
A Classification of Scripting Systems for

Entertainment and Serious Computer Games

Eike Falk Anderson

Interactive Worlds ARG

Coventry University

Coventry, UK

eikea@siggraph.org

Abstract—The technology base for modern computer games
is usually provided by a game engine. Many game engines have
built-in dedicated scripting languages that allow the development
of complete games that are built using those engines, as well
as extensive modification of existing games through scripting
alone. While some of these game engines implement propri-
etary languages, others use existing scripting systems that have
been modified according to the game engine’s requirements.
Scripting languages generally provide a very high level of
abstraction method for syntactically controlling the behaviour
of their host applications and different types of scripting system
allow different types of modification of their underlying host
application. In this paper we propose a simple classification for
scripting systems used in computer games for entertainment and
serious purposes.

Index Terms—Data-Driven Game Development, Scripting
Language Classification.

I. INTRODUCTION

The computer games industry is still a young industry

which continues to have a lot of potential for growth. This

is especially so, since games have broken out of the domain

of pure entertainment and are now used in a wide variety of

different situations. Edutainment or game based learning [1]

provide only one flavour of the application areas for computer

games technology, or as Zyda notes, “applying games and

simulations technology to nonentertainment domains results

in serious games” [2]. However, independent of whether a

computer game is developed for entertainment purposes only,

or as a serious game, it will be created using similar processes

and usually from the same technology base (Fig. 1) [3].

One of these technologies that many developers use to

create games are well established generic scripting systems

or permutations of these existing systems (modified according

to the particular requirements of the games that are being

created) that add scripting facilities to their game engines

and games. Alternatively there are proprietary purpose-built

scripting languages that are dedicated to a single game or game

engine.

It is a fact that “. . . language is what gives humans

enormous leverage over the universe” [4]. Analogous to this,

scripting languages in computer games, which provide con-

trol over the behaviour of the application, give the game

developer “enormous leverage” over a game’s virtual reality.

Fig. 1. A typical game engine. If the engine core includes a scripting system,
then application specific scripts are loaded as external game assets and there
may be no other application specific code.

Consequently it is no surprise that scripting systems are

considered one of the most important developer tools that are

included in modern game engines [5]. In game development,

scripting languages are used within the games themselves (by

embedding them within the game engines) or in the tools

used for game development – usually in situations where

the use of an implementation language such as C++ would

be inappropriate [6]. Although scripting has been used in

game development for quite a long time [7], access to those

scripts has usually been limited to the game developers, and

only in recent years the power to modify games has been

opened up to the end users, i.e. the game players. Whereas

originally the scripting systems were only used in-house by

a game’s programmers and designers who had direct access

to the programmers in case any difficulties with the system

arose, now they tend to be developed to a point where they

could potentially be ‘let loose’ on the general public where

mainly non-programmers use them to modify the games that

they are embedded in.

A. Game Modification and Serious Game Development

Computer games that can be modified by their user

community enjoy great popularity. As a result some of the

Published in Proceedings of VS-GAMES 2011: 3rd International Conference on Games and Virtual Worlds for Serious 
Applications, pages 47-54;  definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2011.13

Published version is © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Fig. 2. BioWare’s Aurora Toolkit is the game editing toolkit for the game
‘Neverwinter Nights’. It not only provides methods for building the game
environment and placing objects and virtual actors for game extensions but
also the means for defining the actions of these actors and the conversations
that a player can have with them using various scripting tools which are
embedded within the toolkit.

most advanced script development aids for extending existing

games can be found in exactly those computer games. These

tools, often coupled with world editors in the form of an

integrated development environment (Fig. 2), are now included

in many game releases, effectively making them additional

game content [8]. This is of special interest for developers

of serious games who generally do not have the financial

resources that entertainment game developers have [9], as

it allows them to use the same technology employed in

the creation entertainment games for a small fraction of the

price. An example for this use of entertainment games as the

infrastructure for serious games is ‘The History Game Canada’

(http://historycanadagame.com), which is a modification of the

entertainment strategy game ‘Sid Meier’s Civilization III’ [3].

One of the most mature and most widely used game

engines that allow complete game modification through

scripting is the Unreal game engine. Not only has this engine

been used in a large number of commercially successful

games, but the extensibility of these games has resulted in the

production of many additional modifications to these games

by end users, using UnrealScript, the scripting language used

by the Unreal engine [10]. Serious games created using the

Unreal engine are the ‘Virtual Egyptian Temple’ (Fig. 3)

[11], [12], and derived from this the game ‘Gates of Horus’

[13], that let players explore a hypothetical Egyptian New

Kingdom period temple.

