

Embedding Requirements within the

Model Driven Architecture

By

Ali Fouad BA (Hons.), MSc

Member, British Computer Society; IEEE Computer Society;

Association for Computing Machinery.

A thesis submitted in partial fulfilment of the requirements of

Bournemouth University for the degree of Doctor of Philosophy (Ph.D)

Principal Supervisor: Dr. Keith Thomas Phalp

Associate Supervisor: Dr. John Mathenge Kanyaru

Software Systems Research Centre

Bournemouth University

Bournemouth, UK

September 2011

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 2 of 333

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise

that its copyright rests with its author and due acknowledgement must always be made of the use of any

material contained in, or derived from, this thesis.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 3 of 333

Keywords

Software Development; Requirements Engineering; Specification; Model Driven Architecture; MDA; Model

Driven Development; MDD; Model Driven Engineering; MDE; Computation Independent Model; CIM; Role

Activity Diagram; RAD; Transformations.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 4 of 333

The ability to efficiently design appropriate computer systems and

enable them to evolve over their lifetime depends on the extent to

which... knowledge can be captured (Greenspan et al. 1982).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 5 of 333

Abstract

Name of Author: Ali Fouad

Thesis Title: Embedding Requirements within the Model Driven Architecture

The Model Driven Architecture (MDA) is offered as one way forward in software systems modelling to

connect software design with the business domain. The general focus of the MDA is the development of

software systems by performing transformations between software design models, and the automatic

generation of application code from those models. Software systems are provided by developers, whose

experience and models are not always in line with those of other stakeholders, which presents a challenge for

the community. From reviewing the available literature, it is found that whilst many models and notations are

available, those that are significantly supported by the MDA may not be best for use by non technical

stakeholders. In addition, the MDA does not explicitly consider requirements and specification.

This research begins by investigating the adequacy of the MDA requirements phase and examining the

feasibility of incorporating a requirements definition, specifically focusing upon model transformations. MDA

artefacts were found to serve better the software community and requirements were not appropriately

integrated within the MDA, with significant extension upstream being required in order to sufficiently

accommodate the business user in terms of a requirements definition. Therefore, an extension to the MDA

framework is offered that directly addresses Requirements Engineering (RE), including the distinction of

analysis from design, highlighting the importance of specification. This extension is suggested to further the

utility of the MDA by making it accessible to a wider audience upstream, enabling specification to be a direct

output from business user involvement in the requirements phase of the MDA. To demonstrate applicability,

this research illustrates the framework extension with the provision of a method and discusses the use of the

approach in both academic and commercial settings. The results suggest that such an extension is

academically viable in facilitating the move from analysis into the design of software systems, accessible for

business use and beneficial in industry by allowing for the involvement of the client in producing models

sufficient enough for use in the development of software systems using MDA tools and techniques.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 6 of 333

List of Contents

Copyright Statement... 2

Keywords ... 3

Abstract .. 5

List of Contents .. 6

List of Figures .. 9

List of Tables.. 11

Published Materials .. 12

Acknowledgements .. 13

Declaration of Original Authorship ... 14

List of Acronyms.. 15

1.0 Introduction .. 18

1.1 Rationale.. 19

1.2 Scope and Aims... 21

1.3 Report Structure .. 23

2.0 Literature Review (State of Art) .. 24

2.1 The MDA Prescription .. 24

2.1.1 Viewpoints... 25

2.1.2 Standards ... 26

2.1.3 Transformations... 28

2.1.4 Specification and the CIM... 31

2.2 The Business Perception ... 33

2.2.1 Business Process Nature.. 34

2.2.2 Workflow Management... 35

2.2.3 Business Process Modelling .. 37

2.2.4 Role Activity Diagram (RAD) .. 39

2.2.5 Human Interaction Management Systems (HIMS) ... 41

2.2.6 Goal Modelling.. 41

2.2.7 Sketch Recognition.. 44

2.3 Alternative Approaches... 45

2.3.1 Value Chain ... 45

2.3.2 Balanced Scorecard ... 46

2.3.3 Enterprise Modelling ... 47

2.3.4 Software Process Modelling.. 49

2.3.5 Process Programming.. 52

2.3.6 Functional Modelling .. 53

2.3.7 Business Rules... 56

2.3.8 Software Product Lines ... 58

2.3.9 Agile Methods ... 59

2.3.10 Service Oriented Architecture (SOA) ... 60

2.4 Summary.. 61

3.0 Research Overview .. 63

3.1 Ontology & Epistemology... 64

3.2 Research Paradigm .. 64

3.3 Research Methodology.. 66

3.3.1 Phenomenology ... 66

3.3.2 Ethnography... 67

3.3.3 Grounded Theory... 67

3.3.4 Template Analysis ... 67

3.3.5 Surveying... 68

3.3.6 Interviewing... 68

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 7 of 333

3.3.7 Case Study ... 68

3.4 Knowledge... 69

3.4.1 MDA Evaluation.. 70

3.4.2 Investigate Requirements Solution.. 71

3.4.3 Investigate Potential Extension Mechanisms .. 72

3.4.4 Verify Extension Mechanisms .. 72

3.4.5 Software Support for Research.. 73

3.4.6 Ethical, Health & Safety and Risk... 74

4.0 Adequacy of the CIM... 75

4.1 Examination of the CIM definition within the MDA and the appropriation of it as an interface with

the business user for defining requirements in MDA notations.. 75

4.1.1 The Connection between the MDA and Business... 75

4.1.2 The Sufficiency of the CIM at Delivering Requirements to the MDA... 78

4.2 Extending the Model Driven Architecture with pre-CIM... 87

4.3 Summary.. 89

5.0 Situating Requirements within the CIM .. 91

5.1 Discovery of how other modelling techniques which are accessible to the business user, might be

integrated with the MDA in terms of method and notation, with the focus on transformation and

traceability ... 91

5.1.1 PIM Support for Requirements (CIM-to-PIM) ... 91

5.1.2 CIM Support for Requirements (CIM-to-CIM) .. 113

5.2 Implications ... 119

5.3 Summary.. 122

6.0 Extended MDA .. 124

6.1 Extending the MDA .. 124

6.2 Importance of Specification .. 126

6.3 xMDA Framework .. 128

6.4 xMDA Application.. 130

6.4.1 Moving from Analysis into Specification ... 131

6.4.2 Accounting for Specification... 132

6.4.3 Moving from Specification into Design.. 133

6.4.4 Class Discovery, Transformation and Platform Information .. 134

6.4.5 Iteration.. 134

6.5 Summary.. 134

7.0 xMDA Illustration .. 136

7.1 Order Processing Worked Example .. 136

7.2 Environment RAD... 137

7.3 Shared RAD .. 138

7.4 Machine RAD.. 139

7.5 Class Discovery... 141

7.5.1 Entity Classes .. 141

7.5.2 Interface Classes .. 142

7.5.3 Control Classes .. 142

7.5.4 Tri-Step Analysis... 143

7.6 Transformation and Platform Information .. 144

7.6.1 Transformation Information .. 144

7.6.2 Platform Information ... 145

7.6.3 Transformation Rules .. 149

7.7 Summary.. 151

8.0 Moving from Analysis to Design via xMDA... 153

8.1 Academic Application... 153

8.2 Thematic Analysis ... 154

8.3 Methods ... 155

8.3.1 Process Oriented Systems Design (POSD) ... 156

8.3.2 SystemRAD... 157

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 8 of 333

8.3.3 xMDA Method .. 157

8.4 Discussion ... 158

8.4.1 Tool Support .. 158

8.4.2 Enterprise and Distributed Processes .. 159

8.4.3 Design Architecture... 160

8.4.4 Object Orientation ... 160

8.5 Summary.. 161

9.0 xMDA and The Club Company ... 163

9.1 Commercial Application ... 163

9.1.1 Environment RAD... 165

9.1.2 Shared RAD... 166

9.1.3 Machine RAD.. 168

9.1.4 Tri-Step Analysis... 169

9.1.5 Transformation and Platform Information .. 171

9.1.6 Discussion.. 181

9.2 QVT Application... 183

9.2.1 Transformation Declaration... 184

9.2.2 Role2Class ... 184

9.2.3 IndependentActivity2Operation .. 186

9.2.4 Interaction2Operation.. 186

9.2.5 Prop2Class ... 187

9.2.6 rad2umlcd QVT-Relations .. 189

9.3 Tool Application.. 190

9.3.1 M1 : Machine RAD XMI .. 191

9.3.2 Java Transformation Rules .. 193

9.3.3 M1 : Class Diagram XMI .. 194

9.3.4 Comparative... 196

9.3.5 Elaboration... 198

9.3.6 Extension ... 199

9.4 Summary.. 201

10.0 Conclusions .. 203

10.1 Contributions ... 206

10.2 Related Work... 207

References .. 209

Appendix I.. 228

Appendix II .. 233

Appendix III ... 265

Appendix IV... 277

Appendix V .. 282

Appendix VI... 308

Appendix VII.. 316

Glossary.. 321

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 9 of 333

List of Figures

figure 2.1.1.1,1MDA viewpoint abstractions (Source: developed from Brown (2004a)).................................. 25

figure 2.1.3.1,2elements of PIM-to-PSM transformation (Source: OMG (2003b))... 29

figure 2.3.2.1,3perspectives and aspects related to MEMO framework (Source: Frank (2002))....................... 48

figure 3.1.1,4overview of the research process (Source: adapted from Shelmerdine (2010)) 63

figure 3.2.1,5experimental learning cycle (Source: adapted from Kolb et al. (1979))....................................... 64

figure 3.2.2,6framework for integrating research perspectives (Source: adapted from Braa and Vidgen

(1999)) .. 65

figure 4.1.1.1,7technological development of Software Engineering and human interactivity (Source:

developed from Brown (2004a)).. 76

figure 4.1.2.1.1,8Class Diagram relating to the sample case study (Source: Wa and Leong (2004))................ 81

figure 4.1.2.2.1,9Activity Diagram relating to the sample case study (Source: adapted from Wa and Leong

(2004)) .. 85

figure 4.2.1,10the Extended Model Driven Architecture (xMDA), including pre-CIM activity (Source:

developed from Bray (2004), Brown (2004a), Jackson (1995), OMG (2003b))... 88

figure 5.1.1.1,11the RAD metamodel (Source: developed from Badica et al. (2005), OMG (2006a), Ould

(2004c)) .. 92

figure 5.1.1.9.1,12UML Activity Diagram transformation into RIVA RAD... 109

figure 5.1.1.10.1,13RAD fragment for jukebox example and associated RUD fragment.................................. 110

figure 5.1.1.10.2,14RUD fragments combined via model merging ... 111

figure 5.1.2.1,15CIM of a travel reservation system represented in BPMN (Source: adapted from Silver

(2008d)) .. 114

figure 5.1.2.2,16travel reservation system represented in a Use Case ... 115

figure 6.1.1,17MDA Viewpoints (Source: developed from OMG (2003b)).. 124

figure 6.1.1,18requirements and specification included as part of the CIM definition 126

figure 6.2.1,19systems of prime concern and development activities (Source: developed from Jackson

(1995)) .. 127

figure 6.3.1,20xMDA framework (Source: developed from OMG (2003b))... 129

figure 6.3.2,21the integration of the xMDA with Jackson’s systems of prime concern (Source: developed

from Gunter et al. (2000), Jackson (1995)).. 130

figure 6.4.1.1,22systems of prime concern and development activities (Source: developed from Jackson

(1995)) .. 132

figure 6.4.1.3,23Environment RAD of Specification ... 132

figure 6.4.2.1,24Shared RAD of Specification ... 133

figure 6.4.3.1,25Machine RAD of Specification .. 133

figure 7.2.1,26Environment RAD for the Order Processing example.. 137

figure 7.3.1,27Shared RAD for the Order Processing example.. 138

figure 7.4.1,28Machine RAD for the Order Processing example... 140

figure 7.6.1.1,29SimpleRAD metamodel (Source: developed from Badica et al. (2005), OMG (2006a), Ould

(2004c)) .. 145

figure 7.6.2.1,30SimpleRAD and SimpleUML metamodels related by the rad2umlcd transformation

(Source: SimpleUML developed from Appukuttan et al. (2003b), FT (2007), Jos and Anneke (2003),

OMG (2008b)).. 146

figure 7.6.2.1.1,31UML Class Diagram for the Order Processing example .. 148

figure 8.1.1,32orthogonal notations and the software process (Source: Phalp (2002))...................................... 153

figure 9.1.1.1,33Environment RAD for the Follow Up Call process... 166

figure 9.1.2.1,34Shared RAD for the Follow Up Call process... 167

figure 9.1.3.1,35Machine RAD for the Follow Up Call process.. 168

figure 9.1.5.1.1,36UML Use Case Diagram for the Follow Up Call process Machine RAD............................ 172

figure 9.1.5.2.1.1,37UML Activity Diagram for the Check Prospect part of the Follow Up Call process

Machine RAD .. 174

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 10 of 333

figure 9.1.5.2.2.1,38UML Activity Diagram for the Upload Prospect part of the Follow Up Call process

Machine RAD .. 176

figure 9.1.5.2.3.1,39UML Activity Diagram for the Blow Out Prospect part of the Follow Up Call process

Machine RAD .. 178

figure 9.1.5.3.1,40UML Class Diagram for the Follow Up Call process Machine RAD 180

figure 9.2.2.1,41a RAD role to a UML class relation... 185

figure 9.2.3.1,42a RAD independent activity to a UML operation relation... 186

figure 9.2.4.1,43a RAD interaction to a UML operation relation .. 187

figure 9.2.5.1,44a RAD prop to a UML class relation.. 188

figure 9.3.1,45the rad2umlcd QVT transformation pattern (Source: developed from FT (2007), Ignjatovic

(2006), Koch (2006), Koch et al. (2006), Kusel et al. (2009), OMG (2006a, 2007c, 2008b), Peltier et al.

(2000), Sheena et al. (2003)).. 190

figure 9.3.2,46the extended rad2umlcd QVT transformation pattern (Source: developed from FT (2007),

Ignjatovic (2006), Koch (2006), Koch et al. (2006), Kusel et al. (2009), OMG (2006a, 2007c, 2008b),

Peltier et al. (2000), Sheena et al. (2003)).. 191

figure 9.3.1.1,47VCLL representation of the Follow Up Call process Machine RAD...................................... 192

figure 9.3.2.1,48Java extract showing how Pool2Class (p,c) and SubProcess2Operation (sp,o) relations are

implemented in the PPT (Source: by permission from the PPT source files relating to VIDE (2010a)) 194

figure 9.3.3.1,49UML Class Diagram for the Follow Up Call process Machine RAD created from the

application of QVT transformation rules in Java (first-cut) .. 195

figure 9.3.3.2,50UML Class Diagram for the Follow Up Call process Machine RAD created manually from

the application of transformation rules .. 195

figure 9.3.4.1,51VCLL representation of the Follow Up Call process Machine RAD created for best

representation after application of the rules encoded in the PPT... 197

figure 9.3.4.2,52UML Class Diagram for the Follow Up Call process Machine RAD created for best

representation from the application of the rules encoded in the PPT .. 197

figure 9.3.5.1,53UML Class Diagram for the Follow Up Call process Machine RAD created from the

application of QVT transformation rules in Java (modified)... 199

figure 9.3.6.1,54Java extract showing how the Role2Class (r, c), IndependentActivity2Operation (ia, o),

Interaction2Operation (i, o), and Prop2Class (p, c) relations could be implemented in Java (Source:

developed from the PPT source files relating to VIDE (2010a))... 201

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 11 of 333

List of Tables

table 2.2.6.1,1four phases of requirements driven design (Source: adapted from Castro et al. (2002)) 43

table 3.2.1,2comparison of positivist and interpretivist methods (Source: adapted from Gill and Johnson

(1997)) .. 65

table 4.1.2.1,3original requirements relating to the sample case study (Source: adapted from Wa and Leong

(2004)) .. 80

table 4.1.2.1.1,4requirements derived from reverse engineering the Class Diagram of the sample case study. 83

table 4.1.2.1.1,5analysis of the number of requirements identified from the Class Diagram 84

table 4.1.2.2.1,6requirements derived from reverse engineering the Activity Diagram of the sample case

study. .. 86

table 4.1.2.2.2,7analysis of the number of requirements identified from the Activity Diagram........................ 87

table 5.1.2.1,8travel reservation system represented in a Use Case Description.. 116

table 7.5.1,9stereotype descriptions for class discovery (Source: developed from Cox and Phalp (2007)) 141

table 7.5.4.1,10potential design classes derived from a Tri-Step analysis of the Machine RAD for the Order

Processing example .. 143

table 7.6.1.1,11the four-layered architecture of the OMG (Source: developed from FT (2007), Kusel et al.

(2009), OMG (2006a, 2007c), Peltier et al. (2000), Sheena et al. (2003), Thiemann (2009)) 144

table 7.6.2.1,12initial transformation rules to map from the RAD to the UML Class Diagram 147

table 7.6.3.1,13complete set of initial transformation rules to map from the RAD to the UML 150

table 9.1.4.1,20potential design classes derived from a Tri-Step analysis of the Machine RAD for the Follow

Up Call process. ... 170

table 9.2.1,21initial transformation rules to map from the RAD to the UML Class Diagram 183

table 9.2.6.1,22complete set of QVT-Relations defined by the rad2umlcd transformation............................... 189

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 12 of 333

Published Materials

• Fouad, A., Phalp, K., Kanyaru, J. M., and Jeary, S., 2011. Embedding requirements within the Model

Driven Architecture. Software Quality Journal, 19 (2), 411 - 430.

• Fouad, A., Phalp, K., Jeary, S., and Kanyaru, J. M., 2009, 6 - 8th April 2009. The consideration of a

requirements phase in the Model Driven Architecture. Paper presented at the Software Quality in the

21st Century, Software Quality XVII, 17th International Software Quality Management Conference

(SQM), Southampton, UK.

• Jeary, S., Fouad, A., and Phalp, K., 2008, 30th June - 4th July 2008. Extending the Model Driven

Architecture with a pre-CIM level. Paper presented at the 1st International Workshop on Business

Support for MDA (MDABIZ), co-located with Tools Europe, Zurich, Switzerland.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 13 of 333

Acknowledgements

I would like to take this opportunity to acknowledge the kind support and assistance that I received from

everyone during the formulation and production of this research.

I would particularly like to thank Bournemouth University for providing me with the opportunity to study

under the studentship scheme, my project supervisors, Dr. Keith Thomas Phalp and Dr. John Mathenge

Kanyaru, who supported, motivated and encouraged me throughout my studies and supported my initial

application, and School Research Administrator, Naomi Bailey. With her advice and guidance, I was able to

produce this research report to a good standard of quality and style.

Special thanks are given to the management and staff at The Club at Meyrick Park who participated by

providing me with vital research input for the content production of this paper and ensuring that time could be

afforded for effective participation.

I would also like to express my appreciation to Dr. Jonathan Vincent, Jo Sawyer, Dr. Frank Milsom, Dr.

Michael Jones, Dr. Hameed Mughal, Steve Bond, Siya Bhalla and Amy Louise Harris for their support in the

early days of the project, and Martyn Ould (Venice Consulting), Andrew Watson (Object Management

Group), Tracy Hammond (Massachusetts Institute of Technology), Scott W. Ambler (IBM Rational), Dr.

Sherry Jeary, Dr. Lai Xu, Dr. Vegard Engen, Dr. Dong Ling Tong, Frank Grimm, Zoe Louise Andrews,

Malik Saleh and Alexandra Nicole Turner-Piper for their input during its production, especially Keith

Harrison-Broninski, CTO Role Modellers (www.rolemodellers.com) and Christie Dewell, Membership

Manager, The Club at Meyrick Park (www.theclubcompany.com).

Very Special thanks are given to my friends and family. Without their advice and support, this thesis would

not have been possible.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 14 of 333

Declaration of Original Authorship

It is hereby declared that the work contained within this thesis has not been submitted to meet the

requirements for an award at this, or any other, education institution, other than that which this submission is

made for. The thesis contains no material previously published or written by another person, except where

due reference is made. This work has not been previously presented, nor has been submitted for presentation

(in full or in part) except for the academic publications outlined on page twelve.

 Signed: ______________________________

 4
th

 September 2011
 Date: ______________________________

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 15 of 333

List of Acronyms

3GL Third Generation Language.

AMDD Agile Model Driven Development.

API Application Programming Interface.

ASSIST A Shrewd Sketch Interpretation and Simulation Tool.

ATL ATLAS Transformation Language.

B-SCP Business Strategy Context Process.

BBPF Basic Business Process Flow.

BM Behavioural Model.

BPD Business Process Diagram.

BPDLC Business Process Developing Life Cycle.

BPDM Business Process Definition Metamodel.

BPEL Business Process Execution Language.

BPEL4WS Business Process Execution Language for Web Services.

BPM Business Process Management.

BPMN Business Process Modelling Notation.

BPMS Business Process Management System.

BPR Business Processes and Requirements.

BSC Balanced Scorecard.

CASE Computer Aided Software Engineering.

CIM Computation Independent Model.

COTS Common-Off-The-Shelf.

CSP Communicating Sequential Processes.

CTO Chief Technical Officer.

CWM Common Warehouse Metamodel.

DDL Data Definition Language.

DDM Domain Description Model.

DFD Data Flow Diagram.

DSL Domain Specific Language.

DSM Domain Specific Modelling.

EJB Enterprise JavaBeans.

ERD Entity Relationship Diagram.

FBCM Fact Based Collaboration Modelling

GORE Goal-Oriented Requirements Engineering.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 16 of 333

GUI Graphical User Interface.

GUIDE Goal, Use, Investment, Deliverables, Experience/Environment.

HIM Human Interaction Management.

HIMS Human Interaction Management System.

HTTP Hypertext Transfer Protocol.

ICAM Integrated Computer Aided Manufacturing.

ICOM Inputs, Controls, Outputs and Mechanisms.

IDEF Integration DEFinition.

IDL Interface Definition Language.

IPSE Integrated Project Support Environment.

IRM Initial Requirements Model.

ISO International Organisation for Standardisation.

IT Information Technology.

LOTOS Language of Temporal Ordering Specification.

LSS Lean Six Sigma.

MDA Model Driven Architecture.

MDABIZ Business Support for MDA.

MDD Model Driven Development.

MDE Model Driven Engineering.

MDSEE Model Driven Software Engineering Environment.

MEMO Multi-perspective Enterprise Modelling.

MIT Massachusetts Institute of Technology.

MOF Meta Object Facility.

OCL Object Constraint Language.

OMG Object Management Group.

ORMSC Object and Reference Model Subcommittee.

PD Problem Domain.

PIM Platform Independent Model.

PML Process Modelling Language.

POSD Process Oriented Systems Design.

PPT PIM Prototyping Tool.

PSM Platform Specific Model.

QVT Query / View / Transformation.

QVT-R QVT-Relations.

RAD Role Activity Diagram.

RE Requirements Engineering.

REBNITA Requirements Engineering for Business Need and IT Alignment

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 17 of 333

RM-ODP Reference Model of Open Distributed Processing.

RML Requirements Modelling Language.

RUD Role Utility Diagram.

SADT Structured Analysis and Design Technique.

SEAM Systemic Enterprise Architecture Method.

SOA Software Oriented Architecture.

SOAP Simple Object Access Protocol.

SPL Software Product Line.

SQL Structured Query Language.

SQM Software Quality Management.

STRIM Systematic Technique for Role and Interaction Modelling.

UCDML Use Case Description Mark-up Language.

UML Unified Modelling Language.

VCLL VIDE CIM Level Language.

VIDE Visualise All Model Driven Programming.

WS-Policy Web Service-Policy.

WSDL Web Service Definition Language.

xMDA eXtended Model Driven Architecture.

XMI XML Metadata Interchange.

XML eXtensible Mark-up Language.

XSLT eXtensible Stylesheet Language Transformation.

YAWL Yet Another Workflow Language

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 18 of 333

Chapter 1

Introduction

The MDA (OMG 2003b) is an approach to software development in which application code is proposed to be

automatically generated from design models. The analysis and design phases of the MDA are known as the

Computation Independent Model (CIM) and the Platform Independent Model (PIM) respectively (OMG

2003b). Prior experience on the Requirements Engineering unit of the Computing Masters Framework at

Bournemouth University demonstrated that there may be a lack of emphasis put on the construction of the

CIM within the MDA. The CIM was exposed as not being considered integral in most MDA

implementations. In RE, the area identifying a defined problem is known as the problem domain (PD), to

which solution systems are built to remedy that problem. Requirements are the desired effects that the

solution software system is to provide within the PD (Bray 2002). The OMG describe the CIM as “the

environment of the system, and the requirements for the system” (OMG 2003b) and it is therefore used to

address all issues relating to the PD and requirements definition (Blanc 2009; OMG 2003b; Slack 2008).

Understanding the requirements of stakeholders is a difficulty within software systems development

(Kappelman et al. 2006). It is identified that “social and organisation factors influence system requirements”

(Sommerville 2004) and therefore, solution systems need to reflect company strategies and processes,

available resources and the environment in which the problem exists. Through the extension of RE upstream,

the alignment of business strategy with Information Technology (IT) is enabled by allowing for organisations

to define business processes in terms of their strategic value and then be reflected in the technology (Beeson

et al. 2002; Bleistein et al. 2006). Requirements modelling languages are “fundamentally different from

programming and specification languages whose subject matter (software systems) is man-made, bounded

and objectively known” (Greenspan et al. 1994). It is suspected that techniques natural to the fields of RE and

Business Process Management (BPM) are not appropriately addressed by the MDA. Business Analysts tend

to define processes informally, using simple flowcharting notations, whereas Software Engineers take such

informal process notations and add further detail and abstractions to suit the engineering need. Development

within the MDA involves the transformation of source models into target models, typically in the area of

design (Sheena et al. 2003). To facilitate the connection between business analysis and software design, the

MDA would ideally support the definition of workflows via domain specific modelling (DSM) techniques

that are transferable to modelling techniques used in software development (Celms et al. 2003). The objective

is for application code to be developed or generated from models that are directly informed by business.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 19 of 333

1.1 Rationale

The sooner you start, the longer it takes (Brooks 1975).

This was Fred Brooks’ vision, which still holds true today, in that time is well spent in defining requirements

in the development process. If time is not invested, then more time and money is wasted in fixing problems,

rewriting or maintaining erroneous code for missed or incorrectly elicited requirements (Brooks 1975;

Greenspan et al. 1994; Kleppe et al. 2003; Sommerville 2004; STSC 2003; Wiegers 2000). As computer

hardware technology evolves, the requirements relating to produced software applications increase, along

with an obligation for software developers to ensure that the quality of those software systems stay in line

with company strategies (Beeson et al. 2002; Bleistein et al. 2006). In reality, root factors with relation to the

differing ideals of software developers and business consumers create a gap in understanding and poorly

defined requirements have been seen to lead to a multitude of failed projects (Bray 2002; Coughlan and

Macredie 2002; Greenspan et al. 1982; Kanyaru 2006). Requirements are defined by non technical

stakeholders and interpreted by technically minded developers; there is no traceability mechanism between

the two (Ample 2007; Gotel and Finkelstein 1994). Communication theory relates that because these two

stakeholders are from different backgrounds and have differing knowledge levels, a “lack of comprehension”

(Lautenbacher et al. 2007) in design can be experienced leading to erroneous systems being developed,

supported by Coughlan and Macredie (2002). This is due to differing terminologies, levels of granularity,

varied models, approaches, tools and methodologies (Brahe and Bordbar 2006). It is common knowledge that

companies establish, and implement strategy and that required software systems should be in line with such

strategies. However, it is difficult for software developers to fully understand and implement such strategies

as they are not business users. It is equally difficult for business users to develop and communicate strategies

in technical terms as they are not software developers. Since “communication does not depend on what is

transmitted, but on what happens to the person that receives it” (Cockburn 2007), a communication gap

between the business and software analyst is highlighted.

To address this communication gap, much academic research has been directed at the MDA. The Object

Management Group (OMG) provide a list of “committed companies” (OMG 2007a) regarding the application

of the MDA, but they themselves are suggested to neglect the creation and transformation of the CIM

(Ambler 2007; Kabanda and Adigun 2006; Karow and Gehlert 2006; Phalp et al. 2007). The specification of

software systems is defined as the interface between the environment and the machine (Gunter et al. 2000;

Jackson 1995), accounting for requirements and environmental concerns. The importance of PD analysis and

specification is somewhat dampened by placing all related concerns under the CIM. Currently, the CIM

“merely informs the decision makers about the system’s context but does not influence design decisions in a

functional describable way” (Karow and Gehlert 2006).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 20 of 333

The conceptual framework prescribes an approach that should be simple for non-technical stakeholders to

provide and produce artefacts that are understandable in nature to that stakeholder (Slack 2008; Soley 2006).

However, the PIM and Platform Specific Model (PSM) of the MDA are complex in nature as they must

contain enough detail to generate the associated code. Even some of the best developers, who might have

many years in the field of Software Engineering, may have had little or no formal training in software

modelling with significant costs being associated with facilitating such training in becoming a proficient

modeller (Berrisford 2004; Cook 2004a; Lavagno and Mueller 2006). In literature, a good deal of attention is

placed on how following the MDA can be beneficial to the development of software systems and the

stakeholders involved (Brown 2004a; Hofstader 2006; Kleppe et al. 2003; Meservy and Fenstermacher 2005;

OMG 2003b, 2010), but not much has been offered regarding the real costs associated with creating such

systems, re-engineering models from legacy systems and the additional training that is implicated. Investment

could help to ensure that business users and software developers can indeed communicate ideas coherently

and that business users are not duped into thinking that the developers know what they mean by models they

create at the CIM level, resulting in a project failure due to such misunderstandings (Lavagno and Mueller

2006).

The MDA vision has yet to be applied to concepts in RE (Ambler 2007; Kabanda and Adigun 2006; Karow

and Gehlert 2006; Phalp et al. 2007). To help alleviate concerns, visualisation tools could be produced based

upon MDA concepts and applied to RE with a business user interface, in effect allowing the business user to

produce specification prototypes at the CIM level and ultimately authorise one for which software models

could be built upon by developers, who might then be able to proceed to develop the system from the business

user specification. A prototype of key functions is a good starting point, to “prove the architecture” (Hofstader

2006). One solution might be to establish a best practice framework based on context, allowing for user

interaction to fix any errors, or limit the system to only containing distinctive components (Adler 2001). To

adequately address this, it is necessary to understand the underlying impact of visualisations resulting from

such a framework on the relationships between the visualisations, the underlying models, and the associated

business paradigms. Therefore, an evaluation of tools and techniques within academia is presented as part of

the preliminary research in Chapter 2.0. Several techniques are evaluated in terms of RE and the MDA.

The scientific motivation of this study is that RE techniques can interface well with business users but are not

explicitly considered for use within the CIM phase of the MDA. The early identification of requirements

models and correct transcription into the MDA is proposed to enable the alignment of software developer

understanding with that of the business user, incorporating both business strategy and process in the

development of software systems. Embedding requirements within the MDA is an important contribution in

the field that would hopefully bring the added benefit of quality and consistency via tool support since “a

human reading a paper model may be forgiving – an automated transformation tool is not” (Kleppe et al.

2003). If implemented correctly, the approach may facilitate a relatively low cost, simple method with the

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 21 of 333

potential to decrease the likelihood of project failure, provide confidence in produced products and ultimately,

an overall reduction in cost and production schedule, all with a positive baring on software quality assurance

by making the MDA more accessible to business users.

1.2 Scope and Aims

In this section, the scope and aims relating to this research are outlined. Each aim is related to the detail in

answering the research question below, which is the driving focus for the project:

To what extent can the MDA incorporate a requirements definition created by business user involvement

within the CIM phase of the MDA to be practical in the development of software systems?

The thesis addresses this research question by targeting four aims in the context of RE directed at the notion

that the current MDA definition is unsuitable for successful application in the business environment; requiring

significant extension to achieve that. Each aim is discussed in turn within the subsequent paragraphs.

Aim 1: To examine the definition of the CIM within the MDA and consider the appropriation of it as an

interface with the business user for defining requirements in MDA notations.

The notion of learning to walk before you run is one that can relate to the MDA. This is because the majority

developers have not yet even begun sketching in the Unified Modelling Language (UML), let alone

developed the art of creating sophisticated models using such tools that are required by the MDA (Uhl and

Ambler 2003). In industry, “UML compliance is not as important as the business value” (Staron and Wohlin

2006), however, compliance is essential to transformations of the MDA. Very little industry-wide information

is available to support the use of the MDA beyond the academic domain (Mattsson et al. 2009) and generally,

those that do, report on implementations that have been employed and described according to particular

Software Engineering situations. Whilst there are many attempts to facilitate the application of the MDA with

explicit attention to the CIM (Casallas et al. 2005; Debevoise and Smith 2009; Garrido et al. 2007; Kherraf et

al. 2008; Leonardi and Mauco 2004; Martin and Loos 2008; Osis et al. 2007; Poernomo et al. 2008; Rech and

Schmitt 2008; Rodriguez et al. 2007a; VIDE 2009; Zhang et al. 2008), they appear not to be implemented to

any substantial extent in defining software systems; significant literature is unavailable in supporting a

successful implementation of a requirements definition within the MDA. This aim looks to examine the extent

to which notations of the MDA are sufficient for capturing business requirements within the software process

and how accessible they are to the business user in defining requirements.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 22 of 333

Aim 2: To discover how other modelling techniques which are accessible to the business user, might be

integrated with the MDA in terms of method and notation, with the focus on transformation and traceability.

Analysis relating to discoveries made in the previous aim may suggest that MDA techniques are somewhat

inaccessible to business users because generic languages such as the Business Process Modelling Notation

(BPMN) and the UML are not necessarily applicable to every PD (Jouault and Kurtev 2006; Mattsson et al.

2009; Rombach 1988). Therefore, there may be a need for the MDA to be open to the usage of any number

and combination of alternate tools and techniques in defining the requirements of a software system. This aim

investigates proposed solution mechanisms to integrate requirements with the MDA, specifically in terms of

CIM-to-PIM and CIM-to-CIM transformations. For example, to discover how other non-software related

methods, such as the Role Activity Diagram (RAD), might be better at successfully capturing requirements,

defining specifications and contributing in support of existing software models from a RE standpoint within

the CIM and PIM phases of the MDA. The selection of notations will be guided by the literature and

comparable to those utilised by MDA phases.

Aim 3: To extend the framework of the MDA to account for specification within the CIM.

It is suggested that the definition of the MDA does not include any “precise rules or guidelines explaining

how Software Engineers can use” the CIM, PIM and PSM (Garrido et al. 2007), supported by Kim (2008),

Wood (2005). Neither does it give consideration to the advantages that the Business Analyst and Software

Engineer may gain from specific guidelines for accessibility to the architecture in terms of both framework

and method. In support of findings made from previous aims, it is suggested that, by extending the definition

of the MDA framework to facilitate RE, benefits would be gained with regards to the overall user experience

and the quality of developed systems. Aim 3 is directed at the justification and description of mechanisms to

extend the framework of the MDA, by fusing RE techniques with those of the MDA to form a bridge between

business and software use. The extension is to be produced with recommendations that are proposed to

enhance both Business Analyst and Software Engineer understanding of CIM development and facilitate an

unambiguous specification at both levels, thereby embedding requirements within the MDA.

Aim 4: To determine the academic and commercial value of extended mechanisms.

The final research question is driven by the necessity to establish the value and accuracy of any extensions

suggested in resolution of the previous aim. Since the CIM is the founding phase of the MDA, it is important

to know that it is formed in the correct perspective. Such perspective is relative to the modeller and that which

is required to be modelled (Brown 2004b). Findings from previous aims may support the argument that the

correct perspective of the CIM ought to account for Jackson’s specification (Jackson 1995); a detailed

definition based on the foundations of requirements elicitation. The important discovery is a solution that is

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 23 of 333

not only directly useful to the Business Analyst in being adaptable to RE techniques of elicitation, but also

valuable to the Software Engineer in the construction of the PIM in an appropriate modelling notation (such

as the UML) for use within the MDA. In order that any extension to the MDA might facilitate real system

implementations motivated directly from the input of the Business Analyst, the rigour of the mechanisms

described in part of the resolution of aim 3 is to be explored in both academic and commercial settings,

determining whether they are viable in comparison with alternative techniques, accessible to business use and

applicable to commercial processes and MDA tools and techniques. This is imperative to underpin the worth

of the research in support of findings made in achieving aims 1 to 3.

Although fertile ground for investigation, issues relating to the real cost of MDA implementations, the

applicability of MDA tools, MDA alternatives and vendor lock-in within the MDA are considered to be

beyond the scope of this investigation because they are on the fringe of the area to which this research gives

focus. Chapter 10.0 gives direction to follow-up work relating to this research and discusses these areas in

further detail. It is important to also consider that the scope and methodology pertaining to this research is

orchestrated with direct relation to time and cost constraints imposed on the project. A research overview is

provided in Chapter 3.0 to that effect.

1.3 Report Structure

This research begins with an examination of the current state of the art with respect to aligning the needs of

Requirements and Software Engineering. A research overview is discussed and a proposed methodology

determined in Chapter 3.0. Chapters 4.0 and 5.0 outline discoveries made in consideration of aims 1 and 2 and

provide discussion concerning those discoveries. Chapters 6.0 and 7.0 demonstrate how aim 3 is achieved by

introducing an enhancement to the MDA via extension mechanisms to support RE techniques. Chapters 8.0

and 9.0 are concerned with assessing the application of the proposed enhancements in an academic and

commercial context, thereby addressing the last aim. In Chapter 10.0, final conclusions are drawn in relation

to the value of the research and any difficulties encountered, with due consideration to the project direction

and scope.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 24 of 333

Chapter 2

Literature Review (State of Art)

In 2003, the MDA emerged from the international trade association, the OMG. Administrators of the UML

with affiliates around the world, the OMG describe a framework which implements a separation of “business

oriented decisions from platform decisions” (Brown 2004a), supported by Blanc (2009), Kabanda and Adigun

(2006), Slack (2008). The MDA utilises models as integral artefacts for development and deployment, and

transformations between those models. A model is a high-level abstraction of a software system, below the

model is the implementation, which is used to interface with hardware components via the operating system.

Since business logic is defined in business models, the objective of current research is in looking at ways to

transfer business logic into that of IT; ensuring that business logic is represented concisely and consistently in

sync with the business model (Koehler et al. 2002). In this section, the natural fault-line between software

development in the MDA and the business perspective of such development is addressed by examining the

available literature and discussing any inconsistencies uncovered.

2.1 The MDA Prescription

The MDA is presented as a way forward in the development and implementation of software systems (OMG

2003b). The key principles for the MDA are the integral use of models, transformations between model

abstraction layers, the description of such models via metamodels and associated industry standards, which

are geared to the preservation and leverage of existing technologies (Slack 2008). Model manipulation and

transformation is vital for the MDA to reach its full potential (Appukuttan et al. 2003b; Ignjatovic 2006).

Grounded in software knowledge, the MDA provides a “conceptual framework and set of standards”

(Thangaraj 2004) for a particular software development style (OMG 2003b). Much has been written about the

success and benefit of the MDA (Brown 2004a; Hofstader 2006; Kleppe et al. 2003; Meservy and

Fenstermacher 2005; OMG 2003b, 2010), but strong cause for concern regarding MDA application is raised

in other literature (Berrisford 2004; Brown 2008; Cook 2004a; Haan 2011; McNeile 2003; Thomas 2004).

Therefore, care and scepticism is suggested to be applied regarding claims made of the realisable value of the

MDA before it can be established as the new frontier for software development.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 25 of 333

2.1.1 Viewpoints

Within the MDA are several different viewpoints, each an abstraction of the previous. They are known as the

Computation Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific Model

(PSM). These are the prescribed models to be used within the MDA (OMG 2003b). Transformations and

mappings are used to translate a model “from one level of abstraction to another” (Brown 2004a) until code is

generated for the designated platform defined by the PSM. Figure 2.1.1.1 has been developed as part of this

research to facilitate the understanding of these viewpoints, extending a similar model that abstracts from

assembly languages to the MDA in Brown (2004a).

figure 2.1.1.1,1MDA viewpoint abstractions (Source: developed from Brown (2004a)).

The essence of MDA is the independence and separation of technologically specific platforms

(beds of functionality) (Blanc 2009; Brown 2004a; Kabanda and Adigun 2006; Slack 2008).

One of the best ways to combat complexity of software development is through the use of

abstraction, problem decomposition, and the separation of concerns (Sendall and Kozaczynski 2003).

With focus on the PIM, a system can theoretically be developed without the definition of a particular

platform. This enables models to be transformed into implementations of any required technological platform,

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 26 of 333

hardware or software. By following the MDA, investment returns are expected to flow “from the reuse of

application and domain models across the software lifespan” (Blanc 2009); the biggest challenge of the

architecture being how interoperable solutions can be made (Blanc 2009).

Whilst the MDA concentrates on models of those viewpoints and transformations between them, no phase

appears to give sufficient consideration to RE (Ambler 2007; Kabanda and Adigun 2006; Karow and Gehlert

2006; Phalp et al. 2007). The separation of interest ought to put “the Business Analyst in a unique and

potentially powerful position within an organisation” (Slack 2008) because through clear and concise CIM

definitions they could affect design and implementation. Indeed, the significance that is placed on upstream

stakeholders and related models reveals an expectation that MDA tools should be directed at the level of the

Business Analyst. An analysis of tool support was conducted by Phalp et al. (2007), finding good support for

stakeholders at the PIM and PSM level. However, support for the CIM level processes was inadequate and

CIM-to-PIM transformations were unavailable (Phalp et al. 2007). One important consideration is that “there

is no single model of a process” (Ould 2004c), implying that multiple CIM abstractions may be required to

fully realise a complete business process. It is also difficult to know that the CIM which is the subject of

scrutiny, is formed in the correct perspective, since perspective is relative to the modeller and what is required

to be modelled (Berrisford 2004; Brown 2004b). Further to this, every model is an incomplete representation

of some reality (Berrisford 2004; Thomas 2004). Representation is emphasised here since no model can ever

equal the reality of the situation (without becoming that reality). The acceptance that a model can equal code

is something that is being neglected in research into transformations (Brown 2004a) and could ultimately

demonstrate an inherent MDA flaw. If a model (albeit CIM, PIM or PSM) could truly represent code, then the

need for that code (or subsequent modelling phase), could be questionable. The MDA definition of the CIM

does not prescribe any particular abstraction or guidance on abstraction and therefore neglects these

considerations (Garrido et al. 2007; Kim 2008; Wood 2005). Furthermore, since concern in modelling is

directed importantly at semantic, rather than syntactic issues, a difficulty is presented in ensuring the

alignment of understanding between the Business Analyst and Software Engineer; hence, figure 2.1.1.1

extends the MDA viewpoints with the inclusion of RE as a phase prior to the CIM to interface the business

user with the architecture.

2.1.2 Standards

The standards described by the OMG to form the basis of the MDA include the Meta Object Facility (MOF)

(OMG 2006a), XML Metadata Interchange (XMI) (OMG 2007b), Common Warehouse Metamodel (CWM)

(OMG 2003a), Object Constraint Language (OCL) (OMG 2006b) and Query / View / Transformation (QVT)

(OMG 2008b). The OMG also offer support for definitions in the BPMN (OMG 2005, 2008a) and the UML

(OMG 2007c). There are two key issues surrounding the UML. It is firstly, too convoluted for non-technical

users to understand and implement and secondly, driven by the need to design complete systems upfront

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 27 of 333

before any coding can take place; this hinders design and implementation agility (Ford 2009). The UML and

MOF standards do not really facilitate other mechanisms, such as DSM tools, to be implemented, which limits

the scope of the MDA (Cook 2004a, 2004b). Such tools are useful across many disciplines and facilitate

understanding between involved parties. Moreover, the UML does not have sufficient precision to enable a

complete PSM, let alone code generation (Meservy and Fenstermacher 2005). Elements of some languages

simply cannot translate from UML (e.g. a UML class does not translate into a C# class as the UML does not

allow for properties in the way that C# does. Similarly with Java interfaces, static fields are allowed but with

UML this is not a supported provision (Cook 2004a; Meservy and Fenstermacher 2005). A domain specific

schema for that language would be more effective than the MOF standard as this also restricts usage in

industry (Celms et al. 2003; Cook 2004a; Frank 2002) and it is for that reason the MOF is said not to be

supported by Microsoft (Cook 2004a). The only example of MDA in action is from the J2EE platform for

PIM-to-PSM mappings (Cook 2004a), which is maybe why vendors (such as Microsoft) bend the rules on the

usage of the UML to, for example, support .NET mappings. Being grounded by the UML and MOF inspires

companies to mutate UML, stretch the logic or add completely new elements to the UML toolkit at the PIM

level. As previously noted, the PIM is defined so that it is independent of any hardware or software platform.

UML is being mutated across the board to enable fluid transformations and mappings (Ambler 2007; Cook

2004a; Koch 2006; Tratt 2005). This in turn can cause models to be locked into the application program that

produced the original PIM (known as vendor lock-in) and it is not a simple process of transferring a PIM

created in one program into another program to create the PSM (see Berrisford (2004) for further discussion

surrounding this concern). Once an understanding is gained on how a particular software program might adapt

UML paradigms, catastrophic consequences might be realised if the code is generated in an entirely different

program that generates a PSM from an incorrect (or seemingly correct) PIM. Furthermore, if such ambiguities

remain hidden, it could be far into the implementation phase before any mistake is realised. It therefore holds

that whilst being useful, the “UML and MDA code generators are… not the panaceas that some would have

us believe” (Thomas 2004).

A number of software development styles have embraced MDA techniques to differing degrees. They

include, but are not limited to, Agile Development, Service Oriented Architecture (SOA), Extreme

Programming and The Rational Unified Process. An example is given in Thangaraj (2004) of Cancer

Bioinformatics Infrastructure Objects, whereby instrument data is made available via services provided

following a MDA. UML models are encoded in XMI files and are then manipulated by open source tools to

generate Java, SOAP, HTTP and PERL APIs (Thangaraj 2004). A further example combines the MDA with

an optimisation framework for the rapid construction of e-business software systems, which characterises a

knowledge structure for the reusability of knowledge gained on prior projects (Yoda 2001).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 28 of 333

2.1.3 Transformations

Model transformations are defined as those which take “one of more source models as input and produce one

or more target models as output, following a set of transformation rules” (Sendall and Kozaczynski 2003). In

the MDA, one or more PSM is commonly created from a PIM via transformation, which is the “key

technology in the realisation of the MDA vision” (Appukuttan et al. 2003b). The UML is more amenable to

software developers and tool support than BPM, and therefore, transformation is viewed to connect business

process techniques with model driven development (Macek and Richta 2009). The vision is to automate much

of these transformation processes in order that the benefits are reaped. Further to this, “with a large repository

of model transformation descriptions at ones disposal, it follows that it may be desirable to combine existing

transformations to build new, composite ones, since it is sometimes easier to compose components rather than

build something from basic particles” (Sendall and Kozaczynski 2003). A Model Driven Software

Engineering Environment (MDSEE) can be implemented to support developers of the MDA with model and

metamodel access; model transformation; simulation; process; and project definition (Blanc 2009). The

emphasis of the MDSEE should be on evolving, living models and metamodels to support the life cycle of

models (Blanc 2009). Examples of the MDSEE include ModelBus and Praxis (Blanc 2009).

There are two different approaches to an MDA transformation. They are either conducted manually, using

profiles, patterns and markings to provide additional details or automatically (where the PIM is considered

computationally complete). A typical manual transformation would involve taking a PIM and adding platform

specific detail to it which can in turn evolve into fully executable code. Markings are used to trace

information within a transformation and a set of marks can be contained within a marked model (OMG

2003b). With automatic transformations, the PSM may appear transparent to the user (McNeile 2003) since

the PIM is transformed directly into Code, this is because there is no requirement on the user to ever adapt the

PSM since the PIM and transformation is computationally complete. This is illustrated in the Eclipse

modelling tool, where it appears that the PSM is not represented, and therefore brings into question the

necessity of the PSM phase in such an implementation. However, a transformation language known as

Operational QVT is specified and can be used with models of the Eclipse Modelling Framework to cater for

“model modification and transformation” (Boyko et al. 2009). A transformation record may also be resultant

that details which PIM elements mapped to which PSM elements (OMG 2003b). The essential elements of

PIM-to-PSM transformation are illustrated in figure 2.1.3.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 29 of 333

PlatformPatterns

PSM

Marked PIM

Additional

Information

Additional

Information

PIM

Pattern Names

figure 2.1.3.1,2elements of PIM-to-PSM transformation (Source: OMG (2003b)).

In Sheena et al. (2003), effort is made to extend the transformation mechanisms outlined by the OMG

standards whereby a pattern-based model refactoring technique to describe UML transformations at the meta-

level is offered. This technique is suggested to promote transformation reusability at the meta-level and align

both MDA and QVT (Sheena et al. 2003). Here, patterns are used to raise the level of abstraction on

transformation so that families of pattern-based transformations can be described for a model set, and not just

simply directly on a model-to-model basis. In the approach, a Source Pattern is offered as a metamodelling

extension on the UML metamodel that supports the Transformation Pattern; The Transformation Pattern is a

metamodel supporting the transformation between Source and Target Patterns; and the Target Pattern is an

extension on the UML metamodel that supports the Transformation Pattern (Sheena et al. 2003).

The two transformation approaches highlighted two distinct points of view regarding transformation

implementation. First termed by Stephen Mellor, who was also present at the birth of the Agile Manifesto,

they are the Elaborationists and the Translationists (McNeile 2003). Elaboration is demonstrated when it is

the intent of the modeller or developer to produce a template code structure at the PSM level as a result of

transformation, whereby it might be manually updated, and/or tweaked before the final code is generated.

Even then, the final code may also be tweaked. This creates a problem of model synchronicity, with the

solution being to ensure that the models and code develop together, so if the code is tweaked, the PSM is also

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 30 of 333

tweaked, and so on (McNeile 2003). This is important since “out of date documentation is worse than none at

all because it actively misleads” (Ford 2009). Translationists believe that all of the detail required for a

transformation should be included in the automated transformation and therefore there should be no

requirement to ever see the PSM, since the transformation will produce the output as required. Any changes to

be made need only be made at the PIM level or with associated transformation rules. In the ethos of Agile

methods, models are considered equal to code, and therefore conform to the Translationist ideal (Mellor

2004). Whilst this divide exists, the development methodology appears to not yet be mature enough to

facilitate mainstream translational MDA. For now, the majority of MDA implementations remain in

elaboration.

It is highlighted that “the same approaches that enable transformation of a PIM to a PSM can be used to

transform any model into another, related model” (OMG 2003b), which makes it all the more intriguing to

consider why the MDA gives focus to PIM-to-PSM transformations, and not vice versa, or ones involving the

CIM. In fact, it is suggested that such transformations may not be possible (Koch 2006; Meservy and

Fenstermacher 2005). Even though the RE inclusion appears an important aspect of software development,

much is left open regarding upstream transformations (Kherraf et al. 2008). It is thought here that, without

traceability mechanisms between the CIM and PIM, each downstream transformation would result in a loss in

upstream richness with important requirements becoming lost in translation. If a move in this direction were

to be made within the MDA, a better understanding of legacy systems may be made because technical

documentation could be deconstructed and presented in a format for which the Business Analyst has a greater

appreciation of, and vice versa, thereby bridging the gap between business and technological processes. There

are two viewpoints when specifically considering upstream transformations. The first is where business

process models could include enough detail to generate code directly (Havey 2007). Such transformations are

commonplace in the SOA. The second, being more typical of the MDA, is where business process models

could be transformed into computational models with traceability mechanisms to ensure originating

requirements are not lost, which can then facilitate the addition of detail and transformation into downstream

models or code. It is agreed that design cannot be viewed as “a mere transformation of analysis models into

software solutions… the input of a transformation has to be complete and all information must be significant

for the transformation… by resembling the structure of real-world perceptions without regarding software

quality requirements, the transformation results are potentially insufficient and unusable in the design

process” (Karow and Gehlert 2006). Therefore, focus ought to be on the second viewpoint of upstream

transformations as they address the difference between what is computational and what is not; code not being

produced directly from analysis models, rather such models are used to influence computational ones.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 31 of 333

2.1.4 Specification and the CIM

The MDA is the OMG’s proposed solution to issues of portability, interoperability and reusability in the

development of software systems (OMG 2003b). In RE, specification is used to reconcile the differences

between what the business user requirements are via analysis and what is required by design in the software

process. However, the MDA has no explicit mechanism to capture specification or account for collaborative

interactions which are natural to the business process. Specification is rooted in the behaviour of a system

which does not yet exist (Bray 2002), therefore the concept of specifying an entirely new system encourages

the designer to be more creative and inventive when producing a specification that will influence design. This

allows certain decisions to be made about the requirements, the vision the designer has of the new system, so

long as the client requirements have ultimately been met by the solution system (and the client is happy about

decisions made, and perhaps therein lays a problem).

In the UML, specification is, at best, delivered as a Use Case diagram and/or Use Case Description

representing some form of business activity. “Use Cases are part of UML and offer a foundation or starting

point for using models” (Hansz and Fado 2003). In a Use Case specification, components are broken down

into the relevant users (or actors) of the system and the tasks completed during system interaction (Stevens

and Pooley 2000). Use Case diagrams are useful in RE, mainly to capture which actors are required to interact

with the system, and for each, which specific tasks are required and, which tasks form part interactions

(Stevens and Pooley 2000). They are a common technique for specification because actors are presented in

the system context via natural English (Kanyaru and Phalp 2005). However, others argue that they “are

commonly expressed as hard-to-read text documents, containing a mix of natural language statements, semi-

standard names and expressions and raw cross references” (Golbaz et al. 2008). With a Use Case, it is very

difficult (if not impossible) to show relationships and dependencies between event flows (Kanyaru 2006),

non-deterministic and parallel processes, choices that may be made to determine process flow, the order of

which occurrences may happen, and events which contain loops. The Use Case actor is a simple notion which

is not rich enough to represent other important business notions, such as a role. The sequencing of numbered

events in Use Case descriptions only shows one distinct instance in which the events may occur and

prescribes a specification that is to some degree set in stone. It is important to understand that the order in

which events may occur for any relevant actor may not be the only way for that actor to complete the task. A

number of candidate designs may be produced and it is the role of the developer to distinguish the difference

between design and requirements issues, focusing on specification (Stevens and Pooley 2000). This illustrates

that there is an overall loss of richness of information and a lack of control constructs in the Use Case

diagram alone. This limitation has led some to augment Use Case descriptions with state based information

(in the form of pre and post states for every event) (Kanyaru 2006; Kanyaru and Phalp 2005; Kanyaru and

Phalp 2009). The concept of Use Case descriptions is to show a simplified, more practical description of the

PD. However, it is suggested here that the addition of state based information could complicate the process

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 32 of 333

and increase ambiguity. In reality, business users have little time or inclination to spend viewing and

reviewing model complexities and communication is suggested to be enhanced via informal approaches

(Phalp 1998). It is highlighted that “the invention of the behaviour is part of the specification task” (Bray

2002). This behavioural description is commonly the natural language based rules of Use Case descriptions,

of which there are already many different methods and templates (Phalp et al. 2011), which could lead to

further ambiguity and misunderstanding. Use Cases can lead to a specification which is divorced from the

system architecture, focussing rather on producing Use Cases in the relevant context rather than the object

oriented nature or view of system design. This can lead to problems later in the design and implementation

stages whereby, it can be difficult for developers to modify or add additional functionality to systems as they

have not been designed in a nature that promotes it; Use Cases have an entirely more functional view in

comparison with other methods. Furthermore, when using Use Cases to model the specification of a new

system, it can, in practice, be very easy to miss important requirements (Stevens and Pooley 2000) and it may

be very easy for an inept developer to invent requirements, which of course might get overlooked in the

development process. A solution proposed to “overcome most… deficiencies” (Issa et al. 2005) of the Use

Case is provided in Issa et al. (2005) by defining the Use Case via a metamodel; which is an amalgamation of

available… techniques (textual descriptions / tabular descriptions / activity diagrams). However, the

technique is not very well described and focuses only on a brief Use Case model, rather than a full

specification; project size and effort is not really addressed at all. The eXtensible Mark-up Language (XML)

is “becoming the lingua franca for data communication between applications” (Peltier et al. 2000) and an

attempt to formalise Use Cases in XML is presented by the Use Case Description Mark-up Language

(UCDML) in Golbaz et al. (2008). UCDML represents “a UML compatible template utilised for the

documentation of Use Cases” (Golbaz et al. 2008) in a universal language representation of the XML. This

supports for the portability and interoperability of Use Case definitions and capitalises on strong tool support

for the Extensible Stylesheet Language Transformation (XSLT) technology (Golbaz et al. 2008). If XSLT can

be applied to create transformations between notations, the language could have real implication, especially in

consideration of deriving Use Cases from other notations.

The OMG suggest that the primary user of the CIM has inadequate knowledge of models or modelling

concepts (OMG 2003b). However, collaborative modelling has been rife in the business arena for decades.

The fact is, behavioural modelling notations, such as the UML Use Case and Collaboration Diagrams are not

mainstream artefacts of MDA, nor are they “suitable for code generation or model execution” (McNeile

2003), let alone those notations more akin with business objectives. The OMG write that in the MDA, “CIM

requirements should be traceable to the PIM and PSM constructs that implement them, and vice versa” and

“developed models can... be validated against requirements” (OMG 2003b). Whilst idyllic, this is not the case

since no complete mechanism is in place to facilitate RE concepts and the traceability between them and those

of the MDA. The UML is “designed for the development of software systems” (Frank 2002), and does not

provide such concepts and graphical notations as are central to BPM tools and techniques which are

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 33 of 333

accessible to business users. This highlights the problem that the MDA is falling short of expectation. The

MDA vision of “automatic transformation” (OMG 2003b) has yet to be realised in the realm of real business

solutions. The promise of “machine readable application and data models” (OMG 2003b) is the driving force

behind MDA, and by definition, data-centric models may not be a useful way forward in modelling and

delivering software systems. The “proper management and coordination of the interactions among humans

and between humans and computerised tools are critical and complex activities” (Conradi et al. 1992).

Information systems currently do not allow for the flexibility required by human-driven processes (Basson

2009b). “For a system to be successful, that is to be human-centric and process-oriented, it must provide a

rich set of features that support automation and adaptation of human interaction with processes” (Basson

2009b). With sufficient modelling knowledge of such business processes, it is feasible that a heavy weight

prototype specification could be produced and be more effective at the CIM level.

The OMG propose that MDA decisions are based on both “business and technical considerations” (OMG

2003b). However, it has so far been seen in this chapter that whilst the MDA might be a step in the right

direction in development, focus is given on software paradigms at the expense of those related to business.

The CIM ought to be used to realise user requirements and functionality, hence the need to explore concepts

of RE and BPM in consideration of the CIM. If business process exploration, requirements definition and the

CIM are left vague, progress will be difficult to make.

2.2 The Business Perception

As previously noted, requirements in the MDA are resolved in the CIM. Theoretically, code is generated as a

direct outcome of MDA model artefacts and, therefore, much importance is laid upon the CIM. It is here

where the requirements are first met by computational models and any mistake in the CIM will have

ramifications for the implementation. The important thing is that the ordinary business user must be able to

understand, validate and apply the CIM, so that requirements are delivered correctly in the final software

implementation.

“Understanding user requirements is an integral part of information systems design and is critical to the

success of interactive systems” (Maguire and Bevan 2002). It is clear that if there are many

misunderstandings, assumptions and perhaps poor elicitation then the result will be a poor quality, or incorrect

specification, and since specification may form the basis of a contractual agreement between companies, the

importance of clarity is evident. After all, “software is intended to change or guarantee real-world conditions

in accordance with the requirements” (Cox et al. 2005b). It is suggested here that business applications extend

into the business domain beyond those proposed by the MDA and may help alleviate the concerns raised in

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 34 of 333

Section 2.1 regarding the MDA because “current CIM modelling notations are often biased towards the

mindset, paradigms and constructs of the software domain” (Phalp and Jeary 2010).

In this chapter, literature pertaining to the business perception of software development is investigated with a

view to discovering the extent to which business modelling techniques and applications may be useful in the

context of software development and, more importantly, within the MDA. However, “modelling techniques

are like sand on the beach. They seem to exist in millions of variants, fashions, and styles” (Recker 2006) and

have many different uses in the development of software systems (Celms et al. 2003; Lehman 1989). In an

effort to document the number of available process modelling techniques, one researcher is quoted as

stopping “at the count of 3000” (Recker 2006). In addition to this, some techniques are expected to be better

than others at managing context specific concepts. It is therefore clear that the focus of this chapter must be

limited to those that appear to offer the most promise or hold the most interest for investigation in

consideration of the application the MDA arena as discussed in Section 2.1.

2.2.1 Business Process Nature

In consideration of techniques used in RE and BPM, it is important to have an understanding of the nature of

business processes. “Business process modelling is an important phase during requirements collection”

(Badica et al. 2005). Before the rise of information systems, flowcharting methods (c1920) were used to

describe procedures for internal use and for quality management. Once the IT world became dominant, focus

shifted away from modelling the business process in terms of that process to modelling information

requirements in order to build information systems (for example, the Data Flow Diagram (DFD) and the

Integration DEFinition (IDEF) - c1970s, etc) (Bushell 2005). Information based workflows (c1980s) gave

foundation to BPM (Kemsley 2006) and now, with the realisation of greater benefits from directing attention

to and enhancing the business process, focus has again returned the management of business processes and

modelling in terms of them (Bushell 2005; Ould 2004c).

With greater need in business for emphasis on processes and change (Bushell 2005; Kavakli 2004; Ward-

Dutton and Baxter 2009), three challenges in this transition period are identified by Ould (2005). Firstly, IT

systems must change as business processes are updated. “As business gets more interested in its processes, so

it gets more interested in the alignment of its computer systems with the processes they are supposed to

support” (Ould 2005). In 2005, the first International Workshop on Requirements Engineering for Business

Need and IT Alignment (REBNITA) was hosted at the Sorbonne, in Paris, which held alignment as the central

theme. In the introductory notes of the proceedings for REBNITA it was suggested that “it is no longer

possible to consider IT separate from the business organisation it supports, and hence requirements

engineering should address the business needs of an organisation” (Cox et al. 2005a). Such alignment must

occur as business requirements change, and indeed processes change and therefore systems must be reactive

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 35 of 333

to the environment in which they are deployed in, rather than being static and focussed on data (as might be

presented in a Class Diagram). Alignment is difficult because of opposing perspectives; business is about

process and change, IT is about information. “As organisations mature in the Process Age, they will

distinguish themselves from those that rely solely on information based concepts to build a competitive

advantage” (Basson 2009a). Therefore, systems need to ideally be founded first and foremost on the processes

which require them, not the information involved. A change in process brings about a change of what

information is required, and where such information might be needed. Requirements management is

concerned with “planning and change management” (Sommerville 2004) and is considered essential.

Secondly, it is suggested that information systems are being sold to business users as Business Process

Management Systems (BPMS); a problem which may be inconsequential in the larger scheme, yet deserves

some consideration. An example can be drawn from the structure of the MDA, defined by the OMG (2003b),

where much focus is given to software, rather than business process development tools. Such tools are not

designed to be reactive to the dynamics of the business environment. The search is for new technologies that

can manage these concepts.

Thirdly, a process architecture needs to be developed that purposefully and efficiently separates

organisational activity processes along “natural cleavage lines of that activity” (Ould 2005), accounting for

strategic change. Immediate technological and cultural change should not affect the process architecture. The

idea behind BPM is to provide the business analyst with the management philosophy, method and technology

to facilitate business model flexibility, product/service innovation and operational efficiency/quality (Ward-

Dutton and Baxter 2009).

2.2.2 Workflow Management

Initially, the Workflow Patterns Initiative (1990s) had “the aim of identifying generic recurring constructs in

the workflow domain and describing them in the form of patterns” (Russell 2007). With further

advancements, a multitude of workflow systems arrived and in 1993 the Workflow Management Coalition

formed with the objective of standardising the workflow arena (Russell 2007). This lead to the Workflow

Reference Model which addressed the need for solutions that were interoperable (Russell 2007). In

consideration of modelling business processes and the design of supporting software systems, there is a “shift

from data to process orientation and... [a] focus on process-aware information systems” (Wohed et al. 2006).

This shift has lead to languages aligning to support the behavioural nature of the business process (such as the

introduction of Activity Diagrams to the UML) and to the influx of a multitude of new languages (such as

BPMN; BPEL4WS) built specifically for the business process task (Wohed et al. 2006).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 36 of 333

A “reference analysis framework” (Wohed et al. 2006) known as the Workflow Patterns framework is

available from www.workflowpatterns.com. This framework is “fine-grained” and provides over 100 patterns

that address three different areas for evaluation which are control-flow; data and resource (Wohed et al.

2006). Several recognisable patterns are defined in six categories, which can be used as the basis for a

comparative framework to investigate BPM technologies. Patterns are “universally applicable solutions to the

complex process problems that BPM projects encounter daily” (Atwood 2006) and can be used to review

process strategy in order to ensure that they represent the best way of doing things via a “process walk-

through” (Atwood 2006). The six categories and associated patterns are outlined below.

• Basic Control (Sequence / Exclusive Choice / Simple Merge / Parallel Split and Synchronisation).

• Advanced Branching (Multiple Choice and Synchronising Merge Patterns / Multiple Discriminator

and N-out-of-M Join Patterns / Multiple Merge Pattern).

• Structural (Arbitrary Cycles Pattern / Collaboration / Implicit Termination Pattern).

• Multiple Instances (Without Synchronisation / With Design and or Runtime Knowledge Patterns).

• State Based (Deferred Choice / Milestone).

• Cancellation (Cancel Activity / Case).

The Workflow Patterns framework is purported to be “the most comprehensive framework in existence”

(Wohed et al. 2006). Workflow patterns in Business Process Modelling can produce advantages in terms of

reusability and a pattern is recognised as a composition of one or many defined patterns (Thom et al. 2007).

However, several problems have been identified and associated with such BPM patterns by Atwood (2006).

They are easily mistaken for object oriented patterns, intimidating for business users due to a perceived

complexity surrounding them and glorified by some as an all inclusive solution (Atwood 2006).

Yet Another Workflow Language (YAWL) is a pattern-based language. In comparison with the YAWL

model, Wohed et al. (2002, 2005, 2006) examine the UML Activity Diagrams, BPMN, BPEL and BPEL4WS

specifications, finding that several patterns are not supported by these notations. For example, the BPMN

“provides direct support for the majority of the control-flow patterns and for nearly half of the data patterns,

while support for the resource patterns is scant” (Wohed et al. 2006). Furthermore, other solutions are said to

represent a workaround that sufficiently deviates from the pattern to invalidate the conformance; such

workarounds may actually conform to the pattern, depending on interpretation. This argument is extended by

examining the advanced patterns of the analysis framework. Wohed et al. (2002) suggest that “the patterns

referring to more advanced constructs are often poorly supported in the different languages” (Wohed et al.

2002), which perhaps highlights that the advanced patterns of the framework may not be suitable for

analysing the usefulness of a notation or language since it could be arguable that the advanced patterns are not

needed by all languages, or that advanced patterns specific to the notation or language in question remain

undefined in the definition of patterns.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 37 of 333

In Russell (2007), 126 patterns were identified and defined with a formal reference language known as

newYAWL being proposed for “business process modelling and enactment” (Russell 2007). NewYAWL is a

derivative of YAWL but significantly incorporates 118 of the 126 patterns that were identified. On

completion, the language was evaluated against criteria suggested to provide good foundation for process-

aware information systems. This criteria addressed the formality; suitability; conceptuality; enactability; and

comprehensibility of the language (Russell 2007). No limitations were discussed regarding the solution

language.

Two concerns surround BPM. Firstly, it has inherited traits from original workflow automation technologies

which presume all processes to be mechanistic in nature. Original workflow techniques are inadequate at

supporting human-driven processes, such as “problem solving and design” (Harrison-Broninski and Hayden

2004) due to the involved sequential flow structure. Secondly, BPM is being adopted in the world of Software

Engineering because of that trait. “Rather than being an extension of workflow concepts, BPM is now seen as

systems-to-systems technology… BPM is becoming an IT Technology solution as opposed to the business

process solution it was meant to be” (Pyke 2006). It was proposed that business process constructs which can

facilitate “the execution of a business process described in terms of these constructs in a deterministic way”

(Russell 2007) be formalised (Gonzales 2009a). This could be questionable since much of human interactivity

has a non-deterministic nature (Conradi et al. 1992). For all the complexity of workflow patterns, this doesn’t

appear to be addressed. Many modelling techniques are used in industry to help define business processes for

quality or policy purposes, however, “using traditional workflow notation to capture human-driven processes

simply provides business people with a false sense of reassurance” (Harrison-Broninski 2006a). Further to

this, every notation or language will have independent patterns and variations on different patterns that do not

match up to those defined. For example, the BPMN doesn’t stand up to state-based patterns (such as

milestone or data based routing patterns) since the notation has no notion of state, which can lead to

workarounds, for example involving intermediate events to simulate states. It could be argued that the pattern

framework may not be the best means for evaluating languages and notations since there is an underlying

assumption that conformance to patterns equals a useful notation or language, and no consideration is made

for usage context. It is suggested here that a notation or language conforming to all patterns might actually

represent one that is overly complex and unfit for purpose and that one notation or language may suit a

particular context better than those which might support more patterns.

2.2.3 Business Process Modelling

The aim of Business Process Modelling “in the phase of analysis is to understand processes in a domain”

(Macek and Richta 2009). Business Process Modelling “aids the software developer, by helping to reduce the

problems associated with the elicitation of systems requirements” (Phalp 1998). Much has been written about

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 38 of 333

the benefits of standardisation in the BPM world and the need for commonality in process specification.

BPMS providers now have a “near-unanimous” (Silver 2008b) acceptance of the BPMN definition and

support for the notation is given by the OMG (OMG 2005, 2008a). Version 1.x is now supported by most

mainstream software technologies, with Version 2.0 carrying the support of main IT software producers

(IBM, ORACLE, SAP, MICROSOFT), “any BPM tool… that does not support BPMN will be relegated to

the “legacy” category” (Silver 2008b). The BPMN is entering a second incarnation with the 2.0 specification

and Silver (2009b), a long time proponent of the BPMN, summarises the focus of the Version 2.0

specification, identifying advancements intended to resolve some of the difficulties represented in earlier

specifications in Silver (2009b) and direction to features excluded from the Version 2.0 specification in Silver

(2009a).

