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 26 

(A) ABSTRACT 27 

 28 

(B) Aim 29 

To determine how changing the resolution of modelled climate surfaces can affect estimates 30 

of the amount of thermally suitable habitat available to species under different levels of 31 

warming. 32 

 33 

(B) Location 34 

Lake Vyrnwy RSPB Reserve, which covers around 9,700 hectares of a topographically 35 

diverse landscape in Wales. 36 

 37 

(B) Methods 38 

A recently published microclimate model was used to predict maximum, minimum and mean 39 

temperatures at 5 x 5 m resolution for the study site, under current and possible future 40 

conditions. These temperature surfaces were then averaged to produce coarser resolution 41 

surfaces, up to a maximum of 1 x 1 km resolution. Ground beetles were collected using pitfall 42 

traps between May and August 2008. GLMs were fitted to the temperature surfaces to predict 43 

the amount of landscape suitable for a northerly-distributed ground beetle, Carabus 44 

glabratus, and the most southerly distributed ground beetle found at the site, Poecilus 45 

versicolor, under current and possible future conditions. 46 

 47 

(B) Results  48 

A wider range of temperatures are expected within our site when temperature is modelled at 49 

finer resolutions. Fitting GLMs at different resolutions resulted in the inclusion of different 50 
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temperature variables in the best models. Coarser resolution models tended to have higher 51 

prediction error, and different resolution models predicted that different amounts of the 52 

landscape would remain or become suitable in future. There was less agreement between 53 

models for C. glabratus than for P. versicolor.  54 

 55 

(B) Main Conclusions 56 

In our example system, different resolution analyses result in different predictions about the 57 

ability of populations to survive climatic warming. Higher resolution analyses are not only 58 

likely to provide more accurate estimates of expected patterns of change, but also to highlight 59 

potential microclimatic refugia for the conservation of species that otherwise might appear to 60 

be threatened with regional or global extinction. 61 

 62 

(B) Keywords 63 

Carabus glabratus, Climate change, Coleoptera, conservation, distribution models, 64 

extinction, Poecilus versicolor. 65 

 66 

(A) INTRODUCTION 67 

 68 

Many studies use climatic variables such as temperature to define the range of conditions that 69 

species can occupy. At large spatial extents, such climatic variables are commonly found to 70 

be associated with the presence and absence of species (Peterson, 2001). Environmental 71 

“niche” or “bioclimate” models, which are based on the associations of species’ distributions 72 

with climatic variables, are often then used to predict changes in the area available to species 73 

following future climatic change (e.g. Huntley et al., 1995; Leathwick et al., 1996; Peterson 74 

et al., 2001; Thomas et al., 2004; Elith & Leathwick, 2009; Kearney et al., 2010; Bellard et al 75 
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2012) and changes in species' richness within an area following climatic warming (Hannah et 76 

al., 2005; Menéndez et al., 2006; Huntley et al., 2007). In the past, these climate envelope 77 

studies have normally considered the associations between climate and species’ distributions 78 

at relatively coarse resolutions (usually 1 km
2
 or coarser; commonly around 100 km

2
 79 

resolution in Britain, or 2500 km
2
 in Europe). This corresponds to the availability of species' 80 

distribution data (e.g. National Biodiversity Network, NBN, http://data.nbn.org.uk) and/or of 81 

climate surfaces; and gives the capacity to run models quickly for large geographic areas. It 82 

also corresponds to resolution at which climate is perceived to be an important factor when 83 

determining distributions (McGill, 2010). However, a recent study suggested that climate can 84 

be important at finer resolutions (Gillingham et al., 2012). In addition, some distribution 85 

records are submitted with greater spatial precision and climate surfaces are increasingly 86 

downscaled to finer resolutions (Guan et al., 2009) as computational power continues to 87 

increase. This makes the prospect of producing fine-resolution bioclimate models 88 

increasingly realistic (e.g. Montoya et al., 2009; Seo et al., 2009). Here we consider the 89 

implications of modelling distribution change at different spatial resolutions.   90 