In this paper we discuss the use of scripting systems

in computer games, in an attempt to establish a useful

classification of this technology. Section II discusses data-

driven architectures for computer games, focussing on the

manifestation of the data-driven design philosophy in the

use of scripting languages. Section III provides an overview

of scripting systems and scripting languages with a specific

focus on existing solutions using generic embeddable scripting

Fig. 3. The Virtual Egyptian Temple modification of the game Unreal
Tournament 2004 [11].

languages for use in computer games and Section IV presents

our proposed classification of scripting for entertainment and

serious computer games. Finally, in Section V we present our

conclusions and discuss potential avenues for future work.

II. DATA-DRIVEN COMPUTER GAME DEVELOPMENT

In software development, in general, the use of a data-driven

architecture usually means the distinction of an application’s

core components from application specific code. The former

are code elements that may be reused unchanged in other

applications, whereas the latter indicates code or data that is

unique to the individual application. This implies an abstrac-

tion of the application’s internal logic from the data which is

used to define the application’s behaviour [14], separating the

definition of the application’s make-up from the application’s

core functionality, which becomes effectively ‘policy free’.

Being ‘policy free’ means that while the application’s core

provides functionality which entails only the means for the

creation of an application, i.e. the building blocks from which

a comprehensive application can be constructed, it does not,

however provide the application’s functionality itself. In sim-

ple terms, it provides the ‘how to do’, but not the ‘what to

do’.

If the application is a computer game, a data-driven

architecture results in games driven by a game engine [10],

[15] (Figure 1). This allows developers to make a clear

distinction between engine (code) and game code, the former

being the core elements that may be shared among several

distinct games and the latter being the code that is unique to

the specific game. As most of the game specific logic is no

longer an intrinsic part of the core source code, in general a

data-driven game engine is highly reusable and believed to be

cost efficient [16], enjoying a relatively long shelf-life.

There are different layers of abstraction that define the

make-up of the data part of data-driven games, but borders

between these layers are not strictly defined and vary depend-

ing on the individual implementation. In its simplest form, the

game specific data can take the form of source code which

can be linked with the game engine core. A higher level of

abstraction on the other end of the scale is to store this data

Published in Proceedings of VS-GAMES 2011: 3rd International Conference on Games and Virtual Worlds for Serious 
Applications, pages 47-54;  definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2011.13

Published version is © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



as an external game asset. Game assets are those elements of

a game that are loaded into the game engine at run-time to

provide the content of the game, including elements which are

created by designers and artists like 3D models, textures and

animation or sounds and music.

In game development data-driven design is often understood

as a way to empower artists and designers to independently

modify game logic without a programmer’s help or interven-

tion [17], requiring this to be accomplished without the need

to recompile parts of the game program’s source code. The

methods used to achieve this are the same ones that also allow

external game modification.

The Achilles heel of this high level of data-driven design

in any computer application is the fact that an outsourcing

of product specific data into an external asset can allow

malicious users to effectively hijack the system by modifying

those external resources or by replacing them with their

own resources, providing these users with unfair advantages

[18]. This type of misuse of scripting systems, however, can

be easily prevented if the application properly verifies the

integrity of its external resources before they are used. In the

case of computer games, the modification of external assets

can even be desirable, which is evident in the many extensible

games that allow users to make their own modifications.

A. Game Extensibility and Modification

Over the past decade there have been many games that

have been created in a way that allows the players to directly

modify the games. This “modding” of games [19] goes from

the simple extension and addition to existing games up to the

creation of completely new games. This has been supported by

the games industry through the publication of the same tools

used by the game designers for the creation of the games them-

selves. By exposing the end-user, i.e. the players, to the tools

allowing them to extend and modify the games themselves and

by assisting them with any game modifications they intend to

make, the developers add value to a game and dramatically

increase its shelf-life. To simplify this, some games provide

extensive software interfaces into the game engine, allowing

parts of the games to be reprogrammed by direct manipulation

of the game code or through plug-ins, however, the method

by which the extensibility of most modern games is realised

is by the use of more or less complex scripting systems.

This is because a scripting system in which the script has

complete control over the behaviour of the application that it

is embedded in is the ultimate implementation of a data-driven

design.

