defined using an FRep (see section 2.2.3), while disk

LHKF is defined using a BRep (see section 2.1.2). In this simple model we

integrate two objects expressed in two different representations.

We provide a textual definition of this dynamic IC model usingthe nota-

tion introduced in sections 4.3.1 and 4.3.2. According to the methodological

recommendations introduced in section 4.3, we start our description of the

model with the definition of the cells contained within it19:
// description of persistent cells

CELLS {

DEQS {
type = B-CELL;
// use one of the library objects setting up appropriate parameters

18The velocity could also be defined as a set of control points and time values. In general
we need to provide a number of different ways for defining the transformations and all other
parameters.

19No custom events will be used for the definition of this simplemodel.

5. Applications and results 178

Figure 80: The motion of the disk defined over time.

shape = library::rectangle(...);
dim = 2D;
domain = {...};

// we will only be using built-in transforms, thus no additional
// parameters will be defined
parameters {

translation(...); // define initial translation
}

} // DEQS

LHKF {
type = F-CELL;
// load the description of the FRep tree (XML, HyperFun etc)
shape = frep::loadTree(...);
dim = 2D;
domain = {...};
// custom parameters of the cell
parameters {

translation(...); // define initial position
velocity : REAL3(...); // how fast the object is moving

}

// reactions to certain events:
REACTIONS {

// define simple motion over time:
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)

{

// update position:
translate.relative = globalT * velocity;

}

}

} // LHKF

...
} // CELLS

In order to gain a better understanding of the entire model weneed to

5. Applications and results 179

introduce additional parameters for the definition of the parametric state of the

dynamic IC model (see section 3.7). In this example we will use a parameter

reflecting the state of the IC:

STATE PARAMETERS {

// parameter reflecting whether the cells have intersected
isIntersection : BOOL(false);

}

The value of the parameter is set by the active IC instance.

From figure 80 we can see that the model has at least five different struc-

tural states or IC instances20 (see section 3.7). Each structural state is re-

flected by an IC instance. For simplicity we only provide descriptions of

the first three IC instances. The last two IC instances are derived from the

previous IC instances through the addition of the containment relations.

To start with, we define an IC template that is equivalent to the initial IC

instance (fig. 81). This is done using the syntax described insections 4.3.1

and 4.3.2.

Figure 81: The topological relations of the IC.

K1 {

// references to a set of previously described cells
CELLS {

// copy all the cells from a template IC
USE INITIAL TEMPLATE.CELLS;

}

// references to a set of previously described cells

20The last two states are similar to the first two, excluding theadditional containment
relations.

5. Applications and results 180

RELATIONS {
// we will use implicit relations from the cells,
// no additional relations will be required

}

// events processed by the instance
REACTIONS {

// none at this stage
}
// predicate used to find out if the instance is still valid:
PREDICATE {

bool evaluate(REAL globalT, REAL localT, REAL dt)
{

// try finding the intersection between the disk
// and the rectangle
BOOL isIntersection = DEQS.domain.isIntersection(

LHKF.shape.global);
return !isIntersection;

}

}

} // K1

The second instance of the IC (K2) is shown in fig. 82.

Figure 82: The second IC instance.

In this IC instance a new T-cellF is introduced:
F point {

type = T-CELL;
dim = 0D;
domain = {...};
// the translation of this cell can be determined only after
//the intersection test, this will be done in the instance

}

The second IC instance is defined as follows:
K2 {

5. Applications and results 181

// references to a set of previously described cells
CELLS {

// copy all the cells from a template IC
USE INITIAL TEMPLATE.CELLS;
F point;

}
// events processed by the instance:
REACTIONS {

// update position of the T-cell (Post suffix as we want it
// to be issued after all the cells have been updated)
updatePost(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// try finding the intersection between the disk
// and the rectangle
INTERSECTION INFO info = DEQS.domain.intersect(LHKF.shape.global);
// only one intersection point exists
if (info.intersectPoints.size == 1) {

// set position of the T-cell using intersection info.
F point.translation = info.intersectionPoint(0);
isIntersection = true;

} else {
isIntersection = false;

}

}

}

// predicate used to find out if the instance is still valid:
PREDICATE {

bool evaluate(REAL globalT, REAL localT, REAL dt)
{

return !isIntersection;
}

}

} // K2

The third IC instance (K3) is shown in fig. 83.

KFL half disk {
type = T-CELL;
dim = 2D;
domain = {...};
//the shape of this cell can be determined only after the
// intersection test, this will be done in the instance

}

KFL arc {
type = T-CELL;
dim = 1D;
domain = {...};
// the shape of this cell can be determined only after the
// intersection test, this will be done in the instance

}

KL segment {
type = T-CELL;
dim = 1D;
domain = {...};
// the shape of this cell can be determined only after the
// intersection test, this will be done in the instance

}

5. Applications and results 182

Figure 83: The third IC instance.

K point {
type = T-CELL;
dim = 0D;
domain = {...};
// the translation of this cell can be determined only after
// the intersection test, this will be done in the instance

}

L point {
type = T-CELL;
dim = 0D;
domain = {...};
// the translation of this cell can be determined only after
// the intersection test, this will be done in the instance

}

Next comes the definition of this IC instance:
K3 {

// references to a set of earlier described cells
CELLS {

// copy all the cells from a template complex
USE INITIAL TEMPLATE.CELLS;
KFL half disk KLF arc KL segment K point L point;

}
// events processed by the instance:
REACTIONS {

// update position/shape of T-cells (Post suffix as we want
// it to be issued after all the cells have been updated)
updatePost(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// try finding the intersection between the disk and
// the rectangle
INTERSECTION INFO info = DEQS.determined.intersect(

LHKF.shape.global
);

5. Applications and results 183

// only two intersection points exist
if (info.intersectPoints.size == 2) {

// set position of the T-cell using intersection info.
K point.translation = info.intersectionPoint(0);
L point.translation = info.intersectionPoint(1);
// find local centre of the intersection
VECTOR2 center = (K point.translation +

L point.translation) / 2.0;
// now define local shape of the segment using
// two points:
KL segment.shape = SEGMENT(K point.translation - center,

L point.translation - center);
// now do the global translation of the cells:
KL segment.translation = center;
// the center of arc/disk will be in the center of disk
KFL arc.translation = LHKF.center;
KFL half disk.translation = LHKF.center;
// define the arc using radius and two points on it
KFL arc.shape = ARC(K point.translation - center,

L point.translation - center,
LHKF.scale);

// now do the global translation of the cell:
KFL half disk.shape = ARC(K point.translation - center,

L point.translation - center,
LHKF.scale);

isIntersection = true;
} else {

isIntersection = false;
}

}

}

// predicate used to find out if the instance is still valid:
PREDICATE {

bool evaluate(REAL globalT, REAL localT, REAL dt)
{

return !isIntersection;
}

}

} // K3

The dynamic IC for this model over its limited life span is defined as (see

fig 84):

K(t) =

K1(t
K1);PK1(tK1(t)) = true

K2(t
K2);PK2(tK2(t)) = true

K3(t
K3);PK3(tK3(t)) = true

The above example demonstrated a simple time-dependent hybrid model.

This model incorporates cells expressed in different representations. The state

of one of the cells changes over time. Changes of the structural state of the

model are also reflected in the description of the model through a number of

IC instances.

5. Applications and results 184

Figure 84: A dynamic IC over time (here the time parameter of the IC is its
local time).

In this example we have presented a detailed description of all the IC in-

stances depending on the mutual positions of the cells. In fact, we do not

have to provide a description of a new IC instance for every structural state

of the IC, if it is not considered to be relevant. Certain topological relations

could become invalid over the course of the modelling process, but if these

relations are not considered crucial for this particular model the user does not

have to describe them with a distinct IC instance (see section 3.5).

5.2 An exemplar of a 2D dynamic IC model with depen-

dencies

In this example (see fig. 85) we present a model similar to the one described

in the previous section. The main difference here is the introduction of a

simple dependency relation (a special case of a hierarchical dependency, in-

troduced in section 3.5) between two cells (see fig. 86). For simplicity we

may think of this model as consisting of two cells with their locations chang-

ing simultaneously.

Figure 85: The cells and relations of the dynamic IC.

5. Applications and results 185

Figure 86: The cells and the dependency relations between them.

In this case we use an externally defined animation curve to modify the

position of one of the cells instead of doing so with a procedurally defined

motion. We start by describing some basic cells present in the model:

DEQS {
type = B-CELL;
// use one of the library objects setting up appropriate parameters
shape = library::rectangle(...);
dim = 2D;
domain = {...};
// we will only be using built-in transforms, thus no additional
// parameters will be defined
parameters {

translation(...); // define initial translation
}

} // DEQS

LHKF {
type = F-CELL;
// load the description of the FRep tree (XML, HyperFun etc)
shape = frep::loadTree(...);
dim = 2D;
domain = {...};
// custom parameters of the cell
parameters {

translation(...); // define the initial position
}

REACTIONS {
// no reactions are defined for this cell

}

} // LHKF

OM {
type = P-CELL;
shape = segment(...);
dim = 1D;
domain = {...};

REACTIONS {
// update the shape using the predefined animation
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)

5. Applications and results 186

{
// use the externally defined animation to retrieve
// current position of the segment
translation.relative =

animations("animCurve1").params(localT));
}

}

} // OM

Next we define the IC template used for the subsequent description of the

IC model:
// describe the initial instance, when there are not additional
// relations between the cells
INITIAL TEMPLATE : TEMPLATE IC {

// references to a set of previously described cells
CELLS {

DEQS LHKF OM; // reference to independent cells
}
// a set of relations between the cells/parameters referenced in
// the CELLS section
RELATIONS {

// the list of containment relations (will use implicit relations
// from the definitions of DEQS, LHKF and OM)
containment {

}
// the list of boundary relations (will use implicit relations
// from the definitions of DEQS, LHKF and OM)
boundary {

}
// list of dependency relations
dependency {

OM LHKF HIERARCHICAL LINE DISK;
}

} // RELATIONS

} // INITIAL TEMPLATE

The following state parameters are used to reflect the state of the model:

STATE PARAMETERS {
isLineRectIntersection : BOOL(false);
isDiskRectIntersection : BOOL(false);

}

The first IC instance (fig. 87) is now defined as:
// use all the components of the template

K1 : INITIAL TEMPLATE {

// predicate used to find out if the instance is still valid:
PREDICATE {

bool evaluate(REAL globalT, REAL localT, REAL dt)
{

// try finding the intersection between the disk and
// the rectangle using the variable of the IC
isDiskRectIntersection = DEQS.domain.isIntersection(

LHKF.shape.global);
isLineRectIntersection = DEQS.domain.isIntersection(

5. Applications and results 187

Figure 87: The first IC instance.

OM.shape.global);
return !(isDiskRectIntersection||isLineRectIntersection);

}

}

} // K1

Figure 88: The second IC instance.

The second IC instance is activated when the segmentOM has exactly one

intersection point with the rectangle DEQS (see fig. 88). Thus, we introduce

an additional T-cell:
P point {

type = T-CELL;

5. Applications and results 188

dim = 0D;
domain = {...};
// the translation of this cell can be determined only after

the
// the intersection test, this will be done in the instance

}

Next comes the description of the second IC instance:

K2 : INITIAL TEMPLATE {

STATE PARAMETERS {

// true if only one point results from the intersection
isOnePointIntersection : BOOL(false);

}

// references to a set of previously described cells
CELLS {

// add a new cell to the set of cells from IC template
P point;

}

// events processed by the instance:
REACTIONS {

// update the position of the T-cell (Post suffix as we want
// it to be issued after all the cells have been updated)
updatePost(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

isOnePointIntersection = false; // default value
isDiskRectIntersection = true; // default value
// try finding the intersection between the disk and
// the rectangle
INTERSECTION INFO info1 = DEQS.domain.isIntersection(

LHKF.shape.global);
INTERSECTION INFO info2 = DEQS.domain.intersect(

OM.shape.global);
// only one intersection point exists
if (info2.intersectPoints.size == 1) {

// set the position of the T-cell using the intersection
info

P point.translation = info2.intersectionPoint(0);
isOnePointIntersection = true;

}

isLineRectIntersection = (info2.intersectPoints.size!=0);

if (info1.intersectPoints.size == 0) {

isDiskRectIntersection = false;
}

}

}

// the predicate used to find out if the instance is still valid:
PREDICATE {

bool evaluate(REAL globalT, REAL localT, REAL dt)
{

return !isDiskRectIntersection && isOnePointIntersection;
}

}

} // K2

The third instance has two additional intersection points,i.e., two addi-

5. Applications and results 189

tional T-cells (see fig. 89).

Figure 89: The third IC instance.

K3 : INITIAL TEMPLATE {

STATE PARAMETERS {

// true if two points result from the intersection
isTwoPointIntersection : BOOL(false);

}

// references to a set of previously described cells
CELLS {

// copy all the cells from a template complex
USE INITIAL TEMPLATE.CELLS;
P point N point;

}

// events processed by the instance:
REACTIONS {

// update the position of the T-cell (Post suffix as we want
// it to be issued after all the cells have been updated)
updatePost(REAL globalT, REAL localT, REAL lifeT, REAL dt)

{
isTwoPointIntersection = false; // default value
isDiskRectIntersection = true; // default value
// try finding the intersection between the disk and
// the rectangle
INTERSECTION INFO info1 = DEQS.domain.isIntersection(

LHKF.shape.global);
INTERSECTION INFO info2 = DEQS.domain.intersect(

OM.shape.global);
// only two intersection points exist
if (info2.intersectPoints.size == 2) {

// set the position of the T-cell using the
// intersection info
P point.translation = info2.intersectionPoint(0);
N point.translation = info2.intersectionPoint(1);
isTwoPointIntersection = true;

}

isLineRectIntersection = (info2.intersectPoints.size!=0);

if (info1.intersectPoints.size == 0) {

5. Applications and results 190

isDiskRectIntersection = false;
}

}

}

// predicate used to find out if the instance is still valid:
PREDICATE {

bool evaluate(REAL globalT, REAL localT, REAL dt)
{

return !isDiskRectIntersection && isTwoPointIntersection;
}

}

} // K3

The fourth instance (see fig. 90) has a new T-cell. Hence, we add a new

T-Cell:

Figure 90: The fourth instance.

K4 : INITIAL TEMPLATE {

STATE PARAMETERS {

// true if two points result from the intersection
isTwoPointIntersection : BOOL(false);
// true if the disk only has one intersection point
// with the line
isOnePointDiskIntersection : BOOL(false);

}

// references to a set of previously described cells
CELLS {

// copy all the cells from a template complex
USE INITIAL TEMPLATE.CELLS;

5. Applications and results 191

P point N point R point;
}
// events processed by the instance:
REACTIONS {

// update the position of the T-cell (Post suffix as we want
// it to be issued after all the cells have been updated)
updatePost(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

isTwoPointIntersection = false; // default value
isDiskRectIntersection = true; // default value
isOnePointDiskIntersection = false;
// try finding the intersection between the disk and
// the rectangle
INTERSECTION INFO info1 = DEQS.domain.isIntersection(

LHKF.shape.global);
INTERSECTION INFO info2 = DEQS.domain.intersect(

OM.shape.global);
// only two intersection points exist
if (info2.intersectPoints.size == 2) {

// set position of the T-cell using intersection info.
P point.translation = info2.intersectionPoint(0);
N point.translation = info2.intersectionPoint(1);
isTwoPointIntersection = true;

}

isLineRectIntersection = (info2.intersectPoints.size!=0);
if (info1.intersectPoints.size == 1) {

isOnePointDiskIntersection = true;
R point = info1.intersectionPoint(0);

}

isDiskRectIntersection = (info1.intersectPoints.size!=0);

}

}

// predicate used to find out if the instance is still valid:
PREDICATE {

bool evaluate(REAL globalT, REAL localT, REAL dt)
{

return isOnePointDiskIntersection&&isTwoPointIntersection;
}

}

} // K4

The fifth instance (see fig. 91) is defined in a similar way. The resulting

IC is defined as:

K(t) =

K1(t
K1);PK1(tK1(t)) = true

K2(t
K2);PK2(tK2(t)) = true

K3(t
K3);PK3(tK3(t)) = true

K4(t
K4);PK4(tK4(t)) = true

K5(t
K5);PK5(tK5(t)) = true

Figure 92 shows the five instances of the IC and the sequence oftransitions

5. Applications and results 192

Figure 91: The cells and relations of the fifth IC instance.

Figure 92: The IC instances and the transitions between them.

between them.

It is worth mentioning that not all the instances of the IC need to be de-

fined. The freedom that the definition of a predicate provides, allows the users

the flexibility of only having to define the conditions of interest to them. Even

if the instance is invalid in a strict sense (e.g., if some newrelations need to be

5. Applications and results 193

established), this does not mean the predicate of the instance has to indicate

the invalid state of the instance being active. Users are given the opportunity

to concentrate on the states of the model which they considerto be important.

5.3 Multidimensional dynamic models in the space-time do-

main

In this section we describe a mixed-dimensional model. In this model a set

of lower-dimensional objects is used to produce a higher-dimensional object.

This is made possible through the introduction of multiple modelling domains

in section 3.4.1. The resulting higher dimensional object can be interpreted as

a new shape or as a set of objects resulting from the metamorphosis between

the original lower-dimensional objects. We take advantageof the existing

space-time blending approach and we improve it in a number ofways.

5.3.1 Introduction to space-time blending

Space-time blending is based on the bounded blending operation (see section

2.2.3) performed in higher-dimensional space. The initialidea of space-time

blending was introduced in (Paskoet al., 2004b). Space-time blending allows

us to perform transformations between shapes of different topology without

necessarily establishing their alignment or correspondence. An example of

space-time blending between a cross and two disks (see figure93a) is shown

in fig. 93b.

(a) (b)

Figure 93: Space-time blending: (a) Two initial 2D objects (b) A set of inter-
mediate objects generated using space-time blending.

Unlike a number of existing approaches (Sederberg and Greenwood, 1992;

Sederberget al., 1993; Shapira and Rappoport, 1995; Cohen-Oret al., 1996;

5. Applications and results 194

Zhang and Huang, 2000; Surazhskyet al., 2001; Lazarus and Verroust, 1998)

space-time blending is not based on any assumptions regarding the equiva-

lence of the topology of the initial objects. It does not evenrequire the shapes

to be aligned or to have a vertex-to-vertex correspondence established by the

modeller.

Let us illustrate the proposed space-time blending approach for the 2D

shapes shown in figure 94. The two initial shapes are defined onthe XY

plane. Their extrusions are generated as 3D half cylinders.These 3D objects

can be created in the space-time domainXYT or in a purely geometric do-

main XYZ (see section 3.4.1). In either cases the initial lower-dimensional

shapes are interpreted as projections of higher-dimensional objects. These

two objects are then used as operands to a bounded blending operation in a

higher-dimensional space (see fig. 95a).

Figure 94: The IC cells initially present in the model.

5.3.2 The application of affine transformations in the space-time do-

main.