 91 

A number of previous studies suggest that the spatial resolution of analysis could affect 92 

estimates of species declines and extinction. Thomas & Abery (1995) found that the observed 93 

decline rates of 12 British butterfly species were 35 % higher when estimated using a 4 km
2
 94 

grid than when based on a 100 km
2
 grid. For Plebejus argus, the loss of 90 % of the local 95 

populations resulted in a loss of only 56 % of 4 km
2
 grid squares. Similarly, Thomas et al., 96 

(2006) found that much higher rates of retraction at low latitude/elevation range boundaries 97 

were detected when they were measured using a 1 km
2
 grid than when using a 100 km

2 
grid. 98 

This may be a particular issue in mountainous regions, where coarse-resolution grid cells may 99 

contain a wide range of environments and population densities (Shoo et al., 2006). Within 100 
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such a grid square, there is likely to be a wide range of microclimatic conditions (Ashcroft et 101 

al., 2009), potentially resulting in the presence of locally-suitable conditions for species at 102 

their thermal margins, the existence of which might not be apparent at a coarser resolution. 103 

Many species are associated with locally suitable microclimates at their range margins, where 104 

the coarser-scale mean climate is less suitable than at the centres of their ranges (Thomas et 105 

al., 1999; Bryant et al., 2002; Lennon et al., 2002; Stefanescu et al., 2004). Thus, models that 106 

utilise fine resolution data should be more accurate than those using coarse resolution climate 107 

data (Ferrier et al., 2002) in areas of high relief and for predicting the likely persistence of 108 

species in small areas such as individual nature reserves.  109 

 110 

These resolution issues mean that estimates of rates of decline under climatic change may be 111 

either too high or too low when using coarse resolution data and model projections. There is a 112 

possibility that coarse resolution models will overestimate the area available to species 113 

(Trivedi et al., 2008) if, for example, a species only lives in the coldest 1 % of a coarse-114 

grained grid cell, which contains a heterogeneous mix of different microclimatic conditions, 115 

but statistically appears to be able to inhabit the mean temperature of the grid square. Under 116 

modest climate warming, the coldest 1 % may become unsuitable for the species, even if the 117 

average temperature of the grid square still appears to remain suitable. Under this 118 

circumstance, a coarse resolution model may be slow to predict the disappearance of thermal 119 

refugia, and may therefore underestimate the rate of decline. Alternatively, however, fine 120 

resolution models may predict the persistence of these thermal refugia for longer into the 121 

future with climatic warming than do low resolution models (Randin et al., 2009). So far, 122 

there are very few studies that have attempted to discover whether over- or under-estimation 123 

of declines is likely to be projected using coarse resolution models. Those that have been 124 

attempted have been restricted to plants, which, being sessile, might be expected to have a 125 
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different propensity to survive in spatially restricted thermal refugia than more mobile 126 

organisms.  127 

 128 

Previous studies that explored the implications of using models at different spatial resolutions 129 

interpolated fine-resolution climate surfaces using lapse rates (i.e., adjusting local 130 

temperatures to take account of the local elevation; Trivedi et al., 2008; Randin et al., 2009). 131 

However, variation in aspect and slope can have even larger effects than elevation on local 132 

temperature (Suggitt et al., 2011). Given this uncertainty, and contrasting conclusions in the 133 

literature, it is not clear whether fine-resolution analysis is expected to predict reduced 134 

(Trivedi et al., 2008) or increased (Randin et al., 2009) persistence, compared to coarse-135 

resolution analyses. Here, we present the first study to compare the effects of different 136 

resolution models on predicted landscape suitability for a species where the effects of slope, 137 

aspect, hill-shading and elevation on local temperatures are included.  138 

 139 

In this study, we sampled the abundance of ground beetles from within a single 10 x 10 km 140 

square (Figure 1). Because ground beetles are predatory, they should not be directly limited to 141 

particular vegetation types, although some preferences may be caused due to the 142 

microclimate experienced under different canopies. The study site is an area with substantial 143 

topographic variation, which thus gives a range of predicted temperatures depending on the 144 

resolution of the data (Figure 2), and sampled 1 km grid squares sometimes contained both 145 

sample locations where species were present and those where they were absent (e.g. see 146 