Varanese [20] explains and discusses in detail how scripting

is used in combination with computer games and how scripting

systems can be embedded within computer games. Scripting

can be used to issue commands to the game engine, such

as loading of objects, textures and levels, but also for much

more complicated tasks like playing animated cut-scenes, di-

recting camera movements or triggering events inside the game

worlds. It removes a large part of the – previously hard-coded

– internal game logic from the game engine and transforms it

into a game asset. Scripts themselves can be used to direct the

application of these assets to the game, effectively modifying

the behaviour of the game engine and the game itself without

the need for the game source code to be recompiled. With

scripts themselves being “a form of artistic content” [18] for

games, this means that the game engine only provides a shell,

i.e. a protected ‘sandbox’ environment for scripts within the

game engine. Scripts operate within this ‘sandbox’ with the

scripts creating the game and its environment without being

able to adversely affect the running of the host game engine

itself.

III. SCRIPTING LANGUAGES, SCRIPTING SYSTEMS AND

COMPUTER GAMES

The Oxford Reference Online defines a scripting language

as “a programming language that can be used to write pro-

grams to control an application or class of applications, typi-

cally interpreted” [21]. This is only one of many different def-

initions for scripting languages and this very broad definition

encompasses a vast range of programming languages which is

– unfortunately – not very helpful.

When it comes to games, some consider scripting a method

for prescribing specific events and behaviour [22], very much

like a film script which cannot be altered. We however refer

to the terms scripting language and scripting system when

we describe a system using a programming language which

allows the modification of program logic without the need to

recompile the application (game engine) source code.

Scripting languages are used to provide a control interface

for combining different components into a single whole, which

is why they are also “referred to as glue languages or system

integration languages” [23]. They are “meant to be easy to

program in” [24], often at the expense of run-time perfor-

mance. As such, scripting languages provide an additional

layer of abstraction on top of components (or programs)

usually written in a high-level programming language. This

abstraction, combined with the fact that modern scripting

languages such as Python [25] have a lot in common with tra-

ditional system programming and implementation languages

such as C and C++, makes scripting languages a form of VHL

(Very High Level) programming languages [26].

Scripting systems have a wide range of applications and

can appear in many different forms, depending on the area

of application. Some of the simplest scripting systems are

the sophisticated command-line interpreters related to UNIX

shells such as Ksh [27], their main task being to tie together

external programs into a unified construct. Their scope can be

greatly enlarged through the use of file processing languages

such as AWK [28], which form the next higher level of

scripting system. Different from these standalone systems are

integrated scripting systems such as MEL (Maya Embedded

Language) [29] that control a single application from the in-

side, often requiring very little overhead from the application’s

side for executing scripts, although this is not the case with

MEL (see above). Embedded scripting languages are often

found in applications for use by non-programmers, i.e. in

Published in Proceedings of VS-GAMES 2011: 3rd International Conference on Games and Virtual Worlds for Serious 
Applications, pages 47-54;  definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2011.13

Published version is © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



programming terms “less-skilled personnel” [4] or “semipro-

grammers” [30] for whom programming is not an intrinsic

part of their job-description. They include DSLs (Domain

Specific Languages) [31] that can also take the form of macro-

based languages that are embedded within an implementation

language to be actually translated into native code and linked

with its host application [32], which is a technique considered

to be a good use of preprocessor macros [33], [34].

While many scripting languages are interpreted, this is not

generally the case. Immediate interpretation of scripts which

are directly analysed and executed statement by statement is

an expensive operation. To achieve a better performance it

makes sense to compile script programs, however, not into

a frozen executable in native machine code, but rather into

an intermediate form for execution within a virtual machine.

Scripts that are not interpreted directly but pre-compiled into

intermediate interpreter code, running on a virtual machine,

can attain considerable performance improvements over those

that are interpreted statement by statement, while also prevent-

ing some otherwise hard to detect run-time errors by catching

them during script compilation. If that compilation happens

to be performed on-the-fly, i.e. if the compiler is integrated

into the virtual machine as a kind of script preprocessing step,

this process is hidden from the script programmer, providing

the illusion that the script is directly interpreted. This is a

technique employed by some of the more advanced scripting

languages with features that are very close to those of popular

implementation languages, showing that they can be a viable

alternative to those very same ‘conventional’ programming

languages [35].

A. Game Design Improvement Through Scripting

Whereas only a few years ago the majority of scripting

solutions used in computer games were proprietary languages

(Fig. 4), the trend has now shifted towards the use of

generic scripting solutions of which some have been designed

explicitly for use in computer games. This becomes evident in

a recent survey of scripting languages in computer games [36]

which focuses on the languages Lua, Python, AngelScript and

GameMonkey Script, all of which are embeddable languages

that have been used in commercial games. Other than these

popular choices for scripting languages in games, there exist a

number of less frequently used but mature scripting languages

which can be embedded in computer game engines. Most

of these languages are generic, i.e. not specialised for spe-

cific tasks [20]. Generic languages of this type that are

frequently mentioned in the context of game development are

the languages Tcl and Ruby. Other languages used with games

are the object oriented language Squirrel or the language

JavaScript (standardised as ECMAscript – ECMA-262) which

has its origins in web-browsers but has since found a wide

range of applications, an example for which is the ActionScript

language used in the Flash multimedia authoring system,

which is also used in game development [37].