The original formulation of space-time blending in Paskoet al. (2004b) has

several problems: a fast uncontrolled transition between shapes within the

given time interval, the generation of disconnected components during the

5. Applications and results 195

(a) (b)

Figure 95: The result of the application of a space-time blending operation:
(a) Regular space-time blending (b) The proposed space-time blending with
an additional affine transformation.

metamorphosis and the lack of intuitive user control over the transformation

process Paskoet al. (2004c).

We have resolved some of these issues and improved the original technique

in a number of ways (Paskoet al., 2010). We have introduced an additional set

of controllable affine transformations which are applied tothe initial objects

in space-time (see fig. 95b). This allows us to make a smoothertransition

from one shape to the other and to have better control over this transition.

This is especially useful when the dimensions of the shapes vary significantly

or when the distance between the initial shapes is large (seefig. 96)

(a)

(b)

Figure 96: The cross-sections of the shape generated using the improved
space-time blending: (a) a user guided rotation around the time axis to align
object features (b) A user guided scale along the time axis.

The same improvements can be applied to 3D objects. In this case 3D

slices of a higher-dimensional 4D object can be interpretedas intermedi-

ate shapes of the metamorphosis process between the initial3D objects (see

fig. 97). Without these transformations the volume of the intermediate shape

needs to be significantly increased in order to avoid having disjointed compo-

5. Applications and results 196

(a)

(b)

Figure 97: The transition between 3D objects (a) Linear metamorphosis
(Paskoet al., 1995). (b) Improved space-time blending.

nents. But this increase of the volume leads to even faster transitions between

the shapes. Thus, affine transformations provide more control over the in-

terim modifications of the shape. Additionally, these transformations help us

reduce the rate at which the transition between the shapes takes place. All re-

quired time-dependent affine transformations can be generated automatically

based on the estimated bounding domains of the IC cells. Morecomplex

examples of possible transitions between 3D objects are depicted in fig. 98.

5.3.3 Additional time-dependent deformations.

Another inherent issue in the original space-time blendingapproach is the

possible presence of disjointed components of the source and destination ob-

jects appearing during the transformation process (Fig. 99a). One way of

resolving this issue is through the addition of user controlled deformations.

The appearance of the disconnected component in fig. 99a can be explained

by the significant difference in the distances between the initial torus and the

final union of the two cylinders. The transition can be improved through the

introduction of time-dependent deformations in addition to space-time blend-

ing. We can apply time-dependent deformations while transitioning from the

source object to the destination object. For the example shown in fig. 99a,

this can be done with the help of a non-linear space mapping (“warping”) in-

5. Applications and results 197

(a)

(b)

(c)

Figure 98: Examples of transitions using space-time blending for 3D objects.

(a)

(b)

Figure 99: Problems caused by disjointed components appearing duringthe
transition: (a) Regular space-time blending (b) Space-time blending with ad-
ditional deformations.

5. Applications and results 198

tuitively controlled by two points (Schmittet al., 2003) as illustrated by fig.

99b. The number of these points is not restricted and can be chosen depend-

ing on the specific needs of the blending problem. In this case, additional

deformations are added to modify the input shape of the space-time blending

operation (see fig. 100). Although the user can define the control points for

the deformation manually or interactively, these points can also be generated

automatically based on the properties of the objects being blended. To do so

we find a set of internal points with the extreme values of the defining func-

tion. These points are located inside the “thick features” of the model, i.e. the

areas situated at the extreme distances from the object’s boundary:

D
p
src =

Nsrc
⋃

i=1

psrci : Fsrc(psrci) > 0,

Fsrc(psrci) > Fsrc(psrci + ∂p); ‖∂p‖ > 0

(4)

D
p
dst =

Ndst
⋃

j=1

pdstj : Fdst(pdstj) > 0,

Fdst(pdstj) > Fdst(pdstj + ∂p); ‖∂p‖ > 0

whereD is a set ofN points (Nsrc = Ndst) used to define the non-linear

space-mapping,Fsrc andFdst are the defining functions of the source and

destination objects respectively. We find the locations of the aforementioned

points performing a distance transform of the functional object using Eu-

clidean metrics (Paskoet al., 2010). The user may choose the number of

points retrieved in this fashion and give a hint of how close to each other

he/she wants the retrieved points to be (fig. 101). The retrieved points are

located on the medial surface of the object.

5.3.4 Non-linear sampling in the space-time domain.

Due to the non-linear nature of the defining functions of the objects and the

properties of the bounded blending operation, the transition between the ob-

jects can not be expected to be a linear process. But we can adjust the visual

rate of this transition by performing non-uniform samplingover time. In

the simplest case the time step can be adjusted depending on the estimated

change of the area or volume of the shape. A modification of thetime step is

5. Applications and results 199

Figure 100: The dependency relations for an improved space-time blending
with additional deformations.

Figure 101: Examples of the extracted “thick features” (marked by crosses
).

performed using a feature of the dynamic IC described in section 4.4.2. This

mechanism allows us to request a modification of the global time using the

events mechanism:
STB CELL {

// representation
type = T-CELL;
shape = IC::spaceTimeBlendCells(cellA, cellB, ...);
// two 3D cells used as input, result is 4D
dim ::= 4D;
...
parameters {

// the previous volume of the cross section
shapeVolume : REAL(0.0);
// the acceptable rate of volume change
volumeRate : REAL (...);
// how far back time needs to be rewound
timeDivider : REAL(0.0)

}

// reactions to events
REACTIONS {

update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// retrieve the cross section of the 4D space-time object
SHAPE crossSection3D = makeCrossSection(shape, globalT);
// estimate the volume of the 3D cross section
REAL curVolume = getVolume(crossSection3D);
// check if the volume has changed significantly
if (shapeVolume > 0 &&

5. Applications and results 200

abs(curVolume - shapeVolume)
> volumeRate) {
// request a modification of time stepping back
// using a smaller step
IC::fireEvent(TIME REJECTED, -(dt / timeDivider));

} else {
// save the current volume for a later estimation
shapeVolume = curVolume;

}

}

}

}

In this example theshapeVolume parameter is used to store the current

volume of the shape. The parametervolumeRate defines the rate at which

the volume of the shape is allowed to change. If the volume changes too fast

between different time instances aTIME REJECTED event will be generated.

This event causes the IC framework to adjust time according to the requested

fraction of time and to re-evaluate the model. This mechanism allows us to

perform sampling of the higher-dimensional model in a non-linear fashion,

making the transition process more predictable. This helpsus linearise the

metamorphosis sequence adding or removing a predefined amount of material

at every step.

One of the methods which can be used for the estimation of the volume of

the shape is based on polygonisation. This way we can estimate the volume

contained in each cell of the discretisation grid. The volumes of the chunks

of the shape then need to be integrated over all grid cells:

VG ≈
Nx
∑

i

Ny
∑

j

Nz
∑

k

vg(i, j, k)

wherevg(i, j, k) returns the volume contained in the grid cell (i, j, k). The

volume contained in a grid cell can be calculated using a technique similar to

that of the marching cubes algorithm. The solid enclosed in each cell can be

decomposed into a number of tetrahedrons and prisms. The volume of such a

solid is computed trivially.

More information on this technique, detailed comparisons and GPU imple-

mentation specifics, allowing us interactive display of themodel, are provided

in (Paskoet al., 2010). Our interactive modeller, which was used for the def-

5. Applications and results 201

inition of F-Cells was later integrated into the IC model andis described in

section 5.7.

5.4 Implicit “Stand-ins”: a case of time-variant hybrid mod -

elling

In this section we describe a hybrid model in which we demonstrate the in-

teraction between an animated character represented by a polygonal mesh

and a viscoelastic object represented by an FRep object. This experiment

demonstrates the advantages of the IC framework which allows us to inte-

grate models defined in different representations within one model and to

establish dependency relations between these.

5.4.1 Introduction to the “stand-ins” technique

One of the advantages of hybrid models is the possibility to create animation

effects which are quite hard to achieve using any single model representation.

Here we mainly consider a problem of interaction between complex dynamic

objects and viscoelastic substances. We model this interaction through the

combination of animated polygonal meshes with FRep objectsusing our dy-

namic IC framework. An animated mesh is approximated by a convolution

surface stand-in that is embedded within it or is attached toit. The motions

of both objects are then synchronised using a rigging skeleton. We model the

interaction between an animated mesh object and a viscoelastic substance,

which is represented by an FRep object. This approach is aimed at achiev-

ing verisimilitude rather than physically based simulation. The adhesive be-

haviour of the viscous object is modelled using geometric blending operations

on the corresponding FRep objects. Another application of this approach is

the creation of metamorphosing FRep parts that are attachedto an animated

mesh. A further extension of this approach for the controlled metamorphosis

of animated meshes in described in section 5.5.

Polygonal meshes and certain types of implicit surfaces canbe animated

using a rigging skeleton. We consider a skeleton as a platform for their in-

5. Applications and results 202

tegration into hybrid models. There are many candidates forsuch integra-

tion among implicit surfaces, namely soft objects, distance-based blobs, ellip-

soids, convolution surfaces, constructive solids built from cylinders, spheres,

and other primitives. The main requirements for an implicitsurface are: a

relatively simple defining function, which is fast to evaluate, easy to manip-

ulate using skeletons and an absence of bulges and other unwanted artefacts,

which require additional processing. All these requirements are satisfied by

convolution surfaces (Bloomenthal and Shoemake, 1991; McCormack and

Sherstyuk, 1998) which we choose for our purposes21. We propose to embed

an implicit convolution surface inside an animated mesh or to attach it to the

mesh such that the motions of both types of object are synchronised. The

objects can either share a common skeleton or have individual synchronously

moving skeletons.

An embedded convolution surface has to closely approximatethe embed-

ding mesh such that its motion requires no changes or minimalchanges of

the convolution surface parameters. This may require a procedure for fitting a

convolution surface to an initial mesh taking into account its specified motion,

which can be achieved using a global minimisation of the overall algebraic

distance of the mesh nodes from the convolution surface. Theinteraction of

a viscous object with an animated object is modelled using geometric blend-

ing operations on the corresponding implicit surfaces. Note that the initial

animated mesh is rendered in the final animation together with the blending

surface, which creates the visual effect of the blending of the mesh itself.

Thus the embedded convolution surface serves as an implicitstand-in for the

animated mesh. Unlike most other approaches to the resolution of this mod-

elling problem, our approach is not aiming at physical correctness. In the

areas of computer animation and digital special effects production it is a well

established fact that physically correct simulation is often an inappropriate

technique to use, as it often interferes with the intended development of the

narrative. Animators are often looking for some form of believable semblance

of reality (i.e., verisimilitude), which is inspired by physical reality but bends

this reality to allow them to advance the story narrative. Instead of a physi-

cally correct simulation what is required is a set of techniques and tools that

21However other types of implicit surfaces could also be used by the proposed approach.

5. Applications and results 203

would allow the animator to alter and to fine-tune reality. These may be phys-

ically inspired, but not physically correct, and must be able to be directable

by the animator, so that they produce the desired visual effects. Physically-

correct simulation techniques can often be combined with physically-inspired

verisimilitude techniques but they must be directable by the artist and subor-

dinated to the story-telling process. Additionally when such techniques are

used at the development stage of computer animation and digital effects se-

quences or in a computer game they must produce believable visual results

in real-time or near-real-time. We aim to provide the animator with a simple

tool based on purely geometric methods which allows the creation of complex

animations satisfying the specified requirements.

5.4.2 Background

Historically a number of authors have used implicit surfaces for character

animation. Elliptical blobs for skeletal animation were used by Jim Blinn

(Blinn, 1982) back in 1982, where the transformation of the blob is inherited

from the transformation of the joints of the skeleton. Opalach and Maddock

used blobby objects for the easy definition of animated characters (Opalach

and Maddock, 1995). However, their method is ill-suited forcontrolling the

resulting “blobby” mesh. In addition, a large number of primitives are usually

needed to model an appropriate mesh.

One of the earliest attempts of using hybrid modelling involved embed-

ding mesh objects into implicit surface primitives (Singh and Parent, 1995) to

implement polyhedral object deformations of articulated deformable bodies.

Skeleton-based implicits for non-polygonal animated objects were examined

in (Cani-Gascuel, 1998), where skeletal geometric primitives that produce

distance fields were used for character animation - althoughthis technique

may lead toC1 discontinuities in the resulting surfaces. The coating of arbi-

trary animated models by implicit surfaces, employed in this technique, is not

always acceptable to animators. We consider our approach complementary to

the coating technique. Mixing of implicit surfaces and polygonal models was

performed in (Leclercqet al., 2001). In this work specific regions of an ani-

mated mesh were deformed using implicit primitives attached to the animated

5. Applications and results 204

skeleton. Polygonal meshes and implicit primitives were also combined to-

gether in a HybridTree (Allègreet al., 2006) using blending, Boolean and

other operations supported by the conversion procedures between two differ-

ent models. However, embedding, attachments and skeleton-based motion

synchronisation of meshes and implicits as well as their implementation in a

general-purpose animation system were not directly addressed.

Implicit surfaces were also used for the approximation of polygonal meshes

using different approaches, such as Radial Basis Functions(RBFs) (Savchenko

et al., 1995) and Multi-level Partition of Unity implicits (MPUs)(Ohtake

et al., 2003). These methods generally work well with static meshes, but

are less suitable for animation because dynamic models require per-frame re-

fitting and can not be easily edited by the user due to the complicated handling

of the implicit surface.

One of the interesting alternatives among implicit surfaces is that of con-

volution surfaces (Bloomenthal and Shoemake, 1991). Convolution surfaces

can be smoothly blended with each other and provide a good approxima-

tion for polygonal meshes typical of skeletal characters with axial symmetry

(McCormack and Sherstyuk, 1998). Our hybrid modelling approach takes

advantage of convolution surfaces with line segment skeletons.

Traditionally physical simulation techniques were used for the modelling

of interactions between dynamic entities and viscous objects or for control-

lable manipulation of viscous objects alone. A number of authors have pro-

posed solutions to this problem (Foster and Fedkiw, 2001; Clavetet al., 2005;

Mcnamaraet al., 2004; Carlsonet al., 2004; Shi and Yu, 2005; Thüreyet al.,

2006) - to name but a few. Fluid simulation using the Lagrangian or Eule-

rian approach allows for the creation of realistic animations, but usually this

requires a lengthy simulation process and often provides the user with poor

artistic control (i.e. poor directability) of the resulting effects.

It is often the case that a combination of different techniques is used for

the emulation of viscous materials. In our approach we simulate objects com-

posed of viscous materials using a geometric blending between the implicit

objects generated from given polygonal meshes. We aim to provide the user

with a simple tool which allows the creation of complex animations with con-

5. Applications and results 205

vincing visual results in real-time or near-real-time.

5.4.3 Problem statement and approach outline

Our approach relies upon dynamic hybrid modelling combining BRep polyg-

onal meshes with FRep objects. In general, there are three main ways of

achieving this:

1. By coating of BRep meshes with FRep objects.

2. By embedding FRep objects inside BRep objects.

3. By attaching external FRep objects to BRep objects.

As was mentioned above coating was discussed in (Cani-Gascuel, 1998).

We apply embedding in order to achieve blending effects and attaching is

used in order to construct the metamorphosing parts of hybrid models. Addi-

tionally, there is an important constraint that applies to our approach, namely

the near real-time rendering of all hybrid models.

Let an animated object be defined by a polygonal mesh (see fig. 102a),

with a rigging skeleton (see fig. 102b), skinning information (see fig. 102c)

and a set of animation transformations for its skeletal nodes. A rigging skele-

ton is a set of hierarchically connected joints used to specify the motion of a

mesh model in an animation sequence. If there is no skeleton provided, it can

be automatically extracted from the polygonal mesh using one of the pub-

lished techniques (Katz and Tal, 2003; Liuet al., 2003; Baran and Popović,

2007).

An important application area for embedded implicit surfaces is the mod-

elling of viscoelastic object adhesive behaviour in its interaction with an an-

imated mesh object. To obtain visually plausible results with near real-time

preview, the mesh object is replaced with an implicit stand-in. Geometric

blending is then applied between the FRep entities representing both interact-

ing objects.

A viscoelastic object can be represented either by an FRep objects or by

another polygonal mesh (which has to be converted to an FRep object). We

5. Applications and results 206

(a) (b) (c)

Figure 102: Animated mesh information: (a) Polygonal mesh, (b) Rigging
skeleton, (c) Skinning information. Model ”Andy” courtesyof John Dou-
blestein.

will mainly concentrate on the former case to simulate such viscous sub-

stances as jam, honey or tar, and to show how such liquids interact with an

animated object. Thus we will deal with the adhesion of the liquid to the

surface, its stretching following the object’s motion and other related topics.

Natural controllable blending is one of the best-known and useful prop-

erties of implicit surfaces (see section 2.2.3). We will usethis property for

modelling the adhesive behaviour of the liquid substance. This, in general,

assumes the conversion of the animated mesh into an FRep object. However,

an exact conversion of this type is a complex task. Instead wetake advantage

of our hybrid model, which includes a polygonal mesh and an approximation

of this mesh by an FRep object embedded within it using a fitting procedure.

It is impractical to perform this fitting to the mesh for each frame of the ani-

mation. Thus, it is preferable that an FRep objects is made tofollow the mo-

tion of the animated mesh. A convolution surface satisfies this requirement

when its skeleton is built using the rigging skeleton of the animated mesh and

the motions of both skeletons are synchronised. This derived convolution sur-

face can be blended with the FRep object, representing the viscous liquid, to

mimic its adhesive interaction with other objects. The fitting procedure pro-

vides the convolution surface with a minimal distance measure to the mesh.

This is required in order to create the visual effect of the mesh being blended

with the viscous liquid.

5. Applications and results 207

(a) (b)

Figure 103: Initial approximation: (a) The initial placement of bounding
volumes inside the mesh, (b) The shape produced by convolution surface.

A detailed description of convolution surfaces is providedin (Bloomenthal

and Shoemake, 1991; McCormack and Sherstyuk, 1998). The main advan-

tage of a convolution surface is the smooth transition between its parts that

are defined by different skeletal elements (fig. 103b). When moving skele-

tal elements, the convolution surface follows their movement quite naturally,

which is useful in animation (see fig. 104). We call this FRep model that is

used for the approximation of the mesh an “implicit stand-in”.

The animated stand-in is then used in the model together withan object

representing the liquid substance. Then a blending union operation22 is ap-

plied to these two objects. In order to achieve the desired effect.

5.4.4 The proposed approach

The proposed solution, outlined in section 5.4.3, can be subdivided into the

following steps:

1. The creation of the initial approximation of the given mesh with bound-

ing volumes using the skeletal information.

2. The tuning of the initial approximation.

3. The creation of an embedded convolution surface for the initial polyg-

onal mesh.

4. One of two application steps: (a) the definition of the blending between

22The blending union was described in section 2.2.3.

5. Applications and results 208

the convolution surface and the viscous object for the modelling of the

adhesive behaviour of this viscoelastic object and its interaction with an

animated object or (b) the creation of metamorphosing implicit parts for

an animated mesh.

Each step requires the rendering of the current convolutionsurface and

either the blending surface or the attached convolution surface. Note that

both application steps can be performed together, when an animated mesh

with attached implicit parts interacts with a viscous material.