Figure 1). Because our records have a spatial precision of 5 m and include abundance data 147 

rather than presence/absence data, we were able to use them to answer several questions:  148 

1) How does the spatial resolution used when modelling alter our perceptions of the 149 

temperatures of topographically diverse areas? 150 
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2) Does the projected percentage of a landscape that will remain suitable northern or southern 151 

species following climatic change vary with the resolution of the distribution model? 152 

 153 

(A) METHODS 154 

 155 

(B) Field Sampling 156 

 157 

Ground beetles were collected by pitfall trapping from the start of May to the end of August 158 

2008. Trapping took place on the Royal Society for the Protection of Birds (RSPB) Lake 159 

Vyrnwy reserve. 160 

 161 

Lake Vyrnwy is situated adjacent to Snowdonia National Park in Wales (52° 47′ 09″ N, 162 

03° 30′ 49″ W) and covers around 9,700 hectares. It contains several different vegetation 163 

types, but all trapping was undertaken in heathland dominated by Calluna vulgaris (heather) 164 

that occurs mainly on peaty soils. This heathland is actively managed for wildlife with a 165 

combination of mowing, burning and grazing being employed to maintain a mosaic of 166 

heather and grassland. The lowest areas of the reserve are around 350 m a.s.l., with the 167 

highest around 620 m a.s.l. The location and elevational range of the site means that it is at 168 

the southern range margin of many species with northerly distributions within the UK.  169 

 170 

Stratified random sampling was used to select 40 locations.  A 5 x 5 m grid was laid across 171 

the landscape, then grid cells were stratified into twelve categories on the basis of 172 

combinations of slope, aspect and elevation, with a thirteenth category for areas at the lowest 173 

elevations; three sampling locations were then randomly positioned within each of the first 12 174 

strata, and four in the last. This ensured that the full range of microclimates present at the site 175 
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was sampled. Sample points were georeferenced in the field using a handheld Global 176 

Positioning System (Garmin GPS 60). At each sample location, five pitfall traps were 177 

deployed in a circle of 2 m diameter. Traps consisted of two standard plastic vending cups of 178 

7 cm diameter nested together and sunk into the soil so that the rim of the inner cup was flush 179 

with the soil surface. Each trap was filled to a 2.5 cm depth with ethylene glycol antifreeze. 180 

Traps were covered with a lid made up of a terracotta coloured plastic saucer suspended 11 181 

cm above the ground and trap using galvanised wire. This served the dual purpose of limiting 182 

liquid loss by evaporation and limiting flooding from rainfall. A surround of chicken wire 183 

(mesh diameter 20 mm) completed the lid, with the aim of excluding small mammals from 184 

the trap. 185 

 186 

Traps were emptied at monthly intervals, with the antifreeze solution being replaced when 187 

necessary. Catch was pooled for all five traps across the entire sampling season for each 188 

location, providing a total of 18,795 trap-hours across the entire landscape. All carabid 189 

beetles were identified to species. One northerly-distributed ground beetle, Carabus 190 

glabratus and the most southerly distributed ground beetle, Poecilus versicolor, were selected 191 

as examples for distributional modelling. C. glabratus might be expected to decline under 192 

climate change, whilst P. versicolor is expected to benefit from climate change. Both species 193 

fulfilled modelling criteria used in previous studies (see Gillingham et al., 2012). 194 

