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Abstract

The use of airborne remote sensing data for archaeological prospection is not a novel concept, 

but it is one that has been brought to the forefront of current work in the discipline of landscape 

archaeology  by  the  increasing  availability  and  application  of  airborne  laser  scanning  data 

(ALS). It is considered that ALS, coupled with imaging of the non-visible wavelengths using 

digital  spectral  sensors  has  the  potential  to  revolutionise  the  field of  archaeological  remote  

sensing, overcoming some of the issues identified with the most common current technique of  

oblique aerial  photography.  However,  as  with many methods borrowed from geographic  or 

environmental sciences,  archaeologists  have yet  to understand or utilise the full  potential  of 

these sensors for deriving archaeological feature information.

This  thesis  presents  the  work undertaken between 2008-11 at  Bournemouth University  that 

aimed to assess the full information content of airborne laser scanned and digital spectral data 

systematically with respect to identifying archaeological remains in non-alluvial environments.  

A range  of  techniques  were  evaluated  for  two  study  areas  on  Salisbury  Plain,  Wiltshire 

(Everleigh  and  Upavon)  to  establish  how the  information  from  these  sensors  can  best  be 

extracted and utilised. For the Everleigh Study Area archive airborne data were analysed with 

respect  to  the  existing  transcription  from  archive  aerial  photographs  recorded  by  English  

Heritage's National Mapping Programme. At Upavon, spectral and airborne laser scanned data 

were collected by the NERC Airborne Research and Survey Facility to the specifications of the 

project in conjunction with a series of ground-based measures designed to shed light on the  

contemporary environmental factors influencing feature detectability. 

Through  the  study  of  visual  and  semi-automatic  methods  for  detection  of  archaeological 

features,  this  research  has  provided  a  quantitative  and  comparative  assessment  of  airborne 

remote sensing data for archaeological prospection, the first time that this has been achieved in  

the UK. In addition the study has provided a proof of concept for the use of the remote sensing 

techniques  trialled  in  temperate  grassland  environments,  a  novel  application  in  a  field  

previously dominated by examples from alluvial and Mediterranean landscapes. In comparison  

to the baseline record of the Wiltshire HER, ALS was shown to be the most effective technique,  

detecting 76% of all  previously know features and 72% of all  the total  number of features 

recorded in the study. Combining the spectral data from both January and May raised this total 

to 83% recovery of all previously known features, illustrating the value of multi-sensor survey.

It has also been possible to clarify the strengths and weaknesses of a wide range of visualisation  

techniques through detailed comparative analysis and to show that some techniques in particular  

local relief modelling (ALS) and single band mapping (digital spectral data) are more suited to 
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the  aims  of  archaeological  prospection  than  others,  including  common  techniques  such  as 

shaded relief modelling (ALS) and True Colour Composites (digital spectral data). In total the 

use of “non-standard” or previously underused visualisation techniques was shown to improve 

feature detection by up to 18% for a single sensor type.

Investigation  of  multiple  archive  spectral  acquisitions  highlighted  seasonal  differences  in 

detectability of features that had not been previously observed in these data, with the January 

spectral data allowing the detection of 7% more features than the May acquisition. A clearer 

picture of spectral sensitivity of archaeological features was also gained for this environment 

with the best performing spectral band lying in the NIR for both datasets (706-717nm) and 

allowing  detection  c.68%  of  all  the  features  visible  across  all  the  wavelengths.  Finally,  

significant progress has been made in the testing of methods for combining data from different 

airborne sensors and analysing airborne data with respect to ground observations, showing that  

Brovey sharpening can be used to combine ALS and spectral data with up to 87% recovery of 

the features predicted by transcription from the contributing source data.

This thesis concludes  that  the airborne remote sensing techniques studied have quantifiable 

benefit for detection of archaeological features at a landscape scale especially when used in 

conjunction with one another. The caveat to this is that appropriate use of the sensors from 

deployment, to processing, analysis and interpretation of features must be underpinned by a 

detailed understanding of how and why archaeological features might be represented in the data 

collected. This research goes some way towards achieving this, especially for grass-dominated 

environments  but  it  is  only  with  repeated,  comparative  analyses  of  these  airborne  data  in 

conjunction  with  environmental  observations  that  archaeologists  will  be  able  to  advance 

knowledge in this field and thus put airborne remote sensing data to most effective use.
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Chapter 1 - Introduction

1 Introduction

Britain's historic environment is subject to many pressures which threaten its survival in the 21st 

Century and increasingly those who curate it are being asked to consider entire landscapes when 

providing professional consultation. Work at Stonehenge (Parker Pearson et al. 2006) and 

Heslerton, in the Vale of Pickering, (Powlesland 2006) has shown the success of investigating 

the spaces between well known, visible remains. Progress has been made in determining the 

historic value of distinct landscape areas through targeted research projects and measures like 

Historic Landscape Characterisation. However, the site-based data which typifies the 

archaeological record and underlies many landscape assessments poses academic and prosaic 

problems. How is one to judge the significance of a landscape, to decide what is to be preserved 

and what can be aid to waste, when so much remains unknown about the nature of past human 

interaction with it?

The search for efficient ways to capture data at a landscape scale is driven by the need to record, 

understand and preserve our heritage before the pressures of intensive agriculture, resource 

extraction, settlement expansion, land use and environmental change remove it for good. To an 

extent this drives innovation with archaeology having a long tradition of adapting technologies 

developed in other disciplines to use them for archaeological prospection. This can be seen in 

almost any common survey technique from aerial photography to the geophysical techniques of 

earth resistance survey, magnetometry and GPR, and on into the widespread use of geospatial 

systems and software. However there are two technologies, digital spectral data and airborne 

laser scanning (ALS), that have begun to find their way into the archaeological landscape 

researcher's toolkit that offer the potential for a revolution in the way that sites are both 

prospected and recorded from the air. 

One of the greatest difficulties with the adaptation of a technology to a new discipline is the lack 

of researchers with both the archaeological and technological specialism to evaluate the 

potential and pitfalls of the novel application. Once the technology has been demonstrated to 

detect archaeological features, as is the case with both digital spectral data and ALS, there is 

usually a period of where increasing numbers of applications of the technology are made 

without evaluation of its suitability or indeed its full potential. 

This study was borne from just such a period in the use of airborne remote sensing (ARS) 

technology in archaeology. As will be illustrated in the literature review (2.3-2.5), although the 

use of digital spectral data and ALS data were becoming more commonplace in the first decade 

of the 21st century, there were still many unanswered questions around how to apply them 
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effectively to archaeological research. A systematic, quantitative and comparative study was 

required to look at a range of processing and visualisation techniques for ARS data enabling 

more effective application of the sensor technology. This research seeks to fill the gaps in our 

understanding of how to make full use of ARS data content and in doing so contribute to 

improved specification, methods and analysis in the future.

Aerial Survey – Identifying the Gaps

For more than a century, since the iconic capture of an aerial image of Stonehenge from a 

balloon in 1906, archaeologists have sought to fill the gaps in our understanding of historic 

landscapes using aerial survey. Time and again the remains of past human endeavours have been 

transcribed, predominantly from panchromatic oblique photography, to dramatic effect 

revolutionising our view of the historic environment. So effective is this technique for 

identifying previously unknown sites that it has spurred intensive national projects to review all 

archive photography, such as English Heritage's National Mapping Programme. In addition to 

illustrating the extent of upstanding features, aerial archaeologists soon discovered that a feature 

need to be visible above ground to be recognised. Proxy in changes in soil and vegetation 

growth, commonly referred to as soil and crop marks indicate not only the presence of 

archaeological features but their active destruction by intensive agricultural regimes.

Sites identified through aerial or field survey are recorded not necessarily because they are the 

most significant but because they are visible to researchers in some way. The nature of the 

evidence upon which archaeologists base their research and professional judgements is heavily 

biased towards remains which are both topographically distinct from their surrounding 

environment and visible either on the ground or in aerial photographs. As a long-standing 

technique, the temporal, vegetation, soil type and observer biases of aerial photographic survey 

are well documented (Wilson 2000; Cowley et al 2010; section 2.2). Consequently there is a 

requirement to look to other ARS techniques to begin to close some of the gaps left by aerial 

photographic survey. In essence there is a need to increase the range of features that are visible 

to surveyors and to try to reduce the dependence on “ideal” temporal, vegetation, rainfall and 

illumination conditions for survey by employing different ARS techniques and a more holistic 

approach to survey data analysis.

Evidence from other environmental disciplines and from a number of successful archaeological 

applications to date indicates that recording the non-visible spectral properties of an 

archaeological feature using digital spectral data and accurately measuring microtopography 

using ALS can improve detection and interpretation. These have shown that through the 

application of improved sensor technology it is now possible to record remotely more aspects of 
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the historic environment than by using aerial photography alone, while retaining the landscape-

scale overview that is critical for heritage management. 

In principle, the ability of remote sensing techniques, such as airborne laser scanning (ALS) and 

airborne digital spectral imaging, to significantly enhance our understanding of archaeological 

features within a landscape is clear. ALS allows greater and more precise measurement of the 

topography of the ground surface than any other technology at landscape scale, while airborne 

digital spectral imagery captures the nature of vegetation and soil changes in not just the visible 

wavelengths but also in the near and short-wave infrared (NIR and SWIR) and thermal regions 

of the spectrum. Indeed a plethora of recent survey applications, particularly of ALS data, have 

shown the value of the tool for the detection of new features of archaeological interest (Shennan 

and Donoghue 1992; Bewley et al. 2005; Winterbottom and Dawson 2005; Devereux et al. 

2005; Crutchley 2006; Powlesland et al. 2006). However, as with many methods borrowed from 

geographic or environmental sciences, there is a sense that archaeologists have yet to utilise the 

full information content that ALS and airborne digital spectral data can provide about 

archaeological features, relying heavily on the expertise of remote sensing specialists trained in 

other disciplines to process the data.

While it is relatively easy to demonstrate archaeological feature detection via the application of 

a high resolution airborne laser scanner, few have rigorously examined the impact of the 

processing and visualisation of these data in a quantifiable way. Likewise, digital spectral 

images are invariably analysed without prior assessment of wavelength sensitivity or 

understanding of the physical and biological processes that underpin spectral response (as 

shown by Evans and Jones 1977; Riley 1980 and Hejcman and Smrz. 2010). Too often airborne 

sensors are used in isolation from each other, reducing the breadth of feature data that is 

collected. It was recognised at the inception of this project that the real power of airborne 

sensors lies in their complementarity, with multi-sensor survey providing a raft of new 

possibilities that have the potential to revolutionise our understanding of archaeological 

landscapes. 

It was also felt that the weight of previous study had been devoted to one landscape type – 

alluvial valleys. In many respects this was a direct consequence of both the sources of funding 

and ARS data available to researchers1. Most of the areas where ARS for archaeological 

prospection had been applied prior to this study were under intensive arable cultivation. While 

undoubtedly this land use is of high importance for archaeological research as it has a direct, 

1 The Aggregates Levy Sustainability Fund (ALSF) provided the financial support for many early 
projects using ARS in archaeology while the Environment Agency of England and Wales (EA) holds the 
largest archive of data (section 2.4.1).
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negative impact on archaeological feature preservation, it was recognised that in temperate 

regions such as the UK, arable cultivation only accounts for c.25% of land cover (Morton et al. 

2011, section 4.2 ). In contrast the application of ARS for grass-dominated environments, which 

account for almost 40% of land cover in the UK has been almost entirely overlooked. Such 

regions provide a niche environment lying at the margins of sustainable agriculture, between the 

arable-dominated lowlands and the moorland of the higher altitudes. These areas contain a 

wealth of information about changing subsistence strategies through the prehistoric and historic 

periods as they are more readily affected by changes in climate. They provide evidence for 

previous landscape interaction that is less affected by deep ploughing. However due to the low 

detectability of crop and soil marks in the hardier vegetation of these regions using traditional 

aerial techniques, archaeological features may be harder to locate, particularly if a multi-sensor 

approach is not used.

Consequently, this study focusses on an extensive area of grassland renowned for the range and 

preservation of its historic landscapes, and the quality of previous archaeological research – 

Salisbury Plain, Wiltshire, UK. By using an area where intensive study using traditional 

airborne and ground based techniques has already lead to an extensive record and understanding 

of archaeological landscape features, it will be possible to provide a robust baseline for the 

comparison of new techniques and quantitative analysis of their contribution to landscape 

research.

The contribution of this study to current knowledge

This thesis presents the work undertaken in fulfilment of a three-year doctoral study, 

investigating processing and analysis techniques for airborne remotely sensed data that are 

specifically designed to maximise the usefulness of such sources for understanding 

archaeological features in non-arable areas. So little prior work had been undertaken to 

investigate the individual capabilities of ALS and digital spectral sensors with regard to 

archaeological research that a comprehensive analysis of each data type had to form the starting 

point of this multi-sensor analysis. By undertaking the first systematic analysis of airborne ALS 

and airborne digital spectral data in combination with ground-based geophysics and soil 

moisture measurements for a site in the UK, it was hoped that a significant contribution to 

current understanding of how to apply these technologies could be made. 

The main benefits of such a systematic approach will be the first direct comparison between a 

number of different ARS datasets, the aerial photographic archive and ground observations for a 

grass dominated environment. The study will begin by employing methods for archaeological 

feature transcription used by the National Mapping Programme for aerial photography and data 
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visualisation techniques common to environmental remote sensors grounding the study in 

techniques that are well understood. The research will then look at novel methods for 

incorporating ancillary data to aid our understanding of the patterns of feature detection, 

building on the experimental design of previous studies to target gaps in our methodological and 

technical understanding. Using the knowledge gained from this study, it will be possible to give 

further insight about data sources, visualisation techniques, transcription methods and other 

forms of feature detection that will be of general use to the growing community of airborne 

remote sensing specialists and will illustrate the value of  multi-sensor ARS for grass-dominated 

landscapes to the wider historic environment profession.

This document begins with a review of the academic literature and context to the study (Chapter 

3), followed by  a summary of the aims and objectives of the research (Chapter 2), from which 

the aims and objectives of the work were derived. Chapter 4 introduces the Salisbury Plain 

study areas of Everleigh and Upavon, detailing the rationale for the choice of sites, relevant 

previous investigations. Following on from this Chapter 5 gives details of the archive ARS and 

archaeological data used in the Everleigh study, along with the planned ALS and hyperspectral 

data acquisition for the Upavon area. The methods used to assess these data are given in Chapter 

6. The results of the study are given in Chapters 7 and 8, while Chapter 9 discusses the 

implications of the project's findings for the archaeological application of airborne remote 

remote sensing data and directions for future research. Chapter 10 gives the conclusions of the 

work, followed by the Chapter 11 and the Appendices which give supporting documentation 

including references, the processing script used to calculate the Local Relief Model and a full 

geophysical survey report. 
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2 Literature Review

2.1 Introduction

The purpose of the review of current literature was to identify the gaps in current understanding 

regarding the use of ARS for archaeological research and to identify potential method areas for 

the project. The results of the review are presented here with two themes that link directly to the 

research objectives laid out in Chapter 2. Sections 2.2 - 2.7 describe the current status of 

research into the archaeological application of airborne remote sensing (ARS) data and identify 

the potential value that ARS data can add to archaeological survey (in fulfilment of Objective 

1). Sections 2.9 - 2.11 comprise the technical literature review giving specific details of each of 

the data types used in the study, and appropriate processing techniques (in fulfilment of 

Objective 6).

Remote Sensing for Archaeology

2.2 Archaeological Remote Sensing Techniques in Context

The term “archaeological remote sensing” in its broadest application covers the techniques that 

allow an observer to detect evidence of features that indicate past human engagement with the 

landscape. The term commonly incorporates not only airborne remote sensing (ARS) 

techniques, which are the main focus of this project, but also satellite data and geophysical 

survey, encompassing a multitude of different sensors that measure complex and often subtle 

changes in the land surface and beneath the soil. Whatever the technique employed, the central 

tenet of remote sensing is that target features will contrast from their surrounding matrix in a 

measurable way (Beck 2007). For archaeological features, these differences can be categorised 

into two groups; direct effects, where the feature itself can be measured e.g. the changes in 

topography associated with bank and ditch features; and proxy effects, where a sub or near-

surface feature causes a localised change in soil or vegetation properties, e.g. crop marks. 

ARS is extremely important to the discipline of archaeology, allowing non-invasive detection 

and mapping of features at a landscape scale. This data underpins both academic research and 

heritage management, allowing professionals to quantify and respond to threats to the historic 

environment. However the weaknesses of colour or monochrome aerial photography, which has 

been the main source of ARS data for almost a century, have been well documented (Wilson 

1975; Cowley 2002; Brophy and Cowley 2005). The appeal of other ARS techniques, such as 

airborne laser scanning (commonly referred to as lidar) and digital spectral imaging (also known 
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as multispectral or hyperspectral imaging), lies in great part with their ability to replicate and 

complement the established tools of archaeological landscape analysis, bridging some of the 

gaps in current understanding. Sections 2.2.1and 2.2.2 detail traditional methods for identifying 

the changes typical of archaeological features and how “new” ARS techniques can complement 

these.

2.2.1 Detecting Direct Effects

When detecting direct changes caused by human interaction with the landscape, two methods 

are generally employed: walkover survey and aerial photography. Both of these techniques, 

although commonly used, have distinct disadvantages for survey of large areas. Walkover 

survey is defined as the technique of surveying in transects to record archaeological features and 

can be undertaken with or without concurrent artefact collection (as per Fulford et al. 2006; 

RCHAMW 2009). This type of survey is time consuming, may be restricted by vegetation or 

land use and is limited to identifying features with noticeable upstanding remains or artefact 

scatters caused by plough damage (Fulford et al. 2006). In addition it is often difficult to view 

the evidence for an entire landscape from any single point within it, which can lead to difficulty 

in producing a synthesised and holistic assessment. Even during the process of detailed metric 

survey, the bias of both what is visible to the surveyor and the amount of visible evidence that is 

interpretable from their near-surface perspective, plays a key role in the final interpretation 

(Doneus and Briese 2006).

By contrast, oblique aerial photography, especially in raking light (defined by Wilson (2000) as 

a sun angle of no more than 20° above the horizon) can be used to identify features with 

upstanding topography in their wider cultural and natural environment. Often this technique is 

more effective than observations from ground level, especially if the remains are slight or the 

site covers an extensive area (Bewley 2001). Aerial photography is one of the most widely used, 

and best understood, methods of prospection and recording of archaeological sites (Horne 

2011). 

There are some issues to be considered when translating the evidence of oblique, raking light, 

photographs into accurate spatial records of the archaeological features depicted. Firstly those 

features which run parallel to the direction of light will have little or no presence in the image. 

While this could be overcome to an extent by repeat acquisition of photographs at varying times 

of year, this is both impractical and logistically impossible if the sun is the only illumination 

source. The second issue occurs when trying to locate the features seen in oblique photography. 

This is particularly a problem in uncultivated and coastal areas where lack of ground control 

features can render precisely locating the features identified impossible. Finally, and most 
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obviously, it is not possible to record features that are obscured by vegetation or shadows .

Airborne laser scanning (ALS) (which operates on a principal of light detection and ranging, or 

lidar) has the potential to redress some of the weaknesses of the established landscape survey 

techniques with regard to detecting direct changes in the landscape. The high accuracy digital 

terrain and surface models (DTM and DSM respectively) that can be rendered from ALS enable 

the identification of topographic features and can be shaded artificially from any angle or 

azimuth to replicate optimum illumination conditions (Devereux et al. 2008). In addition the 

data can be filtered to remove vegetation such as forest canopies, allowing the recording of the 

ground surface beneath (Devereux et al. 2005). Although expensive, it has been calculated that 

the cost of collecting airborne data is less than the equivalent cost of a walkover survey team 

and is far more effective in some landcover types, e.g. forested areas (Crow et al. 2007). As 

coverage of the landscape can be total, using an ALS-derived DSM can also enable more 

efficient deployment of ground survey teams to targeted areas. For these reasons, since 2005 the 

growth in the use of airborne laser scanning for archaeological prospection has been 

tremendous, driven in large part by the results of research in the Trent Valley, funded by the 

Aggregates Levy Sustainability Fund (ALSF). This is discussed in more detail in section 2.4.

To date, the majority of projects using ARS techniques, including surveys at Stonehenge and the 

Loughcrew Landscape project (Shell 2005; Bewley et al. 2005) have used the digital surface 

models (DSM) created from ALS for prospecting and mapping new features or landscapes. 

Recently, an increasing number of case studies using ALS-derived models to identify previously 

unknown features have been published (Bock et al. 2008; Challis et al. 2008c; Corns and Shaw 

2009; Millard et al. 2009; Charlesworth et al. 2010; Sittler and Heinzel 2010; Chase et al. 2011). 

Throughout this review of published and grey literature the emphasis is on those projects that 

have contributed to progressing analysis techniques and technical understanding of how ALS 

data can be used to investigate archaeological features, rather than the improvement in 

archaeological understanding brought about by simply applying a high resolution terrain model 

to an area that was previously not recorded in 3D. Projects in the former category provide a 

better context to the analytical research being undertaken for this study.

2.2.2 Detecting Proxy Effects

Aerial photography is also the primary technique used to identify features which have no 

upstanding traces but are typified by near-surface changes in soil moisture content and 

vegetation composition (Wilson 2000:53). However the identification of these features relies 

heavily on the differences in contrast between the material and structure of an archaeological 

feature and that of its surroundings and/or the impact of this contrast on the structure and 
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growth of vegetation. Additionally, variance of this kind is generally only visible under certain 

conditions, limiting the time of acquisition and making aerial photographs far less useful over 

pasture and uncultivated land. It has long been recognised that aerial photographs only capture 

records of such features in specific circumstances and the visibility of crop and soil marks from 

the air is heavily affected by underlying soil type and geology, vegetation, agriculture and 

seasonal variance (Brophy and Cowley 2005). This leads to biases in the information gathered 

from aerial photographs that must be considered when using this technique as the basis for 

holistic landscape survey (Cowley 2002).

A key tenet of the biological study of vegetation stress is that the near infrared (NIR) region of 

the spectrum is particularly sensitive to plant mass and health, more so than the red, green, blue 

reflectance of the visible spectrum (Lillesand et al. 2008). As such is has been postulated that 

this region of the electromagnetic spectrum may enable the improved recording of 

archaeological crop mark features, thus potentially reducing the impact of some of the inherent 

biases of geology, land cover and timing of acquisition that affect standard aerial photography 

(Beck 2011). The majority of aerial photographs used for archaeological research only capture 

visible wavelengths and, due to the historic cost of processing colour film, its instability as a 

long term storage format and difficulties of ensuring good exposure, monochrome panchromatic 

film has been preferred for archive photography (Gumerman and Lyons 1971; Wilson 2000). 

This means that specific record of the NIR reflectance of archaeological features is mostly 

absent from the aerial archive. However, there has been some use of infrared wavelengths to 

map archaeological features, most frequently using modified cameras and colour infrared (CIR) 

film (Edeine 1956; Strandberg 1967; Agache 1968; Gumerman and Neely 1972; Hampton 1974; 

Verhoeven 2008). This body of research illustrates the value of the non-visible wavelengths for 

identifying anomalies caused by differing vegetation conditions, but is confined by the limited 

spectral range of the sensor and a general misperception of the nature of electromagnetic energy 

(Verhoeven 2008). 

In contrast to standard CIR photography, digital spectral imaging (commonly referred to as 

multi or hyperspectral imaging) captures the breadth of the electromagnetic spectrum, including 

the NIR region, by the acquisition of dozens to hundreds of contiguous spectral bands. Despite 

first being used to detect archaeological features in the UK over 20 years ago (Donoghue and 

Shennan 1988) and showing some promise both in the UK and abroad (Donoghue and Shennan 

1988; Winterbottom and Dawson 2005; Powlesland et al. 2006; Traviglia 2006), uptake of 

airborne spectral sensors has been limited. Conversely during this time there has been a rise in 

the use of spectral data recorded by satellite platforms for archaeological survey (Parcak 

2009:23-41 provides a full summary of this topic). In section 2.3, previous applications of 
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digital spectral imagery for archaeological prospection are discussed further, along with their 

implications for the current study.

2.3 Digital Spectral Imaging in Archaeological Research

2.3.1 Introduction - Exploring the Invisible

Although modern digital spectral sensors were first used for archaeological prospection in the 

late 1980s, the first experimentation with multispectral imaging for identifying crop mark 

features in the UK was undertaken by a team from the Royal Commission on Historical 

Monuments England and the University of Pennsylvania in 1970 (Hampton 1974). For this 

study the multispectral sensor comprised four 70mm F95 cameras recording panchromatic, 

colour and NIR across wavelengths from ~390nm to ~900nm (Hampton 1974:38). Various filter 

combinations were used on the panchromatic films to isolate, yellow, orange, blue and green 

wavelengths in a survey of four sites that was repeated four times between June and August, the 

peak crop mark season. The survey is notable for its attempt to deconstruct which wavelengths 

were contributing most to the visibility of crop mark features at each site for each period, 

although as the filters and films varied, the data from each sortie is not precisely comparable 

(Hampton 1974:40). The site of greatest interest to the current research was Willesley Warren, a 

site of mixed period occupation (Neolithic - Roman) situated on chalk downland, covered by a 

variety of crops in the year of survey (grass ley, pasture, spring barley and winter wheat). The 

false colour NIR film was found to perform well over the areas of cultivation in June and July, 

but in the areas of grass the NIR was most useful later in the season. Overall the results 

indicated that the combination of NIR and panchromatic imagery would record most anomalies. 

The real advantage of the system trialled in this research was the complementarity of the 

sensors, resulting in more features recorded in any combination of cameras (and therefore 

wavelengths) than by a single sensor. However the complexity of predicting the best filters for 

each land cover and geology was also highlighted illustrating the requirement for detailed work 

on spectral sensitivity.

Verhoeven (2011) provides an excellent summary of the conduit of NIR research in archaeology 

in the years since the publication of Hampton's work, citing more than 25 projects that have 

noted the advantages of using non-visible wavelengths captured using a variety of platforms 

(including conventional colour infrared photography, airborne or satellite multispectral 

imagery). However many of these observations were not made in a systematic or rigorous way 

as, for the most part, contemporary colour imagery was not available for comparison 

(Verhoeven 2011). Of the projects that could make comparisons, almost all were based on 
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standard colour versus colour infra red (CIR) film rather than digital spectral data. This led to a 

luke-warm reception by archaeologists for the CIR imagery which was awkward to use, 

(requiring more skill than standard imagery to expose), performed poorly in weak light 

conditions (Buettner-Janusch 1954) and was difficult to process consistently (Benton et al. 

1976). In addition CIR film has low spectral clarity as the NIR sensitive band also samples large 

portions of the visible spectrum (Verhoeven 2011). Results of recent work have shown that 

digital cameras, modified to record the NIR region, remove many of these issues and provide 

consistent results in comparison with colour imagery (Verhoeven et al. 2009). 

Work using NIR photographs has provided a proof of concept for the use of broadband, very 

near infra red wavelengths for identifying archaeological features, but questions remain as to 

how to define the spectral response of proxy vegetation features and to relate this to changes in 

season, soil moisture and ground cover (Verhoeven 2011). Additionally, building on work in the 

environmental disciplines (see section 2.10), there is scope to extend the study of non-visible 

wavelengths to features typified by changes in soil composition rather than vegetation change. 

Both these research directions require sensors that are more spectrally sensitive than NIR 

photography, covering both a wider range of wavelengths and greater spectral definition. 

The most abundant source of more detailed spectral information can be garnered from satellite 

imagery. While at one time satellite data was viewed as too poor in both spatial and spectral 

resolution to be of use to archaeologists (Parcak 2009:34), this view has been overturned as the 

specification of satellite sensors has improved and high quality military satellite data is 

declassified. Studies have shown the value of both modern and archive satellite imagery for 

archaeological research (Mumford and Parcak 2002; Campana 2003; Lasaponara and Masini 

2005; Lasaponara and Masini 2006; Beck et al. 2007; Cavalli et al. 2007; De Laet et al. 2007; 

Donoghue et al. 2007a; Lasaponara et al. 2007; Lasaponara et al. 2008; Nuzzo et al. 2008). 

However despite some publications by Cox (1992) and Fowler (2002) there has been little use 

of satellite imagery for archaeological research in the UK. Aside from the issue of coverage, the 

spatial and spectral resolution of satellite imagery is better suited to large scale features that 

provide distinct soil differences from their surroundings such as the Tell settlements of Syria 

(Beck et al. 2007; Donoghue et al. 2007a). Although spatial resolution has improved, satellite 

spectral resolution is still limited to broad bands in the NIR, SWIR and Thermal, limiting more 

detailed analysis of the spectral characteristics of the archaeological features observed. For this 

reason, the current research will focus on the use of airborne multi and hyperspectral sensors 

(henceforth referred to collectively as digital spectral sensors), as they currently provide the best 

combination of spectral and spatial resolution for detailed feature analysis.
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2.3.2 Archaeological Applications of Digital Spectral Sensors

As mentioned above, digital spectral imagery has received significantly less attention than 

airborne laser scanning in archaeological research to date in the UK, despite first being used to 

detect features over 20 years ago (Donoghue and Shennan 1988). In part this is due to the 

poorer spatial resolution of spectral systems (c.1-5m) but also to the lower availability of 

spectral datasets. For the sake of contiguity with the original publications the spectral sensors 

discussed below are referred to by their commercial names. Table 2.1 in section 2.10 provides a 

detailed breakdown of their key attributes.

The first landscape study to integrate multispectral data with established archaeological remote 

sensing techniques of magnetometry survey and the aerial photograph archive, was the Vale of 

Pickering Landscape Research Project. This project is one of the longest running archaeological 

research initiatives in the UK, with campaigns of aerial photography, excavation and 

geophysical survey over more than thirty years (Lyall 2006). As such it provided a wealth of 

ground and aerial observation with which to compare the remote sensing techniques. The two 

existing publications that report on the remote sensing aspects of the project focus on the 

overarching archaeological research objectives (Powlesland et al. 1997; Powlesland 2006). 

However technical details of the ARS analysis are included in James Lyall's MSc thesis (2006), 

in which the long-term airborne and ground-based survey are fully explained and analysed. The 

work undertaken by Lyall illustrates the complementarity of the multi-sensor survey, and as 

such provides a precursor to subsequent projects. 

The method underlying Lyall's project was essentially qualitative, with images from each of the 

techniques processed and georeferenced before features of archaeological interest were 

polygonised and compiled into a geodatabase. However, the project did investigate the 

technicalities of multispectral and thermal survey as applied to archaeological prospection and 

the factors which might affect its success. Two sites were selected for detailed comparison of 

visible and infrared (VNIR), short wave infrared (SWIR) and thermal multispectral data. The 

airborne data were collected by the NERC ARSF using a Compact Airborne Spectrographic 

Imager (CASI) and Airborne Thematic Mapper (ATM) and were compared, along with 

magnetometry survey, against the existing air photograph archive. At each site the techniques 

were shown to be complementary, for example at one site, nine key features were detected by at 

least two techniques, whereas almost twice that number were only detected by a single 

technique (Lyall 2006: 151). Some analysis of the feature types was undertaken, illustrating that 

the biggest factor affecting the visibility of features in both the ATM and CASI data was the 

reduced ground resolution of the data (1.5m) compared with aerial photography (0.15m) and 

magnetometry (0.25m) (ibid:191). Another key factor which could have affected feature 
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identification in the CASI data (and by inference also the ATM data) was discovered almost by 

chance through the analysis of two flightlines for the same site. Although the flightlines were 

recorded only six minutes apart, the remains of a ladder settlement were visible in the first 

flightline but not the second (ibid:201). It was determined that when the features lay at the edge 

of the scan line of the instrument, early cropmarks, formed primarily by differences low down 

in the vegetation canopy, could not be identified in the more oblique image as only the top of 

the canopy was contributing to the recorded reflectance. It was concluded that early cropmark 

features are only visible in CASI data when the scan angle is close to nadir, giving a clear 

indicator for optimal instrument set up (Lyall 2006:85).

A further use of ATM data for a site in the UK was for the study of the visibility of buried 

archaeological features in areas of mobile sand on the Islands of Coll and Tiree off the north 

west coast of Scotland (Winterbottom and Dawson 2005). The study was important as it showed 

the potential for the examination of archaeological remains in a non-alluvial area using the ATM 

sensor, and the importance of iterative feedback from site visits for improving the interpretation 

process (Winterbottom and Dawson 2005: 213). However one of the main difficulties 

encountered in the more topographically varied areas of the study was distinguishing between 

archaeological features such as cairns and natural features with similar topography, such as sand 

dunes (Winterbottom and Dawson 2005:218). It is postulated that with the simultaneous 

collection of high resolution ALS data, the problems of differentiation between anthropogenic 

and natural features could have been simplified. The results of this research clearly highlight the 

limits of the spectral data as regards microtopographic analysis.

The studies discussed above indicated that prospection using wavelengths in the thermal region 

gives better results than using the VNIR wavelengths alone. To date, Kay McManus' doctoral 

study of airborne thermography (2003) is the only UK study to date to have examined in detail 

the relationship between remotely sensed data, vegetation attributes and corresponding shallow 

ground disturbance. Using the ATM, McManus investigated the possibility of using the thermal 

infrared response to model changes in thermal inertia (McManus 2003). It was hypothesised 

that shallow buried features of archaeological or geological origin would cause changes in the 

thermal radiation which could be measured from the airborne platform. The research applied 

theoretical models of thermal inertia to airborne data, concluding that it was not possible to 

calculate direct radiance from the airborne data and that apparent thermal inertia (ATI) 

modelling corresponded to temperature effects of the surface vegetation or very shallow features 

(at a depth less than 0.05m) rather than the characteristics of the more deeply buried features 

(McManus 2003:330). It was thought that the lack of correspondence of the radiance measure 

by the ATM and the surface temperature was due to miscalibration of the data evidenced by 
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seasonal variations to the radiance histograms of control areas (ibid: 254). Additionally, the 

timing of the day and night flights needed to be more precisely linked to the diurnal minimum 

and maximum temperatures of the soil column to optimise conditions for modelling.

As it was postulated that the amount of solar radiation emitted and reflected by the soil would 

be masked by the vegetation fraction throughout the year, one of the aims of the research was to 

understand the effect of vegetation on ground based monitoring of soil temperature and by 

inference on the reflectance recorded by the ATM. By monitoring ground temperatures at two 

sites, McManus was able to illustrate that solar penetration on the site dissipated between 0.2m 

and 0.5m below the surface, regardless of substrate properties, with temperatures at 0.5m below 

the surface showing no diurnal variance (McManus 2004:288). Diurnal patterns of maximum 

and minimum temperatures of the soil were detailed for sites under pasture and those under crop 

as the vegetation developed, with time ranges for acquisition recommended between 13.00- 

16.00 and 05.30-09.30 respectively for features at shallow depth. It was therefore noted that 

although the ATI could be a useful tool for identifying near-surface features in short grass or low 

crop, as the vegetation fraction increased the potential for identifying anomalies in the soil 

decreased.

Generally, thermal modelling was not found to give significant benefit over simpler visual and 

mathematical analysis of the data, especially given the more complicated process of 

georectification that the ATM demands (McManus 2004:337). It was also noted that not all 

geophysical techniques were suitable for corroboration of anomalies identified via the thermal 

data, as features picked up by each of the methods did not always correlate. With respect to the 

current research, McManus' work is useful in two key areas, i) the methodological approach of 

visual and mathematical analysis of the airborne data and ii) the complex relationship of 

vegetation cover to soil properties over the growth cycle. The conclusion that the anomalies 

viewed in airborne data bore little relation to sub-surface soil properties, but were dominated by 

vegetational effects and the surface of the soil, requires further consideration as it is generally 

assumed that the differential growth of vegetation or crop marks represent sub-surface features 

to a maximum depth of the crop root (0.3-0.75m) (Evans and Jones 1977). Clarifying the 

relationship between features identified in crop or pasture and the subsurface changes they 

represent is an area which requires work specific to the sites being investigated.

The most recent project in which a suite of specific processing techniques were systematically 

assessed was the 2008 review of multi and hyperspectral data supported by the ALSF (Challis et 

al. 2008b; Challis et al. 2009). The project took ATM and CASI multispectral and Eagle 

hyperspectral data for selected areas of the Trent Valley and trialled processing methods that are 

familiar tools employed in other remote sensing disciplines, such as colour composites, thermal 
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images, vegetation indices, tasselled cap transformations, principal components analysis and 

classification. The results of this study were promising but limited by what could be achieved 

with archive data (Challis et al. 2009). The ATM data were found to out-perform those collected 

using the CASI and Eagle sensors when identifying archaeological features. However, this 

conclusion should be regarded with caution as the CASI and Eagle data were far from optimal 

for the identification of archaeological remains, with the CASI data dating from 1996 and 

suffering severe geometric distortion that could not be corrected and the Eagle data being 

collected in the autumn season when the fields were under bare earth conditions. It was also 

considered that CASI data with a resolution finer than the c. 2m data used in this study would 

have greater potential, as would Eagle data collected when the study area was under crop (ibid, 

74). No mention was made of the potential of using the Hawk sensor, which measures 

shortwave infrared (SWIR) that has a proven application for archaeological prospection 

(Winterbottom and Dawson 2005:218). In terms of the processing methods, the two selected 

vegetation indices (NDVI and Tasselled Cap) were observed to enhance visibility of 

archaeological features, but unlike Traviglia's work in Italy(2006; 2008), no effort was made to 

distinguish which indices were most appropriate to the vegetation encountered. 

With respect to improved processing techniques, Cavalli et al. (2007) showed the potential for 

using specific indices to identify the most important parts of the spectrum for identifying buried 

archaeological features. This is an important consideration given the magnitude of spectral 

resolution in data collected by hyperspectral sensors such as Eagle and Hawk which collect data 

in the very near infra red (NIR) and short wave infra red (SWIR) regions respectively 

(2007:282). The study concluded that the archaeological information content derived by 

analysing the outputs of the image processing techniques is more significant than the 

information obtained by interpreting each single band and the available historical aerial 

photographs (Cavalli et al. 2007, 272). The most recent academic studies of airborne spectral 

data in the UK, (including the only known example of purpose-flown Eagle and Hawk sensors 

for the Hayton Landscape Project), were undertaken by doctoral researchers Ali Aqdus and 

Rachel Opitz. Both studies were submitted in 2009 to the University of Glasgow and Cambridge 

University respectively, but unfortunately remain unpublished and in the case of the Aqdus 

thesis embargoed until 2012. As such it is impossible to evaluate the processing techniques that 

were used although some success was reported using principle components analysis (PCA) and 

vegetation indices (Opitz 2009b; Aqdus and Hanson pers. comm. 2009).

To date there has been no attempt to apply the rigorous methods employed by Hampton (1974) 

and Traviglia (2008) to modern airborne spectral data for an archaeological landscape in the 

UK, where the temperate vegetation and lack of stone-built archaeological features differs 
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significantly from recent Mediterranean applications (Ben-Dor et al. 2001; Traviglia 2006; 

Rowlands and Sarris 2007). This has resulted in a lack of understanding of how spectral data 

could, and should, be applied for archaeological feature detection in the UK and has contributed 

to the lack of use of this data by the discipline. There is a pressing need for an improved 

understanding of the environmental, physical and biological properties that affect feature 

detection. This gap in current knowledge is reflected by the inception in 2010 of the AHRC and 

EPSRC council-funded project, Detection of Archaeological Residues using remote sensing 

Techniques (DART). This three-year project aims to collect ground-based and airborne data for 

four study sites (three arable and one pasture) in the UK to explore the factors that produce 

contrasts associated with archaeological features, how these contrasts vary over space and time 

and what sensors can best detect them (Beck 2010). 

Although projects such as DART bring welcome recognition and investment to the field of 

digital spectral imaging for archaeology, they are not without limitations. Due to the 

complicated logistics and time-frames involved, projects can only give insight into a particular 

environment, geology and archaeological feature type over a limited period and so provide 

valuable but specific information that may prove difficult to up-scale either to the landscape 

level or to other landscapes. Additionally, although ground-based geophysical techniques will be 

employed, there is no consideration of the impact of topographic change as measured by ALS 

data as a contributing factor to the detectability of features. Therefore it is essential that rigorous 

multi-sensor research in this field continues in different environments, making full use of 

archive data in addition to bespoke acquisitions, in order to build the knowledge-base that will 

enable heritage professionals to make better use of spectral data and understand its relative 

contribution for archaeological feature detection when compared with other techniques.
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2.4 Airborne Laser Scanning in Archaeological Research

2.4.1 Introduction

The remote sensing technique that has enjoyed the most attention in recent years is airborne 

laser scanning (ALS). Historic environment professionals have been keen to exploit the 

potential of the high resolution, high accuracy surface and terrain models that ALS can provide 

as resources for the visualisation and mapping of landscapes following the publication of the 

Stonehenge project results (Bewley et al. 2005). While the use of the data in this study was 

limited to shaded relief visualisations, with archaeological features mapped using standard 

National Mapping Programme (NMP) protocol, it can be viewed as a feasibility study 

recognising the value of ALS data to identify archaeological remains when compared with 

traditional aerial photographic inscription. Subsequent studies in the UK have focussed on two 

main research areas; the potential to record features beneath forest canopy (Devereux et al. 

2005; Crow et al. 2007) and the modelling of alluvial valleys (Challis 2004; Oxford 

Archaeology North 2007) with the vast majority of work to date funded by the Aggregates Levy 

Sustainability Fund (ALSF).

One of the principle advantages of ALS over other airborne survey techniques is the ability to 

“see-through” the tree canopy to the ground surface beyond. This is because only a portion of 

the laser is reflected from the vegetation, (see 2.11 below) allowing the remaining backscattered 

reflections to be modelled as the ground surface and providing impressive insights into the 

archaeological landscape beneath forested areas (e.g. Crow et al. 2007; Gallagher and Josephs 

2008; Bock et al. 2008; Charlesworth et al. 2010; Sittler and Heinzel 2010). The majority of 

published projects have been focussed on the recovery of previously unknown archaeological 

features rather than technical development of ALS technique, although Doneus and Briese 

(2006) provide an exception to this generalisation.

2.4.2 ALS Research in Archaeology – The Aggregates Levy Sustainability Fund

Although there has been great excitement about the possibilities of ALS data for detection of 

features, with a handful of notable exceptions (often only available in the grey literature 

surrounding projects such as the Trent Valley Geoarchaeology Research (Challis 2004; Challis 

2005a), there has been little detailed analysis of the processing of these data. Research in the 

UK to date has been undertaken mostly in a commercial context as part of the ALSF scheme, 

with attendant time, budgetary and scope restrictions, and with the focus on the interpretation of 

the images produced, not their derivation. This stems in part from the fact that the majority of 

ALS data used in archaeological studies is “second-hand”, having been acquired and processed 
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by the Environment Agency of England and Wales (EA) for hydrological and flood mapping 

purposes; very different purposes to those of the historic environment profession. At the present 

time there appears to be a heavy assumption by most in the historic environment sector who 

come into contact with ALS data that processing techniques and filters developed for 

hydrological mapping or environmental work are adequate for archaeological assessment, 

although this could be the consequence of a lack of opportunities and funding to explore the 

issue further. While Crutchley (2010) flags some potential pitfalls of using data processed for 

different purposes, there has been little discussion of developing more appropriate processing 

techniques, with archaeological prospection in mind from the outset. 

The exception to this is the work of Keith Challis in the Trent Valley which has highlighted 

some of the issues with using EA ALS data for geoarchaeological prospection, including the 

presence of artefacts in the data (Challis 2006). This body of work, funded by the ALSF is 

focussed on the identification of geomorphological features on the scale of palaeochannels and 

while features of anthropological origin are noted as visible in the airborne surveys, their 

identification is not a primary aim of the study. Smaller scale archaeological features are 

considered more fully by the Nether Kellett to Pannal Pipeline report (Challis 2005b), but the 

representation of subtle changes in topography in ALS data such as might be representative of 

plough damaged remains, has only recently begun to be investigated (Hesse 2010).

Two projects which emerged from the final rounds of the ALSF scheme during 2008 have 

particular relevance to our understanding of the scope of remote sensing techniques in 

archaeological landscape investigation. The first illustrates how targeted research can begin to 

evaluate the potential of the full information content of ALS data. Included in this project was 

an assessment of the effectiveness of ALS intensity for predicting organic remains in alluvial 

terraces (Challis et al. 2007; Challis et al. 2008a; Challis et al. 2011a; Challis et al. 2011b). The 

second involved a comparison of two digital spectral sensors and was discussed in more detail 

in section 2.3.2 (Challis et al. 2009).

The aims of the ALS project undertaken by Challis et al. (2009) were to investigate the use of 

terrestrial laser scanning to investigate soil properties and to undertake a systematic 

investigation of the backscattered laser intensity component of ALS data, which had been 

tentatively noted in previous studies to be negatively correlated to ground moisture levels 

(Challis 2004; Challis 2005a). Although the use of terrestrial laser scanning was unsuccessful, 

the second stage of the project was more fruitful, with features identified from airborne ALS 

intensity data. The work undertaken also identified the value of earth resistance survey as a 

proxy for ALS intensity data and as a useful tool for ground truthing the aerial survey results 

(Challis et al. 2011b). This adds to the unpublished work undertaken in 2005 which perhaps 
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indicated a strong correlation between ground penetrating radar (GPR) survey and ALS 

intensity (Challis 2005b). The report concluded that although there was a significant non-linear 

relationship between soil moisture content and ALS intensity values, the equi-finality resulting 

from the complicated combination of the variables affecting the study prevented any form of 

predictive modelling from the data sampled (Challis et al. 2011b:308). 

The ALS data collection technique was shown to affect intensity significantly between swaths 

from individual flight-lines of data acquisition. To correct this and prevent the masking of subtle 

changes in intensity (as identified by Challis et al. 2008) the intensity data was normalised to the 

elevation of the test site, but this was found to provide little improvement in the imagery 

(Challis et al. 2011b). The normalised data did provide the means with which to create 

difference maps that were shown to be better suited to geoarchaeological feature detection 

(Challis et al. 2011a:9). The work undertaken by Challis et al. concluded that while intensity 

data could add to visual analysis of topographic models, particularly in a geoarchaeological 

context and for some cropmark features (2011a:7), it was of limited usefulness as a predictor for 

organic deposits. However the above research was severely limited by three factors: i) the low 

spatial resolution of the ALS data (less than one hit per m2); ii) the extremely wet ground 

conditions in which the ALS was flown in July 2007, and iii) the suggestion that the differences 

in reflective properties of the features identified were not sufficient to be detected, an assertion 

that could not be clarified due to the lack of contemporary ground or airborne spectral data. 