The initial mesh approximation

As was mentioned earlier, the procedure for embedding an implicit surface

inside the mesh requires a global minimisation of the algebraic distance mea-

sure between the mesh nodes and the convolution surface. As the first step

of the global minimisation procedure, we can estimate the parameters of the

convolution surface using the available information. For the initial approx-

imation we use the rigging skeleton. Given the set of bones ofthe rigging

skeleton, where each bone is a line segment in 3D space, we usethe set of

these segments as the basis for an initial convolution skeleton. We denote

the start and end vertices for each such a skeletal segment asmarkers. To

calculate the radius of the convolution surface for each segment, we calculate

the minimal distance between each line segment specified by the markers and

the polygonal mesh. At this stage we can build bounding volumes around

each line segment for the real-time preview of the convolution surface. Each

bounding volume is fitted inside the mesh in its initial position. Rendering

these bounding volumes helps the user to better understand how the resulting

approximating convolution surface is embedded into the mesh (see fig. 103).

In the next step we perform a global optimisation to achieve abetter ap-

proximation of the given polygonal mesh using the embedded convolution

surface. In order to achieve this we solve the constrained least-squares prob-

lem. We apply a numerical search in the n-dimensional space of the con-

volution parameters. We use the constrained Levenberg-Marquardt method

(Kanzowet al., 2005) to solve this problem. Usually the search procedure

needs to be performed only once for the character’s bind pose.

5. Applications and results 209

Figure 104: The synchronised motions of the embedded convolution surfaces
during the animation process.

Further details regarding the approximation procedure andpossible im-

provements of the approximation are described in detail in (Kravtsovet al.,

2010a)

The creation of a convolution surface

The embedded convolution surface is created by using the segments of the

skeleton retrieved during the approximation procedure. For rendering pur-

poses we use a polygonisation procedure, which provides an approximation

of the implicit surface as a polygonal mesh. For relatively simple skeletons

the polygonisation of the convolution surface can be obtained in near real-

time. As the segments of the convolution skeleton are transformed relative

to the transformation of the rigging skeleton, the motion ofthe convolution

surface is synchronised with the motion of the animated mesh(see fig. 104).

We automatically perform the approximate convolution surface fitting only

for the bind pose on the first frame of the animation. Thus, during the ani-

mation process the bounding volumes and the convolution surface itself may

not fit inside the mesh. This could happen because the distances between

the mesh vertices and the bones change noticeably for those vertices that are

influenced significantly by more than one joints. Such vertices are usually po-

sitioned near the skeleton joints. Performing fitting of theconvolution param-

eters for each key-frame of the animation can be a time-consuming process.

This also means that each time the user adds a key-frame to theanimation

sequence the fitting procedure has to be repeated for these new frames. Thus,

we let the user choose the key-frames for which refitting needs to take place -

for instance, when the distance between the convolution surface and the bone

exceeds the distance between the bone and the mesh. The re-estimated pa-

5. Applications and results 210

rameters are updated at the key-frames for the convolution primitives and then

they are interpolated during the playback of the animation sequence. This al-

lows the user to concentrate on the process of mesh animationby decreasing

the delays caused by the implicit surface re-fitting. Also, there is an oppor-

tunity for the user to assign custom values to the parametersof the implicit

surface over time - for instance, to change the parameter controlling the over-

all surface radius. This can be used to achieve a desired artistic effect for a

particular animation sequence.

Applying the blending operation

As the first application of our technique, we simulate the interaction of a

viscous object with an animated object using the blending union of two im-

plicit surfaces. As we mentioned above, the implicit surface corresponding

to the initial mesh is an embedded convolution surface. The second implicit

surface representing the viscous object can be modelled using a set of implicit

primitives. If both defining functions have distance properties, the shape of

the surface resulting from the blending operation depends on the distance be-

tween the original implicit surfaces. The further the objects are from each

other the less they deform. There exist three main phases of object interac-

tion: the “continuous interaction” phase when the two implicit surfaces form

a single blend shape (see fig. 105a), the “separation of two objects” phase

(see Fig. 105b) and the “objects’ reciprocal attraction” phase resulting in

the directional deformation which decreases proportionately to the distance

between the two objects (see Fig. 105c).

A blending union can dramatically change the resulting surface and its

topology. As a result of the mutual deformation, a part of theconvolution

surface embedded within the mesh becomes visible thus contributing to the

material interacting with the mesh. Thus, the quality of theinitial approxi-

mation of the mesh by the convolution surface does not play a significant part

in this application. It is much more important to fully embedthe convolution

surface into the mesh when no deformation is applied.

Modification of the blending parameters produces an effect visually mim-

icking the viscous object’s physical parameter adjustment(see fig. 106).

Thus, the user can control a specific phenomenon by modifyinga meaningful

5. Applications and results 211

(a) (b) (c)

Figure 105: Phases of interaction between animated objects without blend-
ing (left) and with blending (right): (a) Two implicit surfaces and a single
blend shape during blending, (b) The boundary case before the two shapes
separate, (c) Two separate shapes with some deformation showing the ob-
jects’ reciprocal attraction.

(a) (b) (c)

Figure 106: Viscosity: (a) low, (b) medium, (c) high.

set of parameters. Then, instead of using the abstract parameters of geometric

blending (see section. 2.2.3), the user can operate with intuitive parameters

representing the liquid viscosity or the gravitational force. A set of predefined

templates for different materials (such as tar, honey, oil,etc.) allows the user

to achieve easier control over the interaction process.

The combination of the aforementioned steps allows us to achieve the de-

sired result. Figure 107 illustrates the process of hybrid modelling. A more

detailed description of this technique is provided in (Kravtsovet al., 2010a,b).

In the following section we provide a description of this model using our

dynamic IC framework.

5.4.5 The IC model definition

Finally, we can present a description of the dynamic IC modelusing our ap-

proach (see section 4.3). Different states of the model are shown in fig. 108.

5. Applications and results 212

Figure 107: Proposed approach outline.

Figure 108: The different states of the model.

The IC model consists of (see figures 109 and 110):

• A deformable “box” containing a character at the beginning of the

scene.

• A character called “Andy” (represented as a mesh) and her embedded

stand-in convolution surface (Kravtsovet al., 2010a).

• A cell called “Liquid on Andy”, which is used to mimic the viscoelastic

behaviour of the “box” object interacting with “Andy”.

5. Applications and results 213

Both “Andy” and her implicit stand-in are controlled by the same skeleton

through two dependency relations. Thus, motions of both objects are auto-

matically synchronised using the common skeleton. It is worth noting that the

shapes of both synchronised objects are represented by BRepand FRep cells.

This arrangement would not be possible in the majority of existing animation

systems.

The dynamic IC has two instances:

• “Andy” is placed inside the box and starts walking out of it. While she

is walking out a liquid-like substance remains attached to her as though

it was adhering to her.

• When “Andy” is completely outside the box (i.e. when there are no

intersections between the animated mesh and the box) the liquid is no

longer adhering to her.

The topological relations for the first instance of the IC arepresented in

figure 109. The dependency relations for this instance of theIC are outlined

in figure 110. “Implicitly established” dependencies appear because “Liq-

uid on Andy” is the result of blend operation between the existing cells.

Figure 109: The topological relations of the model.

It is apparent from the illustrations that both “Andy” and “Liquid Andy”

are dependent on the “Skeleton” cell. The skeleton controlsthe deformation

of the cell “Andy” as well as the shape of the cell “Liquid Andy” (this cell is

5. Applications and results 214

Figure 110: The dependency relations of the model.

the implicit stand-in of “Andy”). Thus the motions of both aforementioned

dependent cells are synchronised over time. A blending union between the

“Liquid Andy” and “Box” cells results in a liquid-like shapepartly covering

the animated “Andy” cell. This allows us to produce an interesting effect

mimicking the viscoelastic behaviour of the “Box” object.

We use time-spans in order to define the interval of time when the walking

animation is played:

// name of the model (can be used in other models):
name = ANDY WALK MIRROR

TIMESPANS {
// the time-span used for the walking out animation (initialised

later)
walkTimespan : TIMESPAN;
// the time-span used for the animation of the blending parameters
// (initialized later):
blendTimespan : TIMESPAN;

}

This time-span starts at the moment of the first IC instance activation:

// events processed by the instance
REACTIONS {

//
init(REAL globalT)
{

// walk span starts in this instance
walkTimespan.start();

}
...
}

Times-pans allow us to start certain animation sequences orcountdowns

at specific moments of time and to use their local time within them23.

23Alternatively we might also use animation sequences that donot depend explicitly on

5. Applications and results 215

The second IC instance is similar to the first, only this time the blending

parameters between the “liquid Andy” (her implicit stand-in) and the liquid

box are decreased relative to the distance between the skeleton and the liquid

box:
// events processed by the instance
REACTIONS {

// update the distance
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// update the distance to the box
distanceToBox = Box.domain.distance(Skeleton.curDomain);

}

}

A detailed description of this IC model is provided in Appendix B.

Figure 111: A set of examples of the dynamic hybrid modelling technique.

The demonstrated approach, relying on implicit stand-ins using hybrid rep-

resentations and dependencies between various parts of themodel, can be ap-

plied in order to solve a number of problems (Kravtsovet al., 2010a,b). A

selected set of examples is provided in figure 111.

5.5 The controlled metamorphosis of animated meshes

In this section we introduce an approach which allows us to produce with

great ease metamorphosing transitions between animated meshes of arbitrary

topologies using hybrid models. Here we use the meshes of theobjects as

well as their skeleton animations. As a result we are able to generate meta-

morphosis animations of time-varying meshes with arbitrary topologies in

near real-time. The approach presented here relies on the “stand-ins” tech-

nique described in section 5.4.

time, but are started just like time spans/timers (i.e. animation events).

5. Applications and results 216

5.5.1 Introduction

As we outlined in section 5.4, polygonal models animated using an underly-

ing skeleton are widely used in computer animation. This approach, combin-

ing a set of simple skeletal deformations, allows the artistto produce complex

animation sequences in a relatively easy way. However, performing complex

transitions between arbitrary animated meshes remains a challenging prob-

lem. Existing shape blending techniques allow artists to perform limited tran-

sitions between a set of so called “blend-shapes”, but this is a rather limited

approach, as the topologies of these blend-shapes need to bematched pre-

cisely. There is a set of established techniques to perform metamorphosis (3D

morphing) between static 3D meshes Lazarus and Verroust (1998). Some of

the existing methods overcome the significant limitations of the shape blend-

ing approach, but most of them cannot be easily applied to animated meshes.

Our approach takes advantage of hybrid models, allowing us to produce with

great ease metamorphosing transitions between animated meshes with arbi-

trary topologies.

5.5.2 Method Outline

As was mentioned earlier BRep meshes can be easily animated by an artist but

such effects as metamorphosis cannot easily be performed. On the other hand,

we know that metamorphosis can be easily performed between FRep entities

(see section 5.3),), which are harder to animate using the tools available to

artists. The key idea of our method is based on the “stand-ins” technique de-

scribed in section 5.4. We take advantage of both BReps and FReps, switch-

ing between these representations contained within a single hybrid model de-

pending on our needs. In order to achieve this, we approximate the animated

meshes using “implicit stand-ins”. This is done using a single pose of each

mesh. The actual metamorphosis is then performed between the FRep enti-

ties approximating the animated BRep meshes. Thus, for the metamorphosis

between the source and destination animated meshes we perform:

1. A smooth transition from the animated source mesh of a B-Cell to its

functional approximation by an F-Cell (seeK2 in fig. 112);

5. Applications and results 217

2. A continuous transition from the functional approximation of the source

mesh (F-Cell) to the functional approximation of the destination mesh

(F-Cell), shown in the middle (K3) of figure 112;

3. A transition from the functional approximation of the destination mesh

(F-Cell) to the animated destination mesh (B-Cell). This final transition

(K4) is shown at the bottom of figure 112.

Figure 112: All IC instances of the controlled metamorphosis example to-
gether with the dependency relations.

In order to produce a smooth transition from the mesh contained in a B-

Cell to an FRep entity contained in an F-Cell (step1), we project the ver-

tices of the mesh onto the approximating “stand-in”. We use the per-vertex

skinning and normal information to retrieve an appropriateposition for every

vertex of the mesh on the surface of the “stand-in”. This can be done using a

5. Applications and results 218

(a)

(b)

Figure 113: The different stages of the projection of the BRep mesh to the
FRep shape of the “stand-in”: (a) Simplified example (b) Projection of a
character’s head to the appropriate “stand-in”.

simple gradient descent method or other more advanced methods. After the

projection step, every vertex is assigned an offset to its position on the sur-

face of a “stand-in” as well as the resulting normal vector. Then we use this

information to perform the local deformation of the skinnedmesh; i.e. we

adjust the vertex positions in bind pose space and we apply a time-dependent

skinning deformation to the mesh vertices at the same time. The same applies

to the per-vertex normals:

p′i(t) =
N
∑

j=1

wj
i ·Mj(t) · (fα(pi, pi + dpi, t))

n′
i(t) =

N
∑

j=1

wj
i ·M

−1
j (t) · (gα(ni, ñi, t))

wherewj
i is the weight of thej-th joint of the skeleton deformation,Mj(t) is

the transformation of thej-th joint at time instancet, fα is the interpolation

function used to perform a smooth transition from the initial point pi to the

deformed pointpi + dpi over time,ni is the normals associated with thei-

th vertex and̃ni is the normal at the surface of the “stand-in” at pointpi +

dpi. When the positions and normals of all the vertices are aligned with the

5. Applications and results 219

“stand-in” we switch from the polygonal object to the FRep object. This is

illustrated in fig. 113a. Green represents the initial mesh object and purple is

the approximate “stand-in”. The red vectors indicate the offset by which each

vertex needs to be translated in order to be aligned with the “stand-in’.

In step2, we have FRep approximations of both animated meshes and

we can employ different methods to generate the intermediate shapes. This

method can be a straightforward FRep metamorphosis, a space-time blend-

ing or a complex user-controlled transition employing the skeletons defining

the convolution surfaces inside the F-Cells. It is important to note that this

transition can be evaluated automatically or can be defined by the artist. The

result of this metamorphosis is an FRep object approximating the animated

destination mesh.

In step3, we apply an inverse deformation to that applied in step1. Since

we perform the metamorphosis using FReps all topological changes are han-

dled automatically and we do not need to specify any additional constraints

on the topologies of the original meshes.

All these steps are reflected in different IC instances used for the descrip-

tion of this dynamic hybrid model (see fig. 112). TheK1 IC instance reflects

the state of the model when only a BRep mesh is present. This isa simple

animation sequence, where the mesh is deformed over time using a skeletal

deformation. InK2 we perform a projection of the animated BRep mesh to

its FRep “stand-in”. We still apply a skeletal deformation to the mesh and de-

form it in order to align it with the F-Cell containing the “stand-in”. Instance

K3 involves only F-Cells and the skeletons used for the deformation of both

meshes. There are different options that can be used for the definition of the

transition between these F-Cells. InstanceK4 is similar toK2, but here we

apply the projection deformation in a reverse order. At the first time instance

when this IC instance continues to be active, the resulting F-Cell is aligned

with the animated and deformed destination BRep mesh. At thelast time in-

stance before this IC instance is invalidated, the animatedBRep mesh is only

deformed by the skeletal deformation and is aligned with theoriginally pro-

vided animated mesh (i.e. the animated BRep mesh is deformedto be aligned

with the originally provided destination mesh). InK5 the IC instance con-

5. Applications and results 220

(a)

(b)

Figure 114: The controlled metamorphosis of animated meshes: (a) Jumping
girl to a running zebra metamorphosis (b) Crawling monster to a levitating
robot metamorphosis.

tains the destination animated mesh without any additionalIC cells. At this

point the controlled metamorphosis process is over.

We also perform smooth texture blending during the transition steps through

a simple blend of the original texture and a “cubemap” texture using the up-to-

date normal information (see fig. 114). Additionally, the transition between

the animated mesh and the stand-in can be controlled by a “weight-map”, in-

dicating which parts of the mesh have to be projected / unprojected first. This

allows the user to deform the meshes in a non-uniform way (e.g. to collapse

the head of the zebra before its tail).

This hybrid model can be defined interactively using our approach de-

scribed in section 5.7. The interactive definition of a modelis important for

animators. As it provides them with a powerful tool for the creation of a

transition effect which can be practically impossible to generate in currently

existing BRep packages. The non-uniform time sampling feature of the IC

framework24 can be employed, at the intermediate transition phase, in order

to improve the continuity of the metamorphosis sequence. Finally, the tran-

sition can be fine-tuned in near-real time and the resulting sequence can be

rendered in real-time on the GPU (Kravtsovet al., 2010c).

24This subject was discussed in section 5.3.4

5. Applications and results 221

5.5.3 Conclusions

In this section we have described a new approach to the generation of meta-

morphosis sequences between two animated meshes using a hybrid model.

This hybrid model incorporates both BReps and FReps, allowing us to easily

switch between these representations depending on our needs. Unlike some

of the existing approaches to metamorphosis between staticmeshes25 our ap-

proach provides an additional degree of freedom to artists,furnishing them

with tools allowing them to control the metamorphosis process. We believe

that the incorporation of techniques such as this and the underlying hybrid

modelling technology into existing and forthcoming modelling software and

games engines will greatly enhance the ability of artists togenerate complex

models and animations.

5.6 The “Andyhausen” experiment

In this section we present an example model demonstrating some of the main

features of the dynamic IC framework.

5.6.1 Model overview

The model consists of (see fig. 115):

• An “Egg” consisting of the “Eggshell” and the “egg contents”(see fig.

116). The “Egg contents” consists of two different volumetric space

partitions. Each space partition represents the differentmaterials of the

“Egg’s” internal structure (i.e., the egg white and the egg yolk).

• A handle, a barrel and a piece of rope. One end of this rope is attached

to the “Egg” and its other end is attached to a barrel that is connected

to the handle. Rotating the handle causes the barrel to rotate. This in

turn causes the “Egg” to either be lifted or lowered.

25The problem of metamorphosis between animated meshes was not addressed in literature
before.

5. Applications and results 222

Figure 115: The different states of the model.

• A second handle that is connected to the first handle. Whenever one of

the handles is rotated the other one is also rotated automatically.

• A liquid substance in which the “Egg” is being lowered.

• A girl called “Andy” (represented as a mesh) and her embeddedstand-

in convolution surface see section 5.4.

Figure 116: The cells initially present in the IC.

The dynamic IC has three instances (see fig. 115):

• First the handle is rotated, which results in the “Egg” beinglowered into

5. Applications and results 223

the liquid until it touches its surface (see fig. 115 left). Atthat moment

an intersection event between the liquid and the “Egg” is generated,

which results in the transition to the next IC instance.

• When the eggshell touches the liquid it starts to crack, which results

in the contents of the “Egg” being spilled into the liquid (see fig. 115

right).

• The mixture of the liquid and the egg contents leads to the creation of

the “Andy” character, who then reaches out of the liquid to grab the

second handle (see fig. 115 bottom). The movements of this character

are defined using keyframed animation. The movements of the em-

bedded stand-in, represented by an F-Cell, are synchronised with the

movements of the character. Once the girl has grabbed the handle, she

starts rotating it in order to pull herself out of the liquid.

Figure 117: The first IC instance.

