Introduction: a relational perspective

In this chapter we argue for a relational perspective on the cognitive life of things based on metaphorical rather than semiotic understandings of human and hominin material culture. The corporeality of material culture means that it plays a role as a solid metaphor for the shared experience of embodiment which precedes language in the archaeological record. While arguments continue as to both the cognitive abilities that underpin symbolism and the necessary and sufficient evidence for the identification of symbolic material culture in the archaeological record, a symbolic approach will inevitably restrict the available data to sapiens or even to literate societies. In contrast, a focus on material culture as material metaphor allows the consideration of the ways in which even the very earliest archaeological record reflects hominins' embodied, distributed relationships with heterogeneous forms of agent, as will be demonstrated here by two case studies.

Background

The role played by material culture in human lives has recently been brought to the foreground of debates surrounding the evolution of human cognition and sociality by a growing emphasis on the relations between people and their material environments. Appropriately such a relational perspective is not so much a distinct, unified theory as a convergence of varied approaches from a wide variety of disciplines in both the social and natural sciences. Among the former are anthropological approaches considering identity and personhood as constituted by relationships (Mauss 1985; Strathern 1988; LiPuma 1998) and viewing material culture as active and biographical (papers in Appadurai 1986; Kopytoff 1986; Hoskins 1998; Gosden & Marshall 1999). Geography has also contributed such complementary theories as direct perception (Gibson 1979), practice theory (Bourdieu 1977), phenomenology (Heidegger 1962 [1927]; Merleau-Ponty 1962) and time geography (with particular reference to the Hägerstrandian ‘society-cum-habitat’; Carlstein 1982).

Among the natural sciences, theoretical developments such as Dawkins's extended phenotype (1982), ecosystemic and developmental theories (Tansley 1935; van Valen 1973; Goodwin 1982; Lewontin 1982; 1983; Foley 1984; see e.g. discussion in Ingold 1995) and niche-construction theory (Odling-Smee et al. 2003) also inform on a relational perspective. The concept of distributed cognition extends this, viewing cognition as embodied, situated and emergent (Varela et al. 1991; Hutchins 1995a,b; Brooks 1999; Lakoff & Johnson 1999; Anderson 2003), both physically and socially ‘distributed’ beyond the limits of the individual body (Clark 1997; Segal 2000; Clark & Chalmers 1998; see also Rowlands 2003). What these disparate approaches share is a fundamentally relational perspective which highlights the extent to which cognition relies on interaction with other agents, including conspecifics as well as other animate and inanimate elements of the environment. From this perspective, the archaeological record becomes part of the ongoing social life of hominins, affording archaeology considerable potential for addressing the socio-cognitive relationships structuring prehistoric societies.

Relational archaeology: a missed opportunity?

However, archaeological case studies working within a relational paradigm have been concentrated in Holocene contexts (e.g. Chapman 2000; Jones & Richards 2003; Knappett 2005). In fact, recent works have
identified the Neolithic as a period during which a positive feedback process of ‘deep’ enculturation within an increasingly rich material culture environment ratcheted human cognitive capacities to the point of a qualitative break in cognition with earlier populations (Donald 1991; Watkins 1992; 2004, 105; Renfrew 2001).

Such a perspective restricts the time depth of ‘human’ cognition to little more than the past 10,000 years. However, archaeology is unique among the human sciences not only in its focus on material culture but in the time depth of its available data — the earliest stone tools are currently 2.6 million years old (Semaw et al. 1997).

Material metaphors, body and language

We argue that the key to such a unifying perspective is a focus on the metaphorical rather than the semiotic nature of material culture. In the archaeological record, objects precede words. The idea that only with language did previously mute objects and well-trodden landscapes acquire symbolic meaning and cultural significance is therefore misplaced. Primates are tool-users (e.g. McGrew 1992), and this material hominin inheritance clearly means that the social lives of our earliest ancestors need to be considered as entangled from the first in social practices involving material culture.

Research addressing the question of how symbols are ‘grounded’ with real-world meaning is increasingly prioritizing embodied, situated approaches that model perception and cognition as fundamental to action (e.g. Harnad 1990; Brooks 1999, 113; Anderson 2003). Cognitive representation, though still significant, becomes of secondary analytical importance: as in the case of the map described by Lewis Carroll, ‘The world is its own best model’ (Brooks 1999, 167 italics in original).