The use of repeated surveys and higher resolution surveys may have helped to clarify some of 

these issues but as the project was based on archive data this was not possible. It is also 

considered that following the work of Coren et al. (2005) and Höfle and Pfeifer (2007) much 

better methods for reducing the variance within intensity datasets have been developed than 

were applied during the ALSF funded research. With claimed reductions of variation to a tenth 

of those originally observed between flight swaths (Höfle and Pfeifer 2007:415), current 

research indicates that in order to be of use, ALS intensity values should be radiometrically 

calibrated in addition to being normalised for changes in elevation (see technical review section 

2.11.4 below). Radiometric calibration would enable direct comparison between multi temporal 

ALS intensity data and also to spectral imagery of the same wavelength. The application of 

better correction techniques along with radiometric calibration could pave the way to a better 

understanding of the intensity component of the ALS data and ultimately to improved 

archaeological feature detection.

ALSF funded projects incorporating ALS or other remote sensing data have made an important 

contribution to advancing the use of such techniques for archaeological prospection since 2004, 

however it is worth noting their limitations for advancing academic use of ALS data for 
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archaeological research. Firstly, they make up only a very small body of work even within the 

ALSF scheme and their results, while highly significant, have been slow to filter through to a 

more mainstream professional and academic audience, despite internet publication. Secondly, 

the work is geographically limited to English landscapes under threat of aggregate extraction 

leading to the predominance of alluvial areas as project sites. Finally, the limits of the funding 

rarely stretch to acquisition of new data thus forcing a reliance on archived data of variable 

source and original purpose and consequently the unsuitability of these data has sometimes led 

to the curtailing of project aims. 

2.4.3 Non-ALSF funded ALS Research

Research undertaken in an academic context in the UK has focused on the use of remote sensing 

to augment existing landscape research projects such as the Vale of Pickering or Hayton 

landscape rather than on the technical development of processing techniques (Powlesland 2006; 

Halkon 2008). These projects differ from those discussed in the previous paragraph as they 

received Natural Environment Research Council (NERC) funded survey flights, rather than 

relying on archive EA data2. However for both, poor spatial resolution (less than 1 hit per metre) 

was noted, a consequence of flying at the optimal height for simultaneous digital spectral data 

collection. These ALS data thus proved insufficient for detailed analysis of archaeological 

features as part of these projects and was therefore only used for basic terrain modelling and 

georectification of other airborne imagery (Opitz pers.comm 2009a; Powlesland pers.comm 

2010).

In a global context, exploration of the full potential of ALS data for investigating the historic 

environment has generally been more rapid in pace and more technical in nature than in the UK. 

Studies in Germany and Italy have looked at the potential for full waveform ALS acquisition to 

improve vegetation filtering, thus enhancing archaeological feature recovery rates (Doneus and 

Briese 2006; Lasaponara and Masini 2009). Recent work has focussed on developing new 

visualisation techniques for ALS-derived DTMs; moving away from shaded relief images to 

develop visualisations that highlight archaeological features. Kokalj et al. (2011) provide a non-

directionally biased method of illuminating DTMs with the Sky-View Factor, while Hesse 's 

Local Relief Model procedure (2010) provides the potential for preservation and examination of 

microtopography, simplifying the extraction of feature height data. Although there is yet to be a 

formal, quantitative review of these techniques3, their recent publication reflects the increased 

2 The Landscape Research Centre from which the long-term research into the Vale of Pickering has 
been conducted, has also undertaken ALSF-funded projects. For the purposes of disambiguation the 
ALS data discussed here was not acquired as part of an ALSF project.

3 Although Challis et al. (2011) have recently provided a review of suitability of some ALS 
visualisation techniques based on unquantified visual assessment of feature detectability.

20



Chapter 2 - Literature Review

application of ALS data as a tool for landscape archaeology and a requirement for visualisation 

techniques that are driven by archaeological research imperatives.  

In Italy, investigations at the ruined Roman town of Aquileia have included studies of the 

integration of ALS intensity with satellite data for identifying cultural heritage (Coren et al. 

2005) and integrating ALS data with hyperspectral data (Sterazi et al. 2008), which will be 

discussed in more detail in section 2.5 below. Some projects have sought to improve acquisition 

and processing techniques, including experimentation with different platforms, such has 

helicopter-based ALS survey in Ireland (Corns and Shaw 2009). There has also been some work 

to improve acquisition beyond the limits of the sensor parameters by improving survey strategy. 

This was demonstrated most effectively by the survey of Maya, Mexico where a number of 

consecutive ALS surveys were combined into a single, higher resolution digital terrain model 

(Chase et al. 2011). 

Perhaps some of the most innovative work has been undertaken by Doneus et al. (2010) 

beginning to explore and understand the potential of the ALS point cloud with comparison to 

contemporary terrestrial laser scanning. This methodology although still under development, is 

significant as all other published archaeological research to date has used rasterised data 

interpolated from the ALS scan (section 2.11.3) rather than the point cloud itself.

As is typical for the adoption of a “new” technology, ALS data have become increasingly 

widely used for a variety of landscape archaeology projects with relatively little formal 

evaluation of the strengths and weaknesses of the technique. The majority of historic 

environment research using ALS is based on archive data and consequently results can be 

disappointing unless factors intrinsic to the processing of the data, such as spatial resolution, 

accuracy and vegetation filtering, are considered. Critically, ALS data cannot capture the full 

information content of a photograph in terms of vegetation and soil changes and therefore is 

most powerful, and most easily interpreted, when analysed alongside other forms of aerial 

imagery (Crutchley 2006). 
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2.5 Multi-Sensor Survey

2.5.1 Complementarity

Airborne multi-sensor survey is a natural progression of the established multi-method 

investigation of historic landscapes which has traditionally included aerial photographic 

analysis, walkover survey and field-walking sometimes leading to geophysical survey and 

excavation (e.g RCHAMW 2009). The main benefit of a multi-sensor approach to 

archaeological survey lies in the complexity and variability that is characteristic of past human 

interaction with the landscape. Although a useful shorthand, the term “archaeological features” 

does not import the complexity or variety of the changes in local environment that are identified 

as belonging to the historic environment. In reality these features vary hugely in topology, 

topography and structure and they can be apparent as direct changes to the surface of the land or 

as proxy changes to soil and vegetation caused by sub or near surface features. They may not be 

visible at all, masked by soil, vegetation or other environmental conditions. In all likelihood 

they will also have been altered, or be in a state of alteration, by taphonomic processes.

It is clear that no single sensor could detect such a range of characteristics. The strength of 

multi-sensor survey therefore is in the complementarity of the data that can be collected by 

deploying multiple sensors and thereby allowing different characteristics of the archaeological 

features to be detected. This complementarity can lead not just to improved rates of detection 

but to a better understanding and interpretation of the features detected and their surroundings. 

Prospecting for features in a landscape is a selective process; picking out by hand or through 

automated processes the areas in an image that have attributes that are believed to represent 

archaeological features. As with any decision-making process, the more information that can be 

gathered about these areas the better informed their interpretation can be.

2.5.2 Barriers to Multi-Sensor Survey

While in an ideal world airborne multi-sensor survey would be routine, the application of 

multiple sensors is challenging. Although recent advances in sensor technology have removed 

some of the barriers to simultaneous survey of airborne spectral and ALS data, the specification 

and application of multiple airborne datasets are not without challenges. The choice of sensor 

and its calibration to detect archaeological features in a given landscape is determined 

predominantly by the nature of the features that are anticipated, however in reality our current 

understanding of how best to apply the technology is limited. Many of the reasons for this stem 

from the use of archive airborne data that has been collected, processed and visualised for other 

purposes such as environmental and hydrological survey without assessment of the impact of 
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the decision making processes behind the final product. Additionally, there has been little 

quantitative study to assess the impact of different visualisation techniques on the accuracy of 

feature mapping and interpretation from airborne remote sensing data. Add to this the impact of 

geology, soils, season and rainfall and the variety of factors affecting the detectability of a 

feature by a particular sensor becomes very complex. Use of multiple sensors can help to pick 

apart some of these factors, especially so if the surveys are contemporary.

Some of the barriers to the use of multi-sensor survey for any area are clear. Firstly, data of the 

quality, timeframe and resolution may not be available from archive sources and is often 

prohibitively expensive to commission. Secondly, obtaining contemporary datasets for ground 

to airborne data comparison is logistically challenging yet essential for certain datasets like 

earth resistance where results are highly condition dependent. Thirdly, the large quantities of 

data produced by this type of comparative analysis are difficult to manage without specialist 

software and data storage capacity. Finally and crucially, in the field of archaeology the 

understanding of how to utilise the data from some airborne platforms is in its infancy and this 

is especially true of digital spectral data. This can make efficient extraction of useful 

information from this wealth of data extremely difficult.

For these reasons, published studies comparing airborne sensors have each tended to be limited 

to just two datasets; most often the comparison of lidar data with archive aerial photography 

(Bewley et al. 2005; Challis et al. 2008c). The correlation of digital spectral sensors has been 

touched upon by work in the Vale of Pickering and Trent Valley (Powlesland et al. 2006; Challis 

et al. 2009) but less work has been done to examine correlation between sensors of different 

types. Where both spectral and topographic data have been available, such as in the study of the 

remote sensing techniques to the Salisbury Plain Training Area (Barnes 2003), the combined 

analysis has focused on objectives such as ascertaining land cover categories via visual 

interpretation rather than the archaeological information content. Where airborne data have been 

compared with geophysical data the greatest challenge has been obtaining datasets that are 

contemporary to ensure comparability (Challis et al. 2011b) Consequently gaps in our 

understanding remain, specifically surrounding the complementarity of digital spectral data and 

ALS data and correlations between airborne sensors of all types and ground based geophysical 

techniques. 

The only study to date to explore fully the complementarity of CASI, ATM and ALS survey, 

was undertaken in Crete (Rowlands and Sarris 2007). Here the focus of the project was on an 

area typified by exposed soil and little vegetation cover, with upstanding archaeological remains 

in addition to known subsurface features identified through geophysical survey (Rowlands and 

Sarris 2007). Automated classification of pixels was used to define archaeological features in 
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the multispectral data, and was successful in defining upstanding stone remains from the 

surrounding bare earth and also appeared to correlate with some features known from 

geophysical survey (Rowlands and Sarris 2007:798). The project was hampered by the spatial 

resolution of the airborne data (2m or greater) leading to mixed pixels in the classification, but 

provides a potential model for processing and interpreting multiple airborne datasets that could 

be applied to archaeological sites elsewhere. However, to apply the method used for the Cretan 

site to a UK site directly would require significant altering of the techniques used to take 

account for the presence of vegetation and the fact that the majority of upstanding features 

would not be stone built. 

2.5.3 Digital Data Fusion

While digital fusion techniques in airborne remote sensing archaeology are in their infancy, the 

select number of instances where they have been applied have shown great potential. 

Experimentation with data fusion has formed a key part of the investigation of the ruined 

Roman town of Aquileia in north-west Italy (Sterazi et al. 2008; Traviglia and Cottica 2011). In 

this project ALS and hyperspectral data were combined using what they term low (e.g. GIS 

overlay) and high (e.g. digital combination) level processing, illustrating the importance of ALS 

topographic and intensity data for improving the classification of features in the spectral data 

(Sterazi et al. 2008, 371). By integrating the ALS DEM and spectral data this project was able to 

map spatial correlation of mineral deposits, distribution and drainage of deleterious materials on 

the surface and vegetation cover maps that were sensitive to terrain slope and / or elevation 

(ibid) though no details of how this was undertaken were given. It was also not clear whether 

this analysis was quantitative or simply visual, and to what level data integration improved 

detectability of features.

Fusion techniques have been shown to be successful in other applications, such as Kvamme's 

(2006) use of continuous data integration of six geophysical surveys. In this study the technique 

was shown to reveal the interrelationships and underlying dimensionality of the data collated 

through the generation of new quantitative information (Kvamme 2006:268). Techniques such 

as these remain to be fully explored in digital airborne data, but need to be supported by 

quantitative methods of feature detection that are both replicable and comparable across 

different sensors and visualisations.
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2.6 Summary of Archaeological Applications

What is evident from the existing studies is that airborne digital remote sensing in archaeology 

is still an emerging field with relatively few studies undertaken and little clear guidance as to 

how the data should be acquired, processed and interrogated. ALS data have been embraced 

enthusiastically without general consideration of the limitations of the data processing 

techniques and there is a lack of published technical data to support the future use of these data. 

The remote datasets have been proven to be useful for mapping known archaeological features 

and prospecting for new ones (Bewley et al. 2005; Oxford Archaeology North 2007). However, 

review of the existing literature illustrates weaknesses in our understanding of how these 

techniques can best be applied to archaeological research. The techniques for processing 

remotely sensed data in the UK have seldom been made public, and those that have been 

published exist only as grey literature reports. This prevents users from identifying a body of 

tested processing techniques specifically designed to maximise the visibility of archaeological 

features, and also precludes thorough assessment of the accuracy of interpretations derived from 

the data. Currently our use of airborne remote sensing data lacks peer reviewed critique of 

processing methods such as those that can be found in other disciplines (e.g. Cobby et al. 2001; 

Lloyd et al. 2002).

It has been shown that many of the projects to date adhere strictly to a visual mapping protocol 

designed for aerial photography and consequently archaeologists are failing to exploit the full 

data content and potential of the airborne ALS and spectral data available in the UK. Due to a 

necessary reliance on data collected for purposes other than archaeological survey, there have 

been few opportunities to attempt fusion of topographic and spectral data, limiting our 

understanding of their complementarity. It is envisaged that application of data fusion 

techniques, such as those used by Kvamme (2006) to interpret multiple geophysical surveys 

could significantly enhance our understanding of the multidimensionality of airborne remotely 

sensed data. Several projects have explicitly or implicitly noted the tendency for linear features 

to dominate mapping from airborne sensors, with circular or amorphous features being less 

easily recognisable (Winterbottom and Dawson 2005:218; Rowlands and Sarris 2007:798). 

Techniques need to be developed to improve detection of non-linear features and those 

characterised by earthen structures or negative cuts rather than hard construction materials such 

as stone. A research strategy should be developed that tackles the issue of how airborne remote 

sensing techniques can best be applied to sites more characteristic of those found in the UK than 

those successfully surveyed in the Mediterranean region.
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The value of ground observations as a support to airborne survey has also been made clear in a 

number of projects, however there has been no systematic analysis of the complementarity of 

geophysical techniques such as earth resistance survey and ground penetrating radar (GPR)4. 

This would seem a particularly important development to aid our understanding of the nature of 

features that have little or no topographic representation and are therefore only visible due to the 

proxy effects on soil colour, texture and plant growth.

Finally, remote sensing projects in the UK to date have been dominated by the study of alluvial 

valleys (defined as areas of fertile soil deposited by flowing water on flood plains, and therefore 

of prime importance for arable production). While this is understandable given the archive of 

remotely sensed data collected for floodplain management purposes, and has added much to our 

understanding of the data, it is to the detriment of other areas which could arguably benefit more 

from airborne remote sensing due to their inaccessibility or unsuitability for other survey 

techniques. To date no work has been undertaken to examine the potential for application of 

ALS and hyperspectral survey to investigate archaeological remains in areas of marginal or 

unimproved vegetation, such as upland moors, heathland or areas dominated by pastoral 

regimes rather than arable farming. Yet work on the sand dunes and machair environment in 

Scotland has illustrated great promise for the use of remote sensing in non-alluvial 

environments (Winterbottom and Dawson 2005). Although the risks to historic landscapes under 

intensive arable cultivation are severe, in the UK this land use accounts for just over a quarter of 

land cover (Morton et al. 2011). This review has highlighted the need to assess the impact of 

ARS in non-arable areas which account for the majority of land cover in the UK at present 

(Morton et al. 2011). 

2.7 Conclusions

From examination of the current literature it is clear that while there is a growing body of 

research on the subject, there are a number gaps in our understanding of the application of both 

ALS and digital spectral data to archaeological research questions. It can be concluded that:

a) While a number of studies have attempted to broaden the scientific understanding of the 

visibility of anomalies detected in ARS data, this has rarely been done in a thorough or 

systematic way. An approach which incorporates systematic multi-sensor survey and 

contemporary ground observations is required to further understanding beyond 

empirical observations alone.

b) Research in the UK is almost entirely limited to one environment - alluvial valleys. To 

4 Although some work in this vein is currently being undertaken under the auspices of the DART 
project.
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improve the application of these techniques, archaeological sites situated in and typical 

of other environments must be incorporated into the sampling strategy.

c) Following a generally positive initial reception, all “new” ARS technologies have 

proved to have limitations for archaeological research. Some of these limitations are 

linked to a lack of scientific understanding of the techniques and reliance on second-

hand data. It is clear that these limitations are mitigated to an extent by incorporating 

data from complementary sensors. However the quantity of data generated requires the 

development of new, streamlined ways of integrating the surveys without losing 

archaeological information.

27



Chapter 2 - Literature Review

Technical Literature Review

2.8 Introduction

The following section gives the detail of each of the principle technologies underlying the 

current research, from the concept of archaeological feature detection in aerial imagery (section 

2.7) to the technical background of the airborne remote sensing techniques. The review sections 

covering digital spectral imagery (section 2.10) and airborne laser scanning (2.11), also 

comprise the details of processing techniques that may be applicable to the detection of 

archaeological features (Objective 6). Geophysical survey background and techniques are also 

given in section 2.12 with respect to their implementation as ancillary data for the ARS analysis 

as part of this project.

2.9 Archaeological Feature Detection in Aerial Imagery

Aerial prospection for archaeological features has been practised for almost a century and relies 

on the detection of topographic, soil or vegetation changes caused by surface or sub-surface 

features. With 100 years of expertise in using aerial photographs for archaeological purposes 

and the establishment of English Heritage's National Mapping Programme in 1988, aerial 

photography is one of the most widely used, and best understood, methods of prospection and 

recording of archaeological sites (Horne 2011). 

The most elusive form of proxy feature that can be detected from the air is the vegetation or 

crop mark. In principal these are categorised into two groups - positive and negative (Wilson 

2000). Positive marks occur when the underlying archaeological feature promotes growth and 

health in the vegetation causing it to appear greener and taller than the surrounding vegetation. 

Conversely negative marks occur when the underlying archaeological feature inhibits growth, 

causing stunting and early failure in times of stress (figure 2.1). The changes thus caused have 

to be sufficiently different from the surrounding soil and vegetation in terms of their physical 

properties that they can be detected (Beck 2007). 
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Figure 2.1: Schematic of how surface and subsurface archaeological features affect plant  
growth (after Beck 2009, AARG Teaching Resource)

Although the general principles of crop mark visibility in terms of soil moisture deficit are well 

understood (Penman 1948; Smith 1967; Evans and Jones 1977; Riley 1980, Hejcman and Smrz 

2010), the visibility of these proxy marks is heavily dependent on a large number of factors 

including geology, season, and vegetation type and their appearance is still difficult to predict or 

model. In addition, most aerial imagery is captured in monochromatic or the visible spectrum 

which may inhibit the recording of nascent marks.

2.10 Digital Spectral Imaging

This section introduces the theory behind digital spectral imaging commonly referred to as 

multispectral or hyperspectral imaging.

2.10.1 General Theory

The light that can be detected by the human eye forms only a small section of the spectrum of 

electromagnetic energy emitted from the sun and other sources as shown in figure 2.2. The 

spectrum is generally divided into wavebands of different wavelengths.

Figure 2.2: Electromagnetic spectrum reproduced from Lillesand et al 2009:5)
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All materials absorb or reflect light of different wavelengths depending on their physical, 

physiological or chemical properties. Using a passive sensor, reflected light can be measured 

and recorded from an airborne platform. Table 2.1 details the four most common airborne 

spectral sensors in the UK.

Table 2.1: Basic specification of the most common airborne spectral sensors

All spectral data must be geo-corrected using data collected from the plane's Global Positioning 

System (GPS) and Internal Measurement Unit (IMU). In theory this can be undertaken without 

ground control measurements, however results are often poor resulting in large spatial errors. 

The spectral data is most useful when further correction is performed using a high accuracy 

DEM and ground control points. For this purpose, spectral sensors are now frequently flown in 

tandem with ALS systems.

2.10.2 Plant Reflectance

Vegetation reflects energy from the non-visible portion of the spectrum. The biological 

understanding of plant reflectance across the electromagnetic spectrum is an area that has been 

largely ignored by archaeological remote sensing specialists with the exception of Verhoeven's 

work on NIR photography (Verhoeven 2009). The principles are worth repeating here with 

reference to the use of non-visible wavelengths to detect changes in vegetation that may be 

caused by underlying features.

Healthy vegetation absorbs as much as 70-90% of incident radiation, mostly in the blue and red 

wavelengths, centred on 450nm and 670nm respectively (Rabideau et al. 1946; Knipling 1970; 

Woolley 1971). The absorption and reflectance is a consequence of the cellular structure of the 
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Name Type Specification Spectral Range

420-1300nm 3-5m

405 - 950 nm 1-3m

Eagle

400 - 970nm 1-3m

Hawk
970 - 2450nm 2-6m

Typical 
Ground 

Resolution
Airborne Thematic 

Mapper (ATM)
Multispectral 

(VNIR, SWIR and 
Thermal)

12 bands specified 
to coincide with 

Landsat TM 
channels

Compact Airborne 
Spectrographic 

Imager (CASI, CASI-
2, CASI-3)

Multispectral 
(VNIR)

512 pixels across 
swath, up to 18 
spectral bands

Hyperspectral 
(VNIR)

1000 pixel swath 
width, 2.9nm 
bandwidth

Hyperspectral 
(SWIR)

320 spatial pixels, 
244 spectral pixels 

8nm bandwidth
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leaf as shown in figure 2.3. Wavelengths in the NIR region however are scattered by the cell 

interfaces in the mesophyll tissue, causing light of these wavelengths to be reflected and 

transmitted through the leaves (Gates 1970; Knipling 1970; Slaton et al. 2001). In healthy 

leaves 40-60% of the NIR light is reflected (Gates 1970) although the transfer of these figures to 

canopy level is complicated by additive reflectance in areas of dense canopy and a range of 

other effects such as incidence angle, leaf orientation, shadow and soil background reflectance 

(Colwell 1974). An example of a healthy vegetation curve is given in figure 2.4.

Figure 2.3: Schematic of Light reflectance from a leaf structure (credit Jeff Carns:  
http://missionscience.nasa.gov/ems/08_nearinfraredwaves.html)

Figure 2.4: The spectral response of healthy and stressed vegetation (data courtesy of USGS  
spectral library)

31

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Healthy 
Reflectance
Stressed 
Reflectance

Wavelength (nm)

R
ef

le
ct

an
ce



Chapter 2 - Literature Review

Senescent or stressed vegetation exhibits different spectral properties, due to the rapid decay of 

the chlorophyll pigment and loss of absorption properties (Carter and Knapp 2001). These 

changes can be detected in the visible region as a yellowing of the leaf matter known as 

chlorosis (Hendry et al. 1987). In the NIR, reflectance is not related to pigmentation but can be 

affected by changes to the internal structure caused by biotic agents such as fungi or abiotic 

agents such as drought (Jackson 1986; Slaton et al. 2001). The NIR region has been used as a 

pre-visual indicator of stress due to the fact that changes in reflectance of these wavelengths 

happen gradually, rather than the abrupt “wilting” event in the visible region (Carter and Estep 

2002). There is some debate over exactly how visible the signs of early stress are in this region 

particularly when using 4 band aerial photography (Verhoeven 2009:199), but stress, 

particularly drought, causes a significant drop in NIR reflectance as shown in figure 2.4. This 

allows the NIR region to be used as an indicator of the state of vegetation vigour, making it 

easier to detect changes in this region than in the visible wavelengths. 

2.10.3 Vegetation Analysis

Vegetation indices are numerous in environmental remote sensing literature and are based on the 

premise that algebraic combination of spectral bands can highlight useful attributes of 

vegetation health and growth better than the study of either individual bands or true / false 

colour RGB images (Ray 1994). Over 150 of these indices have been published in remote 

sensing literature but as discussed in the review of relevant literature above (section 2.3.2), these 

have rarely been tested systematically as tools to highlight vegetation changes caused by 

archaeological features. A notable exception to this is the work of Traviglia (2006), which 

compared a simple red / NIR ratio, the Normalised Difference Vegetation Index (NDVI) and 

Modified Soil-Adjusted Vegetation Index (MSAVIS2) for 3m resolution hyperspectral imagery. 

The most commonly applied index for archaeological analysis is the NDVI (Winterbottom and 

Dawson 2005; Traviglia 2008; Challis et al. 2009) although rarely is any justification given for 

the selection of this index over any other. Testing a range of indices would give a measure of 

their individual usefulness but also of their relative value to each other for the landscape and 

land cover in the study areas.

The indices used for any archaeological study need to be selected carefully so that they have a 

substantial biophysical (as opposed to purely numerical) basis. This is crucial to the aim of 

understanding the physical and biological parameters that influence the representation of 

archaeological features in the data. The underlying theory is that vegetation indices will aid the 

identification of contrasts in plant quality, vigour and stress, all of which could be related to the 

presence of upstanding or buried archaeological features (section 2.9).

32



Chapter 2 - Literature Review

As so little work has been done in establishing the use of vegetation indices for prospection of 

archaeological features, guidance as to which of the many indices available was taken from the 

selection of indices made by Dr. Gregory P. Asner of the Carnegie Institution of Washington, 

Department of Global Ecology, on behalf of ENVI (ITT Visual Information Solutions 2010). 

The indices that are potentially appropriate to identifying vegetation stress caused by 

archaeological features can be grouped into five categories as detailed below. All indices are 

referred to by their acronyms in the text with full reference in table 2.2.

Broadband Greenness

The broadband greenness indices are the simplest measures of the overall amount and quantity 

of photosynthetic material in vegetation, and are sensitive to chlorophyll concentration, canopy 

leaf area and architecture (Asner 2008). Indices such as the NDVI (Rouse et al. 1973), compare 

reflectance measurements from the peak of reflectance in the NIR to a measurement taken in the 

red range, allowing the amount of green vegetation to be estimated (Asner 2008). They allow 

for basic assessment of the heath and vigour of vegetation for any purpose. In addition, the 

broad band width makes these indices suitable for a wide range of multispectral and satellite 

sensor applications, thus they are very commonly used in environmental applications. 

Four broadband indices were identified as being suitable for the aims of the current research, the 

NDVI, SRI, EVI and ARVI . Of these the NDVI is among the oldest and most well used indices 

and is one of the few indices to be applied to archaeological investigations (Traviglia 2006). 

Although robust in a wide range of conditions it saturates in areas of dense vegetation. The SRI 

ratio of the highest reflectance and highest absorption bands is also well established and 

understood and effective over a wide range of conditions, but like the NDVI has a tendency to 

saturate in areas of high Leaf Area Index (LAI) (Tucker 1979). The EVI was designed to correct 

the NDVI for soil signals and reduce the impact of atmospheric effects, making it more useful in 

dense vegetation conditions where the NDVI and SRI may saturate (Heute et al. 1997). 

Likewise, the ARVI is an enhancement to the NDVI that provides correction for atmospheric 

factors, particularly aerosols, by using reflectance in the blue band to correct the red reflectance 

(Kaufman and Tanre 1996). 

Narrowband Greenness

Indices that fall into the narrowband greenness category work on the same principle as those in 

the broadband greenness category, by comparing the NIR and red portions of the spectrum. 

They provide a more sophisticated measurement of vegetation quality by sampling the red edge 

portion of the spectra, which refers to the region of rapid change in reflectance of chlorophyll 

between 690nm and 740nm (Asner 2008). Unlike the broadband category, these indices require 
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high spectral resolution data to allow them to be more sensitive to changes in vegetation health 

and thus more suited to airborne spectral sensors.

The first of the narrowband indices RENDVI and MRESRI are modifications of the NDVI and 

SRI indices respectively, using bands along the red edge rather than reflectance peaks to identify 

vegetation stress. In addition, MRESRI incorporates a correction for leaf specular reflection 

(Gitelson et al. 1994; Datt 1999; Sims et al. 2002). MRENDVI is a modification of the 

RENDVI to incorporate a correction for leaf specular reflection. The REPI is a measurement 

that is more sensitive to changes in chlorophyll concentration, with greater chlorophyll 

concentration moving the red edge to longer wavelengths (ibid). This index uses the red edge 

position, defined as the wavelength of the steepest slope within the range 690nm to 740nm 

(Curran et al. 1995).

Light Use Efficiency

These indices are used as indicators of how efficiently vegetation is able to use incident light for 

photosynthesis and are a proxy for vegetation growth rates (Asner 2008). The most appropriate 

index in this category was the SIPI, which can be used to detect physiological stress and has a 

decreased sensitivity to canopy structure (Penuelas et al. 1995). 

Dry or Senescent Carbon

Indices that give a measure of dry or senescent carbon such as PSRI (Merzlyak et al. 1999), are 

primarily used to identify vegetation that is dead or dormant via increases in the amount of 

carbon in lignin and cellulose (Asner 2008). 

Leaf Pigments

This category of vegetation indices are designed to provide a measure of the levels of stress 

related pigments including carotenoids and anthocyanins and do not measure chlorophyll (Asner 

2008). The presence of these pigments can indicate plant stress before it is observable to the 

human eye and can be calculated using ARI1 and ARI2, (Gitelson et al. 2001). 

Tasseled Cap Transformation

In addition to band ratios and indices, digital spectral data can be transformed mathematically in 

a variety of ways to determine environmental characteristics. The most common method is the 

tasselled cap transformation developed by Kauth and Thomas (1976). A tasseled cap 

transformation rotates the spectral data in such a way that the new bands have defined meaning 

for vegetation analysis.

The first tasseled-cap band corresponds to the overall brightness of the image and is a weighted 
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Table 2.2: Vegetation Indices

Index Abbreviation Formula Category Description 

Simple Ratio Index SRI

Red Edge Position Index #not in documentation#

ARI1 leaf pigments

ARI2 leaf pigments

Normalized Difference 
Vegetation Index 

NDVI Broadband 
greenness

Normalised difference of green leaf scattering in near-infrared and 
chlorophyll absorption in RED. 

Broadband 
greenness

Ratio of green leaf scattering in near-infrared and chlorophyll 
absorption in RED. 

Enhanced Vegetation 
Index 

EVI Broadband 
greenness

An enhancement on the NDVI to better account for soil background and 
atmospheric aerosol effects. 

Atmospherically 
Resistant Vegetation 
Index 

ARVI Broadband 
greenness

An enhancement of the NDVI to better account for atmospheric 
scattering. 

Red Edge Normalized 
Difference Vegetation 
Index

RENDVI Narrowband 
greenness

A modification of the NDVI using reflectance measurements along the 
red edge.

Modified Red Edge 
Simple Ratio Index

MRESRI Narrowband 
greenness

A ratio of reflectance along the red edge with blue reflection correction. 

Modified Red Edge 
Normalized Difference 
Vegetation Index

MRENDVI Narrowband 
greenness

A modification of the Red Edge NDVI using blue to compensate for 
scattered light. 

REPI Narrowband 
greenness

The location of the maximum derivative in near-infrared transition, 
which is sensitive to chlorophyll concentration. 

Structure Insensitive 
Pigment Index

SIPI Light use 
efficiency

The Structure Insensitive Pigment Index (SIPI) is a reflectance 
measurement designed to maximise the sensitivity of the index to the 
ratio of bulk carotenoids (for example, alpha-carotene and beta-
carotene) to chlorophyll while decreasing sensitivity to variation in 
canopy structure (for example, leaf area index)

Plant Senescence 
Reflectance Index

PSRI Dry or 
Senescent 
Carbon

The Plant Senescence Reflectance Index (PSRI) is designed to 
maximise the sensitivity of the index to the ratio of bulk carotenoids 
(for example, alpha-carotene and beta-carotene) to chlorophyll.

Anthocyanin 
Reflectance Index 1

Changes in green absorption relative to red indicate leaf anthocyanins. 

Anthocyanin 
Reflectance Index 2

A variant of the ARI1, which is sensitive to changes in green absorption 
relative to red, indicating leaf anthocyanins. 
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sum of all bands. The second tasseled-cap band is approximately orthogonal to the first and 

reflects the contrast between NIR and visible bands (Lillesand et al. 2008). This corresponds to 

greenness or the amount of vegetation in an image. Together these bands typically express 95% 

of the total variability in an image (Crist and Kauth 1986). The third tasseled-cap band is 

interpreted as an index of wetness, relating to canopy or soil moisture. 

The transformation was originally undertaken on Landsat MSS data (hence the three band 

interpretation) but can be performed with more spectral bands, though the subsequent bands are 

more complicated to interpret and may not be as useful for vegetation analysis. Crist and 

Cicone's (1984) extension of the concept to the six Landsat TM bands concluded that the six 

transformed bands occupied three dimensions categorised as soils, vegetation and a transition 

zone between them.

2.10.4 Soil Analysis

In the past decade there have been significant advances in the use of digital spectral data for 

mapping soil properties. This has been driven by the need for more accurate and spatially 

coherent mapping and contemporary improvement in sensors (Summers 2009:3). Although the 

soil matrix itself and the imaging of soil from the air are both complex areas of research, (Ben-

Dor et al. 2009:39), various studies have shown the value of the visible, NIR and SWIR regions 

for both qualitative and quantitative recognition of soils (e.g. Ben-Dor 2002; Viscarra Rossel et 

al. 2006). Since the 1970s, point spectroscopy has been used in laboratory settings to analyse 

soils, providing the basis for research into spectral imagery. A number of research themes have 

developed including the assessment of salinity, erosion and deposition, contamination, moisture 

and organic matter. An excellent overview of research to date is provided by Ben-Dor et al. 

(2009). 

The use of spectral data for soil analysis is far from straight forward. In terms of depth of 

deposit, only the A horizon (characterised as the upper mineral surface) can be imaged from the 

air, and detailed analysis requires high spectral resolution data to do so (Ben-Dor et al. 

2009:39). Atmospheric attenuation is a major problem when analysing data for soil, particularly 

using data with high spectral resolution that will cover the absorption features of atmospheric 

gases. Therefore good quality data is a pre-requisite of this type of analysis as the changes in 

soil spectra can be smaller than the signal to noise ratio of the sensor (Ben-Dor et al. 2009:40). 

In addition to atmospheric effects, analysis has to take account of factors such as varying 

particle size and Bi-Directional Reflectance Distribution (BDRF) which has led to the 

development of specialised software (Viscarra Rossel 2008). Even with good data and 

appropriate processing, soil reflectance is still affected by partial coverage by vegetation, rock 
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outcrops, leaf litter or other deposits, all factors that will affect the outcome and accuracy of soil 

analysis using spectral data.

To date, the only research that has been undertaken with respect to the analysis of soil for 

archaeological site prospection in the UK from airborne spectral imagery is in the machair 

environment of Coll / Tiree in Scotland (Winterbottom and Dawson 2005) and the work of PhD 

researcher Kay McManus (McManus 2003). In both cases thermal inertia was calculated as a 

proxy for archaeological features (as demonstrated by Bellerby et al. (1990)), with 

unsatisfactory results due to the quality of the ATM imagery. An emerging body of work is 

being undertaken in Southern Europe and the Fertile Crescent where soil / vegetation fractions 

are much greater allowing for direct observation of the soil (Ben-Dor et al. 2001; Traviglia 

2005; Rowlands and Sarris 2007). Of particular note are the results of the application of Soil 

Line Index by Traviglia (Traviglia 2005) for identifying changes in soil matrix. Rowlands and 

Sarris (2007:798) report good spectral definition of the sandstone that comprised the surface 

remains of the Roman basilica from the surrounding vegetation / soil. However sub-surface 

remains (as identified from geophysical survey) could not be linked statistically to the observed 

differences in visible and NIR reflectance (ibid). Although based on satellite imagery, work by 

Alexakis et al. (2009) show the application of spectral signatures (predominantly soil 

signatures) for the identification of Neolithic Tell settlements, although similar research in Syria 

concluded that there was no identifiable spectral signatures for Tell settlements in that landscape 

(Beck 2007). 

Of the wider research themes cited by Ben-Dor et al. (2009), the most important from an 

archaeological perspective are soil moisture and organic content. Soil moisture is one of the 

most significant factors affecting spectral measurements (Bowers and Hanks 1965). Using the 

water absorption feature at 2.8μm, it has been shown that moisture content can be estimated 

using a Gaussian model (Whiting et al. 2004) and by application of the Normalized Soil 

Moisture Index (NSMI) for areas with low vegetation cover (NDVI < 0.3) (Haubrock et al. 

2008). Although the effect of mineral and organic components still impedes modelling of water 

content in soils, methods are improving and as a key factor in the composition of the soil matrix 

consideration should be given to the impact of soil moisture when analysing other spectral 

properties (Ben-Dor et al. 2009:52). Thus far, no direct modelling of moisture content in relation 

to archaeological features has been undertaken. 

Like soil moisture levels, organic content can be difficult to determine. Work by Stevens et al. 

(2006) has shown that Soil Organic Carbon (SOC) can be assessed from airborne imagery on a 

landscape scale using various indices (Bartholomeus et al. 2008). Results were very promising 

even in areas of low SOC and by combining the NIR and SWIR regions, Bartholomeus et al 
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(2008) were able to map SOC on a pixel by pixel basis. It remains to be tested whether these 

approaches could be used to identify varying organic content represented in archaeological 

features such as pits and ditches.

2.10.5 Visualisation Techniques

A number of visualisation techniques have been developed to improve digital spectral data for 

analysis by reducing redundancy or improving resolution. The two most common techniques for 

these purposes are presented below.

Principle Components Analysis (PCA)

As the spectral resolution of airborne sensors increases so too does the issue of data duplication 

between the wavelengths. As there is extensive between-band correlation in digital spectral data, 

images produced from different bands often appear to convey the same information. To reduce 

processing time and extract the maximum information of value from the data several 

transformations have been applied, the most common of which is the principle components 

analysis or PCA.

PCA works by concentrating the image data into fewer channels, transforming the original 

spectral data into a new spectral co-ordinate system of eigenvalues (Neteler and Mitasova 

2008:304). In general, the first principal component image will contain the maximum variance, 

with the second containing the maximum not shown in the first principle component image 

(ibid). The number of bands created is the same as the original number of input bands, with the 

final band representing uncorrelated noise. While PCA is in theory the optimal linear scheme for 

compressing data with high dimensionality (Shlens 2009), PCA assumes statistical importance 

of the mean and covariance within the data. While this is a robust way of reducing 

dimensionality there is no certainty that the directions of maximum variance as displayed in the 

transformed bands will be good for the display of a given set of criteria, such as archaeological 

features (ibid). PCA transformation also assumes that the key information within the images is 

that of high variance, with low variance corresponding to noise (ibid). 

There are few published examples of PCA for archaeological analysis of spectral data. The first 

was undertaken by Winterbottom and Dawson(2005) in their study of machair environments in 

Scotland. This study compressed 11 bands of spectral data into a four PC image from which a 

colour composite of bands 1, 2 and 4 was created and analysed (ibid). Traviglia (2006) also used 

the technique to analyse 102 bands of satellite spectral data for the site of Aquileia in Italy. 

Typically PC 1 and 2 together accounted for 98.9% of all variability in the images, with 1% 

being found in PC 3 and 0.4% in PC 4 and higher (ibid). However Traviglia (2006) found that 
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higher components did contain useful information, requiring visual assessment of all PC 

images. As with the former example, the PC images were viewed as RGB colour composites, 

but the number of contributing bands was raised to four or six rather than the standard three, 

though it is not stated how this was achieved. For this study it was found that grouping the 

spectral bands into subsets based on their intrinsic dimensionality before computing the PCA 

gave improved results (termed as SPCA by Traviglia 2006:129).

Pan-sharpening

Transformation techniques, such as pan sharpening, are well established in satellite remote 

sensing studies to improve the resolution of spectral data (Pohl and Van Genderen 1998). 

Although there are many pan-sharpening methods (Pohl and Van Genderen (1998) list over 

100), at the most basic level these techniques all provide a way of integrating lower resolution 

spectral images with high resolution panchromatic imagery to produce a higher resolution 

spectral image.

Given the higher resolution of ALS elevation and intensity data, it is suggested in this thesis that 

this could be used as a substitute for the panchromatic band in a pan-sharpening technique such 

as Brovey sharpening, to provide a single image that combines elevation and spectral 

information content. No archaeological examples of this adaptation of the techniques have been 

found.

2.11 Airborne Laser Scanning (ALS)

2.11.1 General Theory

ALS is an active remote sensing method based on the transmission of a laser pulse and detection 

of the subsequent returns of the pulse as it reflects off an object. Beraldin et al. (2010) provide 

an excellent technical introduction to airborne lidar systems and much of the following section 

is synthesised from their work.

The basic principle of the system for optically measuring 3D surfaces from the air is the 

measurement of the time of light transit which allows the calculation of the distance between the 

sensor and the reflector. As the speed of light through air (0.15m per nanosecond) is known the 

distance can be easily calculated. The airborne sensor itself comprises the laser and projection 

mechanism, a GPS system and an Internal Measurement Unit (IMU) along with a system 

control that also records the data. The GPS provides location data throughout the survey, while 

the IMU records the pitch, yaw and roll of the aircraft during survey. Together these 

measurements are used to process the ALS data to enable correction for the movement of the 
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aircraft during survey and alignment to real-world co-ordinates. Although airborne systems 

were known to be able to record height to less than 1m accuracy in the 1970s, it was 

advancements in GPS and IMU technology that enabled the sensor to be used for topographic 

mapping (Beraldin et al. 2010:20).

While the principal behind laser scanning is simple, in practise there are a number of other 

factors that need to be accounted for when calculating the range. The first is propagation of the 

laser beam as it passes through the lens. This causes divergence of the beam that affects the 

spatial resolution of the sensor, (regardless of the sample density) and causes it to vary 

dependent on the altitude of the aircraft thereby determining footprint size. 

The shape and reflectivity of the materials surveyed are also factors that affect the 

characteristics of the ALS data. The assumption underlying the principle of active optical 

measurement systems such as ALS is that the surface is an opaque, Lambertian reflector 

(Beraldin et al. 2010:15). However as this is never the case both the shape and reflectivity of the 

surface material impacts on the nature of the return waveform. Additionally a return echo from a 

low reflecting target such as rubber, will have a lower amplitude than that from a high reflector 

such as white pained road markings. This results in the higher amplitude echoes apparently 

floating above the surface. This type of systematic bias is typically corrected in pre-processing.

When reflected from vegetation the sensor can record multiple returns from the same beam as 

shown in figure 2.5. Generally four to six echoes are recorded enabling filtering of vegetation 

from the surface model. The detection method for triggering the recording of these echoes is 

explained in detail by Beraldin et al. (2010:5) with constant fraction detection being identified 

as the preferred method. However in pulse systems the method of echo detection is intrinsic to 

the sensor, not user defined. Recent developments in sensor technology has enabled the full 

waveform of the returned pulse to be recorded, rather than specified points in the signal. In 

complex environments such as woodland it has been found that analysis of the shape of the 

waveform significantly aids feature interpretation in the terrain model (Doneus and Briese 

2006). 

A number of components of the ALS system contribute to the overall accuracy of the elevation 

data, with the principal factors being calibration of the sensor / GPS / IMU assembly, limited 

accuracy of the flight path, the complexity of the target (including slope), multipath reflections 

and errors arising from coordinate transformation and geoid correction (Beraldin et al. 2010:30). 

Many of these issues can be minimised with good flight planning and systematic registration 

and calibration procedures (Lichti and Skaloud 2010) resulting in standard accuracies of 0.05- 

0.25m vertical error and 0.2-1.0m positional error.
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Figure 2.5: Schematic of multiple returns of Airborne Laser Scanning data, where (a)  
represents discrete pulse (b) represents waveform and (c) represents full-waveform (reproduced 
from Beraldin et al. 2010:29)

ALS data is generally measured by two factors: point density (average number of points per 

square metre) and point distance (average separation of points). As part of the processing, error 

images can be generated to highlight areas where the data is inconsistent, such as at the overlap 

of flightlines (figure 2.6). In addition, Briese (2010:161) highlights the use of empirical 

formulae for describing the accuracy of the model quality either based on the point density and 

slope or from the original data and the DTM (Kraus et al. 2006).

Figure 2.6: Illustration of strip height differences between flightlines with red areas indicating  
high error between flightline elevation values © TU OPALS, scale 1:25000
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2.11.2 Filtering

ALS survey typically results in a dense point cloud of x,y,z data that can then be interpolated 

into a raster model. There are two different types of model: Digital Elevation Model (DEM)5, 

which gives the surface of the topography (usually recorded from the first return per pulse), 

including buildings, trees etc.; and Digital Terrain Model (DTM) which represents the bare earth 

surface stripped of vegetation, buildings and temporal objects such as cars (Briese 2010:136).

The removal of non-terrain points is undertaken by classification of the point cloud and filtering 

of the data, and many algorithms have been developed to automate this procedure. Sithole and 

Vosselman (2004) provide a detailed evaluation of many of the traditional approaches with 

respect to their accuracy which are generally good for rural and level terrain but fare worse in 

complex urban or rough, vegetated terrain. This is because the simplest approaches apply only a 

local minimum height filter that leads to systematic errors in hilly or rough terrain (Briese 

2010:137). In addition, unsophisticated filtering techniques have been noted to remove 

archaeological features from the model and add artefacts (Crutchley 2010). Recently more 

sophisticated approaches have been developed, including the identification of breaklines such as 

building edges as a pre-filtering step to improve the final interpolation and segmentation based 

methods. Though as yet no fully automated procedure has been found that can be applied 

universally to all landscape areas (Briese 2010:139,150). This means that manual checking and 

editing of the model is necessary to improve the results of the automated process, though this 

tends to be far more intensive in urban areas with complex local surface characteristics (ibid).

For full waveform data, the echo width and amplitude can be used to improve the classification 

and filtering process particularly in areas of dense, low vegetation such as forest understory. 

Although these techniques are still in development they have been shown to be very effective at 

defining ground hits from low-level vegetation based on texture (Doneus and Briese 2006). 