We assume that the “Egg” object is an implicit complex that has some

internal structure (e.g., eggshell and egg contents with different types of at-

tributes defining the yolk and the egg white26). The ‘Egg‘” could be defined

outside this scene and we could just “insert” it into the current IC. This can be

done through a union operation between the ICs. Additionally, we introduce

a set of new dependency relations between the “Egg” and some other cells in

this scene. Intermediate phases of the first instance of the IC are shown in fig.

117. The topological and dependency relations of this IC instance are shown

in figures 118, 119 and 120 respectively.

26In fact, it might have a skeleton, a convolution and a mesh, but we do not reflect these in
the first instance of the complex, as they come into play only in the second instance.

5. Applications and results 224

Figure 118: The boundary relations of the first IC instance.

Figure 119: The containment relations of the first IC instance.

Figure 120: The dependency relations of the first IC instance.

The bi-directional dependency between the handles means that they should

always be rotated by the same angle27. In this model we wish to establish

the bi-directional dependency relation between the two handles. This means

27NB A brief note regarding bi-directional and cyclic dependencies: At the start of the
timeframe all dependency relations and cells are marked as invalid. When we update a cell
it is marked as valid. After that we update its dependent cells. When both dependent and
master cells are marked as valid, the dependency relation between them is also marked as
valid. The update is complete when all relations and cells have been validated.

5. Applications and results 225

that we first updatehandle1 (according to the priority of the dependency as

defined in 4.4), then its dependent cells (barrel andhandle2). Then,handle2

issues an update ofhandle1 again (because dependency betweenhandle2

andhandle1 is still invalid). Handle1 then updates its parameters according

to the new parameters ofhandle2. The dependency betweenhandle2 and

handle1 is now validated. A re-evaluation of barrel is not issued because the

dependency relation betweenbarrel andhandle1 is already marked as valid.

Here we must emphasise the fact that the “Egg” can actually berepre-

sented as an IC. The “Egg” has some internal structure (reflected in the sec-

ond instance of the IC), but the user is not concerned with this at this stage.

The user simply adds the IC to the model (e.g., through a unionoperation

between ICs). The framework in its turn retrieves all the cells of the IC and

merges them in a new IC. This allows the user to work with smaller mod-

els and tune them independently, thus providing a way for thecreation of

modular components that can later be interchanged and composed in a more

complex model. For instance, the resulting IC can also be integrated into an-

other implicit complex or some cells can be arranged into a sub-complex that

can be exported/added to some library as an independent implicit complex.

5.6.2 Model description

We present the description of the IC using the high level declarative style

definition introduced in section 4.3.1. Following the previously introduced

methodology, first we introduce the descriptions of the cells that will be used

in a number of the instances of the IC (see section 4.3):

CELLS {

Handle1 {
type = B-CELL;
shape = loadMesh(...);
dim = 3D;
domain = {...};
//the set of parameters/properties describing this cell and
//their initial values
parameters {

omega : REAL(0.0); // angular velocity
alpha : REAL(0.0); // angular rotation

}

REACTIONS {
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

5. Applications and results 226

rotation.x = alpha; // update angle
}

}

}

// copy the description from Handle1 (all params and evaluation
procedures

Handle2 <- Handle1 {

REACTIONS {
// customise the behaviour (though in this example we
// don’t need to)
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

rotation.x = alpha; // update angle
}

}

}

Barrel {
type = B-CELL;
shape = loadMesh(...);
dim = 3D;
domain = {...};
// set of parameters/properties describing this cell and
// their initial values
parameters {

radius : REAL(...); // barrel radius
alpha : REAL(...); // barrel rotation angle
distTravelled : REAL(...); // distance travelled

}

REACTIONS {
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

distTravelled = alpha * radius;
}

}

}

Rope {
type = C-CELL;
shape = LINE SEGMENT(...), ARC(...);
dim = 1D;
domain = {...};
// the set of parameters/properties describing this cell and
// their initial values
parameters {

length : REAL(...); // the overall length of the rope
inactiveLength : REAL(...); // the dynamic change of the

// length of the rope
curLength : REAL(...); // the length of the rope from barrel
endPoint : REAL(...); // end point of the rope

}

REACTIONS {

update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

curLength = length - inactiveLength;
// the current translation of this cell:
VECTOR3 trans = getTranslation();
endPoint = VECTOR3(trans.x,trans.y-curLength,trans.z);

}

5. Applications and results 227

}

}

Hook {
type = P-CELL;
shape = POINT(...);
dim = 0D;
domain = {...};
// no additional parameters as the dependency for the transform
// parameters is defined outside

}

Eggshell {
type = F-CELL;
shape = frep::TREE(...);
dim = 3D;
domain = {...};
// the set of parameters/properties describing this cell
// and their initial values
parameters {

// how quickly the egg is being damaged
damageRate : REAL(...);
// how much the shell has been damaged
damageState : REAL(...);

}

}

Egg contents {
type = F-CELL;
shape = frep::TREE(...);
dim = 3D;
domain = {...};
// no additional parameters as the dependency for
// transform parameters is defined outside

}

Liquid {
type = F-CELL;
shape = frep::TREE(...);
dim = 3D;
domain = {...};

REACTIONS {
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// change the phase of the noise or perform some other
// time-dependent action
...

}

}

}

Melting egg {
type = T-CELL;
// this cell is created using the blend between two existing

cells
shape = IC::blendCells(Liquid, Egg contents, ...);
dim = 3D;
domain = {...};

parameters {
// how strongly the egg contents blend with the liquid
blendRate : REAL();

}

5. Applications and results 228

REACTIONS {
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// change blendRate
...

}

}

} // Melting egg

} // CELLS

The description of the IC template and the IC instances are provided in

Appendix C.

After describing the first instance we introduce the second instance (the

egg touching the surface, the shell starting to crack/erode, while the contents

of the egg start blending with the liquid). The topological and dependency

relations of this instance are shown in figures 121, 122 and 123 respectively.

Figure 121: The boundary relations of the second IC instance.

Figure 122: The containment relations of the second IC instance.

At the lowest point one of the Andy’s hands comes out of the liquid sub-

stance, grabs the handle and starts rotating it (see fig. 124). This action leads

5. Applications and results 229

Figure 123: The dependency relations of the second IC instance.

Figure 124: The third IC instance of the model.

to her rising from the liquid, since the handle is connected to the barrel via a

belt. The movement of the belt leads to the rotation of the barrel in the oppo-

site direction. There is a “Liquid Andy” cell, which is an FCell approximating

Andy that is driven by the same skeleton that is used to animate Andy. “Liq-

uid Andy” allows us to model the interaction between the animated BRep

model and the liquid, i.e., the viscous behaviour of the liquid “sticking” to

Andy. This state of our dynamic model is reflected in the thirdIC instance.

This is almost the same as the second one. Only we now have a newcircular

dependency caused by the dependency relation between the cell Andy and

handle2. The idea here is that we assign a higher priority to the dependency

between the cellsAndy andhandle2than the priority we assign to the depen-

5. Applications and results 230

dency betweenhandle2andhandle1. Thus the update ofhandle1according

to its dependency onhandle2will be the last evaluation performed in the IC
28. This means thathandle1will be synchronised with the state ofhandle2.

The cell “Eggshell” no longer exists and there is no dependency between the

cell egg liquid and thehook. We add a dependency between thehook and

the skeleton instead.

The boundary and dependency relations of this instance are shown in fig-

ures 125 and 126 respectively.

Figure 125: The boundary relations of the third IC instance.

Additional modifications of “Andy’s” stand-in can also be introduced (e.g.

a metamorphosis of her limbs from a mermaid to a human lower body or

something similar). The full model definition allows us to generate an ani-

mation sequence reflecting all the intermediate states of the model (see fig.

115).

5.6.3 Conclusions

This example model demonstrates the following features of the dynamic IC

framework:
28i.e. all dependencies with higher priorities are validatedfirst. This allows the user to

have some control over the sequence of the performed actions.

5. Applications and results 231

Figure 126: The dependency relations of the third IC instance.

1. The use of a model that utilises hybrid representations including FReps

(the Egg, the liquid and the liquid mixed with the egg contents) and

B-Reps (Andy and the barrel).

2. The use of multidimensional cells (0D hook, 1D rope, 2D Andy surface

model, volumetric 3D egg, etc.).

3. The representation of volumetric heterogeneous structures and the re-

lations between them (i.e. the egg contents located inside the eggshell).

4. The unified dependencies between the cells with the ability to control

the order of their evaluation (i.e. the bi-directional dependency relation

between the handles and the composite dependency cycle between the

cells).

5. The volumetric attributes assigned to a subset of the cells present in the

model (i.e. the volumetric heterogeneous material describing the egg

contents and its mixture with the liquid).

This example demonstrates that the dynamic IC framework allows us to

exploit all the advantages of traditional animation techniques to define time-

dependent hybrid models of heterogeneous objects.

5. Applications and results 232

5.7 An interactive modeller for the definition of volumetric

hybrid models

It is apparent that the textual description of an IC-based model can easily

become rather large. Besides, a textual description of the model is error-

prone and requires certain technical skills from the modeller. This makes ICs

less accessible to a wide group of artists who could benefit from the features

provided by the dynamic IC framework. Thus, a simpler methodof model

definition will have to be provided, so that a wider audience could gain access

to the capabilities of the IC and FRep frameworks. As a consequence, users

of varying levels of ability would be given the opportunity to experiment

with the framework and to create models of varying complexity. A custom

GUI built around the concepts of ICs could be designed to provide a way to

create and to manipulate certain aspects of a hybrid model inan easy way.

A full-blown interactive modeller based on the concepts of ICs is a large-

scale project and is outside of the scope of this thesis. But using the APIs

described in sections 4.5 and 4.6 we are able to provide the user with a set

of tools to define certain types of cells and their behaviours. A generic GUI

of existing third party software packages could also be usedto manipulate a

hybrid model. In this case we need to provide an intermediatelayer between

the IC API and the specific API of the modelling application wewish to

extend as was described in section 4.6.4.

5.7.1 General description

As a proof of concept we have chosen to incorporate FRep modelling capabil-

ities into the AutodeskR© MayaTM software package (Autodesk, 2011a). This

package is widely used by professional artists for projectsof varying com-

plexities. It provides a set of tools for surface modelling,for rigging and both

for the keyframed and the procedural animation coupled withphysical mod-

elling capabilities. MayaTM is a highly extensible platform and it provides a

flexible way to develop custom plug-ins.

We have implemented a set of MayaTM plug-ins which can be used for the

definition of an FRep tree of F-Cells.

5. Applications and results 233

Figure 127: The FRep shelf added to Maya.

The user can manipulate the FRep model through a custom menu added

to Maya (see fig. 127). A set of FRep primitives and operationsare available

to the user. Added FRep primitives are shown in Maya in the form of proxy

wireframe objects which can be manipulated as any other Mayabuilt-in object

(see fig. 128). The FRep primitives are also shown in the Directed Acyclic

Graph (DAG), which reflects all geometric objects present inthe scene (see

left of 128). This provides the user with the means of manipulating the model

using visual metaphors. This means that the user is not required to have deep

understanding of 3D geometry or FRep modelling. More experienced users

still have access to the FRep tree, which can be modified on thefly using the

Maya Dependency Graph (DG) as illustrated in fig. 129. The rendering of

the proxy primitives can be disabled at will at any given timein order to gain

better understanding of the intermediate shape (see figure 130). In general

the model is modified through the parameters available for each FRep entity.

Fig. 131 illustrates the set of parameters available for theblending union

operation. The modification of any parameter results in the re-evaluation of

the FRep model and in the subsequent rendering of the resulting shape. Ad-

ditionally, the values of these parameters can be animated using the set of

techniques available in Maya (see fig. 132). This allows the user to create

complex time-variant FRep models in a relatively easy way. The produced

time-dependent shapes can then be rendered using the tools available in Maya

or be exported elsewhere. For instance, the produced animated models can

be exported for real-time playback on the GPU (see detail in section 5.7.2).

Fig. 133 illustrates a model produced in Maya using our FRep plug-in.

It is hard to estimate the time it would require to define this model through

5. Applications and results 234

Figure 128: The FRep proxy object representing a solid sphere in Maya.

Figure 129: Constructive FRep tree shown using the Maya Dependency
Graph or Hypergraph.

5. Applications and results 235

(a) (b)

Figure 130: Two rendering options in Maya: (a) The rendering of proxy
primitives is enabled, (b) The rendering of proxy primitives is disabled.

Figure 131: The parameters available for the blending union operation.

5. Applications and results 236

Figure 132: Animating the available parameters of FRep entities using the
Maya animation tools.

Figure 133: Example of an FRep model created within Maya shown from
different angles.

5. Applications and results 237

Figure 134: An overview of the XML description of the model shown in
figure 133.

textual description. The definition of this FRep model in ourXML format is

depicted in fig 134. This FRep model consists of 250 FRep entities, 84 of

which are FRep primitives (see fig. 135). This particular FRep model was

created using our Maya plug-in in approximately three hours. This model

was defined iteratively while using low-resolution29 rendering in order to get

a visual impression of the resulting shape on the fly. The finalresult was

rendered with a high-resolution discretisation of the model. This required a

lengthy evaluation procedure. It is important to note that there is no need

to perform polygonisation of the entire model during the modelling process.

The user can adjust the bounding volume around the region of interest during

any particular stage of a modelling operation. Only the selected region of

space would then be updated when any modification to the FRep model is

performed. This can help us reduce significantly the evaluation times during

the modelling process.

We also provide additional tools for 2D modelling. The user can retrieve

an image of the scalar field of slices of a specific FRep object.Additionally a

29In the current implementation we use polygonisation (see section 5.7.2) in order to ren-
der the resulting shapes.

5. Applications and results 238

Figure 135: The FRep tree of the model shown in figure 133.

set of slices can be generated for rendering of space-time models (see sections

3.4.2 and 5.3) as was shown in figures 93 and 95.

We also provide the user with a set of tools for real-time and off-line ren-

dering of the produced models using procedurally-based texturing techniques.

These tools are crucial in the world of computer animation and visual effects,

where additional detail can be added to a three-dimensionalobject through

a set of high-resolution 2D images. Figure 136 illustrates aset of examples

rendered using some available textures. It is important to note that the user is

not required to perform traditional parametrisation of thegeometric shape in

order to create the UV mapping commonly required for the texturing of BRep

objects.

The majority of the examples and illustrations provided in this thesis were

produced using Maya extended by our plug-ins. Our Maya FRep modeller

has evolved into a powerful modelling system which can be used by users of

varying abilities.

5. Applications and results 239

Figure 136: Examples of volumetric models produced using our modeller.

5.7.2 Implementation overview

In our current work the Dependency Graph (DG) of MayaTM is used in order

to build an FRep tree for F-Cells. This is needed because MayaTM is mostly

oriented towards BRep modelling, while we want to provide the user with

a similar functionality for the definition of F-Cells. The DGallows us to

establish connections between arbitrary nodes via their attributes. We need

to provide a set of Dependency Graph nodes representing the entire set of

FRep entities (see fig. 62 and 63). These custom DG nodes implement an

intermediate layer, as was discussed in section 4.6.4. The parameters of each

entity available to the user need to be exposed separately through MayaTM

attributes. The DG is only used to provide topological information for the

FRep API. An intermediate layer is used to retrieve the graphinformation

from MayaTM in order to set up the tree using the FRep API. All operations

are then performed within the FRep API and MayaTM is only used to render

the final results (see fig. 136). Rendering is performed through the poly-

gonisation of the FRep object at a specified iso-level. The user can choose

between the regular Marching Cubes algorithm (Lorensen andCline, 1987)

or one of the feature-preserving surface extraction algorithms (Kobbeltet al.,

5. Applications and results 240

2001) available, as demonstrated in fig. 137. We have also implemented

an adaptive iterative polygonisation method which allows us to significantly

reduce the time required for surface extraction.

The implementation of the system described in section 4.6.6significantly

simplifies the process of adding new FRep entities to our Mayaplug-in. An

intermediate translator produces the code necessary for the basic integration

of our custom entities into Maya using the Maya API. So that the developer

concentrates on the implementation of the actual entities within our APIs. The

high-level description of the entities is then used to produce Maya specific

code, which is not directly related to the FRep evaluation procedure.

This allows us to solve modelling and animation problems which are next

to impossible to overcome using the available set of tools present in this pack-

age. The produced models can be exported to HyperFun or to thecustom

XML format described in section 4.6.5. The models serialised as XML files

can then be loaded in a standalone FRep viewer or be used for interchange

with other applications extended with FRep modelling capabilities through

the FRep API. Another interesting option is the export of themodel to a

CUDA kernel (see section 4.6.8) for its evaluation on a GPU. This allows

us to significantly improve the performance of model evaluation, which is es-

pecially important for the rendering of animated models. Wehave provided

details regarding the GPU implementation and its applications in (Paskoet al.,

2010; Kravtsovet al., 2010b,c).

Finally, interactively defined F-Cells, animated B-Cells and C-Cells can

easily be integrated into an IC-based model as outlined in section 4.6.7.

5.7.3 Future work

Above we have presented a description of the integration of our tools into

the Maya animation package. Other popular packages currently available in

the marketplace could also be extended in a similar manner. For instance,

Softimage (Autodesk, 2011b) or Houdini (Side Effects Software, 2011) also

have a node based dependency system. This means that the integration of the

FRep and certain IC features could be done using a similar approach as the

5. Applications and results 241

(a) (b)

Figure 137: The FRep castle model: (a) Using the regular Marching Cubes
algorithm, (b) Using the Marching Cubes algorithm with postprocessing ex-
tracting sharp features.

5. Applications and results 242

(a) (b)

(c)

Figure 138: Screenshots of the working environment: (a) The definition of the
“Stand-in” model, (b) The setup of the improved space-time blending model,
(c) Exploring the FRep tree contained in the IC F-Cell used for space-time
blending.

5. Applications and results 243

Figure 139: Scanned voxel data of a patient blended with FRep entities.

one we used for Maya. These packages have a large user base across different

industries and their capabilities are constantly being improved.

The incorporation of the functionality provided by the IC API into existing

software packages decreases the learning curve for the user. The user is free

to produce an animation sequence in a way that he is accustomed to within

a familiar software environment. Additionally, this allows us to integrate IC

models into complex scenes created within existing packages. Our Maya

plug-ins are currently used by the students at the National Centre for Com-

puter Animation at Bournemouth University. In the future these tools can be

used for medical applications (see figure 139) and 3D printing applications

(see figure 140).

We plan to further improve this plug-in, as we believe that inthe future our

FRep tools will attract more users from both academia and industry.

5.8 Conclusions

In this chapter we have presented a number of examples and experiments

of varying complexity. First, we presented two simple examples in order to

illustrate the methodology of the dynamic hybrid model definition. After pre-

senting these illustrative examples we have described a setof existing prac-

tical problems which were resolved using dynamic hybrid multi-dimensional

5. Applications and results 244

Figure 140: Examples of rapidly prototyped (through 3D printing) FRep
objects defined using the HyperFun package.

models. We have presented an improved solution to the problem of meta-

morphosis between FRep objects using a mixed-dimensional dynamic model.