The *sine qua non* of cognition, then, is materiality. As Merleau-Ponty has argued, ‘perception and representation always occur in the context of, and are therefore structured by, the embodied agent in the course of its ongoing purposeful engagement with the world’ (cited in Anderson 2003, 104). Damasio has located the deep roots for the self ‘in the ensemble of brain devices which continuously and nonconsciously represent the state of the living body’ (2000, 189 italics in original), and argues that this proto-self — not restricted to humans — provides the raw material for a narrative construction of the secondary ‘core’ and ‘autobiographical’ selves. Crucially, this process is seen as a *precondition* for language rather than dependent upon it; thus ‘it seems that symbols are in the world first, and only later in the head’ (Hutchins 1995a, 370).

Cognitive representation of the material world is underpinned and communicated by reference to bodily experience: ‘Our concepts of space — up, down, forward, back, on, in — are deeply tied to our bodily orientation to, and our physical movement in the world’ (Anderson 2003, 107; see also Lakoff & Johnson 1999; 1980, figs. 1 & 2). Specific cognitive representations of course vary between particular contexts (e.g. Strauss & Quinn 1997, 143–4). Nevertheless, they remain inherently *metaphorical in nature, linking the experiential basis of materiality (the source domain) to the more abstract representation of that experience (the target domain: see e.g. Tilley 1999).

Linguistic metaphor is pervasive in everyday life (see e.g. Lakoff & Johnson 1980 and Tilley 1999 for copious examples). However, as the conceptualization of one thing in terms of another, metaphor is better considered as underpinning communication more generally, as in ‘the most general sense metaphor involves comprehending some entity from the point of view, or perspective, of another’ (Tilley 1999, 4). Such an appreciation of the shared nature of materiality and its bodily experience is a precondition for communication, in which metaphor is used to link subjective and objective experience. The capacity for theory of mind may thus be another aspect of hominins’ primate inheritance (Hare et al. 2000; O’Connell & Dunbar 2005; though see also Call & Tomasello 1999; see Dunbar 2003 for review).

A view of metaphor — and representation more generally — as grounded in the body thus emphasizes continuity in prehistory while still allowing for the variability of outcomes that is so apparent in the archaeological record. The body is not an invariant universal (papers in Hamilakis et al. 2002; Ingold 1996), and the contexts for and subjective interpretation of bodily experience will always vary. Nevertheless the process of perception, the experience of experience, remains shared, and a relational perspective focuses less on meaning *per se* than the way in which the ‘inter-subjective sharedness’ (Strauss & Quinn 1997, 277) of embodied experience provides a reference point for understandings of the world and the forging of relationships and systems of communication as part of the process of creation of meaning (Conkey 1995).

Analysis of material culture thus becomes a consideration of effect (see Gosden 2001, 164 for discussion of Gell’s work), and the effect of material culture is a function primarily of its materiality. Particular ‘things’ have properties that structure their perception; textures, surfaces, edges, reflective properties, chemical compositions, etc. (Gibson 1979; Rodaway
Figures 5.1 & 5.2. The body as source domain for metaphor. The particular interpretations indicated here are of course highly culturally-specific and are given only as examples of the kinds of values and interpretations overlaid onto bodily sensation (see e.g. Nuñez & Sweetser 2006 for the very different example of the Aymara).
and this materiality of the tangible, visible, audible, olfactory and gustatory world is fundamental to the creation of metaphorical associations by resisting some interpretations and metaphors and inviting others (Parker Pearson & Ramilisonina 1998).

The material metaphors at work in culture are not entirely arbitrary. In the process of making metaphorical connections there is always likely to be an inherent connection between form and meaning. ... The meanings of pigs as symbols are linked to what pigs do, and how they behave (Tilley 1999, 28, italics in original).

The direction of symbolic force is thus primarily from materiality towards representation (Gamble 2004), and the code of metaphorical relations which arise from actions of the body are understood primarily through bodily experience (e.g. Tilley 1999, 103, 265).

