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Abstract

Denis Kravtsov

Hybrid Modelling of Time-variant Heterogeneous Objects

The physical world consists of a wide range of objects of die con-
stitution. Past research was mainly focussed on the madedli simple ho-
mogeneous objects of a uniform constitution. Such rese@shited in the
development of a number of advanced theoretical concegtpractical tech-
niques for describing such physical objects. As a resudtpttocess of mod-
elling and animating certain types of homogeneous objextaine feasible.

In fact most physical objects are not homogeneous but lggasous in
their constitution and it is thus important that one is albl@éal with such
heterogeneous objects that are composed of diverse nigi@ng may have
complex internal structures. Heterogeneous object miodel still a very
new and evolving research area, which is likely to prove wlsef a wide
range of application areas. Despite its great promiseybgd@eous object
modelling is still at an embryonic state of development dretd is a dearth
of extant tools that would allow one to work with static anchdynic het-
erogeneous objects. In addition, the heterogeneous natuhe modelled
objects makes it appealing to employ a combination of différepresenta-
tions resulting in the creation of hybrid models.

In this thesis we present a new dynamic Implicit Complex€3 ftame-
work incorporating a number of existing representatiordsammation tech-
niques. This framework can be used for the modelling of dyinamultidi-
mensional heterogeneous objects. We then introduce arncitr@bmplexes
Application Programming Interface (IC API). This IC APl issigned to pro-
vide various applications with a unified set of tools allogvithese to model
time-variant heterogeneous objects. We also present a neatibn Repre-
sentation (FRep) API, which is used for the integration oEpRinto com-
plex time-variant hybrid models. This approach allows usr&ate a practi-
cal multilevel modelling system suited for complex multr@éinsional hybrid
modelling of dynamic heterogeneous objects. We demomesthat advan-
tages of our approach through the introduction of a novebftetols tailored



to problems encountered in simulation applications, caerpanimation and
computer games. These new tools empower users and amgliftbativity
by allowing them to overcome a large number of extant maalghind anima-
tion problems, which were previously considered difficuleeen impossible
to solve.
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1. Introduction 19

1 Introduction

The physical world consists of a wide range of miscellanezhjects of a
diverse nature. Models of these real entities can help usayhetter under-
standing of the physical world.

In the past a lot of research was focused on modelling simphedge-
neous objects made of a uniform material. This researchteésulted in the
development of a number of advanced theoretical and pehctiethods for
describing physical objects. Specific mathematical repregions, theoreti-
cal frameworks and modelling tools have been introduced theeyears. As
a result, the process of modelling and animation of cerigieg of homoge-
neous objects became easier to do. However, not all phystigatts can be
described as homogeneous objects.

In fact, the majority of physical objects are heterogenaausature and
it is necessary to be able to work with such objects. Hetereges objects
are composed of different materials and have a complexnatestructure.
For instance, a walnut consists of a shell and a seed codtairtfe shell.
In its turn the shell has a number of inner layers and the sas@ltomplex
internal structure as well. Complex assembly of a set of dyoabjects
made of homogeneous matter can also be considered a heteoageobject.
Heterogeneous object modelling is a very promising apgroahich is likely
to be useful in a wide range of applications. This is still avraad evolving
research area. New specialised representations and tibabfeameworks
are being introduced and existing ones are still being réfinBespite all
the potential advantages of this new approach, there aristing tools,
which would allow us to work with static and dynamic hetenogeus objects.
At the moment we can only conclude, that the heterogenedusenaf the
modelled objects makes it appealing to employ a combinatdfodifferent
representations using a hybrid model.

The latest advances in computer hardware resulting in arase of com-
putational power, the introduction of modern 3D displayd ahnew types
of haptic devices make heterogeneous object modellingbleasRecent re-
search has presented a number of ways allowing us to perfosnype of
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modelling. In this thesis we present a new framework incafioeg a num-
ber of existing representations and animation techniquéss framework
can be used for the modelling of dynamic multidimensionaétweneous
objects. We believe that the new tools built upon this framwwill prove
to be useful in various areas of computer graphics.

The Implicit Complexes (IC) Framework, developed earligrdur re-
search teat provides us with a way of integrating models of differentuna
within one hybrid model by combining both the geometry ofemlt$ and their
arbitrary properties. To date however, this framework hag been suitable
for the modelling of static heterogeneous objects. Howewesidering the
walnut example in more detail, we notice that its propertiesnge over its
lifetime.

Most natural objects are not static but undergo certain fioadions or
transitions over time. More importantly, these dynamiehajeneous objects
can interact with each other over time in an unpredictablalmer of ways.
In general, the internal properties of time-variant otgeufy depend on the
properties of various external objects. Some of thesedntiems could be de-
fined manually or by using a higher-level procedural defmitiwhile certain
behaviours could only be determined as a result of a sinoulgtiocess.

In this thesis we describe a new IC-based framework, allgwsito model
time-variant multidimensional heterogeneous objectsgiie aforementioned
approaches. This dynamic IC framework provides a way of aefithe ob-
jects using a number of existing representations and almmé&tchniques.
Here we present a brief description of the existing repragiems and anima-
tion approaches that are combined in the new dynamic IC fraoriein order
to provide a set of tools for the definition of complex dynaimybrid models.

The modern world of computer graphics is mostly dominateddayndary
representation models (also known as BRep models). Sucklmoan only
store information about an object’s boundary (as thougtotiject was hol-
low). An objects’ boundary information alone is sufficient 1 wide range
of applications, such as certain types of computer animatidarge set of

1The list of collaborators includes Elena Kartasheva, Yakizhiev, Alexander Pasko,
Peter Comninos, Oleg Fryazinov and Benjamin Schmitt.
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computer games and even for a limited subset of CAD modedpylica-

tions or physical simulations. One of the most popular typieboundary

representation models are the polygonal models. With thessels planar
primitives such as triangles or quads are used as buildoakblto represent
3D objects. Polygonal models provide a rich set of availaplerations and
are often highly scalable. One of the most important reasdrnspolygonal

models have gained such popularity in the past thirty yeathe fact that
planar primitives can be rendered in a relatively easy ways Was quite an
important factor in the early years of computer graphicsmrasting hard-
ware resources were very limited. The extensive developwfecomputer

graphics hardware was mostly oriented towards maximidiegnumber of
planar primitives rendered per frame and the introductibnew rendering

techniques that could somehow enhance the visual qualitheofesulting

images.

As was mentioned earlier, boundary representation modelsray suit-
able for a limited set of applications. Naturally when theemnal structure of
an object is required the limitations of the boundary repmégtion become
apparent. For instance, the BRep description of a detail@dw model,
mentioned earlier in the text, would be very limiting. Theibdary represen-
tation would only allow us to create a finite set of surfacggesenting the
shell and the seed contained within it. It would be next toasgible to ex-
plore the internal structure of such an object, if we wereutiooe split the nut,
attempting to look at its contents hidden under the shelletaided model of
such an object requires a more powerful volumetric reptasen. A volu-
metric representation allows us to describe the surfacesisaw/the interior
of some region of space. Thus, volumetric models allow ussesamme the
aforementioned limitations of the boundary represemntatibhe volumetric
representation is more natural and provides us with thébsl store more
detailed information about an object’s interior, which specially important
when dealing with heterogeneous objects (i.e. objectsistimg of different
materials and having complex internal structures). Themeitric represen-
tation, unlike the boundary representation, affords usenfi@edom in terms
of our ability to design, explore and manipulate the model.

One of the many types of volumetric representations reliesliscrete
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voxels, which are a 3D equivalent of pixels. Models of thipetyare able
to store significantly more detailed information about thgresented objects
and their relations without the familiar restrictions foum BRep models.
But the main problem with voxels is that they are resolutiepehdent. It is
thus desirable to provide a model of the highest possibl@ugsn to avoid
major aliasing artefacts. Increasing the model resolugads us to another
major problem with voxel representations: the significamtegge requirement
caused by the necessity to store the information relatiige@ntire discrete
volume set. There are different techniques allowing us ay@me this issue,
but they are not well suited for dynamic models.

There is another volumetric representation that we coulpleynA Func-
tion Representation (FRep) is a generalised model repigamallowing us
to define solid objects of arbitrary dimensionality and tocmbjects of dif-
ferent dimensionalities within a single model. An FRep sgstomprises of
a set of geometric primitives, a set of operations and a selations. Primi-
tives are combined using operations. An FRep usually allssv® represent
compactly advanced volumetric models in a resolution iedelent manner.
The resolution independence of the model is a rather impoi@ator, mean-
ing that the model can easily be refined depending on thefgpapplication
needs. A constructive tree used in combination with an FRakesit eas-
ier to see how the model was assembled and to modify the mdéeelit
was constructed. This is vital not only for static modelsdidgb for dynamic
models, because it affords us the freedom to introduce dramizanges to
the geometry and topology of the model. It is also importamdte that an
FRep can be used to specify the arbitrary volumetric atiebof the mod-
elled objects so as to represent their internal structufiarent contexts.
One of the significant shortcomings of FRep models is themmatationally
expensive model evaluation procedure. Another issue islihmted support
in current software tools and the absence of certain methsels in existing
computer animation systems, which can limit the use of FRepsnumber
applications.

Overall, we can see that the various model representatiaves distinct
advantages and disadvantages.
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We have mentioned a number of issues specific to BRep modeBRep
models cannot easily be replaced by volumetric models famaber of rea-
sons. A large number of techniques for modelling and anonatif BReps
was developed over the years. A wide range of applicatiodsaois relying
on BRep models was introduced during the past thirty plussy@ere is an
immense amount of content produced by a significant numbgradéssion-
als trained to work with BRep models alone. Large groups peets special-
ising in certain ever-narrowing areas of static or dynamireB modelling
do not have enough experience to work efficiently with otlepresentations.
Besides, as was mentioned earlier, BRep models satistyaati¢eds of many
existing applications. In these cases the definition of aeng@neric mod-
els would be unnecessary. It is thus apparent, that the etengjection of
BReps as well as other existing model representations wmelidappropri-
ate. The necessity to introduce a generic hybrid modellystesn allowing us
to combine objects of various representations thus becapmsent. Such a
unified representation should allow us to exploit the beatatteristics of the
various representations and of the ways in which objectsessed in these
diverse representations can be made to interact with e&eln. ot

The Implicit Complexes (IC) Framework allows us to combinedals of
diverse nature within one hybrid model. ICs were introduaed representa-
tion for a cellular-functional hybrid model of heterogensmbjects. The hy-
brid model described within ICs may contain entities of ¥ad dimensional-
ities and representations. IC models consist of valid togickl descriptions
of heterogeneous objects and allow for the combination fééréint existing
representations of both the geometry of objects and thibutts describing
the objects’ properties. This framework provides the ugtr avset of power-
ful tools. Unfortunately, up to date the IC framework wasyosilited for the
definition of static hybrid models. Thus, it could only be dider a limited
set of applications.

As we have mentioned earlier in the text, the capability dinileg time-
variant models is very important for an appropriate desicnipof a large vari-
ety of applications. A large number of the existing animaggstems provide
the user with a wide range of tools suitable for the definibbdynamic mod-
els. But the majority of these systems are oriented towandsepresentation
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only. Most commonly, these systems support BRep modelgabsthey are

mostly targeted to the visualisation or interaction witl tbject’s boundary.

Thus, it becomes apparent that in modern animation systesns is a neces-
sity for representing objects of different types that ceeki the same scene
and interact with each other in a seamless way.

There are several techniques commonly used in the productianima-
tion sequences, such as keyframing and inbetweening. Taelseiques are
similar to the ones used in traditional hand-drawn aninmatroaking them
more accessible to users with an artistic background. Taggeaches pro-
vide the artist with precise control over various aspectthefproduced an-
imation sequence. Unfortunately, this workflow can stilldbgery arduous
and time-consuming process. Besides, major modificatibtteecanimation
sequence require a lot of manual repetitive actions fronattieator.

Another way of defining a computer animation sequence isitiiv@a script
(also known as a procedural definition). Scripting in sonmeseecan be seen
as a rather detailed breakdown of a screenplay. This déiscripan then be
used by the animation system to produce the actual framdgedrtimation
sequence. This approach also allows the user to define thelrand the
processes taking place within it in an appropriate way, outtthe necessity
of describing all the aspects manually. In certain circamsgs, the com-
plex evolution of a model can be more easily described thHraugcripting
language incorporating high level terms used for animgi@aluction. This
approach is also better suited for the definition of rea-pfocesses, when
the animator is more interested in the correctness of a matel valid defi-
nition of a model can help the user produce a believable aromaequence
reflecting the desired behaviour of dynamic entities. Intkast, a similar se-
guence animated by hand (which may not always be possiblgpvenly try
to laboriously reproduce a certain phenomenon aiming aavigsemblance
without a good understanding of the dynamic process. Coedpara proce-
dural definition, keyframing leaves little room for subsequmodifications
and extensions. A procedural definition on the other haraalithe user to
build a model iteratively, combining different objects astdtes of the model
together, and thus creating a model with a behaviour thatmoape known
in advance. Another powerful feature of this approach ispihesible pres-
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ence of dependency relations between the entities of theimddis allows
the user to define a set of independent agents and their loelnavia modular
fashion and to combine those, establishing dependendegée them. One
of the major issues of this approach is the high level of texirskills re-
quired of the person developing the procedural definitioheimodel. Many
artists find this approach rather hard to understand anduliftio direct in a
predictable way.

It is hard to give preference to any one of these methods gsatleesuited
to the solution of dissimilar problems. Keyframed animatie often easier
for artists to work with, while a procedural definition, whican be thought of
as a form of computer programming, may be much easier fonteahpeople
collaborating with artists. Additionally, some low-lewahimation sequences
often have to be defined manually before being incorporattdthe proce-
dural definition of a model. Certain complex models can olylbfined in a
procedural way, as they would otherwise require a signifiaarount of labo-
rious and repetitive work. The combination of these apgdieaallows us to
get the best of both worlds, having precise artistic cordvelr some parts of
the model, while providing a high-level definition of othearts of the model
that can be evaluated on the fly.

We can see that over the years a wide range of different tgeabsihave
been introduced for the creation of time-dependent modélse situation
in the world of animation is similar to the one we describedsiation to the
modelling of static objects. Each of the approaches hassitindt advantages
as well as disadvantages. In this thesis we describe a navedark allow-
ing us to combine the aforementioned animation technigoeshie hybrid
modelling of time-variant heterogeneous objects. We plewa way of de-
scribing heterogeneous objects defined using differentetfing techniques
involving boundary and volumetric representations as a&lheir procedu-
ral variations. Interactions between objects of diffenagresentations de-
fined within the framework can take place seamlessly. Thedloiction of
these new capabilities requires the development of newemnadltical struc-
tures able to represent diverse models - specifically indinésxt of computer
animation and simulation. A multilevel modelling systenséd on this math-
ematical framework allows us to create a set of practicdlsttailored for
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complex multidimensional hybrid modelling of dynamic hegeneous ob-
jects. These new tools will allow us to overcome a large nurabexisting
modelling problems and to provide the user with a number of pewerful
tools previously unavailable.

This thesis is structured as outlined below.

In Chapter 2, we present related work and we briefly descrisieg
model representations. We discuss the advantages andasages of the
various representations together with their applicati@as. The IC frame-
work is introduced as a common platform allowing us to incogpe all the
representations within one hybrid model. In the secondqiahis chapter we
provide a survey of existing animation techniques and nusthused for the
definition of time-dependent models. In similar way to thecdission regard-
ing existing model representations we analyse the streragttl weaknesses
of the existing approaches for the definition of dynamic ni&dat the end
of the chapter we discuss the necessity for the extensidrettt framework
in order to use it for the definition of time-variant heterngeus objects.

In Chapter 3, we discuss the set of extensions required ébDgnamic
IC framework. We provide extended definitions of the basiccepts and
we introduce the new notions required for the dynamic maugtf complex
time-variant heterogeneous objects. In this chapter we dilcuss various
components of the framework, paying particular attentiorinie Function
Representation and the Constructive Hypervolume FramewArnumber
of extensions to these frameworks are described in thistehapphese ex-
tensions provide us with a number of new tools useful for rdutensional
hybrid modelling.

In Chapter 4, we present a more detailed description of thieal@ework
from a technical point of view. We describe the high-leveiation used for
the definition of the models together with the methodologynafdel defi-
nition. We outline the process of model evaluation with ezsfgo complex
dynamic relations established between the objects. Thisnration is re-
quired for the practical implementation of the frameworkurtRer, in this
chapter we introduce the Implicit Complexes Applicatiomdgtamming In-
terface (IC API). The IC APl is designed to provide variouplagations with
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a unified set of tools allowing them to perform modelling ofié-variant het-
erogeneous objects. In the remainder of the chapter westishe problems
of integration of the existing representations into thenfeavork. A practi-

cal implementation of the whole framework is outside thepgcof this re-

search project. Thus we mainly focus on the integration oég<Rinto the
framework. Hence, the design and the implementation of BepFAPI are

described in more detail in this chapter as well. At the enthefchapter we
consider further improvements of the APIs and we discusswbeun of ways

to improve the performance of model evaluation.

In Chapter 5, we describe a number of applications of theqeeg mod-
elling framework and discuss the results. We outline a s@roposed im-
provements for space-time blending relying on multidimemnal dynamic
models. Next we introduce our new method for the modellingptaractions
between dynamic objects and viscous materials using adependent hy-
brid models. We also describe the extensions to this appnehch allow us
to solve a number of other existing problems, including tagial metamor-
phosis of animated characters and the controlled metarosigpbf dynamic
meshes. Then we present an application involving a complexaction se-
guence between a set of time-variant heterogeneous nmuétidiional objects
within one hybrid model. Finally, we describe our prototypglementation
of an interactive modelling system that can be used for tHi@itden of dy-
namic heterogeneous objects or certain parts of a hybricemdua addition,
we describe in detail practical methods that can be emplyretie acceler-
ation of model evaluation employing both the CPU and the GPU.

In Chapter 6, we examine the results of the presented woskuds po-
tential solutions of the problems that have been investdjand outline our
conclusions. At the end of this chapter we summarise theiboitiopns of our
work and propose directions for future work.

The main contributions of this research work are:
1. The introduction of a new dynamic IC framework.

2. The introduction of the new extensions to the Constradtlypervol-
ume Framework.
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3. The design and detailed description of a new high-levejuage for
the definition of time-dependent mixed-dimensional hyloniodels.

4. The design and implementation of novel APIs and softwaoéstre-
lated to the hybrid modelling of time-variant heterogerseobjects.

5. The introduction of new extensions to space-time blepakithin the
ICs.

6. The introduction of novel approaches based on an anirfstizad-ins”
technique allowing us to overcome a set of known issues.

7. The retrieval and analysis of new experimental resulitsgudynamic
hybrid models.
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2 Related work

In the Introduction we have mentioned a number of the exjstapresenta-
tions and computer animation techniques. In this chaptegpnareide a more
detailed overview of these topics. We discuss the advastage disadvan-
tages of the examined representations along with their @myaatication ar-
eas. We then outline the main features of the IC frameworkdaia be used
to combine models defined in different representations amdhow that the
IC framework can be used as a powerful platform for the dedimiof hybrid
models of heterogeneous objects.

In the second part of the chapter we provide a survey of thstiegi
computer animation techniques and methods used for thataefiof time-
dependent models. We analyse the strengths and weaknéskeseristing
approaches for the definition of dynamic models. Finallydigeuss the ne-
cessity for the extensions to the IC framework so that it camsed for the
modelling of time-variant heterogeneous objects.

2.1 The boundary representation

A boundary representation (BRep) model is used to repreésershape of an
object as a set of connected surface elements (i.e., trecsurbundary of the
object). BRep models consist of both geometric and topodgnformation.

The geometric information consists of the description effibints belonging
to the surface of an object, while the topological inforroatspecifies the
connections between points on its surface and allows usettifgghe set of
components making up the shape of the object being repezkenhere are
a number of different types of BReps available for the definibf a model.

2.1.1 The parametric representation

Historically the parametric representation (PRep) praeeoke useful for the
approximation of many natural and man-made objects. Pdramepresen-
tations allow us to get a straightforward mapping from pagtim space to
another (possibly higher dimensional) space :
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F(P): EM — EN: P ¢ [a;b) c EM

The majority of existing mapping functions used in compugt@phics are
variations of polynomial functions. A generalised form of@ polynomial
function is defined as follows:

The shape of curvé'(t) is determined by a set of control points A set
of intermediate points between the specified control pasntemputed using
the provided polynomial basis function, (see fig. 1).

Figure 1: An example of polynomial curve passing through a set of obntr
points.

The explicit relations between the evaluated values and afggmrame-
ters defined through the mapping rules greatly simplify ttozgss of model
evaluation. This can be achieved through the applicatioa miapping rule
that increases the dimensionality of the resulting objedttarough the com-
bination of the parametric objects.

For instance, the combination of parametric curves can ée ios the def-
inition of surface patches (tensor products). Each of tieesihas associated
with it a parameter allowing us to perform a mapping from a 2ibametric
space to a 3D space on the surface of the modelled object (se@)fi A
patch of the surface of the object can be defined by a set ofaiqatints and
an interpolation rule for a set of intermediate points ongtdace. A set of
patches of the modelled surface can be defined independeediing certain
continuity constraints at the boundaries of a patch in oraatign it with its
neighbouring patches on the surface.
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Figure 2: A patch of a parametric surface.

There exists a wide range of mapping functions suitable tier defini-
tion of such a model. These provide various degrees of coat can be
described using different types of user-defined conssaifihe main differ-
ence between the wide variety of parametric surfaces is ouket use of
diverse polynomial basis functions. Some of the populaesyq parametric
surfaces are Bezier (Bezier, 1986), Coons (Coons, 1967NaRRBS (Ver-
sprille, 1975) surfaces. The parametric representatem@lovides a way to
define complex deformations of surface data (Barr and Ala841Sederberg
and Parry, 1986).

The parametric representation has a large number of apiphsain the
CAD industry (Farin, 2002), including but not limited to therospace engi-
neering, in the design of vehicles and in product design.odahately, this
representation has a number of limitations. The topologh@®imodelled ob-
ject cannot be easily modified and needs to be considerededrnstages
of the modelling process. The combination of PRep objectsni& model
is rather limited. There is no easy way to apply set-theorapierations to
PReps. Another serious issue is the complexity of the proeedequired
for the point membership classification and for the evatuatif the distance
from a point to a PRep object. The latter problem is commoheamajority
of BReps, which significantly limits their application inlgbmodelling.

In classic modelling, parametric surfaces are a naturaltovagpresent a
modelled object. In the early modelling systems, a modeldcba rendered
as a set of discrete curves on the surfaces of the object$ atfitances in
computer hardware, polygon rendering of a discretizedplagcame a more
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common approach. Usually the resulting surface patchesameerted to a
set of planar polygons for the purposes of rendering.

2.1.2 The polygonal representation

The most widespread type of BRep is the polygonal representaA polyg-
onal model (7) consists of a set of vertice¥), a set of edged) and a set of
faces F) (Foleyet al.,, 1995):

G={V,E,F}
V= {Ul,...,’Un}

E={e,..,e};e; ={vj,u.}1:0< 5,k <n

F = {f17 7fm}7fl - {6j76k7 "'76])};0 < jvkvp S l

A face usually consists of 3 or 4 edges (i/@=3,4).
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Figure 3: The components of a polygonal model.

Such representations of 3D models play a significant patienatorld of
modern computer graphics. They are widely used due to theHatindi-
vidual polygons, such as triangles and quads, provide amnaate approxi-
mation of various surfaces that we come across in daily lifaefortunately
BRep models are not well suited for certain types of openatisuch as set-
theoretic and relational operations) and often requiretimal constraints if
the topology of an object needs to be changed subsequdrnfiyalso impor-
tant to note that without additional custom data BRep modelsot provide
a history of the model building process. They only providesaaliption of
the resulting object model. This shortcoming may compéigerative work
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on the model, as well as preventing an understanding of hewnthdel was
produced.

Significant research has already been conducted on faseahstic tech-
niques for rendering BRep models. When using a BRep repiegsam a high
degree of realism is usually achieved by a significant ireed the number
of polygons constituting the model and by increasing themerity and so-
phistication of the algorithms involved in the renderinggess. Polygonal
BRep models are used in the majority of interactive appbecatand games,
as well as in the production of high quality computer graphigespite their
ability to result in realistic renderings, BRep models angy@ble to approx-
imate an object’s surface but are incapable of represettimternal struc-
ture of the objects being modelled. This means that the nrextiebjects are
in effect hollow, so there is no easy way to represent or téoegheir inter-
nal structure. To overcome this limitation of boundary esgntation models
some CAD systems allow the user to represent the interionaflgect by
a homogeneous material. The addition of the limited homegas material
however lessens the usefulness of boundary represergatiansignificant
number of areas where information about the model’s suréaee is not
sufficient. Another serious problem of BReps is the possititeduction of
errors of different nature over the course of the modellirgcpss. Thus the
resulting model may have topological and geometric defedtsch requires
additional post-processing in order to ensure the valiglitthe model (Shen
et al, 2001).

Even though BReps have a number of serious shortcomingsatbecur-
rently one of the most widely used representations. Varioadelling and
animation techniques were developed for BRep modelling tive years.
There exists a substantial set of BRep modelling tools. &hesls allow
people of diverse skills and abilities to produce BRep m®d#l varying
quality and complexity. Vast groups of experts in the ardastatic or dy-
namic BRep modelling do not have enough experience to wdisiezftly
with other representations. Thus, it is important to supp&ep models in
a hybrid modelling system in order to make it accessible toidemwaudi-
ence. Certain objects or their parts can be adequately dafsieg BReps in
a mixed-dimensional hybrid model. Besides, the supportaifriglary Rep-
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resentation models allows us to exploit the significant neindb the models
that have been produced over four decades. Consequendgdties appar-
ent that BReps can play a significant part in the definitioneiElogeneous
objects and that BReps should be integrated into a genebigcchsnodelling
framework. This will allow us to take advantage of their bastracteristics
and to overcome some of their shortcomings when used in gotigun with
other representations as the basis of a hybrid modellimgeveork.

2.2 The representations for volumetric models

Unlike BRep models volumetric models provide the desariptf the interior
of an object along with its surface. These types of model ateebsuited
for the modelling of real-life objects of a diverse nature,adjects defined
with a volumetric model are actually solid and contain intpot information
regarding the object’s properties. As we shall see, volumetodels are
essential for the description of real heterogeneous abject

2.2.1 The voxel representation

One of the natural ways to represent a solid object is to steet of samples,
called “voxels” (volume elements), of the volume of spaceupied by the
object (Kaufmaret al, 1993). Each discrete sample can store a particular
property of the object at a given location:

Ny N

N
O = USZ = U U Szj,..,zM? S, Sil,..,iM €S

iM

whereO is a voxel objectS; is thei-th sample and;, _;,, is a sample of a
voxel data in M-dimensional space. In the simplest case sagiple stores
a binary value of “0” (indicating that the sample is outsitte bbject) or
“1” (indicating that the sample is inside or on the surfacehef object). In
the general case samples can store arbitrary informatiBnscgnes repre-
sented in such a way can be captured from real life usingrdiitevoxeli-
sation techniques (such as computer tomography (CT), niagesonance
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imaging (MRI), ultrasonography, geophysical measures)estt. (Nielson,
1999)) or be modelled on a computer (Baerentzen, 2002; Bretaty 2002;
3D Coat, 2010) allowing us to integrate models of a diverganea Models
of this type are able to store significantly more detailedinfation about the
represented objects and their relations, allowing thewes®i-to explore and
manipulate the objects (i.e. to analyse the objects’ iotestructure or to ac-
cess properties assigned to various parts of the objet€gan) without the
familiar restrictions found in polygonal models.

Figure 4: Voxel data.

Voxel models support a number of important operations hglpi to cre-
ate new models and to modify existing models (Kaufretal, 1993). Note
that the voxel representation is resolution dependent tlius desirable to
create a model of the highest possible resolution to avojdmadiasing arte-
facts. Various interpolation schemes are used for thepotation of the dis-
crete voxel samples in the volume. One has a choice of a nuoflreerpo-
lating functions (Barthet al., 2002). A specific interpolation scheme can be
selected depending on the desired result (Frisken, 199stet al., 2003):

Ne  Ng o Ne

z

F(P): Z Z Z Gijk(P)'Sijk;PEEg

i=Ng j=Ng k=N

where F'(P) is the interpolated value of the volumetric functi@®,;, (P) is
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the interpolation functions;;;, is the sample value of the elemefit j, &}
and N¢ — N defines the number of samples required for the evaluation of
volumetric value at poinP.

Another major problem with voxel models is the necessitytboesinfor-
mation about the entire volume set. For instance, a grid 86512 x 512
units of volume requires the storage of approximately 13Hionivoxels.
There are some well-known techniques allowing us to conggtes informa-
tion (Jonest al, 2006; Kommeet al, 2007; Forstmanet al., 2007). Most
of these techniques are suited for static data and cannibt basapplied to
dynamically changing models. One possible solution is tROCE system
proposed in (Chest al,, 1999). This system allows us to organise hierarchi-
cal structures and store the voxel data set only on a pertdigescs (i.e. the
scene consists of objects each of which contains its owr Vos&| data set).

In the past, a number of computer games utilised a limitedeiLdif the voxel
representation (Moby Gam# 2010). Thus, some of these games could
provide the user with more freedom in the interaction with émvironment
and even let the user modify the game world.

A more advanced voxel representation provides us with eahaik infor-
mation regarding the modelled object. Instead of storingngpke binary
enumeration value, we could store a distance to objectfacei(see fig. 5).
Uniform distance information can be retrieved from binaoyei data through
the application of the Distance Transform (DT) (Frisken99P The inter-
polation of distance values inside the volume could beeedd using one of
the interpolation schemes (Bartaeal., 2002). Due to the discrete nature of
voxel data, a signed distance can only be defined withindidatrea of space.
For an arbitrary point in space a special blending of the r'ie¢d” (within
the bounds of the area providing the sample of distance sparal the “far
field” (outside the bounds) is required (Sigg, 2006):

F(P)=w- Fpear(P) + (1 —w) - Fyor(P);w € [0;1]; P € EY

The signed distance information could be useful for the iappbn of com-
plex shape modelling operations (Schroesteal.,, 1994; Adzhieet al., 2000),
physical simulation (Jones, 2003) and a number of othelicgimns (Jones
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@) (b)

Figure 5: Volumetric data stored as discretized distance field (a) two
thogonal slices of distance data (b) Volume rendering afivatric data with
colour variation.

et al, 2006). This voxel representation has even higher storageine-
ments, because instead of binary values, scalar or eveor\tistance values
(Kobbeltet al, 2001) need to be stored. There exists a number of ways to
compress this data. For instance, Frisken proposed the udadaptively
Sampled Distance Fields (ADFs) (Friskenal,, 2000) and Beerentzen pro-
posed a similar method Beerentzen (2002), relying on thatdkical adap-
tive storage of signed distance fields (see fig. 6). But thesthoas do not
guarantee lossless compression and generally introdwtitosel approxi-
mation errors to the model. These errors result in the imicddn of disconti-
nuities, which may cause unacceptable artefacts durirgesuient modelling
stages.

The voxel representation is still a good choice for the dpson of natural
objects. The volumetric data from real heterogeneous tsgam be captured
using existing 3D scanning technologies commonly used idicree and the
manufacturing industries. It is frequently important todi#e to work with
real models. Models of man-made or natural objects shouldbbe to be
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Figure 6: An example of adaptively sampled distance field in 2D and the
underlying adaptive data structure (Friskehal, 2000).

easily incorporated into a hybrid model in order to produoceplex hetero-
geneous objects. Unlike BReps, voxels allow us to storammédion relating
to the object’s internal structure and certain physicapprtes. This allows
us to represent real heterogeneous objects at a predefs@dtren. Thus,
voxel data retrieved from a specific field can be used in a dybodel with-

out the necessity for the user to provide its descriptionumdy Hence, the
proposed Dynamic IC framework needs to support the voxeessmtation.

2.2.2 Implicit surfaces

Another way to represent an objectrirdimensional space is to define a set
of points satisfying a specific condition:
S ={(x1,...,xn) : Fx1,...,2,) == true}

whereF (x4, ..., z,,) is a predicate function returning a value indicating whethe
a given point(xy, ..., x,,) belongs to this set. A scalar function definechin
dimensional Euclidean space together with an inequalitgtion can be used

to define an object (Bloomenthal, 1997):

Pe RN

F(P)=f(P)>T;T€eR
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f(P):RY - R

Any point P € RY in this space can be classified according to following
conditions:

f(P) > T, Pisinside the object
f(P) =T, Pison the object’'s boundary Q)
f(P) < T, P is outside the object

whereT is a threshold value or an iso-level.

(b)

Figure 7: A scalar field (defining function): (a) The sign of a scalardiel
(b) The extracted implicit surface (T=0) and (c) Differesbisurfaces for
different values of T.

In geometric modelling(P) is usually defined in 3D Euclidean space. The
subset{ P € RN : f(P) > T} is called a solid object and the subgét ¢
RN : f(P) =T} is called an iso-surface.

It might be easier to understand how a scalar function is eéfinwve refer
to the previous section. A voxel representation allows usttoe discrete
samples of the volume contained in an object. In the simpest we know
that a sample is inside the object if the voxel stores a noo{zesitive value.
The same approach can be extended for any point in spacadnstenly
discrete voxels. We can define a scalar field that uses poticates as
input parameters and returns a scalar value. The returrsddrs@lue can
be interpreted in the same way as the value stored in a vox&lly; if the
scalar value returned for the point provided to the definungcfion as input
is greater than a threshold value, this point is locatedla#ie object. If the
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returned scalar value is equal to the threshold value, thre [gdocated on the
surface of the object and finally if the scalar value is lesstthe threshold
value, the point is located outside the object. The scalaev&turned by the
function can be interpreted as a distance to the surfaceaftiject described
by the function. But this does not have to be a distance in déidaan sense.
For example, a defining function for a disk of radius two cedtat the origin

of coordinate axes would look like:

flzy) =22 -2 — ¢

In this particular case, we are interested in a disk with aghold value of
zero, i.e. we are looking for values greater than or equal te 0.
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f(3.3)=-14

Figure 8: An example of an implicit object.

The grey area in figure 8 is a subset of the 2D plane where theeyal
returned by the functiorf(z, y) are positive (for instancef,(0,0) = 4). The
dashed contour is a set of points where the funcfipn y) returns the value
0 (for example, point2, 0) lies on the perimeter of a circle arfd2, 0) = 0).
For any point of the 2D plane outside the dotted ciiftle, y) returns negative
values (e.g. f(3,—3) = —14). Hence any point on the 2D plane can be
classified. The set of points for which the functigz, y) returns values
greater than or equal to O describes the set of points thahfebd the object
being described. In this fashion we can describe arbiyranmplex objects
in n-dimensional space using arbitrarily complex functions.

Implicit representations have been successfully emplogetiany dif-
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ferent application areas, such as collision detection ¢&avko and Pasko,
1995), precise contact modelling (Desbrun and Gascueh)18Retch mod-
elling (Taiet al., 2004), the design of natural shapes (McCormack and Sher-
styuk, 1998), virtual surgery (Franeg¢ al,, 2005), the modelling of anatomi-
cal structures (Oeltze and Preim, 2004), 3D point cloud@ppration (Ohtake

et al, 2004), the simulation of natural phenomena (Stiral,, 1999), meta-
morphosis animations (Barbiet al., 2005), image recognition (Toref al,,

2005) and in path-planning (Nguyen, 2007) among others.

e

\ifferen/

Figure 9: An example of a CSG tree.

In Constructive Solid Geometry (CSG) it is possible to camdtcomplex
objects using set-theoretic operations on a set of impbisjects. The as-
sembled model is represented as a tree (fig. 9). Primitivesbfacts are
stored in the leaf nodes of the CSG-tree, while operatiorsd trs combine
the primitives are stored in the interior nodes of the tredre® can be rep-
resented as a defining functigii?) : RN — R. In which case, the sub-
set{P € RY : f(P) > T} defines the geometry of the resulting object.
Thus, one needs to traverse the CSG-tree for a set of poiotsiar to eval-
uate the geometry of the final model. Unlike BReps impligiresentations
make it possible to store information about a solid modelouigh usually
only binary point-membership classification informatisrmprovided (i.e. the
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CSG-model can only be used to find out whether particulartgoispace
is inside or outside the object). CSG representations adelyused by the
CAD-community, partly because they represent a naturalsangle way to
construct solid objects. Also in some cases CSG-trees candzkas a guide
to the manufacturing process.

Wyvill et al. (Wyvill et al, 1999) incorporated the CSG approach with
skeletal-based implicit surfaces. They called this regmesgtion a “Blob-
Tree”. The “BlobTree” was used for the texturing of implisitrfaces (Tigges
and Wyvill, 1998), the creation of an accurate biologicaldeloof the sea
shell (Galbraittret al,, 2000), the modelling of smoothly branched trees (Gal),
the controlled metamorphosis (Gaéhal.,, 2000; Barbieet al., 2005) and the
sketch-based modelling (Schmittal., 2005).

We can see that over the years implicit surfaces have fouagdja humber
of applications in different areas of shape modelling andhation. Simple
point classification rules can be useful for the definitioncomplex volu-
metric structures needed for the definition of space pamstioccupied by
heterogeneous objects or their parts. Smooth shapes arguoéiduced using
implicit surfaces and have proven to be especially usefuhfodelling of nat-
ural organic models. As we have already outlined many of xistiag natural
models are heterogeneous, and their geometry could be agégoaptured
using implicit surfaces. The internal structure and thengetic shape of nat-
ural objects can undergo significant modifications over tihés desirable
to be able to reflect this process in our dynamic model. A knteature of
implicit surfaces (particularly important for time-vantaheterogeneous ob-
ject modelling) is the ease of modelling of objects with dajiag topology.
This provides the user with additional flexibility for thefotetion of dynamic
objects without serious constraints of their topologicalperties. Integra-
tion of implicit surfaces into our hybrid modelling framerkoprovides us
with another degree of freedom in the definition of complexetidependent
heterogeneous objects.



2. Related work 43

2.2.3 The Function Representation (FRep)

An FRep is a generalised model representation allowing defioe objects
of an arbitrary dimensionality and to mix objects of differelimensionali-
ties within a single model. An FRep may incorporate a numlbémelicit
surfaces, CSG models, voxel representations (Adzttial, 2000) and a rich
set of operations (Paslat al, 1995). We can already see that FReps are a
powerful representation with some of the advantages of o#peesentations
suitable for heterogeneous object modelling. An FRep aystamprises a set
of geometric primitives, operations and relations. Prived are combined to-
gether using operations. Relational operations can betosgdssify subsets
within the model. An FRep usually allows us to represent aded models
compactly and in a resolution independent manner. A coctstritree used
with an FRep naturally simplifies iterative work on a modéemakes it easier
to see how the model was assembled and how to modify the nfodglired.
This is vital not only for static models but also for dynamiodels, because
it gives us the freedom to introduce dramatic changes to thatlyeometry
and the topology of the model. It is also important to noté¢ #maFRep can be
used to specify arbitrary volumetric attributes of the mtedkobjects so as to
represent their internal structure in different conte@shmittet al,, 2001).
Hence even complex heterogeneous objects can be modeitepthis kind
of representation.

The FRep model

FRep models can be specifiedrirdimensional space, but the main mod-
elling domain is considered to be the 3D Euclidean space. RepFcan be
described as an algebraic system (Pastkal., 1995):

(M, D, W)

whereM is a set of geometric objecfsjs a set of geometric operations,
is a set of relations specified for the set of objedts

FRep objects

An FRep geometric object is defined as a closed subsgt'ah the fol-
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lowing way:
G =A{(z1,....,z,) : F(21,...,x,) == true}

F(P)=f(P)>T;T€R;PecR"
f(P): RN - R

where f(P) is called the defining function. FRep objects can be divided
into two groups: primitives and complex objects (Pasko addhev, 2002).
Primitives are defined by a concrete function chosen fromedgfimed set or
created by the user. Any primitive can be interpreted as ekhidax, defined

by a function that can be evaluated in the modelling spacehdrgeneral
case, a complex object can be obtained by a combination ohtipes (as
described in section 3.6) applied to a set of primitives. guteéng complex
object can also be represented in the form of a defining foncBuch objects
are defined within a model and are usually created using a @ptach.

FRep operations

A set of FRep geometric operations consists-afry operations closed on
the object representation (Pasko and Adzhiev, 2002):

O, M'+ M?>+ M" - M

wheren is the number of operands of the operation. It should be appar
that the result of an operation is an object defined on thecobgt M, thus
guaranteeing the closure property of FReps. A genetaly operation is
defined in the following manner:

Gn+1 = q)n(Gla "7Gn);G17 "'MGnan-i-l eM

fos1(P) = U(fi(P),.., fu(P));U(R,.,R): Rx ... x R— R
f(P):RY - R

whereV is a continuous real function of variables andf;(P) are defining
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functions. An example a binary operation would be definedbsvis:
Gs = ®2(G1,G2);G1,G27G3 eM

f3(P) =V (fi(P), f2(P)); ¥(R,R): Rx R = R
f1(P), fo(P), f3(P) : RN — R; P € RN

Functions used in an FRep are required to be at [é&stontinuous. But it is
preferable to use at least-continuous functions. The first derivative of the
function can be used to compute the gradient and the normiddeoabject’s
surface:

of(p)  of(P)

Vf(P)=( o B ), Vf,PecRY
VAP .
W)= —rpy P E R

The C*-discontinuity of the defining functions can lead to rendgrarte-
facts and ambiguities of the model if further operationsapglied (Fayolle,
2006). In complex models th@!-discontinuity of the defining function can
even lead to the introduction 6f°-discontinuity of the objects, if the gradi-
ent is used for their defining function. In the original work@SG modelling
(Ricci, 1973) the following functions were proposed for-8etoretic opera-

tions:
S1 U Sy = max(dy(P), dy(P))

Sl N Sg = Hlln(dl(P)ad?(P))

where Si is a solid andd;(P) is a distance function to the boundary of
the solid. The application of min/max functions to analgtitunctions re-
sults in aC!-discontinuous function. FRep modelling provides at least
continuous set-theoretic operations based on the thedRyfohctions:

S1USy = fi(P) + P+\/f1P f3(P)
S1N Sy = fi(P)+ fo( P) — \/f2(P) + f3(P)

where f;(P) is the defining function of the object. Both defining funcgon
f1(P) andf,(P) are expected to exhibit distance properties. Figure 10 show
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the plots of two set-theoretic operations. The valueg;adre placed along
the z-axis, while these off; are placed along thg-axis and the height of
the surface at locatiofr, y) shows/represents the value returned by the set-
theoretic operatiod’( f,(P), fo(P)) = F(z,y). Itshould be apparent that the
union operation returns a positive value whenever eithétsadperands are
positive (i.e. the resulting object consists of the spaetlibs in the interior

of either input object), while the intersection operatisipositive only when
both of its arguments are positive (i.e. the resulting dbgemsists of the
space that lies in the interior of both input objects).

Sy ey
PLEELRF

o W

RN
o

(b)

Figure 10: Set-theoretic operations based on R-functions: (a) Unimh @)
Intersection.

If a particular type of continuity is required, the CSG oyiienas can be
generalised in the following form (Pasko and Savchenko4}99

S USy = fi(P) + f(P+ fE(P) + fF(P)
S1 NSy = fi(P) + fo(P) — \/ £} (P) + £ (P)

which guarantee§™-continuity.