2.11.3 Interpolation

After filtering the point data is often interpolated into a 2.5D surface as a raster grid or vector 

TIN format. Any of the common interpolation methods can be used; typically inverse distance 

weighting (IDW), linear functions (regularised / bicubic or bilinear spline), or kriging are the 

most common. In practise determining the best interpolation method depends on the topology, 

so trialling a number of techniques on sample areas is often necessary. The accuracy of these 

models can then be assessed by creating an RMSE map of the difference between the input 

point data and output model. More sophisticated interpolations are able to incorporate 

5 Digital Terrain Models are also referred to as Digital Surface Models (DSM) with the two terms used 
interchangeably. For consistency DEM will be the term used to refer to unfiltered ALS-derived data in 
this thesis.
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breaklines to reduce the negative impact of smoothing when interpolating over sharp changes in 

topography (Briese 2010:155).

2.11.4 Intensity

In addition to the time taken, the intensity of the returned laser beam is also recorded by the 

ALS system. Although poorly defined by scanner manufacturers, the term “intensity” is often 

synonymous with the return amplitude or energy of an echo and thus is a measure of the 

backscattering reflectivity of the surface at the wavelength of the beam (generally between 

800nm and 1550nm) (Höfle and Pfeifer 2007:415). Intensity has been used for a number of 

studies including environmental applications (canopy determination e.g. (Donoghue et al. 

2007b), landcover classification e.g. Yoon et al. 2008) and earth science applications 

(volcanology e.g Spinetti et al. 2009 and glaciology e.g. Lutz et al. 2003).

Starek et al. (2006:2) list the following factors that affect intensity values in addition to the laser 

power: “variations in path length, surface roughness and orientation, beam divergence, object 

composition, object density, saturation from background reflections, attenuation of the signal 

through the atmosphere, and ALS system characteristics ”. While variations caused by object 

properties (e.g. surface roughness) are typically the focus of study, it is necessary to correct for 

other factors to improve image interpretation (ibid). Atmospheric effects are often left 

uncorrected as the short acquisition period and lack of contemporary atmospheric data for most 

flights makes the effect negligible (providing the goal is not to compare temporally distinct 

acquisitions) and correction virtually impossible. However Starek et al. (2006:4) highlight the 

importance of correcting the effect of variation in path length of the laser beam, (which is 

mostly determined by topographic change across the flight) and suggest a normalisation 

procedure where the intensity value is multiplied by the range of the point divided by the 

standard range. In a recent study by Challis et al. (2011:6) using archive data without a GPS 

time tag or scan angle data, this technique was adapted by using the flight height of the aircraft 

minus the elevation as the range measure and taking the average elevation over an area of 

interest for the standard range. The adapted technique was noted to give little visual 

improvement on the display of the intensity data but the difference map produced from 

subtracting the original values from the normalised ones did allow improved visualisation of the 

areas of maximum change (Challis et al. 2011:9). The lack of improvement seen through 

normalisation of the intensity data is likely to be a consequence of the low relief of the study 

area in this instance as the difference between minimum and maximum elevation was just 42m 

(ibid).

Radiometric calibration may prove to be more critical to the usability of the intensity 
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measurements for high level data products and particularly if they are to be compared with 

spectral data from other remote sensing techniques (Wagner 2010). Consequently, researchers 

have recently begun to develop techniques for radiometric calibration using full waveform data, 

which combine pre-flight laboratory calibration and the use of Lambertian targets in-flight to 

derive reflectance from applying radar backscatter equations (Kaasalainen et al. 2009; Wagner 

2010; Briese and Lehner 2010). 

2.11.5 Visualisation Techniques

Due to their subtle topography, archaeological features can be difficult to determine from the 

point cloud or DTM, even when the z component is scaled. To map these features some form of 

visualisation technique is required to highlight their presence.

Shaded Relief models

The creation of shaded relief models is the most common process used to visualise ALS data for 

archaeology (Crutchley 2010). This technique takes the elevation model and calculates shade 

from a given solar azimuth and altitude, thus highlighting topographic features (Horn 1981). 

Shaded relief models provide familiar, photogenic views of the landscape and can be used to 

mimic ideal raking light conditions favoured by aerial photographic interpretors (Wilson 

2000:46).

Despite their frequent use and familiarity, shaded relief images pose some problems for the 

archaeological interpretor. Archaeological features that align with the direction of illumination 

will not be easily visible in the shaded relief model, requiring multiple angles of illumination to 

be calculated and inspected (Devereux et al. 2008). To mimic raking light (and so highlight 

micro-topography) the shaded model must also be calculated with a low solar altitude, typically 

8°-15°. This means that shaded relief models work poorly in areas of substantial macro 

topographic change, with deep shadows obscuring micro-topography regardless of illumination 

direction (Hesse 2010). 

Principle Components Analysis of Multiple Shaded Relief Images

As described in section 2.10.5, PCA is a multivariate statistical technique used to reduce 

redundancy in multi-dimensional or multi-temporal images. It has been skilfully applied by 

Kvamme to geophysical data (2006) and is used for minimising the number of images to be 

analysed due to the correlation of adjacent spectral bands. PCA has also received some attention 

in archaeological work (Winterbottom and Dawson 2005; Challis et al. 2008; Devereux et al. 

2008). 

While the PCA transformation reduces the dimensionality of the shaded relief technique, the 
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interpreter must still analyse a large number of shaded images to access the information content 

of the terrain model. Also ,to ensure the most representative model of the topography, every 

possible angle and azimuth should be processed. At the time of writing this approach has never 

been undertaken; the only published method for using the technique with ALS shaded relief 

images used 16 angles of illumination at the same azimuth (Devereux et al. 2008). The limit on 

the number of input images is principally due to the relatively diminished return of new 

information compared with the increased costs in terms of computation and interpretation time. 

PC images represent statistical variance in light levels of the shaded relief models, rather than 

the topographic data collected by the sensor. While this might seem an irrelevant distinction to 

make, the visibility of archaeological features is highly dependent on angle and azimuth of 

illumination. The PCA will reduce some of this directional variability but cannot account for the 

features that were poorly represented in the original shaded relief images. The output of the 

PCA will therefore be highly influenced by the selection of these factors at the outset and this 

could prove a limiting factor for subsequent interpretation. Consequently, the choices made in 

the processing of shaded relief and PC images may mask features that were present in the 

original ALS data. No work has been undertaken to date to establish the impact of this.

Slope and Aspect and Curvature

Slope, aspect and curvature maps are commonly used for analysing topographic data in other 

geographic disciplines. Slope mapping produces a raster that gives slope values for each grid 

cell, stated in degrees of inclination from the horizontal. Aspect mapping produces a raster that 

indicates the direction that slopes are facing, represented by the number of degrees north of east. 

Curvature mapping gives the curvature in the direction of the steepest slope and in the direction 

of the contour tangent. The curvature is expressed as 1/metres so a curvature of 0.05 

corresponds with a radius of curvature of 20m. Convex form values are positive and concave 

form values are negative (GRASS Development Team 2010b)

Although common for geographical applications, there has been limited application of slope, 

aspect and curvature mapping for the detection of micro-topographic change relating to 

archaeological features, though course resolution aspect and slope terrain maps are well 

established in predictive models of site location (Kvamme and Jochim 1989; Challis et al. 

2011c). It is anticipated that topographic anomalies relating to archaeological features will be 

identifiable in these images, in particular the slope and aspect maps may aid pattern recognition 

for features such as the lynchets of a field system.

Horizon View Modelling

To overcome some shortfalls of shaded relief models, specifically the issues of illumination 
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angle and multidimensionality of data, the technique of horizon or sky view factor has been 

applied recently by researchers in Slovenia (Kokalj et al. 2011). The calculation is based on the 

method used to compute shadows for solar irradiation models. The algorithm begins at a low 

azimuth angle from a single direction and computes at what point the light from that angle 'hits' 

the terrain. The angle is increased until it reaches the angle where it is higher than any point in 

the landscape (on that line of sight). This procedure is then replicated for a specified number of 

angles producing a number of directional files which can then be added together to produce a 

model that reflects the total amount of light that each pixel is exposed to as the sun angle 

crosses the hemisphere above it. Consequently, positive features appear brighter and negative 

features are darker, replicating the visual results of the shaded relief models but without bias 

caused by the direction of illumination.

Polynomial Texture Mapping (PTM)

Another of the techniques that has recently been trialled to improve on the shaded relief 

modelling is the concept of polynomial texture mapping (PTM). This photogrammetric 

technique uses multiple images taken from a fixed position while a light source is moved in 

small increments in a dome over an object to capture the reflectance of a surface and model its 

detail. Its applications for cultural heritage thus far have predominantly focussed on artefact 

recording (Earl et al. 2010), but recently there have been a number of unpublished applications 

of this technique to ALS data (Goskar 2010). The results are compiled into a single interactive 

file from which the user can vary the light source and intensity to view features in the model.

Due to the paucity of published information on this technique for landscape work, it is difficult 

to determine its advantages over the simpler Horizon View approach or indeed individual 

shaded relief images. If the model is to truly represent the interaction of light on the landscape 

then some element of the intensity of the return signal needs to be computed. It could be argued 

that the ALS intensity measurement already provides this and should therefore be factored into 

the model. The application of this technique is clearly in its infancy, indeed Earl et al 

(2010:221)make clear the case for further work on the integration of the outputs of PTM and the 

requirement for robust workflows to maximise the benefit of the technique. 

Local Relief Modelling (LRM)

While shaded models provide useful images, there has been much recent emphasis on 

developing better methods for extracting the micro-topography that represents archaeological or 

modern features from the landscape that surrounds them while retaining the height information 

as recorded by the sensor. One of these methods, Local Relief Modelling or LRM devised by 

Hesse (2010) for analysing mountainous and forested terrain in Germany, has received 
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particular attention for its robust methodology and accurate results. The technique reduces the 

effect of the macro-topography while retaining the integrity of the micro-topography, including 

archaeological features by subtracting a low pass filtered model from the original DTM and 

extracting features outlined by the 0m contour. The advantage of this technique over the others 

mentioned is that it allows the creation of a model that is not only unaffected by shadow but 

which retains its topographic integrity allowing measurements to be calculated from it in a way 

that is not possible using shaded relief models, PCA or Horizon View mapping. However the 

extent of distortion of the micro-topographic feature extracted has yet to be quantified as the 

development of the model took place without any ground control data. 

Although developed for mountain environments, the technique could also be applied to gently 

undulating landscapes to highlight archaeological features, though there are no published 

examples of this. Due to the isolation of the microtopography the LRM model could also have 

the potential to be used as a base topographic layer for digital combination with other data. 
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2.12 Geophysical Survey

Geophysical survey can be defined as “the examination of the Earth's physical properties using 

non-invasive ground survey techniques to reveal buried archaeological features, sites and 

landscapes” (Gaffney and Gater 2004:12). Techniques such as earth resistance survey, ground 

penetrating radar and magnetometry have their origins in the discipline of earth sciences but 

have been successfully developed by archaeologists since as early as the 1920s. They provide an 

alternative and complementary data source to destructive excavation techniques, increasingly 

allowing prospection of sub-surface features across entire landscapes (Parker Pearson et al. 

2006). 

The principles of the various geophysical techniques are relatively well understood and are 

documented in detail in a number of publications (Scollar et al. 1990; Clark 1996; Kearey et al. 

2002; Gaffney and Gater 2004; English Heritage 2008). The details of each method below are 

synthesised from these publications and are selected with respect to highlighting the potential 

for complementarity with airborne survey. 

2.12.1 Earth Resistance Survey

The principle of earth resistance survey lies in the differential resistance of soil dependent on its 

moisture content. This means that archaeological features such as the fills of ditches and buried 

walls can be identified from their surrounding matrix providing that there is sufficient moisture 

difference between the deposits to affect the resistivity when a current is passed through the 

ground. As water is a conductor of electricity, features with a high water content will show less 

resistance than features with a low water content.

The Wenner array was the earliest arrangement for passing current through the ground. 

However the twin-probe is far more commonly used for archaeological prospection (figure 2.7). 

Although less sensitive than the Wenner array, the twin-probe array gives a significant reduction 

in the levels of background noise, allowing archaeological features to be distinguished more 

clearly (Gaffney and Gater 2004:31). Due to the curving shape of the passage of the current (see 

figure 2.8), a 0.5m spaced twin-probe array can penetrate ~0.75m - 1m below the surface (Clark 

1996:57). 

Resistance is measured in Ohms (Ω) and can be converted to Ohm metres (Ωm) to allow for the 

expression of different volumes of material. This is particularly important when different probe 

arrays are used for a single survey as the Ωm units normalise the results between different 

survey parameters.
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Figure 2.7: The twin probe earth resistance array (from Gaffney and Gater 2006:29)

Figure 2.8: The passage of electrical current through the ground using a twin probe array from  
Gaffney and Gater 2006:30)
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Earth resistance survey is very sensitive to local ground moisture content conditions and results 

vary dependant on the weather both before and during geophysical surveys (English Heritage 

2008:27). This effect is particularly exacerbated over shallow, soils and quick draining 

geologies such as chalk (John Gale 2008 pers.comm). For this reason, earth resistance data used 

to should be collected simultaneously to the airborne data so that the effects of change in 

moisture over time can be considered negligible.

2.12.2 Ground Penetrating Radar

Ground Penetrating Radar or GPR is a term used to describe all survey using electromagnetic 

radiation in the range 30MHz to 12.4HHz to record images of subsoil features (English Heritage 

2008:28). Working on a principal similar to radar, an antenna is used to direct a VHF radio pulse 

towards the ground. When these pulses meet irregularities, part of the pulse is reflected back to 

the receiver unit. As with ALS survey, by measuring the time taken for the pulse to return, the 

distance to the feature can be estimated with more accuracy than other geophysical techniques. 

The high sample rate can also record the cross-section of structures with greater clarity. For 

archaeological survey antennae in the range 80MHz to 1GHz are used providing shallow 

prospection of up to 4m.

GPR survey is predominantly undertaken in transects or as area survey. With area survey 

repeated transects are sampled at narrow intervals and the data is post-processed to produce 

time-slices. GPR survey is slow compared with other techniques, meaning that its potential for 

landscape survey has been limited. New techniques such as those currently being trialled by the 

Ludwig Boltzman Institute for Archaeological Prospection, Vienna, incorporating GPR 

instrumentation onto quad bikes pave the way for this technique to be integrated into landscape 

scale geophysical survey. 

The size of the GPR antenna is linked to the penetration of the pulse and also its 'footprint' 

which determines the minimum size of feature that can be identified. The area of this oval 

footprint is affected by the permittivity of the matrix and alters by depth. In typical plough soil 

conditions it could be expected that a 100MHz antennae would penetrate 1.5m into the soil 

(Conyers and Goodman 1997).

2.12.3 Magnetometry (Fluxgate Gradiometry)

Due to the ease of operation, rapid acquisition of data at high resolution and relative 

insensitivity to ground moisture conditions, magnetometry, or more correctly fluxgate 

gradiometry, is the most widely used technique in landscape scale studies. The sensor is 

sensitive to minute changes (in the order of 0.1 nanoTesla) in magnetic orientation caused by 
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two mechanisms. The first involves the heating of materials in antiquity past what is known as 

the Curie Point (Gaffney and Gater 2004:37). When a material is heated in this way the iron 

content of the material is demagnetised. As the material cools the iron is re-magnetised relative 

to the contemporary magnetic field of the earth in contrast to the surrounding matrix. In this 

way kilns, hearths and fired brick can be identified.

The second mechanism involves a change in magnetic susceptibility linked generically to 

human activity via two additional processes. The first is the backfilling of features cut into the 

substrate with topsoil which tends to be of higher magnetic susceptibility due to anthropogenic 

processes such as settlement and rubbish disposal (Gaffney and Gater 2004:28). The second is 

the action of magnetobacteria which act on minerals in the deposits and result in further 

enhancement of their magnetism. This mechanism allows the identification of pits and ditches 

whose fills are magnetically different from the surrounding substrate (ibid).

Magnetometry survey is typically only able to detect features up to 1m below the surface and is 

therefore not suitable for areas with deep overburden. In addition the sensors are very sensitive 

to background ferrous material and electrical currents.

The most commonly used sensor for this type of survey is the gradiometer, which consists of 

two sensors, mounted vertically. This allows the data to be corrected for background variations 

in magnetic field caused by geology or other sources, highlighting subtle archaeological 

anomalies.

2.13 Proposed Method Areas

From the technical review it is clear that there are many visualisation and data management 

techniques that have not been fully explored with respect to their application for archaeological 

feature detection. As relatively little detailed analysis has been undertaken to date, it is proposed 

that the current study focuses on three method areas to correlate with the archaeological 

imperatives that were summarised in section 2.7:

1) Digital Spectral Imaging – a full analysis of spectral sensitivity with regards to 

archaeological feature detection; the impact of data reduction techniques such as PCA 

and the application of vegetation indices; an assessment of land use and environmental 

conditions on feature detectability.

2) Airborne Laser Scanning - a full analysis of the impact of visualisation on feature 

detectability; an assessment of the value of elevation data that can be extracted for 

archaeological features with respect to the documentation of feature preservation; the 

analysis and assessment of ALS intensity as a prospection tool; an assessment of land 
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use and environmental conditions on feature detectability.

3) Data Integration – an assessment of the complementarity and relative value of multiple 

airborne sensors; an analysis of correlation to ground-based geophysical techniques.

2.14 Summary

This chapter has brought together the review of current literature relating to archaeological 

applications of airborne remote sensing and the scientific background underpinning the sensor 

technology (Objectives 1 and 2) . The archaeological review outlined gaps in current 

understanding and underpins the archaeological research objectives laid out in Chapter 3 

(section 2.2.1) and the case study rationale laid out in Chapter 4 (section 4.2).

The gaps in our understanding of how the ARS technologies could be applied to archaeological 

research questions that were identified through this review led directly to the technical 

objectives of the research (Section 2.2.2). In fulfilment of Objective 6, a number of appropriate 

techniques employed to visualise ARS data in other disciplines were presented along with their 

potential for archaeological feature detection, contributing directly to the methods used to 

analyse ARS data in this study (Chapter 6). 
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3 Aim and Objectives 

3.1 Aim

The aim of this research is to assess the full information content of airborne laser scanned and 

digital spectral data (referred to jointly here as Airborne Remote Sensing or ARS data) with 

respect to identifying archaeological remains in non-alluvial environments. A range of 

techniques will be systematically analysed to establish how this information can best be 

extracted and utilised.

3.2 Objectives

The objectives of this research are based on the gaps in current knowledge identified through 

the review of current literature (Chapter 2). While an assessment is made of the potential of 

ARS to contribute to our understanding of the historic environment in non-alluvial 

environments, the objectives are predominantly technical in nature covering an assessment of 

techniques for processing ARS data and the impact of external factors such as seasonality and 

soil moisture.  

Objective 1. To review archaeological applications of ARS, focusing on the current 

state of research in an international context and identify the potential value 

of the information collected by ARS for understanding archaeological sites 

and features in grass-dominated environments in the UK.

Objective 2. To identify a representative case study in a grass-dominated environment 

where there are a range of archive ARS sources available and a 

comprehensive study of vertical and oblique archive archaeological 

photography has already taken place.

Objective 3. To assess the relative value of ALS and digital spectral data when 

compared with other remotely sensed data, including the transcription of 

archive aerial photography undertaken by the National Mapping 

Programme and modern military vertical 4-band aerial photography.

Objective 4. To contribute to our understanding of the impact of environmental 

conditions on archaeological site detection using ARS data in grass-

dominated environments (with specific focus on season of acquisition and 

soil moisture content).
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Objective 5. To assess the value of ARS data for providing quantitative information 

regarding archaeological feature type and status, degradation and 

preservation.

Objective 6. To survey existing technical literature to find appropriate processing 

techniques from other disciplines that may be of benefit to the 

archaeological analysis of ALS and digital spectral data.

Objective 7. To assess sensitivity across the wavelengths recorded by digital spectral 

data in order to identify whether some regions of the spectra are more 

useful for detecting archaeological features than others.

Objective 8. To analyse current 'standard' and advanced procedures for visualising ARS 

data with regard to their impact on the visibility of archaeological features 

grass-dominated environments.

Objective 9. To develop a method of assessing the accuracy of ALS models over 

microtopographic features and thus provide a means by which to compare 

them quantitatively.

Objective 10. To evaluate the potential of ALS intensity to provide additional 

information about archaeological features.

Objective 11. To quantify the relationship between ALS intensity / digital spectral data 

and standard geophysical prospection techniques through simultaneous 

acquisition of terrestrial survey data.

Objective 12. To assess the value of digital integration of remotely sensed datasets for 

improving archaeological feature recognition.
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4 Case Study Selection

4.1 Introduction

This chapter gives the rationale for case study selection, as determined from the preceding 

review of current literature (Chapter 2) (section 4.2) and introduces the areas investigated for 

the study (section 4.3). The selected areas are presented in terms of their location, geology, past 

and present land use; providing background to the use of airborne remote sensing techniques 

(section 4.3). In section 4.4 the nature of the known archaeological features in these areas is also 

discussed, as are previous investigations, providing context for the archaeological aims of the 

current research.

Following on from this, Chapter  5 gives detail of the specific locations of airborne and 

terrestrial survey for each of the study areas that formed this project. 

4.2 Case Study Rationale

The rationale for the selection of study areas can be divided into two equally weighted sets of 

drivers; those that are related to the archaeological aims and practicalities, and those that centre 

on issues of data availability and quality.

Archaeologically, a review of the existing literature strongly indicates that there is a gap in 

understanding regarding the application of remote sensing techniques for archaeological 

prospection in the UK outside alluvial terraces dominated by intensive arable regimes (section 

3.6). In total arable land use accounts for 25.5% of land cover in the UK (Morton et al. 2011). 

The primary archaeological driver for site selection was therefore the identification of 

landscapes of archaeological interest that were not currently under an arable regime. Grassland 

was chosen as the target environment as it represents the largest category of land cover in the 

UK at 38% (Morton et al. 2011). Grassland is also of strategic importance as this land cover 

tends to typify the areas that lie between landscapes dominated by arable farming and the dense 

moorland vegetation typical of higher altitudes in the UK. Lying at the margins of sustainable 

agriculture, and therefore more readily affected by changes in climate than lower altitudes, these 

areas contain a wealth of information about changing subsistence strategies through the 

prehistoric and historic periods. Additionally many of the extensive grasslands in the UK fall 

within National Parks and are designated for their natural beauty and the value of their geology, 

ecology and historic environment and this designation is reflected in their modern land use 

patterns which are dominated by pasture and recreational use. Consequently, although not 

subject to the industrial-scale agriculture of lower lying regions, many grassland environments 
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are under pressure from changes in land management, tourism and environmental and 

ecological change that impact on management of the historic environment. 

The application of ARS data also required study areas that were rich in features of varying types 

and states of preservation, to test the techniques over as representative a selection of 

archaeological features as possible. To ensure an accurate baseline measure of these features it 

was also important that the areas had an investigation history that included aerial photography, 

excavation and geophysical survey. Finally, the study areas also needed to be easily accessible 

for ground observations.

The second set of drivers determining the choice of site was the availability of high quality 

archive remote sensing data. This should include as a minimum one ALS and one digital 

spectral dataset of the same geographical area. For preference the archive for the area should 

include a number of different sensors with data of different acquisition dates. The potential for 

bespoke data acquisition should be considered but, in accordance with most archaeological uses 

of these types of data, it was envisaged that the foundation of the research would be based on 

archive data. Consequently the quality of data, both in terms of spatial and spectral resolution 

and available metadata, has to be ensured to maximise the potential of the data for 

archaeological research.

In summary the case study areas needed to:

• be currently categorised as an area of grassland

• have a variety of known archaeological features

• have a history of previous archaeological study

• have a number of high quality airborne datasets from a variety of sensors

• be accessible both for ground observations and potential further airborne survey

4.3 Salisbury Plain

Balancing the factors listed above was a complex task, however Salisbury Plain Training Area 

(SPTA) in Wiltshire met both the archaeological and archive data requirements. SPTA is 

managed by Defence Estates (the land management arm of the Ministry of Defence) for military 

training purposes and is divided into three ranges known as (West, Central and East) by the 

north-south A345 and A360. The West and Central ranges are subject to very heavy military 

activity and live firing while the East Range is used less intensively for terrestrial manoeuvres 

but is the site of much airborne military activity with Upavon Airfield and a number of 
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parachute drop zones. 

Due to the significance of the natural environment over 20,000ha of the chalk grassland is 

protected as a Site of Special Scientific Interest (SSSI) and a Special Area of Conservation 

(SAC). To facilitate access, the two study areas selected, Everleigh and Upavon, lie in the East 

Range. Precise details of their location and extents are detailed in sections 5.2.1 and 5.3.1 

(figure 4.1). 

Figure 4.1: Location map of the Salisbury Plain Study Areas
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4.3.1 Location, Geology and Land Cover

Salisbury Plain is an area of approximately 39,000ha of marginal grassland in Wiltshire, 

England that lies on Upper and Middle Chalk, with rare outcrops of Clay with Flints, most 

notably at Chriton Maggot, Upfront Down and Sidbury Hill (Entec 2003) (figure 4.1). The 

topography of the area is typically rolling hills and dry valleys and the vegetation is typified by 

extensive areas of unimproved grassland with occasional areas of woodland (both natural and 

plantation) and scrub. The central zone of rough unimproved grassland is surrounded by an 

agricultural “buffer zone” that is also owned by the Crown and provides protection to local 

communities from the intense military activity on higher ground. The Plain remains the largest 

area of natural chalk grassland in North West Europe. 

4.4 Archaeological Interest 

Salisbury Plain is one of the most important archaeological landscapes in the UK, described as 

“unique and priceless” by English Heritage (McOmish et al. 2002:1). The archaeology of the 

Plain is remarkable both for its location between the World Heritage prehistoric landscapes of 

Stonehenge and Avebury and for the outstanding preservation of its archaeological features. 

Purchased by the War Office following the agricultural depression of the late 19th Century 

(McOmish et al. 2002:6), the Plain is the last area of chalk grassland in the UK that remains 

predominantly unaffected by agricultural intensification. As such a palimpsest of prehistoric, 

Roman and Medieval features survive on the Plain, totalling more than 2300 known 

archaeological sites (Crutchley 2000). In brief, the monumental landscape of this area is 

characterised by Neolithic and Bronze Age barrows and ditch systems which intermingles with 

Iron Age and Romano-British settlements and field systems, many of which were identified 

from the air (ibid). During the 5th Century the settlement pattern shifted from the higher ground 

to the river valleys leaving virtually no evidence of medieval and post-medieval settlement or 

subsistence on the Plain itself (McOmish et al. 2002:10).

There are however, preservation challenges associated with the current land use. Military 

activities can conflict with preservation of sites, either through direct destruction (although this 

is a very rare occurrence in recent times, many barrow features bear witness to WWII tank 

activity) or by preventing frequent grazing and thus encouraging the encroachment of scrub. In 

the East Range, where agricultural activity has been more commonplace into the 20 th century, a 

range of states of preservation can be identified in features such as field systems that cross the 

landscape.
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4.4.1 Previous Archaeological Investigations

In addition to the variation in preservation of the upstanding archaeological features, the Plain 

has been selected for this study due to the quality of previous and on-going investigations, 

which have characterised the nature of the archaeology through aerial survey, DGPS derived 

topographic survey and geophysical survey, providing a baseline for current research. 

Although there was some antiquarian interest in the monuments of the Plain in the late 19th and 

early 20th Centuries, for much of the last Century very little work was undertaken in comparison 

to other areas of the Wessex chalk. This is particularly true of the northern part of the Plain in 

which the study areas are located and there appears to have been an assumption, expressed by 

O.G.S. Crawford in the 1940s when consulting on the choice of area for the first National Parks, 

that the archaeology of the Plain was too badly damaged by military use to warrant preservation 

(Bradley et al. 1994:1). Only recently, and on comparison with areas such as the Marlbrough 

Downs where the archaeological landscape has been virtually destroyed by agricultural use 

(Gingell 1992), has awareness grown of the unique preservation of upstanding monuments on 

the Plain. Consequently, archaeological investigation on the Plain has flourished in the last two 

decades, benefiting from improved awareness of conservation management within Defence 

Estates. An excellent general summary of previous archaeological investigations is contained in 

McOmish et al. (2002:13-18) and consequently the following section will focus specifically on 

investigations within the vicinity of the Everleigh and Upavon study areas in the East Range 

(figure 4.1).

4.4.2 Everleigh Study Area Environs

The Everleigh study area comprises a selection of evidence from almost all prehistoric periods 

from the Neolithic henge, Bronze Age linear boundaries and barrow cemeteries, through the 

remains of Iron Age and Roman-British agricultural systems (figure 4.2). In addition there 

remains little evidence of subsequent land use, with the exception of a single medieval 

enclosure (SU2015 5317) and pond of likely post-medieval date (SU 2065 5293).

The first recorded excavations in the Everleigh study area were of the Snail Down Barrow 

cemetery between 1954 and 1957 (McOmish et al. 2002:17) the excavation by Charles and 

Nicholas Thomas (Thomas et al. 2005) is one of the most complete investigations of a Bronze 

Age burial monument group and was significantly augmented by the contemporary landscape 

work of Colin Bowen (Bowen 1978). The conclusions of this work formed the foundation for 

two later studies in the area, the first based on prehistoric boundary features (Bradley et al. 

1994), the second examining the Iron Age and Roman development of the area (Fulford et al. 
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2006).

The Wessex Linear Ditches Project was begun in 1988 with the aim of providing an informed 

assessment of the nature of the linear ditch systems of the area, and in doing so investigate the 

pattern of Bronze Age and Iron Age settlement at a landscape scale (Bradley et al. 1994:6). The 

function of the linear ditch systems (often referred to in earlier literature as “ranch boundaries”) 

and their connection to “celtic” field systems and other archaeological features has been viewed 

as critical to the understanding of the development of settlement, land use and cultural identity 

in the later prehistoric periods, despite the marginal nature of the chalk landscape (ibid:5). In the 

locality of the study area, this project undertook a number of excavations across the extant 

ditches and banks which through detailed examination of the stratigraphic, environmental and 

pottery sequences revealed the complexity of Bronze Age landscape division. Around Sidbury 

Hill the initial linear ditches were dated to the Middle Bronze Age when the hill and its environs 

appear to have been relatively peripheral to the general pattern of land enclosure (Bradley et al. 

1994:132). Later in the Bronze Age, Sidbury Hill with its convergence of linear features appears 

to have become the centre for a reorientation of settlement and land division, with evidence for 

reworking and recutting of the ditches (ibid:133). Little evidence for the contemporary 

settlement pattern in the area was recovered by this project due to the unsuitability of the 

pasture fields for surface collection techniques (Bradley et al. 1994:113); although evidence of 

early Bronze Age settlement was uncovered during the excavation of the Snail Down barrow 

cemetery (Nicholas 2005:157). In the Everleigh area, later prehistoric lynchets were seen to 

respect the Bronze Age linears and enclosures formed by them, giving grounds to the suggestion 

that by the Early and Middle Iron Age the earthworks were being used to distinguish zones of 

pasture in an otherwise intensively cultivated arable landscape (Bradley et al. 1994:135).
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The Iron Age and Romano-British landscape and settlement patterns around Everleigh were 

explored more fully by Fulford et al. (2006) in a study that examined the extent and context of 

the intensive agricultural exploitation of the Plain during this period. The intensification of 

production during this period as evidenced by the ubiquitous “celtic” field systems is a 

phenomenon that stands in stark contrast to earlier and subsequent use of the Plain, whose 

typically poor soils and lack of natural water resources appear to have limited agricultural 

exploitation (ibid). Within the study area the enclosure at Everleigh (SU 207 525) was targeted 

for limited excavation which revealed the enclosure ditch as 2m wide and 1.5m deep but found 

no evidence for a bank. Occupation was dated to the Early Iron Age, with possible Bronze Age 

origins intimated by the presence of Late Bronze Age pottery, and the absence of diagnostically 

Middle Iron Age pottery indicated early abandonment (Fulford et al. 2006:41-2). The area of 

rectangular platforms and hollows recorded by RCHME at grid location SU 2099 5253 were 

also examined by test pitting to investigate the hypothesis that they represented the remains of 

an open settlement aligned along a hollow-way and abutted by the surrounding field system 

(ibid:41). No artefactual or structural evidence of this was revealed but the Late Neolithic / 

Early Bronze Age pottery that was recovered was attributed to the proximity of the henge 

monument at SU 2064 5260. 

Although there was no investigation of the lynchets in the study area, excavations of a 

comparable system on Weather Hill, 750m to the south recognised two phases of cultivation 

with the first dated by the pottery assemblage to the 1st and 2nd Centuries AD and the upper 

layers of the lynchets to the 3rd and 4th Centuries AD (Fulford et al. 2006:90). The test pits 

recorded no associated ditches but did note some possible boundary features in the presence of 

stake and post holes (ibid). Molluscan evidence indicated typical arable conditions within an 

open country setting (Allen in Fulford et al. 2006:150).

In summary, the archaeology of the Everleigh study area is typified by the substantial remains 

of Iron Age -Romano British field systems. These lie adjacent to and respecting a Neolithic – 

Bronze Age ritual and domestic landscape identified through a henge monument, linear ditch 

systems and barrow cemeteries. Despite the Everleigh area lying on the edge of the Salisbury 

Plain, and therefore at the margin of the modern agricultural zone, there is little evidence of 

Medieval or Post-Medieval interaction with the landscape leading to remarkable preservation of 

upstanding monuments from earlier periods.
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4.4.3 Upavon Study Area Environs

The Upavon study area (figure 4.3) was selected to lie within the Western Sample Area of the 

Iron-Age and Roman-British Settlements of the Salisbury Plain Project which ran from 1992-5 

and examined in detail through surface collection and excavation the extensive remains of this 

period in the East Range of Salisbury Plain (Fulford et al. 2006). The archaeology of the 

Upavon area is typified by well preserved Romano-British sites and field systems but also has 

substantial remains of “Celtic Fields” and funerary monuments (Fulford et al. 2006)

Fieldwalking and ditch sections during the Iron-Age and Roman-British Settlements project 

produced residual evidence for Neolithic and Bronze Age pottery although the small quantities 

recovered make it difficult to relate the scatters to permanent settlement (Fulford et al. 

2006:197). Open settlement in early prehistoric periods is likely to have been typical but is 

almost impossible to detect. The earliest settlement evidence in the Upavon study area comes 

from the earliest phases of Chisenbury Midden (SU 1462 5324) where chalk floors indicate late 

Bronze Age / Early Iron Age occupation (McOmish 1996) and the enclosure at Lidbury Camp 

(SU 1665 5335) which has been dated to the Later Bronze Age (Cunnington and Cunnington 

1917). From the limited excavation of the latter site, it appears likely that the enclosure 

represents seasonal occupation associated with sheep husbandry rather than permanent 

occupation (McOmish et al. 2002:155).

The beginnings of Iron Age enclosure in the 7th-6th Centuries BC can be traced to enclosures at 

Coombe Down South (SU 1925 5201) and Everleigh (SU 207 525). In the Middle Iron Age 

these were followed by enclosures at Chisenbury Field Barn (SU 1585 5348), Coombe Down 

North (SU 1846 5235) and two banjo enclosures at Beach's Barn (SU 1898 5098). With the 

exception of Everleigh, occupation appears to be continuous at these locations throughout the 

Middle Iron Age (ibid).

The late Iron Age settlement pattern is described as discontinuous, with the general 

abandonment of enclosures on the higher ground and an apparent shift to nucleated settlement 

in the river valleys. The Iron Age Romano-British village at Chisenbury Warren (SU1781 5376) 

which is often thought of as the type-site for linear rural settlement of the Romano-British 

period, has its origins in this period but the bivallate enclosure at Coombe Down South also 

shows continued occupation through the late Iron Age and into the Romano-British period 

(Fulford et al. 2006:199). Environmental evidence suggests an increase in both cereal 

cultivation and animal husbandry in the area during the Iron Age (Bradley et al. 1994:120-1), 

but evidence of loom weights, combs and spindle-whorls also hints at some textile manufacture 

in the settlements, along with iron working at Coombe Down (Fulford et al. 2006:200). 
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Evidence of social and ritual life in the Iron Age can be found in the continued use of 

Chisenbury Midden (SU 1462 5324) likely to be associated with the nearby bivallate hillfort 

Chisenbury Camp (SU 1519 5387) which was levelled in 1931.

Defining the transition from Iron Age to Romano-British settlement in the Upavon area is 

difficult, largely due to uncertainty and longevity of pottery chronologies in the 200 year period 

from the 1st Century BC through to the 1st Century AD (Fulford et al. 2006:201). This problem is 

illustrated in the earliest phases of the Chisenbury Warren settlement where there is conflicting 

evidence from radiocarbon dates and pottery assemblages in the earliest contexts (ibid). 

Generally the larger nucleated “villages” like Chisenbury Warren are interpreted as low status 

settlements on the higher ground, while smaller “villa” settlements of the Avon valley are seen 

as higher status, privately owned houses and estates (Fulford et al. 2006:203). Indeed it seems 

that the predominance of Chisenbury Warren and other linear settlements of this period on the 

Plain is much more to do with their outstanding preservation than their original importance 

(McOmish et al. 2002).

Investigations of the expansive field systems around Coombe Down, Longstreet Down and 

Chisenbury Warren show that most of the lynchet formation took place in the Romano-British 

period. Of those excavated as part of the Iron Age and Romano-British Settlements project, only 

the field system near Chisenbury Warren showed any evidence of Iron Age origins (Fulford et 

al. 2006). The monumental evidence for extensive and long-lived landscape management 

indicates an intensification of agriculture at this time, but faunal and palaeoecological evidence 

suggest that there was continuity of Iron Age practises of animal husbandry and cereal 

cultivation (Fulford et al. 2006:206). In addition, lack of typical building materials and portable 

material culture are seen as evidence of a lack of engagement with wider markets, indicating 

that though agriculture intensified in the Romano-British period, productivity may still have 

been comparatively poor (ibid). These indications of a “subsistence-only” lifestyle is supported 

by age-at-death statistics for the faunal collections and an apparently higher than average infant 

mortality at Chisenbury Warren. A complementary hypothesis is that in the case of Chisenbury 

Warren this lack of material wealth may also be explained by a loss of produce to an estate 

owner and this too may be supported by the lack of continuation of settlement into the post-

Roman period (Fulford et al. 2006:218).

Land use on Salisbury Plain is typified by a general lack of cultivation in later periods leading 

subsequently to its purchase by the military (McOmish et al. 2002:12-13) in the 19th Century, 

which poses the question of why the Romano-British period saw such intensive cultivation of 

this relatively unproductive region. Aside from a small climatic optimum known at this time, 

historical evidence suggests that the Plain was only cultivated during times of high population 
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and increased cereal prices, such as during the Napoleonic wars. Increased demand for grain to 

supply the Roman military and urban centres along with improved transport links are suggested 

as driving economic factors in the expansion of agriculture at this time. It is also considered that 

social factors, including population displacement and expansion as indicated by the nucleation 

of settlement at the end of the Iron Age, may also have played an equally important role in 

shaping the landscape.

In summary the archaeology of the Upavon study area is typified by the remains of nucleated 

rural settlement and agricultural intensification with its origins in the Bronze Age but 

predominantly belonging to the early centuries of the 1st Millennium AD (Figure 4.3). As with 

the Everleigh area, there is little evidence of later land use across the area, with only isolated 

areas of Medieval ridge and furrow earthworks, lending the Upavon area its character as a well-

preserved later prehistoric landscape.
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5 Data

Having established the selection rationale and background to the Everleigh and Upavon study 

areas in Chapter 4, the details of the origin and specifications of all the data used for each of the 

study areas were collated. Any preprocessing of these data that was not specifically related to 

the objectives of the research has been detailed in this chapter.

The following chapter is divided into four sections covering the data collated. The first of these 

(section 5.1) covers the archaeological data in the form of local and national geospatial records 

along with published research and grey literature. Section 5.2 describes the various archives 

used to collect archive ARS for the Everleigh study area. The details of the acquisition of ALS 

and hyperspectral data by the Natural Environment Council Airborne Research and Survey 

Facility (NERC ARSF) to the project's specifications are given in section 5.3 followed by a 

summary of the data collected by the field survey in the Upavon study area (section 5.4). 

5.1 Archaeological Data 

5.1.1 Existing Archaeological Record (Everleigh and Upavon)

The areas selected for this research were relatively well-studied with a number of published 

research projects exploring the prehistoric and Roman landscapes (Bradley et al. 1994; 

McOmish et al. 2002; Fulford et al. 2006) alongside unpublished reports (Crutchley 2000; 

Thruston and Cohen 2005). The available data is summarised in table 5.1.

Data Type Format Description

National Monument 
Record

Database output / 
Shapefiles

Information about archaeological monuments and 
previous fieldwork collected by the NMR, Swindon. 
Scheduled monument records.

Wiltshire County 
Historic 
Environment Record

Database output /
Shapefiles

Information about archaeological monuments and 
previous fieldwork collected by the HER, including 
digitised air photograph transcription.

Published Resources Monographs English Heritage Field Survey (The Field Archaeology 
of the Salisbury Plain Training Area (2002))
Excavation Reports (Snail Down, Wiltshire: The Bronze  
Age Barrow Cemetery and Related Earthworks (2005); 
Prehistoric land divisions on Salisbury Plain(1994))

Unpublished 
Resources

Grey literature Defence Estates yearly condition monitoring reports, 
Defence Estates Remote Sensing Assessment Report,
(2003; 2005) Salisbury Plain Training Area - A report for 
the National Mapping Programme (2000)

Table 5.1: Archaeological Resources for the Salisbury Plain Study Area
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The spatial data available comprised two datasets; the National Monuments Record (NMR) and 

the Wiltshire Historic Environment Record (HER). Both of these contain information on 

previous archaeological interventions (Events), archaeological features (Monuments) and 

scheduled monuments (Designations). On comparison it became clear that the Wiltshire HER 

record was the most detailed spatial dataset for archaeological features and that the NMR 

recorded no additional features for the study areas. This is due in large part to the incorporation 

of the results of the National Mapping Programme (NMP) transcription of archive aerial 

photographs (Crutchley 2000) into the HER dataset. Consequently the HER was selected to 

provide the archaeological spatial baseline for the study

5.1.2 Preprocessing of the Wiltshire HER Data

The Wiltshire HER data were provided in the form of both a shapefile and an MS Access 

database. Initial quality checking of these data ensured that each form was consistent with the 

other, e.g. that the records in the shapefile matched those in the database and vice versa. During 

this process a number of inconsistencies were discovered and rectified. 

To allow consistent mapping across feature types it was also necessary to simplify some features 

from the complicated topology exported from the HER system. For example, barrows that were 

mapped as many concentric rings were simplified into entities that matched their physical form, 

i.e. in the case of a simple round barrow one polyline was drawn tracing the ditch and one 

enclosing the mound. Figure 5.1 shows the simplification from the original HER record (left) 

which included multiple polylines representing a symbology used to record the banks and ditch 

of the henge (PRN 8404) and an additional polyline (PRN 10061) outlining the scheduled area, 

to the simplified spatial record (right) of two polylines, one for the internal ditch and one 

representing the external bank The spatial location of the feature has also been revised from the 

more accurate ALS-derived image.

The simplification process ensured that the number of polylines in the shapefile became a 

reflection of the features present and their topographical elements rather than the detail to which 

some features had been mapped (as this was found to be inconsistent across the dataset) or a 

product of the transformation from polygon to polyline data. This is important to allow 

quantitative comparison both of feature numbers and of feature length.

It also became clear that the unique identification numbers, (Primary Record Numbers or 

PRNs), ascribed to the HER features would not suffice as identifiers for this research, as in 

many cases they represented grouped or parent records rather than individual features. A case in 

point are the field systems across the study area that are recorded in the HER under a single 

number but consist of many lynchet features (figure 5.2). For the purposes of the pilot study, 
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each feature required a unique identifier (UID) for cross referencing, so a new “UID” field was 

added to the spatial data. Consequently all the HER features have both a PRN and a UID 

reference.

For the Upavon area it was necessary to standardise the spatial location of a number of features 

represented in the HER based on the information contained in the high resolution ALS model as 

they were found to be displaced by between 5m and 15m compared with the higher accuracy 

ALS model. This level of inaccuracy of features mapped from aerial photographs is not 

uncommon, especially in areas with few ground control points such as in the study area. Each 

feature that was corrected was labelled as such in its attribute table. Known features that were 

not visible in the ALS data were also flagged in the attribute table. Finally new records were 

created for features seen in the ALS data that were not recorded in the HER.

Figure 5.1: Simplifying Historic Environment Record symbology to better represent  
archaeological features
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Figure 5.2: Assigning unique identifiers (UID) to features grouped by a single Primary Record  
Number (PRN)in the Wiltshire Historic Environment Record

5.2 Archive ARS Data (Everleigh)

Having established the archaeological significance of the study areas, it was necessary to 

establish the nature of the archive ARS data available to the study. The Everleigh study area was 

selected principally due to the availability of archive airborne datasets and additional 

archaeological resources and these are presented below, with table 5.3 detailing the remotely 

sensed data available. 

Data Type Resolution Details Date Flown Source

CASI multispectral 
data

2m 

~440-981nm

27th April 1996  NEODC6

1.5m 7th January 2001 EA

1.5m 18th May 2001 EA

ATM multispectral 
data

2.5m 420-1300nm 1st June 2002 NEODC

ALS data 2m Optech ALTM 1205 25th May 2001 EA

1m Optech ALTM 2033 3rd Nov2005 EA

Aerial Photography 
(Oblique)

0.15m Archive (c.1950-
2002)

Wiltshire HER

Aerial Photography 
(Vertical)

0.15m Yearly summer 
coverage (2002-6)

Defence Estates

4-Band Aerial 
Photography (Vertical)

0.25m Vexel Ultracam XP
580-1000nm

9th September 2006
6th August 2007

Defence Estates

Table 5.2: Airborne Digital Data Sources for the Everleigh Study Area

6 NERC Earth Observation Data Centre
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5.2.1 Environment Agency Multispectral Data

The spectral data collected by the Compact Airborne Spectrographic Imager (CASI) for the 

Everleigh area in 2001 were purchased from the Environment Agency of England and Wales 

(EA). The digital spectral data for the Everleigh area was captured by a CASI sensor flown by 

the EA on the 7th January and 18th May 2001. The sensor was configured to supply 14 bands 

ranging in wavelength from 440nm to 891nm (Table 5.2). The data were geometrically and 

atmospherically corrected by the EA prior to acquisition by this project and no further pre-

processing was applied. No metadata were available for these data so no further details are 

known about the exact pre-processing undertaken.