Whether cognitive revolutions are identified at either or both the ‘Human’ or ‘Neolithic’ junctures, when Homo sapiens evolved or a primarily mobile hunter-gatherer social system gave way to more sedentary agriculturalists respectively, the reference of material culture to the body has remained constant. Although of course specific, contextual meanings of particular ‘things’ vary by virtue of the shifting associations between agents in space and time, material metaphors have always been a consequence of hominin bodies inhabiting space and time, and clearly pre-date their linguistic utterance and symbolic appropriation.

Material metaphors and the archaeological record

In the course of hominin social practice individuals and groups engage in material ‘projects’ of variable scale, commitment and duration — from cooking a meal to the construction of identity — that bring heterogeneous ‘things’ into association and redistribute them again. The complementary practices of accumulation (bringing objects into association at particular locales and in particular contexts) and enchainment (distributing objects, for example through exchange, trade or gift, and thus linking these local chains of associations into wider networks) are variably stressed in different cultures and contexts, resulting in differing patterns of ‘sets’ and ‘nets’ of material culture in time and space (Chapman 2000; see also Jones & Richards 2003). In this way such archaeological entities as assemblages, caches and structured deposits, for example, link in to wider distribution networks, interaction spheres, cultures and so on via the mundane rhythms of daily life (Table 5.1).

Nor are such practices restricted to Holocene groups: although Palaeolithic peoples may not have lived amidst quite such a richness of material culture as later populations, the two case studies that follow demonstrate the value of a relational, metaphorical approach to their archaeological record. For it is not simply ‘artificial’ or ‘man-made’ objects that are incorporated within networks of interaction (Hutchins 1995a, e.g. 172). Mobile hunter-gatherers engage in a thoroughly relational epistemology of relations with animals and even inanimate entities in their environments that are simply practical in a world where people are always engaged in relationships with their environment in the course of their day-to-day activities (Hallowell 1960; Binford 1978; 1983; Tanner 1979; Brody 1981; Wagner 1986; Bird-David 1999, 69; see also e.g. Ingold 2000a??; Coward 2005a, b). Such understandings and relations, no less than free-standing architecture (e.g. Watkins 2004), act as a cultural ‘scaffold’ within which the entculturation — or ‘enskillment’ — of childhood occurs (Ingold 2000b, 36–7; see also Vygotsky 1978).

From a relational perspective, Palaeolithic sites are as much material projects as the temples, ziggurats and cities of Holocene societies, comprised of distinctive, contiguous sets of material culture that are brought into further metaphorical associations as a result of particular habits of practice. The elements in such deposits are brought together into material palimpsests that juxtapose multiple, overlapping ‘sets’ of material metaphors and pull together a wealth of metaphorical, metonymic and mnemonic associations, often over large distances and lengthy time periods (Lévi-Strauss 1966, 17; Pollard 1999; see e.g. Whittle & Pollard 1999; Pollard?? 2000 for some archaeological examples). As the following case studies demonstrate, such a perspective allows a new insight into hominin cognitive engagement with material culture.

Case study 1: lithics, blades and fragmentation

From the very earliest Palaeolithic, worked stone tools were used to break open bone to access marrow, split nuts and fruits and cut branches and grasses.

<table>
<thead>
<tr>
<th>Locales</th>
<th>Rhythms of material and corporal life</th>
<th>Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encounters and gatherings</td>
<td>Chaînes opératoire</td>
<td>Landscapes of habit</td>
</tr>
<tr>
<td>Social occasions and place</td>
<td>Taskscapes</td>
<td>Social landscapes</td>
</tr>
<tr>
<td></td>
<td>Paths & tracks</td>
<td></td>
</tr>
<tr>
<td>Individuals</td>
<td>↔ Sets & Nets</td>
<td>Networks</td>
</tr>
</tbody>
</table>

Table 5.1. The multiscalar activities structuring hominin society (after Gamble 1999, table 3.1; Gamble 2007, tables 6.2 & 6.4).
On occasion such worked stones were piled up into small caches to which animal carcasses were brought for butchery (Potts 1988, 1993), or accumulated into large ‘sets’ that, even in the earliest sites, demonstrate the movement of material in and out, creating ‘nets’ of relationships linking individual locales into their wider worlds. The distances may be small and the resultant sets and nets unimpressive by later standards; nevertheless it is apparent that – unlike language – the material basis for the construction of social relations using material metaphors was present as a condition of social life from the very earliest archaeological record.