In addition to the traditional CSG operations FReps prosgidere flexible
way for the creation of complex models by blending set-teBooperations.
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These operations are also based on R-functions:

Fy(fi, f2) = fi + fo 0/ [T + f3 + dispy(fi, f2)

Qg

2 2
() ()
aq a9

wherea; controls the contribution of the first function; controls the con-

dispy(f1, f2) =

tribution of the second function ang controls the overall “shift” of the re-
sulting function. Set-theoretic blending operations\alles to dramatically
change the resulting shape by controlling the influence ot ed the initial

shapes being blended, as well as by controlling the oveffsiéiofrom the

resulting shape.

Another important operation available in FReps is that afrizted blend-
ing operation (Pasket al., 2005):

Fy(f1, fa, f3) = fu + fa+ ) [T+ [5 + dispe(r(f1, f2, f3))

(1—=r2(f1, fo, f3))?
L+72(f1, f2. f3)

(f1, fa, f3) <1
dispbb(r(fbf%fs)) =

0,7%(f1, fo, f3) > 1

T%(fl,f2)
r(f1, f2) + r3(f3)

,T2>0

r(f1, fa, f3) =
1,7’2(f3) = 0

T%(fl,fz) = (C{—i) + (Z—Z)
(5)
as

07f3§0

Tg(f?)) =

where f; and f, are the defining functions of the two objects being blended,
f3 is a defining function of the bounding solid, specifying thibset of space
where blending takes placei, a, allow the user to control the blend sym-
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metry andaz defines the influence of the bounding solid on the shape of
the resultant blended object. Other operations availabkReps are affine
transformations, basic deformations (Barr and Alan, 198dn-linear defor-
mations (Schmitt, 2002), metamorphosis and many others.

Unfortunately the use of R-functions changes the distanmeguties of the
scalar field produced by the defining function. If this is adesirable effect,
an additional set of operations based on the Signed AppririDistance
Functions (SARDF) can be employed (Fayatel., 2006). An SARDF pro-
vides a good and controllable approximation of the exadadie function,
which is alsoC!-continuous. All CSG and blending operations can be rede-
fined using SARDFs.

FRep relations

Relations in FReps are subsets of thelgét, which is a Cartesian product
of the setsV/. They are generally defined asvalued predicates:

S:Mx...x M—I¥

wherel X = i, ..ix is considered to be a set of integer values in a K-ary logic.
Relational operations can be used to classify subsetsnithiei FRep model.
For example, the point membership relation allows us to findaxhether an
arbitrary point in space belongs to an FRep object:

Gy ={P: fi(P)>=T}; fi(P): RN = R

0, [L(P) <T;(P ¢ Gh)
S3(P,G): < 1, f1(P) =T;(P € 9G,) (2)
2, fI(P)>T;(P € GH)

Another important relation defined in FReps is the inteisaatlation. This
is defined by the two-valued predicate that can be used tondiete if two
FRep objects intersect (i.e. if they have common points erttodelling
space). Such a relation can be employed for collision detebetween FRep
objects. In practice one has to apply numerical methodepenhg discrete
sampling within the bounding volume of the objects in oraedétect colli-
sions between complex objects (Savchenko and Pasko, 1995).
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Hypervolume extensions for FReps

It is often desirable to be able to represent specific pragsedf the ge-
ometric model. In the simplest case one might want to assoai@onstant
colour or a texture with a geometric object. A wide range &fueng tech-
niques was developed in the past (Heckbert, 1986). Not #ileoéxisting tex-
turing methods are applicable to volumetric objects. Onthefapproaches
suitable for arbitrary models requires the specificatiora afolid procedu-
ral texture defined in the volume (Perlin, 1985). The defmitof a global
complex solid texture is neither intuitive nor flexible egbu Because com-
monly such a texture can be created and modified only by anriexged
user. Another way to enhance a purely geometric model isstacsate optical
attributes with the object’s geometry (Chenal, 1999; Tigges and Wyuvill,
1998). The necessity to associate the geometry of an ohjddtaphysical
properties is in some cases very limiting and is mostly blatdor simple
homogeneous objects. Many objects in the real world do nad ha explicit
relation between their geometric and physical propertida. independent
representation of a point set and its attributes representsre general ap-
proach, which allows us to have a more flexible represemaifacomplex
volumetric heterogeneous models. Such a representasonpabvides the
user with more flexibility when specifying dynamic models.

When used in the constructive Hypervolume framework (Sthetial.,
2001), the expressive power of FReps had to be augmenteden tor allow
us to model more than just geometric properties. An objedefined as a
tuple of its geometric set and a set of its attributes:

M = (G, Ay, .., Ay) : (f(P),Si(P),..,Sk(P)); P € RN

f:RYN = R
Si : RN — RM
whereG is a point set ink" andA; is a multidimensional attribute defined by
the functionsS;, which can be interpreted as a space partition function ickgfin

specific multidimensional attributes within its interidie defining function
f has to be at leagt’-continuous, whileS; does not necessarily have to be
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continuous. Space partitions can be specified using alleéxisting FRep
primitives and operations.

An FRep definition of am-ary operation is extended in the following way:
Q" (M, .., M,) = " (G, ..,Gn, Avy, o, Ay Any s o Any)

Mn+1 - (bn(Mla "7Mn);M17 -~-77MnaMn+1 € M

wheren is the number of operands of an operation. Such an operatton r
quiresn Hypervolume objects (each composed of a geometric objectren
set of its attributes) as its input and results in a new Hypleme object:

U(P, f1,51,, s S1,s s frus -5 Sty ooy Snn )
Ql(Pv f17 5117 cey Sl TS fnv ) Snp <y Snm)v
(Gn—i-b A(n+1)17 ) A(n-‘rl)p) = * .
Qu,(P, f1, 51, S14s o5 frs ooy Sngs ooy S

The resulting Hypervolume object is derived from a set olinidypervol-
ume objects using the transfer functidno define a geometric set and a set
of functions{2 which in turn define the attributes of the object. The require
ments for¥ and(); are the same as for the defining function and the attribute
function of the Hypervolume object. It should be appareat th the general
case attributes can affect and be affected by the geometheafbject. This
allows us to establish complex relations between the vanoaperties of the
Hypervolume objects in the model. It is also important toenitat Hyper-
volume objects involved in the operations are not requicedave an equal
number of attributes.

Earlier we stated that all the existing FRep entities ana tmmpositions
can be used to specify the space partitions used to definettbeagtributes of
a Hypervolume object. Therefore the constructive appréachtionally used
in geometric modelling can be employed to specify the varjmoperties of
the modelled objects. Each attribute can have a correspgrudinstructive
FRep tree associated with it. Thus, an attribute value caevhkiated for
any given point in space. Attribute evaluation is, in a wagikr to point
classification in relation to the point set enclosed by theail{see equation
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(2)):
M = (G, Ay, ., A) : (f(P), S1i(P), .., Sk(P)); P € R

Si(P), f(P) > T org(P) >0
Ai : Hll,f(P) > Tanng(P) <0
eol,f(P) < Tandgz(P) <0

where f(P) defines theobjectgeometry andy;(P) defines a space partition
for thei-th attribute. Two default attributes need to be introdudgdwhich is
used in cases where poiRtis in the interior of the geometric object, but does
not belong to any space partition (i.e. a geometric objeabtdully covered
by the attribute space partitiong), which is associated with the points out-
side the Hypervolume object. This default attribute uguadls to conform to
the requirements of the volumetric rendering system (Stth@002), since
points outside the geometric set and space partitions anencmly treated
as fully transparent. Components of an example consteiétiypervolume
model are shown in the fig. 11.

@) (b) (©

Figure 11: The constructive Hypervolume model: (a) The original geeme
ric object, (b) A visualisation of the space partitions am)l The resulting
Hypervolume object.

Relations within the Hypervolume framework are defined ds\ics:

wi(Ol, -~>Onana ..,Qm) .
F(fl(P)vsh(P)v"751k(P>7fn(P)7Sn1(P)v’~7Snl(P)7QI(P)7"7Qm(P))§
Pe RN

whereg;(P) is a function representing a non-Hypervolume object (sich a
the values returned by predicates) dhis a predicate function.
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One of the most common relations is the point membershifioal€Schmitt,
2002):

M = (G, Ay, .., Ay) : (f(P),Si(P),..,Sk(P)); P € RN

PA: (P,A) . (P,al,..,ak)

0, f(P)<Tor3j:S;(P)
[(Py, M) =14 1,f(P)=TandS;(P)=a
2, f(P)>TandVj € [1,k]

aj;
J
1 55(P) = a;
A point P, in the Hypervolume space (i.e. a point and a set of attributes
belongs to the Hypervolume objekf, if it is located in the interior or on the
boundary of the Hypervolume object and the attributes opttiat are equal
to the attributes of the object.

This set of extensions allows us to use Hypervolumes for gfmition
of heterogeneous objects and to describe the arbitraryfdbeo internal
properties.

Overall FReps allow the user to design, explore and intexétt mod-
els in a more natural manner, overcoming the limitationshef ¢currently
widespread boundary representation models. FRep modetsieen used
in a wide range of applications, such as in: virtual sculp(chmittet al,,
2004), rapid prototyping (Adzhiest al, 2005), web-based modelling (Fay-
olleet al, 2005; Cartwrighet al., 2005), cultural heritage preservation (Shanat
et al,, 2002; Vilbrandtet al,, 2004), hair modelling (Souriet al., 1996) and
in numerical analysis (Kartasheeaal.,, 2003) among others.

One of the significant shortcomings of FRep models is themmatation-
ally expensive model evaluation procedure. Another isstiegir inadequate
support in commercial packages and the absence of certdinitpies used
in traditional computer animation, which limits the use &dps in a number
applications. Additionally, given that there is an aburaaof existing polyg-
onal object models it is often desirable to be able to usesthresonjunction
with FRep models.

The Constructive Hypervolume extensions to FReps provideith the
ability to define time-dependent heterogeneous objectdurlasupport of
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mixed-dimensional objects within the model makes FReptaksia for the
definition of multidimensional internal structures andateins between the
objects in a model. FReps can naturally incorporate intpdigifaces, solid
CSG models and voxels, which allows us to integrate modeks diverse
nature into a single FRep model. There are methods avaifabla lim-
ited integration of BRep models into the Function Represtéot. But due
to these limitations at the moment the incorporation of BikRepd FReps
seems more reasonable in terms of a hybrid model. It is irapbtd note,
that volumetric attributes allow us to accurately define duitieary number of
properties of the heterogeneous objects. Unlike voxekssgrtation, FReps
are well suited for the definition of dynamic models indepartdf the repre-
sentation used for the definition of the geometry of the dbf@werall FReps
are one the most suitable and practical representatiogeterogeneous ob-
ject modelling. FReps have to play a significant part in thierldymodelling
framework that we are designing. Hence, a lot of attentiothiis thesis is
paid specifically to Function Representations.

2.3 Heterogeneous objects modelling
2.3.1 Hybrid modelling

In previous sections we have outlined a number of the exjstiodel rep-

resentations. We have provided a brief description of thdirantages and
disadvantages. From this information it can be concludatihere is no best
representation suitable for the solution of the diversébl@ms inherent in
heterogeneous objects modelling. Each representatiomshegplications in

various areas and allows us to resolve certain problems. fdturally led to

the idea of unified hybrid models, where objects in differ@mresentations
coexist within one model.

One of the early attempts to incorporate diverse represensain one
model was described in (Adzhieat al, 2000). The hybrid voxel-function
representation supports a two-way conversion between Rep And voxel
representations, thus allowing us to combine these twe@septtations in one
model. This can be a powerful approach for high-precisiorifieations



2. Related work 54

and modelling of acquired real-world volumetric objectsiftttunately, this
work did not describe how other model representations cbalthtegrated
into the proposed framework.

Allegre et al. introduced the concept of the HybridTree &8leet al.,
2004), where skeletal implicit surfaces and BRep meshesl tmucombined
in an extended CSG-tree. This allowed the inventors of thHerid¥ree to take
advantage of CSG, certain types of implicit surfaces angigmoial meshes.
In this fashion modelling of complex shapes could be peréarthrough
the combination of objects of a diverse nature (Allegteal., 2006). An-
other interesting application proposed by the authorsaspértial restora-
tion of polygonal meshes. Similar to (Alleget al., 2004) Fougerolle et al.
introduced a hybrid constructive tree (Fougerdteal, 2005), which had
leaves with both implicit and parametric representatione provided exam-
ples demonstrated usage of supershapes (@igdils 2003)), while the nodes
of the tree are CSG operations based on R-functions.

Although both of the above methods support hybrid modellthgy are
mostly centred on the surfaces of the modelled objects. écttred volu-
metric layered model composed of different materials (€t al., 2002)
is designed to work with solid objects. The authors usedguoigl objects,
volumetric objects and implicit surfaces as input to thgstem. All these
models were converted to a tetrahedral mesh that could lwefaséurther
editing and simulation using FEM. This approach providedtid informa-
tion about the topology of the model and did not provide sigfittools for
the creation of complex dynamic heterogeneous objectspiidposed frame-
work was tailored for specific modelling and simulation &dbut it could be
further extended to be able to solve a larger set of problems.

In this research project we are concerned with the modediinglumetric
heterogeneous objects. It is also important to note, thgbadmodel of a
heterogeneous object can be constructed from objectsfefetit dimension-
alities, which the aforementioned approaches do not allswowdo. These
multidimensional objects can then be linked through ddifertypes of rela-
tions, allowing us to understand how these objects are btuedch other.
Rossignac and O’Connor (Rossignac and O’Connor, 1990yedd¢hat het-
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erogeneous objects may include components of differenenismonalities
and they employed the notion of a Topological Complex coinigimixed-
dimensional cells to accommodate such components (R@ssid897). A
working group of the British Geometric Modelling societyetoped a spe-
cial purpose application programming interface (API) fali® Modelling,
called Djinn (Armstronget al., 2000) based on objects partitioned in a cellu-
lar fashion and containing cells of differing dimensiotiak.

Kumar et al. (Kumairet al,, 1999) proposed the usage of the so-called
fiber bundles, which allow them to independently repredemgeometry and
an arbitrary set of attributes of the heterogeneous objeudslitional map-
ping functions associated with the attributes perform tlappmng from the
geometry model to the attribute model. Biswas et al. preseatdistance
field based approach for modelling heterogeneous objeastdich space is
parameterised using the distance of a given point from tbengéric bound-
aries of the object (Biswaat al,, 2004). A thorough overview including the
requirements and comparisons of the existing heterogsnebjects mod-
elling systems is provided in (Kou and Tan, 2007).

Past research in the area of heterogeneous objects mgdeHis mostly
centred around static models. Dynamic hybrid models alleastion-going
research topic (Xiaoping and Dutta, 2003; Adzhatal., 2002) with a large
set of unanswered questions. Kou and Tan (Kou and Tan, 2@@icerthat
dynamic heterogeneity modelling can have a wide range oficgtions in
such areas as biomedicine, surgery simulation, mechamngaheering and
others. We will present a more detailed discussion reggrthiis topic in
section 2.4.

We can see from the cited works that heterogeneous objectlfimagis
an important on-going research area. Naturally, heteregenobjects mod-
elling was initially primarily focused on static objectsn this thesis we
mainly focus on the problems of time-dependent heterogenebject mod-
elling. In order to achieve this, we rely on valid existingrfreworks for
static heterogeneous object modelling. Modelling of tvaeant heteroge-
neous objects was not thoroughly researched in the pasttéinémains a
challenging task.
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2.3.2 Implicit Complexes (IC)

One of the available frameworks allowing us to perform milglof het-
erogeneous objects is the Implicit Complexes FrameworR0B2, Implicit
Complexes (ICs) (Adzhieet al,, 2002) were introduced as a representation
for a cellular-functional hybrid model of heterogeneougeots. The hybrid
model described within ICs may contain entities of diverseethsions and
representations. 1C models include valid topological dptons of hetero-
geneous objects and allow for the combination of cellular famctional rep-
resentations of both the geometry of objects and theirbates. Here we
provide a brief introduction to the IC framework; a more dethand rigor-
ous description can be found in (Kartashetal., 2008).

Initially the concept of complexes was introduced in conalbamial topol-
ogy (Alexandrov, 1998). Now complexes are actively usedmguter graph-
ics and computational geometry. Complexes provide a tqpoddy correct
description of various point set subdivisions and compasiifjects. In com-
binatorial topology, abstract and geometric complexeslatinguished. An
abstract complex is a collection of abstract entities anatiomns between
them. So “the abstract IC” is defined as a finite set of absélaahents called
cells. A cardinal number called “dimensionality” is assted with each ab-
stract cell. The entire set of the abstract ICs is subdividemsubsets of the
cells of equal dimensionality. Then a finite set of binaryateins on these
subsets is defined. Note that the relations defined withirabsgract IC do
not have any geometric interpretation.

Thus, an abstract complex represents an abstract algalystem. A ge-
ometric complex can be considered as an abstract complegiatsd with a
collection of point sets in Euclidean space. In geometriogiexes all the re-
lations between the cells have geometric interpretatiAnsabstract complex
provides a robust system for the description of relatignsbietween subsets
of composite objects. Using different associations ofralcstomplexes with
geometric subsets one can construct topologically cormextels of multi-
component objects with different levels of detail of theilationships.

In (Kartasheveet al., 2008) a detailed and rigorous definition of the IC
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based model was developed for the representation of mutiponent geo-
metric objects with a full evaluation of mutual dispositsaf its components.
The IC concept extends the well known notation of cellulanptexes. Com-
pared with cellular complexes, ICs support additionaltretes between their
cells - namely the containment relations. ICs are suitatnléhfe representa-
tion of collections of overlapping cells.

The IC based model presented in (Kartashetval, 2008) imposes very
strong restrictions on the relations between IC cells. €hestrictions are
necessary for a full description of the mutual dispositiohall the point sets
assigned to the cells. We will call such an IC model a celli@amodel.
Cellular IC models are useful in various numerical appia# (e.g. FEA,
CAD and others). Note that in many applications of multi-gament geo-
metric objects, such as animation, visualisation, etd. afidhe information
regarding the mutual dispositions of the components isedbdt some other
dependencies of the components are required.

The geometry of an IC

First of all, let us present a definition of a geometric objegiresented in
the IC representation. A geometric objécin Euclidean space contained in
a hybrid model is the union of cells in this space:

G={g{",.,9i"}: gF C E3

whereg!" is a cell of dimensionality;. The point set enclosed in the ceff
is denoted agy|. The following conditions must be satisfied for any object
present in such model:

1. The boundary of each cell is the union of a finite number 4t cd
lower dimensions:

N q; .
) g < (g
1 Diq; > q;

2. Cells may overlap each other but the intersection of armydells is
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either the union of a finite number of cells or is empty:

Uglt:ke{k,. .k} C{l.N};L<N
k=1
%

45 __

ggimgj

3. Each cell must be unambiguously defined by an existing g&temep-
resentation that allows us to perform a geometrically apditmically
correct discretisation of the cell. It is important to ndiattonly repre-
sentations providing a way to convert into a mesh descrilyealfoly-
hedral complex can be used. The ability to convert an IC imaesh
representation is usually required for the implementadiba range of
traditional numerical methods and for topological anaysi

The topology of an IC

The topology of an IC model is described by a number of refatiol he
most important of these are:

1. The boundary relation, which is a relation between p-disi@al cells
and s-dimensional cells of an K

R =

=17

(90, 95) : |g5| C O gfI A

=1
Ags| & gl IN\O [gF]5s <p

This type of relation allows us to track which lower-dimeosl cells
form the boundary of certain higher-dimensional cells.

2. The containment relation, which is a relation betweennpedsional
cells and s-dimensional cells of an IC:

P S
R = JUJ (el g)) || clafi A |gs] 2 0lgt) s < p
i=1j=1

The containment relation allows us to gain an understanafitige mu-
tual dispositions of the cells enclosing other cells.

2The notation used here and further in the thesis is basedeomatfation used in (Karta-
sheveet al,, 2008)
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Four additional relations based on the boundary and cantibrelations
can also be introduced. These are the co-boundary, the “tob&ined”,
the incidence and the adjacency relations (Kartasle¢\a., 2008). A full
description of a k-dimensional IC consists of a collectidrcells and the
corresponding relations between them:

k

N D
K =<|Jg" | JRy" Y, | J|JRe” >=< G, Rb, Re >
i=1 1

Y
p= p=1s=1

The dimension of the IC is the maximal dimension of its cells.

As was mentioned earlier an IC can incorporate geometricatsanf dif-
ferent representations. Each IC cell can have a differemingtric type. Five
types of IC cells have been introduced thus far:

e The P-cell representing a polyhedron;

e The B-cell representing a k-dimensional manifold definedslgound-
ary (such as curve segments, surface patches and polygeshEs);

e The F-cell representing an FRep model,

e The C-cell representing a composite cell which can aggeegglts of
different types;

e The T-cell representing a constructive tree containints adl various
types mixed together using operations defined for IC cells.

Some of the provided definitions can be illustrated using aeRBmple
(fig. 12). This simple model consists of a rectangle reprieskhy a B-cell
and a disk represented by an F-cell. Apart from its geomgteydescription
of the model consists of a set of topological relations (fig). IFrom these
relations we can see which of the 1D primitives create boreslaf 2D solid
primitives. For instance, polylinBEQSis a boundary of a rectangl2EQS.
These relations also reflect which cells are contained wither cells (which
do not necessary need to be of a lower dimensionality).

The IC framework also defines set-theoretic and trimmingatpmns on
ICs. More details are provided in (Kartashetaal., 2008).
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1D cells

2D cells

rectangle disk
DEQS LHKF
B-cell F-cell

Figure 12: A set of cells present in the IC.
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rectangle disk rectangle disk
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Boundary relations

Containment relations

Figure 13: The topological relations of the IC.
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From this description we can see that all the representatiescribed ear-
lier can be incorporated in an IC. This makes ICs suitableaftarge set of
modelling tasks and allows us to integrate various exigtoglels as well as
to define new complex hybrid models.

The attributes associated with an IC

The attributes representing different properties of arogEneous object
are described independently of its geometry and topologghttribute\ is
described by a set of its values embedded into a multidimmeasreal num-
ber spacdrk™*, i.e. an attribute is a vector of dimensionality, that can be
interpreted depending on the modelling context (e.g. aplmaterial, trans-
parency, simulation parameters, etc). Any point withinrtiedelling domain
can be assigned a set of attributes using a collection @bt functions:

J
Sy = U Sa;iSh, 1 = R™;Q C EP
j=1
Sy, Is an attribute mapping, defined in a of section 2.2.3 ("Hypkme ex-
tensions for FReps”) which allows us to retrieve a scalarweaor value of
an attribute within the volume.

There are no specific constraints for attribute functiorigctvcan be given
in analytical form and can have discontinuities. It is imtpat to note that the
space-partitions associated with the attribute functiarsin general differ
from the geometric objects present in the IC. This meansathather IC can
be used for the description of the attributes of the modetrilAtte relations
are introduced in order to associate every cell of the IC aitlattributeA:

3
Rsy = | JRs"; Rs? C GP x S,
p=0

whereG? is a set ofp-dimensional cells. Thus, {fg;, Sx,) € Rs} the value
of the attributeA at any pointX ¢ |g;| is defined asSy, (X).

The limitations of an IC framework

While the above IC framework goes a long way towards progdiruni-
fied way for model representation and manipulation, a nurobenanswered
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guestions remain. One of these is the question of optimalersion between
different representations and the establishment of celatbetween these. In
particular scenarios when precision is of high importaneemight want to
convert a BRep to an FRep (Fryazinetal,, 2011). In other cases, it might be
more appropriate to retrieve a polygonal representatidgh@fRep models.
It is also important to introduce new techniques and adakionprovements
to make this model more flexible for the management of comgptexes and
to provide opportunities for user manipulation. Additiblpadynamic hybrid
modelling techniques need to be incorporated into ICs ieioia make them
suitable for the modelling of dynamic heterogeneous objethese exten-
sions to the framework will be described in detail in the rehdpter.

Not withstanding such questions, it is apparent that theré@héwork is
well suited for heterogeneous object modelling. Varioysesentations sup-
ported by the IC framework make it possible to define multigisional com-
ponents of the objects using rich set of existing models. Newdels can
be easily defined using a combination of the supported reptasons. The
available set of topological relations allows us to provadeitional important
information describing the mutual dispositions of objectsie independent
definition of an arbitrary set of attributes provides us vitik flexibility of
describing volumetric properties of multi-material oligecAltogether the IC
framework provides us with a set of powerful tools for he¢gneeous objects
modelling. The main issue of concern with this frameworkhis absence of
the user tools necessary for the modelling of dynamic objekset of meth-
ods has been developed over the years allowing us to defieediapendent
models. These methods are suited for different types of maate prob-
lems being solved. In the following section we will outlifeetmost com-
mon animation techniques which can be used for the defingfatynamic
heterogeneous objects. These techniques need to be tetégnto the IC
framework.

2.4 A survey of computer animation techniques

In this section we outline a number of approaches commonrdyl dier the
definition of dynamic computer models. In a way similar todmeussion re-



2. Related work 63

garding the existing static model representations we apdhe strengths and
weaknesses of the existing approaches for the definitiogmdmic models.
At the end of the chapter we discuss the necessity to exten@tiramework
in order to use it for the definition of time-variant heterngeus objects.

2.4.1 Keyframe-based animation

As was mentioned in the Introduction, we are interested emntiodelling of
natural heterogeneous objects. This means that staticlsali@e, which
we have been describing up to this point, are not adequatédadefinition
of time-varying objects. Even initially static heterogens objects could
interact with other objects in a virtual scene. In this sattve will examine
existing techniques used for the definition of time-dependsodels.

The transition from traditional animation to computer anim ation. Key-
framing.

One of the most common and powerful ways of dynamic model defin
tion is through the so-called “keyframing” and “inbetwemgfii technique.
This technique is similar to the one used in traditional Rdradvn animation,
where the production commonly starts with a set of storyti@ail hese sto-
ryboards reflect the key moments of the animation being predlThomas
and Johnston, 1995). The next step is the preparation of @lnsbdet, which
ensures the consistency of the animated entities presém ianimation se-
guence. A senior animator then draws a necessary set of &aeyrdys that are
considered important for the animation (see fig. 14). Afiés step the inbe-
tweeners add the intermediate frames “connecting” the kawyidgs. Most
computer animation systems present the user with the samdiova al-
lowing the computer animator to define keyframes of the ationar more
high-level key poses of the characters (see fig. 15). Thewsdmning is done
by the animation system. Such an approach provides thé\aitisa precise
control over every aspect of the produced animation seguenc

In the early years of computer animation a lot of researchdea in the
area of 2D computer animation. It was important to autonfe@rtonotonous
work produced by the inbetweeners. Back then, computers ardy used for
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Figure 14: A set of keydrawings reflecting important stages of a wathecy

(image courtesy of Jose Fonseca).

Figure 15: A set of key-poses defined by the computer animator (“Andy”mo
del courtesy of John Doublestein).

some simple tasks in the production of 2D animations (faiaimse, scanning
of hand drawings, colouring, background painting etc). tByk and Wein
(Burtnyk and Wein, 1976) proposed the use of time-depengPnskeletal
deformations, allowing them to apply motion to static or d@gmc 2D draw-
ings, without the necessity to produce intermediate drgsin Implemen-
tation of a reliable general inbetweening of 2D drawingsesppd to be a
very challenging task (Catmull, 1978). Edwin Catmull peohiout that 2D
drawings were actually projections of 3D objects, which nsethat certain
amount of information is lost at the projection stage. Ineorth restore the
lost information additional information relating to the Zppearance of the
time-dependent object was required. One of the natural aysi promising
ways of providing this information was the definition of a @rdependent 3D

3The user still had to inbetween the skeleton into which tasvitigs were embedded.
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model.

In a way similar to the CAD industry where line drawings wesed for
the visualisation of static objects (as described in se@id.1), early com-
puter generated animations consisted of line drawings.aflg as 1972 one
of the first so called “half-tone” animations was producedt(full, 1972),
in which the modelled object was represented by a set of sha@ngles.
In this animation sequence the motion of a hand was defined) tise hier-
archical links between the various components of the haimde-Oependent
transformations could be controlled through a set of ma#teal functions,
producing certain motions over predefined intervals of tifhbe definition
of a complex 3D sequence was still a rather laborious taskast not until
mid 80s when complex computer generated animation segsi@uced be
produced by the artists rather than computer scientist® afiplication of
fundamental principles used in traditional animation (fifa@ and Johnston,
1995) to computer animation (Lasseter, 1987) was an impostap in the
history of computer graphics. Finally, artistic skills akwowledge applied
to traditional animation could be transferred to and asdibly the computer.
This allowed artists to have faster iteration times conegimg more on the
creative side of the production, rather than on the unawdédiaut necessary
details of the animation. This change helped to improve thnaity of the
produced animations and to achieve effects that could nptdmced in any
other way.

The high level of control over dynamic entities and over @asi aspects
of the sequence provided by the keyframe-based approamisaihe artist to
produce expressive and believable animation sequencetheQrther hand,
the definition of the keyframes and the set-up of the inbetnveeparame-
ters can still be a very arduous and time-consuming procéls process
requires a lot of repetitive actions from the user over a nemal iterations.
Alternatively, major modifications of the sequence reqauenerous manual
repetitive actions from the animator.

Although keyframing can be a very time consuming process sitill one
of the most commonly used animation techniques. For a lamgpeber of
people it is easier to think of a dynamic model as of a set dicstaapshots.
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Each aspect of the snapshot can be adjusted over time, thulsing in a
time-dependent sequence with simplified control over therinediate states
of the model. Such an approach can be used to create fairlgleamynamic
models with predefined behaviour. The majority of animaisrssed to this
animation technique and find it very useful. If we wish to pdavthem with
the ability to define time-dependent heterogeneous objeeyframing needs
to be supported by the new heterogeneous object modelanggfivork.

2.4.2 Procedural animation

In fact, historically a purely keyframed-based approachid¢dmot be easily
used by the animators. Apart from the system described imtiiki and

Wein, 1976), there were no appropriate tools allowing thesqe without a
specific knowledge of computer programming to define a dyoamaidel. On

the other hand researchers producing computer animatauresees could
provide a definition of a relatively simple process as a caerpprogram. A
number of high-level domain specific languages were deeel@idackathorn,
1977; Reynolds, 1982; Comninos and Webster, 1980; Fiatred., 1987).

These languages provided special metaphors making itreasdrect the

initially static entities in a relatively simple way. A higbvel definition of

the animation sequence can be seen as a form of screenplagha.creator
does not need to define every single aspect of the proceseadha high-
level description is provided to the animation system. Tienation system
can then produce the actual frames of the animation sequbncertain cir-

cumstances, complex evolution of a model could be moreyeds#cribed
through a scripting language incorporating high level ®sed for anima-
tion production.

Let us refer to CGAL language (Comninos, 1986) illustratimgidea of a
Domain Specific Language (DSL) oriented towards definitibaoanimated
sequence. CGAL is a Pascal-like language (Wirth, 1971)rdviges such
abstractions as affine transformations of the objects, ndéferent types
of light sources, shapes and deformations, keyframestgvy@aocedural geo-
metric modelling etc. One of the important concepts of CGélhie concept
of events, which allow us to perform certain actions onlyjhwitspecified time
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intervals, i.e. time-dependency coupled to imperativeestants is inherent
to the language. This is similar to a detailed film script, vehevery action
happens at certain time. This allows us to perform tight Bymgisation of
various events occurring in the model and to precisely ghartiming of all
the actions.

Here is a simple example demonstrating definition of a basmation:

(*» A typeless definition of an object, duration of a sequence *)
(* and a scal e event )
var object, duration, scal eDuration;

begin
object :=inof "nmesh.obj’; (* |oad external nesh x)
duration := 60;(* the sequence will take 60 franes *)
scal eDuration := 40;(* scaling will take 40 franes *)

...(* set-up a nodel =*)
script 1 to duration do

begin
(» actions defined inside this block will only take *)
(* place from1lst to 60th framex)

(» event A: shift the object along x between frames 1 and 20x)
from1l to 20 do tx {object} 1;

(» event B: rotate the object around z between frames x)
(» 10 and 30%*)
from10 to 30 do rz {object} 15/ 20;

(* event scale: scale the object for scal eDuration franesx)

from20 to 20+scal eDuration do sc {object} 1.1 1.1 1.1;
end;
end.

The description of a model does not require any low-levehitédns and
initialisation code, which would be mandatory in a genertajppse program-
ming language. The user works with high-level 3D modellind animation
metaphors, concentrating on essential aspects of the rtiatalan easily be
modified. From this example we can see that a user can defineg&fsames
he wants to work with. Within these frames he or she can desesents oc-
curring simultaneously or sequentially. The starting angfiing times and
the duration of events can be defined in a parametric manherhwllows the
user to easily adjust the animation sequence. We shoul@thlentage of this
flexibility of model definition in the system for heterogemsmbjects mod-
elling. A high-level DSL incorporating concepts specifictitme-dependent
hybrid models could simplify the process of model definiteord make the
modelling itself more accessible and efficient.

May introduced the notion of Encapsulated models in (Ma@8)9These
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models contain a set of attributes including but not limitedhape, motion
surface properties, user interfaces (Ul) for controlling inodel and sounds.
All these attributes can be described using a proceduralitiefi. A special
DSL called “AL” was developed in order to provide these highel procedu-
ral definitions of static and dynamic models. The main fodubte approach
proposed by May was the creation of interactive tools ak#ldéo the end
user. These visual tools could be defined or parameterisedrbgre expe-
rienced user through the “articulation functions” implertesl in “AL". This
method provided a multi-level tool for model definition, whiallowed the
user to manipulate complex models in real-time.

Another interesting approach to modelling the natural daslso called
“Empirical Modelling” (Beynon, 1987). Empirical models ot require us
to define a precise physical model of the process we want talaien We
can define a simplified model of the phenomenon with a numbavaifable
parameters. In the process of interaction with the modeluidpn the pro-
vided parameters, the model can be further refined or adjudteis allows
us to reproduce in our own model the behaviour of the systamishbeing
modelled. Empirical modelling has been used for the dedinitif geometric
models (Beynon and Cartwright, 1989), where the constratitistory of the
modelled object could be defined using a symbolic descnptioorporating
different geometric representations. In theory this afidle user to define
complex geometric objects of different representatiorsratations between
them within a single framework.

Generally a procedural approach is more flexible and extdadas it
allows us to incorporate a large set of problems that can beedasing
physically inspired models of the real world. Certain typésanimation
involving simulation of natural phenomena are next to ingige to pro-
duce using keyframed-based approaches. For instance;hagly simula-
tion (Witkin and Baraff, 1997), particle-based systemseirs, 1983) for
fluid simulations (Monaghan, 1988), dynamic simulation atumal plants
(Prusinkiewicz, 1986), cloth simulation (Terzopoukisal., 1987) and many
more. Overall this approach becomes indispensable whesmih®ator is in-
terested in the verisimilitude of the modelled event or mmeenon. Witkin
and Kass (Witkin and Kass, 1988) proposed a hybrid appro&ativallows
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the animator to define certain constraints for the animatedeisimilar to
rough keyframes. Their system then finds a solution satigftie specified
constraints and produces an animation sequence that lbgkgglly correct.

A procedural definition assumes the existence and developohi@ con-
ceptual model of the event or phenomenon. This implies tiaintodeller
makes an effort to understand the underlying process arglatidy describe
it, rather than to simply reproduce it. This is a very impottaspect of the
heterogeneous objects modelling system. As our main aimotisonsolely
reproduce the observed phenomenon (which can be a validlimgdi&sk
too), but a desire to provide a modeller with a platform whielm be used
for the definition of an accurate physical model of time-defsnt heteroge-
neous objects. The behaviour of this model can then be sietuéccording
to specific requirements. This would allow us to produce a sgstem for
the dynamic modelling of heterogeneous objects of varymgmexity and
will allow the user to interact with such objects. This isfelient compared
to mimicking and predefining the dynamic characteristicheterogeneous
objects. Unlike in keyframed-based animation, the behavid the defined
model may not be known in advance. An iterative definitiontahdalone
components of the model allows the user to combine diffeobptcts and
states of the model together, resulting in new behaviouralrakand Barr
proposed a similar concept allowing them to introduce tHeatures to the
modelling system (Kalra and Barr, 1992). In this type of nisdieis often
natural to operate in terms of such metaphors as events.t&oecur in the
model over time and result in transitions between the stHtédse model in
an order that is not known in advance (i.e. event-driven ation). Another
powerful feature of this approach is the possible presehdemendency re-
lations between the entities of the model. This allows ther ig define a
set of independent entities and their behaviour in a modakdrion and to
combine these, thus establishing dependencies betweeptbgerties. For
instance, the LSD-engine (Adzhiev and Beynon, 1999) allbwsiser to ex-
periment with a multicomponent interactive model and taneeft on the fly
in a stepwise manner.

Events provide semantic information about the model. A sage of
events can be used to determine the current state of the randeib help
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us gain a better understanding of the intermediate phaaeththmodel went
through. Initiating reactions and behaviours dependintheroccurrence of
events is a natural way of thinking for modellers, as it isi&nto their in-
herent thinking process. This makes modelling more adalesand intuitive.
Events reflect certain critical points in the simulationgess, which provides
the user with meaningful information about the model overeti Besides,
it helps to approach modelling in a systematic manner, sutidg possible
states and composing them together in an unlimited numbgaps$.

Although procedural model definition is a very powerful wdydgnamic
model definition it has certain limitations. First of all,evan iterative pro-
cedural definition of a model can be a very tedious and emang method.
There is no formal way to define a model in a certain way. A vahd ad-
equate model definition may require a high-level of expertiem the user.
The procedural definition of a model requires an experienoedeller with a
solid technical background. Secondly, some types of amimagquire strong
artistic control and cannot be appropriately defined in ag@daral manner.
For instance, to date a complex walk cycle animation of acigeracter or
a believable facial animation cannot be produced withoaiegsistance of an
experienced artist. It is quite common to incorporate aert@awv-level ani-
mation sequences into the procedural definition of a modak dan only be
done through the combined efforts of both an artistic analartieal special-
ist.

Overall, we can see that the procedural approach to dyndmects mod-
elling is a rather powerful and versatile technique. It isyvienportant to
support this method of model definition in the dynamic hejereeous ob-
jects modelling framework, as we are interested in progdimre means of
defining non-deterministic systems with complex behawoiihis can be an
Empirical model of a time-dependent heterogeneous ohjefihed and in-
teracted with on the fly, or by the physical simulation of aunal process
that allows us to describe the behaviour of some complexghenon. The
procedural approach offers us the flexibility to define dyitamodels in a
number of different ways, without significant constraimsloe type of model
being described. Unlike the keyframed time-dependent maderocedural
definition allows us to retrieve new results and behavioased on the initial
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description of the model without the necessity to redefirekdy states of the
time-dependent model.

2.4.3 Conclusions

From the above discussion it should be apparent that, sitoilstatic object
modelling, time-dependent modelling does not have an atgnmechnique
that can be used for the definition of different models. Bgipraaches are
suited to the solution of dissimilar problems and need tanberinixed. The
combination of methods described in this section allowsuget the best of
both methods, having precise artistic control over somésparthe model,
while providing a high-level definition of other parts of thr@del that can be
evaluated on the fly.

Earlier in this chapter we described the existing approatbéneteroge-
neous objects modelling. Current research is mostly cerdreund static
models. Dynamic hybrid models are still an on-going rededopic (Xi-
aoping and Dutta, 2003; Adzhiet al., 2002) with a large set of unanswered
guestions. As Kou and Tan (Kou and Tan, 2007) note, dynaniébgeneity
modelling can have a wide range of applications in such aagagmedicine,
surgery simulation, mechanical engineering and others.

In this research project we wish to combine the currentlylalke tech-
niques for static heterogeneous objects modelling, iraatphg a humber
of the existing representations, with a set of methods usethé definition
of time-variant models. In order to achieve this, the cutyeavailable I1C
framework needs to be extended. The proposed extensiohs fratnework
are described in the next chapter.



3. Theoretical framework for Dynamic ICs 72

3 Theoretical framework for Dynamic Implicit
Complexes

In this chapter we introduce a new dynamic IC framework alhgws to
deal with mixed-dimensional hybrid models whose strucaumd properties
change over time.

3.1 Motivation

In previous chapters we have outlined a number of the egisgpresenta-
tions and methods used for the definition of time-dependedeis. Each
representation and dynamic model definition has a numbererigths and
weaknesses. There have often been good reasons for sonesefnttethods
to be used in various applications over the years. There @®npelling rea-
son to abandon previous approaches in favour of a new onéer&ey we
should be able to accommodate the entire set of existingseptations. We
need to introduce a new framework allowing us to incorpoexisting rep-
resentations while overcoming their existing limitatioi$e IC framework
described in the previous chapter allows us to combine nscafeh diverse
nature within one hybrid model. Unfortunately, to date tleftamework
was only suited for the definition of static hybrid modelsu$hit could only
be used for a limited set of applications. Here we introducewa dynamic
IC framework allowing us to deal with time-dependent hybriddels along
with the production of their corresponding animations. sTimew framework
is partly based on the static IC framework. Our new dynamaen@work
provides a means to describe complex behaviours of a modeteratively
simple way. This is achieved through the combination of pdogal time-
dependent model definitions, based on event-driven dyrsamwith widely-
used traditional keyframe-based approaches.

Next we provide an extensive description of the componéhrtseoframe-
work together with some simple examples.
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3.2 Dynamic IC cells

First, we need to introduce the concept of time within the d&rfework in

order to allow us to define an appropriate behaviour for thgiemnpresent in
the model and to describe both their structural and para&angtanges over
time. A basic set of the dynamic IC definitions is as follows:

e One of the basic concepts required for the definition of a dyoa
model is that of a time span:

Ni
E U a]?tdj St; ; a]?tdj S

J

wheretflj andtilj define the start and end times of the span accordingly
and St; is the scale factor of this time span, i.e. it defines the rate a
which time changes within the span. Unique valuesgfallow us to
define local time spaces and to measure arbitrary time iaterv

e Each cell present in the model has a life span associateditwilthe
life span of a cell is defined in a way similar to the time span:

N;
L;=T, = U (tfzy’tiij)‘ﬁ 7t23’t2j € b

J

wheret;; andt},define the activation and deactivation times of an en-
tity. Within the life-span, every active entity has accesbdth its local
time and the global time associated with the entire IC. Inatercases
the life-span of entities can be evaluated on the fly durimgpifocess

of the model evaluation, thus providing a way for dynamic edadod-
ification.

e To take into account the time dependency of the cells we densihe
point set of each cell as a function of timpg = ¢/ (¢). We define the
initial point setg;"(0) of a cell and its bounding domaid’ () c £",
such thaty/(t) ¢ D% (t) for any given timef. To describe a dynamic
point sety (¢) we introduce the following functions:
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— The shape functio/ (¢) : E™ x T — E™, which defines a point
set. For each time moment the shape function of a cell gives a
representation of the cell shape in a form correspondindpéo t
cell type;

— The deformation functiofV’(¢) : E™ x T'— E™, which modifies
a point set. This function provides descriptions of varidaor-
mations of a geometric object (for instance, this can be alben
operation, a taper operation or a more complex non-lineacesp
mapping operation). Deformations are applied to the gegnoét
the cell in its local space and perform an arbitrary spacepingp
of the initial point set;

— The motion functionM (t) : E™ x T — E™, which represents
an affine transformation of a point set. A time-dependentaffi
transformationV/(¢) allows us to define the mapping of the initial
point set of a cell from its local coordinate system to thebglo
modelling space.

Thus, a dynamic point sef’(¢) is defined as follows:

g (t) = {g"(0), H*(t), M;"(t), W[ (), D; (t), Li}

wherelL; is the life-span of the cell.