This does not, however, mean that the development of

proprietary scripting solutions should be avoided at all costs, as

Fig. 4. A 2003 computer game scripting poll conducted at the
game development website www.gamedev.net – frequented by many game
development professionals, as well as amateur developers – suggests that
nearly 75% of game engines in development at the time included some form
of support for game modifications through scripting systems, over a third of
which were proprietary solutions.

Wilcox notes that despite the effort and development overhead

involved in the creation of a new scripting system “you are

not reinventing the wheel. You are creating a way to concisely

express your thoughts in a new language” [4]. Huebner’s case

study of how scripting support was implemented in the FPS

(First Person Shooter) game ‘Jedi Knight: Dark Forces’ details

the development process of a proprietary language for use by

the designers of the game [38]. In this study Huebner clearly

identifies the benefits of using a scripting system in game

development:

• The complexity of the core game engine is reduced as

elements of the game logic are taken out of the engine

and put into scripts instead.

• The stability of the core game engine is enhanced as a less

complex engine design will have fewer vulnerabilities and

bugs.

• “Parallel development” becomes possible, which means

that the programmers’ time is freed up as they no longer

need to concern themselves with design elements which

designers can now manipulate themselves with scripts.

• Designers are empowered and given the opportunity to

realize more aspects of their designs – this is especially

true when the virtual machine can do just-in-time (JIT)

compilation of scripts and when the script editor is

integrated with the level editor.

Published in Proceedings of VS-GAMES 2011: 3rd International Conference on Games and Virtual Worlds for Serious 
Applications, pages 47-54;  definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2011.13

Published version is © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



While the development of a proprietary game scripting

solution places additional burden on the developers of a

game engine, it not only allows the scripting language to

be domain specific to the type of game that the engine is

supposed to provide an infrastructure for, but it also allows

the language to provide abstractions for problems that are not

usually addressed by generic programming languages, such as

syntactic features that specifically deal with game AI. This in

turn can simplify the actual development of games.

IV. COMPARATIVE ANALYSIS AND CLASSIFICATION OF

SCRIPTING IN GAMES

Fig. 5. Classification of scripting systems for computer games.

Just as the term ‘scripting’ has different interpretations

depending on the context in which it is used, there are

different types of scripting systems, each working differently

and not all of them are suitable for use in computer games.

Our classification of the various types of scripting systems

is restricted to those found in modern computer games and

does not attempt to be complete but rather means to serve as

a guide for distinguishing between different script types by

their usage. The various types of scrips that are employed in

computer games are (Fig. 5):

ST1 – INITIALISATION SCRIPTS:

ST1 initialisation scripts can be considered the simplest

form of scripting system [39]. During program runtime scripts

of this type are usually only executed once, at program start-

up, while the script’s host application is initialising. In most

cases this type of script is used only to set internal program

parameters to the values given in the script which is why these

scripts are also referred to as “property scripts” [40].

Initialisation scripts are often nothing more but lists of

value declarations that are usually interpreted directly, i.e.

scripts that are not require translation into an intermediate

format for execution. Sometimes these languages include

additional syntactic elements that make scripts easier to read

and edit by human users. This semi-declarative behaviour

places initialisation scripts among the DSL family of small

programming languages [41], but markup languages, such as

XML are also frequently used in this role.

ST2 – TRIGGER-ONLY INDUCED SCRIPTS:

In event based scripting systems the occurrence of an event

within the game triggers the execution of a script or part of a

script. This means that scripts do not run in a pre-defined order

but rather when a specific situation in the game-world has

occurred. The hard-coded equivalent for this type of scripting

system can resemble the state-effect pattern [42], [18], which

is frequently used in game development, as this category of

script also includes rule-based scripting systems which can be

used for the definition of domain knowledge in expert systems.

An example for this are the intelligent NPCs (Non Player

Characters), i.e. the computer controlled entities, that can be

found in many computer games. Commercial computer games

that use this kind of scripting system are Bioware’s Role-

Playing Games ‘Neverwinter Nights’ (Fig. 2) and ‘Baldur’s

Gate’. ST2 type scripts are also frequently used to set up

user interfaces (Fig. 6) and associated event handlers. Among

the event based scripting systems there are two distinct sub-

types:

ST2a – EVENT HANDLER SCRIPTS:

The simpler sub-type of scripting systems in this category

uses events that are built into its host game engine as pre-

defined events. Here scripts only define the event handlers,

i.e. the instructions that will be carried out when an event

occurs. Scripts of this type may define additional conditions

that influence the host application’s event trigger mechanism.