On examination of the data, it was found that while for the January flight conditions were clear, 

the May data was badly affected by cloud cover that obscured features in many areas. The 

extent of cloud coverage was also mapped to a shapefile so that the results of the feature 

mapping exercise could be controlled for the poor visibility in parts of the May imagery (figure 

5.3). The study area was chosen to avoid the cloud cover which was worst in the vicinity of the 

Snail Down Barrow cemetery (SU 2184 5200), resulting in two separate areas of investigation 

(see section 5.2.6).
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Table 5.3: Wavelengths of the vegetation bandset of the digital spectral data supplied for the  
Everleigh study area

Figure 5.3: True Colour Composite showing cloud obscuring archaeological features between  
flightlines
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1  446.2  +/-  6.6 446.2 Blue vegetation response
2  470.1  +/-  6.6 470.1 Blue vegetation response
3  490.4  +/-  6.7 490.4 Green vegetation response
4  550.1  +/-  6.7 550.1 Green vegetation maximum
5  671.1  +/-  6.8 671.1 Red vegetation absorption maximum
6  683.5  +/-  4.0 683.5 Red edge
7  700.7  +/-  5.9 700.7 Red edge
8  711.2  +/-  4.9 711.2 Red edge
9  721.7  +/-  5.9 721.7 Red edge

10  751.3  +/-  6.8 751.3 Near infrared plateau
11  763.7  +/-  4.0 763.7 Vegetation reflection
12  780.9  +/-  5.9 780.9 Water absorption
13  860.2  +/-  6.8 860.2 Near infrared plateau
14  880.2  +/- 11.6 880.2 Near infrared plateau

CASI 
Band

Wavelength Range 
(nm)

Mid-point 
wavelength 

(nm)

Interpretation
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5.2.2 Environment Agency ALS Data

The ALS data were flown by EA on November 3rd 2005 using the Optech ALTM 2033 sensor. 

The ALS data were supplied in the form of eight space-delimited, last return, ascii files 

containing x,y, z and intensity values, and were gridded to a 1m resolution Digital Elevation 

Model (DEM) using the last return of the laser pulse. No metadata were available for ALS 

survey, so original point density is unknown. The data were not filtered to remove vegetation as 

the Everleigh study site comprised open fields with little scrub.

5.2.3 Historic Aerial Photography

Wiltshire County Council supplied ESRI shapefiles and an accompanying MS Access feature 

database for the area from the HER. Although the HER incorporates the results of all 

interventions in the area, the majority of feature information is from the transcription of archive 

aerial photography undertaken by the English Heritage NMP project (Crutchley 2002). 

The date of the photography from which the features in the HER were mapped was originally 

recorded in the HER (Roy Canham 2009, pers comm). This metadata would have been 

particularly useful to this project providing additional information on time depth and possibly 

the conditions under which each feature was recorded. This information would have 

significantly added to the interpretation of feature notes from the HER record, for example if a 

faint lynchet detected in the 1970s in an area of intense ploughing was not detected in the 

remotely sensed data from the last decade, an alternative hypothesis (that the feature has been 

destroyed in the interim) can be laid alongside the null hypothesis that the feature was not 

detectable by airborne remote sensing techniques. Additional information about the 

circumstances of the feature's visibility could perhaps also have been an indicator as to why it is 

visible or not in the current data. An example of this could be a feature that was only mapped 

during a particularly dry summer, leading to the hypothesis that it would not be expected to be 

visible in any of the contemporary remotely sensed datasets as none of these were recorded in 

similar conditions. Unfortunately, this type of metadata is not recorded by the NMP and 

consequently when the results of the Salisbury Plain NMP project were incorporated into the 

Wiltshire HER this potentially valuable information was lost (Roy Canham pers comm 22nd 

December 2009).

5.2.4 MoD Aerial Photography

The 4-band NIR aerial photography was given to the project by Defence Estates. The camera 

used for the acquisition in both years was a Vexel UltraCam-Xp. This camera produces five 

channels of data from five integral sensors, but the panchromatic imagery (410-690nm) was not 
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available to this study (Table 5.4).

Due to time constraints and the existence of the NMP aerial survey, the decision was made to 

only incorporate the 2006 and 2007 Ministry of Defence vertical aerial photography in the 

study. It was felt that the time spent examining vertical photography from the last decade would 

not significantly add to the record of features in the study given the comprehensive coverage 

detailed in the Wiltshire HER.

Table 5.4: Wavelengths of the channels recorded by the 4-band vertical aerial photography.

5.2.5 NERC Earth Observation Data Centre (NEODC) Archive

The major disappointment of the archival research was the the NERC 1996 CASI and 2002 

ATM datasets for the area. While the spectral data are archived and available through the 

NEODC, on application it became clear that no flight data had been archived for either dataset. 

This meant that the data could not be accurately geocorrected, rendering them inadequate for 

cross-data comparison as the geometric error would invalidate not only the identification of 

features but their shape and form.

5.2.6 Data Coverage and Sample Areas

In total an area of 4km2 of the area between the village of Everleigh and Sidbury Hill was 

covered by EA ALS and CASI data and Ministry of Defence 4-band aerial photography (figure 

5.4). Two sample areas (A and B in figure 5.5) were initially selected for a rapid assessment of 

the airborne data for the Everleigh area based on data coverage and quality. From the results of 

this assessment a smaller sub-area was selected as a representative subset for further analysis 

(area C in figure 5.5).
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Figure 5.4: Archive airborne remotely sensed data coverage for the Everleigh Area
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Figure 5.5: Everleigh Sample Areas A, B and C location map
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5.3 Planned ARS Data Acquisition (Upavon)

A year into the research an opportunity for planned data acquisition was sought that allowed 

development of some of the emerging themes from the study of archive data for the Everleigh 

area. A successful application was made to the Natural Environment Research Council Airborne 

Research and Survey Facility (ARSF) for their 2010 flying season for the Upavon area. As 

shown in figure 5.6, the area of bespoke acquisition south of Upavon lies close to the area of the 

archive data study at Everleigh and as such the ancillary archaeological data are the same for 

both study areas (detailed in table 5.3). 

Figure 5.6: Upavon study area location map
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5.3.1 Airborne Data Collection

The Upavon study area was the subject of a bespoke data acquisition by the ARSF designed to 

collect digital spectral and ALS data to specifications that would be optimal for archaeological 

research (within the limitations of the sensors currently operated by the facility). Details of the 

airborne data are given in table 5.5.

In total 12km2 of Eagle and Hawk hyperspectral data was acquired along with simultaneous 

ALS survey on the 4th of March 20107 (Area 1, figure 5.6). In addition a sample area of 4km2 

was surveyed with the ALS configured to provide the highest resolution topographical model 

possible within the limitations of the survey platform (Area 2, figure 5.6). The exact coverage of 

the high and low resolution flight lines are shown in figure 5.7.

Data Type Resolution Date Flown Source

Eagle hyperspectral data 1m (400 - 970nm)
4th March 2010 NERC ARSF

Hawk hyperspectral data 1.5m (970 - 2450nm)

Leica ALS data (Area 1) 0.5m
4th March 2010 NERC ARSF

Leica ALS data (Area 2) 0.25m

Aerial Photography (Oblique) 0.15m 4th March 2010 NERC ARSF

Table 5.5: Airborne Digital Data Sources for the Upavon Study Area

5.3.2 Spectral Data Specifications and Preprocessing

The spectral data for Upavon were collected on the 4th March 2010 using the Eagle and Hawk 

sensors covering the wavelengths from 450nm- 2200nm. The data were recorded as 296 bands 

each with a Full Width at Half Maximum (FWHM of 6.3nm). The Eagle VNIR data had a 

ground surface area (GSA) of 1m2 and the Hawk SWIR data of 1.5m2.

The spectral data were geometrically corrected using AZGCORR (Azimuth Systems 2011). It 

was possible to use the ALS DTM to improve the locational accuracy of the spectral data over 

the NextMap 10m resolution DTM. The Hawk data were resampled using nearest neighbours to 

1m and combined with the Eagle data into a single file for each flightline. ENVI 4.7 was used to 

correct each flightline for cross-track illumination variation. The data were then atmospherically 

corrected using FLAASH and EFFORT Polishing in ENVI 4.7 and the results of these 

corrections were validated by visually comparing the spectral values from the ground targets 

recorded by the spectrometer. Due to the limited number and lack of spatial variation in the 

ground spectral samples it was not possible to use these to undertake an empirical line 

correction for comparison. Bands that were highly affected by water absorption were removed 

from the subset leaving 267 bands.

7 NERC ARSF flight GB10-07
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Each band was checked visually for known archaeological features and excessive noise / 

dropped pixels. Bands that were badly affected by additional noise and pixel drop were removed 

from the analysis at this stage resulting in a subset file with 247 bands.

Finally an area of 1km2 covering Upavon Field Site 1 (section 5.4.1) was mosaicked using 

ENVI 4.7 without colour correction or feathering.

Figure 5.7: Area of ALS data collection, Upavon

5.3.3 ALS Specifications and Preprocessing

The ALS data for Upavon was collected using the Leica ALS50 at a height of 1200m on the 4th 

March 2010. The sensor was flown in tandem with the hyperspectral sensor for a total of 10 

flightlines (Area 1, figure 5.7). An area of 1.5km by 3 km was re-flown with the ALS sensor 

optimised for point density (Area 2, figure 5.7). 

The data were supplied as ascii files with the following parameters: time, easting, northing, 

elevation, intensity, classification, return number, scan angle rank. In order that radiometric 
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calibration of the intensity data could be attempted further ascii files were supplied on request. 

These included the automatic gain control values and post-processed navigation data with the 

timestamp and co-ordinates of the scanner origin.

The first pre-processing task for the ALS data was quality assessment. The data were converted 

to LAS format using LASTools (Isenburg 2011). The data were imported into OPALS 

(Technical University Vienna 2011) where the errors in elevation values at the flightline edge 

were quantified before adjustment using a Least Squares Matching (LSM) algorithm (Lichti and 

Skaloud 2010:121). The adjusted data was then cleaned by removing points with high 

eccentricity (defined as the distance from the grid point to centre of gravity of data points). The 

corrected overlapping flightlines for Area 2 were then combined to give a very dense point 

cloud (10 points per m2) using OPALS (ibid).

The data were then compared with a series of 350 ground control points (GCP) collected using 

the kinematic Global Positioning System (kGPS) (section 5.15) by calculating the root mean 

squared error (RMSE) in elevation (z). The elevation values of the data were then transformed 

in OPALS in order to reduce this error. The resulting point data was rasterised using nearest-

neighbours in OPALS to give a DSM of cell size 1m. The point density per cell was calculated 

for Areas 1 and Area 2, both globally and for a number of sample areas that were selected to 

avoid the areas of strip edge overlap. Using these point density measures as a guide, the ALS 

data were then rasterised using moving planes interpolation to a final resolution of 0.5m for 

Area 1 and 0.25m for Area 2.

In order to provide input for further processing (specifically the LRM), the data was also filtered 

using OPALS to remove vegetation using the values of eccentricity and sigma (defined as the 

standard deviation of the elevation value, post interpolation adjustment) of each of the points. 

The optimal filtering of vegetation in this landscape was obtained through trial and error with a 

sigma value of <0.13 and eccentricity value of <0.8 being most representative of vegetation in 

the study area.
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5.4 Ground Based Data Collection

Two sites within the Upavon area were selected for the collection of simultaneous ground 

observations to complement the ARS data.

Figure 5.8: Upavon ground survey location map, Site 1 (Coombe Down Enclosures) and Site 2  
(Lidbury Camp)

5.4.1 Upavon Field Site Site 1, Coombe Down Enclosures

Site one, Coombe Down Enclosures (SU 1767 5222), comprises a pair of Iron Age enclosures 

that were mapped from archive aerial photography as part of the NMP, when the site was still 

under cultivation (Figure 5.8). The site like much of the Plain is currently rough grassland that is 

occasionally grazed for scrub management. The two enclosures have been heavily ploughed and 

are barely visible on the ground (Figure 5.11).

This site was selected for the collection of soil moisture measurements and geophysical survey 

on the day of the bespoke airborne data acquisition (4th March 2010). A summary of the data 

collected is presented in table 5.6. A full geophysical report for the fluxgate gradiometry, earth 
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resistance and GPR surveys is contained in Appendix 2, including data collection, processing 

and interpretation.

Data Type Area Resolution Date Collected

Fluxgate Gradiometry Survey 0.9ha 
(10 30mx30m 
grids)

Traverse 1m / sampling interval 
0.125m

25/02/10

Earth Resistance Survey 30m x 15m 0.25m probe separation 04/03/10

30m x 15m 0.5m probe separation 04/03/10

GPR survey 30m x 30m Traverse 0.25m / sampling 
interval 0.05 / antennae 500 and 
800mhz

04/03/10
30/10/10

Soil Moisture Samples n/a 6 cores, 20cm depth 04/03/10

Table 5.6: Field survey data collected for the Upavon Site 1, Coombe Down Enclosures

Figure 5.9: Upavon Field Site 1, Coombe Down Enclosures as recorded from the archive aerial  
photograph transcription (Wiltshire Historic Environment Record)
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Figure 5.10: Geophysical survey of Upavon Field Site 1, Coombe Down Enclosures looking  
south-west, illustrating the lack of visible topography over the area of the enclosures

Figure 5.11: Location of geophysical survey at Upavon Field Site 1 (Centred SU 1767 5222)
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Fluxgate Gradiometer Survey

A total area of 0.9ha of gradiometry survey was undertaken at Field Site 1 with a fluxgate 

gradiometer (Bartington Grad 601-2) prior to the airborne data acquisition to provide an 

accurate location and broad site context for the features selected for further survey (figures 

5.10and 5.9). The area was selected based on the HER transcription and grids were surveyed in 

using a Leica 1200 kGPS to ensure geospatial accuracy. 

Earth Resistance Survey

Unlike the gradiometer survey, the results of the resistance survey are highly dependent on the 

ground moisture conditions (section 3.9.7). For this reason earth resistance data for site 1 were 

acquired in clear, dry conditions on the same day as the airborne data, 4th March 2010. A 

transect of 15m x 30m was recorded over a section of the bank of the eastern-most enclosure 

(figure 5.9) with the Geoscan RM15 resistance meter. The survey was designed to record the 

response from the top 0.25-0.5m of the soil column over the feature which would be most 

comparable to the data collected by the airborne sensor. 

Ground Penetrating Radar (GPR) Survey

A 30m by 30m area of of data was collected with a MALA Geosciences RAMAC X3M system, 

utilising a Mala shielded 800mhz antennae with attached survey wheel was used for distance 

measurement (figure 5.9). Like the earth resistance survey, the GPR survey was configured to 

maximise the data collected from the top 0.25m of the soil column. 

5.4.2 Upavon Field Survey Site 2 - Lidbury Camp 

Upavon Field Site 2 - Lidbury Camp (SU 1668 1533) is an Iron- Age rectilinear enclosure with 

very well preserved topography (figures 5.12-5.13). This area was selected for the collection of 

a detailed ground control point (GCP) profile using the Leica System 1200 kGPS to compare 

with the ALS - derived models. In addition a total of 320 ground control points were surveyed 

using kGPS across the whole of Upavon Area 1 to assist with georectifying the ALS data.
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Figure 5.12: Upavon Field Site 2, Lidbury Camp as recorded on the Wiltshire HER
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Figure 5.13: The prominent outer bank and ditch of Lidbury Camp (Upavon Field Site 2)  
looking south-east.

5.5 Summary

The rationale for the selection of study sites and availability of archive data made Salisbury 

Plain the clear choice for this research. The analysis of archive data was conducted for an area 

to the south of the village of Everleigh, while bespoke acquisition of hyperspectral and ALS 

data for the area south east of Upavon airfield in 2010 allowed for simultaneous ground survey 

data to be collected from field two sites. This chapter along with the preceding one, has 

provided an introduction to the location and archaeological importance of the study areas along 

with the general details of the data collected and any pre-processing. The details of the methods 

applied to these data in order to attain the objectives of the project are given in the Chapter 6. 
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6 Method

6.1 Introduction

This chapter describes the methods used to process the data collected for the Salisbury Plain 

Study areas of Everleigh and Upavon, (as detailed in Chapter 5) in order to achieve the project 

objectives laid out in Chapter 3. This research was designed to both fill the gaps in our 

understanding and trial innovative techniques for data visualisation and analysis. Building on 

previous research designs, this study attempts to overcome some of the issues with analysis of 

ARS that have been highlighted in the review of current literature (sections 2.3.2, 2.4.2, 2.5.2). 

Specifically attention has been paid to systematic quantitative assessment and comparison of 

archive data from different sensors for the same area with comparison to a baseline of known 

archaeological features derived from traditional survey techniques. With regard to the 

comparison of ground-based observations and ARS the primary aim was to reduce the 

uncertainty in previous studies introduced by the lack of contemporary data meaning that the 

effect of temporal changes on the data measured could not be quantified.

This chapter incorporates the processing workflow and a priori selection of software (section 

6.2) along with the archaeological feature identification protocol laid out in advance of the ARS 

assessment (section 6.3). The next part of this chapter is devoted to the processing of the ARS 

data. Sections 6.5-6.8 cover the assessment of both archive and bespoke spectral data, while 

sections 6.9 and 6.10 detail the methods used to assess the airborne laser scanned data. Section 

6.11 then details experimental techniques for combining data from multiple ARS sensors.

The latter part of the chapter focuses on the methods used to process and collate ancillary data 

in support of the ARS. This includes weather data (6.12), geophysical survey (6.13) and soil 

sampling (6.14), along with spectroradiometer measurements (6.15) and kGPS survey (6.16). 

Section 6.17 details how the ancillary data and ARS data were compared using statistical 

analysis.

The final section of this chapter details techniques for comparing the efficiency of multiple 

sensors for archaeological feature detection (6.18) by applying a range of statistical tests to the 

results of the analysis of archive data from the Everleigh Study Area. To aid the reader to 

identify sections relevant to each Objective of the research, a summary is included in table 6.1. 
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Objective Sections

3 6.6, 6.18

4 6.5,6.12

5 6.12, 6.13

6 6.7

7 6.6, 6.7, 6.8

8 6.7, 6.9

9 6.9, 6.10

10 6.9, 6.10

11 6.13, 6.17

12 6.11

Table 6.1: Summary of Objectives covered by each method section
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6.2 Project Organisation

6.2.1 Workflow

The workflow for the project and data processing is shown in figure 6.1. The research was 

designed to allow a process of iterative feedback for the analysis of ARS data. As a consequence 

stages 1 to 3 were worked through twice. Initially the archive data for the Everleigh area were 

processed and analysed so that the results of this work fed into the specification for the bespoke 

ARS acquisition and experimental design of the contemporary fieldwork for the Upavon area. 

Once the newly acquired data had been processed through stages 1 to 3 the ancillary data could 

be incorporated (stage 4), culminating in the evaluation of the airborne datasets with respect to 

each other and contemporary ground observations (stage 5).

6.2.2 Selecting Software

Analysing remotely sensed data can be undertaken with a number of specialist software 

programs, both proprietary and open-source. Consequently the first task of the processing stages 

was to identify the most appropriate software. Early in the research it became clear that there 

was no perfect solution to the requirements of processing remote sensing data for archaeological 

purposes. Often the best solution was to combine software during the course of the processing 

to take advantage of each program's strengths and avoid their individual weaknesses. 

The software used for each type of data is summarised in table 6.2 below. For each stage of the 

method the programs are cited in the relevant sections below, with full references to version and 

developer given in the bibliography.

Table 6.2: Summary of software selected for each stage
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Project Stage Data Task Software Used

Everleigh

ALS Processing & Visualisation

Processing & Visualisation

HER Data Processing & Visualisation
Processing & Visualisation

Upavon

ALS
Pre-processing

Processing & Visualisation

Pre-processing

Processing & Visualisation

GRASS 6.4 / QGIS 1.7

CASI 
Multispectral

GRASS 6.4 / QGIS 1.7

QGIS 1.7
4-band AP QGIS 1.7

LASTools  / OPALS 1.0
GRASS 6.4  / QGIS 1.7 /Fugro 
Viewer

Eagle / Hawk 
Hyperspectral

AZGCORR 4 / ENVI 4.7  /Opticks  
4.6
GRASS 6.4 / QGIS 1.7



Figure 6.1: Flowchart illustrating the processing of airborne remotely sensed data and workflow for the study
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6.3 Archaeological Feature Identification Protocol

6.3.1  Archaeological Feature Identification Protocol (Everleigh)

Archaeological entities in the landscape identifiable as such through their vegetation, soil or 

topographic properties, are referred to as “features” for the purposes of this study. In the first 

instance these are recognised simply as a change in contrast that identifies the archaeological 

feature from its surroundings. At this stage the morphology of the feature is recorded in the 

'Type' attribute of the table along with details of it's appearance in the 'Description' field of the 

attribute table (6.3). 

Interpretations of these features are based on their form and context as per aerial mapping 

guidelines laid out by the National Mapping Programme (English Heritage 2006) and are 

recorded in the 'Interpretation' field of the attribute table. In addition to this protocol, for the 

purposes of this project, each element of broader types such a barrow, were mapped as separate 

entities (e.g. mound and ditch) to enable a more detailed analysis. Additionally a single feature 

could be mapped in several parts only where a later development of the landscape, such as a 

trackway, clearly cuts what was once a single entity. Where there was uncertainty in this regard 

the feature was mapped with separate identifiers.

Despite recent guidance documents recognising the added value of the elevation data from ALS 

survey (Crutchley 2010), no protocol exists for integrating this into the traditional feature 

mapping processes that were devised for two-dimensional raster images. A number of methods 

were trialled as part of this project including 3D raster and point cloud visualisation, however 

for mapping purposes the best method of analysing the elevation was through drawing profiles 

(see section 6.9.7). 

Features were initially recorded as shapefiles with the attributes shown in table 6.3 for each 

visualisation of the spectral and ALS data. For simplicity of format and cross-data 

comparability, features were mapped using polylines with the type of feature (linear, circular, 

area) denoted in the attribute table. This format was used for recording features identified in all 

the data sources. The 72 resulting attribute tables were collated in an MSAccess 2003 database 

for cross-data analysis.
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Attribute Shapefile 
Attribute

Description Value Range Thesauri / guidelines used

Unique Identifier UID Unique number 
ascribed to each 
feature for cross-
data comparison

98-908 N/A

Type Type Basic morphology 
of feature digitised

A = Area
L = Linear
C = Circular 
Feature e.g. 
ring ditch

N/A

Description Desc Description of 
feature, typically 
including 
appearance, 
colour, clarity, 
relationship to 
other features

N/A N/A

Interpretation Interpreta General 
interpretation

N/A English Heritage Monuments 
Thesaurus

Land Use Landuse N/A REP93 via INSCRIPTION

Comment Comment Any additional 
comments

N/A N/A

Length Length Length of feature 
(to nearest metre)

Min length 14
Max length 

843

Automatically calculated

Table 6.3: Attributes recorded for each feature in the Everleigh area

The attributes selected for recording at this stage reflected a compromise between speed of 

digitisation and detailed feature information and are typical of the standard short digital records 

collated by local historic environment records. UID allowed features to be compared across 

datasets; Type allowed for a description of the morphology of the feature (beyond the polyline 

representation); Description was used as a store for the visual description of the feature's 

appearance; Interpretation gave the archaeological feature type and was deliberately distinct 

from Description to allow for later reinterpretation if required: Landuse and Comments were 

used to categorise the current land use and make any notes on known former land use and 

Length was calculated automatically from the digitisation to enable comparison of percentage 

recovery of features. A scaled score for visibility, as used by Traviglia (2008), was considered 

but was not thought to represent the visibility of features better than the percentage length 

recorded and the descriptive notes. Percentage recovery of each feature was calculated after all 

visualisations had been assessed using the maximum recorded length for each feature from any 

visualisation. These figures were then used to calculate average percentage feature length 

recovery (APFL) for each visualisation by dividing the percentage recovery by the number of 

features recovered.
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Initially all anthropogenic features were mapped from the data, including modern paths, military 

tracks and current field boundaries, to ensure rigour in the interpretation of the data. It was 

suspected in some cases that these features, particularly footpaths which were generally very 

sharply defined in the data (as often the thin top soil had been completely removed exposing the 

white chalk bedrock), were co-located with archaeological elements such as lynchets. In order 

to look at the patterns of archaeological feature recognition in this data, it was necessary to 

remove any purely modern elements from the final analysis. The decision on the origin of a 

feature was made using all the data sources, combining vegetation, soil and topographic factors 

and was confirmed with a field visit. Only features where modern origin could be stated with 

absolute certainty through map regression and site visits, were removed; all others were retained 

as archaeological features.

6.3.2 Archaeological Feature Identification Protocol (Upavon)

Due to the contemporaneous nature of the Upavon data, it was not necessary to record the 

features separately for each source of data. To streamline the process of assessment the HER 

data were recompiled into a single shapefile of all features, with the attributes shown in table 

6.4. All features were checked for locational accuracy and consistency of type against the ALS 

model. For the stages of processing that required polygons (e.g. calculating the separation index, 

section 6.8.1), each polyline feature was buffered by 0.5m (based on the assessment of accuracy 

exercise described in section 6.10.2).

Attribute Shapefile 
(Shortened 
Attribute)

Description Value Range Thesauri / 
guidelines used

Unique Identifier UID Unique number ascribed to 
each feature for cross-data 
comparison

98-908 N/A

Type Type Basic topography of feature 
digitised (as recorded from 
ALS data)

P – positive
N – negative
0 – no topography

N/A

Length Length Length of feature (to nearest 
metre)

Min length 14
Max length 843

Automatically 
calculated

Topography Flag ALS Binary coded field showing 
whether the feature has 
extant topography

0 (no), 1(yes)  N/A

Location 
Correction Flag

Relocated Binary coded field showing 
whether the feature's 
location was corrected using 
the ALS data

0 (no), 1(yes)  N/A

Table 6.4: Attributes recorded for each feature in the Upavon area
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Figure 6.2: Examples of the feature mapping exercise undertaken in this study
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Digital Spectral Data Processing

6.4 Introduction

This section covers the processing techniques applied to the archive and bespoke digital spectral 

data for the study areas. Initial assessment of land use (section 6.5) followed by the assessment 

of a number of visualisation techniques for the Everleigh data in order to compare visibility 

between them (Objective 8) and the processing of these models is detailed in sections 6.7.1-

6.7.4. The focus of the analysis of the bespoke spectral data for the Upavon study area (section 

6.8) was trialling automated methods of assessing spectral sensitivity (Objective 7).

6.5 Land Use Mapping

In order to contribute to current understanding of the impact of environmental and vegetation 

conditions (Objective 4), the archive CASI spectral data were used to create a land use map for 

the area using the True Colour Composites (henceforth TCC) of bands 7, 5 and 2 shown as red, 

green and blue respectively.

The TCC images were used to map land use categories over the study area as per the English 

Heritage REP 93 “land use” categories lists (Table 6.5). These terms are used by all local 

historic environment records and are based on unpublished wordlists in use in English Heritage 

and the RCHME prior to 1993, including broad grouping terms to allow recording at different 

levels of detail. Although some categories are more accurately defined as “land cover”, their use 

is standard and widespread in UK heritage datasets and as such were the most appropriate 

classifications to use for this study.

Polygons covering the Everleigh study area were mapped to a shapefile at 1:10000 scale, with 

the current land use and an additional comments field used to store notes about known previous 

land use in the area. Existing field boundaries and roads were used as delineations for the land 

use areas. The classification was verified and amended following field visits on the 22nd 

December 2009 and 18th October 2010. It was found that there was no land use change between 

the acquisition of the data and the date of the field visits.
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Land Use Category Parent Term Scope Note

cultivated cultivated Nature of operations undetermined. 

cultivation to a depth 
>0_25m 

cultivated Operations in excess of 25 centimetres. 

minimal cultivation cultivated Land use involving no operations likely to be damaging 
to archaeological remains. 

regularly improved grass grassland 
heathland 

Regularly cultivated and re-seeded grassland (but not 
including temporary grassland within arable rotation, for 
which use cultivated land) 

disturbed grassland grassland 
heathland 

Areas of past and current land improvement, involving 
operations capable of disturbing the archaeology 

undisturbed grassland grassland 
heathland 

If managed at all, then only to a low intensity, e.g. 
mowing, spraying etc. involving operations which are 
not archaeologically damaging. 

scrub woodland The term includes invasive woodland characterised by 
the presence of birch, willow, alder, ash, sycamore, 
conifers as low trees with shrubs. 

mixed woodland woodland In which coniferous and deciduous are present in 
roughly equal proportions. 

Table 6.5: Land use categories used for the Everleigh study area

6.6 4- Band Vertical Aerial Photographs

The 4-band vertical aerial photography for the study area was supplied by the Ministry of 

Defence, and was available for two dates September 2006 and August 2007. These data were 

analysed in order to provide a comparative broad NIR (690-1000nm) sensor for the narrow band 

CASI spectral data (Objectives 3 and 7). Archaeological features were mapped following the 

protocol laid out in section 6.3.1 from true colour (red, green blue) and false colour (near 

infrared, green, blue) composites of the files. Due to the format of the supplied files is was not 

possible to view each channel of the images separately.

6.7 Archive Digital Spectral Data (Everleigh)

6.7.1 Single Band Mapping

The first mapping of archaeological features was from individual bands of the CASI flightlines 

in order to investigate variation in visibility across the electromagnetic spectrum and thus 

identify regions of spectral sensitivity (Objective 7). The bands were viewed in grayscale with a 

full histogram stretch and features were mapped at a scale of 1:4000 or less according to the 

protocol detailed in section 6.3.2. The flightlines were not mosaicked at this stage due to 

evidence of differential cropmark visibility when seen at different view angles in adjacent, 

overlapping flightlines (Lyall 2006). However no evidence of this discrepancy was seen during 
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the Everleigh data feature mapping exercise.

6.7.2 True and False Colour Composites

In order to evaluate 'standard' techniques (Objective 8), true colour composites were created 

from the CASI spectral imagery using bands 5 (671nm),  4 (550nm) and 2 (490nm) to 

approximate red green and blue wavelengths respectively and thus provide the closest image to 

standard photography, albeit at at significantly reduced spatial resolution8. In addition the 

features mapped from individual bands for the January and May data were analysed to provide 

data on the bands that would provide the optimal combination for false colour composites 

(figure 6.3). 

As no standard for the creation of FCC images for archaeological interpretation was identified 

from the literature review, it was decided that the approach taken would be to use the bands that 

had provided the most unique features as these would indicate regions of the spectrum that were 

potentially more sensitive to archaeological feature visibility. 

Figure 6.3: An example of true and false colour imagery in the Everleigh Study Area

8 Resolution of the CASI data was almost 8 times lower at 1.5m per pixel compared with the average 
resolution of an aerial photograph at 0.2m per pixel.
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This approach based on visualisation is provided as a simplistic alternative to spectral clustering 

algorithms such as the Sheffield algorithm (Sanguinetti et al. 2005)  or K-means, that require 

advanced statistical software such as R or Matlab which are not available to most historic 

environment researchers.

6.7.3 Vegetation Indices

The data were subjected to a range of common vegetation indices, carefully selected so that they 

had a substantial biophysical (as opposed to purely numerical) basis. This was crucial to the aim 

of identifying techniques from other disciplines (Objective 6) and also understanding the 

physical and biological parameters that influence the representation of archaeological features in 

spectral data (Objective 4).

A total of 12 indices were calculated using ENVI 4.7 (ITT Visual Information Solutions 2010) 

and are detailed in table 3.2 (figure 6.4). These indices cover the five categories of Broadband 

Greenness, Narrowband Greenness, Light Use Efficiency, Dry or Senescent Carbon and Leaf 

Pigments detailed in the technical literature review (section 3.10.3, table 3.2).

Figure 6.4: An example of the imagery produced by the application of vegetation indices in the  
Everleigh Study Area
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6.7.4 Principal Components Analysis (PCA)

The multispectral data for the Everleigh area were transformed using PCA to examine the 

technique's efficiency and reliability compared with the single band analysis. PCA is the most 

commonly used method for spectral data reduction but it has never be compared quantitatively 

with other visualisations (section 3.10.5). Thus its inclusion in this study contributes towards 

Objectives 3 and 8.

A PCA transformation of all the bands was undertaken using the i.pca module in GRASS 

(GRASS Development Team 2010b). The bands used for the FCC composite (section 6.7.2) 

were also subjected to selective principal components analysis (sPCA) (after Traviglia 2008). 

This allowed the assessment of the effectiveness of PCA for visualising the regions of the 

electromagnetic spectrum that were pre-selected using other criteria (in this case feature 

uniqueness) to maximise feature detectability.
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Figure 6.5: Examples of the processing techniques used for the archive spectral data in this  
study
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6.8 Spectral Data Processing (Upavon)

The acquisition of Eagle and Hawk hyperspectral data for the Upavon area allowed an 

expansion of the visual quantification methods used for the archive data to incorporate digital 

assessment of spectral separability (Objective 7). 

6.8.1 Archaeological Feature Separability

The concept of the Separability Index (SI), devised by Cavalli et al. (2009) was modified and 

applied to the spectral data using the spatial feature record from the Wiltshire HER as a baseline 

for analysis. Firstly the HER data were assessed with respect to the ALS data and contemporary 

vertical aerial photography in order to improve the quality of the baseline. Features were 

standardised and their visible extent mapped from the topographic data. Each feature was 

categorised as a positive or negative, reflecting its topography. Features that were not visible in 

the ALS data or aerial photography were classified as neutral and it was not possible to 

standardise their locations for this exercise. Each feature was buffered by 0.5m to reflect the 

spatial resolution and geometric accuracy of the spectral data (see section 6.10.1).

Masks were digitised for the spectral data to remove modern tracks and clumps of scrub 

vegetation leaving only areas of homogeneous chalk grassland. The 'background' spectral values 

were then assessed using the standard error to ensure homogeneity across the 1km2 area. The 

area was divided into five sub-sets and histograms of each wavelength were compared with the 

histogram of the total background area, first by calculating the stadard deviation from the mean 

then using the standard deviation / √sample size (in this case 5) to calculate standard error. A 

series of 40 random linear features were also digitised across the background data to provide a 

non-archaeological control dataset for the SI calculation.

The original SI (Cavalli et al. 2009) was calculated using the following formula where Darcha is 

the integral of the histogram of the pixels representing archaeological features, Dbck is the 

integral of the histogram of the pixels representing only the background and DarchDbck is the 

integral of the histogram of the pixels representing the whole scene.

During testing it was discovered that the original SI was sensitive to a number of factors. The 

first was the values of the DN which need to be in radiance and recorded as float data. The 

second was the ratio of background pixels to archaeological pixels in the scene. The impact of 

this ratio is not mentioned by Cavalli et al. presumably because the SI in the original study was 
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applied only to limited areas (single agricultural fields) where the ratio of background to 

archaeological pixels was close to 1:1. In upscaling the SI to encompass an entire landscape of 

homogeneous background there was a discrepancy in the ratio of background to archaeological 

pixels of an order of magnitude. This meant that the SI was not comparable between different 

sized groups of archaeological features and was also no longer in the 0-100 range. To solve this 

a weighting for the background to archaeological pixel ratio was included in the modified SI 

equation where PNtotal is the number of pixels in the image and PNarch is the number of pixels 

categorised as archaeological features. The resulting fraction was multiplied by10 to bring the 

SI values back to the 0-100% range intended.

The modified SI was used to calculate separability of three categories of archaeological 

features: positive, negative and neutral (no detectable topographic representation). The SI of the 

control sample of random linear features was also computed. The resulting SI values were 

compared between spectral bands and archaeological categories to assess sensitivity across the 

spectrum. Sensitivity of bands was recorded at the 90th percentile to identify the 25 best 

performing bands. Based on the analysis of the archive data, the percentile was not expected to 

be lower than this in order to observe the anticipated spread of sensitivity across the spectrum.
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Airborne Laser Scanning

This section covers the processing techniques applied to the archive and  ALS data for the study 

areas. A large number of visualisation techniques were assessed for the Everleigh data in order 

to compare visibility between them (Objective 8) and the processing of these models is detailed 

in section 6.9. 

Section 6.8 looks at the techniques applied to the bespoke ALS data collected for the Upavon 

area including an assessment of the accuracy of buffering of polyline features(section 6.10.1) 

used to produce the spectral SI (section 6.8.1). Section 6.10.2 details the development of a 

method to assess the accuracy of ALS models compared with measured kGPS elevations for 

Upavon Field Site 2, Lidbury Camp (Objective 9).

The final section of the ALS methods covers the processing of the intensity data to improve it's 

usefulness as a source for archaeological feature mapping (section 6.10.3) (Objective 10).

6.9 Archive Airborne Laser Scanning Data (Everleigh) 

The archive ALS data were supplied in the form of eight space-delimited, last return, ascii files 

containing x,y,z and intensity values. The first task was to process these individual files into a 

single point dataset. After various software trials, the text files were imported into GRASS 6.4 

(GRASS Development Team 2010b) as point data and aggregated to a single file and cropped to 

the area overlapping the spectral data to reduce processing time. 

The topographic data were interpolated using a simple inverse distance weighted (IDW) 

nearest-neighbours method, most suitable for near continuous point data, producing a raster 

with 1m resolution. While this technique is not as accurate as some others (Mitasova et al. 

2005), it provides a quick, mathematically simple and robust method for processing the large 

dataset. It is also the most commonly used method of interpolation, available in identical form 

across many software platforms, including ArcGIS and ENVI, and as such provides a baseline 

for comparison of other interpolation methods. 

Until very recently, almost all analysis of ALS models was undertaken using one type of 

visualisation technique (shaded relief modelling). However there has been a recent upsurge in 

the number of visualisation methods published. To assess the suitability of these models to the 

study area the five most common (table 6.6) were applied to the IDW raster of the ALS data.
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Technique Acronym Brief Description Source

Shaded Relief 
Model

None used Shaded relief modelling takes the elevation 
model and calculates shade from a given 
azimuth and altitude, thus highlighting 
topographic features

(Horn 1981)

Principal 
Component 
Analysis of 
Shaded Relief 
Models

PCA PCA is a multivariate statistical technique 
used to reduce redundancy in multiple 
images. The product is a series of images 
representing statistical variance in the light 
levels of the original shaded relief images.

(Devereux et al. 2008)

Slope None used Slope mapping produces a raster that gives 
slope values for each pixel, stated in degrees 
of inclination from the horizontal.

(Jones 1998)

Aspect None used Aspect mapping produces a raster that 
indicates the direction that slopes are facing, 
represented by the number of degrees north 
of east.

(Skidmore 1989)

Curvature None used Profile curvature is a measure of the 
direction of steepest slope. The curvatures 
are expressed as 1/metres, e.g. a curvature of 
0.05 corresponds to a radius of curvature of 
20m. Convex form values are positive and 
concave form values are negative. 

(Kennelly 2009)

Local Relief 
Modelling

LRM LRM was developed for mountainous 
regions and produces a model where the 
affect of the macro-topography is reduced 
while retaining the integrity of the micro-
topography.

(Hesse 2010)

Horizon 
Modelling 

None used Horizon Modelling is a visualisation 
technique based on diffuse light. The 
product is a representation of the total 
amount of light that each pixel is exposed to 
as the sun angle crosses the hemisphere 
above it. It synonymous with the Sky View 
Factor (Kokalj et al. 2011).

(Kokalj et al. 2011)

Table 6.6: The visualisation models applied to the Airborne Laser Scanned data

6.9.1 Shaded Relief Modelling

The first visualisations to be trialled were shaded relief models for Everleigh Areas A and B. 

The creation of shaded relief models was undertaken in GRASS 6.4 (GRASS Development 

Team 2010b) using the r.shaded.relief module. The impact of the angle of illumination above 

the horizon on feature detectability was assessed visually in 2° intervals in the range from 4°-

25° reflecting the angles of raking light identified as ideal for microtopographic feature 

detection by Wilson (2000:46). The final shaded relief images were illuminated from an angle 

of 8° above the horizon which proved to be the optimum angle for highlighting archaeological 

104



Chapter 6 - Method

features in the gently rolling landscape of the Plain. The elevation data of the raster was 

exaggerated by a factor of five to improve the visibility of low-lying features. Shaded images 

were then created for angles at 45° intervals east of North, giving a total of eight images. 

Further subdivision of the angle intervals was not undertaken due to the large amount of 

redundancy in the data. 

6.9.2 PCA of Shaded Relief Images

The PCA of the eight shaded relief images created (section 6.9.1) was created using the i.pca 

module in GRASS (GRASS Development Team 2010a). Features were mapped from each PC 

viewed as a grayscale raster to allow comparison of detectability between the components. The 

PC images were not digitally combined into a colour composite as this had been noted to 

obscure features in the analysis of the spectral data (section 6.4.5). The spatial records from all 

the PC images where features were detectable were also combined to create a single dataset for 

comparison with other techniques.

6.9.3 Slope, Aspect and Curvature

The next techniques to be trialled were slope, aspect and curvature mapping of the ALS DTM 

data. These models were calculated in GRASS 6.4 (GRASS Development Team 2010a) and 

specific descriptions are given in table 6.6. The creation of these visualisations requires no 

additional variables. 

6.9.4 Horizon or Sky View Mapping

The technique of horizon or sky view mapping has been recently published (Kokalj et al. 2011) 

and is based on the method used to compute shadows for solar irradiation models. This 

calculation can be made using the GRASS module r.horizon (GRASS Development Team 

2010b). This produces a model that reflects the total amount of light that each pixel is exposed 

to as the sun angle crosses the hemisphere above it; consequently positive features appear 

brighter and negative features are darker. 

For the Everleigh study a number of horizon view models were created, with varying step sizes 

of 7m, 10 and 30m. The step size is a parameter of the algorithm that reflects the size of the 

smallest feature that could be mapped; 7m and 10m models reflect the expected size of the 

smallest archaeological feature that could be recognised in the landscape (and also the kernal 

size used for the local relief models, section 6.9.5), while the 30m model was selected for 

comparability with published examples. The model was calculated using intervals of 45° as with 

the shaded relief models (section 6.9.1).
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6.9.5 Local Relief Modelling

The Local Relief Model (Hesse 2010) technique extracts microtopography from the DEM 

resulting in a image of positive and negative values similar to that of a gradiometer survey. The 

workflow implemented to create this model is detailed in table 6.7. The size of the kernal is 

chosen to reflect the expected size of the microtopography that is to be removed, in this instance 

kernal sizes of 7m, 9m and 30m were trialled.

The processing steps of the LRM are detailed in table 6.7. The first stage of the LRM was to use 

a kernal of variable size to smooth the DTM, removing the effect of micro topographic changes 

to create a DEM of the macro-topography. The original DEM was subtracted from this 

smoothed model, leaving a difference map which highlights variations in the surface that are not 

related to the macro-topography (figure 6.6). However at this stage the model was still biased 

towards small scale variation and there is some distortion of feature topography (Hesse 

2010:68). Consequently a zero metre contour line was calculated from the difference map 

created in stage 3 of the process, and the elevations along this contour are extracted and 

interpolated into a new DEM which was completely purged of small-scale changes in 

topography. Finally this purged DEM was extracted from the original to leave the LRM of 

micro-topographic features which retain their original metric scale and proportions. 

Although the Hesse's paper states that a number of software packages were combined to 

undertake the workflow, for the Everleigh project all the stages were computed using GRASS 

6.4 (GRASS Development Team 2010a) using a custom script written for the task (see 

Appendix 1). 

Stage Description Project Specific Information

1 create Digital Elevation Model (DEM) from 
the ALS point cloud

Base DEM interpolated using IDW, nominal resolution 
of 1m

2 Apply a low pass filter (LPF) A 7x7m low pass filter was applied to the DEM (matrix 
as per Neteler et al. 2008:308)

3 Subtract LPF from original DEM This creates a difference map which highlights local 
relief variations however it is biased towards small 

features

4 Extract the zero metre contour from the 
model created in Stage 3

To delineate positive and negative changes in local 
elevation

5 Extract elevations from the original DEM 
along the contour lines created in Stage 4 and 

interpolate a new DEM

DEM interpolated using IDW. This model will be purged 
of small-scale features

6 Subtract the purged DEM created in Stage 5 
from the original DEM

This results in an enhanced local relief model which is 
less biased towards small scale features

Table 6.7: Workflow for the creation of a Local Relief Model, after Hesse 2010
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Figure 6.6: Simplification of the processing stages to create a Local Relief Model 

6.9.6 Polynomial Texture Mapping (PTM)

Following a full review of the literature about PTM (section 2.9), it was decided that given the 

paucity of published technical data, the proprietary nature of the software required, and the lack 

of perceived benefit over other processing techniques, the technique was not suitable for 

application in this study.

6.9.7 Feature Mapping

The raster images created by all the modelling techniques detailed above were opened in QGIS 

1.7 (Quantum GIS Development Team 2010) and archaeological features were mapped to a 

shapefile in an identical manner to those mapped from the multispectral data (described in table 

6.3). In addition to the 2D display of the raster image, the features were cross-sectioned using 

the profile plugin in GRASS 6.4 (GRASS Development Team 2010b) allowing a description of 

their form as well as their plan and significantly aiding feature type interpretations (Figure 6.7).

107



Chapter 6 - Method

Figure 6.7: Profile of ground surface at the henge monument (SU 20645 52594 to SU 20716  
52594). Location illustrated (top) and plotted (bottom)
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6.10 Planned Airborne Laser Scanned Data (Upavon)

The planned ALS data provided the opportunity to address a number of objectives of the 

research. The principle benefit was in the collection of contemporary kGPS survey to allow a 

rigorous assessment of the accuracy of the LRM model (Objectives 8 and 9). The data also 

allowed for exploration of the links between ALS elevation and intensity data, hyperspectral 

data and soil moisture measures, contributing to Objectives 10 and 11.

6.10.1 Assessing the Accuracy of the Archaeological Feature Buffering

The ALS LRM 9m visualisation was used to assess the accuracy of a range of buffers that were 

required to be applied to the vectors representing archaeological features for some of the spatial 

processing such as the SI calculation (Section 6.3.2). Buffers of 2m, 1m and 0.5m were assessed 

by feature type (positive and negative) to see how representative the pixel values were of the 

category assigned to them. Histograms were computed showing the separability of positive and 

negative features for each buffer. 

6.10.2 Assessing the Accuracy of the LRM Model

For Upavon it was also possible to assess the accuracy of the LRM model compared with the 

original DEM and a GPS transect across Lidbury Camp, an enclosure of Iron-Age date. The 

transect crossed the ramparts of the rectilinear enclosure as shown in figure 6.8. To assess the 

accuracy with which the LRM portrayed the microptopography of the enclosure, the angle of 

slope of the banks and ditches was calculated and the RMSE between the visualisation methods 

the original DEM and the GPS measurements was computed. Change in slope was used as the 

comparative measure rather than elevation change as the visualisations vary in scale and values. 