In the definition of a particular geometric cell some of itsngonents
may be omitted. For example, we could describe a dynamicsseg @
shape function alone or using an initial set and a motioniegpb it,

and so on.

We also introduce global parameters that are defined in Hmadrof
the object and in the global life-span of the object. Glokmlmeters
and global time are used for event-driven control of thescatid their
synchronisation in the frame of a multi-component object.

e Apart from the set of predefined properties mentioned abeseh cell
can be assigned a set of arbitrary parameters meaningfainntte
context of the cell (e.g., radius or density). The “localtgaeters are
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Q E
S D
rectangle disk
DEQS LHKF
B-cell F-ceil

Figure 16: A set of cells present in the IC.

only available within the scope of the cell while the “glodbparame-
ters can be exposed and can be made available outside th&loede
parameters are defined as expressions involving other paeesnthus:

| Nbg  Nb o
J J

Wherepicj is thej-th global parameter amij is thej-th local parame-

ter of thei-th cell. These are the predefined types of parameters (scala
vector, set of polyhedrons, etc). The values of the parameter time

are either defined by a set of entity reactions or throughsegament

of a predefined animation curve. This allows us to define cermngy-
namic dependencies between parameters associated \Vigtedifen-
tities (see section 3.5).

To make our description of the dynamic point sets more flexitle
introduce a parameterisation of all the components. We elefipa-
rameterised time-depended point set in the following way:

g (t, P(t)) = {90, Pi(t)), H*(¢, P:(t))
M (¢, P:(t)), Wi (¢, Pi(t)), Df*(t, PE(t), Li(P: (1))}

For every time moment the proposed dynamic model of a gecnoett
provides the corresponding values of the parameters anck$odting
point set associated with this cell.

We will now refer to a simple example shown in figure 16. We have
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used this example earlier in the text to demonstrate a sitpieode.
Now we can define the motion of the digk7 K F' over time (see fig.

17).
Q E Q E
K K
0® F HED | o F1 H
Porps Prrgs
L L
S D > D
Q E Q E

S D

S D

Figure 17: The motion of the disk defined over time.

The translation transformation of the digki K F' is defined by a set of
parameters:

prixr(t) =1’ ukr + VirrE -t

wherep?; ;; x  is the initial position of the centre of the disk (this inltjzosi-
tion can be defined usinyl;(¢)) andv 5 i r is the velocity of the disk, which
is a custom parameter added by the user to th&gej. In this example we
assume that the rectangle£'Q)S is a static cell with its centre at the point
P’ ppos (i-e. itsM;(t) is constant over time).

3.3 Dynamic IC attributes

Attributes play an important part in the definition of a hetggneous object.

As in the static case, attributes representing the pregsedf heteroge-
neous objects are described independently of its geomethyta topology.
Attribute vectors are now defined using time dependent nmagspi
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J
Sa(Xt) = ) Sas(Xaj (X, 1),4):X € Q

j=1
Saj(Xaj(X,1),1) : Q x Ty; — R™;Q c EV;

XAj(X,t) Q% TAj — Q

where the attributd ; is a vector of dimensionality:», S, ; is a time-dependent
attribute mapping7; is the life span of the attributé; and X,,(X, ) is a
time-dependent space mapping.

As in the case of cells, a point in space is first mapped to thleadlspace
using a deformation and an affine transformation:

XA]'(X, t) = MAJ(t> . WAj(X, t) : EN X TAj — EN

The mapping of the input point-set is required in order tovjate a way
of linking the time-dependent properties of the cells withattributes. For
instance, the attributes can be defined in the local spacedghamic cell
(with its geometry acting as a dynamic space partition) virasally follows
its motion. Figure 18 illustrates this idea by using a simgpjeer deformation
applied to a static geometry and its attributes.

WA A

Figure 18: A space mapping used for attributes: (left) initial geometnd
attributes; (centre) deformed geometry and initial attriés (right) the same
deformation applied to geometry and attributes simultarstyp

A dynamic attribute mapping associated with a space magpidgfined
by the dimensionality of the attribute, its attribute maqpiits time-dependent
transformation and deformation, a set of attributes andifisteme of the at-
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tribute
AA(X7 t) = {mA7 SA<X7 t)? WA(X7 t)v MA(t)7 LA}

In a way similar to cells, attributes can have a set of custamarpeters al-
lowing us to perform their parameterisation:

AA(Xv tv Pc(t)) = {mAa SA(Xv tv Pc(t))v WA(Xv tv Pc(t))a
MA(tv Pc(t))v LA(tv Pc(t))}

As was shown in fig. 18, this mapping is useful for the assmriadf a
dynamic geometry with its attributes.

3.4 Extensions to FRep within the dynamic IC framework

We have already outlined the basic concepts needed for firatide of a
dynamic cell within the IC framework. We have also mentiorledt the
Constructive Hypervolume Framework (CHF) provides a péwavay for
heterogeneous object modelling. In order to accommodapeirplume ob-
jects in IC cells, we need to introduce certain extensiorth@ocCHF. These
extensions will allow us to simplify the integration of heigeneous models,
defined using FReps, into our hybrid mixed-dimensional rimdeframe-
work. We will describe the extensions introduced in thistaén the follow-
ing sections.

3.4.1 Modelling domains

Currently the conceptual model of FReps is very broad. Itstgoport multi-
dimensional modelling functions, thus allowing us to ceeabdels of various
dimensionalities according to the definitions in sectich2.

f(P):E" > E

For instance, FReps allow us to define a 2D object on a plan® onddels
in a space-time domain (Fausettal., 2000; Pasket al., 2004a). However
at the moment the FRep library is mostly oriented towardsctieation of
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3D models. Most of the available primitives and operatiores gefined in

3D Euclidean space. The creation of models of mixed dimeradities can

be a complex and laborious task. Additionally, FRep objectsent in this

model can not be classified according to their modelling sgaw dimen-

sionality, which may lead to cases of superposition of ingatifle entitie$.

It is highly desirable to explicitly introduce the concegtpermitted mod-

elling spaces. This is an important requirement for theemrdefinition of

mixed-dimensional models. Additionally a set of primittvand operations
available for the creation of complex multidimensional ralsdvould greatly

enhance the modelling capabilities of FReps and increaseuimber of areas
where FReps could be applied.

In order to correctly accommodate FRep defining functiorikiwiC cells
of different dimensionalities we need to explicitly defilee tdomain of the
defining function: f,,(P) : E" — E. When using FRep objects inside F-
cells within the dynamic IC framework we can use this domaforimation
to match FRep entities to IC cells:

gl'(t) - H'(t) = fo(P) : E" = E;q; = n

A modelling domain is a specific set over which an FRep moddefmed.
Each modelling domain has a specific dimensionality assatiaith it. Do-
mains available in an FRep model are listed in table 1.

Domain | Dimensionality | Available coordinates
X 1D (x)
T 1D )
XY 2D (z,v)
XT 2D (z,1)
XYZ 3D (z,y, 2)
XYT 3D (z,y,t)
XYZT 4D (z,y, z, 1)

Table 1: The list of available FRep modelling domains.

The domain of an IC cell is then a subset of the modelling daro&ian

“For instance, this may be a CSG operation between a 2D cind@&D block object.
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FRep defining function:

Di(t) C E";q; =n

As can be seen from table 1, a predefined set of available dsmeivides
the option to create models in seven domains from 1D to 4D Itifedia do-
mains” of higher dimensionalities (Fausettal., 2000) can be introduced via
arbitrary additional parameters existing within the modebach modelling
domain provides a specific number of variables that areaailfor the def-
inition of the shape or attributes of a model. Times present in the model
explicitly (see section 3.4.2). Particular types of prig@s and operations
can access and modify while static geometric entities can only get access
to a number of geometric coordinates according to their dsiomality.

In the general case, an FRep model can be constructed frozctslgf
different dimensionalities and we need to correctly essabklationships be-
tween these. Hence, each FRep entity has a specific inputdmgt@omain.
Some entities of higher dimensionality can use entitieswer dimensional-
ity for their definition and vice versa. Specific operatioesigned to change
the dimensionality of an object should be available as vkl instance, we
may need to project an object to a lower-dimensional spat®anstruct an
object of a higher dimensionality.

In some situations, a lower dimensional primitive may beeetged to be
defined in one of the domains which are not available (e.)3(4,z) or (z,z)).
This may be the case for particular FRep entities constuucten lower di-
mensional primitives (such as the “Cartesian product” use@n example
later in this section). In this case, a “reduce dimensidyiatiperation can be
used. This operation performs a mapping of a specified sei@mtimates to
another set of coordinates:

gn(P): E" - E™;m<n

This operation can be interpreted as a “re-projection” afjaér dimensional
coordinate set to one of the existing lower dimensional dosmaSuch an
operation allows the user to define all the lower dimensi&ifp entities in
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one of the predefined domains and to transfer the resultijegbto another
domain required by the higher dimensional primitive (fig).19

Nk

R® ‘ Operation 3D

X| Y| Z Xl1Y| Z

Y Y Y Y ¥ ¥
3 2
R3_R! Reduce Reduce R°-R
- dimensionality | | dimensionality (X—Y)
(Y—X) (XIY/z) (XIyiz) (Z—-Y)

X Y| Z

\ 4 Y VY
R1 1D primitive 2D primitive R2
definedon X defined on XY

Figure 19: The “reduce dimensionality” operation.

This operation can be illustrated by the example of a 3D ‘€aan prod-
uct” operation. Such an operation may require a 2D primitivbe defined
on theXZ-plane and a 1D primitive on thé-axis (fig. 20). The initial 2D
shape is defined on the€Y -plane and then transferred to tX& -plane. A
line segment is defined on tieaxis and transferred to thé-axis.

At the same time a Cartesian product can be considered aseaatiop
increasing the dimensionality of the entity,(P) : E* — E™;m > n).
This operation produces a new object with a dimensionalgpér than the
dimensionalities of both entities used as input to this apen. A new set of
built-in primitives and operations for all of the domaindlwie introduced in
the next chapter.

F-cells can be used for the definition of heterogeneous tshidiffer-
ent dimensionalities. We can see that the explicit intréidncof modelling
domains allows us to build complex multi-dimensional obgagsed for the
definition of IC cells and attributes.

3.4.2 Space-time

In simple models affine transformations or global defororagichanging over
time are applied to static geometric objects. Such an appro@an sometimes
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Cartesian product 3D

X,2) X (Y)
" 77 NN\
¥ Reduce Reduce
dimensionality dimensionality
z =i u
XY Y

X

Figure 20: Meeting the requirements of a 3D Cartesian product.

be limiting, especially when dramatic changes to the modelioover time.
Some of the existing time-dependent FRep models were aaihvaith the
introduction of general “multimedia” coordinates (Fats¢tal., 2000; Pasko
et al,, 2004b), which were changed independently of the model.ekpécit
introduction of time to the model (see previous subsectiompduces new
concepts and FRep objects. One of our main aims is to simjpléyprocess
of dynamic model definition and to provide new opportunif@smodelling
in the space-time domain.

If time is present in an FRep model, it can be manipulatedarstme way
as any other geometric coordinate (see section 3.4.1). Xleik presence
of time in the model allows the user to define a geometric maddlto es-
tablish complex dependencies between objects over timeobfett defined
in the space-time domain can be interpreted as the unionwarldimen-
sional geometric objects defined on a set of space-time fplpaes. Thus,
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a custom projection of a time-dependent object onto a loweerdsion (i.e.
onto a geometric space) can be used to specify a geometactajd vice
versa. Thus, one can imagine a geometric FRep object defmaglane and
a “profiling” object defined on a space-time plane (see lovegtipn of fig.
21a). The intersection of extrusions (or sweeps along amt@fine segment
parallel to one of the axes) performed in orthogonal hypengs generates
a 3D space-time object (see fig. 21a). This object can be tiiafgas a
time-dependent 2D object, whose deformation is specified yrofiling”
projection defined in the space-time hyper-plane (see fig) 21

Y Y
t X 4

T

=04

(b)

Figure 21: Space-time object: (a) Two defining 2D projections (b) A $et o
2D geometric slices of the resulting space-time object.

Another example would be that of space-time blending (Patkb, 20044,
2010). This type of operation allows us to perform advandedding oper-
ations in higher-dimensional space. Blended objects diratkin a purely
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geometric domain (see fig. 22), while their higher dimenaidprototypes”

are blended in a space-time domain of a higher dimensignalite resulting

higher-dimensional object is shown in fig. 23. Slices of Hpace-time object
put together can be used to achieve smooth transition bete@aplex 2D

or 3D objects. We provide more information on this operatiod introduce
a number of improvements to this operation later on in thesith

Vi

ooab“-++

Figure 22: A set of 2D cross-sections of the objects metamorphosed over

time.
K
X

— T

Figure 23: A 3D objects defined in the space-time domain.

This operation is similar to the domain switching operatiaefined in
previous sections. This operation allows us to easily $witetween purely
geometric domains and space-time domains. The expligemee of time al-
lows us to define the time-dependent components of dynanecdggeneous
objects through F-cells. The availability of time in the Ii@rhework, intro-
duced to the F-cells, allows us to keep all the entities oftgiorid model in
sync. These extensions are crucial for the correct integratf FReps into
the dynamic IC framework and for the definition of valid hybmodels.
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3.5 Dynamic IC relations

From the extensions presented in the previous section weaasiude that
all the relations defined in an IC become dynamic as well. fieans that
relations may be established and removed over the courdee ahodelling

process. Depending on the mutual locations of the cellstahbdifications
to their geometry any topological relation of the IC can breanvalid. Thus,

it should be possible to provide a description of the top@ialgrelations of

the model within different time intervals. As was mentiorestlier in the

text (see section 3.5), the explicit enumeration of the limgioal relations or
their automatic establishment can be omitted, if they ateonsidered to be
crucial to the definition of the model.

The static IC framework did not provide an explicit deperajerelation
between the cells or attributes present in the model. Thelseshform of
a dependency relation is that of a relation between a “mastéty” and a
“dependent entity”. Any modification of the state of the neagintity affects
the state of the dependent enfityHere we introduce additional dependency
relations to the framework:

1. The establishment of the dependency relations betwesspibropriate
parameters of the cells/attributes leads to the implicidfined depen-
dency relations between the cells/attributes. More folynaivo IC
cells/attributes belong to a dependency relation, if amgp@ter of the
cell/attributeC; is defined using any parameter or set of parameters of
the cell/attribute”;:

U U (Cy, C) pRep (3)

ieIbP ]el”’

wherepgdp is the priority of the dependency relation between the tells
attributesi andj, 7 is the set of indices of the master cells/attributes
and I'” is the set of indices of the cells/attributes dependent en th
cell/attributeC;. Priorities provide an additional tool that can be used
for the resolution of certain model evaluation ambiguiti€be values

5A detailed description of the states is provided in sectigh 3
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of the priorities associated with dependencies can be greglby the
user in order to provide information about the desired extadn order
of the entities present in the model. Overall, parametrjgedeencies
provide a powerful way for model parameterisation.

Parametric dependencies can be used to define both the gg@met
attributes of an IC entity. But we need to introduce depenigsnbe-
tween the geometry and the attributes in order to providexdbofeeway

of defining more complex relations between the IC entities.

2. Another dependency relation that is established in gradwork is the
dependency between the geometry of the cells:

rd, = |J U (Ci, Cj)l naa

i€ly? jery?

wherepfj_dg is the priority of the dependency relation between the cells
i andj, 1Y is the set of indices of the master cells aid is the set of
indices of the cells dependent on the @&l In this case, the state of a
dependent cell can be modified using the geometry of the mealle
This type of dependencies is important for geometry maatpar and

for the definition of complex deformations within the IC framork.

3. We also introduce the dependency relation between atidsbin order
to be able to define complex dependencies between dynamipwites:

Rd, = U U (HAiaHAj)|p{§_da

eyt jery”

Wherepfjda is the priority of the dependency relation between the at-
tribute entitiesH,; and H,;, I’* is the set of indices of the master

attributes and’* is the set of indices of the attributes dependent on the
attribute entityH ;. This type of dependency can be used for the defini-

tion of compound attributes composed of simpler attrib@initions.

4. Next, we introduce the relation establishing depends=nioetween the
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geometry and the attributes:

Ry = | J | (Ci Hyy)l s

ierld jEIZ e

wherepfjdw is the priority of the dependency relation between the ge-
ometry of cellC; and attributef,;, ;¢ is the set of indices of the
master cells andja is the set of indices of the attributes dependent on
the cellC;. This type of dependency can be used for the definition of
attributes based on geometry. For instance, this couldédéfinition

of a complex space partition defining the values of the atteilin the
volume.

5. Finally, we introduce the relation establishing depemtks between
the attributes and the geometry:

Rdy, = | |J (Hani Cy) oy

i€l yelZ 9

wherepfjdag is the priority of the dependency relation between the at-
tribute H,; and the geometry of the cell;, I* is the set of indices of
the master attributes ar@? is the set of indices of the geometric cells
dependent on the cell attribufé,;. This type of dependency can be
used for the definition of geometry based on attributes. Rstance,
this dependency can be used for the description of maianale de-
formations (Popat al, 2006), where the influence of a deformation is

evaluated using the attributes associated with the shajhe abject.

The generic set of dependency relations is defined as a sagi@op of all
the aforementioned relations:

Rd = Rd,) U Rdy U Rd, U Rdg, U Rd,,

Any of the master entities can, in its turn, depend on a setlaraentities,
i.e.i e I:3j - i € I7;i # jis valid. This means that we can combine
dependency relations and build a complex dependency grdghallows the
user to describe sophisticated models using relativelplgituilding blocks
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and to provide the description of connections between thadditionally,
this allows us to localise the behaviour of the cell withgrigaction function
(see section 3.7). We can then dynamically modify the depecids of the
cell without actually modifying the reactions of the celk(i only the depen-
dency need be changed, not the reaction procedure of theTei$ can also
simplify iterative work on the model, when the user “clonpsé&-configured
cells and only modifies the context they reside in via theoshiiction of new
dependency relatioAsThus each property is treated as a custom “interface”
of the cell to the “outer world”. The establishment of depemdes between
the properties of the cells is similar to the connection efdbpropriate inter-
faces.

We also provide the user with a predefined dependency relatilbed the
hierarchical dependency. This relation reflects the deprrydbetween the
transformations of the cells, automatically performinglaations of the child
transformation based on the up-to-date transformatioheparent. This is
a very common and important relation in computer animatgyaatly sim-
plifying the definition of a large set of natural models. Degency relations
can also be used for the definition of complex deformationghis case the
master cell defines the initial geometry, while a dependeltapplies a de-
formation to this geometry. The resulting deformed shapeines available
through the geometry of the dependent cell.

Let us now consider the specifics of the geometric interpoetaof the
relations within the dynamic IC framework. The boundanaten relates
cells of different dimensionalities. If the pair of abstraells (g7 ,g7) belongs
to the boundary relation, this means that the pointggt corresponding to
the abstract cel’, belongs to the boundary ¢f?|, which itself corresponds
to the abstract celf?. Note that the inverse condition is not required for the
framework to be consistent. In other words, for some poits g&ere are no
established pairs in the form of the abstract boundaryiogladespite the fact
that these point sets are actually related within Euclidgzace. This is the
principal difference between the dynamic IC and the cellifaintroduced

SFor instance, if we create N balls bouncing off M differentfanes, we do not have to
define the behaviour of every ball separately taking intaantthe surface it is bouncing
off. Instead we define the behaviour of one ball having antipauameter used to specify
the collision object.
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in (Kartashevaet al, 2008). This is a compromise that allows us to simplify
the actual description of IC models omitting certain dstavhich might be
required for a valid definition of an IC from a theoretical poof view.

The relations within the dynamic ICs framework do not neaghkspro-
vide a complete description of the corresponding relatioetsveen the ge-
ometric point sets. Their set only includes those pairs d& ¢ee. those
relations) that are explicitly evaluated during the dynapriocess which is
defined as the application specifics dictate. The same igegagding other
types of relations between point sets. Thus, some contaithraktions such
as the “to contain” and the “to be contained” relations, alt asedependency
relations of different kinds, do not need to be explicithfided unless it is
necessary. Note that if a pair of cells belongs to the boyndsdation, it can-
not belong to any containment relation at the same time. Mewany pair
of cells constituting both the boundary and the containmalations can also

be related by dependency relations.

Q E

S D
rectangle disk
DEQS LHKF
Transform.translation x RadiusParameter

Figure 24: The dependency relation between the parameters of two cells

We will refer to the example shown in figure 16 again. This tiime ex-
ample is extended through the introduction of a new depeasydetation (fig.
24). A dependency relation is established between thelat#msal compo-
nent of rectangle DEQS and the radius of the disk LHKF. Thssilts in the
modification of the radius of the disk LHKF whenever the ragla DEQS
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Figure 25: The modification of the radius depends on the translatiomef t
rectangle.

is moved along the X-axis (fig. 25). In this case the cell LHISkmplicitly
dependent on the cell DEQS. This is a simple example of a digmey re-
lation. In the general case, the evaluation of a dependeahyeer can be
defined by a complex evaluation procedure.

3.6 Dynamic IC operations

The IC framework described in (Kartashestzal, 2008) allows us to define
set-theoretic operations on cells. This is an importartufeaallowing us to
construct composite geometric objects from a set of exjatedls. The set-
theoretic operations include the union, intersection ainaning of cells. In
fact, we can also use a subset of the operations availabB:Reps (a set of
deformations) and for FReps (set-theoretic blending anohtded blending).
Theoretically the IC framework supports application ofsh@perations for
cells of an arbitrary representation, though, currenilgse additional opera-
tions can only be applied to a set of cells of the same types possible to
perform an approximate conversion of a cell to an FRep or golBRerder to
apply the aforementioned operations between the cellseaddime type. Ex-
act conversion between the available representationg isubject of further
research.

A new cell resulting from the application of an operation kasmplicitly
defined dependency relation with the cells that were usegasands (see
section 3.5). For an-ary operation the established dependency relations are
defined as follows:

Rdfpz U (Cjaci”pz_mx

JEIL®
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Constructive tree Detailed dependency
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Def(.)nned Tocell
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Figure 26: Example definition of a simple deformation.

Wherepfjdw is the priority of a dependency relation between the célilatte

C; and C;, I-* is the set of indices of the master cells ¢perands of the
operation in this case), i.€; is a cell/attribute containing the operation that
depends on the operand cells/attributés The application of an operation
results in the modification of the components(gf(including its geometry,
attributes, parameters, etc.Rd’. can be any type of dependency described
in section 3.5, which means that operations can be appliedli® attributes
or combinations of these. The definition of operands thradeggpendencies
provides the user with the flexibility of the automatic traxtkof changes in
the model. Whenever the state of an operand cell is modifiecdll/attribute
with the operations will be automatically updated. Thi®ak us to define
time-dependent CSG operations, blending operations, lexnspape-driven
deformations (Schmitt al, 2003) as well as various types of operations for
attributes.

Fig. 26 depicts this idea. Here the initial geometry is defibg the cell
“Cylinder”, which can be defined by either a BRep, an FRep gralterna-
tive suitable representation. The geometric dependenatiares established
between the cells allow us to define a deformation which geasrits ge-
ometry based on the provided input geometry (the “InitiabGetry” in this
case). This allows us to store the constructive tree usedftnedcompound
objects.
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It is important to note, that operations can be time-depenitedifferent

ways:
1. The parameters of the operation remain constant but @ésaogs are
time-dependent:

Vp,(t) € Pi(t) = p;(t) = const

Htl,tg : Hgk(t1> # Hgk<t2);t1 % lo
or
Eltl,tg . SAk(X, tl) 7’é SAk(Xa t2);t1 7é t2

For instance, if we blend two moving objects the resultingpshwill
also be changing over time, even when the blending paraseterain
unchanged (see fig. 27).

2. The parameters of the operation are changed over timks ithoperands
are not time-dependent:

Tty ty 0 Pi(ty) # Pity);ty # t

th,tg : Hgk(t1> = Hgk(t2>
or
th,tg . SAk(X, tl) = SAk(X, tg)
In fig. 28 we can see that both the ball and the cube do not move.

But blending parameters are increased over time whichtesuthe
modification of the resulting shape.

3. The parameters of the operation together with its operane time-

dependent:
Eltl,tg : Pcz(tl) 7é Pci(tz);tl 7& tg

Jt1,te s HF*(t)) # HF(ta); 11 # t
or

Eltl,tg . SAk(X, tl) 7é SAk(X, tg);tl 7& tg
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Figure 29 demonstrates a model where two blended cells avengho

in opposite directions while at the same time their blengiagameters
are adjusted.

'r‘
Celll
- BN geomef?j’.

— F-cell Cell3

> initial g.
Cell2
~

geometry i ‘<
. - - =t ==| geometry T-cell

‘_ Fcell d t

Figure 27: Example definition of an operation with constant parameters

Certain dependency relations can be defined as persiseerthey cannot
be removed or modified. This type of relations appears to baulfor com-
pound objects that set certain constraints on the modidicati the resulting
complex object. For instance, in the example shown in figdreéf 2ve remove
the cell “Cell1l” or remove the dependency relation, the T-<€&ell3” would
become invalid. This means that the shape of “Cell3” caneatddined if no
input geometry is provided to perform the evaluation.

t

Figure 28: Example definition of an operation with time-dependent para
ters.
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t

Figure 29: Example definition of an operation with time-dependent para
ters and time-dependent operands.

3.7 Dynamic IC states and their components.

In this subsection we introduce a number of new terms thateaeired for
the description of time-dependent states of IC entities.

We introduce the notion of the state of the dynamic IC cellr &woi-th
IC cell we distinguish between the parametric stéft&;) and the structural
stateS;(t;) of a cell:

SF(t;) = Pi(t;)

Si(t5) = {9l (t;), Li}

whereS?(t;) is a parametric state reflecting values of a set of paraméters
of thei-th cell (defined in section 3.2) at the moment of timeand S?(¢;)

is a structural state reflecting the modifications of the psét enclosed by
thei-th cell (defined in section 3.2) together with its lifetimine lifetime is
included in the structural state as the point set encloseal é8ll outside of
its lifetime is empty.

The state of the cell is then defined as a union of the two deftatds:

Sji = S} (t;) U S;(ty)

The change of a structural state would commonly result inva para-
metric state of the cell as well. Transitions between thecsiiral states can
help distinguish between the changes of the geometry artdploéogy of the
shape of the cell. Note that for the general definition of teergetry of any
dynamic cell we can use functions of different types. Fomeple, we can
combine discrete shape functions with continuous motiongith deforma-
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tions and so on.

In order to define a method for the definition of transitionsa®en the
available states we introduce a set of other terms. Firstintveduce the
concept of events. The occurrence of an event, normally dinecessarily,
in a non-decreasing order of time, means that upon meetmajrceonditions
the behaviour of a model changes. The type of the event andb@ @gtional
parameters are used to determine the condition :

Ni
Fi— Ui,UPji,Ti,pi
J

whereU" is the name of the ever{vt_}l P! is the set of parameters of the event,
T; is the time-span of the occurjrence of an event ght the priority of
the event. Events with higher priorities are handled beéwents with lower
priorities. The time-span of a predetermined event can fiaateexplicitly,
otherwise it is set to the time of the actual existence of emg if this period
of time is not known in advance. Events can be created aneégsed by the
“interested” cells (see the notion of reaction below). Thedefined events
include a change of time, the initialisation and the terriaraof an entity.
User-defined events allow us to describe a set of events ngfahiwithin
a particular model, thus reflecting the consequence of nuadiibins of the
model state. Events may lead to both the modification of patamand
structural states of the entities.

In the example shown in figure 17 an event could occur when iie d
first touches the perimeter of the rectangle or when therntisthetween the
centres of the two objects falls below a certain value.

Each cell in the IC has a set of reactions associated with rea&tion to
an event is a mapping resulting in the transition of a celinfrone state to
another, which may produce a new set of events:

Ai = U 5%‘]<S;<t>7t7 Pj7Ej) ; %}j(SJZ(t)?tu Pj) : SU X T_)SU

EjeE!
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wheredy,; is one of the “reaction” functions to the evefif, E’ is the set of
events which the-th cell reacts top; is the priority of the reactioﬁ};j, Sy is

the set of states of theth cell andE’ is a set of events generated as a result
of reactioné}';j. A reaction can be defined using global time, local time and
all the parameters of the cell. A set of new evdatsnay be generated within
the reaction. In addition to dependency relations thisnadlthe IC entities

to interact with each other within the model and to initisgaations of other
entities within the IC model.

Reactions are issued in response to events occurring iryttens. The
most common reaction is a reaction to the passage of tintglisation and
destruction events. Another predefined type of event isahaest for an ex-
plicit modification of time (e.g., return to an earlier inst& in time). Such an
event can be used in order to adjust the time-step of the matieth would
be required in order to retrieve the correct results of a jghysimulation.
The priorities of reactions provide a simple device for nfiyidg the order of
the reaction evaluation of the cells within a certain in&iof time.

The motion of the disk shown in figure 17 is defined as a readtiche
passage of time, i.e. the position of the cell is modified argwnstance of
modification of global time.

Finally, a dynamic cell is defined as a composition of itsiahistate, its
set of states and its set of reactions:

Figure 30 illustrates the state transition graph of theestatithin the dy-
namic cell. Reactions of the cell are issued in response termed events.
New events may be generated within the reactions in orderitiate further
interaction with the model.

Any modification of global time results in the occurrence ofeaent. Re-
actions to this event are issued in the subset of the “intedésells. This
could result in global transitions between the states of@h&enerally, time
is modified automatically according to the specific requigats of the model.
It is important to note that cells can request modificatioinsnee in order to
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Figure 30: Transitions between the states of the cell through reastissued
in response to external events and a set of generated events.

evaluate their state correctly according to an active biebaye.g. in a phys-
ical simulation where the time step may need to be adjusted).

Analogously to the state of the geometric cell, we introdilneenotion of
the parametric state of a dynamic attribute at the time momen

S (t;) = PM(ty)

which is defined by the values of attribute paramet@fs defined in sec-
tion 3.3, at the time instartt. The custom parameter3*(¢) can be used
to modify certain properties of the attribute mapping or dtiner purposes.
The structural state of the attribute over thth time spanl; is defined by
the mappingA® (X, t), defined in section 3.3, and by the life spanof the
attribute:

SP(ty) = {ANX. 1), T, L}

The state of the attribute at the time instanis defined as follows:
SMt;) = 577 (t;) U S (t;)

In a way similar to geometric cells, attribute entities cawvéntheir own
reactions and a number of states (see fig. 30). Finally, ardimattribute
is defined as a composition of its initial state, a set of stated a set of
reactions:

= {89(5).5(t,). A}
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Associations of attributes and cells (attribute relatjoare defined the
same way as in the static case with the addition of priorijti&s

3
Rsp = U Rsi‘pRs;RS‘z C GP x Sy

p=0
Rsp C Rdga

whereG? is a set ofp-dimensional cells. Thus, g, Sa,) rs € Rsh,

| p?

the value of the attributé at any point is defined as, (X, ). Thje priorities
of the attributes are used to resolve ambiguities, whericepoint sets be-
long to a number of subsets of the geometry of the dynamis.dellthe case
where more than one point set encloses the space, the &tnitaypping with
the highest priority value is chosen in order to evaluatedttebute value.
Attribute relations can be thought of as a subset of depearyd@tations be-

tween the geometry and the attributes introduced in se8tion

3.8 Dynamic IC instances

In the previous sections we have proposed a set of extenkiotise cells,
attributes and relations, which constitute the basic Imgidlocks used to
define an IC.

Similarly to dynamic cells and attributes the entire dynaii model can
be characterised by a set of states. “Structural statesiimihe 1IC model
have a different meaning. If two states of a dynamic objeetdascribed by
the same IC, then they are considered to have the same tstilistate” de-
spite any changes in the relative dispositions of the celfsttuting the IC.
The characteristic feature of a new structural state is tange in the de-
scription of the abstract IC relations. So it is possiblejfistance, that some
point sets of a pair of cells intersect in Euclidean spacéhmitorresponding
pair of the cells is not present in the sets of the boundarpptainment rela-
tions, as those may not have been defined for that particyteardic model.
If we add this pair of cells into some abstract relation, tivereffectively get
a new structural state of the model without changing its {psets.
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To reflect the structural changes of an IC based model over(iim either
by the establishment of new relations or by the removal dftexg relations,
or by the creation or destruction of some cells) we introdteenotion of an
IC instance. Note that certain parametric modificationshefdgtate can oc-
cur within an IC instance, but the structural state alwaysaies unchanged
within the life-span of an IC instance. The IC instance beesmvalid when
a model undergoes such a structural change that it is no laggperrately
described by the set of cells, attributes and relations uselde initial de-
scription of the IC instance. The validity of an IC instansedefined by a
time-dependent predicate:

FU(th () = true = L;(¢"(t)) is valid

wherel; is aj-th instance of an 1G5 (¢) is a transfer function used to retrieve
the local time of the instancg’ and £ is a Boolean predicate associated
with the IC instance. Every IC instance has its own local tgtating at the
instance in time when the IC instance became valid. Once ansi@nce is
found to be invalid, a transition to the next IC instance igfqened (see fig.
31). The predicate of an IC instance implicitly has its ovie-Bpan (in a way
similar to a cell). Only one IC instance can be valid at anyegiinstance in
time:
Vi, j(j #14): T"NTY =)

In section 3.7 we have provided a description of a reactisn@ated with
a cell. Every instance has a set of reaction functions aststwith it. These
functions allow us to define the dynamic activities of ananse, to provide
high-level reactions to external events and to generateewvents (similar to
those of the cells).

Note that the reactions of the cells and attributes can bewused within
an IC instance. Thus if required, a new set of reactions catebeed for any
cell or attribute present in the IC instance:

Nj Nk
ACm e JCF 1 Cre| O = Ol A, # CF A #

i=1 i=1

A transfer function is used in order to take into account timetspan of an IC instance
and the rate at which its local time is modified.
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Figure 31: Transitions between the IC instances of the IC-based model.

whereA,, is a reaction of the cell’,,. This allows us to alter the behaviour
of any cell or attribute depending on the current state ofribdel.

Every IC instance can have its own set of paramethé) (together with
a set of parameters for its components. Both these sets amgders can
be used for the manipulation of the model, as well as for theking of
the state of the model over time. Thus, we provide a way to defiset of
state parameters “linked” either to a set of instance pateimer to a set of
parameters of any cell present in the IC instance:

N[
Pl = P U Ph
k
An example of such parameters could be the velocity of sorengéric
cell that is important in the context of the model or the disbetween the
shapes of two cells (introduced as a parameter of an IC ios}an

Finally, an IC instance is defined by a set of cells and a setlations
present in it, a set of attributes and the attribute relatifon the cells, a set
of internal parameters of the instance, its life span, as aglts predicate
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Figure 32: Dynamics of transitions between the structural statesehtlodel
over time.

function and reactionsA“}):

N M
I = {U C{7 R R Rd" | ) Hy},, Rs', PP LY FY A" }
=1 k=1
There is no need for an explicit definition of the structuralte of the

IC instance. The IC instance embodies the structural st @ollection

of components of the dynamic IC-based model. Any changeetthte of
the intrinsic components of the IC instance results in asiteom between the
parametric states of the IC instance itself (see fig. 32).tfidmesition between
the parametric states is performed through reactions gfesvithin the cur-

rent IC instance and through the reactions of the dynamio$tance itself.
Transitions between the IC instances, which are equivadetiite transitions
between structural states, occur only when a set of comp®enstituting
the model at a specific moment of time is modified (see figure &)ch

a modification is indicated by the value of the predicate ef it instance,
which allows us to determine if a transition to a new struaitstate is re-
quired.
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3.9 The IC-based model

In this section we introduce a set of terms used for the detsani of the entire
model.

Using the definition of dynamic point sets we formulate théniion of
a dynamic IC-based model as a collection of dynamic celtsipates and
relations between these:

n

Nr(t) M
Q) =< U gi@. Pi(), | Ht, Pi(t)), Ro, Re, Ra
=0

r=0 1 k=1

All the cells, attributes, relations between these as vealigh the number
of these relations can be time dependent. We do not imposeeatrctions
on the mutual dispositions of the geometric cells.

Another important aspect of the model definition is the pat@msation
of the model. Every cell or attribute in an IC instance hastasparameters
that may have some higher level semantic meaning within tbdetn We
collect a subset of these parameters into a special set:

G PG A PA
Nj Ny ; N3 Nij

P = U g PulJ | AY P
k [ k [

Whereg,ﬁj andAQ are the k-th cell and attribute belonging to the IC instance
1, N,ff is the number of the meaningful model state parameters afdhe
g,ﬁj belonging to the instanck andN,fJ.A is the number of meaningful model
state parameters of the attributg belonging to the instanck.

An abstract dynamic IC is defined as the set of its IC instanEesh in-
stance includes a set of the cells along with the establistlations between
these. As the IC is a discrete entity (i.e. the set of its ¢eliisscrete as well as
its relations are subsets of the Cartesian products ofatessets of cells), then
its dependency on time can be considered as a change of gsquoent states
which are associated with the instances of the IC. Two aghemcould be
used here.
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The first approach requires the introduction of “the IC tesbgdl which
includes the union of all the cells and relations belongmglt the static IC
instances. The set of time-dependent predicates assbuidtethe cells, its
attributes and their relations are also necessary. Thugftinedthe IC in-
stance at any given time, one needs to evaluate all the ptediand then to
remove all the cells and relations which are not “valid”. §hesults in the
IC instance for that time instant. The main advantage ofdapoach is the
uniform description of all the states. Its obvious drawb&sdke redundancy
of the representation. Additionally, it is difficult to dedéirihe validity of all
the possible states in terms of the restrictions imposed it relations be-
tween the cells, especially when the complete set of thesstatnot known
in advance.

The second approach assumes the existence of a succesdionirof
stances. All the ICs from this well-ordered finite set in@utie relations
which are common to all of them. To define the dynamic IC ong orkds
to set the equivalence relations between the cells of thdgestances that are
adjacent in terms of time. This will allow for comparisongveeen relations
in terms of cell pair numbers and compositions. The advastad such an
approach are twofold:

¢ all the states are known in advance and their validity cailyebe
checked;

e there is no need for redundant cells in each static IC.

The drawbacks include the necessity to store the desargpbd all the ICs
and the impracticality of defining the intermediate stateshe fly.

It makes more sense to combine both outlined approaches.oWg de-
fine the IC template with some predicates and each staterfdtamce”) could
be defined on the basis of this template with the option to addcells, at-
tributes and relations which were not present in the terapl@ertain cells,
attributes and relations could also be removed from the leeydn order to
define a new IC instance. One could also introduce the predicssoci-
ated with each IC instance. This would allow for an easietuateon of the
validity of the IC instance as a whole.
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Let T'I be a template of the IC that is used to create various inssapice
that IC. The IC template can be seen as the IC instance ppatofyiew in-
stances are created through the addition or removal of som@anents of
the IC template (e.g. new cells or relations). This simitiee process of
model definition, as in most cases the model undergoes a s&hof mod-
ifications over time. Hence, most of the entities are presentany IC in-
stances, which means that we do not need to provide an exreadsfinition
of every instance from scratch. Instead, we add or remove smmponents
using the templaté'/:

N,
3j: ;=TI \ {UCTI Rb"™ R, Rd™, U Hil R PITFTAT }

SA
=1 k=1

Nrn Mrn
U {U C/.RV,Rd,Rd| | Hy,. R, , P/, F’ A’}

Additionally, we need to provide a definition of an animatiemtity. This
entity can be used to define a key-frame-based animatiomfpoparameter
present in the model (i.e.: it is “attached” to the parameter

NZ

Ait) = U Ll U (thy, Vi, ), T, i (t), F (1)

J=1

where N} is the number of key-frames of the animatid(t), (¢, v?) is the
set of tuples of time moments and parameter values at thegentioments,
(tiEj, v’;Ej) is the set of possible additional values required for a $igdgpe of
interpolation, 7" is the time-span of the animation (i.e. the interval inchggi
the time of the first and last key-frames);" is the function performing the
evaluation of the parameter values within the time-spah@gnimation (e.g.
this can be one of the predefined polynomials or a custom atiaiuproce-
dure) andrF§** is is the function performing the evaluation of the paramete
values outside the time-span of the animation (e.g. cothdiaear, custom,
etc).

Finally, the entire model is defined by a set of IC instancdsl \aver
different periods of time, a set of global parameters, a Eetistom events
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and a set of animations used in the model:

{{U[ ta(t)); Fh (i (¢ —true} UPQ @E Cj }

The description of a set of IC instances should be providethbyuser
of the system after the process of model decomposition. Asaudlined in
section 3.8, an IC instance embodies the structural statteeofnodel. The
parametric state of the model is defined through a set of dimeefls and
attributes together with their parameters and the globalehparameters:

N(t;) M(t;)

Inrgs, Ty
Sulty) =< 1J " U Hy 7 (t;), Pelty), P2(t5)

The parametric state of the IC model is simply a snapshoteofitbdel at
the moment of time,. Figure 32 illustrates transitions between the IC in-
stances and transitions within the internal parametriestaf these instances
over the course of the modelling process. Figure 33 outhaei®us compo-
nents of the model and the relations between them.

We refer to a simple motion illustrated in figure 17 once agaii the
cells and relations initially present in the IC are outlinadigures 16 and
34. Both the set of cells and the set of relations are modified time. For
instance, when the disk touches the rectangle a new celtrizdinced (fig.
35).

Observe that a new constructive tree cell F has been added mitérsec-
tion of the two initial cells. Also, two new cells and a set efwnrelations are
added at a subsequent moment of time (fig. 36).

All these descriptions of the intermediate states of the ehade repre-
sented using different instances. Each of the instanceshals a predicate
associated with it, allowing us to distinguish between tlieigint states of
the IC model over time.

The transitions between the IC instances analogously tdifggam in fig-
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Figure 33: The structure of the dynamic IC model and its components.
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Figure 35: The set of cells at an intermediate modelling phase.

ure 32 are shown in figure 37. This illustration depicts thHedent structural
states of the model at different time instants. We can sedftbse intermedi-
ate structural states of the dynamic model remain valid diffarent periods
of time.

3.10 Conclusions

In this chapter we have introduced a new theoretical framlewtich can be
used for the definition of mixed-dimensional time-dependeterogeneous
objects. This new framework is based on the previously alkelIC frame-
work that was used for the definition of static hybrid modélse static IC
framework served as the basis for the introduction of the cemcepts and
for the extension of the existing notions. We have consistextended the
definitions of IC cells and attributes in order to accommedhbeir new dy-
namic features. Each entity can now be characterised bwitddld state,
namely its structural and its parametric state. We have ititemduced a set
of new dependency relations which are crucial for complexaghyic mod-
els. The introduction of events and reactions of the IC iesstip these events
allows us to define complex dynamic models through evenedrilynamics.
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The new set of features available in the dynamic IC framevetidws us
to combine the definition of heterogeneous objects togetiitertheir com-
plex behaviour in different ways. Apart from the definitiointlee behaviours
of individual objects we can also specify compound relatibatween these
objects. Topological relations allow us to build and reteieaformation about
the mutual dispositions of dynamic objects over time. Dejgacy relations
make it possible to define elaborate hybrid models in a modakhion,
building complex dependency graphs between entities praséhe model.

In the next chapter we will provide a more detailed desaiptof this
framework, its internal structure and its implementation.
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4  Dynamic Implicit Complexes Framework: Tech-
nical Aspects and Tools.

In this chapter we describe the system design of the frantemtnroduced
in the previous chapter. The provided description dealk witnore detailed
definition of a number of internal aspects of the frameworkreéHve provide
descriptions of various components of the hybrid model aadlescribe the
process of the model evaluation. We introduce a high-les&tiron which
can be used for the definition of a time-dependent hybrid mddle then
focus on the part of the framework related to FReps. Finakydiscuss tech-
niques that can help us improve performance of the IC frameexmaluation.