 195 

(B) Microclimate modelling 196 

 197 

A recently published microclimate model, which has been ground-truthed and found to 198 

perform well when predicting vegetation surface temperatures in two different 199 

topographically heterogeneous landscapes (Bennie et al., 2008), and additionally verified for 200 
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this landscape (Gillingham, 2011) was coded into C++ (Programme available on request from 201 

PKG). Wind speed, air temperature and radiation data was obtained for the Vyrnwy 202 

meteorological station (52º 45′ 25″ N, 03º 38′ 45″ W) from the British Atmospheric Data 203 

Centre (BADC, www.badc.rl.ac.uk).  A digital elevation model (DEM) at 5 x 5 m resolution 204 

(hereafter referred to as 5 m resolution) and 1 m vertical precision for the site was obtained 205 

from the NERC Earth Observation Data Centre (NEODC, neodc.nerc.ac.uk). Slope and 206 

aspect values for each 5 m cell were calculated using standard functions in ArcMap. The 207 

microclimate model used this information to generate hourly predicted temperatures at 208 

vegetation surface height at 5 m resolution from the start of September 2007 until the end of 209 

August 2008.  210 

 211 

The microclimate model adjusted the temperature values from the Vyrnwy meteorological 212 

station to take account of the elevation difference between the met station and each point in 213 

the landscape, as well as differences in direct and indirect radiation associated with different 214 

slopes and aspects at different times of the day and year (including effects of hill-shading, 215 

and assuming homogenous cloud cover across the entire site; Bennie et al., 2008). From these 216 

hourly surfaces of predicted temperature at vegetation height, annual mean temperature, 217 

maximum temperature in July (Tmax) and minimum temperature in December (Tmin) were 218 

extracted for use in the distribution model at 5 m resolution. 219 

 220 

We used interpolated, rather than directly-measured, temperatures in the present study 221 

because: (a) much of the value of distribution models arises from their ability to generalise 222 

from sample points to other locations (in the present and future), and hence this requires the 223 

use of climatic surfaces that can be extrapolated in space and time, (b) ground beetles can 224 

move over short distances (see below), and so will experience temperatures over a larger 225 
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spatial scale than single point measurements (logger temperatures at fixed points under a 226 

heather canopy are variable), and (c) we placed five pitfall traps within each sample location, 227 

so some measure of the expected “average condition” of such an area is more relevant to our 228 

sample data than the temperature at a single point. Resources were not available to place 229 

multiple loggers in each sample location. 230 

 231 

(B) Statistical Modelling 232 

 233 

Abundance (number of individuals trapped across the season) of C. glabratus and P. 234 

versicolor were the response variables to which predictor variables were fitted using a 235 

Generalised Linear Model (GLM) with Negative Binomial error structure and a log link 236 

function. The annual mean (Tmean), July maximum (Tmax) and December minimum (Tmin) 237 

temperatures as calculated by the microclimate model were included as predictor variables. 238 

Trapping effort, corresponding to the proportion of the trapping effort that was lost to damage 239 

at each location (e.g., loss of two of the five pitfall traps at a given location in one month), 240 

was included as a log-offset in all models to allow for variations in catch caused by damage 241 

to pitfall traps. An indication of model fit was calculated using the function cv.glm in the boot 242 

package in R. The default leave-one out cross validation was used to calculate adjusted 243 

prediction error. To give an indication of how informative our models were, delta-AIC was 244 

calculated by subtracting AIC of the intersect-only model from AIC of the selected model. All 245 

possible models were fitted, and as the models were to be used to illustrate predicted 246 

scenarios, the best model was selected as the one with lowest prediction error. However, 247 

because there is co-linearity within our explanatory variables (see Table S1 in Supporting 248 

Information), we fitted models in three additional ways to increase confidence in our 249 

conclusions. We additionally removed correlated variables (see Tables S2-S3 and Figures S1-250 
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S2), we selected the best model using Multimodel Inference (see Tables S4-S5 and Figures 251 

S3-S4) and we selected the best model by backwards stepwise regression using AIC (see 252 