The BPEL was designed as a formal method, complementary to BPMN and provides the specification of

business processes in serialised XML. The two techniques are so closely aligned that it is entirely possible to

transform from one technique to the other, thereby enabling the bridging of “the gap between business process

design and implementation” (Gao 2006). However, the “BPEL is a low level language that is necessary for IT

to effectively build and expose business processes as services. The downside is that business doesn’t want the

low level discussions and the IT to business communication becomes challenging because of the detail

required” (Kavis 2008). The BPMN was designed to be user friendly in comparison with the BPEL and the

2.0 specification effectively replaces BPEL as an execution language (Silver 2009a). The “BPMN is on the

way to universal adoption” (Harrison-Broninski 2006c) and with it, a prediction that the usage of the BPEL

will diminish. This is because, as well as the BPEL mapping functionality; the BPMN is defined alongside its

own Business Process Definition Metamodel (BPDM). This specification enables the XML to be generated

directly from the BPMN and stored in the XMI format. Since the XML is complete, it can be used for target

transformation into J2EE and .NET platforms, hence rendering the BPEL extinct. The prediction here is, that

the BPEL will become surplus to requirement. SOA technologists are likely to recognise that the alignment of

BPMN and SOA, taking advantage of the opportunity in adopting the BPMN within their products. Regarding

business processes, SOA is currently suffering the same difficulty as the MDA in being IT oriented. To

overcome this, the SOA “needs to take on board the general principles and patterns that underpin business

activity” (Harrison-Broninski 2006c).

Techniques such as the BPEL, BPMN (and UML) are “biased towards providing IT support, rather than

toward describing human behaviour” and “not really suitable for high-level description of business activity”

(Harrison-Broninski 2005c). The difficulty becomes evident in that “users (both business and IT) think they

understand BPMN” (Silver 2008b) and the truth is, the specification can be understood quite differently by

those involved. The specification is different to general flowcharting in three main ways. Firstly, the

definition is semantically rich, whereby each process is defined using nodes and connections that have

specific meaning, and it is those semantics that are of interest to IT. The notation can be used to convey ideas

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 39 of 333

of surface flowcharting but semantics drawn from such sketching may result in misunderstandings, especially

in terms of the MDA and the CIM. Secondly, the BPMN is event driven, allowing focus to be given to

alternative and exceptional behaviours, which is something that is not necessarily considered when attention

is given to flowcharting methods. Lastly, sub-processes can be defined and hierarchically structured, allowing

the user to give focus to the level of abstraction in the process as required. This is not always reflective of real

business processes which are humanistic in nature and not always neatly structured in such a sequential and

hierarchical manner. Wholly humanistic processes have been subject to scrutiny in the suitability of BPMN to

model such processes, they have also been “problematic” for description in the BPEL (Havey 2007). The

RAD is an alternative technique to modelling human-driven processes more successfully. However, it has

been suggested that the BPEL can support such tasks via a “larger orchestration” (Havey 2007). In Dwyer

(2010), the question “Is the BPMN suitable for use by business people?” is posed to the business process

modelling community. The majority of comments seemed to relate to a common theme identified by Dan

Madison in that “BPMN is fine for automation and IT users” (cited Dwyer 2010). This is supported by a

public debate on BPTrends (see www.bptrends.com) which concluded that “current BPM techniques and

tools do not cater for collaborative human work processes” (Harrison-Broninski 2006c). Such human-driven

processes are becoming the requirement for software system and web service support, to which concepts of

HIM and the use of the RAD notation is recommended since the BPMN is inadequate in managing humanistic

processes. Furthermore, the BPMN has “no concept” of requirements and does not support a requirements

view of the business process (Perry 2006).

2.2.4 Role Activity Diagram (RAD)

In 1986, Martyn A. Ould and Clive Roberts presented the Process Modelling Language (PML), a formal

language for business process execution (based on a previous incarnation known as the Requirements

Modelling Language (RML) (Roberts 1988), described in Greenspan et al. (1994)), and a diagrammatic

notation for informal process definitions known as the RAD. Central to these languages were the concepts of

role, activity, assertion and entity, each with their own particular underlying properties (Roberts 1988). Also

included was a transformation process allowing for RAD processes to be executed in PML. RADs are useful

since they cater for the dynamics of real processes, allowing for them to be flexible and “loose fitting” (Ould

2003). RADs can be developed over time, allowing enough flexibility to adapt to business process needs and

remain simple to use for the business user in modelling business processes (Dawkins 1998). According to

Ould (2004c), the RAD facilitates modelling of “aspects of the real-world” (Ould 2004c) by providing natural

concepts such as roles and interactions. The software world of the machine is formal and based on logic

(Jackson 2000).

In the RAD, processes are divided across roles. The RAD notation is rather more simplistic than alternative

software techniques for describing business activity, such as the BPMN, requiring little to no training to use.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 40 of 333

The RAD notation is included as part of the RIVA method (formally known as the Systematic Technique for

Role and Interaction Modelling (STRIM)). The key enhancement included with RIVA is that it facilitates the

construction of what is defined as a process architecture, which is formed upon what are known as “essential

business entities” (Ould 2003). The Process Trinity (as described in Ould (2004a, 2006)) is used to derive the

essential business entities and process architecture. The process architecture facilitates process strategy and

change management, which is a “vital requirement of BPM of supporting the agile business” (Ould 2003)

and, with the added concept of persistence, views can be created of past, present and potential processes.

RIVA provides an architectural theory to enable the business user to recognise where natural fault lines occur,

i.e. to identify a complete process, extract it using an appropriate tool and thereby allow for it to be suitably

modelled. This allows the models to retain the “coherence that exists in the real-world” (Ould 2004c). There

are essentially three themes to address when considering real-world business processes. They are:

Collaboration; Concurrency; and Mobility (Ould 2004b, 2004d, 2004e).

In an effort to create a “new approach to process modelling” (Abeysinghe and Phalp 1997), Hoare’s

Communicating Sequential Processes (CSP), which gives focus to input/output events and concurrent

processes (Hoare 1978), and the RAD, were combined via a methodological mapping process involving

mapping rules. These approaches were selected as representative of best practice examples from the formal

and informal approaches available (Abeysinghe and Phalp 1997). This work is extended in Phalp et al. (1998),

where the RAD is used to form an executable specification of a business process by translating the RAD into

RolEnact syntax; models can then be run on a computer using a Windows based interface, allowing for the

business process to be “debugged before its implementation, and process specification errors captured far

earlier” (Phalp et al. 1998). Specifically, the RAD facilitates understanding and accessibility for business

users. It is “difficult to validate process scenarios with users” (Abeysinghe and Phalp 1997) when using a

formal notations alone (Johnson 1987; Johnson 1988). The combined approaches allow for this advantage,

whilst remaining formal in application. A communication and decision making framework suggested in

Beeson et al. (2002) supports this notion where “plans can be reviewed and modified in the light of changing

circumstances” (Beeson et al. 2002). A case study involving AXA Sun Life, Bristol HQ was the focal point

for a conceptual process model produced to reflect the communication and decision points. RADs were found

to be “very useful for capturing the essential dynamics and information in the process” (Beeson et al. 2002)

but presented some difficulty in describing role merging and over-constraint on sequential activities.

RIVA is a method that gives focus to processes, whereas other techniques (BPEL and BPMN) are machine

focussed. Besides supporting agile processes, a key benefit with the combination of the techniques presented

in RIVA in application to the MDA is that the concurrency of business processes could be adequately

addressed. This is “how concurrent processes interact, and which processes can have many concurrent

instances and how they interact” (Ould 2003). Moreover, the process architecture develops “over time and

with use, rather than being set in concrete at the outset” (Ould 2003). The difficulty of applying the RAD to

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 41 of 333

the MDA is that describing software is not the original intention of the RAD. “Role Activity Theory has

acquired a core of adherents over the 20 years since its invention, but never quite made it into the IT

mainstream, which over the years has concentrated on building information-based, not process-based,

systems” (Bushell 2005). Therefore, it may be important to draw on knowledge of software modelling if any

CIM application of the RAD is to be made.

2.2.5 Human Interaction Management Systems (HIMS)

Human Interaction Management (HIM) is a technique for modelling human system behaviour via the use of

the RAD notation (see www.human-interaction-management.info) (Bushell 2005). The combination of HIM

and the role concept is central to this movement, since the “proper division of information is linked intimately

to proper division of behaviour” (Fingar 2007) and thus, the behaviour is represented in terms of human

collaboration. The role utilises private data to validate conditions in terminating role activity and instantiate

other roles or activity. Notations such as the BPMN allow only for messages to interact between two single

entities; with human-driven processes, interaction is usually between many (for example, a conference call),

which is allowed in RAD. BPMN is a notation that “only vaguely captures the process” (Harrison-Broninski

2006a), RADs can adequately model human-driven interactions and they are understandable to non-technical

business users, without the need for exhaustive training. An additional benefit is that the number of

documents involved in business process modelling can be reduced; with the introduction the RAD a single-

page (Harrison-Broninski 2006a).

This technique is both contrary, and complementary to techniques of Software Engineering such as the BPEL,

BPMN and UML, which give focus to processes that are automata. The MDA describes the use of UML in

the creation of the PIM. However, “people are not programs, and their behaviour cannot be properly

described, controlled or supported using techniques such as BPEL, BPMN or the UML” (Harrison-Broninski

2005c) since such techniques are focussed upon the requirement of software implementation rather than

providing support for defining the requirements of human-driven processes and are therefore unsuitable,

which is the reason why (perhaps in reference to Smith and Fingar’s book “Business Process Management:

The Third Wave” (Smith and Fingar 2003)) HIM is described as the fourth wave of BPM, beyond

technologies such as the BPMN, where “contracted processes” and “irregular collaborations” are accounted

for (Korhonen 2008).

2.2.6 Goal Modelling

In the modern world of business, dynamic demands placed on organisations force them into “reactive patterns

of change” (Kavakli 2004). “Relationships in modern thinking go far beyond inputs and outputs” (Owen

2009b). This requires that businesses are able to be agile enough to achieve such organisational change

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 42 of 333

through the precise tuning and balancing of organisational goals and strategy. The point of implementing

information systems in the business arena is to achieve some form of business strategy. It is therefore

important that such IT systems are correctly aligned with the high-level business strategy, where “humans are

intrinsically goal-driven” (Conradi et al. 1992). Goal modelling is used in the field of Software Engineering to

ensure that the system is built to specification, and that the specification is representative of the right system.

It is suggested that “existing software development methodologies… have traditionally been inspired by

programming concepts, not organisational ones, leading to a semantic gap between the software system and

its operational environment” (Castro et al. 2002). Owen (2009b) discusses the definition of intangible

elements into the system and the design of systems based on stakeholder needs, business goals and

environmental changes (Owen 2009b).

In its most generic form, goal modelling is comprised of a tree or network diagram which begins with some

high-level goal and branches into a series of sub goals, indicating the causal relationship between each goal

(Kavakli 2004). Goals range hierarchically from high-level strategic goals to lower level technical and sub-

goals. Many techniques are available in consideration of goal modelling and the choice of techniques is best

suited to the individual context. Research has shown that the integration of methods can also be of benefit in

the required context (Kavakli 2004). Three key trends in process modelling adversely affect small business

ability and desire to engage in process modelling. They are that there is a plethora of notations available; a

large degree of complexity associated with notations and process models; and a serious lack of real evidence

to support the application of process modelling (Phalp and Shepperd 1994). To address this, Phalp and

Shepperd (1994) present the Goal, Use, Investment, Deliverables, Experience/Environment (GUIDE)

checklist to “tie the modelling notation used to the goal of the work” (Phalp and Shepperd 1994), using the

DFD as a communication mechanism.

In Basson (2009a), five basic capabilities are identified as the “essence of Integrated Business Management”

(Basson 2009a), suited to the changing business environment. They are People; Guidance; Process;

Information; and Resource, where goals are held central to the guidance capability. Another drive to align

goal modelling within software development is presented in Castro et al. (2002) where four phases are

associated with outputs in the Tropos methodology and demonstrated in table 2.2.6.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 43 of 333

Phase Output

(1) Early Requirements

- Organisational Model

Strategic Dependency Model

Strategic Rationale Model

(2) Late Requirements

- System To Be

Revised Strategic Dependency Model

Revised Strategic Rationale Model

(3) Architectural Design

- Global Architecture With Sub Systems

Non-Functional Requirements Diagram

Revised Strategic Dependency Model

Revised Strategic Rationale Model

(4) Detailed Design

- Each Architectural Component Described In

Detail (Map To UML)

Agent Class Diagrams

Sequence Diagrams

Collaboration Diagrams

Plan Diagrams

Implementation

- Representation And Generation Of Code Base

Beliefs-Desires-Intentions Agent Architecture for

implementation in JACK
table 2.2.6.1,1four phases of requirements driven design (Source: adapted from Castro et al. (2002)).

Rather than basing a development methodology in the concerns of Software Engineering, the Tropos

methodology is proposed and presented in a case study format with RE ideals; the hope being to reduce the

semantic gap and eliminate factors apparent in causing project failure (Castro et al. 2002). It is claimed that

“requirements analysis is arguably the most important stage of information system development” (Castro et

al. 2002) and time spent focussing on this stage of development is valuable, since failure to recognise a

mistake in a requirement could lead to expensive design alterations later in the development process. A

similar technique known as Goal-Oriented Requirements Engineering (GORE) is defined for “eliciting,

elaborating, structuring, specifying, analysing, negotiating, documenting and modifying requirements” to help

ensure that goals are maintained and satisfied during software development (Robinson 2007). The i*

(distributed intentionality) is another framework that gives attention to elements such as actors,

responsibilities, objectives, tasks and resources rather than Software Engineering concepts like objects, agents

etc (Castro et al. 2002; Dowson 1987a, 1987b). However, it appears that much of the soft-goal requirements

are lost in translation when the process moves into UML mapping, since business needs and wants have no

representation in the UML. The Business Strategy Context Process (B-SCP) framework is presented to

address the alignment of business and IT in software development by ensuring the “validation and

verification” of strategic alignment in terms of the information technology involved and the underlying

requirements (Bleistein et al. 2006). This is achieved through the traceability of the framework in that system

processes can be traced back to the initial strategy of which the company is setting out to achieve. This

framework is an integration of three separate methods (supporting what was previously noted regarding how

the integration of methods can sometimes be beneficial given the right context (Kavakli 2004)) which are

Organisational Goal, Context and Process Modelling in order to achieve such alignment and traceability.

Model integration is achieved through mapping rules with respect to elements of each particular model. Goals

(Strategy) are directly linked to Requirements in the Jackson Context Diagrams (Context). Domains of

interest (Context) are associated with Roles of the RAD (Process) and Goals (Strategy) are related to RAD

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 44 of 333

state transitions (Process). The central concept of connecting strategy to requirements is perhaps the most

valuable part of the research with an interesting look at model mapping which is quite akin to the MDA.

Stakeholders are “seldom aware of how their role contributes to the realisation of business-wide objectives”

(Kavakli 2004) and goal changes can be revealed in the process of asking how and why questions in

abstracting high-level goals into sub-goals. It is said that “development methodologies have traditionally been

inspired and driven by the programming paradigm of the day” (Castro et al. 2002). Goal Modelling

techniques adapt if the requirement is made to do so, or in light of new information, which leads to the benefit

of integration with the MDA in facilitating the agility of changing needs and the inspiration and drive from a

business context. Therefore, a consequence of a goal-driven software development process is that goals must

also be agile in respect of environmental changes. This is because software development is “non-monotonic”

(Thomas 1989). Furthermore, at some point in the decomposition of goals into sub-goals, a primitive is

reached, which itself can be “difficult to discern” (Thomas 1989).

2.2.7 Sketch Recognition

A solution to bridge the gap between requirements and design methodologies is provided by Scott W. Ambler

in Ambler (2007), where it is suggested that Agile Inclusive Techniques be used to provide non technical

stakeholders with sufficient tools that are simple to understand and can adequately transfer into a technical

PIM (see Section 2.3.9 for an extended description) (Ambler 2007). With this in mind, some interesting

research in the area of UML Sketch Recognition is provided in Hammond (2001) by Dr. Tracy Hammond at

the Massachusetts Institute of Technology (MIT). Sketching is well practiced in brainstorming requirements

and initial ideas for a solution. Usually, once design begins, such sketches are left behind in the development

process (in much the same way as requirements models). Sketch recognition allows a designer to draw UML

sketches onto a whiteboard or tablet, the same way as they might appear on paper. In the MDA, such

requirements level etchings could now transpire to be artefacts useful to design through such a technique.

Simulation models are usually used “when the complexity of the system being modelled is beyond what static

models or other techniques can usefully represent” (Raffo et al. 1999). ASSIST (A Shrewd Sketch

Interpretation and Simulation Tool) uses heuristics to interpret the sketches and enact them, allowing

prototypes to be simulated. Objects and associations can be created, deleted and moved, all with a view to

gaining a better understanding of the model. The real beauty of this technology is that it has been designed to

interface with Rational Rose. This is to say that, once a drawing has been made in the Natural Sketch

Recognition environment, it is then translated into XMI elements of, for example, a Class Diagram. From this

output, it can be imported into Rational Rose which can then generate the required code associated with the

diagram and/or any number of transformations. In theory, this would allow for a technically challenged user

to participate in the generation of numerous variations of prototype models, all from a simple sketch.

“Sketches are recognised based on what the drawn object looks like, rather than how it is drawn” (Hammond

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 45 of 333

2001). The concept can ultimately be extended, since it does not have to include the UML as a default

standard, it could in fact be extended to any modelling format. See the MIT’s ASSIST project at

http://rationale.csail.mit.edu/project_assist.shtml for further information.

Professor Randall Davis from the MIT and his team have created a software system known as SketchPad,

which is tantamount to DSM for mechanical engineering, extending the application of sketch recognition.

With the SketchPad environment, mechanical behaviours can be modelled and simulated, thereby connecting

initial requirements to real design without any constraint in complexity. This enables stakeholders to have

close involvement in the brainstorming process. Currently, only a limited number of mechanical components

are recognisable and there is some concern as to whether or not the system could be effective at distinguishing

between components that are similar in design. One solution might be to establish a best guess based on

context, allowing for user interaction to fix any errors, or limit the system to only containing distinctive

components (Adler 2001). With a degree of vision, this type of domain specific sketch recognition could be

applicable to other graphical techniques, such as Checkland’s Rich Pictures (Checkland 1981, 2000;

Checkland and Scholes 1990), which is a flexible sketching technique for use in the analysis and design of

software systems (Horan 2000), whereby user-defined concepts illustrated in a Rich Picture could be

associated with design elements via the SketchPad Environment.

2.3 Alternative Approaches

Whilst the MDA remains popular subject matter in literature, it is important to recognise and discuss other

popular approaches to the development of software systems and the alignment of those systems with business

processes and requirements. Similar to those techniques discussed in Section 2.2, there are numerous

approaches available for investigation and therefore this chapter limits discussion to those which hold a

particular and popular interest in the domain and those which crossover specifically with the MDA in the

literature.

2.3.1 Value Chain

The Lean Enterprise Institute (www.lean.org) approaches the connection between business and IT in a

different way. The focus here is on workflow techniques that derive from Toyota research and are based upon

ideas presented in James Womack, Daniel Jones and Daniel Roos’ book “The Machine That Changed The

World: The Story Of Lean Production” – A MIT study of the practices employed at Toyota. Firstly, a high-

level value chain is mapped (Flow Kaizen) and streamlined, before giving direct attention to the lower level

processes (Process Kaizen). Organisations “need to begin by streamlining the entire value stream, and only

after that, drill down into specific processes to eliminate waste” (Harmon 2006) to achieve real efficiency in

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 46 of 333

the value chain and associated processes (therein lays the foundation of software development). For this

reason, focus is given to Flow Kaizen, rather than Process Kaizen. The argument is that process management

is ineffective. Research has shown that process optimisation is firstly focussed on a single process, rather than

the system as a whole and in turn, the overall system is compromised (Dowdle and Stevens 2009). Secondly,

process optimisation is not viewed as long term (Dowdle and Stevens 2009). In either case, the difficulty

appears that, although theoretical basis and tool support are available, the guidance on how and when to

implement and manage process based strategies is not (Dowdle and Stevens 2009). The method offers such

guidance with the intention to be completely managerial in nature and that “software tools should not be used,

since they distract managers from focussing on the work of developing a high-level map” (Harmon 2006).

This is an important distinction from other methods that promote the use of software tools within BPM and

the MDA. David LaHote is the president of Lean Enterprise Institute’s Lean Education Value Stream, and he

outlines the key concepts of the Lean conceptual model in Lahote (2008). The concepts fall broadly into two

categories, the first being that Value is to be defined from the customers’ perspective, per product. The second

is focussed upon the importance of having a streamlined value chain. All of this is done “in pursuit of

perfection” and with an “understanding of the system that best supports” those concepts (Lahote 2008). The

Toyota Production System is a real implementation of concepts introduced by Lean which of course is rooted

in the car manufacturing sector. However, the conceptual Lean model can be applicable to any business and

forms the foundation for the Lean Six Sigma (LSS) method. Three central areas to understanding are People,

Process and Purpose and that “tools need to work together as a system” (Lahote 2008).

2.3.2 Balanced Scorecard

The Balanced Scorecard (BSC) is commonly used to manage business strategy, the BSC is implemented and

executed via the utilisation of key performance indicators and the technique is “IT-supported and [forms] a

conceptual basis for management information systems” (Niehaves and Stirna 2006). In the enterprise it is of

the utmost importance for executives to align IT with their business strategy (Wegmann et al. 2005;

Wegmann et al. 2007). However, not much is offered by way of means to ensure the validity of initial strategy

and goals. Kokune et al. (2007) argue that “the validity of the strategy model itself is essential [but is] almost

entirely ignored in requirements engineering research literature” (Kokune et al. 2007), not to mention

software processes.

In Kokune et al. (2005, 2007), Fact Based Collaboration Modelling (FBCM) is proposed as a methodology for

“defining and validating business requirements” (Kokune et al. 2007) to verify IT alignment with business

strategy by giving focus to the strategic model, ensuring that resulting system functions are based on a valid

strategy. FBCM consists of five generic steps which are roughly based on BSC techniques. However, FBCM

extends the BSC method to incorporate the availability of field and statistical information (Kokune et al.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 47 of 333

2007). The five steps of FBCM consist of several sub-steps to be completed. Each step has many tasks

associated with it. For example, Step 1 has five associated sub-tasks; Step 2 has two outcomes, one with seven

elements and the other involving the analysis of collected information in a matrix – which is quite complex,

relying on the availability of information to evaluate the validity of strategy structure (the causal

relationships) using a correlation coefficient. Therefore, whilst raising many interesting insights in how

information can be used to ensure the alignment of business with IT, the unavailability of such information

may hinder application. Indeed, the availability of appropriate business knowledge to enable the

implementation of BSC methods has been seen as a difficulty in other research, such as Niehaves and Stirna

(2006). This difficulty is proposed to be overcome via the integration of the BSC with Enterprise Modelling

via the Enterprise Knowledge Development approach (Niehaves and Stirna 2006). The suggestion being that

Enterprise Modelling “can support BSC implementation projects that comprise activities requiring the

discovery and documentation of organisational knowledge that is not easily accessible or not of sufficient

quality” (Niehaves and Stirna 2006). For IT “system development, the aim of FBCM is just to clarify goals,

objectives and the ways to measure the degree of their achievement” (Kokune et al. 2007) and, therefore, “it is

necessary to utilise it in combination with a business process modelling method” (Kokune et al. 2007), which

means it could be offered as complementary to any software process (or indeed business process) in terms of

the definition and validation of the strategic model.

2.3.3 Enterprise Modelling

As previously noted, the alignment of business strategy with IT is important for the success of the enterprise

and it is therefore recognised that such alignment must be considered on an enterprise level (Wegmann et al.

2005; Wegmann et al. 2007). However, the task of integrating IT into the business organisation is complex.

The organisation of IT within the company is affected by current business processes and the strategies behind

those processes. Current business processes are also affected by the organisation as new ways of completing

tasks are discovered through the use of IT. Such complexity causes “language barriers” (Frank 2002) between

business users and Software Engineers. Enterprise Modelling is seen as a way of alleviating involved

concerns and degrading such barriers.

The Multi-perspective Enterprise Modelling (MEMO) framework is an example of a conceptual framework

for Enterprise Modelling. The focus of the MEMO framework is on three distinct modelling perspectives,

across five alternative perspectives (see figure 2.3.2.1). By addressing these complementary views, complete

and precise software systems might be created, grounded in intuitive business process design and information

systems knowledge, both being aligned with organisational strategy.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 48 of 333

figure 2.3.2.1,3perspectives and aspects related to MEMO framework (Source: Frank (2002)).

The two main goals of the MEMO framework are to enable Enterprise Modelling with strategic alignment

and to create an organisational wide knowledge base consisting of core models which can be integrated and

reused.

The Systemic Enterprise Architecture Method (SEAM) is offered as a means to achieve more of a complete

alignment of all environmental concerns in comparison with traditional mechanisms, such as the value chain,

the business process model and the UML (Wegmann et al. 2005). Business and IT alignment is defined by

SEAM specifically as “system alignment between organisational levels (from business down to IT) and

system alignment between functions levels (within the same organisational levels)” (Wegmann et al. 2005).

The approach is based on systems thinking (see Checkland (1981, 2000), Checkland and Scholes (1990))

where systems might be viewed as a whole or as a composite (depending on audience) and the emphasis is

placed on a “well-built enterprise model and not on the process of building it” (Wegmann et al. 2007). The

enterprise model is created and, from that, particular views are generated and focussed upon by the designer.

The enterprise model describes the business goals, strategies and needs of the stakeholder in terms of “the

markets of an enterprise, the enterprise itself and its IT systems” (Wegmann et al. 2005) in the context of how

things are at project start-up and how things are proposed to be at project end. However, the author concedes

that “to be truly practical, SEAM needs to have tool support” (Wegmann et al. 2005).

Enterprise BPM is “the modelling of all processes in the enterprise, as part of and in context of the total

enterprise business model” (Musschoot 2009). That is, “the process of modelling all relevant aspects of the

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 49 of 333

business” (Musschoot 2009). By examining the “building blocks” of Enterprise BPM, it is possible to “build a

solid base for modelling meaningful and correct business processes in an enterprise context”(Musschoot

2009). Silver (2008a) discusses 3 levels of process modelling. They are Descriptive, Analytical and

Executable. A base diagram is created at the Descriptive level, to be informative about a process. The more

detail that is added, the higher the model will progress until it becomes fully Executable. Therefore, “the

amount of detail depends on the level you want to achieve” (Musschoot 2009).

If you are modelling business processes to assure the mutual comprehension between business and

IT, it is mandatory to involve both stakeholders in the modelling process. If not, you'll put yourself in

a very difficult position (Musschoot 2009).

Therefore, the languages used for modelling software systems should provide business users with the

capability to model elements in a language that they understand; technical interpretation should be provided in

a similar manner since “a modelling language is an instrument, not an end in itself” (Frank 2002). With

Enterprise Modelling, models are created specifically for that domain whereas with the MDA, models are

typically in the UML, which is “designed for the development of software systems” (Frank 2002), and does

“not provide concepts and graphical representations that are appropriate for all aspects of an enterprise

model” (Frank 2002). Enterprise systems are inherently difficult to model due them being large and complex.

However, the “MDA envisages systems being comprised of many small, manageable models rather than one

gigantic monolithic model” (Appukuttan et al. 2003a), which supports the idea for model abstraction in such

cases.

2.3.4 Software Process Modelling

Traditionally, software process modelling focused on one complete model of the software process. As

languages evolved and became more complex, so too have software process models. Models of the software

life-cycle first came about during the 1950s/60s. Primarily, they were to “provide a conceptual scheme for

rationally managing the development of software systems” (Scacchi 2002). Examples include the Classic

Software Life-cycle (or waterfall approach); Stepwise Refinement; Incremental Development and Release

(prototyping); and Industrial and Military Standards, and Capability Models, for example (ISO12207)

(Scacchi 2002). “A software life-cycle model is either a descriptive or prescriptive characterisation of how

software is or should be developed… software process models often represent a networked sequence of

activities, objects, transformations, and events that embody strategies for accomplishing software evolution”

(Scacchi 2002). A difficulty in software development is the “representation and integration” of project

information in a manner which projects can be controlled efficiently (Huseth and Vines 1987). Standards

relating to process modelling are typically paper based, therefore meta-processes are suggested to structure

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 50 of 333

processes and enable the automatic verification of implementations and other standards against them (Ledru

et al. 2006; Purper 2000; Turgeon and Madhavji 2000a). “Software development methodologies are intended

to improve software development by specifying the products to be created, describing the activities to be

performed, and guiding the execution of these activities and the use of the products” (Sutton et al. 1991).

However, Starke (1994) extends the difficulty of modelling the software process by identifying five key areas

which require consideration and relate to the terminologies used, number of available languages and

paradigms, types and instances of process models, dynamic changes which occur, and standardisation of

approaches (Starke 1994). Zave (1989) proposes that “some application domains for which software is written

are well understood, and some are not. This distinction is crucial to understanding – and improving – the

software process” (Zave 1989). A close relationship is suggested between the domains software process and

information systems modelling, in that both address a similar problem but use different approaches, and one

could learn from the other to alleviate such difficulties (Conradi et al. 1994).

It is claimed that “by formalising the methods that are… used to develop software, we will be able to correct

deficiencies, and incrementally enhance the way software is constructed” (Huseth and Vines 1987). “The

process of software design… is one of the most creative of human activities” (Katayama 1988) and therefore,

to formalise such an activity may seem counter intuitive. “Difficulties in (formally) specifying… software

processes… are due to the fact we have not… clearly identified what we can (because it is purely mechanical)

and what we cannot automate (because it requires creativity, intuition)” (Rombach 1988). Focussing on

characterising, planning, executing, learning and feedback, a formalised Specification Framework is

suggested to account for automated support in the Software Engineering environment (Rombach 1988). A

formal approach to specification is extended to account specifically for process modelling and is presented as

the Organisational Base Model in Sa and Warboys (1994). It utilises a formal stepwise refinement technique

which is extremely complex and plagued with unfamiliar terminology and temporal operators, understanding

of which is required to understand and apply the method. The logic also requires further clarification as it

appears to have an altogether sequential nature. Therefore, it is difficult to see how alternative and exceptional

cases could be modelled. It is considered important that any formalisation should be human understandable

(specifically by managers); able to develop with the changing environment; hierarchical in design; able to

accommodate process concurrency; and design alternatives (Katayama 1988). Justification for such a

formalisation can be given in that “every scientific study begins with description; software methods… need to

be described in some language so that they can be better used and communicated; and the software industry

needs some means of process description to achieve better quality control over products” (Katayama 1988).

However, it is argued that complete formalisation is not required so long as there are enough manual-

overrides available for human users to account for any alternate or exceptional behaviours within a process

(Jackson 2000).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 51 of 333

Integrated Project Support Environments (IPSEs) can be used to support the software development process.

Focus in Ashok et al. (1988) is given to the architecture of such an environment and it is argued that they

should “maintain an explicit model (representation) of the software process that is to be followed in a project”

(Ashok et al. 1988). The architecture is hierarchically arranged, “communicating sequential tasks” (Ashok et

al. 1988) in the form of activities. Researchers at the Software Engineering Institute examined ways to

augment software processes with management support (Kellner 1991). View-based models focus on eliciting

information about the software process from multiple sources, thereby constructing a model of the software

process from numerous alternate views. By giving focus to a single view, each view can be subject to an

individual verification procedure. The application here looks to provide management planning and control

mechanisms within software process modelling. The approach uses the STATEMATE tool to “represent,

analyses, and simulate software processes” (Kellner 1989, 1991) and is characterised by the inclusion of three

alternate modelling viewpoints. They are firstly, function (in the form of an Activity Chart displaying what

happens in the process); Secondly, behavioural (in the form of a State Chart displaying when and how things

happen); and lastly, organisational (in the form of a Module Chart displaying where things happen and who is

involved in such happening) (Kellner 1989, 1991). In Nuseibeh et al. (1993) two views of granularity are

suggested to enhance the model of the software process. This method supports the decomposition of the

global view of the software process into smaller processes in terms of individual developers (Nuseibeh et al.

1993). The “big problem” faced with traditional project life-cycles is that they are both costly and time

consuming, which leads for the need for process definitions to be agile (Hogg 2009). One way to improve the

software development process is suggested in Turgeon and Madhavji (2000b) where a similar view-based

modelling approach to software process modelling is considered. It is suggested that “models of software

processes elicited using a view-based approach are generally of higher quality (specifically, more complete)

than those elicited using traditional, non-view based, modelling approaches” (Turgeon and Madhavji 2000b).

Users require that “business systems… be… available instantly and operate flawlessly” (UC4 2008). The

concept of Case Management was first introduced in the 1990s. It is suggested that the traditional structured

environment is fixed and considered at design time, whereas an unstructured and ad hoc process flow can be

considered at execution time. Therefore, a successful BPMS must provide both Design-Time and Run-Time

Case Management (Hogg 2009). To facilitate such agility, it is suggested that the process be able to be

adapted by the user role in execution time and not be bound by design-time decisions (Hogg 2009), giving

flexibility to user roles. The scale of distributed and enterprise computing adds to the complications involved

in creating such systems and, therefore, the objective is to change processes “to respond dynamically to

changing business requirements and competitive pressures” (UC4 2008). Tools must venture “into a new

realm where applications and events can be driven dynamically in response to constantly changing business

conditions” (UC4 2008).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 52 of 333

Contemporary models of software development must account for software, the interrelationships

between software products and production processes, as well as for the roles played by tools, people

and their workplaces (Scacchi 2002).

Software process technologies were originally intended for computer expert use and as such, they describe the

software process in a sequential nature and do not account for concurrency (Taylor 1987). Traditional

software processes are simple and stepwise, but lack the flexibility to support the natural environment and

“capture and formalise a wide variety of data types, types of users, classes of tools, and the complex

relationships between the steps of a process that will be used in a large software development project”

(Huseth and Vines 1987). “In order to improve software development capability, one should improve

software development processes” (Turgeon and Madhavji 2000b) and provide “automated support” (Rombach

1988). “It could be argued that process descriptions should not be procedural at all, and that functional

descriptions have much greater potential for promoting concurrency” (Taylor 1987). An alternative

consideration when modelling the software process is to take business goals as the foundation for that process,

rather than activities or products (Taylor 1987; Thomas 1989). Difficulties are compounded when the process

involves a team effort as there is a need to ensure that individual members are all singing of the same

specification (Taylor 1987). Therefore, methods which embrace business process research in modelling

concurrent activities and business goals in the software process could be preferred over procedural ones. “The

use of behavioural description makes it possible to describe the software process at any desired level of

abstraction and, therefore, assists in accommodating aspects of the process which are poorly understood”

(Williams 1988). Models “must go beyond representation. They must support comprehensive analysis of a

process. In addition, models should allow predictions regarding the consequences of potential changes and

improvements” (Kellner 1989); which leads to the recommendation of enactable models where simulation can

be used to “draw a clear and touchable picture of the future system for the managers and users” (Mahmudi

and Tavakkoli 2005), supported by Grützner et al. (2004).

2.3.5 Process Programming

An approach to formalised process modelling is known as Process Programming (Osterweil 1987). Software

process programming is an approach to specifying the software process, in which the software process is

formalised. Conventionally, the interpretation and implementation of such a development ethos has been a

manual process. This can lead to a degraded understanding and interpretation; with both incorrect and

inadequate implementations resulting. Models of process programming “can be machine interpreted and can,

therefore, be used as a process control mechanism” (Lehman 1988).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 53 of 333

Processes are complex to program and each programming paradigm is associated with individual difficulties.

For example, declarative languages have structural issues as they do not have well defined import/export

interfaces; object oriented approaches have dependency issues; and net-like approaches are complex and lack

management capabilities (Deiters et al. 1989). Indeed, process programming is comparable with programming

“on a very high or abstract level” (Deiters et al. 1989). To address these issues and apply process

programming to the software process, a multi-paradigm approach is suggested which encompasses

declarative, object oriented and conventional approaches (Deiters et al. 1989). A method is defined to enable

the development of “complex process programs” that uses a structured framework of mechanisms known as

the Model for Software Processes which has “well-defined import/export interfaces” (Deiters et al. 1989).

In Sutton et al. (1991), REBUS was developed as “a prototype process program for the specification of

software requirements” (Sutton et al. 1991) to address issues and demonstrate the feasibility in part of

software process programming and includes the definition of a data model (in the form of a Directed Acyclic

Graph) and a process model (in the form of pseudo code and state charts). The investigation found that

“REBUS demonstrates to a significant extent that process programming is feasible” (Sutton et al. 1991). The

method facilitated user interaction, automated a great deal of the more mundane features, and formally

included a requirements model - although not in a formal language (Sutton et al. 1991). However, the given

focus on a single phase (i.e. requirements-specification) made it difficult to avoid promoting the software

process behind REBUS, rather than the concept of software process programming. Moreover, a requirements-

specification is inherently not something expected to be subjected to programming and automation. The

discovery here is about how programming can be used to situate the software process within a development

environment; the content of that process is not necessarily important. The investigation may have been better

applied at a phase further downstream from requirements since, as the authors quite rightly elude to

requirements inherently containing a great deal of human interactivity, some of which may not be candidate

for programming in a software environment. “Formalisation and mechanisation do not enhance human

intelligence. Formalism can provide support for human understanding; mechanisation will reduce or replace

such human repetitive activity for which the need and make-up is predictable. And so on” (Lehman 1988).

Therefore, a concern is raised that by increasing the formality of the process specification; an increase in

complexity in both definition and understanding of the process might be experienced. This may prove to be

counterproductive in terms of relaying information between stakeholders.

2.3.6 Functional Modelling

As previously noted in Section 2.2.1, the rise of information systems inspired modelling techniques in terms

of functionality. According to Owen (2007), product development is faced with two problem types: those of

depth (“failing to spend time and resources establishing what to make or implement… before committing to

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 54 of 333

planning how to make it” (Owen 2007)) and those of breadth (“failing to consider the full range of users, and

its remedy: establishing who the users are and the aspects of system functionality they are concerned with”

(Owen 2007)) and it is the latter to which functional modelling is concerned with.

Structured analysis techniques can be used to model the functionality of a system and are considered better at

communicating ideas, being easy to understand and use, maintaining clear system boundaries and accounting

for abstraction & partitions and tool automation via Computer Aided Software Engineering (CASE) tools

(Easterbrook 2003). Structured Analysis and Design Technique (SADT) is a top-down “diagrammatic

notation for constructing a sketch for an application” (Mylopoulos 2004a). In the notation, boxes are used to

represent data or activities and arrows represent relationships between boxes in the form of inputs, outputs

and controls. With up to six boxes in each diagram, each box can be broken down into further diagrams,

“leading to hierarchical models of activities and data” (Mylopoulos 2004a) in terms of functionality.

However, SADT neglects project projection and timing issues and confuses the modelling of the problem

with the modelling of the solution (Easterbrook 2003).

The IDEF (ICAM DEFinition) family of languages began development in the 1970s U.S. Air Force Integrated

Computer Aided Manufacturing (ICAM) program. IDEF has also become known as “Integration DEFinition”

due to its later focus on the integration of modelling methods with other (IDEF and non-IDEF) methods and

tools (Menzel and Mayer 1998; Russell 2007). IDEF0 is a commercial SADT based CASE tool for describing

processes in the form of functions. Inputs are transformed via Controls into Outputs, subject to resource

Mechanisms. These concepts are known collectively in IDEF as ICOMs (Menzel and Mayer 1998). The IDEF

construct forces the consideration of each function in terms of each ICOM. This is positive in that models are

likely to have a greater accuracy in respect of ICOMs, although the method does produce diagrams in a

sequential fashion. Functions can be broken down to a detailed diagram and abstracted upon to the context

level 0 diagram. IDEF3 is a “general purpose modelling method” (Menzel and Mayer 1998) where the focus

is on process, rather than function. An IDEF3 process is also known as a Unit of Behaviour and is

characterised “in terms of the objects it may contain, the interval of time over which it occurs, and the

temporal relations it may bear to other processes” (Menzel and Mayer 1998). However, these types of

solutions are “essentially focussed on business processes [and not] the ultimate realisation of the systems that

they describe” (Russell 2007).

In consideration of modelling behaviour, a procedural modelling technique known as the DFD is proposed to

model the functionality of complete systems (Stevens et al. 1974). Information flow is modelled, typically via

notations derived from the influential works of Demarco (1979), Gane and Sarson (1977), Yourdon (1989),

where square boxes represent internal and external entities, arrows show the flow of information, rounded

boxes represent processing to carried out on information with open ended rectangles representing information

stores (Mylopoulos 2004a). There are three levels of DFD; the objective of each level is to remove abstraction

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 55 of 333

from the previous level by adding further detail to it. A low level (Level 0) context diagram is first created

showing the basic data flows between objects of the system and represents the System Description where

processes and data flows are first identified (Cachia 2005). The practice of de-abstraction continues through

DFD levels 2 and 3, until all important aspects of the system have been identified and visualised in the

notation. DFDs are considered semi-formal due to the limitations that, whilst having formal syntax in the

form of notation, DFDs lack formal semantics (and therefore executable DFDs are not possible) and control

semantics (such as choice, concurrency and synchronisation) remain undefined in the notation (Gupta 2007c).

These may be addressed by complementing DFDs with other notations, expanding the DFD notational set or

by initiating a full DFD revision from semi-formal to formal, to account for such limitations (Gupta 2007c).

Confirming all requirements are included within the System Description is also difficult; those that are not

may become overlooked and never materialise as part of the system design. Therefore, a detailed definition is

paramount in such an approach. Moreover, the DFD appears to represent only sequential processes; it is not

clear how processes which have greater dynamics, such as those that are humanistic might be accounted for or

how the DFD might be adaptable to new software development approaches, specifically model driven

approaches such as the MDA.

It is argued that “good system coverage will ensure that all system users have their interests considered…

Establishing the functions to be performed establishes the criteria to be met” (Owen 2007), and therefore the

requirements. The Entity Relationship Diagram (ERD), which can be used to complement the DFD to

describe “conceptual data models” (Gupta 2007a), supported by Saeki et al. (1991), is a simple and easy to

use technique for modelling information (Easterbrook 2003). Formally proposed in Chen (1976), it is

considered to be “easy to understand not only for systems analysts and database designers but also for

managers and users” (Chen 1983). It provides a static view of the system (being the origin of the UML Class

Diagram (Gupta 2007a)) and can translate “readily to relational schema for database design” (Easterbrook

2003). The main notational elements of an ERD are entities, which are classes of “autonomous” objects; and

relationships, which exist between entities (Easterbrook 2003). Relationships can be of the type AND/XOR

and an entity can also be related to itself. Cardinality is used to denote the minimum and maximum related

objects. Like the DFD, the ERD lacks precise semantics and is therefore semi-formal technique (Gupta

2007a). There is also evidence to suggest that the ERD may be directly translated from natural English

requirements by close examination of the sentence structure of provided natural English (Chen 1983).

Easterbrook (2003) argues that object oriented techniques are considered to be more flexible because object

orientation “emphasises the importance of well-defined interfaces between objects compared to ambiguities

of dataflow relationships” (Easterbrook 2003). This is because the functions tend to change, but objects stay

the same. Conversely, it is highlighted that “nearly anything can be an object” (Easterbrook 2003) and

thought that this could be a problem leading to ambiguities that transcend those related to dataflow

techniques. Some advantages of using object orientated techniques in RE are that they fit well with object

oriented design; emphasis on functions is removed and they are more coherent than the techniques of

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 56 of 333

structured analysis (Easterbrook 2003). This does not come without disadvantage. By focussing on static

models, emphasis is not given to dynamic modelling; Such elements of objects and associations may not be

appropriate for modelling of those described in the real-world and object oriented techniques can tempt the

user into focussing on design rather than analysis (Easterbrook 2003).

2.3.7 Business Rules

Business rules can be used to define the operation of a business process or the requirements for a software

system with the objective of rule based languages being to match data to those rules. In Musschoot (2010), it

is argued that functional models and business rules are common in IT, and therefore it should not be difficult

to adopt the business process in IT via the definition of such models and rules. The greatest challenge posed

by MDA appears to be the conflict between what is required in nature by software engineers, that is a high-

level abstraction, in comparison with the business user’s requirement of a low lever abstraction, that is

“semantically rich enough to specify all the necessary business rules (including pre and post conditions)”

(Berrisford 2004).

MARVEL is a model driven knowledge-based programming environment for the software process (Kaiser

1988). In this environment, business knowledge is retained in the form of strategies which are used to support

technical aspects of the software process (Kaiser 1988). Strategies are rule based with each rule being

associated with a pre-condition; an activity; and post-conditions (which address both successful and

unsuccessful, or exceptional, process completion) (Kaiser 1988). Opportunistic processing is used to control

the automation with rules via forward and backward chaining (Kaiser 1988). This highlights the overall

sequential nature of the environment and presumes that all conditions can be realised prior to design; in effect

excluding exceptional circumstances at run time. For such an environment to be useful in terms of agility it

ought to account for both design and run time case management (Hogg 2009).

A trend taking hold in the business world is that companies are realising the benefit and reality of

implementing specialist business knowledge in the form of business rules, especially in the composition of

web services for use with the SOA, with the OCL being the language used by web service developers for

writing business rules (Frankel 2006). In the MDA, business rules may be required to be applied across a

multitude of applications, which in turn requires that the meaning of information and the method of exchange

must be clearly defined, including behavioural constraints and restrictions. Beyond this, imposed rules must

be continually and consistently validated by the domain experts involved. This highlights the need for clarity

in defining business rules. In consideration of CIM transformations, Casallas et al. (2005) suggest a three-fold

transformation. Business rules are first specified in natural language, and then manually transcribed into a

UML Activity Diagram and finally, the Activity Diagram is annotated with elements pertaining to a

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 57 of 333

specialised UML Profile (which forms an integration infrastructure, defining semantics, responsibilities and

restrictions of the associated elements). From this, sufficient information is apparently provided to execute

transformations from CIM-to-PIM. However, by including such references to the defined UML Profile, one

might rather consider this model as a rudimentary PIM rather than a CIM (due to the use of computational

elements). An automated transformation method is suggested in Subramaniam et al. (2004), using a natural

language parser developed by the University of Pennsylvania known as the Natural Language Toolkit. The

natural language parser is at the heart of the architecture, which aims to generate Use Case diagrams and

specifications. The key element is the business rules that the parser uses to generate the Use Case diagrams

and specifications. “Business rules specify the guidelines to identify actors and use cases” (Subramaniam et

al. 2004). The “tool is helpful to novice software designers for more efficient software design and thereby

increasing software design productivity” (Subramaniam et al. 2004), and such could be a useful application in

the MDA to help bridge between business user and software producer. With the Reference Model of Open

Distributed Processing (RM-ODP), the CIM is representative of the Enterprise viewpoint; this includes

defining business rules, facts and terms (Wood 2005). The Information and Enterprise viewpoints of the RM-

ODP can be integrated with the MDA using the UML (OMG 2003b), supported by Wood (2002). “Business

rules, facts, and terms in [the] CIM have corresponding elements in [the] PIM and PSM, obtained through

transformations… Mapping the correspondences provides traceability of business rules between origin and

implementation” (Hendryx et al. 2002). The PIM represents the Information and Computation viewpoints of

the RM-ODP. It includes a static view (class diagram) and dynamic view (state chart), that “may correspond

to other technology objects in PSM” (Hendryx et al. 2002). Business Rules in ODP are commonly defined in

natural English policies; formal specification languages, the Language of Temporal Ordering Specification

(LOTOS) and Z, can accommodate ODP viewpoints to varying degrees having “particular advantages and

disadvantages in formalising the architecture of ODP” (Sinnott and Turner 1994). Business rules can also be

used as the basis of model verification. An automatic approach to the analysis of UML Class Diagrams is

presented in Massoni et al. (2004) where a formal object orientated modelling language known as Alloy is

used. Business rules relating to UML Class Diagrams are expressed in OCL and mapped to Alloy rules,

focusing on the validation of those OCL expressions (Massoni et al. 2004). However, the technique presented

is quite complex. Furthermore, there is no indication that the OCL and Alloy are completely compatible. For

business systems, this avenue of validation may not warrant the expenditure. However, for critical systems,

where error reduction is paramount, or in a fully automated MDA environment, where the model is

representative of code, this type of validation may be useful.

The difficulty with formal description techniques such as LOTOS or Z, and even the OCL, is that they have a

complex nature.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 58 of 333

An informal language may cause difficulty by sheer imprecision of both syntax and semantics. A

formal language may cause difficulty in spite of well-defined syntax and semantics: some things

cannot be said directly in the language and must be obscurely encoded; and a formal semantics may

be too abstract to capture meaning effectively (Jackson and Zave 1993).

Should such languages be used to formalise requirements in specification, it may be complicated to involve

business stakeholders, which is an important consideration (Kanyaru and Phalp 2005). Business process

models “often include a ‘richness of description’, which is lost in moving to a standard specification”

(Kanyaru and Phalp 2005); which can be due to such “formal syntax and semantics” (Kanyaru and Phalp

2005). Moreover, such formalisations “are more appropriate for specifying what a software component needs

to do during design, rather than model the world” (Mylopoulos 2004b).

2.3.8 Software Product Lines

The Software Product Line (SPL) facilitated the rise in model usage, understanding and implementation.

Earlier techniques in software development endeavoured to “organise software processes in terms of

activities” (Nakagawa and Futatsugi 1989) but the real output is considered to be a product in terms of code,

test cases or supporting documentation, leading to the idea of organising the software process in terms of such

output product, rather than individual activity. SPLs look to industrialise the software process by focussing on

the creation of unique encapsulated software artefacts that, when drawn together, define the complete

software factory. An altogether more structured approach is given to realising consumer requirements. A

software factory schema is like a recipe of models, patterns, templates, frameworks, components, processes,

test cases and tools (Cook 2004b). A SPL is composed of a set of features. A feature is an aspect or function

which is derived from one or numerous customer requirements. Feature dependencies match the dependencies

of requirements, all of which enables customer requirements to be mapped directly into the product line

architecture. Mapping rules are implemented to transform customer requirements into features, and features

into assets (Zhu et al. 2006). A drive to feature-oriented domain analysis is presented in Thiemann (2009)

where individual feature types are defined in the UML via the definition of UML profiles and related to the

MOF metamodel (Thiemann 2009). By defining systems in this manner, development knowledge and tools

are brought together in one place, reducing “cost and risk by distributing the software life cycle” (Cook

2004b).

A similar consideration can be made when thinking about the MDA, that is, the influence of requirements on

the MDA, and how requirements and dependencies can be transformed into MDA artefacts. An example of

how the SPL could be integrated with the MDA is the Requirement Specification Model for Product Lines

(RSPL). The RSPL is defined by Kabanda and Adigun (2006) to facilitate the automatic generation of

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 59 of 333

requirements and allow for the separation of “interface logic from the business logic” (Kabanda and Adigun

2006). In this model, the CIM is represented as a Domain Knowledge repository. Tailored requirements by a

systems specialist are representation of the PIM in the User Perspective, which are in turn transformed into

the output Requirements PSM using a standardised template, with the output artefact being the Requirements

Specification Document. SPL and the MDA combined form Model Driven Product Lines and “large scale

reuse by means of structured and configurable representations of platform independent software assets”

(Oliveira et al. 2004) can be achieved. A mapping process is used to combine artefacts in order to create

platform independent features. Stakeholders identify design constraints which, along with the annotated class

model, can be used to generate and execute instantiation script within the execution environment (Oliveira et

al. 2004). This is a semi-automatic approach as the system developer will still be required to make some form

of input in terms of class names, attributes, types and methods. The real benefit to this is that it ensures the

interactive collaboration between non-technical stakeholders and technical developers in generating

requirements.

2.3.9 Agile Methods

Currently in software development, there are those that believe systems should be delivered to “directly

satisfy business requirements… [and be] less heavy-weight… with the vision of moving towards more agile

modelling tools where users can quickly respond to change” (Koehler et al. 2007). With the advent of MDA,

followers of Agile methods have embraced executable models as representation of code and not artefacts to

be discarded during the development process. It is believed that the bridge between technologists and

consumers could be made via a “highly abstract modelling language” (Mellor 2004). The MDA is

conceptually very simple to understand, but very complex to implement. To make MDA work, there is a

requirement to go beyond MDA modelling tools, such as Bridgepoint, TogetherCC and OptimalJ (Ambler

2007). In his article “A Roadmap for Agile MDA”, Scott W. Ambler presents MDA from the Agile

viewpoint, terming this Agile Model Driven Development (AMDD). It is highlighted that not enough

emphasis is placed on CIM development under the MDA (Ambler 2007); instead it is suggested to be better to

be replaced by Agile’s Inclusive Techniques. Whether following strict guidelines of the MDA on development

or an Agile process, it is proposed that these inclusive modelling methods (see

http://www.agilemodeling.com/essays/inclusiveModels.htm) are sufficient for bridging from technological

developers to stakeholders; there is however no automatic transformation from inclusive models to the CIM

or the PIM. It is suggested that the UML is not a sufficient enough language for the MDA and that “the MDD

community should focus on what’s practical and not on ivory tower theories” (Uhl and Ambler 2003). Albeit

independent of platform and as previously noted, modelling tools go beyond the UML and therefore,

developers become locked into such tools since outputs are unlikely to be interoperable with other tools.

There is no PIM level universal Action Semantic Language that would allow for toolset integration. XMI

integration is ineffective in practice and therefore an extension to the UML is required to take it beyond being

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 60 of 333

an “object and component technology” (Ambler 2007). AMDD methods have a good chance of success in the

domain of MDA since they provide greater flexibility and a more lightweight approach to the MDA. Inclusive

Techniques are very much akin to those of RE and could be employed to investigate the PD, allowing for

stakeholder involvement in the development process. Simple design tools such as Together ControlCentrer or

Poseidon for object and Erwin for data modelling could provide developers with sufficient direction and

support (Uhl and Ambler 2003). However, tools to directly integrate user requirements with AMDD are

unavailable.

2.3.10 Service Oriented Architecture (SOA)

The birth of the SOA and the MDA has partially been a result of the narrowing of abstraction layers between

which software systems have needed to interact over time (Frankel 2006). Currently, business users are

accustomed to using generic business logic that is embedded into common off the shelf business systems. The

SOA provides a plug-and-play platform, allowing for the production and reusability of standalone

components (Skalle 2009) based on specialist business knowledge.

In Basson (2009b), the SOA is exemplified as a process-oriented methodology whereby services are governed

by business processes, and therefore describes the integration of the SOA with BPM. “Business processes

exist at two levels - the predictable (the systems) and the un-predictable (the people)” (Basson 2009b). This

unpredictable element is increasingly difficult to accommodate in the Software Engineering environment.

This is because “current technologies do not allow for the recognition and recording of these un-predictable

activities” (Basson 2009b). This is to say that in a given situation whereby a human might well intervene and

resolve a difficult situation regarding a business process, current technology is unable to make such an

intervention and therefore some integration is the requirement. The argument is that “processes do not

manage people - people manage processes” (Basson 2009b) and therefore attention is given to process-

oriented tools and techniques. It is interesting to note that where the SOA is considered process-oriented,

other development approaches (such as the MDA) are not. Although clearly most (if not all) development

approaches could account for the business process, they perhaps do not offer enough attention to them and

this may well highlight why approaches like the MDA fail to interface adequately with the business domain.

Of the process-oriented approaches, the author writes:

These methodologies need further research into their possible application, but I am convinced that

these (and possibly others) will shape our thinking about designing and engineering future systems

(Basson 2009b).

Hans Skalle of Global Business Integration, IBM Software Group, discusses the combination of LSS with

SOA and BPM to deliver “real business results” (Skalle 2009). Based on the presentation of business cases to

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 61 of 333

support investment in IBM, Global Business Integration is concerned with adopting a SOA, BPM and LSS

development methodology to align business with IT, whilst remaining agile to change (Skalle 2009). With the

SOA platform, BPM is made easier and business processes become reusable since they are service-based;

enabling for process “improvement and design” simplicity (Skalle 2009). LSS can be employed to support

SOA and BPM to ensure that sufficient key performance indicators are established and maintained

effectively. SOA, BPM and LSS are brought together by implementing an iterative improvement lifecycle

(Skalle 2009). Further investigation into this combination of methods is required to analyse the merit for the

inclusion of each particular technology. Moreover, no real data is provided to prove the worthiness of one

method over another. It is suspected that the alternate combinations of methods may be beneficial, dependent

on the particular context. For example, Kim (2008) suggests benefit in the combination of the SOA with the

MDA for modelling distributed systems (Kim 2008).

In an SOA, services may also be combined. Composite applications are the innovative binding together of

various available web services. In the MDA, tools need not generate the required code statically, since all that

is required is to generate the associated invocations for the required services which enables dynamic code

generation (Frankel 2006). This is essentially how BPM tools work, giving the business user the power to

bridge to the process architect in the Software Engineering domain. These concepts of course present

additional challenges for the industry. Since descriptions in the Web Service Definition Language (WSDL)

are written in natural English, there is an issue of semantics in that different people are able to interpret

services with different meanings attached to them. Also, when invoking a predefined service, information

about the quality of the service is not necessarily specified, thereby leaving quality control as another

challenge for this domain. The proposed solution to these issues is that the composite application producer has

to have access to a sufficient amount of machine readable metadata in respect of the services. An associated

benefit to being forced to author services in this manner is that an amount of design issues and constraint

confliction is resolved before the service is ever made available.

2.4 Summary

Scacchi (2002) proposes that “the death of the traditional system life cycle model may be at hand” (Scacchi

2002). This is due to the arrival of process modelling solutions that are better aligned to the current operating

environment of software development. The MDA has evolved as a “consequence” of the UML and is

purported to be the last abstraction to human-computer interaction (Génova et al. 2005). In comparison with

the alternative approaches discussed in Section 2.3, the MDA appears to offer the most promise as a

framework to complete this human-computer interface whilst remaining broad enough to integrate with other

approaches and continuing to be a popular focus in academia. The potential the MDA holds for the business

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 62 of 333

analyst means that “understanding MDA is going to be crucial for business analysts of the future” (Slack

2008). Therefore, this research gives focus to the MDA as such an interface.

From reviewing available literature, it has been found that the CIM is not central to most MDA

implementations. MDA committed companies and products neglect the creation of the CIM and related

transformations (Ambler 2007; Kabanda and Adigun 2006; Karow and Gehlert 2006; Phalp et al. 2007),

thereby highlighting the insignificance associated with it. “Successful technologies are those that are in

harmony with users’ needs” (Shneiderman 2002) and, in consideration, RE and the connection to the MDA

appears to be vital for the future of both the MDA and BPM. Process orientation is not the same as building

object oriented software systems. “Object orientation is about building and maintaining IT systems; BPM is

about building and maintaining business processes, and putting those capabilities in the hands of ordinary

business people who get work done through their work processes – not their “objects”” (Bushell 2005). The

ideals of the RAD could be beneficial in application to the CIM since a suitable platform for the development

of software systems that are tightly linked with the business process is provided. The RAD can be used to

describe iterations, concurring role activity and evolving processes, all of which are difficult to describe using

software modelling techniques. Although research is limited, it is suggested here that considerable

enhancement to the MDA could be made addressing concerns raised in Section 2.1 with the inclusion of RAD

descriptions, allowing for “the opportunity to integrate humanistic and mechanistic processes” (Harrison-

Broninski 2005c). Solutions may involve multiple language selection and therefore, some interoperable

solution between modelling language and transformation technique is required for applicability to the MDA

since “no single language can be adapted to all application domains”(Jouault and Kurtev 2006), supported by

Rombach (1988). It is suggested that a solution will be achievable once a specification can be provided that is

machine readable, as well as human understandable (Lautenbacher et al. 2007). Since any such method in

determining a resultant system should carry the outright support of involved parties, the automation of

transformations into design is likely to also be important for consideration.

Ultimately, the MDA lacks a formalised requirements model (Karow and Gehlert 2006) and there is a real

danger in confusing business and software artefacts by “building a model of the real-world and then using it

as a specification of the software system, producing a system that needlessly matches the structure of the real-

world” (Génova et al. 2005), supported by Easterbrook (2003), Nuseibeh and Easterbrook (2000). This is

evident in research that goes into extracting design models from CIM definitions, i.e. CIM-to-PIM

transformations that do not account for specification and the system boundary. Focus therefore should be

given to the MDA framework and how it might be extended to account for these concepts. This can be

achieved by investigating the CIM in terms of how appropriate the phase is at delivering user requirements

and available solutions in achieving a better integration of requirements within the MDA. It is thought that

specification ought to be central to the MDA, and the information delivered in the CIM should be complete in

terms of both business and software needs.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 63 of 333

Chapter 3

Research Overview

In this chapter an overview of the research process is given and discussion relating to research paradigms is

provided before a methodology is selected to define the direction of this research. Specific objectives

identified to approach this research are highlighted in Section 3.4. Tasks relating to proposed objectives are

then identified in turn and discussed in further detail with respect to the chosen methodology in view of

answering the research question identified in Chapter 1.0, relating to aims 1 to 4.

Lubbe (2003) suggests that “an important step any researcher should take is establishing a framework in

which to conduct the research” (Lubbe 2003) and, therefore, to achieve the research objectives it is important

to first gain an understanding of the foundations of research. Figure 3.1.1 gives an overview of the research

process used to realise the knowledge that the objectives seek to attain; the research process is detailed in the

subsequent sections of this chapter.

figure 3.1.1,4overview of the research process (Source: adapted from Shelmerdine (2010)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 64 of 333

3.1 Ontology & Epistemology

Ontology is the metaphysical study of the nature of the reality in which things exist; that is, the study of

being. It is important to understand the very foundation of a topic in order that a “psychological

schizophrenia” be avoided (Hampton 2004). “Thinking is the epistemological path to conceptual

comprehension. Knowing is the metaphysical path to apprehension – to the acceptance of a concept as true or

valid” (Cobern 1993). The suggestion therefore is to study the foundation of both what exists (the

metaphysical), and that which could exist (the epistemological). From reviewing literature in Chapter 2.0, it is

clear that the MDA has been established from the domain of Software Engineering, within which philosophy

might be contrary to what is required of the MDA in application to the business domain. Therefore, the study

is focussed on accounting for this application. To achieve ontology, an understanding of the relationship

between the philosophical nature of knowledge and the reality to which it is exposed is required (Shelmerdine

2010). Epistemology is the philosophical study of the nature of knowledge and the relationship between that

knowledge and reality. Therefore, knowledge of the MDA and associated implementations form the

foundation of this epistemological journey. The central focus is the application of this knowledge to the

reality of the academic and business domain and therefore, a suitable research paradigm is required to

investigate this relationship.

3.2 Research Paradigm

 There is nothing so practical as a good theory (Gill and Johnson 1997).

Kolb, Rubin et al. (1979) provide a useful research framework in examining the relationship between theory

and practice in the form of an experimental learning cycle (see figure 3.2.1).

figure 3.2.1,5experimental learning cycle (Source: adapted from Kolb et al. (1979)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 65 of 333

The left side of the diagram represents the deductive (positivist) research method, the right side the inductive

(interpretivist) method. Deductive research is the art of developing theory prior to testing based on observing

facts with the objective of making predictions. Inductive research is the polar opposite of that; thereby theory

being the product of induction via the observation and reflection on experience. This is in turn demonstrated

in the work of Gill and Johnson (1997) which is included in table 3.2.1 where it establishes how quantitative

(positivist) methods are related to qualitative (interpretivist) methods.

Positivist Methods Interpretivist Methods

Deduction Induction

Explanation via analysis and covering-laws Explanation of subjective meaning and understanding

Generation and use of quantitative data Generation and use of qualitative data

Use of controls to allow testing of hypotheses Research in everyday settings to allow access to, and

minimise reactivity among research subjects

Highly structured Minimum structure

Laboratory experiments, quasi-experiments, surveys, action research, ethnography

table 3.2.1,2comparison of positivist and interpretivist methods (Source: adapted from Gill and Johnson

(1997)).

Braa and Vidgen (1999) provide a framework for integrating research perspectives in information systems

research which extends the work of Gill and Johnson (1997) and Kolb et al. (1979) by integrating positivist

with interpretivist methods, and adding a further dimension of interventionist (see figure 3.2.2).

figure 3.2.2,6framework for integrating research perspectives (Source: adapted from Braa and Vidgen

(1999)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 66 of 333

Interventionism is concerned with gaining “learning and knowledge through making deliberate interventions

in order to achieve some desirable change in the organisational setting” (Braa and Vidgen 1999). This forms

the basis of action research where “researchers both observe and participate in the phenomena under study”

(Baskerville 1997). Action research started to gain prominence in information systems in the 1990s

(Baskerville 1999) and it is the central motivation in the case that the outcome of this research will enforce a

fundamental change within the MDA community via an approach to which the practice of the MDA will be

improved, adding intellectual, academic and practical value. In simplistic terms, action research is about

“learning by doing” (O'brien 2001). However, such fundamental change is unlikely to occur in the short term.

There is scarce availability of accurate facts; quantitative data is limited and a sufficient test arena to produce

worthy output from deduction is unavailable. However, knowledge is available in the form of existing and

potential MDA experiences and, therefore, an inductive methodology can be followed in order that theory

might result from the study of such experiences. It was thought that considerable opportunity existed in that

the MDA definition and technical representation in the software development domain could be compared and

contrasted upon to discover the theoretical reasoning which is cause for concern in the application of MDA to

business users in defining requirements and specification. Further to this, soft cases could be used to verify

the application of this research and therefore, an interpretivist approach to research is to be followed. To

achieve this, a suitable methodology is required and the next section of this chapter is directed at identifying

and discussing the relative merits of several interpretivist methodologies to identify those offering the most

potential in application to the subject matter.

3.3 Research Methodology

3.3.1 Phenomenology

Phenomenology is a philosophical method used in qualitative research to examine the experience of an

individual in terms of phenomena; the presumption being that the subject has no preconception of the subject

matter (Husserl 2001). “The purpose of the phenomenological approach is to illuminate the specific, to

identify phenomena through how they are perceived by the actors in a situation” (Lester 1999). This method

is usually formed of directed interviews with small groups of individuals with a view to gaining an overall

appreciation for the individual experience and the dynamics within the group. However, Phenomenology does

not permit “priori” coding in analysing central themes, requiring time to be expended on individual cases

(King 2006) which could make this methodology difficult to employ in consideration of available resources.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 67 of 333

3.3.2 Ethnography

Ethnography is an anthropological method that can be used to study groups of people and the interactivity

between them, and to some degree overlaps with phenomenology (Lester 1999). There are four characteristics

presented in the Manifesto for Ethnography that distinguish ethnography from other qualitative

methodologies. They are: “The recognition of the role of theory as a precursor, medium, and outcome of

ethnographic study and writing… The centrality of “culture”… A critical focus in research and

writing…[and] An interest in cultural policy and cultural politics” (Willis and Trondman 2002). Typically,

observations involve groups of individuals over an extended period of time with focus on cultural aspects and

since there is no opportunity to observe a group of individuals involved within the MDA environment, this

method is rejected as impractical in consideration of the scope of the research.

3.3.3 Grounded Theory

Grounded Theory was first described in 1967 in Glaser and Strauss (1967) as a sociological method whereby

the behaviour of groups of people is systematically observed and the collected data is codified in order that

theory is derived from such observation to explain phenomena. An example of how grounded theory can be

utilised in information systems research is given in Shannak (2009). Focus groups could be used whereby a

concept tool is produced to accommodate any enhancement to the MDA framework and be used to further

verify results. However, as previously noted, this is impractical since there is no availability of a sufficient

test environment from which individuals could be observed to gain results that would be useful in providing

insight with relation to the research question.

3.3.4 Template Analysis

Template Analysis is a method described in King (2006) and is concerned with the codification and thematic

analysis of data that can be used where there is the assumption that “there are always multiple interpretations

to be made of any phenomenon” (King 2006). Codes (numbered data labels) represent themes that are derived

from the analysis of text. Often organised hierarchically to describe relationships between themes, the

emphasis of Template Analysis is on “flexible and pragmatic” coding (King 2006). Template Analysis differs

from other methodologies such as Grounded Theory - which is typically realist and prescriptive, and

Phenomenology - which requires greater attention be placed on the individual (King 2006). Since this

research is directed at resolving a problem between individuals, it could be appropriate to combine this

technique with others, especially in consideration of resolving student feedback regarding the application of

extending the MDA.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 68 of 333

3.3.5 Surveying

Qualitative survey methods became popular in the 1980s (Marsland et al. 1998) and can be employed to

broaden the scale of the target population with relation to research. It could be suggested that much failure is

derived from models being presented to high-level managerial stakeholders, rather than lower tier technical

representatives or system users. The project is based on an understanding of the stakeholder definition and

how software developers can adapt to the paradigms of business. Qualitative surveys could be directed at a

mixed sample of business users with the target sample population including members of the business

community from both technical and non-technical backgrounds. As per recommendations (Deveaux et al.

2005), a randomised sample would be selected; this selection would then be stratified to increase the

representation of the population (Saunders et al. 2003). A methodological framework for combining

quantitative and qualitative survey methods is presented in Marsland et al. (1998), however, the extent to

which results of qualitative and/or quantitative survey techniques could be useful in consideration of the

available knowledge were deemed negligible because of the limitation of scope with regards to a sufficient

test arena.

3.3.6 Interviewing

“Throughout the social sciences including language-based studies, interviews are widely used as data

collection instruments” (Ikeda 2007). Processes could be modelled in different formats and presented to

stakeholders or general users for analysis and data capture. Upon presentation, interviews could take place in

a directed format with opportunity for the interviewee to make clear their opinions, along with their responses

to pre-defined questions. Techniques relating to how to overcome issues of data quality, specifically in

consideration of interviewer and interviewee bias are demonstrated in Saunders et al. (2003). However, as

with previous methods described which employ the use of the interview as a research method, such as

phenomenology and ethnography, a suitable environment to utilise the interview research method on a useful

scale is unavailable.

3.3.7 Case Study

The case study method can be used to address the research question directly via one or more case studies

relating to the subject matter and is used in information systems research for “exploratory investigations, both

prospectively and retrospectively, that attempt to understand and explain phenomenon or construct theory”

(Perry et al. 2004). Cases can be described as hard, soft or action cases (Braa and Vidgen 1999). The case

study approach can be used to gather “data with which to develop grounded theory” (Lubbe 2003) and can

allow for multiple avenues of data collection with the central notion being to identify themes particular to the

case in hand, or across multiple cases. However, it is argued that gathering multiple evidence is not

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 69 of 333

necessarily able to prove (or disprove) a theorem (Yin 1994). In consideration of the construction of case

studies, focus can be given to areas of the research context; exploratory questions; validation; ethical issues;

data gathering and analysis; publishing; and reviewing (case replication) (Perry et al. 2004). “As a research

strategy the case study research method is a technique for answering who, why and how questions” (Lubbe

2003). This is emphasised by Yin who writes that “case studies are the preferred method when (a) “how” or

“why” questions are being posed, (b) the investigator has little control over events, and (c) the focus is on

contemporary phenomenon within a real-life context” (Yin 2008), which is particularly suited to the type of

qualitative knowledge available with regards to this research. The objective here is to understand the

relationship between the business and software use of the MDA; to understand who the users of the MDA are,

why it is being used and how. Since the problem is set in a real-life context, i.e. that of the MDA and involved

organisations, little control over events is available. A good example of case study research in information

systems is given in Card et al. (1986) where six characteristics of good design are studied (Card et al. 1986)

against programming modules.