4.1 Introduction

In the previous chapter we have introduced a new framewddkvaldg us
to deal with mixed-dimensional dynamic hybrid models whsigsacture and
properties change over time. This theoretical frameworkesdt possible to
incorporate the existing representations and to overcame of their lim-
itations. Our new dynamic framework allows us to combine @cedural
definition of time-dependent model, based on event-driverachics, with
the widely-used traditional keyframe-based approachesveder the theo-
retical description of the framework so far is not detailedwyh to allow
us to start building actual hybrid models. We need a prdcsigstem which
can evaluate a mixed-dimensional hybrid model and can oulfyguresults
given a valid description of a model. The definition of a moskebuld rely
on all the terms introduced in the theoretical descriptibthe dynamic IC
framework (see chapter 3). Further in this chapter we wdlpte a detailed
description of the components of the framework and their@mpate coun-
terparts in a practical system. After this we present a otatnd introduce
a new language for the definition of hybrid dynamic IC mode¥e. will also
describe the algorithms required for correct model evadnabgether with
important details required for the implementation of thegmsed dynamic
IC framework. The information provided should be sufficiemtallow for
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a full-featured implementation of the IC framework basedmtheoretical
groundwork provided in the previous chapter.

4.2 A description of the IC entities and their properties

In the previous chapter we have introduced the theoreticairgiwork for
the new dynamic IC framework. Our theoretical descriptibaldd be suffi-
cient for a basic understanding of the concepts behind tiybadelling. The
conceptual dynamic hybrid model can be defined using thefsmtailable
notions that we have introduced earlier. But we need a maetipal way of
describing the IC-based models.

Here we provide a description of all the entities presenhenftamework
from the perspective of system design in an object-orientadner (Booch,
2004). We map an entire set of notions introduced in sectBoRs3.9 to a
set of entities available to the user for the definition of aaiypic hybrid
model. The high-level UML diagram shown in figure 38 allowgasnap all
the theoretical concepts, presented in the previous chaptie a set of more
concrete practical terms. A description of a hybrid model ba developed
through the composition of the descriptions of entitieshsag events, cells,
attributes and IC instances. Entities, in their turn, aréndd through the
values of their components. This makes the step-by-stegtiite definition
of a complex IC-based model possible in a natural manner. ferdetailed
specification of the entities and their components is ptesdn Appendix A.

In order to provide a valid description of the model, defons of all its
components need to be provided. Initially we describe &llalls of the IC
independently. Then, for each instance of the IC, we add twdit only exist
within this instance. All IC instances also have access yocatl described
within the entire IC definition (see fig. 38). The state of aer{T-cells needs
to be validated by the instances, i.e. the T-Cells remaivalid” unless their
state has been updated by some evaluation procedure defittedlinstance,
which means that instead of an explicit definition of paranetlues, the
user can provide a specific description or an evaluationgolee allowing us
to evaluate the actual parameter values.
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Figure 38: A high-level UML diagram of IC entities.

There are supplementary methods available for the usertéordime any
intersections/collisions between the objects. These aegled to simplify
topological queries for dynamic objects - for instance, foud whether the
objects are touching or intersecting each other.

The information presented in Appendix A in tables 2 and 3 camused
as an initial guidance for the implementation of the desctidynamic IC
framework.

The independent definition of the components of an IC-basedeinis
not sufficient for a valid description of the model. The useeds to follow
a specific methodology in order to map his mental image of thdehto a
practical model description, which can be used for evabmatiin the next
section we describe the set of steps necessary for the definita dynamic
hybrid model.
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4.3 Methodology of model definition

There is no easy way to decompose a complex heterogeneames obget of

objects in a set of IC cells and attributes. There may existralrer of ways

to achieve this. Nevertheless, here we provide a sequeraziohs typically

required for the definition of a dynamic IC model using theted depicted

in fig. 38. The steps commonly required for the definition & thodel are as
follows:

e Define a set of custom events having a specific meaning witten t
model (see section 3.7), if such events are required.

¢ Define the “independent” cells initially present in the I@gate (see
section 3.2). Alist of IC cells can be retrieved after theateposition
of the conceptual model. Each cell reflects an entity in theiral
model with a set of properties. The list of these cells can bdified
over the course of the iterative model definition. The progsrof the
cells and their optional reactions to a set of default or @musevents
should also be defined here.

¢ Define the “independent” attributes initially present ie iiC template
(see section 3.3). The list of these attributes can be mddifier the
course of the iterative model definition. The propertieshefattributes
and their optional reactions to a set of default or custonmi&svehould
also be defined here.

¢ Define the IC template(s) that will be used as the basis fodéfiaition
of all the IC instances (see section 3.8). At this stage thie and at-
tributes defined previously as well as the relations betwieem should
be defined. Additional events and some predefined cells aniouaes
from the library can be used at this stage. A set of relatia@ts/béen
the cells and between the attributes can also be definedAdetailed
description of the IC template can greatly simplify the défin of all
the IC instances, because new instances can be describeghthe
introduction of minor modifications to an IC template defunit

e Define a set of IC instances over time. As we mentioned bekwe (
section 3.8), IC instances reflect states of the model whielstauc-



4. Dynamic ICs framework: technical aspects and tools 114

turally different from each other (in terms of the cells, itredtributes

or relations present in them as well as different behaviofitseir com-

ponents). The user also provides a description of the pefibohe over

which the modelling is performed as well as the list of sangpparam-
eters of the model. Each instance can include a set of IC tampélls,

attributes and relations. New cells, attributes and rafatrelevant only
to the current instance are also introduced here. Morethesreaction,
introduced in section 3.7, of any cell/attribute can beratlen order to
modify the behaviour of any cell/attribute over the lifeagpof the IC

instance. The relations between the attributes and thearalalso pro-
vided at this stage. Finally, the predicate providing thén&ance with
validity information should also be defined here.

e Add a set of parameters specific to certain IC instances aizhbpa-
rameters reflecting the state of the model. These paramedarbe
used to gain a better understanding of the state of the modeladter
its behaviour if it changes on the fly, as was outlined in s&c8.9.

e Define the set of the modelling parameters (i.e. the modgtime
domain, the desired parameters of the model, the rendeairzgreters,
the simulation step and others).

The dynamic IC framework engine can now start model evalnaising
the provided model description. The result of the evaluatiay include a
set of parameters evaluated over time, the complete sthtdktbe entities
over the course of the modelling process or a sequence cétidered frames
with a visual representation of the model at consecutiviaint®s in time.

4.3.1 The high-level notation for the definition of an IC modé

In this section we present a brief description of the new téylel notation
used to describe a dynamic IC model.

Once a conceptual model has been designed according totbeatymethod-
ology presented in the previous section, it needs to beforamsd into a de-
scription which can be provided to the IC framework. Thisaliggion can
then be used to build the internal data structures and topstiteualgorithms
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pode

To[ attributes ]va{ functions ] j
template parameters

Figure 39: The structure of the textual IC model definition.

required for the evaluation of the hybrid model. Here we mevthe most
relevant sections of a symbolic model description usindasydiagrams.

According to the definition of the dynamic IC model, descdili@ section
3.9, the textual description of the model consists of thewigson of custom
events, dynamic cells and attributes, a template IC and af $€tinstances
(see fig. 39). Additionally, custom time-spans and commaiskd functions
(described in section 4.3.2) can be defined for the ease oéirogl

Let us now provide syntax diagrams for the most importantspai the
textual model description.

Custom events and their parameters are described firstefseé fig. 40).
The names of the events are used later by the cells and tlaadestin order
to provide reactions to these events. Additionally the tspans of these
events can be defined here, if the moments and intervals ofabeurrence
are known in advance.

After the events and time-spans the “persistent” &ghisesent in a number
of instances of the IC are described. The user can defineeatidimponents
of the cells according to the definition in section 3.7 (sehtrof fig. 40).
“Source” operator £- " is used to indicate that the description of the cell is

8These are entities that exist in all or a number of instané¢aben|IC-based models.
Cells/attributes present in only one IC instance can beided within the description of an
instance, as the references to these cells won't be used iotlher IC instance of the model.
Otherwise, descriptions of the cells may become too comjait and overloaded with the
details of the model relevant only at specific moments of tilnea way this is similar to a
well known separation between global and local variables.
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Figure 40: The syntax diagram for the definition of entities presenthia t

model.
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Figure 41: The syntax diagram for the definition of reactions to events.
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Figure 42: The syntax diagram for the definition of internal componeriits
the cell.

based on the definition of another cell (i.e. undefined vabigke proper-
ties will be equal to the values of the “sourced” cell). Thatsx for the
description of a set of important components of the cell isicted in fig.
42. “Persistent” attributes are defined in a similar manaecording to the
definitions provided in section 3.3. The reactions of all i@itees are defined
in a similar fashion according to the definition in sectioi.3The syntax for
the description of these reactions is provided in fig. 41. Téact function
allows the user to define reactions to custom events refedemg name. The
react i onPar ans include information regarding both the global and local
times at the time instant when a reaction is issued. Upat e the reaction
is a predefined type of reaction to the modification of timeilevhni t and
t er mreactions are issued when an entity is created and terrdinespec-
tively.

Before all the IC instances are defined an optional definticen I1C tem-
plate (see section 3.8) can be provided for the ease of furibdelling. Fig.
43 illustrates the syntax used for the definition of the IC ptate and a set
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template 4"[ identifier H ! H'TEMPLATE Ic’ H e }‘
4>[ instanceComponents ]——{ "} }——

instance —-—[ identifier ]—rb{ <=t H identifier ]—T*{ ' }‘

—-[ instanceComponents ]——[ predicate H "} }——

instanceComponents M cells]—[b{ attributes }—F

Figure 43: The syntax diagram for the definition of template ICs and IC
instances.

of IC instances. In this case the “source” operaktor™is used in order to
indicate that a particular IC template should be used astatype of an IC

instance (see section 3.9).

In the next section we will provide a brief overview of the garage con-
structs which should help the reader gain a better undetistguof the nota-
tion used for the definition of dynamic hybrid models presdrater in the
text.

4.3.2 IC model definition using the notation

Here we provide a high level overview of each IC componertiéxdrder that
would be commonly used for the definition of a model. This esstame order
as the one used in the previous chapter when introducingethergl dynamic
IC notation. This order is also reflected in syntax diagrarfigof 39. Here

we use a pseudo Extended Backus-Naur Form (EBNF) notatjorotade an

illustrative description of the syntax.
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Custom events and their parameters are described firstiggaieh in fig.
40). The names of events are used later by the cells and thest@nices
in order to provide reactions to these events. Additiontig/time spans of

these events can be defined here. For instance:
/1 customtine-spans used in the nodel
TI MESPANS {

/1 span identifier and actual span paraneters (default span is an
/1 infinite interval with time scale = 1.0)
spanNanmel : Tl MESPAN(...);

}
/1 description of events that can occur in a nodel
EVENTS {
/'l 1ist of events.
EVENT_NAME { // nane of the event is used to provide a reaction
/'l set of paraneters/properties describing this event (optional)
paranmeters {

paramNane ::= TRANSFORM | VECTOR(...) | REAL(...)
.
[priority ::= REAL; ] // optional priority
}

}

The “independent” cells described in the previous sectierdafined next.
All the terms used for the definition of all the componentshd tells are
taken from section 3.2. Here we provide the syntax used d#iinition of
dynamic IC cells according to syntax diagrams depicted uréig 40 and 42:

CELLS { // list of cells starting with the nane of the cell
/1 "<-" operator nmeans to nmake an initial copy of a cell
cel I Nane [ <- sourceCell ] {

/'l representation

type ::= P-CELL | F-CELL | G CELL | B-CELL | T-CELL;
/1 actual shape (can be a conposition of existing cells)
shape :: = MESH | FREP.TREE | PREP_.PRI M TI VES |
COVPCS| Tl ON.OF_CELLS | -

dim::=0D| 1D | 2D | 3D | 4D; // I/ dinmensionality
/1 domain of a this cell (e.g. bounding box)
domain ::= ( VECTOROF.VALUES; VECTOROF_VALUES);
/'l optional life span paraneter
[ lifespan ::= ( REAL_VALUE;, REAL.VALUE ) U

( REAL.VALUE, REAL VALUE )... ];
[ priority ::= REALVALUE ] // optional priority val ue

/1 set of paraneters/properties describing this cell
paraneters {
/1 predefined paraneters can be initialized too

translation(...);
rotation(...);
scale(...);

/1 define new paraneters and their initial val ues:
paramNane ::= VECTOR4(...) | VECTOR3(...) | REAL(...)
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}
/1 optional description of a deformation (can be external)

[ deformation ::= ... ]

Apart from the description of the static properties of th#, ¢ke default
time-dependent reactions of the entities can also be destwithin the cell
definition (see fig. 41). If a different reaction of the enigyprovided within
the description of an IC instance, this reaction is useccatsdf the default

one.

REACTIONS { // reactions to events
/1 default reactions (can be redefined in an IC instance).
init( REAL globalT) {...}
term nate( REAL globalT) {...}
/1 the framework provides the current global and local tine
/1 within different tinme-spans for all reactions
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt){...}
/'l reactions to custom events.
react (EVENT_NAME event X, REAL gl obal T, REAL local T, REAL lifeT)

{

param = event X. par ans;

Attributes are described in a similar fashion (accordinghi definitions
in section 3.3). Unlike cells, attributes need to be assediwith a mapping
to the N-dimensional space of attribute values rather thardefinition of a
point set:

ATTRIBUTES { // list of attributes (defined simlar to cells)
attrNanme [ <- sourceAttr ] {

/lactual mapping from E® to EY (can reference external funcs)
mapping :: = MAPPI NG

/1 dinensionality of the attribute

dim::= 0D..ND

L

}

The template IC is described next. The template IC can be asedlat-
form for the subsequent description of the instances (se@®gre3.8). Thus,
an IC can reference a set of cells and attributes describedopisly (see
figure 43). Additionally, descriptions of relations betweabe cells and at-
tributes are provided, thus defining volumetric space fians present in the
model.
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TEMPLATE.I CNAME : TEMPLATELI C {
CELLS {...} // references to a set of previously described cells
ATTRIBUTES {...} // the sane for attributes
/1 relations between cells and attributes
ATTRI BUTES { ...
/1 default attribute (for any point outside any of the defined
/'l space partitions)

default ::= ATTRI BUTE_NANE_X;
// establish relations between the cells and the attri butes
RELATIONS { cel | NameA attributeNanmeUy, ... }

}

The template IC can also include an enumeration of the tgcdband
dependency relations specific to the model being descrili@d.is a template
of an IC that can be used as a platform for the subsequentijgigsicrof the
instances. Thus, this section includes references to af setile/attributes
described previously and a description of relations betmteem?® 1° (see
diagram in fig. 43).

RELATIONS { // relations between the cells from CELLS
/1 list of containment relations (may provide nanmes for themn
contai nnent { cell Nanel cel | Nane2 [relationNarme]; ... }
boundary { ... // similar to continnent }
dependency { // list of dependency rel ations between paraneters

/1 dependency and its priority (optional - default being 1.0)
/1 or a H ERARCHI CAL specifier - may al so provi de nanes.

cel | NaneA. par anNanmeX cel | NaneB. par amNaneY [ REAL | H ERARCHI CAL]

[rel ationNane];
/'l geometric dependencies

cel | NameC. shape cel | NameD. shape [ REAL | H ERARCHI CAL]

[rel ati onNane] ;
/1 attribute dependencies

att r NameU. mappi ng attr NaneV. mappi ng [ REAL | H ERARCHI CAL]

[rel ati onNane];
/1 m xed dependency

attr NanmeS. mappi ng cel | NaneT. shape [ REAL | H ERARCHI CAL]
[rel ati onNane] ;

}
} /1 RELATI ONS

Two simplified examples of model definition demonstratingvheo tem-
plate IC can be used for an easier definition of a model areepted in sec-
tions 5.1 and 5.2.

9t is preferable to provide only a single description of tekations that remain unchanged
over the course of the modelling process. Every instancercas turn have its own set of
relations valid over its lifetime.

01 certain models it could be useful to define a number of ICpletes. The user could
then introduce minor modifications to these descriptionsriter to define new instances.
This is similar to inheritance in object-oriented prograimgy with an additional option to
remove components which are not present in any particustaice.
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Finally, after all the preliminary steps the actual modesatgtion can
be provided. As was mentioned earlier in section 3.9, thislehdescrip-
tion includes the definition of different states of the moudkdlected in IC
instances. The definition of IC instances is similar to tHaemplate IC (see
fig. 43). The main difference being that the components dfezantroduced

templates and IC instances can be used for the definitiorvof@énstances.

| C.I NSTANCE_NAME {
CELLS { // references to a set of previously described cells
CELL_X CELL.Y; // reference earlier described cells
USE TEMPLATEL. CELLS [ \ { CELL1 CELL2} ]; // fromIC tenplate

ATTRIBUTES {...} // similar to cells
REACTIONS { ... } // custom REACTI ONS of cells/attributes

}
RELATI ONS {
dependency {
/] define new rel ations
cel I NanmeU. par anNanmeS cel | NaneV. paranNaneT [ REAL ] [ NAME] ;
/] use the |1C tenplate renoving/adding relations
USE TEMPLATEL. RELATI ONS. dependency [\{rel X ...}] [UrelY...];

USE i nst A. Rd[ cel | NameW cel | NaneZ]; // use unnaned rel ations

The collection of parameters of cells/attributes that amscered impor-
tant or meaningful within this IC instance is defined in ortiemprovide a
better understanding of the state of the model. Such paeasean also be
defined for the whole dynamic model. These parameters casdtkta track

the state of the model and for high-level interaction with it

STATE_PARAMETERS {
stateParansNanme ::= VECTOR(...) | REAL(...)
/1 new alias for nested paraneters
cel | NaneW par amNaneP newPar anNaneX;
i nst ancePar anNanmeU newPar anNaneY;

As we mentioned earlier, custom reactions of IC entities lmamefined
with the description of IC instances. Finally, the predécat an IC instance
is defined in a way similar to reactions of the IC entities.

REACTIONS { // reactions to default events

This can be considered as one of the ways of parameterisngadalel.
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init( REAL globalT) {...}

term nate( REAL globalT) {...}

updat e( REAL global T, REAL local T, REAL |ifeT, REAL dt) {...}
}
PREDI CATE { // predicate of this instance

bool evaluate( REAL global T, REAL local T, REAL dt) {...}

}

Real examples of model definitions using the aforementi@yatax can
be found in chapter 5.

It is worth noting that certain lower-dimensional cells amtations are
introduced into the IC “implicitly”. This happens when lomg@imensional
cells, boundary and containment relations can be evalaat®ednatically. For
instance, a surface of a volumetric F-Cell and a boundasafiosl between its
surface and an FRep object; edges and points of a mesh angdpiepeate
relations between them, etc. These automatically adddsl cah be refer-
enced using a postfix. For instance, we may have a cell ca@géd Ain 3D,
its implicitly added cells (if any) can be referencedCed | A2D, Cel | A1D.
Loading of the shape (which may be a mesh or an FRep modeB teaah
implicit definition of the domain of the object (or a boundivglume around
the object).

It is also worth mentioning that parameters have a specrabgyfor the
assignment of their values. By default the assignment ofigevta a parame-
ter sets an absolute value. But it is possible to define ativelsalue” using
a suffix after the name of the parameter. For instance:

translate.relative = global T » vel ocity'?

This construction means that only the relative value oftthansl at e
will be modified (i.e., it will be added to the initial value bf ansl at e pa-
rameter). This can prove to be useful for the definition ofioromodification
that does not itself depend on the initial state of the objéat instance, when
the definition of the motion law does not require knowledgehef object’s
initial position.

A similar approach could be used for shapes. When we want dathie

plternatively, a special assignment operator syntax cbeldsed (e.g. “a#=b" or “a "=
b”) i
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global position of the geometry in space, we could use $thepe” property
for the shape defined in local coordinates asthdpe. gl obal ” for the
transformed geometry in global space.

Additionally, there is an opportunity to define functionshieh can be
bound to IC instances and thus use components defined in thgntg mod-
ify the parameters of the cells). Certain parts of the piediof an IC instance
can be identical to the predicate of another instance, thustiachable”
function could be used to reduce definition duplication.

function partial Predi cate()

{
celll.translate = ...;
cell 2. shape = conbine(cel I X, cellY);

}

In this example the function issued by the instance can gaiess to the
cells associated with it. If the referenced cells are notlaie, a compile-
time error occurs.

This augmented notation should be sufficient to allows uddd sreat-
ing descriptions of time-dependent hybrid models (seeteh&pfor a set of
models described in this manner). These descriptions asegand con-
verted into intermediate model descriptions which can kesged to the IC
engine in order to evaluate the model over time. In the falhgusections we
will provide a more detailed description of the algorithmsl alata structures
used within the IC engine.

4.3.3 The process of model evaluation

Model evaluation is mostly hidden from the user. Users catatuise certain
steps using custom reactions, but the main process of mealelation is the
responsibility of the IC engine. The process of model evanacan be fine-
tuned and parameterised through the provided model definifihis is more
of a declarative rather than an imperative description efttodel. The main
focus here is on the definition of all model components andcherr¢lations
between them. Reactions to events are also of a more dectanature, as
often they simply provide the descriptions of the depenisniocetween dif-
ferent properties of the IC entities over time. The generaéind processing
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events and the issuing of reactions and transitions betifeeimstances is
performed by the IC engine.

Below we outline a high-level view of the processes occagrrivside the
IC engine during the model evaluation process.

Update the global time of the IC using the parameters deali
Call the update reaction of the IC (pre-update).

Update the local time of currently active instance.
Invalidate all the cells/attributes .

o bk w0 bdE

Evaluate the currently active instance.
(a) Issue areaction of the IC instance to the modificatiomud {pre-
update);
(b) For every cell/attribute of this instance (in the ordefided by the
dependency graph together with cell/attribute priorjties
i. Issue a reaction to the modification of time (pre-update),
ii. Evaluate the current transformations/deformationthefcell/attribute,
iii. Evaluate the new values of the time-dependent parammete
contained in the cell/attribute,
iv. Evaluate the shape of the cell,
v. Issue a reaction to the modification of time (post-update)
vi. Issue a reaction to other events (if any occurred);
(c) Issue a reaction of the IC instance to the modificationiraet
(post-update);
(d) Issue a reaction of the IC instance to other events (if @y
curred);
(e) Evaluate the IC instance predicate/constraints:
i. Ifthe IC instance is still valid, go to steh
ii. If the IC instance is invalid, go to stef
6. Call the custom update reaction of the IC (if it was prodide
7. Choose an appropriate instance from the dynamic IC:
(a) Evaluate the predicates of the available IC instances;
(b) Find a valid IC instance;
(c) Perform the transition from the previous IC instanceh® hew
IC instance:



4. Dynamic ICs framework: technical aspects and tools 127

i. Issue a reaction to the transition,
ii. Issue areaction to the transition of all the active dalisibutes
present in the new instance;
(d) Enable the new instance.
8. Goto stef.

Some steps of this evaluation require additional detaihay present a
number of issues, which need to be resolved. We considex tetails in the
next section.

4.4 The technical details of model evaluation

In the previous section we have outlined the high-level wesy of the steps
required for the evaluation of the model. In this section ugewakss some of
these steps in more detail expanding the description oftfogithms required
for the correct evaluation of a dynamic IC-based model.

4.4.1 Dependencies and the order of evaluation

The dynamic IC framework provides the means of establistiffigrent types
of dependency relations of the dynamic entities within thedel. These re-
lations play an important part in a dynamic hybrid model, leesytallow us
to compose assemblies of objects and to create complex dysamctures
that change over time. We can define system components in alandash-
ion and integrate these into various models of higher coxitgléhrough the
application of dependency relations. Dependent entitiestiected by their
master entities, which in their turn may depend of othettiesstithus forming
complex dependency graphs reflecting semantic relatipaghxisting within
the conceptual model. State transitions of master entitiemmatically result
in the modification of the state of their dependent countgspaOne of the
challenging problems of model evaluation is related to thieect order of
evaluation of the entities that affect each other. Spetgarahms taking into
consideration the mutual dependency relations betweeerttiges need to
be described. Otherwise we cannot guarantee the validityeadvaluation of
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correctly defined dynamic hybrid models. Here we provide w@ndew of
the issues relating to dependencies and discuss how thebse casolved.

The case of unidirectional dependencies

In a simple case only unidirectional dependencies are présthe model.
Thus, we need to resolve a set of dependencies between dyoajects.
These are dependencies in which none of the dependenesratrg used for
the definition of the state of the master entity. Accordingtmation 3 in
section 3.5 this can be formulated as:

Vie X =V eIY 1 (C),C)) ¢ Rdy

i.e. if the entityC; is a master entity in any of the existing dependency rela-
tions, none of its dependent entiti€s is used as a master cell in any depen-
dency relation wheré’; is a dependent entity.

For instance, this could be defined in the following way:

dependency {
cell G .paranX cell B.parany; // cell_C is a master cell
cell B.paranY cell G .paranZ; // cell Bis a master cell

}

It is worth noting that”; does not affect the state 6f even through a set
of intermediate entities (i.e. through a dependency grdplihis case we can
retrieve a set of acyclic graphs representing dependeircibe model. We
then apply topological sort (Cormezt al., 2001) to each individual depen-
dency graphin order to define the evaluation order for eattecéntities. The
first node of every graph is then considered to be the root.ntile root node
of the graph is the main master entity of the dependency gieghany entity
in this graph we can find their “dependency depth”, i.e. theimal number
of entities that need to be evaluated before the evaluafitimsoentity can be
invoked. We start the evaluation of the entities going fréva toot node of
the graph down to its leaves. Entities with equal “depengelepths” can be
arranged in a list of entities which can be evaluated coeatiy. Addition-
ally, each entity can be assigned a priority value to mod#ydefault order
of evaluation. This priority is taken into account when gatiag the list of
entities which require an update. This list is initially geated depending
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on the order of the entity definition and the provided depangeelations.
Priorities are then used to locally sort cells within thericarrent lists™?3,
Additional optimisations relating to a number of actualtestaansitions of
the master entities affecting its dependent entities caldd be considered.
Cartwright discusses a number of ways which can be used &r twdeduce
a number of redundant evaluations keeping the model uat®-a@bnsidering
all the dependencies (Cartwright, 1998). One of the pragpadgorithms is
the block redefinitioralgorithm, which allows us to minimise the number of
model re-evaluations coupling a number of state transtiom block instead
of performing state transitions of the model whenever aategparameter is
modified. A detailed overview of this topic is outside of trmge of this

thesis.
Cells Dependencies
v |
1 2 3 1 > 2 € 3 4
1 T |
4 5 6
5 > 6

Figure 44: The initial set of cells and the dependencies between them.

5 1 4
v v

6 3 -
—
y

> 2 |-

Figure 45: The lists of topologically sorted cells.

3additional hints can be provided by the user in order to deiee whether he/she wishes
certain entities to be evaluated on the same processor oddfeeent one. This is similar
to the usage of CPU affinity masks for every running proceas ¢an be set by the user
on different operating systems. In theory concurrent aaisld also be evaluated using a
distributed architecture, which would be beneficial for I@dels requiring a lengthy dis-
cretisation procedure.
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Concurrentlist 1

5 1 4 3

Figure 46: The list of concurrently evaluated cells.

A simple example illustrating an approach for the model@hgation pro-
cess is presented in figure 44. Let us describe the deperdefthis model:

dependency {
cell 1. param cel | 2. param
cell 3. param cel | 2. param
cell 4. paramcel |l _1. param
cell 4. param cel | 2. param
cell 4. param cel | 3. param
cell 5. param cel | _6. param

}

In this example we have a set of six cells and a number of deeyd
relations between them. For instance) | _1 is a master cell for a dependent
cellcel | 2 andcel | 4 in its turn is a master cell for a dependent cell
cel | _1. From the illustration we can see that there is a complex aoation
of dependencies between the cdll$o 4. In order to resolve the order in
which these cells need to be evaluated we apply the topabgpct algorithm
mentioned earlier (see fig. 45). The resulting sorted degmrydgraphs are
used to generate lists of entities that can be evaluateducamtly (see fig.
46).

The case of bidirectional and circular dependencies

The problem of dependencies becomes even more complexdiridmtional
or circular dependencies are allowed. In this case the ogjedl sort men-
tioned earlier cannot help us resolve the order of evalnatdccording to
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equation 3 in section 3.5, the presence of circular depeaneleican be for-
mulated as:
Jie 15X 35 € 157 1 (C},C)) € Rdx

i.e. if the entityC; is a master entity in any of the existing dependency
relations, any of its dependent entiti€s may be used as a master cell in a
dependency relation whefg is a dependent entity.

In the simplest case the presence of circular dependemcaasiodel could
be forbidden in order to avoid ambiguities. But bi-direatbor circular de-
pendencies can also be a powerful tool for the definition ofdyic IC-based
models. Before going into a description of the issues agifiom the pres-
ence of circular dependencies, let us consider a simple @heaitfustrating
the usefulness of this type of dependencies.

Bi-directional dependencies can prove their usefulness imodel with
two or more interacting objectd. Figure 47 demonstrates the simplest case
of Newton’s cradle. This cradle consists of two pendulumsieWthe two
balls at the ends of these pendulums collide, they exchdreggerhomenta.
This system could be defined within the dynamic IC framewasiag four
IC states (fig. 48). The first IC instance reflects the statb@ihtodel when
there is no interaction between the objects and only theldakton a thread
is moving. The second IC instance reflects the moment whetwihiéalls
touch each other and the impulse of the first ball is transfeto the second
one. In the third IC instance only the second ball is movinbilevthe first
one remains static. The forth IC instance is where the twis laa¢ touching
again. This time the impulse of the second ball is transfietoethe first
ball. Impulse transfer can be modelled through a unidioecti dependency
relation between the moving and a static ball. So that thecitgi of one of
the balls is set to be equal to the velocity of the ball thaejmesented as a
master entity within the dependency relation.

The definition of four IC instances for such a simple modelngseces-
sarily complex and excessive. The description of the modaerlldvbecome
even more redundant with the increase of the number of pandupresent

YHere we refer to what is called a coupled systems in physics.
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Figure 47: A simple model of Newton'’s cradle.

Instance 1 Instance 2 Instance 3 Instance 4

B1 . . B2

B2 B1 B2 B1 B1 B2

Dependencies1 | Dependencies2 | Dependencies3 | Dependencies4

Figure 48: The four states of Newton’s cradle.

in it. This is due to the fact that each state of the model hagflect the
distinct behaviour of each individual component within Tfthe description
of the model we have presented above does not adequatelst taBenature
of the model, but it tries to mimic the behaviour of the esstat different
periods of time. Alternatively, we may apply the concept dtlibectional
dependency in order to provide an alternative definitiorhefiodel. This
new description only has two IC instances defined in it (fig- 49

The update of the first IC instance leads to the change of thiiquo of
both balls using their current velocities. In the secondri§€ance, a transfer
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Instance 1 Instance 2

B1 . B2

B1/B2 B1 pyp2 B2

Dependencies 1 Dependencies 2

Figure 49: The two states of the cradle: (Left) One of the balls movimg, n
collision (Right), One of the balls moving (collision siticen).

of momenta of the two balls needs to be performed. The trangsf@omen-

tum simply means that the velocities of the balls need to lse@axged at the
moment of time when they collide (and optionally reduced wueatural en-
ergy losses). In terms of the dynamic IC framework, this rseiat there
is a dependency relation between these two entities, i.@anper value of
each entity depends on the parameter of the other entity.s, Tthe set of
dependency relationgz(,.) for this model consists of two pairs:

Ry, = (B1,B2) U (B2, B1)

As can be seen this IC model has a circular dependency betvetisrB1
andB2, as bothB2 depends o1, while B1 is being a master cell fdB2
at the same time. The presence of circular dependencies paséllowing
guestions which need to be answered:

1. Which of the cells participating in a bi-directional degency relation
should be evaluated first?

2. Which value should be provided to the dependent cell ii/iee eval-
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uated by the master cell depends on some value of the deperedén

In fact, the same questions arise when we have a more compidelm
where there are circular dependencies created throughia ehdynamic
entities. Some of these issues could be resolved autoritati€ar instance,
the cells participating in circular dependencies couldeet values reflecting
the previous state of the cells they depend on, though threshseld be given
the option to define the desired behaviour of the system ih sitaations.
One of the ways to achieve this is to use the aforementionedtgs. This
means that each dependency relation should be defined altmigs/priority.

If the priority is not defined explicitly, a default value issagned to each
dependency relation.

P1

P2

Figure 50: A simple bi-directional dependency.

Let us consider the pendulum example shown, in figure 49, irerde-
tail taking its dependency relations into consideratioigufe 50 depicts the
dependency relation between the c8lsandB2:

dependency {
Bl. paranX B2. paramy pil,
B2. paranV B1. paranV p2;

}

In this example celB2 depends on ceBB1. The priority of this depen-
dency relation ig;. Cell Bl in its turn depends on the cdR. The priority
of this relation isp,. This circular dependency can be resolved if we distin-
guish between the different states of the cells at diffenreniments of time.
Fig. 51 illustrates two different evaluation orders depegdn the relation
priorities. If both priority values are equal, a higher pitypvalue is assigned
to the dependency relation which was defined first.

Another option is to allow the user to request the re-evalnaif the cells
using all up-to-date states (fig. 52). In this case stateb@fctlls need to
be evaluated more than once in order to reflect all changasrg in the
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P2<P4 P1<P2
evaluate cell B1 evaluate cell B2
using previous | B1 using previous | B2
state of cell B2 state of cell B1
p1 p2
evaluate cell B2 evaluate cell B1
using up-to-date | B2 using up-to-date | B1

state of cell B1 state of cell B2

Figure 51: Two different evaluation orders.

P2<P+ P1<P2
evaluate cell B1 evaluate cell B2
using previous using previous | B2
state of cell B2 state of cell B1
P4 P>
evaluate cell B2 evaluate cell B1
using up-to-date | B2 using up-to-date | B1
state of cell B1 | state of cell B2 !
: P2 | P
evaluate cell B1 ; evaluatecellB2
using up-to-date using up-to-date
state of cell B2 state of cell B1

Figure 52: Two different user-controlled evaluation orders.

model as a reaction to an event. In the “Newton’s cradle” edamit is
sufficient to use previous states of the cells only. In th@sddC instance,
ball represented by the cdlL retrieves the velocity of baB2 (implicitly the
velocity from previous state is provided), while bBR retrieves the velocity
of ball B1 (also using the previous state). Positions of both ballsipdated
accordingly (see fig. 49). After the evaluation of the pratkcof this IC
instance, a transition is performed to the first instancéha® are no further
interactions between the two balls. Only this time the @hitielocities of the
balls are different, while description of their behavioemains unchanged.

As we have mentioned before a topological sort cannot beeapprhis al-
gorithm can be modified in order to resolve the dependenciasnodel with
existing cyclic dependencies. We perform a modified topckigort algo-
rithm using priority values to “cut” the graph in order tomeve the acyclic
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dependency graph giving preference to the relations wélnipher priorities.
The cells involved in a cyclic dependency relation with adoyriority are
evaluated using the previous state of the cells they deperm by issuing a
second evaluation with up-to-date states as outlined above

Let us illustrate this approach with a more complex examptydlic de-
pendencies in order to illustrate how the evaluation ordéh® entities can
be determined. We modify the example shown in figure 44 byrapaln addi-
tional dependency (see. fig 53). Now this dependency graph bgcle in it.
In order to build an acyclic graph from it we use the valueshefdependency
relation priorities. Figure 54 depicts two possible evatraorders for this
case. The dashed cells refer to previous states of masteegnt

Cells Dependencies
P42
v |
1 2 3 1 > 2 € 3 —> 4
1 1 |
4 5 6
Pz.a
5 > 6

Ps2 < P24 Pa-27 P2.a
R 2
] [2] -4 [3]

Figure 54: Two different user-controlled evaluation orders.

More detailed information and possible solutions to theeafeentioned
problem are outlined in (Cartwright, 1998; Adzhiev and Bayril999). Cartwright
(Cartwright, 1998) additionally accounts for the imprayiperformance of
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model evaluation through the application obkck redefinitionalgorithm,

which allows him to minimise the number of model re-evaloiasi coupling
a number of state transitions in a block, instead of perfogihe state tran-
sition of the model whenever any state parameter is modified.

A more elaborate example involving circular dependencsdween mixed-
dimensional components of a time-dependent model will logiged in the
next chapter.

Additional tools related to dependencies

The dependency graph built after the establishment of thertiency re-
lations between the properties of the objects can be vishtd help the user
gain a better understanding of the dynamic model strucfige55).

When dependency relations are established between pespdfte val-
ues of the properties of the master entities are automitiedlected in their
dependent properties. Thus, a dependent entity does ndttodee aware
of which precise cell it depends on. Dependent cells onlyestja value
for a property which can either come from a master entity, &ndd by
the user during the modelling process or be a default valuatsie initial-
isation phase. In the end, the behaviour of an entity is deéfordy using
its properties and we do not need to modify it every time a ddpacy is
changed. This allows us to “localise” the behaviour of arntgrgo that it can
be put into a different model without being fully aware of #t@ntext of its
surrounding. On the other hand if such knowledge is requaadmplicitly
defined dependency can be provided within the reaction ofhtityeThis is
achieved through the definition of a behaviour of a cell onoatiribute using
parameters of other entities “visible” to the entity

Another concept which may prove to be useful is that of visiedlugging.
A selected set of properties of the IC entities could be Vised automati-
cally. These values can be shown next to the cells or ate#b(as numbers
or rendered as vectors) or printed using dynamic spreatishigis technique
could be useful for reflecting the changes of the propertyeslbover time.
For instance, the velocity or the acceleration directiomdde rendered next

S4visible” refers to a set of entities being active within cemt IC instance.
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Property A

Property1 > Property |

Property Il

Property B Property2
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Figure 55: The dependencies between the properties and the dependency
graph between the cells.

to a cell as well as the path travelled by the cell or its tri@pcdefined by the
animation curve. These features require additional cenaicbn and need to
be further investigated in the future.

4.4.2 Handling an event requesting a modification of time

In section 4.3 we mention that custom events can be defined i@ enodel.
In the majority of cases these events are used within the hagde result of
meaningful state transitions. These events are only pseddsy the entities
defined within the model. The IC framework automaticallyditiene modifi-
cation events in order to signal that time has changed arwbalponents of
the model need to update their state. As we have mentionbd escription
of the framework, a reaction to the modification of time isdked before
all states of the entities were validated (“pre-updated after all the values
have been validated (“post-update”). The required timp st be defined
by the user during the modelling session. It is also impartarprovide a
way which allows for specific modifications of time contralley the entities
present in the model. This is an important feature requioedimulation ap-
plications (Witkin and Baraff, 1997), where the requiratdeistep needs to
meet the simulation requirements. Otherwise significaatigron errors will
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Timestep back according
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Figure 56: On-demand adjustment of time (a) Time-step back in time (b)
Going through all the previous states.

be introduced to the model which may lead to incorrect sitaesults. In
the next chapter we also demonstrate an application whareeastep adjust-
ment of the model allows us to improve the results of spaoe-tnodelling
(see section 5.3.4).

Thus, we provide a mechanism allowing any entity to notify t& frame-
work of a required modification of time. Entities can notifygetsystem whether
they “accept” or “reject” the time currently set in the modéi response to
this, the IC framework retrieves the required time-step rawadlifies the cur-
rent time unless a newly set time is accepted by all actividesit The noti-
fication of the IC framework is achieved through the generatf an event
by the entity (see fig. 56a). The framework then analyses\hete If the
change of time was requested and an exact time-step wasdjefinaits for
the end of all the evaluations being performed at the moment ¢oncurrent
update of other cells), it saves the current state of the $€irce (i.e., all the
entities whether they have already been validated or nat)tampdates the
time, restarting the whole update procedure again. Afeetraluation at the
requested moment of time, a valid instance needs to be ¢gdlaathe mo-
ment of time originally requested by the system (fig. 56b)atlit the reason
why the state of the IC instance needs to be saved beforefaigis needed
in order to satisfy the requirements of the external systea ¢ould have
requested the state of the IC model at this particular momoktine. This
could be the rendering system reflecting the state of the iy specific
frame rate.
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A textual description of the request for the modificationiwfd is provided
in a very simple way:

/1 fire special event
/1 provide a relative step fromcurrent nonent of tinme
I C:fireEvent (TI MEEREJECTED, newTi ne);

We use a function provided by the IC framework, which accémstype
of event required to occur and a set of parameters of thistelemhis case
the parameter is a relative time step from the current tirsirt. This mech-
anism is used for the definition of non-linear sampling inspace-time do-
main described in section 5.3.4.

If during the evaluation process there was a request to stefpto a mo-
ment of time earlier than the last correctly evaluated tithe evaluation pro-
cedure is terminated. Such a dynamic IC model is considexedid because
of its non-deterministic behaviour. Let us demonstrate Hyi using the ex-
ample shown in fig. 56a. Here the model was successfully aieduat the
moment of time, 1. The IC framework increased the time to the moment of
timet;%1. One of the entities requested a step back in time a numbiene$t
If the newly requested time is before the moment of tinfe, the provided
IC model is considered to be invalid.

4.5 A brief description of the IC API

In previous chapters we have presented a description of/tieacic IC frame-
work. We have also described a high-level notation whicHatbe used for
the definition of the actual hybrid models. In order to evaduhe IC model
using its textual definition we need to perform a translafimm this defi-

nition to a set of programming terms. This means that we nga@gram-

ming interface allowing us to map the conceptual model toraprder model,
which can then be evaluated by the IC engine using the algosidescribed
in this chapter. This programming interface is called an Il fApplication

Programming Interface). As mentioned earlier in the teRf &llow the in-
corporation of an object defined in a number of diverse remtasions. The
behaviour of such objects can be defined using predefinedatinims, pro-
cedural descriptions or a mixture of both. This means tret@API has to
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support a number of techniques for static and dynamic miodelFigure 57
illustrates the structure of the underlying componentfieflC API allowing
us to achieve this.

IC API
FRep | BRep Animation = Dependencies
API API API API

Math, mesh, files, discretisation... other libraries

3" party libraries

Figure 57: The structure of the IC API and related tools.

The IC framework allows us to incorporate a number of thetedgsep-
resentations within one model. Thus, it requires the supgdfRep, BRep,
PRep and possibly other representations. Primitives ardatipns specific
to each representation are implemented as separate irteg@omponents.
The animation API allows us to provide additional functilityafor the def-
inition of complex animation sequences of heterogeneoysctsh Addi-
tional component implementing IC relations and dynamicethelency rela-
tions helps us to build compound relations between the thje@ dynamic
hybrid model. The IC API uses all these components in ordactmmmo-
date hybrid models in a unified way and to provide the user avght of tools
required for the actual modelling. IC API allows the user tix models of
different representations using the tools available fahes them.

In section 4.2 we have outlined the main entities incorpatan the IC.
The IC API reflects all the terms introduced in this thesis pravides a way
of working with IC entities in order to be able to define andleste the
model. The object-oriented paradigm was chosen as one @ipjpepriate
approaches for implementing this framework. Each type tifyeis mapped
onto a separate class in the API. These classes and relagbnsen them
are depicted in figure 58 (see fig. 38 in section 4.2 for an ogerof the
components of IC entities). Each class has a set of propentie methods to
manipulate the entities.
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Figure 58: The UML diagram of the main classes present in the IC API.