Tables S6-S7 and Figures S5-S6). These methods have been found to be effective when 253 

dealing with correlated explanatory variables (Smith et al., 2009). All statistical analyses 254 

were carried out in R version 2.9.0 (R Development Core Team, 2008). 255 

 256 

Coarser resolution temperature surfaces were generated by blocking up the data in 100 m 257 

increments using the mean value of the enclosed 5 m cells, to a maximum of 1 km resolution 258 

(for examples see Figure 2, note that resolution refers to the length of the side of each cell, 259 

such that 100 x 100 m cells are referred to as “100 m resolution”). GLMs were refitted to 260 

these lower resolution layers as before. Where more than one sampling location fell within a 261 

given coarse resolution cell, both abundance and trapping effort values were pooled to create 262 

one value for each variable per cell, such that coarse resolution cells containing more than 263 

one trapping location had much higher values for trapping effort. The trapping effort offset 264 

was retained in all models because it reflects the way the data were collected and 265 

manipulated. 266 

 267 

We used 5 m resolution grids as the finest resolution considered for several practical and 268 

biological reasons: (a) this is the finest resolution at which elevational data are widely 269 

available; (b) this resolution seems relevant to the short-distance (daily, weekly) movements 270 

of adults and large larvae (P. versicolor has been found to move 7 m per day in heathland, 271 

whilst adults of other ground beetle species have been observed to move less than one metre 272 

over 48 hours; Brouwers & Newton, 2009); (c) the entire durations of eggs, pupae, and 273 

probably early larval instars will be contained within such an area. However, it should be 274 

noted that population persistence and abundance for our example organism may also be 275 
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determined by larger-scale processes (e.g., average suitability at 100 m or coarser resolution), 276 

and hence we should not conclude that the finest-resolution analysis is the only one of 277 

relevance. 278 

 279 

(B) Future Projections 280 

 281 

The microclimate model was used to predict hourly temperature surfaces for the site for 282 

temperature increases in half degree steps to 6 ºC, which is the central estimate of the 283 

maximum predicted by 2085 for the UK under the maximum emissions scenario 284 

(http://ukclimateprojections.defra.gov.uk). This resulted in slightly uneven warming across 285 

the site, with cooler areas warming slightly more than hotter ones, thus reducing the range of 286 

available temperatures within the site. This approach was used in order to compare the effects 287 

of data resolution on future predictions and it is not within the remit of our study to comment 288 

on the likelihood of future scenarios of climatic change.  289 

 290 

The 5 m resolution future temperature surfaces were again blocked to the resolutions 291 

previously used, and the respective model equations derived previously were applied to these 292 

future surfaces to predict the abundance of C. glabratus and P. versicolor. A threshold of one 293 

or more individuals predicted to be present within a cell given a maximum sampling effort of 294 

4 months of continuous capture in five pitfall traps (which corresponds to our sampling 295 

season with no damage to traps) was used to estimate the percentage of the total landscape 296 

that is expected to be climatically suitable for the species with each temperature increase, 297 

based on these models. This corresponds to our ability to detect the species at any particular 298 

location, if it is present. One individual present in a trap would be likely to indicate larger 299 

numbers present in the immediate environment, as pitfall traps do not trap 100% of 300 



13 

 

individuals present, rather provide an indication of activity density (Baars, 1979). We have an 301 

important caveat here. Our purpose is to illustrate the role of spatial resolution on projections, 302 

and not to make a specific prognosis for C. glabratus or P. versicolor. The latter would 303 

require the inclusion of more sample points and species-specific data (e.g., spatial scales of 304 

movement and persistence, see above; additional prey or habitat data and a quantified 305 

relationship between population density and detection probability), and testing of the 306 

predictive accuracy of the regression models over a number of years. It is not within the remit 307 

of this study to discover the relationship between the number of trapped individuals and 308 

whether a population is viable, as this information is not available for the majority of species 309 

for which climate envelope modelling is undertaken. 310 

 311 

(A) RESULTS 312 

 313 

(B) Microclimate surfaces 314 

 315 

The microclimate surfaces are illustrated using July maximum temperatures (Tmax, see Figure 316 