3.4 Knowledge

The problem highlighted in Chapter 2.0 from the analysis of the current state of the art seems to be about

gaining an understanding of, and bridging the gap between, various stakeholders and software developers in

the context of the MDA. Once a software system is presented to a user (as a prototype), a significant

understanding of the system and an idea of the available potential is gained (Kavis 2008), enabling

development. Therefore, by illustrating the underlying strategies and goals in a manner to which they can be

understood (such as a model), clear requirements might succinctly follow.

Several objectives are identified in this section directed at achieving the aims outlined in Section 1.2, within

the context of the research question. The described problem is multi-faceted and therefore, the selection of

research methodology reflects these objectives to best accommodate each. It is thought that, whilst any single

research methodology might give invaluable insight to the academic and commercial application of the area

under consideration, the results obtained would be difficult to verify without a degree of conjecture.

Therefore, from reviewing available research methods in the previous section, a mixed inductive approach,

involving specifically a combination of theoretical, case and thematic analysis, is considered to be of benefit

to this investigation and is outlined in the subsequent section of this chapter. The approach considers

propositions to be directly verifiable by comparing and contrasting results obtained via multiple

methodologies, allowing for findings to be triangulated in a complementary manner (Brannen 2005).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 70 of 333

3.4.1 MDA Evaluation

The literature review, included in Chapter 2.0, was an ongoing process throughout the duration of this project,

with a view to keeping up to date with current research and ensuring that developments within the context of

this research are adequately addressed. “Requirements understanding problems inevitably lead to poor

customer-supplier relationships, unnecessary re-works, and overruns in costs and/or time” (Elliott and

Raynor-Smith 2000). Chapter 2.0 reveals that the MDA appears to neglect a RE perspective (Ambler 2007;

Kabanda and Adigun 2006; Karow and Gehlert 2006; Phalp et al. 2007), and is therefore failing to sufficiently

bridge between business stakeholders and the software developers. This forms the basis of this research and

the point from which the first two objectives are defined for investigation in achieving aim 1.

Aim 1: To examine the definition of the CIM within the MDA and consider the appropriation of it as an

interface with the business user for defining requirements in MDA notations.

In Chapter 4.0, a complete and thorough analysis of the MDA will be conducted in the context of user

requirements for assessing the adequacy of the CIM in catering for requirements and specification. The first

objective is related to the proposition that RE and BPM are somewhat disconnected from the MDA and will

need to be verified.

Objective 1: Examine the connection between the MDA and business.

Section 4.1.1 will provide a theoretical analysis of the MDA by reflecting on the literature relating to the

connection between the MDA and the business user, with any areas for concern being provided as evidence to

support the argument, leading to the second objective.

Objective 2: Determine the sufficiency of the CIM at delivering requirements to the MDA.

Section 4.1.2 will build upon these findings to discover exactly what is required of the PIM. This will be

addressed by applying a sample case study relating to a web-based cinema ticketing system adapted from Wa

and Leong (2004). Forward and reverse engineering techniques will be developed specifically to be applied to

the case study to discover whether what is required by the PIM is at conflict with what is described in

requirements documentation.

The purpose of these objectives is to identify any associated difficulties with the accessibility of the MDA in

defining business requirements for further investigation and evaluation in achieving aim 2.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 71 of 333

3.4.2 Investigate Requirements Solution

Previous objectives are focussed on evaluating the suitability of the MDA as an interface to the business user,

leading to the next proposition that requirements solutions may be better suited at facilitating stakeholder

involvement and be adaptable to the architecture, and hence aim 2.

Aim 2: To discover how other modelling techniques which are accessible to the business user, might be

integrated with the MDA in terms of method and notation, with the focus on transformation and traceability.

In Chapter 5.0, notations and techniques are to be applied to requirements documents and integrated with the

MDA framework. In particular, the transformations between business and software models (that is CIM-to-

PIM and CIM-to-CIM) are to be addressed. It is first suggested that requirements solutions are not adequately

supported by the PIM and transformations are unavailable and therefore, the next objective to be achieved is

defined as follows.

Objective 3: Investigate how requirements can be supported by the PIM.

In Section 5.1.1, CIM-to-PIM transformations are to be investigated. This will be achieved via the selection

and theoretical analysis of what is offered by a typical business analysis technique and one that is supported

by the MDA. As a language of business to model behaviour, it is thought that the RAD could be used to

enhance the MDA in comparison with the UML Activity Diagram, a behavioural modelling notation available

in the MDA. Soft cases relating to a simple order processing system and traditional musical jukebox system

will be created to be used in an attempt to understand the phenomenon experienced in examining the notations

and develop theory to explain them. Next, attention is to be directed at examining CIM-to-CIM

transformations with the proposal that requirements solutions could be supported by the CIM and provide a

better interface to the business user in comparison to techniques already supported by the MDA and thus, the

next objective.

Objective 4: Examine how useful the CIM is at describing requirements.

Section 5.1.2 will approach CIM-to-CIM transformations via the case study methodology for a simplified

travel reservation system case study adapted from Silver (2008d). In the MDA, the CIM can be represented

via the BPMN. A common approach to specification in RE (and part of the UML) is the Use Case diagram. A

CIM is to be represented using those notations to discover the perceived differences between what is required

by a CIM and what is useful to the business user. A review is to be conducted of each on the suitability and

applicability, and a discussion provided on how the notations and techniques may or may not complement one

another.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 72 of 333

This approach is proposed to provide a greater understanding of the requirements techniques most effective

and adaptable to the MDA via transformation methods and lay foundation for the derivation of extensions for

aligning the business strategy into the analysis and design phases of the MDA.

3.4.3 Investigate Potential Extension Mechanisms

Upon completion of objectives 3 and 4 and in consideration of aim 3, the investigation and construction of a

mechanism to extend the MDA framework defined by the OMG (2003b) using requirements knowledge could

begin.

Aim 3: To extend the framework of the MDA to account for specification within the CIM.

It is suggested that business modelling tools and RE concepts, that are available to organisations in industry

and academia, can be integrated within the MDA to make a clear connection between the CIM and PIM.

Therefore, objective 5 is directed specifically to achieve aim 3.

Objective 5: Derive mechanisms to adequately capture and realise requirements within the MDA.

Outcomes from previous objectives will be used to define theoretical mechanisms to extend the MDA to

better facilitate the application of business logic. The notion is that the RAD, combined with specification

theory, could be candidate to integrate with the MDA. Reasoning behind the extension mechanisms will be

discussed in Chapter 6.0, with the resulting extension being illustrated in Chapter 7.0 via an order processing

worked example, which will be created for this purpose.

3.4.4 Verify Extension Mechanisms

The last objective identified to address the research question is concerned with authenticating previous

outcomes, specifically those relating to the definition of an extended MDA framework and method in terms of

aim 4.

Aim 4: To determine the academic and commercial value of extended mechanisms.

The proposed mechanisms are suggested to enhance the MDA, making it accessible to the business user,

whilst providing adequate support for the software user in terms of both academic and commercial validity.

Objective 6 is concerned with achieving that aim.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 73 of 333

Objective 6: Verify the proposed mechanisms to extend the MDA.

The research is to be presented in an academic setting with written feedback being collected to verify the

application in the domain of academia (Cobern 1993). Three methods used in moving from analysis to

specification and design (including the proposed mechanisms) will be presented to Honours level students of

the Business Processes and Requirements (BPR) unit on the Software Systems framework at Bournemouth

University, with written feedback being given in consideration of the proposed methods in order to complete a

study of observations made. Template Analysis is to be used in Chapter 8.0 to analyse individual student

feedback in order to understand phenomena associated with techniques in moving from analysis to

specification and design from the student perspective and to discover whether or not proposed extensions are

accessible and viable to them. Academic verification does not address the commercial suitability of the

proposed extensions and, therefore, the verification is expected to extend into the factual domain (Cobern

1993). Since a sufficient test environment to build and execute a complete MDA implementation from the

extended mechanisms is unavailable, an alternative way to verify the application of proposals is required. A

collection of business process documents relating to a commercial case study, based upon The Club at

Meyrick Park, Bournemouth, will be created and applied to the extended mechanisms, and available MDA

tools and techniques, in Chapter 9.0. After manual application to the proposed extensions, QVT, the OMG

standard for defining transformations between MOF metamodels, will be drawn upon to define transformation

relations based on previous findings. Tools of the Visualise All Model Driven Programming (VIDE) initiative

(VIDE 2009) will then be used to demonstrate the commercial application of transformations resulting from

the extended mechanisms.

This approach is expected to allow for propositions relating to the extended mechanisms to be directly

verified, with an output of academic and commercial data comparable in conclusion to the evidence derived

from previous aims and objectives.

3.4.5 Software Support for Research

Analysis of attributes and values account for the objectives established in this chapter and conclusions are

made, drawn from the investigation with relation to the scope of the project. The overall project performance

is evaluated in Chapter 10.0 and any difficulties or limitations identified, along with an explanation of how

they were managed with direction to further research and follow up studies being given. The objective here is

not to fully automate the construction of requirements and system models for specification and, therefore, it

would be quite appropriate for models to be hand drawn. However, this research utilises graphical modelling

software to enhance the visual experience. Data sets and graphical representation are to be provided via the

functionality of Microsoft Visio, Excel, and the VIDE PIM Prototyping Tool (PPT). Data set organisation,

content exploration and the management of ideas and interpretations relating to the thematic analysis of

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 74 of 333

student feedback will be demonstrated via the functionality of NVivo from QSR International. Microsoft

Word is selected as a tool to assist the production, with EndNote being used to manage and publish

referencing in the Bournemouth University Harvard System style.

3.4.6 Ethical, Health & Safety and Risk

Since this research is theoretical in nature, there are no major ethical, health and safety or risk considerations,

and therefore they are discounted as such. Appropriate assessments and analyses are to be made before

student interaction and commercial collaboration opportunities are exploited; it is expected that no concerns

be raised regarding these activities.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 75 of 333

Chapter 4

Adequacy of the CIM

4.1 Examination of the CIM definition within the MDA and the appropriation of it as

an interface with the business user for defining requirements in MDA notations

The first aim identified in Section 1.2 is directed at examining the sufficiency of the MDA for interfacing with

the business user in defining requirements in the software process. As outlined in Section 3.4.1, this has been

achieved by completing a theoretical analysis of literature in consideration of notions regarding the

applicability of the MDA in Section 4.1.1, followed by a determination of requirements delivery within the

MDA, giving focus to the CIM in Section 4.1.2. Findings are then drawn together and placed in the context of

the MDA in Section 4.2.

4.1.1 The Connection between the MDA and Business

From examining the available literature in Chapter 2.0, academic opinion regarding the MDA was found to

range from those that support the ideals of the MDA to those that do not. Therefore, initial investigations

looked to review related literature from several angles with a view to uncovering the realisable value of the

MDA, and hereby termed the hurdles to the MDA.

A striking observation made in Chapter 2.0 was that, within the MDA, there are alternating view points of

Translationists and Elaborationists, a heavy reliance on the BPMN and the UML, a lack of guidance on how

the CIM might be employed, vendor lock-in and a neglect of concepts central to RE. In contrast, there are

those in opposition highlighting major benefit in the application of the MDA, being brought about by the

separation of business and software platform concern (Blanc 2009; Brown 2004a; Kabanda and Adigun 2006;

Slack 2008). The unified approach to software systems development also assists with communication between

the business and software domain, and suggests facilitating an agile environment in which changes can be

reflected and demonstrated to the customer through the use of transformation and traceability. Cost savings

and an early release date are proposed to be achieved through the MDA framework (Meservy and

Fenstermacher 2005) with a better standard of quality being given in that an automated transformation tool is

less error prone in comparison with a human exertion (Kleppe et al. 2003). Above all, the notion of

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 76 of 333

traceability provided by the MDA ought to ensure that information contained within business and software

models are no longer resigned to archived repositories.

Under the MDA, a model is seen as an abstraction on code, and code as an abstraction on the machine. With

each abstraction, albeit within code or models, “the level of abstraction at which the developer operates”

increases (Mellor and Balcer 2002). Assembly languages led to the evolution of 3rd Generation languages and

object orientation, the next step along this evolutionary process is proposed to be the MDA. The MDA views

models as a programming language which is abstracted above 3GLs and object oriented techniques (Brown

2004a). This is demonstrated in figure 4.1.1.1, which was developed as part of this investigation and extends

previous findings described figure 2.1.1.1.

Model Driven Architecture

Human

M
odelli

ngU
M

L

Object Orientation

V
is

ual M
odelli

ngV
isual E

diting

3
rd

 Generation Languages

C
om

pile
rs

Interpreters

Assemblers

Binary

Machine

B
usin

ess P
ro

cess

M
anagem

ent

M
achin

e C
odeInstruction S

et

C
IM

 W
ith

S
p

e
c

ific
a

tio
n

R
equirem

ents

E
ngineering

T
e

xtu
a

l D
e

ve
lo

p
m

e
n

t

P
se

u
d

o
 C

o
d

e

figure 4.1.1.1,7technological development of Software Engineering and human interactivity (Source:

developed from Brown (2004a)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 77 of 333

Figure 4.1.1.1 is by no means a complete representation of the technological development of Software

Engineering and human interactivity. The objective here is to demonstrate a clear picture of where related

technologies are situated within the greater scheme.

Historically, the modelling element of software development has been somewhat separate from the production

of solution systems. What the MDA does is to ensure that modelling is software development by taking the

level of abstraction a step higher than coding, thereby reducing any gap that existed between modelling and

development technologies. “IT improves productivity through streamlining of process and enhances

efficiency and effectiveness of individual workers as well as groups through connectivity that it offers” (Al-

Neimat 2005). However, research by the Standish Group (2001) has demonstrated the success of IT projects

as a continual difficulty, citing issues relating to “the people [rather] than the technology itself... [such as]

estimation mistakes, unclear project goals and objectives, and project objectives changing” (Al-Neimat 2005)

as key to such failings. Indeed, “success rates on BPM projects far exceed other more traditional software

development projects” (Lombardi 2008).

The technicalities of RE and BPM are found to be instrumental in business-software interaction (Musschoot

2010), but inadequately implemented in industry, leaving a gap in knowledge which is cause for concern in

consideration of such failed or failing IT projects (shown in figure 4.1.1.1 as filled black circles). “Process

models capture the organisation of activities performed by both users and machines, and the required

cooperation between them” (Roberts 1988). Business process approaches (rather than any IT description) can

offer a shared understanding for both process and information in an IT support environment (Musschoot

2010). Where the MDA may close the gap between modelling and development, little is perceived to have

been achieved in bridging from the modelling element into the domain of business, let alone from there to the

end user. RE “is primarily a communication, not technical, activity” (Wiegers 2000) and current business

processes are affected as new ways of completing tasks are discovered through the use of IT and strategic

alignment. “Most organisations now understand the need to improve and manage their processes. However,

few do so in a disciplined, ongoing basis” (Dowdle and Stevens 2009). The UML “falls into the cracks

between technical people (developers, architects) and non-technical people (business analysts, project

managers, etc). [The] UML is too technical for non-technical people, and not technical enough for technical

people” (Ford 2009). These complexities cause a communication barrier between business users and Software

Engineers (Frank 2002), leading to a “semantic gap… between customers and system developers” (Elliott and

Raynor-Smith 2000). This gap in knowledge can lead to a decrease in customer satisfaction as

implementations bear no resemblance to the requirements they were designed to satisfy and nothing proposed

by the CIM accounts for that. Organisations should allow for business and IT co-dependency, “the willingness

and ability of these two groups to collaborate is, in the end, critical to success at every stage of

implementation” (Lombardi 2008). Haan (2009) supports this argument by describing reasons why MDD

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 78 of 333

could be dangerous as an approach to software development, including design inflexibility and a lack of

industrial experience in practice (Haan 2009). Therefore, before moving forward in systems software

development, organisations should be careful about jumping on the MDA bandwagon and sceptical regarding

claims made in academia.

A clear definition of the CIM constitution is not described and the MDA lacks a formalised behavioural or

functional model. Indeed, “requirements models do not have a proper counterpart in the MDA terminology”

(Karow and Gehlert 2006). In order that the accessibility of the MDA be sufficiently addressed, RE and BPM

technologies ought to be considered. Ideally, a requirements model would interface between elements of the

real-world and the software modelling domain via the CIM. Semantics of requirements is an important issue

for the Requirements Engineer since much of what is defined as a requirement is in natural English. Figure

4.1.1.1 extends these revelations by suggesting that, with correct implementation, it may be possible to

enhance the MDA with specification theory with the goal of providing sufficient connection between the end

user and software developer, thereby bridging “the uncomfortable gap between specification and

implementation” (Jackson 1982). Despite this, Requirements Engineers have an added problem in that there

are multiple customers, i.e. stakeholders (Coughlan and Macredie 2002; Kavakli 2004; Nuseibeh and

Easterbrook 2000; Peixoto et al. 2008; Phalp and Jeary 2010; Phalp et al. 2007; Sommerville 2004), that may

have a valid, and sometimes invalid, contribution to make, all of which is required to be managed and refined

so that one succinct requirements document might follow.

4.1.2 The Sufficiency of the CIM at Delivering Requirements to the MDA

Moving from requirements to a CIM which can adequately account for those requirements presents many

challenges to the software developer. Business rules may be required to be applied across a multitude of

applications, which in turn requires that the meaning of information and the method of exchange must be

clearly defined, including behavioural constraints and restrictions. Also, it is important to understand that

alternate business processes can be defined to achieve the same specific outcome and therefore, more than one

requirement can represent what is ultimately the same thing (Macek and Richta 2009). Above this, the

imposed rules must be continually and consistently validated by the domain experts involved to ensure

changes are implemented. This highlights the need for clarity in defining business rules or requirements. In

Section 4.1.1 it was suggested that specification might be a useful enhancement to the MDA and, in

consideration of this, two alternate approaches with relation to the CIM are discussed here as part of this

research. The first is that the CIM could represent an abstraction of the same system to which design models

abstract from. Therefore, requirements should be included as such, rather than representing those relating to

the PD or the business process, which abstract on a completely different reality (the real-world). If

specification is not held central to the MDA, the formalisation of the CIM should extract elements that are not

related to the system to be built, so that the CIM represents a synthesis of elements related to the same

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 79 of 333

solution system. The raison d’être being that the MDA is a software development framework, and therefore

should only contain software models; business models and concepts of RE ought to be accounted for further

upstream from the CIM. The second views requirements and specification as integral to the CIM, rather than

external to the MDA and focuses on such PD elements as part of the CIM.

To understand the essence of the CIM and gain an appreciation of these differing views, documentation

relating to the requirements and associated MDA implementation for a sample case study adapted from Wa

and Leong (2004) were examined. “Requirements… can be divided into two categories, functional and non-

functional. Functional requirements describe what a system should do in response to specific stimulus… Non-

functional requirements include performance and system constraints that affect development and design”

(STSC 2003). Specifically, this section examines the detail of all such requirements that are (or should be)

included when these artefacts are forward and reverse engineered (transformed) to and from one another in

the context of the MDA. For the purpose of this study, reverse engineering is described as the de-construction

of a model into originating documentation; where forward engineering is the re-construction of a model from

originating documentation. This is proposed to be useful in enabling an understanding the constitution of a

typical CIM; that is, what is needed in terms of a requirements definition; and what is required in terms of the

subsequent PIM phase. The example case study relates to a simple web-based cinema ticketing system and the

requirements for the proposed system are given in table 4.1.2.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 80 of 333

Number Original Requirement

1 The web page (e.g. the time table page, the main page) will be generated automatically

according to the data in the database.

2 A way in which the customer can create its own account (member registration) is to be

provided.

3 A way in which the users (both customer and staff) can log on to the system to perform

different operations is to be provided.

4 A way in which the customer can modify its own data is to be provided.

5 A way in which the customer can commit an order by just clicking the seat (which is shown

on the screen) and insert some card data (some simple operation) is to be provided.

6 A way in which the customer can cancel the order and get the refund is to be provided.

7 A way in which the customer can check the ticket record according to the transaction number

is to be provided.

8 A way in which the staff can use the system to add data (e.g. film descriptions) to the

database is to be provided.

9 The system can verify the data before the transaction is processed.

10 The system can generate the time table automatically (by just inputting the length of the film)

or the time table is set by the staff (2 operating modes for the staff to insert data).

11 The system can generate some statistical information according booking and ticket selling

records.

12 Users can check film data by clicking on a certain film on main page (e.g. the cinema which

will show these films).

13 Users can check cinema data by clicking on a certain cinema on the main page (e.g. to locate

which film is now showing).

14 The web-based system needs about 30 interfaces (web pages) to handle all the functions.

15 Since two or more customers may request for the same seat at the same time, the system

needs to remove the chance for two customers getting the same seat.

16 A simulated bank account is to be used within the prototyping process.

17 Lots of the customers will buy tickets in ticket box and those which use the web-based system

will still need to take the ticket into the ticket box. So, the online ticket booking service and

refund service will be stopped 1 hour before the show time. To do so, we can reduce the

chance of 2 people book the same seat and also reduce the time for buying a ticket.

18 The new system needs to be compatible with the existing ticket selling system (original)

in the ticket box, because the web-base system and the original system will run on the

same time and use the same database.

Note: Requirements that are non-functional are given in bold.

table 4.1.2.1,3original requirements relating to the sample case study (Source: adapted from Wa and Leong

(2004)).

A discussion follows regarding implications involved in the process of forward and reverse engineering

documentation related to this case within the context of the MDA and applicable notations (UML Class and

Activity Diagrams).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 81 of 333

4.1.2.1 Class Diagram

At PIM level, the Class Diagram relating to the case study (given in figure 4.1.2.1.1) was examined from the

perspective of the CIM, that is, to reverse engineer back from the Class Diagram in the hope of discovering

what the original requirements within the CIM should contain. This is to determine the level of sophistication

required of the CIM to produce a Class Diagram useful in the design phase of the MDA.

figure 4.1.2.1.1,8Class Diagram relating to the sample case study (Source: Wa and Leong (2004)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 82 of 333

The basis of reverse engineering the Class Diagram was that every element should have an associated CIM

level requirements translation (Dubielewicz et al. 2006). The CIM, in this case, therefore, represents a copy of

the PIM (Génova et al. 2005). This is to say that the output CIM directly reflects the Class Diagram, and

therefore retains the structural design of that model and highlights the type of detail required within the CIM

to enable a transform from one to the other to be possible. A selection of requirements derived from the Class

Diagram of figure 4.1.2.1.1, which would be required to be accommodated within the CIM in this case, are

given in table 4.1.2.1.1 below.

Number Requirement

1 ELDER is a type of ticket

2 ELDER must have a TICKET TYPE ID

3 ELDER must have a TICKET PRICE

4 ELDER must be able to get the ticket price

5 CHILD is a type of ticket

6 CHILD must have a TICKET TYPE ID

7 CHILD must have a TICKET PRICE

8 CHILD must be able to get the ticket price

9 ADULT is a type of ticket

10 ADULT must have a TICKET TYPE ID

11 ADULT must have a TICKET PRICE

12 ADULT must be able to get the ticket price

13 TICKET refers to 1 SEAT

14 TICKET is composed of a RECORD

15 TICKET belongs to 1 CINEMA

16 TICKET refers to 1 MOVIE

17 TICKET must have a TICKET ID

18 TICKET must include the MOVIE ID

19 TICKET must include the CINEMA ID

20 TICKET must include the SEAT ID

21 TICKET must include the TIME

22 TICKET must include the TICKET TYPE ID

23 TICKET must be able to show ticket detail

24 TICKET must be able to get ticket detail

25 TICKET must be able to get ticket price

26 TICKET must be able to choose movie

27 TICKET must be able to choose cinema

28 TICKET must be able to choose seat

29 MOVIE is composed of many tickets

30 MOVIE must have a MOVIE ID

31 MOVIE must have a NAME

32 MOVIE must have a DIRECTOR

33 MOVIE must have CASTING

34 MOVIE must have a DURATION

35 MOVIE must have a CATEGORY

36 MOVIE must have a LANGUAGE

37 MOVIE must have a SYNOPSIS

38 MOVIE must be able to get the movie detail

39 CINEMA is composed of many tickets

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 83 of 333

40 CINEMA must have a CINEMA ID

41 CINEMA must have a NAME

42 CINEMA must have a HALL NUMBER

43 CINEMA must be able to get cinema detail

44 RECORD refers to 1 TICKET

45 RECORD refers to 1 INPUT FORM

46 RECORD must have a RECORD ID

47 RECORD must have CUSTOMER ID

48 RECORD must have TICKET ID

49 RECORD must be able to insert a RECORD

50 SEAT refers to 1 TICKET

51 SEAT refers to 1 SEATING PLAN

52 SEAT must have a SEAT ID

53 SEAT must have SEAT STATUS

54 SEAT must be able to set status

55 SEAT must be able to get status

56 SEATING PLAN refers to many SEATS

57 SEATING PLAN refers to many CUSTOMERS

58 SEATING PLAN must have TICKET ID

59 SEATING PLAN must have an ARRAY OF SEAT ID

60 SEATING PLAN must be able to press

61 SEATING PLAN must be able to show result

62 CUSTOMER refers to a SEATING PLAN

63 CUSTOMER refers to an INPUT FORM

64 CUSTOMER must have a CUSTOMER ID

65 CUSTOMER must have a NAME

66 CUSTOMER must have a TELEPHONE

67 CUSTOMER must have an ADDRESS

68 CUSTOMER must have an EMAIL

69 CUSTOMER must have a PASSWORD

70 CUSTOMER must have an AMOUNT

71 CUSTOMER must have a CREDITCARD

72 CUSTOMER must be able to log in

73 CUSTOMER must be able to insert ticket details

74 CUSTOMER must be able to insert order details

75 INPUT FORM refers to 1 CUSTOMER

76 INPUT FORM refers to 1 RECORD

77 INPUT FORM must have an INPUT ID

78 INPUT FORM must have a CUSTOMER ID

79 INPUT FORM must have a TICKET TYPE

80 INPUT FORM must have a CUSTOMER CREDIT CARD

81 INPUT FORM must include CUSTOMER CREDIT CARD EXPIRE

82 INPUT FORM must have an ARRAY OF TICKET ID

83 INPUT FORM must be able to get order detail

84 INPUT FORM must be able to validate

85 INPUT FORM must be able to show error

86 INPUT FORM must be able to make record

table 4.1.2.1.1,4requirements derived from reverse engineering the Class Diagram of the sample case study.

Focussing on the number of requirements highlighted, the results obtained from examining them in relation to

the original requirements are given in table 4.1.2.1.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 84 of 333

Original requirements

identified by the

requirements documentation

(of which were non-

functional)

Requirements

extracted from the

Class Diagram (of

which were non-

functional)

Original requirements

realised by the Class

Diagram (of which

were non-functional)

Original requirements

not realised by the Class

Diagram (of which were

non-functional)

18 (3) 86 (0) 4 (0) 14 (3)

table 4.1.2.1.1,5analysis of the number of requirements identified from the Class Diagram.

By extracting requirements from the Class Diagram, it was found that many more requirements could be

identified than those detailed in the requirements documentation provided (a total of 86), demonstrating that

there is significant distance between what is required of design in the PIM and what is described by

requirements and the CIM. Surprisingly, fewer requirements identified in the requirements documentation

were fully realised in the final Class Diagram (such as those that are non-functional), which perhaps

highlights the lack of influence requirements models can have on design models.

The next stage in this investigation was to take the documents relating to requirements and forward engineer

them into a Class Diagram, to be comparable with the original Class Diagram of the same system. In

completing this task, it was noted that the natural English requirements documentation did not contain enough

detailed information to facilitate complete forward engineering and therefore, it is not included here. The

requirements documentation was insufficient and incomplete from an object oriented perspective and

attributes were neglected. Since business users are unfamiliar with objects, they are unlikely to specify detail

in terms of classes, attributes, operations and the like. Again, although being specified in the requirements

documentation, a mechanism was not available to incorporate non-functional requirements within the context

of the Class Diagram.

4.1.2.2 Activity Diagram

In Section 2.1.4, it was seen that behavioural models are not central artefacts of the MDA. The behavioural

model in the MDA could be represented at the PIM level via the Activity Diagram and a similar investigation

was conducted by looking at the requirements documentation and Activity Diagram (given in figure 4.1.2.2.1)

relating to the case study in the same manner.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 85 of 333

figure 4.1.2.2.1,9Activity Diagram relating to the sample case study (Source: adapted from Wa and Leong

(2004)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 86 of 333

The basis of reverse engineering for the Activity Diagram was that every behavioural string should have a

CIM level representation that is understandable to the business user, and translatable to a PIM representation.

The requirements extracted from the Activity Diagram of figure 4.1.2.2.1 and required to be accommodated

within the CIM are given in table 4.1.2.2.1 below.

Number Requirement

1 Customer must be able to login

2 Ticket Detail must be able to be Inserted

3 Movie must be able to be Selected

4 Movie Detail must be able to be Retrieved

5 Movie Detail must be able to be Returned

6 Movie Detail must be able to be Received

7 Cinema must be able to be Selected

8 Cinema Detail must be able to be Retrieved

9 Cinema Detail must be able to be Returned

10 Cinema Detail must be able to be Received

11 Seat must be able to be Selected

12 Seat Status must be able to be Displayed

13 Seat Status must be able to be Retrieved

14 Seat Status must be able to be Returned

15 Seat Status must be able to be Received

16 Press must be able to be Completed

17 Seat Status must be able to be Set

18 Set Seat Status must be able to be Confirmed

19 Set Seat Status must be able to be Received

20 Select Seat Confirmation must be able to be Received

21 Ticket Confirmation must be able to be Returned

22 Ticket Confirmation must be able to be Received

23 Order Detail must be able to be Inserted

24 Order Detail must be able to be Retrieved

25 Order Detail must be able to be Validated

26 Record must be able to be Created

27 Record must be able to be Inserted

28 Insert Record Confirmation must be able to be Returned

29 Insert Record Confirmation must be able to be Received

30 Order Confirmation must be able to be Returned

31 Order Confirmation must be able to be Received

table 4.1.2.2.1,6requirements derived from reverse engineering the Activity Diagram of the sample case

study.

It immediately became evident that, in similar as with what was found regarding the Class Diagram, the

Activity Diagram is somewhat inadequate at specifying non-functional requirements and significant

alterations would be required to accommodate the majority of original requirements, perhaps reflecting the

inadequacy of the approach. Table 4.1.2.2.2 outlines the results obtained from the forward and reverse

engineering of the Activity Diagram.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 87 of 333

Original requirements

identified by the

requirements documentation

(of which were non-

functional)

Requirements

extracted from the

Activity Diagram (of

which were non-

functional)

Original requirements

realised by the

Activity Diagram (of

which were non-

functional)

Original requirements

not realised by the

Activity Diagram (of

which were non-

functional)

18 (3) 31 (0) 3 (0) 15 (3)

table 4.1.2.2.2,7analysis of the number of requirements identified from the Activity Diagram.

Overall, the number of requirements generated from the Activity Diagram amounted to roughly the number of

nodes contained within the diagram, which was not unexpected. The real interest of reverse engineering the

Activity Diagram was that it could really enable the technician to address and refine the process itself, with

respect to the system-to-be, and not just refine the business process in the business context, or replicate that

business process as software design.

To forward engineer from the requirements, it was found to first be important to isolate those functions or

behaviours that were not to be realised in the new system, thereby drawing attention to the specification and

system boundary. This was not easily done since some activity might be replaced by the system, whilst others

might be supported by the system or not required at all. It became evident that there would be some difficulty

in distinguishing elements that were important and required by the system, from those that were not.

Furthermore, the imposition of object orientation compounds this distinction. Other, vaguer requirements

immediately became a cause for concern with verification being required. The requirements were found to be

insufficient in many respects and complete forward engineering was not possible and therefore, no forward

engineered diagram is included. There appears to be excellent potential for deriving a PIM from concisely

defined requirements via a behavioural model. However, the future of the Activity Diagram is somewhat

clouded. It has been noted that “the Activity Diagram and Business Process Diagram are very similar and are

views for the same metamodel, it is possible that they will converge in the future” (White 2004). This is even

more probable now since the OMG have adopted the BPMN specification (OMG 2005, 2008a).

4.2 Extending the Model Driven Architecture with pre-CIM

Section 4.1.2 demonstrated that by reverse engineering artefacts of the MDA, elements that perhaps ought to

be discovered from the analysis of the CIM, such as objects and attributes, somewhat conflict with what is

defined in requirements documentation. Requirements documentation is typically not intended to address

object oriented perspectives, which highlights that CIM definitions do not necessarily account for the

unfamiliarity of software development paradigms in the business domain. A mechanism for transferring

knowledge of non-functional requirements was also unavailable in consideration of the Class and Activity

Diagrams and the importance of the system boundary was uncovered in distinguishing those functions

required by the system from those that were not; all of which appears to not be explicitly considered by the

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 88 of 333

CIM. Therefore, for a union between business and the ideals of software development to be realistic in the

context of the current architecture, the CIM would need to be an abstraction of the PIM and formalised via the

description of requirements for the system-to-be, which is inadequate in terms of the business need because

they are unaware of notions such as objects and attributes. It is argued that the definition of such a CIM could

not be completed by the business user alone due to the complexities involved in defining a model that is so

tightly aligned with software and thus, pre-CIM activities would be required to facilitate business user

interaction (Jeary et al. 2008; Phalp and Jeary 2010).

In figure 4.2.1, the pre-CIM concept is introduced as part of this research and fused with the framework of the

MDA and Jackson’s systems of prime concern (Jackson 1995) and associated development activities, thereby

redefining the CIM and extending the MDA framework (Fouad et al. 2011). Pre-CIM refers to an area of

activity that takes place before the CIM is produced and is proposed to account for requirements gathering

activities such as elicitation, validation, traceability and change management. This extension suggests that the

MDA is only addressing half of the story, and that PD analysis and specification ought to be integral to the

CIM if it is to fully accommodate the need of the business and user community.

figure 4.2.1,10the Extended Model Driven Architecture (xMDA), including pre-CIM activity (Source:

developed from Bray (2004), Brown (2004a), Jackson (1995), OMG (2003b)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 89 of 333

Concern has been raised that the MDA neglects the development of the CIM (Ambler 2007). Since “the initial

phases of Business Process Modelling projects, process discovery and documentation take up more than one

third of the overall project time” (Jeary et al. 2008), it is reasonable to suggest that the MDA should direct

greater attention to artefacts that are created upstream from the CIM, that is pre-CIM exploration, in order to

reap benefits later in the project. By focussing elicitation on smaller issues, enhanced requirements gathering

can be achieved. PD elements can be accounted for in pre-CIM activities of the Extended Model Driven

Architecture (xMDA), outside of the software modelling world, as demonstrated in figure 4.2.1. The

redefinition of the CIM as such interface and the introduction of pre-CIM activities look to enable MDA

abstraction into the root of the PD, facilitating accessibility for the business user.

With emphasis on RE and BPM techniques, rather than concepts of systems engineering, business users are

suggested to be able to express requirements to Software Engineers with resulting systems likely to be more

akin with customer expectation. Thus, activities are divided into new categories of the Domain Description

Model (DDM), the Initial Requirements Model (IRM) and the Behavioural Model (BM), and integrated with

the MDA and the redefined CIM. The DDM is used to define the PD context as it is. The IRM is used to

define any requirements (both functional and non-functional) to be imposed by the new system. The BM is

then used to highlight specific functional requirements and the behaviour of the involved process. All pre-

CIM activities are developed in the context of business, and not software. Therefore, xMDA is fully

compatible with RE and BPM since no specific tool or technique is defined for any of these activities (only

that they exist). For example, a business process model could be used to demonstrate the DDM, IRM and BM.

By focusing only in domain specific requirements at this low level of abstraction, ambiguities and

misunderstandings are ironed out as early as possible, at the same time as bringing specification closer (Bray

2002). Ideally, definitions at the CIM level will be free from complexities, understandable, and above all,

helpful to both business users and Software Engineers. Moreover, such definitions ought to facilitate

transformations (manual and/or automatic) to be appropriate for the MDA.

4.3 Summary

From examining the CIM within the MDA it was found that it is an inappropriate interface between business

and software domains. That is, it appears to support original opinions in that it is not fit for purpose from a

quality perspective of interfacing with the client to represent business requirements.

The theoretical analysis of the MDA in Section 4.1.1 demonstrated that whilst being applicable to the

business domain, considerable distance between the MDA and the business user is evident. The neglect of RE

concepts and the MDA reliance on notations grounded in software theory, such as the BPMN and the UML,

were highlighted, with openings for extending the CIM to reach the business user being identified.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 90 of 333

The example case study discussed in Section 4.1.2 supported this view by demonstrating that notions

supported by the UML are unhelpful in describing PD elements, defining business requirements and

facilitating business user understanding. The distinction between what is required within the system and what

is part of the process (i.e. specification and the system boundary) was also identified as an important

consideration in realising business value.

It is the task of the Requirements Engineer to transform business requirements into a richly defined

requirements document, which in turn should be possible to be reflected in a CIM, enabling the overall

presentation to a PIM that is more accurate, and more aligned with the requirements and strategy of the

business user. Software modelling and theory are foreign to the business user (OMG 2003b) and therefore, the

concentration on the fusion between the business and Software Engineering world is suggested to be the onus

of the software developers (Shneiderman 2002), which is central to the distinction of the xMDA pre-CIM

activities as described in Section 4.2. As noted in Chapter 1.0, requirements represent the desired effects a

software system would have in the PD; the PD being the “part of the universe within which the problem

exists” (Bray 2002). The application domain is the part of the universe within which the application (or

solution system) will be applied. The interface between the two forms the specification of a software system,

and it is this that lays foundation to extending the MDA.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 91 of 333

Chapter 5

Situating Requirements within the CIM

In Chapter 4.0 it was found that what is required of the CIM is not in line with the expectation of business; the

purpose of aim 2 is to address this.

5.1 Discovery of how other modelling techniques which are accessible to the business

user, might be integrated with the MDA in terms of method and notation, with the

focus on transformation and traceability

By giving focus to CIM-to-PIM and CIM-to-CIM transformations involving notations derived from the RE

domain it is possible to demonstrate the application of requirements techniques within the context of the

MDA.

5.1.1 PIM Support for Requirements (CIM-to-PIM)

The 2.0 specification of the UML general purpose modelling language used in the development of software

systems brought about several enhancements on the 1.4 specification with relation to the Activity Diagram

and the business process (Wohed et al. 2005). The Activity Diagram is an OMG behavioural model solution

and provides a notation to model functional aspects of a process with a view do describing how the interaction

of co-ordinated activities might take place. The technique is very structured and well behaved, providing a

sequential view of the process. Activity Diagrams are therefore excellent in Software Engineering at

describing processes that are automatic in nature, with objects at heart, for which they were intended to be

used. The difficulty in delivering a system from the Activity Diagram is that the business user is not

accustomed to concepts defined in the UML and the real-world of the business process is dynamic and

experiences less sequential activity than are described in software interactions. From reviewing the available

literature in Chapter 2.0, the RAD was found to be a business process modelling alternative, potentially useful

for modelling in terms of human interactivity. Since these are common ideals between RE and BPM, and a

starting point for business use, focus was given to the RAD as a business notation in investigating the natural

fault-line between software systems development in MDA and business. This addresses the idea that

techniques better aligned with the business need might be accommodated within the MDA in the development

of quality software systems.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 92 of 333

The application of the RAD first brought about the re-evaluation of what the notation of the RAD is actually

defined to describe. To understand the application of the RAD, roles, associated nodes and the tight

relationship with the business process, a RAD metamodel was extended from Badica et al. (2005) by using

the notation of the MOF (OMG 2006a) to contain the construction rules and constraints implied by the RIVA

modelling methodology described in Ould (2004c). The RAD metamodel is depicted in figure 5.1.1.1.

figure 5.1.1.1,11the RAD metamodel (Source: developed from Badica et al. (2005), OMG (2006a), Ould

(2004c)).

As figure 5.1.1.1 demonstrates, roles are composed directly from aspects of the business process itself,

including individual case, management and goal related components. A goal in a RAD is likely to be

represented as an end state, for example, project has concluded or customer has completed system

acceptance. This direct relationship to business process is perhaps the unique point of the RAD, since it

proposes a model representation directly linked to requirement deliverables of the business process, which

might be applicable to CIM and used in the MDA.

The metamodel also proposes that each process has a process owner. When a project has an interdependent

relationship with another project, “the person who is acting as implementation owner for each project may

also be a requirement sponsor on other projects” (Harrison-Broninski 2006b). This is to ensure that the

underlying requirement of one project is implemented succinctly in other associated projects and identifying

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 93 of 333

these process owners is an important consideration before moving into the development of single and multi-

projects.

The RAD is genuinely related to the real-world of business, including concepts which naturally cater for

event driven behaviour, which may be an ideal platform for software systems which are tightly linked with

the business process to be developed from. The difficulty in integrating the RAD with the MDA is that the

intended purpose of the RAD is to describe the business process and not software systems. Research in this

area is very limited, however, it is thought that the framework of the MDA might be enhanced by including

RAD descriptions at the CIM and/or PIM level allowing for software development to be integrated with

business processes. To evaluate the differences between the Activity Diagram and the RAD, an informal

comparison of the two notations was made. Specifically, rules and notational elements associated with each

were analysed to ascertain the suitability of these notations with respect to CIM-to-PIM transformations in

terms of the perceived understanding a typical business user would obtain from published materials.

Therefore, the rules were extracted as part of this research from educational publications for the Activity

Diagram (Stevens and Pooley 2000) and RAD (Ould 2004c). These publications were purposefully selected

since they are designed specifically to educate and aid understanding of such notations in terms of application.

5.1.1.1 The UML Activity Diagram Rules

In this section, rules associated with the Activity Diagram are described, accompanied by a pictorial

description of the notational element for further discussion.

5.1.1.1.1 Activity Partition (Swim-Lane)

AD1. The Activity Partition is optional.

AD2. The notation for Activity Partition is a rectangle.

AD3. The label of an Activity Partition instance must not be null.

AD4. An Activity Partition must contain all nodes associated with that partition.

AD5. An Activity Partition may include multiple nodes.

AD6. An Activity Partition may have multiple entry Transitions.

AD7. An Activity Partition may emit multiple exit Transitions.

AD8. Multiple Activity Partitions may appear in a single diagram.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 94 of 333

5.1.1.1.2 Start

AD9. The Start node is not optional.

AD10. The notation for a Start node is a single-filled circle.

AD11. The label of a Start node may be null.

AD12. A Start node may not have any entry Transition.

AD13. A Start node must emit only a single exit Transition.

AD14. Only one Start node may appear in a single diagram.

5.1.1.1.3 Activity

AD15. The Activity node is optional.

AD16. The notation for an Activity instance is that of a box with rounded corners.

AD17. The label of an Activity instance must not be null.

AD18. An Activity instance must include an Action.

AD19. An Activity instance must have at least (but not limited to) one entry Transition.

AD20. An Activity instance must emit at least (but not limited to) one exit Transition.

AD21. Multiple Activity nodes may appear in a single diagram.

5.1.1.1.4 Transition

AD22. The Transition node is not optional.

AD23. The notation for a Transition is that of an arrow.

AD24. The label of a Transition may be null due to identification being evident from the

completion of the proceeding Activity.

AD25. Only a single Transition may be involved between two nodes in any instance.

AD26. A Transition instance may traverse an Activity Partition.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 95 of 333

AD27. A Transition instance may include an Action.

AD28. A Transition instance may include a Guard. A Guard is defined to ensure access to the

succeeding activity is based on satisfied pre-requisites.

AD29. Guards are not required to be satisfied.

AD30. The label of a Guard instance must not be null.

AD31. The label of Decision Diamond exit Transitions must not be null.

AD32. The label of Decision Diamond exit Transitions must be contained within squared

brackets.

AD33. A Transition instance may not receive any entry Transition.

AD34. A Transition instance may not emit any exit Transition.

AD35. Multiple Transition nodes may appear in a single diagram.

5.1.1.1.5 Decision Diamond

AD36. The Decision Diamond node is optional.

AD37. The notation for a Decision Diamond is a diamond shaped box.

AD38. The label of Decision Diamond may be null.

AD39. The label of Decision Diamond may contain an Activity.

AD40. A Decision Diamond is required to be satisfied.

AD41. A Decision Diamond instance must have at least (but not limited to) one entry Transition.

AD42. A Decision Diamond must emit at least (but not limited to) one exit Transition.

AD43. Multiple Decision Diamond nodes may appear in a single diagram.

5.1.1.1.6 Synchronisation Bar

AD44. The Synchronisation Bar is optional.

AD45. The notation for a Synchronisation Bar is that of a wide horizontal column.

AD46. The label of a Synchronisation Bar node may be null.

AD47. Transitions and Activity succeeding a Synchronisation Bar cannot be executed until all

entering Activity and Transitions are in a state of completion (join).

AD48. Transitions and Activity succeeding a Synchronisation Bar are executed in parallel once

the Synchronisation Bar is in a state of completion (fork).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 96 of 333

AD49. A Synchronisation Bar instance must have at least (but not limited to) one entry

Transition.

AD50. A Synchronisation Bar must emit at least (but not limited to) one exit Transition.

AD51. Multiple Synchronisation Bar nodes may appear in a single diagram.

5.1.1.1.7 Stop

AD52. The Stop node is not optional.

AD53. The notation for a Stop node is a single-filled circle, surrounded by an additional outer

circle.

AD54. The label of a Stop node may be null.

AD55. A Stop node must have only one entry Transition.

AD56. A Stop node may not emit any exit Transition.

AD57. Only one Stop node may appear in a single diagram.

Note: The Activity Diagram does not normally include events.

5.1.1.2 The RIVA RAD Rules

5.1.1.2.1 Role

RAD1. The Role is not optional.

RAD2. The notation for a Role is a shaded block with rounded edges.

RAD3. The label of a Role instance must not be null.

RAD4. A Role instance may be persistent.

RAD5. The label of a Role instance with pre existing instances may be denoted by a �.

RAD6. The label of a Role instance with exactly x pre existing instances may be denoted by �x.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 97 of 333

RAD7. The label of a Role instance with an indeterminate number of pre existing instances may be

denoted by a �n.

RAD8. The label of a Role instance must appear immediately above or below the shaded block.

RAD9. A Role instance may include multiple nodes.

RAD10. A Role instance must contain all nodes associated with that Role instance.

RAD11. A Role instance must contain all appropriate Props to enable process completion.

RAD12. A Role instance may overlap another Role (provided there is no ambiguity).

RAD13. A Role overlap is a darker shade of grey.

RAD14. A Role instance may contain many ‘threads’.

RAD15. A Role instance may instantiate any ‘thread’ at any time, depending on the event.

RAD16. A Role instance may instantiate another Role instance.

RAD17. Multiple instances of the same Role may appear in a single diagram.

RAD18. A Role may have multiple entry Interactions.

RAD19. A Role may emit multiple exit Interactions.

RAD20. Multiple Roles may appear in a single diagram.

5.1.1.2.2 Independent Activity

RAD21. The Independent Activity node is optional.

RAD22. The notation for an Independent Activity instance is that of a black box.

RAD23. The label of an Independent Activity instance must not be null.

RAD24. An Independent Activity instance may terminate a Role instance.

RAD25. An Independent Activity instance must have at least (but not limited to) one entry State.

RAD26. An Independent Activity instance must emit at least (but not limited to) one exit State.

RAD27. Multiple Independent Activity nodes may appear in a single diagram.

5.1.1.2.3 Looping, Line and Descriptor States (pre/post-conditions)

RAD28. State nodes are optional.

RAD29. The notation for a State is either a line (single or looped) or ellipse.

RAD30. The label of State nodes may be null.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 98 of 333

RAD31. State nodes may merge together.

RAD32. Multiple State nodes may appear in a single diagram.

5.1.1.2.4 Case Refinement (Alternatives)

RAD33. Case Refinement is optional.

RAD34. The notation for a Case Refinement is that of an upturned triangle, with each ‘thread’ being

represented by its own triangle.

RAD35. The label of a Case Refinement may be null.

RAD36. The label of a Case Refinement is represented as a question.

RAD37. The label of a Case Refinement may not contain an action.

RAD38. The label of Case Refinement nodes may contain a probability figure.

RAD39. A Case Refinement is not required to be satisfied.

RAD40. A Case Refinements can be rejoined into a single state once the Case Refinement is in a

state of completion (join).

RAD41. A Case Refinement may be abbreviated to a single Independent Activity in simple cases.

RAD42. A Case Refinement instance must have at least (but not limited to) one entry State.

RAD43. A Case Refinement must emit at least (but not limited to) one exit State.

RAD44. Multiple Case Refinement nodes may appear in a single refinement (N-way).

RAD45. Multiple Case Refinement nodes may appear in a single diagram.

5.1.1.2.5 Part Refinement (Concurrency)

RAD46. Part Refinement is optional.

RAD47. The notation for a Part Refinement is that of an upright triangle, with each ‘thread’ being

represented by its own triangle.

RAD48. The label of a Part Refinement may be null.

RAD49. A Part Refinement is not required to be satisfied.

RAD50. Threads succeeding a Part Refinement are executed in parallel once the Part Refinement

is in a state of completion (fork).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 99 of 333

RAD51. Part Refinement nodes can be rejoined into a single state once Part Refinement is in a

state of completion (join).

RAD52. A Part Refinement instance must have at least (but not limited to) one entry State.

RAD53. A Part Refinement must emit at least (but not limited to) one exit State.

RAD54. Multiple Part Refinement nodes may appear in a single refinement (N-way).

RAD55. Multiple Part Refinement nodes may appear in a single diagram.

5.1.1.2.6 Interaction

RAD56. The Interaction node is optional.

RAD57. The notation for an Interaction is that of a horizontal line between two (or more) white

boxes (part-interaction).

RAD58. The notation to indicate the ‘driving’ force in an Interaction is that of a shaded white box.

RAD59. The notation to indicate the ‘one-to-one’ Interactions with all members of the same Role is

that of a white box with twin line indicators.

RAD60. The notation to indicate the ‘one-to-many’ Interactions with all members of the same Role

is that of a white box with a ‘crow’s foot’ line indicator.

RAD61. The label of an Interaction may be null.

RAD62. A single Interaction may be involved between two or more nodes in any instance.

RAD63. An Interaction instance may traverse any Role.

RAD64. An Interaction instance cannot take place until each involved Role is in a ready State (pre-

state synchronisation).

RAD65. Once an Interaction instance has taken place, each involved Role is in a completion State

(post-state synchronisation).

RAD66. All involved Roles pass through the Interaction instance and the same time.

RAD67. An Interaction instance may change the Prop of a Role.

RAD68. An Interaction instance may include an Action.

RAD69. A conditional Interaction may be abbreviated to a single Action in simple cases.

RAD70. An Interaction node must have only one entry State.

RAD71. An Interaction node must emit only a single exit State.

RAD72. Multiple Interaction nodes may appear in a single diagram.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 100 of 333

5.1.1.2.7 Role Instantiation

RAD73. Role Instantiation is optional.

RAD74. The notation for Role Instantiation is a crossed box.

RAD75. The label of a Role Instantiation may be null.

RAD76. A Role Instantiation node must have only one entry State.

RAD77. A Role Instantiation node must emit only a single exit State.

RAD78. Multiple Role Instantiation nodes may appear in a single diagram.

5.1.1.2.8 Trigger

RAD79. The Trigger node is optional.

RAD80. The notation for a Trigger node is a single-filled arrow.

RAD81. The label of a Trigger node may not be null.

RAD82. A Trigger node changes the State of a Role.

RAD83. A Trigger node may change the Prop of a Role.

RAD84. A Trigger node may have zero to one entry State.

RAD85. A Trigger node must emit only a single exit State.

RAD86. Multiple Trigger nodes may appear in a single diagram.

5.1.1.2.9 Replication

RAD87. The Replication node is optional.

RAD88. The notation for Replication is a fan symbol.

RAD89. The label of Replication may not be null.

RAD90. The label of Replication must contain some indication of the number of Replications to

take place.

RAD91. The Replication node defines a Part Refinement in a ‘thread’.

RAD92. A Replication node must have only one entry State.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 101 of 333

RAD93. A Replication node must emit only a single exit State.

RAD94. Multiple Replication nodes may appear in a single diagram.

5.1.1.2.10 Undefined

RAD95. The Undefined node is optional.

RAD96. The notation for Undefined is a spring symbol.

RAD97. The label of Undefined may be null.

RAD98. An Undefined node may have zero to one entry State.

RAD99. An Undefined node must emit only a single exit State.

RAD100. Multiple Undefined nodes may appear in a single diagram.

5.1.1.2.11 Prop

RAD101. The Prop node is optional.

RAD102. The notation for a Prop is a textual list in the Role box.

RAD103. The label of a Prop may not be null.

RAD104. The Prop may not interact with any other nodes within the Role box.

RAD105. Multiple Prop nodes may appear in a single diagram.

5.1.1.2.12 Stop

RAD106. The Stop node is optional.

RAD107. The notation for a Stop node is a single horizontal line.

RAD108. The label of a Stop node may be null.

RAD109. A Stop node must have at least (but not limited to) one entry State.

RAD110. A Stop node may not emit any exit State.

RAD111. Multiple Stop nodes may appear in a single diagram.

Note: Events play an important part in the RAD.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 102 of 333

5.1.1.3 Comparative

The rules presented in the previous two sections are indicative of the complexity and difference between the

two techniques essentially used to capture the same thing from alternating perspectives. The first thing to

become immediately evident is that basic rules pertaining to the Activity Diagram and RAD appear more

alike than contrasting. They are both concerned with modelling the functionality of a process and follow

similar constructs. However, where there are differences, these differences are important, and the focus of this

section is on those differences.

5.1.1.3.1 Activity Partition Vs Role & Role Instantiation

The notion of a RAD role is significantly more important than that of an activity partition. The activity

partition is the simple segregation of activity nodes, and has an optional existence. In a RAD, the role is

central, and in fact essential to the process. This is because roles are the only entities that can provide

functionality and interaction. A role is the conceptualisation of real-world representations, whereas an activity

partition has no such significance, and the use of the RAD notation allows the positioning of such a role

within the process (including organisational hierarchies) to be seen as “much better than swim-lanes” (Ould

2004c). A role can persist throughout the lifetime of the process (as roles do in reality) enabling roles to be

called upon in alternate processes and even be defined upon how many particular instances of that role might

be in existence.

There is no such concept of activity partition instantiation in the UML. In a RAD, notation is available to

demonstrate how a role, for example a Divisional Director, might instantiate an instance of another role, in

this case a Project Manager, as and when new projects come to light, which is a direct reflection of real

business processes, unlike the notion of the activity partition.

Another important, and perhaps overriding difference, is that activity partitions do not allow for more than

one thread of activity within a single partition, focus is given rather to providing a sequential string of

activity. In a RAD, the notion of a hanging thread is available. A hanging thread allows for continual change

within a process and is activated on event, affecting the state conditions within the process. This is very useful

in modelling alternative and exceptional situations. Indeed, this event-driven behaviour is an important

reflection on the real-world where people are often observed “dealing with abnormal or unexpected

situations” (Ould 2004c) within a process definition.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 103 of 333

5.1.1.3.2 Start Vs Trigger

In a RAD, there is no corresponding notation for the start node of the Activity Diagram. In an Activity

Diagram, the start node represents the beginning of some thread of activity, nothing more. In general, states

are used to mark the start of activity threads within the RAD which enables this activity to begin once the

condition of state is met. Specialisations can involve the undefined notation, where it is considered

unimportant to know when a thread of activity may be initiated, only that it can be. As previously noted, a

role might also be instantiated, which represents the start of a new role, where threads are allowed to begin

and end with a natural start and stop state, without the need to represent this explicitly. The most explicit

representation of a start node in a RAD is that of a trigger.

A trigger is state-based and can be used to begin a thread of activity, as and when, according to the event that

might activate that trigger. The notation allows for a trigger to be defined by the user that changes the starting

state of a thread within a role, enabling it to become active. For example, a trigger might be defined that

instigates a thread of activity that chases any unpaid invoices at the end of each month. A trigger node is not

limited to a single representative in one thread (or indeed role), the notation can be applied as many times,

and in as many roles that are deemed necessary to represent the process. It is important to note that the start

node of the Activity Diagram does not have any corresponding notation to manage the concepts introduced by

the trigger node of the RAD.

The “prioritisation of user requirements is important” (Maguire and Bevan 2002) yet little is defined here

regarding the prioritisation of trigger events in this context. For example, if a trigger was used as described

above to ensure that unpaid invoices are chased at the beginning of every month, an exceptional event may

occur and override the trigger (i.e. if the systems were down, there will be no system clock, and therefore the

trigger may never activate). Such prioritisation may be important in the definition of the process.

5.1.1.3.3 Activity Vs Independent Activity

Activity and independent activity or action nodes are perhaps the most alike notations found in both

techniques, both being used to describe some form of act to be performed. Indeed, as rule AD18 notes “An

Activity instance must include an Action”. One defining difference is that an independent activity in a RAD

has the power to destroy a role instance completely. It is evident that no such activity in an Activity Diagram

has such a corresponding significance since an activity partition has no real value.

Phalp (1998) writes that “as with data flow approaches, processes may be decomposed into further processes,

and so on”. A consideration for both activity and action is that every instance of each could be decomposed

further. Therefore, it is apt to “always show whatever detail is appropriate to that model for that purpose”

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 104 of 333

(Ould 2004c), and indeed, the RIVA method provides guidance in achieving this. This is supported in

Abeysinghe and Phalp (1997) where suggestion is made to decompose processes into essential entities to

enable transformations. However, not much direction regarding abstraction levels within the Activity

Diagram is available.

5.1.1.3.4 Transition Vs State & Interaction

An Activity Diagram transition is used primarily to connect nodes together, enabling progress to be followed

from the start node, sequentially through to the natural conclusion of the stop node. Since no such notion of

sequential flow is relevant in the RAD, the closest relatives are state and interaction nodes.

Once again, it is evident that a transition bares no resemblance to any real notion, whereas RAD states and

interactions directly relate to real-life processes. A state line is representative of how far a process has

progressed relative to time. An interaction expresses the collaboration between two or more roles.

“Interactions are very rich in nature and we must be aware of that” (Ould 2004c). A transition, on the other

hand, is simply a connector between two nodes. A transition can in fact only connect two nodes, whereas an

interaction can occur concurrently with a multitude of alternate nodes and state lines can merge into single

states, allowing for multiple entry and exit alternatives, thereby being less restrictive. Furthermore, not only

can the notation for an interaction facilitate this, but it can also facilitate one-to-one and one-to-many

interactions with all members of the process. All of which is unaccounted for in the Activity Diagram.

A redeeming quality found in Activity Diagram transitions is the inclusion of guards. A guard is defined to

protect the succeeding activity sequence by establishing entrance pre-requisites, which are required to be

satisfied. In a RAD, this is accounted for by the inclusion of case refinement and the state based nature of the

technique. However, pre/post states do not have the same defining quality as conditions placed by guards.

5.1.1.3.5 Decision Diamond Vs Case Refinement (Alternatives)

RAD case refinement operates in much the same way as the Activity Diagram decision diamond, which is

very much similar to the decision diamond of early flowcharting techniques. The decision diamond is used

when a decision is to be made which could have numerous numbering outcomes; this is represented in the

RAD case refinement in the form of a question to which the answer will activate a corresponding thread of

activity. However, a decision diamond is required to be satisfied; a constraint not included RADs, which

operate more akin to the aforementioned guards. If a pre-requisite cannot be satisfied, that thread will simply

never activate. The case refinement can also be simplified in notation to a single independent activity, but

only in simple cases.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 105 of 333

5.1.1.3.6 Synchronisation Bar Vs Part Refinement (Concurrency) & Replication

The synchronisation bar and part refinement both cater for the parallel execution of multiple activity threads

via join and fork mechanisms. Since the RAD also caters for the merging of states, the additional option for

rejoin is offered.

The single most identifiable difference in terminology between the two alternate techniques is that of

replication. The replication fan is used to define a part refinement in a RAD, to signify that the task is

repeated for each and every available consideration. For example, for each employee, conduct review. “RADs

are about the concurrent activity in the real-world” (Ould 2004c) and not the sequential view of software

system design.

5.1.1.3.7 Stop Vs Stop

The stop symbol in an Activity Diagram has a greater significance than that of a RAD. In an Activity

Diagram, the stop node signifies the end of that sequential string of activity and must be included on any

Activity Diagram. In a RAD, it is not important to signify the end of a thread since conclusion is naturally

reached via an end state, unless it is considered important by the modeller to explicitly illustrate it, for which

the stop notation is used. Since multiple threads are allowed across multiple roles, multiple stop signage may

appear anywhere, whereas in a single Activity Diagram, a single start and stop node is required.

5.1.1.3.8 Undefined & Prop

Undefined and the prop are notions that are present in the RAD, but have no representation in the Activity

Diagram. The Undefined node is a notation of a spring symbol which signifies that a state will occur,

irrespective to the measure that may (or may not) have brought the process into that state or that the thread

moves into a state to which significance is unimportant to the process. The symbol can be used at the

beginning, end, and throughout a process.

The prop is a resource a role might create/update, interrogate and/or pass between roles during an interaction.

These props are integral to the role since, without them, tasks will be difficult, if not impossible, to complete.

The integrity of the prop also helps to ensure that every role operates as a private information space with

enough information to participate in the required process.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 106 of 333

5.1.1.4 RAD Application for the MDA

It has been demonstrated that by simply looking at the basic rules involved with two alternate techniques used

to model a process, albeit business or system, the difference between the notations can be significant. On the

extreme it would be very difficult, if not impossible, to model concepts and notions imposed in one by

utilising the other. With this division in mind, consider further the difficulty presented when tasked with

transposing a CIM (RAD) into a PIM (UML). It is challenging to imagine a static view of a behavioural

model, yet the UML accomplishes this in software design at the PIM level via the Activity and Class

Diagrams.

As found in Chapter 4.0, BPM and Software Engineering ideals are somewhat conflicting. In Software

Engineering, structures described by Dijkstra (1968) are used, where everything is neatly organised; the real-

world is much less coherent and applying such modelling techniques to business processes is inadequate

(Ould 2004c). Furthermore, there is no use in modelling human behaviours, collaborations and interactions

that occur in the business process but have no significance within software systems. So, not only is it

suggested that the CIM be computationally independent (a business process model alone in fact will not do),

it also ought to be independent of human processes that are not to be realised in the final system, since

inclusion of such items will lead to ambiguities and unnecessarily complex models. It is argued here for the

CIM to facilitate modelling of real-world disorder whilst not neglecting notations to which software engineers

are accustomed to; the CIM is the perfect candidate for a gateway between the real and software worlds, and

ultimately delivering requirements into the design of software systems.

5.1.1.5 Transformations

As previously noted, the MDA is rooted in transformation automation and focuses on the decoupling of the

business logic of applications from the underlying technology that provides them. Experience has shown that

most MDA transformations take place between PIM and PSM Class Diagrams (Sheena et al. 2003), the

behavioural model is offset from the outset. The Activity Diagram is a prominent behavioural MDA artefact

that may (or may not) be used in any MDA transformation. A PIM may be transformed into multiple PSMs,

for example, a single PIM object may translate into an SQL Database Table definition, an EJB Entity Bean

and a Remote Interface at the PSM level. With each new level, more detail is added to the model in question

until eventually final code, or other technical models (such as SQL DDL, IDL Interfaces, Deployment

Descriptors etc) are output (McNeile 2003).

Transformations have traditionally been the painstaking hard work of developers to transform source and

target models by hand. With the advent of MDA, and associated transformation languages like the QVT, OCL

and ATL, the transformation can be automated via transformation rules. A course grained component model

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 107 of 333

retains association and navigation but abstracts away the details; a fine grained component model is required

for coding (Kleppe et al. 2003).

It important to note that such “transformations may never be fully automated” (Berrisford 2004). Forward

engineering is defined by elaboration (adding detail) whereas reverse engineering is defined by abstraction

(removing detail). In consideration of CIM transformations, reverse engineering is suggested by the

“composition and suppression of detail” (Berrisford 2004) whereas forward transformation is not realistic

“from a purely conceptual CIM” (Berrisford 2004) as was demonstrated by the case study investigation

included in Section 4.1.2. It was described that for forward engineering to be possible, there must be a

familiarity with software notions in defining the CIM, which raised the issue of specification and the system

boundary for consideration. Furthermore, the argument of Translationist Vs Elaborationist posed in Section

2.1.3 is important for further consideration of what might be the expectation in reference to the output of

transformations.

5.1.1.6 Translation

The Translationist (mainly involved with specialist real-time and embedded systems) produces only a PIM

with great emphasis on translation rules by which the output PSM and code are prescribed to adhere to. No

changes are made beyond PIM level. According to the OMG, models should exhibit system behaviour that is

able to be tested and simulated (McNeile 2003; Soley 2006), which of course is fully realisable given a

Translationist approach. Translationists typically apply state machines and activities, which result in

enactable models. By having an enactable PIM, requirements can be ironed out early in development process.

The Translationist argument is very compelling and is ideally where the state of the MDA is envisioned to be

in the future. However, the technology for the provision of a pure approach to Translationist MDA for

complex business applications remains unavailable (Frankel 2005) and state machines are inadequate at

describing concurrent process activity (Gupta 2007b).

5.1.1.7 Elaboration

Elaborationists account for the mainstream, developing business information systems by using MDA to

produce skeleton models, then elaborating on those models to produce the user-defined effect required. A

good MDA tool supports the synchronisation of models whereby if the elaboration is made at the PSM level;

all other levels will be kept in sync (McNeile 2003). The Elaborationist application of the MDA is made a

reality with tools such as ArcStyler and OptimalJ, enabling developers to update the system specification at

various levels of abstraction, whilst keeping all pertinent models in sync and allowing for customisable

transformation rules (Uhl and Ambler 2003).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 108 of 333

The identification of the Translationist and Elaborationist themes in MDA development appears to stem from

the fact that UML is inefficient at providing the required “precision to enable complete code generation”

(Meservy and Fenstermacher 2005). The Elaborationist view is the current solution to this, in that

experienced programmers can simply take the skeleton template provided by the MDA tool and plug in

required extensions. Little evidence is provided of work relating to CIM-to-PIM transformations. A semi

automatic approach using OCL transformation rules has been identified but requires further development

(Leonardi and Mauco 2004), perhaps using an enactable GUI. Clarification of business models and

transformations is an important first step in this process, conceivably using the RAD.

5.1.1.8 RAD to Activity Diagram

A transformation between the RAD and the Activity Diagram is hereby considered to be the most useful

direction of transformation, since this would be transforming a purely behavioural business model into a

UML software artefact and is in supported by an exploratory study which suggested that such a translation is

possible “in particular cases, but [relies] on the ability of the translators to establish and maintain…

equivalence between the two [notations]” (Odeh et al. 2002). From applying this type of transformation in

practice, it was found that when considering such transformations for use within the MDA it would, at best,

produce a collection of Activity Diagrams that match the set of separate threads contained within a RAD. The

Activity Diagram notation is simply not rich enough to cater for such a transformation, which means

transformation rules themselves would have to contain further information about what to do with elements

that cannot be represented in an Activity Diagram. Stepwise software could be produced which asks the

modeller appropriately constructed questions to allow for an Activity Diagram to be constructed directly from

a RAD, for example, how an interaction might be represented via control flow, which threads are to be

included in the same process (if they even can be) and what is to be done with the nodes that have no

corresponding Activity Diagram notation.

5.1.1.9 Activity Diagram to RAD

Again, from researching this type of transformation, it is difficult to escape the loss of richness that occurs. A

single Activity Diagram results in a simplistic single thread RAD. This might be useful but the RAD is not an

artefact of software engineering, nor is it that of the MDA. Therefore, there may be little significance in

producing a RAD from an Activity Diagram unless perhaps to demonstrate to the business user the

understanding of a system construction in progress. Moreover, by creating a single thread RAD, the richness

lost from not being able to deliver hanging threads and other RAD notions leaves reasoning futile. An

example relating to a simple order processing system is given in figure 5.1.1.9.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 109 of 333

figure 5.1.1.9.1,12UML Activity Diagram transformation into RIVA RAD.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 110 of 333

This example is demonstrative of just how basic transformations of this type can be. Interactions are revealed

by analysing the control flow between activity partitions, with a forced driving node being inferred. A start

node will never be recognised in a RAD; therefore, every thread will remain hanging. Nothing is to be said of

the persistence of role instances and nodes that are not included in the Activity Diagram notation, such as the

prop, which will never be realised. Moreover, the transformation produces a restrictive view with poor

construction, which may not even correctly represent the process to which application the model is prepared.

5.1.1.10 Role Utility Diagram (RUD)

If the elaboration ideal is accepted within the MDA for PIM-to-PSM transformations, then it could be

associated with those relating to CIM-to-PIM transformations by creating a static view of a business process

model, hereby termed a Role Utility Diagram (RUD), which might in turn transform by elaboration into a

UML Class Diagram later in the development process.

The RUD is a conceptual model developed as part of this research and can be created automatically from a

RAD by following a set of rules. There are three main components to the RUD, they are the static view of the

involved role, the props that are used by that role and the output associations delivered by an activity of that

role. Figure 5.1.1.10.1 demonstrates this via the application of a traditional musical jukebox system, focussing

on the customer role.

figure 5.1.1.10.1,13RAD fragment for jukebox example and associated RUD fragment.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 111 of 333

As might be expected, the automated transformation from a complete RAD may produce a multiple of RUD

fragments. This is because each RAD role is transformed individually. Since this is the case, theory normally

used at the PIM-to-PSM abstraction levels can be drawn upon here. That is of model merging. A model

merging tool could be used to merge the RUD fragments into a single RUD, based on the elements and

associations developed from fragments that were previously input. This is demonstrated in figure 5.1.1.10.2

by taking the RUD fragment created in figure 5.1.1.10.1 and combining it with another fragment, in this

example, payment processing, following techniques described in Grimm et al. (2007).

figure 5.1.1.10.2,14RUD fragments combined via model merging.

The higher order prevails even in the broken pieces… at least you aren’t lulled into a sense of false

security by some… merely fabricated order (Huxley 1971).

The delivered RUD is suggested to be the foundation of a Class Diagram, constructed automatically by

following transformation rules at the CIM level and complementary to the RAD providing a software

representation of business process logic. There is no notion of attribute or operation, nor should there be since

they are thought to be a design concern and unimportant at this conceptual level. RUD elements and

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 112 of 333

associations could be fed into an appropriate tool for modelling the PIM if defined in a universal language

such as the XML. This is most helpful in that the eventual Class Diagram (PIM) would be traceable directly

to the business model at the CIM level, and any change in the business model (CIM) could result in a change

in the Class Diagram (PIM), and vice versa.

5.1.1.11 Conclusion

This investigation has highlighted that the MDA is falling short of expectation and with each downstream

transformation comes a loss in upstream richness, and important requirements may become lost in translation.

Whilst the UML specification 2.0 has made considerable improvements in introducing a behavioural model

for use within Software Engineering via the Activity Diagram, such improvement may not be sufficient in

terms of business accessibility and the MDA. Important differences between techniques involved in the MDA

and the BPM have been highlighted by this research in looking directly at the rules associated with the

Activity Diagram and the RAD, and the feasibility of transformations between the CIM and the PIM business

and software technologies. If a move in this direction were to be made within the MDA, engineers could

produce a technical PIM derived from a format, for which the business user has a greater appreciation, and

vice versa, thereby bridging the gap between technology and business processes.