Events are triggered and event handlers are called from the

game engine itself, when the events occur.

ST2b – EVENT ORIENTED SCRIPTS:

The second sub-type are more sophisticated scripting

systems that follow the concept of “Action Languages” as

described by Gelfond and Lifschitz [43]. Scripts expressed

in declarative languages, such as SGL [44], also fall into

this category. These scripts first define the triggers and

the situations in which these should act on events, i.e.

the execution conditions, in addition to the event handlers

themselves. In application implementations these trigger-

definitions will usually be executed during the initialisation of

the scripting system so that these events can be generated by

the host game engine if all necessary preconditions are met.

Once per execution cycle of the script, which in many games

will happen once every frame, the conditions for triggering

events will be checked against the current game-state, i.e.

the in-game situation, and if these conditions evaluate as

true they will induce the execution of the event handler. The

examination of the game-state can happen through active

polling of event data from the host game engine. Alternatively

events can be triggered from within other events or posted as

messages to the scripting system by the host game engine.

ST3 – SCRIPTS WHICH RUN LIKE A TRADITIONAL

COMPUTER PROGRAM:

Finally there are the scripting systems that are modelled

on “traditional” procedural, functional or object oriented pro-

gramming languages that would immediately appear familiar

to most programmers. Here we can identify two sub-types:

ST3a – LOOPING SCRIPTS:

Published in Proceedings of VS-GAMES 2011: 3rd International Conference on Games and Virtual Worlds for Serious 
Applications, pages 47-54;  definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2011.13

Published version is © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



ST3a scripts will be executed repeatedly to (re-)evaluate

the current situation within the game, i.e. they will restart

execution from the beginning of the script, once the end of

the script has been reached. Effectively, scripts of this type are

used to describe a single (high-frequency) control loop. They

can be a superset of type ST2 scripts in the sense that they,

too, are usable for expressing the state-effect pattern [42], [18],

which is useful for continuously reevaluating current game

states, such as those that manipulate state machines. If run

once only at program start-up, scripts of this type are also

suitable for use in similar environments as scripts of type ST1.

ST3b – REGULAR SCRIPTS:

Scripts of this type will execute once only, i.e. they will

run from start to finish, concurrently with the host application.

Consequently any kind of repeating operation to be executed

by the scripting system will have to be implemented as a

looping operation within the script itself. An example for this

is the mini-language like behaviour definition system ZBL/0

[45], which executes concurrent scripts for controlling NPCs

in game environments.

A. Language Categorisation

A major difficulty in the categorisation of scripting systems

is that many scripting languages can map onto more than

one of the script categories, as their syntactic features can

allow different modes of usage. For example, the popular

scripting language Lua [46] would allow for the creation

of scripting systems for each of the script types described

here. Multi-language development [47], i.e. the combination

of several programming and scripting languages within the

same application, is a common feature of modern game

development. A good example for this is the use of both XML

and Python scripts within the game ‘Sid Meier’s Civilization

IV’ [48], in which the XML scripts for the provision of game

settings are of type ST1, with higher level game functionality

controllable through Python with type ST2 scripts. Multi-

language development is also evident in ‘The Meadow’ [49],

which employs Lua scrips both as type ST1 scripts for

scene setup and as ST2b scripts for controlling the system’s

graphical user interface (Fig. 6), while type ST3b scripts

written in the proprietary language C-Sheep are used to control

the behaviour of virtual entities in the game world. The use

of different script types that are both implemented using Lua

in this example shows how easily the lines can be blurred and

that the distinction of scripts needs to be made by mode of

usage rather than by scripting language used.

Different criteria could be used for categorising scripts, i.e.

instead of mode of usage, one could possibly categorise scripts

by application domain, such as scene description languages

– a term that could apply to many file formats for storing

3D geometry game assets – or behaviour definition languages

[50] for defining NPC behaviour, which themselves would be

a subcategory of artificial intelligence languages [51]. This,

however, would lead to the placement of very similar types

of scripts into different categories. As this might lead to

confusion, we believe that our choice of categories by mode

of usage is the more favourable alternative.

Fig. 6. Lua scripts of type ST2b controlling the graphical user interface in
‘The Meadow’ [49] computer science education serious game.