The high-level UML class diagram (Booch, 2004), shown inrfey58 re-
flects the relations between the main classes of the IC APWwassoutlined
earlier aCel | encapsulates aShape, aDef or mati on,a Ti nespan/ Life
span, a Space donai n, sets of Par anet ers and Reacti ons. An
| Cl nstance includes sets of Cel | s, Reactions, Attributes,
Paraneters and Rel ati ons aswellas &pace domai n, aPre-

di cat e and aTi nespan/ Life span. Finally,a Model is composed
of I nstances,and Par anet er s reflecting the state of thebdel and
Event s, occurring in the model at any moment of time, and a gl&peice
domai n within which the model is defined.

A more detailed description of every entity and its compaseéas pre-
sented in table 2 in Appendix A. All the components preseihigtable are
available to the user and can be set-up accordingly. All theies reflected
in the API are provided to the user in order to allow him to dikemap a
theoretical description of the model, defined in chapteo &t actual model
definition that can then be evaluated . But the main idea ofigiog the API
is the abstraction of the exact application that the IC ARIged for. This
means that the functionality provided by the IC framework ba integrated
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into different applications.

The model can be defined explicitly using the API implemeifite@ gen-
eral purpose object oriented programming language. We tlaosen C++
(Stroustrup, 2000) as the main programming language ugethéoimple-
mentation of the IC API. C++ is still one the most widely-uga@dgram-
ming languages, providing a good trade-off between the-lagél features
present and the performance that can be achieved with it.th&nampor-
tant factor is the availability of a large number of thirddydibraries allow-
ing the easier integration of existing static and dynamidefiing techniques
(Overmars, 1996; Cignoei al, 2008; McNeel and Associates, 2010; Lavoie,
2010; Junker, 2006).

A domain specific language (see section 4.3.1) can be usewvalp a
higher level description of the model, while a translatorf@ens the map-
ping from the DSL to the C++ IC API. This DSL can be implementisthg
ANTLR (Parr, 2007) for both the lexer and the parser. The gugan then
be a set of appropriately set-up IC data structures or amaaibSyntax tree
(AST) describing the IC-based model. An IC-based model ban be built
using this description. The evaluation of the AST could béqvened using
a simple stack-based virtual machine with additional mgnsborage. In-
stead of our own implementation of this VM, the Low Level izt Machine
(LLVM) infrastructure could be used (LLVM Developer Grou2)10). The
LLVM can help us significantly reduce the development timad @ improve
the performance through its run-time compilation to nativde (see section
4.6.8).

A special modelling environment is needed in order to predagowerful
way of working with the model. This environment should irddua way of
defining and refining a model on the fly, which assumes the atwvétly of
a discretisation and rendering engines reflecting thesstdtthe model over
time, along with an advanced scripting engine allowing therto modify the
model description (see figure 59). The process of model diefirand analy-
sis can be simplified using a set of visual metaphors reflentagpecialised
Graphical User Interface (GUI). The complete modellingienmment based
on the IC API is depicted in figure 60.
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Figure 59: The IC modelling work flow.
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Figure 60: Full structure of the modelling environment and basic tdols
IC modelling.
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4.6 The FRep API as a subset of the IC API

In the previous section we have described the IC API allowisigp perform
modelling using the dynamic IC framework. The dynamic IGfeavork in
its turn incorporates a number of the existing represemtatiThe framework
has to provide full support for the majority of the existirgpresentations in
order to allow the user enough flexibility for the definitiohdiverse hybrid
models. A full implementation of the framework requiresngigant human
and time resources. Thus, a full implementation of the fraork is outside
of the scope of this thesis. Here we specifically focus onrif@ementation
details relating to the definition of the underlying FRep migdncorporated
in a hybrid model. We have already mentioned that the FRepy&yapow-
erful representation in its own right, which is highly st for the defini-
tion of dynamic heterogeneous objects (see section 2.H8hce, support
of FReps in the IC framework significantly enriches the featset avail-
able for the definition of dynamic multi-dimensional hegeaeous objects.
Another important reason to pay particular attention toithplementation
of FRep components, within the IC framework is the absence @aimmon
FRep toolkit, which would allow us to take advantage of a#l gignificant
aspects of this representation. Unlike the case of BRep<artdin types
of PReps, there is only a limited set of tools available foepRnodelling.
These tools have been developed for a number of specificcapipls and
cannot be used outside of them. These FRep-related toodsreedesigned
for integration into other applications and cannot easéyplugged into an
IC framework. This effectively means that there is no commay to work
with FRep models outside of the set of existing tools (mortaiteare pro-
vided in section 4.6.1). In order to be able to define FRep iisadle need to
provide an FRep API allowing us to define Hypervolume objedigch can
be integrated into our hybrid model.

In this section we will describe the existing approaches Rep- model
definition. We then propose and describe our novel FRep ABWwaldg us
to work with FRep models within the IC framework or indepenitie We
present details regarding our design decisions, implestient details, case
studies and specifics of the integration of our FRep API iheIC API. Fi-
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nally, we describe an easy way of multilevel extensionsoohiced to the
FRep API together with possible performance improvemehth® FRep
model evaluation.

4.6.1 HyperFun

At the moment the main modelling tool used for the creatiofrRep mod-
els is a high-level programming language callégpberFun (Adzhievet al,
1999).HyperFun is a C-like language supporting a set of built-in FRep prim-
itives and operations. The available set of FRep entitiasbeaextended by
the introduction of new primitives and operations to theecBRep library.
Another way to extend the modelling system is to define newiesitusing
the HyperFun language. HyperFun is an interpreted language. It is thus
a platform independent language (obviously one needs teitethe inter-
preter itself for the target platform). The interpreter edso be integrated into
external applications if requiredHyperFun is a powerful language allowing
us to describe complex Hypervolume objects in multidimenal space. Un-
fortunately it has a number of drawbacks as well:

1. The interpreter is strongly tied to the part of the progthat constructs
the model tree. It is hard to create and manipulate an FRepeimod
without actually describing it in thelyperFun language. There is no
intermediate layer between the internal model representaind the
interpreter building this representation from the texwesgcription of
the model. Such an intermediate layer could allow thirdypapplica-
tions to create or modify the model in a unified way. This peobklso
complicates the process of FRep modelling.

2. As HyperFun is an interpreted language, it is relatively slow (Uhlir
and Skala, 2003), which is especially noticeable with caxphod-
els. Even though the textual model definition is parsed onlyecand
converted into custom byte code, evaluation of the FRep feage
quires this byte code to be executed a large number of timagctD
compilation of an FRep model to platform specific native codeld
significantly decrease the time needed for model evaluatias also
important to note thatlyperFun interprets each definition of the model
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irrespective of the results of previous evaluations. Irotiidgracking
the changes between different iterations of the workinggse with
the same model could be used to determine which parts of tleimo
require re-evaluation. Partial model evaluation is alswied for inter-
active modelling, so that the model is subsequently evatuahly in
the areas locally modified by the user.

3. HyperFun was designed to be a simple lightweight language. Users
are mostly working with functions, using a set of simple binlgeo-
metric primitives and operations. Each of these functisnsvaluated
for each point in the modelling space. Thus it is not posdibldefine
an object which would require a particular type of pre-pesteg that
only needs to be performed once. The definition of complexetsod
requiring non-trivial space transformations and intejeobrelations
forces the user to think of the model in terms of a constredtige. An
object-oriented approach on the other hand could hide sdrtieese
concepts and let the user work with the model at a higher lefvab-
straction. FRep entities could be manipulated through tbéification
of their properties and combined together creating newiestiAt the
same time, there could also be another intermediate layexckea the
model and the user allowing him/her to manipulate the mackel@aver
level.

4. TheHyperFun language can be used for multidimensional modelling.
The user can get access to an arbitrary number of “multimediar-
dinates, but FRep entities within the model do not have aocésed
property characterising their dimensionality. Moreovbe library of
FRep primitives is limited to only 3-dimensional objectshig over-
complicates the process of mixed dimensional modelling.

From the above enumeration of the most notable limitatidéyperFun
itis clear that we need a more general and extensible wapédfRep model
definition. We need to directly map all the existing formalegRconcepts to
a programming paradigm, so that every part of the FRep frarewaould be
available to the end-user, regardless of the applicatiea and the type of the
problem being addressed. We call such a programming frankeive FRep
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Application Programming Interface (FRep API).

4.6.2 Mapping FRep concepts to the FRep API

The basic structures in this section are defined in UML (Bo@004) and can
be implemented in various object-oriented programminglages. How-
ever, in this work we decided to use the C++ programming lagguor our
implementation, as was explained in section 4.5. C++ cantasnore easily
tied to other applications through the use of dynamic ligkimhis is impor-
tant both for the integration of the API and its on-the-flyengion. In that
way even FRep entities defined in a different programminguages can be
used together.

The mapping of all the FRep concepts to programming ternosvallis to
flexibly define FRep models in a unified way. Concrete FRep ihsomin be
built directly from a theoretical description. Such a cafgtcan be used by
a new interpreted language supporting the entire set of Féapres (both
existing and those that may be introduced in the future) stéoon interactive
FRep modeller or a third party modelling software packagelssawide range
of other applications that could benefit from the use of FRegels. Every
FRep entity (be it a primitive, an operation or a complex ob)jeeeds to be
directly mapped to the FRep API. We intend to allow the usenaémipulate
any entity in a unified way and also to have access to its cuptoperties.

The FRep entity

All concepts available in the FRep and Hypervolume modglthreoreti-
cal frameworks are mapped to a set of technical terms, irr ¢odgrovide a
transparent way of model definition using the API. We statfRep API de-
scription with the introduction of a base interface usedIbtha actual FRep
entities present in the model. The basic model definitionraadipulation is
done using FRep entities. These entities are inherenthtitums with a set of
additional properties and methods.

An ENTI TY_BASE_T is an interface reflecting all the properties common
to FRep entities (see fig. 61). Since all of the entities carepeesented as
functions, each entity has aval uat e method which retrieves a coordinate
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vector (input parameter) defined in the modelling spaceeggpropriate di-
mensionality, performs a custom function mapping (evadmt based on its
internal parameters and provided coordinates, and reitsiresult for a spec-
ified dimensionality (fig. 61). This method can have more tbae instance
allowing us to evaluate all possible intervals of functi@ues within certain
area using interval or affine methods (Jurebal. 1999; Florezt al.,, 2008;
Knoll et al, 2009; Fryazinowet al, 2010). This may be needed in order to
estimate the function values within provided region of €pac

PARANETER_TYPE

+getValues(): <onst T&
+setValue(value:const T&): PARAMETER TYFEG&
+getTypeld(): TYPE ID

PARAMS_TYPE

tatd;: ivectopr<DARAMETER TYDE™

ENTITY BASE T

+dimensionality: HIZE_TYEE
+internalParams: PARAMEI TYEE
+eoordinates: PARAME TYEE
tresults; PARAMD TYEPER

+ENTITY BASE_T(in inputParamsType: 3IZE_TYEE,
- T in resultParawmsType: SIZE TYFE)

+evaluate<RESULT_TYPE>(coordinates:const PARAMS TYPE): kool

+getParams () ¢ PARAMS TYPE
+getBounds () : BOUNDS
+oreate(): ENTITY EBASE T*

Figure 61: A simplified UML diagram of an FRep entity

All the important properties of an entity are stored in itsgmaeters. The
PARAVETER_TYPE is an important data type which allows us to manipu-
late values of different types in a uniform way. For instaribe radii of an
ellipsoid or the line segments of a convolution surface aastbred and ma-
nipulated in the same way. The user-defined data types camalarapped
around. The?PARAMETER_TYPE also allows us to distinguish between differ-
ent data types stored within it, which makes it possible tégoen robust run-
time type checks validating the data structures (i.e. queaesl type-safety)
and the connections established between them. Anotherriarnidactor re-
garding the exposed universal parameters is that they carsdmk within a
hybrid model. Parameters of entities defined in an FRep nuaaebe manip-
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Figure 62: The high-level overview of the types of FRep entities.

ulated and shared by entities specified in different reptasiens in a unified
way (see details of integration of the FRep API into our IC AfPkection
4.6.7). For instance, the line segments defining convalgiafaces can be
driven by the skeleton used for the animation of a polygohalacters. An-
other example could involve a non-linear fitting proceduvljch modifies
the weights of distinct convolution surfaces in order to echkhe resulting
FRep geometric object into a polygonal shape (see. detaisd). There is
also the possibility of coupling traditional computer aaiion techniques to
define the values of particular parameters over time. Thakes can sub-
sequently be interpolated using one of the existing intatpm techniques.
Alternatively values of these parameters can be defined imo@gdural man-
ner through the same unified interface. This complies wighrdguirements
for IC entities defined in a hybrid model.

Figure 61 only reflects the main characteristics of ENT| TY_BASE_T
class. Additionally, each entity provides a method for gl intersection
with a ray (if such method is available for this type of entitg method for
classification of the entities (see figures 62, 63 and 64) amesother func-
tionality required for flexible manipulation of FRep models

As explained in section 2.2.3, there are a number of fundsatigwliffer-
ent entity types available in FReps. We will a provide degorn of each of
these outlining their specifics.

The FRep primitives
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Figure 63: Types of primitives available in the FRep API.
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Figure 65: The difference between a primitive and an operation.

An FRep primitive simply returns the result of the functibmeapping as-
sociated with it. This result only depends on the values @frtkernal param-
eters of a particular primitive. These can be simple pararseif algebraic
surfaces (e.g. the radii of an ellipsoid or the dimensiona dbx) or sets
of parameters calculated by the primitive during a pre-essing step (e.g.
the coefficients used by interpolating implicit surfaceR)e list of available
primitives is shown in fig. 63.

The FRep operations

Unlike FRep primitives FRep operations required a set okeddpnt in-
put parameters, i.e. values of these parameters depenc oadhlt of the
evaluation of other FRep entities, be it primitives or opiers (see fig. 65).
An FRep operation initiates a request for the evaluatiorhefdntities it is
applied to (see fig. 66). An FRep operation does not depentietype of
FRep entity it works with, as it only needs to retrieve theuesl resulting
from the evaluation of the entity it is applied to. The cooates provided to
other evaluated entities can be modified. That is how affimwesformations
or non-linear space mappings are implemented.
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All the connections between the entities are done with the dlean ad-
ditional data structure described in detail later. Thisrapph allows us to
separate the concepts of the FRep entities and the comstr&®ep tree de-
scribing the model. An entity located at the root of a cortive tree implic-
itly initiates the evaluation of the whole tree when requmgsthe evaluation
of the entities that it works with. These entities in turnuest the evaluation
of the entities that they work with. This process is repeateil primitives
are requested to be evaluated. The list of available opasais shown in the
fig. 64.

Attributes

The combination of geometric objects and attributes alltvesuser to
construct Hypervolume objects. This is a crucial featuretie definition of
complex heterogeneous objects. Attribute objects can Hedatb the tree
just as any other regular FRep entity. After such integretiee FRep tree is
treated as a Hypervolume object. Evaluation of such an FReprésults in
a geometric object (a space partition) and a set of attrébasgsigned to it. A
brief list of the available entities working with attribgtes shown in fig. 64.

The FRep tree structure

It has already been mentioned that we aim to provide diftelerels of
model representation. This will allow us to work with the rebth terms
of geometric modelling, in order to create new geometrimives, and to
combine these using operations. Equally, there should b®ptaon to ma-
nipulate the model at a lower level in terms of the constwactiee and its
nodes. Constructive tree nodes are used to establish dmmebetween
the entities (se&NTI TY_NODE_T in fig. 67). The nodes are elements of
the entire tree structure. They also perform the validabiotmne connections
being established between entities and they ensure thatorapatible enti-
ties are not combined together. TENTI TY_FACTORY_T is used to create
the FRep entities registered in the API (more details argigeal in section
4.6.3). Additionally, the FRep tree can be easily modifiedtanfly through
the replacement of entities stored inside its nodes. Tmdeaused for quick
modification and parameterisation of the model.
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Figure 67: The FRep entity UML-diagram.



4. Dynamic ICs framework: technical aspects and tools 157

Once a tree structure has been validated, its actual ei@uzdn begin.
Evaluation of the tree is performed in two phases. Eachyeistiprovided
with the current coordinates of a point where the functioattribute values
need to be evaluated. In the first phase each entity modiesdbrdinates
of the point passed to it, if it is required to do so (see fig.. @3)e modified
coordinates are then passed to the entities contained ideadawvn the FRep
tree. This procedure is repeated recursively until a leg#thetree is reached.
At this point the second phase of the process is initiateel fige 69). Each
entity evaluates a value or a set of values associated vétsupplied pointin
space and other parameters. The evaluated results areahemittted to the
entity contained at the higher levels of the tree, until tha node is reached.
The result evaluated by the root node is considered to beethdtrof the
FRep tree evaluation.
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Figure 68: The first phase of the FRep tree evaluation.

The tree or sub-tree structure, which is built using nodesviges addi-
tional functionality allowing us to work with an FRep treehis functional-
ity includes searching for particular entities or entitpa, the modification
of the tree structure, tree manipulations (such as copyugiree replace-
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Figure 69: The second phase of the FRep tree evaluation.

ment and replications), the per-node application of uséindd algorithms
and other functions.

4.6.3 FRep API extensibility

The standard interface for an FRep entity described in fél@s unify the
whole set of currently available entities as well as any neasdhat could po-
tentially be added in the future. For any new entity we wikdé¢o implement
an interfaceENTI TY_BASE_T (see fig. 67). If this is done, any such new en-
tities can be used in an FRep tree as any other entity. Heraadidition of a
new FRep entity is pretty straightforward.

One of the important features we need to provide is the dynaneation
of concrete instances of FRep entities at run-time. It i® a&isportant to
be able to work with diverse entities in an abstract mannerthat we do
not need to access the source code of the implementatiore @ntity. This
mechanism can be implemented with the help of a design pdttaectory
method” (Gammaeet al, 1995). Each entity needs to be registered with a
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global factory object of typ&NTI TY_FACTORY_T. Registration means that
each entity has to provide its unique identifier, its intépsameter descrip-
tions and the method which can be used to create a new insiatids entity.
All the entities are later created through requests to tttefg object that only
needs the identifier of the entity being created. Furtherifitations of the
entity can be performed through changes to its parameteesah a unified
manner. This allows us to extend an existing set of FRepiestihrough
their dynamic registration with a global factory object.iFhan be done at
run-time allowing us to use the entities which were unknotwroanpile time
(in a way similar to plug-ins in some software packages). Matities devel-
oped by third parties can be added without any modificatioecompilation
of the core FRep source code. This conforms to the concepédith FRep
entity should be thought of as a black box with a common setifits and
outputs.

4.6.4 FRep model manipulation

One of the essential goals of the FRep API is to provide thewtk a soft-

ware framework which can be employed by a number of extepyaiations
depending on their specific needs (see fig. 70). It should ksilple to in-

tegrate the produced FRep models into a hybrid model defirivan 1C

framework or to use the resulting FRep models independenitig also im-
plies that there should be different ways to define the aéiap model using
the underlying features provided by the FRep API.

An FRep model could be created and manipulated directlygusihigh-
level programming language. On the other hand the funditgnarovided
by the API could also be exposed to a scripting language. wittréhe
user is given the ability to define a model at a higher level ludti@action
without the need to recompile the code in order to see thdtsestithe
model evaluation. Support for one of the widely-used striptanguages
can be provided in a relatively simple way. For instancegfihe registered
FRep entities can be exposed to Python (Python Softwaredabiom, 2009)
with the help of the Boost.Python library (Abrahams and GesKunstleve,
2009). It might be easier for users unfamiliar with highdegrogramming



4. Dynamic ICs framework: technical aspects and tools 160

languages to define FRep models using such a popular inteddenguage.
Another advantage of this approach is the fact that modidinatf the source
code written in Python does not require recompilation. ©bsly, compared
to compiled C++ code, poorer performance of the model etvialavill be
achieved. This is acceptable at the proof of concept staljernative script-
ing languages could be used including a custom domain spdaifguage
built around FReps. This could be a language similadyperFun or Hy-
perJazz(Adzhievet al., 1996).
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Figure 70: The interaction with the FRep API.

Another way to define an FRep model is to provide a user witlaplgcal
user interface (GUI). According to ‘Model-View-Controller” design pat-
tern (Gammaeet al,, 1995) (see fig. 71a) can be introduced to the model (in
this case the FRep model) via a controller (in this contestyai performing
the processing the user input and mapping it to calls of thepFERPI). The
current state of the model is reflected in a view. This can béJads spe-
cific textual information reflecting particular propertiesthe FRep model.
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This is the standard method of de-coupling the specific mddedain layer
from the presentation layer. The separation of respoiits#silbetween the
model between the view and the controller allows us to comatnon each
task independently and to change existing components artrtodiuce new
components to the system more easily.

A custom GUI built around an FRep API could be designed to idea
way to create and to manipulate the FRep model (fig. 71b). AgeiUl of
existing third party software packages could also be usedawipulate the
FRep model. In this case we need to provide an intermedigée tzetween
the FRep API and the specific API of the modelling applicati@wish to
extend. We provide a concrete example of the FRep API intiegranto
a third party modelling software package, namely Autogedaya™, in
section 5.7.

Different ways of FRep model manipulation are reflected inrigr70.
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Figure 71: A Model-View-Controller diagram: (a) The general design-pa
tern (b) The MVC and FRep API

4.6.5 The FRep model format interchange

The Function representation is a universal model repratentwhich can be
implemented in different programming languages. In specidses we might
wish to convert a particular FRep model from its internalresentation to an
FRep model described in an alternative fashion. This is mapb in order
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to allow the user to exchange FRep models between differedetting en-
vironments and available programming languages. This niiglbeneficial
from a performance point of view or it might be required fopaaific appli-
cation area. Thus, we need to provide a simple way that allmae store an
FRep model, which can then be mapped to the required repetisen

In order to achieve this we can borrow a technique from coenmdience
called serialisation. Serialisation is a technique usezbttvert a computing
object into a set of data, which can then be used to recongtre®riginal
object, so that the object can be stored into a storage meftiutater re-
trieval. The piece of program code that performs this Sedtibn is called
the serialiser. In our framework, the serialiser can be ghtof as the com-
ponent that is responsible for the serialisation of an abs&Rep entity. The
serialiser is aware of the particular type of an FRep entity itss parameters
and it provides the functionality that converts this infation to an appro-
priate representation (fig. 72). The serialiser manageevess information
concerning the internal connections between various FRé&pes and the
global properties of the model and maps this informationrt@ppropriate
representation.

ENTITY SERIALIZER BASE

tentityTID: ID TYER

+getlurrentEntity () : ENTITY BABSE T*
+setCurrentEntity(ENTITY_BASE_T*): hool
+getProlog(): bool

+getbeclaration{): hool
+getloordinates(): bool
+gethefinition(): hool

+getEpilogi(): hool

taddToStream({...): hool
+setCurrentdtream (OUT STREAM*)

SERIALIZER_MANAGER

teptitivTvpes: ENTITIES TVER
+serialize{rootNode: ENTITY NODE T*): hool
+registergerializer (newderializer:ENTITY SERIALIZER BASE*): kool

Figure 72: The entity serialiser.

A number of serialiser managers can be registered. Eachnsachger is
responsible for the conversion to a specific representatiaa important to
note that the FRep API itself has no information about otlossyble repre-
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sentations. It only provides a common way to get access tmfbemation
regarding the entities and the structure of the model, whicturn can be
converted into another representation by a set of concestalisers. The
serialisers are registered in a way similar to the entitystegtion. Each seri-
aliser is required to provide the unique type identifier okeatity that it can
serialise. During the process of the FRep model conversienmethods of
this serialiser will be invoked and it will be provided with antity which re-
quires conversion. A set of serialisers and serialise mansagan be extended
at any time to support the ability to export a descriptionhef ERep models
to other specific representations.

One interesting application of run-time FRep model sesaion is related
to model compilation. The description of an FRep model caexXported to
one of the languages allowing compilation of the code to adyinally linked
library. In this instance the entire model can be serialeed compiled for
efficient evaluation. The compiled model can then be regidtas a single
FRep entity at run-time and be used in the FRep model instead@mplex
constructive tree. In some cases this could lead to a pesiocmboost, since
an advanced compiler would produce native code which isyigbtimised
for a specific target platform. Fig. 70 illustrates this idea

The serialisation approach is also a natural way to conkerirtternal rep-
resentation of FRep models to hardware specific descritiéor instance, a
constructive tree consisting of FRep primitives and openatcan be directly
converted to a programmable hardware shader that can béoysexdorm fast
ray-tracing on the GPU (Fryazinov and Pasko, 2008). Sucheersion and
shader compilation can happen on the fly, which would alloswtber to see
the model he or she is working on in real-time (or near-reaetdepending
on the model complexity).

We also need a unified way of model representation in ordetldav a
various applications to exchange the produced models. Shusid be a
lightweight format, which can easily be loaded and saved preferable to
take advantage of a human readable format, to allow the us&ke manual
modifications of the model. We have chosen the Extensiblekiat.an-
guage (XML) (W3C, 2010) as our main format for FRep modelrichange.
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This is a widespread format which can be used for storagebitiary data.
Working with XML can be done using a large set of librariesikde for
different programming languages and hardware platforms.FRep tree is
saved in a hierarchical structure. Parameters of the esitite saved as XML-
attributes of different data types. An exemplar FRep moddlits serialised
definition are shown in fig. 73.

<?xml version="1.0" 2>
<Parameters minX="-10.0" min¥="-10.0" minZ="-10.0" max¥="10.0" max¥="10.0" maxZ="10.0"
resolution¥="30.0" resolution¥="30.0" resolutionZ="30.0" T="0.0" />
«<FRepModel Name="gatherNodel">
«<Blend Name="blendNodel" type="Union" A0="0.2" Al="1.0" A2="1.0">
«<CSG Name="csgNodel" type="Difference">
<Transform HName="transformNodel" mode="0" transX="-2.7" trans¥="-0.0" transZ="0.0"
angleX="0.0" angleY="-0.0" angleZ="0.0" scaleX="1.0" scale¥Y="1.0" scaleZ="1.0">
<S5phere Name="sphereNodel" centerX="0.0" center¥="-0.0" centerZ="0.0"
radiusX="4.07" radiusY="4.07" radiusZ="4.07" />
</Transform>
<Transform Name="transformNode3" mode="0" trans¥="-2.8" trans¥="-0.0" transZ="0.0"
angleX¥="0.0" angle¥Y="-0.0" angleZ="0.0" scaleX="1.0" s5cale¥="1.0" scaleZ="1.0">
«Cylinder Name="cylinderNodel" direction="2" radiusX="1.,9" radius¥="1.9" height="17.0" />
</Transform>
</C5G>
«<Transform Name="transformNode2" mode="0" transX="3.3" trans¥Y="-0.0" transZ="0.0"
angleX="0.0" angle¥Y="-0.0" angleZ="0.0" scaleX="3.7" scale¥="3.7" scaleZ="3.7">
<Torus Name="torusNodel" direction="Z" centerX="0.0" center¥="-0.0" centerZ="0.0"
radiusBigX="1.0" radiusBig¥="1.0" radiunsBigZ="1.0"
radiusSmallX="0.2" radiusSmall¥Y="0.2" radiusSmallZ="0.2" />
</Transform>
</Blend>
</FRepModel>

Figure 73: The FRep entity and its XML definition.

FRep models saved in FRep XML format can be directly loadethby
dynamic IC framework through the IC API. Such integratiorf-Bfep models
into an IC API simplifies the way of handling the F-cells witlthe IC frame-
work and makes the process of integration of FReps into dadhyiwdel rather
trivial.
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4.6.6 The FRep library

In section 4.6.3 we described the requirements for the sidarof the FRep
API. This is a straightforward process, which requires anbasic knowledge
of the FRep API. Apart from adding the entities to the API weah® provide

a way for them to be serialised in order to be able to save astdreethe

state of the FRep model (see section 4.6.5). Certain typastimin required
the addition of the FRep entities to the API and their ses@&ion could be
automated, thus allowing us to avoid repetitive work. Irs thection we will

describe the approach that allows us to achieve this.

One of the essential goals of the FRep API is to provide the wih a
software framework which can be employed by a number of patepplica-
tions depending on their specific needs (see fig. 70). The apgilication we
are concerned with is the dynamic IC framework. But we neezbtwider a
way of simplifying the integration of the FRep API into otregplications as
well. The main and most common way of communication betwbkerFRep
API and higher-level applications using FReps is throughghrameters of
the FRep entities and through the creation of complex FRegstcontain-
ing the aforementioned entities. As was mentioned befozeetis often a
necessity for the presence of an intermediate level of tipdicgtion, which
performs the mapping of the FRep entities to applicatiocifippeerms. Here
we propose an approach which allows us to simplify the pmoéaterme-
diate layer generation.

Each entity encapsulates a predefined set of its chardtgsieperties
which includé®:

1. Internal parameters. These parameters are a primary way of manip-
ulating the entity and adjusting the resulting shape or dsimetric
attributes.

2. A set of input parameters Input parameters are required by FRep
operations in order to combine the function values of theraues.
This parameter set is empty for FRep primitives.

®Each parameter and procedure may have its counterparteedor the evaluation of
function interval. Functions performing interval evaioatmay be specialised depending on
the interval estimation method or the specific mathematisadtions being used.



4. Dynamic ICs framework: technical aspects and tools 166

3. A set of temporary parameters Temporary parameters are normally
those that depend on the internal parameters and need tebaltated
only when the internal parameters they depend upon are reddifi

4. The main evaluation procedure In this procedure the resulting func-
tion value is evaluated. Each FRep entity provides this gutace in
order to perform a mapping of the coordinates from the moudgtio-
main to a scalar or a vector value.

5. The coordinate modification procedure This procedure performs
the space-mapping. This is required for the first phase of Rep tree
evaluation (see fig. 68).

6. The operand-dependent coordinate modification procedure This
procedure is similar to previous one. The main differendadgptem
is the fact that this procedure needs a value provided bypiesamd(s)
in order to modify the coordinates of a point (for instancemay be
used for shape-driven deformations (Schreital., 2003)).

7. The temporary parameters evaluation procedure A procedure de-
scribing how temporary parameters should be evaluated.

This description can be provided in a human readable formiigh is
then parsed and transformed into an Abstract Syntax Tre&)ASeven into
an Abstract Semantic Graph (ASG). Having a valid descniptibthe entity
in this format, we can produce the code necessary for thecimgahtation of
FRep API for different software and hardware platforms. ideo to do so,
we need to provide a specific translator which traverses $iE @nd converts
it into the desired format. Figure 74 illustrates how eastior the C++ FRep
API can be added. This is useful for the initial code generatrhere a certain
amount of manual work is required. But more importantlys implifies the
maintenance of the APIs across different platforms engutiat they are all
consistent. Otherwise any modification introduced to arytyerequires a
careful manual update of all the code-base.

Apart from reducing the burden of the manual work requireeéh FRep
entity, we also simplify the maintenance of third party agations over time.
As we mentioned in section 4.6.4, an intermediate layergaired to bridge
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Entity description
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Generic translator
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FRep AST

Serialization(s)

l code generation
API FRep API C++ High-level API
registration translator code generation

APl parameter Test code Low-level API
description code generation

generation

Figure 74: The generation of the FRep API related components from atyent
description.

the gap between the FRep API and the third party applicafibis bridging
process can in fact be rather tedious and time-consumings applies to
situations where new entities are added or where existitigesnare modi-
fied in any way’. To simplify the integration process an application specifi
translator needs to be created. This translator does nessadly need to
generate the code for the actual implementation of the FRé&pes, if the
application can rely on the FRep API in existence for a palaicplatform.
The translator could take advantage of the aforementiomsdritions in
order to generate the necessary intermediate code redairgte smooth in-
tegration of the FRep functionality. For instance, to reffEmrameters of the
entities and to retrieve or modify states of the entitiesgsipplication spe-
cific methods (see fig. 75). This way the FRep API could be natiegl in a
number of applications in a relatively easy way, throughteo$éranslators
aware of the application specific needs (see fig. 76). Any fioadiion in the
description of any entity would be automatically reflectedll the dependent

This may be required when new features are added to existitities, in order to re-
solve discovered issues or in other situations that we nmghbe aware of at the time of
implementation.
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applications through an automated translation process.Wdwy, keeping all
the applications in sync with the up-to-date state of thed=REI should be
rather straightforward.

FRep AST

\ 4

Intermediate

translator
Serialization
Ul Application
specific

Figure 75: The generation of application specific code required forittie-
gration of FReps.

OpenCL CUDA Scripting language
translator translator translator

C++ FRep API LLVM
translator ‘ FRep AST » translator
Maya Other

translator translators

Figure 76: A set of application and platform specific translators.

4.6.7 Integration of FReps into the IC framework

It is important to provide the users with the appropriatdgeequired for the
definition of an FRep model which can be integrated into aikyiodel. De-
pending on the specific needs of the users a different set delnag tools
may be more suitable for the definition of the actual FRep rhddes result-
ing model can be exported from any of these applicationsgusinommon
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Figure 77: The integration of the FRep entities into the IC API.

storage format (see section 4.6.5). The exported FRep nuatethen be
integrated into a hybrid model as an F-cell or its attribusésce the IC API
relies on the FRep API to provide the functionality requif@chandling these
models. IC entities represented by FRep cells or attribcd@sexpose these
parameters and subtrees to the hybrid model, making it lples& change
their state using the same set of tools as for any other 1Q@ygsiee figure
77), provided that the parameters and other propertieseoiGicells can be
used for the evaluation of the shape or of the mapping defiped -Rep en-
tity contained in a an F-cell. In this case the resolutionlidh@ dependencies
and dynamic modification of the properties of the F-cellsmdormed in the
same way as for all other IC entities (see figure 78). The disation engine
allows us to provide a polyhedral representation of anylFaserequired by
the IC framework.

The flexibility of the FRep API allows us to work with standa&function
representation models and to easily integrate them int@@nhybrid mod-
els. F-cells and attributes integrated into our dynamicrb@iiework greatly
enhance our ability to model time-variant multi-dimensibheterogeneous
objects.
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Figure 78: The evaluation of the F-cell within the IC framework.

4.6.8 Performance

One of the most significant shortcomings of FRep models is toenputa-
tionally expensive model evaluation procedure. Here wediscuss a num-
ber of ways to alleviate this problem.

LLVM compilation

We have already outlined a number of advantages of the FRé/APh
allows us to flexibly define mixed-dimensional models of wagycomplexity.
But the flexibility of the API also results in an abstracticenglty, i.e. when
we compose complex models and have the ability to modify therthe fly,
we establish and set up a set of internal structures whicth toelee traversed
at run-time. The discretisation system then has to traviesse structures
and to perform heavy computations. Once these structueesedrup, we
can convert them to a more efficient representation thatigeesws with less
flexibility but can be evaluated faster. Building a singlermalithic FRep
function could help us greatly enhance performance. Thseadone using
the approach described in section 4.6.6. Figure 76 illtetrthe possible
conversion of an FRep AST to a program defined in terms of LL\NEb
code. The LLVM definition of the entities can then be conwttethe native
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code of various hardware platforms taking into consideratheir specifics
and using them for the optimisations. Target platforms @antlude both
CPUs and GPUs.

Parallel execution

FRep models are well suited for parallel evaluation. The eflody space
can be divided into a number of non-intersecting subsetsh Bathe subsets
can thereafter be evaluated independently. FRep enttbes some specific
data needed during the tree traversal procedure (for iostdme modified co-
ordinates of a point in modelling space are propagated dberee). If we
wish to evaluate these entities in different threads, siollis might occur, that
will lead to invalid results of the model evaluation. It isihpreferable to pro-
vide each thread with a separate copy of the same FRep tregento avoid
multi-threading issues. Parallel evaluation of the model loe performed on
one machine. Another possible way to evaluate a model isrteecbit to a
hardware specific representation and to employ one of ttatiegiGeneral-
Purpose computations on the GPU (GPGPU) methods. We camteékpo
internal model representation to an NVIDIA CUDA kernel (NDJA, 2010),
which would subsequently be compiled directly into GPU veatiode rely-
ing on the CUDA FRep library. This CUDA-specific FRep librazgn be
generated using our generic approach described in seco®. 4The ker-
nel produced after export would be executed on hundreds &f SRUs in
parallel. Two approaches could be used:

1. The application could export the model that could be @sed and
translated into specialised data sets and CUDA kernels;hwdnie ex-
ecuted on the GPU. This can be easily implemented throughsa cu
tom serialiser as described in 4.6.5. This serialiser gitrplerses the
FRep tree and exports it as a set of calls to FRep library impided
through CUDA. We have provided a more detailed descriptiothe
application of this approach in (Pask&bal., 2010).

2. The application could generate input data sets (parasetentities),
which could be fed as input data to an existing generic keiftak ker-
nel would traverse the constructive tree, calling appadprfunctions
with parameters extracted from the provided data. Thisccbelless
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efficient compared to the former approach in terms of exeauime
and memory usage, but a description of relatively complexsmted
models could still fit in shared memory or be cached in redg-m@em-
ory.

Further research is needed to determine which of these oheibdest
suited for particular situations. However it is alreadyacléhat the compact
representation of FRep models is also well suited for execwdn a GPU,
which has a limited amount of shared memory available fohd&cnel. Re-
sults of the model evaluation on the GPU can be fed back to RAMsed
to render the model on the GPU (see 4.6.8). Alternativelye¥aluation of
complex FRep models can be distributed across differenpatens on a net-
work. In such a case the “server” would store the initial FRepdel and
would send its description to a number of “client” machin&be “clients”
would evaluate parts of the model and send the results batlettserver”,
which in turn would arrange all the retrieved results togetimd return them
to the user. If all the “clients” are ran on the same operasiygtem, the
“server” could send a compiled dynamically-linked librasgntaining the
model, which is compiled into native code, instead of a matbscription.
In this case, the entity stored in the dynamic library cowdddyistered by all
the “clients” and evaluated as any other generic entity.

Tree pruning

Complex FRep models are represented by constructive tfesggnificant
depth. This means that the evaluation of such models is ctanpoally
expensive. It is apparent that for some of the models the nibajof the
FRep entities do not intersect. Distinct entities occupgcr subsets of
the modelling space but do not exert any influence in dis&gibns of this
space (i.e. a scalar field produced by such an entity doesontilaute to the
regions outside the specific bounding volume of such an@niitee pruning
(Fox et al,, 2001) is a method that lets us “simplify” constructive sder
particular subsets of the modelling space. Tree pruningcceate a set of
FRep trees characterised by a lesser depth compared tecethddscribing
the entire model. Each tree approximates the model for angiubset of the
modelling space. If we wish to exploit this approach, eacleg-Bntity is
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required to provide a method allowing us to determine itsnoing volume.
The calculation of the bounding volume is simple for a numbfeknown
primitives but can be a complex task for non-trivial opeyasi (such as for
blending or for non-linear deformations). Thus, furthesearch in this area
is required. This technique might be especially useful fumplex models
such as those of virtual environments where the user is ghefreedom to
move around and to modify the model of the scene.

Discretisation optimisations

Discretisation of the model can be performed using one ofettisting
polygonisation methods (Lorensen and Cline, 1987; Bloahe#n1994; Hilton
and Stoddart, 1996). Polygonisation allows us to retrieymlgggonal ap-
proximation of a particular iso-level of an FRep model. Thelgy of the
resulting approximation depends on the size of the steperhfs the dis-
cretisation. Standard techniques used to control thetguelthe model ap-
proximation, based on some heuristic (Clark, 1976), cao bésemployed
for an FRep model. For instance, a geometric object locatdide subset of
space within a given proximity to the viewer needs to be axiprated with
a higher precision than an object located further away frioenviewer. Such
view-dependent techniques can significantly decreasevtiaation time re-
quired to visualise an FRep model (Kazalaial., 2001). Special care needs
to be taken at the boundaries of the regions discretized dviterent pre-
cision, otherwise cracks between such regions may appedditiénal op-
timisations can be introduced when polygonising dynamief-Riodels, in
which case we need to track changes to the model that have pé&ee af-
ter the previous polygonisation stage. This implies thaneed to track the
transformations applied to all the entities over time angddorm a partial
polygonisation of the regions affected by these changethdmore general
case, re-polygonisation only needs to be performed in tbrimity of the
areas where the surface was tracked in previous framestiéwlali attention
must be paid to the objects appearing in the scene at spemficemts in
time. A higher frame-rate during the visualisation of a dpi@aFRep model
can be achieved if the polygonisation is not performed fahdsame. Iso-
surfaces can be extracted at predefined moments in timedelg.on each
third or fourth frame). In such a situation, the intermeeligisual represen-
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tation of the model can be constructed through traditiohg@iablending of
iso-surfaces extracted at adjacent moments in time. In asg,cemploy-
ing time-coherence for dynamic models can lead to a signifijgerformance
boost. If only static models are present in the environmenapolygonisation
only needs to be performed in the areas of local change in¢ext by the
user.

Direct rendering

Polygonisation is not the only method available for the almation of
FRep models. Real-time or near real-time ray casting of thdehcan be
performed on the GPU (Fryazinov and Pasko, 2008). This regjtine con-
version of an FRep model to a hardware specific represent@somentioned
in 4.6.5). The FRep API provides a relatively easy way togrenfa conver-
sion from the internal representation to one of the exissimading languages
or to a set of CUDA kernels (see 4.6.8). This means that ngt @sipecific
iso-level of the model can be rendered but also a full-blovat&olume ren-
dering technique can be utilised. Another option would leavibxelisation of
the model in the camera frustum.

4.7 Conclusions

In this chapter we have presented a detailed descriptidreofriplementation
aspects of the new dynamic IC framework. A set of componesristguting

the framework were defined and described in detail. We hae @nsid-
ered issues related to the evaluation of a dynamic hybridetm@dong with

all the aforementioned aspects of the IC framework we hatrednced a
high-level notation, which can be used for the definition cual IC-based
models. Using this notation the user can provide a detaig=stription of
the model and request its evaluation using the IC framewdfl.have paid
particular attention to the FRep components of the IC fraortkvbecause
of the high importance of this representation for the dediniof heteroge-
neous objects and because of the limitations of the exisbiolg required for
FRep modelling. We proposed a methodology for the definidba multi-

platform software framework for FRep modelling, which canimplemented
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in a number of ways. We described our implementation of thedRPI,
thus making FRep more accessible to a wider group of userspraveded
an overview of the methods which can be used for the accelerat the
evaluation of the aforementioned models. Apart from thennalscription
of our newly developed software tools we have outlined gbssdirections
for future developments. The provided description of thdriEnework and

its FRep components should be sufficient for further impletagon and im-
provements.

In the next chapter we will provide a set of detailed caseistudThese
case studies demonstrate how the proposed dynamic IC frarkesn be
used in a number of different applications in order to solwefof existing
problems.
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5 Applications and results

In this chapter, we describe a number of applications of topgsed mod-
elling framework and discuss some results. The problemgrndidcussion
are formulated in terms of dynamic hybrid models, whichwafiais to take
advantage of the expressiveness and power of the IC frarkeW outline
a set of improvements proposed for space-time blendingngelyn multidi-
mensional dynamic models in section 5.3. Next we introducenew method
for the modelling of interactions between dynamic objeaid ascous mate-
rials using time-dependent hybrid models (see section B/é)also describe
the extensions to this approach which allow us to solve a mummiother ex-
isting problems, including partial metamorphosis of artedacharacters and
the controlled metamorphosis of dynamic meshes presentsdction 5.5.
Then we present an application involving a complex intéoactequence be-
tween a set of interdependent time-variant heterogenealisdimensional
objects within one hybrid model (see section 5.6). Finallg,describe our
prototype implementation of an interactive modelling systn section 5.7.
This system can be used for the definition of dynamic hetereges objects
and certain parts of a hybrid model. In addition, we desdnbetail practi-
cal methods that can be employed to accelerate model eiadwanhploying
both the CPU and the GPU.