Contrary to elevation, the trigonometric calculation of slope also incorporates change in two 

dimensions of the profile, x and z (the third dimension y is held constant by the single direction 

profile). The RMSE in slope angle between the models and the measured values therefore 

provides a measure of the similarity of the shape of the features represented and thus the 

accuracy with which models such as the LRM represent real variations in elevation.
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Figure 6.8: Location of the Ground Control Point profile over Lidbury Iron-Age Camp  
(shown overlaying the ALS LRM model)

6.10.3 ALS Intensity Data Processing

Following recent work in the field of improving the usefulness of ALS intensity data via 

calibration (section 3.9.4), it was intended to process ALS intensity data from Upavon in two 

ways. Firstly the intensity data were histogram matched in ENVI to the closest wavelength 

(1066nm, band 74) of the hyperspectral data. Secondly it was hoped that the OPALS software 

could be used to radiometrically calibrate the ALS intensity data. A technique for radiometric 

calibration of ALS data has been developed for Reigl sensors by Kaasalainen et al. (2009) and a 

sample of data from Upavon was transferred to Technical University of Vienna to experiment 

with the adaptation of the existing algorithm for the Lieca ALS50 sensor. Unfortunately it was 

not possible to produce a calibrated intensity image for a subset of the Upavon area within the 

timeframe of the project.

For comparison with band 74 of the hyperspectral data the intensity data were resampled using 

nearest-neighbours from 0.5m resolution to 1m resolution and the correlation between values 

for the same cell in both images was calculated (Section 6.17.1). The same procedures was used 

to compare the intensity measure to recorded soil moisture levels and geophysical survey 

(section 5.16). 
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Combining Data from Multiple Airborne Sensors

To access the full information content of the archive data, techniques for combining the spectral 

and topographic data were investigated using the archive data from the Everleigh study area 

(Objective 12). The contributing spectral and topographic source data was selected from the best 

performing methods identified in the individual data source analysis.

6.11 Digital Data Combination

6.11.1 Basic Raster Mathematics

The simplest technique for combining the data from two or more rasters is to add them together. 

Rasters created from the digital spectral data such as the FCC and PCA were simply added to 

the topographic data in the form of the original DEM or LRM using the raster calculator 

function in GRASS, having first ensured that the scales of the rasters were comparable. The 

DEM was scaled to match the spectral data by reducing the lowest values to 0m from 136.267m 

and multiplying all values by 292.137. The LRM was scaled by making all values positive by 

adding 1.891 and multiplying by 2962.838. These factors were calculated using the histograms 

of the spectral data for the study area to estimate the scaling required to match the raster data.

Initially the best performing individual band and the first PCA of the full spectral scene from the 

January and May flights were added separately to the scaled DEM. The same spectral data were 

then also added to the scaled 9m LRM.

6.11.2 Transformation Techniques

For the Everleigh data the Brovey transformation was selected as this is one of the simplest and 

most robust data integration techniques. The transform normalises up to three bands of 

multispectral data and multiplies the result by any other image (section 2.10.5). The Brovey 

transformation was trialled to improve the visibility from the January FCC, firstly using the 

original DEM then the 7m LRM and 10m Horizon model for the topographic layer. This was 

compared with the feature detectability results from the base FCC and ALS visualisation when 

assessed separately to discern whether the sharpening technique provided equal feature 

visibility. The formula for this was as follows where DNfused is the transformed image produced 

from the input data in n spectral bands multiplied by the high resolution image Dnhighres.
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Ancillary Data Processing

This section details the methods used to process all non-airborne data collected for the study. 

These data play an important role in achieving a number of objectives of the study. Archive 

weather data collected from the Met Office archive for each airborne spectral acquisition 

provided background information in support of the analysis of environmental conditions for 

Objectives 4 and 5 (section 6.12). The contemporary field surveys undertaken in support of the 

bespoke data acquisition by the ARSF (sections 6.13-6.14) provide information on the 

archaeological features and soil conditions using a range of geophysical techniques, and 

contribute to attaining Objectives 5 and 11. Sections 6.15- 6.16 detail the methods used to 

collect ground-based spectral and topographic measurements to improve the pre-processing of 

airborne data and provide comparative GCPs for assessing the accuracy of the ALS data 

(Objective 9).

The final section 6.17 details how the ground measurements were compared statistically with 

the airborne data using correlation analysis, allowing the quantification of the relationship 

between ARS and ground based observations (Objective 11).

6.12 Archive Weather Information

Supplementary weather data were collated to aid the interpretation of both the archive and 

bespoke digital spectral data with respect to broader environmental conditions (Objective 4). In 

the case of the archive data, the absence of ground observations means that weather data are the 

only opportunity to place the airborne data in context of soil moisture and atmospheric 

reflectance. For the Upavon data, the archive weather information broadens the context of the 

soil moisture and geophysical observations made on the day of the flights. This information 

combined with the quantitative assessment of feature detection will contribute to our 

understanding of the environmental conditions that effect the visibility of archaeological 

features within ARS.

6.12.1 Average Rainfall

Data were collated from the Met Office archive for the daily rainfall in the days leading up to 

the flight dates for the five weather stations closest to the study area (figure 6.9). As no data 

were available from Upavon airfield, the closest station was Collingborne Kingston at c.7km. 

The other stations selected; Larkhill, Boscombe Down, Tilshead and Alton Barnes all lay within 

15km of the study areas.
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Data was collected for the 14 days preceding the airborne data acquisition from each of the 

stations and then averaged. It is anticipated that due to the free-draining nature of the chalk 

bedrock and the shallow surface soils, the most significant rainfall measures will be those from 

the days immediately preceding the ARS acquisition date although it was not possible to find 

any research that detailed soil drainage patterns in this landscape.

Figure 6.9: Location of weather stations with respect to the Salisbury Plain study areas

6.12.2 Soil Moisture Deficit

Soil Moisture Deficit, also known as soil moisture depletion is a measure of the amount of rain 

needed to return soil moisture content back to field capacity (the amount of water soil can hold 

against gravity (Penman 1948; Evans and Jones 1977)). As such it is a broad measure of the 

dryness of soil. Soil Moisture Deficit data were compiled from the Environment Agency Water 

Situation Reports for February – March 2010. No soil moisture deficit data were available for 

the period of the archive data (January and May 2001).
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6.13 Geophysical Data (Upavon)

Upavon Field Site 1, Coombe Down Enclosures, was subject to geophysical survey before and 

during the airborne campaign. The full geophysical report for this site is given in Appendix 2; 

the details below represent the processing steps relating to the preparation of the geophysical 

data for integration with the airborne data.

Due to time constraints imposed by simultaneous data collection, the earth resistance and GPR 

survey were targeted over a single representative feature identified from the HER and confirmed 

by the fluxgate gradiometry survey; the bank of the eastern enclosure (SU 17712 52256).

All geophysical survey areas were laid out using the kGPS (section 6.16) to ensure high spatial 

accuracy. Survey data were georeferenced to the rinex corrected grid using a polynomial 

transformation in QGIS 1.7 (Quantum GIS Development Team 2010). The location of the 

surveys is given in figure 6.10.

6.13.1 Fluxgate Gradiometry Survey

In February 2010, gradiometry survey was undertaken at Upavon Field Site 1 with a fluxgate 

gradiometer (Bartington Grad 601-2) to provide an accurate location and broad site context for 

the bank feature selected for the earth resistance transect. The survey can provide a rapid 

overview of anthropogenic features in the subsoil providing a wider context and allowing the 

locations of the more detailed and compact earth resistance and GPS surveys to be determined. 

Although magnetic susceptibility cannot be detected by ALS or hyperspectral imaging, some of 

the features thus detected such as pits and ditches should also be detectable by the airborne 

sensors, providing an independent indication of the location and form of these features.

Survey was undertaken in a 'zig-zag' pattern with the direction of survey aligned north-south. A 

traverse interval of 1m and sampling interval of 0.125m provided a sound compromise between 

the detail of recording and speed of survey. Gradiometry survey is sensitive to magnetic changes 

caused by occupation and as such this technique was chosen to locate the bank and ditch 

features of the two enclosures at the site (figure 6.10). As the processing and interpretation of 

the gradiometer data are not key to the aims of this study they have been presented in a full 

geophysical report in Appendix 2. 

6.13.2 Earth Resistance Survey

A transect of 15m x 15m of earth resistance data was collected over the bank of the eastern 

enclosure using a Geoscan RM15 resistance meter with MPX multiplexer and adjustable PA20 

electrode frame in twin-probe configuration. Readings were collected in traverses of 0.5m width 
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with an interval of 0.5m, with probe spacings of 0.25m.

Due to the configuration of the probes these data were recorded as two interlocking surveys so 

these were merged and rescaled using Geoplot 3.0 (Geoscan Research 2004) from two 0.25 x 

0.5m rasters into a single raster of 0.25m resolution. In order that the data could be compared 

quantitatively to the other airborne and ground based data, the resistance measurements were 

also converted to apparent resistivity using the formula below.

apparent resistivity = 3.1415 x resistance x probe separation

   (ohm-metres)  (Ohm)  metres)

6.13.3 GPR Survey

As detailed in Appendix 2, the GPR survey was also undertaken on the day of the airborne data 

collection. The GPR data was expected to provide more detailed evidence for the sub surface 

structure of the features identified. The technique could therefore be used to complement and 

refine the data from the earth resistance survey.

An area of 30m x 30m targeting the bank of the eastern enclosure was collected with an Mala 

RAMAC GPR with an 800MHz antenna coinciding with the earth resistance survey. The data 

were collected along parallel W-E traverses 0.5m apart in a 'zig-zag' pattern. Traces were 

separated by 0.1m intervals. It was anticipated that the GPR survey would detect the horizon 

between the bedrock and the bank feature (to assess its depth below the surface) and that the 

signal of the bank material would be different to that of the surrounding soil matrix allowing its 

form to be visualised through the soil column.
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Figure 6.10: Location of the geophysical survey at Upavon Site 1, Coombe Down Enclosures, (overlain with the NMP transcription from the Wiltshire  
Historic Environment Record)
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6.14 Soil Sampling 

Soils in the area of the geophysical survey were sampled to assess local soil moisture levels 

(Objectives 4 and 11). It was originally intended that these should be compared to the global 

values provided by a series of permanent soil moisture probes positioned across Salisbury Plain 

for monitoring purposes by Cranfield University. However this supplementary information was 

not available due to the removal of the permanent probes at the end of January 2010 (Thomas 

Mayr 2009, pers comm)

6.14.1 Soil Sample Collection

A total of six auger cores were collected from the area of the earth resistance transect (figure 

6.11). These were intended to be 30cm gauge auger cores designed to measure the differences in 

soil moisture within the topsoil at 10cm intervals, a total of 18 samples whose locations were 

recorded using the kGPS (section 6.16). In actuality the topsoil was so shallow in most cores it 

was only possible to measure the 20cm of soil before the bedrock layer and in two cores only 

10cm of soil was retrieved.

Figure 6.11: Location of auger survey, Upavon Field Site 1, Coombe Down Enclosures

117



Chapter 6 - Method

6.14.2 Soil Sample Processing

The soils were processed to retrieve the moisture content as a percentage of dried weight. Each 

10 cm sample was divided into three parts which were dried to a constant weight (as per Rowell 

1994, Chapter 5). The moisture as a percentage of dried weight was then calculated and 

averaged for each sample.

6.15 Spectroradiometer Sampling

Forty-eight sample spectral profiles were collected during the two hour flight window (10.30-

12.30) using the GER 3700, a high performance single-beam field spectroradiometer measuring 

over the visible to short-wave infrared wavelength range (350-2500nm) loaned from the NERC 

Field Spectroscopy Facility (FSF). The primary purpose of the measures was to enable localised 

atmospheric correction for the hyperspectral data for direct comparison with global techniques 

such as FLAASH. Three large tarpaulin targets were located to the south of site 1 at SU 174 520 

to give black, white and grey spectra. Repeated spectral measurements of these targets were 

taken and post processed using the FSF post processing Excel templates.

The samples were calibrated using the FSF's post processing spreadsheet (NERC FSF 2010) and 

the regions of atmospheric absorption removed from the spectra. The spectra were then 

averaged for each target using SAMS (CSTARS, Univ.Calif, Davis 2005) and imported as a 

spectral library into ENVI.

Although almost 50 spectra were collected over the Upavon Field Site 1, most of the data were 

of poor quality due to a lack of metadata rendering many of them unusable for further analysis. 

In total, 10 spectra over the targets were used as a spectral library for visual comparison in 

ENVI but the numbers of spectra were not deemed sufficient to perform Empirical Line 

Correction of the airborne data. 
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6.16 Kinematic Global Positioning System (kGPS) Survey

To further aid the processing of the ALS data over 350 ground control points (GCP) were 

measured across the study area using the Leica 1200 series kGPS loaned from the NERC 

Geophysical Survey Facility (figure 6.12). The kGPS has a 3-dimensional accuracy of <0.01m. 

A point was measured from a stationary position at approximately 50m intervals along the 

survey track. Automatic collection of height data was simultaneously used to record points 

every 10m but comparison to the measured data showed that there was high average error to this 

data set and it was not used further.

A detailed transect of points was also recorded across the enclosure banks and ditches at 

Upavon Field Site 2, Lidbury Camp (SU16 63), to allow comparison of DEM accuracy over 

complex topography (figure 6.8, Objective 9). All GCP data were imported into Leica 

GeoOffice software (Leica Geosystems 2010) and corrected using the rinex data from five 

Ordnance Survey base stations in the locality (figure 6.13). 

Figure 6.12: Location of the ground control points surveyed with kinematic Global  
Positioning System
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Figure 6.13: Location of the Ordnance Survey Base Stations used to correct the  
kinematic Global Positioning System survey data and their distances from the study  
site

120

HUNG

POOL

Station 
Name

Distance to 
SPTA (km)

22 

CHIO 25 

WARI 31 

SOTN 42 

56 



Chapter 6 - Method

6.17 Comparing Ground Based and Airborne Data

6.17.1  Correlation Analysis 

For the Upavon study area it was decided that comparison between the ground based and 

airborne measures would be undertaken via statistical rather than visual analysis. The sample 

size for some of the data was small (just seven moisture measurements) and this must be 

considered when the results are analysed. However it was hoped that the assessment of 

statistical correlation between sensors would provide indicators of the relationships between key 

factors affecting the detectability of archaeological features. By comparing the relative impact 

of factors such as topography and soil moisture it should be possible to begin to draw out the 

complex multi-causality underlying detectability in spectral data.

The data selected for correlation analysis are listed in table 6.8. Initially all the datasets were 

analysed using the autocorrelation measure of Geary's M and Moran's C in ENVI 4.7 to assess 

the level of autocorrelation in each data set. Autocorrelation has a negative relationship to the 

value of the significance of the correlation coefficients between data types, with high 

autocorrelation leading to lower confidence in the results of the correlation calculation.

Table 6.8: Datasets used for the correlation analysis

The assessment of correlation across the datasets detailed in table 6.8 was undertaken in two 

stages. Initially data for the area of earth resistance from Upavon Field Site 1 was analysed to 

compare the earth resistance and soil moisture measurements with the ARS data. 

Drawing on the results of the initial correlation analysis, it was also decided to assess 

correlation in each band of the hyperspectral data against the percentage soil moisture 

measurements.
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Category Data Details

Soil Moisture
% moisture content

resistance survey

Topography
0.25m resolution terrain model

0.5m local relief model

ALS Intensity
ALS Intensity 0.25m resolution intensity

Spectral image 1066nm

measurements of % moisture in the top 0.1m of the 
soil profile
apparent resistivity measured by probes at 0.25m 
separation

ALS DTM

ALS LRM

1m resolution data used as the closest synonym to 
the ALS wavelength
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Comparing Across the Archive Airborne Data Sources

In order to assess the relative value of ARS data for archaeological prospection (Objective 3) it 

was necessary to derive methods for comparison of detectability across the data sets. This was 

undertaken using statistical analysis of visibility, in terms of both binary and Average 

Percentage Feature Length (APFL). Sections 6.18.1-6.18.3 detail the methods used for assessing 

binary visibility across the archive ARS data for the Everleigh Study Area, including an 

assessment of the impact of land use and feature type. The final section, 6.18.4, details how the 

APFL was compared.

6.18 Statistical Analysis

6.18.1 Binary Visibility

Once processed into shapefiles, the feature information from each of the data sources for the 

Everleigh study was compared using two approaches. The first was a simple binary approach to 

visibility, i.e. is the feature visible or not in a given source. Preparation of the feature data was 

undertaken in the MS Access database (section 5.3.1). The feature data for each of the ARS 

visualisations was imported into the program from the original shapefile and collated in a single 

table of feature lengths. These values were then coded to the values of 0 and 1 with 0 indicating 

no detection and 1 indicating partial or full detection. The extent of partial recovery of features 

was not analysed at this stage. Using the UID it was then possible to compare the occurrence of 

features across the remotely sensed data in cross comparison tables. It was also possible to 

quantify the number of unique features using this comparison technique. This table was then 

exported into SPSS 18 (PASW Statistics 2009) for all subsequent statistical analysis.

6.18.2 Comparing Land Use and Visibility

To determine the impact of land use on the visibility of features, the binary visibility data were 

also used to compare features across land use types (as defined in section 5.4) for each ARS 

visualisation. Each visualisation was assessed then assessed to see if land use was impacting on 

feature recovery rates in a significant way using chi-squared tests with the Cramer's V statistic 

indicating the strength of the relationship (or how likely it was to have occurred by chance) 

(Field 2009:695). 
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6.18.3 Comparing Feature Type and Visibility

The binary visibility was also analysed using the chi-squared test to identify significant 

differences in the recovery of feature types. The detailed feature types recorded during feature 

mapping were recategorised into three groups for this analysis depending on their topology as 

shown in Table 6.9.

Topographic Category Original Feature Type

Positive band, field boundary, lynchet, mound

Negative Ditch, enclosure, hollow-way

Neutral Vegetation feature, crop mark with no associated topography detected

Table 6.9: Simplification of feature type categories for chi-squared analysis

6.18.4 Comparing Percentage Visibility

In addition to binary visibility it was also necessary to quantify and compare the Average 

Percentage Feature Length (APFL) across the sources. The length of each feature in the 

shapefile was calculated automatically in QGIS 1.7 (section 5.3.1). The feature data for each of 

the ARS visualisations was then collated in a single table in MS Access and the maximum 

recorded length for each feature was calculated. The recorded length for each feature in each 

visualisation was then converted into a percentage recovery value using this maximum value. 

These values were then imported into SPSS18 as a single table of percentage recovery. Initially, 

the percentage visibility of features mapped from different sources was displayed as a boxplot to 

visually assess the differences between groups.

Different processing techniques using the same source data were treated as a single group and 

subjected to Friedman's ANOVA for non-parametric related samples (Field 2009:573). This test 

determines whether there is a significant difference between the sources in terms of percentage 

recovery and ranks them as to their efficiency. As a post hoc test, Wilcoxon paired analysis was 

undertaken to further interrogate the significant relationships identified by the Friedman's 

ANOVA. Wilcoxon's test shows the significance of the relationship between two sources and 

the directionality i.e. which of the two sources tested provides a significant increase in 

percentage feature recovery. This test was also used to compare the data across the groupings 

shown in Table 6.10.
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Table 6.10: Table showing the groupings of data for Friedman's ANOVA

6.19 Summary

This chapter has presented the range of techniques used to process the archive and 

bespoke ARS and ancillary data for the Everleigh and Upavon study areas with respect 

to the objectives outlined in Chapter 3. The results of the processing are presented in 

the next two chapters.
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Source Technique
Archive Aerial Photography Wiltshire HER data
January Spectral Data Band 8

PCA all bands
FCC
FCC PCA

May Spectral Data Band 8
PCA all bands
FCC
FCC PCA

ALS Data Aspect
Slope
PCA
Horizon Modelling (10m)
LRM (9m)

Overlay LRM / Jan PC1 overlay (addition)

MRESRI

MRESRI

Brovey LRM / Jan FCC
Brovey LRM / May FCC
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7 Results - Individual Datasets

7.1 Introduction

The results of the study are presented in two chapters. This chapter reports the results of the 

analysis of the individual airborne remotely sensed and ancillary data for the Salisbury Plain 

study areas of Everleigh and Upavon. Chapter 8 presents the results of the integration of ARS 

and ground based data along with quantitative comparison of all ARS techniques for the 

Everleigh Study Area.

The results in this chapter are divided by data type, allowing comparative analysis between the 

two study areas throughout the section. As the approaches to the data for each part of the study 

differed, in each section techniques are divided by study area. 

The study brings together a number of ARS datasets for each study area. For Everleigh this 

included two collections of CASI multispectral data, ALS data, modern military vertical aerial 

photography and archive vertical and oblique photography (summarised in the Wiltshire HER). 

For Upavon the HER record and planned ALS and hyperspectral data were supplemented by 

geophysical data and soil moisture measurements. The data collected are undoubtedly suitable 

for detailed analysis and comparison with regard to many archaeological research questions, 

however the results presented below focus tightly on achieving the technical objectives set out 

in Chapter 3.

Section 7.2 gives the results of the land use mapping for the Everleigh Study Area underpinning 

the analysis of the effect of land use on feature visibility in the ARS data (sections 7.4.3 and 

7.6.9). Section 7.3 presents the results of the analysis of the MoD 4-band aerial photography. In 

section 7.4 results from both the archive multispectral data, including single band analysis, 

digital combination of spectral bands and the use of vegetation indices. The results from the 

archive spectral data are also analysed with respect to feature visibility and land use in section 

7.4.3. In section 7.5 the results of the analysis of the planned hyperspectral data acquisition 

(Upavon) are detailed, focusing on the calculation of the separation index for individual bands 

and vegetation indices.

Sections 7.6 and 7.7 give the results of the analysis of the ALS data for both study areas, 

including the impact of modelling techniques on feature visibility. The archive ALS data results 

(Everleigh) are described in sections 7.6.1-7.6.8, while sections 7.7.1-7.7.4 cover the analysis of 

the planned ALS data (Upavon). As with the spectral data, the effect of land use on feature 

visibility for the ALS visualisations is explored separately in section 7.6.9.
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Digital Spectral Data 

As documented in section 4.4.7, the archive spectral data for the Everleigh Study Area was 

examined in two tranches. Firstly, a rapid assessment of land use for Areas A and B (figure 7.1) 

was undertaken (section 7.2) along with an assessment of the 4-band aerial photography 

(section 7.3). Single band and TCC / FCC mapping of the spectral data was also undertaken on 

Areas A and B. Based on the quantity of features identified in this analysis, it was necessary to 

define a geographically smaller subset (Area C, figure 7.1) upon which all further processing of 

the spectral data was performed (section 7.4). For consistency of comparison across 

visualisation techniques, all the archive spectral data results presented in this chapter are for 

Area C only. The comparison of archaeological feature detectability in Areas A and B compared 

with Area C is given in the next chapter (Section 8.9).

Figure 7.1: Detail of spectral processing undertaken for each of the Everleigh Study Areas
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7.2 Land Use Mapping

The results of the land use mapping exercise for the Everleigh Area were appended to each 

archaeological feature to allow analysis of the impact of land use on visibility (sections 7.4.3 

and 7.6.9) following the method outlined in section 6.5 and are presented in figure 7.2. The 

analysis showed that the majority of the area analysed was classified as disturbed grassland (63-

65%) (figure 7.3).

Figure 7.2: Land use mapping for the Everleigh Areas A, B and C (see section 6.5 for class  
definition)
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Figure 7.3: Percentage land use categories, Everleigh Study Areas A and B

7.3 4-Band Aerial Photography (Everleigh)

The results from the 4-band aerial photography analysis for Areas A and B are presented in table 

7.1 below. Very little difference was seen between the TCC and FCC imagery and no unique 

features were recorded from the vertical photography when compared with the other ARS data, 

and only a small number that had not previously been recorded were visible. In general 

however, few features were visible in these images with no more than 20% of the 290 features 

identified in this area detected using the 4-band aerial photography (see section 7.5 for full 

comparison to other ARS data sources).

Table 7.1: Table showing relative feature recovery rates from the 4-band vertical aerial  
photography (total features numbers in brackets)
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Date of Acquisition Composite

September 2006 FCC 52 27 10
TCC 54 26 8

August 2007 FCC 45 22 8
TCC 42 22 8

Number of 
features 
recorded 
(n=290)

Number of 
HER features 

recorded 
(n=151)

Number of 
features not 
recorded in 

the HER
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7.4 Archive Spectral Data (Everleigh)

7.4.1 Introduction

The careful selection of the Everleigh case study meant that a number of research objectives 

could be met with these data. The availability of complementary data in the form of other 

archive ARS sources and the existence of full NMP mapping for the area contributed to 

Objectives 3 and 5. Additionally, due to the repeated acquisition of spectral data in the same 

year it was possible to assess the impact of environmental conditions on feature visibility 

(Objective 4). Although the archive spectral data was limited to visible and NIR wavelengths 

(450-891nm) there was also opportunity to examine spectral sensitivity (Objective 7). All results 

below are for Everleigh Area C only (figure 7.1).

The spectral data from both acquisitions performed well in comparison to the baseline number 

of features given by the Wiltshire HER. Often poor spatial resolution when compared with 

aerial photography is cited as an inhibiting factor for historic environment professionals 

considering using this type of sensor (Beck 2011), however the results of the feature mapping 

exercise (sections 7.4.2-7.4.7) show that despite this, the individual spectral dataset still showed 

between 41% and 48% of all known features (table 7.2). To better understand why and how 

features are represented in the data, the results have been interrogated with a specific focus on 

assessing archaeological feature type, environmental factors and cross-data comparability.

7.4.2 Single Band Mapping

The first stage of analysis undertaken on the spectral data was a band by band visual 

interpretation of feature visibility, the results of which underlay all subsequent use of the archive 

spectral data. Table 7.2 shows the results of the single band mapping exercise in detail and it can 

be seen that each data collection individually returned less than 50% of known archaeological 

features in the area. However the complementarity of the data was such that when the 

information from the two flights was combined, the number of features mapped rose to almost 

65% of the total known from all the sources used in this study. The complementarity of multiple 

acquisitions was also illustrated by the fact that only 41 features (24%) were identified in the 

spectral data from both flights.

The analysis of the spectral datasets shows that there was a 7% difference in the number of 

features visible between the January and May datasets. This difference in detecttion was also 

reflected in the average percentage length (APFL) of features recorded which was 61.2% in 
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January and 56.8% in May. This measure was used to indicate proportional, rather than binary 

recovery of features (as detailed in section 6.3.1).

Table 7.2: Relative feature recovery rates from the archive spectral data (January and May  
2001), Everleigh Area C

Figure 7.4: Feature recovery rates by band in the January and May spectral data (red outline  
denotes the red-edge wavelengths)
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Month of Flight

January 82 48% 37
May 69 41% 34
January and May Total 110 65%
Both January and May 41 24%

Number of 
Features 
Mapped

Percentage of 
Total Number 

of Features

Number of Features Unique to 
Month (not mapped in other 

spectral data)
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In figure 7.4 it can be seen that while the visibility of features varied dependant on the 

wavelengths viewed, the pattern of detection followed that of a typical vegetation response with 

a peak in visibility over the red edge (680-730nm) wavelengths for both January and May. In 

May this was also accompanied by a small peak in the green wavelength range (470-490nm) 

that again reflects the typical spectral response of growing vegetation (as indicated by 

chlorophyll quantity) at this time of year. This peak in the green region was not visible in the 

January data as the vegetation is senescent at this time of year.

This indicates that archaeological features were primarily detected in the spectral data due to 

proxy changes in vegetation rather than soil, which would have resulted in increased reflectivity 

(and therefore predicted increased visibility of archaeological features) in wavelengths over 

800mn. The graph may also indicate why the vertical aerial photography averaged NIR band of 

690nm-1000nm does not appear to be as sensitive to vegetation change, as the number of 

features visible in both seasons peaks sharply in the red-edge region and reduces as the 

wavelength increases through the NIR range.

The percentage recovery of features (APFL) from the individual CASI bands was also analysed 

using Friedman's ANOVA which ranks non-parametric data by mean recovery (figure 7.5). The 

mean values for each band are presented in table 7.3. It can be seen that in terms of APFL, the 

four NIR bands (6-9) from the January data provide the best recovery, followed closely by a 

single NIR band (8) from the May data. However, statistically both band 5 and band 10 of the 

January data performed better than the other NIR bands from the May flight. Overall it can also 

be seen that the January data outranks the May data for every band except 2 and 3; a result that 

directly mirrors the binary feature recovery rates in figure 7.4.
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Figure 7.5: Average Percentage Feature Length in the January and May spectral  
data (Everleigh)

Table 7.3: Friedman's ANOVA ranking for percentage recovery of Average  
Percentage Feature Length from the January (J_) and May (M_) archive spectral  
data (Everleigh)
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7.4.3 Comparing Land Use and Visibility in the Single Band Data

To further analyse the potential causes of difference between the data, the visibility of features 

was analysed by land use. For the January data it can be seen that the number of features is 

greater than that in May for all land use types except the area of minimal cultivation (figure 

7.6). Table 7.4 gives the detailed land use notes for each of the categories. The area of minimal 

cultivation describes a field that is a scheduled monument that has no discernible plough 

damage and is used as pasture rather than hay production (in contrast to the disturbed grassland 

category). The area of heaviest cultivation (cultivation to a depth of > 0.25m) was characterised 

by bare earth in the January data and by a germinating crop in the May data.

Pearson's chi-squared statistic was used to test if there was a relationship between the land use 

and visibility of features in the spectral data, with the Cramer's V statistic indicating the strength 

of the relationship (or how likely it was to have occurred by chance) (Field 2009:695). For this 

test the expected count of each category has to be greater than five so the features mapped in 

undisturbed grassland, which numbered just five in total were excluded.

Table 7.4: Detailed explanation of land use categories used in the Everleigh area.

The test showed that there was a significant association with land use and visibility in both sets 

of spectral data. In January the significance of the association was high with the chi-squared 

statistic χ2= 14.87, p<0.001 with a Cramer's V measure of 0.3 indicating that the association was 

unlikely to have occurred by chance. For the May data χ2=12.42, p<0.05 with a Cramer's V 

measure of 0.27 indicating that this result is also unlikely to have occurred by chance despite the 

lower significance. This indicates that in areas of minimal cultivation, disturbed grassland and 

cultivation of > 0.25m, land use impacted on visibility in a significant way for both spectral 

datasets.
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Land Use Category Area Specific Notes

cultivation to a depth >0.25m 

minimal cultivation 

disturbed grassland 

Currently in under cultivation as part of an arable 
regime. Heavily plough damaged.
Scheduled monument used as long pasture. 
Possibly  historically cultivated (schedule 
includes a medieval stock enclosure) but never 
intensively
Grassland and hay pasture, possibly previously 
cultivated intensively but with limited plough 
degradation

undisturbed grassland (not included in statistical 
analysis)

Natural' chalk grassland, never subject to 
intensive agricultural methods.
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January Spectral Data

May Spectral Data

Figure 7.6: The number of features visible and not visible by land use from the spectral data
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7.4.4 Digital Combination of Spectral Bands

While the analysis of single bands of the spectral data was of key importance for determining 

the most important areas of the spectrum for mapping archaeological features (Objective 8), it is 

a time consuming method that creates large amounts of redundancy; for a total number of 66 

individual archaeological features in the January spectral data no less than 545 geospatial 

transcriptions were made. Consequently, it is necessary to investigate ways of analysing the 

spectral data to maintain the information that is archaeologically relevant while reducing the 

time invested in mapping.

7.4.5 True and False Colour Composites

Overall the level of complementarity among the bands was high with low numbers of features 

seen in only one band (termed here as “unique” features), nevertheless it was possible to use this 

method to identify a potentially useful FCC band combination for January as the bands met the 

caveats of having good feature recovery and wide spectral coverage. Table 7.5 shows the bands 

which had “unique” features ranked by the total number of features mapped in them (all other 

bands had features that were shared with at least on other band). Discounting band 8 due to its 

close spectral proximity to band 7 (and its lower number of unique features) left three bands (3, 

7 and 14) which represent uniqueness in the archaeological data and have broad spectral 

coverage.

For the May data the situation was more complex with unique features trending towards the 

lower wavelengths in bands 1, 2 and 3 and an even spread of single “unique” features across 

much of the NIR and red region. A colour composite comprised of bands 1, 2 and 3 would not 

only be spectrally limited, but as these bands returned low number of feature, would result in 

much of the archaeological data not being visible in the image. The band selection therefore had 

to incorporate a weighting for the total number of features mapped and a broad coverage of the 

electromagnetic spectrum. In this instance bands 3, 8 and 12 were selected to provide an optimal 

mix of uniqueness, feature recovery and spectral coverage. Figure 7.7 shows the comparison of 

the TCC and FCC against the recovery rates for the best performing single bands.
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January CASI Data 
Band

no. of 
unique 
features

No. of 
features

(max 
111)

May CASI Data band No. of 
unique 
features

No. of features 
(max 74)

Band 7 (c.700.7nm) 4 111 Band 3 (c.490.4nm) 3 51

Band 8 (c.711.2nm) 1 109 Band 2 (c.470.1nm ) 2 26

Band 14 (c.880.2nm) 1 76 Band 1 (c.446.2nm) 1 17

Band 3 (c.490.4nm) 1 51 Band 4 (c.550.1nm) 1 53

Band 8 (c.711.2nm) 1 74

Band 9 (c.721.7nm ) 1 68

Band 7 (c.490.4nm) 1 67

Band 12 (c.780.9nm) 1 56

Band 11 (c.763.7nm) 1 55

Table 7.5: Number of unique features in the digital spectral data

Figure 7.7: The relative feature recovery rates from the true and false colour composites of the  
January and May spectral data
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As can be seen from Figure 7.7, mapping from a TCC image alone revealed fewer features in 

both the January and May data, a result which was to be expected given the higher sensitivity of 

the NIR bands to archaeological features as discussed in section 7.4.2. The FCC of the January 

data allowed two more features to be mapped when compared with from the best performing 

single band. In May the number of features was slightly greater with five features extra features 

being mapped from the optimal FCC band combination (bands 12,7 and 3) compared with the 

best performing single band. As the optimal FCC for May was difficult to define by the 

parameters described in the method section, a second FCC using the optimal parameters of the 

January spectral data was also mapped for comparison. This FCC (bands 14, 7 and 3) performed 

better than the TCC but only marginally better than the single band data and significantly worse 

than the optimised FCC of bands 12, 7 and 3. These results indicate the importance of applying 

a FCC that is sensitive to the distribution of unique features across the spectral bands. 

Additionally they show that the optimal combination of wavelengths used for the FCC varies by 

season.

7.4.6 Principal Components Analysis (PCA)

PCA was used to reduce redundancy in the spectral data; the results of the transformation can be 

seen in table 7.6 in terms of the percentage variance of the full data set that is captured by each 

component. It can be seen that in all cases the first three components account for over 99% of 

variation. This result is mirrored by the archaeological feature mapping exercise where no 

features could be identified in PCs 4-14.

The combined results of the principal components mapping using all 14 spectral bands provided 

an improvement to feature recovery rates compared with single band analysis (figure 7.8).

Table 7.6: Variation represented by the Principle Components Analysis of the Everleigh spectral  
data.
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January 14 Band May 14 Band January FCC May FCC
% Variance % Variance % Variance % Variance

1 93.68% 96.94% 93.28% 97.01%
2 5.92% 2.79% 6.53% 2.90%
3 0.18% 0.09%  0.19% 0.09%
4 0.12% 0.09%
5 0.05% 0.04%
6 0.02% 0.03%
7 0.01% 0.01%

8 to 14 0.00% 0.00%

Principal 
Component
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Figure 7.8: Relative feature recovery rates from the Principle Components Analysis and  
selected Principle Components Analysis of the January and May spectral data

sPCA was also undertaken using the three bands of the FCC for each dataset. This showed that 

for the January data more features were mapped from using the sPCA than by mapping directly 

from the FCC but that this technique did not out-perform the use of all spectral bands for the 

sPCA. For the May data the sPCA showed less features than were mapped from the false colour 

image.
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The uniqueness of features across these four visualisations was also investigated to assess 

whether the higher recovery rates of the PCA included all features seen in the best single band 

and FCC imagery. As can be seen from table 7.7, the 14 band PCA approach for the January 

data was the most encompassing of the data reduction techniques but still did not capture six 

unique features. The detailed records of the features that were not recorded are shown in table 

7.8, and while the numbers involved are too small to determine if there is a pattern in terms of 

feature type or land use, at least one feature is mapped in all three other sources (UID 112).

Table 7.7: Cross tabulation of features detected between the 14 band Principle Components  
Analysis, selective Principle Components Analysis, False Colour Composite and Band 8 of the  
January spectral data.

Table 7.8: Detail of features not mapped by the 14 band Principle Components Analysis of the  
January spectral data (where 0 denotes not present, 1 present)
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UID Interpretation Land Use FCC sPCA FCC (14, 7, 3) Band 8

112
lynchet

0 1 1 1

113 lynchet 0 1 0 0

400 Linear feature 0 0 0 1

621 bank 0 1 0 0

638 ditch 0 1 0 0

815 veg? 0 0 1 0

14 band 
PCA

minimal 
cultivation

minimal 
cultivation
disturbed 
grassland
minimal 

cultivation
disturbed 
grassland
disturbed 
grassland

Number of Features visible in other techniques
14 band PCA FCC  sPCA FCC  (14, 7, 3) Band 8

14 band PCA 0 4 2 2
FCC PCA 8 0 3 5

FCC (14, 7, 3) 13 10 0 7
Band 8 15 14 9 0
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Table 7.9 shows the numbers of features not mapped by the PCA in the May spectral data. It can 

be seen that the performance of the PCA is slightly worse in the May data with a total of eight 

features that were not visible in the PCA but were mapped from one of the other methods. 

Unlike the January data, all of these features were mapped from the single analysis of band 8 

(table 7.10), indicating that for this dataset the 14-band PCA may be masking important data 

from key spectral regions that are known to contain high numbers of archaeological features 

(see table 7.9).

Table 7.9: Cross tabulation of features detected between 4 band Principle Components  
Analysis, selective Principle Components Analysis, False Colour Composite and Band 8 of the  
May spectral data.

Table 7.10: Detail of features not mapped by the 14 band Principle Components Analysis of the  
May spectral data (where 0 denotes that the feature was not found)
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UID Interpretation Land Use FCC sPCA FCC (12, 7, 3) Band 8

112 lynchet 0 0 0 1

115 lynchet 0 0 1 1

148 lynchet 0 0 0 1

853 lynchet 0 0 0 1

864 Unknown 0 0 0 1

865 lynchet? 0 0 0 1

872 unknown 0 0 0 1

898 Unknown 0 1 1 1

14 Bands 
PCA

minimal 
cultivation

cultivation to 
a depth 
>0.25m

disturbed 
grassland
disturbed 
grassland
disturbed 
grassland
disturbed 
grassland
minimal 

cultivation
disturbed 
grassland

Number of Features not visible but seen in other techniques
14 bands PCA FCC sPCA FCC  (12, 7, 3) Band 8

14 bands PCA 0 3 4 8
FCC PCA 16 0 6 17

FCC (14, 7, 3) 12 1 0 13
Band 8 21 17 18 0



Chapter 7 - Results - Individual Datasets

In addition, Friedman's ANOVA was used to compare the results of the 14 band PCA, sPCA of 

the FCC, FCC and Band 8 by average percentage recovery of feature length (section 6.18.4, 

tables 7.11 and 7.12). This showed that there was a significant difference between the 

visualisation techniques in terms of the length of the archaeological features that was detectable, 

with the 14 band PCA ranking the most highly. This statistical analysis shows that, in this study, 

the 14-band PCA returns a significantly larger proportion of the archaeological features mapped 

(measured by length) than the other techniques tested.

Table 7.11: Friedman's ANOVA for the Average Percentage Feature Length in the January  
spectral data True Colour Composite, False Colour Composite and Principle Components  
Analysis

Table 7.12: Friedman's ANOVA for the Average Percentage Feature Length in the May spectral  
data True Colour Composite, False Colour Composite and Principle Components Analysis
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May Spectral Data Descriptive Statistics
 N Mean
FCC (14,7,3) 170 21.26
Band 8 170 15.58
TCC 170 13.11
PCA 14 bands 170 22.30

Friedman Test
 Mean Rank Test Statistics
PCA 14 bands 2.66 N 170
FCC (14,7,3) 2.63 chi-square 35.28
Band 8 2.41 3
TCC 2.29 0.00

df
Asymp. Sig.

January Spectral Data Descriptive Statistics

 N Mean
FCC (14,7,3) 170 25.13

Band 8 170 19.99

TCC 170 15.95
PCA 14 bands 170 29.27

Friedman Test
 Mean Rank Test Statistics

PCA 14 bands 2.71 N 170
FCC (14,7,3) 2.62 chi-square 51.05

Band 8 2.39 3

TCC 2.27 0.00

df

Asymp. Sig.
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In summary, while the 14 band PCA worked well in terms of numbers of features recovered and 

the percentage length of features recovered, comparison with the FCC and best performing 

single band illustrates that the technique may potentially eliminate relevant data from 

wavelengths that were shown to be of importance for the visibility of archaeological features. In 

addition the PCA of FCC bands was not seen to out-perform the FCC image in every instance 

showing potential loss of archaeological feature visibility when the spectral data are 

transformed. 

7.4.7 Comparing Vegetation Indices

The results of the calculation of vegetation indices for the Everleigh spectral data are shown in 

figures 7.9 and 7.10. The number of features detected are shown against the results of the 14 

band PCA and best performing single band for comparison (section 7.4.2). 

The analysis shows that while none of the vegetation indices outperform the single band 

analysis or 14 band PCA, some may be useful for visualising archaeological features in this 

environment. In particular the MRESRI narrowband greenness index performed well in both 

seasons (figures 7.9- 7.10). Also worthy of note is the poor performance of the NDVI for both 

datasets despite it being the most commonly applied index (Section 3.10.3).

The vegetation indices were also compared on a feature-by feature basis with the 14 band PCA 

analysis and the best performing band to determine whether they were able to record significant 

numbers of additional features (Tables 7.13 and 7.14). It can be seen from these tables that 

several of the indices added to the number of features mapped using the 14 band PCA 

(MRESRI, SRI, MRENDVI). In direct comparison to the features mapped from the best 

performing band it can also be seen that several of the indices allowed the mapping of 

additional features. It is also notable that a number of the indices did not add any further 

features to those known from the 14 band PCA or NIR single band analysis (REPI, EVI). 

To summarise the efficiency of each of the indices more clearly , a ranked scoring system has 

been used to compare uniqueness with both the PCA and NIR and the total number of features. 

The results of this scoring system are compiled in table 7.15. The two strongest performing 

vegetation indices, MRESRI and MRENDVI in January belong to the narrowband greenness 

category with the ARI2 leaf pigment index ranking third. In May the SRI broadband greenness 

index proved the most useful, scoring slightly higher than the MRESRI, a result that may be a 

reflection of the lower prominence of the red-edge wavelengths in this dataset (see Figure 7.4). 

The third best performing index for this data set was the SIPI, light use efficiency index. The 

best performing index across both seasons is the narrowband greenness index MRESRI. The 

well-used broadband NDVI index was seen to perform very poorly for both datasets on all 
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criteria in the assessment, an indication of its lower suitability for spectral data with high 

spectral resolution when compared with the narrowband indices.
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Figure 7.9: Chart showing the relative feature recovery rates from the vegetation indices  
applied to the January spectral data

Figure 7.10: Relative feature detection rates from the vegetation indices applied to the May  
spectral data
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January Spectral Data

Table 7.13: Cross comparison table of the vegetation indices applied to the January spectral  
data showing number of extra features mapped per index compared with with best performing  
visualisation methods

May Spectral Data

Table 7.14: Cross comparison table of the vegetation indices applied to the May spectral data  
showing number of extra features mapped per index compared with with best performing  
visualisation methods
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Vegetation Index 14 band PCA Band 8 TCC FCC (12,7,3)
SRI 5 13 16 9

4 11 15 8
2 11 12 6

ARI1 2 10 11 5
2 10 12 6
2 9 9 2
2 8 9 5
1 14 15 9

ARI2 1 11 14 5
1 4 3 1
0 0 0 0
0 0 0 0

MRESRI
MRENDVI

RENDVI
NDVI
ARVI
SIPI

REPI
EVI
PSRI

Vegetation Index 14 band PCA Band 8 TCC FCC (14,7,3)

6 14 22 11

SRI 4 6 9 5

1 9 16 7

ARI2 1 7 14 5

1 7 15 6

1 6 10 4

ARI1 1 6 10 4

1 5 8 5

1 5 8 4

0 2 2 2

0 1 2 2

0 0 0 0

MRESRI

MRENDVI

SIPI

RENDVI

ARVI

NDVI

PSRI

EVI

REPI
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Table 7.15: Scoring of vegetation indices for January and May based on uniqueness (compared  
to 14 band Principle Components Analysis and single best performing band) and total number  
of features visible.

146

January PCA score Final Score

MRESRI 12 12 12 36

MRENDVI 7 11 11 29

ARI2 7 9 9 25

SIPI 7 9 9 25

SRI 11 7 5 23

RENDVI 7 7 7 21

ARI1 7 7 7 21

NDVI 7 4 5 16

ARVI 7 4 4 15

PSRI 2 3 3 8

EVI 2 2 2 6

REPI 2 1 1 4

May PCA Score Final Score

SRI 12 11 11 34

MRESRI 11 9 11 31

SIPI 4 12 10 26

MRENDVI 8 9 8 25

ARI1 8 6 8 22

RENDVI 8 6 8 22

ARI2 4 9 6 19

ARVI 8 4 5 17

NDVI 8 5 4 17

REPI 4 3 3 10

EVI 1 1 1 3

PSRI 1 1 1 3

Red-edge (band 
8) Score

No. of  
features Score

Red-edge (band 
8) Score

No. of  
features Score
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7.5 Spectral Data Processing (Upavon)

7.5.1 Introduction

The hyperspectral data for Upavon were specified for collection in the first quarter of 2010 

based on the results of the study of the archive data for Everleigh presented in section 7.4. The 

primary aim of the analysis was to identify regions of spectral sensitivity across the wavelengths 

recorded and compare these with the sensitivity results of the single band analysis of the archive 

data (Objective 8). Additionally it was possible to address Objective 11 with these data as 

contemporary geophysical and soil moisture measurements were collected on the day of the 

flight. The results below focus on the assessment of spectral sensitivity. The correlation of 

spectral data and ground observations is detailed in Chapter 8 (section 8.3).