Next, we have outlined our solution to the problem of modelling interactions

between animated meshes and viscous objects using our hybrid model. As we

have demonstrated, our approach of using the “stand-ins” can be extended to

a set of other modelling problems, such as two-way hybrid character mod-

elling and animation, and partial metamorphosis of animated characters. The

“ stand-ins” technique also allows us to model controlled metamorphosis be-

tween animated characters. The metamorphosis process involves models in

different representations, so that we can benefit from the advantages of each

of the utilised representations. The “Andyhaussen” experiment demonstrated

all the advantages of the proposed dynamic IC framework. We were able

to model interactions between multidimensional dynamic heterogeneous ob-

jects using a set of IC instances for the representation of our hybrid model.

We have also presented a description of our prototype implementation of an

interactive modeller that is used for the definition of complex dynamic mod-

els.

From the discussion in this chapter we can see that the hybridmodelling

approach has already allowed us to solve a number of challenging problems.

Future research in this direction promises to provide answers to a number of

as yet unanswered questions. We strongly believe that the incorporation of

the proposed techniques and techniques yet to be developed,that are based

5. Applications and results 245

on hybrid modelling concepts, into existing modelling software and game

engines will greatly enhance the functionality of these systems. This will

result in a new degree of creative freedom and will improve user experience

in a number of application areas.

6. Conclusions and future work 246

6 Conclusions and future work

First of all let us summarise the topics covered in this thesis.

In Chapter 1, we have presented a general overview of the subject area.

This overview included the outline of existing approaches to the modelling of

static and dynamic objects. We have also outlined a set of existing issues and

challenges in this area.

In Chapter 2, we have presented related work and we have briefly de-

scribed existing model representations. We discussed the advantages and

disadvantages of the various representations together with their application

areas. The Implicit Complexes (IC) framework was introduced as a common

platform allowing us to incorporate all the representations within one hybrid

model. We have provided a survey of the existing animation techniques and

methods used for the definition of time-dependent models. The presentation

of this preliminary material was essential in order to justify the necessity for

the extension of the IC framework so that we could use it for the definition of

time-variant heterogeneous objects.

In Chapter 3, we have introduced a new Dynamic IC framework. First,

we have extended the previously available IC Framework through the new

definitions of entities required for the description of a dynamic hybrid model.

Secondly, we have introduced new notions allowing us to define the structural

and the parametric states of the entire dynamic event-driven IC model. Ad-

ditionally, we have introduced a set of extensions to the Constructive Hyper-

volume Framework (CHF). The CHF is based on the Function Representation

(FRep) and is incorporated into the dynamic IC framework, playing an im-

portant part in the definition of multidimensional time-variant heterogeneous

objects.

In Chapter 4, after the introduction of our new theoretical framework, we

have described our approach to the system design and the implementation of

the practical tools allowing us to work with dynamic IC models. We have

mapped a set of notions available in the IC framework to a set of entities in

an Object-Oriented Programming (OOP) style, thus making iteasier for the

user to map a conceptual dynamic hybrid model to a practical definition of

6. Conclusions and future work 247

an IC-based model ready for evaluation. Additionally, we have presented a

methodology, which can be used as a guide for the breakdown ofa complex

hybrid model into a set of components and a set of links between them. A

new notation and a new high-level language designed for the definition of dy-

namic hybrid models was introduced in the same chapter. Thislanguage is

built on top of the IC API, which allows us to perform the evaluation of the

hybrid model. The IC API can be used by other applications, thus providing

them with hybrid modelling capabilities. We have presenteda breakdown of

the steps required for the evaluation of the IC-based model and we have dis-

cussed the majority of the technically challenging aspectsof the evaluation

procedure. This information is necessary for the practicalimplementation of

the framework. Finally, we have introduced a new FRep API, which is nec-

essary for the integration of the Constructive HypervolumeFramework into

the dynamic IC framework. This FRep API may also be used independently

of the ICs, thus providing a wide range of users of varying abilities with a set

of tools required for full-blown FRep modelling unavailable elsewhere.

In Chapter 5, after the definitions of theoretical and technical novelties,

we have provided a set of practical solutions to a number of known prob-

lems. These include the hybrid modelling of a set of simple dynamic ob-

jects, the modelling of a multidimensional metamorphosingobjects defined

in the space-time domain and the physically-inspired modelling of the inter-

actions between dynamic meshes and viscoelastic substances. We have also

presented our solution to the complex problem of metamorphosis between

animated meshes using our hybrid modelling approach. We have described

a case study demonstrating a number of features of the IC framework. This

case study features the interaction of hybrid multidimensional time-variant

objects, which are defined together with a set of dynamic relations between

them and their volumetric properties that are changing overtime. Finally, we

have described the set of tools we have developed through theintegration of

our APIs into existing commercial 3D modelling packages. These tools allow

us to take advantage of both the available multi-core CPUs and GPUs, signif-

icantly improving the performance of the hybrid model evaluation process.

There is still ample room for the further improvement of the dynamic IC

framework. More attention needs to be paid to concurrent interaction between

6. Conclusions and future work 248

the IC entities and to the definition of complex event-drivendynamic models.

Additional work is required for the further implementationof the IC API

and the FRep API. We plan to finish the full implementation of the proposed

language designed for the definition of dynamic IC models. Wewould also

like to further investigate the visual aspects of hybrid modelling. A new set

of tools built on top of the IC API should be made easily accessible to a set of

users of varying abilities, through the combination of the proposed high-level

model definition language and the set of visual metaphors available through

the advanced GUI. We are also hoping to conduct an in-depth investigation

of the advantages of dynamic IC models in a number of physicalsimulation

applications.

We believe that the incorporation of the dynamic IC framework and the

underlying hybrid modelling technology into existing and forthcoming mod-

elling software and game engines will significantly enhancethe functionality

of these systems. This will also greatly enhance the model-building capability

of the artistic community.

6.1 Contributions

In this thesis we have presented the results of our research into hybrid mod-

elling of dynamic heterogeneous objects. Here we summarisea number of

main contributions of this thesis:

• The introduction of a new Dynamic IC framework. This was initially

achieved through the extension of the previously availableIC Frame-

work and through the subsequent introduction of the new definitions

required for the description of a dynamic hybrid model. These newly

introduced notions allowed us to define the structural and the paramet-

ric states of the entire dynamic IC model. The definition of the dy-

namic behaviour of the model was achieved through the combination

of procedural time-dependent model definitions, based on event-driven

dynamics, together with some widely-used traditional keyframe-based

approaches. This provided us with the means of describing complex

behaviours of a model in a relatively simple way.

6. Conclusions and future work 249

• The introduction of a set of extensions to the Constructive Hypervol-

ume Framework (CHF). These new extensions improved the capabil-

ities of the CHF required for multidimensional time-variant heteroge-

neous object modelling.

• The introduction of a new high-level domain-specific language suit-

able for the definition of the introduced dynamic hybrid models. This

domain-specific language allows us to define complex dynamichybrid

models in a relatively easy way using all the notions introduced for dy-

namic IC-based models. This was achieved through the mapping of a

set of notions available in the IC framework to a set of entities in an

Object-Oriented Programming (OOP) paradigm. The textual definition

of the model allows us to directly map all theoretical concepts from

the dynamic IC framework and from the CHF to a set of OOP-entities.

This significantly simplifies the process of the mapping of a conceptual

dynamic hybrid model to a practical definition of an IC-basedmodel

which can be evaluated.

• The design and the development of the software tools, namelythe IC

API, allows us to work with dynamic IC models. The IC API allows us

to perform the actual evaluation of the dynamic hybrid modelbased on

its valid description. We presented a discussion relating to the design

and internal mechanisms of the IC API. The high-level language, de-

scribed above, is based on the functionality introduced by the IC API.

The IC API can also be used by other applications, thus providing them

with hybrid modelling capabilities.

• The design and implementation of a new FRep API. This API is neces-

sary for the integration of the FReps and of the CHF into the dynamic

IC framework. The FRep API allows us to realise the full potential

of the Function Representation unlike previously available FRep tools.

This FRep API may also be used independently of the ICs, thus provid-

ing a wide range of users of varying abilities with a set of tools required

for full-blown FRep modelling not previously available. Itis important

to note that we have also presented a detailed description ofthe process

required in order to introduce, with relative ease, furtherimprovements

6. Conclusions and future work 250

and extensions to the FRep API, independently of the underlying soft-

ware or hardware platforms being used.

• The incorporation of the IC and FRep modelling features intothe pop-

ular animation and modelling software package AutodeskR© MayaTM.

Apart from providing the user with a set of new features integrated

into a familiar environment, we presented a detailed description of the

generic system that can be used for the integration of our APIs into

third-party software packages. This approach simplifies the integra-

tion process significantly, thus allowing us to perform automatically

the bulk of the integration and maintenance procedures.

• The introduction of our novel approach based on the concept of an-

imated implicit “stand-ins”. The description of our methodincluded

the approximation procedures, the method of synchronisation and the

physically-inspired emulation of viscoelastic behaviours by using ge-

ometric methods alone. The proposed approach allows us to solve a

set of known problems in computer graphics. These problems include

modelling of the interactions between animated meshes and liquid sub-

stances, partial and full metamorphosis of animated characters.

• The description of hybrid models which illustrated the advantages of

our dynamic IC framework. Our experiments with hybrid models demon-

strated the possibility of the interaction of hybrid multidimensional

time-variant objects, defined within one hybrid model. Relations be-

tween these objects and their volumetric properties are allowed to change

over time.

• The extensions introduced to the space-time blending technique, which

provide the user with a higher level of control over the metamorphosis

process through the inclusion of additional means of control.

• The implementation and the discussion of current and futureimprove-

ments in performance required for faster evaluation of dynamic IC-

based hybrid models and of pure CHF models using both the currently

available CPUs and the GPUs.

6. Conclusions and future work 251

6.2 Future work

There is still ample room for the further improvement of the dynamic IC

framework.

First of all, more attention needs to be paid to the concurrent interaction

between IC entities and to the definition of complex event-driven dynamic

models. Further investigation needs to take place regarding the integration

of simulation capabilities into the dynamic IC framework. Adeeper under-

standing of the simulation requirements, specific to various application areas,

may require the introduction of new concepts and notions into the framework.

At the moment it is obvious that even simple geometric classification opera-

tions, such as intersection tests or point membership classifications, within a

hybrid model require additional consideration because of the complexity and

efficiency of these tasks when dealing with hybrid models. Robust classifica-

tion operations can significantly simplify the definition and the validation of

dynamic hybrid models.

Additional work is required for a more complete implementation of both

the IC API and the FRep API. We plan to conclude the full implementation

of the proposed language designed for the definition of dynamic IC models

and to further extend the APIs and the DSLs built on top of those taking into

account the modifications of the theoretical framework.

We would also like to further investigate the visual aspectsof hybrid mod-

elling. A new set of tools built on top of the IC API should be made easily

accessible to the users of varying abilities, through the combination of the

proposed high-level model definition language and the set ofvisual metaphors

available through the advanced GUI.

It is also desirable to develop more experimental models andreal-world

case studies that are defined using the IC framework. We are also hoping to

conduct an in-depth investigation of the advantages of dynamic IC models in

a number of existing physical simulation applications.

Another important aspect of hybrid modelling is the rendering of the re-

sulting model. Although we have described a number of available and pro-

posed techniques both on the CPUs and on the GPUs, there is still a lot of

6. Conclusions and future work 252

room for improvement. The efficient rendering of hybrid models in shorter

times allows for faster iterations and for higher accessibility of the dynamic

IC features to a wider audience. This means that robust rendering has to be

one of the priorities in further research.

An important aspect of static and dynamic volumetric modelling is that of

volumetric attributes. Due to time constraints, we have hadto limit ourselves

to a rather cursory examination of the Constructive Hypervolume Framework

and of its advantages and of its applications. In the future more attention

needs to be paid to arbitrary volumetric attributes within the IC framework.

This is crucial for physical simulation applications and for the texturing ca-

pabilities of both static and dynamic shape modelling.

In conclusion, we believe that the incorporation of the dynamic IC frame-

work and the underlying hybrid modelling technology into existing and forth-

coming modelling software and game engines will significantly enhance the

functionality of these systems. This will also greatly enhance the model-

building capability of both the scientific and the artistic communities.

References 253

References

3D Coat , 2010.3D Coat: Voxel sculpting. Available from: http://www.3d-

coat.com/tutorial/voxel-sculpting/ [Accessed 01.10.2010].

Abrahams D. and Grosse-Kunstleve R. W., 2009.Building Hybrid Systems

with Boost.Python. Available from: www.boostpro.com/ writing/bpl.html

[Accessed 01.12.2010].

Adzhiev V. and Beynon M., 1999. Empirical modelling of multi-agent con-

current systems with LSD-engine. In:Empirical and Geometric Modeling,

International Workshop. University of Aizu, Japan, 13–35.

Adzhiev V., Cartwright R., Fausett E., Ossipov A., Pasko A. and V. S., 1999.

HyperFun project: a framework for collaborative multidimensional F-Rrep

modeling”. In: Hughes J. and Schlick C., editors,Implicit Surfaces 99,

Eurographics/ACM SIGGRAPH Workshop, 55–69.

Adzhiev V., Comninos P., Kazakov M. and Pasko A., 2005. Functionally

based augmented sculpting. In:Computer Animation and Virtual Worlds,

volume 16, 25–39.

Adzhiev V., Kartasheva E., Kunii T., Pasko A. and Schmitt B.,2002. Hy-

brid cellular-functional modelling of heterogeneous objects. In: Journal

of Computing and Information Science in Engineering, Transactions of the

ASME, volume 4, 312–322.

Adzhiev V., Kazakov M., Pasko A. and Savchenko V., 2000. Hybrid system

architecture for volume modeling. In:Computers & Graphics, volume 24,

67–78.

Adzhiev V., Pasko A. and Sarkisov A., 1996. “HyperJazz” project: develop-

ment of geometric modelling systems with inherent symbolicinteractivity.

In: CSG 96 (Winchester, UK, 17-19 April 1996), Information Geometers,

183–198.

Alexandrov P., 1998.Combinatorial Topology. Dover Publications.

Allègre R., Galin E., Chaine R. and Akkouche S., 2006. The HybridTree:

References 254

mixing skeletal implicit surfaces, triangle meshes, and point sets in a free-

form modeling system. In:Graph. Models, volume 68, 42–64.

Allègre R., Barbier A., Galin E. and Akkouche S., 2004. A hybrid shape rep-

resentation for free-form modelling. In:Proceedings of the Shape Mod-

eling International 2004, Washington, DC, USA. IEEE Computer Society,

7–18.

Armstrong C., Bowyer A., Cameron S., Corney J., Jared G., Martin R., Mid-

dleditch A., Sabin M. and Salmon J., 2000.Djinn. A Geometric Interface

for Solid Modelling. Information Geometers, Winchester, UK.

Autodesk , 2011a.AutodeskR©MayaTM: 3D Animation, Visual Effects and

Compositing Software. Available from: http://www.autodesk.com/maya

[Accessed 18.01.2011].

Autodesk , 2011b.AutodeskR©SoftimageTM: Visual Effects and 3D Game

Development Software. Available from: http://www.softimage.com, [Ac-

cessed 18.01.2011].

Bærentzen J. A., 2002.Manipulation of volumetric solids with applications to

sculpting. Thesis (PhD), Informatics and Mathematical Modelling, Tech-

nical University of Denmark, DTU.

Baran I. and Popović J., 2007. Automatic rigging and animation of 3d char-

acters. In:ACM Trans. Graph., volume 26, 72–80.

Barbier A., Galin E. and Akkouche S., 2005. A framework for modeling,

animating, and morphing textured implicit models. In:Graphical Models,

volume 67, 166–188.

Barr A. and Alan H., 1984. Global and local deformations of solid primitives.

In: SIGGRAPH Comput. Graph., volume 18, 21–30.

Barthe L., Mora B., Dodgson N. and Sabin M., 2002. Triquadratic recon-

struction for interactive modelling of potential fields. In: SMI ’02: Pro-

ceedings of the Shape Modeling International 2002 (SMI’02), Washington,

DC, USA. IEEE Computer Society, 145–153.

Beynon M. and Cartwright A. 1989. A definitive programming approach

References 255

to the implementation of CAD software. In:Intelligent CAD systems II:

implementational issues, Springer-Verlag New York, Inc., 126–145.

Beynon W. M., 1987.Definitive Principles for Interactive Graphics. Techni-

cal report, Coventry, UK.

Bezier P., 1986. The Mathematical Basis of the UNISURF CAD System.

Butterworth-Heinemann, Newton, MA, USA.

Biswas A., Shapiro V. and Tsukanov I., 2004. Heterogeneous material mod-

eling with distance fields. In:Comput. Aided Geom. Des., volume 21,

Amsterdam, The Netherlands, The Netherlands. Elsevier Science Publish-

ers B. V., 215–242.

Blinn J. F., 1982. A generalization of algebraic surface drawing. In: ACM

Trans. Graph., volume 1, 235–256.

Bloomenthal J., August 1997.Introduction to Implicit Surfaces, First Edition

(The Morgan Kaufmann Series in Computer Graphics). Morgan Kaufmann

Publishers Inc.

Bloomenthal J., 1994. An implicit surface polygonizer. In:Graphics Gems

IV. Academic Press, 324–349.

Bloomenthal J. and Shoemake K., 1991. Convolution surfaces. In: SIG-

GRAPH Comput. Graph., volume 25. ACM, 251–256.

Booch G., 2004.Object-Oriented Analysis and Design with Applications (3rd

Edition). Addison Wesley Longman Publishing Co., Inc., Redwood City,

CA, USA.

Bremer P., Porumbescu S. D., Kuester F., Hamann B., Joy K. I. and liu Ma K.,

2002. Virtual clay modeling using adaptive distance fields.In: Proceedings

of the 2002 International Conference on Imaging Science, Systems, and

Technology (CISST).

Burtnyk N. and Wein M., 1976. Interactive skeleton techniques for enhancing

motion dynamics in key frame animation. In:Commun. ACM, volume 19,

New York, NY, USA. ACM, 564–569.

References 256

Cani-Gascuel M.-P., 1998. Layered deformable models with implicit sur-

faces. In:Graphics Interface, 201–208.

Carlson M., Mucha P. J. and Turk G., 2004. Rigid fluid: animating the inter-

play between rigid bodies and fluid. In:ACM Trans. Graph., volume 23,

377–384.

Cartwright R., 1998.Geometric Aspects of Empirical Modelling: Issues in

Design and Implementation. Thesis (PhD), Department of Computer Sci-

ence, University of Warwick, UK.

Cartwright R., Adzhiev V., Pasko A., Goto Y. and Kunii T., 2005. Web-

based shape modeling with hyperfun. In:IEEE Computer Graphics and

Applications, volume 25, 60–69.

Catmull E., 1972. A system for computer generated movies. In: ACM ’72:

Proceedings of the ACM annual conference, New York, NY, USA. ACM,

422–431.

Catmull E., 1978. The problems of computer-assisted animation. In: SIG-

GRAPH Comput. Graph., volume 12, New York, NY, USA. ACM, 348–

353.