Overall, we demonstrate that heterogeneous object mngétla powerful
way of overcoming a set of existing problems, some of whidh raext to
impossible to solve using other existing methods.

5.1 An introductory 2D dynamic IC model exemplar

We start with a simple example before proceeding to more rambehprob-
lems. This example will help demonstrate what is involved@merating a
detailed and complete description of even a very simpleitlylbodel. For
this example we will produce a full model definition as ddsed in previous
chapters.

The simple model consists of two geometric entities: a dnskarectangle
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(see fig. 79).
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Figure 79: A set of cells present in the IC.

The disk LHKF moves over time. According to the definition bétcell
in section 3.2, we need to provide a set of parameters vaheealefine the
way these parameters will change over time. The translateorsformation
of the diskL H K F' is defined by the set of parameters:

prixr(t) =1’ pp + VorrE -t

wherep?; ,; x - is the initial position of the centre of the disk (which is defil
usingM;(t)) andv, yk r is the velocity of the disk® (see fig. 80). In this
example we assume that the rectanglE Q.S is a static cell with its centre

at the point° ;,;-(i.€. itsM;(t) is constant over time). The shape, of the
rectangleDEQS is defined using an FRep (see section 2.2.3), while disk
LHKF is defined using a BRep (see section 2.1.2). In this simpleanoe
integrate two objects expressed in two different repredemts.

We provide a textual definition of this dynamic IC model usthg nota-
tion introduced in sections 4.3.1 and 4.3.2. According torttethodological
recommendations introduced in section 4.3, we start oucrge®n of the

model with the definition of the cells contained withirtdt
/1 description of persistent cells

CELLS {

DEQS {
type = B- CELL,;
/'l use one of the library objects setting up appropriate paraneters

8The velocity could also be defined as a set of control poindstiame values. In general
we need to provide a number of different ways for defining thagformations and all other
parameters.

%No custom events will be used for the definition of this simpledel.



5. Applications and results 178

Q E Q E
K K
0* F HE=»| o F H
Poros Prros
L L
) D &) D
Q E
Proros
S

Figure 80: The motion of the disk defined over time.

shape = library::rectangle(...);
dim= 2D
domain = {...};
/1 we will only be using built-in transforns, thus no additional
/'l paraneters will be defined
paraneters {
translation(...); // define initial translation

}
} /1 DEGS

LHKF {
type = F- CELL;
/1 load the description of the FRep tree (XM., HyperFun etc)
shape = frep::loadTree(...);
dim= 2D
domain = {...};
/1l custom paraneters of the cell
paraneters {
translation(...); // define initial position
velocity : REAL3(...); // how fast the object is noving

}
/'l reactions to certain events:
REACTI ONS {
/1 define sinple notion over tine:
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
/1 update position:
translate.relative = global T = velocity;
}
}
} 11 LHKF
} /1 CELLS

In order to gain a better understanding of the entire modehesd to



5. Applications and results 179

introduce additional parameters for the definition of thexpeetric state of the
dynamic IC model (see section 3.7). In this example we wil aparameter
reflecting the state of the IC:

STATE_PARAMVETERS {

/1 paraneter reflecting whether the cells have intersected
islntersection : BOOL( false );

The value of the parameter is set by the active IC instance.

From figure 80 we can see that the model has at least five diffstric-
tural states or IC instancé8 (see section 3.7). Each structural state is re-
flected by an IC instance. For simplicity we only provide dggmons of
the first three IC instances. The last two IC instances areetefrom the
previous IC instances through the addition of the contamtrmadations.

To start with, we define an IC template that is equivalent ®itiitial IC
instance (fig. 81). This is done using the syntax describestations 4.3.1
and 4.3.2.

polyline circle polyline circle
1Dcells | DEQS LHKF DEQS LHKF 11D cells
B-cell F-cell B-cell F-cell
rectangle disk rectangle disk
2Dcells | DEQS LHKF DEQS LHKF | 2D cells
B-cell F-cell B-cell F-cell
\ J \ J
Y Y
Boundary relations Containment relations
Figure 81: The topological relations of the IC.
KL {
/1 references to a set of previously described cells
CELLS {
/'l copy all the cells froma tenplate IC
USE | NI TI AL_.TEMPLATE. CELLS;
}

/'l references to a set of previously described cells

2The last two states are similar to the first two, excluding aleitional containment
relations.
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RELATI ONS {
/1 we will use inplicit relations fromthe cells
/1 no additional relations will be required
}
/'l events processed by the instance
REACTI ONS {
/1 none at this stage
}
/1 predicate used to find out if the instance is still valid:
PREDI CATE {
bool eval uate( REAL global T, REAL |ocal T, REAL dt)
{
/1 try finding the intersection between the disk
/1 and the rectangle
BOCL islntersection = DEQS. donai n.islntersection(
LHKF. shape. gl obal ) ;
return !islntersection;
}
}
} 11 Kl

The second instance of the IC (K2) is shown in fig. 82.

point
F
Tocell 0D cells
Q E
K
e H polyline circle
L DEQS LHKF 1D cells
B-cell F_cell
S D b 3
rectangle disk
DEQS LHKF 2D cells
B-cell F-cell
\ J
Y
Boundary relations

Figure 82: The second IC instance.

In this IC instance a new T-ceH is introduced:
F_point {
type = T- CELL,;
dim= 0D
domain = {...};
/] the translation of this cell can be deternmined only after
//the intersection test, this will be done in the instance

The second IC instance is defined as follows:
K2 {
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/1 references to a set of previously described cells
CELLS {
/'l copy all the cells froma tenplate IC
USE | NI TI AL_.TEMPLATE. CELLS
F_poi nt;
}
/'l events processed by the instance:
REACTI ONS {
/'l update position of the T-cell (Post suffix as we want it
/1 to be issued after all the cells have been updated)
updat ePost ( REAL global T, REAL local T, REAL |ifeT, REAL dt)
{
/1 try finding the intersection between the disk
/1 and the rectangle
I NTERSECTI ONLI NFO i nfo = DEQS. donai n. i nt er sect (LHKF. shape. gl obal ) ;
/1 only one intersection point exists

if (info.intersectPoints.size == 1) {
/1 set position of the T-cell using intersection info.
Fpoint.translation = info.intersectionPoint(0);
i slntersection = true;
} else {
islntersection = fal se;
}
}
}
/1 predicate used to find out if the instance is still valid:
PREDI CATE {
bool eval uate( REAL global T, REAL |ocal T, REAL dt)
{
return !islntersection;
}
}
}Y I K2

The third IC instance (K3) is shown in fig. 83.

KFL_hal f di sk {
type = T- CELL,;
dim= 2D
domain = {...};
//the shape of this cell can be determined only after the
/] intersection test, this will be done in the instance

}
KFL.arc {
type = T- CELL;
dim= 1D
domain = {...};
/1 the shape of this cell can be determined only after the
// intersection test, this will be done in the instance
}

KL_segment {
type = T- CELL,;
dim= 1D
domain = {...}
/'l the shape of this cell can be determined only after the
/] intersection test, this will be done in the instance
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point point
K L
T-cell T-cell
Q E ES I r
K | |
F H polyline circle arc segment
L DEQS LHKF KFL KL
B-cell F-cell T-cell Tcell
S D t j
rectangle disk half-disk
DEQS LHKF KFL
B-cell F-cell Tcell
t )
I
Boundary relations

Figure 83: The third IC instance.

K_poi nt {
type = T- CELL,;
dim= 0D;

domain = {...};
/] the translation of this cell can be deternmined only after

/1 the intersection test, this will be done in the instance
}
L_point {

type = T- CELL;

dim= 0D;

domain = {...}

/1 the translation of this cell can be determ ned only after

/1l the intersection test, this will be done in the instance
}

Next comes the definition of this IC instance:

K3 {
/1 references to a set of earlier described cells
CELLS {
/1 copy all the cells froma tenplate conpl ex
USE | NI TI AL_.TEMPLATE. CELLS;
KFL_hal f _.di sk KLF_arc KL_segnment Kpoint L_point;
}
/'l events processed by the instance:
REACTI ONS {
/| update position/shape of T-cells (Post suffix as we want
/1 it to be issued after all the cells have been updat ed)
updat ePost ( REAL global T, REAL local T, REAL |ifeT, REAL dt)
{
/1 try finding the intersection between the disk and
/'l the rectangle
I NTERSECTI ONLI NFO i nf o = DEQS. det er mi ned. i nt er sect (
LHKF. shape. gl obal
)
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/1 only two intersection points exist
if (info.intersectPoints.size == 2) {
/'l set position of the T-cell using intersection info.
Kpoint.translation = info.intersectionPoint(0);
Lpoint.translation = info.intersectionPoint(1);
/1 find local centre of the intersection
VECTOR2 center = (Kpoint.translation +
L_point.translation) / 2.0;
/1 now define | ocal shape of the segnent using
/1 two points:
KL_segnent . shape = SEGVENT( Kpoint.translation - center,
L_point.translation - center);
/'l now do the global translation of the cells:
KL_segnent.transl ati on = center;
/1 the center of arc/disk will be in the center of disk
KFLarc.transl ati on = LHKF. center;
KFL_hal f di sk.transl ati on = LHKF. center;
/1 define the arc using radius and two points on it
KFL_ar c. shape = ARC( Kpoint.translation - center,
L_point.translation - center,
LHKF. scal e) ;
/1 now do the global translation of the cell:
KFL_hal f _di sk. shape = ARC( Kpoint.translation - center,
L_point.translation - center,

LHKF. scal e) ;
islntersection = true;
} else {
islntersection = fal se;
}
}
}
/1 predicate used to find out if the instance is still valid:
PREDI CATE {
bool eval uate( REAL gl obal T, REAL |ocal T, REAL dt)
{ return !islntersection;
}
}
} /1 K3

The dynamic IC for this model over its limited life span is defil as (see
fig 84):
K (t5); PEy(t5(1) = true
K(t) = ¢ Ky(t52); PE2(t52(¢)) = true
K3(t53); PEs(t53 (1)) = true

The above example demonstrated a simple time-dependent mybdel.
This model incorporates cells expressed in different isgr&ations. The state
of one of the cells changes over time. Changes of the stalcitate of the
model are also reflected in the description of the model giina@number of
IC instances.
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Figure 84: A dynamic IC over time (here the time parameter of the IC is its
local time).

In this example we have presented a detailed descriptiof thfealC in-
stances depending on the mutual positions of the cells. di) fee do not
have to provide a description of a new IC instance for evewnyctiral state
of the IC, if it is not considered to be relevant. Certain togacal relations
could become invalid over the course of the modelling prechbst if these
relations are not considered crucial for this particuladeidhe user does not
have to describe them with a distinct IC instance (see se8ti).

5.2 An exemplar of a 2D dynamic IC model with depen-
dencies

In this example (see fig. 85) we present a model similar to tieedescribed
in the previous section. The main difference here is theothiction of a
simple dependency relation (a special case of a hieratathégendency, in-
troduced in section 3.5) between two cells (see fig. 86). Hoplgity we
may think of this model as consisting of two cells with theications chang-
ing simultaneously.

point point
o] M
Q E o P-cell P-cell 0D cells
F H polyline circle segment
DEQS LHKF oM 1D cell
M B-cell F-cell P-cell cells
S D T T
rectangle disk segment rectangle disk
DEQS LHKF OM DEQS LHKF
Brcell Feell Pcell Bcell Fcell 2D cells

Figure 85: The cells and relations of the dynamic IC.
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Figure 86: The cells and the dependency relations between them.

In this case we use an externally defined animation curve tifgnthe
position of one of the cells instead of doing so with a procetty defined
motion. We start by describing some basic cells presen&mtbdel:

DEQS {
type = B- CELL,;
/1 use one of the library objects setting up appropriate paraneters
shape = library::rectangle(...);
dim= 2D,
domain = {...};
/1 we will only be using built-in transforns, thus no additiona
/1 paraneters will be defined
paraneters {
translation(...); // define initial translation
}

} /1 DEQS
LHKF {
type = F-CELL;
/1 load the description of the FRep tree (XM, HyperFun etc)
shape = frep::loadTree(...);
dim= 2D
domain = {...};
/'l custom paraneters of the cell
paraneters {
translation(...); // define the initial position
}

REACTI ONS {
/1 no reactions are defined for this cell
}

} 11 LHKF
oM {
type = P-CELL;
shape = segnment(...);
dim= 1D
domain = {...};
REACTI ONS {
/1 update the shape using the predefined ani mation
update( REAL global T, REAL local T, REAL lifeT, REAL dt)
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/1 use the externally defined animation to retrieve
/'l current position of the segnment
translation.relative =
ani mati ons( "ani mCurvel" ).parans(localT) );
}
}

Y11 oM

Next we define the IC template used for the subsequent désarigf the
IC model:

// describe the initial instance, when there are not additi onal
/1 relations between the cells
I NI TI AL_.TEMPLATE : TEMPLATE.l C {
/'l references to a set of previously described cells
CELLS {
DEQS LHKF OM // reference to i ndependent cells
}
/1 a set of relations between the cells/paraneters referenced in
/1 the CELLS section
RELATI ONS {
/'l the list of containment relations (will use inplicit relations
/1 fromthe definitions of DEQS, LHKF and OV
cont ai nment {

}

/1 the list of boundary relations (will use inplicit relations
/1 fromthe definitions of DEQS, LHKF and OV

boundary {

}

/1 list of dependency relations
dependency {

OM LHKF HI ERARCHI CAL LI NE_DI SK;
}

} /1 RELATI ONS
} /1 INITI AL_TEMPLATE

The following state parameters are used to reflect the staibe onodel:

STATE_PARAMETERS {

i sLineRectIntersection : BOOL( false );
i sDi skRectIntersection : BOOL( false);

The first IC instance (fig. 87) is now defined as:

/1 use all the components of the tenplate

K1 : I NI TI AL.TEMPLATE {
/1 predicate used to find out if the instance is still valid:
PREDI CATE {
bool eval uate( REAL gl obal T, REAL |ocal T, REAL dt)
{

/1 try finding the intersection between the disk and

/'l the rectangle using the variable of the IC

i sDi skRect I ntersecti on = DEQS. donmi n. i slntersection(
LHKF. shape. gl obal ) ;

i sLineRectIntersection = DEQS. donmi n. i slntersection(
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polyline circle segment
D DEQS LHKF oM 1D cells
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rectangle disk
DEQS LHKF 2D cells
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return ! (isDi skRectlntersection||isLineRectlntersection);

Figure 87: The first IC instance.

OM shape. gl obal ) ;

}
}
} 11 KL
]
Q
P - . -
point point point
M 0] P
H P-cell P-cell T-cell
T Iy 3 T T
|
polyline circle segment Segment segment
DEQS LHKF oM MP orP
B-cell F-cell P-cell T-cell T-cell
3 3
rectangle disk
DEQS LHKF
B-cell F-cell

Figure 88: The second IC instance.

The second IC instance is activated when the seg@ihias exactly one
intersection point with the rectangle DEQS (see fig. 88).sT ke introduce

an additional T-cell:

P_point {
type = T- CELL,;
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dim= 0D
domain = {...};

N /1 the translation of this cell can be determ ned only after
t he
/'l the intersection test, this will be done in the instance

Next comes the description of the second IC instance:

K2 :  INITIAL_.TEMPLATE {

STATE_PARAMETERS {
/1 true if only one point results fromthe intersection
i sOnePointlntersection : BOOL( false );

}
/1 references to a set of previously described cells
CELLS {
/1 add a new cell to the set of cells fromIC tenplate
P_poi nt;
}
/'l events processed by the instance:
REACTI ONS {
/| update the position of the T-cell (Post suffix as we want
/1 it to be issued after all the cells have been updated)
updat ePost ( REAL global T, REAL local T, REAL |ifeT, REAL dt)
{
i sOnePoi ntIntersection = false; // default val ue
i shDi skRectI ntersecti on = true; // default val ue
/1 try finding the intersection between the disk and
/'l the rectangle
I NTERSECTI ONLI NFO i nfol = DEQS. domai n. i sl ntersection(
LHKF. shape. gl obal ) ;
I NTERSECTI ONLI NFO i nf 02 = DEQS. domai n. i nt ersect (
OM shape. gl obal ) ;
/1 only one intersection point exists
if (info2.intersectPoints.size == 1) {
- /'l set the position of the T-cell using the intersection
info
P_point.translation = info2.intersectionPoint(0);
i sOnePoi ntl ntersection = true;
}
i sLineRectlntersection = (info2.intersectPoints.size!=0);
if (infol.intersectPoints.size == 0) {
i sDi skRect I ntersection = fal se;
}
}
}
/1 the predicate used to find out if the instance is still valid:
PREDI CATE {
bool eval uate( REAL global T, REAL |ocal T, REAL dt)
{
return !isDi skRectlntersection & i sOnePointlntersection;
}
}
}Y I K2

The third instance has two additional intersection poinés, two addi-
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tional T-cells (see fig. 89).
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rectangle disk
DEQS LHKF
B-cell F-cell
Figure 89: The third IC instance.
K3 : I NI TI AL.TEMPLATE {

STATE_PARAMETERS {

/1 true if two points result fromthe intersection
i sTwoPoi ntlntersection : BOOL( false );

}
/1 references to a set of previously described cells
CELLS {
/1 copy all the cells froma tenplate conpl ex
USE | NI TI AL_.TEMPLATE. CELLS;
P_poi nt N_point;
}
/'l events processed by the instance:
REACTI ONS {

/1 update the position of the T-cell (Post suffix as we want
/1 it to be issued after all the cells have been updat ed)
updat ePost (  REAL gl obal T, REAL local T, REAL |ifeT, REAL dt)

{
i sTwoPoi ntl ntersection = false; // default val ue
i sDi skRect I ntersection = true; /| default value
/1 try finding the intersection between the disk and
/1 the rectangle
I NTERSECTI ONLI NFO i nfol = DEQS. domai n. i slntersection(
LHKF. shape. gl obal ) ;
DEQS. donmi n. i ntersect (
OM shape. gl obal ) ;
/1 only two intersection points exist
if (info2.intersectPoints.size == 2) {
/] set the position of the T-cell using the
/] intersection info
P_poi nt.transl ation i nfo2.intersectionPoint(0);
N_poi nt. transl ati on info2.intersectionPoint(1);
i sTwoPoi nt I ntersection = true;

| NTERSECTI ONLI NFO i nf 02 =

}
i sLineRectlntersection = (info2.intersectPoints.size!=0);
if (infol.intersectPoints.size == 0) {
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i sDi skRect I ntersection = fal se;
}
}
}
/1 predicate used to find out if the instance is still valid:
PREDI CATE {
bool eval uate( REAL global T, REAL |ocal T, REAL dt)
{
return !'isDi skRect|ntersecti on & i sTwoPoi ntl nt ersecti on;
}
}
} /1 K3

The fourth instance (see fig. 90) has a new T-cell. Hence, wWeaatew
T-Cell:

o]
Q E
P ‘ M
N
/
R
S D
point point point point point
R 0] M N P
T-cell P-cell P-cell T-cell T-cell
= T Y 3 T T 3 T
|
polyline circle segment segment Segment segment
DEQS LHKF oM ON MP PN
B-cell F-cell P-cell T-cell T-cell T-cell
7y F
rectangle disk
DEQS LHKF
B-cell F-cell
Figure 90: The fourth instance.
K4 : I NI TI AL.TEMPLATE {

STATE_PARAMVETERS {
/1 true if two points result fromthe intersection
BOOL( false );
/1 true if the disk only has one intersection point
/1 with the line

}

i sTwoPoi nt I ntersection :

i sOnePoi nt Di skl ntersection :

BOOL( false );

/'l references to a set of previously described cells
CELLS {

/1 copy all the cells froma tenplate conpl ex
USE | NI TI AL_.TEMPLATE. CELLS;
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N_poi nt R_point;

/'l events processed by the instance:
REACTI ONS {

/1 update the position of the T-cell

(Post suffix as we want

/1 it to be issued after all the cells have been updated)
updat ePost (  REAL gl obal T, REAL local T, REAL |ifeT, REAL dt)
{
i sTwoPoi ntIntersection = false; // default val ue
i sDi skRect I ntersection = true; /| default value
i sOnePoi nt Di skl ntersection = fal se;
/1 try finding the intersection between the disk and
/'l the rectangle
I NTERSECTI ONLI NFO i nf ol = DEQS. domai n. i sl ntersection(
LHKF. shape. gl obal ) ;
I NTERSECTI ONLI NFO i nf 02 = DEQS. domai n. i ntersect (
OM shape. gl obal ) ;
/1 only two intersection points exist
if (info2.intersectPoints.size == 2) {
/1 set position of the T-cell using intersection info.
P_point.translation = info2.intersectionPoint(0);
N_poi nt.transl ation = info2.intersectionPoint(1);
i sTwoPoi nt | ntersection = true;
}
i sLineRectlntersection = (info2.intersectPoints.size!=0);
if (infol.intersectPoints.size == 1) {
i sOnePoi nt Di skl ntersection = true;
Rpoint = infol.intersectionPoint(0);
}
i sDi skRectIntersection = (infol.intersectPoints.size!=0);
}
}
/1 predicate used to find out if the instance is still valid:
PREDI CATE {
bool eval uate( REAL global T, REAL |ocal T, REAL dt)
{
return i sOnePoi nt Di skl ntersection&& sTwoPoi nt | ntersection;
}
}
} Il K4

The fifth instance (see fig. 91) is defined in a similar way. Tdsulting

IC is defined as:

Ky (070); PR (7 (t)) = true

Ko (t52); PE2(t52(1)) = true

K(t) = ¢ Ks3(t5); PEs(t53(¢)) = true
Ky (t54); PEa(t54(t)) = true

| K (H75); PR (75 (t)) = true

Figure 92 shows the five instances of the IC and the sequeni@sftions
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Figure 91: The cells and relations of the fifth IC instance.
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Figure 92: The IC instances and the transitions between them.

between them.

It is worth mentioning that not all the instances of the IC ahéz be de-
fined. The freedom that the definition of a predicate providksws the users
the flexibility of only having to define the conditions of inést to them. Even

if the instance is invalid in a strict sense (e.g., if some r&ations need to be
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established), this does not mean the predicate of the irestaas to indicate
the invalid state of the instance being active. Users arengilrte opportunity
to concentrate on the states of the model which they congides important.

5.3 Multidimensional dynamic models in the space-time do-
main

In this section we describe a mixed-dimensional model. is todel a set
of lower-dimensional objects is used to produce a higheredisional object.
This is made possible through the introduction of multiptedelling domains
in section 3.4.1. The resulting higher dimensional objeatloe interpreted as
a new shape or as a set of objects resulting from the metamsigbetween
the original lower-dimensional objects. We take advantaigthe existing
space-time blending approach and we improve it in a numberags.

5.3.1 Introduction to space-time blending

Space-time blending is based on the bounded blending ape(ate section
2.2.3) performed in higher-dimensional space. The initie& of space-time
blending was introduced in (Paskbal., 2004b). Space-time blending allows
us to perform transformations between shapes of diffeaulogy without
necessarily establishing their alignment or correspoocelen example of
space-time blending between a cross and two disks (see 88adds shown

in fig. 93b.
XYY 1 o

(@) (b)

Figure 93: Space-time blending: (a) Two initial 2D objects (b) A setnbér-
mediate objects generated using space-time blending.

Unlike a number of existing approaches (Sederberg and @aah 1992;
Sederberget al,, 1993; Shapira and Rappoport, 1995; Coheretal,, 1996;
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Zhang and Huang, 2000; Surazhskal., 2001; Lazarus and Verroust, 1998)
space-time blending is not based on any assumptions regatti equiva-
lence of the topology of the initial objects. It does not exvequire the shapes
to be aligned or to have a vertex-to-vertex correspondestadkshed by the
modeller.

Let us illustrate the proposed space-time blending appréacthe 2D
shapes shown in figure 94. The two initial shapes are defineth@XY
plane. Their extrusions are generated as 3D half cylinddrsse 3D objects
can be created in the space-time doméWiT or in a purely geometric do-
main XYZ (see section 3.4.1). In either cases the initial lower-disi@nal
shapes are interpreted as projections of higher-dimeakarjects. These
two objects are then used as operands to a bounded blendengtiop in a
higher-dimensional space (see fig. 95a).

C contours contour
D C 1D cells
F-cell F-cell
F 3 r'y
disks Cross
D C 2D cells
F-cell F-cell
F 3 &
extrusion extrusion
ED EC 3D cells
F-cell F-cell
\ J
Y
Boundary relations

Figure 94: The IC cells initially present in the model.

5.3.2 The application of affine transformations in the spac¢ime do-
main.

The original formulation of space-time blending in Pagkal. (2004b) has
several problems: a fast uncontrolled transition betwdepas within the
given time interval, the generation of disconnected coreptsduring the
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—
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Figure 95: The result of the application of a space-time blending opena
(a) Regular space-time blending (b) The proposed space-biending with
an additional affine transformation.

metamorphosis and the lack of intuitive user control overttansformation
process Pasket al. (2004c).

We have resolved some of these issues and improved thearigamnique
in a number of ways (Paslat al., 2010). We have introduced an additional set
of controllable affine transformations which are appliedh® initial objects
in space-time (see fig. 95b). This allows us to make a smoataesition
from one shape to the other and to have better control overtitansition.
This is especially useful when the dimensions of the shaplssignificantly
or when the distance between the initial shapes is largdise@6)

coloei* it X X YR,

- s & KR e ]

Figure 96: The cross-sections of the shape generated using the ingprove
space-time blending: (a) a user guided rotation around theetaxis to align
object features (b) A user guided scale along the time axis.

The same improvements can be applied to 3D objects. In tisis 8B
slices of a higher-dimensional 4D object can be interpretedntermedi-
ate shapes of the metamorphosis process between the 3itiabjects (see
fig. 97). Without these transformations the volume of thenmediate shape
needs to be significantly increased in order to avoid havisigidted compo-
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Figure 97: The transition between 3D objects (a) Linear metamorphosis

(Paskoet al, 1995). (b) Improved space-time blending.

nents. But this increase of the volume leads to even fastesittons between
the shapes. Thus, affine transformations provide more @ooxer the in-

terim modifications of the shape. Additionally, these tfanmmations help us
reduce the rate at which the transition between the shakes pdace. All re-

quired time-dependent affine transformations can be gatkeatomatically
based on the estimated bounding domains of the IC cells. Mongplex

examples of possible transitions between 3D objects aneteéen fig. 98.

5.3.3 Additional time-dependent deformations.

Another inherent issue in the original space-time blendipgroach is the
possible presence of disjointed components of the soutdestination ob-
jects appearing during the transformation process (Fica).9®ne way of
resolving this issue is through the addition of user cofegtbtieformations.
The appearance of the disconnected component in fig. 99aecaxptained
by the significant difference in the distances between tiialitorus and the
final union of the two cylinders. The transition can be imm@v¥hrough the
introduction of time-dependent deformations in additiospace-time blend-
ing. We can apply time-dependent deformations while ttaomsng from the

source object to the destination object. For the example/shio fig. 99a,

this can be done with the help of a non-linear space mappingrfing”) in-
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Figure 98: Examples of transitions using space-time blending for 3[edb.
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Figure 99: Problems caused by disjointed components appearing dtineg

transition: (a) Regular space-time blending (b) Spaceetlitending with ad-
ditional deformations.
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tuitively controlled by two points (Schmitt al,, 2003) as illustrated by fig.
99h. The number of these points is not restricted and can dmechdepend-
ing on the specific needs of the blending problem. In this cadditional
deformations are added to modify the input shape of the spaeeblending
operation (see fig. 100). Although the user can define the@agpoints for
the deformation manually or interactively, these points akso be generated
automatically based on the properties of the objects bdrrgded. To do so
we find a set of internal points with the extreme values of thnéthg func-
tion. These points are located inside the “thick featuréshie model, i.e. the
areas situated at the extreme distances from the objectisdaoy:

NSTC
Dgrc = U Psrei - Fsrc(psrci) > 07
i=1

Fsrc(psrci) > Fsrc(psrci + ap); HﬁpH > O

Ndst
Dzst = 1pdstj : Fdst(pdstj) > 07

(4)

J
Fdst(pdstj) > Fdst<pdstj + 8]))7 ||ap|| >0

whereD is a set of N points (V.. = Ny) used to define the non-linear
space-mappingF,,. and F,,; are the defining functions of the source and
destination objects respectively. We find the locationdefdforementioned
points performing a distance transform of the functiongkeobusing Eu-
clidean metrics (Pasket al, 2010). The user may choose the number of
points retrieved in this fashion and give a hint of how closeeach other
he/she wants the retrieved points to be (fig. 101). The wdigoints are
located on the medial surface of the object.

5.3.4 Non-linear sampling in the space-time domain.

Due to the non-linear nature of the defining functions of thats and the
properties of the bounded blending operation, the trammshietween the ob-
jects can not be expected to be a linear process. But we cast &la¢ visual
rate of this transition by performing non-uniform samplioger time. In
the simplest case the time step can be adjusted dependirt @stimated
change of the area or volume of the shape. A modification ofithe step is
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Figure 100: The dependency relations for an improved space-time bigndi
with additional deformations.

Figure 101: Examples of the extracted “thick features” ( marked by cesss

)-

performed using a feature of the dynamic IC described in@edt4.2. This

mechanism allows us to request a modification of the globa tiising the

events mechanism:
STB.CELL {

/'l representation
type = T- CELL;

shape = | C: : spaceTi neBl endCel | s(cel | A, cellB, ...);
/1 two 3D cells used as input, result is 4D

dim::= 4D

paraneters {
/1 the previous volune of the cross section
shapeVol une : REAL(0.0);
/'l the acceptable rate of volune change
voluneRate : REAL (...);
/1 how far back time needs to be rewound
ti meDi vider : REAL(0.0)

}
/] reactions to events
REACTI ONS {

updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)

{
/'l retrieve the cross section of the 4D space-tine object
SHAPE crossSecti on3D = makeCrossSecti on(shape, gl obal T);
/1 estimate the volune of the 3D cross section
REAL cur Vol une = get Vol une(crossSecti on3D);
/'l check if the volume has changed significantly
if (shapeVolune > 0 &&
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abs(cur Vol une - shapeVol une)
> vol uneRate) {
/'l request a nodification of time stepping back
/1 using a snaller step
IC:fireEvent (TI MEREJECTED, -(dt / tinmeDivider));

} else {
/1l save the current volunme for a later estination
shapeVol une = cur Vol une;

}
}
}
}

In this example thehapeVol une parameter is used to store the current
volume of the shape. The parameted uneRat e defines the rate at which
the volume of the shape is allowed to change. If the volumagbsitoo fast
between different time instance3 BME_REJECTED event will be generated.
This event causes the IC framework to adjust time accordirige requested
fraction of time and to re-evaluate the model. This mecharafiows us to
perform sampling of the higher-dimensional model in a noedr fashion,
making the transition process more predictable. This hefpbnearise the
metamorphosis sequence adding or removing a predefinednofonaterial
at every step.

One of the methods which can be used for the estimation ofdhene of
the shape is based on polygonisation. This way we can estithatvolume
contained in each cell of the discretisation grid. The vadsrof the chunks
of the shape then need to be integrated over all grid cells:

N:v NU Nz

Ve ~ ZZZUg(i,j, k)

whereuv, (i, j, k) returns the volume contained in the grid céllj( k). The
volume contained in a grid cell can be calculated using anigcie similar to
that of the marching cubes algorithm. The solid encloseaaheell can be
decomposed into a number of tetrahedrons and prisms. Theneadf such a
solid is computed trivially.

More information on this technique, detailed comparisorts@PU imple-
mentation specifics, allowing us interactive display oftti@del, are provided
in (Paskeet al,, 2010). Our interactive modeller, which was used for the def
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inition of F-Cells was later integrated into the IC model asdiescribed in
section 5.7.

5.4 Implicit “Stand-ins”: a case of time-variant hybrid mod -
elling

In this section we describe a hybrid model in which we dematestthe in-
teraction between an animated character represented biygopal mesh
and a viscoelastic object represented by an FRep objects éXferiment
demonstrates the advantages of the IC framework which allesvto inte-
grate models defined in different representations withia orodel and to
establish dependency relations between these.

5.4.1 Introduction to the “stand-ins” technique

One of the advantages of hybrid models is the possibilityéate animation
effects which are quite hard to achieve using any single hregeesentation.
Here we mainly consider a problem of interaction betweengerdynamic
objects and viscoelastic substances. We model this iritenathrough the
combination of animated polygonal meshes with FRep objgsitsy our dy-
namic IC framework. An animated mesh is approximated by aaation
surface stand-in that is embedded within it or is attachdtl tbhe motions
of both objects are then synchronised using a rigging sikelé/e model the
interaction between an animated mesh object and a vistioetadbstance,
which is represented by an FRep object. This approach iscaanhachiev-
ing verisimilitude rather than physically based simulatidhe adhesive be-
haviour of the viscous object is modelled using geometeabing operations
on the corresponding FRep objects. Another applicatiomisfdapproach is
the creation of metamorphosing FRep parts that are attaohaa animated
mesh. A further extension of this approach for the contdoiteetamorphosis
of animated meshes in described in section 5.5.

Polygonal meshes and certain types of implicit surfacesbeaanimated
using a rigging skeleton. We consider a skeleton as a phatfor their in-
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tegration into hybrid models. There are many candidatestich integra-
tion among implicit surfaces, namely soft objects, distéabased blobs, ellip-
soids, convolution surfaces, constructive solids budtrfrcylinders, spheres,
and other primitives. The main requirements for an impkcitface are: a
relatively simple defining function, which is fast to evaeiaeasy to manip-
ulate using skeletons and an absence of bulges and othentethartefacts,
which require additional processing. All these requiretaeme satisfied by
convolution surfaces (Bloomenthal and Shoemake, 1991;dvin@ck and
Sherstyuk, 1998) which we choose for our purpdde®Ve propose to embed
an implicit convolution surface inside an animated mesloattach it to the
mesh such that the motions of both types of object are synded. The
objects can either share a common skeleton or have indisginahronously
moving skeletons.

An embedded convolution surface has to closely approxithaetembed-
ding mesh such that its motion requires no changes or minitmahges of
the convolution surface parameters. This may require aeplge for fitting a
convolution surface to an initial mesh taking into accotmspecified motion,
which can be achieved using a global minimisation of the alVatgebraic
distance of the mesh nodes from the convolution surface.ifteeaction of
a viscous object with an animated object is modelled usimgrggric blend-
ing operations on the corresponding implicit surfaces. eNbat the initial
animated mesh is rendered in the final animation togethér tvé blending
surface, which creates the visual effect of the blendinghef mesh itself.
Thus the embedded convolution surface serves as an imgiheit-in for the
animated mesh. Unlike most other approaches to the resolatithis mod-
elling problem, our approach is not aiming at physical ottrress. In the
areas of computer animation and digital special effectdyacton it is a well
established fact that physically correct simulation iofan inappropriate
technique to use, as it often interferes with the intendeeldpment of the
narrative. Animators are often looking for some form of betible semblance
of reality (i.e., verisimilitude), which is inspired by psigal reality but bends
this reality to allow them to advance the story narrativestéad of a physi-
cally correct simulation what is required is a set of teche®jand tools that

2'However other types of implicit surfaces could also be usethb proposed approach.



5. Applications and results 203

would allow the animator to alter and to fine-tune realitye$& may be phys-
ically inspired, but not physically correct, and must beeatol be directable
by the animator, so that they produce the desired visuattstfd>hysically-

correct simulation techniques can often be combined wiysiglally-inspired

verisimilitude techniques but they must be directable lgyattist and subor-
dinated to the story-telling process. Additionally wherlstiechniques are
used at the development stage of computer animation anthldefiiects se-

guences or in a computer game they must produce believahlalviesults

in real-time or near-real-time. We aim to provide the anonatith a simple

tool based on purely geometric methods which allows thetioreaf complex

animations satisfying the specified requirements.

5.4.2 Background

Historically a number of authors have used implicit suréatar character
animation. Elliptical blobs for skeletal animation wereedsby Jim Blinn
(Blinn, 1982) back in 1982, where the transformation of tledbls inherited
from the transformation of the joints of the skeleton. Ophaland Maddock
used blobby objects for the easy definition of animated @tara (Opalach
and Maddock, 1995). However, their method is ill-suiteddontrolling the
resulting “blobby” mesh. In addition, a large number of gtives are usually
needed to model an appropriate mesh.

One of the earliest attempts of using hybrid modelling imedl embed-
ding mesh objects into implicit surface primitives (Singtdd&arent, 1995) to
implement polyhedral object deformations of articulatefodmable bodies.
Skeleton-based implicits for non-polygonal animated cisj@vere examined
in (Cani-Gascuel, 1998), where skeletal geometric prragithat produce
distance fields were used for character animation - althahbightechnique
may lead toC"! discontinuities in the resulting surfaces. The coatingrbf-a
trary animated models by implicit surfaces, employed is tbchnique, is not
always acceptable to animators. We consider our approanplementary to
the coating technique. Mixing of implicit surfaces and muyal models was
performed in (Leclercet al, 2001). In this work specific regions of an ani-
mated mesh were deformed using implicit primitives attadlog¢he animated
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skeleton. Polygonal meshes and implicit primitives wes® alombined to-
gether in a HybridTree (Allegret al,, 2006) using blending, Boolean and
other operations supported by the conversion procedutegbe two differ-
ent models. However, embedding, attachments and sketeteed motion
synchronisation of meshes and implicits as well as theitemgntation in a
general-purpose animation system were not directly adddes

Implicit surfaces were also used for the approximation dfgonal meshes
using different approaches, such as Radial Basis FundirBiss) (Savchenko
et al, 1995) and Multi-level Partition of Unity implicits (MPUYOhtake
et al, 2003). These methods generally work well with static megslhet
are less suitable for animation because dynamic model&egogr-frame re-
fitting and can not be easily edited by the user due to the doatpt handling
of the implicit surface.

One of the interesting alternatives among implicit suréaisethat of con-
volution surfaces (Bloomenthal and Shoemake, 1991). Gatiga surfaces
can be smoothly blended with each other and provide a goorbzipma-
tion for polygonal meshes typical of skeletal characteith wkial symmetry
(McCormack and Sherstyuk, 1998). Our hybrid modelling apph takes
advantage of convolution surfaces with line segment skeget

Traditionally physical simulation techniques were usertifi® modelling
of interactions between dynamic entities and viscous ¢djecfor control-
lable manipulation of viscous objects alone. A number oharg have pro-
posed solutions to this problem (Foster and Fedkiw, 200dyé&iét al.,, 2005;
Mcnamareet al,, 2004; Carlsoret al., 2004; Shi and Yu, 2005; Thureyt al.,,
2006) - to name but a few. Fluid simulation using the Lagrangir Eule-
rian approach allows for the creation of realistic animagidout usually this
requires a lengthy simulation process and often providesier with poor
artistic control (i.e. poor directability) of the resuljreffects.

It is often the case that a combination of different techegjis used for
the emulation of viscous materials. In our approach we satewdbjects com-
posed of viscous materials using a geometric blending katwlee implicit
objects generated from given polygonal meshes. We aim tagedhe user
with a simple tool which allows the creation of complex aniimas with con-
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vincing visual results in real-time or near-real-time.

5.4.3 Problem statement and approach outline

Our approach relies upon dynamic hybrid modelling comlgjiBiRep polyg-
onal meshes with FRep objects. In general, there are thrée ways of
achieving this:

1. By coating of BRep meshes with FRep objects.
2. By embedding FRep objects inside BRep objects.
3. By attaching external FRep objects to BRep objects.

As was mentioned above coating was discussed in (Cani-6a<998).
We apply embedding in order to achieve blending effects dtathing is
used in order to construct the metamorphosing parts of ybadels. Addi-
tionally, there is an important constraint that appliesuoa@pproach, namely
the near real-time rendering of all hybrid models.

Let an animated object be defined by a polygonal mesh (see figa)l
with a rigging skeleton (see fig. 102b), skinning informat(see fig. 102c)
and a set of animation transformations for its skeletal soéerigging skele-
ton is a set of hierarchically connected joints used to $péloe motion of a
mesh model in an animation sequence. If there is no skeletwided, it can
be automatically extracted from the polygonal mesh using @nthe pub-
lished techniques (Katz and Tal, 2003; letial,, 2003; Baran and Popovic,
2007).

An important application area for embedded implicit suefats the mod-
elling of viscoelastic object adhesive behaviour in itrattion with an an-
imated mesh object. To obtain visually plausible resulthwiear real-time
preview, the mesh object is replaced with an implicit stamndGeometric
blending is then applied between the FRep entities reptiegdooth interact-
ing objects.

A viscoelastic object can be represented either by an FRgetskor by
another polygonal mesh (which has to be converted to an FBjegth. We
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Figure 102: Animated mesh information: (a) Polygonal mesh, (b) Rigging

skeleton, (c) Skinning information. Model "Andy” courtesf John Dou-
blestein.

will mainly concentrate on the former case to simulate suislcous sub-
stances as jam, honey or tar, and to show how such liquidsaoitevith an
animated object. Thus we will deal with the adhesion of tlyeill to the
surface, its stretching following the object’s motion arides related topics.

Natural controllable blending is one of the best-known aseful prop-
erties of implicit surfaces (see section 2.2.3). We will ttss property for
modelling the adhesive behaviour of the liquid substandas,Tin general,
assumes the conversion of the animated mesh into an FReg.dB@vever,
an exact conversion of this type is a complex task. Insteathiweeadvantage
of our hybrid model, which includes a polygonal mesh and gar@pmation
of this mesh by an FRep object embedded within it using adifhirocedure.
It is impractical to perform this fitting to the mesh for eacame of the ani-
mation. Thus, it is preferable that an FRep objects is madialtow the mo-
tion of the animated mesh. A convolution surface satisfiesrdquirement
when its skeleton is built using the rigging skeleton of thereated mesh and
the motions of both skeletons are synchronised. This déawavolution sur-
face can be blended with the FRep object, representing sitews liquid, to
mimic its adhesive interaction with other objects. Therfdtprocedure pro-
vides the convolution surface with a minimal distance measo the mesh.
This is required in order to create the visual effect of thesimigeing blended
with the viscous liquid.
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Figure 103: Initial approximation: (a) The initial placement of boumdj
volumes inside the mesh, (b) The shape produced by cormokuiface.

A detailed description of convolution surfaces is provide(Bloomenthal
and Shoemake, 1991; McCormack and Sherstyuk, 1998). The awlaan-
tage of a convolution surface is the smooth transition betwits parts that
are defined by different skeletal elements (fig. 103b). Whening skele-
tal elements, the convolution surface follows their movetmglite naturally,
which is useful in animation (see fig. 104). We call this FReqdel that is
used for the approximation of the mesh an “implicit stant-in

The animated stand-in is then used in the model togetheramtbbject
representing the liquid substance. Then a blending unienadiort? is ap-
plied to these two objects. In order to achieve the desiretief

5.4.4 The proposed approach
The proposed solution, outlined in section 5.4.3, can beligided into the
following steps:

1. The creation of the initial approximation of the given imesth bound-
ing volumes using the skeletal information.

2. The tuning of the initial approximation.

3. The creation of an embedded convolution surface for tii@lipolyg-
onal mesh.

4. One of two application steps: (a) the definition of the Hiag between

22The blending union was described in section 2.2.3.
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the convolution surface and the viscous object for the miogedf the
adhesive behaviour of this viscoelastic object and itgawtion with an
animated object or (b) the creation of metamorphosing ioitgdarts for
an animated mesh.