2). The range of Tmax values that appeared to exist within the landscape decreased greatly as 317 

one moved from a 5 m resolution analysis (11.2 ºC range; 22.4 ºC to 33.6 ºC) to 1000 m 318 

resolution (3.9 ºC range; 26.1 ºC to 30.0 ºC). This compares to the maximum temperature of 319 

23.5 °C recorded at the Lake Vyrnwy meteorological station for July 2008 (this temperature 320 

is within a Stevenson screen at 1.5 m height, and hence tends to be lower than average Tmax 321 

values estimated for the vegetation surface). In general, as the resolution of the analysis 322 

became coarser, the range of temperatures declined, with the coolest observable locations 323 

being warmer and the highest observable temperatures being cooler, although this effect was 324 

much less marked for Tmean and Tmin (Figure 3). 325 
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 326 

(B) Current Distributions 327 

 328 

For the northern species, C. glabratus, Tmax was the only independent variable apart from 329 

trapping effort to be retained in the best model at 5 m resolution. It showed a negative effect 330 

(β = -0.91, n = 40, p < 0.0001) on the abundance of C. glabratus. There were fewer C. 331 

glabratus in areas with warmer summer (July) Tmax temperatures, as expected for a species at 332 

the southern limit of its distribution. Comparable results were obtained when fitting models at 333 

200 m, 600 m, and 900 m resolution.  334 

 335 

Using the 100 m resolution temperature surface yielded a different result. Annual mean 336 

temperature had a negative effect (β = -1.21, n = 40, p < 0.0001) on the abundance of C. 337 

glabratus Comparable results were achieved when fitting models at 700m and 800m 338 

resolutions. The overall relationship between abundance and the three temperature variables 339 

was negative at most resolutions (i.e. increasing abundance in cooler locations). However, at 340 

400 m, 500 m and 1 km resolution, a positive relationship was found between temperature 341 

and abundance. The coefficients fitted show a large standard error compared to the effect 342 

size, so at these resolutions an effect of temperature was not seen, despite the comparatively 343 

low prediction error associated with the 500 m resolution model. In addition, these models all 344 

predicted the entire landscape to be suitable under current conditions, which is not the case 345 

(see figure 1). 346 

 347 

For the southern species, P. versicolor, annual Tmean was the only independent variable apart 348 

from trapping effort to be retained in the best model at 5 m resolution. It showed a positive 349 

effect (β = 4.44, n = 40, p < 0.0001) on the abundance of P. versicolor. There were more P. 350 
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versicolor in areas with warmer mean temperatures, as expected for a species with a more 351 

southerly distribution. Comparable results were obtained when fitting models at 200 m, 400 352 

m, 600 m, 800 m and 900 m resolution. 353 

 354 

Using the 100 m resolution temperature surface again yielded a different result. Tmax had a 355 

positive effect (β = 1.44, n = 40, p = 0.0012) on the abundance of P. versicolor. At 300 m and 356 

700 m resolutions, Tmin and Tmax were both retained, showing a positive relationship with the 357 

abundance of P. versicolor. In all cases, the relationship between abundance and the three 358 

temperature variables was positive (i.e. increasing abundance in warmer locations). 359 

For both species, prediction error varied with resolution (Tables 1 and 2). The greatest 360 

prediction errors were found for models fitted at 800m resolution or coarser. 361 

 362 

(B) Future distributions 363 

 364 

Each of the above models was then applied to the entire landscape, first for the current 365 

climate, and then for warming of up to 6 ºC. For the northern species, C. glabratus, the 366 

percentage of landscape perceived to be thermally suitable at current temperatures (i.e. we 367 

would expect to catch one individual or more in five pitfall traps over a four month period) 368 

varied from over 99 % at 100 m resolution to just over 90% at 200 m and 300 m resolutions. 369 