Chen M., Vucker J. and Leu A., 1999. Constructive representations of volu-

metric environments. In:Volume Graphics, M. Chen, A. Kaufman, R. Yagel

(Eds.), 97–118.

Cignoni P., Corsini M. and Ranzuglia G., April 2008. Meshlab: an open-

source 3d mesh processing system. In:ERCIM News, number 73, 45–46.

Clark J. H., 1976. Hierarchical geometric models for visible surface algo-

rithms. In:Commun. ACM, volume 19. ACM, 547–554.

Clavet S., Beaudoin P. and Poulin P., 2005. Particle-based viscoelastic

fluid simulation. In: SCA ’05: Proceedings of the 2005 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, 219–228.

Cohen-Or D., Levin D. and Solomovici A., 1996. Contour blending using

warp-guided distance field interpolation. In:VIS ’96: Proceedings of the

7th conference on Visualization ’96, Los Alamitos, CA, USA. IEEE Com-

puter Society Press, 165–172.

References 257

Comninos P., 1986. The CGAL Animation Environment and its Application

in the Entertainment Industry. In:Proceedings of the international elec-

tronic image week, second image symposium, 324–332.

Comninos P. and Webster G., 1980. CGAL: Computer graphics and anima-

tion language. In:In Eurographics Conference Proceedings, 113–126.

Coons S., 1967. Surfaces for computer aided design of space forms. In:

Technical Report (MIT/LCS/TR-41), MIT, Cambridge, Massachusetts.

Cormen T. H., Stein C., Rivest R. L. and Leiserson C. E., 2001.Introduction

to Algorithms. McGraw-Hill Higher Education, 2nd edition.

Cutler B., Dorsey J., McMillan L., Müller M. and Jagnow R., 2002. A pro-

cedural approach to authoring solid models. In:ACM Trans. Graph., vol-

ume 21. ACM, 302–311.

Desbrun M. and Gascuel M.-P., 1995. Animating soft substances with im-

plicit surfaces. In:In Proc. SIGGRAPH 95. ACM SIGGRAPH, Addison

Wesley, 287–290.

Farin G., 2002.Curves and surfaces for computer aided geometric design: a

practical guide. Morgan Kaufmann Publishers Inc.

Fausett E., Pasko A. and Adzhiev V., 2000. Space-time and higher dimen-

sional modeling for animation. In:CA ’00: Proceedings of the Computer

Animation, Washington, DC, USA. IEEE Computer Society, 156–165.

Fayolle P.-A., Pasko A., Schmitt B. and Mirenkov N., 2006. Constructive het-

erogeneous object modeling using signed approximate real distance func-

tions. In: Journal of Computing and Information Science in Engineering,

volume 6, 221 – 229.

Fayolle P.-A., Schmitt B., Goto Y. and Pasko A., 2005. Web-based construc-

tive shape modeling using real distance functions. In:IEICE Transactions

on Information and Systems, volume E88-D, 828–835.

Fayolle P.-A., 2006. Construction Of Volumetric Object Models Using

Distance-Based Scalar Fields. Thesis (PhD), University of Aizu.

Fiume E., Tsichritzis D. and Dami L., 1987. A temporal scripting language

References 258

for object-oriented animation. In:Proceedings of Eurographics 1987

(North-Holland), Elsevier Science, 283–294.

Flórez J., Sbert M., Sainz M. A. and Vehı́ J., 2008. Efficientray tracing using

interval analysis. In:Proceedings of the 7th international conference on

Parallel processing and applied mathematics, PPAM’07, Berlin, Heidel-

berg. Springer-Verlag, 1351–1360.

Foley J. D., van Dam A., Feiner S. K. and Hughes J. F., 1995.Computer

Graphics: Principles and Practice in C. Pearson.

Forstmann S., Moll S. and Ohya J., 2007. Visualization of large RLE-encoded

voxel volumes. In:Submitted to FIT 2007 (Technical Report), Nagoya,

Japan.

Foster N. and Fedkiw R., 2001. Practical animation of liquids. In: SIG-

GRAPH ’01: Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, 23–30.

Fougerolle Y. D., Gribok A., Foufou S., Truchetet F. and Abidi M. A., 2005.

Boolean operations with implicit and parametric representation of primi-

tives using r-functions. In:IEEE Transactions on Visualization and Com-

puter Graphics, volume 11, Piscataway, NJ, USA. IEEE Educational Ac-

tivities Department, 529–539.

Fox M., Galbraithy C. and Wyvill B., 2001. Efficient use of theBlobTree

for rendering purposes. In:SMI ’01: Proceedings of the International

Conference on Shape Modeling & Applications, Washington, DC, USA.

IEEE Computer Society, 306.

France L., Lenoir J., Angelidis A., Meseure P., Cani M.-P., Faure F. and Chail-

lou C., 2005. A layered model of a virtual human intestine forsurgery

simulation. In:Med. Images Anal., volume 9, 123–132.

Frisken S. F., 1999.Calculating the distance map for binary sampled data.

Technical Report TR99-26, December 1999, Mitsubishi Electric Research

Laboratories, 201 Broadway, Cambridge, MA, USA.

Frisken S. F., Perry R. N., Rockwood A. P. and Jones T. R., 2000. Adaptively

sampled distance fields: a general representation of shape for computer

References 259

graphics. In:SIGGRAPH ’00: Proceedings of the 27th annual conference

on Computer graphics and interactive techniques, 249–254.

Fryazinov O. and Pasko A., 2008. Interactive ray shading of FRep objects. In:

WSCG’ 2008, Communications Papers proceedings, 4-7 February, 2008,

University of West Bohemia, Plzen - Bory, Czech Republic, 145–152.

Fryazinov O., Pasko A. and Adzhiev V., March 2011. BSP-fields: An ex-

act representation of polygonal objects by differentiablescalar fields based

on binary space partitioning. In:Computer-Aided Design, volume 43.

Butterworth-Heinemann, 265–277.

Fryazinov O., Pasko A. and Comninos P., 2010. Technical section: Fast reli-

able interrogation of procedurally defined implicit surfaces using extended

revised affine arithmetic. In:Comput. Graph., volume 34, Elmsford, NY,

USA. Pergamon Press, Inc., 708–718.

Galbraith C., Prusinkiewicz P. and Wyvill B., 2000. Modeling murex cabritii

sea shell with a structured implicit surface. In:CGI ’00: Proceedings of the

International Conference on Computer Graphics, Washington, DC, USA.

IEEE Computer Society, 55–64.

Galin E., Leclercq A. and Akkouche S., 2000. Morphing the BlobTree. In:

Comput. Graph. Forum, volume 19, 257–270.

Gamma E., Helm R., Johnson R. and Vlissides J., 1995.Design patterns: ele-

ments of reusable object-oriented software. Addison-Wesley Professional.

Gielis J., Beirinckx B. and Bastiaens E., 2003. Superquadrics with rational

and irrational symmetry. In:SM ’03: Proceedings of the eighth ACM sym-

posium on Solid modeling and applications, New York, NY, USA. ACM,

262–265.

Hackathorn R. J., 1977. Anima II: a 3-d color animation system. In: SIG-

GRAPH ’77: Proceedings of the 4th annual conference on Computer

graphics and interactive techniques, New York, NY, USA. ACM, 54–64.

Heckbert P. S., November 1986. Survey of Texture Mapping. volume 6,

56–67.

References 260

Hilton A. and Stoddart A., 1996. Marching triangles: Range image fusion for

complex object modeling. In:Image Processing, volume 1, 381–383.

Jones M. W., 2003. Melting Objects. volume 11, 247–254.

Jones M. W., Bærentzen J. A. and Sramek M., 2006. 3d distance fields:

A survey of techniques and applications. In:IEEE TRANSACTIONS ON

VISUALIZATION AND COMPUTER GRAPHICS, volume 12, 581–599.

Junior A. d. C., Figueiredo L. H. d. and Gattass M., 1999. Interval methods for

ray casting implicit surfaces with affine arithmetic. In:Proceedings of the

XII Brazilian Symposium on Computer Graphics and Image Processing,

SIBGRAPI ’99, Washington, DC, USA. IEEE Computer Society, 65–72.

Junker G., 2006.Pro OGRE 3D Programming (Pro). Apress, Berkely, CA,

USA.

Kadosh A., Cohen-Or D. and Yagel R., 2003. Tricubic interpolation of dis-

crete surfaces for binary volumes. In:IEEE Transactions on Visualization

and Computer Graphics, volume 9, Los Alamitos, CA, USA. IEEE Com-

puter Society, 580–586.

Kalra D. and Barr A. H., 1992. Modeling with time and events incomputer

animation. In:Comput. Graph. Forum, volume 11, 45–58.

Kanzow C., Yamashita N. and Fukushima M., 2005. Levenberg-Marquardt

methods with strong local convergence properties for solving nonlinear

equations with convex constraints. In:J. Comput. Appl. Math., volume

173, 321–343.

Kartasheva E., Adzhiev V., Pasko A., Fryazinov O. and Gasilov V., 2003.

Surface and volume discretization of functionally based heterogeneous ob-

jects. volume 3, 285–294.

Kartasheva E., Adzhiev V., Comninos P., Fryazinov O. and Pasko A. 2008.

An implicit complexes framework for heterogeneous objectsmodelling.

In: Heterogeneous Objects Modelling and Applications, Springer-Verlag,

1–41.

Katz S. and Tal A., 2003. Hierarchical mesh decomposition using fuzzy

References 261

clustering and cuts. In:ACM Transactions on Graphics (Proc. SIG-

GRAPH’03), 954–961.

Kaufman A., Cohen D. and Yagel R., 1993. Volume graphics. In:IEEE

Computer, volume 26, 51–64.

Kazakov M., Pasko A. and Adzhiev V., 2001. Fast navigation through an

FRep sculpture garden. In:Shape Modeling and Applications, Interna-

tional Conference on. IEEE Computer Society, 104–113.

Knoll A., Hijazi Y., Kensler A., Schott M., Hansen C. D. and Hagen H.,

2009. Fast ray tracing of arbitrary implicit surfaces with interval and affine

arithmetic. In:Comput. Graph. Forum, volume 28, 26–40.

Kobbelt L. P., Botsch M., Schwanecke U. and Seidel H.-P., 2001. Feature sen-

sitive surface extraction from volume data. In:SIGGRAPH ’01: Proceed-

ings of the 28th annual conference on Computer graphics and interactive

techniques, New York, NY, USA. ACM, 57–66.

Komma P., Fischer J., Duffner F. and Bartz D., 2007. Losslessvolume data

compression schemes. In:Simulation and Visualisation 2007, Magdeburg,

Germany, 169–182.

Kou X. Y. and Tan S. T., 2007. Heterogeneous object modeling:A review.

In: Comput. Aided Des., volume 39, Newton, MA, USA. Butterworth-

Heinemann, 284–301.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComninosP., 2010a.

Embedded implicit stand-ins for animated meshes: a case of hybrid mod-

elling. In: Comput. Graph. Forum, volume 29, 128–140.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComninosP. 2010b.

Polygonal-functional hybrids for computer animation and games. In: Engel

W., editor,GPU Pro: Advanced Rendering Techniques, AK Peters Ltd.,

87–114.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComninosP., 2010c.

Real-time controlled metamorphosis of animated meshes using polygonal-

functional hybrids. In:ACM SIGGRAPH ASIA 2010 Sketches, SA ’10,

New York, NY, USA. ACM, 36:1–36:2.

References 262

Kumar V., Burns D., Dutta D. and Hoffmann C., 1999. A framework for

object modeling. volume 31, 541 – 556.

Lasseter J., 1987. Principles of traditional animation applied to 3d computer

animation. In:SIGGRAPH ’87: Proceedings of the 14th annual conference

on Computer graphics and interactive techniques, New York, NY, USA.

ACM, 35–44.

Lavoie P., 2010.”The NURBS++ library”. Available from: http://libnurbs.

sourceforge.net [Accessed 12.12.2010].

Lazarus F. and Verroust A., 1998. Three-dimensional metamorphosis: a sur-

vey. In: The Visual Computer, volume 14, 373–389.

Leclercq A., Akkouche S. and Galin E., 2001. Mixing trianglemeshes and

implicit surfaces in character animation. In:Proceedings of the Euro-

graphic workshop on Computer animation and simulation, New York, NY,

USA. Springer-Verlag New York, Inc., 37–47.

Liu P.-C., Wu F.-C., Ma W.-C., Liang R.-H. and Ouhyoung M., 2003. Auto-

matic animation skeleton construction using repulsive force field. In: PG

’03: Proceedings of the 11th Pacific Conference on Computer Graphics

and Applications. IEEE Computer Society, 409–413.

LLVM Developer Group , 2010.The LLVM Compiler Infrastructure. Avail-

able from: http://llvm.org [Accessed 01.02.2010].

Lorensen W. E. and Cline H. E., July 1987. Marching cubes: A high resolu-

tion 3d surface construction algorithm. In:SIGGRAPH ’87: Proceedings

of the 14th annual conference on Computer graphics and interactive tech-

niques, volume 21. ACM Press, 163–169.

May S. F., 1998.Encapsulated models: procedural representations for com-

puter animation. Thesis (PhD), The Ohio State University.

McCormack J. and Sherstyuk A., 1998. Creating and renderingconvolution

surfaces. In:Comput. Graph. Forum, volume 17, 113–120.

Mcnamara A., Treuille A., Popović Z. and Stam J., 2004. Fluid control using

the adjoint method. In:SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,

New York, NY, USA. ACM, 449–456.

References 263

McNeel R. and Associates , 2010.”News Release: The openNURBS

4.0 toolkit released”. Available from: http://www.opennurbs.org/ open-

NURBS4pr.pdf [Accessed 12.10.2010].

Moby GamesTM , 2010. Games with voxel graphics. Available

from: www.mobygames.com/ game-group/games-with-voxel-graphics

[Accessed 01.10.2010].

Monaghan J., January 1988. An introduction to SPH. In:Computer Physics

Communications, volume 48, 89–96.

Nguyen H., 2007.GPU GEMS 3. Addison-Wesley Professional.

Nielson G., 1999. Volume modelling. In:Volume Graphics, M. Chen, A.

Kaufman, R. Yagel (Eds.), 29–48.

NVIDIA , 2010. ”NVIDIA R© Compute Unified Device Architec-

ture (CUDATM). Introduction & Overview”. Available from:

http://developer.download.nvidia.com/compute/cuda/docs/CUDA

ArchitectureOverview.pdf [Accessed 15.04.2009].

Oeltze S. and Preim B., 2004. Visualization of anatomic treestructures with

convolution surfaces. In:Proc. Joint IEEE/EG Symposium on Visualiza-

tion. Eurographics Association, 2004, 311–320.

Ohtake Y., Belyaev A., Alexa M., Turk G. and Seidel H.-P., 2003. Multi-

level partition of unity implicits. In:ACM Transactions on Graphics (Proc.

SIGGRAPH’03), volume 22, 463–470.

Ohtake Y., Belyaev A. and Seidel H.-P., 2004. 3D scattered data approxima-

tion with adaptive compactly supported radial basis functions. In:Proceed-

ings of the Shape Modeling International 2004, Washington, DC, USA.

IEEE Computer Society, 31–39.

Opalach A. and Maddock S. C., 1995. High level control of implicit surfaces

for character animation. In:Proc. 1st International Eurographics Work-

shop on Implicit Surfaces, 223–232.

Overmars M. H., 1996. Designing the computational geometryalgorithms

library CGAL. In: Selected papers from the Workshop on Applied Com-

References 264

putational Geormetry, Towards Geometric Engineering, FCRC ’96/WACG

’96. Springer-Verlag, 53–58.

Parr T., 2007.The Definitive ANTLR Reference: Building Domain-Specific

Languages. Pragmatic Programmers. Pragmatic Bookshelf, first edition.

Pasko A., Adzhiev V., Sourin A. and Savchenko V., 1995. Function represen-

tation in geometric modeling: Concepts, implementation and applications.

In: The Visual Computer, number 11, 429–446.

Pasko A. and Savchenko V., 1994. Blending operations for thefunction-

ally based constructive geometry. In:Set-theoretic Solid Modelling: Tech-

niques and Applications, CSG 94 Conference Proceddings, 151–161.

Pasko A. A. and Adzhiev V., 2002. Function-based shape modeling: Mathe-

matical framework and specialized language. In:Automated Deduction in

Geometry, 132–160.

Pasko G., Kravtsov D. and Pasko A., 2010. Real-time space-time blending

with improved user control. In: Boulic R., Chrysanthou Y. and Komura T.,

editors,Lecture Notes in Computer Science: Third International Confer-

ence on Motion in Games, MIG 2010. Utrecht, the Netherlands,November

14-16, 2010, volume 6459. Springer, 146–157.

Pasko G., Pasko A., Ikeda M. and Kunii T., 2004a. Advanced metamorphosis

based on bounded space-time blending. In:MMM ’04: Proceedings of

the 10th International Multimedia Modelling Conference. IEEE Computer

Society, 211–217.

Pasko G., Pasko A. and Kunii T., 2004b. Space-time blending.In: Computer

Animation and Virtual Worlds, volume 15, 109–121.

Pasko G., Nieda T., Pasko A. and Kunii T. L., 2004c. Space-time modeling

and analysis. In:SCCG ’04: Proceedings of the 20th spring conference on

Computer graphics, New York, NY, USA. ACM, 13–20.

Pasko G., Pasko A. and Kunii T., 2005. Bounded blending for function-based

shape modeling. volume 25, 36–45.

Perlin K., July 1985. An image synthesizer. In:SIGGRAPH ’85: Proceed-

References 265

ings of the 12th annual conference on Computer graphics and interactive

techniques, volume 19. ACM Press, 287–296.

Popa T., Julius D. and Sheffer A., 2006. Material-aware meshdeformations.

In: SMI ’06: Proceedings of the IEEE International Conference on Shape

Modeling and Applications 2006, Washington, DC, USA. IEEE Computer

Society, 22.

Prusinkiewicz P., 1986. Graphical applications of L-systems. In: Proceed-

ings on Graphics Interface ’86/Vision Interface ’86, Toronto, Ont., Canada,

Canada. Canadian Information Processing Society, 247–253.

Python Software Foundation , 2009.Python Programming Language. Avail-

able from: http://www.python.org [Accessed 01.03.2010].

Reeves W. T., 1983. Particle systems—a technique for modeling a class of

fuzzy objects. In:ACM Trans. Graph., volume 2, New York, NY, USA.

ACM, 91–108.

Reynolds C. W., 1982. Computer animation with scripts and actors. In:Pro-

ceedings of the 9th annual conference on Computer graphics and interac-

tive techniques, SIGGRAPH ’82, New York, NY, USA. ACM, 289–296.

Ricci A., 1973. A Constructive Geometry for Computer Graphics. In: The

Computer Journal, volume 16, 157–160.

Rossignac J. R. and O’Connor M. A. 1990. PSGC: A dimension-independent

model for point-sets with internal structures and incomplete boundaries. In:

Geometric Modeling for Product Engineering, Elsevier Science Publishers

B.V. (North-Holland), Amsterdam, 145–180.

Rossignac J., 1997. Structured topological complexes: a feature-based API

for non-manifold topologies. In:SMA ’97: Proceedings of the fourth ACM

symposium on Solid modeling and applications, New York, NY, USA.