In stark contrast to the functionalist approach to lithic analysis common in archaeology, many cultures display a relational attitude towards raw materials (Parker-Pearson & Ramilisonina 1998; Stout 2002; Boivin 2004). Among the indigenous Australian Yolngu, quartzite is considered to grow in the ground where it is ‘pregnant’ with ‘baby stones’ or ‘eggs’ (see also Jones 1985; Jones & White 1988; Brumm 2004). Adze makers among the Irian Jaya also consider their raw material as intentional, living subjects; boulders are believed to grow and age as people do, while ‘Social relations with stone are an important part of production, and care must be taken to avoid angering pieces through improper practices’ (Stout 2002, 704).

Furthermore, the skill required to work stone is not simply a property of the isolated individual, but resides in a complex of social relations with the living and the dead. Skills are handed down by ancestors, and developed during formal apprenticeships that might last five years or more (Stout 2002, 704-5). The exchange of manufactured pieces enchains people further, materially and mnemonically (see e.g. Kim 1996; Gamble 1999, 1999), and in Africa they are found in large numbers at early dates (Parkington 1990; Deacon 1995; McBrearty & Brooks 2000; Mitchell 2002). Furthermore, non-blade technologies continue to be significant long after blades are widespread (Hemmingway 1980; Lourandos 1997; Bar-Yosef & Kuhn 1999).

As a result, there seems little justification for linking the appearance of blades to changes either in hominin anatomy or behavioural capacity that would mean pre–Homo sapiens hominins were unable to master blade technology. The question, then, becomes: why such a shift should occur throughout the Old World after 250,000 years ago (Bar-Yosef & Kuhn 1999, 331)?

The most common answer cites a supposed increase in efficiency of blade production over other PCTs, supposedly indicative of increased planning and tactical depth (e.g. Binford 1973; 1979; 1989). However, tests of such claims have found little difference in the efficiency of blade and non-blade technology until the later Upper Palaeolithic (Henry 1995) or even Mesolithic (Tactikos 2003), long after the appearance of anatomically modern humans.

Viewed from a relational perspective, however, the varying stress laid on blades as opposed to other forms of lithic manufacture reflects the varying ways in which knappers constructed metaphorical links...
through space and time by accumulating and enchain-
ing raw material and worked stone at locales and
across landscapes, rather than a blind obeisance to
rational economic schemata.

In this view, the significance of blade technolo-
gies lies in the output of many more standardized
blanks from a parent core: while non-blade prepared
core technologies can produce anything between a
single and perhaps eight standardized flake blanks
per nodule, blade technologies can produce as many
as 125–50 (Bradley 1977; Quintero & Wilke 1995;
McNabb pers. comm.). Blade techniques thus out-
reproduce in a material sense, allowing the movement
and exchange of stone tools and thus the creation of
metaphorical links in space and time on a much larger
scale. This potential for the extension of practices of
accumulation and enchainment was only surpassed
with the advent of pottery, which could be almost
infinitely produced, reproduced and passed around
the landscape (Chapman 2000, 41).

Thus, blade technologies were not enacted
because they guaranteed more successful eland or
deer hunts than other forms of stone-tool manufac-
ture, but because they produced many more of those
material elements for enchainment and accumulation
and thus increased its potential for the creation of
metaphorical — and fundamentally social — links and
networks. These were social technologies rather than
functional strategies, enacted through relationships
with, rather than competition against the external
environment.

Case study 2: bones, hunting and accumulation

While many kinds of entity can be considered ‘agents’,
of course these are not interchangeable: because of
their differing materialities they lend themselves to
different projects and practices. Animate entities,
for example, have mutual or interactive affordances, and
can literally interact with their perceivers (Gibson 1979;
Reed 1986; Ingold 2000, 167). In the relational view of
hunter-gatherers, hunting is seen as an ongoing prac-
tice of establishing and enacting a network of intimate
relations and interactions between hunter-gatherers
and other entities in the world (Hallowell 1960; Brody