V. CONCLUSIONS AND FUTURE WORK

Data-driven design takes program modularisation and code-

reusability to its extremes and we have now reached a point

in the trend towards data-driven development of computer

games, where considerable sections of computer games are

no longer hard-coded into the game programs themselves but

instead are loaded in as scripted game assets. In this paper we

have proposed a simple classification system for these scripts,

categorising different types of script depending on their mode

of usage, i.e. the manner in which they are executed within

their host application.

“One characterization of progress in programming

languages and tools has been regular increases in abstraction

level – or the conceptual size of software designers building

blocks” [52]. This observation is reflected in the success

of domain specific scripting languages that provide bigger

“building blocks” for specific operations that could be

decomposed into simpler instructions, which would achieve

the same overall effect but require a lot more effort by the

application developer and result in the creation of a lot

more source code. The higher level of abstraction provided

by scripting systems shows them as a powerful alternative

to the so-called implementation programming languages as

they greatly reduce the effort required for giving complex

instructions. In terms of scripting in computer games there is

also an observable trend towards multi-language development

[47]. Here the combined use of different languages and script

types within the same host application greatly enhances the

accessibility and usability of different features of the system,

as scripts can be customised for the different domains that

they are used in.

As scripting systems and the use of scripts in game

development keep evolving, our classification of scripts may

Published in Proceedings of VS-GAMES 2011: 3rd International Conference on Games and Virtual Worlds for Serious 
Applications, pages 47-54;  definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2011.13

Published version is © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



need to be revised and expanded in the future. An early

indicator for this may be the emergence of concurrent systems

and distributed applications, such as games created with the

Network Scripting Language [53], which features scripts that,

although similar to ST3b type scripts, do not really map to

any of our identified script categories.

One important area for future development lies in the area

of development and content creation tools [54], which could

be considered an integral part of a data-driven game engine

[15]. Especially the continuing integration of scripting systems

into game engines has prompted the need for tools to aid

in the development of scripts. Although the high level of

abstraction and frequently simple syntax of domain specific

scripting languages usually allows non-programmers to cope

perfectly with writing scripted programs for these systems, a

popular approach to simplifying script generation for designers

is the use of tools with a graphical user interface (GUI).

These tools can range from simple text editors that have

been extended to provide syntax highlighting for the scripting

language (Fig. 2) to complex CASE (computer aided software

engineering) applications that provide a more intuitive design

approach to the generation of scripts. Some of these script

manipulation tools are themselves written as scripts (of type

ST3b), such as the ‘Unit Formation Editor’ in ‘Civilization IV’

[48], which was programmed in Python. However, most of the

existing tools are mainly designed for the creation of scripts of

types ST1 and ST2, which lack the complexity of type ST3

scripts that usually require a much greater understanding of

programming, which in turn complicates the development of

intuitive tools for their creation, which future work will need

to address.

ACKNOWLEDGMENTS

This paper includes imagery generated using the Vir-

tual Egyptian Temple, which is a product of PublicVR

(http://publicvr.org).

REFERENCES

[1] I. Schramm-Wölk, “E-Learning und Edutainment,” in Proceedings of

zfxCON05 - 2nd Conference on Game Development, 2005, pp. 29–37.

[2] M. Zyda, “From visual simulation to virtual reality to games,” IEEE

Computer, vol. 38, no. 9, pp. 25–32, 2005.

[3] E. F. Anderson, L. McLoughlin, F. Liarokapis, C. Peters, P. Petridis, and
S. de Freitas, “Serious games in cultural heritage,” in VAST 2009: 10th

International Symposium on Virtual Reality, Archaeology and Cultural

Heritage - VAST-STAR, Short and Project Proceedings, 2009, pp. 29–48.

[4] B. Wilcox, “Reflections on Building Three Scripting Languages,” Avail-
able from: http://www.gamasutra.com, 2007, [Accessed 01/11/2010].

[5] M. DeLoura, “The engine survey: Technology re-
sults,” Gamasutra Expert Blogs - available from:
http://www.gamasutra.com/blogs/MarkDeLoura/20090316/903/The En
gine Survey Technology Results.php, 2009, [Accessed 01/11/2010].

[6] B. Campbell, “Swiss Army Chainsaw: A Common Sense Approach to
Tool Development,” Available from: http://www.gamasutra.com, 2006,
[Accessed 01/11/2010].

[7] D. Given, “The inComplete SCUMM Reference Guide,” Available from:
http://www.scummvm.org, 2002, [Accessed 29/02/2008].

[8] B. Kane, “SIGGRAPH: EA’s Entis on Derailing the ‘Commodi-
tization Treadmill’,” Gamasutra Industry News, available from:
http://www.gamasutra.com, 2007, [Accessed 01/11/2010].