7.5.2 Separation Index (SI)

The first stage of the up-scaling of the SI from a single field (as in the original application 

(Cavalli et al. 2009)) to a wider landscape area required an assessment of the homogeneity of 

the background spectral response across the area (section 6.8.1). The comparison of the spectral 

response of five sub-areas to the total area gave a standard error of 0.004nm across the 

spectrum, so homogeneity was assumed.

The first application of Cavalli et al's (2009) calculation for assessing spectral separability of 

known archaeological features revealed some issues that were not clarified in the original 

publication. These are detailed along with the resolutions in table 7.16, and led to the 

modification of the SI as detailed in section 5.7.

Table 7.16: Issues with the original Separation Index and the resolutions applied as part of this  
study
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Issue Resolution
The range of the spectral values impacted the 
output of the index

Convert floating point FLAASH corrected .bil format 
into radiance by dividing by 10000

The ratio of archaeological pixels to 
background pixels  impacted the output of the 
index

Addition of a weighting factor (ratio of 
archaeological and background pixels)

Noisy bands not removed by FLAASH (at the 
edge of the water absorption regions for 
example)  impacted the output of the index

Noisy bands adjacent to water absorption regions 
removed from the analysis.



Chapter 7 - Results - Individual Datasets

Once the index had been modified to make it fit for purpose (see section  6.8.1) it was possible 

to compare the separability of the feature categories across the spectrum of wavelengths (figure 

7.11). The average separability and standard deviation for each feature type is given in table 

7.17. Separability does not have a unit but is scaled between 0 and 100 so can be thought of in 

the same manner as a percentage.9

Table 7.17: Mean and Standard Deviations for the four categories of features assessed with the  
Separation Index

Figure 7.11: Results of the Separation Index calculation across the Eagle / Hawk hyperspectral  
data

9 Where the separability value is referenced it is prefaced with (SI)
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The first result of note is that the separability of the control features is very low (mean SI 1.34). 

This gives a clear indication of the validity of the index for measuring the separability of 'real' 

features, although there are some regions of the spectrum (~950nm for example) that appear to 

be affected by noise within the data, either associated with water absorption or the overlap 

region of the two sensors.

The second factor to consider is the difference in separability between archaeological features 

grouped by their topography. In this data, positive features were far more separable from the 

background (mean SI 49.16) than negative features (mean SI 20.34). It was also seen that the 

features with no detectable topography (in the contemporary high resolution ALS data) were 

more separable from the background than the control sample although overall their separability 

was very low across the spectrum (mean SI 6.69). This result has implications for the 

identification of features that do not have physical traces in this environment, showing that 

while detection might be possible features only represented by soil or vegetation change are five 

times less distinct from the background that those with positive topography. This more detailed 

analysis belies the assumption of the original authors that all types of archaeological feature are 

equally detectable (Cavalli et al. 2009).

In terms of spectral sensitivity as reflected in the SI score, it can be seen that the NIR region 

performs the most strongly. This compares broadly with the results seen in the archive 

multispectral data (section 7.4.3). To analyse the data further, the 90th percentile of most 

separable bands were extracted and are illustrated in figure 7.12. For positive features the 90th 

percentile threshold was SI 70 while for negative features the 90th percentile lay at SI 26. 

Features with no extant topography were excluded at this stage due to their very low 

separability.

The bands with the most separability show different trends dependant on the feature type. For 

positive features in this area, the highest separability was in three broad regions 907-

985nm,1109-1147nm and 1299nm-1336nm and one narrow region at 1785-1791nm. For 

negative features the highest separability was mostly in two regions: 1109-1147nm and 1261-

1450nm.

The combined high separability (figure 7.13) was calculated from the overlapping regions of 

90th percentile SI for both feature types and gives an indication of the ranges that might be 

expected to provide the best separability of both types of archaeological topography. This shows 

two broad regions of optimum separability, 1103-1160nm and 1280-1469nm. This grouped 

separability must be treated with caution however, as it is known that features with negative 

topography were less than half as separable from the background than positive features, even in 
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the regions of highest separability (figure 7.11).

Figure 7.12: Spectral wavelengths with the highest separability (90th percentile)

Figure 7.13: Spectral wavelengths most sensitive to all archaeological features in the study  
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area (overlap of key regions from figure 7.12)

7.5.3 Separation for Vegetation Indices

Following the successful application of the separability index to the hyperspectral image it was 

hypothesised that a similar technique could be used to compare the performance of vegetation 

indices in terms of feature separability. Unfortunately, due to the different scales of the indices it 

was not possible to standardise the SI for comparison among indices (the SI was shown to be 

heavily range dependant in the original application, section 7.5.2). This limitation contradicts 

the claim of the original authors that the SI can be used to compare different data despite the 

application of different processing techniques (Cavalli et al. 2009:274). This limitation also 

meant that comparison of vegetation indices to single bands using this technique was not 

possible.

Table 7.18: Separability Index as applied to selected vegetation indices

As can be seen from table 7.18, even vegetation indices that are theoretically comparable in 

terms of range, in reality might have quite different values making the SI an inappropriate tool 

for data comparison. However the SI values do appear to mirror differences in feature 

detectability using manual interpretation of vegetation indices of comparable scale. Figure 7.12 

shows the difference in manual interpretation of positive features (lynchets) in the red 

highlighted area between the SRI and MRESRI. As predicted by the SI, positive features in the 

MRESRI image are less detectable than in the SRI image. The SI calculations for the vegetation 

indices might also be of use to assess the likelihood of a feature type being detected by the 

index. For example, it could be inferred that in the NDVI image features with positive 

topography are almost 1.5 times more likely to be detectable than negative features. However it 

is clear that the SI should be applied with careful consideration of the range of the original 

image.
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Vegetation Index Short Term Range (real)

NDVI
17.78 24.09 -1-1 0-0.8

MRENDVI
7.00 25.36 -1-1 0-0.97

RENDVI
16.85 25.36 -1-1 0-0.75

EVI
17.78 24.09 -1-1 0-0.58

MRESRI 8.52 5.53 0-30 0-30

Simple Ratio Index SRI 17.78 24.11 0-30 1-12.3

Negative 
Features SI

Positive 
Features SI

Range 
(theoretical)

Normalized Difference 
Vegetation Index

Modified Red Edge 
Normalized Difference 
Vegetation Index
Red Edge Normalized 
Difference Vegetation 
Index

Enhanced Vegetation 
Index

Modified Red Edge 
Simple Ratio Index



Figure 7.14: Differential visibility of positive features (lynchets) between the SRI and MRESRI vegetation indices



Chapter 7 - Results - Individual Datasets

ALS Data Processing

7.6 Archive ALS Data Results (Everleigh)

As documented in section 4.4.7, the archive data for the Everleigh Study Area was examined in 

two stages. First, a rapid assessment of Areas A and B (figure 7.1) was undertaken using 

individual shaded relief images. The results of this are given in section 7.6.3. Based on these 

results it was necessary to define a smaller representative subset (Area C, figure7.1) upon which 

all further processing was performed (sections 7.6.4-7.6.9).

In total 123, or 72%, of the features seen in the Everleigh study Area C could be mapped to 

some extent from the ALS elevation data, by far the largest portion of features detected by any 

ARS data set used in the study. This section gives the results of the feature mapping from 

different ALS visualisation techniques (sections 7.6.1-7.6.7) and compares their efficiency both 

in terms of binary visibility and APFL (section 7.6.8). The penultimate section gives the results 

of the statistical analysis of the impact of land use on feature detectability in the ALS 

visualisations (section 7.6.9) while the final section attempts to metrically assess the effects of 

plough damage on feature degradation using ALS data (section 7.6.10)

7.6.1 Quality Assessment

The first step in analysing the ALS data was to calculate the point density and average point 

spacing. For the archive data the point density was calculated (for each flightline) as 0.69 hits 

per metre with an average mean distance between points of 1.21m. This relatively poor 

resolution constrained some of the analysis of the data. In particular,  given the relatively low 

requirement to remove vegetation from the mostly open landscape, the application of filtering 

algorithms to remove vegetation was deemed unsuitable due to the reduction in resolution this 

type of filter would cause. The point data was interpolated to 1m resolution using the IDW 

method. All subsequent visualisation techniques were based on this raster. 

7.6.2 Archive ALS Intensity Data

Only one archaeological feature (UID 425), was detected in the ALS intensity data for Everleigh 

(figure 7.15) and so this source was not incorporated in the feature mapping exercise. 

Consequently it was not possible to use these data to contribute towards Objective 10.
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Figure 7.15: Airborne Laser Scan intensity image, Everleigh

7.6.3 Shaded Relief Images

The first technique used to visualise the ALS data was shaded relief mapping (section 3.11.5). 

The results presented here are from the initial assessment of Areas A and B (figure 6.1). The 

altitude and azimuth of the shading was first calculated using the default ArcGIS settings of 45˚ 

elevation and 315˚ east of north. The angle of elevation was then reduced to <10˚ which 

improved feature visibility by 6% in this landscape. The two images are compared in figure 

7.16.

To examine the effects of illumination angle on the visualisation of features, eight separate 

shaded models were created at 45˚ intervals (figure 7.17). The results in table 7.19 show that 

there is a 12% difference in the number of features mapped between the best and worst 

performing angles, with the most effective angle for the Everleigh study area being 225˚ east of 

north. This was almost double the difference in features mapped through altering the altitude, 

illustrating the effect of illumination angle on this type of visualisation.

154



Chapter 7 - Results - Individual Datasets

Figure 7.16: Images comparing the impact of the altitude of illumination on the visibility of  
archaeological features

Table 7.19: Number of features mapped for each angle of illumination east of north on the ALS  
shaded relief models.

7.6.4 PCA of Shaded Relief Images

As with the spectral data, it was necessary following the initial mapping from shaded relief 

images, to select a representative sample area for detailed analysis (Area C, figure 6.1). Once 

this area had been selected, a Principal Components transformation could be undertaken on the 

shaded relief images as proposed by Devereux et al. (2008). This technique is intended to 

reduce dimensionality of the shaded relief data, but results in a number of files with decreasing 

levels of information. For the Everleigh data only the first two Principal Components contained 

unique archaeological information (table 7.20). In order to access the full number of features the 

results of PC 1, 2 and 3 had to be manually combined in order to create PC All, a process that 

when combined with the mapping from multiple rasters made this technique rather time 

consuming in comparison to the others utilised. The comparison feature detection from the PCs 

with the HER is given in figure 7.18. Table 7.20 gives the number of features that were not 

recorded in the other PCs, showing that the number of new features diminished with each 

component.
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Figure 7.17: Variation of illumination angle at 45˚ intervals in shaded relief models
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Table 7.20: Number of features not recorded by the Principle Component transforms 

Figure 7.18: Relative feature detection rates from Principle Components Analysis applied to the  
Airborne Laser Scanned shaded relief model

Table 7.21: Average Percentage Feature Recovery in the Principle Components Analysis of the  
shaded relief images
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Table 7.21 shows that the average percentage recovery of features (APFL) mapped by the PCA 

was quite high especially in the combined data. Friedman's analysis showed that there was no 

significant difference between PC 1-3 (X2(2) = 4.98, p>0.05). Wilcoxon tests showed that there 

was a significant improvement in the visible length of features to be made by combining the 

results of PC 1-3 when compared with the results of PC1 alone (T=0, p>0.01). 

As part of the features mapping process, a series of profiles for each feature was used to aid 

interpretation from the topographic data. These profiles proved invaluable for identifying the 

three dimensional aspect of the 2D image on screen and were swifter and more practical to 

apply than a fly-through type visualisation. However for the shaded relief and PCA of the 

shaded relief the profiles were difficult to interpret as the elevation data had no logical scale 

after transformation. Figure 7.19 shows a comparison between the profile of a feature in the 

PCA analysis, the shaded relief model and original DEM. It can clearly be seen that the shaded 

relief model of the ALS data (and consequently the PCA transform of shaded relief models) 

alters the position and profile of the ditch feature at 35m from that recorded in the original 

terrain model. There is also significant distortion to the shape of the profile that renders the 

elevation more difficult to interpret archaeologically. Finally, it can be seen that the shaded 

relief overemphasises a shallow negative feature at 52m and this is also the case in the PCA 

transformation. As a consequence although archaeological features can be identified using both 

the shaded relief model and PCA technique, neither are really suitable for accurate location or 

profile mapping. 
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Figure 7.19: Profiles measured for the same transect for the original Digital Elevation Model  
(DEM), a shaded relief model and the first Principle Component (PC1) of the shaded relief  
models (with Max and Min values from the Digital Elevation Model highlighted).
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7.6.5 Slope, Aspect and Curvature

In the area of subtle topographic features that typified the Everleigh study it was found that only 

ten features could be detected in the curvature map (figure 7.20). The results of the curvature 

mapping were deemed unsuitable for identifying archaeological features in this environment 

therefore only slope and aspect are considered in the results below. These techniques are 

frequently used in other geographical disciplines for analysing topographic data but neither 

performed particularly well for mapping archaeological features, with slope recovering 47% of 

the total number of features visible in the topographic data, and aspect 51% (figure 7.20). For 

the features that were mapped, however, both slope and aspect mapping had relatively high 

percentage length recovery rates at 79.5% and 82.5% respectively while curvature performed 

poorly in comparison with just 45%.

Figure 7.20: Number of archaeological features detected using Slope, Aspect and Curvature  
mapping
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7.6.6 Horizon View

At first view the Horizon View technique appears to provide a sound method of mapping 

features from the ALS topographic data with recovery rates that compared favourably with the 

other visualisation techniques (figure 7.21). Table 7.22 shows that the average percentage length 

recovery is over 80% for all iterations of the technique. The results of the Friedman analysis 

shows that there is a significant difference in terms of percentage recovery between the 

iterations (X2 = 13.59, p> 0.01), with Wilcoxon test showing that this significant difference was 

between the 7m /10m and 30m step with performance worsening as the stepsize increased.

Figure 7.21: Relative feature recovery rates from Horizon View model applied to the Airborne  
Laser Scanned topographic data.

Table 7.22: Average Percentage Feature Length from the Horizon View images
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However examining the profiles of features mapped using the Horizon View technique shows 

two aspects that indicate that this method may have severe limitations for archaeological feature 

identification. Firstly, the profile of features has no logical scale and is severely distorted and 

dislocated when compared with the original interpolation. This makes it highly unsuitable for 

interpretation of the features identified. Secondly, many of the features visible have no 

representation in the original topographic data. In addition it can be seen that the technique 

produces many interpolation artefacts that could be mistaken for linear features. Figure 7.22 

below, shows an area that appears to be covered in ridge and furrow earthworks on the horizon 

image but in fact has no trace of any topographical features in the original data. On examining a 

wider area it becomes clear that the linear features taken to be ridge and furrow are regularly 

spaced at the same interval as the step size adding further weight to the argument that they are 

interpolation artefacts (figure 7.23). It is proposed that the high recovery rates are a product of 

the misinterpretation of this interpolation noise as linear features which dominate in the sample 

area. Therefore, despite the high recovery rates, the general level of false positives that would 

occur if this technique were to be used in isolation means it cannot be recommended for 

archaeological prospection as the only visualisation method.

Figure 7.22: Interpolation artefacts in the Horizon View model which resemble ridge and  
furrow earthworks
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Figure 7.23: The interpolation artefacts in the Horizon View model profile compared with the  
Digital Elevation Model profile.
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7.6.7 Local Relief Modelling

The local relief modelling was conducted using four different smoothing kernel sizes (5m, 7m, 

9m and 29m) to examine the impact of this factor on the microtopography and to match to the 

step sizes of the Horizon View model for comparison. The kernel size should be selected based 

on the dimensions of the archaeological features expected to be seen given the feature type and 

source data quality. In the Everleigh landscape it was estimated that a smoothing factor in the 

range of 5-10m would be most appropriate. The feature recovery rates from the models were 

surprisingly consistent, and although the most number of features was mapped from the 7m and 

9m models there was no significant difference in feature numbers between the different kernel 

sizes (figure 7.24).

Figure 7.24: Relative feature detection rates from Local Relief Models applied to the Airborne  
Laser Scan topographic data.

The results of the Friedman analysis show that while the 9m models performed best in terms of 

percentage feature length recovery, there was no statistically significant difference between the 

kernel sizes chosen for this area. (X2(3) = 1.33, p>0.01).
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As with the PCA mapping, profiles of the features were examined to compare the LRM model 

to the original interpolation. These profiles have a true elevation scale in metres and are often 

easier to interpret than the original profile as the archaeological topography is clearer once the 

macrotopography has been removed.

Figure 7.25: Showing the profile of a bank and ditch feature in the original Digital Elevation  
(DEM) and the Local Relief (LRM)Models
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7.6.8 Comparing the ALS Visualisation Techniques

In total 123 or 72%, of the features seen in the Everleigh study area could be mapped to some 

extent from the ALS elevation data. However each individual technique only recorded 75% or 

less of the features that could be seen if all the techniques were combined.

Figure 7.26: Comparison of all Airborne Laser Scan visualisation techniques to the Historic  
Environment Record record in terms of percentage of total of features detected

For both the LRM and Horizon View the lower resolution models (LRM 29 and Horizon View 

30) did not contain data on any features that were not mapped in the high resolution models, and 

as such have been excluded from this section of the analysis. 

Between the Horizon View 7 and 10 there was just one feature that was not recorded by both 

datasets and this was in Horizon View 10. Therefore the Horizon View 10 was selected as the 

best technique for comparative analysis.

Between the LRM 7 and LRM 9 there were six features that were only recorded in one of the 

models (three unique to each). As both techniques also recorded the same number of features 

neither could be said to be clearly superior therefore both were retained for the comparison.
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The results from the different ALS visualisations were analysed for uniqueness to identify 

complementary techniques. A total of 44 features (36%) were seen in all the visualisation 

techniques. In all 18 features (15%) were mapped in just one visualisation (table 7.23).

Table 7.23: Count of features unique to each Airborne Laser Scan visualisation technique

The results of combining two visualisation techniques are ranked in table 7.24. It can be seen 

that combining any two techniques significantly improves recognition from using any single 

technique and that the most powerful combination is the LRM and Horizon View. Beyond this, 

adding the results of a third technique makes a minimal difference to feature recovery as shown 

in table 7.24.

Table 7.24: Combination of multiple Airborne Laser Scan visualisation techniques

Table 7.25: Combination of multiple visualisation techniques

7.6.9 Comparing land Use and Visibility in the ALS visualisations

As with the spectral data (section 7.4.3), chi-squared analysis was used to assess the impact of 

the land use on monument visibility across the ALS visualisation techniques. As before only 

three of the land use categories were analysed (cultivation to a depth >0.25m, disturbed 

grassland and minimal cultivation) as the 'undisturbed grassland' category gave expected counts 

that were too low to be incorporated in the analysis (<5) (section 7.4.3). 

Firstly the chi-squared analysis was run on combined results of the mapping exercise for all 
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Visualisations Number of Features

LRM + Horizon + Aspect 119 96.75
LRM + Horizon + Slope 119 96.75
LRM + Horizon + PCA 118 95.93

% Recovery 
(n=123)

Visualisation

LRM + Horizon View 115 93.50
PCA + Horizon View 114 92.68

LRM + Slope 109 88.62
LRM +Aspect 107 86.99
PCA + Slope 106 86.18

Horizon View + Aspect 105 85.37
Horizon View + Slope 105 85.37

PCA + Aspect 104 84.55
LRM + PCA 101 82.11

Number of 
Features

%  Recovery 
(n=123)

LRM 7 and 9 Lidar PCA all Horizon View 10 Aspect Slope

4 2 9 1 2
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ALS techniques. This showed that there was not a significant association between land use and 

monument visibility across all the features mapped (χ2= 2.83, p<.001 with a Cramer's V 

measure of 0.13 indicating that the association was unlikely to have occurred by chance.)

Then the analysis was run for each of the visualisation techniques in turn and the results are 

summarised in table 7.25. It can be seen that unlike the spectral data, none of the visualisation 

techniques showed a significant association between land use and feature visibility.

Table 7.26: Summary of chi-squared analysis of feature visibility in the ALS visualisations

7.6.10 Assessing Feature Degradation

The Everleigh LRM model also provided an opportunity to quantify the relative degradation of 

elements of a field system that ran through two land use types; an area of scheduled monument 

(undisturbed grassland) and a heavily ploughed field to the south (cultivation >0.25m) 

(Objective 5). While changes relating to damage and degradation can also be seen on aerial 

photography or spectral data, they can be hard to quantify illustrating the additional value of 

ALS data.

Profiles of the LRM (which was chosen to reduce the effects of macrotopography), show that 

the lynchet feature was upstanding to c.0.15m in the area of scheduled protection and c.0.05m in 

the ploughed field (figure 7.27). The feature has also been spread by plough damage from an 

original width of c.12m to almost 20m. Without contemporary GCPs these figures can only be a 

relative indication of damage but provide a useful proof of concept for the LRM model as a tool 

to assess degradation.

168

Technique p<001

ALS All 2.83 √ 0.13 no

Aspect 0.68 √ 0.06 no
Slope 1.24 √ 0.09 no

 Shaded Relief PC 1 3.13 √ 0.14 no

 Shaded Relief PC 2 0.6 √ 0.06 no
 Shaded Relief PC 3 0.3 √ 0.04 no

 Shaded Relief PC  all 5.1 √ 0.18 no

LRM 7 5.07 √ 0.18 no
LRM 9 4.17 √ 0.16 no

LRM 29 2.74 √ 0.13 no

 Horizon View 7 0.81 √ 0.07 no
 Horizon View 10 1.44 √ 0.09 no

 Horizon View 30 3.19 √ 0.14 no

χ2 Cramer's V Significant association between 
land use type and visualisation 

technique?



Figure 7.27: Comparison of Local Relief Model (LRM) profiles for lynchet feature in an area of scheduled monument protection (Profile A) and heavy ploughing  
(Profile B)
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7.7 ALS Data Results (Upavon)

7.7.1 Introduction

Following the visual assessment of the archive data, a planned acquisition of ALS data for 

Upavon was necessary in order to enable quantitative assessment of the accuracy of the models 

described in the section above by comparison with ground control points collected via kGPS 

(Objectives 8 and 9). A further technical aim of the acquisition was to trial the merging of 

multiple point clouds from the same survey, in order to surpass the limitations of the sensor. 

With overlying data of varying resolutions from the same acquisition date, the impact of point 

density (and therefore ALS acquisition strategy) on the topographical accuracy of 

archaeological features could be assessed (Objective 8).

Additionally the data provided an opportunity for simultaneous collection of geophysical and 

soil moisture data (Objective 11). The results below focus on the assessment of ALS accuracy, 

the correlation of ALS data and ground observations is detailed in the next chapter (section 8.3).

7.7.2 ALS Resolution and Accuracy

The resolution of the “low” and “high” ALS point cloud (as defined by the acquisition 

parameters, section 5.3.1) were analysed using OPALS to calculate the statistics for individual 

flightlines (to exclude areas of overlap) and across the whole data set. As can be seen from table 

7.27 the difference in terms of points per metre2 between the high resolution flight was less than 

one point per metre. This confirms that with improved sensor specification, the compromise 

between ALS resolution and optimal hyperspectral data collection no longer compromises the 

quality of ALS data to the same extent.

Table 7.27: Summary of the resolution of the bespoke Airborne Laser Scan data, Upavon Study  
Area

This meant that after filtering, the point cloud could comfortably be rasterised to a 0.5m raster 

for the whole study area and a 0.25m resolution for the high resolution area. The rasterised ALS 

data were compared with the GCP data, giving an RMSE of 0.09m across the Upavon area for 

the lidar model. 
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Single flightlines
“Low” resolution 3.67

“High” Resolution 4.02
“Low” resolution 4.43

10.34

Area Average All (Area 1) 6.18

Average points per 
metre squared (last 

pulse)

Combined Point Cloud 
(1km sample) “High” Resolution 

(Area 2)
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7.7.3 Assessing the Accuracy of the Archaeological Feature Buffering

The accuracy of the method of defining archaeological features from the HER record by 

buffered polylines (such as is required for the application of the separation index, section 

6.10.1) was assessed using the 0.25m resolution LRM of the area. By altering the buffer width it 

was possible to see the impact of the mapping method on whether archaeological features could 

be defined statistically as positive or negative from the LRM. As can be seen from table 7.28, 

there was no significant difference in the mean elevation values of the archaeological features 

recorded in the study area, however as shown in figure 7.28 the histogram and therefore the 

statistical separability of positive and negative features is affected by buffer size with the 0.5m 

buffer providing the best separation.

Table 7.28: Statistical summary of the planned ALS data, Upavon

Analysis such as this also helps to assess the potential for using the LRM as a basis for 

automatic feature detection. Figure 7.28 shows that digitisations that are visually perceived as a 

positive or negative features from aerial photography may not be statistically separable at the 

grid cell level.
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Buffer Size

2m

Min -0.46 -0.41

Max 1.61 3.86
Mean -0.03 0.03

Stdev 0.05 0.09

1m

Min -0.46 -0.38
Max 0.21 3.86

Mean -0.03 0.03

Stdev 0.05 0.08

0.5m

Min -0.46 -0.36

Max 0.19 3.80

Mean -0.04 0.03
Stdev 0.05 0.08

Basic 
Statistics

Positive 
Features

Negative 
Features
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Figure 7.28: Comparison of Local Relief Model histograms for positive and negative features  
(as defined from the Historic Environment Record) 
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7.7.4 Assessing the Accuracy of the LRM Model

The results of the slope analysis for the LRM model described in section 6.10.2 are illustrated in 

Figure 7.29. The results show that the slope measures along the profile for the DTM and GCP 

are broadly the same with an RMSE of 1.21º. However the microtopography shown in the 

model clearly deviates substantially from the DTM and GCP data with an RMSE of 1.99º across 

the profile (table 7.28).

Figure 7.29: Comparison of slope from the Ground Control Point (GCP) data, Digital Terrain  
Model (DTM) and Local Relief Model (LRM)

To assess the RMSE over the bank and ditch features alone, these were separated from the 

points with no change in slope (table 7.29). It can be seen that the RMSE for areas of flat 

topography is low, indicating that the LRM is accurately defining areas with no change in slope, 

but in areas of microtopography the RMSE of the LRM is higher than that of the original DTM. 

The assessment of slope helps to quantify the accuracy of the LRM's depiction of 

microtopography in profile, indicating that it could be 169% different to GCP measurements.
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Table 7.29: Root Mean Square Error (RMSE) between Airborne Laser Scanned models and  
Ground Control Point data

Perhaps the most interesting result is that the LRM is closer to the values of slope of the GCP 

data (RMSE 3.17°) than it is to the DTM from which it was derived (RMSE 4.46°). This means 

that the error of the DTM-LRM cannot be used as a proxy measure for the accuracy of the LRM 

compared with the GCP. 

7.7.5 Summary

This chapter has covered the results of the individual analysis of the two key data types used in 

this research, digital spectral data and ALS. The analysis has covered both archive ARS data for 

the Everleigh study area and planned acquisition of data for the Upavon study area. The next 

chapter covers the integration of different ARS data along with ground-based measurements and 

concludes with a summary linking the results presented in both chapters with the objectives of 

the research (section 8.10).
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0 Slope Whole Profile
0.84 1.88 1.21
0.42 3.17 1.99
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8 Results – Integrated Datasets

8.1 Introduction

This chapter presents the results of the integration of data from multiple sources along with 

quantitative comparison of all ARS techniques for the Everleigh Study Area.

First, the results of the methods trialled for digital combination of the archive ARS data for the 

Everleigh area are given in section 8.2 directly contributing to Objective 12. Secondly, for the 

provision of background data in support of the ARS surveys (Objective 11), section 8.4 presents 

the results from the assessment of archive weather data for both study areas. Following on from 

this are the results of the geophysical survey (8.5) and other ground-based observations (6.14) 

which are applicable to the Upavon study area. Section 8.7 then gives the results of the 

correlation analysis between ground observations and ARS data.

The latter sections contain the quantitative comparison of ARS data that contribute to Objectives 

3 and 4. Section 8.8 gives the results of the comparisons between different ARS data sources 

with comparisons based on feature number, feature type and average percentage feature length 

recovery. Section 8.9 gives a detailed comparison of “traditional” and “new” techniques for 

visualisation of ARS data based on the archaeological feature mapping from the Everleigh 

archive data.

The final section of this chapter (8.10) provides the summary of the results presented in 

Chapters 7 and 8 in relation to the objectives outlined in Chapter 3.
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Combining Data from Multiple Sensors

8.2 Digital Data Combination

8.2.1 Introduction

The digital combination of multiple datasets was undertaken in fulfilment of Objective 12. The 

best performing spectral and ALS visualisation from the Everleigh Archive dataset were 

selected for integration 

8.2.2 Raster Mathematics

The results of the first techniques trialled to combine the information in the spectral and 

topographic data sets were disappointing. The combination of the January 14-band PC1 and the 

scaled DEM did not allow for the detection of any features that could not be seen in the spectral 

data alone (figure 8.1). 

The same technique was trialled using the LRM topographic model (9m kernal) and the January 

14 band PC1. Using this topographic model improved the visibility of features compared with 

each of the contributing sources as shown in figure 8.2. The maximum number of features 

expected was 120, based on the addition of features mapped from the source spectral and 

topographic data separately (minus the number of features that were visible in both), giving a 

recovery rate of 81% for this technique. The technique also gave an improvement in APFL from 

that recorded by the PC1 of the spectral data (81.0% vs. 72.6%) bringing it to the level of the 

the LRM 9 model (81.0%). 

This result shows that the LRM is better suited than the DEM for combining with other datasets 

as the microtopography is not masked by larger changes in elevation.
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Figure 8.1: The result of combining the Principle Component 1 of the January spectral data with the Digital Elevation Model
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Figure 8.2: Feature visibility in the digitally combined LRM 9 and January PC1 raster  
compared with the contributing sources.

8.2.3 Brovey Transformation

The Brovey transformation was trialled using the FCC of the January data as the red, green and 

blue bands and an alternative to simple addition of multiple rasters. The varying success 

resulting from the incorporation of the scaled DEM, LRM 9 model and the Horizon View 10m 

models is illustrated in figure 8.3. The comparison shows that only the Brovey sharpening using 

the LRM 9 topographic layer exceeded the number of features mapped by any individual source 

used for the composite (figure 8.3). The results were further analysed by calculating a prediction 

of the maximum number of features (topographic plus spectral minus the number mapped by 

both) and comparing the number of features visible in the Brovey transformation to this 

prediction (table 8.1). The results show that the use of the scaled DEM and LRM 9 models as 

the topographic layer of the transform gave approximately 80% of the expected maximum 

number of features. The Horizon 10 model performed noticeably worse than this with a 66% 

recovery rate.
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Figure 8.3: Comparison of all Brovey transformations of the January spectral False Colour  
Composite bands 14, 7 and 3

Table 8.1: Table showing percentage recovery of predicted features from the Brovey  
transformations of the January False Colour Composite data
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Figure 8.4: Comparison of Average Percentage Feature Length for all Brovey transformations  
of the January spectral False Colour Composite bands 14, 7 and 3

Figure 8.4 shows that only the Brovey sharpening using the LRM 9 topographic layer exceeded 

APFL recovery achieved by both the individual sources used for the composite. The average 

recovery from the Horizon View Brovey transformation provides an improvement on the FCC 

average percentage recovery but a reduction from that of the Horizon View model alone. It is 

considered however following the analysis presented in section 7.6.6, that the utility of the 

Horizon View model may be undermined by the detection of false positives and so cannot be 

considered a suitable topographic model for the Brovey sharpening method.

As the use of the LRM model in the Brovey sharpening appeared to offer the best results for the 

January spectral data the technique was also trialled with the May FCC. Table 8.2 indicates that 

the combination of the LRM and May FCC data allowed the mapping of almost 88% of the 

features mapped from each contributing source, while figure 8.5 shows shows that the Brovey 

transformation also provided an improvement on the average feature length recovered. 
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Table 8.2: Table showing percentage recovery of predicted features from the Brovey  
transformations of the May False Colour Composite data

Figure 8.5: Chart comparing Average Percentage Feature Length for the Brovey  
transformations of the May False Colour Composite data

In conclusion, while the Brovey transformation cannot replicate the optimum visibility of 

features mapped from the contributing sources in terms of number of features, recovery levels 

were shown to be more than 80%, or four in five features when the LRM 9 model was used as a 

topographic base for the January spectral data, with this figure rising to almost nine in ten for 

the May spectral data. The fact that the Brovey transform was also shown to improve the 

percentage of feature length mapped compared with either of the contributing sources indicates 

that it may have potential as a visualisation technique for combining three bands of spectral data 

with the LRM topographic model.
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Integrating Ground Based Data

8.3 Introduction

This section gives the results of the ancillary data processing necessary to investigate the wider 

environmental conditions affecting the detectability of archaeological features in the ARS data 

(Objectives 4 and 11). Archive weather data was collated for both the Everleigh and Upavon 

study areas. The opportunity for soil, spectral and geophysical measurements was only possible 

due to the nature of the ARS collection for the Upavon Study Area which allowed ground 

observations to be planned to coincide with airborne data collection. Data collection focused on 

soil moisture via direct measurements and the proxy measurement of earth resistance survey as 

these measures are most sensitive to change over time. The results of this ground-based data 

collection is given in sections 8.4-8.6

The analysis of ancillary data indicated that differential soil moisture may be a significant 

contributing factor to archaeological feature visibility within spectral data. Further work to 

understand the correlation between the ARS and ground-based data is reported in section 8.8.

8.4 Archive Weather Data (Everleigh and Upavon)

8.4.1 Average Rainfall

The average rainfall measures among the five closest weather stations (figure 6.9) for the 14 

days before data acquisition for each of the datasets are plotted in figure 8.6. It can be seen that 

the two hyperspectral datasets for which the archaeological visibility (Jan 2001 and March 

2010) was deemed to be best were collected following a period of 2-3 days of zero rainfall, 

while the data collection in May 2001 was preceded by three days of rainfall. There was no 

recorded rainfall on the day of any of the data acquisitions.

Although the nearest weather stations lie between 7km and 15km from the study area, these can 

be seen to be broadly representative of rainfall figures in the area. An average daily difference 

between the stations of 4.2mm was recorded in January 2001, 0.37mm in May 2001 and 

1.32mm in March 2010. 

Although there is a lack of contemporary ground observation data for the field sites, rainfall 

could be seen as indicative of general soil moisture levels. However a larger sample size would 

be required to test the hypothesis that ground moisture contributes to archaeological feature 

visibility.
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Figure 8.6: Average rainfall for the Salisbury Plain area

8.4.2 Soil Moisture Deficit

Soil moisture deficit (SMD) information was only available from the Environment Agency for 

the March 2010 flight. The SMD for EA's South and South Western regions10 was zero, meaning 

that the soil was at its moisture capacity at this time. It was not felt that this measure, which is 

generalised across time, location, geology and environment was a suitable indicator of local 

ground conditions. Unfortunately no more specific data were available regarding SMD.

10 Salisbury Plain straddles the boundary of these two regions
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8.5 Geophysical Survey (Upavon)

The results of the geophysical surveys are presented here with respect to their application for 

combination with the ARS data. The full interpretation of the geophysical surveys can be found 

in Appendix 2. Figure 8.7 below gives the relative location of the geophysical data figures in 

this section.

Figure 8.7: Relative location of geophysical survey data (figures 8.8-8.11)

8.5.1 Gradiometry Survey

 The survey showed the location of the enclosure at Upavon Field Site 1, Coombe Down 

Enclosures (figure 8.8). The bank feature selected for resistance survey was very subtle in the 

data and can best be seen in profile (figure 8.9). The results of the gradiometry survey allowed 

the geometric correction of the aerial photography (NMP) transcription recorded in the HER to 

enable accurate placement of the subsequent earth resistance, GPR and soil moisture surveys.
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Figure 8.8: Gradiometry survey of Upavon Field Site 1 (SU 177 522 ) overlaid with the  
Wiltshire Historic Environment Record

Figure 8.9: Detail of eastern enclosure bank (SU 177 522 Upavon Field Site 1) in gradiometry  
data with profile
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8.5.2 Earth Resistance Survey

The earth resistance transect was able to detect the bank feature in the 0.25m probe separation 

data (figure 8.10). This showed that the structure of the bank was altering the earth resistance 

properties in the first 0.25m of the soil column and also that the bank was approximately twice 

as wide (~10m) as had been recorded from aerial photographs (~5m).

The bank feature could not be as clearly discerned in the 0.5m probe separation data (figure 

8.11). From comparison with the auger survey results (section 8.6), it is likely that the depth of 

this survey was recording the resistance of the chalk bedrock below the feature.

Figure 8.10: The high resistance bank feature as shown in the 0.25m apparent resistivity survey  
(overlain with the Wiltshire Historic Environment Record)

Figure 8.11: The 0.5m apparent resistivity survey (overlain with the Wiltshire Historic  
Environment Record)
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8.6 Soil Sampling

Due to limited time on site it was only possible to take six moisture cores on the day of the 

ARSF flight, of these two (A and F) were to a depth of 0.1m and four (B-E) sampled to a depth 

of 0.2m (table 8.3). The cores were taken across the known bank feature at SU 177 522 (Upavon 

Field Site 1, figure 8.12). It is recognised that the small number of samples, limited 

geographical coverage and the random strategy with which they were collected are all factors 

that limit the level of interpretation that can be made from these data, however as this 

experiment represents the first attempt at simultaneous ground based soil moisture data capture 

for any ARS project it has been retained here for reference and will be fully evaluated in section 

8.6.

Figure 8.12: Location of soil moisture samples, Upavon Field Site 1, overlain on the 0.25m  
apparent resistivity survey

Table 8.3: Soil moisture content as measured in the cores
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Core Category 0-0.1m 0.1-0.2m
A background 19.38
B background 20.91 17.71
C bank 19.56 20.74
D bank 13.11 16.30
E background 17.74 14.22
F bank 19.55

water content as % of dried 
weight
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For most of the samples the results appear to indicate a difference of 3% in the mean soil 

moisture levels between the bank and background in the first 0.1m of soil. The difference in 

mean percentage of water by dried weight at 0.1-0.2m was of a similar order at 4%. Figure 8.13 

shows that for the background measurements, soil moisture decreased with depth whereas for 

the bank measurements soil moisture increased. However these results cannot be deemed 

significant due to the limited and random nature of the samples and the problems of 

extrapolating soil moisture for an area from a point data set.

Figure 8.13: Percentage water content by dried weight for each category

8.7 Correlation of Soil Moisture and ARS data

As mentioned above, restraints on fieldwork imposed by the imperative to collect simultaneous 

ground based data lead to the sample size of ground based measures to be inadequate. The 

analysis and comparison of these samples was still conducted in order to add to the greater 

understanding of whether the method designed for this study could be effectively employed 

given more extensive data collection.

The first analysis was the spatial autocorrelation as summarised in table 8.4. As can be seen, 

almost all the datasets (with the exception of the ALS intensity) showed medium-high spatial 

autocorrelation. This means that the significance calculated for the correlation between sources 

will be inflated as the observations are dependant. As such the correlation results presented in 
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this section although still indicative, should be interpreted with caution.

Table 8.4: Spatial auto-correlation of the Airborne Remote Sensing data

Table 8.5: Correlation of soil and Airborne Remote Sensing data

The results of the correlation of the soil moisture measurements for the top 0.1m are shown in 

table 8.5. Although the hypothesised negative correlation between soil moisture and earth 

resistance was observed in the data, the relationship was -0.51, indicating that other factors such 

as physical structure and salinity of the soil were likely to be contributing to the earth resistance 

signal. As such earth resistance measures cannot be seen as an adequate predictor of soil 

moisture for these data.

With regards to the topography, soil moisture was shown to have no significant relationship with 

the DEM. A weaker positive correlation to local changes in topography as expressed in the 

LRM is significant at the 0.01 level, indicating that soil moisture may be related to 

microtopographic change. This result highlights the importance of selecting the appropriate ALS 

model for comparison at the scale of topographic change associated with archaeological 

features.

The results of the correlation of both the ALS intensity and its corresponding wavelength in the 

hyperspectral data (band 74, 1064nm) also showed a significant positive correlation, although 

the correlation for the intensity data was not as strong as the hyperspectral data.
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ALS Intensity

-0.51 0.10 0.38 -0.56 -0.85

yes no yes yes yes

Earth 
Resistance 

(0.25m)
ALS – DEM

ALS - Local 
Relief Model

Band 74 
(1065nm)

% Soil 
Moisture 
Content

Significant? 
(p<0.01)

Moran's I

If no correlation: expected value = 0 expected value = 1

Soil Moisture 0.62 0.39

Earth Resistance (0.25m) 0.99 0.008

Band 74 (1065nm) 0.92 0.04

0.97 0.2

ALS - Local Relief Model 0.78 0.4

ALS Intensity 0.2 0.79

Geary's C

ALS – DEM 
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8.7.1 Correlation of ARS Data

In order to improve the understanding of the relative impacts of topography the correlation 

analysis was extended to cross-correlate all the ARS and earth resistance data (table 8.6). All 

figures in table 8.6 are significant to p>0.01.

Table 8.6: Cross-correlation of Airborne Remote Sensing and Earth Resistance data

It can be seen that earth resistance measures in this dataset are more closely negatively 

correlated with local elevation change than with soil moisture, supporting the hypothesis that for 

the feature surveyed, soil structure was a more important factor in determining conductivity 

than soil water content. No strong correlation was seen between the earth resistance survey and 

the DEM or the ALS intensity.

It can also be seen from table 8.6 that ALS intensity and changes in local relief are negatively 

correlated. Coupled with the results of the soil moisture correlation, this indicates that ALS 

intensity is sensitive to changes in both microtopography and moisture content but to neither 

exclusively. In addition it was shown that uncalibrated ALS intensity is poorly correlated to 

band 74 of the hyperspectral data, contrary to the hypothesis that the intensity data would be 

similar to data collected by a digital spectral sensor at the same wavelength. It is concluded that 

for this study the large number of factors that affect the quality of the ALS intensity data 

(2.11.4) have rendered it incomparable to hyperspectral data of the same wavelength and 

therefore of limited use as a substitute for data recorded by a spectral sensor.

Band 74 (1064nm) of the hyperspectral data was shown to be weakly negatively correlated to 

changes in local relief. Coupling these results with those in table 8.5 indicates that while both 

changes in microtopography and soil moisture appear to be correlated, soil moisture has a 

stronger correlation and therefore may be a stronger determining factor in archaeological feature 

visibility in spectral data.

The cross correlation analysis of ARS and ground based observations reinforced the assertion 

that the representation of archaeological features in any dataset is due to a combination of 

physical properties and allowed a broad comparison of the possible levels to which factors such 

as topography and soil moisture are correlated with changes in digital spectral and ALS 

intensity response. There remains the possibility that additional factors, particularly soil 
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ALS – DEM ALS Intensity

Band 74 (1065nm) 0.24 -0.20 0.22 -0.33
ALS – DEM -0.13 -0.07 0.21
ALS -LRM -0.38 -0.76
ALS Intensity 0.07

ALS - Local 
Relief Model

Earth 
Resistance 

(0.25m)
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structure which was only measured in proxy via earth resistance may not have been adequately 

accounted for.

8.7.2 Correlation of Soil Moisture and Hyperspectral Data

The strongest correlation observed in the soil moisture correlation analysis was with the 

hyperspectral band 74. Data was correlated with the 0.25m and 0.5m probe separation earth 

resistance data (figure 8.14) and directly with soil moisture measurements (table 8.5). As the 

level of significance for this correlation was 0.5, it can be seen in figure 8.14 that the 0.5m earth 

resistance survey is not significantly correlated to the hyperspectral data. The 0.25m is only 

correlated to the hyperspectral data in the visible and NIR (450nm-900nm). This result strongly 

indicates that earth resistance data and hyperspectral data are recording different factors (a result 

supported by the comparative correlations in tables 8.5 and 8.6).

Figure 8.14: Correlation coefficient of earth resistance data across the wavelengths recorded in  
the hyperspectral data (Upavon)
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Figure 8.15: Correlation coefficient of soil moisture measurements across the wavelengths  
recorded in the hyperspectral data (Upavon)

As can be seen from figure 8.15, the negative correlation of hyperspectral wavelengths to soil 

moisture measurements for the area is greater than <-0.6 across the spectrum. The negative 

correlation is particularly strong in the visible and NIR portion of the spectrum (400-900nm).

It is well understood that hyperspectral data is sensitive to moisture but it was decided to test the 

correlation across the whole hyperspectral cube to see whether the bands that were highly 

correlated to soil moisture were also the most sensitive to archaeological features (as defined by 

the SI results section 6.5.3). As can be seen from figure 8.16, strong correlation with soil 

moisture measurements compares favourably with the separability of positive archaeological 

features in the MIR ranges (1200-1300nm) but less so in other regions. In particular, high 

correlation of soil moisture with hyperspectral data in the visible and NIR region (450-900nm) 

does not correlate with high archaeological feature separability.

Given the presence of mixed pixels in the data representing both vegetation and soil, it could be 

suggested that separability in the NIR is more affected by vegetation while in the MIR it may be 

more closely related to surface soil moisture. However it must again be stressed that the limited 

number of soil moisture samples gathered does not allow for solid conclusions to be drawn from 

these data; they are presented as indicative of the type of analysis that could be undertaken 

from the simultaneous collection of ground measurements.
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Figure 8.16: Correlation of soil moisture compared with SI the hyperspectral data (Upavon)
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Comparing Feature Detection Across the Archive ARS Sources

8.8 Multi-Sensor Analysis of the Everleigh Study Area

8.8.1 Introduction

The detailed feature mapping exercise undertaken for the Everleigh Study Area, incorporating 

archive aerial photography, 4-band vertical photography, digital spectral and ALS data enabled 

the quantitative comparison of visualisation techniques necessary for Objectives 3 and 8. This 

was undertaken principally via the comparison of average percentage feature length. Due to the 

nature of the feature interpretation it was also possible to assess statistically the impact of 

feature type on visibility through the source data.

8.8.2 Comparison of Average Percentage Feature Length (APFL)

The APFL was compared across the sources using Friedman's ANOVA. The first twenty ranked 

techniques are given in table 8.7. However post-hoc tests showed that there is no significant 

difference in average percentage feature length recovery between the first eight sources in the 

ranking. The post-hoc results also indicate that there is no significant difference in ranks 1-9 

when compared with the HER data, meaning that while these techniques compared favourably 

to the percentage recovery recorded in the HER, none of them outperformed the archive data.