Each step requires the rendering of the current convoldioface and
either the blending surface or the attached convolutiofasar Note that
both application steps can be performed together, when mmated mesh
with attached implicit parts interacts with a viscous mialer

The initial mesh approximation

As was mentioned earlier, the procedure for embedding ahditgurface
inside the mesh requires a global minimisation of the algielatistance mea-
sure between the mesh nodes and the convolution surfaceneXgst step
of the global minimisation procedure, we can estimate thiarpaters of the
convolution surface using the available information. HFoe initial approx-
imation we use the rigging skeleton. Given the set of bonab@frigging
skeleton, where each bone is a line segment in 3D space, wiheiset of
these segments as the basis for an initial convolution keleWe denote
the start and end vertices for each such a skeletal segmenarkers. To
calculate the radius of the convolution surface for eacimsesty, we calculate
the minimal distance between each line segment specifidadaparkers and
the polygonal mesh. At this stage we can build bounding veki@round
each line segment for the real-time preview of the convotusiurface. Each
bounding volume is fitted inside the mesh in its initial pmsit Rendering
these bounding volumes helps the user to better understamthie resulting
approximating convolution surface is embedded into thenfese fig. 103).

In the next step we perform a global optimisation to achiebetter ap-
proximation of the given polygonal mesh using the embedaedaution
surface. In order to achieve this we solve the constrainestdequares prob-
lem. We apply a numerical search in the n-dimensional spatieeocon-
volution parameters. We use the constrained Levenbergiadt method
(Kanzowet al., 2005) to solve this problem. Usually the search procedure
needs to be performed only once for the character’s bind.pose
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Figure 104: The synchronised motions of the embedded convolutioncasfa
during the animation process.

Further details regarding the approximation procedure @ossible im-
provements of the approximation are described in detaiKna(tsovet al,,
2010a)

The creation of a convolution surface

The embedded convolution surface is created by using theesgtg of the
skeleton retrieved during the approximation procedurer. rendering pur-
poses we use a polygonisation procedure, which providep@m@mation
of the implicit surface as a polygonal mesh. For relativetyde skeletons
the polygonisation of the convolution surface can be olethim near real-
time. As the segments of the convolution skeleton are toainsfd relative
to the transformation of the rigging skeleton, the motioriha convolution
surface is synchronised with the motion of the animated nissifig. 104).

We automatically perform the approximate convolutionaceffitting only
for the bind pose on the first frame of the animation. Thusinduthe ani-
mation process the bounding volumes and the convolutidaseiitself may
not fit inside the mesh. This could happen because the desametween
the mesh vertices and the bones change noticeably for tlersees that are
influenced significantly by more than one joints. Such vegiare usually po-
sitioned near the skeleton joints. Performing fitting of tbavolution param-
eters for each key-frame of the animation can be a time-coimguprocess.
This also means that each time the user adds a key-frame snthmation
sequence the fitting procedure has to be repeated for theseames. Thus,
we let the user choose the key-frames for which refitting s¢edake place -
for instance, when the distance between the convolutidaseiand the bone
exceeds the distance between the bone and the mesh. Thamated pa-
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rameters are updated at the key-frames for the convolutiontjves and then
they are interpolated during the playback of the animatexjusnce. This al-
lows the user to concentrate on the process of mesh anintatidacreasing
the delays caused by the implicit surface re-fitting. Als@re is an oppor-
tunity for the user to assign custom values to the paramefetse implicit
surface over time - for instance, to change the parametéraitamg the over-
all surface radius. This can be used to achieve a desirafi@aeifect for a
particular animation sequence.

Applying the blending operation

As the first application of our technique, we simulate theraction of a
viscous object with an animated object using the blendingruof two im-
plicit surfaces. As we mentioned above, the implicit sugfaorresponding
to the initial mesh is an embedded convolution surface. Eeersd implicit
surface representing the viscous object can be modellad aset of implicit
primitives. If both defining functions have distance prdig=; the shape of
the surface resulting from the blending operation dependb®distance be-
tween the original implicit surfaces. The further the obgeare from each
other the less they deform. There exist three main phasejeftanterac-
tion: the “continuous interaction” phase when the two irtipsurfaces form
a single blend shape (see fig. 105a), the “separation of tyextsj phase
(see Fig. 105b) and the “objects’ reciprocal attractionagd resulting in
the directional deformation which decreases proportelgad the distance
between the two objects (see Fig. 105c).

A blending union can dramatically change the resultingaefand its
topology. As a result of the mutual deformation, a part of ¢bavolution
surface embedded within the mesh becomes visible thusileotitg to the
material interacting with the mesh. Thus, the quality of itn&al approxi-
mation of the mesh by the convolution surface does not plagrafieant part
in this application. It is much more important to fully emkiéeé convolution
surface into the mesh when no deformation is applied.

Modification of the blending parameters produces an effesctally mim-
icking the viscous object’s physical parameter adjustnieeé fig. 106).
Thus, the user can control a specific phenomenon by modigymeganingful
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Figure 105: Phases of interaction between animated objects withoutbsle
ing (left) and with blending (right): (a) Two implicit surfas and a single
blend shape during blending, (b) The boundary case befadwo shapes
separate, (c) Two separate shapes with some deformationisgdhe ob-
jects’ reciprocal attraction.
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Figure 106: Viscosity: (a) low, (b) medium, (c) high.

set of parameters. Then, instead of using the abstract péeesrof geometric
blending (see section. 2.2.3), the user can operate witlitirg parameters
representing the liquid viscosity or the gravitationatferA set of predefined
templates for different materials (such as tar, honeygtdl,) allows the user
to achieve easier control over the interaction process.

The combination of the aforementioned steps allows us teeelthe de-
sired result. Figure 107 illustrates the process of hybridielling. A more
detailed description of this technique is provided in (Ksawvet al., 2010a,b).

In the following section we provide a description of this rebdsing our
dynamic IC framework.

5.4.5 The IC model definition

Finally, we can present a description of the dynamic IC modeig our ap-
proach (see section 4.3). Different states of the modelrayens in fig. 108.
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Figure 107: Proposed approach outline.

Figure 108: The different states of the model.

The IC model consists of (see figures 109 and 110):

e A deformable “box” containing a character at the beginnifigha
scene.

e A character called “Andy” (represented as a mesh) and heedddd
stand-in convolution surface (Kravtsetal, 2010a).

e A cell called “Liquid on Andy”, which is used to mimic the vigelastic
behaviour of the “box” object interacting with “Andy”.
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Both “Andy” and her implicit stand-in are controlled by thense skeleton
through two dependency relations. Thus, motions of botlkaibjare auto-
matically synchronised using the common skeleton. It igkvooting that the
shapes of both synchronised objects are represented by &RidpRep cells.
This arrangement would not be possible in the majority o$txg animation
systems.

The dynamic IC has two instances:

e “Andy” is placed inside the box and starts walking out of ith\é she
is walking out a liquid-like substance remains attachedetcels though
it was adhering to her.

e When “Andy” is completely outside the box (i.e. when there ap
intersections between the animated mesh and the box) thid igno
longer adhering to her.

The topological relations for the first instance of the IC presented in
figure 109. The dependency relations for this instance ofGhare outlined
in figure 110. “Implicitly established” dependencies appeecause “Lig-
uid_on_Andy” is the result of blend operation between the existialisc

Skeleton points

0D cells Cocell
1D cells Skeleton
C-cell
Liquid Andy s. Liquid on Andy s. Andys.
2D cells : : :
F-cell F-cell B-cell
/ T A
Liquid Andy Liquid on Andy Andy
3D cells 9 3 1 3 }
F-cell F-cell B-cell

Figure 109: The topological relations of the model.

It is apparent from the illustrations that both “Andy” andiguid Andy”
are dependent on the “Skeleton” cell. The skeleton conthr@sleformation
of the cell “Andy” as well as the shape of the cell “Liquid Aridyhis cell is
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Figure 110: The dependency relations of the model.

the implicit stand-in of “Andy”). Thus the motions of bothasémentioned
dependent cells are synchronised over time. A blendingrub&iween the
“Liquid Andy” and “Box” cells results in a liquid-like shapeartly covering
the animated “Andy” cell. This allows us to produce an instirey effect
mimicking the viscoelastic behaviour of the “Box” object.

We use time-spans in order to define the interval of time whemialking
animation is played:
/1 name of the nodel (can be used in other nodels):

name = ANDY_WALK.M RRCR

TI MESPANS {

| )// the tinme-span used for the wal king out animation (initialised
ater

wal kTi mespan : Tl MESPAN,
/1 the tinme-span used for the animation of the blending paraneters
[l (initialized later):
bl endTi mespan : Tl MESPAN;
}

This time-span starts at the moment of the first IC instantieadion:

/'l events processed by the instance

REACTI ONS {
I
init( REAL gl obal T)
{

/1 wal k span starts in this instance
wal kTi mespan. start();

...}
}

Times-pans allow us to start certain animation sequenceswrtdowns
at specific moments of time and to use their local time withamni 22,

23Alternatively we might also use animation sequences thatatalepend explicitly on
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The second IC instance is similar to the first, only this tifme blending
parameters between the “liquid Andy” (her implicit stamj-and the liquid
box are decreased relative to the distance between theémkeled the liquid

box:

/'l events processed by the instance
REACTI ONS {

/'l update the distance
update( REAL global T, REAL local T, REAL lifeT, REAL dt)

/'l update the distance to the box
di stanceToBox = Box. domai n. di st ance( Skel et on. cur Domai n) ;

}
}

A detailed description of this IC model is provided in Appen.

Figure 111: A set of examples of the dynamic hybrid modelling technique.

The demonstrated approach, relying on implicit stand-gnsgihybrid rep-
resentations and dependencies between various partsrabithe, can be ap-
plied in order to solve a number of problems (Kravtsial., 2010a,b). A
selected set of examples is provided in figure 111.

5.5 The controlled metamorphosis of animated meshes

In this section we introduce an approach which allows us tamlpce with

great ease metamorphosing transitions between animatgtesef arbitrary
topologies using hybrid models. Here we use the meshes dlijeets as
well as their skeleton animations. As a result we are ableeteerate meta-
morphosis animations of time-varying meshes with arbyttapologies in

near real-time. The approach presented here relies on thwedsns” tech-

nique described in section 5.4.

time, but are started just like time spans/timers (i.e. atiom events).
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5.5.1 Introduction

As we outlined in section 5.4, polygonal models animatedgisin underly-
ing skeleton are widely used in computer animation. Thig@aggh, combin-
ing a set of simple skeletal deformations, allows the aidigroduce complex
animation sequences in a relatively easy way. Howeverppaifig complex
transitions between arbitrary animated meshes remainsléeing prob-
lem. Existing shape blending techniques allow artists téopen limited tran-
sitions between a set of so called “blend-shapes”, but shasrather limited
approach, as the topologies of these blend-shapes neednatiobed pre-
cisely. There is a set of established techniques to perfoetamorphosis (3D
morphing) between static 3D meshes Lazarus and Verrou88f1$ome of
the existing methods overcome the significant limitatiohthe shape blend-
ing approach, but most of them cannot be easily applied toateid meshes.
Our approach takes advantage of hybrid models, allowing psaduce with
great ease metamorphosing transitions between animatsidesievith arbi-
trary topologies.

5.5.2 Method Outline

As was mentioned earlier BRep meshes can be easily animatadatist but
such effects as metamorphosis cannot easily be performethe®ther hand,
we know that metamorphosis can be easily performed betwep Entities
(see section 5.3),), which are harder to animate using thls tvailable to
artists. The key idea of our method is based on the “staridachnique de-
scribed in section 5.4. We take advantage of both BReps aer@s;Rwitch-
ing between these representations contained within aesingdirid model de-
pending on our needs. In order to achieve this, we approithatanimated
meshes using “implicit stand-ins”. This is done using a lEmpse of each
mesh. The actual metamorphosis is then performed betweeRrRBp enti-
ties approximating the animated BRep meshes. Thus, for #tamorphosis
between the source and destination animated meshes werperfo

1. A smooth transition from the animated source mesh of a BtGés
functional approximation by an F-Cell (sé& in fig. 112);
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2. A continuous transition from the functional approxiroatof the source
mesh (F-Cell) to the functional approximation of the desiion mesh
(F-Cell), shown in the middleK3) of figure 112;

3. Atransition from the functional approximation of the tieation mesh
(F-Cell) to the animated destination mesh (B-Cell). Thialftnansition
(K4) is shown at the bottom of figure 112.

/Q /
\ [ / Skeleton g. Girl
o b \ | =8
K1 L C-cell B-cell
Girl ﬂ
— / N Breell Project
K (), > Skeleton g.
2 C-cell Girl stand-in Focl
F-cell J
Skeleton g. -L) Girl stand-in I
C-cell Brtell Metamorph
Skeleton h. _I-) Horse stand-in Fcel]
C-cell F-cell J
Horse ﬂ
Beoel Project
Skeleton h. "
_ce.
C-cell Horse stand-in
F-cell J
m | Horse
»~
C-cell B-cell

A\ 4
t

Figure 112: All IC instances of the controlled metamorphosis example to
gether with the dependency relations.

In order to produce a smooth transition from the mesh coethin a B-
Cell to an FRep entity contained in an F-Cell (stBp we project the ver-
tices of the mesh onto the approximating “stand-in". We ineper-vertex
skinning and normal information to retrieve an appropriaisition for every
vertex of the mesh on the surface of the “stand-in”. This caddne using a
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A=

0.75 1.0

(b)

Figure 113: The different stages of the projection of the BRep mesh to the
FRep shape of the “stand-in”: (a) Simplified example (b) Rgijon of a
character’s head to the appropriate “stand-in”.

simple gradient descent method or other more advanced deetiAdter the

projection step, every vertex is assigned an offset to isstiom on the sur-
face of a “stand-in” as well as the resulting normal vectdreif we use this
information to perform the local deformation of the skinrmedsh; i.e. we
adjust the vertex positions in bind pose space and we appiyeadependent
skinning deformation to the mesh vertices at the same tirhe.séme applies
to the per-vertex normals:

N

i) =Y w! - M) - (falpi pi + dpist)

J=1

mi(t) = 3wl - M) - (ga(ni, i, 1)

wherew! is the weight of thg-th joint of the skeleton deformatio®; (t) is
the transformation of thg-th joint at time instance, f, is the interpolation
function used to perform a smooth transition from the ihpiaint p; to the
deformed point; + dp; over time,n; is the normals associated with the
th vertex andn; is the normal at the surface of the “stand-in” at pgint+
dp;. When the positions and normals of all the vertices are atignith the
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“stand-in” we switch from the polygonal object to the FRepeah This is
illustrated in fig. 113a. Green represents the initial mdgkai and purple is
the approximate “stand-in”. The red vectors indicate ttigsatfoy which each
vertex needs to be translated in order to be aligned withgteend-in’.

In step2, we have FRep approximations of both animated meshes and
we can employ different methods to generate the intermediaapes. This
method can be a straightforward FRep metamorphosis, a-sipagdlend-
ing or a complex user-controlled transition employing tkelstons defining
the convolution surfaces inside the F-Cells. It is impartannote that this
transition can be evaluated automatically or can be defigatéartist. The
result of this metamorphosis is an FRep object approxirgatie animated
destination mesh.

In step3, we apply an inverse deformation to that applied in stefince
we perform the metamorphosis using FReps all topologicahghs are han-
dled automatically and we do not need to specify any additicanstraints
on the topologies of the original meshes.

All these steps are reflected in different IC instances usethe descrip-
tion of this dynamic hybrid model (see fig. 112). TRe IC instance reflects
the state of the model when only a BRep mesh is present. Thisiisiple
animation sequence, where the mesh is deformed over timg asskeletal
deformation. InkK;, we perform a projection of the animated BRep mesh to
its FRep “stand-in”. We still apply a skeletal deformatiortlie mesh and de-
form it in order to align it with the F-Cell containing the &td-in”. Instance
K3 involves only F-Cells and the skeletons used for the deftomaf both
meshes. There are different options that can be used forefiv@tobn of the
transition between these F-Cells. Instardc¢eis similar to K, but here we
apply the projection deformation in a reverse order. At that fime instance
when this IC instance continues to be active, the resulti@ek is aligned
with the animated and deformed destination BRep mesh. Aagtdime in-
stance before this IC instance is invalidated, the animBieb mesh is only
deformed by the skeletal deformation and is aligned withathiginally pro-
vided animated mesh (i.e. the animated BRep mesh is defanedaligned
with the originally provided destination mesh). Ky the IC instance con-
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Figure 114: The controlled metamorphosis of animated meshes: (a) hgnmpi
girl to a running zebra metamorphosis (b) Crawling monsteatlevitating
robot metamorphosis.

tains the destination animated mesh without any addititbalells. At this
point the controlled metamorphosis process is over.

We also perform smooth texture blending during the tramsgieps through
a simple blend of the original texture and a “cubemap” textiging the up-to-
date normal information (see fig. 114). Additionally, thartsition between
the animated mesh and the stand-in can be controlled by ghiveiap”, in-
dicating which parts of the mesh have to be projected / uepted first. This
allows the user to deform the meshes in a non-uniform way e.gollapse
the head of the zebra before its tail).

This hybrid model can be defined interactively using our apph de-
scribed in section 5.7. The interactive definition of a mademportant for
animators. As it provides them with a powerful tool for theation of a
transition effect which can be practically impossible togete in currently
existing BRep packages. The non-uniform time samplingufeatf the IC
framework* can be employed, at the intermediate transition phase dieror
to improve the continuity of the metamorphosis sequenceally the tran-
sition can be fine-tuned in near-real time and the resulteéggience can be
rendered in real-time on the GPU (Kravtsetval, 2010c).

24This subject was discussed in section 5.3.4
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5.5.3 Conclusions

In this section we have described a new approach to the gemrecd meta-
morphosis sequences between two animated meshes usingia myalel.
This hybrid model incorporates both BReps and FReps, atigpws to easily
switch between these representations depending on ous.nadike some
of the existing approaches to metamorphosis between stasbe® our ap-
proach provides an additional degree of freedom to artigtejshing them
with tools allowing them to control the metamorphosis pesceWe believe
that the incorporation of techniques such as this and thenyidg hybrid
modelling technology into existing and forthcoming moatgjlsoftware and
games engines will greatly enhance the ability of artistgeioerate complex
models and animations.

5.6 The “Andyhausen” experiment

In this section we present an example model demonstratimg b the main
features of the dynamic IC framework.

5.6.1 Model overview

The model consists of (see fig. 115):

e An “EgQg” consisting of the “Eggshell” and the “egg conterft€e fig.
116). The “Egg contents” consists of two different voluneespace
partitions. Each space partition represents the differexterials of the
“Egg’s” internal structure (i.e., the egg white and the egtky.

e A handle, a barrel and a piece of rope. One end of this rop¢astead
to the “Egg” and its other end is attached to a barrel that meoted
to the handle. Rotating the handle causes the barrel teerofdtis in
turn causes the “Egg” to either be lifted or lowered.

25The problem of metamorphosis between animated meshes waddressed in literature
before.
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Figure 115: The different states of the model.

e A second handle that is connected to the first handle. Wheoexaeof
the handles is rotated the other one is also rotated autcagti

¢ A liquid substance in which the “Egg” is being lowered.

e A girl called “Andy” (represented as a mesh) and her embedthattl-
in convolution surface see section 5.4.

Figure 116: The cells initially present in the IC.

The dynamic IC has three instances (see fig. 115):

e Firstthe handle is rotated, which results in the “Egg” bdovgered into
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the liquid until it touches its surface (see fig. 115 left).that moment
an intersection event between the liquid and the “Egg” isegated,
which results in the transition to the next IC instance.

e When the eggshell touches the liquid it starts to crack, wiesults
in the contents of the “Egg” being spilled into the liquid¢siey. 115
right).

e The mixture of the liquid and the egg contents leads to thaticne of
the “Andy” character, who then reaches out of the liquid tabgthe
second handle (see fig. 115 bottom). The movements of thiactea
are defined using keyframed animation. The movements of ithe e
bedded stand-in, represented by an F-Cell, are synchrbnigh the
movements of the character. Once the girl has grabbed thiehaie
starts rotating it in order to pull herself out of the liquid.

Figure 117: The first IC instance.

We assume that the “Egg” object is an implicit complex that kame
internal structure (e.g., eggshell and egg contents witerdnt types of at-
tributes defining the yolk and the egg whife). The ‘Egg* could be defined
outside this scene and we could just “insert” it into the entdC. This can be
done through a union operation between the ICs. Additignak introduce
a set of new dependency relations between the “Egg” and stmecells in
this scene. Intermediate phases of the first instance o€tlaed shown in fig.
117. The topological and dependency relations of this I@imse are shown
in figures 118, 119 and 120 respectively.

28In fact, it might have a skeleton, a convolution and a mestwieudo not reflect these in
the first instance of the complex, as they come into play anthé second instance.
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Ro imis Hook
0D cells pepe
C-cell P-cell
Rope
1D cells Cocell
2D cells Handle1 s. Barrels. Liquid s. | Eggshells. | Egec s Handle?2 s.
B-cell B-cell F-cell Fcell F-cell B-cell
3D cells Handle 1 Barrel Liquid | Eggshell | Egg contents Handle 2
B-cell B-cell Fcell Fcell Feell B-cell

Figure 118: The boundary relations of the first IC instance.

Ro imis Hook
0D cells pepe
C-cell P-cell
Rope
1D cells Cocell
2D cells Handle1 s. Barrels. Liquid s. | Eggshells. | Egec s Handle?2 s.
B-cell B-cell F-cell F-cell F-cell B-cell
3D cells Handle 1 Barrel Liquid | Eggshen | Eggc Handle2
B-cell B-cell F-cell F-cell Fcell B-cell

1

Figure 119: The containment relations of the first IC instance.

0.5 Handle 2 This relation will be removed and replaced by Liquid
» Hook-=Skeleton only when the egg has been —
Bcell A . Fcell
E melted into the liquid ;
Handle 1 Barrel — Raope — Hook |- Eggshell |—> Eggcontents
Bcall Bgall C-call Pgall Fgall Fgall

Figure 120: The dependency relations of the first IC instance.

The bi-directional dependency between the handles meatith#y should
always be rotated by the same anfle In this model we wish to establish
the bi-directional dependency relation between the twallesn This means

2INB A brief note regarding bi-directional and cyclic dependies: At the start of the
timeframe all dependency relations and cells are markedvatid. When we update a cell
it is marked as valid. After that we update its dependenscélVhen both dependent and
master cells are marked as valid, the dependency relatioveba them is also marked as
valid. The update is complete when all relations and ceN® heeen validated.
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that we first updat@dandlel (according to the priority of the dependency as
defined in 4.4), then its dependent cebaifel andhandle?). Then,handle2
issues an update dfandlel again (because dependency betwhandle2
andhandlelis still invalid). Handle1then updates its parameters according
to the new parameters dfandle2 The dependency betwedandle2 and
handlelis now validated. A re-evaluation of barrel is not issuedduse the
dependency relation betwebarrel andhandlelis already marked as valid.

Here we must emphasise the fact that the “Egg” can actuallsepee-
sented as an IC. The “Egg” has some internal structure (teflen the sec-
ond instance of the IC), but the user is not concerned withahthis stage.
The user simply adds the IC to the model (e.g., through a uopETation
between ICs). The framework in its turn retrieves all théscet the IC and
merges them in a new IC. This allows the user to work with senatiod-
els and tune them independently, thus providing a way forctieation of
modular components that can later be interchanged and cedpo a more
complex model. For instance, the resulting IC can also Bgmated into an-
other implicit complex or some cells can be arranged intdiacamplex that
can be exported/added to some library as an independeritingpimplex.

5.6.2 Model description

We present the description of the IC using the high level atative style
definition introduced in section 4.3.1. Following the poasly introduced
methodology, first we introduce the descriptions of thescilat will be used
in a number of the instances of the IC (see section 4.3):

CELLS {

Handl el {
type = B- CELL,;
shape = | oadMesh(...);
dim= 3D;
domain = {...}
/1the set of paranmeters/properties describing this cell and
//their initial values
paraneters {

onmega : REAL(0.0); // angular velocity
al pha : REAL(0.0); // angular rotation
}
REACTI ONS {

updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
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rotation.x = alpha; // update angle

}
/1 copy the description fromHandl el (all parans and eval uation
procedur es
Handl e2 <- Handl el {
REACTI ONS {
/'l custom se the behaviour (though in this exanple we
/1 don’t need to)
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{

rotation.x = alpha; // update angle

}

}

Barrel {

type = B- CELL,;

shape = | oadMesh(...);

dim= 3D

domain = {...}

/'l set of paraneters/properties describing this cell and

/1 their initial values

paraneters {
radius : REAL(...); // barrel radius
alpha : REAL(...); /'l barrel rotation angle
distTravelled : REAL(...); // distance travelled

}
REACTI ONS {
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{ di st Travel | ed = al pha * radi us;
}
}
}
Rope {

type = G CELL;
shape = LINESSEGVENT(...), ARC(...);
dim= 1D;
domain = {...};
/1l the set of paraneters/properties describing this cell and
/1 their initial values
paraneters {
length : REAL(...); // the overall length of the rope
i nactiveLength : REAL(...); // the dynam c change of the
/1 length of the rope
curLength : REAL(...); // the length of the rope frombarrel
endPoint : REAL(...); // end point of the rope

}
REACTI ONS {
update( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
curLength = length - inactivelLength;

/1 the current translation of this cell:
VECTOR3 trans = get Transl ation();
endPoi nt = VECTOR3( trans. X, trans.y-curlLength,trans. z);
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}

Hook {
type = P-CELL;
shape = PO NT(...);
dim= 0D
domain = {...}
/1 no additional paranmeters as the dependency for the transform
/'l paraneters is defined outside

}
Eggshel I {
type = F- CELL;
shape = frep:: TREE(...);
dim= 3D;
domain = {...}
/1 the set of paraneters/properties describing this cell
/] and their initial values
paraneters {
/1 how qui ckly the egg is being damaged
damageRate : REAL(...);
/1 how much the shell has been danmaged
damageState : REAL(...);
}
}

Egg-contents {
type = F-CELL;
shape = frep:: TREE(...);
dim= 3D
domain = {...}
/1 no additional paranmeters as the dependency for
/1 transformparanmeters is defined outside

}
Liquid {
type = F-CELL;
shape = frep:: TREE(...);
dim= 3D;
domain = {...}
REACTI ONS {
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
/'l change the phase of the noise or performsone other
/1 time-dependent action
}
}
}

Mel ting-egg {
type = T- CELL;

| /1 this cell is created using the blend between two existing
cells

shape = I C: : bl endCel | s(Liquid, Egg.-contents, ...);

dim= 3D;

domain = {...};
paraneters {

/1 how strongly the egg contents blend with the Iiquid
bl endRate : REAL();



5. Applications and results 228

REACTI ONS {
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)

/'l change bl endRat e

}

}
} 11 Melting-egg

} /1 CELLS

The description of the IC template and the IC instances aveiged in
Appendix C.

After describing the first instance we introduce the secmsthince (the
egg touching the surface, the shell starting to crack/enatide the contents
of the egg start blending with the liquid). The topologicaladependency
relations of this instance are shown in figures 121, 122 aBd-d®pectively.

Roj ints Hook
0D cells peps
C-cell P-cell
Rope
1D cells Cocell
2D cells Handle1s. Barrels. Liquid s. | Eggshells. | Egg s. Meltingeggs. | | Handle2s.
Bcell Bcell Fcell Fcell Fcell T-cell B-cell
3D cells Handle 1 Barrel Liquid | Eggshell | Egg Melting egg | Handle2
Bcell Bcell Fcell Fcell Fcell T-cell B-cell

Figure 121: The boundary relations of the second IC instance.

Ro ints Hook
0D cells PR
C-cell P-cell

1D cells Cocell
2D cells Handle1s. Barrels. Liquid s. hell s. contentss. | | Meltingeggs. | | Handle2s.
B-cell Bcell Fcell Fcell Fcell T-cell Bcell

3D cellg H2ndlel | | Barrel | | lLiguid | hell contents Melti Handle2
B-cell B-cell Fcell F-cell Fcell Tcell B-cell

Figure 122: The containment relations of the second IC instance.

At the lowest point one of the Andy’s hands comes out of theitiggub-
stance, grabs the handle and starts rotating it (see fig. TB4§ action leads
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05 This relation will be removed and replaced by
Handle 2

£ Hook-=Skeleton only when the egg has been Liquid
J: Becel meltedinto the liquid ; _— 5| Melting Fgg

T-cell

Handle 1 Barrel — Rope = Hook ] Eggshell |——{ Egg contents
B-cell B-cell C-cell Pocell Focell Feeall

“Implicitly established” dependencies because "Melling‘egé" cell
isthe result of the blend operation between the existing cells

Figure 123: The dependency relations of the second IC instance.

Figure 124: The third IC instance of the model.

to her rising from the liquid, since the handle is connectethé barrel via a
belt. The movement of the belt leads to the rotation of thedbar the oppo-
site direction. There is a “Liquid Andy” cell, which is an FIC&proximating
Andy that is driven by the same skeleton that is used to aeimady. “Lig-
uid Andy” allows us to model the interaction between the aiegd BRep
model and the liquid, i.e., the viscous behaviour of theitidisticking” to
Andy. This state of our dynamic model is reflected in the th@dnstance.
This is almost the same as the second one. Only we now have aitcesar
dependency caused by the dependency relation betweenlth®ndy and
handle2 The idea here is that we assign a higher priority to the degecy
between the cellandy andhandle2than the priority we assign to the depen-
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dency betweehandle2andhandlel Thus the update dfandlelaccording

to its dependency onandle2will be the last evaluation performed in the IC

28 This means thatandlel will be synchronised with the state baindle2

The cell “Eggshell” no longer exists and there is no depeogé&etween the

cell egg liquid and thehook. We add a dependency between tiook and

the skeleton instead.

The boundary and dependency relations of this instancehaxersin fig-

ures 125 and 126 respectively.

Rope points Hook Skeleton points Andys. Meltingeggs. (| Handle2 s.
Ccell P-cell Ccell B-cell T-cell B-cell
Rope Skeketon Andy Melting epg | Handle 2
C-cell C-cell B-cell T-cell B-cell

Handle 1 s. Barrel 5. Liquid s. Egg contents s. Liquid Andy 5.

B-cell B-cell F-cell Fell F-cell
Handle 1 Barrel Liquid Egg contents Liquid Andy
B-cell B-cell Fcell F-cell F-cell

Figure 125: The boundary relations of the third IC instance.

Additional modifications of “Andy’s” stand-in can also beroduced (e.g.

a metamorphosis of her limbs from a mermaid to a human lowey loo

something similar). The full model definition allows us tongeate an ani-

mation sequence reflecting all the intermediate stateseofrtbdel (see fig.

115).

5.6.3 Conclusions

This example model demonstrates the following features®fdynamic IC

framework:

28.e. all dependencies with higher priorities are validdiest. This allows the user to
have some control over the sequence of the performed actions
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0.5

Handle 2 |€— Andy <€

B-ceil B-ceil
Handle 1 J—) Barrel > Rope —> Hook > Skeleton  —

B-celi B-cell Croell Fcell Cheell
Egg contents | *
Fogll —Ir—|_> Melting_egg Liquid Andy |€-
I
_:_I_') T-celf Fceil
I
Liquid ! | |
1
Fecell 1 ! !
1 : I} \I/ \l’
1

1
1 Liquid_on_Andy

I
“Implicitly established” dependencie’s because !
“Melting_egg” and ‘“Liquid_on_Andy” are the !
results of the blend operation between the
existing cells

T-ceil

Figure 126: The dependency relations of the third IC instance.

1. The use of a model that utilises hybrid representatiorisding FReps
(the Egg, the liquid and the liquid mixed with the egg consgratnd
B-Reps (Andy and the barrel).

2. The use of multidimensional cells (OD hook, 1D rope, 2D YAsdrface
model, volumetric 3D egg, etc.).

3. The representation of volumetric heterogeneous strestand the re-
lations between them (i.e. the egg contents located ins&ledgshell).

4. The unified dependencies between the cells with the yhbilitontrol
the order of their evaluation (i.e. the bi-directional degency relation
between the handles and the composite dependency cycledietive
cells).

5. The volumetric attributes assigned to a subset of the pe#isent in the
model (i.e. the volumetric heterogeneous material desigyithe egg
contents and its mixture with the liquid).

This example demonstrates that the dynamic IC framewodwallus to
exploit all the advantages of traditional animation tecjueis to define time-
dependent hybrid models of heterogeneous objects.
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5.7 An interactive modeller for the definition of volumetric
hybrid models

It is apparent that the textual description of an IC-basedi@hoan easily
become rather large. Besides, a textual description of tbdeinis error-
prone and requires certain technical skills from the madelhis makes ICs
less accessible to a wide group of artists who could benefit the features
provided by the dynamic IC framework. Thus, a simpler metbbchodel
definition will have to be provided, so that a wider audienoeld gain access
to the capabilities of the IC and FRep frameworks. As a comsece, users
of varying levels of ability would be given the opportunity &xperiment
with the framework and to create models of varying complex& custom
GUI built around the concepts of ICs could be designed toideoa way to
create and to manipulate certain aspects of a hybrid modah ieasy way.
A full-blown interactive modeller based on the concepts ©$ is a large-
scale project and is outside of the scope of this thesis. Buiguthe APIs
described in sections 4.5 and 4.6 we are able to provide threwith a set
of tools to define certain types of cells and their behaviodrgieneric GUI
of existing third party software packages could also be tigedanipulate a
hybrid model. In this case we need to provide an intermedbger between
the IC API and the specific API of the modelling application wish to
extend as was described in section 4.6.4.

5.7.1 General description

As a proof of concept we have chosen to incorporate FRep rimagleapabil-
ities into the Autodesk) Maya™ software package (Autodesk, 2011a). This
package is widely used by professional artists for proje€tgarying com-
plexities. It provides a set of tools for surface modellifog,rigging and both
for the keyframed and the procedural animation coupled plitysical mod-
elling capabilities. May&” is a highly extensible platform and it provides a
flexible way to develop custom plug-ins.

We have implemented a set of Md¥aplug-ins which can be used for the
definition of an FRep tree of F-Cells.
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Figure 127: The FRep shelf added to Maya.

The user can manipulate the FRep model through a custom nuelad a
to Maya (see fig. 127). A set of FRep primitives and operatayesavailable
to the user. Added FRep primitives are shown in Maya in thenfof proxy
wireframe objects which can be manipulated as any other Maytin object
(see fig. 128). The FRep primitives are also shown in the Beceécyclic
Graph (DAG), which reflects all geometric objects preserthascene (see
left of 128). This provides the user with the means of marpad) the model
using visual metaphors. This means that the user is notrestjto have deep
understanding of 3D geometry or FRep modelling. More exqneed users
still have access to the FRep tree, which can be modified oftythiging the
Maya Dependency Graph (DG) as illustrated in fig. 129. Theleeng of
the proxy primitives can be disabled at will at any given timerder to gain
better understanding of the intermediate shape (see fi@@0¥ 1n general
the model is modified through the parameters available fcn €Rep entity.
Fig. 131 illustrates the set of parameters available forblleading union
operation. The modification of any parameter results in ghevaluation of
the FRep model and in the subsequent rendering of the megsiiape. Ad-
ditionally, the values of these parameters can be animated) uhe set of
techniques available in Maya (see fig. 132). This allows ther tio create
complex time-variant FRep models in a relatively easy walye Pproduced
time-dependent shapes can then be rendered using thevaibébée in Maya
or be exported elsewhere. For instance, the produced adnnaddels can
be exported for real-time playback on the GPU (see detagdatien 5.7.2).

Fig. 133 illustrates a model produced in Maya using our FReg-m.
It is hard to estimate the time it would require to define thisdel through
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Figure 130: Two rendering options in Maya: (a) The rendering of proxy
primitives is enabled, (b) The rendering of proxy primigve disabled.
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Figure 131: The parameters available for the blending union operation.
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Figure 132: Animating the available parameters of FRep entities usieg t
Maya animation tools.

Figure 133: Example of an FRep model created within Maya shown from
different angles.
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Figure 134: An overview of the XML description of the model shown in
figure 133.

textual description. The definition of this FRep model in ZML format is
depicted in fig 134. This FRep model consists of 250 FRepiestiB4 of
which are FRep primitives (see fig. 135). This particular pReodel was
created using our Maya plug-in in approximately three hourkis model
was defined iteratively while using low-resoluti@mendering in order to get
a visual impression of the resulting shape on the fly. The fieallt was
rendered with a high-resolution discretisation of the nhod@is required a
lengthy evaluation procedure. It is important to note tietreé is no need
to perform polygonisation of the entire model during the elbdg process.
The user can adjust the bounding volume around the regiarierest during
any particular stage of a modelling operation. Only the debk region of
space would then be updated when any modification to the FRefelns
performed. This can help us reduce significantly the evalnaimes during
the modelling process.

We also provide additional tools for 2D modelling. The usan cetrieve
an image of the scalar field of slices of a specific FRep obfsiditionally a

29In the current implementation we use polygonisation (seé@®5.7.2) in order to ren-
der the resulting shapes.



5. Applications and results 238

Figure 135: The FRep tree of the model shown in figure 133.

set of slices can be generated for rendering of space-tindeisn(see sections
3.4.2 and 5.3) as was shown in figures 93 and 95.

We also provide the user with a set of tools for real-time affdiree ren-
dering of the produced models using procedurally-baseddriex techniques.
These tools are crucial in the world of computer animatiah\dasual effects,
where additional detail can be added to a three-dimensanjakt through
a set of high-resolution 2D images. Figure 136 illustratestaof examples
rendered using some available textures. It is importanote that the user is
not required to perform traditional parametrisation of gle@metric shape in
order to create the UV mapping commonly required for theuteng of BRep
objects.

The majority of the examples and illustrations providediis thesis were
produced using Maya extended by our plug-ins. Our Maya FRegetfter
has evolved into a powerful modelling system which can bel biseusers of
varying abilities.
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Figure 136: Examples of volumetric models produced using our modeller.

5.7.2 Implementation overview

In our current work the Dependency Graph (DG) of Ma&y#s used in order
to build an FRep tree for F-Cells. This is needed because Naigamostly
oriented towards BRep modelling, while we want to provide tiser with
a similar functionality for the definition of F-Cells. The D@&lows us to
establish connections between arbitrary nodes via theibattes. We need
to provide a set of Dependency Graph nodes representingntire set of
FRep entities (see fig. 62 and 63). These custom DG nodesrmeplean
intermediate layer, as was discussed in section 4.6.4. ateaneters of each
entity available to the user need to be exposed separaielygh MayaM
attributes. The DG is only used to provide topological infation for the
FRep API. An intermediate layer is used to retrieve the griajpdrmation
from Maya™ in order to set up the tree using the FRep API. All operations
are then performed within the FRep APl and M&yas only used to render
the final results (see fig. 136). Rendering is performed tncine poly-
gonisation of the FRep object at a specified iso-level. Ttex aan choose
between the regular Marching Cubes algorithm (LorensenClime, 1987)
or one of the feature-preserving surface extraction dlgms (Kobbelet al.,
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2001) available, as demonstrated in fig. 137. We have alstemgnted
an adaptive iterative polygonisation method which allowgaisignificantly
reduce the time required for surface extraction.

The implementation of the system described in section 4&ig:ificantly
simplifies the process of adding new FRep entities to our Mdyg-in. An
intermediate translator produces the code necessaryddrasic integration
of our custom entities into Maya using the Maya API. So thatdbveloper
concentrates on the implementation of the actual entitigsmour APIs. The
high-level description of the entities is then used to paedMaya specific
code, which is not directly related to the FRep evaluatiatedure.

This allows us to solve modelling and animation problemscivlare next
to impossible to overcome using the available set of toasgmt in this pack-
age. The produced models can be exported to HyperFun or tougtem
XML format described in section 4.6.5. The models seridliae XML files
can then be loaded in a standalone FRep viewer or be usedtéochange
with other applications extended with FRep modelling capads through
the FRep API. Another interesting option is the export of thedel to a
CUDA kernel (see section 4.6.8) for its evaluation on a GPhis&llows
us to significantly improve the performance of model evatugtwhich is es-
pecially important for the rendering of animated models. NWiee provided
details regarding the GPU implementation and its appbcatin (Pasket al.,
2010; Kravtsowt al., 2010b,c).

Finally, interactively defined F-Cells, animated B-CeltelaC-Cells can
easily be integrated into an IC-based model as outlineddtise4.6.7.

5.7.3 Future work

Above we have presented a description of the integrationuoft@ols into
the Maya animation package. Other popular packages clyr@rdilable in
the marketplace could also be extended in a similar mannar.inStance,
Softimage (Autodesk, 2011b) or Houdini (Side Effects Safey 2011) also
have a node based dependency system. This means that tiratiote of the
FRep and certain IC features could be done using a similaioapp as the
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@) (b)

Figure 137: The FRep castle model: (a) Using the regular Marching Cubes
algorithm, (b) Using the Marching Cubes algorithm with ppeicessing ex-
tracting sharp features.



5. Applications and results 242

dz [ —— | I srebupebeetion
BondPaers [0 [07_[15 _ Pobpts
e (-

RS 5

32BRBY

RAAARARAL LS TSR ARl 2201

5 6 D -
o] i
— - [Ty

H h InputDutput 1
pergrey T | | blendiiadza | i | gathet [ >

3]
spherehlode: [spherehode i
)

I Caching =]
Hode State [ Momal -
Certer [0.000
Center'y {0.000
Cenerz 000
Input% 0000
Inputy 0000
inputz [0000
Bandi U757

Bound Y [0553
BoundZ [1.448
Inf foooo
ouf oo

K1
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Figure 139: Scanned voxel data of a patient blended with FRep entities.

one we used for Maya. These packages have a large user base diffierent
industries and their capabilities are constantly beingroved.

The incorporation of the functionality provided by the IC IARto existing
software packages decreases the learning curve for theTuseuser is free
to produce an animation sequence in a way that he is accudtanweithin
a familiar software environment. Additionally, this allews to integrate IC
models into complex scenes created within existing packageur Maya
plug-ins are currently used by the students at the Natioeatr@ for Com-
puter Animation at Bournemouth University. In the futuredk tools can be
used for medical applications (see figure 139) and 3D pgrdipplications
(see figure 140).

We plan to further improve this plug-in, as we believe thahmfuture our
FRep tools will attract more users from both academia andsitry.

5.8 Conclusions

In this chapter we have presented a number of examples aratiggnts
of varying complexity. First, we presented two simple exispn order to
illustrate the methodology of the dynamic hybrid model d&ébn. After pre-
senting these illustrative examples we have described ef saisting prac-
tical problems which were resolved using dynamic hybridtirdimensional



5. Applications and results 244

Figure 140: Examples of rapidly prototyped (through 3D printing) FRep
objects defined using the HyperFun package.

models. We have presented an improved solution to the probfemeta-
morphosis between FRep objects using a mixed-dimensignaldic model.
Next, we have outlined our solution to the problem of modelinteractions
between animated meshes and viscous objects using oudmybdel. As we
have demonstrated, our approach of using the “stand-imsbeaxtended to
a set of other modelling problems, such as two-way hybridattar mod-
elling and animation, and partial metamorphosis of anichateracters. The
“ stand-ins” technique also allows us to model controlledanerphosis be-
tween animated characters. The metamorphosis procedgaavoodels in
different representations, so that we can benefit from tarstdges of each
of the utilised representations. The “Andyhaussen” expent demonstrated
all the advantages of the proposed dynamic IC framework. \&ewable
to model interactions between multidimensional dynamietogeneous ob-
jects using a set of IC instances for the representation ohghrid model.
We have also presented a description of our prototype imgréation of an
interactive modeller that is used for the definition of coexpllynamic mod-
els.