Rules for the transformations included in the research are not published in academia and further investigation

in this area is required. However, the rules represent a basis that might be incorporated in any automatic

software development that included the Activity Diagram, Class Diagram and RAD. RAD to UML

translations are unavailable, they may not even be possible in consideration of notions such as specification

and the system boundary as discussed in Chapter 4.0, since the RAD has no mechanisms to support such

notions. Evidence was found in support of the idea that the MDA has yet to be applied to RE concepts; the

transformation between RADs and Activity Diagrams were found to be less successful, however, an

elementary process for defining a static view of the RAD has been discussed. By presenting a CIM in the

RAD and RUD forms, systems could be delivered directly out of the requirements, human-driven processes,

and be traceable back to them. Furthermore, the RAD is founded on the Process Trinity with business strategy

at the heart and therefore such strategies should extend into any IT systems that are produced from them

providing for the strategic alignment with IT. The technique ensures that objects are created from originating

events that necessitate the need for them. Models that are natural to the PIM might be a transformed output

from those implemented at the CIM level via clearly defined metamodels at both levels (Berrisford 2004).

The RAD metamodel defined in this chapter could therefore be used as the basis of such a transformation

involving the RAD and the MDA.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 113 of 333

5.1.2 CIM Support for Requirements (CIM-to-CIM)

Section 5.1.1 focussed on the extent to which the MDA could accommodate CIM-to-PIM transformations

from a requirements definition. This chapter extends this investigation by considering CIM-to-CIM

transformations and draws on the findings of Chapter 4.0 that the MDA does not explicitly consider

requirements and specification as part of the CIM. Current MDA research centres upon the use of the BPMN

for the CIM definition. As previously suggested, it is proposed that whilst there are many models and

notations available, those that are significantly supported by the OMG, such as BPMN and the UML, may not

be best for use by non technical stakeholders. With specific emphasis on the value of BPMN for Business

Analysts, this research provides an example of a typical CIM. A requirements approach to specification is

then adopted, which proposes to be beneficial to the CIM phase with the goal being to further the utility of the

MDA by embedding it with RE theory.

The objective of the standardised BPMN is two-fold. Firstly, to be understandable to the business community

within which it is designed to operate, which is provided for in a simplistic flowchart manner to which the

business user is already accustomed. Secondly, to be transferable to the software community in a format that

is rich enough to be defined and executed (i.e. via the BPEL4WS specification). This is challenging and met

by the proposal of mapping from BPMN notation to BPEL or the like and is how the “BPMN creates a

standardised bridge for the gap between the business process design and process implementation” (OMG

2008a). It is important to understand that a simplistic business process diagram does not contain sufficient

detail for direct mapping to BPEL4WS and therefore, “graphic elements of BPMN will be supported by

attributes that will supply the additional information required to enable a mapping to BPEL4WS” (OMG

2008a). However, the definition of such attributes would in reality be likely to be completed by the technical

expert, rather than the Business Analyst, since a complexity is introduced beyond the Modus Operandi for

business use, as found with the UML in Sections 4.1.2 and 5.1.1.

The case study in this section takes the form of a simplified travel reservation system adapted from Silver

(2008d); the BPMN model for this system is shown in figure 5.1.2.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 114 of 333

figure 5.1.2.1,15CIM of a travel reservation system represented in BPMN (Source: adapted from Silver

(2008d)).

In summary, the CIM demonstration involves a fictional scenario and represents a travel reservation system

whereby flight and hotel details are input, itineraries created and verified, payments accounted for and

holidays are booked with the travel agents. This is a simplistic process (which has been outlined here in a

single paragraph of 26 words) yet involves a somewhat convoluted and confusing diagrammatic definition via

the BPMN. Moreover, because the components of the BPMN are based upon Software Engineering

semantics, the accuracy and correct understanding of the notation is imperative in the definition.

Business Analysts “do not start with textual requirements: it is too complex to come out right away with them.

Instead, they usually start with simple graphic diagrams” (Rivkin 2008), supported by VIDE (2009). A

common technique for defining specification is the Use Case. Here, the BPMN outlined previously is

accounted for within the simplistic technique, with further discussion and analysis given beyond. A set of Use

Case specifications are produced where the users of the system and are associated with the tasks they

complete in interacting with the system (Stevens and Pooley 2000). A Use Case diagram is presented in figure

5.1.2.2, along with its matching Use Case description in table 5.1.2.1, which follows the recommended

guiding principles prescribed by the CP style rules, which match the 7C’s criteria discussed in Cox et al.

(2001), Phalp (2002). CP Style rules offer the user direction and guidance on the format of Use Case

descriptions.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 115 of 333

figure 5.1.2.2,16travel reservation system represented in a Use Case.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 116 of 333

Use Case Title: Travel Reservation System

Actors: Customer, Staff, Credit Card and Booking System

Context / Purpose: To enable the booking of a holiday

Pre-Condition: Staff is available to accept itinerary request

Event Flow:

1. Customer requests Itinerary from Staff

2. <<includes>> Customer selects flight details

3. <<includes>> Customer selects room details

4. Staff prepares Itinerary

5. Staff sends Itinerary to Customer

6. Customer sends Confirmation to Staff

7. <<includes>> Customer makes Payment

8. Staff makes Booking

9. Staff checks payment with Credit Card System (Constraint: Credit Card System is available)

10. Staff sends Confirmation

Alternatives:

Alternatives to this Use Case could be that the itinerary fails to reach the customer or the customer fails to update staff

regarding payment problem. However, such an alternative has been ruled out due to insufficient elicitation and will be

discussed in the subsequent section.

11. If Confirmation fails, Staff sends Cancellation Notice to Customer (Constraint: Wait 2 days)

12. If Payment fails, Staff notifies Customer

13. Customer updates Staff

14. Customer cancels Booking

Exceptions:

Exceptions to this Use Case could be that there is a system-wide failure; the credit card or booking system is unavailable.

However, such exceptions have been ruled out due to insufficient elicitation and will be discussed in the subsequent

section.

15. If Booking fails, Staff sends Cancellation Notice to Customer

16. Staff cancels Flight and Room with Booking System (Constraint: Booking System is available)

17. Staff sends Cancellation Notice to Customer

18. If Charging fails, Staff credits Customer

Post-Condition: Booking confirmation or cancellation notice is sent to the customer

table 5.1.2.1,8travel reservation system represented in a Use Case Description.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 117 of 333

The BPMN is primarily a software notation. The use of a software-oriented notation for the purpose of

modelling business processes is likely to make the notation seem inadequate at representing notions particular

to business processes. Furthermore, it is not logical for business to utilise “diagramming techniques that are

used by software developers since they are designed to notate and model all manner of things that business

managers don’t need to be concerned with in order to manage the business” (Harmon 2005).

Initially, it became evident that there would be some difficulty in distinguishing elements that were important

and required by the system, from those that were not. The BPMN model has no system boundary view as

provided by the Use Case, and it was unclear as to whether the customer or staff member would enter the

initial booking request, which was clarified from examination of the Use Case diagram.

In the BPMN demonstration, notions of role or actor, and interaction do not exist at all, thus do not transfer

into the Use Case diagram and description. This highlights the insignificance that BPMN places on such

notions, which are of course natural to the business world and requirements methods. The Use Case definition

provides a base which was different in comparison to the BPMN model. Although many identified cases

remain the same or similar to BPMN tasks, the Use Case was found to be better aligned with the reality of the

situation. Roles, interactions and collaborations between parties are easily identifiable, for example, the check

payment case involving the staff member and the credit card system.

In the MDA, it is considered important that the business user be able to understand, validate and apply the

CIM, to help ensure that requirements are correctly met in the final software product. A study in Peixoto et al.

(2008) demonstrates how using the BPMN in business can be just as difficult to understand as UML Activity

Diagrams (Peixoto et al. 2008). The Use Case is viewed as a naturally simplistic tool, and therein lies the

beauty; being useful to communicate to the heart of the business user, rather than introduce the complexities

that the BPMN offers and, although simplistic in nature, the Use Case specification is being “increasingly

integrated with model elements” (Hansz and Fado 2003) of the MDA. However, as discovered in Section

2.1.4, Use Cases are not central MDA artefacts and are unsuitable for the generation and enaction of code

(McNeile 2003) and “the task of moving from Use Cases to design classes is neither obvious nor simple”

(Cox and Phalp 2007).

From the Use Case specification, it is clear to see that the travel reservation system employs a great deal of

human interactivity. The BPMN solution, however, presents a wholly computerised and sequential view of

that interactivity at a particular level of abstraction. Because of its nature, the “BPMN does not match the

reality of human behaviour” (Harrison-Broninski 2006a) and therefore is unable to model human-driven

processes efficiently.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 118 of 333

A mechanism was not available to incorporate non-functional requirements within the context of the BPMN

diagram. For example, a requirement might request that the designed system be compatible with the existing

system (such as the credit card and/or booking systems). This is a platform specific consideration that is

beyond the scope of the CIM and PIM concern. However, this can easily be accommodated within the

supporting documentation of constraints in Use Case descriptions to ensure such non-functional requirements

are carried through beyond the CIM.

The eventual system is likely to issue an email address, or perhaps SMS functionality, to cater for the send

and receive requests between the staff and customer. This requirement is not specified in BPMN; it is only

from the analysis of the Use Case description that this issue is raised.

Alternative and exceptional Use Case discovery is part of the Use Case exploration. On review, it becomes

evident that the BPMN contains no indication to what might happen should the itinerary fail to reach the

customer, the customer fail to update the staff regarding a payment problem, a system-wide failure be

experienced or the credit card and/or booking systems be unavailable. Exceptions are delivered in BPMN by

relating to an event that might require the cancellation of a booking or an error requiring the customer be

credited for amounts charged. Use Cases naturally raise such questions as cause for concern to be verified by

the stakeholder involved and provides sufficient elicitation from a RE perspective in the construction of

specification.

Techniques such as the BPMN are unsuitable for defining human behaviours and biased to supporting

technological implementations (Harrison-Broninski 2005c). Put simply, business and software analysts think

they understand BPMN in the same manner (Silver 2008b), but specifications can be understood quite

differently by those involved (Cook 2004a; Phalp and Shepperd 1994). From reviewing BPMN samples

distributed in training materials, significant errors were found and highlighted in Silver (2008e, 2008f).

Semantics related to sequence flow, gateway attributes, intermediate events, sub-process boundary protocols,

compensation events, transaction sub-processes, cancel events, link events, state based synchronisation, etc.

are all illustrative of the complexities involved with the BPMN. If the tools and teaching materials cannot get

the notation right, it is difficult to see how business users may make anything more of BPMN than simple

flowcharting. It is agreeable that “there isn’t much educational material out there that shows people how to

use BPMN correctly” (Silver 2008e). However, once plugged into the MDA, CIM level errors could be a

critical project management concern.

The study demonstrated how complexities relating to the BPMN may not be beneficial to the Business

Analyst in representing the requirements for software systems, especially when looking to illustrate the CIM

within MDA, because the BPMN provides an inadequate representation of human behaviour. It is highlighted

that the UML and MDA code generators are not the remedy for the ills of the development world (Thomas

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 119 of 333

2004); tools and notations available to the Business Analyst, as well as the standards that govern those

technologies, must be embraced, not only by the OMG and the Software Engineering world, but perhaps more

importantly by the business users.

5.2 Implications

The findings presented thus far support further trials using alternate modelling techniques, including the

RAD. Research into how different a PIM might be defined may hold some value in the future of specification

via the CIM. It is suspected that mechanistic and humanistic processes might both require specification for

BPM, but only those that can be mechanised for the MDA. Either way, an understanding of the nature of

business processes is central to the specification, since humanistic processes presented incorrectly at the CIM

level may result in a deformed architecture which does not facilitate support of the business process it was

defined to augment. The remainder of this chapter considers the implications of these findings in terms of

MDA notation and tooling.

5.2.1 Notations

The BPMN was designed to make the implementation of executable models easier, driven by one notation,

rather than be flexible to the multitude of notations. It is said that the BPMN provides “the power to depict

complex business processes and map to Business Process Management execution languages” (OMG 2008a),

however, limiting the modelling of the business domain to a single notation provides a weakness in that

concepts which could have been adopted in other notations may no longer be used. Moreover, by definition, if

the BPMN is based on software concepts, the technique is no longer as meaningful to the Business Analyst as

it is to the software producer, leading the Business Analyst to learn to think, for example, in terms of object

rather than process.

The solution suggested here is to open out the MDA and allow the accessibility of a greater range of

modelling notations and standards support, rather than giving focus to just the chosen few. The BPMN and

the UML are not intended to be supportive or facilitate domain specific modelling definitions in terms of the

Business Analyst (Brahe and Bordbar 2006). A greater acceptance of other notations and standards support is

suggested to enable the MDA to fulfil the ideology of facilitating truly interoperable, portable and reusable

models. For example, the BPMN only allows messages to interact with two single entities, whereas with

human-driven processes, interaction is usually between many (a conference call, for instance), which is

allowed using other diagrammatic notations such as the RAD. As previously mentioned, the BPMN is not

capable of producing a role, and therefore, requirements pertaining to such a notational element cannot be

modelled correctly for that reason and systems can be delivered incorrectly. In the BPMN, roles have been

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 120 of 333

aligned to a grouping of activities or process chains via swim lanes and pools. Roles essentially account for

the responsibility and purpose that characterise the people and systems that they represent, and are not just a

collection of mechanised actions and functions; the RAD has a simple foundation, with a “natural” graphical

notation, which allows them to be introduced to the business user with minimal training (Harrison-Broninski

2005a).

From examining transformation techniques in the MDA, specifically those relating to CIM-to-CIM and CIM-

to-PIM, a RAD could be transformed into the UML for the use in software systems development via the

MDA. Harrison-Broninski outlines formally how each component in a RAD can be represented in the UML,

although with less specialised usability and concepts pertaining to the RAD and HIM tools (Harrison-

Broninski 2005b). Other researchers also focus on such transformations. For example, a proposed

methodology for transforming models of the BPMN into Use Case notation goes some way to looking beyond

the OMG’s CIM and towards the PIM (Rodriguez et al. 2007a). Secure Business Processes are defined by

using an extension of the BPMN Business Process Diagram and the Business Process Security Profile. QVT

transformation rules are then used to capture the BPMN and transform it into elements within UML Use

Cases (Rodriguez et al. 2007b). For example, pool to actor, activity to use case and security requirement to

use case (Rodriguez et al. 2007a).

Ultimately, the task of retaining the richness contained within requirements models that may be lost in a

transformation process remains a difficult one unless the requirements model is held integral to the MDA. The

BPMN does not include the technology suitable to retain the richness of information that is provided for by

requirements models. An alternate suggestion for investigation could be to include, or extend the notations of

the BPMN to account for notions that carry real meaning in requirements models. For example, as previously

discussed, the swim lane notation could be adapted to reflect that of a role. However, this notion is dismissed

in other research, where the view is that such richness simply cannot be captured by the BPMN via extension

(Harrison-Broninski 2006c), supported by Bushell (2005).

5.2.2 Tools

MDA tools and processes are required to be agile enough to adapt and facilitate changes. Models allow ideas

to be “shared in abstractions” (Soley 2006). In order for the MDA to be successful within industry, tools

should be accessible to both the software developers that create implementations and the business users whose

requirements necessitate them. Many tools are available in the market and purport to pursue MDA ideals.

However, it has been seen that “most MDA tools are geared to programmers and software developers rather

than non-technical stakeholders” (Kanyaru et al. 2008b) and that such tools remain in an evolutionary state

(Leonardi and Mauco 2004).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 121 of 333

As previously highlighted in this chapter, the BPMN has associated problems. Difficulties are also apparent in

industry in that the BPM field has not yet matured (See Section 4.1.1). Tools are available, Common-Off-

The-Shelf (COTS) and custom created, to accomplish all manner of process analysis, design and execution

tasks. It is noted that business users are not embracing the BPMN to the degree that the OMG and MDA

proponents would hope for. One reason suggested for this is that “the tool vendors themselves don’t follow

the spec” (Silver 2008c). It has been highlighted that well known distributors of BPMN software tools and

training facilities (analysis derived from a review that includes Savvion, Tibco, Appian and Intalio’s Open

Source Modeller) neglect the BPMN specification (Silver 2008c, 2008e). Supporters of BPMN therefore must

work tirelessly to ensure that tools and training integration incorporate the correct definition of the BPMN

standard as prescribed by the OMG (2008a). It is also noted that “modelling tools obviously don’t include

validation routines that weed out illegal diagrams” (Silver 2008c), which may also benefit consideration.

Formal semantics could be defined and, via automation, rules could be generated and model semantics

verified which would “ensure precise specification and… assist developers in moving towards correct

implementation of business processes” (Wong and Gibbons 2008). However, the technique, supported by

Microsoft research, draws the definition of semantics in CSP via an abstracted syntax described by the

mathematical state base in the notation Z. The mathematical base and process algebra syntax is very complex

and unhelpful for the business user in the definition and verification of requirements (Wong and Gibbons

2008). As previously noted in Section 2.2.4, Abeysinghe and Phalp (1997) demonstrate how CSP can be

combined with the RAD to provide end-user accessibility, “whilst retaining the formality of CSP”

(Abeysinghe and Phalp 1997).

Eclipse is an open source Integrated Development Environment that supports the MDA. Central to Eclipse is

the Eclipse Modelling Framework, which is a “model-driven metadata management framework” (Frankel

2005). In marketing Eclipse to industry, the unique selling point is highlighted to be the modelling and code

generation capabilities, little focus is given to the consistency and automation of the Integrated Development

Environment; which is the real advantage (Frankel 2005). Perhaps this is because the Integrated Development

Environment capabilities are too complex and difficult to market for business use. Indeed, by giving attention

to modelling and code generation, interest can be gained by organisational managers and investments in

technologies can be made. However, if the market is purely represented by technologists, then this should not

be the case. In reality, Eclipse does not have the necessary tools to generate applications such as an order

processing system, “it is better suited… for modelling a tool’s metadata and generating code that manages the

metadata” (Frankel 2005). The Eclipse marketing strategy therefore, could be considered to be aimed at

increasing the business interest, without any real promise to those users, delivering directly to the

technologists working behind the scenery.

The focus is for MDA vendors to “provide integration with requirements and testing artefacts within the

tool… if models can be tested against accurate specifications, then problems are caught upstream where they

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 122 of 333

can be handled” (Hansz and Fado 2003). Requirements and testing experts “often stay outside the modelling

tools. They need to be brought in” (Hansz and Fado 2003). From the perspective of the MDA, they are

currently outside of the architecture as a whole, beyond the tooling task. The Business Process Developing

Life Cycle (BPDLC) is defined as an approach to eliminate the Business/Systems Analyst knowledge gap, by

formalising business requirements in terms of a Basic Business Process Flow (BBPF) (Rivkin 2008). Another

solution is the Topological Functioning Modelling for Model Driven Architecture, via UML Use Cases and

Conceptual Class Diagrams (Osis et al. 2007). The underlying architecture is that “functionality determines

the structure of the planned system” (Osis et al. 2007), however, to limit the definition in such a way perhaps

neglects some important pre-CIM and design considerations that should be made in the derivation of a

suitable concept tool. Another drive to include requirements within the CIM is presented in the VIDE

initiative (VIDE 2009) and adopts an interactive environment, based on BPM ideals (Phalp and Jeary 2010)

that eases the business user into the MDA process, without getting overly involved in the technicalities related

to the architecture. The tool provides a “development environment” (VIDE 2007) consisting of several

palettes, guiding the user from pre-CIM-to-PIM via a stepwise methodology (VIDE 2008a) and represents a

useful step in the right direction of making the MDA accessible to the business user, despite having a reliance

on the BPMN for defining the CIM.

5.3 Summary

The relationships and differences between business and software techniques, and a discussion regarding the

notational and tooling implications involved, gave valuable insight into how requirements techniques may be

applied to the MDA, and what needs to be done to achieve that aim. The suggestion for extending the MDA

has previously been identified with the solution being that any such extension support specification without

any loss in the versatility of the MDA, providing a conduit to interoperable, portable and reusable software

models. By including RAD definitions in support, the MDA could be enhanced and business user interface

facilitated. A foundation Class Diagram could be derived based on the original process specification or RUD

as described in Section 5.1.1.10, provided system boundary elements are addressed. A loss of richness was

clearly identified when attempting to transform from the business model and therefore further research is

required in discovering how to retain the richness provided by business models, perhaps by including the

RAD as a support model at the PIM level or through a series of model evolutions. By examining the

transformation process between CIM level artefacts, it was found that the BPMN is semantically rich in

software knowledge and not an appropriate notation to communicate ideas to the business user or to produce

specifications from as the notation was found to be void of any system boundary concept. A simple Use Case

could cater for such a system boundary view and be better aligned in demonstrating user requirements and

resolving the ambiguities and complexities associated with the BPMN in terms of the business user. However,

the Use Case is not a central artefact of the MDA, nor is it complex enough to retain the richness required of

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 123 of 333

the PIM. Promising results were found in Section 5.1.1 in terms of transforming from the RAD to the UML.

Provided the concern for specification is addressed, the RAD may prove useful at interfacing between the

business and software users as a single CIM level notation, being both rich enough for business process

definition and simple enough to facilitate understanding of that process. Therefore, further research is

required to discover how business notations, such as the RAD, might be supported within the MDA;

moreover, how the framework of the MDA could be extended to support varied and combined notational

standards at the CIM level, whilst retaining the central ideals of the MDA.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 124 of 333

Chapter 6

Extended MDA

In this section, ideas based upon findings made in Chapters 4.0 and 5.0 for extending the MDA framework to

make the connection between business and software users are discussed, with a solution in satisfaction of aim

3 being provided in Sections 6.3 and 6.4. The consideration is focussed upon what is useful for and applicable

to both business and software users alike (Musschoot 2010).

6.1 Extending the MDA

The CIM is representative of the enterprise and includes the definition of business rules, facts and terms

(Hendryx et al. 2002). However, due to the irregularity of the real-world described through Chapters 2 to 5, it

has been seen that MDA transformations are focussed only on those involving the PIM and PSM. The MDA

does not place enough emphasis on CIM development (Ambler 2007; Kabanda and Adigun 2006; Karow and

Gehlert 2006; Phalp et al. 2007) and the exclusion of the CIM within the MDA transformation process is

demonstrated in figure 6.1.1. It is seen that no strong connection exists between the CIM and the PIM and

there is little research given to transformations involving the CIM, that is CIM-to-CIM and CIM-to-PIM

(Kherraf et al. 2008), supported by the findings of Chapter 5.0.

figure 6.1.1,17MDA Viewpoints (Source: developed from OMG (2003b)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 125 of 333

To align the paradigms of business and software within the MDA, it is appropriate to use RE and BPM

technologies centrally within the framework. The UML appears to be the de facto standard for the PIM and

support is given by the MDA to the adoption of the BPMN specification (OMG 2005, 2008a; White 2004) for

CIM definition. The UML and BPMN are plagued with software engineering concepts and it is difficult to

replicate those of RE using them. Notions natural to the business domain, such as role and interaction, are not

easily represented using UML or BPMN, and that is key. Arguably, the UML may not be the best generic

technique for mapping concepts to programming languages, let alone from a business domain into those of the

programming world (Génova et al. 2005). From research conducted thus far, it is thought that extending the

MDA definition to account for the dislocated CIM could involve a combination of two suggestions in

accounting for specification within the CIM. The first being that particular models and modelling techniques

are specified for use in making the connection, the other is that a more abstract framework extension be

defined for the MDA, within which any number of techniques might be employed, so long as essential themes

are addressed. Each of these ideas is given further deliberation in turn.

Section 5.2 highlighted that the nature of business processes is of important consideration in determining

techniques sufficient for requirements modelling purposes. It is also noted that the business process does not

necessarily account for the specification of a software system. For the definition of functional requirements at

the CIM level, the BPMN may be perfectly sufficient to model processes that have a mechanistic nature,

provided the notation is understood and implemented correctly. Other processes have a complicated nature

and may be better represented by the RAD, perhaps with the BPMN definitions in support, or to enable

transformations from RAD to BPMN or the UML. Support could be given in defining a less complex version

of the BPMN, which could then be translated into the BPMN for the definition of a mechanistic software

system, avoiding identified complexities. The simplistic notation used could be akin to flowcharting methods

that the business community is used to, but the important thing is for elements within the notation to be

directly transferable. For non-functional requirements, visual test cases might be suggested to be the key

MDA artefact.

The second suggestion is to conceptualise an accessibility extension to the MDA framework to include

requirements elicitation and specification as central to the CIM (see figure 6.1.1). Preliminary investigations

into ideas of extending the architecture via pre-CIM activities (DDM, IRM and BM) and the formalisation of

the CIM in terms of available transformations (see Chapters 4.0 and 5.0) have been conducted by dissecting

the expectation of each MDA phase in terms of inputs and outputs. The description of an extended MDA

framework would likely follow discoveries made and defined by xMDA in Section 4.2, highlighting the

importance of defining the system in terms of functions and constraints, without describing a technique or

notation to do so. The idea retains the versatility of the MDA in being interoperable, portable and reusable

since the inclusion of any notation constrains these central concepts.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 126 of 333

figure 6.1.1,18requirements and specification included as part of the CIM definition.

RE and BPM focus on business processes, and associated roles and notations offer freedom to the business

user, often allowing an extensibility which cannot (or at least is very difficult to) be interpreted by software

modelling tools. One way to support the move to design from a process model is to provide a requirements

phase where modellers can specify a system that addresses a given business need in a language common to

the business user, with resulting systems being akin to customer expectations on quality requirements and the

business process. CIM definitions do not currently account for the unfamiliarity of software development

paradigms to the business user, and mechanisms for transferring requirements knowledge are unavailable.

So far, the importance of extending the MDA to include RE has been argued. The MDA is broad enough to

accommodate many methodologies from the common waterfall approaches to more recent methods such as

Agile Software Development and Extreme Programming (Kleppe et al. 2003; OMG 2003b). With an

increasing demand for systems to match the requirements prescribed by business managers at the start of a

project, there is an even greater need for projects to reflect multiple changes throughout the development

process. Perhaps the most defining characteristic of the MDA is conceptual simplicity. The MDA fosters an

agile environment which goes some way to addressing the concern that development projects are not reactive

enough to the changing environments. Developers have been using models for years, business users even

longer. The UML is now the operating standard to which MDA is associated, facilitating transformations

between models with the ability to be flexible to changing requirements.

6.2 Importance of Specification

The ability to efficiently design appropriate computer systems and enable them to evolve over their

lifetime depends on the extent to which… knowledge can be captured (Greenspan et al. 1982).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 127 of 333

In 2004, the Standish Group reported that “about 20% of IT projects are cancelled before completion and less

than a third are finished on time and within budget with expected functionality” (Kappelman et al. 2006).

Among the factors relating to the requirements definition, the differing ideals of software developers and

business consumers and the inability for projects to be reactive to requirements change, have been

instrumental in a multitude of failed projects (Al-Neimat 2005; Kappelman et al. 2006; Lavagno and Mueller

2006; May 1998; Phalp et al. 2007; Poernomo et al. 2008; STSC 2003).

A requirement is a desired relationship among phenomena of the environment of a system, to be

brought about by the hardware/software machine that will be constructed and installed in the

environment. A specification describes machine behaviour sufficient to achieve the requirement…

Specifications are derived from requirements by reasoning about the environment… (Jackson and

Zave 1995).

Note: The use of the term machine is preferable over that of system due to associated ambiguities.

It follows in Jackson (1995) that, the analysis of the PD is related to the design of the solution system via the

specification (see figure 6.2.1) – literally the intersection of the problem and solution domains (Jackson

2000).

figure 6.2.1,19systems of prime concern and development activities (Source: developed from Jackson (1995)).

In specification based software development, user needs are defined by requirements, from which a

specification of system behaviour is created to address (Jackson and Zave 1995). PD elements that are not to

be realised in the solution system are extracted during specification, imposing neither informality on the

solution system nor formality on the description of the PD (Jackson 2000). Once authorised, the specification

is transformed into the resulting code for a system to achieve the original user need (Ince et al. 1993); hence,

RE is important to the development process (Castro et al. 2002). Ultimately, specification should attain the

qualities of being unambiguous, consistent, complete and incremental (Gupta 2007c). In reality, experience

has shown that business processes and requirements are often misunderstood, or even entirely neglected,

leaving resulting systems incomplete in meeting stakeholder requirements (Bray 2002; Kappelman et al.

2006; Lavagno and Mueller 2006; May 1998). As described in Section 4.1.1, this is frequently because

developers require business stakeholders to understand requirements and process logic in technical

terminology, rather than logic native to business. Insufficient attention has been given to defining

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 128 of 333

requirements in complex projects, those which address unfamiliar problems, and the penalties in terms of

cost, quality and the time it takes for projects to be completed have all been well demonstrated; issues

pertaining to RE have been found to be instrumental in such failures (Bray 2002; Hansz and Fado 2003). It

holds therefore, that time is well spent in defining requirements in the development process (Brooks 1975;

Greenspan et al. 1994; Kleppe et al. 2003; Sommerville 2004; STSC 2003; Wiegers 2000).

Specification is defined by the boundary between system and user (known as the system boundary). The

system boundary distinguishes those functions required by the system from those that are not; and is

important in the determination of requirements (as demonstrated in Chapters 4.0 and 5.0) because it defines

where the software element is situated in comparison to the overall system (Nuseibeh and Easterbrook 2000).

The abstraction is a fine line between interactive human and software elements and, when working with a

PIM level language such as the UML, the imposition of object orientation compounds this elemental

distinction. The system boundary is a consideration when addressing business processes in that the notations

used must deliver the requirements of software systems, and not just process. System views of business

processes must therefore be accounted for by the MDA in order that requirements are defined correctly, so

that PD elements are not realised in the design of software systems. In consideration of specification in the

context of the MDA, a framework extension is described in Section 6.3, supporting a method facilitating

specification outlined in Section 6.4. “A design’s form, behaviour and function typically progress iteratively

from concept to detailed realisation” (Ohata and Butts 2005) and therefore, in order that models are refined

and requirements and PD elements accounted for, the framework and method support an iterative nature (see

Section 6.4.5 for further discussion).

6.3 xMDA Framework

As noted in Section 6.1, upstream transformations remain relatively unsuccessful and there is no extensive

study of this. Those that attempt the task report a loss of richness in process models. Other researchers look to

incorporate requirements within the MDA. In Poernomo et al. (2008), a methodology is suggested that can

react as requirements change, “accurately reflect them to code and ensure that the successful completion of

the IT system will add value to the business” (Poernomo et al. 2008). However, no verifiable data is provided

and the solution seems conceptually too complex for business to adopt. The CIM-to-PIM transformation

process is inadequately described and the resultant diagram is not necessarily a PIM, since no account for

design has been made. In Martin and Loos (2008), an integration language based upon the BPMN is discussed

to provide both the simplicity to the business user and enough complexity to the software engineer in order

that programs might be created “automatically” (Martin and Loos 2008). This is difficult because by

introducing automatic transformations from the CIM to code constrains the CIM and renders the PIM

redundant. Design features are shifted into CIM construction, leaving a large part of the development process

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 129 of 333

down to non-technical business users and the BPMN is complex; it may not be the best notation for business

users to demonstrate business processes, let alone design and implement software solutions. In Kherraf et al.

(2008), a typical transformation process is identified and demonstrated via a case study. Although significant

in furthering the understanding of the value and feasibility of such transformations, no consideration is given

to the fact that analysis and design models are from two opposing environments (Kanyaru et al. 2008a). The

difficulties encountered in transforming elements from the business to software domain are also reflected in

the findings of Génova et al. (2005), Nuseibeh and Easterbrook (2000), which supports the argument here.

Therefore, a solution is suggested which incorporates the two ideas presented in Section 6.1, extending the

MDA framework with requirements and specification, and supporting the extension with a technological

method, to solve two overarching problems. Firstly, the need to provide a generic software process structure

into which different uses of requirements and specification can be accommodated, and secondly, the need to

provide a specific set of techniques for expressing requirements and specification within the MDA. Figure

6.3.1 extends figure 6.1.1, illustrating how the MDA could appropriately situate RE within the MDA and

connect the CIM to the PIM, ensuring the distinction between the problem and solution domains.

figure 6.3.1,20xMDA framework (Source: developed from OMG (2003b)).

In software development, “attention is focussed at the application level, where the emphasis is on achieving

desired functionality” (Beeson et al. 2002). The inclusion of a CIM that focuses only on software languages

such as the UML or BPMN is unhelpful, and leads to the neglect of requirements and specification, giving

focus only to such functionality. The system boundary is currently not an explicit consideration of the CIM,

which is accounted for in the xMDA framework. It is argued here that, for the transformation of the CIM to

be useful post-CIM, and to adequately make the connection to the software domain, it must represent

specification as described in Section 6.2, and not a mere abstraction on the PD. However, analysis and design

are not considered to be isolated from specification, rather, that a part of both reside within it, supported by

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 130 of 333

Gunter et al. (2000). That is, specification requires a degree of analysis as input and that specification defines

a degree of design as output; therefore the xMDA framework integrates Jackson’s systems of prime concern

directly into the xMDA with the inclusion of three phases within the CIM - Environment, Shared and

Machine (see figure 6.3.2).

figure 6.3.2,21the integration of the xMDA with Jackson’s systems of prime concern (Source: developed from

Gunter et al. (2000), Jackson (1995)).

The Environment, Shared and Machine phases are proposed to enable only elements relevant to the machine

to be transferred into design from the analysis of the PD. This is achieved by applying information about the

transformation (i.e. mapping rules) that are informed by the target platform metamodel (i.e. the UML) and

extracting elements in the process. This represents a true interface by taking elements in the real-world that

are to be realised in the software domain and transferring them into it, allowing for traceability to be

accounted for in the documentation trail.

Ultimately, the goal is to facilitate MDA accessibility by allowing business users to define requirements in

any format to which they can understand and apply; which retains the versatility of the MDA in being an

interoperable, portable and reusable solution. This then must be matched to an xMDA representation that is

sufficient for the derivation of software systems requirements in a manner to which the Software Engineer is

akin to and also retains the richness of definition provided by the business user. The CIM must embrace ideals

from both the world of BPM and Software Engineering, and these ideals are somewhat conflicting as noted in

Section 5.1.1.4. The more complex upstream becomes, the more chance there is of errors being transferred

into implementation, and therefore simplicity is a highlighted ideal in defining the framework.

6.4 xMDA Application

To augment the applicability of the framework described in Section 6.3 and contribute in part to achieving

aim 4, a specific method, suitable for expressing requirements and specification within the generic xMDA

framework, is required. In order that such a method is defined, suitable notations must be identified. There is

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 131 of 333

real benefit in “adopting a single notation instead of battling with many competing ones” (Spinellis 2010).

However, no single notation was found to address the Environment, Shared and Machine concerns of the

xMDA. Therefore, one would need to be created specifically.

With the advent of suitable environments the formal specification will be retained throughout the

software lifecycle as the key reference point for design, implementation and maintenance… One

approach to developing a requirements elicitation and formalisation method would be to adopt or

adapt an existing informal requirements analysis method (Finkelstein 1987).

Section 5.1 demonstrated the potential of the RAD as a candidate for use within the MDA in facilitating the

move from business to software models. The RAD is used primarily for “requirements capture and

validation” (Phalp et al. 1998). It is grounded firmly in business, rather than software concepts, and given that

“software development is an integrated collaboration between machine and people” (Ould and Roberts 1987),

a compelling case is made for the notation as a modelling language that is capable of describing

human/machine interactivity. It would be inefficient to focus only on designing systems based on structured

processes such as those described by the BPMN when the human interactivity the system is designed to

support is actually rather more complex. It is said to be “impractical” (Hogg 2009) to model all exceptions

during design as this will lead to a complex design set that cannot account for the exceptions it endeavoured

to account for in the first place. However, whilst the software domain remains in structured applications,

unstructured processes will never be fully realised by software support systems. Humans are structured with

enough information to make many complex decisions. Therefore, it is argued here that by utilising the RAD,

focus can be laid upon roles that include ad hoc activity and can transfer into enabling operations in design,

provided the notation is adapted to account for specification in terms of Environment, Shared and Machine

phenomena. The xMDA method outlined in this chapter utilises these three phases to describe how an

analysis RAD can be transformed from analysis into design, maintaining traceability and thus supporting the

alignment of business models in the MDA.

6.4.1 Moving from Analysis into Specification

Analysis is the software development phase in which the PD (business environment) is investigated in order

to provide statements of intent (requirements) to inform a subsequent specification of a software system

solution to be applied within that PD. At this point, it may be helpful to be reminded of the systems of prime

concern and development activities as given previously in figure 6.2.1 and below in figure 6.4.1.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 132 of 333

figure 6.4.1.1,22systems of prime concern and development activities (Source: developed from Jackson

(1995)).

By capturing and exploiting relevant properties of the problem domain, the developer refines

customer’s requirement into a programmable specification… most specifications are extremely

obscure unless accompanied by the refinement history and a statement of the original problem

(Jackson 2000).

The first phase of the xMDA method (which is called the Environment RAD) thereby ensures that adequate

attention is placed on connecting specification with the analysis of the PD (see figure 6.4.1.3).

figure 6.4.1.3,23Environment RAD of Specification.

Although it is possible to use any business process model to describe the Environment RAD, it is not simply

the case. The Environment RAD is informed by the PD analysis, initial requirements and behavioural

definitions (DDM, IRM and BM) described in Section 4.2 and referenced in figure 6.1.1. Therefore,

subsequent models are aligned with requirements defined within the Environment RAD as a result of analysis.

6.4.2 Accounting for Specification

Difficulties often occur in transferring environment objects into specification and design. “The most common

error occurs when the analysis model is supposed to represent the real-world (domain model), but is then used

as a specification of the system to be constructed (software model)” (Génova et al. 2005), supported by

Nuseibeh and Easterbrook (2000). By defining systems in such a way, design decisions unwittingly become

imposed on upstream models, whereas such decisions ought to be addressed manually by the software analyst.

Specification-based software development is plagued by the problem that the connection between the

requirements and specification is not explicit, and it is suggested that specifications might be derived directly

from analysis (Johnson 1988). Therefore, the second phase of the xMDA method (known as the Shared RAD)

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 133 of 333

is focussed on the interface between the environment and the machine, taking the Environment RAD as input

(see figure 6.4.2.1).

figure 6.4.2.1,24Shared RAD of Specification.

RADs represent business activities (actions or interactions) across roles, and explicitly considers the

representation of the “resources the role needs” (Ould 2004c) via props. Harrison-Broninski (Harrison-

Broninski 2006a) argues that a role therefore characterises a private information space, where data is used by

that role to realise internal and instantiate external activity. It is argued here that the information space of a

role can be divided between that of the environment (that part of the role in which human activity exists) and

the machine (that part of the role in which machine activity exists) in order that the specification can represent

the interface between the environment and the machine, without losing the connection to the original role and

associated process. Retaining this connection is the essence of this method and offers an advantage over other

methods in facilitating a better alignment with the business process through specification into design.

Therefore, the RAD notation is adapted to increase the information space of each role.

Once completed, relationships between the environment and the machine become evident; known as shared

phenomena (Gunter et al. 2000; Jackson and Zave 1995). Such phenomena can be questioned; posing

interesting questions for both analysis and design.

6.4.3 Moving from Specification into Design

Since all xMDA method transformations focus on a single notation, there are real benefits in that mappings

are preserved throughout the process and designs are offered based upon the analysis that necessitated them.

“A specification is a starting point for programming” (Jackson and Zave 1995) and to move the specification

closer to design, a final phase (the Machine RAD) is therefore utilised to focus purely on the machine

elements revealed by the Shared RAD (see figure 6.4.3.1).

figure 6.4.3.1,25Machine RAD of Specification.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 134 of 333

The Machine RAD is used to influence the design of the solution system by providing an appropriate interface

from which first-cut design models can be extracted (see Section 6.4.4). Here, environmental elements are

completely removed from the Shared RAD, leaving only Machine-to-Machine relationships within and

between roles to be analysed. The central aim here is to complete the removal of environment elements in

order that, through the specification process, they do not appear in design. There is no requirement for this

model to be transformed into a Use Case (or any other intermediate notation) since the method is thorough

enough to negate the need (although the technique supports this as a transformation should that be the will of

the designer, see Section 7.6.3 for further discussion).

6.4.4 Class Discovery, Transformation and Platform Information

Once completed, further analysis of the Machine RAD can be conducted to reveal hidden information about

candidate entity, interface and control classes in moving to design, and Transformation and Platform

Information in the form of transformation rules can be applied to the Machine RAD to derive first-cut models

to be used as a starting point for design (see Chapter 7.0 for further information).

6.4.5 Iteration

“Business changes inevitably lead to changing requirements” (Sommerville 2004) and therefore, changes to

the specification and solution system. Requirements elicitation and analysis are iterative in nature

(Sommerville 2004) but accounting for iteration in resolving requirements can be a problem in software

process modelling (Dowson 1987c; Tully 1987). Therefore, in order that models are refined and requirements

and PD elements are appropriately accounted for, it is important that iteration is supported in a modelling and

transformation method that is “comprehensible for all stakeholders during the respective development phase”

(Karow and Gehlert 2006). With the MDA, it is possible to revisit models generated for use at any phase

(Garrido et al. 2007); a concept central to the xMDA method. However, checking for consistency between

specifications will always involve an element of human participation (Tully 1987).

6.5 Summary

This chapter has argued the need for extending the MDA to account for RE and proposed an extension which

places Jackson’s (1995) theory of specification at heart. In outlining a method to support the xMDA

framework, it is important to consider that every situation is different and some techniques may have a greater

applicability than others, depending on any particular given situation and PIM level technology. Such

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 135 of 333

methods are not intended to simplify difficult development problems, rather they are intended to guide the

user through suitable steps to provide sufficient support (Finkelstein 1987). The xMDA method is proposed to

support the xMDA framework. This is suggested to provide a CIM level interface between business and

software users and guidance on the successful application of the method to the MDA in defining requirements

and realising software solutions. It is possible that any notation could be used, provided each described

xMDA specification phase (Environment, Shared and Machine) is addressed within the CIM and relevant

Transformation and Platform Information is available. “Clearly, it would be naive to claim that the profound

problematics of knowledge representation can be overcome by diagrammatic considerations alone.

Nevertheless, every little improvement helps” (Harel 1988).

The validation of the xMDA framework is addressed in the following chapters, with the next chapter

illustrating the xMDA method in detail. Once established, Chapters 8.0 and 9.0 investigate the value of the

xMDA framework and supporting method for business and software use in the academic and commercial

context.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 136 of 333

Chapter 7

xMDA Illustration

In the previous chapter, the underlying theory behind a method to support the xMDA extension was

described. In this chapter, a case in point is used, illustrating the application of the xMDA method.

7.1 Order Processing Worked Example

Described below is a sample fictitious case that is used as focus for this illustration. In the subsequent

sections, each xMDA method phase is applied and discussed in detail.

The XYZ Company is a medium sized business that is looking to develop a software system to

support a small scale mail order business. Because of the logistics involved with the enterprise

system that is already in place, the new support system is to be interoperable with other systems

and have a portable and reusable architecture. The following describes the activities of the mail

order process.

The marketing department is responsible for the creation and despatch of all marketing materials.

Once a customer is ready to make an order, they fill out the order form and mail it into the

company. Once received, a sales advisor processes the order. The customer details must be kept

on file for future reference and credit checks are made to ensure the customer account is in credit

before any order can be authorised.

The accounts advisors are therefore required to respond to any sales order request by providing

an update on client credit worthiness. If a client has poor credit, the sales advisor notifies them of

the situation, otherwise an order is created and sent to the despatch team; who pack and despatch

the order, along with required despatch note.

A copy of the despatch note is forwarded to the accounts advisors for billing purposes, which is

already supported by the accounting system. There are two sales advisors and two accounts

advisors available to the mail order enterprise. The warehouse team numbers varies with seasonal

demand and is unlikely to have any impact in the design of the new support system.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 137 of 333

7.2 Environment RAD

The first phase of the xMDA method involves extracting detail from the analysis of the PD and representing it

in a RAD. In this example, the PD description was analysed, resulting in the construction of the RAD given in

figure 7.2.1.

Note: Enlarged version appears in Appendix I, figure 1-1.

figure 7.2.1,26Environment RAD for the Order Processing example.

Typically, the Environment RAD is constructed in conjunction with other tools for requirements elicitation

and analysis, such as the DDM, IRM and BM described in Section 4.2, and therefore the Environment RAD is

the output from such elicitation and analysis. Thus, it is considered to be more of a complete offering of the

phenomena required for specification rather than a simple process model (although it could act as one).

Here, Environment-to-Environment relationships are identified and considered. By examining interactions,

such as the Send Order and Receive Order interaction between the Customer and Sales Advisor, aspects of the

environment can be considered in isolation of machine complexities. Relationships are compared and

contrasted with those defined in the PD and initial requirements to ensure the model is correct and complete,

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 138 of 333

with any inconsistencies being addressed and resolved with the stakeholder via iterative mechanisms. The

Environment RAD serves as input to the second phase of the xMDA method.

7.3 Shared RAD

This next phase addresses issues central to specification. The Environment RAD is refined to reflect the

behaviour of the system to be developed with respect to its operating environment. Each individual user or

system role is divided into separate conceptual spaces of the environment and machine, particular to that user

or system. The role is divided by a boundary line, with elements pertaining to either the environment or

machine being placed in the respective space, separating the tasks a role might be required to complete in the

real-world or via the machine. The output of this process is known as the Shared RAD. Figure 7.3.1 illustrates

the Shared RAD for the Order Processing case.

Note: Enlarged version appears in Appendix I, figure 1-2.

figure 7.3.1,27Shared RAD for the Order Processing example.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 139 of 333

Each user or system role reflects the requirements for that role; and the interfaces between the environment

and the machine. Any element included within the environment space of a role signifies a relationship

between the role and the external environment. Conversely, any element included within the machine space of

a role specifies a relationship between the role and the machine. For example, since the order form is created

and sent in the real word (external to the system), the actions and interactions that fulfil those requirements

appear in the environment side of the Customer role. If the order processing system was online, those actions

and interactions would appear on the machine side of the role, describing an interface between the Customer

and the machine. This is useful since it explicitly highlights human and machine interaction by role, and

across roles, in the context of the process. Therefore, rich detail about the environment, machine and the

boundary in between, is carried forward in specification, allowing for specification and design to share a

better alignment.

Here, shared phenomena (Environment-to-Machine and Machine-to-Environment) associations can be

interrogated. This is important to ensure that the correct interfaces present the user with sufficient access to

the machine and that the machine represents required elements, enabling accurate support for specification

when moving to design. The Shared RAD serves as input to the third phase of the xMDA method.

7.4 Machine RAD

This final phase involves moving the specification closer to design. Machine elements and shared phenomena

from the Shared RAD are interrogated; each connection is investigated further, along with the stakeholder

(iterating where necessary), with a view to de-coupling the environment from the machine and ensuring that

remaining connections are as complete and correct of requirements as possible. The Machine RAD is the

resulting artefact (see figure 7.4.1).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 140 of 333

Note: Enlarged version appears in Appendix I, figure 1-3.

figure 7.4.1,28Machine RAD for the Order Processing example.

The de-coupling can result in a renaming of roles to better align them with the machine. From analysing the

Machine-to-Environment relationship of Send Notification and Receive Notification interaction between the

Sales Advisor and Customer, it was discovered that the interaction is to actually be one with the Printer; from

which the printed Notification would be despatched to the client in the environment of the real-world.

Similarly, investigation of the Warehouse Operative role revealed a relationship with the Printer role whereby

the Despatch Note was printed. In de-coupling the Environment-to-Machine relationship that existed within

the Sales role (from Receive Order to Process Order, the Customer Order prop was associated with Sales,

and the trigger and replication notation was used; this replication notation was also added to the Despatch role

in a similar fashion; replacing the cross-boundary part refinement.

This Machine RAD is proposed to replace the need for moving to Use Cases in that the information contained

within it is a representation of the behaviour of the system to be designed, based on the roles specified to use

the system and the requirements associated from the analysis of the PD. Since the method forces the user to

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 141 of 333

make explicit consideration of machine elements in the process of guiding the user from analysis into design,

the additional effort is suggested to be worthy over that of other descriptions (such as the Use Case). Of

course, some requirements (such as those which are non-functional or abstracted away in the process model)

may require further investigation and therefore it is proposed that other mechanisms for requirements and

traceability are employed alongside this method; specifically the early derivation of test cases related to the

requirements of the system to be developed.

7.5 Class Discovery

Part of the description of the xMDA involved providing an optional mechanism to offer class discovery from

the Machine RAD. Since no such mechanism exists in practice, one has been defined specifically for the

xMDA task. In object oriented programming, three stereotypes are “often reserved for object identification”

(Cox and Phalp 2007). They are Control, Entity, and Interface (Edlich et al. 2006; Harrington 2000).

Although others can be added (for example GUI and Database as described in Cox and Phalp (2007)), the

stereotypes identified by this research are given in table 7.5.1.

Stereotype Description

Entity Data access and retrieval class

Interface Connection class

Control Functional communication management class

table 7.5.1,9stereotype descriptions for class discovery (Source: developed from Cox and Phalp (2007)).

An analysis technique is defined here which utilises the stereotypes described above. The Tri-Step analysis

consists of directly interrogating the Machine RAD for stereotypes and can provide interesting insight into the

discovery of candidate design classes of each class type. Entity, interface and control classes can be

discovered from a complete Tri-Step analysis of the Machine RAD and each stereotype is given consideration

in the subsequent sections, with the complete Tri-Step analysis for the worked example following. This

analysis is suggested to be useful in finalising models output from the application of Transformation and

Platform Information at design-time to aid understanding of provided models. Once classes are identified,

attributes, services and structures (such as inheritance, aggregation and association) can be considered for

application (Cox and Phalp 2007).

7.5.1 Entity Classes

An entity class is used to represent the data elements of a system. Candidate entity classes can be derived by

examining Machine-to-Machine interactions, with potential hidden classes being uncovered by using a similar

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 142 of 333

technique as described in Phalp and Cox (2001). For example, the Send Credit Request and Receive Credit

Request interaction in figure 7.4.1 between Sales and Accounts roles reveals an interaction that contains an

exchange of data (hereby called a data-interaction). Interrogation of this interaction can result in the entity

Credit Request (Credit Request <<entity>>) being discovered, which contains customer details for the credit

checking process. These data-interactions are highlighted in figure 7.4.1 with the explicit representation as

UML Classes. Such data discovery can also be achieved by examining independent activities (known as data-

actions) and state transitions (data-states) of the Machine RAD. For example, the discovery of a Notification

(Notification <<entity>>) class can be made from examining the Create Notification data-action; the

discovery of the Customer Order (Customer Order <<entity>>) can be made from examining the data-states

involving the Customer Order prop in the Sales role, and so on.

7.5.2 Interface Classes

An interface class is used to represent a system element that facilitates the connection of classes to other

classes, or to the outside world; enabling the input and output to and from users and alternative systems to be

connected. Candidate interface classes can be derived from the Machine RAD in three ways. The investigation

of the imposed connection between the user or system role and any machine element; any connection that

exists within a role to a prop; and any interaction between roles, can result in the derivation of candidate

interface classes. For example, a graphical user interface can be identified for the Sales role, replacing the role

with the Sales Graphical User Interface (GUI) (SalesGUI <<interface>>); an interface could be extracted

from the Sales role to Customer Order prop (i.e. to interface (Customer Order <<interface>>) with the

Customer Order database); and in order for Sales to interact with Accounts, an interface to connect those

classes is likely to be involved (Sales / Accounts <<interface>>). Interfaces can be denoted with the / symbol

on the Machine RAD (see figure 7.4.1).

7.5.3 Control Classes

A control class is used to represent a system element that manages communication; typically between entity

and interface classes. Candidate control classes can be derived from the control processes of a RAD

interaction and the logic flow of RAD state transitions. For example, the driving class behind the interaction

Send Credit Request and Receive Credit Request is the control class (Sales <<control>>), Sales being the

driving role having elicited relevant information for the Credit Request and made the original initiation to

interact with the Accounts (Accounts <<entity>>) class (denoted by the standard RAD notation of the square

box with right-sided upwards diagonal shading for identifying driving roles). The control of logic flow within

a user or system role is by each individual role; any other control is a concern external to the machine and

ought to be considered in that context.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 143 of 333

7.5.4 Tri-Step Analysis

This analysis has been conducted here for the case presented at the start of this chapter, resulting in the

potential classes highlighted in table 7.5.4.1; descriptions of relationships are made following the

technological syntax described in Cox and Phalp (2003), Cox et al. (2005b) where domain ‘DO’ is

responsible ‘!’ for {x} phenomena.

Relationship Description Class Name Type

Send Credit Request SA!{send credit request} Credit Request <<entity>>

 Sales <<control>>

 Accounts <<entity>>

 Sales / Accounts <<interface>>

Print Notification SA!{print notification} Notification <<entity>>

 Sales <<control>>

 Printer <<entity>>

 Sales / Printer <<interface>>

Send Order SA!{send order} Order <<entity>>

 Sales <<control>>

 Despatch <<entity>>

 Sales / Despatch <<interface>>

Send Update AC!{send update} Update <<entity>>

 Accounts <<control>>

 Sales <<entity>>

 Accounts / Sales <<interface>>

Print Despatch Note DE!{print despatch note} Despatch Note <<entity>>

 Despatch <<control>>

 Printer <<entity>>

 Despatch / Printer <<interface>>

Sales to Customer Order SA!{access} Customer Order <<entity>>

Sales to Customer Order SA!{access} Customer Order <<conrol>>

Sales to Customer Order SA!{access} Customer Order <<interface>>

Printer to Machine PR!{access} PrinterGUI <<interface>>

Sales to Machine SA!{access} SalesGUI <<interface>>

Accounts to Machine AC!{access} AccountsGUI <<interface>>

Despatch to Machine DE!{access} DespatchGUI <<interface>>

table 7.5.4.1,10potential design classes derived from a Tri-Step analysis of the Machine RAD for the Order

Processing example.

It is feasible that this analysis could be automated to some degree and included in any software support for the

method, provided user interaction is available to delete, amend or add classes (this could also be useful for the

management of classes in design).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 144 of 333

7.6 Transformation and Platform Information

7.6.1 Transformation Information

The next step of the xMDA method involves the application of Transformation Information to relate the

Machine RAD with the desired platform (in this case the UML – See Section 7.6.2). The choice of particular

notations to illustrate the xMDA orchestrates the selection of Transformation and Platform Information.

Similarly, as with defining the Tri-Step analysis mechanism for class discovery, Transformation Information

to relate the UML platform with the RAD does not exist. Therefore, part of describing the xMDA method

necessitates the creation of this information, which is the focus of the remainder of this chapter.

Metamodelling is “a common technique for defining the abstract syntax of models and the inter-relationships

between model elements” (Sendall and Kozaczynski 2003), supported by FT (2007). The OMG describe a

four-layered architecture for Software Engineering with the UML and the MOF (OMG 2006a, 2007c) (see

table 7.6.1.1).

Level Description

M3: Meta-meta “a self-defined language to define other languages at level M2” (MOF)

M2: Meta “a set of domain specific metamodels” (UML/Java metamodel)

M1: Model “Any model [that] is compliant with a specific metamodel” (Class)

M0: “Instance level [describing an] execution” of M1 (Object)

table 7.6.1.1,11the four-layered architecture of the OMG (Source: developed from FT (2007), Kusel et al.

(2009), OMG (2006a, 2007c), Peltier et al. (2000), Sheena et al. (2003), Thiemann (2009)).

This four-layered architecture underpins model theory (FT 2007) whereby a model is defined as an entity

which conforms to a metamodel, which in turn conforms to a meta-metamodel. The declarative QVT-

Relations (QVT-R) language forms part of the QVT standard central to the MDA and “allows for the creation

of [a] declarative specification of the relationships between MOF models” (Giandini et al. 2009). This means

that the QVT-R can be used to define transformation relations at the M2: Meta level between models

conforming to the MOF meta-metamodel.

In order to “work on the basis of this theory, specifying a metamodel which describes… domain concepts (for

instance UML proposes Use Case, Activity and Class concepts) is needed” (FT 2007). Therefore, since the

output from the xMDA method is the Machine RAD in the modified RAD notation, a RAD metamodel

conforming to the meta-metamodel of the target platform (in this case the MOF) is required. Only one known

example of a RAD metamodel exists in Badica et al. (2005), which was extended in Section 5.1.1. Here, this

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 145 of 333

extension is continued, forming the SimpleRAD metamodel in line with the RIVA modelling methodology

given in Ould (2004c) and the MOF defined by the OMG (2006a) (see figure 7.6.1.1).

figure 7.6.1.1,29SimpleRAD metamodel (Source: developed from Badica et al. (2005), OMG (2006a), Ould

(2004c)).

Tools that can be used to define metamodels of domain specific languages include Dome, GME, MetaEdit+,

ParadigmP (Sendall and Kozaczynski 2003); the eMOF textual representation demonstrated in FT (2007)

could also be used to demonstrate metamodels.

7.6.2 Platform Information

Transformation Information alone is not enough to facilitate moving from CIM-to-PIM; the application of

Platform Information is required to draw components of one from the other. This section draws on a

simplified UML metamodel to define transformation rules at the meta-level from the RAD to the UML. Focus

here is given to the Class Diagram to verify the application of Platform Information because it is considered

to be the most useful model for PIM description (OMG 2003b) and relates to discoveries made in Section

5.1.1.10 where these concepts first appeared in CIM-to-PIM transformations involving RUD fragments to

create a foundation Class Diagram. The UML is defined here by the SimpleUML metamodel and associated

with the SimpleRAD metamodel (see figure 7.6.2.1).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 146 of 333

figure 7.6.2.1,30SimpleRAD and SimpleUML metamodels related by the rad2umlcd transformation (Source:

SimpleUML developed from Appukuttan et al. (2003b), FT (2007), Jos and Anneke (2003), OMG (2008b)).

Figure 7.6.2.1 describes a visual QVT-R transformation rad2umlcd to relate the SimpleRAD and SimpleUML

metamodels (see Section 9.2 for further discussion regarding the application of the QVT). Each meta-level

element in each metamodel was interrogated and a pragmatic decision made on how each element of the

SimpleRAD metamodel might be represented by the SimpleUML metamodel. From careful examination of

relationships between SimpleRAD and SimpleUML metamodels, several rules are described at the meta-level

to guide the transformation from a source model M1 (RAD) conforming to the SimpleRAD metamodel M2,

into a target model M1 (Class Diagram), conforming to the SimpleUML metamodel M2. The rule set derived

to relate elements from the RAD to the Class Diagram is given in table 7.6.2.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 147 of 333

RAD UML Class Diagram

Role Class

Independent Activity Operation; Class & Association if Object results from Activity

Looping, Line and Descriptor States Attribute (only applicable for Descriptor States)

Case Refinement (Alternatives) Attribute

Part Refinement (Concurrency) Attribute; Composition if refinement objects are descendent from resulting object

Interaction Association; Operations in Role Classes; Aggregation if Role interactions are

exclusive to only a single Role

Role Instantiation Role Class; Operation in Source Role Class; and Association

Trigger Attribute

Replication Count attribute

Undefined Check context; May define alternate Class Diagram

� Multiplicity

Prop Class; Association with Role Class

Stop Attribute in originating Role Class

Note Note

table 7.6.2.1,12initial transformation rules to map from the RAD to the UML Class Diagram.

7.6.2.1 Class Diagram

To demonstrate how the described Transformation and Platform Information is applied, the rules described in

table 7.6.2.1 were applied the Machine RAD given in figure 7.4.1 which was derived as part of the xMDA

method. The Class Diagram in figure 7.6.2.1.1 resulted from this application process.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 148 of 333

Note: Enlarged version appears in Appendix I, figure 1-4.

figure 7.6.2.1.1,31UML Class Diagram for the Order Processing example.

As per the rules defined in figure 7.6.2.1, the resulting foundation Class Diagram to be passed to design

contains the four central classes derived from the Printer, Sales, Accounts and Despatch roles of the Machine

RAD. The prop Customer Order has also resulted in a class, which has gained inheritance since both the Sales

Order and Customer Order are deemed to inherit from an Order super-class type. This type of manual

embellishment is useful, allowing other roles to be related as Employee class types and included to

demonstrate how a first-cut Class Diagram can be used for, and to inspire, design related decisions post-CIM.

A further example of this is the inclusion of the Create Credit Request operation in the Sales class to account

for the data object that is required to result from the Sales class before the Send Credit Request interaction can

take place. Ideally, this sort of decision would be made further upstream when examining the process.

However, it might not be until the Tri-Step analysis, or well into design, that the importance of the creation of

the Credit Request object be recognised. Either way, this demonstrates the significance of this type of manual

enhancement to the first-cut Class Diagram. Independent activities relate to the operations of those classes

where, on occasion, new classes have been generated where a data objects result from that operation (for

example, Despatch Note being created by the Despatch class). Attributes have manifested from descriptor

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 149 of 333

states (for example, Request received in the Accounts class), part refinements (for example, Credit request

sent in the Sales class), case refinements (for example, Update OK in the Accounts class), triggers (for

example, Customer order available in the Sales class), and replications (for example, Count for orders in the

Despatch class). Interactions have defined associations between classes, with aggregation being present in

certain cases where interactions are exclusive between single roles (for example, between Sales and Accounts

classes in the Send Credit Request relationship). Multiplicity has been defined from the � notation (for

example, 1..* Sales instances may be involved with * Despatch instances). The Class Diagram has been

further elaborated to account for a selection of classes discovered from the Tri-Step analysis conducted in

Section 7.5.4, specifically the interface classes, to demonstrate how these might be included and the Class

Diagram refined at design-time.

7.6.3 Transformation Rules

To extend this application, the process was repeated to account for UML Activity and Use Case diagrams to

demonstrate how the solution could support other CIM-to-CIM and CIM-to-PIM transformations, provided

necessary Transformation and Platform Information is defined. As noted in Section 6.4.3, the Machine RAD

negates the need for moving to the Use Case diagram in defining specification although the transformation

may be useful to those requiring Use Cases to support understanding and communication in the development

process. The complete set of transformation rules which are described as part of this research in the direction

of the UML from the RAD are presented in table 7.6.3.1, along with a natural English description and

example of the provided transformation rule.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 150 of 333

Natural English RAD UML

Class Diagram

UML

Activity Diagram

UML

Use Case

Example

Noun referring to

human or system

Role Class Activity Partition Actor;

Relationship to

Use Cases derived

from that Role

Project Manager

Verb with direct

object (noun)

Independent

Activity

Operation; Class &

Association if Object

results from Activity

Activity Use Case. Chunk

of activity may

define a single Use

Case

Writes report

Clause where

sequence is defined

(before or after)

Looping, Line

and Descriptor

States

Attribute (only

applicable for

Descriptor States)

Transition;

Synchronisation

Bar if flow is split

Check context;

May define

extend/include

relationships

Ready to write

report; Writes

Report; Ready to

send report;

Sends Report

Clause joined with

“or” conjunction

Case

Refinement

(Alternatives)

Attribute Decision

Diamond; Guard

Relationship;

Check context;

May define

extend/include

relationships

Write report or

Delegate task

Clause joined with

“and” conjunction

Part

Refinement

(Concurrency)

Attribute; Composition

if refinement objects are

descendent from

resulting object

Synchronisation

Bar

Include

relationship

Writes and Sends

Report; Write

report a) and

report b) to be

contained in

report c)

Sentence containing

Role subject and

object nouns with

verb; optionally

modified by adverb

Interaction Association; Operations

in Role Classes;

Aggregation if Role

interactions are

exclusive to only a

single Role

Activity;

Transition

Source and

destination Use

Case;

Relationship.

Chunk of activity

may define a

single Use Case

Project Manager

quickly sends

Report to General

Manager and

Contractor

Verb with Role noun

initiating new Role

noun

Role

Instantiation

Role Class; Operation in

Source Role Class; and

Association

Activity Partition;

Activity and

Transition

Actor Project Manager

selects Contractor

Noun referring to an

event that starts a

process

Trigger

Attribute Start; Note Note Complaint is

received

Determiner

associated with

activity

Replication

Count attribute Decision

Diamond; Guard;

Transition (loop)

encapsulating

replicated activity

Note For every

application

received, assess it

Where sequence is

undefined (before or

after)

Undefined

Check context; May

define alternate Class

Diagram

Check context;

May define

alternate Activity

Diagram;

Transition; Stop

Check context;

May define

alternate Use

Case; Relationship

The project

manager writes

report; The

project manager

owns a car

Determiner

associated with Role

noun

�

Multiplicity Note Multiplicity There are 500

employees; The

Project Manager

Verb and noun

consumed by Role

noun

Prop Class; Association with

Role Class

Note Check context;

May define

alternate Actor;

Use Case; Note

Uses database

Sequence terminating

verb

Stop Attribute in originating

Role Class

Stop Note Project Ends

Adjective modifying

noun

Note Note Note Note Project Manager

is logged in

table 7.6.3.1,13complete set of initial transformation rules to map from the RAD to the UML.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 151 of 333

It is agreeable that such rules are perhaps better to be considered as guidelines “since it is possible to find

counterexamples to them” (Chen 1983) and therefore the involvement of the user is suggested to enhance the

application by determining the extent to which the rules should (or should not) be followed. Therefore, it is

important to note that although elements are declared as related, no such declaration is made on equivalence

and any software implementation of these rules ought to support user interaction in terms of model

modification and/or a wizard mechanism for the verification of the treatment of model elements. This is to say

that meta-level elements might be derived from one another, but are not suggested to be in direct replacement,

and it is not the intention here to evaluate the extent to which elements might be used in replacement.

Therefore, the remainder of this research will focus on the transformation rules given in table 7.6.3.1 and the

application of such rules, rather than a discussion on how elements might exhibit such equivalence.

7.7 Summary

This chapter has defined and demonstrated an approach to the xMDA that utilises the RAD to move

incrementally from analysis to design, through a series of model refinements, and described a set of

transformation rules based upon Transformation and Platform Information involving the SimpleRAD and the

SimpleUML metamodel definitions.

To be a specification, it is suggested in Jackson and Zave (1995) that focus be given to shared phenomena,

that the onus of phenomena control is on the machine, and that events and/or states are used to represent event

restrictions. This is achieved by this method since each phase is focussed on revealing and advancing

connections between the environment and the machine. The Machine RAD ensures that control is central to

the machine; providing interface to the environment where it is not. The very nature of the RAD is that it is

event based, using state transitions to move the process from one state to the next. Therefore, requirement

constraints are represented in the RAD via events and pre/post states.

Rules for the transformation of RADs into Use Case, Activity and Class diagrams ensure that what is defined

in the business model is received by the systems specialist in a language to which they are accustomed to (the

UML), making the xMDA method useful not only for business use in defining the CIM, but also to the

software engineer in design. These rules represent a basis for the development of software support that

includes the RAD and the UML. Furthermore, they have considerable implication in terms of the MDA in

forming a real connection between the CIM and the PIM phases.

The resulting artefact is a complete method consisting of three related viewpoints that are founded upon

requirements elicitation and analysis, and an analysis technique with a set of rules to transfer that knowledge

into the heart of software development, within the xMDA framework. By presenting specification in the CIM

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 152 of 333

via RAD, it is argued that a starting point for object oriented system design can result from the definition of

human-driven processes; and be traceable back to originating requirements, without the need to define

specification via Use Cases. The method ensures that by defining metamodels between the CIM and the PIM,

classes can be transformed from founding events into design. It is further suggested that this in turn will also

account for the alignment of business strategy with the IT process, since the RAD is defined and formed by

the nature of the Process Trinity. The remaining chapters give focus to verifying the value of the extended

mechanisms of the xMDA in practice, via the xMDA method.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 153 of 333

Chapter 8

Moving from Analysis to Design via xMDA

Using techniques to assist the transition from analysis to design is important in ensuring the alignment of

business requirements and software implementations. However, this is a commonly difficult and

misunderstood task. The xMDA framework and method, proposed and described in Chapters 6.0 and 7.0, are

suggested to enhance experience and understanding for and between the business and software interest. This

chapter looks to address aim 4 in part validating the provided solution in academia to learn whether or not the

technique is viable, and what challenges might be involved in comparison with other available techniques.

Three alternate approaches (including the xMDA method) in moving from analysis to design were presented

to 47 Honours level students of BPR on the Software Systems framework at Bournemouth University, with

the results of student participation being highlighted and discussed. It is thought that Business Analysts, with

limited or no knowledge of Software Engineering and a basic impression of RE, may share similar

experiences with the students, since they also are perceived to have both a limited knowledge of and an

appreciation for the move from analysis to design, and therefore, the research may be transferable to this

setting. The argument here is that, if the xMDA method is found to be viable and accessible to the students, it

may be practical in industry due to those similarities. Of course, much of what is learned is subjective.

However, it is also valuable in gaining an overall sense of the impression that users with rudimentary BPM

and RE knowledge might have regarding the viability and accessibility of techniques.

8.1 Academic Application

As described in Section 6.2, requirements are the desired effects in the environment to which the solution

system is proposed to bring about; the specification is a description of the solution system that can fulfil such

requirements and are defined by “reasoning about the environment” (Jackson and Zave 1995). This reasoning

is commonly termed analysis. Analysis, specification and design notations are often orthogonal (Cox and

Phalp 2007; Phalp 2002) and can represent different views of the software process (see figure 8.1.1).

figure 8.1.1,32orthogonal notations and the software process (Source: Phalp (2002)).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 154 of 333

The Role Based view typically represents an analysis model (for example, a RAD) where activities are spread

across roles; the Use Case or Procedural view can represent a specification model (for example, a Use Case)

where actors are spread across activities; and finally, the Object view commonly represents the internalisation

of the solution system (for example, a UML Class Diagram) where Objects represent the integration of

activities. Phalp (2002) highlights that these orthogonal domains relate to the capacity of models and

notations to represent clear and consistent mappings between domain.

Solution mechanisms to overcome this difficulty have been described by various authors and focus here is

given to the two that are taught on the BPR unit at Bournemouth University, and the xMDA method described

as part of this research. Process Oriented Systems Design (POSD) was defined in Henderson and Pratten

(1995) and represents a structural mechanism for describing a system, that can act as an intermediate

technique in moving from a RAD to a Use Case (Phalp 2002). A second technique known as the SystemRAD,

developed by Dr. Keith Phalp of Bournemouth University, is used in a similar manner. This approach

introduces the system boundary to the RAD, which facilitates transformations into Use Cases. The final

technique has already been presented in great detail through Chapters 6.0 and 7.0 and suggests that the RAD

could contain enough information to describe specification, negating the need for the Use Case, whilst

allowing for the generation of system level models based on specification with Use Case derivation if

required.