Table 8.7: Results of the Friedman's ANOVA ranking the remotely sensed data sources by  
Average Percentage Feature Length
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Technique Mean Rank
1

Horizon View 10m 2
Overlay Jan PC1 & LRM 9m 3

4
5

HER 6
Lidar Shaded Relief PCA All 7
Aspect 8
Slope 9
Jan PCA 14 bands 10
Jan FCC PCA 11
Jan FCC (14, 7, 3) 12
May PCA 14 bands 13
Jan band 8 14
Jan band 9 15
Jan band 10 16
May FCC PCA 17
May FCC (14, 7, 3) 18

19
20

Brovey LRM 9 May FCC

Brovey LRM9 Jan FCC
LRM 9 m

Jan MRESRI
Jan MRENDVI
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8.8.3 Comparing Feature Type and Visibility Across the Data Sources

The chi-squared test to identify significant differences in the recovery of feature types was 

applied to selected best performing visualisations for each data source. In order to do this the 

detailed feature types recorded were recategorised into three groups depending on their 

topology (table 5.8).

The results of the chi-squared analysis are given in table 8.8. It was not possible to run this 

analysis on the 4-band vertical aerial photography data as the expected cell counts in two out of 

the three types (negative and neutral features) were too low.

Four sources returned significant results indicating that there is an association between the 

feature type and its detectability in the technique. The first was the archive aerial photography 

as recorded in the HER. The chi-squared analysis indicated that feature type had a significant 

impact on visibility for neutral and negative features.

The analyses also showed a significant association between feature type and visibility for two of 

the ALS techniques. The chi-squared analyses showed a significant association for the LRM 9 

model (p<0.05) and a very significant association for the PCA transform (p<0.001). Significant 

association was shown for the overlay of the January PC1 of 14 bands and the LRM 9 model, 

though not the Brovey transformation.

For all other techniques tested, the chi-squared analysis showed that there was no significant 

association between feature type and visibility, indicating that in the broadest categories the type 

of feature did not impact on its visibility in the airborne remotely sensed data.
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Table 8.8: Results of the chi-squared analysis for feature type and visibility across all data 

Source Technique p<0.05 p<0.001

Archive Aerial Photography 35.01 √ 0.45 Yes
January Spectral Data Band 8 0.76 √ 0.07 No

1.34 √ 0.89 No
FCC 1.58 √ 0.1 No

2.13 √ 0.11 No
2.4 √ 0.3 No

May Spectral Data Band 8 2.57 √ 0.12 No
0.13 √ 0.03 No

FCC 1.14 √ 0.08 No
0.27 √ 0.04 No
2.5 √ 0.12 No

Lidar Data Aspect 5.79 √ 0.19 No
Slope 3.55 √ 0.16 No

15.21 √ 0.3 Yes
Horizon Modelling (10m) 5.45 √ 0.18 No

10.97 √ 0.25 Yes
Overlay 9.93 √ 0.22 Yes

1.52 √ 0.10 No
2.39 √ 0.12 No

χ2 Cramer's V Significant association 
between feature type and 

visibility?
SMR data

PCA all bands

FCC PCA
MRESRI

PCA all bands

FCC PCA
MRESRI

PCA

LRM (9m)
LRM / Jan PC1 overlay (addition)
Brovey LRM / Jan FCC
Brovey LRM / May FCC
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8.8.4 Cross- Data Comparisons

One of the aims of the research was to identify combinations of remotely sensed data that allow 

mapping of the archaeological resource to best effect (Objective 8). Table 8.9 illustrates the 

combined recovery rates from multiple data sources. The results presented are divided into three 

sets of data for comparison; manual combination of the results of all the visualisation techniques 

trialled; the manual combination of the best performing single visualisations; and the digital 

combination of data prior to feature mapping.

From the manual combination of the results of all the visualisations, it can be seen that the 

combination of ALS and digital spectral data is particularly useful, with a recovery rate of 83% 

of all previously known features and almost 92% of all features when both spectral datasets are 

used in conjunction with the ALS data. When the results of the spectral data analysis from either 

season is combined with the ALS, c.80% of previously known features were recorded. This 

result may indicate that the January spectral data had more commonality with the ALS data, as 

the margin of better detection of features in the January data over the may data is not upheld 

when the sources are combined with the topographic data. Of the various combinations trialled, 

the addition of ALS and spectral data captures a high proportion of the features that were 

already known in the HER (column 4, table 8.9) making it the closest parallel to the record 

created from archive aerial photography. 

In contrast it can be seen that neither the 2006 nor 2007 4-band vertical photography 

significantly improved the recovery rates of features from combined ALS data alone. The 

usefulness of the broad 690nm-1000nm NIR band of the vertical air photography for enhanced 

archaeological feature mapping was also called into question by the fact that in both years the 

number of features mapped from the visible and NIR bands was almost equal. 

High percentage archive and total recovery (columns 4 and 5, table 8.9) can also be seen in the 

combination of best single visualisation techniques. On average the combination of single 

techniques produced feature recovery rates of 8-15% fewer features than the combination of all 

visualisations. The best performing combination of single visualisation techniques (ALS LRM + 

14 Band Jan PCA + 14 Band May PCA) recorded 9% fewer features. 
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Table 8.9: Previously known and total features mapped by combining visualisation techniques and sources

Manual combination from all visualisations
ALS (all) 123 68 76.40 72.35
ALS (all) + Jan Spectral (All) 139 71 79.78 81.76
ALS (all) + May Spectral (All) 143 72 80.90 84.12
ALS (all) + Jan Spectral (All) + May Spectral (All) 155 74 83.15 91.18
ALS (all) + AP2007 (all) 123 68 76.40 72.35
ALS (all) + AP2006 (all) 123 68 76.40 72.35

123 68 76.40 72.35
ALS (all) + AP2007 (All) + Jan Spectral (All) 139 71 79.78 81.76
ALS (all) + AP2007 (All) + May Spectral (All) 143 72 80.90 84.12

155 74 83.15 91.18
Jan Spectral (All) + May Spectral (All) 110 56 62.92 64.71

85 51 57.30 50

92 51 57.30 54.12
120 60 67.42 70.59
118 62 69.66 69.41
140 66 74.16 82.35
115 59 66.29 67.65
116 60 67.42 68.24
132 63 70.79 77.65

Digital combination
100 59 66.29 58.82
94 53 59.55 55.29
97 56 62.92 57.06

Number of 
features 

recovered 

Number Previously 
known (in SMR)

% recovery of 
archive (SMR) 

(n=89)

% recovery of 
total known 

(n=170)

ALS (all) + AP2006 (all) + AP 2007 (all)

ALS (all) AP2006 (All) +AP2007 (All) + Jan Spectral 
(All) + May Spectral (All)

AP 2006 (All) + AP 2007 (All)
Best performing single visualisation for each data 

source
ALS LRM
ALS LRM + 14 Band Jan PCA
ALS LRM + 14 Band May PCA
ALS LRM + 14 Band Jan PCA + 14 Band May PCA
ALS LRM + Jan Band 8
ALS LRM + May Band 8
ALS LRM + Jan Band 8 + May Band 8

Brovey May
Brovey Jan
Jan band 8 LRM Overlay
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8.8.5 Comparing Uniqueness

Table 8.9 shows that even using all visualisation methods no single source recorded more than 

72% of all the features in the study area. This indicates a high level of complementarity between 

the data sources. To further investigate this observation, the number of features unique to each 

data source was compiled into a comparison table 8.10 below. These figures are also represented 

as percentage of the total number of features recorded during the study.

In general the numbers of features unique to each data type are relatively low with the ALS 

data, recording in the region of 15% of the total number of features recorded as uniquely visible, 

with the archive spectral data from different flights performing equally well (6-8%). A 

discrepancy can be seen in the January spectral data between the best performing band and the 

results of all the visualisations, with the combination of all techniques preforming much more 

strongly in terms of uniqueness than the 14 band PCA in comparison with the other sources. 

This is an indication of the wider spread of uniqueness across the wavelengths of the data set 

and the relatively poor performance of the PCA analysis in comparison to uniqueness for the 

individual bands (section 7.4.6). Table 8.10 also shows the poor performance of the 4-band 

imagery in comparison with the other sensors with no unique features recorded from these data.

Table 8.10: Number of unique features detected in each data set (4-band vertical aerial  
photography shortened to AP (All))
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Comparing All data

27 15.88
Jan Spectral (All) 10 5.88
May Spectral (All) 13 7.65

15 8.82
0 0
0 0

Comparing single best performing visualisations

28 16.47
18 10.59
14 8.24
23 13.53

Number of 
Unique 

Features

Percentage of Total 
number of features  
recorded (n=170)

ALS (All) 

SMR (compared to all)
2006 AP (All)
2007 AP (All)

ALS LRM 7
Jan Spectral 14 Band PCA
May 14 Band May PCA
SMR (compared to single best performing visualisation)
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8.8.6 Feature Certainty

The nature of the archaeological resource means that the certainty with which features can be 

identified solely from airborne remote sensing techniques will always be limited. However the 

certainty of identification and interpretation is greatly enhanced when the feature can be 

identified in data from multiple sources. As an indication of certainty, the number of features 

mapped in multiple sources is presented in table 8.11. However as each sensor records different 

aspects of a feature (topography, proxy vegetation change) these figures can only ever provide a 

very general indication as to the validity of the interpretation.

Table 8.11: Table showing the number of features mapped in multiple data sources

Unfortunately there are no contemporary ground observations for the 65 unique features 

identified from the ALS and spectral data and the nature of the landscape and large scale of the 

features means that of these, 32 unique features that are likely to have surviving topographic 

elements were impossible to identify in the field visits that accompanied this study. The next 

step in this analysis would be to take a sub-sample of the 65 unique features and apply non-

airborne techniques such as geophysical survey or trial trenching to determine how many of 

these features can be verified by some other method.
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Feature Certainty

Detected in one source 65 38%
Detected in two sources 49 29%
Detected in three sources 24 14%
Shown in all 32 19%

Total Number mapped in more than one source 105 62%

Number of 
Features 

Percentage of 
Total Recovered
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8.9 Comparison of 'Traditional' vs 'New' visualisation techniques for ARS (Everleigh)

8.9.1 Introduction

Objective 9 of the research required a quantitative comparison of standard and advanced 

techniques for airborne remote sensing visualisation. As detailed in the Data chapter (Chapter 

5), two stages of feature mapping were undertaken in the Everleigh study area. Initially Areas A 

and B were used producing a total of 290 features of archaeological origin (figure 8.17). These 

areas were subjected only to single band, TCC and FCC analysis for the spectral data and PCA 

of eight shaded relief models for the ALS data, reflecting the techniques that were identified as 

being most commonly applied to these data types, henceforth termed “traditional techniques”.

Area C was identified as a representative subset of Areas A and B for further interrogation. In 

this area a total of 170 archaeological features were mapped using a much wider variety of 

techniques. This allowed the comparison of Traditional' vs 'New' techniques as outlined in 

Objective 8. 

Figure 8.17: Everleigh Study Areas A, B and C location map
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Throughout this section where percentage of the total number of known features is given this 

number represents the proportion of total number of features known from both archive 

archaeological records in the form of the Wiltshire HER and the results of this study. These 

figures cannot be seen to be the same as the total number of archaeological features present as it 

would be impossible to identify all archaeological features in any landscape from airborne 

remotely sensed data. However, representing the rate of detection of archaeological features as a 

proportion of the total known is extremely useful for comparing data sources, and may provide 

a guide for the quantity of archaeological features in an area providing this caveat is 

acknowledged.

8.9.2 Comparison of 'Traditional' vs 'New' techniques for Areas A/B and C

The number of features recorded for each data type for the study areas A/B and C are shown in 

table 8.12. These figures in the case of the spectral, ALS and 4-band aerial photography are the 

total number of single features mapped across all the visualisation techniques applied. The 

results are illustrated in terms of percentage recovery of all known features in figure 8.18. 

It can also be seen from figure 8.18 that the most efficient method for identifying archaeological 

features, and the only survey type that outperformed the HER record was the ALS data.

Table 8.12: Table showing the number of features recovered from each of the study areas.

In area A/B the total number of sites known after the analysis (290) was 92% higher than that 

identified in the existing HER record (151). In area C using traditional techniques the increase 

was slightly smaller from 89 to 161 features, a rise of 81%. 
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HER (baseline) 151 89 89

4-band AP 2006 57 37 37

4-band AP 2007 45 34 34

January Spectral 128 62 82

May Spectral 112 62 69

ALS 159 92 123

Number of features 
recovered from Areas A/B 
using standard techniques

(total 290)

Number of features 
recovered from Area C 

using 'traditional' 
techniques
(total 161)

Number of features 
recovered recovered 
from Area C using all 

techniques
(total 170)
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Figure 8.18: Percentage feature recovery for Areas A and B (using traditional techniques)  
compared with both traditional techniques and all techniques for subset Area C

Figure 8.18 shows that in area C using all the techniques applied there was an increase increase 

of 18% to the number of features seen in the the ALS data and a smaller increase of 12% for the 

January and 5% for the May spectral data. Overall the increase in the total number of features 

identified was just 6% from the traditional techniques compared with all techniques.

The increased identification of features in multiple datasets shown in cross comparison table 

8.13, is extremely important for improving the accuracy of the archaeological interpretation. For 

example, it can be seen that using traditional ALS and spectral techniques 36 features were 

recorded in both the ALS and the January spectral data. The additional techniques trialled for 

Area C raised this number to 66.
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Table 8.13: Cross comparison table showing the number of features recovered by any two  
sources
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89 48 68 37 48 38 41

92 92 36 48 35 37

123 51 66 46 49

62 62 27 30

82 38 41

62 62

69

Wiltshire 
HER

ALS 
Traditional 

ALS All 
Techniques

January 
Spectral 

Traditional

January 
Spectral 

All

May 
Spectral 

Traditional

May 
Spectral All

Wiltshire 
HER

ALS 
Traditional 

ALS All 
Techniques

January 
Spectral 

Traditional

January 
Spectral All

May Spectral 
Traditional

May Spectral 
All
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Summary of Results

8.10 Meeting the Objectives

The quantity and quality of data available for this analysis meant that it was possible to achieve 

the technical objectives established in chapter 3, and the results for each objective are 

summarised below.

8.10.1 Objective 3 – Assessing the Relative Value of ARS data

• The analysis of archive ARS data for the Everleigh Study Area gave an opportunity to 

compare feature detectability to an existing archive in the form of the HER (archive 

aerial photography transcription). The combination of sensors increased the number of 

detected archaeological features in areas A and B by 92%.

• In this predominantly grassland environment, archaeological features were most 

detectable in the ALS data. The combination of all ALS visualisations for Area C 

recovered 75% of features known from the HER and 72% of the total number of 

features recorded. The ALS data were also statistically shown to be unaffected by land 

use.

• The digital spectral data were shown to be of value in this environment for detecting 

archaeological features despite their relatively low spatial resolution. In the January 

data, 48% of all features recorded in the analysis and 54% of the features known from 

the HER were detected in Area C. In the May data, 41% of all features and 43% of HER 

features were detected in Area C. Both spectral datasets recorded unique features, 

however feature detection was shown to be significantly impacted by land use variation 

across the study area.

• The 4-band NIR photography performed poorly in comparison to the other data, 

recording just 20-22% of all features in Area C and no unique features. These results 

indicate that despite their higher spatial resolution, these data are less well suited to 

archaeological feature detection in this environment than digital spectral imagery, ALS 

or archive aerial photography.

• The key finding of the analysis of archive ARS data was the complimentary of the 

different sensors. No single technique recorded more than 72% of all features and high 

levels of complementarity were observed between spectral and topographic data. 
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8.10.2 Objective 4 – Understanding Environmental Conditions

• Although the full understanding of environmental conditions at the time of archive data 

collection is not possible without contemporary, co-located observations, it was possible 

to collect relevant data for average rainfall from weather stations local to the study area 

to give an insight into ground moisture conditions. 

• The analysis of soil data from the Upavon Study Area indicated that variation in soil 

moisture levels over archaeological features could be a significant factor in their 

detectability in airborne spectral data.

• Further to this assertion, it was noted that improved feature detectability in the spectral 

data appears to be related to a short period without rainfall immediately prior to the 

acquisition for both the archive and planned data. However, the sample size was too 

small to suggest a statistically significant correlation.

8.10.3 Objective 5 – Deriving Quantitative Information from ARS

• Feature degradation was documented in the Everleigh Study Area in field system 

elements that ran through three land use types. Features in the heavily ploughed area 

could still be detected in the ALS data and relative heights derived from the LRM.

• The most important results contributing to this objective relates to the analysis of 

accuracy in the ALS models specifically the LRM. Using contemporary GCPs it was 

possible to quantify the error present in ALS models, underpinning future analysis of 

degradation.

8.10.4 Objective 6 – Applying 'New' Techniques

• Quantitative assessment of a number of visualisation techniques for the ARS data 

showed that on the whole “new” techniques, such as LRM and Horizon View Modelling 

improved feature detection rates by 18%.

• “New” visualisation techniques (PCA and vegetation indices) were also shown to 

improve feature detection in the spectral data but by a smaller margin (5% for the 

January and 12% for the May spectral data).
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8.10.5 Objective 7 - Spectral Sensitivity

• Visual assessment of sensitivity across the wavelengths of the archive multispectral data 

showed that in both January and May archaeological features were more detectable in 

the red-edge wavelengths (around 770nm) than in any other region represented.

• Automated assessment of the hyperspectral data using SI supported the results of the 

visual assessment but also showed increased sensitivity in the NIR and MIR regions . It 

was also illustrated that separability was not equal for all feature types.

• For the archive spectral data, archaeological feature detection was shown to be better in 

January than in May.

• Land use was shown to have a significant impact on the visibility of archaeological 

features in the archive spectral data for the Everleigh study area.

• Archaeological spectral sensitivity in the hyperspectral data for the Upavon Study Area 

was shown not to be solely comparable to soil moisture correlation as measured by 

earth resistance survey.

• The value of data recording specific wavelengths (multi or hyperspectral) compared 

with broad-band, averaged NIR photography was illustrated by substantially higher 

feature recovery rates despite lower spatial resolution.

• PCA was proved to be a useful way to summarise spectral data but was also shown to 

mask archaeological information in certain wavelengths.

• Vegetation indices were shown to provide little complementarity data in this 

environment, with most performing poorly compared with individual bands in the 

archive data assessment.

8.10.6 Objective 8 – ALS Visualisation Techniques

• The complementarity of ALS visualisation techniques was shown, illustrating that a 

single technique is not sufficient to detect all archaeological topography in this 

environment.

• Two new techniques, Horizon View Modelling and LRM were assessed and found to be 

of use for identifying microtopographic change in this environment.

• Horizon View Modelling, despite good feature visibility was shown to be susceptible to 

linear artefact creation.
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• LRM was shown to be a useful feature detection technique and also proved to be more 

suitable for digital combination with other data than the DEM. 

• Shaded relief modelling and PCA of shaded relief models, although aesthetically 

pleasing, were shown to be the least accurate techniques for locating and profiling 

features.

• In this environment, land use was shown to have no significant impact on feature 

detectability for any of the ALS visualisation techniques.

8.10.7 Objective 9 – ALS Model Accuracy

• Through contemporary GCPs it was possible to verify the accuracy of the DEM over 

archaeological features. 

• A new technique based on change in slope was developed and applied to assess the 

accuracy of depiction of microtopography in the LRM.

8.10.8 Objective 10 – ALS Intensity

• ALS intensity measures for the archive EA data were shown to be unsuitable for 

archaeological feature detection in this study.

• Histogram matched intensity data were also shown to have a relatively poor correlation 

to the closest band of the hyperspectral data, indicating that more complex radiometric 

calibration is required for useful results. 

8.10.9 Objective 11 – Comparison of Ground Geophysical Techniques and ARS

• Through the ancillary meterological data it was possible to derive an hypothesis 

regarding the impact of soil moisture on archaeological feature detectability.

• Direct and proxy measurements of soil moisture were compared to ARS data and shown 

to be correlated with hyperspectral data values. Some of the spectral regions sensitive to 

moisture were also sensitive to archaeological features.

• Earth resistance was shown to be a poor proxy for soil moisture in this environment, 

being affected by feature structure, compaction and salinity of the soil.

• GPR survey was not useful in determining the subsurface structure of the feature 

sampled.

• Multicausality and spatial autocorrelation were shown to be affecting the usefulness of 
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results of the correlation analysis between ground based and airborne methods, 

rendering this an insufficient tool for of comparison of data.

8.10.10 Objective 12 – Digital Integration of ARS Data

• Simple raster mathematics was show to be an ineffective way to combine data, despite 

careful scaling of the source rasters.

• The ALS-derived DEM proved to be unsuitable for digital integration. The LRM was 

shown to be a more effective terrain model for both simple raster mathematics and pan 

(Brovey) sharpening.

• Pan (Brovey) sharpening of the spectral FCC image using the ALS LRM model gave 

the best results in terms of feature detectability. Even so, this was shown to reduce 

feature detection by 13-20% compared with the individual analysis of the source rasters.
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9 Discussion

9.1.1 Introduction

This chapter draws together and examines the new information derived from the study of 

airborne remote sensing data for the Salisbury Plain study areas. The chapter is divided into 

three, with a section specific to each of the main data types used. The results of the analysis of 

digital spectral data are discussed first (9.2) with respect to previous understanding and future 

directions for this research area. A similar approach is taken for ALS data (9.3). The final 

section (9.4) discusses the implications of the findings of the project to the broader application 

of airborne remote sensing to archaeological research.

9.2 Digital Spectral Data for Archaeological Prospection

9.2.1 Introduction

The systematic approach employed in this study was inspired by the work of Traviglia (2006) , 

Hampton (1974) and Shennan and Donoghue (1992), but is atypical when compared with 

recently published archaeological studies of spectral data (e.g. Challis et al. 2009) (see section 

3.6). Analysing many visualisations for the same area is time consuming, and may be 

problematic as there is a tendency once a feature it is mapped, for an operator to continue to 

“see” a feature in subsequent visualisations. However so little was known about the impact of 

visualisation techniques on archaeological feature detection prior to this research, that any 

strategy without thorough assessment of a range of techniques would have failed to improve 

current understanding.

As the review of current research has demonstrated, the use of digital spectral data for the 

identification of archaeological features in a non-arable environment was also a novel 

application (section 3.6 b). As such, in the grassland environment that typifies the Salisbury 

Plain study areas it was difficult to predict the potential of these data at the start of the study, 

particularly given the lower spatial resolution of airborne spectral data compared with standard 

aerial prospection techniques. The results of the analysis of both archive data and digital 

spectral data from planned acquisition have been promising in terms of feature identification 

when compared with other sensors, paving the way for future applications of digital spectral 

data in non-alluvial environments.

9.2.2 Comparison to Other Sensors

A key objective of the research was to assess the relative value of digital spectral data when 
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compared with both the existing archaeological record (HER) and other ARS data, specifically 

NIR photography and ALS data (objective 2). Incorporating the assessment of many 

visualisation techniques (Objective 5) and building from visual detection of features to 

automated assessment of separability, has enabled quantitative assessment of the value of digital 

spectral data when compared with other ARS data.

The archive multispectral data performed well in comparison with the baseline data from the 

Wiltshire HER, with around 42% of features that were recorded in the HER also being detected 

in the individual January and May datasets. When the data from both seasons were combined 

this number rose to 63% (section 6.4, table 6.2), indicating the complementarity of seasonal data 

and the value of repeat acquisitions capturing different soil and vegetation conditions. 

The feature detection rate is particularly surprising given that the HER comprises the 

transcription of an archive of more than 50 years of oblique and vertical, colour and 

panchromatic aerial photography, illustrating the capacity of spectral data to capture information 

on almost half of the previously known features in a single survey. Combining the results of all 

the sensors for the Everleigh area, 48% of all features recorded in the current study were 

detectable in the January data and 41% in May data which compares favourably with the 52% 

recorded by the HER.

Often lower spatial resolution is cited as an inhibiting factor for using spectral data, however the 

results of the feature mapping exercise indicate that in this environment the lower spatial 

resolution did not prevent the detection of features already mapped from aerial photography. 

This assertion is supported by comparison to the broad spectral coverage of the 4-band NIR 

photography (section 6.3). Although there have been recent advances in the use of NIR 

photography for detection of archaeological features (Verhoeven 2008; Verhoeven and Schmitt 

2010; Verhoeven 2011), prior to the Salisbury Plain study presented here, no research had 

compared vertical NIR photography to multi-band digital spectral data. In comparison with the 

NIR photography, which had six times the spatial resolution but poorer spectral resolution, over 

twice as many features were detected in the digital spectral data of either date. While the broad 

comparison of these two datasets is hindered the lack of contemporaneity, the fact that the NIR 

photography performed poorly when compared with the baseline HER data (recording less than 

a third of previously known features) and detected no unique features, strongly suggests that for 

the features in this study, spectral resolution and / or seasonality were more important factors in 

feature detectability than spatial resolution. 

As noted in the literature review (Chapter 2), only one previous study (Rowlands and Sarris 

2007) had directly compared the results of feature detection from digital spectral and ALS data 
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and no work of this kind had been undertaken in the UK (section 2.4.2). By incorporating ALS 

data, the current research has demonstrated the benefit of multi-sensor survey, particularly for 

improving feature interpretation, which in the past has proved problematic from digital spectral 

data alone (Winterbottom and Dawson 2005). Consequently, it is suggested that the quantitative 

comparison of the feature type from aerial data was only really possible via the incorporation of 

ALS data. For January a total of 74% of the number of features detected were also detected in 

the ALS, while in May the number was slightly lower at 71%. This is comparable with the 

percentage of HER features that had topographic representation (76%). The statistical analysis 

shows that there was no significant association between feature type and visibility in the digital 

spectral data, but that there was a significant association between land use and feature visibility. 

The fact that only a quarter of the features seen in each spectral dataset can be classified as 

“neutral” (i.e. soil or vegetation marks with no detectable topographic change in ALS or 

walkover survey) is attributed to the spread of feature types in the study area where only 13% of 

the total number of features detected fell in this category. In this respect the spectral data 

appears to be slightly more sensitive to this feature type than the HER record, where 17% of 

features recorded were without currently detectable topography.

The results of the data comparison have highlighted the contribution of archive digital spectral 

data can make to the assessment of archaeological features in a predominantly grassland 

environment, detecting features that were previously unknown and have no detectable 

topographic representation. Perhaps the most significant result is the difference in feature 

recovery between the January and May acquisitions (section 9.2.3). This illustrates that digital 

spectral data are not only complementary to other ARS data but that multiple spectral surveys 

with the same instrument over the same landscape can improve the feature detection rate and 

provide complementary data. Our understanding of the exact mechanisms behind feature 

detectability in archive spectral data is severely limited by a lack of contemporary ground 

observations, but some ways forward using archive weather observations are discussed in 

section 9.2.4 below.

9.2.3 Spectral Sensitivity 

Particular priority was given to assessing sensitivity across the visible – NIR spectrum in the 

this research (Objective 6). Given the lack of previous study of spectral sensitivity (section 3.2), 

this was deemed fundamental to improving understanding of how to apply and interpret 

airborne spectral data for archaeological prospection.

The initial approach of single band mapping for the archive multispectral (CASI) data worked 

well for the Everleigh area showing that not all regions of the NIR spectrum were equally 

212



Chapter 9 - Discussion

sensitive to archaeological features. This work broke new ground in the analysis of NIR spectral 

sensitivity for archaeological data, using established methods of archaeological aerial 

prospection to record features across the spectral bands. Even the detailed comparisons of 

visualisation techniques undertaken by Traviglia (2006; 2008) did not include single band 

analysis only band ratios, PCA and vegetation indices. From the results of the Salisbury Plain 

study, it is argued that without some a priori understanding of sensitivity across the spectral 

bands it is not possible to select appropriate indices and ratios for band combinations or to 

quantify data loss from such data combinations compared with single band analysis.

In both the January and May datasets the red-edge wavelengths (680-730nm) allowed the best 

detection of features in visual assessment (section 6.2.4). The May data also showed a small 

peak in detectability in the visible region (470-550nm) when compared with the January data, it 

is suggested that this relates to the senescence of vegetation in the latter data. Generally both 

January and May spectral acquisitions for the archive digital spectral data show sensitivity to 

archaeological features that matched what would be expected of a spectral vegetation response 

with significantly higher response in the red-edge NIR than the visible. In the January and May 

data, features recorded in the best performing band (706-717nm) represented 67-8% of all 

features detected in each spectral acquisition. This indicates that the localised changes in matrix 

detected that are recognised as archaeological features in the spectral data are principally related 

to changes in vegetation. Therefore in the wavelengths where the vegetation response is 

strongest, the contrast between archaeological features and their surroundings is also most 

detectable. This has significant implications for the application of NIR wavelengths for 

prospection, not only in identifying the key spectral region for feature detection but also in 

highlighting the importance of the vegetation component of the spectrum in this environment. 

This improved understanding shows how the method of this research can contribute to a better 

understanding of the science underpinning feature detection (section 3.6 a).

In terms of spectral sensitivity, the value of higher spectral resolution to archaeological 

prospection was indicated by comparison with the archive NIR photography (section 6.3). The 

NIR photography had a very broad NIR range from 690-1000nm, the averaging of which 

appeared to impede feature detection. The comparison of NIR photography with digital spectral 

data is most fairly done through the false colour composites (as the NIR photography could not 

be viewed as single bands) and in all cases the FCC of the NIR photography recorded less than 

half the number of features of the FCC of the spectral data. Having recorded high spectral 

sensitivity in the red-edge, this indicates that broad NIR measurements are insufficient to detect 

the changes that are noticeable in narrower spectral bands in this environment.

The hyperspectral data for the Upavon study area required a different approach to assessing 
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sensitivity due to the high number of bands recorded and so an automated approach in the form 

of the Separation Index (Cavalli et al. 2009) was trialled. In principal this index appeared to be a 

rigorous method of assessing separability but on application it was found to be heavily 

dependent on a number of factors including the range of spectral values and the ratio of 

background to archaeological pixels (section 6.5.2). This meant that the published version of the 

index was unsuitable for landscape-scale assessment and led to the modifications detailed in 

section 5.7.1. The issue of value range also rendered the SI an unsuitable tool for comparison of 

vegetation indices (section 6.5.3) casting doubt on the claims of the authors that the SI “can be 

applied to R.S. (ARS) data regardless of the land cover scenario, the sensor data characteristics 

and the applied image processing techniques” (Cavalli et al. 2009:274). 

Despite this, the modified SI proved to be a useful tool for inter-band comparison across the 

spectral cube. Although, unlike the visual assessment undertaken for the archive data, this 

technique could not take into account features newly detected in the spectral data, it provided a 

way to compare separability of known features from the background spectral values in an area 

of homogeneous land cover and also to assess the impact of feature type on detection rate 

(section 6.5.2). In comparison with the archive spectral data, it was shown that the red-edge 

region still showed high separability, but that there were also peaks of separability in the 1100-

1150nm and 1300-1340nm regions illustrating the value of wavelengths longer than those 

recorded by the CASI sensor. Feature type was seen to have a significant impact on separability 

in this data with SI values for negative features much lower for those with positive topographic 

expression. Features with no topography were the most difficult to separate from the 

background though this could in part be due to inaccuracies in the HER record locations which 

could not be corrected using contemporary ALS survey and aerial photography. 

While the results point to microtopography as being a significant factor determining feature 

detectability in this environment, investigation of non-topographic features should be prioritised 

for future work with hyperspectral data. These features are the most difficult to detect using 

other sensors and thus are the examples where the application of digital spectral imagery could 

be of most benefit. The correlation observed between NIR regions of increased archaeological 

separability and sensitivity to soil moisture also indicates that this could also be a key factor 

underlying detectability. However, from statistical analysis of the soil moisture samples and 

microtopography for Upavon Field Site 1, it is clear that these factors are not independent, and 

therefore determining their relative impact on visibility may be impossible for features with 

even slight local relief. 

The modified SI was shown to be a useful tool for assessing the detectability of known features 

in large hyperspectral datasets, providing the accuracy of the existing archaeological spatial 
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record could be verified and corrected if necessary (section 4.5.2). It was not possible to assess 

the detectability of previously unknown features that had no topography during the time frame 

of this study. Defining target features for this type of analysis would be very challenging, in part 

because in this environment, features with no upstanding topography are rarely detectable by 

any form of aerial survey and as ground survey is challenging and offers limited spatial 

coverage, sites of this type are difficult to locate. Further detailed transcription of the 

hyperspectral data may provide potential features, however it is considered that greater priority 

should be given to defining the physical and biological properties that enable the detection of 

known sites, so as to aid the theoretical identification of target features that do not have these 

parameters. As such the SI provides a method of data reduction and definition of wavelengths 

most sensitive to archaeological prospection.

9.2.4 Seasonality

Objective 4 outlined the need to assess the impact of seasonality on archaeological feature 

detection in spectral data. Seasonality is a factor that is widely acknowledged to have an impact 

on feature detectability (Shennan and Donoghue 1992; Wilson 2000; Brophy and Cowley 2005; 

Traviglia 2006; Challis et al. 2009; Beck 2011) but has proved difficult to research due to the 

lack of repeat acquisitions over the same area at different times of the year; a factor that links 

back to the dependence for the most part on archive ARS data for archaeological prospection 

(section 2.3.2). Ultimately, only a continuous measurement approach that involves daily 

monitoring of soil conditions combined with airborne spectral measurements (such as that 

currently being trialled by the DART Project (Beck 2010)) will collect the scientific data 

required to determine seasonality in a given environment. Even given this detailed dataset, the 

potential for modelling detectability across entire archaeological landscapes encompassing 

varying geological, environmental and vegetation conditions may prove impossible given the 

number of factors affecting detectability.

This research has shown that assessing the impact of seasonality can be undertaken using 

archive data, with the CASI data collected in January and May 2001 providing a unique 

opportunity to do this (section 6.4). While it is acknowledged that this repetition of survey may 

be uncommon and the lack of contemporary ground observations is a limiting factor, the 

possibility for using archive airborne data to assess seasonality is one that has been ignored to 

date. 

Contrary to what might have been hypothesised based on peak vegetation growth (Suttie et al. 

2005), the January spectral data performed significantly better than the May data both in terms 

of binary visibility and APFL. This correlates to an extent with the results of Hampton's survey 
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over grassland (1974), where non-visible wavelengths were shown to be of less use in June and 

July than in August, although in the Salisbury Plain study NIR photography (of a similar type to 

Hampton's) taken in August and September performed very poorly in comparison to all other 

sensors (section 6.3).

Assessing the causes of this observed difference are complex due to the lack of contemporary 

ground observations. Hypothetically, there are several factors to consider:

• The shallow root system of hardy vegetation such as grass that is typical of liminal 

areas is unlikely to exhibit stress in its peak growing season (May) under non-drought 

conditions (such as were captured in the data used for this study.) 

• The impact on vegetation is also likely to be heavily affected by the type of 

archaeological features in the study area. As earthen structures dominate the record it is 

suggested that these neither inhibit nor promote hardy vegetation growth sufficiently to 

be the primary cause of detectability.

• During senescence the low levels of hardy vegetation enable greater soil fraction to be 

detected in each pixel thus the detection of features in the January data is not a 

consequence of vegetation change alone but of a mixture of soil and vegetation contrast.

• If soil contrast is significantly contributing to feature detectability, over free-draining 

soils, the weather conditions in the days immediately preceding survey may have a 

significant impact on the ability to detect features in this environment.

For the archive spectral data the only ancillary data available to the study were the rainfall 

records collected from the Met Office. These show that for the January data and the March data 

collected for Upavon (which were both seen to have good detectability of archaeological 

features) acquisition was preceded by several days without rain. For the May data there was a 

peak in rainfall over the four days prior to acquisition. While with a sample size of just three 

surveys this can be nothing more than an observation, there is an indication that soil moisture 

difference is playing a role in the separability of archaeological features from their 

surroundings. Evans and Jones (1977) showed that the most important factor in crop mark 

formation was the differential availability of soil moisture, directly linked to precipitation levels. 

Current work by the DART group (section 3.4.3) aims to assess the impact of soil moisture 

variation among other factors for known crop mark sites in agricultural areas. Using the SI as a 

standard measure of feature detection rates in spectral data and combining this with archive 

rainfall data it could also be possible to explore this hypothesis with relation to visibility of 

known archaeological features in archive digital spectral data. 
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9.2.5 Visualisation Techniques

One of the challenges for this project was to research, apply and evaluate a wide range of 

visualisation techniques that had not been applied previously to archaeological ARS in the UK 

(Objective 6). For the archive digital spectral data three standard techniques were implemented, 

single band analysis, FCC and TCC (after Challis et al. (2009)), alongside a number techniques 

that have not been widely used in archaeological prospection, including PCA, sPCA and a range 

of vegetation indices (after Traviglia (2008)).

Applying a range of visualisation techniques was shown to increase feature detection by 12% in 

January and 5% in May. The improvement seen by selecting FCC bands based on the spectral 

sensitivity and uniqueness shown by the single band mapping showed that this visualisation 

technique is much more effective when based on empirical data. This is of course only possible 

if assessment of separability for each of the bands is undertaken prior to the creation of 

composites (section 8.2.4).

Comparison of the techniques showed that all-band PCA was the best single technique for 

visualising features from the archive data although detailed analysis showed that the technique 

masked information from key bands, especially in the May data where sensitivity was more 

evenly spread across the spectrum. Selective PCA using the three bands with the most unique 

features did not perform as well as the all-band PCA for this data. However as the principal 

components were easier to map from when shown in greyscale rather than a colour composite, 

all-band PCA still required the assessment of three images to capture the majority of variance. It 

is also likely that this technique would be much less successful for hyperspectral data due to the 

increased number of bands as data loss was noted in the Salisbury Plain study when compared 

with the single band analysis of the most sensitive wavelengths (6.4.6). Therefore selective PCA 

for ranges of wavelengths based on the results of the SI is proposed as the best method for data 

reduction and visualisation for hyperspectral data.

The application of a range of vegetation indices was a novel area of research for archaeological 

prospection in the UK environment, where the two previous studies to use vegetation indices 

had used only the NDVI (Winterbottom and Dawson 2005; Challis et al. 2009) without further 

justification as to how appropriate this index is for archaeological prospection using airborne 

digital spectral data. The results of a quantitative comparison of 12 indices selected for their 

empirical basis and applied to the archive spectral data, showed that the most commonly used 

index, the NDVI, was in fact one of the worst performing indices for archaeological feature 

detection. This is due to its use of a broad band red-edge designed for satellite data when the 

spectral resolution of the airborne data lends itself to more refined measures such as MRESRI 

and RENDVI. It was shown that the best performing indices varied across the spectral datasets 
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of different dates with only the MRESRI consistently performing well. In summary, the best 

performing indices allowed the detection of a number of features that were not detectable in the 

best single band but offered no significant improvement on the all-band PCA. While it is clear 

that some indices can be used to detect archaeological features successfully, a lack of 

understanding of both spectral sensitivity and resolution often prevents the most appropriate 

indices from being applied. The scoring of indices proved to be a useful way to asses their 

application for archaeological research. However due to dependence of the SI on the range of 

values in the image, it was not possible to use this technique to compare directly the efficiency 

of the vegetation indices of different scales. Future work should attempt to normalise the data 

prior to the application of the SI to enable automated comparison of vegetation indices.

Given these results and the difficulty of interpreting the results of most vegetation indices in 

terms of biological parameters and relating these proxy properties to the archaeological features 

causing them, it is considered that the focus of archaeological digital spectral research would be 

more profitably directed towards developing visualisation techniques based on the spectral 

sensitivity identified through other means. 

9.2.6 Integration with Ground Survey Techniques

The planned and specified data collection for Upavon allowed a unique opportunity for the 

collection of contemporary geophysical measurements. Despite previous interest in the links 

between ARS data and geophysical survey (Challis et al. 2011a; Challis et al. 2011b) no 

previous study has been able to compare contemporary ground-based and airborne data. 

Consequently the experimental design of the fieldwork focused on the acquisition of 

simultaneous measurements for a necessarily small area.

On analysis of the literature it became clear that the representation of archaeological features in 

airborne spectral data would most likely be related to two factors; the form of the feature 

(topography) and its physical make up, in particular its soil moisture content in relation to its 

surroundings (Evans and Jones 1977; Ben-Dor et al. 2002; Traviglia 2005). As soil moisture 

content changes almost constantly (except when at the extremes of saturation or desiccation) to 

assess the surface components of a representative archaeological feature most affectively, auger 

survey, GPR and earth resistance had to be conducted on the day of the hyperspectral data 

acquisition.

As anticipated, the auger survey showed that there appeared to be a difference in soil moisture 

between the archaeological feature and its surroundings and that there was a strong negative 

correlation of soil moisture changes to reflectance in the hyperspectral data (section 7.7). 

However the results for the geophysical survey did not present the best baseline for comparison 
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with the spectral data, in large part due to the chalk soils and nature of the archaeological feature 

selected. GPR survey failed to detect any structural change across the feature, presumably 

because the earthen feature that was the target of the survey was homogeneous with the topsoil 

(Appendix 2). The feature was detectable from change in the earth resistance survey, though it 

was found that these changes in resistance did not correlate well to measured differences in soil 

moisture. Although often cited as a direct proxy for soil moisture content (Section 3.12.1), in 

fact earth resistance data are affected by a number of other factors such as the physical and 

chemical properties of the soil (English Heritage 2008). In free-draining soils such as in the 

study area it is likely that the earth resistance is more affected by these factors than by moisture 

levels, as evidenced by the poor correlation to the soil samples (section 7.7).

Although statistical analysis indicated that topography and soil moisture were factors 

influencing feature detectability in the spectral data, it was not possible to draw any significant 

correlation between spectral data and the geophysical survey in the Upavon case study (7.7). As 

the sample area of geophysical survey was small, both in terms of spatial coverage and number/ 

type of archaeological features included, it is considered that this result is inconclusive as to the 

nature of the relationship between earth resistance survey and hyperspectral data. 

The methods used here differed from previous studies in that the focus of the experimental 

design was on reducing temporal variation between the data collection and therefore 

minimising the effect of this factor on the results. In practice it was shown that the logistical 

difficulties of conducting simultaneous ground survey were  in themselves too great a limiting 

factor as they reduced the amount of data that could be gathered and therefore the quality of the 

comparisons to airborne data. While the analysis techniques used for these data indicate that 

they are worthy of further investigation, the method of ground-based data collection should be 

revised. It would be advisable for long-term (12 month or more) monitoring of the study sites to 

be in place incorporating repeated geophysical and soil measurements with a number of 

airborne data acquisitions during the course of  the study and across a range of archaeological 

feature types. Unfortunately such long term monitor was beyond the remit of this study.

9.2.7 The Contribution of the Salisbury Plain Study 

The contributions of the Salisbury Plain study to advancing the use of digital spectral data for 

archaeological prospection can be summarised as follows: 

• Demonstrated a proof of concept of the use of digital spectral data for archaeological 

prospection in grass-dominated environments

• The only project to assess the comparative value of multispectral vs. hyperspectral data 
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in terms of spectral sensitivity for archaeological feature detection

• Provided the first example of simultaneous ground and airborne data collection for 

spectral data in the UK

• The only quantitative comparison of visualisation techniques to include single band 

analysis, true and false colour composites, PCA, sPCA and vegetation indices for the 

same geographical area

• Significant contribution to the understanding of the impact of environmental conditions 

on spectral data acquisition via comparison of repeat airborne surveys and addition of 

meteorological data

• The study contributes to current understanding of archaeological feature properties 

impacting detectability in spectral data via contemporary soil moisture measurements 

and geophysical techniques,

• Contribution to current understanding of the impact of land use and feature type on 

detectability via quantitative analysis and comparison with other ARS data

• Improved understanding of the relative value of digital spectral data when compared 

with other ARS data, specifically archive oblique aerial photography, ALS data and 

vertical 4-band NIR photography.

9.2.8 Future Directions

The detailed analysis of airborne spectral data as part of the Salisbury Plain research has 

highlighted a number of themes for future research in this field.

Although the analysis of contemporary ground measurements and ALS added to current 

understanding of how soil moisture content and topography contributes to archaeological 

feature detectability there is a pressing need for more detailed study examining other physical 

and biological factors. In the first instance it would be useful for such research to be conducted 

into both direct (bare earth) features and proxy (covered by vegetation) features separately as 

the definition of spectral response is likely to be different for these two categories. It is 

suggested that research should also incorporate features where the spectral response is a mix of 

soil and vegetation (as seen in the Salisbury Plain spring data), however it is anticipated that 

greater understanding of these “mixed” features will be underpinned by the former analysis of 

soil and vegetation as distinct properties.

Given the important part that established geophysical techniques could play in understanding 

the near-surface factors determining visibility in digital spectral data, it is anticipated that there 
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will be continuing developments in this area of research. Key to this will be overcoming the 

logistical challenges posed by the need to collect ground data contemporary with the acquisition 

of airborne data. The multi-factoral complexity of this analysis means that removing uncertainty 

relating to temporal change in conditions should be a prerequisite of future work in the field. 

Developments in landscape scale geophysical techniques such as those demonstrated at 

Stonehenge by the Ludwig Boltzman Institute (LBI 2011) will enable larger area coverage than 

the techniques available to this project which will give more representative ground data sample 

for comparison with ARS coverage.

Development of processing techniques such as the modified SI that analyse spectral sensitivity 

in a quantifiable way should also be considered a priority. Ideally these techniques should be 

supported through the detailed examination of physical and biological properties noted above 

but the Salisbury Plain research has also shown the potential for undertaking this type of 

research using archive data. By selecting case studies with high quality existing aerial 

transcription it is possible to evaluate the potential of archive airborne spectral survey gathered 

for different purposes. Combining analysis of sensitivity in archive spectral data for an existing 

archaeological record, with meteorological data for many different land use areas could 

significantly expand current knowledge with relatively little expenditure. With the ARSF 

archive alone containing over 7000 flightlines of ATM and CASI data collected since 1995, and 

2500 flightlines of Eagle/Hawk data since 2004 (Donegan pers comm 2011), it would seem that 

the potential for this meta-analysis exists. It is suggested, based on the Salisbury Plain study, 

that at very least this analysis should be carried out for existing spectral data in advance of new 

acquisition in the same area.

Critically, it is observed that advances in the field of airborne digital spectral data for 

archaeological prospection also depend on the development of improved sensor technologies 

and survey platforms. Although in the Salisbury Plain study, the spatial resolution was shown to 

be appropriate to the detection of the archaeological features that typify this environment, there 

is a wider disciplinary requirement for sensors with higher spatial resolution to match that of 

modern aerial photography. 