Once a kill has been made, the materiality of the
carcass further lends itself as a source domain for the
articulation of particular relationships between people
(e.g. Jones & Richards 2003). The very literal act of con-
sumption and incorporation of animals also provides
a significant arena for the negotiation of relationships
whereby the division and sharing of meat produces
and reproduces relations between people; at the
Upper Palaeolithic site of Pincevent, refitting of faunal
remains traces joints of meat moving between hearths
and enacting relationships (Enloe & David 1992). The
disposal of animal remains is thus another aspect of
the ‘project’ of subsistence. In hunting and gathering
societies there are often detailed rules regarding where
and how remains may or may not be disposed of (e.g.
Binford n.d. NOT IN REFS; Bulmer 1968; Tambiah
For the Wopkaimin of New Guinea, collections and
displays of bones function as ‘mental maps’ referring
to their environment — not in the sense of graphi-
cal representations of topography, but by means of
the metaphorical relations immemorated within the
bones, the references they make to the people, locales
and times that were linked together during their proc-
curement (Hyndeman 1990, 73).

As well as being disarticulated, animals may
also be re-articulated. The breaking down and reas-
sembling of the bodies of animals — not just meat but
teeth, wings, beaks, etc. allow them to be re-articulated
and incorporated into hominin projects (Connoller &
Yarrow 2002; Fowler 2002) through being accumulated
and worn as ornaments and/or traded and passed on
to enchain others. At the Upper Palaeolithic sites of
Aven des Iboussieres (d’Errico & Vanhaeren 2002)
and St-Germain-de-la-Rivière (Vanhaeren & d’Errco
2005), huge ‘sets’ of deer canines were accumulated.
In the case of the latter site, red deer were unlikely to
have been living wild in the vicinity of the site but
could only have been found at least 300 km to the
southwest in Cantabrian Spain. Furthermore, while
in living animals these teeth occur in pairs, only a
minority of the teeth found could be paired with oth-
ers at the site. Like the handaxes moving in and out
of early Palaeolithic sites, we glimpse here the wide
cast of nets structuring the constant ebb and flow of
fragments of animals being distributed through the
landscape, perhaps by trade or exchange, gathering
metaphorical associations and thus enchain-
171). As in the lithic case study discussed above, the traditional explanation for this is mainly couched in terms of efficiency, with pre-sapiens populations described as unspecialized and opportunistic ‘foragers’ characterized by indiscriminate ‘encounter’ hunting of immediately available prey for more or less immediate consumption.

However, many researchers do not recognize evidence for a logistically organized ‘modern’ strategy until the middle or late Upper Palaeolithic, i.e. considerably after the evolution of anatomically modern humans (Straus 1992; 1996; Pike-Tay 1993; Stiner 1994; Gamble & Roebroeks 1999; Enloe 2000; Shea 2001; Grayson & Delpech 2002; see e.g. Pike-Tay 2000 for discussion and further references).

As in the case of the lithic technologies described above, a relational perspective changes the terms of the debate, establishing a level playing field for ‘bottom-up’ comparisons of the ways in which modern and pre-sapiens populations interacted with animal species rather than ‘top-down’ analyses looking for qualitative differences (Roebroeks & Corbey 2001, 75).

From a relational perspective, ‘All animals are not equal; rather they evoke quite distinct qualities of place and existence. Animals present the relationship between people and different places in the landscape’ (Jones & Richards 2003, 50). Topographical and vegetational variation in the landscape locates different kinds of animals differently, and their characteristic lifecycles necessarily entail different rhythms and patterns of movement in the landscape (Coward 2005a,b). Thus hunter-gatherers and animals alike describe particular pathways of movement in space and time on a daily basis, each influenced by those of the others as both human and animal hunters track potential prey which attempt to evade them, and these pathways inevitably interlink and intersect at particular points which provide an arena for interaction of various kinds. Such places will also have histories or biographies acquired by virtue of the interactions that have occurred there before. Nor do they exist in isolation; rather, they are connected by paths and tracks of movement that link places and activities and interactions into an ongoing narrative ‘net’ of relations across space and time.

At the cave of Amalda in northern Spain, the reconstruction of the immediate environments during which the Middle and Upper Palaeolithic assemblages were deposited has allowed the identification of some of these potential arenas for interaction. Further clues to the nature of these interactions are also recorded in the faunal assemblages themselves — clues to butchery and transport decisions (recorded by cut marks and anatomical representations), to the temporality of interactions (provided by ageing of the bones), and to the skills and practices involved in hunting (known from ethology and ethnography). Such data allow us to access something of the nature and quality of the heterogeneous networks of temporality, place and interaction with different animal species that arise out of the habitual, daily interactions between hunter-gatherers and animals in the vicinity of the site (Coward 2005a,b).