[9] J. Noghani, F. Liarokapis, and E. F. Anderson, “Randomly generated
3d environments for serious games,” in VS-GAMES 2010: Proceedings

of the 2nd International Conference on Games and Virtual Worlds for

Serious Applications, 2010, pp. 3–10.

[10] A. BinSubaih, S. Maddock, and D. Romano, “A Survey of ‘Game’ Porta-
bility,” University of Sheffield, Tech. Rep. CS-07-05, 2007, department
of Computer Science.

[11] J. Jacobson and L. Holden, “The virtual egyptian temple,” in ED-

MEDIA: Proccedings of the World Conference on Educational Media,

Hypermedia & Telecommunications, 2005.

[12] J. Jacobson and M. Lewis, “Game Engine Virtual Reality with CaveUT,”
IEEE Computer, vol. 38, no. 4, pp. 79–82, 2005.

[13] J. Jacobson, K. Handron, and L. Holden, “Narrative and content combine
in a learning game for virtual heritage,” in Computer Applications to

Archaeology 2009, 2009.

[14] S. Rabin, “The Magic of Data-Driven Design,” in Game Programming

Gems. Charles River Media, 2000, pp. 3–7.

[15] E. F. Anderson, S. Engel, L. McLoughlin, and P. Comninos, “The case
for research in game engine architecture,” in Proceedings of the ACM

FuturePlay 2008 International Academic Conference on the Future of

Game Design and Technology, 2008, pp. 228–231.

[16] Danc, “Managing Game Design Risk: Part II – Data Driven
Development,” Blog Entry, available from: http://www.lostgarden.com,
2006, [Accessed 01/11/2010].

[17] K. Wilson, “Data-Driven Design,” Blog entry, available from:
http://www.GameArchitect.net, May 2002, [Accessed 01/11/2010].

[18] W. White, C. Koch, J. Gehrke, and A. Demers, “Better scripts, better
games,” Commun. ACM, vol. 52, no. 3, pp. 42–47, 2009.

[19] A. Wallis, “Is Modding Useful?” in Game Carreer Guide 2007. CMP
Media, 2007, pp. 25–28.

[20] A. Varanese, Game Scripting Mastery. Premier Press, 2003.

[21] OUP, “Scripting Language,” A Dictionary of Computing. Oxford Uni-
versity Press, 2002.

[22] P. Sweetser and J. Wiles, “Scripting versus Emergence: Issues for Game
Developers and Players in Game Environment Design,” International

Journal of Intelligent Games and Simulations, vol. 4, no. 1, pp. 1–9,
2005.

[23] J. K. Ousterhout, “Scripting: Higher Level Programming for the 21st
Century,” IEEE Computer, vol. 31, no. 3, pp. 23–30, 1998.

[24] B. W. Kerninghan and C. J. Van Wyk, “Timing Trials, or the Trials
of Timing: Experiments with Scripting and User-Interface Languages,”
Software: Practice & Experience, vol. 28, no. 8, pp. 819–843, 1998.

[25] B. Dawson, “Game Scripting in Python,” in Proceedings of the 2002

Game Developers Conference, 2002.

[26] N. Bezroukov, “Scripting Languages as a Step in Evolution
of Very High Level Languages,” 2006, available from:
http://www.softpanorama.org/People/Scripting giants/scripting
languages as vhll.shtml [Accessed 01/11/2010].

[27] D. G. Korn, “ksh - An Extensible High Level Language,” in Very High

Level Languages Symposium (VHLL), 1994, pp. 129–146.

[28] A. V. Aho, B. W. Kernighan, and P. J. Weinberger, “Awk - a Pattern
Scanning and Processing Language (Second Edition),” Software: Prac-

tice & Experience, vol. 9, no. 4, pp. 267–280, 1979.

[29] D. Gould, Complete Maya Programming: An Extensive Guide to MEL

and the C++ API. Morgan Kaufmann, 2002.

[30] M. Harmon, “Building Lua into Games,” in Game Programming Gems

5. Charles River Media, 2005, pp. 115–128.

[31] M. West, “Domain-Specific Languages,” Game Developer, vol. 14, no. 7,
pp. 33–36, 2007.

[32] S. Rabin, “Implementing a State Machine Language,” in AI Game

Programming Wisdom. Charles River Media, 2002, pp. 314–320.

[33] B. W. Kernighan and R. Pike, Using Macros to Generate Code.
Addison-Wesley, 1999, ch. 9.6.