ACM, 1–9.

Savchenko V. and Pasko A., 1995. Collision detection for functionally de-

fined deformable objects. In:The First International Workshop on Implicit

Surfaces, Eurographics Workshop, 217–221.

Savchenko V., Pasko A., Okunev O. and Kunii T., 1995. Function representa-

References 266

tion of solids reconstructed from scattered surface pointsand contours. In:

Comput. Graph. Forum, volume 14, 181–188.

Schmidt R., Wyvill B. and Sousa M. C., 2005. Sketch-based modeling with

the blob tree. In:SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches, New

York, NY, USA. ACM, 90.

Schmitt B., Pasko A., Adzhiev V. and Schlick C., December 2001. Con-

structive texturing based on hypervolume modeling. In:The booktitle of

Visualization and Computer Animation, volume 12, 297–310.

Schmitt B., Pasko A. and Schlick C., 2003. Shape-driven deformations of

functionally defined heterogeneous volumetric objects. In: GRAPHITE

’03: Proceedings of the 1st international conference on Computer graphics

and interactive techniques in Australasia and South East Asia. ACM, 127–

134.

Schmitt B., Pasko A. and Schlick C., 2004. Constructive sculpting of het-

erogeneous volumetric objects using trivariate b-splines. In: The Visual

Computer, volume 20, 130 – 148.

Schmitt B., 2002.Constructive Hypervolume modelling. Thesis (PhD), Bor-

deaux University I.

Schroeder W. J., Lorensen W. E. and Linthicum S., 1994. Implicit modeling

of swept surfaces and volumes. In:VIS ’94: Proceedings of the conference

on Visualization ’94, Los Alamitos, CA, USA. IEEE Computer Society

Press, 40–45.

Sederberg T. W., Gao P., Wang G. and Mu H., 1993. 2-d shape blending: an

intrinsic solution to the vertex path problem. In:SIGGRAPH ’93: Proceed-

ings of the 20th annual conference on Computer graphics and interactive

techniques. ACM, 15–18.

Sederberg T. W. and Greenwood E., 1992. A physically based approach to

2–d shape blending. In:SIGGRAPH ’92: Proceedings of the 19th annual

conference on Computer graphics and interactive techniques, New York,

NY, USA. ACM, 25–34.

Sederberg T. W. and Parry S. R., 1986. Free-form deformationof solid ge-

References 267

ometric models. In:SIGGRAPH Comput. Graph., volume 20, New York,

NY, USA. ACM, 151–160.

Shanat M., Fayolle P.-A., Schmitt B. and T. V., 2002. Haniwa :A case study

of digital visualization of virtual heritage properties. In: 20th Eurographics

UK Conference (De Montfort University, Leicester, UK), IEEE Computer

Society, 24–32.

Shapira M. and Rappoport A., 1995. Shape blending using the star-skeleton

representation. In:IEEE Comput. Graph. Appl., volume 15. IEEE Com-

puter Society Press, 44–50.

Shen G., Sakkalis T. and Patrikalakis N., 2001. Analysis of boundary repre-

sentation model rectification. In:SMA ’01: Proceedings of the sixth ACM

symposium on Solid modeling and applications, New York, NY, USA.

ACM, 149–158.

Shi L. and Yu Y., 2005. Taming liquids for rapidly changing targets. In:SCA

’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium

on Computer animation, 229–236.

Side Effects Software , 2011.Houdini: 3D Animation Tools. Available from:

http://www.sidefx.com [Accessed 18.01.2011].

Sigg C., 2006.Representation and Rendering of Implicit Surfaces. Thesis

(PhD), ETH Zurich, Switzerland.

Singh K. and Parent R., April 1995. Implicit function based deformations of

polyhedral objects. In:Proc. 1st International Eurographics Workshop on

Implicit Surfaces, 113–128.

Sourin A., Pasko A. and Savchenko V., 1996. Using real functions with appli-

cation to hair modelling. In:Computers and Graphics, volume 20, 11–19.

Stora D., Agliati P.-O., Cani M.-P., Neyret F. and Gascuel J.-D., 1999. An-

imating lava flows. In:Proceedings of the 1999 conference on Graphics

interface ’99, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.,

203–210.

Stroustrup B., 2000.The C++ Programming Language. Addison-Wesley

Longman Publishing Co., Inc., 3rd edition.

References 268

Surazhsky T., Surazhsky V., Barequet G. and Tal A., 2001. Blending polyg-

onal shapes with different topologies. In:Computers and Graphics, vol-

ume 25, 29–39.

Tai C.-L., Zhang H. and Fong J. C.-K., 2004. Prototype modeling from

sketched silhouettes based on convolution surfaces. In:Comput. Graph.

Forum, volume 23, 71–84.

Terzopoulos D., Platt J., Barr A. and Fleischer K., 1987. Elastically de-

formable models. In:SIGGRAPH ’87: Proceedings of the 14th annual

conference on Computer graphics and interactive techniques, New York,

NY, USA. ACM, 205–214.

Thomas F. and Johnston O., 1995.The Illusion of Life: Disney Animation.

Disney Editions, revised edition.

Thürey N., Keiser R., Pauly M. and Rüde U., 2006. Detail-preserving

fluid control. In: SCA ’06: Proceedings of the 2006 ACM SIG-

GRAPH/Eurographics symposium on Computer animation. Eurographics

Association, 7–12.

Tigges M. and Wyvill B., 1998. Texture mapping the BlobTree.In: In Pro-

ceedings of the Third International Workshop on Implicit Surfaces, 123–

130.

Tong M., Liu Y. and Huang T. S., 2005. Recover human pose from monocular

image under weak perspective projection. In:ICCV-HCI 2005, 36–46.

Uhlir K. and Skala V., February 2003. ”The implicit functionmodeling sys-

tem - comparison of C++ and C# solutions”. In:1st Int. Workshop on

C# and .NET Technologies on Algorithms, Computer Graphics,Visualiza-

tion, Computer Vision and Distributed Computing, Plzen, Czech Republic.

UNION Agency-Science Press, 87–92.

Versprille K. J., 1975.Computer-Aided Design Applications of the Rational

B-Spline Approximation Form.Thesis (PhD), Syracuse University, Syra-

cuse, NY, USA.

Vilbrandt C., Pasko G., Pasko A., Fayolle P.-A., Vilbrandt T., Goodwin J. R.,

Goodwin J. M. and Kunii T. L., 2004. Cultural heritage preservation using

References 269

constructive shape modeling. In:Computer Graphics Forum, volume 23,

25–41.

W3C , 2010. Extensible Markup Language (XML). Available from:

http://www.w3.org/XML/ [Accessed 12.12.2010].

Wirth N., 1971. The programming language Pascal. In:Acta Inf., volume 1,

35–63.

Witkin A. and Baraff D., 1997. An introduction to physicallybased model-

ing. In: An Introduction to Physically Based Modelling, SIGGRAPH ’97

Course Notes, 1–97.

Witkin A. and Kass M., 1988. Spacetime constraints. In:SIGGRAPH ’88:

Proceedings of the 15th annual conference on Computer graphics and in-

teractive techniques, New York, NY, USA. ACM, 159–168.

Wyvill B., Guy A. and Galin E., 1999. Extending the csg tree. warping,

blending and boolean operations in an implicit surface modeling system.

In: Computer Graphics Forum, number 2, 149–158.

Xiaoping Q. and Dutta D., 2003. Physics-based modeling for heterogeneous

objects. In: Journal of Mechanical Design, volume 125. Butterworth-

Heinemann, 416–427.

Zhang Y. and Huang Y., 2000. Wavelet shape blending. In:The Visual

Computer, volume 16, 106–115.

Appendix A. IC entities and their components 270

A A detailed description of IC entities and their

components

The table presented in this section allows us to map all the theoretical con-

cepts presented in chapter 3 to a set of more practical terms.Information in

table 2 can be used as initial guidance for the implementation of the dynamic

IC framework.

Entity “Property”

name

Values/Range Description

Timespan Span *[REAL;REAL]

set of intervals

Defines a certain interval of

time.

Scale REAL The scale factor of this

time-span, defining the rate

at which time is advanced

within the span.

Time REAL Local time within this time

span that is updated in sync

with the global time. This

time is evaluated taking into

account the scale factor and

the start of the current inter-

val of time.

Global time

ref

REAL Reference to global time.

This reference makes global

time available for any entity

present in the model at any

moment.

Event Name Unique string Name of the event. This

name can be used by other IC

entities in order to provide a

reaction to a particular event.

Appendix A. IC entities and their components 271

Timespan Timespan Reflects the time-span over

which this event occurs. If

the interval is unknown in ad-

vance, only the initial time is

set to the time when the event

has started.

Parameters

(State

parameters)

Vector, real etc Any parameter of a prede-

fined type. These parameters

store values providing addi-

tional information about the

event.

Priority REAL The priority of this event af-

fecting the order in which its

associated reactions will be

performed.

Cell Type B-Cell, F-Cell,

P-Cell, T-Cell,

P-Cell etc.

Type of the cell. The type of

the cell depends on the type

of representation used for the

definition of its shape (e.g.

boundary representation (B-

Cell) or function representa-

tion (F-Cell)).

Dimensio-

nality

0..4 or 0D..4D The dimensionality of the

cell. At the moment the max-

imal dimensionality is for ex-

plicitly time-dependent cells

(e.g. space-time blending).

Appendix A. IC entities and their components 272

Shape FRep API tree/

Set of BRep

primitives

(points, edges,

triangles)/ etc

An actual shape/point-set

contained in the cell. This

can be an FRep tree, a mesh

with all its components

registered using containment

relations or a composition

of elements in the case of a

T-cell.

Local space

domain

[REAL;REAL]

ˆ Dimensional-

ity

A spatial domain enclosing

the current cell (or a bound-

ing box).

Global

space

domain

[REAL;REAL]

ˆ Dimensional-

ity

Similar to the local do-

main but this domain is up-

dated according to the cur-

rent transformation parame-

ters of the cell.

Parameters

(State

parameters)

Vector, real, etc Any parameter of a prede-

fined type. These parame-

ters provide a way to reflect

and modify the current state

of the cell over time. These

parameters can be changed in

reaction to or through the as-

signment of predefined ani-

mations.

Transform Translation,

rotation, scale

Matrix

Transformation components

or a matrix used to trans-

form any point defined in a

local coordinate system of a

cell. Transforms are prede-

fined parameters attached to

each cell.

Appendix A. IC entities and their components 273

Deformation Mapping A special mapping perform-

ing a modification of the

point-set.

Name Unique string A name can be used to iden-

tify a cell (e.g. to access

a particular cell of the com-

plex.)

Reactions Functions A set of functions providing

reactions to certain events.

Priority REAL The priority of this cell that

is used to determine the or-

der of the cells evaluation.

Cells with a higher priority

are evaluated before the cells

with lower a priority30.

Lifespan TIMESPAN This defines the life span of a

cell (which can be infinite).

Attribute Dimensio-

nality

1..N Dimensionality of the at-

tribute. This can be an ar-

bitrary number depending on

the type of the attribute.

Attribute

mapping

Mapping func-

tion

A function performing a

mapping from the modelling

space to an attribute N-

dimensional space.

30The global order of evaluation is also affected by a set of dependency relations defined
by the user.

Appendix A. IC entities and their components 274

Parameters

(State

parameters)

Vector, real, etc Any parameter of a prede-

fined type. These parameters

provide a way to reflect and

modify the current state of

the attribute over time. These

parameters can be changed in

reaction to or through the as-

signment of predefined ani-

mations.

Transform Translation,

rotation, scale

Matrix

Transformation components

or a matrix used to transform

any point defined in a local

coordinate system of the at-

tribute. Transforms are pre-

defined parameters attached

to each attribute.

Deformation Mapping A special mapping perform-

ing a modification of the

point-set.

Name Unique string A name can be used to iden-

tify an attribute (e.g. to ac-

cess a particular attribute of

the complex.)

Reactions Functions A set of functions providing

reactions to certain events.

Priority REAL The priority of an attribute

that can be used to deter-

mine the order of the attribute

evaluation. Attributes with a

higher priority are evaluated

before attributes with a lower

priority 31.

31The global order of evaluation is also affected by a set of dependency relations defined
by the user.

Appendix A. IC entities and their components 275

Lifespan TIMESPAN This defines the life span of

an attribute (which can be in-

finite).

INSTANCE Cells Set of CELL

entities

All the cells present in cur-

rent instance of the IC. These

cells can interact using pa-

rameters.

Attributes Set of ATTRI-

BUTE entities

All the attributes present in

current instance of the IC.

The Attributes can interact

using parameters.

Boundary/

contain-

ment

relations32

Set of cell pairs

and optional

names

Topological relations valid

within the current instance of

an IC. Each relation consists

of a pair of cells. Each of the

cells is present in the Cells

list.

Dependency

relations

Set of pairs of

cells parameters,

shapes,

attributes and

optional names

Similar to previous relations.

These relations are used to

define various types of de-

pendencies between IC enti-

ties. Dependent entities are

evaluated after the entities

they depend on. Bidirec-

tional dependencies are re-

solved in a more sophisti-

cated way.

Attribute

relations

Set of (Attri-

bute; cell refer-

ence) pairs

A set of pairs associating at-

tributes with certain cells de-

fined in the model.

32The number of mutual locations of the cells will grow fast dueto the combinatorial
nature of their relations. The user should only define instances and corresponding predicates
of interest to the particular task at hand.

Appendix A. IC entities and their components 276

Predicate Time-dependent

Boolean

function

A predicate is a function of

time that returns a Boolean

value indicating whether the

current instance of an IC is

still valid (e.g. determin-

ing whether all relations spe-

cific for the current IC re-

main valid).

Reactions Functions A set of functions providing

reactions to certain events.

Name Unique string The name of the instance.

Lifespan TIMESPAN The life span of an instance

(defined using global time).

Parameter

references

Vector, real, etc References to parameters

meaningful within this

particular instance. These

parameters usually reflect the

state of the instance and can

help us to better understand

the process taking place

within the life span of this

instance.

Space

domain

[REAL;REAL]3 The spatial domain used for

the modelling of the current

instance.

TEMPLA-

TE IC

Cells Set of CELL

entities

All the independent cells ini-

tially present in the IC. These

are, for instance, B-Cells, F-

Cells and others but not the

cells existing during different

time intervals (these cells are

only present in the concrete

IC instances).

Appendix A. IC entities and their components 277

Boundary/

contain-

ment

relations

Set of cell pairs

and optional

names

These relations contain rela-

tions valid within the current

instance of an IC. Each re-

lation consists of a pair of

cells. Each cell is present in

the Cells list.

Dependency

relations

Set of pairs of

cells parameters,

shapes,

attributes and

optional names

Similar to previous relations.

These relations are used to

define various types of de-

pendencies between IC enti-

ties. Dependent entities are

evaluated after the entities

they depend on. Bidirec-

tional dependencies are re-

solved in a more sophisti-

cated way.

Attributes Set of ATTRI-

BUTE entities

All the attributes present in

the current instance of the

IC. The Attributes can inter-

act using parameters.

Attribute

relations

A set of (Attri-

bute; cell refer-

ence) pairs

Set of pairs associating at-

tributes with certain cells de-

fined in the model.

Lifespan TIMESPAN The life span of the overall

IC. Can be thought of as the

time domain used for the ac-

tual modelling.

Appendix A. IC entities and their components 278

Parameter

references

Vector, real, etc References to the parameters

of the cells that have mean-

ing within the model. These

parameters usually reflect the

state of the model and can

help us to better understand

the processes taking place in

the model.

Space

domain

[REAL;REAL]3 The maximum spatial do-

main used for modelling (this

can also be accessed by the

instances or cells).

MODEL INSTA-

NCES

Set of IC in-

stances

The IC instances present in

the model (only one of them

can be active at any given

moment of time).

Global time REAL The global time currently

valid in a model.

Global

space

domain

[REAL;REAL]ˆ

Dimensionality

The global modelling do-

main. The model is evaluated

within this domain.

Parameter

references

Set of currently

active parame-

ters

A dynamically modified set

of parameters that are ex-

posed at a particular moment

of time.

Modelling

context

Arbitrary

parameters

Additional parameters defin-

ing the modelling context.

Events Set ofEVENT

entities

A set of custom events used

within this IC model.

Animations Set of AN-

IMATION

entities

A set of predefined anima-

tions used within this IC

model (see description of

ANIMATION below).

Table 2: A list of dynamic IC entities and their properties.

Appendix A. IC entities and their components 279

There are supplementary methods available for the user to determine any

intersections/collisions between the objects. These are needed to simplify

topological queries for dynamic objects (for instance, in order to find out

whether the objects are touching or intersecting each other).

Additionally, we need an animation entity (see table 3). This entity can

be used to define keyframe-based animation for any parameter(i.e. it is “at-

tached” to that parameter). Animation can be defined within an IC instance

or can be applied over the entire modelling process. For instance, if we only

wish to apply the animation until the moment of time when the objects collide

and then we wish to switch to an alternative IC instance. As soon as another

instance has been activated, the animation specific to the previous instance is

no longer applied to the parameter. If a different behaviourof the animation

is expected, it should be described explicitly.

Entity “Property”

name

Values/Range Description

ANIMA-

TION

Keyframe

times

REAL The moments of time at

which the key values of the

animation curve are defined.

Values Set of Param-

eters (REAL /

VECTOR / ...)

The values of the parame-

ters for every moment of time

stored inKeyframe times.

Additional

values

Set of Param-

eters (REAL /

VECTOR / ...)

The values of additional pa-

rameters for every moment

of time stored inKeyframe

times. These values can be

used to provide additional in-

formation required for spe-

cific types of interpolation.

Time range [REAL;REAL] The time range of this anima-

tion (derived fromKeyframe

times).

Local time REAL The local/current time within

the range of this animation.

Appendix A. IC entities and their components 280

Interpolation

type

Linear, var-

ious cubic

curves

The method or type of func-

tion used to retrieve interme-

diate values over time.

Out of

range type

Constant,

Linear, Mirror,

Loop,...

The interpolation type for

time values outside the Time

range (e.g. in order to gain

access to the last evaluated

parameter value, loop anima-

tion, mirror a curve, etc).

Table 3: The components of the animation entity.