From the discussion in this chapter we can see that the hyiwaklling
approach has already allowed us to solve a number of chaligpgoblems.
Future research in this direction promises to provide ansteea number of
as yet unanswered questions. We strongly believe that togporation of
the proposed techniques and techniques yet to be develtzdre based
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on hybrid modelling concepts, into existing modelling s@fte and game
engines will greatly enhance the functionality of theseteys. This will
result in a new degree of creative freedom and will improver @xperience
in a number of application areas.
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6 Conclusions and future work

First of all let us summarise the topics covered in this thesi

In Chapter 1, we have presented a general overview of thecuajea.
This overview included the outline of existing approacltethe modelling of
static and dynamic objects. We have also outlined a set sfiegiissues and
challenges in this area.

In Chapter 2, we have presented related work and we haveybdefl
scribed existing model representations. We discussed diiengages and
disadvantages of the various representations togethbrthgir application
areas. The Implicit Complexes (IC) framework was introdlias a common
platform allowing us to incorporate all the representatiwithin one hybrid
model. We have provided a survey of the existing animatichrigjues and
methods used for the definition of time-dependent modelg. prasentation
of this preliminary material was essential in order to jiystihe necessity for
the extension of the IC framework so that we could use it ferdéfinition of
time-variant heterogeneous objects.

In Chapter 3, we have introduced a new Dynamic IC frameworikst,F
we have extended the previously available IC Frameworkutjinahe new
definitions of entities required for the description of a dgmc hybrid model.
Secondly, we have introduced new notions allowing us to defia structural
and the parametric states of the entire dynamic eventiuii@emodel. Ad-
ditionally, we have introduced a set of extensions to thestaotive Hyper-
volume Framework (CHF). The CHF is based on the Functionésgmtation
(FRep) and is incorporated into the dynamic IC frameworkyjlg an im-
portant part in the definition of multidimensional time-iant heterogeneous
objects.

In Chapter 4, after the introduction of our new theoreticahfework, we
have described our approach to the system design and thernmaptation of
the practical tools allowing us to work with dynamic IC masleM/e have
mapped a set of notions available in the IC framework to a sehtities in
an Object-Oriented Programming (OOP) style, thus makimgsier for the
user to map a conceptual dynamic hybrid model to a practiethition of
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an IC-based model ready for evaluation. Additionally, wgenpresented a
methodology, which can be used as a guide for the breakdowrcomplex
hybrid model into a set of components and a set of links batveem. A
new notation and a new high-level language designed fordfirition of dy-
namic hybrid models was introduced in the same chapter. [&hguage is
built on top of the IC API, which allows us to perform the eation of the
hybrid model. The IC API can be used by other applicationss froviding
them with hybrid modelling capabilities. We have preseradnteakdown of
the steps required for the evaluation of the IC-based matkixge have dis-
cussed the majority of the technically challenging aspetthe evaluation
procedure. This information is necessary for the practioglementation of
the framework. Finally, we have introduced a new FRep APIlctviis nec-
essary for the integration of the Constructive Hypervolufnemework into
the dynamic IC framework. This FRep API may also be used iaddently
of the ICs, thus providing a wide range of users of varyinditzds with a set
of tools required for full-blown FRep modelling unavailatdisewhere.

In Chapter 5, after the definitions of theoretical and tecaihnovelties,
we have provided a set of practical solutions to a number ofvknprob-
lems. These include the hybrid modelling of a set of simpleadyic ob-
jects, the modelling of a multidimensional metamorphogbgects defined
in the space-time domain and the physically-inspired mModgof the inter-
actions between dynamic meshes and viscoelastic substavweehave also
presented our solution to the complex problem of metamaighzetween
animated meshes using our hybrid modelling approach. We tascribed
a case study demonstrating a number of features of the 1Gfvank. This
case study features the interaction of hybrid multidimenai time-variant
objects, which are defined together with a set of dynamiciogla between
them and their volumetric properties that are changing trer. Finally, we
have described the set of tools we have developed throughttdgration of
our APIs into existing commercial 3D modelling packagesedétools allow
us to take advantage of both the available multi-core CPUsGIUS, signif-
icantly improving the performance of the hybrid model ewdilon process.

There is still ample room for the further improvement of thy@mamic IC
framework. More attention needs to be paid to concurreatattion between
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the IC entities and to the definition of complex event-dridgnamic models.
Additional work is required for the further implementatiofn the IC API

and the FRep API. We plan to finish the full implementationha&f proposed
language designed for the definition of dynamic IC models.wiald also
like to further investigate the visual aspects of hybrid glbdg. A new set
of tools built on top of the IC API should be made easily acitésso a set of
users of varying abilities, through the combination of thegmsed high-level
model definition language and the set of visual metaphorisda through
the advanced GUI. We are also hoping to conduct an in-deptsiigation
of the advantages of dynamic IC models in a number of physioallation

applications.

We believe that the incorporation of the dynamic IC framdwand the
underlying hybrid modelling technology into existing amdthcoming mod-
elling software and game engines will significantly enhathesfunctionality
of these systems. This will also greatly enhance the mogiédibg capability
of the artistic community.

6.1 Contributions

In this thesis we have presented the results of our researalnybrid mod-
elling of dynamic heterogeneous objects. Here we summarrsgmber of
main contributions of this thesis:

e The introduction of a new Dynamic IC framework. This wasiailly
achieved through the extension of the previously availéBl&rame-
work and through the subsequent introduction of the new itiefirs
required for the description of a dynamic hybrid model. Tehaswly
introduced notions allowed us to define the structural argptiramet-
ric states of the entire dynamic IC model. The definition a& ty-
namic behaviour of the model was achieved through the caatibim
of procedural time-dependent model definitions, based entedriven
dynamics, together with some widely-used traditional kayfe-based
approaches. This provided us with the means of describingptax
behaviours of a model in a relatively simple way.
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e The introduction of a set of extensions to the Constructiypevol-
ume Framework (CHF). These new extensions improved thebdapa
ities of the CHF required for multidimensional time-vatidieteroge-
neous object modelling.

e The introduction of a new high-level domain-specific langgiauit-
able for the definition of the introduced dynamic hybrid misdd his
domain-specific language allows us to define complex dynaghcid
models in a relatively easy way using all the notions intietUfor dy-
namic IC-based models. This was achieved through the mgmpia
set of notions available in the IC framework to a set of esgitin an
Object-Oriented Programming (OOP) paradigm. The textafhdion
of the model allows us to directly map all theoretical corisefpom
the dynamic IC framework and from the CHF to a set of OOP-estit
This significantly simplifies the process of the mapping obaceptual
dynamic hybrid model to a practical definition of an IC-baseddel
which can be evaluated.

e The design and the development of the software tools, nathelyC
API, allows us to work with dynamic IC models. The IC API allpws
to perform the actual evaluation of the dynamic hybrid mdideded on
its valid description. We presented a discussion relatindpé design
and internal mechanisms of the IC API. The high-level langale-
scribed above, is based on the functionality introducecheyl€ API.
The IC API can also be used by other applications, thus proyithem
with hybrid modelling capabilities.

e The design and implementation of a new FRep API. This API ceae
sary for the integration of the FReps and of the CHF into theadyic
IC framework. The FRep API allows us to realise the full poign
of the Function Representation unlike previously avaddiRep tools.
This FRep API may also be used independently of the ICs, ttaxsg
ing a wide range of users of varying abilities with a set ot$sequired
for full-blown FRep modelling not previously available.idtimportant
to note that we have also presented a detailed descriptitwe girocess
required in order to introduce, with relative ease, furihggrovements
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and extensions to the FRep API, independently of the uniderigoft-
ware or hardware platforms being used.

e The incorporation of the IC and FRep modelling features th&opop-
ular animation and modelling software package Autod@dWaya™.
Apart from providing the user with a set of new features irdéed
into a familiar environment, we presented a detailed dpsoni of the
generic system that can be used for the integration of ous AiRb
third-party software packages. This approach simplifiesitibegra-
tion process significantly, thus allowing us to perform awdically
the bulk of the integration and maintenance procedures.

e The introduction of our novel approach based on the concepho
imated implicit “stand-ins”. The description of our methmtluded
the approximation procedures, the method of synchrooisatnd the
physically-inspired emulation of viscoelastic behavioby using ge-
ometric methods alone. The proposed approach allows usiie ao
set of known problems in computer graphics. These probleciade
modelling of the interactions between animated meshesiquid sub-
stances, partial and full metamorphosis of animated chensac

e The description of hybrid models which illustrated the adages of
our dynamic IC framework. Our experiments with hybrid madimon-
strated the possibility of the interaction of hybrid muitigensional
time-variant objects, defined within one hybrid model. Reles be-
tween these objects and their volumetric properties avevalll to change
over time.

e The extensions introduced to the space-time blending teabnwhich
provide the user with a higher level of control over the meigvhosis
process through the inclusion of additional means of céntro

e The implementation and the discussion of current and futnpgove-
ments in performance required for faster evaluation of dyinaC-
based hybrid models and of pure CHF models using both theratlyr
available CPUs and the GPUs.
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6.2 Future work

There is still ample room for the further improvement of thanamic IC
framework.

First of all, more attention needs to be paid to the concuirgaraction
between IC entities and to the definition of complex eventear dynamic
models. Further investigation needs to take place regautthi@ integration
of simulation capabilities into the dynamic IC framework.d&eper under-
standing of the simulation requirements, specific to varigpplication areas,
may require the introduction of new concepts and notiorstime framework.
At the moment it is obvious that even simple geometric cfasdion opera-
tions, such as intersection tests or point membershipifitagsns, within a
hybrid model require additional consideration becausé@tbomplexity and
efficiency of these tasks when dealing with hybrid modelsdu®b classifica-
tion operations can significantly simplify the definitiondatine validation of
dynamic hybrid models.

Additional work is required for a more complete implemeittatof both
the IC APl and the FRep API. We plan to conclude the full imptetation
of the proposed language designed for the definition of dym&@models
and to further extend the APIs and the DSLs built on top ofé¢htaking into
account the modifications of the theoretical framework.

We would also like to further investigate the visual aspettsybrid mod-
elling. A new set of tools built on top of the IC API should be draeasily
accessible to the users of varying abilities, through thekdoation of the
proposed high-level model definition language and the sasofl metaphors
available through the advanced GUI.

It is also desirable to develop more experimental modelsraallworld
case studies that are defined using the IC framework. We soehabing to
conduct an in-depth investigation of the advantages of mlyoidC models in
a number of existing physical simulation applications.

Another important aspect of hybrid modelling is the rendgrof the re-
sulting model. Although we have described a number of avkaland pro-
posed techniques both on the CPUs and on the GPUSs, theré &lsti of
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room for improvement. The efficient rendering of hybrid misda shorter
times allows for faster iterations and for higher accesisjtof the dynamic
IC features to a wider audience. This means that robust rergdeas to be
one of the priorities in further research.

An important aspect of static and dynamic volumetric madglis that of
volumetric attributes. Due to time constraints, we havetbdonit ourselves
to a rather cursory examination of the Constructive Hypleire Framework
and of its advantages and of its applications. In the futuogenattention
needs to be paid to arbitrary volumetric attributes witlie tC framework.
This is crucial for physical simulation applications and fiee texturing ca-
pabilities of both static and dynamic shape modelling.

In conclusion, we believe that the incorporation of the dgitalC frame-
work and the underlying hybrid modelling technology intasting and forth-
coming modelling software and game engines will signifigaahhance the
functionality of these systems. This will also greatly emte the model-
building capability of both the scientific and the artistanemunities.
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A A detailed description of IC entities and their
components

The table presented in this section allows us to map all teer#tical con-
cepts presented in chapter 3 to a set of more practical tdnfegmation in
table 2 can be used as initial guidance for the implememtatidhe dynamic
IC framework.

Entity “Property” | Values/Range | Description
name
Timespan | Span *[REAL;REAL] | Defines a certain interval of
set of intervals | time.
Scale REAL The scale factor of this

time-span, defining the rate
at which time is advanced
within the span.

Time REAL Local time within this time
span that is updated in sync
with the global time. This
time is evaluated taking int

=)

account the scale factor and
the start of the current inte

val of time.
Global time| REAL Reference to global time.
ref This reference makes global

time available for any entity
present in the model at any
moment.

Event Name Unique string | Name of the event. Thi

U)

name can be used by other |C
entities in order to provide

}e )

—

reaction to a particular even
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Timespan

Timespan

Reflects the time-span over
which this event occurs. |If
the interval is unknown in ad

vance, only the initial time is
set to the time when the event
has started.

Parameters
(State
parameters

Vector, real etc

Any parameter of a prede-
fined type. These parameters
store values providing add|-
tional information about the
event.

Priority

REAL

The priority of this event af-
fecting the order in which it$
associated reactions will be
performed.

Cell

Type

B-Cell, F-Cell,
P-Cell, T-Cell,
P-Cell etc.

Type of the cell. The type of
the cell depends on the type
of representation used for the
definition of its shape (e.g.
boundary representation (B

Cell) or function representa
tion (F-Cell)).

Dimensio-
nality

0..40r0D..4D

The dimensionality of the
cell. Atthe moment the max

imal dimensionality is for ex-
plicitly time-dependent cells

(e.g. space-time blending).
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Shape

FRep API tree/
Set of BRep
primitives
(points, edges,
triangles)/ etc

272
An actual shape/point-set
This
can be an FRep tree, a mesh
with  all

contained in the cell.

\*ZJ

its components
registered using containment
relations or a composition
of elements in the case of|a
T-cell.

Local space
domain

[REAL;REAL]
~ Dimensional-

ity

A spatial domain enclosing
the current cell (or a boung
ing box).

Global
space
domain

[REAL;REAL]
~ Dimensional-

ity

do-
main but this domain is up|

Similar to the local

dated according to the cur

rent transformation parame
ters of the cell.

Parameters
(State
parameters

\ector, real, etc

Any parameter of a prede

D
1

fined type. These paramg

~+

ters provide a way to refleg
and modify the current state
of the cell over time. Thes

D

parameters can be changed in
reaction to or through the as-
signment of predefined anj-

mations.

Transform

Translation,
rotation, scale

Matrix

Transformation components
or a matrix used to trans-
form any point defined in &
local coordinate system of
cell. Transforms are prede-
fined parameters attached
each cell.
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Deformation Mapping A special mapping perform
ing a modification of the
point-set.

Name Unique string | A name can be used to iden-

tify a cell (e.g. to acces

[v2)

a particular cell of the com
plex.)

Reactions

Functions

A set of functions providing
reactions to certain events.

Priority

REAL

The priority of this cell that
is used to determine the or-
der of the cells evaluation.
Cells with a higher priority,
are evaluated before the cells
with lower a priority=°.

Lifespan

TIMESPAN

This defines the life span of @
cell (which can be infinite).

Attribute Dimensio-

1..N

Dimensionality of the at;

nality tribute. This can be an ar
bitrary number depending on
the type of the attribute.

Attribute Mapping func-| A function performing a

mapping tion mapping from the modelling

space to an attribute N

dimensional space.

30The global order of evaluation is also affected by a set obdédpncy relations defined

by the user.
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Parameters
(State
parameters

\ector, real, etc

274

Any parameter of a prede
fined type. These paramete
provide a way to reflect an
modify the current state o
the attribute over time. Thes
parameters can be changed
reaction to or through the as
signment of predefined an
mations.

Transform

Translation,
rotation, scale

Matrix

Transformation component
or a matrix used to transforr
any point defined in a loca

coordinate system of the at-

tribute. Transforms are pre
defined parameters attach
to each attribute.

>

ed

Deformation

Mapping

A special mapping perform
ing a modification of the
point-set.

Name

Unique string

A name can be used to ide
tify an attribute (e.g. to ac
cess a particular attribute ¢
the complex.)

nf

Reactions

Functions

A set of functions providing
reactions to certain events.

Priority

REAL

The priority of an attribute
that can be used to dete
mine the order of the attribut
evaluation. Attributes with &
higher priority are evaluate
before attributes with a lowe
priority 3.

31The global order of evaluation is also affected by a set okdepncy relations defined

by the user.
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Lifespan TIMESPAN This defines the life span of
an attribute (which can be in-
finite).
INSTANCE| Cells Set of CELL | All the cells present in curt
entities rent instance of the IC. These
cells can interact using pa-
rameters.
Attributes | Set of ATTRI- | All the attributes present in
BUTE entities | current instance of the IQ.
The Attributes can interagt
using parameters.
Boundary/ | Set of cell pairs| Topological relations valig
contain- and optional within the current instance of
ment names an IC. Each relation consists
relations® of a pair of cells. Each of the
cells is present in the Cells
list.
Dependency Set of pairs of | Similar to previous relations.
relations cells parametensThese relations are used o
shapes, define various types of de-
attributes and | pendencies between IC enti-
optional names| ties. Dependent entities afre
evaluated after the entitigs
they depend on. Bidirec-
tional dependencies are re-
solved in a more sophisti-
cated way.
Attribute Set of (Attri- | A set of pairs associating at-
relations bute; cell refer-| tributes with certain cells de-
ence) pairs fined in the model.

32The number of mutual locations of the cells will grow fast doethe combinatorial
nature of their relations. The user should only define irstarand corresponding predicates
of interest to the particular task at hand.
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Predicate

Time-depender
Boolean
function

ItA predicate is a function o

time that returns a Boolean

value indicating whether th
current instance of an IC i
still valid (e.g. determin-
ing whether all relations spe
cific for the current IC re
main valid).

f

e
S

Reactions

Functions

A set of functions providing
reactions to certain events.

Name

Unique string

The name of the instance.

Lifespan

TIMESPAN

The life span of an instanc
(defined using global time).

Parameter
references

\ector, real, etc

References to paramete
meaningful  within  this
particular instance. Theg
parameters usually reflect th
state of the instance and c:
help us to better understar
the process taking plag
within the life span of this
instance.

e
an
nd

Space
domain

[REAL;REAL]?

The spatial domain used fq
the modelling of the curren
instance.

r

TEMPLA-
TE.IC

Cells

Set of CELL
entities

All the independent cells init

tially presentin the IC. Thes
are, for instance, B-Cells, H
Cells and others but not th
cells existing during differen
time intervals (these cells al
only present in the concret

IC instances).

e
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Boundary/ | Set of cell pairs| These relations contain rela-
contain- and optional tions valid within the current
ment names instance of an IC. Each re
relations lation consists of a pair 0

cells. Each cell is present ir
the Cells list.

Dependency Set of pairs of | Similar to previous relations.

relations cells parametersThese relations are used

shapes, define various types of de

attributes and | pendencies between IC enti

optional names| ties. Dependent entities afre
evaluated after the entitigs
they depend on. Bidireg
tional dependencies are r
solved in a more sophist
cated way.

Attributes | Set of ATTRI- | All the attributes present it

BUTE entities | the current instance of the
IC. The Attributes can intert
act using parameters.

Attribute A set of (Attri- | Set of pairs associating at-

relations bute; cell refer-| tributes with certain cells de

ence) pairs fined in the model.

Lifespan TIMESPAN The life span of the overall
IC. Can be thought of as the
time domain used for the a¢
tual modelling.
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Table 2: A list of dynamic IC entities and their properties.

Parameter | Vector, real, etq References to the parameters
references of the cells that have mean-
ing within the model. These
parameters usually reflect the
state of the model and can
help us to better understand
the processes taking place |in
the model.
Space [REAL;REAL]?| The maximum spatial dor
domain main used for modelling (this
can also be accessed by the
instances or cells).
MODEL INSTA- Set of IC in-| The IC instances present |n
NCES stances the model (only one of them
can be active at any given
moment of time).
Global time | REAL The global time currently
valid in a model.
Global [REAL;REAL]" | The global modelling do
space Dimensionality| main. The model is evaluated
domain within this domain.
Parameter | Set of currently] A dynamically modified set
references | active parame; of parameters that are ex-
ters posed at a particular moment
of time.
Modelling | Arbitrary Additional parameters defin-
context parameters ing the modelling context.
Events Set of EVENT | A set of custom events used
entities within this IC model.
Animations | Set of AN- | A set of predefined anima-
IMATION tions used within this 1C
entities model (see description of
ANIMATION below).
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There are supplementary methods available for the usert¢ordime any
intersections/collisions between the objects. These aegled to simplify

topological queries for dynamic objects (for instance, rdeo to find out

whether the objects are touching or intersecting each pther

Additionally, we need an animation entity (see table 3). sTémtity can

be used to define keyframe-based animation for any paraifieteit is “at-

tached” to that parameter). Animation can be defined withitGinstance

or can be applied over the entire modelling process. Foaimt, if we only

wish to apply the animation until the moment of time when thgots collide

and then we wish to switch to an alternative IC instance. As 15 another

instance has been activated, the animation specific to #wguis instance is

no longer applied to the parameter. If a different behavaduihe animation

is expected, it should be described explicitly.

U

D

Entity “Property” | Values/Range| Description
name
ANIMA- Keyframe | REAL The moments of time at
TION times which the key values of th
animation curve are defined.
Values Set of Param{ The values of the parame
eters (REAL /| ters for every moment of tim
VECTOR// ...)| stored inKeyframe times.
Additional | Set of Param+ The values of additional pa
values eters (REAL /| rameters for every moment
VECTOR/...)| of time stored inKeyframe
times. These values can he
used to provide additional in
formation required for spe
cific types of interpolation.
Time range | [REAL;REAL]| The time range of this anima
tion (derived fronKeyframe
times).
Local time | REAL The local/current time within

the range of this animation.
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A

Loop,...

Interpolation Linear, var-| The method or type of func

type ious cubic| tion used to retrieve interme
curves diate values over time.

Out of Constant, The interpolation type for

range type | Linear, Mirror, | time values outside the Tim

range (e.g. in order to gai
access to the last evaluat
parameter value, loop animg
tion, mirror a curve, etc).

19" —
o

Table 3: The components of the animation entity.
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B IC model description of a “Stand-in” case study

Description of persistent cells and the first IC instance gtion 4.3.1):

TI MESPANS {
/1 tinme-span used for wal king out animation (initialised |ater)
wal kTi mespan : Tl MESPAN
/1 tinme-span used for the animation of blending parans
/1 (initialised later):
bl endTi mespan : Tl MESPAN,;

}

/1 description of persistent cells
CELLS {

Box {

}

type = F- CELL;
shape = frep:: TREE(...)

dim= 3D
domain = {...};
/1 this is a static cell, no reaction provided

/1 used to deform Andy and drive convol ution

Skel eton {
type = G CELL;
/1 this cell is created using union between 2 existing cells
shape = | oadSegnent sHi erarchy(...);
dim= 3D

}

domain = {...}
paraneters {
/] the actual transforns (associated with every vertex
/1 in the list of segnents)
matrices : array of TRANSFORM
/1 the initial shape of the skeleton in neutral pose
initial Shape : SHAPE(shape);
}
REACTI ONS {
/| update the shape using defined ani mation
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
/1 use the externally defined animation to retrieve a
/1 set of up-to-date transforns (animation is played
/'l depending on the external tinme-span)
matrices = ani mati ons( "skel etonAni ' ).transforns(
wal kTi mespan.t );
/1 use the up-to-date transforns to nodify current
/'l position of the skeleton
shape = updat eShape(i niti al Shape
matrices( wal kKTi mespan.t ) );

}

/1 mesh
Andy {

type = B- CELL,;
shape = | oadMesh(...);
dim= 3D
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domain = {...}
paraneters {

/'l skeleton that can be provided to performdeformation
transforns : array of TRANSFORM

}
REACTI ONS {
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
/1 get access to internal parans of BRep nopdel
BREP_CELL brepCell = getBCell ();
/1 define skeleton using current up-to-date transform
brepCel | . set Def ormation( transforns );
}
}

}
/] "Stand-in" maki ng Andy nodel bl endabl e
Li qui d-Andy {
type = F- CELL;
shape = frep:: TREE(...);
dim= 3D;
domain = {...}
paraneters {
/'l skeleton that can be provided to define convol ution
skeleton : SHAPE;

}
REACTI ONS {
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
/'l get access to internal params of FRep nodel
FREP_CELL frepCell = getFCell();
/1 subnmit skeleton fromthis cell to FRep tree
frepCel | . get FRepPar an( "skel eton" ).set( "skeleton" );
}
}

}

/'l viscous liquid glued to Andy (result of bl end)
Li qui d_on_Andy {
type = T- CELL;
/1 this cell is created using union between 2 existing cells
/luse the internal paraneter to control the amount of bl ending
shape = I C: : bl endCel | s(Box, Liquid-Andy, blendDensity,...);
dim= 3D;
domain = {...}
/1 the paranmeters controlling the bl ending
paraneters {
/1 the anmount of bl ending
bl endDensity : REAL(...);
}
}

} /1 CELLS

/1 this is an ICin which all basic relations remain unchanged
TEMPLATE.I C1 : TEMPLATEL C {

/'l references to a set of earlier described cells
/] they exist in all instances in this exanple
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CELLS {
Box Skel et on Andy Li qui d_Andy Li qui d_.on_Andy;
}
/1 a set of relations between the cells/paraneters referenced
/1 in the CELLS section
RELATI ONS {
/1 list of containnent relations
contai nment {
/1 can define them automatically when defining the shape
/1 or explicitly

}

/1 list of boundary relations

boundary {
/1 can define them automatically when defining the shape
/1l or explicitly

}

/1 list of dependency relations between the paraneters
dependency {
/1l dependency and its priority (optional) - default
/'l priority is 1.0
Skel eton. matrices Andy.transforns;
Skel et on. shape Li qui d_Andy. skel et on;
}
} /1 RELATI ONS
/1 attaching attributes to cells
ATTRI BUTES {
/'l use external mapping describing attributes:
boxAttr = boxMapper 3DTo4D;
/1 volumetric definition of the liquid nateri al
liquidAttr = |iqui dVapper 3DTo4D;

/| establish relations between the cells
/] and attribute mappings
RELATI ONS {

Box boxAttr;

Li qui d_on_Andy | i qui dAttr;

}

}
} /1 TEMPLATEICL

paranmeters {
/'l show current blend density
Li qui d_on_Andy. bl endDensity bl endDensity;
/'l show position of the root bone of the skel eton
Skel eton. matrices[0] . position characterCenter;

}

/'l when Andy is still inside the box
ANDY_W THI NLBOX {

STATE_PARAMETERS {
/1 to know how cl ose the skeleton is to the box
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di st anceToBox di st ance;

}

/| paraneters of this instance

paraneters {
/1l distance between the skel eton and the box
// used to find out when the instance shoul d be di sabl ed
di st anceToBox : REAL

}
/'l references to a set of earlier described cells
CELLS {
/1 copy all the cells fromthe tenpl ate excl uding
/1 sonme of them
USE TEMPLATE.I C1. CELLS
}
/1 references to a set of earlier described cells
RELATI ONS {
dependency {
/'l copy all relations froma tenplate IC
USE TEMPLATE.lI C1. RELATI ONS. dependency;
}
contai nnent {
USE TEMPLATE.lI C1. RELATI ONS. cont ai nnent ;
}
boundary {
USE TEMPLATE.I C1. RELATI ONS. boundary;
}
}
/1 attaching attributes to cells
ATTRI BUTES {
USE TEMPLATE.I C1. ATTRI BUTES;
}
/'l events processed by the instance
REACTI ONS {
/1
init( REAL gl obal T)
{
/'l wal k span starts in this instance
wal kTi mespan. start();
}
/'l update distance
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
di stanceToBox = Box. donmi n. di st ance( Skel et on. cur Donmai n) ;
}
}
PREDI CATE {

/1 predicate used to find out if the instance is stil
/1 valid (can be based on tine or anything else within
/1 the scope of the instance)

bool eval uate( REAL gl obal T, REAL |ocal T, REAL dt)

{

return di stanceToBox < ...;
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}

}
} /1 ANDYW THI NLBOX

Second IC instance of the model:

/1 when Andy cane out of box
ANDY_OUT_OF_BOX {

STATE_PARAMETERS {

/1 to know how cl ose the skeleton is to the box
di st anceToBox di st ance;

/! see the anmount of bl end

Li qui d_on_Andy. bl endDensi ty anount O Bl end;

}

/1 paraneters of this instance
paraneters {
/1 distance between the skel eton and the box

// used to find out when the instance shoul d be di sabl ed
di st anceToBox : REAL

}
/'l references to a set of earlier described cells
CELLS {
/'l copy all the cells fromthe tenplate excl udi ng
/1 sonme of them
USE TEMPLATE.I C1. CELLS
REACTI ONS
{
/'l provide customreaction for the liquid
/1 start eroding the shell in this instance
Li qui d_on_Andy. updat e( REAL gl obal T, REAL |ocal T,
REAL |ifeT, REAL dt)
{
/1 make bl end coefficient proportional to the
/] distance between the skeleton and the |iquid box
bl endDensity = 1 / (di stanceToBox * di stanceToBox);
}
}
}
/1 references to a set of earlier described cells
RELATI ONS {

dependency {

/1 copy all relations froma tenplate IC
USE TEMPLATE.lI C1. RELATI ONS. dependency;

}

contai nnent {
USE TEMPLATE.LlI C1. RELATI ONS. cont ai nnment ;

}
boundary {

USE TEMPLATE| C1. RELATI ONS. boundary;
}
}

/1 attaching attributes to cells
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ATTRI BUTES {
USE TEMPLATE.l C1. ATTRI BUTES;
}
/'l events processed by the instance
REACTI ONS {
/'l update distance
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
/'l update distance to box
di stanceToBox = Box. domai n. di st ance( Skel et on. cur Donai n) ;
}
}
PREDI CATE {
/'l predicate used to find out if the instance is still
/1 valid (can be based on tine or anything else within
/'l the scope of the instance)
bool eval uate( REAL gl obal T, REAL |ocal T, REAL dt)
{
return di stanceToBox < ...;
}
}

} /1 ANDY_OUT_OF_BOX
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C IC description of “Andyhausen” experiment

The IC template for this model is defined as follows:

/1 this is an ICin which all basic relations remai n unchanged
TEMPLATEIC1 : TEMPLATE C {
/'l references to a set of earlier described cells
/1 they exist in all instances in this exanple
CELLS {
Handl el Handl e2 Barrel Rope Hook Egg.contents Liquid Melting_egg;
}
/1 a set of relations between the cells/paraneters referenced in
/1 the CELLS section
RELATI ONS {
/1 list of containnment relations
contai nment {

}

/1 list of boundary relations
boundary {

}

/1 list of dependency relations between the paraneters
dependency {

/1 dependency and its priority (optional) - default

/] priority is 1.0

Handl el. al pha Handl e2. al pha

Handl e2. al pha Handl el. al pha 0.5

Handl el. al pha Barrel . al pha;

Barrel . di st Travel | ed Rope.inactivelLengt h;

Rope. endPoi nt Hook. transformtranslation;

}
} /1 RELATI ONS

/1 attaching attributes to cells
ATTRI BUTES {

/'l use external mapping describing attributes:
liquidAttr = |iqui dMapper 3DTo4D;

/1 contains white and yol k distribution:
eggContentsAttr = eggMapper 3DTo4D;

/] establish relations between the cells and
/1 the attribute mappings
RELATI ONS {

Liquid liquidAttr;

Egg_contents eggContentsAttr;

}

}
} /1 TEMPLATE. C1

The first IC instance is defined in the following way :

/1 first instance of the IC
EGG.GO NG.DOMN {
STATE_PARAMETERS {

/1 to know how cl ose the egg has noved to the liquid
di stanceToLi qui d |i qui dToEggDi st ance
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}

/1 the paraneters of this instance
paraneters {
/1 period of time it takes to bring egg to the liquid
descentDuration : REAL(...);
/1 distance between the egg and the surface
di stanceToLiquid : REAL(...);

}
/'l references to a set of earlier described cells
CELLS {

/lcopy all the cells fromthe tenplate except the nelting egg
USE TEMPLATE.I C1. CELLS \ { Melting.egg };
Eggshel | ;

)/ cust om REACTI ONS of the referenced cells
/1 (i.e. procedures called)

REACTI ONS
{
/1 this one uses all default REACTIONS of the cells
}
}
/1 references to a set of earlier described cells
RELATI ONS {
dependency {
/'l copy all relations froma tenplate IC
USE TEMPLATE.lI C1. RELATI ONS. dependency
Hook. t ransf orm Egg_shel | . t ransf or m H ERARCHI CAL
Hook_egg_dependency;
Egg_shel | . transform Egg_cont ents. transf or m H ERARCHI CAL
Egg_cont ent s_dependency;
}
contai nnent {
USE TEMPLATE.lI C1. RELATI ONS. cont ai nnent ;
Eggshel | Eggcontents;
}
boundary {
USE TEMPLATE.l C. RELATI ONS. boundary;
Hook Eggshell; // eggshell attached to a hook
}
}
/1 attaching attributes to cells
ATTRI BUTES {

TEMPLATE.I C1. ATTRI BUTES;

/'l use external mapping describing attributes:
liquidAttr = |iqui dVapper 3DTo4D;

eggshel | Attr = eggShel | Mapper 3DTo4D;

/'l attach these attributes to sone cells now
RELATI ONS {

Liquid.attributes = liquidAttr;

Eggshel | . attri butes = eggshel | Attr;
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}
}
/'l events processed by the instance
REACTI ONS {
/1 initialisation, desctruction and update
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
/1 the angul ar velocity "omega" can be varied as well
Handl e. al pha += Handl e. onega * dt;
/1 evaluate distance to the liquid for the egg
di stanceTolLi qui d = Li qui d. donai n. di st ance(
Eggshel | . cur Donmai n) ;
}
}
PREDI CATE {
/1 predicate used to find out if the instance is still valid
/1 (can be based on tinme or anything else within the scope
/1 of the instance)
bool eval uate( REAL global T, REAL |ocal T, REAL dt)
{
/'l instance becones invalid when the eggshell touches
/1 the liquid
return !'Liquid.domain.islntersecti on(Eggshell.curDomain);
}
}

} /1 EGG.GO NG.DOWN

After describing the first IC instance we introduce the sedastance (the
egg touching the surface, the shell starting to crack/envtide the contents
of the egg starts blending with the liquid):

/1 second instance of the IC
EGG.ERCDI NG {

STATE_PARAMVETERS {
/'l show the state of the eggshell, while it’s active
Eggshel | . danageSt at e eggt ermi nati on
/1 blend rate to know how strOngly the contents have
/'l been bl ended
Mel ti ng_egg. bl endRat e nel t Rat e;

}

/1 the paranmeters of this instance
paraneters {

/1 period of time it takes to bring egg to the liquid
descentDuration : REAL(...);

}

/1l references to a set of earlier described cells
CELLS {

/1 copy all the cells fromthe tenplate except
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/1 the nelting egg
USE TEMPLATE.I C1. CELLS \ { };
Eggshel | ;

/1 cust om REACTI ONS of the referenced cells
/'l (i.e. procedures called)
REACTI ONS
{
/1 start eroding the shell in this instance
Eggshel | . updat e( REAL gl obal T, REAL |ocal T,
REAL |ifeT, REAL dt)

{
/1 get the F-Cell representing the egg
FREP_CELL frepCell = getFCell();
/'l eval uate how nuch the egg has been danaged:
danageState = |ifeT » dammgeRat e;
/'l use the danange state to nodify the noise
/'l subtracted fromthe surface:
/'l subtracted fromthe surface:
frepCel | . get FRepPar an( " noi sePar ant') . set (damageSt at e) ;
}
}
}
/'l references to a set of earlier described cells
RELATI ONS {

dependency {
/'l copy all relations froma tenplate IC
USE TEMPLATE.lI C1. RELATI ONS. dependency
Hook. transf orm Egg_shel | . t ransf or m H ERARCHI CAL
Hook_egg_dependency;
Egg_shel | . transf orm Egg_cont ents. transf or m H ERARCHI CAL
Egg_cont ent s_dependency;
}
contai nnent {
USE TEMPLATE.l C1. RELATI ONS. cont ai nnent ;
Eggshel | Eggcontents;

}
boundary {

USE TEMPLATE.I C. RELATI ONS. boundary;

Hook Eggshell; // eggshell attached to a hook
}

}

/] attaching attributes to cells
ATTRI BUTES {
TEMPLATE.I C1. ATTRI BUTES;
/1 use an external mapping describing attributes:
liquidAttr = |iqui dVapper 3DTo4D;
eggshel | Attr = eggShel | Mapper 3DTo4D;

// establish the relations between the cells and
/] attribute mappings
RELATI ONS {

Liquid l'iquidAttr;
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Eggshel | eggshel | Attr;

}
}
/'l events processed by the instance
REACTI ONS {
/1 initialisation, desctruction and update
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
/1 the angul ar velocity "omega" can be varied as well
Handl e. al pha += Handl e. onega * dt;
}
}
PREDI CATE {
/1 predicate used to find out if the instance is stil
/1 valid (can be based on tine or anything else within
/'l the scope of the instance)
bool eval uate( REAL gl obal T, REAL |ocal T, REAL dt)
{
/'l instance becones invalid when the eggshell conpletely
/1 sinks in the liquid
return ! Liquid.donain.islnside(Eggshell.curDomain);
}
}

} 11 EGG.ERODI NG

The third IC instance contains a circular dependency cabygettie de-
pendency relation between the caldy andhandle2 The cell “Eggshell”
does not exist any longer and there is no dependency betiveerltegg lig-
uid and thehook. We add a dependency between lloek and the skeleton

instead:
/1 when Andy cane out of the egg
ANDY_OUT {

STATE_PARAMETERS {
/'l how hi gh has andy pulled herself:
Andy. cur Domai n. Y andyHei ght;

}

/'l references to a set of earlier described cells
CELLS {

//copy all the cells fromthe tenplate

USE TEMPLATE.I C1. CELLS

/'l used to deform Andy and to drive the convol ution

Skel eton {
type = G CELL;
//this cell is created using union between 2 existing cells
shape = | oadSegnent sHi erarchy(...);

dim= 3D;
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donmein = {...}
REACTI ONS {
/1 update the shape using defined ani mation
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)

{
/'l use externally defined animation to retrieve
/1 current position of the skeleton
shape=ani mati ons( "skel etonAni nt' ). parans(l ocal T);
}
}
}
/'l mesh
Andy {
type = B- CELL,
shape = | oadMesh(...);
dim= 3D
donmin = {...}
paraneters {
/'l skeleton that can be provided to performdeformation
skel eton : array of TRANSFORM
}
REACTI ONS {
updat e( REAL gl obal T, REAL local T, REAL |ifeT, REAL dt)
{
/1 get access to internal parans of the BRep nopdel
BREP_CELL brepCell = getBCell ();
/1 define skel eton using current
/'l up-to-date transform
brepCel | . set Deformati on( "skel eton" );
}
}
}

/1 th e"Stand-in" naki ng Andy nodel bl endabl e
Li qui d_Andy {
type = F- CELL,
shape = frep:: TREE(...);
dim= 3D
donmin = {...}
paraneters {
/'l the skeleton that can be provided
/1 to define convolution
skel eton : array of VECTOR3;

}
REACTI ONS {
update( REAL global T, REAL |ocal T,
REAL |ifeT, REAL dt)
{
/1 get access to the internal parans of the FRep nodel
FREP_CELL frepCell = getFCell();
/] submt skeleton fromthis cell to FRep tree
frepCel | . get FRepPar an("skel eton") . set ("skel eton");
}
}

}

/1 viscous liquid glued to Andy (result of the bl end)
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Li qui d_on_Andy {
type = T- CELL;

/1 this cell is created using union

/1 between 2 existing cells

shape = I C : bl endCel I s(Mel tingegg, Liquid.onAndy, ...);
dim= 3D;

domain = {...}
/1 it doesn’'t have any behaviour as it is inplicitly
/I dependent on two other cells

}
/'l cust om REACTI ONS of the referenced cells
REACTI ONS
{
/1 this one uses all the default REACTIONS of the cells
}
}
/'l references to a set of earlier described cells
RELATI ONS {
dependency {
/1 copy all relations froma tenplate IC
/1 (but renove egg - hook dependency)
USE TEMPLATE.l C1. RELATI ONS. dependency \
{ Hook_egg._dependency Egg-cont ents_dependency}
/1 instead attach skeleton to the rope
Hook. t r ansf or m Skel et on. t r ansf or m H ERARCHI CAL
/'l the skel etons driving "both Andys"
Skel et on. shape Andy. skel et on
Skel et on. shape Li qui d_Andy. skel et on;
/1 the dependency between the hand on the skel eton
/1 and the handl e:
Andy. skel eton[ "hand" ].rotationZ Handl e2. al pha;
}
contai nnent {
USE TEMPLATE.I C1. RELATI ONS. cont ai nnent
/'l some relations for BReps can be derived automatically
}
boundary {
USE TEMPLATE.l C1. RELATI ONS. boundary
Hook Skel eton
/1 some relations for BReps can be derived automatically
}
}
/] attaching attributes to cells
ATTRI BUTES {
/1 use an external mapping describing the attributes:

liquidAttr = |iqui dVapper 3DTo4D;
/1 contains the white and yol k distribution:
eggContentsAttr = eggMapper 3DTo4D;
/| establish the relations between the cells
/1 and the attribute mappings
RELATI ONS {

Li qui d_Andy i qui dAttr;
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Li qui d_on_Andy | i qui dAttr;
eggCont ents eggContent sAttr;

}
}
/'l events processed by the instance
REACTI ONS {
/1 initialisation, desctruction and update
updat e( REAL global T, REAL local T, REAL lifeT, REAL dt)
{
/'l use a predefined animation to drive the skel eton
/1 which will result in nmany other actions
Skel et on. shape = ani mati ons( "skel et onAni ni' ). parans(
| ocal T);
}
}
PREDI CATE {
/1 predicate used to find out if the instance is still valid
/1 (can be based on tinme or anything else within the scope
/1 of the instance)
bool eval uate( REAL gl obal T, REAL |ocal T, REAL dt)
{
/'l use the duration of the animation to see how | ong
/1 this will be happening for
return local T < ani mati ons( "skel etonAni n' ). duration;
}
}

} /1 ANDY_OUT



295
D List of publications

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComniRq=2010a.
Embedded implicit stand-ins for animated meshes: a casglmichmod-
elling. In Comput. Graph. Forun9(1), 128-140.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComniRqQ=2010b.
Polygonal-Functional Hybrids for Computer Animation anainees. IrEngel
W., editor, GPU Pro: Advanced Rendering Techniques Peters Ltd, 87—
114

Pasko G., Kravtsov D., Pasko A., 2010c. Real-Time Space= Blanding
with Improved User ControlThe 3-d International Conference on Motion in
Games MIG10, Zeist, the Netherlands, November 1316, 2@biute Notes
in Computer Science, Eds.:Boulic, Y. Chrysantou, and T.ufanSpringer,
Heidelberg, LNCS 6459, 146-157.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComniRq2010d.
Real-time controlled metamorphosis of animated meshewysolygonal-
functional hybrids. IPACM SIGGRAPH ASIA 2010 Sketches, Seoul, Korea
SA10, New York, NY, USA. ACM, pages 36:1-36:2.

Pasko G., Kravtsov D., Pasko A., 2010e. Real-Time Contto8pace-
Time Blending. INACM SIGGRAPH ASIA 2010 Sketches, Seoul, Korea
SA10, New York, NY, USA. ACM, 38:1-38:2.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and ComniRg=2010f.
Controlled metamorphosis of animated meshes using po8tganctional
hybrids. InPoster Proceedings. SIGGRAPH 2010, Los Angeles, Caldorni
USA New York, NY, USA. ACM.

Kravtsov D., Fryazinov O., Adzhiev V., Pasko A. and Comniffqs2009.
Polygonal-functional hybrids for computer animation arangs. InPoster
Proceedings. ACM SIGGRAPH 2009, New Orleans, Louisian&,. B&ew
York, NY, USA. ACM.