In order to enable the repeat collections of data required to improve current understanding of the 

impact of environmental conditions there is also a need to implement low-cost airborne spectral 

survey solutions along the lines of kite and UAV photography that have been shown to be 

valuable for acquisition of repeat aerial surveys. If a similar system could be implemented with 

spectral sensors then the expansion of spectral imaging into many environments and field 

programmes could be envisaged, particularly where previous modes of airborne acquisition had 

been too costly or impractical in terms of timing to implement. As identified in the literature 
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review, one of the main factors that inhibits the archaeological uptake of spectral survey is the 

lack of understanding of its implementation over different types of environment as well as 

different archaeological conditions. The field of spectral detection requires an approach that can 

allow multiple surveys in different environments and at different times of year, to foster better 

links with current field programmes (and therefore ancillary geophysical and excavation data) 

than can be achieved currently through Research Council or commercial survey. In much the 

same vein as the development of aerial photography or geophysical prospection techniques, 

only by building the database of archaeological spectral surveys can the implications of the 

technique be better understood for a variety of conditions. 

In summary, research to date has scratched the surface of the potential for spectral data to be 

used to detect archaeological features and has shown that that non-visible wavelengths have real 

promise for prospection of features. The need for more specific data regarding feature properties 

has been highlighted by the Salisbury Plain study. That this is clearly a relevant area for 

research is emphasised by the current £815,000 EPSRC DART project which will address some 

of the knowledge gaps. For airborne spectral survey to become a recognised and widespread 

tool for archaeological prospection there needs to be an improvement in accessibility of spectral 

survey for archaeological research, as without this it will not be possible to evaluate fully its 

potential as a technique in a range of environments. It is also noted that the archaeological 

interpretation of digital spectral data is greatly enhanced by combination with other ARS data, 

specifically ALS. Section 9.4 discusses the implementation of multi-sensor techniques 

incorporating both ALS and digital spectral data for future research.

9.3 ALS data for Archaeological Prospection

9.3.1 Introduction

The value of ALS for archaeological feature detection is supported by a increasing number of 

studies incorporating the technique. Since the publication of a special edition of Antiquity where 

lidar was introduced as a technique for landscape prospection (Bewley et al. 2005; Devereux et 

al. 2005) there have been more than 35 publications relating to archaeological projects that have 

included ALS data in some way. However only a handful of these publications have dealt with 

the technical aspects of using ALS data (Challis 2006; Doneus et al. 2008; Doneus and Briese 

2010; Hesse 2010; Kokalj et al. 2011) and the largest body of research in the UK has been 

conducted on just one landscape type; alluvial valleys (Challis and Howard 2006). To add to 

this, despite the recognition that ALS is best applied when analysed alongside other techniques 

(Crutchley 2006), few published examples provided any quantitative comparison with other 
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data (Bewley et al. 2005; Crutchley 2009), and only one survey has explored the 

complementarity of ALS and digital spectral data (Rowlands and Sarris 2007). This left a 

significant gap in current understanding of how to apply ALS data to archaeological research. 

Due to the generally good preservation of upstanding archaeological features in the Salisbury 

Plain study areas, it was anticipated that ALS data analysis would compare favourably to the 

baseline record derived from the Wiltshire HER. As such, unlike the digital spectral data, 

prospection for features was not the main aim of this aspect of the study. Work focussed instead 

on the technical assessment of visualisation techniques, providing methods for assessing the 

impact of visualisation on feature detection and the accuracy with which archaeological features 

are represented in new modelling techniques (Objectives 8 and 9). An attempt was also made to 

quantify the value of ALS intensity data for archaeological prospection via contemporary 

spectral and geophysical survey (Objective 11).

Through this research it was shown that the ALS data has tangible value for the survey of 

liminal areas and ephemeral features within them. In addition ALS data proved to be of vital 

importance as a geometric baseline for other aerial survey, allowing improved geocorrection of 

new and archive data. The methods developed for rigorous assessment of the ALS derived 

models facilitate a more informed use of the data and are the first real step in moving from the 

status quo of ALS models as aesthetically pleasing imagery to a position where full use of the 

3D data content can be made for archaeological research objectives.

9.3.2 Visualisation Techniques

Perhaps the most significant result of the analysis of visualisation techniques on the detection of 

archaeological features was the discrepancy in visibility of features and the complementarity of 

techniques. Until Challis et al. (2011c) no attempt had been made to assess the range of 

techniques that were available for processing ALS data. The Salisbury Plain study complements 

the generic and observational approach of Challis et al. (2011c) by providing quantitative data 

for a selected environment and comparing this with the existing aerial photography 

transcription. 

The assessment undertaken for the Salisbury Plain study showed that the visualisation 

techniques used have a significant impact on the detection of features and a careful strategy for 

their application needs to be developed for any project using ALS data (Objective 8). In 

particular, users should be made aware of the derivation of the visualisation techniques applied 

as most often these represent the effects of topographic variation (such as changes in 

illumination levels in the case of the shaded relief models) or other measures (e.g. slope and 

aspect) associated with it rather than the change in elevation directly. While these effects are 
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useful for highlighting microtopography, they can also misrepresent the elevation data altering 

the apparent horizontal location of features (figure 6.19) or exaggerating artefacts (figure 6.23). 

This has a detrimental impact on the ability to extract metric data for the archaeological features 

detected.

The PCA of shaded relief images gave an aesthetically pleasing image and successful reduction 

in dimensionality compared with individual shaded relief images, however the technique still 

resulted in several individual PC images that were time consuming to map from, with 

diminishing return as the PC number increased. In addition it was found that use of the Principle 

Component transformation removed the possibility to assess the properties of archaeological 

features accurately, with features showing significant distortion of location and profile due to 

the variation in illumination direction. For this reason, and despite the fact that shaded relief 

images and PCA remain the most commonly applied techniques for archaeological prospection 

(Challis et al. 2011c), the results of the Salisbury Plain study show that they cannot be 

recommended for technical assessment of microtopography.

The two 'new' visualisation techniques trialled gave comparable results in terms of feature 

numbers to the PCA of shaded relief images. The LRM gave the best results in terms of number 

of features mapped, retaining locational and topographic integrity. It was the only visualisation 

technique that preserved the elevation data in the original units of measure. Consequently the 

LRM proved a powerful basis for digital combination of the topographic and spectral data 

(section 9.4). However the technique is complicated to apply with many processing steps and 

needs to be tested and refined to anticipated feature size for each location.

The Horizon View technique performed well in terms of number of features detected and APFL, 

however the derived images were also found to have location and profile distortions that were 

detrimental to feature characterisation. The processing also incurred many artefacts leading to 

false identifications, particularly so for linear features. This assertion is supported by the fact 

that the horizon view model showed no statistical bias for feature type (unlike the other 

topographic models). While ancillary data in the form of field survey or other aerial imagery is 

helpful when separating artefacts from genuine features, comparisons can be inconclusive due 

to a variety of factors including different spatial resolutions, temporal sensitivity and the fact 

that other sensors record different feature parameters. This research has shown that these 

artefacts can often be better identified by comparing different ALS visualisations, providing 

justification for the application of more than one visualisation technique. 

Uniquely the Salisbury Plain study was able to quantify the impact of applying multiple 

visualisation techniques. The application of several visualisation techniques was shown to 
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improve the number of features detected from the ALS data by 18% from the PCA of shaded 

relief images alone. The fact that each technique trialled recorded 75% or less of all the features 

detected in the ALS data also illustrated the complementarity of different visualisations, with the 

strongest combination of techniques coming from the LRM and Horizon View models which 

together accounted for 94% of ALS features. The research showed that the application of two or 

three carefully selected techniques is preferable to using a single technique.

The Everleigh study relied on archive ALS data and it could be argued that certain models may 

produce better results given higher spatial resolution data that were subjected to improved 

filtering techniques to reduce artefacts. However the ALS data used are representative of the 

type of data most frequently available to heritage professionals and as all models were created 

from the same DEM the comparison between them is fair. 

9.3.3  Accuracy Assessment

The data gathered for the Upavon study area allowed the first quantitative assessment of the 

LRM against profiles of archaeological features that were measured with kGPS (Objective 9). 

In order to do this it was important to develop a method of comparison of features that was 

independent of the scale of the original raster values. Using simple trigonometry to analyse 

change in slope between points along a profile was a useful technique that enabled assessment 

of the accuracy with which the LRM portrays the scale of microtopographic change.

Despite the increasing number of visualisation techniques, such direct tests of model accuracy 

are rare principally due to the lack of contemporary ground observations. No published 

examples of accuracy assessment of archaeological microtopography using kGPS were found 

during the literature review, highlighting the fact that quantitative assessment of the accuracy of 

feature representation in ALS data is rarely considered when the data are used for visualisation 

and mapping. The Salisbury Plain study has shown that this type of analysis can be undertaken 

relatively simply and provides important information about the accuracy of the features depicted 

in ALS models. Developments in sensor technology mean that is is reasonable to extract metric 

data about archaeological features from the ALS models. However without a good grasp of the 

accuracy of the models, through assessments such as those made in this study, the data extracted 

cannot be verified against 'real-world' measures and as such are only of relative use within the 

dataset. If comparison of feature data between datasets and geographical areas is a goal of the 

use of ALS data for archaeological research, then it is critical that methods for assessing 

geometric accuracy of ALS derivatives are developed and tested.

The LRM model of the ALS data also provided a useful way of measuring the accuracy of 

buffers placed around archaeological features. Although for many applications archaeological 
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features are best transcribed from ARS data as polylines, buffers are sometimes required for 

spatial analysis, such as the application of the SI. The LRM allowed an assessment of how well 

different buffer sizes represented the features with positive and negative topography across the 

landscape, thus allowing the selection of an appropriate buffer size. Preliminary analysis of this 

sort is hardy ever undertaken when archaeological data are spatially processed from raster pixels 

to linear or polygonal features, but it allows the underlying assumptions of processing 

techniques such as buffering to be assessed and optimised for each application.

9.3.4 Intensity

Objectives 10 and 11 of the research related to the evaluation of the ALS intensity data, both as 

a tool for prospection and in relation to ground based geophysical techniques. The value of the 

intensity data from ALS survey has been mooted (Crutchley 2010) and latterly investigated in 

relation to the ability to predict organic deposits from it (Challis et al. 2011a; Challis et al. 

2011b). Previously, the use of intensity data was hampered by a lack of understanding of the 

archaeological potential of reflectance at the wavelength of the ALS sensor and also of the 

factors influencing the intensity measure. For example, Challis et al. (2011a) attempted to 

modify an intensity normalisation routine that requires the measurements of scan angle rank for 

each pulse by using the elevation model, as no record of scan angle rank was available. This 

conclusions of this approach were invalid not only because the distance from nadir to the 

ground surface cannot be used as a proxy for scan angle, but also because the study failed to 

take account of and correct for the many other factors affecting intensity values (section 3.4). In 

the partner publication for this piece of research, Challis et al (2009b) concluded that the lack of 

linear correlation between physical soil parameters and ALS intensity is due to the influence of 

homogeneous vegetation fraction but if the vegetation fraction was really homogeneous and 

contributing so significantly to the reflectance, it is difficult to see how the palaeochannel 

feature could have been detected in the intensity data at all. Without contemporary airborne 

spectral data and ground observations it is difficult to see how the impact of the soil vs. 

vegetation fraction could be assessed. Also as noted above (section 9.2.6), to reduce the level of 

uncertainty introduced by temporal variations in soil moisture, ground observations should 

ideally be contemporary with airborne data collection which was not possible in the latter study 

due to the use of archive ALS data.

The Salisbury Plain study offered the first opportunity to compare ALS intensity to calibrated 

narrow-band hyperspectral data of similar wavelength and contemporary geophysical and soil 

moisture survey. Although some progress was made with this line of investigation, detailed 

analysis of the intensity data was hampered by the lack of robust calibration routines available 
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during the study. Although archaeological features could be detected in the data captured with 

the Leica ALS50, the planned trial of calibration techniques developed by TU Wien was not 

possible during the timeframe of the study. Histogram matching to band 74 (1065nm) of the 

spectral data did improve the visual display for this data, statistical analysis showed a poor 

correlation to the spectral values recorded (section 7.7). These data also showed no correlation 

to the earth resistance survey and soil moisture measurements. Thus it is concluded that image 

matching techniques are not sufficient to improve the ALS intensity measures to the standard 

required to match the sensitivity of the spectral data and it remains to be seen whether 

techniques developed to calibrate the Riegl ALS sensor can also be applied to the Leica 

instrument. Critically, it is noted that even if calibration of the intensity data is possible, the 

analysis of spectral sensitivity for the full range of hyperspectral wavelengths (6.5.2) as part of 

the Salisbury Plain study suggests that at 1064nm the laser wavelength is suboptimal for 

archaeological prospection. 

9.3.5 The Contribution of ALS to Airborne Multi-Sensor Survey

As anticipated, the ALS data performed well in comparison with other sensors in the Salisbury 

Plain study. For the Everleigh area, archive ALS data recovered 72% of all features detected in 

the study and 76% of features previously recorded by the HER (section 7.8). Unlike the spectral 

data, the ALS visualisations were shown to be unaffected by land use type, making them the key 

dataset for feature detection in this environment. 

The principal advantage of the ALS data was the ability to profile features. This proved critical 

to the interpretation of archaeological features not just in the ALS data but also when overlaid 

with the spectral data. Although 3D and point cloud visualisations give a useful general 

overview of the landscape, profile mapping proved to be the most effective tool for measuring 

topographic detail.

In summary, in addition to being a useful prospection technique it its on right, the ALS data 

contributed to multi-sensor survey in two main ways. Firstly it provided a high resolution, high 

accuracy spatial model against which to standardise the transcriptions of the spatial data from 

the archive spectral and aerial photography. Secondly the ALS data provided contextual 

information about the upstanding features allowing improved interpretation of the digital 

spectral data. For these reasons it is highly advisable that ALS data are incorporated as a 

primary dataset in multi-sensor survey to improve quality and comparability of results. 

9.3.6 The Contribution of the Salisbury Plain Study 

The contributions of the Salisbury Plain study to advancing the use of ALS data for 
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archaeological prospection can be summarised as follows: 

• The first quantitative assessment of the impact of a wide range of ALS visualisation 

techniques on archaeological feature detection, using number of features and APFL as 

comparative measures.

• The first study to highlight the importance of understanding what each ALS 

visualisation technique represents (topography or effects of topography), and how this 

impacts on the locational accuracy and interpretation of archaeological features.

• Development of a method for the statistical comparison of ALS-derived LRM and DEM 

and GCP profiles of topographic features enabling rigorous comparison of the impact of 

modelling techniques on interpretation of archaeological profiles.

• Assessment of the impact of the polygonisation of archaeological features identified in 

raster data with respect to improving the representativeness of buffer size.

• Direct statistical comparison of uncalibrated ALS intensity measures with hyperspectral 

data of similar wavelength showing poor correlation and therefore limiting the use of 

this data as a substitute for digital spectral data.

• Improved understanding of the relative value of ALS data when compared with other 

ARS data, specifically archive oblique aerial photography, digital spectral data and 

vertical 4-band NIR photography.

• Assessment of the value of ALS data as part of multi-sensor airborne survey of 

archaeological landscapes.

9.3.7 Future Directions

There is no doubt that the inception and increased use of ALS data for landscape assessment is 

revolutionising aerial archaeology in much the same way as aerial photography changed the 

discipline over the last century. Management considerations are forcing aerial archaeologists 

away from a dependence on aesthetically pleasing but site specific and directionally limited 

oblique photography of sites to more holistic methods of landscape survey. While the resolution 

of ALS data may not yet match that of aerial photographs, the systematic nature of the survey 

means that all topographic features will be recorded (within the parameters of the sensor), 

regardless of illumination angle and direction. Although visualisation techniques are clearly still 

being developed actively, the advantage of ALS survey is that the original point cloud data can 

be reinterpreted with each new technique, or by each new user, removing some of the 

subjectivity and non-replicable nature of oblique aerial photography.
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Moving forward, it will be possible and necessary to extract metric information about 

archaeological features from the ALS data. It is possible to derive a wealth of information from 

the ALS data, including feature dimensions, volume and, by comparison of multiple surveys, 

erosion and degradation. Techniques such as the LRM which isolate microtopography from the 

surrounding landscape, could form the first steps in automating or semi-automating this process. 

Although the Salisbury Plain study has shown that deriving and recording this feature 

information and making use of the 2.5D nature of the rasterised data is possible with both 

archive data and data collected from planned acquisitions, it remains a facet of the use of ALS 

data that none of the published archaeological studies to date have incorporated.

In order to develop robust methods for extracting feature data, it is crucial that ALS 

visualisation techniques are rigorously assessed against kGPS data wherever possible to provide 

estimates of their accuracy. This is an aspect that has been ignored to date in the archaeological 

literature but underpins the use of ALS data to interpret microtopography. There have been 

some expressions of disappointment in the wider archaeological community when the 

visualisation of an ALS survey did not prove to be the panacea of feature detection that was 

hoped for. Understanding what each visualisation represents and with what level of error should 

help to mitigate these instances and providing ancillary ground observations is vital to 

improving the application of all modelling techniques.

Although ALS survey has been shown to be of great benefit through this study, it must be 

emphasised that only one aspect of the archaeological landscape – direct topographic variation - 

can be recorded using this sensor. It is anticipated therefore that multi-sensor survey, 

incorporating ALS and digital spectral or aerial photographic data will be increasingly sought 

after as a combined research tool. With this will come the requirement to manage the large 

quantities of data and to enable efficient and accurate interpretation based on feature attributes. 

Section 9.4 discusses some ways in which the Salisbury Plain study has contributed to multi-

sensor research and digital integration of ARS data.

9.4 Developing Methods for Airborne Remote Sensing in Archaeology

9.4.1 Introduction

The integration of ARS data was perhaps the most important objective of the research, towards 

which the independent analysis of sensors was directed (Objective 12). The discussion here is in 

two themes. Firstly, the impact of employing multiple airborne sensors for archaeological 

prospection is discussed with reference to the Salisbury Plain study (sections 9.4.2-9.4.3). This 

has implications for future survey strategy; an area which there has been very little discussion, 
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due in part to a gap in understanding regarding the potential complementarity of airborne 

sensors and also to the dependence on archive data in the historic environment sector reducing 

the requirement for survey specification. Secondly, the efficient management of ARS data for 

archaeological prospection is a critical issue for heritage professionals (Cowley 2011; 

Powlesland 2011) and consequently methods of data comparison and reduction are in high 

demand, although there has been little research to date in this field (Donoghue et al. 1992; 

Sterazi et al. 2008; Traviglia 2008). The Salisbury Plain study investigated a number of methods 

for integrating ARS data in an attempt to quantify the impact of data fusion on feature detection 

(section 9.4.4).

9.4.2 The Impact of Multi-Sensor Survey

The baseline for comparison of the ARS techniques was “low level” integration, defined as the 

cumulative recovery of features from independent mapping from different sensors. In 

undertaking this comparison of feature detection rates and APFL recovery it was possible to 

quantify the contribution of multiple airborne sensors in this environment in comparison with 

the known record (section 7.7.4). As only one other study in the UK has published the 

comparison of detectability along these lines for an alluvial, arable-dominated landscape in the 

Vale of Pickering (Powlesland et al. 2006), the Salisbury Plain study represents a significant 

expansion of current knowledge.

The study of archive data for the Everleigh area showed the benefits of applying multiple data 

sets by illustrating the relative value of each of the sensors. Nine visualisation techniques were 

shown to be equivalent to the aerial photographic transcription of the HER in terms of feature 

recovery rates (table 7.6). The ALS survey was shown to be the most productive tool in this 

environment (section 6.6), however when the results of the spectral surveys were combined with 

the ALS, recovery rates were shown to rise by 10-20% (table 7.8). In this study, analysis of 

feature types has shown that the majority of features (76%) recorded in the HER have some 

topographic expression. Therefore the addition of 10-20% more features through the application 

of spectral data to the ALS is significant and illustrates the applicability of this survey technique 

to this environment.

The fact that multiple complementary sensors provided improved feature detection is not an 

unpredictable result given the nature of the archaeological features being surveyed, however the 

Salisbury Plain study provided a unique opportunity to compare to a detailed record from 

archive aerial transcription. In being able to compare sensors it was also possible to undertake a 

baseline prediction of feature certainty (table 7.10). Although uncertainty of interpretation from 

aerial sources always exists, there is often no logical way to quantify the level of uncertainty 
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regarding a particular feature. In providing a method to quantify feature certainty, this study 

proved the value of multiple survey techniques to this assessment (section 7.4.6). Levels of 

certainty can be attached to individual features to inform future ground based or aerial work 

allowing better strategic management of the landscape and archaeological features within it as 

well as targets for further research.

9.4.3 The Impact of Multiple Visualisations

The Salisbury Plain study provided the first opportunity to assess the relative gain to be made in 

feature detection by applying many visualisations as opposed to a single technique. Analysis 

showed that by combining the results of mapping from all the ALS and spectral visualisations 

from both acquisitions, 83% of the features previously recorded from aerial photography could 

be detected. By selecting only the best performing visualisations for each sensor this dropped to 

c.74% of the HER resource (section 7.4.4, table 7.8). This c.10% relative drop in recovery 

between all visualisations and the single best visualisation is also seen across all the features 

recorded in the study (from 90% to 82%) and highlights the importance of applying multiple 

visualisations.

This assessment is of course specific to the environment and data of this study, but it allows 

users to gauge the relative benefit of applying a large number of visualisations to ARS data 

compared with a single best performing visualisation in terms of features recovered versus 

processing and transcription time. For some applications a 10% lower feature recovery rate 

would be an acceptable compromise given lower processing burden, for others this would not. 

Analysis such as this should be undertaken in different landscape types in order to inform 

strategies for extracting archaeological information from ARS data. 

It should also be highlighted that selection of the best performing visualisations for any dataset 

or environment is not possible without some form of prior assessment. In this regard a move to 

automated assessment of the separability of archaeological data from the background values for 

a variety of visualisations (in the same vein as the SI for spectral data) in a series of training 

areas should be encouraged as a preliminary processing step.

9.4.4 “High level”Integration of Data Sources

From the assessment of individual visualisation techniques it was possible to quantify the 

success of “high level” digital techniques for combining data from various sources using raster 

mathematics. The Salisbury Plain study provided the first quantitative comparison of such 

digital combination techniques against the results of feature mapping from individual 

techniques.
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The simple overlays and the Brovey transformation for January FCC and ALS LRM data were 

shown to have similar rates of recovery of expected features (80% of all those detected in the 

single visualisations contributing to the transform), though for the May Brovey transform this 

increased to 88%. The Brovey technique was also shown to improve APFL compared with 

either of its contributing visualisations (section 7.2.3, figure 7.5) . 

As with the assessment of all-versus-selected visualisation techniques presented above (section 

8.4.2), these figures allow users to gauge the possible impact of digital data combinations on 

feature recovery and provide important new information as to the efficiency of these techniques 

compared with mapping from individual visualisations. The key finding of these initial steps 

towards digital combination was the unsuitability of the majority of ALS models as a base for 

digital combination of data. Even when scaled to match the value range of the spectral data, 

these models did not provide sufficient microtopographic detection (section 7.2.3). Only the 

LRM model proved suitable for combination with the spectral data in this way. Additionally it 

was not possible to experiment with combining data from different spectral acquisitions into the 

Brovey transform to assess whether global feature recovery rates could be improved. With four 

contributing images, the number of permutations for this transformation across a dataset as 

diverse as the one examined for Everleigh were too large to test visually. As mentioned above, 

an automated assessment of archaeological separability is a necessary development for fully 

exploring the permutations and therefore allowing the optimisation of this transformation.

9.4.5 The Contribution of the Salisbury Plain Study

The contributions of the Salisbury Plain study to advancing the use of multi-sensor methods for 

archaeological prospection can be summarised as follows:

• Quantitative comparison of the impact of multi-sensor survey on archaeological feature 

detection rates, both globally across the study and against a baseline established from 

transcription of archive aerial photographs.

• Derivation of a method to assess feature certainty based on multi-sensor detection rates.

• The first study to compare quantitatively feature recovery between single and multiple 

visualisation methods for the same data.

• The first study to compare quantitatively feature recovery between individual 

visualisations and their digital combinations.

• The identification of the most suitable ALS model (LRM) for digital combination with 

digital spectral data.
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9.4.6 Future Directions

Through the course of the project it has become clear that the quantity of data collected by 

multiple airborne sensors is in many respects too great for traditional methods of prospection. 

Transcription from various visualisations is time consuming and fraught with complicated 

decisions regarding which methods are best for the environmental archaeological and seasonal 

variations that have been shown to play a great part in detectability of features. To use the ARS 

data that is increasingly becoming available to the heritage sector more efficiently it will be 

necessary to automate some stages of the feature extraction process. 

While it is acknowledged that automation may not give the same results as observer-led 

transcription, the possibility to collect image information from multiple sources at pixel level 

and set in motion a decision making process that classifies the likelihood of that pixel 

representing an archaeological feature would be an exciting progression of the field of ARS. 

Developments in this field are very much in their infancy but there has been some promising 

progress towards semi-automated extraction of particular types of features in single datasets 

(Trier and Piloe 2011). 

There is significant resistance to the ideas of any level of high-level automated extraction in the 

heritage field and concerns regarding false positives and overlooking ephemeral features are not 

without foundation. However these issues are not insurmountable or unquantifiable, and it is 

argued that based on the complementarity of different sensors as shown in this study, the 

incorporation of multiple datasets could significantly help to improve the quality of automated 

feature extraction. The keys to successful implementation of any semi-automated process would 

seem to be a clear understanding of the nature of the archaeological feature and how this allows 

its detection in ARS data. The current research has moved our understanding forwards in this 

regard, but there is clearly much work to be done to underpin our understanding of ARS across 

different environments. Without this understanding, automated extraction cannot be expected to 

be successful as it will not be possible to define the input parameters that represent an 

archaeological feature.

Currently there is also a requirement for automation of a lower order to improve our 

understanding of the ARS data. This study has shown that while extremely effective, visual 

analysis is a time consuming and subjective way to compare ARS images to a known base line. 

Processes such as the Separability Index are required to automate the assessment of how useful 

an image is for detecting archaeological features and there is a requirement for the theory of 

detecting contrast from the surrounding data that underpins both visual assessment and semi-

automated methods such as the SI to be extended in a verifiable way to other datasets.
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10 Conclusions

In conclusion it can be stated that the research has achieved the aim of assessing the full 

information content of airborne laser scanned and digital spectral data, providing the first 

systematic analysis and comparison of techniques for an area of grassland in the UK. In doing 

so existing methods were tested rigorously and new methods were derived and applied. 

How the results of the work undertaken met each of the specific Objectives of the project was 

stated in section 8.10, and these results are discussed in detail along with directions for future 

work in Chapter 9. The research provides not only a case study for the application of ARS in a 

non-alluvial, non-arable landscape but, due to the systematic nature of the comparative work 

undertaken, can be seen to provide a series of methods applicable to ARS data analysis that are 

transferable to other archaeological landscapes. It is hoped that by underpinning the scientific 

understanding of how ARS data can be applied, the use of these data will begin to focus on 

specific archaeological research objectives above and beyond the prospection for new features 

that has dominated the field of archaeological remote sensing thus far. In doing so this research 

has shown that it will be possible to derive significant new information about archaeological 

features and their relationship to the landscape and environment around them from airborne 

data.

Final Thoughts

The research presented in this thesis arose from a pressing need to better understand the 

application of ARS techniques to archaeological research. This was prompted by the status quo 

in the discipline which was typified by opportunistic applications of a single type of airborne 

sensor that were often unsystematic in their approach. The most commonly applied technique, 

ALS, was predominantly being examined in isolation from other remote sensing techniques and 

although in many respects a revolutionary technology that excited broad uptake, ALS was for 

the most part poorly understood and applied. The same was also true for digital spectral data, 

but this area of research was even further disadvantaged by the considerable lack of 

archaeological applications of this type of sensor, particularly in the UK. This situation led to 

ARS data from these sensors being viewed with quiet scepticism by the archaeological 

community and considered to be less valuable than standard aerial photographic transcription.

The author felt that these criticisms were often underpinned by a lack of understanding of the 

sensor technology and how it can best be applied to archaeological research in comparison with 
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aerial photography. For example ALS cannot be a direct substitute for aerial photography by 

nature of the fact that the two techniques record different attributes of the feature; either the 

visible reflectance or the elevation. However combining ALS with digital spectral survey 

provides an opportunity to record both elevation and reflectance in a similar way to an oblique 

aerial photograph. This application of multi-sensor survey is clearly the direction that the 

discipline should move towards given the fact that what comprises an “archaeological feature” 

is actually a range of attributes. The fact that these sensors allow swift, systematic and accurate 

survey of both elevation and reflectance across large areas is an advantage that is appealing to 

professionals who are charged with understanding, curating and managing historic landscapes. 

Unfortunately the desire to apply these data has thus far outstripped the ability to do so, a fact 

that drove the aim of this research to assess the full information content of ALS and digital 

spectral data and improve our understanding of what influences the detectability of features.

On analysis of the literature it was suspected that visualisation techniques for ARS data were 

significantly influencing the detectability of features and the information that could be extracted 

about them. As there was no published quantification of the impact of many visualisation 

techniques on feature detectability for a non-arable site in the UK, this was the first task of the 

research. The assessment of archive ARS data for the Everleigh Study Area concluded that 

visualisation technique has a significant impact on the binary visibility of features in both the 

spectral and ALS data. The key findings of this part of the research are that some ALS 

visualisation techniques, including the most commonly applied technique of shaded relief 

modelling, were shown to be inappropriate for some levels of feature extraction such as accurate 

geolocation and profiling. In addition, the benefit of applying multiple visualisation techniques 

to the same data was illustrated quantitatively.

What the study of archive ARS data showed was that while for the most part the impact of ALS 

visualisations is predictable, providing the technique used to derive them is understood, the 

impact of different spectral visualisations was harder to define. Through analysis of oblique 

aerial photography, changes in both reflectance and topography relating to archaeological 

features can be detected, and herein lies a deeper issue when considering the application of 

other sensors to this task. Current understanding of what comprises a detectable archaeological 

site from the air is dominated by a century of transcription from colour or panchromatic images. 

During this time only a handful of studies have attempted to define the attributes of an 

archaeological feature that contribute to its detectability from the air and consequently 

identification of features is based on collective observational experience. Consequently, when 

analysing data from other sensors the definitions of what comprises an archaeological feature 

are often indistinct which makes interrogating data for appropriate attributes difficult, leading to 
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a reliance on visual inspection in the same vein as aerial photography.

For the Everleigh study area it was demonstrated that both archaeological features known from 

the NMP mapping and new potential features identified during the mapping exercise, were more 

detectable in the non-visible NIR wavelengths, contributing to a small but growing number of 

studies that have compared visible and non-visible wavelengths directly and come to the same 

conclusion (Hampton 1974; Traviglia 2006; Verhoeven 2011). Having demonstrated that archive 

spectral data could be used to detect features in temperate grass-dominated environments the 

obvious challenge was to improve the understanding of environmental variables that contributed 

to feature detectability. Review of the published literature indicated that soil moisture was likely 

to be a significant factor influencing spectral response of soil and also the most likely factor 

affecting vegetation growth and stress. Results from the present study suggest that 

contemporary rainfall data may be a valid indicator of archaeological potential for archive 

spectral data. However the Everleigh study also showed that to understand detectability better it 

was necessary to return to first principles and examine the environmental variables affecting 

feature detection. The only way to achieve this for a variable such as soil moisture that can 

change on a daily basis is to undertake contemporary airborne and ground survey. Consequently 

while archive ARS data has been demonstrated to have great potential for this environment, and 

should not be discounted for future study, to push the application of ARS data forward and to 

improve understanding of the detail of the techniques and the impact of environmental factors, it 

was necessary to instigate the second phase of this project, acquiring and processing ARS data 

and ground measurements for the Upavon study area. 

The study was fortunate to secure a data acquisition from the ARSF in their 2010 season. 

Without this support there would have been no feasible means of collecting the simultaneous 

ground data collection that was was shown to be critical to improving the understanding of how 

to apply ARS data for archaeological feature identification. It cannot be stressed how important 

this was to realising the more ambitious objectives of the project. The analysis of ground data 

allowed the development of a technique for assessing the accuracy of the representation of 

archaeological topography in ALS-derived models such as the LRM, the first time that this 

quantitative assessment has been undertaken. The study showed the importance of evaluating 

the ALS models thoroughly to improve our application of them, particularly in light of their 

potential use as base models for digital integration of data.

Work in the Upavon Study Area also illustrated how standard geophysical techniques can be 

applied to aid the interpretation of spectral data. Although the spatial coverage was necessarily 

small and not all the geophysical techniques trialled proved feasible in this environment, it is 

concluded that there is significant potential in further research in this field. Critical to 
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understanding the correlation or lack thereof between the ARS and geophysical survey measures 

were the direct moisture measurements taken from soil samples. It is concluded that although 

there are still challenges to overcome in this field, the data derived from ground survey 

techniques is of critical importance to improving the understanding of spectral response at the 

archaeological feature level, thus helping to define what an archaeological feature is in spectral 

terms. This knowledge is just a small part of a wider library of archaeological spectral 

knowledge that needs to be accrued both in the UK and elsewhere, but in undertaking this 

research it has been shown that there are methods that make deriving this knowledge an 

achievable aim for future work.

In all, the doctoral study has shown that a systematic approach to ARS data can yield significant 

new knowledge, providing the foundation for the continued development and evaluation of ALS 

and digital spectral data for archaeological research. Multi-sensor survey, although an important 

goal of aerial prospection in archaeology, needs to be underpinned by scientific understanding 

of individual sensors and accurate methods of deriving archaeological data from them. This 

research has shown that methods really matter in this field. By providing the first 

comprehensive evaluation of existing techniques and developing new methods for quantifying 

accuracy and integrating ground survey measurements this study has improved current 

understanding of a) how ALS and digital spectral imaging can be applied, b) the comparative 

value of these techniques, and c) the variables that affect the detection of archaeological features 

within them. Only by continuing work in this vein will ARS become an accurate and subtle tool 

for archaeological research. The goal for archaeological ARS should be the scientific and 

rigorous application of appropriate technologies to improving the quantity of aerial survey. The 

current study makes the first of many steps in realising this goal.
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Appendix 1 – LRM Script

############################################################################################# 
# # MODULE:    r.lrm 
# AUTHOR(S):  Rebecca Bennett, rabennett@ymail.com 
# PURPOSE:   Calculates local relief model from a GRASS rasterterrain map in GRASS 6.4 using the method 
developed by Hesse 2010 "LiDAR-derived Local Relief Models - a new tool for archaeological prospection" 
Archaeological Prospection 18.2 
# COPYRIGHT:  (C) 2011 by the GRASS Development Team 
# 
#        This program is free software under the GNU General Public 
#        License (>=v2). Read the file COPYING that comes with GRASS 
#        for details. 
##############################################################################################
#Only run if started in GRASS 
if test "$GISBASE" = ""; then 
 echo "You must be in GRASS GIS to run this program." >&2 
 exit 1 
fi 
#check region and database 
g.message "Check region settings and database connection (sqlite)" 

g.ask type=old prompt="enter DTM" elem=cell_misc unixfile=/home/becca/LRM/settings 
. /home/becca/LRM/settings 
if [ ! "$file" ] 
  then 
    exit 
fi 
DTM=${fullname} 
#make copy of DTM 
g.copy rast=${DTM},ground --o 
#first stage of LRM 
#lowpass filter 
g.message "Stage 1 - performing low pass filter" 
g.message "Enter size of low-pass filter required: " 
read USERFILE 
r.neighbors -c input=ground@PERMANENT output=LRM_lowpass size=$USERFILE --o 
#subtract lowpass from DTM 
g.message "Stage 2 - subtracting lowpass from DTM" 
r.mapcalc 'LP_subtract=ground@PERMANENT-LRM_lowpass@PERMANENT' 
g.message "Stage 3 - extracting zero contours" 
#extract contours 
r.contour input=LP_subtract@PERMANENT output=LP_contour@PERMANENT minlevel=0 maxlevel=0 step=10 
#make points from lines 
v.to.points input=LP_contour@PERMANENT llayer=1 type=line output=LP_contours_points dmax=10 
#extract raster values for points 
v.what.rast vector=LP_contours_points@PERMANENT raster=ground@PERMANENT layer=2 column=along 
Iinterpolate from points 
g.message "Stage 4 - interpolating purged DTM" 
v.surf.bspline input="LP_cp_all@PERMANENT" raster="LP_purged" method="bilinear" --o
#subtract interpolated from original 
g.message "Stage 5 - subtracting purged DTM from original" 
r.mapcalc 'LRM_coombe_orig=ground@PERMANENT-LP_purged@PERMANENT' 
#recolour to grey 
r.colors map=LRM_coombe_orig@PERMANENT color=grey 
gmessage "---------------LRM Complete---------------" 

exit 

Appendix 1 page i



Appendix 2 -Geophysical Survey Report 

 Appendix 2 -Geophysical Survey Report 

 

Upavon Field Site 1: Coombe Down Enclosures, Salisbury Plain Military Training Estate 

East Range, Wiltshire UK SU 176 521

February and March 2010

Introduction

Geophysical survey was undertaken at Coombe Down Enclosures (SU176 521) in February and 

March 2010 in support of airborne data acquisition associated with ARSF Flight GB10-17. 

Approximately 1.8ha in the vicinity of two enclosures mapped by the NMP were subject to 

Fluxgate gradiometer survey in January with the principle aim of providing context and accurate 

locational information in support of earth resistance and GPR survey of the day of the flight (4 th 

March 2010).

The site lies on clay with shallow (<30cm topsoil) and has been heavily degraded by plough 

damage. At the time of the survey the site was under recently grazed, short grass. The western 

enclosure was clearly visible in the gradiometer survey. Although the eastern enclosure, 

survived as an shallow earthwork visible in the airborne laser scanned data it proved difficult to 

detect in the geophysical surveys.

Method

Gradiometer Survey -  25th February 2010

Gradiometer survey was undertaken using a fluxgate gradiometer (Bartington Grad 601-2) on 

the 25th February 2010 over 20 grids (30mx30m) laid out using a Leica System 1200 kGPS 

(Figure 1). Gradiometry survey is sensitive to magnetic changes caused by occupation and as 

such this technique was chosen to locate the bank and ditch features of the two enclosures. A 

plot of the gradiometer data overlain with the with the NMP transcription is given in figure 2.

Survey was undertaken in a 'zig-zag' pattern with the direction of survey aligned north-south. A 

traverse interval of 1m and sampling interval of 0.125m provided a sound compromise between 

the detail of recording and speed of survey. Data were transferred to a laptop in the field for 

initial quality checking and storage and were subsequently downloaded and processed in the 

office using Archaeosurveyor 2 (DW Consulting 2011). 
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Raw and corrected plots are presented in figure 3. Corrections made to the values displayed in 

this plots were to zero-mean each traverse to correct for instrument heading errors and 

'despiking' the data using a 1SD truncation over a 2mx2m spatial filter, to remove the localised 

high magnitude effects from surface metal debris. To improve the visual intelligibility of the 

diagram the data were also clipped to 3SD (±6nT) across the survey. 

Magnetic readings were significantly weaker in the area of the eastern enclosure consequently 

the data were clipped further to ±2nT in order that the bank could be mapped more easily 

(figure 4).

Earth Resistance Survey - 4th March 2010

Earth resistance survey was undertaken on the day of the airborne data acquisition to record the 

different moisture content of the eastern enclosure bank compared with its surroundings. A 

transect of 15m x15m was recorded using a Geoscan RM15 resistance meter with MPX 

multiplexer and adjustable PA20 electrode frame in twin-probe configuration. Readings were 

collected in traverses of 0.5m width with an interval of 0.5m, with probe spacings of 0.25m and 

0.5m. The sample densities were therefore 0.25x 0.5m for the 0.25m probe separation and 

0.5mx0.5m for the 0.5m probe separation. This configuration was designed to record the 

response from the top 0.25-0.5m of the soil column over the feature which would be most 

comparable to the data collected by the airborne sensor.

It was intended to survey a 30x30m area on the day of the flight to coordinate with the GPR 

survey, however  equipment failure meant that much of the short daylight hours were lost with 

repeated repairs to loose electrical connections in the RM15.

The data from the 0.25m surveys for each site was merged using Geoplot 3.0 (Geoscan 

Research 2004). All resistance data was then imported into Archaeosurveyor 2 (DW Consulting 

2011) for editing. The surveys were clipped to 3SD to remove noise caused by isolated readings 

with poor contact. A Gaussian high pass filter (2mx2m) was used to remove low frequency large 

scale spatial detail that typically represents a slowly changing geological "background" response 

in resistance surveys (Geoscan Research 2005). Raw and corrected plots are presented in figure 

5.

Ground Penetrating Radar Survey - 4th March 2010 and 31st October 2010

GPR survey was undertaken on the same day as the airborne data collection in order to record 

the subsurface structure of the eastern enclosure bank. An area of 30m by 30m of data was 

collected with an Mala RAMAC GPR with an 800MHz antenna coinciding with the earth 

resistance grid (figure 1). The depth setting was medium with an estimated subsurface velocity 
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of ~0.1m/ns

The data were collected along parallel W-E traverses 0.5m apart in a 'zig-zag' pattern. Traces 

were separated by at 0.1m intervals 

and recorded the amplitude of reflections through a 35ns time-window (table 1). A survey wheel 

was used to measure distance along the traverses. 

Like the earth resistance survey, the GPR survey was configured to maximise the data collected 

from the top 0.5m of the soil column. It was anticipated that the GPR survey would detect the 

horizon between the bedrock and the bank feature (to assess its depth below the surface) and 

that the signal of the bank material would be different to that of the surrounding soil matrix 

allowing its form to be visualised through the soil column.

On the day of the survey poor battery power retention was felt to affect the results of the survey. 

Consequently the northern 16m area of the area was re-surveyed using the same sensor 

configuration on the 31st October 2010.

Data were processed using Mala GPR Easy 3D (Mala 2010). Each survey was filtered using DC 

adjustment, Time Gain and the mean trace was deleted.

Table 1: GPR Survey metadata

Results

Gradiometry

The gradiometry survey correlates well with the NMP transcription. A graphical summary of the 

anomalies discussed is given in figure 7 A and numbers in brackets refer to this figure.

In general there was relatively little modern disturbance with the exception of one very high 

anomaly at 417563 152196 and a pair of tank tracks [1]. A pair of linear anomalies [2] represent 

two known lynchet features that are part of the Romano-British field system surrounding the 
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enclosures. The western enclosure [3] is clearly visible in this survey due to its ditch deposits, 

however the eastern enclosure which appears to be represented only by an upstanding lynchet 

with no detectable ditch, is represented only by a faint linear anomaly [4].

Earth Resistance

Changes in resistance associated with the bank of the eastern enclosure that was targeted by the 

earth resistance transect can be seen in both the 0.25m and 0.5m earth resistance surveys 

although they are generally better defined in the 0.25m data. A graphical summary of the 

anomalies discussed is given in figure 7 B and C and numbers in brackets refer to this figure.

Both surveys detected a roughly 'L-shaped' high resistance anomaly to the west of the enclosure 

bank [1]. It is postulated that this is a modern feature relating to compression of the earth 

associated with tank manoeuvres in the vicinity. The surveys also showed small amorphous 

areas of lower resistance [3]. The enclosure bank was typified by an area of slightly increased 

resistance running SE-NW across the survey [2]. Although the changes in resistance indicate the 

presence of the remains of the bank in this area, the range of values recorded in this transect is 

not large. 

Ground Penetrating Radar

Figures 8a and 8B show the 1-10ns timeslices (each 1 reading thick) of the March GPR survey. 

From the other survey techniques employed it was expected that the bank feature would bisect 

the grid in a  SE-NW direction but no evidence of the bank can be seen.

Figures 9a and 9B show the timeslices of the 15m transect that was resurveyed in October. It 

can be seen that the bank was also not detected in the repeat survey. 

Conclusion

The gradiometer survey successfully located and identified features mapped by the NMP in the 

Coombe Down Area. Further investigation of the bank of the eastern enclosure revealed that this 

was detectable in both the earth resistance and gradiometer data though not in the GPR survey. 

From concurrent soil auger survey it is known that that the maximum depth to bedrock in the 

area of the GPR survey is 30cm therefore the choice of antennae is appropriate for the feature 

selected and the repetition of the survey results in October with a new battery pack rules out 

equipment failure. This lends to the conclusion that that the difference in matrix between the 

bank and the surrounding material was not significant enough to be detectable with this 

technique.  

The amorphous nature of the eastern bank feature in both the gradiometry and earth resistance 
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surveys stands in contrast with the eastern enclosure, emphasising the heavy plough damage and 

spreading this upstanding feature has sustained. It is likely that the upstanding features of the 

eastern most enclosure were a) originally less substantial structures than those to the west and b) 

have been more severely degraded than the features comprising the western enclosure and 

surrounding field system due to the macrotopography of the field. The remains of the eastern 

enclosure are therefore less easy to detect using survey techniques employed.

Survey Notes

Surveyed by Kate Armstrong, Rebecca Bennett, Rachel Stacey, Kate Ward, Matthew Webster, 

Sarah Yarnall

Weather: 

25th February cloudy dry cold

4th March 2010, clear, dry light breeze

31st October 2010, clear, cold, dry

References

DW Consulting. 2011. Archaeosurveyor. DW Consulting.

English Heritage. 2008. Geophysical Survey in Archaeological Field Evaluation 2nd ed. 

Swindon: English Heritage.

Geoscan Research. 2004. Geoplot. Geoscan Research.

Gaffney, C., and Gater, J. 2004. Revealing the Buried Past: Geophysics for archaeologists. 
Stroud: Tempus.

Mala GeoScience. 2000. Easy 3D. Mala.

Appendix 2 page v





Figure 2: Gradiometry survey (shown as a linear greyscale image from ±6nT  overlain with NMP Transcription 
(Red denotes area of eastern enclosure, figure 4)
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Figure 6: High Pass Filtered Earth Resistance Data (Area of bank outlined in red)
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Figure 8a: March Survey800MHz Timeslices 1-6ns
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Figure 8b: March Survey800MHz Timeslices 7-8ns
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Figure 9a: October Survey 800MHz Timeslices 1-6ns
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Figure 9b: October Survey 800MHz view
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