The re-situating of the debate in such relational terms therefore allows a much broader consideration of prehistoric subsistence practices than the traditional ‘economic’ approach. In this view, prehistoric subsistence practices shift and change, not necessarily as a result of changes in cognitive abilities, but as different relationships and forms of social interaction are emphasized in varying temporal and spatial contexts.

Conclusion: metaphor and materiality in early prehistory

In modern Athens, vehicles of mass transportation are called metaphorai: thus eminently practical, material metaphors link people, places and things in a very literal sense (de Certeau 1984, 115). Material practices have acted in a very similar way throughout prehistory to enchain heterogeneous agents into networks, and while semiotic approaches treating material culture as symbols can access only the small fraction of the archaeological record known to have been deposited by ‘modern’ humans, a relational perspective viewing material culture as material metaphor allows access to the vast time depth of data regarding hominin interaction with material culture in the Palaeolithic archaeological record.

This relational, metaphorical approach, based on the shared material experiences of embodiment, addresses the archaeological record in a unifying rather than divisive fashion. As such, it allows the consideration of the relationship between mind and world and its role in the evolution of human cognition in the necessary evolutionary framework.

Here we have presented two brief case studies identifying how the material culture even of the Palaeolithic record, those ‘mere fragments of stones and bones’ (Wobst 2000, 43), can be seen as rich in terms of their metaphorical associations with other agents. Viewed relationally, lithic raw materials and products become metaphorical of bodies, extensions of their knappers, enchainning agents across the landscape in nets and accumulating them at locales in sets. Faunal assemblages become the immemorations of particular
Chapter 5

kinds of interaction with other forms of agent, accumulating the material correlates of those interactions and providing the raw material for enchainning still more agents, whether between hearths in a site as at Pincevent (Enloe & David 1992), or between locales in a landscape, as at Aven-des-Iboussieres and St-Germain-de-la-Rivière (d’Errico & Vanhaeren 2002; Vanhaeren & d’Errico 2005).

Such material practices are part of our primate heritage, and remain part of the ongoing projects that constitute social life even today. The particular strategies by which specific relations have been negotiated have of course varied in space and time. Nevertheless, the use of material culture — solid material metaphors based on a shared experience of embodiment — has remained fundamental to the construction of the networks of relations that constitute society.

Acknowledgements

This paper was written as part of the British Academy’s Centenary Research Project ‘From Lucy to Language: the Archaeology of the Social Brain’. Thanks also go to Dr Matt Grove for comments on an early draft, to the organizers and participants of ‘The Cognitive Life of Things’ conference for their extremely interesting discussions, and to an anonymous reviewer for their helpful comments.

Note

1. Hominoids are members of the family Hominoidea or primates, split into the two subcategories of the Pongidae (orangutans) and the Homininae (human ancestors, chimpanzees and gorillas). Within this grouping, the sub-family of hominins include those genuses and species currently thought to be human ancestors, including Homo sapiens, Homo ergaster and Homo rudolfensis as well as all of the australopithecines (Australopithecus africanus, Australopithecus boisei, etc.) and other ancient forms like Paranthropus and Ardipithecus.

References

Charles, R., 2000. Searching for ethnic signatures in the Late Upper Palaeolithic of northwestern Europe. Archaeo-
logical Review from Cambridge 17(1), 45–65.
Hemingway, M.F., 1980. The Initial Magdalenian in France. (British Archaeological Reports International Series

Nuñez, R. & E. Sweetser, 2006. With the future behind them: convergent evidence from Aymara language and

Straus, L.G., 1996. Continuity or rupture; convergence or invasion; adaptation or catastrophe; mosaic or monolithic: views on the Middle to Upper Palaeolithic transition in Iberia, in The Last Neandertals, The First Anatomically Modern Humans: a Tale about the Human Diversity, Cultural Change and Human Evolution, the crisis at 40 ka BP, eds. E. Carbonell & M. Vaquero. Tarragona: Universitat Rovira i Virgili, 203–18.