Other approaches used to remedy the issues in moving from analysis to specification include enhancing the

Use Case definition with Enactable Use Case tools (Kanyaru 2006; Kanyaru and Phalp 2005; Kanyaru and

Phalp 2009) that facilitate the representation of behavioural dependencies via states; the B-SCP framework

for strategic alignment (Bleistein et al. 2006), which focuses on the integration of business strategy, context

and process; and the Problem Frames approach, presented in Cox and Phalp (2003), Cox et al. (2005b), which

attempts to guide the application of Problem Frames described by Jackson (1995) to process models.

8.2 Thematic Analysis

The three methods of moving from analysis to specification and design were presented to 47 Honours level

students of the BPR unit on the Software Systems framework at Bournemouth University in November 2009

and informed consent was given by participants to be involved in this research. There was no grouping in

consideration of student selection and response was related to the completion of the second part of the

coursework for that unit; therefore, the sample selected was randomised (Deveaux et al. 2005). The students

were both male and female, each having at least one year industrial experience prior to attending the BPR

unit. Each approach was given a two hour timeslot where the methods were demonstrated to the students and

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 155 of 333

opportunity provided for the students to interact and ask questions about the usage and application of the

methods. The two BPR unit approaches were taught by Dr. Keith Phalp; the author attended as a guest

speaker on the 26th November 2009 to outline the xMDA method, with the presentation slides being made

available to the students via the internet after that date. The question that was posed for coursework

submission relating to this research was as follows - the complete assignment brief is given in Appendix II:

Discuss the issues and solutions encountered in moving from analysis (the process models) to

specification and design, and mechanisms that you would use to ensure alignment of the business

process model (and business needs) and the IT system.

Manuscripts were written by the students without researcher intervention in the students’ own time with an

expectation of an estimated 5-6 hours in total to be spent on completing this part of the assignment,

constrained by a one month submission date and a maximum one thousand word limit. The identity of

individual participants is protected and, therefore, raw data associated with this output is excluded from the

main text of this deliverable. However, three samples of student feedback (with the identity of the individual

students being protected) are included in Appendix II, figures 2-1, 2-2 and 2-3, to allow the reader to gain a

sense of responses received. This research consists of drawing upon student discussions and discovering the

factors which were perceived to be influential and identifying the personal experiences of and attitudes

towards given solutions in the transition from analysis to specification and design.

Responses were imported into QSR International’s NVivo software which was then used to systematically

organise and analyse student feedback using NVivo’s classification techniques to code themes. Central

themes relating to the posed question were discovered from the analysis and spread of codes across responses

and used as the basis for Template Analysis (see the respective sections of Appendix II for results and

observations relating to this analysis). Grounded in data extracted from the written experiences of the BPR

students, the purpose of this type of qualitative research is to focus on those individual experiences to gain an

understanding (rightly or wrongly) of the central themes perceived by the student to be associated in moving

from analysis to design via specification via Template Analysis.

8.3 Methods

In Section 2.2.4, the RAD is described with concepts of role, activity, assertion and entity as central to this

notation. The modelling notation is useful since it caters for the dynamics of real processes, allowing for them

to be flexible. Because of this ability to describe real-world processes in a rich context (including behavioural

dependencies) and being simple enough to understand and implement, they are a candidate analysis tool

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 156 of 333

adaptable to methods used in moving from analysis to specification and design. The three methods described

in this section all propose the use of the RAD as integral to each approach.

8.3.1 Process Oriented Systems Design (POSD)

Experience in the modelling of large scale enterprise and distributed systems has shown that notations (such

as the RAD) suffer from abstraction issues in that models can become complex and convoluted (Henderson

and Pratten 1995). Changing environments leads to a change in software systems that support the business

process and such changes are often inadequately reflected. A visual model known as the POSD diagram is

proposed to enable a business user interface (Henderson and Pratten 1995).

It is most likely that we would show only the top-level most abstract models to the business process

owner, reserving the more detailed (and demanding) models to our own technical uses (Henderson

and Pratten 1995).

In a POSD, behaviours are denoted by boxes, with touching boxes showing direct relationships between those

behaviours (known as promises). Behaviours can sit within other behaviours (as sub-behaviours) or

overlapping other behaviours (although this may lead to “cluttered diagrams” (Henderson and Pratten 1995)).

A simple POSD can be used to create further abstractions by positioning behaviours appropriately in

accommodating change, reviewing improvements and facilitating communication with Business Analysts

(Henderson and Pratten 1995).

The POSD can be used to represent an abstraction on a RAD to hide the detail of the underlying process and

simplify understanding. Phalp (2002) suggests that the POSD notation can be act as an intermediate technique

in moving from an analysis RAD to a specification Use Case, enabling the discovery of Use Cases directly

from the analysis and grouping of Shared Behaviours of a RAD (Phalp 2002). The method involves creating

the base-level analysis RAD and a simple POSD representation of that RAD by abstracting away the detail of

the RAD and grouping role activity into POSD behaviours, where promises are formed from RAD

interactions. Additional viewpoints are then used to expand upon the POSD by adding connections

representing those promises between behaviours (from examining the interactions between roles) and

grouping related activities within roles (from examining the actions within and interactions between roles).

These connections and groupings are then bundled together according to relevance, illustrating Shared

Behaviours which are then matched to Use Cases (Phalp 2002). The alternate viewpoints are suggested to

help guide the user to the Use Case from the RAD (Phalp 2002).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 157 of 333

8.3.2 SystemRAD

Another method that can be used to guide the user from analysis to specification and design is known as the

SystemRAD. This method, yet to be formally described, is similar to the POSD method in that it proposes the

transformation from a base-level analysis RAD into a procedural Use Case via the SystemRAD modification.

The SystemRAD extends the RAD notation by providing a simple System role mechanism to capture

behaviours that relate between the environment and the system being defined. This way, the system boundary

is introduced to the RAD and all interactions and actions that might involve the system are included across the

System role. The system boundary is an important consideration in the determination of requirements (as

detailed in Section 6.2) because it defines where the software element is situated in the overall system. The

abstraction is a fine line between interactive human and software elements. By adding the System role, an

understanding of the system and how roles are to interact with it can be made.

Once the initial analysis RAD is completed, it is represented in a system context via the SystemRAD

mechanism. The System role can then be mapped directly to the Use Case system boundary, with relevant Use

Cases being created from the behaviours included within the role and roles interacting with the system role

mapping to Use Case actors. Colour coding and numbering have been suggested to facilitate a visual

understanding of the elements mapped in the process.

8.3.3 xMDA Method

The xMDA method (detailed in Section 6.4 and Chapter 7.0) suggests that a modified RAD can contain

enough information to move directly from analysis through specification and into design by not focussing on

procedural descriptions for specification, thereby negating the need to transform to Use Cases.

Strategic traceability is proposed to be accounted for through three modelling refinements, known as the

Environment RAD; the Shared RAD; and the Machine RAD. These viewpoints mirror those described in

Jackson (1995), being descriptions that are true of the PD, machine and of both. The Environment RAD is

concerned with taking observations and information from analysis and depicting them in a standard RAD,

focussing on the requirements and interactions that occur within a PD and are useful to specification. The

Shared RAD takes the Environment RAD as input and splits the private information space of each role into

two, distinguishing specifically the requirements and interactions that occur within the environment, those

that occur (or are required to occur) within the machine, and those that occur between the two. This is because

to “make the model work properly, so that it contains useful information about the domain, you also have to

establish correspondences between the individuals in the machine and the individuals in the domain” (Jackson

1995). By focussing on the interactions between environment and machine, interfaces between them can be

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 158 of 333

identified and process problems resolved via further analysis. The final refinement extracts all environmental

concern from the Shared RAD, giving focus to only the behaviours that are to occur in the machine and the

interfaces required to the external environment and the involved users; the Machine RAD facilitates the RAD

into design.

Designed specifically for the MDA, the method includes a mechanism to generate system level diagrams from

the Machine RAD into UML Use Case, Activity and Class Diagrams, if required, associating the CIM with

the PIM of the MDA, which is a concern highlighted in Fouad et al. (2009, 2011), Jeary et al. (2008).

8.4 Discussion

As previously noted, the objective of the analysis conducted in Appendix II was to learn from the personal

experience of students in determining the issues felt to be central in moving from analysis to specification and

design, and from exposure to the xMDA method, if the method would be received as viable and accessible to

the students in consideration of those issues. The xMDA method received considerable student support in

both the attitude and the limited experience gained of the method by the students, suggesting that it could be

viable for practical consideration and addresses key concerns in moving from analysis to specification and

design. Insights resulting from the analysis contained within Appendix II are considered in this section for

discussion, specifically for the xMDA method.

8.4.1 Tool Support

Difficulties in moving from analysis to specification and design were identified by the students; these

difficulties are compounded when the process is automated. This is because the move from analysis to design

has never been considered to be an automatic one (Gustavson 2004; Kanyaru et al. 2008a); there are many

unknown variables to be considered in the early stages of development and it is well documented that errors at

this level can be costly (Brooks 1975; Greenspan et al. 1994; Kleppe et al. 2003; Sommerville 2004; STSC

2003; Wiegers 2000). It is agreeable that some aspects of the xMDA method could benefit if the logic

complexity could be hidden from the user. Therefore, a semi-automatic approach would be considered in the

form of tool support.

It is thought that tool support could be implemented in either one, or combination of, the following two ways.

Firstly, heuristics could be used to enable the automatic generation of template Environment, Shared, and

Machine RADs and transformations for users to work on, which would include an automatic traceability

mechanism to ensure that each specification viewpoint is kept in sync. Secondly, since “human intervention is

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 159 of 333

always needed” (Gustavson 2004), the tool could operate a wizard mechanism that asks the user to verify how

the tool should treat particular elements of input diagrams with all views being created as output from the

wizard.

This could of course lead to the introduction of errors and ambiguities, away from the initial requirements

defined by the Business Analyst, since it will be easier to make mistakes using tool support. Furthermore,

whilst tool support reduces the complexity of the method for the Business Analyst; an increase in complexity

and cost may be experienced in learning the tools and methods; the opposite of which is the key motivation

for a light-weight approach to specification. A balance between the benefit of such an approach and the

relative complexity needs to be met, which should be a consideration for further research.

8.4.2 Enterprise and Distributed Processes

No academic or practical application of the xMDA method is currently available because the method is new.

Concern was raised about how the method might be applied to large scale business processes and systems,

which may involve many requirements. Such systems are likely to involve requirements that are

interdependent in and between projects and therefore it may be difficult to resolve dependency issues.

Moreover, the management of large scale RADs could be cause for concern. These issues are not peculiar to

RADs; almost every modelling notation experiences this in some form, with some (such as the DFD) finding

sufficient solution in nesting and levelling (Cachia 2005).

The suitability of the method to large and distributed processes could be addressed by the investigation of

such abstraction mechanisms. It is uncommon to find an individual that has the complete view and

understanding of the process because of complexity (Dawkins 1998) and therefore, it may be impractical to

expect a single model to do the same. The current view of a process could be recorded in the RAD by

modelling different user or system roles directly. That is, focussing on a particular part enables the

management of large and complex processes. Since it is uncommon in such a situation to find an individual

that has a complete process view, it is plausible that a process architect (or leader) would be able to focus on

an entire process by examining individual users (process owners and stewards) (Bilodeau 2010) and available

system documentation. Abstraction can be used “…to describe systems in terms of hierarchies of their actual

physical components” (Owen 2009a); a RAD can transform directly to a Context Diagram (Cox and Phalp

2003; Cox et al. 2005b), which would be perfectly viable for abstracting away from necessary detail in such

an application.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 160 of 333

8.4.3 Design Architecture

As previously noted, stakeholders commonly believe that they understand models in the same manner by

which the software developer does and much effort and cost is associated with becoming a skilled modeller,

and in aligning the paradigms of business and software (Cook 2004a), supported by Berrisford (2004), Phalp

and Shepperd (1994). Since the RAD notation has been designed to model the business process, and not to

design a computer system, it might at first seem foolish to consider the application of a such modelling

technique to something that it clearly was not designed to do.

Analysis and design models are views derived from different environments. As found in Chapter 2.0, there is

a real danger of confusing models of different environments and specifying a software system upon them

(Génova et al. 2005; Nuseibeh and Easterbrook 2000). In Chapter 5.0, Use Cases were found to be less than

adequate in retaining the richness contained within process models; the RAD was found to be simplistic

enough to interface with stakeholders, yet rich enough to detail a specification with less information being lost

once the system boundary is accounted for as illustrated via the xMDA method in Section 6.4 and Chapter

7.0. It is argued that the application of the xMDA method enables the real-world structure to be retained,

forcing the user to consider alternate views on specification, thereby maintaining alignment via a single

notation. This is challenging to imagine, but not impossible.

Computers systems are no longer data-centric entities and requirements are being placed on software

engineers to produce systems which mimic human-driven behaviours, such as contract negotiations by web

services (see WS-Policy, www.w3.org/Submission/WS-Policy/). It is therefore suggested to be appropriate to

expect software systems to able to reflect the behaviour of business process roles and interactions; the

challenge being to account for all of this, whilst accommodating architectures of the software process.

8.4.4 Object Orientation

Once produced, it is argued that the output of the xMDA method could be applied as specification to the

design phase of any chosen software architecture, using any platform technology. The method has so far been

verified using object oriented techniques.

In Section 6.4 and Chapter 7.0, the xMDA method was related to the MDA approach to software

development, as defined by the OMG (2003b), with a view to better connecting business problems to IT

solutions (Jeary et al. 2008). Transformation and Platform Information in the form of rules were derived to

facilitate the generation of UML Use Case, Activity and Class models with promising results. The difficulty

of applying the RAD to the MDA is that it was never intended to describe software; hence the need for

Transformation and Platform Information to enable the RAD to be described in a design language. In this

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 161 of 333

case, analysis of metamodels for both the RAD and the UML provided a set of guiding rules to facilitate the

transformation of models.

Whilst able to adequately account for the object oriented paradigm, it is suspected that other approaches might

better account for structured techniques. The xMDA method was designed specifically with the view to

output object oriented UML within the MDA framework. Many students considered that choice of method

might be dependent on project and the involved software processes, or that a combination of techniques might

better facilitate the maintenance of alignment in transformation since they can provide alternate viewpoints.

Therefore, further investigations are required to examine the applicability of the method to procedural and

combined solutions if it is to be applied in that manner. This is important in assessing the flexibility of the

method in combination with others, and discovering whether it is really feasible to suggest a method of

specification that discounts Use Cases.

8.5 Summary

From the analysis conducted in Appendix II and the related discussion presented in this chapter, it is clear that

there are a number of difficulties in moving from analysis to specification which are reflected in the themes

identified in consideration of the evidence; such difficulties are compounded in consideration of any move

that might involve automatic transformations.

It was found that the students considered that methods and applied notations need to be both simple enough

that stakeholders may understand and verify that requirements are being addressed through the development

process, and rich enough that detail is not lost in transformation, thereby providing for an appropriate level of

business/IT alignment. The RAD is rich with state based information and accommodates a sufficient

description of behavioural dependencies; without modification, the Use Case does not. Therefore, the RAD is

suggested to be a perfect candidate for modelling processes in analysis. The Use Case on the other hand is

found to be less than adequate in describing the level of detail to ensure alignment; other techniques are

required to capture rigorous process detail before moving to Use Cases and even then, much of this detail

could be eventually lost.

The focus of results found and observations made in Appendix II was clearly on the POSD and the xMDA

methods. This could either have been because they were best demonstrated, most useful or simplistic

approaches. The RAD neglects the system boundary which was found to be an important consideration in

selecting an appropriate method to move from analysis to design, since specification is about the interface

between them. Only two methods make a real conscious effort to apply this notion to the RAD, the

SystemRAD and the xMDA method. Of these, the demonstrated use of the SystemRAD focussed on deriving

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 162 of 333

a Use Case from the RAD and the xMDA method focussed on the development of specification via the RAD;

both approaches lack practical application and experience. Complex relationships in requirements definition

are important and it is vital that these relationships are carried through specification; it was found that there is

a lack of richness supported in Use Case specifications and approaches such as the xMDA method could

discount them due to the thoroughness of the technique.

A challenge was presented in that it is difficult to move from a process model (such as a RAD) to a procedural

specification (such as a Use Case) or an object model in design whilst maintaining the alignment between

models. This is suggested to be alleviated by the application of the discussed methods. Much attention was

placed on the xMDA method and considerable support from the students was received in comparison with

other available techniques. This could suggest that the xMDA method is viable in making the transition from

analysis to design and also addresses the key considerations, such as being accessible to stakeholders, in the

process. The approach is current and focussed on the RAD, thereby facilitating analysis and specification into

design via a single notation. With the application of a number of steps, the user is forced into considering

viewpoints and making decisions about specification. This also ensures that information is not lost and

remains aligned with business ideals since specification is based directly on the analysis RAD and

mechanisms are included to complete the move to design; it is built for the derivation of system models,

enabling the interoperability with MDD.

However, a high percentage of students placed expectation in solutions being derived by the application of

approaches in combination, according to project and process. This is perhaps the accepted reality since there

is unlikely to be a one size fits all solution (Jackson and Zave 1993). This is supported in Jackson (1995)

where it is highlighted that there is “a big temptation to believe that you can describe the application domain

and the machine all together, in one combined description… But if you only make one description, you’ll

surely be tempted to put things into it that describe only the machine, and to leave out things that describe

only the application domain” (Jackson 1995). Alternate modelling methods can offer alternate views from

alternate domains, thereby facilitating a more complete solution.

As previously mentioned, the findings made here are subjective in nature and therefore the credibility of the

research is reliant on the appreciation of the participators’ perspective in an academic setting; that is the scope

of the research is limited to those involved and therefore, so is the credibility. A large consideration for all

methods described was the lack of practical application. Therefore, finding the xMDA method to be viable

and accessible from the analysis of student feedback, there is a requirement to extend this research into a

commercial setting, to which Chapter 9.0 is directed.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 163 of 333

Chapter 9

xMDA and The Club Company

In Chapter 8.0, ideas relating to the method presented in Chapter 7.0 were verified in an academic setting,

demonstrating that the method is both learnable, and applicable in moving from analysis to design. However,

since the investigation focussed on individual perceptions, there was a vital need to ascertain if the method

could also be practical in industry. Therefore, to complete the achievement of aim 4, the commercial validity

of the described extension to the MDA framework is required to be assessed. Since there is a lack of a

sufficient enterprise level test environment, the xMDA method has been applied in a commercial case study

with a view of discovering whether the specification method is really feasible for application to commercial

processes. In Chapter 8.0, tool support was also found to be a questionable area to which this chapter looks to

address by applying the transformation rules of the xMDA method to the QVT, a specification defined and

supported by the OMG for transformations within the MDA, and then using the derived QVT definitions in a

tool developed in part of the VIDE initiative (VIDE 2009) to demonstrate how system models might be

generated by xMDA application.

9.1 Commercial Application

The Club at Meyrick Park, Bournemouth, Dorset, is a historic golf course dating back to 1894. Nowadays,

facilities that extend the golf course and clubhouse include the health and fitness gym, aerobic, holistic & spin

classes, swimming pool, sauna & steam rooms, sun beds, treatments, café & bar, club shop and

accommodation at The Lodge. Focussing on Membership Sales, part of this research was to produce a

complete set of process models for internal training and documentation purposes, using the RAD notation.

These models were agreed to then be used to verify the application of the xMDA method to demonstrate

whether or not the method was practical in consideration of real business processes; the results and discussion

of which are presented in this section.

Several elicitation meetings with the Membership Manager of The Club at Meyrick Park resulted in a total of

eight process models being created to represent the entire Membership Sales process. These process models

were initially employed internally by the Membership Manager to train new starters. On introduction, the

Membership Manager advised that the models were simple to use and easy to understand, being “very

helpful” in outlining the business processes to new starters. Beyond this initial training application, the

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 164 of 333

process models were found to be useful for the new starters, acting as a checklist to be referred to when

uncertain about how certain parts of the processes ought to proceed. The models created as part of this

research are currently active within the organisation and are given in Appendix III, along with a summary of

discussions relating to the application of those process models within the organisation with the Membership

Manager, who was directly involved with the original elicitation process in creating the process models for

the complete Membership Sales process. It is important to note that some interacting roles are not given in the

original process models at the request of the customer, since some relationships were deemed obvious and the

visualisation of those relationships was found to be unnecessary. Therefore, the models contained within

Appendix III are considered to be a Sales Advisor view of the complete process, illustrating how abstraction

can be facilitated via the RAD. However, since interacting roles are vital to the xMDA method; the case study

of this chapter includes the interacting roles as validated by the customer. For clarity, and to illustrate how the

application of the xMDA method can facilitate abstraction by concentrating on the smaller parts of the

complete enterprise process, focus here is given to one of those process models. The process model which

will remain the focus of the rest of this chapter is the Follow Up Call Process Model (05/004) which was

selected as the most complex of those available to best demonstrate the method in practice.

The Follow Up Call Process Model (05/004) involves the situation where a Sales Advisor is required to

follow up on a potential member (or prospect) with the view to attaining membership to the club. Triggered

by the need to follow up a prospect, the model illustrates that for each prospect to be followed up, the sales

advisor must first check to see if the prospect’s details have been retained on Brightlime (an existing prospect

database). If the prospect details are not present, a new record is created. Once the details exist, the sales

advisor is in the position to contact the potential client. Upon making contact, one of four routes can be taken.

The prospect could be signed up as a member (this is catered for in an alternate process model - 05/003), an

appointment or a retour can be arranged for the prospect to visit the club (process model 05/002), an

additional follow up call could be required, in which case the same process is followed (illustrated by a

looping line state), or the sales advisor may blow the prospect out, by sending a letter and updating the

prospect database.

This chapter continues by taking the Follow Up Call Process Model (05/004) and applying the xMDA

method as discussed in Chapter 7.0.

But a method, to be worthy of the name, must at least decompose the development task into a

number of reasonably well-defined steps which the developer can take with some confidence that

they are leading to a satisfactory solution (Jackson 1982).

To recap, the steps of the xMDA method, detailed and illustrated in Section 6.4 and Chapter 7.0, are as

follows:

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 165 of 333

1. Define Environment RAD from analysis.

2. Derive Shared RAD to examine shared phenomena.

3. De-couple environment concerns to create Machine RAD.

4. Complete Class Discovery via Tri-Step analysis (optional).

5. Apply Transformation and Platform Information to create UML representations.

5.1 Use Case Diagram.

5.2 Activity Diagram.

5.3 Class Diagram.

The first three parts of this method involves moving from analysis through specification by focussing upon

phenomena relating to the environment, that which is shared between the environment and the machine, and

that of the machine via a series of RAD based model incarnations. The first being the Environment RAD,

which represents the process in an environmental context, regardless of machine use; the second being the

Shared RAD, which highlights the boundary between the environment process and the machine use; and

lastly, the Machine RAD, which captures only those mechanisms of the process required to be implemented

by the machine.

9.1.1 Environment RAD

As previously mentioned, the point of the Environment RAD is to capture the process model in terms of the

environment to which it is subjected. The Environment RAD presumes that a degree of analysis and elicitation

has already taken place (in order to create the original process model from which the Environment RAD is

created). The Environment RAD for the Follow Up Call process is given in figure 9.1.1.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 166 of 333

Note: Enlarged version appears in Appendix IV, 4-1.

figure 9.1.1.1,33Environment RAD for the Follow Up Call process.

As can be seen in figure 9.1.1.1, the Follow Up Call Process Model (05/004) has been elucidated by the

inclusion of the Customer and Brightlime as roles to capture the opposing sides of interactions with the Sales

Advisor role. Further to this, along with customer elicitation, the Check if on Brightlime independent activity

of the Follow Up Call Process Model (05/004) was found to actually represent an interaction between the

Sales Advisor and Brightlime roles; this illustrates how the inclusion of all existing roles in a RAD can help to

tease out important process semantics.

9.1.2 Shared RAD

Once the environment view has been captured in the RAD, it can be used to distinguish a phenomenon which

exists, or should exist only on the machine. The approach for completing this involves interrogating each

process element and making a manual, pragmatic decision based on available information as to whether such

element exists in the environment of the real-world, or whether it ought to be represented by the machine. The

Shared RAD for the Follow Up Call process is given in figure 9.1.2.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 167 of 333

Note: Enlarged version appears in Appendix IV, figure 4-2.

figure 9.1.2.1,34Shared RAD for the Follow Up Call process.

The Shared RAD forces the user to shift the focus from the process and operating environment to question

relationships that exist between the environment and machine, and where necessary, making significant

adjustments to the model. In figure 9.1.2.1, it is clear that only certain activities and roles are required to be

supported by the system that is to be developed. For example, the Blow Out Letter is sent by the Sales Advisor

to the Customer. If this was a Machine-to-Machine relationship, further interrogation may reveal that this

communication is via e-mail. However, the relationship that exists is one of Machine-to-Environment (or

Environment-to-Machine, depending on perspective) which is most interesting because further analysis can

reveal how the process might move from the machine to the environment and exactly what is required of the

machine for specification; as it stands, the Customer role has no explicit relationship with the machine and

therefore more is to be discovered. Environment-to-Environment relationships, whilst interesting from a

process management and engineering perspective, serve no purpose in this part of the xMDA method since

they should have already been addressed in analysis and the Environment RAD. However, interrogation of

these relationships can reveal significant process flaws that require addressing before moving to the next

stage, iterating back to previous activity.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 168 of 333

9.1.3 Machine RAD

In the previous section, the Shared RAD revealed interesting relationships between the environment and

machine elements in the role context. The Machine RAD is directed at focussing purely on the part of the

process that resides with the machine. That is, the final stage of specification, directed at completing a picture

of what is required of the machine by the roles involved. The Machine RAD for the Follow Up Call process is

given in figure 9.1.3.1.

Note: Enlarged version appears in Appendix IV, figure 4-3.

figure 9.1.3.1,35Machine RAD for the Follow Up Call process.

Here, further elicitation has been conducted to discover the true nature of the relationships highlighted

between the environment and machine by the Shared RAD. In the previous section, it was noted that the

Customer role had no interaction with the machine in the reception of the Blow Out Letter. In much the same

way as was discussed in the illustrative case study given in Chapter 7.0, further elicitation found that this

letter is actually created and printed by the Sales Advisor, and is then sent by the Sales Advisor via standard

mail in the operating environment. That is to say, the relationship between Customer and Sales Advisor was in

fact Environment-to-Environment, with the discovery of another role, Printer, which is used to facilitate the

printing of the Blow Out Letter, created by the Sales Advisor. It is agreed that an experienced Systems Analyst

may have spotted such an adjustment without using the xMDA method; the point being, that the method

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 169 of 333

forces the user into making such consideration and minimises the risk of overlooking important issues, which

the MDA does not address. Other significant adjustments designed to disassociate the machine from the

environment include the use of triggers to enforce rules on active state which can be used to instigate a

particular part of the process, should that required state be reached.

At this point, roles may be renamed to represent a generic, or more useful, terminology that may have greater

application for the design phase. For example, Sales Advisor has been changed to Sales, reflecting the

associated department rather than individual role. The Printer could have been labelled as the Sales Printer.

Although, since more than one Sales Printer might materialise in the overall process, to be more specific, it

could be helpful to use the printer name or resource address. However, this is down to the vision of the

modeller and point of application rather than a requirement of the method; for clarity here, Printer will

suffice. This Machine RAD has also been annotated with further information which will be discussed in the

subsequent section.

9.1.4 Tri-Step Analysis

Once the Machine RAD has been created, it can be used to discover candidate design classes of classically

object oriented Entity, Interface and Control types. This is defined by the Tri-Step analysis of the Machine

RAD, which was created as part of this research and described in Section 7.5. Here, the Tri-Step analysis for

class discovery has been applied to the Machine RAD given in figure 9.1.3.1, results of which are represented

by annotations upon the Machine RAD and in the following table using the syntax provided in Cox and Phalp

(2003), Cox et al. (2005b).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 170 of 333

Relationship Description Class Name Type

Check if on Brightlime SA!{check if on Brightlime} Check Request <<entity>>

 Sales <<control>>

 Brightlime <<entity>>

 Sales / Brightlime <<interface>>

Send Response BR!{send response} Response <<entity>>

 Brightlime <<control>>

 Sales <<entity>>

 Brightlime/Sales <<interface>>

Upload Prospect SA!{upload prospect] New Prospect <<entity>>

 Sales <<control>>

 Brightlime <<entity>>

 Sales / Brightlime <<interface>>

Print Blow Out Letter SA!{print blow out letter } Print Request <<entity>>

 Sales <<control>>

 Printer <<entity>>

 Sales / Printer <<interface>>

Update Brightlime SA!{update Brightlime] Update <<entity>>

 Sales <<control>>

 Brightlime <<entity>>

 Sales / Brightlime <<interface>>

Brightlime to Prospect Database BR!{access} Prospect Database <<entity>>

Brightlime to Prospect Database BR!{access} Prospect Database <<control>>

Brightlime to Prospect Database BR!{access} Prospect Database <<interface>>

Printer to Machine PR!{access} PrinterGUI <<interface>>

Sales to Machine SA!{access} SalesGUI <<interface>>

Brightlime to Machine BR!{access} BrightlimeGUI <<interface>>

table 9.1.4.1,14potential design classes derived from a Tri-Step analysis of the Machine RAD for the Follow

Up Call process.

From analysing the Machine RAD in terms of Entity, Interface and Control, potential design classes have

been uncovered. For example, from examining the Machine-to-Machine relationship of Print Blow Out Letter

between the Sales and Printer roles, a data-interaction reveals the Print Request (Print Request <<entity>>)

class. This is illustrated in figure 9.1.3.1 with a UML Class sitting on the interaction line. Candidate Interface

classes are denoted by the / symbol in figure 9.1.3.1 and were discovered by looking at the connection

between the roles in three ways. Firstly, the connection between the role and the machine provides graphical

user interfaces for the roles to access, e.g. SalesGUI (SalesGUI <<interface>>). Secondly, the connection

between the roles and any props they access revealed that Brightlime is, or may be required, to interface with

the Prospect Database prop (Prospect Database <<interface>>). Thirdly, the connection between the roles

themselves revealed that interacting roles may be likely to be required to interface via some common medium,

for example the Sales class maybe be required to go through some interface (Sales / Brightlime

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 171 of 333

<<interface>>) to connect to the Brightlime system (which may be on an alternate platform). Since a Tri-Step

analysis considers all relationships, it is possible to also distinguish further information about the direction of

control in such relationships. For example, by examining the interaction Print Blow Out Letter, the Sales role

can be seen to drive the interaction and manage the communication between the Sales / Printer <<interface>>

and the Printer <<entity>> via the notation, and thus, the Sales <<control>> class is discovered; this is shown

graphically in figure 9.1.3.1 by the standard RAD notation for identifying driving roles in interactions (square

box with right-sided upwards diagonal shading). As previously noted, each individual role is responsible for

controlling any internal logic flow; external control is a concern is beyond the context of the machine.

9.1.5 Transformation and Platform Information

The benefit of what has been discovered so far is that a specification has been developed from modelling the

business process in terms of the business user in a language that they can understand and validate. This is

suggested to help ensure business involvement in defining software systems to suit the business need. The

next part of the xMDA method involves taking Transformation and Platform Information and applying it to

the Machine RAD to output models useful in design (PIM), and to which the potential design classes

discovered from the Tri-Step analysis complement. In this case, Transformation and Platform Information in

the form of the transformation rules (introduced in Section 7.6.3) which support the SimpleRAD and

SimpleUML metamodels have been applied to create Use Case, Activity and Class diagrams from the

Machine RAD that resulted in Section 9.1.3.

9.1.5.1 Use Case Diagram

As noted previously in Section 7.6.3, the Machine RAD replaces the need to move to a Use Case

specification. However, transformation is supported specifically for users wishing to augment documentation

with the definition, alleviating concern raised in Chapter 8.0 of defining a method that does not incorporate

the Use Case and demonstrating the flexibility of the xMDA framework. Rather than taking each rule and

creating a literal translation of the RAD into the UML Use Case, interactive mechanisms of the method are

invoked to best demonstrate how the user might influence the transition from the RAD to the UML in the

construction of the UML Use Case Diagram. The Use Case Diagram for the Follow Up Call process is given

in figure 9.1.5.1.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 172 of 333

Follow Up Call Support System

Printer

Sales

Brightlime

{for each need to

check prospect}

Blow Out Prospect Check ProspectUpload Prospect

{for each need to

blow out prospect}

{for each need to

upload prospect}

figure 9.1.5.1.1,36UML Use Case Diagram for the Follow Up Call process Machine RAD.

As can be seen in figure 9.1.5.1.1, roles have translated directly into actors and relationships with Use Cases

associated with those actors, triggers and replication directly into notes, with three central Use Cases being

identified, that of Blow Out Prospect, Upload Prospect and Check Prospect. These Use Cases have been

influenced directly by the rule that makes the allowance for a chunk of activity defining a single Use Case.

For example, Blow Out Prospect could have been described by directly mapping numerous, more detailed,

Use Cases including Create Blow Out Letter, Send Print Request, Update Brightlime involving the include or

extend relationships between the Use Cases and those relating to the Sales and Brightlime actors.

Relationships that are defined relate to a coupling of all RAD interactions involved in the particular Use Case.

A degree of freedom is useful in translating from the RAD to the UML Use Case. Some rules, such as

recording the number of role instances (�) within the Use Case were discarded by choice, others were not

experienced (for example, those relating to refinements). Such freedom may lead to error prone specifications

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 173 of 333

and therefore it could be possible to hard-code these rules into a software application that could complete the

transformation without user intervention; however, it is important that the benefit of user involvement in such

model generation is not lost, since the beauty of these diagrams is in the facilitation of such interaction.

9.1.5.2 Activity Diagram

As identified in the previous section, there appears to be three central chunks of activity pertaining to the

Follow Up Call process. When transforming into the UML Activity Diagram from the RAD, a note is put in

the rule relating to the undefined element, directing the user to check the context of application, since the

transformation may involve an alternate Activity Diagram. Because the RAD in question utilises such

undefined elements to describe hanging threads, the sequential flow of activity is impossible to derive for the

complete process. This is because, as discussed in Chapter 5.1.1.8, the nature of the RAD permits process

definition with a closer alignment to the reality of the business context; i.e. non-sequential. The fact is, Check

Prospect is not immediately required to be followed by Upload Prospect, or Blow Out Prospect. The three

Use Cases are autonomous, and can be used alone or in combination with others, provided the identified state

is reached. Therefore, three Activity Diagrams are required to capture the Follow Up Call process and are

demonstrated in the subsequent sections.

9.1.5.2.1 Check Prospect

Figure 9.1.5.2.1.1 illustrates how the Check Prospect part of the Follow Up Call process might translate from

the Machine RAD into the notation of the UML Activity Diagram via the application of the transformation

rules provided.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 174 of 333

 figure 9.1.5.2.1.1,37UML Activity Diagram for the Check Prospect part of the Follow Up Call process

Machine RAD.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 175 of 333

As can be seen, RAD roles have directly translated into Activity Diagram partitions that contain the flow of

activity relating to those roles; independent activities have formed activities; triggers and props have formed

notes to guide the understanding of the process; replication has formed a decision diamond with a guard and

transition loop, causing further activity to be extended via the synchronisation bar (until all activity for each

loop is completed). This is important part that is captured by the xMDA because it allows the Sales members

to continue facilitating additional requests whilst the process continues (as would occur in reality). For further

discussion on this, please refer to section 9.1.5.2.3. Start and stop points are mandatory for the Activity

Diagram notation and positioning ought to be defined by the user. However, they can also be defined by the

Transformation and Platform Information. Here, the start point is defined by the trigger in the RAD and the

stop point is defined from evaluating the undefined element at the end of the Check Prospect part of the

Machine RAD.

It is important to remember that although the RAD is becoming sequenced to some degree via the

transformation, it is not completed without the informed advice of the user and attempts are made to mirror

the state based transitions confined within the RAD. Further elicitation may also be required to fill in some

gaps should the transformation be short of information. For example, the activity Receive Request is not

explicit in the Machine RAD and therefore, the involvement of Brightlime in the interaction involving the

relationship of Check if on Brightlime was until now unknown.

9.1.5.2.2 Upload Prospect

The next Activity Diagram has been generated from the application of Transformation and Platform

Information to the Upload Prospect part of the Follow Up Call process and is given in figure 9.1.5.2.2.1

below.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 176 of 333

figure 9.1.5.2.2.1,38UML Activity Diagram for the Upload Prospect part of the Follow Up Call process

Machine RAD.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 177 of 333

As with the previous discussion, the application applies rules that transform the Machine RAD into the UML

Activity Diagram. Again, the start node is defined by the trigger node and the stop node by evaluating the

undefined node that ends the Upload Prospect part of the process.

9.1.5.2.3 Blow Out Prospect

The final Activity Diagram defined to illustrate the Follow Up Call process is related to the Blow Out

Prospect part of the Machine RAD and is given below in figure 9.1.5.2.3.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 178 of 333

figure 9.1.5.2.3.1,39UML Activity Diagram for the Blow Out Prospect part of the Follow Up Call process

Machine RAD.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 179 of 333

As can be seen in figure 9.1.5.2.3.1, this Activity Diagram is more elaborate and contains three partitions. As

with the example of figure 9.1.5.2.1.1, the decision diamond is inserted here to extend the activity in the

partition to allow Sales members to continue facilitating additional requests whilst the process continues,

which mirrors the reality of the situation. Because of the nature of this process, and the relationship of the

Platform Information, synchronisation bars are required to ensure the process does not terminate until both the

Print Request is handled by the Printer, and the Update is handled by Brightlime. It is important to note that

this application is of direct reflection of the RAD Transformation Information which describes that, with

relation to looping, line and descriptor states, when there is a split of activity flow, a synchronisation bar

should be added. This is due to the knowledge of the platform, i.e. the UML Activity Diagram.

The application of some rules, such as those involving refinements (although they follow a similar function as

applying the decision diamond and guard, or the synchronisation bar), are not demonstrated here since they

were not required by the case in question, but are detailed in Chapter 7.0. Other rules have been disregarded at

will, in accordance with the transformation rules. For example, it was not deemed necessary to represent �

(showing the number of available instances of each activity partition via notes) on the Activity Diagrams.

Such a rule could be hard-coded or represented as a user definable choice within a software implementation,

if required.

9.1.5.3 Class Diagram

Perhaps the most powerful of diagrams to be generated for use within the MDA would be the UML Class

Diagram representation of the Machine RAD. In figure 9.1.5.3.1, the Class Diagram generated for the Follow

Up Call process is given.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 180 of 333

Note: Enlarged version appears in Appendix IV, figure 4-4.

figure 9.1.5.3.1,40UML Class Diagram for the Follow Up Call process Machine RAD.

As shown in figure 9.1.5.3.1, the application of the transformation rules has generated a Class Diagram with

five individual classes, three of them relating specifically to the roles involved in the Machine RAD. The

remaining two, Print Request and Prospect Database have been derived from examining the Create Blow Out

Letter independent activity and Prospect Database prop, where data objects are considered to be created, or to

previously already exist, within the process. All other independent activities and interactions are transformed

into operations of the class generated from the role within which the independent activities or interactions

exist. Attributes account for the descriptor states of the Machine RAD, such as the ready to print: bool

attribute belonging to the Printer. Other attributes are derived from triggers and replicated activities that exist

within the role from which a class has been generated to contain such attributes in order that these objects

retain the notion of state and can reflect upon that information in enabling or disabling such operations at

design-time. This notion of containment is also demonstrative of how such a method may carry ideals from

the real-world and the RAD into design, in that each object retains such information which is not visible to

other objects. Relationships between classes are driven mainly from interacting roles, which are embellished

with names that reflect the association (for example, the Sales member checks Brightlime). Multiplicity can

be derived from the � that is associated with each role (for example, since only one instance of Printer is

defined on the Machine RAD, only one instance may ever exist on the Class Diagram, and therefore

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 181 of 333

multiplicity is one). Aggregation is said to exist when role interactions are exclusive only to one other role.

For example, since Sales is the only entity to interact with the Printer, it is said to be an aggregate of Sales.

Further classes could be added by examining the Tri-Step analysis conducted in 9.1.4, but rather this is

considered to be a design-time benefit.

As with previous examples, some rules were not demonstrated in the construction of the Class Diagram as

they were not required for the case study (for example, role instantiation nodes would generate new classes,

associations and operations in much the same way as has already described). Other rules were deemed

unnecessary, such as the enforcement of an attribute to represent the RAD stop node. Of course, a software

implementation would be required to account for any such rule refinement or enforcement.

9.1.6 Discussion

So far, the commercial application of the xMDA method has been described via manual application to the

commercial case study. Whilst this is useful in showing that the xMDA method can accommodate business

processes, it is only half of the story. The aim of the xMDA method is to both support the xMDA framework

and provide a better method for defining requirements and specification within practical application to the

MDA. In this section, discussion relating to the manual application of the xMDA method is given and

evidence drawn upon to reveal what this method uncovered which was not already known before application

and that which may not have been uncovered by other approaches.

The xMDA method suggests the starting point to be a RAD process model, output from analysis. Since this is

the case, a degree of elicitation took place in creating the Follow Up Call Process Model (05/004). This

involved defining the RAD and iterating with the customer where necessary to ensure that the model

represented the required process behaviour. Therefore, the method ensures a starting point from which many

initial requirements and process flaws are already addressed. This shows that the business user can adequately

define, and perhaps more importantly, verify process definitions using the method.

During the creation and evaluation of the Environment RAD, interactions revealed that the process involved

Customer and Brightlime roles. These roles were not explicitly shown on the customer created Follow Up

Call Process Model (05/004). With the inclusion of those roles in the Environment RAD, a process level error

was revealed in that one independent activity of the Sales Advisor actually represented an interaction with the

Brightlime role. This demonstrates the strength of using the RAD and the purpose of the inclusion of

interactions and roles. Since the xMDA method proposes the RAD with role discovery in capturing

interactions, these errors and business process concerns are reduced at an early stage.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 182 of 333

The Shared RAD was found to be important in establishing shared phenomena for investigation. It is here

where process activities are first considered to be either related to the environment or the machine, allowing

the customer to redefine the process accordingly. For example, all relationships involving the Customer role

were found to be in the Environment. Therefore, it is immediately obvious that the Customer plays a limited

role in defining the machine. However, since one interaction (Send Blow Out Letter) was found to be

Environment-to-Machine, further consideration was required to discover what exactly this interaction

involved. It is not so much that other methods might not make such a consideration; the xMDA method

explicitly guides the user into considering relationships in terms of domain (environment, shared or machine),

and making decisions regarding them - hence, the importance of specification is highlighted within the

technique. The method progressively moves specification closer to the machine and in the final RAD

incarnation, the Machine RAD, machine elements were interrogated with a view to defining only those

activities required of the machine. As previously discussed, closer examination of the Environment-to-

Machine interaction between the Sales Advisor and Customer was required. This revealed a relationship that

actually represented one of Environment-to-Environment, where the Sales Advisor would post a printed letter

directly to the customer; thus the discovery of a new role (Printer) and a Machine-to-Machine relationship

between it and the Sales Advisor. Again, because the method explicitly requires the interrogation of

relationships between Environment and Machine domains, and the redefinition of the specification in the

Machine RAD, it is suggested to be a better way of defining specification and ensuring requirements are

accounted for within it.

Since the Machine RAD represents the domain of the machine, it is suggested to be able to connect directly to

design. That is, design classes can be derived (as demonstrated by the Tri-Step analysis conducted in Section

9.1.4) and models native to software development can be generated (as demonstrated in Section 9.1.5). This

process is unique to the xMDA method and suggested to benefit the software designer, and the MDA, in that

the output specification is in a language that is not only common to the designer (the UML) but also portable

to software application for use in design in the case that such models could be automatically generated via a

software solution. The flexibility of the xMDA framework is also demonstrated in producing models of

alternative model types as output.

It is considered that, not only is the xMDA method applicable to commercial processes, it is also accessible to

the business user, incorporating specification in a method designed specifically to output models useful to

MDA designers, which supports the findings of Chapter 8.0, where the xMDA method was received

positively in the context of other available techniques. Previous chapters have already highlighted that the

CIM has no clear constitution, nor does it provide any explicit mechanism to support specification. It is

therefore suggested in consideration of the findings made so far from the commercial application included

within this section that the xMDA method supports a better application to embedding a requirements

definition within the CIM. The method is rich enough to describe real commercial processes and forces the

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 183 of 333

discovery of potential issues for resolution, resulting in a specification output that can interface with the

MDA. It is clear that, even in the examples that have been discussed, there could be real benefit in codifying

these rules in a way that demonstrates how rigorous and how applicable the method is to the MDA. Therefore,

the next obvious step to which the remainder of this chapter draws attention to is to discover if the xMDA

method is supportive in terms of MDA tools and techniques. The Class Diagram created in figure 9.1.5.3.1

will form the basis of further analysis to look at the codification and representation of the Transformation and

Platform Information within a software context to demonstrate the potential of the xMDA framework and

method to the MDA.

9.2 QVT Application

In order that the xMDA method be verified beyond the manual application to the commercial case study

provided in Section 9.1, this section draws upon the transformation rules defined in table 7.6.2.1 (and repeated

in table 9.2.1 for reference) to define transformation relations by applying techniques of the MDA. Again,

since the class diagram is considered the most useful PIM level diagram for code generation within the MDA

(OMG 2003b), and to follow on from previous findings, the class diagram has been deliberately selected for

the focus of the evaluation in this section.

RAD UML Class Diagram

Role Class

Independent Activity Operation; Class & Association if Object results from Activity

Looping, Line and Descriptor States Attribute (only applicable for Descriptor States)

Case Refinement (Alternatives) Attribute

Part Refinement (Concurrency) Attribute; Composition if refinement objects are descendent from resulting object

Interaction Association; Operations in Role Classes; Aggregation if Role interactions are

exclusive to only a single Role

Role Instantiation Role Class; Operation in Source Role Class; and Association

Trigger Attribute

Replication Count attribute

Undefined Check context; May define alternate Class Diagram

� Multiplicity

Prop Class; Association with Role Class

Stop Attribute in originating Role Class

Note Note

table 9.2.1,15initial transformation rules to map from the RAD to the UML Class Diagram.

As noted in Section 7.6.1, the standard for administering MDA transformations is the QVT (Bureck 2009; FT

2007; Giandini et al. 2009; Kusel et al. 2009). The QVT requirement for a transformation definition language

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 184 of 333

was for one that is declarative (Ignjatovic 2006). There are two declarative sub-languages defined in the QVT

specification (Bureck 2009; Dan 2010; FT 2007; Giandini et al. 2009; Kusel et al. 2009; OMG 2008b). They

are the Relations and Core. The Core language complements the Relations language and is used to describe

“the operational semantics of the QVT Relations language” (Kusel et al. 2009) at a low level, supported by

FT (2007). Focus here is therefore given to the declarative Relations language (QVT-R), which is provided in

the specification defined by the OMG (2008b) and described as the “end-user view of QVT” (Ignjatovic

2006), where rules can be defined to relate metamodel elements to each other at a higher level. It is not the

intention of this demonstration to deliver the extent to which QVT might be used to model these

transformation rules, or the extent of the language itself; only that an implementation of these rules via QVT

is possible.

In Appendix V, a complete examination of each transformation rule is provided in the context of the QVT-R

language, with examples being defined in both graphical and textual QVT-R forms as described by the OMG

(2008b) and discussion being presented where necessary. This chapter focuses only on those rules that are

extended upon in Section 9.3, for clarity of understanding with the objective of providing a QVT definition

and eventual software implementation directed at enhancing the user experience. They are: Role2Class (r, c);

IndependentActivity2Operation (ia, o); Interaction2Operation (i, o); and Prop2Class (p, c).

9.2.1 Transformation Declaration

A transformation declaration in QVT-R is given in the following textual form (this example defines a

transformation from a RAD model to a UML model, conforming to the SimpleRAD and SimpleUML

metamodels described in Section 7.6.2).

transformation rad2umlcd (rad : SimpleRAD, umlcd : SimpleUML)

{

}

For the scope of this research, all transformations are required to be executed in the direction of the UML

since the Transformation Information is provided to apply to the Platform Information, and not vice versa.

The remainder of this chapter outlines each of the four identified rules for transforming elements of the RAD

into those relating to the UML Class Diagram.

9.2.2 Role2Class

The first rule describes an unconditional mapping of a RAD role to a UML class as illustrated in figure

9.2.2.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 185 of 333

figure 9.2.2.1,41a RAD role to a UML class relation.

Most cases will be required to hold true when the Role2Class relation holds between the role and the class

containing the activity. Since this is the case, the Role2Class relation is defined as a top-level relation,

requiring to be held true for all relations in a transformation. This relation is demonstrated in QVT-R textual

syntax below.

top relation Role2Class /* map each role to a class*/

rn = ‘String’;

 {

 checkonly domain rad r:Role

{

name = rn

}

 enforce domain umlcd c:Class

{

name = rn

}

 }

That is, pattern r binds the variable rn to the role model element name and pattern c binds the same variable

(rn) to the class model element name, resulting in both name model elements in the role and class elements of

the rad and umlcd candidate models containing the same information, i.e. rn. Each domain is annotated as

Checkonly (for verification against the rules) and Enforce (to create or change the target model according to

the relation – that is from the RAD to the UML).

There is no complication involved in defining Role2Class transformation; only a single attribute (name) is

required in the relation. When and Where clauses can also be applied to “explicitly constrain the relation”

(Ignjatovic 2006) and may be formed using “arbitrary OCL expressions in addition to… relation invocation

expressions” (OMG 2008b). However, no such expressions are required to further elucidate understanding of

this rule.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 186 of 333

9.2.3 IndependentActivity2Operation

Since the Role2Class relation has been defined as a top top-level relation, the IndependentActivity2Operation

relation is required to hold only when the Role2Class relation holds between the role containing the

independent activity and the class containing the operation. This relation is illustrated in figure 9.2.3.1.

figure 9.2.3.1,42a RAD independent activity to a UML operation relation.

The QVT-R that represents this relation is not defined as a top level relation, as it is not a requirement for all

other relations, since the transformation is dependent on only the involved independent activity and associated

operation. This is reflected in the following description.

relation IndependentActivity2Operation /*map each independent activity to an operation*/

ian = ‘String’;

 {

 checkonly domain rad ia:IndependentActivity

{

 name = ian

}

 enforce domain umlcd o:Operation

{

name = ian

 }

 }

9.2.4 Interaction2Operation

This rule suggests that for each RAD interaction, the UML Class Diagram will exhibit operations for both

driving and passive RAD interaction nodes within classes defined by the top relation (Role2Class). Therefore,

the following relation is required, described visually in figure 9.2.4.1, with the textual counterpart after.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 187 of 333

figure 9.2.4.1,43a RAD interaction to a UML operation relation.

relation Interaction2Operation /*map each interaction to an operation*/

in = ‘String’;

 {

 checkonly domain rad i:Interaction

{

 name = in

}

 enforce domain umlcd i2o:Operation

{

name = in* /*must be amended to reflect transitive verb and

direct object (noun)*/

 where

{

 Interaction2Association (i, i2a);

 }

 }

When the relation is true, the Where clause is used to apply further conditions. It is used in this context to

describe that whenever the Interaction2Operation relation holds, the Interaction2Association relation must

also hold. Further description of this relation is given in Appendix V.

9.2.5 Prop2Class

The Prop2Class relation is defined to show how, for each RAD prop used by a role, a new UML class is

enforced to represent that prop. Typically, such a class would represent a data object that is manipulated by

the class generated by the top relation Role2Class. The graphical syntax for this relation is given in figure

9.2.5.1, with the textual description following it.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 188 of 333

C E

-name = pn

<<domain>>

p : Prop

-name = pn

<<domain>>

c : Class
rad : SimpleRAD umlcd : SimpleUML

figure 9.2.5.1,44a RAD prop to a UML class relation.

relation Prop2Class /*map each prop to a class*/

pn = ‘String’;

 {

 checkonly domain rad p:Prop

{

 name = pn

}

 enforce domain umlcd c:Class

{

name = pn

 where

{

Prop2Association (p, p2a);

 }

 }

Where this relation holds, a relation to create an association between the new class and the class derived from

the top relation Role2Class must also hold. Therefore, the Prop2Association relation is required. See

Appendix V for a description of this relation.

As can be seen in the examples given in the figures of this chapter, the graphical syntax provides an

expressive and easy way to define transformations in comparison with the textual syntax (Bureck 2009).

However, some difficulties are encountered in that there is no real QVT-R graphical software modelling

environment available. Further to this, QVT-R Engines such as Eclipse QVT Declarative, Medini QVT,

ModelMorf and MOMENT-QVT are still in the development stages (Bureck 2009; Kusel et al. 2009). The

syntax itself is also not yet mature; some elements have no graphical syntax (for example, top level relations

and queries), some elements are unclear in meaning, and some elements have no textual counterpart (Bureck

2009).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 189 of 333

9.2.6 rad2umlcd QVT-Relations

A summary of the complete set of relations defined by this research in moving from a RAD in the direction of

a UML Class Diagram is given in table 9.2.6.1, and detailed in Appendix V.

RAD UML Class Diagram Relation

Role Class Role2Class (r, c)

Independent Activity Operation; Class & Association if

Object results from Activity

IndependentActivity2Operation (ia, o);

IndependentActivity2Class (ia, ia2c);

IndependentActivity2Association (ia, ia2a)

Looping, Line and Descriptor

States

Attribute (only applicable for

Descriptor States)

DescriptorState2Attribute (ds, at)

Case Refinement (Alternatives)

Attribute CaseRefinement2Attribute (cr, at);

CaseRefinementElement2Attribute (cre, at)

Part Refinement (Concurrency) Attribute; Composition if refinement

objects are descendent from

resulting object

PartRefinement2Attribute (pr, at);

PartRefinementElement2Attribute (pre, at);

PartRefinement2Composition (pr, pr2a)

Interaction Association; Operations in Role

Classes; Aggregation if Role

interactions are exclusive to only a

single Role

Interaction2Association (i, i2a);

Interaction2Operation (i, i2o);

Interaction2Aggregation (i, i2a)

Role Instantiation Role Class; Operation in Source

Role Class; and Association

RoleInstantiation2Class (ri, ri2c);

RoleInstantiation2Operation (ri, ri2o);

RoleInstantiation2Association (ri, ri2a)

Trigger Attribute Trigger2Attribute (t, at)

Replication Count attribute Replication2Attribute (re, at)

Undefined

Check context; May define alternate

Class Diagram

N/A

� Multiplicity �2Multiplicity (ti, mu)

Prop Class; Association with Role Class Prop2Class (p, c);

Prop2Association (p, p2a)

Stop Attribute in originating Role Class Stop2Attribute (s, at)

Note Note Note2UMLNote (n, umln)

table 9.2.6.1,16complete set of QVT-Relations defined by the rad2umlcd transformation.

It is important to recognise that whilst the possibility of definition and transformation has been demonstrated,

elements, such as looping and line states and the undefined element, have no Class Diagram representation.

And vice versa, the Class Diagram notation also includes elements (for example, packages) that have no RAD

representation, and therefore do not feature here in the description of relations. The rules defined as part of

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 190 of 333

this research to enable the transformation of models conforming to the SimpleRAD metamodel into UML Use

Case and Activity diagrams (see Section 7.6.3) may facilitate a better understanding and treatment of objects.

However, it is accepted that no matter how many representations are produced, each will represent only a

particular viewpoint on that RAD. The usefulness of the xMDA method is in providing a CIM to the PIM,

founded on the knowledge of requirements and specification, defined by business, and presented in a

language akin to the software user. Further research may demonstrate that rules could be applicable to both

directions (a promising example of this was highlighted in the Interoperability section of Appendix II), which

would enable the PIM to be demonstrated to business users in a RAD. However, granularity levels may be a

management concern for such application to be realistic.

Since the transformation rules have been verified via manual application to a case study in the previous

chapter, and represented formally as QVT-R for use within the MDA in this chapter, the next obvious step is

to evaluate the extent to which these transformation rules may be applied within software support, to which

the final stage of this research draws attention with relation to this case study in the following chapter.

9.3 Tool Application

The benefit of employing the use of a transformation language such as the QVT is that rules can be defined in

abstraction (Peltier et al. 2000), allowing for transformations to be defined at the meta-level. This can be

verified with examination of the QVT transformation pattern given in figure 9.3.1 below.

M3:

Metamodel

Of Transformations

(MOF)

QVT

Transformation

Rules

M2:

SimpleRAD

Metamodel

(MOF)

M2:

SimpleUML

Metamodel

(MOF)

figure 9.3.1,45the rad2umlcd QVT transformation pattern (Source: developed from FT (2007), Ignjatovic

(2006), Koch (2006), Koch et al. (2006), Kusel et al. (2009), OMG (2006a, 2007c, 2008b), Peltier et al.

(2000), Sheena et al. (2003)).

Figure 9.3.1 describes a pattern for meta-level transformations whereby the metamodel of transformations

(MOF) informs the transformation of models conforming to the SimpleRAD metamodel into those conforming

to the SimpleUML metamodel, using the abstract formalism of QVT transformation rules, which were

described as relations and discussed in Section 9.2.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 191 of 333

Since these relations have been defined at the meta-level, it is possible to extend the QVT transformation

pattern and apply it within a software context to further test the application of the xMDA method (see figure

9.3.2).

M3:

Metamodel

Of Transformations

(MOF)

QVT

Transformation

Rules

M2:

SimpleRAD

Metamodel

(MOF)

M2:

SimpleUML

Metamodel

(MOF)

Java

Transformation

Rules

M1:

MachineRAD

Follow Up Call

Process (XMI)

M1:

UML Class

Diagram

Follow Up Call

Process (XMI)

figure 9.3.2,46the extended rad2umlcd QVT transformation pattern (Source: developed from FT (2007),

Ignjatovic (2006), Koch (2006), Koch et al. (2006), Kusel et al. (2009), OMG (2006a, 2007c, 2008b), Peltier

et al. (2000), Sheena et al. (2003)).

In figure 9.3.2, the Follow Up Call process Machine RAD (created in figure 9.1.3.1) is depicted as being

informed by the SimpleRAD metamodel (created in figure 7.6.1.1) and the Follow Up Call process Class

Diagram (created in figure 9.1.5.3.1) is depicted as being generated by applying Java transformation rules

(founded upon the QVT transformation rules defined in Section 9.2), and informed by the SimpleUML

metamodel (introduced in figure 7.6.2.1). Because these metamodels are defined by, and compliant with, the

MOF, XMI can be used as an interchange format (Kovse and Härder 2002). Thus, the transformation pattern

now includes the M1 : Model layer of the OMG’s four-layered architecture (described in Section 7.6.1). As

noted previously, transformation rules to create UML Use Case and Activity diagrams were defined in

Section 7.6.3, and could be implemented instead of those defined for the generation of the Class Diagram.

However, the focus here remains on the generation of the Class Diagram since QVT-R have previously been

defined in Section 9.2 for the transformation rules involved and prior experience of transformations in the

VIDE project (VIDE 2009) could be drawn upon.

9.3.1 M1 : Machine RAD XMI

The first step in applying the QVT-R described in Section 9.2 within a software context was to create an XMI

representation of the Follow Up Call process Machine RAD at the M1 : Model layer. Because there is no

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 192 of 333

available solution to generate XML from the RAD notation, an alternative solution is required. The VIDE

CIM Level Language (VCLL) Editor, available in VIDE (2010a), is a component of VIDE and is used

specifically to generate VCLL XML from BPMN diagrams - for a detailed description of how the VIDE

toolset might be used within a MDA context, see VIDE (2010b). The VCLL XML created as part of this

research to represent the Follow Up Call process Machine RAD is given in figure 9.3.1.1. This VCLL XML

could feasibly be auto-generated to represent the RAD concepts with the provision of a software application

that recognises the RAD notation. However, since such a tool is unavailable, the VCLL here was created

manually to depict aspects of the Machine RAD in XML, based on BPMN concepts for demonstrative

purposes.

<?xml version="1.0" encoding="UTF-8"?>

<VcllDiagram xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns="http://stp.eclipse.org/vcll" xmi:id="fusp" iD="fusp">

<pools xmi:type="Pool" xmi:id="p" iD="p" name="Printer">

 <vertices xmi:type="SubProcess" xmi:id="rpr" iD="rpr" outgoingEdges="1" incomingEdges="2" name="receive print request"/>

<vertices xmi:type="SubProcess" xmi:id="pbol" iD="pbol" outgoingEdges="1" incomingEdges="2" name="print blow out letter"/>

</pools>

<pools xmi:type="Pool" xmi:id="s" iD="s" name="Sales">

 <vertices xmi:type="SubProcess" xmi:id="scr" iD="rcr" outgoingEdges="1" incomingEdges="2" name="send check request"/>

 <vertices xmi:type="SubProcess" xmi:id="rr" iD="rr" outgoingEdges="1" incomingEdges="2" name="receive response"/>

<vertices xmi:type="SubProcess" xmi:id="snpr" iD="snpr" outgoingEdges="1" incomingEdges="2" name="send new prospect

request"/>

 <vertices xmi:type="SubProcess" xmi:id="cbol" iD="cbol" outgoingEdges="1" incomingEdges="2" name="create blow out letter"/>

 <vertices xmi:type="SubProcess" xmi:id="spr" iD="spr" outgoingEdges="1" incomingEdges="2" name="send print request"/>

 <vertices xmi:type="SubProcess" xmi:id="sur" iD="sur" outgoingEdges="1" incomingEdges="2" name="send update request"/>

</pools>

<pools xmi:type="Pool" xmi:id="bl" iD="bl" name="Brightlime">

<vertices xmi:type="SubProcess" xmi:id="rcr" iD="rcr" outgoingEdges="1" incomingEdges="2" name="receive check request"/>

<vertices xmi:type="SubProcess" xmi:id="cpd" iD="cpd" outgoingEdges="1" incomingEdges="2" name="check prospect

database"/>

 <vertices xmi:type="SubProcess" xmi:id="sr" iD="sr" outgoingEdges="1" incomingEdges="2" name="send response"/>

<vertices xmi:type="SubProcess" xmi:id="rnpr" iD="rnpr" outgoingEdges="1" incomingEdges="2" name="receive new prospect

request"/>

<vertices xmi:type="SubProcess" xmi:id="utpd" iD="utpd" outgoingEdges="1" incomingEdges="2" name="upload to prospect

database"/>

 <vertices xmi:type="SubProcess" xmi:id="rur" iD="rur" outgoingEdges="1" incomingEdges="2" name="receive update request"/>

<vertices xmi:type="SubProcess" xmi:id="upd" iD="upd" outgoingEdges="1" incomingEdges="2" name="update prospect

database"/>

</pools>

<pools xmi:type="Pool" xmi:id="pd" iD="pd" name="Prospect Database">

</pools>

</VcllDiagram>

figure 9.3.1.1,47VCLL representation of the Follow Up Call process Machine RAD.

Here, Machine RAD roles and props are equated to BPMN pools, with operations and interactions becoming

BPMN sub-processes. This is not so much to do with these concepts being similar in nature, but more with

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 193 of 333

what the Java transformation engine outputs in transformation of these concepts in the next section, and these

concepts were chosen specifically for that task.

9.3.2 Java Transformation Rules

The choice of using Java for the M1 : Model level mapping was because the implementation already exists as

another component of the VIDE toolset, known as the PPT, also available in VIDE (2010a); other mapping

languages, such as XSLT, have also been used in academia to the same effect (Dan 2010; Kovse and Härder

2002; Macek and Richta 2009; Peltier et al. 2000). The PPT currently supports VCLL as input. However, the

PPT “is envisaged… [to] use different notations” (VIDE 2009), which could be important for the MDA, and

the tool, should an application be created to generate XML from a RAD in terms of the xMDA method. It is

also important to note that the PPT is an “early prototype” (VIDE 2010a). Several issues became known

during this research and included compatibility difficulties in terms of the platform and XML language type;

the inability to handle numerous classes relating to the amount of space allocated to output diagrams;

ineffectual error handling in terms of reporting errors relating to the input VCLL XML; and errors during

Class Diagram modification. However, despite these issues, the prototype was found to be useful in

demonstrating the application of the transformations involved in part of this research.

As noted, the Java transformation engine of the PPT treats the BPMN concepts in line with the QVT-R

defined in Section 9.2 for related concepts of the Machine RAD and, therefore, those relations were chosen

specifically to account for that in this demonstration. The relations involved were Role2Class (r, c);

IndependentActivity2Operation (ia, o); and Interaction2Operation (i, o); and Prop2Class (p, c). In effect,

becoming BPMN Pool2Class (p, c); and SubProcess2Operation (sp, o). An extract of the Java code used

within the PPT is given in figure 9.3.2.1 below; the complete Java code relating to the transformation engine

of the PPT is given in Appendix VI.

// process all pool elements and create appropriate classes

for (int i=0; i<poollist.getLength(); i++) {

Element element = (Element)poollist.item(i);

 Attr att = element.getAttributeNode("xmi:type");

 if (att != null){

 if (att.getNodeValue().equals("Pool")) {

 Element child = doc.createElement("packagedElement");

 child.setAttribute("xmi:type", "UML:Class");

 child.setAttribute("xmi:id", element.getAttribute("xmi:id"));

 child.setAttribute("name", element.getAttribute("name"));

// collect lanes and append them to pool

 NodeList lanelist = element.getElementsByTagName("lanes");

 for (int j=0; j<lanelist.getLength(); j++) {

 Element element2 = (Element)lanelist.item(j);

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 194 of 333

 Attr att2 = element2.getAttributeNode("xmi:type");

 if (att2 != null){

 if (att2.getNodeValue().equals("Lane")) {

 Element lanechild = doc.createElement("ownedAttribute");

 lanechild.setAttribute("xmi:id", element2.getAttribute("xmi:id"));

 lanechild.setAttribute("name", String.format("Lane %d", j+1));

 lanechild.setAttribute("visibility", "private");

 child.appendChild(lanechild);

 }

 }

 }

 // collect subprocesses and append them to pool

 NodeList vertices = element.getElementsByTagName("vertices");

 for (int j=0; j<vertices.getLength(); j++) {

 Element element2 = (Element)vertices.item(j);

 Attr att2 = element2.getAttributeNode("xmi:type");

 if (att2 != null) {

 if (att2.getNodeValue().equals("SubProcess")) {

 Element spchild = doc.createElement("ownedOperation");

 spchild.setAttribute("xmi:id", element2.getAttribute("xmi:id"));

 spchild.setAttribute("name", element2.getAttribute("name"));

 child.appendChild(spchild);

 }

 }

 }

 packagedElement.appendChild(child);

 }

}

}

figure 9.3.2.1,48Java extract showing how Pool2Class (p,c) and SubProcess2Operation (sp,o) relations are

implemented in the PPT (Source: by permission from the PPT source files relating to VIDE (2010a)).

These relations have been applied by the Java transformation engine of the PPT to demonstrate how a UML

Class Diagram (XMI) could be automatically derived from the VCLL XML relating to Follow Up Call

process Machine RAD, with the objective being to show how realistic the application of these relations within

a software solution could be.

9.3.3 M1 : Class Diagram XMI

The VCLL created previously in figure 9.3.1.1 for the Follow Up Call process Machine RAD was applied to

the PPT by running it within the Java transformation engine; the resulting first-cut Class Diagram that was

generated by the software, and defined on XML, is given in figure 9.3.3.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 195 of 333

figure 9.3.3.1,49UML Class Diagram for the Follow Up Call process Machine RAD created from the

application of QVT transformation rules in Java (first-cut).

At this point, it may be useful to be reminded of the manually generated Class Diagram created previously in

Section 9.1, to which this machine generated Class Diagram is to be compared (see figure 9.3.3.2 or refer to

figure 9.1.5.3.1 for the original discussion relating to this Class Diagram).

Note: Enlarged version appears in Appendix IV.

figure 9.3.3.2,50UML Class Diagram for the Follow Up Call process Machine RAD created manually from

the application of transformation rules.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 196 of 333

9.3.4 Comparative

A comparison between the automatic and manual Class Diagrams revealed a number of observations

regarding the application of the transformation rules defined by the QVT-R. As mentioned previously, this

transformation is limited to demonstrate the realistic application of four relations defined in Section 9.2.

The number of classes generated by the application corresponds to those created via the manual application in

consideration of the Role2Class (r, c) and Prop2Class (p, c) relations. Original roles of Sales; Printer; and

Brightlime, and the Prospect Database prop, have all manifested correctly.

Similarly, each class that resulted has been populated with relevant operations in comparison with the manual

Class Diagram. This demonstrates the correct implementation of the IndependentActivity2Operation (ia, o)

and Interaction2Operation (i, o) relations in the PPT.

This demonstrates the possibility that a software solution could support the complete set of QVT relations

defined in Appendix V to support the xMDA method. However, to create such an application would require

considerable extension to the transformation engine. A further auto-generated Class Diagram is provided in

figure 9.3.4.2 to reflect the VCLL given below in figure 9.3.4.1, which has be designed to best represent an

automatic version of the manual Class Diagram for the Machine RAD of the Follow Up Call process, by

utilising the available rules encoded within the Java transformation engine of the PPT.

<?xml version="1.0" encoding="UTF-8"?>

<VcllDiagram xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns="http://stp.eclipse.org/vcll" xmi:id="fusp" iD="fusp">

<pools xmi:type="Pool" xmi:id="s" iD="s" name="Sales">

 <vertices xmi:type="SubProcess" xmi:id="scr" iD="rcr" outgoingEdges="1" incomingEdges="2" name="send check request"/>

 <vertices xmi:type="SubProcess" xmi:id="rr" iD="rr" outgoingEdges="1" incomingEdges="2" name="receive response"/>

<vertices xmi:type="SubProcess" xmi:id="snpr" iD="snpr" outgoingEdges="1" incomingEdges="2" name="send new prospect

request"/>

 <vertices xmi:type="SubProcess" xmi:id="cbol" iD="cbol" outgoingEdges="1" incomingEdges="2" name="create blow out letter"/>

 <vertices xmi:type="SubProcess" xmi:id="spr" iD="spr" outgoingEdges="1" incomingEdges="2" name="send print request"/>

 <vertices xmi:type="SubProcess" xmi:id="sur" iD="sur" outgoingEdges="1" incomingEdges="2" name="send update request"/>

 <artifacts xmi:type="Role" xmi:id="p" iD="p" name="Printer">

 <associations xmi:type="Association" xmi:id="pa" target="s"/>

 </artifacts>

 <artifacts xmi:type="Role" xmi:id="pr" iD="pr" name="Print Request">

 <associations xmi:type="Association" xmi:id="pra" target="s"/>

 </artifacts>

<lanes xmi:type="Lane" xmi:id="l" iD="l"/>

</pools>

<pools xmi:type="Pool" xmi:id="bl" iD="bl" name="Brightlime">

 <vertices xmi:type="SubProcess" xmi:id="rcr" iD="rcr" outgoingEdges="1" incomingEdges="2" name="receive check request"/>

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 197 of 333

<vertices xmi:type="SubProcess" xmi:id="cpd" iD="cpd" outgoingEdges="1" incomingEdges="2" name="check prospect

database"/>

 <vertices xmi:type="SubProcess" xmi:id="sr" iD="sr" outgoingEdges="1" incomingEdges="2" name="send response"/>

<vertices xmi:type="SubProcess" xmi:id="rnpr" iD="rnpr" outgoingEdges="1" incomingEdges="2" name="receive new prospect

request"/>

<vertices xmi:type="SubProcess" xmi:id="utpd" iD="utpd" outgoingEdges="1" incomingEdges="2" name="upload to prospect

database"/>

 <vertices xmi:type="SubProcess" xmi:id="rur" iD="rur" outgoingEdges="1" incomingEdges="2" name="receive update request"/>

<vertices xmi:type="SubProcess" xmi:id="upd" iD="upd" outgoingEdges="1" incomingEdges="2" name="update prospect

database"/>

 <artifacts xmi:type="Role" xmi:id="pd" iD="pd" name="Prospect Database">

 <associations xmi:type="Association" xmi:id="pda" target="bl"/>

</artifacts>

</pools>

</VcllDiagram>

figure 9.3.4.1,51VCLL representation of the Follow Up Call process Machine RAD created for best

representation after application of the rules encoded in the PPT.

figure 9.3.4.2,52UML Class Diagram for the Follow Up Call process Machine RAD created for best

representation from the application of the rules encoded in the PPT.