[34] S. Rabin, “Finding Redeeming Value in C-Style Macros,” in Game

Programming Gems 3. Charles River Media, 2002, pp. 26–37.

[35] L. Prechelt, “Are Scripting Languages Any Good? A Validation of
Perl, Python, Rexx, and Tcl against C, C++, and Java,” Advances in

Computers, vol. 57, pp. 205–270, 2003.

[36] D. Garcés, “Scripting Language Survey,” in Game Programming Gems

6. Charles River Media, 2006, pp. 323–340.

[37] S. A. Baba, H. Hussain, and Z. C. Embi, “An Overview of Parame-
ters of Game Engine,” IEEE Multidisciplinary Engineering Education

Magazine, vol. 2, no. 3, pp. 10–12, 2007.

Published in Proceedings of VS-GAMES 2011: 3rd International Conference on Games and Virtual Worlds for Serious 
Applications, pages 47-54;  definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2011.13

Published version is © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



[38] R. Huebner, “Adding Languages to Game Engines,” Game Developer,
vol. 4, no. 9, 1997.

[39] P. Tapper, “Personality Parameters: Flexibly and Extensibly Pro-
viding a Variety of AI Opponents’ Behaviors,” Available from:
http://www.gamasutra.com, 2003, [Accessed 01/11/2010].

[40] A. Sherrod, Ultimate 3D Game Engine Design & Architecture. Charles
River Media, 2007.

[41] A. van Deursen, P. Klint, and J. Visser, “Domain-Specific Languages:
An Annotated Bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6,
pp. 26–36, 2000.

[42] W. White, B. Sowell, J. Gehrke, and A. Demers, “Declarative processing
for computer games,” in Sandbox ’08: Proceedings of the 2008 ACM

SIGGRAPH symposium on Video games, 2008, pp. 23–30.
[43] M. Gelfond and V. Lifschitz, “Action Languages,” Linköping Electronic

Articles in Computer and Information Science, vol. 3, no. 16, 1998.
[44] R. Albright, A. Demers, J. Gehrke, N. Gupta, H. Lee, R. Keilty,

G. Sadowski, B. Sowell, and W. White, “SGL: a scalable language for
data-driven games,” in SIGMOD ’08: Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, 2008, pp.
1217–1222.

[45] E. F. Anderson, “A NPC Behaviour Definition System for Use by
Programmers and Designers,” in Proceedings of CGAIDE 2004 5th

Game-On International Conference on Computer Games: Artificial

Intelligence, Design and Education, 2004, pp. 203–207.
[46] R. Ierusalemschy, L. H. de Figueiredo, and W. Celes, “The Evolution of

Lua,” in HOPL III: Proceedings of the third ACM SIGPLAN conference

on History of programming languages, 2007, pp. 2–1–2–26.
[47] A. M. Phelps and D. M. Parks, “Fun and games: Multi-language

development,” Queue, vol. 1, no. 10, pp. 46–56, 2004.

[48] M. Thamer, Sid Meier’s Civilization IV Tech

& Modding Overview, 2005, available from:
http://www.cyberstump.com/civ4/docs/civ4 features/tech and modding
overview.doc [Accessed 01/11/2010].

[49] E. F. Anderson and L. McLoughlin, “Critters In The Classroom: A
3D Computer-Game-Like Tool for Teaching Programming to Computer
Animation Students,” in ACM SIGGRAPH 2007 Educators Program,
2007.

[50] E. F. Anderson, “Scripted smarts in an intelligent virtual environment:
behaviour definition using a simple entity annotation language,” in
Future Play ’08: Proceedings of the 2008 Conference on Future Play,
2008, pp. 185–188.

[51] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan, “Scaling
games to epic proportions,” in SIGMOD ’07: Proceedings of the 2007

ACM SIGMOD international conference on Management of data, 2007,
pp. 31–42.

[52] D. Garlan and M. Shaw, “An Introduction to Software Architecture,”
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-94-
TR-21, ESC-TR-94-21, 1994, CMU Software Engineering Institute.

[53] G. Russell, A. F. Donaldson, and P. Sheppard, “Tackling online game
development problems with a novel network scripting language,” in
NetGames ’08: Proceedings of the 7th ACM SIGCOMM Workshop on

Network and System Support for Games, 2008, pp. 85–90.
[54] J. Blow, “Game development: Harder than you think,” Queue, vol. 1,

no. 10, pp. 28–37, 2004.

Published in Proceedings of VS-GAMES 2011: 3rd International Conference on Games and Virtual Worlds for Serious 
Applications, pages 47-54;  definitive version available from http://dx.doi.org/10.1109/VS-GAMES.2011.13

Published version is © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.