Appendix B. “Stand-in” case study 281

B IC model description of a “Stand-in” case study

Description of persistent cells and the first IC instance (see section 4.3.1):

TIMESPANS {

// time-span used for walking out animation (initialised later)
walkTimespan : TIMESPAN;
// time-span used for the animation of blending params
// (initialised later):
blendTimespan : TIMESPAN;

}

// description of persistent cells
CELLS {

Box {
type = F-CELL;
shape = frep::TREE(...);
dim = 3D;
domain = {...};

// this is a static cell, no reaction provided
}

// used to deform Andy and drive convolution
Skeleton {

type = C-CELL;
// this cell is created using union between 2 existing cells
shape = loadSegmentsHierarchy(...);
dim = 3D;
domain = {...};

parameters {

// the actual transforms (associated with every vertex
// in the list of segments)
matrices : array of TRANSFORM;
// the initial shape of the skeleton in neutral pose
initialShape : SHAPE(shape);

}

REACTIONS {

// update the shape using defined animation
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// use the externally defined animation to retrieve a
// set of up-to-date transforms (animation is played
// depending on the external time-span)
matrices = animations("skeletonAnim").transforms(

walkTimespan.t);
// use the up-to-date transforms to modify current
// position of the skeleton
shape = updateShape(initialShape,

matrices(walkTimespan.t));
}

}

}

// mesh
Andy {

type = B-CELL;
shape = loadMesh(...);
dim = 3D;

Appendix B. “Stand-in” case study 282

domain = {...};

parameters {

// skeleton that can be provided to perform deformation
transforms : array of TRANSFORM;

}

REACTIONS {

update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// get access to internal params of BRep model
BREP CELL brepCell = getBCell();
// define skeleton using current up-to-date transform
brepCell.setDeformation(transforms);

}

}

}

// "Stand-in" making Andy model blendable

Liquid Andy {
type = F-CELL;
shape = frep::TREE(...);
dim = 3D;
domain = {...};

parameters {

// skeleton that can be provided to define convolution
skeleton : SHAPE;

}

REACTIONS {

update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// get access to internal params of FRep model
FREP CELL frepCell = getFCell();
// submit skeleton from this cell to FRep tree
frepCell.getFRepParam("skeleton").set("skeleton");

}

}

}

// viscous liquid glued to Andy (result of blend)
Liquid on Andy {

type = T-CELL;
// this cell is created using union between 2 existing cells
//use the internal parameter to control the amount of blending
shape = IC::blendCells(Box, Liquid Andy, blendDensity,...);
dim = 3D;
domain = {...};

// the parameters controlling the blending
parameters {

// the amount of blending
blendDensity : REAL(...);

}

}

} // CELLS

// this is an IC in which all basic relations remain unchanged

TEMPLATE IC1 : TEMPLATE IC {

// references to a set of earlier described cells
// they exist in all instances in this example

Appendix B. “Stand-in” case study 283

CELLS {

Box Skeleton Andy Liquid Andy Liquid on Andy;
}

// a set of relations between the cells/parameters referenced
// in the CELLS section
RELATIONS {

// list of containment relations
containment {

// can define them automatically when defining the shape
// or explicitly
.
.
.

}

// list of boundary relations
boundary {

// can define them automatically when defining the shape
// or explicitly
.
.
.

}

// list of dependency relations between the parameters

dependency {

// dependency and its priority (optional) - default
// priority is 1.0
Skeleton.matrices Andy.transforms;
Skeleton.shape Liquid Andy.skeleton;

}

} // RELATIONS

// attaching attributes to cells
ATTRIBUTES {

// use external mapping describing attributes:
boxAttr = boxMapper3DTo4D;
// volumetric definition of the liquid material
liquidAttr = liquidMapper3DTo4D;
.
.
.
// establish relations between the cells
// and attribute mappings
RELATIONS {

Box boxAttr;
Liquid on Andy liquidAttr;
.
.
.

}

}

} // TEMPLATE IC1

parameters {

// show current blend density
Liquid on Andy.blendDensity blendDensity;
// show position of the root bone of the skeleton
Skeleton.matrices[0].position characterCenter;
.
.
.

}

// when Andy is still inside the box
ANDY WITHIN BOX {

STATE PARAMETERS {

// to know how close the skeleton is to the box

Appendix B. “Stand-in” case study 284

distanceToBox distance;
.
.
.

}

// parameters of this instance

parameters {

// distance between the skeleton and the box
// used to find out when the instance should be disabled
distanceToBox : REAL;

}

// references to a set of earlier described cells
CELLS {

// copy all the cells from the template excluding
// some of them
USE TEMPLATE IC1.CELLS;

}

// references to a set of earlier described cells
RELATIONS {

dependency {

// copy all relations from a template IC
USE TEMPLATE IC1.RELATIONS.dependency;

}

containment {

USE TEMPLATE IC1.RELATIONS.containment;
}

boundary {

USE TEMPLATE IC1.RELATIONS.boundary;
}

}

// attaching attributes to cells

ATTRIBUTES {

USE TEMPLATE IC1.ATTRIBUTES;
}

// events processed by the instance
REACTIONS {

//
init(REAL globalT)
{

// walk span starts in this instance
walkTimespan.start();

}

// update distance
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

distanceToBox = Box.domain.distance(Skeleton.curDomain);
}

}

PREDICATE {

// predicate used to find out if the instance is still
// valid (can be based on time or anything else within
// the scope of the instance)
bool evaluate(REAL globalT, REAL localT, REAL dt)

{

return distanceToBox < ...;

Appendix B. “Stand-in” case study 285

}

}

} // ANDY WITHIN BOX

Second IC instance of the model:
// when Andy came out of box
ANDY OUT OF BOX {

STATE PARAMETERS {

// to know how close the skeleton is to the box
distanceToBox distance;
// see the amount of blend
Liquid on Andy.blendDensity amountOfBlend;
.
.
.

}

// parameters of this instance

parameters {

// distance between the skeleton and the box
// used to find out when the instance should be disabled
distanceToBox : REAL;

}

// references to a set of earlier described cells
CELLS {

// copy all the cells from the template excluding
// some of them
USE TEMPLATE IC1.CELLS;

REACTIONS
{

// provide custom reaction for the liquid
// start eroding the shell in this instance
Liquid on Andy.update(REAL globalT, REAL localT,

REAL lifeT, REAL dt)
{

// make blend coefficient proportional to the
// distance between the skeleton and the liquid box
blendDensity = 1 / (distanceToBox * distanceToBox);

}

}

}

// references to a set of earlier described cells
RELATIONS {

dependency {

// copy all relations from a template IC
USE TEMPLATE IC1.RELATIONS.dependency;

}

containment {

USE TEMPLATE IC1.RELATIONS.containment;
}

boundary {

USE TEMPLATE IC1.RELATIONS.boundary;
}

}

// attaching attributes to cells

Appendix B. “Stand-in” case study 286

ATTRIBUTES {

USE TEMPLATE IC1.ATTRIBUTES;
}

// events processed by the instance

REACTIONS {

// update distance
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// update distance to box
distanceToBox = Box.domain.distance(Skeleton.curDomain);

}

}

PREDICATE {

// predicate used to find out if the instance is still
// valid (can be based on time or anything else within
// the scope of the instance)
bool evaluate(REAL globalT, REAL localT, REAL dt)
{

return distanceToBox < ...;
}

}

} // ANDY OUT OF BOX

Appendix C. “Andyhausen” experiment 287

C IC description of “Andyhausen” experiment

The IC template for this model is defined as follows:

// this is an IC in which all basic relations remain unchanged

TEMPLATE IC1 : TEMPLATE IC {

// references to a set of earlier described cells
// they exist in all instances in this example
CELLS {

Handle1 Handle2 Barrel Rope Hook Egg contents Liquid Melting egg;

}

// a set of relations between the cells/parameters referenced in

// the CELLS section
RELATIONS {

// list of containment relations
containment {

...
}

// list of boundary relations

boundary {
...

}

// list of dependency relations between the parameters

dependency {

// dependency and its priority (optional) - default
// priority is 1.0
Handle1.alpha Handle2.alpha;
Handle2.alpha Handle1.alpha 0.5;
Handle1.alpha Barrel.alpha;
Barrel.distTravelled Rope.inactiveLength;
Rope.endPoint Hook.transform.translation;

}

} // RELATIONS

// attaching attributes to cells

ATTRIBUTES {

// use external mapping describing attributes:
liquidAttr = liquidMapper3DTo4D;
// contains white and yolk distribution:
eggContentsAttr = eggMapper3DTo4D;
...
// establish relations between the cells and
// the attribute mappings
RELATIONS {

Liquid liquidAttr;
Egg contents eggContentsAttr;
...

}

}

} // TEMPLATE IC1

The first IC instance is defined in the following way :

// first instance of the IC
EGG GOING DOWN {

STATE PARAMETERS {

// to know how close the egg has moved to the liquid
distanceToLiquid liquidToEggDistance;

Appendix C. “Andyhausen” experiment 288

...
}

// the parameters of this instance

parameters {

// period of time it takes to bring egg to the liquid
descentDuration : REAL(...);
// distance between the egg and the surface
distanceToLiquid : REAL(...);

}

// references to a set of earlier described cells
CELLS {

//copy all the cells from the template except the melting egg

USE TEMPLATE IC1.CELLS \ { Melting egg };
Eggshell;

...
// custom REACTIONS of the referenced cells
// (i.e. procedures called)
REACTIONS
{

// this one uses all default REACTIONS of the cells
}

...
}

// references to a set of earlier described cells
RELATIONS {

dependency {

// copy all relations from a template IC
USE TEMPLATE IC1.RELATIONS.dependency
Hook.transform Egg shell.transform HIERARCHICAL

Hook egg dependency;
Egg shell.transform Egg contents.transform HIERARCHICAL

Egg contents dependency;

}

containment {

USE TEMPLATE IC1.RELATIONS.containment;
Eggshell Eggcontents;

}

boundary {

USE TEMPLATE IC.RELATIONS.boundary;
Hook Eggshell; // eggshell attached to a hook

}

}

// attaching attributes to cells
ATTRIBUTES {

TEMPLATE IC1.ATTRIBUTES;
// use external mapping describing attributes:
liquidAttr = liquidMapper3DTo4D;
eggshellAttr = eggShellMapper3DTo4D;

...
// attach these attributes to some cells now
RELATIONS {

Liquid.attributes = liquidAttr;
Eggshell.attributes = eggshellAttr;

Appendix C. “Andyhausen” experiment 289

...
}

}

// events processed by the instance
REACTIONS {

// initialisation, desctruction and update
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)

{

// the angular velocity "omega" can be varied as well
Handle.alpha += Handle.omega * dt;
// evaluate distance to the liquid for the egg
distanceToLiquid = Liquid.domain.distance(

Eggshell.curDomain);

}

}

PREDICATE {

// predicate used to find out if the instance is still valid

// (can be based on time or anything else within the scope

// of the instance)
bool evaluate(REAL globalT, REAL localT, REAL dt)

{

// instance becomes invalid when the eggshell touches
// the liquid
return !Liquid.domain.isIntersection(Eggshell.curDomain);

}

...
}

} // EGG GOING DOWN

After describing the first IC instance we introduce the second instance (the

egg touching the surface, the shell starting to crack/erode, while the contents

of the egg starts blending with the liquid):

// second instance of the IC
EGG ERODING {

STATE PARAMETERS {

// show the state of the eggshell, while it’s active
Eggshell.damageState eggtermination;
// blend rate to know how strOngly the contents have
// been blended
Melting egg.blendRate meltRate;

...
}

// the parameters of this instance
parameters {

// period of time it takes to bring egg to the liquid
descentDuration : REAL(...);

}

// references to a set of earlier described cells
CELLS {

// copy all the cells from the template except

Appendix C. “Andyhausen” experiment 290

// the melting egg
USE TEMPLATE IC1.CELLS \ { };
Eggshell;

...
// custom REACTIONS of the referenced cells
// (i.e. procedures called)
REACTIONS
{

// start eroding the shell in this instance
Eggshell.update(REAL globalT, REAL localT,

REAL lifeT, REAL dt)
{

// get the F-Cell representing the egg
FREP CELL frepCell = getFCell();
// evaluate how much the egg has been damaged:
damageState = lifeT * damageRate;
// use the damange state to modify the noise
// subtracted from the surface:
// subtracted from the surface:
frepCell.getFRepParam("noiseParam").set(damageState);

}

}

...
}

// references to a set of earlier described cells
RELATIONS {

dependency {

// copy all relations from a template IC
USE TEMPLATE IC1.RELATIONS.dependency
Hook.transform Egg shell.transform HIERARCHICAL

Hook egg dependency;
Egg shell.transform Egg contents.transform HIERARCHICAL

Egg contents dependency;
}

containment {

USE TEMPLATE IC1.RELATIONS.containment;
Eggshell Eggcontents;

}

boundary {

USE TEMPLATE IC.RELATIONS.boundary;
Hook Eggshell; // eggshell attached to a hook

}

}

// attaching attributes to cells

ATTRIBUTES {

TEMPLATE IC1.ATTRIBUTES;
// use an external mapping describing attributes:
liquidAttr = liquidMapper3DTo4D;
eggshellAttr = eggShellMapper3DTo4D;

...
// establish the relations between the cells and
// attribute mappings
RELATIONS {

Liquid liquidAttr;

Appendix C. “Andyhausen” experiment 291

Eggshell eggshellAttr;

...
}

}

// events processed by the instance
REACTIONS {

// initialisation, desctruction and update
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)

{

// the angular velocity "omega" can be varied as well
Handle.alpha += Handle.omega * dt;

}

}

PREDICATE {

// predicate used to find out if the instance is still
// valid (can be based on time or anything else within
// the scope of the instance)
bool evaluate(REAL globalT, REAL localT, REAL dt)

{

// instance becomes invalid when the eggshell completely
// sinks in the liquid
return ! Liquid.domain.isInside(Eggshell.curDomain);

}

...
}

} // EGG ERODING

The third IC instance contains a circular dependency causedby the de-

pendency relation between the cellAndy andhandle2. The cell “Eggshell”

does not exist any longer and there is no dependency between the cellegg liq-

uid and thehook. We add a dependency between thehook and the skeleton

instead:
// when Andy came out of the egg

ANDY OUT {

STATE PARAMETERS {

// how high has andy pulled herself:
Andy.curDomain.Y andyHeight;

...
}

// references to a set of earlier described cells
CELLS {

//copy all the cells from the template
USE TEMPLATE IC1.CELLS

// used to deform Andy and to drive the convolution

Skeleton {
type = C-CELL;
//this cell is created using union between 2 existing cells
shape = loadSegmentsHierarchy(...);
dim = 3D;

Appendix C. “Andyhausen” experiment 292

domain = {...};

REACTIONS {

// update the shape using defined animation
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)

{

// use externally defined animation to retrieve
// current position of the skeleton
shape=animations("skeletonAnim").params(localT);

}

}

}

// mesh
Andy {

type = B-CELL;
shape = loadMesh(...);
dim = 3D;
domain = {...};

parameters {

// skeleton that can be provided to perform deformation
skeleton : array of TRANSFORM;

}

REACTIONS {

update(REAL globalT, REAL localT, REAL lifeT,REAL dt)
{

// get access to internal params of the BRep model
BREP CELL brepCell = getBCell();
// define skeleton using current
// up-to-date transform
brepCell.setDeformation("skeleton");

}

}

}

// th e"Stand-in" making Andy model blendable
Liquid Andy {

type = F-CELL;
shape = frep::TREE(...);
dim = 3D;
domain = {...};

parameters {

// the skeleton that can be provided
// to define convolution
skeleton : array of VECTOR3;

}

REACTIONS {

update(REAL globalT, REAL localT,
REAL lifeT, REAL dt)

{

//get access to the internal params of the FRep model
FREP CELL frepCell = getFCell();
// submit skeleton from this cell to FRep tree
frepCell.getFRepParam("skeleton").set("skeleton");

}

}

}

// viscous liquid glued to Andy (result of the blend)

Appendix C. “Andyhausen” experiment 293

Liquid on Andy {
type = T-CELL;
// this cell is created using union
// between 2 existing cells
shape = IC::blendCells(Melting egg, Liquid on Andy, ...);
dim = 3D;
domain = {...};

// it doesn’t have any behaviour as it is implicitly
//dependent on two other cells

}

// custom REACTIONS of the referenced cells
REACTIONS
{

// this one uses all the default REACTIONS of the cells
}

}

// references to a set of earlier described cells
RELATIONS {

dependency {

// copy all relations from a template IC
// (but remove egg - hook dependency)
USE TEMPLATE IC1.RELATIONS.dependency \

{ Hook egg dependency Egg contents dependency};

// instead attach skeleton to the rope
Hook.transform Skeleton.transform HIERARCHICAL;
// the skeletons driving "both Andys"
Skeleton.shape Andy.skeleton;
Skeleton.shape Liquid Andy.skeleton;
// the dependency between the hand on the skeleton
// and the handle:
Andy.skeleton["hand"].rotationZ Handle2.alpha;

}

containment {

USE TEMPLATE IC1.RELATIONS.containment
// some relations for BReps can be derived automatically

...
}

boundary {

USE TEMPLATE IC1.RELATIONS.boundary
Hook Skeleton
// some relations for BReps can be derived automatically

...
}

}

// attaching attributes to cells

ATTRIBUTES {

// use an external mapping describing the attributes:
liquidAttr = liquidMapper3DTo4D;
// contains the white and yolk distribution:
eggContentsAttr = eggMapper3DTo4D;
// establish the relations between the cells
// and the attribute mappings

RELATIONS {

Liquid Andy liquidAttr;

Appendix C. “Andyhausen” experiment 294

Liquid on Andy liquidAttr;
eggContents eggContentsAttr;

...
}

}

// events processed by the instance

REACTIONS {

// initialisation, desctruction and update
update(REAL globalT, REAL localT, REAL lifeT, REAL dt)
{

// use a predefined animation to drive the skeleton
// which will result in many other actions
Skeleton.shape = animations("skeletonAnim").params(

localT);
}

}

PREDICATE {

// predicate used to find out if the instance is still valid
// (can be based on time or anything else within the scope

// of the instance)
bool evaluate(REAL globalT, REAL localT, REAL dt)
{

// use the duration of the animation to see how long
// this will be happening for
return localT < animations("skeletonAnim").duration;

}

}

} // ANDY OUT

295

D List of publications

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComninosP., 2010a.

Embedded implicit stand-ins for animated meshes: a case of hybrid mod-

elling. In Comput. Graph. Forum, 29(1), 128–140.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComninosP., 2010b.

Polygonal-Functional Hybrids for Computer Animation and Games. InEngel

W., editor, GPU Pro: Advanced Rendering Techniques, AK Peters Ltd, 87–

114

Pasko G., Kravtsov D., Pasko A., 2010c. Real-Time Space-Time Blending

with Improved User Control,The 3-d International Conference on Motion in

Games MIG10, Zeist, the Netherlands, November 1316, 2010, Lecture Notes

in Computer Science, Eds.:Boulic, Y. Chrysantou, and T. Komura, Springer,

Heidelberg, LNCS 6459, 146–157.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComninosP., 2010d.

Real-time controlled metamorphosis of animated meshes using polygonal-

functional hybrids. InACM SIGGRAPH ASIA 2010 Sketches, Seoul, Korea.

SA’10, New York, NY, USA. ACM, pages 36:1–36:2.

Pasko G., Kravtsov D., Pasko A., 2010e. Real-Time Controlled Space-

Time Blending. InACM SIGGRAPH ASIA 2010 Sketches, Seoul, Korea.

SA’10, New York, NY, USA. ACM, 38:1–38:2.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComninosP., 2010f.

Controlled metamorphosis of animated meshes using polygonal-functional

hybrids. InPoster Proceedings. SIGGRAPH 2010, Los Angeles, California,

USA, New York, NY, USA. ACM.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComninosP., 2009.

Polygonal-functional hybrids for computer animation and games. InPoster

Proceedings. ACM SIGGRAPH 2009, New Orleans, Louisiana, USA. New

York, NY, USA. ACM.