Despite being claimed to be supported (VIDE 2008b), relationships between classes and class attributes were

difficult to reproduce using the PPT. Careful examination of the Java source files revealed that this was

because a great deal of the Java script that was used was constructed to account for meta-level issues peculiar

to the BPMN, which left a complexity in resolving relationships from the Machine RAD VCLL XML since no

Java code was written to complete that task. The inclusion of figures 9.3.4.1 and 9.3.4.2 exemplifies such

meta-level peculiarity where the transformation enforces a relationship of composition type. However, this

inclusion demonstrates that relations such as Interaction2Association (i, i2a) would be possible, given further

extension to the tool. Another example is that the only support for the inclusion of attributes was to specify a

BPMN lane in the VCLL (i.e. the line <lanes xmi:type="Lane" xmi:id="l" iD="l"/> in figure 9.3.4.1 and

representation in the Sales class of figure 9.3.4.2), which of course is not enough to account for the numerous

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 198 of 333

relations defined in Appendix V to extract attributes from the Machine RAD. This difficulty is extended to

account for a number of other relations involving the generation of the Class Diagram in figure 9.3.3.1,

including Interaction2Aggregation (i, i2a) and �2Multiplicity (ti, mu), that were excluded from this

transformation process. Additional Java script is required to remedy this concern.

Other relations may be difficult, if not impossible to realise with further script. For example, the Print Request

class never materialised in the auto-generated Class Diagram of figure 9.3.3.1 because the relation

IndependentActivity2Class (ia, ia2c) was unaccounted for. This type of relation relies on a deal of manual

guidance and user intervention which would need to be accounted for in any future work that might involve

enriching the implementation applied here in order that a fully developed solution is produced. Furthermore,

Giandini et al. (2009) discuss that it is important “to formally verify whether [the] implementation is correct

with respect to its QVT specification or not” (Giandini et al. 2009). This is specifically useful in the

consistency checking of definitions in QVT where they might be described in several (or all) involved

imperative/declarative languages; conformance with metamodels (such as the UML and MOF) is provided by

the language itself (FT 2007).

9.3.5 Elaboration

The layout provided by the auto generation suffers from some restrictions. There is no rule to apply direction

on the positioning of diagram elements. However, support is provided for user intervention in deciding where

elements should be placed and for modification after the diagram is generated. Figure 9.3.5.1 is a modified

version of the generated Class Diagram given in figure 9.3.3.1, and adheres to all QVT relations discussed in

Appendix V.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 199 of 333

figure 9.3.5.1,53UML Class Diagram for the Follow Up Call process Machine RAD created from the

application of QVT transformation rules in Java (modified).

The modified auto-generated Class Diagram figure 9.3.5.1 now appears to be in direct correlation with the

original manual Class Diagram of figure 9.3.3.2, which demonstrates that not only can this method be used to

generate a first-cut Class Diagram, but also that the Class Diagram can support user modification and

elaboration. Moreover, this illustrates perfectly that such a model can be utilised to further development into

the design or PIM phase since it is in a development language (the UML) and formatted in a language (the

XML) that supports portability across software platforms, interoperability between software solutions, and

code reusability via the XMI standard. Appendix VII contains the complete auto-generated UML XML for

the modified Class Diagram of figure 9.3.5.1.

9.3.6 Extension

To extend this application, the Java code relating to the PPT transformation engine has been amended to

demonstrate how the code could accommodate the Role2Class (r, c); IndependentActivity2Operation (ia, o);

Interaction2Operation (i, o); and Prop2Class (p, c) relations by directly associating with XML elements

defined by the RAD notation. The Java code developed to extend the PPT as part of this research is given in

figure 9.3.6.1.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 200 of 333

// process all role elements and create appropriate classes

for (int i=0; i<rolelist.getLength(); i++) {

Element element = (Element)rolelist.item(i);

 Attr att = element.getAttributeNode("xmi:type");

 if (att != null){

 if (att.getNodeValue().equals("Role")) {

 Element child = doc.createElement("packagedElement");

 child.setAttribute("xmi:type", "UML:Class");

 child.setAttribute("xmi:id", element.getAttribute("xmi:id"));

 child.setAttribute("name", element.getAttribute("name"));

 // collect interactions and append them to role

 NodeList vertices = element.getElementsByTagName("vertices");

 for (int j=0; j<vertices.getLength(); j++) {

 Element element2 = (Element)vertices.item(j);

 Attr att2 = element2.getAttributeNode("xmi:type");

 if (att2 != null) {

 if (att2.getNodeValue().equals("Interaction")) {

 Element spchild = doc.createElement("ownedOperation");

 spchild.setAttribute("xmi:id", element2.getAttribute("xmi:id"));

 spchild.setAttribute("name", element2.getAttribute("name"));

 child.appendChild(spchild);

 }

 }

 }

// collect independent activities and append them to role

 NodeList vertices = element.getElementsByTagName("vertices");

 for (int j=0; j<vertices.getLength(); j++) {

 Element element2 = (Element)vertices.item(j);

 Attr att2 = element2.getAttributeNode("xmi:type");

 if (att2 != null) {

 if (att2.getNodeValue().equals("IndependentActivity")) {

 Element spchild = doc.createElement("ownedOperation");

 spchild.setAttribute("xmi:id", element2.getAttribute("xmi:id"));

 spchild.setAttribute("name", element2.getAttribute("name"));

 child.appendChild(spchild);

 }

 }

 }

 packagedElement.appendChild(child);

 }

}

}

// process all prop elements and create appropriate classes

for (int i=0; i<proplist.getLength(); i++) {

Element element = (Element)proplist.item(i);

 Attr att = element.getAttributeNode("xmi:type");

 if (att != null){

 if (att.getNodeValue().equals("Prop")) {

 Element child = doc.createElement("packagedElement");

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 201 of 333

 child.setAttribute("xmi:type", "UML:Class");

 child.setAttribute("xmi:id", element.getAttribute("xmi:id"));

 child.setAttribute("name", element.getAttribute("name"));

 packagedElement.appendChild(child);

 }

}

}

figure 9.3.6.1,54Java extract showing how the Role2Class (r, c), IndependentActivity2Operation (ia, o),

Interaction2Operation (i, o), and Prop2Class (p, c) relations could be implemented in Java (Source:

developed from the PPT source files relating to VIDE (2010a)).

9.4 Summary

This chapter has taken a commercial process and applied the xMDA method for moving from analysis into

design. Three types of UML model were delivered manually, based on the approach which uses alternate

RAD incarnations to account for specification within the CIM phase of the MDA and applies Transformation

and Platform Information to generate system models. The resulting diagrams are constructed using notations

of the business domain, which have been refined to incorporate specification theory, and presented to the PIM

phase of the MDA in a language that is represented by the software community and supported by the MDA

(the UML). It was highlighted that the xMDA method is advantageous in terms of guiding the discovery of

potential issues in deriving specification within the CIM. This makes the xMDA method both useful to the

business and software user, and practical in terms of defining requirements and specification within the MDA.

Both visual and textual QVT-R descriptions of rules proposed to transform a RAD to a UML Class Diagram,

conforming to the SimpleRAD and SimpleUML metamodels respectively, were provided, primarily as a means

to demonstrate the codification of the rules for use within an MDA implementation in the context of the

xMDA. The QVT-R descriptions could also be supported with the provision of QVT-Core and QVT-

Operational language definitions if required for implementation. To extend this, the practical application of

QVT transformation rules in a software implementation has been demonstrated. Based upon the QVT-R

defined at the meta-level, UML classes and operations have been generated from the application of rules,

which reflect those described in the manual transformation process.

It is proposed that the xMDA method successfully facilitates a better connection between what is required by

business and what is delivered by design, and the applicability to MDA implementations has been

demonstrated. Despite the success, it is obvious that further work is required in developing a software solution

to provide for a complete set of relations, with further extension being required to support the auto-generation

of XML relating to the RAD notation and to provide Java coding to carefully cater for all (or as many as

possible) QVT-R involved in rad2umlcd transformations and those involving the generation of other UML

diagrams. It is also clear that some degree of user involvement will be required to ensure that important

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 202 of 333

decisions are not overlooked and, perhaps more importantly, that the software implementation has enough

flexibility to cater for user-defined creations (including the adjustment of object layout, etc.). Moreover, a

complete solution would be required to satisfy the xMDA method in entirety, including the definition and

refinement of involved RAD descriptions.

This investigation has illustrated the advantages of introducing the xMDA method in terms of a requirements

definition; the beauty being that it forces the discovery of potential issues relating to requirements and

specification. Furthermore, the realistic possibility of implementing the xMDA as part of an automated

software solution, in line with MDA ideals, has been demonstrated. This has shown that much (if not all) of

the transformations described as part of this research could be automated. In application to the VIDE software

solutions, a degree of interoperability has also been highlighted and high potential for portability and

reusability demonstrated in consideration of output XML. The xMDA method therefore offers promising

benefits of application.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 203 of 333

Chapter 10

Conclusions

It’s easy to rave about how wonderful life will be if you apply all of these great practices. The hard

part is incorporating new techniques into the way your organisation routinely operates. The grass-

will-be-greener argument motivates some people to change the way they work, but observing that the

grass is on fire right behind you is even more persuasive (Wiegers 2000).

To what extent can the MDA incorporate a requirements definition created by business user involvement

within the CIM phase of the MDA to be practical in the development of software systems?

Many different techniques have been employed in industry for capturing requirements, designing business

processes and ultimately defining software systems. However, from reviewing the available literature, it is

clear that there appears to be very limited information available on the practical use of these methods and/or

the combination of methods, specifically in the context of the MDA. The MDA offers great potential as a

dynamic solution to defining software systems, but somewhat neglects the phases of analysis and

specification, leaving the CIM definition incomplete from the perspective of RE. This thesis defines an

approach based on the literature review, and the results discovered in part of this research, addressing the

connection between business and software ideals within the MDA.

Aim 1: To examine the definition of the CIM within the MDA and consider the appropriation of it as an

interface with the business user for defining requirements in MDA notations.

The business user is proposed to be somewhat disconnected from the MDA in the examination of the CIM in

terms of notation and method. Objective 1 was to examine the connection between the MDA and business.

From reviewing MDA and related literature in Section 4.1.1, it was argued that the MDA has deficiencies and

is not yet a mature technology. The CIM was found to be insufficient at connecting software development

with the business user, in terms of facilitating a requirements definition, and avenues for extending the CIM

were identified. Objective 2 was to determine the sufficiency of the CIM at delivering requirements to the

MDA. It was suggested that what is required by the PIM is in conflict with that which is offered by

requirements documentation. The case relating to the web-based cinema ticketing system adapted from Wa

and Leong (2004) was examined in Section 4.1.2 and supported this argument. By forward and reverse

engineering MDA documentation, software concepts supported in the notations of the UML, such as objects

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 204 of 333

and attributes, were found to be unhelpful in consideration of business users. Such users typically have no

notion of software concepts and are therefore unable to utilise these notations when defining requirements.

The need for and importance of specification and the system boundary was also highlighted. The MDA is

dominated by notations derived from Software Engineering paradigms and would require considerable

extension to adequately cater for the accessibility of the business user, specifically in terms of a requirement

definition.

Aim 2: To discover how other modelling techniques which are accessible to the business user, might be

integrated with the MDA in terms of method and notation, with the focus on transformation and traceability.

The suggestion that situating requirements methods within the MDA may alleviate the inaccessibility of its

use by business was addressed by considering CIM-to-PIM and CIM-to-CIM transformations. Objectives 3

and 4 looked respectively at how requirements might be supported by the PIM and how useful CIM

definitions are at interfacing with the business user. In Section 5.1.1, a simple order processing system was

used to demonstrate how it could be possible to transform from a behavioural model of business (RAD) to a

software counterpart (Activity Diagram). A way to produce a foundation static Class Diagram (RUD) derived

from the RAD was also found by looking at a sample case relating to a traditional musical jukebox system.

However, Section 4.1.2 raised the importance of distinguishing system elements in defining specification.

Although the RAD was found to be rich enough to describe necessary detail, the notation has no mechanism

to account for the system boundary. Therefore, it was suggested that such transformations may prove

unhelpful for software development. In Section 5.1.2 the importance of the system boundary was again

highlighted in the analysis of a supported software notation for modelling the CIM (BPMN) and a business

technique for specification (Use Case) in terms of the simplified travel reservation system case study adapted

from Silver (2008d). The Use Case can represent the system boundary, but it is an extremely simplistic

notation and suggested to be incapable of retaining the richness required of the CIM. Both Sections 5.1.1 and

5.1.2 suggest that notations available to business, such as the RAD and the Use Case, can closely represent

the business process and be utilised by the business user, yet form no part of CIM definition or artefact to the

MDA. Models supported by the MDA, such as those defined in the UML and BPMN, serve better the

Software Engineer than the business community. Evidently, transformations between business and software

models appear to result in a loss of overall richness, with some requirements being distorted or, at worse, lost

to translation. Therefore, a way to enhance the MDA was required by defining an extension which could both

retain such richness and appropriately account for requirements and specification in the process.

Aim 3: To extend the framework of the MDA to account for specification within the CIM.

The fusion of the business process and IT is proposed to be an important step for the MDA and one that will

need to be made before the consolidation of the MDA infrastructure is made. There is a need for the CIM

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 205 of 333

definition to adequately account for requirements, without any constraint on modelling method or tool, in

order that such fusion between business and software be realistic (Hansz and Fado 2003). This is supported by

the findings made in achievement of aims 1 and 2. The argument was to define a mechanism to account for

specification within the CIM, which objective 5 was defined to achieve. In Chapters 6.0 and 7.0, the xMDA

was proposed to extend the MDA framework, and was illustrated via the application of the xMDA method to

a sample order processing case study. The xMDA is defined on the MDA ideals of interoperability, portability

and reusability, with specification at the heart of the CIM, thereby embedding RE within the MDA. This is

suggested to ensure that systems are developed complete and correct from the requirements stage into the

MDA. The use of models, UML-based or otherwise, is encouraged so that they might help “build the system”

(Mellor and Balcer 2002). The keyword here is help. It does not matter that an object is conceptually a

software term, as long as real semantics from RE and BPM paradigms are ideally kept. The xMDA draws on

this notion by defining abstract mechanisms to move the CIM from analysis to design via specification in the

form of three phases (Environment, Shared and Machine) and by applying Transformation and Platform

Information to derive models natural to software design. This was illustrated in Section 6.4 and Chapter 7.0

via the xMDA method in the form of the extended RAD notation which accounts for those phases and meta-

level transformation rules to apply the Machine RAD to the UML. However, it is the intention that the use of

any notation or technique may be applied to the framework, so long as the central notions are adhered to, thus

signifying the extensibility of the framework.

Aim 4: To determine the academic and commercial value of extended mechanisms.

The final objective was defined to verify the extended mechanisms of the xMDA to show how the xMDA and

associated method could be viable and practical. In Chapter 8.0, the xMDA was evaluated in academia using

student subjects. The xMDA method of moving from analysis to design via specification was presented along

with other methods to members of the BPR unit on the Software Systems framework at Bournemouth

University, with written feedback being drawn upon via thematic analysis. Difficulties in moving from

analysis to design were highlighted, with the xMDA method being reflected on positively in terms of

measures included to alleviate concerns, such as the consideration of the system boundary, the thoroughness

of the technique, and the simplicity of application whilst remaining rich in description. The xMDA method

measured successfully in comparison with other techniques, which demonstrated that the xMDA was both

viable and accessible to the students. This addressed key factors in moving from analysis to design in the

development process, however, practical experience and application remained a student concern. Hence,

Chapter 9.0 was directed at verifying the factual application of the xMDA in terms of tools and techniques via

a commercial case study based upon The Club at Meyrick Park, Bournemouth. In Section 9.1, the xMDA and

associated method were found to be manually applicable to the commercial case study in generating models

sufficient for connecting CIM level representations to the PIM via the application of Transformation and

Platform Information. Further to this, the xMDA method was found to provide mechanisms that force the

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 206 of 333

discovery of potential issues for resolution during the specification process and facilitates the discovery of

candidate design classes. To demonstrate the applicability of the xMDA to the techniques of the MDA,

Section 9.2 (and Appendix V) provided the description of transformation rules in the form of QVT-R

definitions. These were then verified in Section 9.3 with application to an MDA tool, producing a software

generated model comparable to that which was created from manual application, thus laying foundation to

potential semi-automated software support.

“There is no single correct way to analyse system requirements” (Sommerville 2004). However, interaction

and collaboration between non-technical stakeholders and technical developers in generating requirements for

the system to be delivered in the PIM, rather than transferring elements from the PD into software systems

design models (Génova et al. 2005; Nuseibeh and Easterbrook 2000), is considered to be the real benefit of

this research. It is likely to remain difficult to make a pronounced connection to business with the current

deficiency of specification within the MDA. By giving consideration to the tools and techniques available to

RE and the MDA, it is possible to make the connection between domain and software models. This research

has exposed the inadequacy of the CIM at delivering a true model of requirements, and provided a solution

that includes transformation and traceability mechanisms in terms of the xMDA framework, and verified this

via method application.

10.1 Contributions

In conclusion, the contributions of this thesis are viewed to be as follows:

• The justification for and description of an extended framework into which different notations

and tools can be placed to facilitate the accessibility of the MDA to business users;

• A unique method, including a mechanism for evolving an analysis RAD into a RAD suitable for

specification within the MDA by extending the RAD notation, and rules to transform RAD

elements into the UML (e.g. the RUD) derived from the SimpleRAD and SimpleUML

metamodels (developed by this research), conforming to the MOF; and

• The verification of the extended framework and associated method, demonstrating the viability

and accessibility of the xMDA to academia as learnable, and to industry as applicable,

highlighting analysis problems often overlooked by the MDA when applied to commercial

processes, and practical in terms of MDA tools and techniques.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 207 of 333

10.2 Related Work

Half of art is knowing when to stop (Arthur W. Radford).

The chairs of the OMG’s Object and Reference Model Subcommittee (ORMSC) and the OMG’s MDA Users’

Group have been approached via the Vice President and Technical Director of the OMG regarding the

findings of this research, in the hope that the xMDA might affect the MDA standard to account for

discoveries made by this research. The investigation into the applicability of the xMDA is expected to

continue, specifically focusing on extending the verification of commercial application, and further

submissions to the OMG regarding the direction and future of the MDA Guide are likely to be made.

Further research is required in examining the xMDA, utilising alternate and combined techniques, with the

view of discovering more about how versatile the proposal really is. Analysis could be conducted in terms of

the RAD replacing current modelling conventions, such as the Use Case and Activity diagrams. Therefore,

further theoretical examination ought to be conducted relating to aim 2 on how other modelling techniques

which are accessible to the business user might be integrated with the MDA, and how such techniques might

complement one another. Specifically, this could be directed at discovering whether or not there is correlation

between techniques and how the early derivation and/or automation of test cases might support the software

process. Suggestion is given that the interface between analysis and design can be achieved within the MDA

through the application of appropriate techniques which are not founded on Software Engineering concepts,

so continued focus should be given to such techniques and applying those that hold the most promise to the

xMDA. The xMDA method could be applied with greater rigor in a multitude of situations and combinations,

or even in an enterprise test environment, so as to ascertain whether or not the Transformation and Platform

Information could really be bi-directional and applicable across multiple languages. For example, supporting

the generation of a RAD from the UML, and supporting the generation of models to and from alternate

languages. This would be ideal since it would enable models of design to be reversed engineered into a RAD

(or other suitable language) that facilitates the understanding of business and software, such as the BPMN.

This type of investigation could be extended to examine the validity of the xMDA in support of procedural

and combined solutions, away from object orientation and the support of other software processes such as the

SOA. Moreover, analysis is required in determining how sufficient the Machine RAD generated Class

Diagram is to design. It is possible that since the Class Diagram is generated out of specification in a software

language, designers may presume the design task is complete (or even started). However, this should not be

the case since xMDA output is pure specification, and not design at all. The use of this output therefore

amounts to nothing more than specification, irrespective of language, and ought not to be considered

otherwise without sufficient attention being placed on design.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 208 of 333

Regarding tool support for the xMDA method, there are many avenues of research worthy of consideration.

An enactor engine for the RAD that incorporates the xMDA would be useful in part to develop a tool that

entirely supports BPM and the xMDA, since none is currently available. Similarly, an enhancement to enable

XML to be generated from the RAD notation would also assist in moving the RAD into mainstream process

modelling within BPM and software development. This investigation could be extended to further account for

more, if not all, of the QVT-R described in Appendix V, by producing the necessary Java code. With a degree

of vision, it is possible to imagine an xMDA tool that could support many alternate transformation definitions,

in many different languages, for many alternate notations. This would require a powerful transformation

engine that should be orchestrated to account for user-defined creations in the refinement of analysis models

through specification and ultimately, into design via Transformation and Platform Information. Moreover, the

increase in complexity and cost for users to learn associated tools and methods also requires consideration.

From the wider perspective of the MDA, other avenues of research could be taken to investigate the

application further. The MDA comes with much promise, however, little is known about the real cost

associated with MDA projects and modelling training. Many tools claim to support MDA ideals, but just as

many are found to be in breach of the MDA specification and cause users to become locked into using

specific tools, mutate available conventions, or to neglect phases (such as the CIM) because tool support is

questionable or unavailable. There are also other avenues to model driven development (and development in

general) which could be investigated comparatively with the MDA (such as the SOA) to see if the promise the

MDA offers is realistic in terms of application and implementation in the wider software process field.

The outcome of software system operation in the real-world is inherently uncertain with the precise

area of uncertainty also not knowable (Lehman 1989).

In summary, the key to successfully migrating from an outlined description of user needs to a concise set of

specifications, and indeed, eventually to a fully functional and successful system, is to understand the

customer requirements, the software application, the available resources and the surrounding environment

(Sommerville 2004). Moreover, Al-Neimat (2005), Bilodeau (2010), Gonzales (2009b), Ward-Dutton (2011)

raise the important issue of managerial support for such initiatives. Rothman (Rothman 2007) specifically

highlights key management ideals, whilst not being exhaustive, it is thought that the presence of such support

systems would help to ensure that the right management culture is in place for the successful implementation

of the xMDA. The Greek philosopher Plato once proclaimed that “no law or ordinance is mightier than

understanding” and in the context of successful MDA implementation, the understanding between business

and software is vital.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 209 of 333

References

Abeysinghe, G., and Phalp, K., 1997. Combining process modelling methods. Information and Software

Technology, 39 (2), 107 - 124.

Adler, A. D. 2001. New frontiers in sketch understanding (pp. 9): MIT MEngTP.

Al-Neimat, T., 2005. Why it projects fail. The Project Perfect White Paper Collection. Available from:

http://www.projectperfect.com.au/downloads/Info/info_it_projects_fail.pdf [Accessed: 22nd June

2009].

Ambler, S. W., 2007. A roadmap for agile MDA. Available from:

http://www.agilemodeling.com/essays/agileMDA.htm [Accessed: 26th October 2007].

Ample. 2007. Ample project. Available from: http://www.ample-project.net/ [Accessed: 31st October 2007].

Appukuttan, B., Clark, T., Reddy, S., Tratt, L., and Venkatesh, R., 2003a, Tuesday, October 21st, 2003. A

model driven approach to building implementable model transformations. Paper presented at the

Workshop in Software Model Engineering, 6th International Conference on the Unified Modelling

Language, San Francisco, USA.

Appukuttan, B., Clark, T., Reddy, S., Tratt, L., and Venkatesh, R., 2003b. A model driven approach to model

transformations. Model Driven Architecture: Foundations and Applications. University of Twente, 7

- 18.

Ashok, V., Ramanathan, J., Sarker, S., and Venugopal, V., 1988, 11 - 13th May 1988. Process modelling in

software environments. Paper presented at the 4th International Software Process Workshop,

Moretonhampstead, Devon, UK.

Atwood, D., 2006. BPM process patterns: Repeatable design for BPM process models. BPTrends. Available

from:

http://www.businessprocesstrends.com/publicationfiles/05%2D06%2DWP%2DBPMProcessPatterns

%2DAtwood1%2Epdf [Accessed: 20th February 2008].

Badica, C., Teodorescu, M., Spahiu, C., Badica, A., and Fox, C., 2005. Integrating Role Activity Diagrams

and hybrid IDEF for business process modelling using MDA. Paper presented at the 7th International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

Baskerville, R. L., 1997. Distinguishing action research from participative case studies. Journal of Systems

and Information Technology, 1 (1), 25 - 45.

Baskerville, R. L., 1999. Investigating information systems with action research. Communications of the

Association for Information Systems, 2 (19), 32.

Basson, G., 2009a. Integrated business management in the process age: Creating an agile business

management paradigm. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/integrated-business-management-in-the-process-

age-creating-an-agile-business-management-paradigm.html [Accessed: 3rd June 2009].

Basson, G., 2009b. Process-oriented systems paradigm for the process age. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/process-oriented-systems-paradigm-for-the-

process-age.html [Accessed: 2nd July 2009].

Beeson, I., Green, S., Sa, J., and Sully, A., 2002. Linking business processes and information systems

provision in a dynamic environment. Information Systems Frontiers, 4 (3), 317-329.

Berrisford, G., 2004, September 2004. Why IT veterans are sceptical about MDA. Paper presented at the 2nd

European Workshop On Model Driven Architecture, Canterbury, UK.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 210 of 333

Bilodeau, N., 2010. Process ownership and governance; paradigm shift. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/process-ownership-and-governance-paradigm-

shift.html [Accessed: 28th March 2011].

Blanc, X., 2009, 2nd April 2009. Model Driven Software Engineering Environment. Paper presented at the

4th edition of Kermeta Workshop, IRISA Rennes, France.

Bleistein, S. J., Cox, K., Verner, J., and Phalp, K. T., 2006. B-SCP: A requirements analysis framework for

validating strategic alignment of organisational it based on strategy, context and process. Information

and Software Technology, 48 (9), 846 - 868.

Boyko, S., Dvorak, R., and Igdalov, A., 2009, 23rd - 26th March 2009. The art of model transformation with

operational QVT. Paper presented at the EclipseCon, Santa Clara, California.

Braa, K., and Vidgen, R., 1999. Interpretation, intervention, and reduction in the organisational laboratory: A

framework for in-context information system research. Accounting, Management and Information

Technologies, 9 (1), 25 - 47.

Brahe, S., and Bordbar, B., 2006, December 4 - 7th, 2006. A pattern-based approach to business process

modelling and implementation in web services. Paper presented at the 4th International Conference

on Service-Oriented Computing (ICSOC), Chicago, IL, USA.

Brannen, J. 2005. Mixed methods research: A discussion paper, NCRM Methods Review Papers: Institute of

Education, University of London.

Bray, I., 2002. An introduction to requirements engineering. England: Addison Wesley.

Bray, I., 2004. Lecture notes on analysis. Bournemouth University. Available from:

http://dec.bournemouth.ac.uk/staff/ibray/RElecture03(analysis&SA).ppt [Accessed: 16th March

2011].

Brooks, F., 1975. The mythical man-month: Essays on software engineering. Boston, USA: Addison-Wesley

Publishing.

Brown, A. W., 2004a. An introduction to Model Driven Architecture. Available from: http://www-

128.ibm.com/developerworks/rational/library/3100.html [Accessed: 20th November 2007].

Brown, A. W., 2004b. Model Driven Architecture: Principles and practice. Software Systems Modelling, 3,

314 - 327.

Brown, A. W., 2008, 25th - 29th February. MDA redux: Practical realization of Model Driven Architecture.

Paper presented at the 7th International Conference on Composition-Based Software Systems

(ICCBSS 2008), Madrid, Spain.

Brown, A. W., Iyengar, S., and Johnston, S., 2006. A rational approach to Model-Driven Development. IBM

Syst. J., 45 (3), 463-480.

Bureck, M., 2009, 9th June 2009. Visual QVT/R: A concrete graphical syntax for QVT/R. Paper presented at

the Eclipse DemoCamp, Berlin.

Bushell, S., 2005. Is there a method to the BPM madness? A review of two books describing a new

foundation for business process management. A BPT Book Review. Available from:

http://www.bptrends.com/publicationfiles/10-

05%20BR%20BPM%20and%20Human%20Interactions%20-%20%20Sue%20Bushell.pdf

[Accessed: 19th April 2010].

Cachia, E., 2005. DFD from textual description (an example). The University of Malta. Available from:

http://staff.um.edu.mt/ecac1//files/DFD_from_description.pdf [Accessed: 6th July 2009].

Card, D. N., Church, V. E., and Agresti, W. W., 1986. An empirical study of software design practices. IEEE

Trans. Softw. Eng., 12 (2), 264-271.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 211 of 333

Casallas, R., Acero, C., and López, N., 2005. From high level business rules to an implementation on an

event-based platform to integrate applications. Paper presented at the EDOC Workshop, VORTE,

Enshede, The Netherlands.

Castro, J., Kolp, M., and Mylopoulos, J., 2002. Towards requirements-driven information systems

engineering: The tropos project. Inf. Syst., 27 (6), 365-389.

Celms, E., Kalnins, A., and Lace, L., 2003, October 2003. Diagram definition facilities based on metamodel

mappings. Paper presented at the 18th International Conference, OOPSLA’2003 (Workshop on

Domain-Specific Modelling) Anaheim, California, USA.

Checkland, P., 1981. Systems thinking, systems practice. John Wiley & Sons, Chichester.

Checkland, P., 2000. Soft systems methodology: A thirty year retrospective. Systems Research and

Behavioural Science, 17 (S1), S11 - S58.

Checkland, P., and Scholes. 1990. Soft systems methodology in action. John Wiley & Sons, Chichester.

Chen, P. P.-S., 1976. The Entity-Relationship model - toward a unified view of data. 1 (1), 9 - 36.

Chen, P. P., 1983. English sentence structure and Entity-Relationship diagrams. Information Sciences, 1 (1),

127 - 149.

Cobern, W. W., 1993. World view, metaphysics, and epistemology. Paper presented at the Annual Meeting of

the National Association for Research in Science Teaching, Atlanta, Georgia, U.S.A.

Cockburn, A., 2007. Agile software development : The cooperative game. Second ed. Upper Saddle River,

NJ: Addison-Wesley.

Conradi, R., Fernström, C., Fuggetta, A., and Snowdon, R. A., 1992. Towards a reference framework for

process concepts. Paper presented at the 2nd European Workshop on Software Process Technology.

Conradi, R., Høydalsvik, G. M., and Sindre, G., 1994, February 1994. A comparison of modelling frameworks

for software processes and information systems. Paper presented at the 3rd European Workshop on

Software Process Technology (EWSPT), Villard de Lans, France.

Cook, S., 2004a. MDA journal: Domain specific modelling and Model Driven Architecture. A BPT Column.

Available from:

http://www.bptrends.com/deliver_file.cfm?fileType=publication&fileName=01%2D04%20COL%20

Dom%20Spec%20Modeling%20Frankel%2DCook%2Epdf [Accessed: 6th January 2004].

Cook, S., 2004b, October 11-14, 2004. Software factories. Paper presented at the Strategic Architect Forum,

Redmond, Washington.

Coughlan, J., and Macredie, R., 2002. Effective communication in requirements elicitation: A comparison of

methodologies. Requirements Engineering, 7 (2), 47 - 60.

Cox, K., Dubois, E., Pigneur, Y., Bleistein, S. J., Verner, J., Davis, A. M., and Wieringa, R., 2005a, 29 - 30th

August 2005. Introductory notes. Paper presented at the 1st International Workshop on

Requirements Engineering for Business Need and IT Alignment (REBNITA), part of the 13th IEEE

International Requirements Engineering Conference (RE), Sorbonne, Paris, France.

Cox, K., and Phalp, K., 2003, 16 - 17 June 2003. From process model to problem frame - a position paper.

Paper presented at the 9th International Workshop on Requirements Engineering: Foundation For

Software Quality (REFSQ), Essener Informatik Beitrage, Velden, Austria.

Cox, K., Phalp, K., and Shepperd, M., 2001, June 2001. Comparing use case writing guidelines. Paper

presented at the 7th international workshop on requirements engineering: Foundation for software

quality (REFSQ’01), Interlaken, Switzerland.

Cox, K., and Phalp, K. T., 2007. Practical experience of eliciting classes from use case descriptions. J. Syst.

Softw., 80 (8), 1286-1304.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 212 of 333

Cox, K., Phalp, K. T., Bleistein, S. J., and Verner, J. M., 2005b. Deriving requirements from process models

via the problem frames approach. Information and Software Technology, 47 (5), 319-337.

Dan, L., 2010, 22nd - 26th March 2010 QVT based model transformation from sequence diagram to CSP.

Paper presented at the 5th IEEE International workshop UML and AADL, held in conjunction with

the 15th International Conference on Engineering of Complex Computer Systems (ICECCS),

University of Oxford, UK.

Dawkins, S., 1998. Role Activity Diagrams for safety process definition. Paper presented at the 16th

International System Safety Conference, Seattle, WA, USA.

Debevoise, T., and Smith, M., 2009. Round table: A truly business-friendly approach to BPM and BRM.

BPMInstitute.org. Available from: http://www.bpminstitute.org/roundtables/upcoming-round-

table/article/a-truly-business-friendly-approach-to-BPM-and-brm.html [Accessed: 18th March

2009].

Deiters, W., Gruhn, V., and W.Schafer. 1989, 10 - 13th October 1989. Process programming: A structured

multi-paradigm approach could be achieved. Paper presented at the 5th International Software

Process Workshop, Kennebunkport, Maine, USA.

Demarco, T., 1979. Structured analysis and system specification. Prentice Hall PTR.

Deveaux, R. D., Velleman, P. F., and Bock, D. E., 2005. Stats: Data & models. International ed. London,

UK: Addison-Wesley.

Dijkstra, E. W., 1968. Letters to the editor: Go To statement considered harmful. Communications of the

ACM, 11 (3), 147 - 148.

Dowdle, P., and Stevens, J., 2009. Starting the journey towards process based management. BPMInstitute.org.

Available from: http://www.bpminstitute.org/articles/article/article/starting-the-journey-towards-

process-based-management.html [Accessed: 4th June 2009].

Dowson, M., 1987a. IStar - an integrated project support environment. ACM SIGPLAN Notices, 22 (1), 27 -

33.

Dowson, M., 1987b, 30th March - 2nd April. IStar and the contractual approach. Paper presented at the 9th

international conference on Software Engineering, Monterey, California, USA.

Dowson, M., 1987c, 30th March - 2nd April. Iteration in the software process; review of the 3rd international

software process workshop. Paper presented at the 9th international conference on Software

Engineering, Monterey, California, USA.

Dubielewicz, I., Hnatkowska, B., Huzar, Z., and Tuzinkiewicz, L., 2006. An approach to evaluation of

PSM/MDA database models in the context of transaction performance. International Journal Of

Computer Science And Network Security (IJCSNS), 6 (10).

Dwyer, T., 2010. Is the Business Process Modelling Notation (BPMN) suitable for use by business people?

Available from:

http://brainstorm.leveragesoftware.com/group_discussion.aspx?DiscussionID=1d0a140989b04ac191

f87fb87c3e8707 [Accessed: 3rd March 2011].

Easterbrook, S., 2003. Lecture 6: Requirements modelling ii. Lecture notes on Requirements Engineering,

University of Toronto. Available from: http://www.cs.toronto.edu/~sme/CSC2106S/slides/06-

modeling-info-behav.pdf [Accessed: 31st July 2009].

Edlich, S., Paterson, J., and Hörning, H., 2006. The definitive guide to DB4O. Apress.

Elliott, J., and Raynor-Smith, P., 2000, February 2000. Achieving customer satisfaction through requirements

understanding. Paper presented at the 7th European Workshop on Software Process Technology

(EWSPT) Kaprun, Austria.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 213 of 333

Fingar, P., 2007. Extreme competition - edp audit and control redux. BPTrends. Available from:

http://www.bptrends.com/publicationfiles/11%2D07%2DCOL%2DEDP%20Audit%2DFingar%2DF

inal%2Epdf [Accessed: 27th March 2008].

Finkelstein, A., 1987, 17 - 19th November 1986. Making formal specifications dynamic objects. Paper

presented at the 3rd International Software Process Workshop, Colorado, USA.

Ford, N., 2009. UML failed so here we have AML (Arbitrary Modelling Language). Architects Zone.

Available from: http://architects.dzone.com/news/UML-failed-so-here-we-have-aml [Accessed:

26th June 2009].

Fouad, A., Phalp, K., Jeary, S., and Kanyaru, J. M., 2009, 6 - 8th April 2009. The consideration of a

requirements phase in the Model Driven Architecture. Paper presented at the Software Quality in the

21st Century, Software Quality XVII, 17th International Software Quality Management Conference

(SQM), Southampton, UK.

Fouad, A., Phalp, K., Kanyaru, J. M., and Jeary, S., 2011. Embedding requirements within the Model Driven

Architecture. Software Quality Journal, 19 (2), 411 - 430.

Frank, U., 2002. Multi-perspective Enterprise Modelling (MEMO) - conceptual framework and modelling

languages. Paper presented at the 35th Annual Hawaii International Conference on System Sciences

(HICSS).

Frankel, D. S., 2005. MDA journal: Eclipse and the MDA. A BPT Column. Available from:

http://www.bptrends.com/publicationfiles/03%2D05%20COL%20Eclipse%20and%20MDA%20%2

0%2D%20Frankel1%2Epdf [Accessed: 24th September 2008].

Frankel, D. S., 2006. Model-driven business process platforms. Available from:

http://www.omg.org/MDA/MDA-webcasts.htm [Accessed: 2nd November 2007].

FT. 2007. Smartqvt documentation, France Telecom.

Gane, C., and Sarson, T., 1977. Structured systems analysis: Tools and techniques. McDonnell Douglas

Systems Integration Company.

Gao, Y., 2006. BPMN - BPEL transformation and round trip engineering. Available from:

http://www.eclarus.com/pdf/BPMN_BPEL_Mapping.pdf [Accessed: 18th August 2008].

Garrido, J. L., Noguera, M., Gonzlez, M., Hurtado, M. V., and Rodríguez, M. L., 2007. Definition and use of

Computation Independent Models in an MDA-based groupware development process. Science of

Computer Programming, 66 (1), 25 - 43.

Génova, G., Valiente, M. C., and Nubiola, J., 2005, 13 - 14 June 2005. A semiotic approach to UML models.

Paper presented at the 1st International Workshop on Philosophical Foundations of Information

Systems Engineering (PHISE) - In the proceedings of the 17th Conference on Advanced Information

Systems Engineering (CAiSE) workshops, Porto, Portugal.

Giandini, R., Pons, C., and Pérez, G., 2009, 13 - 17th April 2009. A two-level formal semantics for the QVT

language. Paper presented at the 12th Ibero-American conference on software engineering (CIbSE),

Medellín, Colombia.

Gill, J., and Johnson, P., 1997. Research methods for managers. Second ed. Hants, UK: Paul Chapman

Publishing Limited.

Glaser, B. G., and Strauss, A., 1967. The discovery of grounded theory: Strategies for qualitative research.

Chicago: Aldine Transaction.

Golbaz, M., Hasheminasab, A., and Daneshpour, N., 2008, 19 - 21 March 2008. An XML definition language

to support use case-based requirements engineering. Paper presented at the International

MultiConference of Engineers and Computer Scientists (IMECS), Regal Kowloon Hotel,

Tsimshatsui, Kowloon, Hong Kong.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 214 of 333

Gonzales, R. C., 2009a. Formal definition of the process to be automated (second pillar). BPMInstitute.org.

Available from: http://www.bpminstitute.org/articles/article/article/formal-definition-of-the-process-

to-be-automated-second-pillar.html [Accessed: 23rd October 2009].

Gonzales, R. C., 2009b. Four pillars for business process automation. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/four-pillars-for-business-process-

automation/news-browse/1.html [Accessed: 5th June 2009].

Gotel, O. C. Z., and Finkelstein, A. C. W., 1994, 18th - 22nd April 1994. An analysis of the requirements

traceability problem. Paper presented at the 1st International Conference on Requirements

Engineering (ICRE'94), Colorado Springs, USA.

Greenspan, S., Mylopoulos, J., and Borgida, A., 1994. On formal requirements modelling languages: RML

revisited. Paper presented at the 16th international conference on Software engineering, Sorrento,

Italy.

Greenspan, S. J., Mylopoulos, J., and Borgida, A., 1982. Capturing more world knowledge in the

requirements specification. Paper presented at the 6th international conference on Software

engineering, Tokyo, Japan.

Grimm, F., Beier, G., Phalp, K., and Vincent, J., 2007, 20th February 2007. Towards semiautomatic, mental-

map-preserving visual merging of UML class models. Paper presented at the IADIS International

Conference Applied Computing, Salamanca, Spain.

Grützner, I., Münch, J., Fernandez, A., and Garzaldeen, B., 2004. Guided support for collaborative modelling,

enactment and simulation of software development processes. Software Process: Improvement and

Practice - Special Issue on ProSim 2003, The 4th International Workshop on Software Process

Simulation and Modelling, Portland, OR, May 2003, 9 (2), 95 - 106.

Gunter, C. A., Gunter, E. L., Jackson, M., and Zave, P., 2000. A reference model for requirements and

specifications. IEEE Softw., 17 (3), 37-43.

Gupta, N., 2007a. Descriptive specifications of software systems. The University of Arizona. Available from:

http://www.cs.arizona.edu/classes/cs436/spring07/Lectures/LogicSpec1.PDF [Accessed: 27th July

2009].

Gupta, N., 2007b. Finite state machines. The University of Arizona. Available from:

http://www.cs.arizona.edu/classes/cs436/spring07/Lectures/FSM.pdf [Accessed: 22nd July 2009].

Gupta, N., 2007c. Introduction to software specifications and Data Flow Diagrams. The University of Arizona.

Available from: http://www.cs.arizona.edu/classes/cs436/spring07/Lectures/IntroDFD.pdf

[Accessed: 21st July 2009].

Gustavson, P., 2004, September 11-15th. Fitting the UML into your development process. Paper presented at

the Borland Conference, San Jose, California.

Haan, J. D., 2009. 8 reasons why model-driven development is dangerous. The Enterprise Architect: Building

and Agile Enterprise. Available from: http://www.theenterprisearchitect.eu/archive/2009/06/25/8-

reasons-why-model-driven-development-is-dangerous [Accessed: 1st July 2009].

Haan, J. D., 2011. Why aren’t we all doing model driven development yet? Available from:

http://www.theenterprisearchitect.eu/archive/2011/04/16/why-arent-we-all-doing-model-driven-

development-yet [Accessed: 20th April 2011].

Hammond, T. A. 2001. Natural sketch recognition in UML class diagrams, MIT Student Oxygen Workshop.

USA: MIT.

Hampton, C. R., 2004. Epistemology to Ontology. Journal of the ACMS.

Hansz, D., and Fado, D., 2003, December 2-5. Unambiguous, non- binding requirements for MDA. Paper

presented at the MDA™ Implementers' Workshop Succeeding with Model Driven Systems,

Burlingame, CA, USA

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 215 of 333

Harel, D., 1988. On visual formalisms. Communications of the ACM, 31 (5), 514 - 530.

Harmon, P., 2005. Email advisor: Standardising business process notation. Business Process Trends, 3 (19).

Harmon, P., 2006. Review of "Learning to see" By Mike Rother and John Shook. The Lean enterprise, ver.

1.3, 2003. A BPT Book Review. Available from:

http://www.bptrends.com/publicationfiles/01%2D06%20BR%20Learning%20to%20See%20%2D%

20Rother%2DShook%20ph1%2Epdf [Accessed: 3rd September 2008].

Harrington, J. L., 2000. Object-oriented database design clearly explained. Morgan Kaufmann Publishers Inc.

Harrison-Broninski, K., 2005a. Modelling human interactions: Part 2. BPTrends. Available from:

http://www.businessprocesstrends.com/publicationfiles/07%2D05%20WP%20Modeling%20Human

%20Interactions%20%2D%20Pt%202%20%2D%20Harrison%2DBro%E2%80%A6%2Epdf

[Accessed: 29th August 2008].

Harrison-Broninski, K., 2005b. RADs and the UML. 1.0. Available from: http://human-interaction-

management.info/RADs_and_the_UML_1_0.pdf [Accessed: 2nd September 2008].

Harrison-Broninski, K., 2005c. The technology of human interaction management. BPM.COM. Available

from: http://www.BPM.com/FeatureRO.asp?FeatureId=168 [Accessed: 26th March 2008].

Harrison-Broninski, K., 2006a. BPM, anyone? BPTrends. Available from:

http://www.businessprocesstrends.com/deliver_file.cfm?fileType=publication&fileName=02-06-

DIS-Re-ReStandardizingBPNotation-Harrison-Broninski.pdf [Accessed: 6th February 2008].

Harrison-Broninski, K., 2006b. Business system support case study. BPTrends. Available from:

http://www.businessprocesstrends.com/publicationfiles/01%2D06%2DCS%2DBusiness%5FSystem

%5FSupport%5FCase%5FStudy%2DHarrison%2DBroninski%2Epdf [Accessed: 27th February

2008].

Harrison-Broninski, K., 2006c. The future of BPM (parts 1 to 6). BPTrends. Available from:

http://www.businessprocesstrends.com/resources_publications.cfm?publicationtypeID=DFFB9D1C-

1031-D522-3AAF1211DDD4AD95 [Accessed: 18th November 2008].

Harrison-Broninski, K., and Hayden, F., 2004. Role-based transaction management in collaborative systems.

Available from: http://66.102.1.104/scholar?hl=en&lr=&q=cache:BFLxb1i-S5AJ:www.human-

interaction-management.info/A%2520Role-

Based%2520Approach%2520To%2520Business%2520Process%2520Management.pdf+ [Accessed:

14th November 2008].

Havey, M., 2007. The flesh and bone of soa. SOA World Magazine. Available from: http://soa.sys-

con.com/node/380265/print [Accessed: 13th November 2008].

Henderson, P., and Pratten, G. D., 1995, November 6 - 10th. POSD - a notation for presenting complex

systems of processes. Paper presented at the 1st IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS), Florida, USA.

Hendryx, S., Vincent, P., and Cribbs, J., 2002, October 21st - 24th, 2002. Business rules with MDA. Paper

presented at the Third Workshop on UML® for Enterprise Applications: Model Driven Solutions for

the Enterprise, San Francisco, CA, USA.

Hoare, C. A. R., 1978. Communicating Sequential Processes. Communications of the ACM, 21 (8), 666 - 677.

Hofstader, J., 2006. Building distributed applications - model-driven development. Available from:

http://msdn2.microsoft.com/en-us/library/aa964145.aspx [Accessed: 10th October 2007].

Hogg, L., 2009. Case management strategies and best practices: Taking traditional BPM way beyond

conventional workflow, routing and collaboration. BPMInstitute.org. Available from:

http://www.bpminstitute.org/roundtables/upcoming-round-table/article/taking-traditional-BPM-way-

beyond-conventional-workflow-routing-and-collaboration.html [Accessed: 1st September 2009].

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 216 of 333

Horan, P., 2000. Using rich pictures in information systems teaching. Paper presented at the 1st International

Conference on Systems Thinking in Management (ICSTM), Geelong, Australia.

Huseth, S., and Vines, D., 1987, 17 - 19th November 1986. Describing the software process. Paper presented

at the 3rd International Software Process Workshop, Colorado, USA.

Husserl, E., 2001. Logical investigations. London: Routledge.

Huxley, A., 1971. The doors of perception & heaven and hell. Middlesex, UK: Penguin Books Limited.

Ignjatovic, M., 2006. OMG: Query/View/Transformation. ObjektSpektrum. Available from:

http://www.sofismo.ch/links/OMG-QVT_ObjektSpektrum_2006_E.pdf [Accessed: 6th April 2010].

Ikeda, K., 2007. A critical examination of the interview as a research method for qualitative language-based

studies. Language and Culture, Nagoya University Graduate School of Languages and Cultures, 29

(1), 63 - 73.

Ince, D. C., Sharp, H., and Woodman, M., 1993. Introduction to software project management and quality

assurance. Maidenhead, Berkshire, England: McGraw-Hill, Inc.

Issa, A., Odeh, M., and Coward, D., 2005. Using use case models to generate object points. Paper presented

at the IASTED International Conference on Software Engineering, Austria.

Jackson, M., 1995. Software requirements & specifications: A lexicon of practice, principles and prejudices.

Harlow, England: ACM Press Books, Addison-Wesley.

Jackson, M., 2000. The real world. Paper presented at the Millennial Perspectives in Computer Science, 1999

Oxford-Microsoft symposium in honour of Sir Antony Hoare, St. Catherine's College, Oxford, UK.

Jackson, M., and Zave, P., 1993. Domain descriptions. Paper presented at the 2nd IEEE International

Symposium on Requirements Engineering, Los Alamitos, CA, USA.

Jackson, M., and Zave, P., 1995. Deriving specifications from requirements: An example. Paper presented at

the 17th international conference on Software engineering, Seattle, Washington, United States.

Jackson, M. A., 1982. A system development method. In: Tools and notions for program construction: An

advanced course, Nice: Cambridge University Press, 1982.

Jeary, S., Fouad, A., and Phalp, K., 2008, 30th June - 4th July 2008. Extending the Model Driven Architecture

with a pre-CIM level. Paper presented at the 1st International Workshop on Business Support for

MDA (MDABIZ), co-located with Tools Europe, Zurich, Switzerland.

Johnson, W. L., 1987, 17 - 19th November 1986. Specification via scenarios and views. Paper presented at

the 3rd International Software Process Workshop, Colorado, USA.

Johnson, W. L., 1988. Deriving specifications from requirements. Paper presented at the 10th international

conference on Software engineering, Singapore.

Jos, W., and Anneke, K., 2003. The Object Constraint Language: Getting your models ready for MDA.

Addison-Wesley Longman Publishing Co., Inc.

Jouault, F., and Kurtev, I., 2006. On the architectural alignment of ATL and QVT. Paper presented at the 2006

ACM symposium on Applied computing, Dijon, France.

Kabanda, S., and Adigun, M., 2006. Extending Model Driven Architecture benefits to requirements

engineering. Paper presented at the 2006 annual research conference of the South African institute of

computer scientists and information technologists on IT research in developing countries, Somerset

West, South Africa.

Kaiser, G. E., 1988, 11 - 13th May 1988. Rule-based modelling of the software development process. Paper

presented at the 4th International Software Process Workshop, Moretonhampstead, Devon, UK.

Kanyaru, J. M., 2006. Requirements validation with enactable descriptions of use cases. Thesis (Ph.D.).

Bournemouth University, Bournemouth.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 217 of 333

Kanyaru, J. M., Coles, M., Jeary, S., and Phalp, K., 2008a, 3rd July 2008. Using visualisation to elicit domain

information as part of the Model Driven Architecture approach. Paper presented at the 1st

International Workshop on Business Support for MDA (MDABIZ), co-located with Tools Europe,

Zurich, Switzerland.

Kanyaru, J. M., Jeary, S., Coles, M., Phalp, K., and Vincent, J., 2008b. Assessing graphical user interfaces in

modelling tools for MDA using cognitive dimensions. Paper presented at the Software Quality

Management 2008, University of Ulster, Newtownabbey, Northern Ireland.

Kanyaru, J. M., and Phalp, K., 2005, 29th August - 2nd September, 2005. Aligning business process models

with specifications using enactable use case tools. Paper presented at the 1st International Workshop

on Requirements Engineering for Business Need and IT Alignment (REBNITA), part of the 13th

IEEE International Requirements Engineering Conference (RE), Sorbonne, Paris, France.

Kanyaru, J. M., and Phalp, K., 2009. Validating software requirements with enactable use case descriptions.

14 (1), 1-14.

Kappelman, L. A., Mckeeman, R., and Zhang, L., 2006. Early warning signs of it project failure: The

dominant dozen. Information Systems Management: IT Project Management, 23 (4), 31 - 36.

Karow, M., and Gehlert, A., 2006, 4th - 6th August 2006. On the transition from Computation Independent to

Platform Independent Models. Paper presented at the 12th Americas Conference on Information

Systems (AMCIS), Acapulco, Mexico.

Katayama, T., 1988, 11 - 13th May 1988. A hierarchical and functional approach to software process

description. Paper presented at the 4th International Software Process Workshop,

Moretonhampstead, Devon, UK.

Kavakli, E., 2004. Modelling organizational goals: Analysis of current methods. Paper presented at the 2004

ACM symposium on Applied computing, Nicosia, Cyprus.

Kavis, M., 2008. CERN leverages BPMS tools to become more efficient. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/cern-leverages-bpms-tools-to-become-more-

efficient.html [Accessed: 9th June 2008].

Kellner, M. I., 1989, 10 - 13th October 1989. Software process modelling example. Paper presented at the 5th

International Software Process Workshop, Kennebunkport, Maine, USA.

Kellner, M. I., 1991, 21st - 22nd October 1991. Software process modelling support for management

planning and control. Paper presented at the 1st International Conference on the Software Process:

Manufacturing Complex Systems, Redondo Beach, California, USA.

Kemsley, S., 2006. A short history of BPM, part 1 - column 2. ebizQ: The Insider's Guide to Business and IT

Agility. Available from: http://www.ebizq.net/blogs/column2/2006/05/a_short_history.php

[Accessed: 15th February 2008].

Kherraf, S., Lefebvre, E., and Suryn, W., 2008, 25 - 28 March 2008. Transformation from CIM to PIM using

patterns and archetypes. Paper presented at the 19th Australian Conference on Software Engineering

(ASWEC), Perth, Western Australia.

Kim, H.-K., 2008. Modelling of distributed systems with SOA & MDA. IAENG International Journal of

Computer Science, 35 (4).

King, N., 2006. Using templates in the thematic analysis of text. In: Cassell, C., and Symon, G. eds. Essential

guide to qualitative methods in organisational research. London, England: SAGE Publications Ltd.,

256 - 270.

Kleppe, A. G., Warmer, J., and Bast, W., 2003. MDA explained: The Model Driven Architecture: Practice

and promise. Addison-Wesley Longman Publishing Co., Inc.

Koch, N., 2006. Transformation techniques in the model-driven development process of UWE. Paper

presented at the 6th international conference on Web engineering, Palo Alto, California.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 218 of 333

Koch, N., Zhang, G., and Escalona, M. J., 2006. Model transformations from requirements to web system

design. Paper presented at the 6th international conference on Web engineering, Palo Alto,

California, USA.

Koehler, J., Gschwind, T., Küster, J., Pautasso, C., Ryndina, K., Vanhatalo, J., and Völzer, H., 2007.

Combining quality assurance and model transformations in business-driven development. Paper

presented at the 3rd International Workshop and Symposium on Applications of Graph

Transformation with Industrial Relevance (AGTIVE), Kassel, Germany.

Koehler, J., Tirenni, G., and Kumaran, S., 2002. From business process model to consistent implementation:

A case for formal verification methods. Paper presented at the 6th International Enterprise

Distributed Object Computing Conference.

Kokune, A., Mizuno, M., Kadoya, K., and Yamamoto, S., 2005, 29th August - 2nd September, 2005. A fact

based collaboration modelling and its application. Paper presented at the 1st International Workshop

on Requirements Engineering for Business Need and IT Alignment (REBNITA), part of the 13th

IEEE International Requirements Engineering Conference 2005 (RE), Sorbonne, Paris, France.

Kokune, A., Mizuno, M., Kadoya, K., and Yamamoto, S., 2007. FBCM: Strategy modelling method for the

validation of software requirements. Journal of Systems and Software, 80 (3), 314 - 327.

Kolb, D. A., Rubin, I. M., and Mcintyre, J. M., 1979. Organizational psychology: An experiential approach.

London: Prentice Hall.

Korhonen, J. J., 2008. Business process management. SoberIT - Software Business and Engineering Institute,

Helsinki University of Technology. Available from:

http://jannekorhonen.fi/Business_Process_Management.pdf [Accessed: 16th March 2011].

Kovse, J., and Härder, T., 2002. Generic XMI-based UML model transformations. Paper presented at the 8th

International Conference on Object-Oriented. Information Systems.

Kusel, A., Schwinger, W., Wimmer, M., and Retschitzegger, W., 2009. Common pitfalls of using QVT

relations - graphical debugging as remedy. Paper presented at the 14th IEEE International

Conference on Engineering of Complex Computer Systems.

Lahote, D., 2008. Q & A on an introduction to the key concepts of Lean. Lean Enterprise Institute. Available

from:

http://www.lean.org/Community/Registered/ArticleDocuments/Key%20Concepts%20of%20Lean%

20QA%20LaHote%20DRAFT2.pdf [Accessed: 12th September 2008].

Lautenbacher, F., Sieber, T., Cabral, A., and Bauer, B., 2007, October 21 - 25. Linguistic modelling methods

and ontologies in requirements engineering. Paper presented at the The International Workshop on

Semantic-Based Software Development at OOPSLA, Montreal, Canada.

Lavagno, L., and Mueller, W. 2006. UML as a next generation language for SoC design: IMMOS - Integrated

Method for the Model-based Development of Automotive Control Units.

Ledru, Y., Laleau, R., Lemoine, M., Vignes, S., Bert, D., Donzeau-Gouge, V., Dubois, C., and Peureux, F.,

2006, June 2006. An attempt to combine UML and formal methods to model airport security. Paper

presented at the CAISE Forum 2006 - Proceedings of the Forum of the 18th International Conference

on Advanced Information Systems Engineering, Presses universitaires de Namur, Luxembourg.

Lehman, M. M., 1988, April 1988. Some reservations on software process programming. Paper presented at

the 4th international software process workshop on Representing and enacting the software process,

Devon, United Kingdom.

Lehman, M. M., 1989, 10 - 13th October 1989. The role of process models in software and systems

development and evolution. Paper presented at the 5th International Software Process Workshop,

Kennebunkport, Maine, USA.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 219 of 333

Leonardi, M. C., and Mauco, M. V., 2004, 9 - 10th December 2004. Integrating natural language oriented

requirements models into MDA. Paper presented at the Anais do WER04 - Workshop em Engenharia

de Requisitos, Tandil, Argentina.

Lester, S., 1999. An introduction to phenomenological research. Stan Lester Developments. Available from:

http://www.sld.demon.co.uk/resmethy.pdf [Accessed: 21st August 2010].

Lombardi. 2008. Lombardi white paper: How to structure your first BPM project to avoid disaster. Available

from: http://www.lombardisoftware.com/downloads/WP_Structuring_Your_First_BPM_Project.pdf

[Accessed: 15th June 2009].

Lubbe, S., 2003. The development of a case study methodology in the Information Technology (IT) field: A

step by step approach. 2003 (September), 2 - 2.

Macek, O., and Richta, K., 2009. The BPM to UML activity diagram transformation using XSLT. Paper

presented at the Annual International Workshop on Databases, Texts, Specifications, Objects

(DATESO), Spindleruv Mlyn, Czech Republic.

Maguire, M., and Bevan, N., 2002, 25 - 29th August, 2002. User requirements analysis: A review of

supporting methods. Paper presented at the IFIP 17th World Computer Congress - TC13 Stream on

Usability: Gaining a Competitive Edge, Montréal, Québec, Canada.

Mahmudi, J., and Tavakkoli, V., 2005. Simulation: The best solution for BPR. Paper presented at the

MSSANZ International Congress on Modelling and Simulation (MODSIM), Melbourne University,

Victoria, Australia.

Marsland, N., Wilson, I., Abeyasekera, S., and Kleih, U. 1998. A methodological framework for combining

quantitative and qualitative survey methods, An output from the DFID-funded Natural Resources

Systems Programme, project R7033: Social and Economic Development Department, Natural

Resources Institute and the Statistical Services Centre, The University of Reading.

Martin, A., and Loos, P., 2008, 30th June - 4th July 2008. Software support for the computation independent

modelling in the MDA context. Paper presented at the 1st International Workshop on Business

Support for MDA (MDABIZ), co-located with Tools Europe, Zurich, Switzerland.

Massoni, T., Gheyi, R., and Borba, P., 2004. A UML class diagram analyser. Paper presented at the 3rd

International Workshop on Critical Systems Development with UML, Lisbon, Portugal.

Mattsson, A., Lundell, B., Lings, B., and Fitzgerald, B., 2009. Linking model-driven development and

software architecture: A case study. IEEE Transactions on Software Engineering, 35 (1), 83 - 93.

May, L. J., 1998. Major causes of software project failures. Crosstalk - The Journal Of Defence Software

Engineering, 9 - 12.

McNeile, A., 2003. MDA: The vision with the hole? Available from:

http://www.metamaxim.com/download/documents/MDAv1.pdf [Accessed: 25th October 2007].

Mellor, S. J. 2004. Agile MDA (pp. 1-9): Project Technology, Inc.

Mellor, S. J., and Balcer, M., 2002. Executable UML: A foundation for model-driven architectures. Addison-

Wesley Longman Publishing Co., Inc.

Menzel, C., and Mayer, R. J., 1998. The IDEF family of languages. Paper presented at the Handbook on

Architectures for Information Systems.

Meservy, T. O., and Fenstermacher, K. D., 2005. Transforming software development: An MDA road map.

Computer, 38, 52 - 58.

Murdoch, J., and McDermid, J. A., 2000. Modelling engineering design processes with Role Activity

Diagrams. J. Integr. Des. Process Sci., 4 (2), 45-65.

Musschoot, T., 2009. Enterprise BPM. BPMInstitute.org White Paper. Available from:

http://www.bpminstitute.org/whitepapers/whitepaper/article/enterprise-BPM.html [Accessed: 18th

June 2009].

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 220 of 333

Musschoot, T., 2010. Business / IT collaboration model: A practical approach. BPMInstitute.org. Available

from: http://www.bpminstitute.org/articles/article/article/business-it-collaboration-model-a-practical-

approach.html [Accessed: 8th April 2010].

Mylopoulos, J., 2004a. III. Structured analysis and design technique. Lecture Notes on Conceptual Modelling.

Available from: http://www.cs.toronto.edu/~jm/2507S/Notes04/SADT.pdf [Accessed: 20th July

2009].

Mylopoulos, J., 2004b. Lecture notes on conceptual modelling - formal requirements modelling languages.

Department of Computer Science, the University of Toronto Available from:

http://www.cs.toronto.edu/~jm/2507S/Notes04/FormalRML.pdf [Accessed: 18th March 2011].

Nakagawa, A. T., and Futatsugi, K., 1989, 10 - 13th October 1989. Product-based process models. Paper

presented at the 5th International Software Process Workshop, Kennebunkport, Maine, USA.

Niehaves, B., and Stirna, J., 2006. Participative enterprise modelling for balanced scorecard implementation.

Paper presented at the 14th European Conference on Information Systems (ECIS), Göteborg,

Sweden.

Nuseibeh, B., and Easterbrook, S., 2000. Requirements engineering: A roadmap. Paper presented at the

Conference on The Future of Software Engineering, Limerick, Ireland.

Nuseibeh, B., Finkelstein, A., and Kramer, J., 1993, 6 - 7th December 1993. Fine-grain process modelling.

Paper presented at the 7th international workshop on Software specification and design, Redondo

Beach, California.

O'brien, R., 2001. An overview of the methodological approach of action research. In: Richardson, R. ed.

Theory and Practice of Action Research, João Pessoa, Brazil: Universidade Federal da Paraíba.

Odeh, M., Beeson, I., Green, S., and Sa, J., 2002, 16th - 19th December, 2002. Modelling processes using rad

and UML activity diagrams : An exploratory study. Paper presented at the 3rd International Arab

Conference on Information Technology (ACIT), University of Qatar, Qatar.

Ohata, A., and Butts, K. R., 2005. Towards a concurrent engine system design methodology. Paper presented

at the American Control Conference, Portland, Oregon, USA.

Oliveira, T. C., Filho, I. M., Lucena, C. J. P. D., Alencar, P., and Cowan, D. D., 2004, September 7th-8th

2004. Enabling model driven product line architectures. Paper presented at the 2nd European

Workshop on Model Driven Architecture (EWMDA), Canterbury, UK.

OMG. 2003a. Common Warehouse Metamodel™ (CWM™) specification, v1.1: Object Management Group.

OMG. 2003b. MDA guide version 1.0.1: Object Management Group.

OMG. 2005. BPMI.Org and OMG announce strategic merger of business process management activities.

Available from: http://www.omg.org/news/releases/pr2005/06-29-05.htm [Accessed: 21st January

2009].

OMG. 2006a. Meta Object Facility core specification version 2.0: Object Management Group.

OMG. 2006b. Object Constraint Language specification, version 2.0: Object Management Group.

OMG. 2007a. Committed companies and their products. Available from:

http://www.omg.org/MDA/committed-products.htm [Accessed: 25th October 2007].

OMG. 2007b. MOF 2.0 / XMI mapping specification, v2.1.1: Object Management Group.

OMG. 2007c. Unified Modelling Language (UML), version 2.1.2.

OMG. 2008a. Business Process Modelling Notation, v1.1: Object Management Group.

OMG. 2008b. Meta Object Facility (MOF) 2.0 Query/View/Transformation specification, version 1.0: Object

Management Group.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 221 of 333

OMG. 2010. Success stories. Available from: http://www.omg.org/mda/products_success.htm [Accessed:

26th August 2011].

Osis, J., Asnina, E., and Grave, A., 2007, 23-25 April, 2007. Formal Computation Independent Model of the

problem domain within the MDA. Paper presented at the 10th International Conference on

Information System Implementation and Modelling (ISIM), Hradec nad Moravicí, Czech Republic.

Osterweil, L., 1987. Software processes are software too. Paper presented at the 9th international conference

on Software Engineering, Monterey, California, United States.

Ould, M., 2004a. RIVA: A rigorous approach for business process management. Available from:

http://www.veniceconsulting.co.uk/riva.pdf [Accessed: 15th November 2009].

Ould, M. A., 2003, January 2003. Incremental process deployment. Paper presented at the Process Modelling

Workshop, Bristol.

Ould, M. A., 2004b. All the world's a stage. BPTrends. Available from:

http://www.bptrends.com/deliver_file.cfm?fileType=publication&fileName=11%2D04%20ART%20

Worlds%20a%20Stage%20%2D%20Ould1%2Epdf [Accessed: 6th December 2009].

Ould, M. A., 2004c. Business process management: A rigorous approach. British Computer Society.

Ould, M. A., 2004d. Getting your head round mozzarella. BPTrends. Available from:

http://www.bptrends.com/deliver_file.cfm?fileType=publication&fileName=09%2D04%20ART%20

Mozzarella%20Ould%2Epdf [Accessed: 6th December 2009].

Ould, M. A., 2004e. Getting your head round spaghetti. BPTrends. Available from:

http://www.bptrends.com/deliver_file.cfm?fileType=publication&fileName=10%2D04%20ART%20

Spaghetti%20%2D%20Ould%2Epdf [Accessed: 6th December 2009].

Ould, M. A., 2005. Business process management: A rigorous approach. BPTrends. Available from:

http://www.businessprocesstrends.com/publicationfiles/05%2D05%20ART%20BPM%20A%20Rigo

rous%20App%20%2D%20Ould%2Epdf [Accessed: 3rd March 2008].

Ould, M. A., 2006. Getting your head around your business processes. Paper presented at the Royal

Holloway, IEEE & UCL Joint Event, London, England.

Ould, M. A., and Roberts, C., 1987, 17 - 19th November 1986. Modelling iteration in the software process.

Paper presented at the 3rd International Software Process Workshop, Colorado, USA.

Owen, C. L., 2007. Covering user needs. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/covering-user-needs.html [Accessed: 24th June

2009].

Owen, C. L., 2009a. The power of abstraction. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/the-power-of-abstraction.html [Accessed: 13th

November 2009].

Owen, C. L., 2009b. The systems viewpoint. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/the-systems-viewpoint.html [Accessed: 2nd June

2009].

Peixoto, D. C. C., Batista, V. A., Atayde, A. P., Borges, E. P., Resende, R. S. F., and Pádua, C. I. P. S., 2008,

2nd to 6th June, 2008. A comparison of BPMN and UML 2.0 activity diagrams. Paper presented at

the 7th Simpósio Brasileiro de Qualidade de Software, Florianopolis, Brazil.

Peltier, M., Ziserman, F., and Bézivin, J., 2000. On levels of model transformation. Paper presented at the

XML Europe, Paris, France.

Perry, D. E., Sim, S. E., and Easterbrook, S. M., 2004, 23 - 28 May 2004. Case studies for software

engineers. Paper presented at the 26th International Conference on Software Engineering (ICSE'04),

Edinburgh, Scotland.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 222 of 333

Perry, S., 2006, 7th March 2006. When is a process model not a process model - a comparison between UML

and BPMN. Paper presented at the IEE Seminar on Process Modelling Using UML, London.

Phalp, K., 2002, September. Surrounding the requirements process. Paper presented at the ESERG Workshop

on Software Engineering, Bournemouth University.

Phalp, K., Adlem, A., Jeary, S., Vincent, J., and Kanyaru, J., 2011. The role of comprehension in

requirements and implications for use case descriptions. Software Quality Journal, 19 (2), 461 - 486.

Phalp, K., and Cox, K., 2001, August 27th-29th, 2001. Guiding use case driven requirements elicitation and

analysis. Paper presented at the 7th International Conference on Object-Oriented Information

Systems (OOIS), Calgary, Canada.

Phalp, K., and Shepperd, M., 1994, February 1994. A pragmatic approach to process modelling. Paper

presented at the 3rd European Workshop on Software Process Technology (EWSPT'94) Villard de

Lans, France.

Phalp, K. T., 1998. The CAP framework for business process modelling. Information and Software

Technology, 40 (13), 731 - 744.

Phalp, K. T., Henderson, P., Walters, R. J., and Abeysinghe, G., 1998. Rolenact: Role-based enactable models

of business processes. Information and Software Technology, 40 (3), 123 - 133.

Phalp, K. T., and Jeary, S., 2010, 29 - 31 March 2010. An empirical investigation of the utility of ‘pre-CIM’

models. Paper presented at the Software Quality XVIII, 18th International Software Quality

Management Conference (SQM), London, England.

Phalp, K. T., Jeary, S., Vincent, J., Kanyaru, J. M., and Crowle, S., 2007, 1 - 2 August 2007. Supporting

stakeholders in the MDA process. Paper presented at the Software Quality Management / INSPIRE

2007, University of Tampere, Finland.

Poernomo, I., Tsaramirsis, G., and Zuna, V., 2008, 30th June - 4th July 2008. A methodology for requirements

analysis at CIM level. Paper presented at the 1st International Workshop on Business Support for

MDA (MDABIZ), co-located with Tools Europe, Zurich, Switzerland.

Purper, C. B., 2000, February 2000. Transcribing process model standards into meta-processes. Paper

presented at the 7th European Workshop on Software Process Technology (EWSPT) Kaprun,

Austria.

Pyke, J., 2006. Why workflow sucks. ebizQ. Available from:

http://www.ebizq.net/hot_topics/BPM/features/7462.html [Accessed: 15th September 2008].

Raffo, D., Kaltio, T., Partridge, D., Phalp, K., and Ramil, J. F., 1999. Empirical studies applied to software

process models. Working Group Report: ICSE Workshop on Empirical Studies of Software

Development and Evolution, Empirical Software Engineering Journal, 4 (4), 353 - 369.

Rech, J., and Schmitt, M., 2008, 30th June - 4th July 2008. Embedding defect and traceability information in

CIM- and PIM-level software models. Paper presented at the 1st International Workshop on Business

Support for MDA (MDABIZ), co-located with Tools Europe, Zurich, Switzerland.

Recker, J., 2006. Process modelling in the 21st century. BPTrends. Available from:

http://www.bptrends.com/publicationfiles/05-06-ART-ProcessModeling21stCent-Recker1.pdf

[Accessed: 3rd February 2011].

Rivkin, W., 2008. Closing the business-it gap once and for all. BPMInstitute.ORG. Available from:

http://www.bpminstitute.org/articles/article/article/closing-the-business-it-gap-once-and-for-all.html

[Accessed: 28th January 2009].

Roberts, C., 1988, 11 - 13th May 1988. Describing and acting process models with PML. Paper presented at

the 4th International Software Process Workshop, Moretonhampstead, Devon, UK.

Robinson, W. N., 2007. Extended OCL for goal monitoring. Paper presented at the Ocl4All: Modelling

Systems with OCL at MoDELS, Nashville, TN, USA.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 223 of 333

Rodriguez, A., Fernandez-Medina, E., and Piattini, M., 2007a, 24-28 September 2007. Towards CIM to PIM

transformation: From secure business processes defined by BPMN to use cases. Paper presented at

the 5th International Conference On Business Process Management, Brisbane, Australia.

Rodriguez, A., Fernández-Medina, E., and Piattini, M., 2007b, 11 - 15th June 2007. Using QVT to obtain use

cases from secure business processes modelled with BPMN. Paper presented at the 8th Workshop on

Business Process Modelling, Development, and Support (BPMDS), In conjunction with CAiSE,

Trondheim, Norway.

Rombach, H. D., 1988, 11 - 13th May 1988. A specification framework for sw processes: Formal

specification & derivation of information base requirements. Paper presented at the 4th International

Software Process Workshop, Moretonhampstead, Devon, UK.

Rothman, J., 2007, 16th January 2007. Behind closed doors: Secrets of great management. Paper presented at

the Boston SPIN meeting (Software Process Improvement Network).

Russell, N. C., 2007. Foundations of process-aware information systems. Thesis (PhD). Queensland

University of Technology, Brisbane, Australia.

Sa, J., and Warboys, B. C., 1994, February 1994. Modelling processes using a stepwise refinement technique.

Paper presented at the 3rd European Workshop on Software Process Technology (EWSPT) Villard

de Lans, France.

Saeki, M., Kaneko, T., and Sakamoto, M., 1991, 21st - 22nd October 1991. A method for software process

modelling and description using LOTOS. Paper presented at the 1st International Conference on the

Software Process: Manufacturing Complex Systems, Redondo Beach, California, USA.

Saunders, M., Thornhill, A., and Lewis, P., 2003. Research methods for business students. Third ed. Harlow,

UK: Prentice Hall.

Scacchi, W., 2002. Process models in software engineering. Paper presented at the Encyclopaedia of Software

Engineering, New York, NY, USA.

Sendall, S., and Kozaczynski, W., 2003. Model transformation: The heart and soul of model-driven software

development. IEEE Software, 20 (5), 42 - 45.

Shannak, R. O., 2009. Grounded theory as a methodology for theory generation in information systems

research. European Journal of Economics, Finance and Administrative Sciences (15), 32 - 50.

Sheena, R. J., Doris, L. C., and Robert, B. F., 2003. A metamodelling approach to model transformation.

Paper presented at the 18th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, Anaheim, CA, USA.

Shelmerdine, S., 2010. Qualitative research methods. Lecture Notes. Available from:

http://web.uct.ac.za/depts/psychology/webie/courses/psy206fo/Lecture%201.ppt [Accessed: 21st

August 2010].

Shneiderman, B., 2002. Leonardo's laptop: Human needs and the new computing technologies. London,

England: MIT Press.

Silver, B., 2008a. BPMS watch: BPMN's three levels, reconsidered. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/bpms-watch-BPMN-s-three-levels-

reconsidered.html [Accessed: 30th January 2009].

Silver, B., 2008b. BPMS watch: Bringing method to the madness. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/bpms-watch-bringing-method-to-the-

madness.html [Accessed: 10 November 2008].

Silver, B., 2008c. What’s wrong with this picture, redux. Bruce Silver’s blog on business process

management. Available from: http://www.brsilver.com/wordpress/2006/11/29/whats-wrong-with-

this-picture-redux/ [Accessed: 23rd January 2009].

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 224 of 333

Silver, B., 2008d. What’s wrong with this picture? Bruce Silver’s blog on business process management.

Available from: http://www.brsilver.com/wordpress/2006/09/06/whats-wrong-with-this-picture/

[Accessed: 25th January 2009].

Silver, B., 2008e. What’s wrong with this picture? Part 2. Bruce Silver’s blog on business process

management. Available from: http://www.brsilver.com/wordpress/2006/09/14/whats-wrong-with-

this-picture-part-2/ [Accessed: 22nd January 2009].

Silver, B., 2008f. What’s wrong with this picture? Part 3. Bruce Silver’s blog on business process

management. Available from: http://www.brsilver.com/wordpress/2006/09/19/whats-wrong-with-

this-picture-part-3/ [Accessed: 22nd January 2009].

Silver, B., 2009a. Bpms watch: Five things they left out of BPMN 2.0. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/bpms-watch-five-things-they-left-out-of-BPMN-

2-0.html [Accessed: 11th June 2009].

Silver, B., 2009b. Bpms watch: Five things to love about BPMN 2.0. BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/bpms-watch-five-things-to-love-about-BPMN-2-

0.html [Accessed: 8th June 2009].

Sinnott, R. O., and Turner, K. J., 1994, October 1994. Modelling ODP viewpoints. Paper presented at the

International Conference on Object Oriented Programming, Systems, Languages and Applications

Workshop on Precise Behavioural Specifications in Object-Oriented Information Modelling

(OOPSLA), Portland, Oregon, USA.

Skalle, H., 2009. Round table: How to combine Lean Six Sigma, SOA & BPM to deliver real business results.

BPMInstitute.org. Available from: http://www.bpminstitute.org/roundtables/upcoming-round-

table/article/how-to-combine-lean-six-sigma-soa-BPM-to-deliver-real-business-results.html

[Accessed: 27th January 2009].

Slack, S. E., 2008. The business analyst in model-driven architecture: Separating design from architecture. 1 -

8. Available from: http://download.boulder.ibm.com/ibmdl/pub/software/dw/architecture/ar-

bamda/ar-bamda-pdf.pdf [Accessed: 29th October 2009].

Smith, H., and Fingar, P., 2003. Business process management: The third wave. First ed.: Meghan-Kiffer

Press.

Soley, R. M., 2006. Modelling all the way up... Modelling all the way down. Available from:

http://www.omg.org/MDA/MDA-webcasts.htm [Accessed: 21st November 2007].

Sommerville, I., 2004. Requirements engineering processes. In: Software engineering Seventh ed. London,

England: Addison Wesley.

Spinellis, D., 2010. UML everywhere. IEEE Software, 27 (5), 90 - 91.

Starke, G., 1994, February 1994. Why is process modelling so difficult? Paper presented at the 3rd European

Workshop on Software Process Technology (EWSPT) Villard de Lans, France.

Staron, M., and Wohlin, C., 2006. An industrial case study on the choice between language customization

mechanisms. Vol. 4034/2006. Berlin, ALLEMAGNE: Springer.

Stevens, P., and Pooley, R., 2000. Using UML: Software engineering with objects and components. Updated

ed. Harlow, Essex, England: Pearson Education Limited.

Stevens, W., Myers, G., and Constantine, L., 1974. Structured design. IBM Systems Journal, 13 (2), 115 -

139.

STSC. 2003. Guidelines for successful acquisition and management of software-intensive systems: Weapon

systems, command and control systems, management information systems. Chapter 4: Requirements

Management, Condensed Version 4.0, 3 - 10. Available from:

http://www.stsc.hill.af.mil/resources/tech_docs/gsam4.html [Accessed: 29th June 2009].

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 225 of 333

Subramaniam, K., Far, B. H., and Eberlein, A., 2004, 2 - 5 May 2004. Automating the transition from

stakeholders' requests to use cases in ooad. Paper presented at the Canadian Conference on

Electrical and Computer Engineering (CCECE) Niagara Falls, Canada.

Sutton, S. M., Ziv, H., Heimbigner, D., Yessayan, H. E., Maybee, M., Osterweil, L. J., and Song, X., 1991,

21st - 22nd October 1991. Programming a software requirements-specification process. Paper

presented at the 1st International Conference on the Software Process: Manufacturing Complex

Systems, Redondo Beach, California, USA.

Taylor, R. N., 1987, 17 - 19th November 1986. Concurrency and software process models. Paper presented at

the 3rd International Software Process Workshop, Colorado, USA.

Thangaraj, S., 2004. Introduction to Model Driven Architecture, ncicb software development processes,

facilitating systems interoperability. Cancer Biomedical Informatics Grid, National Cancer Institute.

Available from: http://cabig.nci.nih.gov/workspaces/ICR/Meetings/ICR_Workspace/August_Face-

to-Face_Meeting/F2F_MDA_Intro_Presentation.pdf [Accessed: 2nd October 2007].

Thiemann, P., 2009. Software engineering Model Driven Architecture applications of metamodelling.

University of Freiburg. Available from: http://proglang.informatik.uni-

freiburg.de/teaching/swt/2009/v14-meta-app.en.pdf [Accessed: 6th December 2009].

Thom, L. H., Iochpe, C., and Reichert, M., 2007, June 2007 Workflow patterns for business process

modelling. Paper presented at the 8th International Workshop on Business Process Modelling,

Development, and Support (BPMDS), Trondheim, Norway.

Thomas, D., 2004. MDA: Revenge of the modellers or UML utopia? IEEE Software, 21 (3), 15 -17.

Thomas, I., 1989, 10 - 13th October 1989. The software process as a goal-directed activity. Paper presented at

the 5th International Software Process Workshop, Kennebunkport, Maine, USA.

Tratt, L., 2005. Model transformations and tool integration. Journal of Software and Systems Modelling, 4 (2),

112 - 122.

Tully, C. J., 1987, 17 - 19th November 1986. Software process models and iteration. Paper presented at the

3rd International Software Process Workshop, Colorado, USA.

Turgeon, J., and Madhavji, N. H., 2000a, 10 - 12 July. A model for process congruence. Paper presented at the

International Workshop on Feedback and Evolution in Software and Business Processes (FEAST

2000), Imperial College, London.

Turgeon, J., and Madhavji, N. H., 2000b, February 2000. View-based vs. Traditional modelling approaches:

Which is better? Paper presented at the 7th European Workshop on Software Process Technology

(EWSPT 2000) Kaprun, Austria.

UC4. 2008. Beyond job scheduling: The road to enterprise process automation. Available from:

http://erp.ittoolbox.com/research/beyond-job-scheduling-the-road-to-enterprise-process-automation-

6204 [Accessed: 4th June 2009].

Uhl, A., and Ambler, S. W., 2003. Point/counterpoint. IEEE Software, 20 (5), 70-73.

VIDE. 2007. Visualise all model driven programming (VIDE) - the visual user interface (pp. 206):

Deliverable 5.1 of the VIDE Project.

VIDE. 2008a. Visualise all model driven programming (VIDE) - industrial use cases (pp. 78): Deliverable

D11.1 of the VIDE Project.

VIDE. 2008b. Visualise all model driven programming (VIDE) - vide cookbook (pp. 118): Deliverable D10.a

(internal deliverable) of the VIDE Project.

VIDE. 2009. Visualise all model driven programming (VIDE) - vide final report (pp. 63).

VIDE. 2010a. Distribution. Visualise all model driven programming (VIDE). Available from:

http://www.vide-ist.eu/reflib/dist.html [Accessed: 26th July 2010].

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 226 of 333

VIDE. 2010b. E-learning: 1.4 VIDE tool usage scenarios. Visualise all model driven programming (VIDE).

Available from: http://www.vide-ist.eu/reflib/elearning/vide/a/a0005.html [Accessed: 26th July

2010].

Wa, L. C., and Leong, C. W. 2004. Object-oriented analysis & design with Unified Modelling Language: E-

ticket system, COMP 2221 SOFTWARE ENGINEERING, Prof. Jiming Liu (pp. 13). Hong Kong:

Department of Computer Science, Hong Kong Baptist University.

Ward-Dutton, N., 2011. Are you set up to manage process change? BPMInstitute.org. Available from:

http://www.bpminstitute.org/articles/article/article/are-you-set-up-to-manage-process-change.html

[Accessed: 28th March 2011].

Ward-Dutton, N., and Baxter, B., 2009. Beyond model-driven development: Delivering on the promise of

BPM. Available from:

http://w.on24.com/r.htm?e=145185&s=1&k=6B4FB27399B8EACD2B59EC16DB26BCEC

[Accessed: 20th May 2009].

Wegmann, A., Regev, G., and Loison, B., 2005, 29th August - 2nd September, 2005. Business and IT

alignment with SEAM. Paper presented at the 1st International Workshop on Requirements

Engineering for Business Need and IT Alignment (REBNITA), part of the 13th IEEE International

Requirements Engineering Conference (RE), Sorbonne, Paris, France.

Wegmann, A., Regev, G., Rychkova, I., Le, L.-S., and Julia, P., 2007, 15 - 19th October 2007. Business and

IT alignment with SEAM for enterprise architecture. Paper presented at the 11th IEEE International

Enterprise Distributed Object Computing Conference (EDOC), Annapolis, Maryland, USA.

White, S. A., 2004. Process modelling notations and workflow patterns. BPTrends. Available from:

http://www.businessprocesstrends.com/deliver_file.cfm?fileType=publication&fileName=03-

04%20WP%20Notations%20and%20Workflow%20Patterns%20-%20White.pdf [Accessed: 27th

August 2008].

Wiegers, K. E., 2000. When telepathy won’t do: Requirements engineering key practices. Cutter IT Journal.

Williams, L. G., 1988, 11 - 13th May 1988. A behavioural approach to software process modelling. Paper

presented at the 4th International Software Process Workshop, Moretonhampstead, Devon, UK.

Willis, P., and Trondman, M., 2002. Manifesto for ethnography. Cultural Studies, Critical Methodologies, 2

(3), 394 - 402.

Wohed, P., Aalst, W. M. P. V. D., Dumas, M., Hofstede, A. H. M. T., and Russell, N., 2005. Pattern-based

analysis of the control-flow perspective of UML activity diagrams. Paper presented at the ER 2005.

Wohed, P., Van Der Aalst, W. M. P., Dumas, M., and Ter Hofstede, A. H. M., 2002. Pattern based analysis of

BPEL4WS. QUT Technical report, FIT-TR-2002-04, Queensland University of Technology,

Brisbane. Available from:

http://www.workflowpatterns.com/documentation/documents/qut_bpel_rep.pdf [Accessed: 22nd

April 2010].

Wohed, P., Van Der Aalst, W. M. P., Dumas, M., Ter Hofstede, A. H. M., and Russell, N., 2006. Pattern-

based analysis of BPMN. BPM Center Report BPM-06-17, BPMcenter.org, Queensland University

of Technology, Brisbane. Available from: http://eprints.qut.edu.au/2977/ [Accessed: 21st April

2010].

Wong, P. Y. H., and Gibbons, J., 2008, 27 - 31 October 2008. A process semantics for BPMN. Paper

presented at the 10th International Conference on Formal Engineering Methods., Kitakyushu

International Conference Centre, Kitakyushu-City, Japan.

Wood, B., 2002, 27th November 2002. UML for ODP viewpoint specifications. Paper presented at the ITU-

T/SG17 meeting, Geneva, Switzerland.

Wood, B., 2005, April 2005. The use of ODP in MDA system specifications. Paper presented at the OMG

MDA users SIG, Open-IT.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 227 of 333

Yin, R. K., 1994. Case study research: Design and methods. Second ed. Beverly Hills, CA, U.S.A.: Sage

Publishing.

Yin, R. K., 2008. Case study research: Design and methods. Fourth ed. Beverly Hills, CA, U.S.A.: Sage

Publishing.

Yoda, T., 2001, 6th December 2001. Creating applications using parameterized frameworks: Quickly

developed and highly customised. Paper presented at the OMG’s 2nd Workshop: UML for Enterprise

Applications: Model Driven Solutions for the Enterprise, Burlingame, CA, USA.

Yourdon, E., 1989. Modern structured analysis. Yourdon Press.

Zave, P., 1989, 10 - 13th October 1989. Domain understanding and the software process. Paper presented at

the 5th International Software Process Workshop, Kennebunkport, Maine, USA.

Zhang, J., Feng, P., Wu, Z., Yu, D., and Chen, K. 2008. Activity based CIM modelling and transformation for

business process systems: Department of Precision Instruments and Mechanology, Tsinghua

University, Beijing, China.

Zhu, C., Lee, Y., Zhao, W., and Zhang, J. 2006. A feature oriented approach to mapping from domain

requirements to product line architecture: Software Engineering Lab, Computer Science and

Technology Department, Fudan University, Shanghai, China.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 228 of 333

Appendix I

xMDA and the Order Processing Illustration

- Environment, Shared and Machine RAD

- Class Diagram

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 229 of 333

figure 1-1, Environment RAD for the Order Processing example (enlarged).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 230 of 333

figure 1-2, Shared RAD for the Order Processing example.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 231 of 333

figure 1-3, Machine RAD for the Order Processing example.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 232 of 333

figure 1-4, UML Class Diagram for the Order Processing example.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 233 of 333

Appendix II

Template Analysis: Students of the Business

Processes and Requirements Unit, Bournemouth

University

- Assignment Brief

- Sample Student Feedback

- Results

- Observations

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 234 of 333

Assignment Brief

SCHOOL OF DESIGN, ENGINEERING & COMPUTING

ASSIGNMENT – 2009/10

Course:

Year:

Unit:

Assignment Number:

Unit Leaders:

Issue Date:

Due Date:

 Software Systems Framework

 Final Year (Level H)

 Business Processes and Requirements

 1 (Part Two)

 Cornelius Ncube & Keith Phalp

19/11/2009

18/12/2009

This is an individual assignment

This assignment forms the second part of the coursework for this unit, and covers (or

partially fulfils) learning outcomes, 2, 3 and 5.

1. Appraise critically approaches to the principal requirements engineering tasks;

elicitation, analysis, specification and validation.

2. Demonstrate a comprehensive understanding of relationships among client business

processes, requirements and software systems.

3. Evaluate, select, and produce appropriate models of business process scenarios or

problem domains, and matching requirements and specifications.

4. Evaluate critically requirements methods and research.

5. Understand the impact of professionalism upon the requirements phase.

Marks for this second part are given (out of 100).

However, parts one and two of the coursework will be weighted 70:30 to form your overall

coursework mark.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 235 of 333

Deliverables and Assessment Criteria / Marking Scheme
You have been given a brief description of a particular application domain, and have been

asked to produce a number of deliverables, for the final requirements document.

Models of Processes

Produce Role Activity Diagrams for the given scenario(s). Marks will be awarded for:

• Appropriate separation of problem into constituent parts.

• Sensible choices for logic of process & appropriate level of abstraction.

• Appropriate (and correct) use of notation, e.g., state, actions, interactions &

control constructs.

(50 marks)

Analysis of Processes

• Analysis of process. Describe any ambiguities that you have discovered from

your analysis, relating this to the models you have produced.

• Describe, as a process modelling professional, any changes you might suggest to

the process scenario, and any benefits and potential risks of such changes.

(20 marks)

Reflections on Method

Discuss the issues and solutions encountered in moving from analysis (the process models)

to specification and design, and mechanisms that you would use to ensure alignment of the

business process model (and business needs) and the IT system.

(Maximum 1000 words) (30 marks)

Signature of Assignment Setter ………………………………………

Signature of QA ……………………………………

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 236 of 333

Poole House Holdings

Poole House Holdings is a typical small to medium sized enterprise (SME) that is looking

to develop a software system to support a small scale mail order business.

Because of logistics of the enterprise system that is already in place, the new support

system is to be interoperable with other systems and have a portable / reusable architecture.

The following describes the activities of the mail order process.

The marketing department is responsible for the creation and despatch of all marketing

materials.

Once a customer is ready to make an order, they fill out the order form and mail it into the

company. Once received, a sales advisor processes the order. The customer details must be

kept on file for future reference and credit checks are made to ensure the customer account

is in credit before any order can be authorised.

The accounts advisors are therefore required to respond to any sales order request by

providing them with an update on client credit worthiness. Sales advisors who are suitably

trained may, if the accounts advisors are very busy, choose to do this themselves.

If a client has poor credit, the sales advisor notifies them of the situation, otherwise an order

is created and sent to the despatch team; who pack and despatch the order, along with the

required despatch note.

A copy of the despatch note is forwarded to the accounts advisors for billing purposes,

which is already supported by the accounting system. There are usually two sales advisors

and two accounts advisors available to the mail order enterprise at any given time.

The warehouse team number varies with seasonal demand and the company believe that

they are unlikely to have any impact in the design of the new support system.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 237 of 333

Sample Student Feedback (1)

figure 2-1, sample student feedback received with respect to the ‘Reflections on Method’ part of the 2009/10

Business Processes and Requirements assignment.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 238 of 333

Sample Student Feedback (2)

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 239 of 333

figure 2-2, sample student feedback received with respect to the ‘Reflections on Method’ part of the 2009/10

Business Processes and Requirements assignment.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 240 of 333

Sample Student Feedback (3)

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 241 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 242 of 333

figure 2-3, sample student feedback received with respect to the ‘Reflections on Method’ part of the 2009/10

Business Processes and Requirements assignment.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 243 of 333

Results

This section of the appendix is directed at providing a summary of central themes found from examining

student manuscripts. From the preliminary examination of the texts under scrutiny, an analytical template was

created. Further analysis of texts revealed revisions to the template. As per recommendations in King (2006),

the data was reviewed twice before the final template (see table 2-1) was agreed upon.

Theme Sub-Theme

1. Simplicity 1.1 Application

 1.2 Communication

 1.3 Notation

2. Richness 2.1 Notation

 2.2 Requirements & Specification

 2.3 System Boundary

3. Transformation, Traceability & Interoperability 3.1 Transformation & Mapping

 3.2 Traceability

 3.3 Interoperability

4. Approach 4.1 Software Process

 4.2 Alignment

 4.3 Tooling

 4.4 Maturity

5. Solution 5.1 POSD

 5.2 SystemRAD

 5.3 xMDA Method

 5.4 Other

 5.5 Combination

table 2-1, thematic analysis template relating to the study of student manuscripts.

As table 2-1 shows, five themes were found to be central to student arguments and each theme was broken

down into further sub-themes. Because the arguments were directed at the identified sub-themes and not the

individual methods per se, it was not possible to completely organise the analysis by method. However, it was

found that in discussing an overall solution (theme five), individual methods were discussed and therefore this

theme focuses on those methods. It is considered important to fully “justify... each code, and... define how it

should be used” (King 2006) and, therefore, this section of the appendix looks at each theme individually and

discusses the extent of inclusion together with a summary of the total number of students found to be

addressing each theme and sub-theme.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 244 of 333

Simplicity

The inclusion of simplicity as a theme relates to the fact that many students were found to include this concept

in relation to aspects in discussing the process of moving from analysis to design via specification. Therefore,

it was decided to include this theme as a basis for analysis to examine the extent to which simplicity is a

requirement and product of presented solution mechanisms. Table 2-2 identifies the simplicity theme.

1. Simplicity

Total

Number of

Students

(n of 47)

Percent of

Students

(%)

1.1 Application

1.1.1 Simple 19 40.43

1.1.2 Difficult 10 21.28

1.2 Communication

1.2.1 Stakeholder involvement 25 53.19

1.2.2 IT involvement 4 8.51

1.3 Notation

1.3.1 Identification of Actors / Roles 4 8.51

1.3.2 Steps to increase accuracy 10 21.28

1.3.3 Colour Coding; numbering or meaningful names 17 36.17

1.3.4 Visual 4 8.51

table 2-2, thematic analysis template for the ‘Simplicity’ theme.

As seen in table 2-2, the theme has been divided into three alternate sub-themes of application;

communication; and notation. Application applies to comments relating to the perceived ease or difficulty in

the use of methods applied to move from analysis through to specification and design. Communication relates

primarily to how stakeholders might be involved in the process. Notation focuses on specific accountability of

notations to facilitate simplicity in the process.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 245 of 333

Richness

The next identified theme was richness. Many students made reference to the importance of methods being

able to capture certain concepts integral in moving from analysis to specification and design. The analysis

template for this theme is included in table 2-3.

2. Richness

Total

Number of

Students

(n of 47)

Percent of

Students

(%)

2.1 Notation

2.1.1 Data description 7 14.89

2.1.2 Role importance 11 23.40

2.1.3 Behavioural dependency capture 14 29.79

2.1.4 Identification of Process flaws 9 19.15

2.2 Requirements & Specification

2.2.1 Analysis & Specification don't occur; or occur inadequately 19 40.43

2.3 System Boundary & Abstraction

2.3.1 Description of System Boundary 27 57.45

2.3.2 High-level of abstraction 27 57.45

table 2-3, thematic analysis template for the ‘Richness’ theme.

Table 2-3 breaks down the richness theme into three alternate sub-themes of notation; requirements &

specification; and system boundary & abstraction. Primarily, notation was discussed in terms of how

mechanisms may or may not support enough richness in transferring information discovered during analysis

through to specification and design. Requirements & specification was found to be important in understanding

and supporting this richness and therefore included as part of the analysis. From reviewing student arguments,

the concept of the system boundary & abstraction appeared significant enough to be included separate for

discussion of the richness theme.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 246 of 333

Transformation, Traceability and Interoperability

Table 2-4 identifies the thematic analysis template for what is the largest theme in terms of response

associated with the process of moving to specification and design and is concerned with the notions of

transformation, traceability and interoperability, and how they relate.

3. Transformation, Traceability & Interoperability

Total

Number of

Students

(n of 47)

Percent of

Students

(%)

3.1 Transformation & Mapping

3.1.1 Information is lost in the process 22 46.81

3.1.2 Accounting for information loss 27 57.45

3.1.3 Mapping is a difficulty 27 57.45

3.1.4 Addressing the difficulty of mapping 22 46.81

3.1.5 Errors being transferred in the process 5 10.64

3.2 Traceability

3.2.1 Traceability as an issue 8 17.02

3.2.2 Accounting for Traceability 9 19.15

3.3 Interoperability

3.3.1 Moving a RAD to a Use Case 29 61.70

3.3.2 Moving a RAD to System Models (UML) 24 51.06

3.3.3 Use with SEAM 1 2.13

3.3.4 Use Cases not required for Specification 11 23.40

table 2-4, thematic analysis template for the ‘Transformation, traceability & interoperability’ theme.

It is seen in table 2-4 that each area relating to the theme of transformation, traceability & interoperability is

subdivided into three sub-themes. Transformation & mapping addresses issues related directly to loss or

retention of information during the transformation and mapping process and the issues and solutions that are

associated. Traceability is concerned with student observations of issues linked to how specification and

design models might be traced back to original requirements and analysis. Interoperability is associated

specifically to the ability of methods to be interoperable between other modelling conventions, and the

requirement of such interoperability.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 247 of 333

Approach

This theme addresses general notions relating to available approaches in moving towards design. It is

concerned more with the high-level view of approaches and the issues surrounding them. The thematic

analysis template for the approach theme is given in table 2-5.

4. Approach

Total

Number of

Students

(n of 47)

Percent of

Students

(%)

4.1 Software Process

4.1.1 Software Processes and interpretations 3 6.38

4.2 Alignment

4.2.1 Alignment as a concern 21 44.68

4.2.2 Alignment is time consuming 11 23.40

4.2.3 OO or MDA Approach to address alignment 4 8.51

4.3 Tooling

4.3.1 Tool Support 6 12.77

4.3.2 Code generation 3 6.38

4.3.3 Manual 8 17.02

4.3.4 Semi-Automatic 5 10.64

4.3.5 Automatic 4 8.51

4.4 Maturity

4.4.1 Further academic work required 4 8.51

4.4.2 Enterprise Systems a concern 7 14.89

table 2-5, thematic analysis template for the ‘Approach’ theme.

Four sub-themes are identified in table 2-5 relating to the software process; alignment; tooling; and maturity.

The software process sub-theme demonstrates the impact the selection of process might have on an approach,

and how some approaches might be designed for a particular approach (thereby presuming approach

selection). Alignment is described specifically as an overall ideal with relation to chosen solutions and

therefore considered independently in this context with relation to the time taken to achieve such alignment.

Tooling is mentioned to aid solution approaches; the extent being evaluated by the inclusion of this sub-

theme. Lastly, whilst much is said for particular approaches and the idea of moving from analysis to design

via specification, some students discussed the validity of offered approaches in terms of maturity and

therefore maturity is included as a sub-theme.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 248 of 333

Solution

The final thematic inclusion is associated with the student identification of solutions relating to the successful

transition from analysis to specification and design. From discussed approaches, the students spoke in detail

about which (if any) would be considered an appropriate remedy. Table 2-6 outlines the analysis template for

this theme.

5. Solution

Total

Number of

Students

(n of 47)

Percent of

Students

(%)

5.1 POSD 6 12.77

5.2 SystemRAD 2 4.26

5.3 xMDA Method 15 31.91

5.4 Other 3 6.38

5.5 Combination 13 27.66

table 2-6, thematic analysis template for the ‘Solution’ theme.

This theme focuses on five sub-themes relating to whether the student selected one of the three discussed

solution mechanisms of either POSD, SystemRAD, or the xMDA method, whether they related better to an

alternate method (with the inclusion of the sub-theme other), or whether a suggestion for a combination of

methods might be considered a better suited solution.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 249 of 333

Observations

In this section of the appendix, results highlighted in the previous section are elaborated on with reference to

the issues related to the application and use of methods described in Section 8.3 and the student experience in

moving from analysis to design via specification. In presenting the findings, it is imperative to produce a

“coherent ‘story’” (King 2006), giving particular focus to the experiences of the individual, with direct quotes

being “essential” (King 2006). Therefore, the final template (see table 2-1) is used to lead the interpretation of

findings and where student experience is drawn upon, the student is referenced by number in brackets for

identity protection. This does not mean the themes are related in such a hierarchical way as the template

suggests, or by no means implies there is no relationship between attributes that appear disassociated.

Each of the identified themes are discussed in turn, drawing on individual case experience to gain clarity and

understanding of the student perception of the process in moving from analysis to design, experience of and

attitude toward given solutions and the overall reception of methods. As recommended by King (2006),

discoveries are based upon the careful examination of the spread of codes, data entries that occur singularly,

and where there is no occurrence. Whilst remaining selective in choices made regarding interpretation and

remaining open to the consideration of inter-theme relationships, it is important to stress that it is not the

intention of this research to derive factual evidence from these observations, rather to gain insight into the

personal experiences of the individual in consideration of available techniques and specifically to learn

whether or not the xMDA method would be received as a viable.

Simplicity

Simplicity is an area that appeared to be important in the consideration of moving from analysis to design and

the notations used to complete the task. Over 40% commented on the simple application of methods, 53%

identified the involvement of various stakeholders for consideration and 36% discussed ways to simplify

methods through varying means.

Application

When moving from analysis to design there seems to be some attraction to the Use Case as a notation for

specifying software systems. “Use cases are often perceived as an integral part of an object-oriented approach

to software development” (Phalp and Cox 2001). In Kanyaru and Phalp (2005), this popularity is associated

with being able to represent specification via actors and natural English; this in turn enables specification to

be understood by stakeholders. Student 10 concurs by saying that “they rely on prose and can be seen as fairly

basic representations of complex problems, they are supremely easy to understand” (10) and Student 20

identifies that because the Use Case “does not use symbols but words to describe the different processes” (20)

they facilitate understanding. However, Use Cases can lead to ambiguities (1 and 44). Therefore, some

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 250 of 333

authors attempt to facilitate the move from analysis to design, focussing on intermediate techniques that are

used in moving from a richer process model to a Use Case. POSD is one such method that simplifies this

process by accommodating the coupling of behaviours, abstracting away from the detail of the business

process (4 and 23). This makes “it is very easy to understand in terms of what parts of the system interact with

each other” (24) and “easy to follow” (32). Other students argued however that the POSD technique is “not as

straight forward” (36) as other techniques and not a “complete solution” (38). This is perhaps because the

application of POSD demonstrated to the students uses other techniques to complete the move which

complicated understanding for those students.

RADs are identified as being a “fairly easy, simple notation” (37) for modelling the business process and

providing a communication conduit between stakeholders and requirements specialists; supported by

Murdoch and McDermid (2000). This is because a single-page RAD is able to simplify the description of

complex processes (38) with minimal training (37). A RAD offers a straightforward description of “the

process to the client and captures the business needs” (29). RADs have “the advantage of describing the

timeline of the system or process” (20), making the process easy to follow; an ideal represented by all three of

the described methods. In Brown et al. (2006), model transformations are described to include refactoring

(where one notation is used during transformation); model-to-model (where different notations are mapped);

and model-to-code (where code is generated directly from the model). One student argued that refactoring

transformations are of greater simplicity because “fewer notations have to be learnt and understood, thus

conveying and communicating meaning much more effectively” (9). The xMDA method is based fully on the

modified RAD where “every step of the transformation allows you to see what has changed making it

relatively easy to follow” (4) and transitions to design are described as “much easier” (6). The xMDA method

carries “the advantages of being simple to understand” (33) and is less complicated in comparison with POSD

(31). However, others argue that the MDA is “a very complex approach to creating a system” (3) and the

xMDA method has a “complex nature of splitting RADs” (34) with the RAD notation itself being complex

(44 and 45).

Other mechanisms were mentioned, such as B-SCP and Problem Frames, with the central notion of simplicity

in application being highlighted (7, 44, 45 and 46). Student 24 writes that the objective of this research area is

to “simplify the process involved” (24) by proposing methods that help stakeholders address the issues

involved in moving from analysis to design. Student 47 goes a step further by suggesting that the initial

decision of choosing an appropriate method is essentially difficult because it is compounded by the

consideration of the repercussions involved when choosing an inappropriate method (47).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 251 of 333

Communication

Stakeholders are identified as “anyone that could be materially affected by the implementation or outcome of

a new system” (Phalp et al. 2007), whose objectives and goals vary in as much as the number of mechanisms

available to move from analysis to design (Kavakli 2004), supported by Coughlan and Macredie (2002),

Kavakli (2004), Nuseibeh and Easterbrook (2000), Peixoto et al. (2008), Phalp and Jeary (2010), Phalp et al.

(2007), Sommerville (2004). The communication of information between stakeholders in moving from

analysis to design was highlighted as a key student concern. This is perhaps because specification provides

mechanism between Business and Systems Analysts, and inadequate systems may result if there is a

mismatch of understanding. “If business models aren’t understood and consequently not used to their full

potential they could be seen as a waste of time and money” (16) and, conversely, by “totally focussing on the

customer there is the tendency to ignore the problem context” (17), i.e. the derivation of systems design,

which highlights the importance of the connection between Business and Systems Analysts.

Solutions discussed include applying notations that are simple for both domains to understand, such as RADs,

as they are an “extremely beneficial method of ensuring a thorough understanding of the process is shared

between all stakeholders” (6), or Use Cases, because they are “more easy to understand” (20), “which should

allow the client to discuss, validate and experiment with process changes” (29). A RAD is “useful for

developers who want to perform analysis; it does not include a foundation to initialise specification and

design” (14). POSD “has the advantage of being easily understandable for a less technical user” (8) and can

transform a RAD to a Use Case model. The xMDA method can be used to “gain a better understanding of the

scenario presented and how to turn the analysis… onto the next level of requirements and specifications” (32),

and “provides a structured, relevant approach for ensuring business needs are maintained through to

development” (33). It is important that such notations must include the Business Analyst since often system

models are commonly software-based and “exclude anyone from a non-programming background” (8).

Indeed, “this could be done through ‘user-facing’ (audience) models aimed towards stakeholders” (9). With

that in mind, the xMDA method is an example of a technique that aims to include both the Business and

Systems Analyst by providing mechanisms that support process and design modelling through the CIM; “the

advantage of using CIM is that it has better connection to business users” (19), whilst remaining attractive to

IT because of this connection (3).

It is suggested that it is sometimes difficult to achieve understanding when many different notations are used

because “people cannot be expected to be familiar with each notation” (16); this would result in exhaustive

training (16 and 18). In the context of the SystemRAD (and the xMDA method) users must “be trained to deal

with system adaptation” as well as having a clear understanding of the application of the RADs (16). This

issue could be compounded when models are placed in enterprise systems where multiple teams work on

individual projects. “When models are moved from team to team, they do not necessarily carry the same

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 252 of 333

experience or knowledge as others and it can become difficult to translate what one person knows and creates

to what someone else can understand” (18).

Means to increase stakeholder understanding in the context of transformation (such as colour coding,

numbering and the application of meaningful naming conventions) can be used in strengthen such techniques

(2). Particular style guidelines, like the CP Style Rules for Use Cases (Cox et al. 2001; Phalp 2002), can be

used to facilitate understanding “because there is much less ambiguity from the part of the reader” (21). Tool

support, such as the enactable Use Case tool described in Kanyaru (2006), Kanyaru and Phalp (2005, 2009),

can allow “stakeholders to be fully involved” (7), with descriptions containing “both pre and post states to

ensure that before and after each process, the same detail and business need is understood” (18).

Others argue that it is the onus of analysis to ensure “all stakeholders understand the scope of the system and

that everything in the scope is documented consistently” (8). Without this, a complete specification would not

be able to be prepared and “would require further interaction with the customer… to find out what was

needed” (27) to complete it. Student 41 recommends a combination of techniques should be used to maximise

efficiency, ensuring that “no processes are missed out” and the “potential for risk” is accounted for (41). The

important thing being that the stakeholder is involved from the start of the project.

Notation

The concern for simplicity was identified further, regarding how notations can specifically simplify and be

simplified to identify and demonstrate processes involved in moving from specification to design. One way to

look at this was to examine the ability of techniques to model the concepts such as role or actor. RADs are

described as “an excellent way to initially project how a system works looking at specific roles and how they

interact with the system as well as other roles” (36). POSD can “identify roles and actors within the system

and contributes to identifying connections between these roles” (6). A POSD will take interactions and, by

grouping, can simplify a RAD to highlight the essential roles and interactions (31). Surprisingly, the ease of

role or actor discovery was not really mentioned in the context of the SystemRAD and the xMDA method.

Some notations demonstrate that, by having alternate phases or steps, the issue of moving from analysis to

design can become simplified. The xMDA method notably moves the RAD through a three-phased approach

in moving to design (1, 14 and 41) making it “very powerful” (4). This gives it an advantage simply because

of the conversion in “small stages” (20), which allows for the identification of the system boundary (24). The

B-SCP framework also contains three stages of strategy, context and process for an “integrated model” (1).

The SystemRAD approach moves from an analysis to system RAD, then Use Case (6), much like the POSD

approach moves from analysis RAD to POSD, then Use Case (14). One student suggested that such

abstraction can help in consideration of the PD, i.e. problem complexity can be removed by sub-dividing the

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 253 of 333

process (43). Other students viewed this to be a software process issue, as much as notational. “One of the

main issues in moving from analysis to specification and design is not separating these tasks properly. Each

stage is a separate task in its own right and should be focussed on individually to ensure accuracy as a whole.

Blurring the division between these can result in an inaccurate, out of scope view of what the system should

do” (15). Student 34 concurs where it is said that “the main thing to be noted here is that each area should be

kept completely separate and not combined. Only once the issues within the PD have been identified and new

requirements drawn up for the new system should the specification section come into play” (34).

As previously mentioned, notations can be enhanced with the inclusion of colour coding, numbering and the

application of meaningful naming conventions in the context of transformation as a means to increase

stakeholder understanding and this was recognised by a numerous students, most likely due to this

information being made directly available in the course material. Colour coding and numbering can be used to

identify which parts of a source model relate to which parts of a target model after a mapping process (2, 5,

10, 16, 18, 19, 21, 23, 27 and 45). POSD can be enhanced by the use of meaningful naming conventions for

the bundled interactions (3, 7, 15, 27 and 35), indeed using logical naming conventions no matter what the

method can result in a preservation of alignment (8).

Models are of course visual representations that help simplify the understanding of a process. The ideas

discussed on colour coding, etc. are further visual representations used to help facilitate understanding of the

mapping process. This is an important point to make since much appears to indirectly rely on these visual

representations. RADs are visual representation of the business process (1). POSD can form a visual

abstraction the RAD (1 and 3). Use Cases are used to give a visual overview of the “functionality provided by

the system… in terms of actors, their goals which are represented as Use Cases, and any dependencies

between those Use Cases” (14). It is suggested that this should not be neglected since, to “enhance coherent

understanding of the problem domain between parties, the results of phases are visually represented through

models” (33).

Richness

The second theme that was discovered was the level of richness incorporated in notations used in moving

from analysis to design. Over 40% of participants identified the significance of a rich analysis and

specification process in order that a useful design is achieved. 57% of the students considered a part of this

achievement relates to the discovery of the system boundary, with the same number recognising that a high-

level of abstraction could help the process.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 254 of 333

Notation

This support of richness was first and foremost found to be the onus of the notations used in moving to design

models. A difficulty found was that process models simply do not provide an adequate data description and,

therefore, it is next to impossible to transform these candidate models into useful designs. This is because

subsequent modelling activity is concerned with modelling system activity (2). The RAD does not describe

“what is actually taking place” in terms of system inputs and outputs (11 and 27), such technical detail is

“omitted” (37). The POSD technique does not “offer an explicit method of moving from specification to

design – relying on practitioner’s ability to derive classes from Use Cases” (33). Use Cases are suggested to

be better than the RAD at describing system activity (11) and, therefore, can facilitate the move to design and

the derivation of classes (33 and 46). To resolve this issue, a clear indication of “what data is inputted and

outputted and how the interaction takes place needs to be described” (11).

Conversely, whilst there is this focus on a data description (or lack thereof) in moving to design, much

attention was also found to be directed at the description of notations and associated elements with regard to

the ability to match real-world concepts such as roles and interactions. RADs were highlighted as being

useful because they were found to be capable of capturing such complex relationships (1, 6, 12, 14, 21, 36, 37

and 44) and “can be a very good way to show dependencies” (44). Focussing on roles and interactions is

“important to ensure that the specification and process model stay aligned” (18). This is vital since these

relationships are required to be “captured in... design” (6). Therefore, RAD techniques (such as POSD,

SystemRAD and the xMDA method) are considered appropriate mechanisms as “they are focussed around

user roles and activities, not classes” (8) and “can model a very detailed level of interaction when needed for

the more technical people that will be building the system” (37), whilst facilitating dependencies (44). Use

Cases suggested to be flawed because they do “not capture the rigor of business process modelling like

RADs” (33); specifically such behavioural dependencies (21 and 33). A mechanism suggested in Kanyaru

(2006), Kanyaru and Phalp (2005, 2009) can be used to enhance the Use Case definition to capture

behavioural dependencies (1, 3, 5, 6, 19, 21, 38 and 46) by introducing pre and post states to Use Case

descriptions (5, 6, 10, 19, 28 and 37) “providing a smooth transition from analysis to specification” (1). This

may however, introduce “unneeded complexity... and make it unusable with the client” (37). Issues that

cannot be accounted for by notations are traditionally “included as notes” (7).

A further notational consideration made was identified as the notation’s ability to recognise flaws in analysis

and specification. RADs were suggested by some to be very useful in uncovering process flaws (6, 13, 18, 27,

28, 35, 41 and 46) and identifying process enhancements (6 and 28). A Use Case does not necessarily cater

for this and, therefore, the importance of analysis is highlighted if any transformation into a Use Case is to be

conducted (28). This is because faults in the Use Case “have the potential to cause a lot of damage financially

if not detected until a later date” (43).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 255 of 333

Requirements & Specification

Richness and quality of designed systems was understood to be related to the attention that is placed on

analysis and specification. “The stages are iterative and rely on the output of the previous for their production;

having greater understanding of the original problem should respectively facilitate a better solution system”

(30). Student 40 concurs by suggesting that “it is necessary to have sound business goals” when moving from

analysis to specification, and that these goals need to be mapped across in the process (40). It was suggested

that research in the area of IT project failures reports that “requirements and people problems” are integral to

such failures (2), supported by Al-Neimat (2005), Kappelman et al. (2006), Lavagno and Mueller (2006),

May (1998), Phalp et al. (2007), Poernomo et al. (2008), STSC (2003). Through thorough analysis, problems

can be avoided (8, 11, 15, 17, 20, 27, 30, 37 and 43), leading to models that account for “real-world” activities

(8) and the alignment of the business process with IT implementations (17), rather than the use of software,

“which far exceeds the business needs” (11). When the problem descriptions are “detailed and clear”, the

process of moving from analysis to specification can be “fairly straightforward” (8). However, it is common

that descriptions are not so clear; requirements are “volatile” (19) and reliance is placed on solution

mechanisms to assist in the resolution (43). It is plausible to move directly into Use Case modelling where

systems are not complex (24 and 36). However, RADs are useful in that they can expose “complicated issues”

(24 and 36). The xMDA method makes considerable effort to guide the user from analysis through to design

(31) and offers “a way of producing a firm foundation of analysis through to specification and design” (14).

Other methods, such as the Problem Frames approach, rely on a prior understanding of the application domain

(46). However, one student highlighted that it is important to recognise that many alternate definitions for

requirements and analysis can make it “very hard to see where analysis ends and specification begins” (34).

System Boundary & Abstraction

Specification is the stage where the system boundary is decided (37 and 17) and this is an important

consideration (19 and 43) because only some behaviours described in analysis involve the system (4, 5, 10,

21, 24, 29 and 30); supported by Génova et al. (2005), Nuseibeh and Easterbrook (2000). A difficulty is

presented when a semantically rich notation, such as the RAD, is used during analysis to provide business

process models, but is not rich enough to describe the system boundary (1, 3, 10, 14, 16, 24 and 36) and

transforming a RAD directly to a Use Case can result in the system boundary being omitted or inadequately

described (6). Use Cases are rich with notation sufficient for describing the system boundary (1, 4, 5, 14, 16,

21, 24 and 25) and one solution to defining the system boundary is via the intermediary technique POSD (1,

5, 14 and 41), which facilitates the transformation of RADs to Use Cases (36). However, the system boundary

of a large system was perceived to be very hard to demonstrate using POSD (3) and, as previously noted, the

POSD was not seen by some as being a “complete” solution to identifying system boundaries (19, 36, 39 and

41) to which the xMDA method addresses (36). An important recognition made by one student was that,

because POSD acts as an intermediary between an analysis process and a specification Use Case, the resultant

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 256 of 333

Use Case is not specification at all, but a Use Case representation of an analysis model, and therefore some

further evaluation of the Use Case is required (44). The SystemRAD approach and xMDA method are

designed to apply the system boundary notion to the RAD (1, 4, 5, 6, 10, 14, 16, 19, 21, 24, 25, 28, 34, 36, 39,

40 and 42), the main difference being that the SystemRAD suggests a transformation to Use Case to complete

specification (which is similar to POSD) (10), whereas the xMDA method, whilst requiring three related RAD

descriptions, does not (5, 6 and 25). The xMDA method “can identify the system boundary and illustrate

relations and processes to depict Use Cases, Class Diagrams or Activity models” (36), having the added

benefit of being aligned with the MDA, meeting “the needs of the IT system by providing a solid architecture

of the objects within the system boundary” (3). One student highlighted that “the same issue is coming

through in all the possible different mechanisms, which is how to define where the system boundary is for a

RAD” (24).

Another interesting observation in consideration of the movement of models from analysis to design was the

richness included in the context of model abstraction. The RAD includes complex interactions and actions

that detail the entire process by role (13). The Use Case abstraction is “closer to the user than to the

implementation” (2), with activities being assigned to actors. Moving from RAD to Use Case is challenging

because the complexity of the RAD is not always helpful (13, 30, 35, 38 and 41). The POSD method employs

“a range of viewpoints” (41) and a grouping mechanism which seeks to alleviate this difficulty by abstracting

away the process detail, simplifying the RAD and preserving mappings as shared components (1, 2, 5, 8, 12,

13, 14, 15, 17, 24, 25, 30, 31, 32, 35, 36, 37, 38, 39, 41, 42, 44 and 46). A weakness of the POSD method of

abstraction is that “there can be inconsistent levels of abstraction in the transformation; Use Cases are usually

made up of multiple actions and interactions but there can also be some that only model a single interaction”

(44). An important point was made by Student 27 where Cox et al. (2005b) were quoted as saying that

“abstracting away the hard or confusing parts of the problem will only lead to an inadequate delivered

system” (Cox et al. 2005b), which could be true of the POSD method if used incorrectly. One student

suggests that “a consistent level of intensity would allow for an ease of understanding between different types

of modelling, enabling for an accurate representation of the problem within the specification and design

stage” (17).

Transformation, Traceability and Interoperability

Issues in moving from analysis to design were found to be centralised around the transformation, traceability

and interoperability of solutions. In particular, almost 47% of students highlighted issues surrounding the

preservation of information during model transformations, with the majority (57%) suggesting solution

mechanisms can address the issue. 57% also highlighted that the difficulty in such preservation is related to

modelling notations being orthogonal, with over 46% believing that available mechanisms can help avoid this

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 257 of 333

danger via intermediate techniques, facilitating the move from RADs to Use Cases (62%) and those which

move directly to design models such as the UML (51%).

Transformation & Mapping

When transforming between models and domains, it is important to retain as much detail as possible so that

important requirements do not become lost in translation (4, 6, 7, 9, 10, 14, 18, 19, 20, 23, 28, 29, 30, 31, 32,

33, 35, 36, 37, 38, 39, 41, 42 and 44). “An issue in moving through the phases is that they are different in their

levels of abstraction and therefore create the problem of establishing a level of detail” (30). This is a complex

and difficult task due to the fact that source and target models commonly originate from alternate

environments. For example, a role-based analysis model (RAD), a procedural specification model (Use Case)

and an object design model (Class) (2, 3, 4, 5, 8, 10, 12, 13, 15, 17, 18, 19, 23, 25, 26, 30, 35, 37, 38, 42 and

46). “Naturally this provides a problem when trying to preserve mappings. This is what is known as being an

orthogonal problem. Essentially these models are used in the knowledge that they can be unrelated” (13); this

is compounded by the available “array of modelling techniques” (2). Therefore, it is argued that moving

directly from a RAD to Use Case can result in a loss of information (6, 10, 18, 20, 24, 30, 37, 38 and 44)

because the complexity of the RAD is difficult to realise in a Use Case (7, 10, 28, 34, 38, 44 and 46). “The

mappings between the states, action and communications are impossible to represent within a Use Case” (38).

Process models may also include many PD related ambiguities which further complicates the mapping for

developers (14, 15, 32, 43, 44 and 47).

Mechanisms are available that propose to assist in this mapping process in the preservation of information (4,

5, 6, 7, 8, 9, 10, 13, 15, 17, 18, 19, 20, 21, 25, 28, 29, 31, 32, 34, 35, 37, 39, 41, 44 and 46). POSD is a

method that attempts to resolve the issue of moving from a RAD to a Use Case to reduce the risk of

information loss (4, 6, 12, 13, 15, 17, 19, 20, 23, 25, 28, 29, 31, 32, 39, 44 and 46). “By expressing roles

sharing behaviours with other roles (via connections) the transition becomes more simplified as the mappings

are preserved between the models used” (13). However, a loss of information can still be experienced in the

grouping of interactions (29, 31 and 42) where it is found that “certain actions of the system can become so

generalised that they are lost in the process and aren’t identified in the Use Case” (38). This is made easier by

the use of meaningful naming conventions when mapping (3). As previously noted, the POSD method also

neglects the system boundary (39). A SystemRAD can be used as an alternate intermediate technique in

moving to a Use Case, which provides a mechanism to define the system boundary and traceability from the

Use Case back to the RAD, ensuring information loss is minimised (4, 5, 6, 16, 19, 25, 28 and 29). However,

“when it comes to moving from the SystemRAD to a specification format like Use Cases – there will be a loss

of information that can be displayed on a RAD but not on a Use Case” (10). The Problem Frames approach

proposes to assist the move from RADs to Problem Frames (12 and 34). “It has been suggested using a set of

specific activities, in an iterative approach, loss of information is reduced” (13). However, this method “has

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 258 of 333

issues relating to the potential loss of important design domains” (33), and a context diagram is not always

helpful with this (7). Framing for some, proved to be difficult (14). Use Cases can be enhanced with the

addition of pre and post conditions and structured English to help reduce the loss of information by including

a greater amount of detail inspired by the process model (5, 7, 10, 18 and 39). However, Use Cases are

typically “ineffective as they do not have a precise section for requirements of different stakeholders” (31).

The xMDA method provides a direct mapping mechanism from model to model through specification, rather

than the OMG’s argument for objects, ensuring the preservation of information (21, 33, 39 and 25). The

method “models all the information required to produce effective designs” (4), “although there are a lot of

rules to follow to ensure detail is not lost” (7). This makes it easier to transform from analysis to system level

models (1, 6, 25 and 38), providing a conduit to the PIM of the MDA (21 and 44).

It is further suggested by (6 and 8) that the use of methods in combination can help to reduce the loss of

information when moving from analysis to specification notations. However, no matter the method or

combination of methods chosen, it is considered important to guarantee that “effective mapping is undertaken

to ensure consistency and accuracy between models” (9).

Traceability

As discussed in the previous section, the correct transformation and preservation of mappings between models

is an important consideration. It follows that the traceability of such transformation and mapping is also

highlighted as an important issue in moving from analysis to design. This ideal relates to that of ensuring what

is required by stakeholders, results in implementations, and that “when managing the creation of a new

system, issues often arise due to the lack of techniques used to ensure traceability between certain phases of

the project lifecycle” (23). Traceability is difficult to achieve for the same reason mapping is; because of the

orthogonal nature of modelling notations involved (2, 3, 8, 21 and 37). One student writes of RADs and Use

Cases that it is possible to “map between the two methods but ultimately they represent different things and

this is one of the major problems as modellers we have with traceability” (2).

Further to this, process models are likely to experience changes (Kavakli 2004) “and it is unrealistic to expect

it not to” (10). Ideally, changes made in a source or target model will reflect in all related models

automatically (Koehler et al. 2007). The complicated nature of mapping makes this task difficult, if not

impossible (2, 3, 8, 21 and 37). However, it can “be aided with automated case tools and other modelling

applications” (8). As previously mentioned, SystemRADs can cater for such traceability through simple visual

mechanisms such as colour coding each related RAD interaction and then relating it to a Use Case (10). The

BSCP approach addresses traceability with the inclusion of the three themes of strategy, context and process

and “having a means of cross referencing” (8) between themes and notations. Refactored transformations (like

the xMDA method) approach traceability by focussing on a single form of notation (the RAD) (9 and 20). Use

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 259 of 333

Case states can enable traceability to the RAD using information taken directly from the process model (18

and 21). POSD approaches traceability by ensuring there are connections between the Use Case and RAD by

creating “smaller behaviours” that reflect the detail of the RAD onto the Use Cases (21 and 23). “A possible

solution of transitioning from the analysis stage to the specification stage is through gathering the analysis

interactions into specification events and bundling the related actions in the analysis phase. The process of

grouping lower level actions and interactions that are related from the analysis stage not only helps to create

the specification but also helps to ensure traceability between the two phases” (30).

Interoperability

The solution for successful transformation, mapping and traceability of models may lay in the ability of

modelling techniques to be interoperable with other techniques and software design processes, since the idea

of a single generic language that is adaptable to all is unrealistic (Jouault and Kurtev 2006; Mattsson et al.

2009; Rombach 1988). It is possible to move from a RAD directly to a Use Case, the enactable Use Case tool

can also be used to move from process model to Use Case (7 and 16). However, as mentioned previously this

can result in a loss of information (15), even with the application of the enactable Use Case tool. “Although

direct mapping can bring benefits, it is also worth considering whether it would be more beneficial to use an

intermediate notation to assist with translation from analysis to specification and design” (16).

POSD was highlighted as an intermediate technique by most, enabling the transition from a RAD to a Use

Case (1, 2, 4, 5, 6, 7, 18, 19, 20, 21, 23, 24, 25, 28, 29, 30, 31, 33, 34, 36, 38, 39 and 40). Use Cases can then

be used for class discovery. However, it was noted that the POSD method does not offer the explicit transition

to design models, leaving class discovery to the developer (33). SystemRADs again allow the transformation

to Use Case (6, 7 and 16) and have the benefit of sharing similar notational constructs with the RAD.

However, a Use Case is still the target platform. The xMDA method does not require transition to Use Cases

(4, 5, 6, 23, 25, 29, 31, 40 and 44) to complete the move to specification (although it can generate a Use Case

from specification if required (20, 36 and 40)) because the thoroughness of refactored transformations negates

the need for other intermediate diagrams (such as Use Cases) (9); this is a subject that “causes a lot of debate

as Use Cases are popular in industry” (7). The “method provides a decreasing level of abstraction and an

increasing level of system requirements detail as it moves towards its culmination in Machine RADs and

[could] possibly [be] augmented with [the] analysis of Strategic Dependency and Strategic Rationale when

defining requirements alongside SEAM (Strategic Enterprise Architecture Method) to ensure alignment with

business goals” (40) - see Wegmann et al. (2005, 2007) for more information on the SEAM. Further to this,

the xMDA method defines specification right into design, allowing for the derivation of specification based

system models (3, 4, 5, 6, 7, 19, 20, 21, 23, 24, 25, 29, 30, 31, 32, 33, 36, 37, 38, 39, 41, 42 and 47) via

Transformation and Platform Information. Student 39 suggested that design models could in theory be

extracted anywhere along the process (39) with the application of such information. Student 8 reported a

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 260 of 333

successful application of the transformation rules in reverse, deriving a RAD from a Use Case, giving an

indication of the dynamics of this method in terms of interoperability (8).

Approach

Analysis of the student feedback resulted in the identification of noteworthy areas surrounding the application

of approaches that have been discussed in the previous sections of this appendix. In particular, almost 45% of

students felt on reflection of what was presented to them that alignment plays an important role in moving

from analysis to design. This is perhaps expected considering the importance placed upon transformation and

traceability in the previous section.

Software process

Surrounding the issues of moving from analysis to design via specification is the consideration of the actual

software processes that stakeholders must also contend with. Alternate software processes will be used within

different organisations and projects, albeit traditional or current model driven approaches. The selection of

software process was felt to influence the success or failure of the project (2 and 15). This is because some

software processes will facilitate approaches and mechanisms better (or worse) than others (26). For example,

in the MDA, the CIM is described as disconnected from the transformation process of the PIM and PSM (21),

supported by Section 6.1, Fouad et al. (2011), OMG (2003b), and therefore any approach involving the MDA

will find difficulty in making this connection, for which the xMDA method is designed to apply (33).

In view of the difficulties in moving from analysis to design, it is suggested that the selection of method,

approach and/or combination should be dependent on the situation (33). One student writes that “the question

of moving from analysis to design presents many arguments from many alternative domains, such as RE;

BPM; and the Software Process… the answer is in putting together all the pieces of this puzzle, from each of

the domains” (2).

Alignment

The crux of the issues surrounding the move from analysis to design according to the students seems to be the

need for an alignment between what software systems represent and what is required by business (Fouad et al.

2009; Fouad et al. 2011). This was experienced in examination of texts relating to transformation and

traceability, and now corroborated with evidence suggesting such alignment to be the resulting ideal (1, 2, 3,

5, 8, 9, 11, 12, 15, 16, 17, 18, 26, 28, 29, 30, 33, 34, 40, 44 and 45). Student 44 writes that “it’s important

when moving from analysis to specification and design to ensure that there is alignment between the IT

system and the business goals and needs” (44). Student 15 concurs by saying that “business needs, business

processes (including business process models) need to be in correlation to the IT system and have an accurate

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 261 of 333

representation, in order to meet goals, requirements and expectations of the client and provide a successful

architecture” (15).

Such representation is addressed by the discussed solution mechanisms, mainly in the form of transformative

capabilities. B-SCP integrates techniques to ensure the alignment of IT with business strategy (1, 8, 33, 34

and 45). POSD attempts to maintain abstract connections with logical naming conventions in a view to

address business/IT alignment (3, 8, 15, 16 and 17). Use Cases can be enhanced with pre and post conditions

to help with alignment issues (16, 18 and 29). The SystemRAD addresses alignment by insuring process

information is transferred to specification along with the system boundary (16). The xMDA method maintains

this alignment specifically via a model driven approach (6, 18, 26 and 33) by guiding the user through

different RAD incarnations based on analysis, ensuring alignment is addressed in design (1, 3, 18, 30 and 40).

Applying such solutions “will remove any inconsistencies and ensure alignment between analysis and

specification leaving us with an accurate overview of the business’ system requirements” (16). However,

achieving alignment can, with most methods, be a time consuming task (2, 7, 18, 19, 23, 24, 30, 33, 34, 37

and 47) and may result in a combination of methods being applied for successful alignment (12). POSD was

considered favourable to Student 23 since “it will be less time-consuming” (23). However, in support of the

xMDA method over other methods, Student 24 writes that the method seems “more flexible in the long run

and will save time on larger projects” (24), perhaps being automated to reduce the time and risk involved in

attaining alignment (30). Student 33 goes a step further suggesting that the time taken during an xMDA

transformation is “the strength of this technique because it forces the analysis team to put considerable

thought into the problem” (33). Of course, all of this remains to be proven in commercial application.

Tooling

As previously mentioned, tool support could facilitate the integration of these mechanisms into real

implementations. Although far less of a concern, a number of students discussed the available approaches and

suggested that alignment could be helped with the introduction of tooling.

The xMDA method described as currently in a conceptual stage with no tool support available (3, 4). This

means that the method is manual (30, 31, 32, 37 and 44). Suggestion given is that an automatic approach

would not be possible due to the nature of transformations and importance of human interactive decision

making in the move from analysis to specification (3, 4, 23, 38 and 44). Therefore, a semi-automatic approach

is considered as an appropriate direction for further research in this area (3, 4, 23, 32 and 44). Others

suggested an automatic approach was viable, and would reduce both the time taken and involved risk (30). An

advantage of this is that any model output from the xMDA method (via XMI) could be used with MDA

applications for future model-to-code generation (3, 9, 26 and 33). The enactable Use Case tool is an

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 262 of 333

automatic approach (3) and is available to allow users to investigate process and specification solutions via

the modelling of dependencies (3, 7 and 47). Although Student 47 mentions further work is required since, if

used incorrectly, the resulting Use Case could simply represent the process and the output from automation

may be “pointless” (47) because it does not save time; Student 18 mentions that no “real” (18) tools are

available, perhaps eluding to the fact that this mechanism is not included in any COTS Use Case software.

POSD has a manual approach to transformation (3); no transformative tool support is available.

It was notable that most of the attention for tooling was placed on the xMDA method; few ventured to

consider that most mechanisms lack architectural and tool support which could be a general concern for

research in this area. The focus on the xMDA method could also suggest it is at least viable as an approach

and a candidate for tooling.

Maturity

The last area of consideration when discussing approaches to move from analysis to specification follows

directly from the end of the last section of this appendix, where it was highlighted that support for architecture

types and tooling was missing, or at least immature, with respect the presented solution mechanisms. It was

argued that further research into guidelines was required if the Problem Frames approach was to be

considered further (33). Proof of the alignment capabilities of the xMDA method needs to be made before an

acceptance is made that this method can be helpful in deriving design models (39). The issue being that “it

isn’t a mature model or a complete method” (47). Much concern was raised regarding the application of this

approach to enterprise systems (3, 23, 31 and 37), with another feeling the method could “save time on larger

projects” (24). The POSD method is also compromised by the lack of academic work (47), let alone real

application, and came upon the same criticism regarding application to large systems (3). It appears difficult

to know exactly when to stop including behaviours when creating a POSD. That is, no direction is given in

ascertaining the most suitable abstraction level. If everything is included, especially in large systems, most

behaviours will contain promises with each other, and numerous sub-behaviours; this compounds the issue

and will certainly be difficult, if not impossible to depict. The authors call this a “topological” issue which

remains unresolved (Henderson and Pratten 1995). Others argued that POSD is suitable for large

implementations (24 and 37). Indeed, this notion of concern for application to large enterprise systems has

been generalised and applied to all identified mechanisms, with one student saying that they will “only work

with small less complex systems” (25).

It is these larger organisations that require “solutions for business integration… unbiased in regards to the

technology and manufacturer” (26) and it is important to realise that “all of these mechanisms have been

created to satisfy the academic community and not the business as a whole” (42). This illustrates how, whilst

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 263 of 333

methods may be academically sound, practical application and demonstration is required to substantiate

claims.

Solution

Overall it was expected that most students would suggest that a combination of alternate methods, depending

on the project and software process, would provide the best solution in moving from analysis to specification

and design. A striking observation was that over 31% of students reflected positively on the xMDA method as

a solution; which was more than the expectation that a combination of methods might be the desirable (28%).

POSD

Several students (12%) identified POSD as a preferred method of moving from analysis to specification (15,

17, 23, 34, 37 and 44), citing the methods attention to preserving alignment between business process and IT

models (15, 17 and 23). One student wrote that the POSD method seemed “the clearest and most obvious way

to transform [the] RAD into Use Cases” (44).

SystemRAD

The reception of the SystemRAD was a little more disappointing in comparison with the other techniques

with only two students highlighting the benefit of the SystemRAD, and even then, suggesting that it might be

beneficial to be augmented with other techniques in order that a complete specification is derived (19 and 28).

This was perhaps due to the overall lack of publication and awareness regarding the technique.

xMDA

The xMDA method received the strongest support with over 31% of students identifying the potential of this

method (1, 5, 7, 14, 20, 24, 25, 30, 31, 32, 33, 36, 38, 39 and 47). One student suggested that the xMDA

method “is a logical and relatively simple approach to moving from the analysis stage all the way to design”

(30).

Others

Other students looked towards alternate techniques to solve the difficulties in moving from analysis to design.

Student 45 suggested that Goal Modelling “would be suitable” (45). Another felt that the architectural choice,

such as the MDA, could provide sufficient facilitation in moving from analysis to design (26). One went

further in questioning whether or not a transformative move from analysis to specification was necessary in

the first place. “Arguably, a analysis model such as a RAD could be used to create a set of requirements and

details in the form of something like a checklist, which could then be referred to when building Use Cases

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 264 of 333

from the specification to ensure nothing is missed out and forgotten” (44). However, it is noteworthy that no

strong feedback was received to support the use of other techniques rather than those presented.

Combination

It was found that, despite some students considering one technique as more appropriate that others, the

majority of those not identifying the xMDA method as an overall solution to the presented issues felt that a

combination of techniques, dependent on the situation, would be fitting (1, 6, 10, 12, 13, 14, 18, 19, 28, 29,

32, 41 and 46). This is because using any technique alone “could result in neglecting critical aspects of IT

requirements analysis” (1) with one student suggesting that “the key is to use a combination of these

methods” (10).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 265 of 333

Appendix III

Case Study: The Club at Meyrick Park

- Process Models

- Summary of Discussions

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 266 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 267 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 268 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 269 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 270 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 271 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 272 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 273 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 274 of 333

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 275 of 333

Summary of Discussions

After a series of elicitation meetings with the Membership Manager of The Club at Meyrick Park over a two

month period early in 2010, eight process models resulted. These models are included in the first part of this

appendix, capturing the complete Membership Sales process. The purpose of this section is to provide a

summary of the elicitation process and some feedback from The Club at Meyrick Park in terms of this process

and the application of produced reference models.

Initially, process discovery and capture was investigated with the Membership Manager using a middle-out

analytical technique. That is, the Membership Manager identified several procedures which were investigated

in turn by identifying inter-process dependencies and expanding the level of detail defined for each. Internal

activities and interactions were built upon until external entities and collaborations were reached. This

resulted in the achievement and verification of a complete process architecture for the Membership Sales

process by the Membership Manager.

Simple natural English text documents were first used to describe behaviours until enough information

became available to produce foundation RADs of those behaviours. In an iterative nature, the Membership

Manager produced text and received RADs in return to be verified. Upon receiving the initial RADs and a

brief explanation of the notation, the Membership Manager was able to review and adjust the RADs to their

satisfaction, thereby demonstrating the benefit of the notation being both easily understandable and requiring

little or no training to use. The Membership Manager described the process of elicitation as being relatively

pain-free; meetings were easily accommodated and documentation was able to be shared and discussed via

email and in person.

Initial textual descriptions outlined by the Membership Manager produced rather sequential RADs. However,

upon reviewing and applying the RAD notation, the Membership Manager was able to account for event-

based and non-deterministic activity using the RAD trigger and the undefined notational elements - for

example, see the Appointments and Walk-Ins Process Model (05/005). The Membership Manager considered

this to be useful since the processes, when described sequentially, became overly complicated. This was

because certain activity did not necessarily flow in a sequential manner; the undefined notation allowed

activity to be described without such constraint.

Upon completion, the process models (as included in this appendix) were formally presented to the

Membership Manager of the Club at Meyrick Park in February 2010. From initial conversations with the

Membership Manager, the models were successfully used to train new Sales Advisor employees in the

Membership Sales department. The Membership Manager at the time said “we had a new starter [just after the

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 276 of 333

process models were presented]… As a manager, they [the process models] were very helpful in

demonstrating the process… and outlining [the new starter’s] responsibilities”.

Further discussions over the period after the initial application revealed that both the new Sales Advisors and

the General Manager had reflected positively on the documented processes. The Membership Manager

advised that the new Sales Advisors had said the process models made it easy for them to visualise their roles

and were very useful for them to refer to as a checklist to ensure they had completed all tasks relating to the

process, and as guidance to which tasks were required to be completed when uncertain about the process. The

General Manager, who had initially requested that the Membership Manager undertake the task of

documenting complete Membership Sales process, was said to be very impressed by the quality of process

models produced and the use of the diagrams for internal documentation and training purposes. The

Membership Manager advised that the process models would remain documented internally for that purpose.

In the morning of the 4th August 2011, a final meeting took place with the Membership Manager who took

part in the original elicitation process to discuss the success and future of the process model application within

the organisation. The Membership Manager spoke positively in terms of the application within The Club at

Meyrick Park and advised that they had since moved on to manage a larger Membership Sales department in

an another organisation related to Health and Fitness facilities. Opportunities of documenting new processes

for that organisation using techniques described by this research were raised by the Membership Manager and

discussed. However, this time there was interest in moving a step further; since the organisation lacks any

documented processes and, with process flaws being noted, the suggestion was to document the current

processes and use the process models to re-engineer streamlined processes for efficiency gains, perhaps using

ideas of the LSS method. This is useful in demonstrating the successful application of this research and lays a

foundation for future collaborations related to this research.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 277 of 333

Appendix IV

xMDA and The Club at Meyrick Park

- Environment, Shared and Machine RADs

- Class Diagram

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 278 of 333

figure 4-1, Environment RAD for the Follow Up Call process.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 279 of 333

figure 4-2, Shared RAD for the Follow Up Call process.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 280 of 333

figure 4-3, Machine RAD for the Follow Up Call process.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 281 of 333

figure 4-4, UML Class Diagram for the Follow Up Call process Machine RAD.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 282 of 333

Appendix V

QVT-Relations for rad2umlcd Transformations

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 283 of 333

Role2Class

The first rule describes an unconditional mapping of a RAD role to a UML class as illustrated in figure 5-1.

C E

-name = rn

<<domain>>

r : Role

-name = rn

<<domain>>

c : Class
rad : SimpleRAD umlcd : SimpleUML

figure 5-1, a RAD role to a UML class relation.

Most cases will be required to hold true when the Role2Class relation holds between the role and the class

containing the activity. Since this is the case, the Role2Class relation is defined as a top-level relation,

requiring to be held true for all relations in a transformation. This relation is demonstrated in QVT-R textual

syntax below.

top relation Role2Class /* map each role to a class*/

rn = ‘String’;

 {

 checkonly domain rad r:Role

{

name = rn

}

 enforce domain umlcd c:Class

{

name = rn

}

 }

That is, pattern r binds the variable rn to the role model element name and pattern c binds the same variable

rn to the class model element name, resulting in both name model elements in the role and class elements of

the rad and umlcd candidate models containing the same information, i.e. rn. Each domain is annotated as

Checkonly (for verification against the rules) and Enforce (to create or change the target model according to

the relation – that is from the RAD to the UML).

There is no complication involved in defining Role2Class transformation; only a single attribute (name) is

required in the relation. When and Where clauses can also be applied to “explicitly constrain the relation”

(Ignjatovic 2006) and may be formed using “arbitrary OCL expressions in addition to… relation invocation

expressions” (OMG 2008b). However, no such expressions are required to further elucidate this rule.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 284 of 333

IndependentActivity2Operation

Since the Role2Class relation has been defined as a top top-level relation, the IndependentActivity2Operation

relation is required to hold only when the Role2Class relation holds between the role containing the

independent activity and the class containing the operation. This relation is illustrated in figure 5-2.

C E
-name = ian

<<domain>>

ia : Independent

Activity
-name = ian

<<domain>>

o : Operation
rad : SimpleRAD umlcd : SimpleUML

figure 5-2, a RAD independent activity to a UML operation relation.

The QVT-R that represents this relation is not defined as a top level relation, as it is not a requirement for all

other relations, since the transformation is dependent on only the involved independent activity and associated

operation. This is reflected in the following description.

relation IndependentActivity2Operation /*map each independent activity to an operation*/

ian = ‘String’;

 {

 checkonly domain rad ia:IndependentActivity

{

 name = ian

}

 enforce domain umlcd o:Operation

{

name = ian

 }

 }

Note that in the guiding rules, it is advised that a new class and association may be generated should an object

result from the independent activity. For example, the independent activity writes report could generate a

report class and an association to that class. Therefore, additional relations need to be defined.

In this case, the QVT is described by the following two relations.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 285 of 333

C E
-name = ian

<<domain>>

ia : Independent

Activity
-name = ian*

<<domain>>

ia2c : Class
rad : SimpleRAD umlcd : SimpleUML

figure 5-3, a RAD independent activity to a UML class relation.

Figure 5-3 highlights the relation that describes how a class might be generated from an independent activity.

When the relation is true, the Where clause is used to apply further conditions. It is used in this case to

describe that whenever the IndependentActivity2Class holds, the IndependentActivity2Association relation

must also hold. The associated QVT-R description is provided below.

relation IndependentActivity2Class /*map each independent activity to a Class*/

ian = ‘String’;

 {

 checkonly domain rad ia:IndependentActivity

{

 name = ian

}

 enforce domain umlcd ia2c:Class

{

name = ian* /*must be amended to reflect object (noun)*/

 }

 where

{

IndependentActivity2Association (ia, ia2a);

 }

 }

Figure 5-4 illustrates the graphical syntax for the second relation of IndependentActivity2Association.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 286 of 333

C E
-name = ian

<<domain>>

ia : Independent

Activity
-name = ian*

<<domain>>

ia2a : Association
rad : SimpleRAD umlcd : SimpleUML

figure 5-4, a RAD independent activity to a UML association relation.

Similarly, this relation is defined with the associated Where clause requiring that where the

IndependentActivity2Association relation holds, IndependentActivity2Class must hold. The description of the

� 2Multiplicity relation is included here to account for multiplicity in an association, which is described later

in this appendix. The QVT-R for this relation is described below.

relation IndependentActivity2Association /*map each independent activity to an association*/

ian = ‘String’;

 {

 checkonly domain rad ia:IndependentActivity

{

 name = ian

 }

 enforce domain umlcd ia2a:Association

{

name = ian* /*must be amended to reflect transitive verb*/

 }

 when

 {

 IndependentActivity2Class (ia, ia2c)

 }

 where

{

 ����2Multiplicity (ti, mu);

 }

 }

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 287 of 333

Although these two relations are useful in describing the rule, the choice of which rule to follow is the onus of

the user and therefore any software implementing these rules needs to account for that by employing a

mechanism to accept user input in deciding transformation outcomes via on screen interactions, perhaps in the

form of a wizard. Such option is not really accounted for in QVT-R. Therefore, it is proposed that the

IndependentActivity2Operation relation be applied in the absence of user input.

DescriptorState2Attribute

The next rule to be described applies to the descriptor state of a RAD. It is stated that only a descriptor state is

to be realised in a Class Diagram as an attribute of a related class. This is because the SimpleUML metamodel

has no representation for other state types. Since this is the case, no rule is required to be defined in QVT to

relate looping or line states. This relation is visualised in figure 5-5.

C E
-name = dsn

<<domain>>

ds : Descriptor

State
-name = dsn

<<domain>>

at : Attribute
rad : SimpleRAD umlcd : SimpleUML

figure 5-5, a RAD descriptor state to a UML attribute relation.

This visualisation corresponds to the QVT-R description below.

relation DescriptorState2Attribute /* map each descriptor state to an attribute*/

dsn = ‘String’;

 {

 checkonly domain rad ds:DescriptorState

{

name = dsn

}

 enforce domain umlcd at:Attribute

{

name = dsn

}

 }

A class to which the attribute is attached is required to have already been created which is addressed by the

top relation Role2Class, thereby negating the need for the When clause. Since this relation is a direct one-to-

one translation, further constructs are not required, although this relation could be extended via the use of

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 288 of 333

operator types in similar to the CaseRefinement2Attribute relation (see the following section for a detailed

description of such an extension).

CaseRefinement2Attribute

This rule is used in similar to the previous in that a UML class attribute is arbitrarily applied to represent

every case refinement (alternative) appearing in the RAD. This is so that the system will have an awareness of

state. Figure 5-6 demonstrates this rule in visual QVT-R, with the QVT-R textual form following it.

C E
-name = crn

<<domain>>

cr : Case

Refinement
-name = crn

<<domain>>

at : Attribute
rad : SimpleRAD umlcd : SimpleUML

figure 5-6, a RAD case refinement to a UML attribute relation.

relation CaseRefinement2Attribute /* map each case refinement to an attribute*/

crn = ‘String’;

 {

 checkonly domain rad cr:CaseRefinement

{

name = crn

}

 enforce domain umlcd at:Attribute

{

name = crn

}

 }

Again, a class to which the attribute is attached is required which is addressed by the top relation Role2Class

and therefore the When clause is not required in this case. In reality, this rule could be further complicated due

to the nature of the case refinement construct. For example, the case refinement can have many alternate

elements and therefore, an attribute may be required to be defined for each case refinement element (or

option) rather than just a single attribute. Further to this, the data type of the element could also have been

defined as a Boolean type to represent the true or false logic system associated with this type of attribute. The

QVT-R for extending this definition follows the graphical syntax given in figure 5-7.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 289 of 333

figure 5-7, a RAD case refinement element to a UML attribute relation.

relation CaseRefinementElement2Attribute /* map each case refinement element to an

attribute*/

cren = ‘String’;

 {

 checkonly domain rad cre:CaseRefinementElement

{

name = cren

}

 enforce domain umlcd at:Attribute

{

name = cren,

type = ‘Boolean’

}

 }

However, these extensions have been discounted here as they are inherently design issues and the scope of

this rule suggests only that the case refinement is addressed by an attribute in the UML (for review in

subsequent design), and therefore, further constructs are not required, or could be included only as part of an

interactive definition dependent on user input.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 290 of 333

PartRefinement2Attribute

This next rule can be applied in much the same way as the previous, in that for every occurrence of a part

refinement, an attribute is applied within the class defined by the top relation. This relation is visualised

graphically in figure 5-8, with the QVT-R description below it.

C E
-name = prn

<<domain>>

pr : Part

Refinement
-name = prn

<<domain>>

at : Attribute
rad : SimpleRAD umlcd : SimpleUML

figure 5-8, a RAD part refinement to a UML attribute relation.

relation PartRefinement2Attribute /* map each part refinement to an attribute*/

prn = ‘String’;

 {

 checkonly domain rad pr:PartRefinement

{

name = prn

}

 enforce domain umlcd at:Attribute

{

name = prn

}

 }

Similarly, as with case refinements, this description could be extended to account for each part refinement

(concurrent thread) element and Boolean operator as shown in figure 5-9, with the associated QVT

description following it.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 291 of 333

figure 5-9, a RAD case refinement element to a UML attribute relation.

relation PartRefinementElement2Attribute /* map each part refinement element to an

attribute*/

pren = ‘String’;

 {

checkonly domain rad pre:PartRefinementElement

{

name = pren

}

 enforce domain umlcd at:Attribute

{

name = pren,

type = ‘Boolean’

}

 }

Again, this extension is discounted since the scope of the rule suggests only that the part refinement be

addressed by an attribute in the UML, which can then later be modified at design-time, if required.

A further construct is required given the consideration that composition may also be derived from

relationships that are in part-refinement. For example, in the case that Report A and Report B are both written

simultaneously and then merged into another entity, Report C. What this is really suggesting is that for each

independent activity that results in the merging of part-refinement activities, composition is implied.

Therefore, the relation given in figure 5-10 is required to hold.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 292 of 333

C E

-name : prn

<<domain>>

pr: Part

Refinement

-name : ian*

<<domain>>

pr2a : Association

rad : SimpleRAD umlcd : SimpleUML

-name : ian

ia: Independent

Activity
-end1 : 'Composite'

-end2 : 'None'

co: Composition

figure 5-10, a RAD part refinement to a UML composition relation.

figure 5-10 shows that for each set of independent activities contained within a part refinement, where classes

and operations are also generated for those activities, composite associations must also result. The following

is the QVT-R textual description that relates to figure 5-10.

relation PartRefinement2Composition /* map each part refinement to a composition*/

prn = ‘String’;

ian = ‘String’;

 {

 checkonly domain rad pr:PartRefinement

{

name = prn,

independentactivity = ia: Set (IndependentActivity)

{

name = ian

 }

}

 enforce domain umlcd pr2a:Association

 {

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 293 of 333

name = ian*, /*must be amended to reflect transitive verb*/

composition = co: Composition

{

end1 = ‘Composite’,

end2 = ‘None’

 }

}

 when

 {

 PartRefinement2Attribute (pr, at);

 }

where

{

IndependentActivity2Class (ia, ia2c) and

IndependentActivity2Operation (ia, o) and ����2Multiplicity (ti,

mu);

 }

 }

When specified conditions are required to be true, the When clause is used as a condition to apply the relation.

In this case, the relation PartRefinement2Composition needs to hold only when the PartRefinement2Attribute

relation holds (that is, when a part refinement is identified and associated with an attribute). However, as with

previous examples, this type of relation is dependent on the guidance of the user.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 294 of 333

Interaction2Association

This rule suggests that for each RAD interaction, the UML Class Diagram will exhibit an association between

classes involved (as defined by the top relation Role2Class) and operations for both driving and passive RAD

interaction nodes within those classes. Therefore, two relations are described visually in figures 11 and 12,

with the textual counterpart following each.

figure 5-11, a RAD interaction to a UML association relation.

relation Interaction2Association /*map each independent activity to an association*/

in = ‘String’;

 {

 checkonly domain rad i:Interaction

{

 name = in

 }

 enforce domain umlcd i2a:Association

{

name = in* /*must be amended to reflect transitive verb*/

 }

 where

{

 Interaction2Operation (i, i2o) and

 ����2Multiplicity (ti, mu);

 }

 }

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 295 of 333

Note: As previously mentioned, the Where clause here states that this relation is extended by the �

2Multiplicity relation to account for multiplicity in an association. The description of this relation is found

later in this appendix.

C E

-name : in

<<domain>>

i : Interaction

-name : in*

<<domain>>

i2o : Operation
rad : SimpleRAD umlcd : SimpleUML

figure 5-12, a RAD interaction to a UML operation relation.

relation Interaction2Operation /*map each interaction to an operation*/

in = ‘String’;

 {

 checkonly domain rad i:Interaction

{

 name = in

}

 enforce domain umlcd i2o:Operation

{

name = in* /*must be amended to reflect transitive verb and

direct object (noun)*/

 when

{

 Interaction2Association (i, i2a);

 }

 }

It is stated that aggregation may exist in association between classes if role interactions are exclusively

between two roles. Therefore, further user input is required to derive such aggregation in defining the

direction of aggregation. In this case, the relation given in figure 5-13 and description below it would be

required to hold.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 296 of 333

figure 5-13, a RAD interaction to a UML operation relation.

relation Interaction2Aggregation /* map each interaction to an aggregation*/

in = ‘String’;

 {

 checkonly domain rad i:Interaction

{

 name = in

 }

 enforce domain umlcd i2a:Association

{

name = in* /*must be amended to reflect transitive verb*/

aggregation = ag: Aggregation

{

end1 = ‘Shared’,

end2 = ‘None’

 }

 }

 where

{

 Interaction2Operation (i, i2o) and

 ����2Multiplicity (ti, mu);

 }

 }

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 297 of 333

Again, the existence of such aggregation ought to be defined by the user, since it may not be the case that

aggregation should arbitrarily exist in all cases that roles interact with such exclusivity since some interactions

may be hidden, or be part of alternate processes.

RoleInstantiation2Class

The role instantiation RAD notation describes an instance where a role may start an alternate role instance,

such as a Project Manager role instantiating an instance of a Contractor role (to work on a particular project).

In this case, a new class representing that instance is required and therefore the following relation given in

figure 5-14 with the textual description following it is required to hold.

figure 5-14, a RAD role Instantiation to a UML class relation.

relation RoleInstantiationRole2Class /*map each role instantiation to a class*/

rin = ‘String’;

 {

 checkonly domain rad ri:RoleInstantiation

{

 name = rin

}

 enforce domain umlcd ri2c:Class

{

name = rin* /*must be amended to reflect object (noun)*/

 where

{

RoleInstantiation2Operation (ri, ri2o) and

RoleInstantiation2Association (ri, ri2a);

 }

 }

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 298 of 333

Where this relation holds, relations to create an operation in the top relation class, and an association between

them, must also hold. Therefore, the RoleInstantiation2Operation and RoleInstantiation2Association are also

required. Graphical descriptions for these relations are given in figures 5-15 and 5-16, with associated textual

descriptions following them.

C E
-name = rin

<<domain>>

ri : Role

Instantiation
-name = rin

<<domain>>

ri2o : Operation
rad : SimpleRAD umlcd : SimpleUML

figure 5-15, a RAD role instantiation to a UML operation relation.

relation RoleInstantiation2Operation /*map each role instantiation to an operation*/

rin = ‘String’;

 {

 checkonly domain rad ri:RoleInstantiation

{

 name = rin

}

 enforce domain umlcd ri2o:Operation

{

name = rin

 }

 when

{

 RoleInstantiation2Class (ri, ri2c);

 }

where

{

 RoleInstantiation2Association (ri, ri2a);

 }

 }

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 299 of 333

C E
-name = rin

<<domain>>

ri : Role

Instantiation
-name = rin*

<<domain>>

ri2a : Association
rad : SimpleRAD umlcd : SimpleUML

figure 5-16, a RAD role instantiation to a UML class relation.

relation RoleInstantiation2Association /*map each role instantiation to an association*/

rin = ‘String’;

 {

 checkonly domain rad ri:RoleInstantiation

{

 name = rin

 }

 enforce domain umlcd ri2a:Association

{

name = rin* /*must be amended to reflect transitive verb*/

 }

 when

{

 RoleInstantiation2Class (ri, c) and

RoleInstantiation2Operation (ri, ri2o);

 }

where

{

����2Multiplicity (ti, mu);

 }

 }

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 300 of 333

Trigger2Attribute

Triggers are typically used to start a string of activity within a role on the basis of some event. A Class

Diagram has no equivalent notation for a trigger. However, it could be useful to record whether or not a

trigger is active (i.e. whether or not the event that instigates the trigger has occurred) to reflect on the state of

the class. Therefore, it is suggested that each trigger element should be transformed into an attribute of the

class created by the top relation. Figure 5-17 describes the required relation graphically, followed by the

textual QVT-R description.

C E

-name = tn

<<domain>>

t : Trigger

-name = tn

<<domain>>

at : Attribute
rad : SimpleRAD umlcd : SimpleUML

figure 5-17, a RAD trigger to a UML attribute relation.

relation Trigger2Attribute /* map each trigger to an attribute*/

tn = ‘String’;

 {

 checkonly domain rad t:Trigger

{

name = tn

}

 enforce domain umlcd at:Attribute

{

name = tn

}

 }

As previously noted with the CaseRefinement2Attribute and PartRefinement2Attribute relations, the definition

of the attribute can, if required, be extended to reflect the Boolean operator type that would be associated with

the true or false logic system of this attribute (see sections of this appendix on CaseRefinement2Attribute and

PartRefinement2Attribute for more detailed insights into this extension).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 301 of 333

Replication2Attribute

A replication node is used to record a count and is commonly associated with a particular string of activity

associated with a particular role. This replication can be recorded as an Integer attribute within the class

which resulted from the top relation Role2Class. Figure 5-18 presents the graphical syntax for this relation,

with the textual description following it.

figure 5-18, a RAD replication to a UML attribute relation.

relation Replication2Attribute /* map each replication to an attribute*/

ren = ‘String’;

 {

 checkonly domain rad re:Replication

{

name = ren

}

 enforce domain umlcd at:Attribute

{

name = ren,

type = ‘Integer’

}

 }

Of course, the decision of which type to use at design time will be the onus of the developer, and eventually

the chosen platform. For instance, an Unsigned Integer may be the preference in the case that a negative value

is not required since it is representative of a positive count, resulting in an increase in the count range.

Undefined

The undefined element of the RAD has no counterpart representation in the SimpleUML metamodel and

therefore no relation is required to hold when this element is encountered. It is nevertheless important to

check the context in which it is used as it may define an alternate Class Diagram. That is, a string of activity

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 302 of 333

unrelated to the requirement of the Class Diagram in question, but significant and required by another Class

Diagram. Of course, the decision of what might occur in such an instance relies on user input and such, must

be a consideration of any software being developed to implement these rules; for the scope of this definition

however, they are discounted.

�2Multiplicity

In a RAD, the � element is indicative of the number of instances particular to a role. It is therefore adequate

to derive UML multiplicity associated with the classes enforced by the top level relation Role2Class. This is

depicted in figure 5-19 with textual QVT below it.

C E

-number = tin

<<domain>>

ti : Tick -end1 = if self.tin >1

-then '*' else

-self.tin = tin endif

<<domain>>

mu : Multiplicityrad : SimpleRAD umlcd : SimpleUML

figure 5-19, a RAD � to UML multiplicity relation.

relation �2Multiplicity /* map each � to multiplicity*/

tin = ‘String’;

 {

 checkonly domain rad ti:Tick

{

 number = tin

 }

 enforce domain umlcd mu:Multiplicity

{

end1 = if self.tin > 1 then ‘*’ else self.tin = tin endif

 }

when

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 303 of 333

 {

IndependentActivity2Association (ia, ia2a) or

PartRefinement2Composition (pr, pr2a) or

Interaction2Association (i, i2a) or

Interaction2Aggregation (I, i2a) or

RoleInstantiation2Association (ri, ri2a) or

Prop2Association (p, p2a);

 }

 }

Since the Multiplicity element of the SimpleUML metamodel is related to an association, the � 2Multiplicity

relation must hold whenever the IndependentActivity2Association, PartRefinement2Composition,

Interaction2Association, Interaction2Aggregation, RoleInstantiation2Association or Prop2Association

relations hold (i.e. whenever an association is enforced, multiplicity is also defined).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 304 of 333

Prop2Class

The Prop2Class relation is defined to show how, for each RAD prop used by a role, a new UML class is

enforced to represent that prop. Typically, such a class would represent a data object that is manipulated by

the class generated by the top relation Role2Class. The graphical syntax for this relation is given in figure

5-20, with the textual description following it.

figure 5-20, a RAD prop to a UML class relation.

relation Prop2Class /*map each prop to a class*/

pn = ‘String’;

 {

 checkonly domain rad p:Prop

{

 name = pn

}

 enforce domain umlcd c:Class

{

name = pn

 where

{

Prop2Association (p, p2a);

 }

 }

Where this relation holds, a relation to create an association between the new class and the class derived from

the top relation Role2Class must also hold. Therefore, the Prop2Association relation is required, and defined

below in figure 5-21, with the textual description following it.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 305 of 333

C E

<<domain>>

p : Prop

-name = pn

rad : SimpleRAD umlcd : SimpleUML <<domain>>

p2a : Association

-name = pn*

figure 5-21, a RAD prop to a UML class relation.

relation Prop2Association /*map each prop to an association*/

pn = ‘String’;

 {

 checkonly domain rad p:Prop

{

 name = pn

 }

 enforce domain umlcd p2a:Association

{

name = pn* /*must be amended to reflect transitive verb*/

 }

 when

{

 Prop2Class (p, c);

 }

where

{

 ����2Multiplicity (ti, mu);

 }

 }

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 306 of 333

Stop2Attribute

There is no real direct relationship between RAD stop elements and the UML Class Diagram since the

concept of stop is to stop a running thread in a state based system. It could however be useful to record the

state in classes derived from the top relation Role2Class since events may depend on the knowledge of the

completion event. For example, certain operations may be required to be locked until the stop state of a thread

has been reached. This relation is presented graphically in figure 5-22, with the textual description that

follows.

C E

-name = sn

<<domain>>

s : Stop

-name = sn

<<domain>>

at : Attribute
rad : SimpleRAD umlcd : SimpleUML

figure 5-22, a RAD stop a UML attribute relation.

relation Stop2Attribute /* map each stop to an attribute*/

sn = ‘String’;

 {

 checkonly domain rad s:Stop

{

name = sn

}

 enforce domain umlcd at:Attribute

{

name = sn

}

 }

Again, this is very contextual and it may be the case that the stop node could be ignored completely,

dependent on user intervention. Further to this, as previously noted in other examples, this relation could be

extended to define the attribute type Boolean, but again, this requires intervention from the user in context of

the application and/or is a decision better made at design-time (see the sections on CaseRefinement2Attribute

and PartRefinement2Attribute for further detail).

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 307 of 333

Note2UMLNote

A note on a RAD could refer to anything relating to the RAD, or other. Therefore, this relation is wholly

dependent on the situation and requires user action in assessing the context and deciding on whether or not the

note is required to be represented in the resulting Class Diagram. If the relation is required to hold, the

following QVT-R definition is to be used (see figure 5-23 for the graphical description, and the textual

description that follows it).

C E

-content = c

<<domain>>

n : Note

-content = c

<<domain>>

umln : UML

Note

rad : SimpleRAD umlcd : SimpleUML

figure 5-23, a RAD note to a UML note relation.

relation Note2UMLNote /* map each rad note to a UML note*/

c = ‘String’;

 {

 checkonly domain rad n:Note

{

content = c

}

 enforce domain umlcd umln:UMLNote

{

content = c

}

 }

Since this represents a direct relation between note elements of the SimpleRAD and SimpleUML metamodels

without calling other relations, no further constructs are required to define it. In a larger context, this relation

could be defined as a top-relation, but since the relation is not called by and does not call any other relation, it

is discounted in isolation. Of course, if the relation is not required, then any software implementation of these

rules should accommodate this.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 308 of 333

Appendix VI

VIDE PPT JAVA Transformation Engine

Source Code (VIDE 2010a)

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 309 of 333

package ppt;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.StringWriter;

import java.util.ArrayList;

import java.util.Random;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Result;

import javax.xml.transform.Source;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Attr;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.NamedNodeMap;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

import java.util.*;

public class ParseVCLLFile {

 String packagedElementname;

 Document idoc;

public ParseVCLLFile(String ixmlFile, String Package){

 File iF = new File(ixmlFile);

 idoc = parseXmlFile(iF, false);

 if(idoc !=null){

 packagedElementname = Package;

 }

 }

 public void createActivityDoc(String oxmlFile){

 Map<String,Number> idlist = new HashMap<String,Number>();

 Map<String,Number> splist = new HashMap<String,Number>();

 Map<String,Number> artifactsmap = new HashMap<String,Number>();

 Map<String,Number> verticesmap = new HashMap<String,Number>();

 artifactsmap.put("DataObject", 1);

 verticesmap.put("Activity", 1);

 verticesmap.put("SubProcess", 2);

 if (idoc == null)

 return;

 try {

 DocumentBuilder builder = DocumentBuilderFactory.newInstance().newDocumentBuilder();

 Document doc = builder.newDocument();

 Element root = doc.createElement("UML:Model");

 root.setAttribute("xmi:version","2.1");

 root.setAttribute("xmlns:xmi", "http://schema.omg.org/spec/XMI/2.1");

 root.setAttribute("xmlns:UML", "http://www.eclipse.org/uml2/2.1.0/UML");

 root.setAttribute("xmi:id", getID());

 doc.appendChild(root);

 Element packagedElement = doc.createElement("packagedElement");

 packagedElement = doc.createElement("packagedElement");

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 310 of 333

 packagedElement.setAttribute("xmi:type", "UML:Activity");

 packagedElement.setAttribute("xmi:id", getID());

 packagedElement.setAttribute("name", packagedElementname);

 root.appendChild(packagedElement);

 // set up all data here

 NodeList poollist=idoc.getElementsByTagName("pools");

 for (int i=0; i<poollist.getLength(); i++) {

 Element element = (Element)poollist.item(i);

 NodeList artifacts = element.getElementsByTagName("artifacts");

 for (int j=0; j<artifacts.getLength(); j++) {

 Element element2 = (Element)artifacts.item(j);

 Attr att = element2.getAttributeNode("xmi:type");

 if (att != null){

 if (artifactsmap.containsKey(att.getNodeValue())){

 Element node = doc.createElement("node");

 node.setAttribute("name",element2.getAttribute("name"));

 node.setAttribute("xmi:id",element2.getAttribute("xmi:id"));

 switch (artifactsmap.get(att.getNodeValue()).intValue()){

 case 1:

 node.setAttribute("xmi:type","UML:DataStoreNode");

 Element node1=doc.createElement("upperBound");

 node1.setAttribute("xmi:type", "UML:LiteralUnlimitedNatural");

 node1.setAttribute("value", "*");

 node1.setAttribute("xmi:id", getID());

 node.appendChild(node1);

 break;

 case 2:

 node.setAttribute("xmi:type","UML:DecisionNode");

 break;

 }

 packagedElement.appendChild(node);

 idlist.put(node.getAttribute("xmi:id"),1);

 }

 }

 }

 NodeList vertices = element.getElementsByTagName("vertices");

 for (int j=0; j<vertices.getLength(); j++) {

 Element element2 = (Element)vertices.item(j);

 Attr att = element2.getAttributeNode("xmi:type");

 if (att != null){

 if (verticesmap.containsKey(att.getNodeValue())){

 switch (verticesmap.get(att.getNodeValue()).intValue()){

 case 1:

 Attr att2 = element2.getAttributeNode("activityType");

 if (att2 != null){

 if (att2.getNodeValue().endsWith("Start Event")){

 Element startnode = doc.createElement("node");

 startnode.setAttribute("xmi:type","UML:InitialNode");

 startnode.setAttribute("xmi:id",element2.getAttribute("xmi:id"));

 startnode.setAttribute("name",att2.getNodeValue());

 packagedElement.appendChild(startnode);

 idlist.put(startnode.getAttribute("xmi:id"),1);

 Element element3 = (Element)element2.getParentNode();

 if ((element3 != null) && splist.containsKey((element3.getAttribute("xmi:id")))){

// Comment this element

 Element comment = doc.createElement("ownedComment");

 comment.setAttribute("annotatedElement",element2.getAttribute("xmi:id"));

 comment.setAttribute("xmi:id", getID());

 Element body = doc.createElement("body");

 body.setTextContent(element3.getAttribute("name"));

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 311 of 333

 comment.appendChild(body);

 packagedElement.appendChild(comment);

 }

 }

 else

 if (att2.getNodeValue().endsWith("End Event")){

 Element endnode = doc.createElement("node");

 endnode.setAttribute("xmi:type","UML:ActivityFinalNode");

 endnode.setAttribute("xmi:id",element2.getAttribute("xmi:id"));

 endnode.setAttribute("name",att2.getNodeValue());

 packagedElement.appendChild(endnode);

 idlist.put(endnode.getAttribute("xmi:id"),1);

 }

 else

 /*if (att2.getNodeValue().endsWith("Event)") ||

 att2.getNodeValue().equals("Task"))*/{

 Element activitynode = doc.createElement("node");

 activitynode.setAttribute("xmi:type","UML:StructuredActivityNode");

 activitynode.setAttribute("xmi:id",element2.getAttribute("xmi:id"));

 activitynode.setAttribute("name",att2.getNodeValue());

 packagedElement.appendChild(activitynode);

 idlist.put(activitynode.getAttribute("xmi:id"),1);

 }

 } else

 if (element2.getAttributeNode("name") != null){

 Element activitynode = doc.createElement("node");

 activitynode.setAttribute("xmi:type","UML:StructuredActivityNode");

 activitynode.setAttribute("xmi:id",element2.getAttribute("xmi:id"));

 activitynode.setAttribute("name",element2.getAttribute("name"));

 packagedElement.appendChild(activitynode);

 idlist.put(activitynode.getAttribute("xmi:id"),1);

 }

 break;

 case 2:

 Element activitynode = doc.createElement("node");

 activitynode.setAttribute("xmi:type","UML:StructuredActivityNode");

 activitynode.setAttribute("xmi:id",element2.getAttribute("xmi:id"));

 activitynode.setAttribute("name",element2.getAttribute("name"));

 packagedElement.appendChild(activitynode);

 idlist.put(activitynode.getAttribute("xmi:id"),1);

 splist.put(activitynode.getAttribute("xmi:id"),1);

 break;

 }

 }

 }

 }

 }

// process all edges

 NodeList edgeslist=idoc.getElementsByTagName("sequenceEdges");

 for (int i=0; i<edgeslist.getLength(); i++) {

 Element element = (Element)edgeslist.item(i);

 Attr att = element.getAttributeNode("xmi:type");

 if (att != null){

 if (att.getNodeValue().equals("SequenceEdge")){

 Element edgenode=doc.createElement("edge");

 edgenode.setAttribute("xmi:type","UML:ControlFlow");

 edgenode.setAttribute("xmi:id",element.getAttribute("xmi:id"));

 edgenode.setAttribute("source",element.getAttribute("source"));

 edgenode.setAttribute("target",element.getAttribute("target"));

 if (idlist.containsKey(edgenode.getAttribute("source")) &&

 idlist.containsKey(edgenode.getAttribute("target"))){

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 312 of 333

 Element node=doc.createElement("guard");

 node.setAttribute("xmi:type", "UML:LiteralBoolean");

 node.setAttribute("value", "true");

 node.setAttribute("xmi:id", getID());

 edgenode.appendChild(node);

 node=doc.createElement("weight");

 node.setAttribute("xmi:type", "UML:LiteralInteger");

 node.setAttribute("value", "1");

 node.setAttribute("xmi:id", getID());

 edgenode.appendChild(node);

 packagedElement.appendChild(edgenode);

 }

 }

 }

 }

 //set up a transformer

 TransformerFactory transfac = TransformerFactory.newInstance();

 Transformer trans = transfac.newTransformer();

 trans.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");

 trans.setOutputProperty(OutputKeys.INDENT, "yes");

 trans.setOutputProperty(OutputKeys.DOCTYPE_PUBLIC, "publicId");

 // Prepare the DOM document for writing

 Source source = new DOMSource(doc);

 // Prepare the output file

 File file = new File(oxmlFile);

 Result result = new StreamResult(file);

 // Write the DOM document to the file

 Transformer xformer = TransformerFactory.newInstance().newTransformer();

 //xformer.setOutputProperties(oformat)

 xformer.transform(source, result);

 }

catch (ParserConfigurationException e) {

 e.printStackTrace();

 }

 catch (TransformerException e){

 e.printStackTrace();

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

 public void createClassDoc(String oxmlFile){

 if (idoc == null)

 return;

 try {

 DocumentBuilder builder = DocumentBuilderFactory.newInstance().newDocumentBuilder();

 Document doc = builder.newDocument();

 Element root = doc.createElement("UML:Model");

 root.setAttribute("xmi:version","2.1");

 root.setAttribute("xmlns:xmi", "http://schema.omg.org/spec/XMI/2.1");

 root.setAttribute("xmlns:UML", "http://www.eclipse.org/uml2/2.1.0/UML");

 root.setAttribute("xmi:id", getID());

 doc.appendChild(root);

 Element packagedElement = doc.createElement("packagedElement");

 packagedElement.setAttribute("xmi:type", "UML:Package");

 packagedElement.setAttribute("xmi:id", getID());

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 313 of 333

 packagedElement.setAttribute("name", packagedElementname);

 root.appendChild(packagedElement);

 // extract pool elements

 NodeList poollist = idoc.getElementsByTagName("pools");

 // process all pool elements and create appropriate classes

 for (int i=0; i<poollist.getLength(); i++) {

 Element element = (Element)poollist.item(i);

 Attr att = element.getAttributeNode("xmi:type");

 if (att != null){

 if (att.getNodeValue().equals("Pool")){

 Element child = doc.createElement("packagedElement");

 child.setAttribute("xmi:type", "UML:Class");

 child.setAttribute("xmi:id", element.getAttribute("xmi:id"));

 child.setAttribute("name", element.getAttribute("name"));

// collect lanes and append them to pool

 NodeList lanelist = element.getElementsByTagName("lanes");

 for (int j=0; j<lanelist.getLength(); j++) {

 Element element2 = (Element)lanelist.item(j);

 Attr att2 = element2.getAttributeNode("xmi:type");

 if (att2 != null){

 if (att2.getNodeValue().equals("Lane")){

 Element lanechild = doc.createElement("ownedAttribute");

 lanechild.setAttribute("xmi:id", element2.getAttribute("xmi:id"));

 lanechild.setAttribute("name", String.format("Lane %d", j+1));

 lanechild.setAttribute("visibility", "private");

 child.appendChild(lanechild);

 }

 }

 }

// collect subprocesses and append them to pool

 NodeList vertices = element.getElementsByTagName("vertices");

 for (int j=0; j<vertices.getLength(); j++) {

 Element element2 = (Element)vertices.item(j);

 Attr att2 = element2.getAttributeNode("xmi:type");

 if (att2 != null){

 if (att2.getNodeValue().equals("SubProcess")){

 Element spchild = doc.createElement("ownedOperation");

 spchild.setAttribute("xmi:id", element2.getAttribute("xmi:id"));

 spchild.setAttribute("name", element2.getAttribute("name"));

 child.appendChild(spchild);

 }

 }

 }

 packagedElement.appendChild(child);

 }

 }

 // collect all roles and data objects and create appropriate classes

 NodeList artifactslist = element.getElementsByTagName("artifacts");

 for (int j=0; j<artifactslist.getLength(); j++) {

 Element element2 = (Element)artifactslist.item(j);

 Attr att2 = element2.getAttributeNode("xmi:type");

 if (att2 != null){

 if (att2.getNodeValue().equals("Role") || att2.getNodeValue().equals("DataObject")){

 Element child = doc.createElement("packagedElement");

 child.setAttribute("xmi:type", "UML:Class");

 child.setAttribute("xmi:id", element2.getAttribute("xmi:id"));

 child.setAttribute("name", element2.getAttribute("name"));

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 314 of 333

 packagedElement.appendChild(child);

// link roles with pools

 if (att2.getNodeValue().equals("Role")){

 Element link = doc.createElement("packagedElement");

 link.setAttribute("xmi:type", "UML:Association");

 link.setAttribute("xmi:id", getID());

 Element ownedend = doc.createElement("ownedEnd");

 ownedend.setAttribute("xmi:id", getID());

 ownedend.setAttribute("type", element2.getAttribute("xmi:id"));

 ownedend.setAttribute("name", "target");

 ownedend.setAttribute("association", link.getAttribute("xmi:id"));

 ownedend.setAttribute("aggregation", "composite");

 link.appendChild(ownedend);

 ownedend = doc.createElement("ownedEnd");

 ownedend.setAttribute("xmi:id", getID());

 ownedend.setAttribute("type", element.getAttribute("xmi:id"));

 ownedend.setAttribute("name", "source");

 ownedend.setAttribute("association", link.getAttribute("xmi:id"));

 link.appendChild(ownedend);

 packagedElement.appendChild(link);

 // Comment this element

 Element comment = doc.createElement("ownedComment");

 comment.setAttribute("annotatedElement",child.getAttribute("xmi:id"));

 comment.setAttribute("xmi:id", getID());

 Element body = doc.createElement("body");

 body.setTextContent(att2.getNodeValue());

 comment.appendChild(body);

 root.appendChild(comment);

//packagedElement.appendChild(comment);

 }

 }

 }

 // collect other links and annotations

 }

 //set up a transformer

 TransformerFactory transfac = TransformerFactory.newInstance();

 Transformer trans = transfac.newTransformer();

 trans.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");

 trans.setOutputProperty(OutputKeys.INDENT, "yes");

 trans.setOutputProperty(OutputKeys.DOCTYPE_PUBLIC, "publicId");

 // Prepare the DOM document for writing

 Source source = new DOMSource(doc);

 // Prepare the output file

 File file = new File(oxmlFile);

 Result result = new StreamResult(file);

 // Write the DOM document to the file

 Transformer xformer = TransformerFactory.newInstance().newTransformer();

 //xformer.setOutputProperties(oformat)

 xformer.transform(source, result);

 }

catch (ParserConfigurationException e) {

 e.printStackTrace();

 }

 catch (TransformerException e){

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 315 of 333

 e.printStackTrace();

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

 public Document parseXmlFile(File xmlFile, boolean validating) {

 try {

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 factory.setValidating(validating);

 Document doc = factory.newDocumentBuilder().parse(xmlFile);

 return doc;

 }

catch (SAXException e) {

 System.out.println("File is not in the valid format");

 e.printStackTrace();

 }

 catch (ParserConfigurationException e) {

 e.printStackTrace();

 }

catch (IOException e) {

 e.printStackTrace();

 }

 return null;

 }

 public String getID(){

 Random rand = new Random();

 String code ="_";

 for (int i = 0; i < 10 ; i++){

 int number = rand.nextInt(26)+65;

 code+= new Character((char)number).toString();

 }

 return code;

 }

}

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 316 of 333

Appendix VII

Auto-generated XML for the modified UML

Class Diagram (figure 9.3.5.1)

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 317 of 333

<?xml version="1.0" encoding="UTF-8"?>

<UML:Model xmi:version="2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1" xmlns:UML="http://www.eclipse.org/uml2/2.1.0/UML"

xmi:id="_CMDJVBLDCQ">

 <packagedElement xmi:type="UML:Package" xmi:id="_SNMPMCCKIP" name="Follow Up Call Process">

 <packagedElement xmi:type="UML:Class" xmi:id="s" name="Sales">

 <ownedAttribute xmi:id="l" name="check Prospect : bool" visibility="private"/>

 <ownedAttribute xmi:id="_imP44pi-Ed-bDfRognGdXA" name="count check prospect : int" visibility="private"/>

 <ownedAttribute xmi:id="_lIUNApi-Ed-bDfRognGdXA" name="upload prospect : bool" visibility="private"/>

 <ownedAttribute xmi:id="_nfHsUpi-Ed-bDfRognGdXA" name="count upload prospect : int" visibility="private"/>

 <ownedAttribute xmi:id="_7xUaMpi-Ed-bDfRognGdXA" name="update prospect : bool" visibility="private"/>

 <ownedAttribute xmi:id="_-U04wpi-Ed-bDfRognGdXA" name="count update prospect : int" visibility="private"/>

 <ownedOperation xmi:id="scr" name="send check request" visibility="private"/>

 <ownedOperation xmi:id="rr" name="receive response" visibility="private"/>

 <ownedOperation xmi:id="snpr" name="send new prospect request" visibility="private"/>

 <ownedOperation xmi:id="cbol" name="create blow out letter" visibility="private"/>

 <ownedOperation xmi:id="spr" name="send print request" visibility="private"/>

 <ownedOperation xmi:id="sur" name="send update request" visibility="private"/>

 </packagedElement>

 <packagedElement xmi:type="UML:Class" xmi:id="p" name="Printer">

 <ownedAttribute xmi:id="_6mt6MJi8Ed-bDfRognGdXA" name="ready to print : bool" visibility="private"/>

 <ownedOperation xmi:id="rpr" name="receive print request" visibility="private"/>

 <ownedOperation xmi:id="pbol" name="print blow out letter" visibility="private"/>

 </packagedElement>

 <packagedElement xmi:type="UML:Class" xmi:id="pr" name="Print Request"/>

 <packagedElement xmi:type="UML:Class" xmi:id="bl" name="Brightlime">

 <ownedOperation xmi:id="rcr" name="receive check request" visibility="private"/>

 <ownedOperation xmi:id="cpd" name="check prospect database" visibility="private"/>

 <ownedOperation xmi:id="sr" name="send response" visibility="private"/>

 <ownedOperation xmi:id="rnpr" name="receive new prospect request" visibility="private"/>

 <ownedOperation xmi:id="utpd" name="upload to prospect database" visibility="private"/>

 <ownedOperation xmi:id="rur" name="receive update request" visibility="private"/>

 <ownedOperation xmi:id="upd" name="update prospect database" visibility="private"/>

 </packagedElement>

 <packagedElement xmi:type="UML:Class" xmi:id="pd" name="Prospect Database"/>

 <packagedElement xmi:type="UML:Association" xmi:id="_O0mlSJi8Ed-bDfRognGdXA" name="Association1" memberEnd="_O0mlSZi8Ed-

bDfRognGdXA _O0mlTJi8Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_O0mlSZi8Ed-bDfRognGdXA" name=" " type="s" association="_O0mlSJi8Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_O0mlSpi8Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_O0mlS5i8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_O0mlTJi8Ed-bDfRognGdXA" name="target" type="p" aggregation="shared" association="_O0mlSJi8Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_O0mlTZi8Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_O0mlTpi8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_Pa5wSJi8Ed-bDfRognGdXA" name="Association2" memberEnd="_Pa5wSZi8Ed-

bDfRognGdXA _Pa5wTJi8Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_Pa5wSZi8Ed-bDfRognGdXA" name="source" type="s" association="_Pa5wSJi8Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Pa5wSpi8Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Pa5wS5i8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 318 of 333

 <ownedEnd xmi:id="_Pa5wTJi8Ed-bDfRognGdXA" name="target" type="pr" aggregation="shared" association="_Pa5wSJi8Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Pa5wTZi8Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Pa5wTpi8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_Po2Fp5i8Ed-bDfRognGdXA" name="Association3" visibility="private"

memberEnd="_Po2FqJi8Ed-bDfRognGdXA _Po2Fq5i8Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_Po2FqJi8Ed-bDfRognGdXA" name=" " visibility="private" type="s" isUnique="false" association="_Po2Fp5i8Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Po2FqZi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Po2Fqpi8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_Po2Fq5i8Ed-bDfRognGdXA" name="uploads" visibility="private" type="bl" isUnique="false" aggregation="shared"

association="_Po2Fp5i8Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Po2FrJi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Po2FrZi8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_Q4-QyJi8Ed-bDfRognGdXA" name="Association4" visibility="private"

memberEnd="_Q4-QyZi8Ed-bDfRognGdXA _Q4-QzJi8Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_Q4-QyZi8Ed-bDfRognGdXA" name=" " visibility="private" type="s" isUnique="false" association="_Q4-QyJi8Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Q4-Qypi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Q4-Qy5i8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_Q4-QzJi8Ed-bDfRognGdXA" name="responds" visibility="private" type="bl" isUnique="false" aggregation="shared"

association="_Q4-QyJi8Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Q4-QzZi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Q4-Qzpi8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_REiAiJi8Ed-bDfRognGdXA" name="Association5" visibility="private"

memberEnd="_REiAiZi8Ed-bDfRognGdXA _REiAjJi8Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_REiAiZi8Ed-bDfRognGdXA" name=" " visibility="private" type="s" isUnique="false" association="_REiAiJi8Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_REiAipi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_REiAi5i8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_REiAjJi8Ed-bDfRognGdXA" name="updates" visibility="private" type="bl" isUnique="false" aggregation="shared"

association="_REiAiJi8Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_REiAjZi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_REiAjpi8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_RNOCeJi8Ed-bDfRognGdXA" name="Association6" visibility="private"

memberEnd="_RNOCeZi8Ed-bDfRognGdXA _RNOCfJi8Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_RNOCeZi8Ed-bDfRognGdXA" name=" " visibility="private" type="s" isUnique="false" association="_RNOCeJi8Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_RNOCepi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_RNOCe5i8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 319 of 333

 <ownedEnd xmi:id="_RNOCfJi8Ed-bDfRognGdXA" name="checks" visibility="private" type="bl" isUnique="false" aggregation="shared"

association="_RNOCeJi8Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_RNOCfZi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_RNOCfpi8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_Rk0DGJi8Ed-bDfRognGdXA" name="Association7" visibility="private"

memberEnd="_Rk0DGZi8Ed-bDfRognGdXA _Rk0DHJi8Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_Rk0DGZi8Ed-bDfRognGdXA" name=" " visibility="private" type="bl" isUnique="false" association="_Rk0DGJi8Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Rk0DGpi8Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Rk0DG5i8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_Rk0DHJi8Ed-bDfRognGdXA" name="owns" visibility="private" type="pd" isUnique="false" aggregation="shared"

association="_Rk0DGJi8Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Rk0DHZi8Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Rk0DHpi8Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:DataType" xmi:id="_5DS_oJi8Ed-bDfRognGdXA" name="DataType1"/>

 <packagedElement xmi:type="UML:Association" xmi:id="_Mwh_R5i9Ed-bDfRognGdXA" name="Association8" visibility="private"

memberEnd="_Mwh_SJi9Ed-bDfRognGdXA _Mwh_S5i9Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_Mwh_SJi9Ed-bDfRognGdXA" name=" " visibility="private" type="s" isUnique="false" association="_Mwh_R5i9Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Mwh_SZi9Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Mwh_Spi9Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_Mwh_S5i9Ed-bDfRognGdXA" name="creates" visibility="private" type="pr" isUnique="false" aggregation="shared"

association="_Mwh_R5i9Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_Mwh_TJi9Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_Mwh_TZi9Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_OY6SWZi9Ed-bDfRognGdXA" name="Association9"

memberEnd="_OY6SWpi9Ed-bDfRognGdXA _OY6SXZi9Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_OY6SWpi9Ed-bDfRognGdXA" name="source" type="p" association="_OY6SWZi9Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_OY6SW5i9Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_OY6SXJi9Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_OY6SXZi9Ed-bDfRognGdXA" name="target" type="s" aggregation="shared" association="_OY6SWZi9Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_OY6SXpi9Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_OY6SX5i9Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_R91xqJi9Ed-bDfRognGdXA" name="Association10" visibility="private"

memberEnd="_R91xqZi9Ed-bDfRognGdXA _R91xrJi9Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_R91xqZi9Ed-bDfRognGdXA" name=" " type="s" association="_R91xqJi9Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_R91xqpi9Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_R91xq5i9Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_R91xrJi9Ed-bDfRognGdXA" name="sends" visibility="private" type="p" isUnique="false" aggregation="shared"

association="_R91xqJi9Ed-bDfRognGdXA">

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 320 of 333

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_R91xrZi9Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_R91xrpi9Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_BAV5SJi-Ed-bDfRognGdXA" name="Association11" memberEnd="_BAV5SZi-

Ed-bDfRognGdXA _BAV5TJi-Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_BAV5SZi-Ed-bDfRognGdXA" name="source" type="s" association="_BAV5SJi-Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_BAV5Spi-Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_BAV5S5i-Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_BAV5TJi-Ed-bDfRognGdXA" name="target" type="p" aggregation="shared" association="_BAV5SJi-Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_BAV5TZi-Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_BAV5Tpi-Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 <packagedElement xmi:type="UML:Association" xmi:id="_EOJ5GZi-Ed-bDfRognGdXA" name="Association12" visibility="private"

memberEnd="_EOJ5Gpi-Ed-bDfRognGdXA _EOJ5HZi-Ed-bDfRognGdXA">

 <ownedEnd xmi:id="_EOJ5Gpi-Ed-bDfRognGdXA" name=" " visibility="private" type="s" isUnique="false" association="_EOJ5GZi-Ed-

bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_EOJ5G5i-Ed-bDfRognGdXA" value="*"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_EOJ5HJi-Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 <ownedEnd xmi:id="_EOJ5HZi-Ed-bDfRognGdXA" name="sends" visibility="private" type="p" isUnique="false" aggregation="shared"

association="_EOJ5GZi-Ed-bDfRognGdXA">

 <upperValue xmi:type="UML:LiteralUnlimitedNatural" xmi:id="_EOJ5Hpi-Ed-bDfRognGdXA" value="1"/>

 <lowerValue xmi:type="UML:LiteralInteger" xmi:id="_EOJ5H5i-Ed-bDfRognGdXA" value="1"/>

 </ownedEnd>

 </packagedElement>

 </packagedElement>

</UML:Model>

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 321 of 333

Glossary

.NET Software technology platform.

3GL Third Generation Language, referring collectively to high-level

structured programming languages.

Abstraction Level of perception relative to content.

Action Semantic Language The language of UML Action Semantics.

Activity Notational element describing a behaviour or task.

Activity Diagram UML diagram; used to model system behaviour.

Agile Development Software development method focussed on being adaptable and

dynamic. See Agile Manifesto.

Agile Manifesto Doctrine of Agile Development. See Agile Development.

Aggregation Object oriented association type describing a close relationship

between classes. See Object Oriented, Association and Class.

Alignment IT systems designed and maintained in line with business strategy.

See Strategy.

AMDD Agile Model Driven Development, MDD following the Agile

Manifesto. See Agile Manifesto and Model Driven Development.

Analysis Investigative stage of software development. See Systems of Prime

Concern.

API See Application Programming Interface.

Application Domain The area in which the solution system exists. See Solution System.

Application Programming Interface Interface used to support the construction of applications.

Assembly Language Programming language abstraction on machine code and binary.

See Machine Code.

Assertion True or false statement.

ASSIST A Shrewd Sketch Interpretation and Simulation Tool, sketch

recognition technology. See Sketch Recognition.

Association Object oriented structural mechanism describing relationships

between classes. See Object Oriented and Class.

ATL ATLAS Transformation Language for model transformation.

Attributes See Properties.

B-SCP Business Strategy Context Process, framework for aligning

business with IT.

Balanced Scorecard Tool for managing organisational strategy based on performance

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 322 of 333

indication.

BBPF Basic Business Process Flow, used to formalise business

requirements in the BPDLC. See BPDLC.

Behavioural Model Pre-CIM model to highlight specific functional requirements and

the behaviour of the involved process. See pre-CIM.

Bigraph See Bipartite Graph.

Binary Numbering system used to connect to hardware.

Bipartite Graph Graph in which vertices can be divided into two.

BM See Behavioural Model.

BPD See Business Process Diagram.

BPDLC Business Process Developing Life Cycle, approach to formalise

business requirements in terms of BBPF. See BBPF.

BPDM See Business Process Definition Metamodel.

BPEL See Business Process Execution Language.

BPEL4WS Business Process Execution Language for Web Services.

BPM See Business Process Management.

BPMN See Business Process Modelling Notation.

BPMS See Business Process Management System.

BPR Business Processes and Requirements, unit on the Software

Systems framework at Bournemouth University.

BSC See Balanced Scorecard.

Business Analyst The PD expert. See Business User and Problem Domain.

Business Process Definition

Metamodel

Metamodel used to define business processes.

Business Process Diagram Artefact of BPM.

Business Process Execution

Language

Programming language used to define interactive business

processes.

Business Process Management Business management field whereby processes are the central

focus for efficiency gains.

Business Process Management

System

Software system that employs tools and techniques used to manage

business processes.

Business Process Model Visualisation of the Business Process. See Business Process

Management.

Business Process Modelling Notation Visualisation technique to define business process workflows.

Business Rule Statement used to define the operating condition of a business

process or the requirements for a software system.

Business User See Business Analyst.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 323 of 333

C# Object oriented programming language.

CASE Computer Aided Software Engineering, automated tool sets used

within the software process. See Software Process.

Case Management The control of process instances.

CIM See Computation Independent Model.

Class Element of the UML used to represent things that exist within the

context of the system. See Class Diagram.

Class Diagram UML diagram; Static view of system design.

Code Instruction set within a programming language or program.

Collaboration A relationship between two or more entities.

Collaboration Diagram UML diagram; used to model communication.

Common Warehouse Metamodel Standard for modelling metadata.

Communicating Sequential Processes Formal language for defining concurrent processes.

Compiler Software implementation typically used prior to execution to

convert from high-level languages to low level machine code. See

3GL, Java, Machine Code and Interpreter.

Composition Object oriented association type describing a relationship between

classes where one is composed of another. See Object Oriented,

Association and Class.

Computation Independent Model Analysis stage of the MDA

Concurrency Describes two or more activities occurring at the same time.

Connection Used to illustrate a relationship between two or more entities.

Control Class Object oriented functional communication management class

stereotype. See Object Oriented, Stereotype and Class.

COTS Common-Off-The-Shelf, software that is typically widely

available.

CP Style Rules A direction offered for the guidance on the format and construction

of Use Case descriptions.

CSP See Communicating Sequential Processes.

CTO Chief Technical Officer, organisational position.

CWM See Common Warehouse Metamodel.

Data Flow Diagram Functional visualisation technique for modelling information

systems.

DDL Data Definition Language, part of SQL used to describe data

structures. See SQL.

DDM See Domain Description Model.

Dependency Strong association between elements.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 324 of 333

Deployment Descriptor File used to describe component content and configuration.

Design Inventive stage of software development. See Systems of Prime

Concern.

DFD See Data Flow Diagram.

Domain Description Model Pre-CIM model to define the PD context as it is. See pre-CIM.

Domain Specific Language Programming language specific to a particular domain. See

Domain Specific Modelling.

Domain Specific Modelling Modelling in terms of DSL. See Domain Specific Language.

DSL See Domain Specific Language.

DSM See Domain Specific Modelling.

Eclipse See Eclipse Modelling Framework.

Eclipse Modelling Framework MDA development framework.

EJB Enterprise JavaBeans, Java API for building enterprise systems.

See Java and Application Programming Interface.

Elaborationist Developer that uses MDA modelling and code as a template to

elaborate on.

Elicitation The act of obtaining correct and complete requirements from

stakeholders in RE.

Enterprise Organisation-wide integration of software systems.

Enterprise Modelling Modelling in terms of the enterprise and related systems and

resources as a whole.

Entity Article with perceived existence and relevance to the system

context.

Entity Class Object oriented data access and retrieval class stereotype. See

Object Oriented, Stereotype and Class.

Environment RAD Specification phase of the xMDA method directed at resolving

environmental issues. See eXtended Model Driven Architecture.

ERD Entity Relationship Diagram, notation for data modelling.

Event Flow Order of events in a Use Case description.

Experimental Learning Cycle Research framework to examine the relationship between theory

and practice.

eXtended Model Driven Architecture An extension to the MDA, proposed to cater for Requirements

Engineering.

eXtensible Mark-up Language Standard used to encode electronic artefacts for communication

within software applications. See XML Metadata Interchange.

eXtensible Stylesheet Language

Transformation

Standard used to transform documents in XML. See eXtensible

Mark-up Language.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 325 of 333

eXtreme Programming Software development method focussed on the delivery of code.

FBCM Fact Based Collaboration Modelling, methodology for IT strategic

alignment.

Flowchart Generic visualisation technique to define processes.

Forward Engineer The re-construction of a model from originating documentation.

See Reverse Engineer.

Functional Modelling Modelling in terms of function.

Generator System used to deliver code from design models.

Goal Modelling Modelling in terms of strategic objectives.

GORE Goal-Oriented Requirements Engineering, technique for aligning

IT with business goals.

GUI Graphical User Interface, computer component used to interface

visually with the end user.

GUIDE Goal, Use, Investment, Deliverables, Experience/Environment,

technique for modelling goals using the DFD. See Data Flow

Diagram.

Hanging Thread String of activity within a RAD role which is activated on event.

See Role Activity Diagram.

Hardware Physical computer components designed to respond to software

instructions.

HIM See Human Interaction Management.

HIMS See Human Interaction Management System.

HTTP Hypertext Transfer Protocol, internet protocol for data transfer.

Human Interaction Management Philosophy for accommodating humanistic processes.

Human Interaction Management

System

A software system used in HIM.

Human-Driven Process See Humanistic Process.

Humanistic Process A process that specifically involves human collaborative

behaviours.

IBM Software technology provider.

ICAM Integrated Computer Aided Manufacturing, U.S. Air Force

program resulting in the IDEF family of languages. See Integration

DEFinition.

ICOM Inputs, Controls, Outputs and Mechanisms, IDEF concepts. See

Integration DEFinition.

IDEF See Integration DEFinition.

IDL Interface Definition Language, for describing component

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 326 of 333

interfaces. See Interface.

Implementation Execution stage of software development.

Inclusive Techniques Methods of elicitation particular to Agile Development. See Agile

Development.

Information System Software system that is focussed on the delivery of data and

information, rather than the management of business and process.

Information Technology Field of study relating to hardware, software and their integration.

Inheritance Object oriented structural mechanism describing associations

between parent super-class types and child sub-class types. See

Object Oriented, Association and Class.

Initial Requirements Model Pre-CIM model to define any requirements (both functional and

non-functional) to be imposed by the new system. See pre-CIM.

Instruction Set Basic commands understood by and hardwired within the CPU.

Integration DEFinition Family of information and process modelling standards. Also

known as ICAM DEFinition. See ICAM.

Interaction Relationship between two or more entities.

Interface Java programming element. See Application Programming

Interface.

Interface Class Object oriented connection class stereotype. See Object Oriented,

Stereotype and Class.

Interoperability Ability to communicate and exchange data between components.

Interpreter Software implementation typically used on execution to convert

from high-level languages to low level machine code. See 3GL,

Java, Machine Code and Compiler.

IPSE Integrated Project Support Environment, architecture used to

support and define software development and the software process.

IRM See Initial Requirements Model.

ISO International Organisation for Standardisation.

ISO12207 ISO standard for software lifecycle processes. See ISO.

IT See Information Technology.

Iteration The process of repeating development activities with the objective

of refining solutions.

J2EE Software technology platform.

Java Object oriented programming language.

Lean Six Sigma Method for managing organisational strategy based on value chain

analysis.

Legacy System Systems which currently exist within an organisation in context of

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 327 of 333

new implementations.

Loop Element of language within which instructions or activities are

processed until specific conditions are met.

LOTOS Language of Temporal Ordering Specification, formal

specification language.

LSS See Lean Six Sigma.

Machine Code Language based on binary to interface with the CPU. See Binary

and Instruction Set.

Machine RAD Specification phase of the xMDA method directed at resolving

machine issues. See eXtended Model Driven Architecture.

Mapping Each element from one model is mapped into an associated

element in another model.

Markings Identification used in tracing elements mapped or transformed

from one model to the next.

Marks See Markings.

MDA See Model Driven Architecture.

MDABIZ Business Support for MDA, international workshop.

MDD See Model Driven Development.

MDE See Model Driven Engineering.

MDSEE See Model Driven Software Engineering Environment.

Mechanistic Process A process that specifically involves computerised sequential

behaviours.

MEMO See Multi-perspective Enterprise Modelling.

Meta Object Facility OMG Standard for defining metamodels. See Meta-metamodel.

Meta-metamodel Language to define metamodels.

Metadata Data that describes other data.

Metamodel Model that describes other models.

Microsoft Software technology provider.

MIT Massachusetts Institute of Technology, educational establishment.

Model An abstraction on code.

Model Driven Architecture Conceptual framework for software development.

Model Driven Development Software development field whereby models are the central

artefact. See Model Driven Engineering.

Model Driven Engineering Software development field whereby models are the central

artefact. See Model Driven Development.

Model Driven Software Engineering

Environment

MDA support environment with model and metamodel access;

model transformation; simulation; process; and project definition

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 328 of 333

for developers. See MDA.

Model Merging The joining of two or more separate models to make a single

model containing all originating model detail. See model.

Modeller Developer involved in the modelling process.

MOF See Meta Object Facility.

Multi-perspective Enterprise

Modelling

Conceptual framework for Enterprise Modelling. See Enterprise

Modelling.

Multiplicity Object oriented mechanism to describe the numbering of

associated class instances. See Object Oriented, Association and

Class.

Node Connecting graphical element in graphing.

Non-deterministic Process Processes that involve assertions to which outcomes are open to

indistinguishable possibilities.

Notation Graphical representation for process definition.

Object Class instance. See Class and Object Oriented.

Object Constraint Language Language standard used by web service developers for writing

business rules.

Object Management Group Standards consortium with major contributors such as Microsoft

and IBM. Creators and maintainers of standards such as the MDA

and UML.

Object Oriented Methodology concerned with the construction of systems build on

the concept of objects.

OCL See Object Constraint Language.

OMG See Object Management Group.

Operational QVT QVT transformation language for Eclipse. See Eclipse Modelling

Framework.

Operations Object oriented mechanism describing the configurable processing

of classes. See Object Oriented and Class.

Oracle Software technology provider.

ORMSC Object and Reference Model Subcommittee, part of the OMG

concerned with developing the MDA Guide. See Object

Management Group and Model Driven Architecture.

Parallel Process A process that runs in parallel to another.

Pattern Recognisable operations that form the basis or template structures

for use in the development process.

PD See Problem Domain.

PERL Textual programming language.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 329 of 333

Persistence Elements retained in context of the system.

Petri Net Language used to describe mathematical modelling.

PIM See Platform Independent Model.

PIM Prototyping Tool Part of the VIDE toolset containing a Java transformation engine to

map VCLL to UML. See Transformation Engine.

Platform Operational environment for software systems.

Platform Independent Model Design stage of the MDA.

Platform Specific Model Implementation stage of the MDA.

PML See Process Modelling Language.

Port Accessibility conduit.

Portability Systems that are compatible, or made compatible for multiple

platforms.

POSD See Process Oriented Systems Design.

PPT See PIM Prototyping Tool.

pre-CIM Activities upstream of the CIM conducted prior to CIM

construction.

Private Information Space Of RADs, information is controlled and maintained in and between

roles.

Problem Domain The area in which a defined problem is identified.

Process Collection of business activities to form part of or a complete

business conceptualisation.

Process Architecture An environment defining the creation and maintenance of business

processes.

Process Modelling Language Formal language for business process execution (based on

Requirements Modelling Language). See Requirements Modelling

Language.

Process Oriented Systems Design Structural mechanism for visually describing a system.

Process Programming Formalisation of processes.

Process Trinity Represented process types; Case, Management and Strategy. See

RIVA.

Profile Element of the UML accounting for notational extension.

Properties Configurable parameters of objects or classes.

Prototype A preliminary artefact of the development process used as a

sample for demonstration purposes and elicitation.

Pseudo Code Language used as an abstraction on high-level programming

languages.

PSM See Platform Specific Model.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 330 of 333

Query / View / Transformation OMG Standard for defining transformations between MOF

metamodels. See MOF.

QVT See Query / View / Transformation.

QVT-R See QVT-Relations.

QVT-Relations Declarative language of the QVT for defining relationships

between MOF metamodels. See Query / View / Transformation.

RAD See Role Activity Diagram.

Rational Rose Software development toolkit.

Rational Unified Process Software development framework.

RE See Requirements Engineering.

REBNITA Requirements Engineering for Business Need and IT Alignment,

international workshop.

Relation See QVT-Relations.

Remote Interface Java component for declaring methods. See Java and Interface.

Requirements The desired effects that the solution system imposes on the PD. See

Problem Domain.

Requirements Engineer Member of the software development team that interfaces with

stakeholders in eliciting the requirements for software systems.

Requirements Engineering The field of engineering within software systems whereby user

needs and their realisation in solution systems are the central focus.

Requirements Modelling Language Formal language for requirements modelling (basis of PML). See

Process Modelling Language.

Reusability Software component able to be implemented within or between a

multitude of projects, with or without modification.

Reverse Engineer The de-construction of a model into originating documentation.

See Forward Engineer.

RIVA Business process architecture. See Role Activity Diagram.

RM-ODP Reference Model of Open Distributed Processing, standardisation

framework for open distributed processing.

RML See Requirements Modelling Language.

Role Central notion in a RAD defining a participant’s responsibility and

their interactions with other participants and information. See Role

Activity Diagram.

Role Activity Diagram Visualisation technique to define business process workflows.

Role Utility Diagram Notation supporting a static view of the RAD. See Role Activity

Diagram.

RUD See Role Utility Diagram.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 331 of 333

SADT See Structured Analysis and Design Technique.

SAP Software technology provider.

Schema Outline of models or languages that define them.

SEAM Systemic Enterprise Architecture Method, for aligning business

with IT in terms of organisation and function.

Semantic The meaning of language.

Service Oriented Architecture Software development method giving focus to the offering and

discovery of functional services.

Shared RAD Specification phase of the xMDA method directed at resolving

issues shared between the environment and machine. See eXtended

Model Driven Architecture.

SimpleRAD Metamodel MOF metamodel describing a simplified version of the RAD. See

Metamodel and RAD.

SimpleUML Metamodel MOF metamodel describing a simplified version of the UML. See

Metamodel and UML.

Sketch Recognition Technology used to recognise user sketches and create XML based

representation. See eXtensible Mark-up Language.

SOA See Software Oriented Architecture.

SOAP Simple Object Access Protocol for XML data transfer. See

eXtensible Mark-up Language.

Software Computer code designed for a particular purpose or application.

Software Development The art involving the definition of software systems, from

inception to implementation and maintenance.

Software Engineer Design and implements the solution system.

Software Engineering The field of engineering within software systems whereby the

design and implementation of solution systems are the central

focus.

Software Factory The architecture of complete SPLs and software artefacts created

by them. See Software Product Line.

Software Process The architecture in which software implementations are developed.

Software Product Line Methodology for industrialising the software development process

in a software factory. See Software Factory.

Solution System A software system that accounts for requirements. See Application

Domain.

Source Model Model from which a target model is transformed.

Specification The interface between the problem and application domain. See

Systems of Prime Concern.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 332 of 333

SPL See Software Product Line.

SQL Structured Query Language, used for querying databases.

SQM Software Quality Management, international conference.

Stakeholder Any number of interested parties, including (but not limited to)

business user, Systems Analyst, Software Engineer, project

managers and investors.

Standards Rules governing the development process.

Standish Group International, Inc. IT market research organisation, focussing on project investments

and value performance.

State Condition that a process is in given context.

Static Field Java programming element.

Stereotype Classification of class types in object oriented technologies. See

Object Oriented and Class.

Strategy Action plan devised by business in consideration of environmental

implications, business values and available resources to achieve

business goals and needs. See Alignment.

STRIM Systematic Technique for Role and Interaction Modelling. See

RIVA.

Structured Analysis and Design

Technique

Functional visualisation technique for modelling information

systems.

Syntactic The structural arrangement of text and models.

SystemRAD Visual method for describing systems via the notion of a System

participant in a RAD. See Role Activity Diagram.

Systems Analyst Member of the development team concerned with the analyses of

business requirements and the construction of systems

specification.

Systems of Prime Concern Collectively, the Problem Domain, Interface and Solution System;

matching the development activities of Analysis, Specification and

Design. See Analysis, Specification and Design.

Systems Thinking School of thought that considers a system as comprised of both

internal and external environments, and the relationships between

internal and external systems focussing on the system as a whole.

Target Model Model that is created from a source model.

Traceability Mechanism whereby software information is able to be linked to

the original requirement requiring that information, and vice versa.

Transformation The process of converting a source model into a target model.

Transformation Engine Software component used to execute a transformation.

Ali Fouad (4095780) ‘Embedding Requirements within the MDA’

 333 of 333

Transformation Record The documentation of any transformation and mapped elements.

Transformation Rules Conventions defined to describe transformations. See

transformation.

Translation The process of transferring one model and meaning into another.

Translationist Developer that uses MDA modelling and code as a finished article,

therefore transformations must be complete in every respect.

Tree Diagrammatic structure.

Tri-Step Analysis Analysis technique described by the xMDA method to derive

candidate design classes. See xMDA.

UCDML Use Case Description Mark-up Language, XML language for Use

Cases. See Use Case and eXtensible Mark-up Language.

UML See Unified Modelling Language.

Unified Modelling Language Generic modelling technique used in software systems

development for defining systems design.

Use Case UML diagram; processes defined by functionality.

Value Chain Model of the complete business process used for analyses in the

identification of efficiency gains.

VCLL See VIDE CIM Level Language.

VIDE See Visualise All Model Driven Programming.

VIDE CIM Level Language Part of the VIDE toolset to create XML representations of BPMN

models. See eXtended Model Driven Architecture.

Visualise All Model Driven

Programming

European model-driven research initiative.

Web Service Interoperable software service. See Service Oriented Architecture.

Web Service Definition Language Language standard used by web service developers for writing web

services. See Web Service.

Workflow Sequential visualisation technique for describing process.

WS-Policy Web Service-Policy, standard enabling XML policy definition.

WSDL See Web Service Definition Language.

xMDA See eXtended Model Driven Architecture.

XMI See XML Metadata Interchange.

XML See eXtensible Mark-up Language.

XML Metadata Interchange OMG standard for exchanging metadata via XML. See XML.

XSLT See eXtensible Stylesheet Language Transformation.

YAWL Yet Another Workflow Language, pattern-based language.

Z Formal specification language.