The area projected to remain thermally suitable, following climatic warming for C. glabratus 370 

within the study landscape, decreased in a non-linear fashion for all resolutions with 371 

informative models (see Figure 4). Different resolutions of data/models resulted in different 372 

rates of decline in the percentage of thermally suitable habitat associated with increasing 373 

temperatures (Figure 4). Following a 3 °C rise in temperature, one model predicted that < 1 374 

% of the landscape would remain suitable (100 m resolution model), whilst one model 375 
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predicted that 67 % of the landscape would remain suitable (800 m resolution model). The 376 

rate of decline was not predictable based on the resolution of the data used to fit models. 377 

However, the informative models based on different resolutions did agree on one point – 378 

almost the entire landscape would be thermally unsuitable following a 6 °C rise in 379 

temperature.  380 

 381 

For the southerly-distributed P. versicolor, the percentage of the landscape predicted to be 382 

suitable increased in a non-linear manner at all resolutions (Figure 5). At current 383 

temperatures, between 29% (at 100m resolution) and just under 41% (at 900m resolution) of 384 

the landscape was predicted to be suitable. There was much more agreement between 385 

resolutions about the rate of increase of suitability for this species, and all models except the 386 

400 m resolution model agreed that the entire landscape would be suitable following a 2 °C 387 

rise in temperature. 388 

 389 

There is an important point to be made with regard to model selection, as different model 390 

selection methods resulted in different variables being retained for any one resolution for 391 

both species (see Tables S2-S7). For P. versicolor the retention of different variables had little 392 

effect on the model predictions, and agreement was high between all of the different methods 393 

(Figures S2, S4 and S6). However, for C. glabratus the results were very different at any one 394 

resolution depending on the model selection method used (Figures S1, S3 and S5). The most 395 

robust conclusion is that almost all resolution models, regardless of selection method, 396 

predicted that almost the entire landscape would be perceived as unsuitable following a 4 °C 397 

rise in temperature. 398 

 399 

(A) DISCUSSION 400 
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 401 

In a landscape such as ours, topography can change markedly over a scale of tens to hundreds 402 

of metres, such that a coarser resolution cell may contain both north- and south-facing slopes, 403 

as well as several hundred metres of elevational range. These differences in topography and 404 

thus temperature conditions result in many coarse grid cells containing some areas that are 405 

much cooler and others that are much hotter than average (Figure 2). Our analyses showed 406 

that projections of future distributions are highly sensitive to this variation. 407 

 408 

The statistical models (GLM) models that we fitted to the current distributions of our two 409 

study species were consistent, and sensible, in that the northerly distributed C. glabratus was 410 

mostly frequently encountered in the coolest parts of the landscape and that the southerly 411 

distributed P. versicolor was predominantly found in the warmest locations (at all 412 

resolutions). The finer resolution models generated the slowest rate of decline in the northern 413 

C. glabratus and the slowest predicted increase in the southern P. versicolor (although 414 

analyses for this species were far less sensitive to resolution). By modelling at resolutions far 415 

coarser than the environments that individuals actually experience, we apparently 416 

underestimated the capacity of northern C. glabratus to survive in small-scale refugia; a 417 

finding typical of other studies that have used fine-resolution models (Gottfried et al., 1999; 418 

Williams et al., 2003; Seo et al., 2009), although these studies did not expressly compare 419 

model resolutions. For the southern P. versicolor, the coarsest 1 km resolution analysis may 420 

equally fail to identify warm microsites, and thereby under-estimate the potential for 421 

colonisation. However, it was not as simple as this because different temperature variables 422 

(annual mean, winter minimum, summer maximum) entered the models at different 423 

resolutions, and under different model selection methods. This resulted in C. glabratus 424 

appearing least sensitive to warming in some of the intermediate-resolution analyses.  The 425 
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most conservative conclusion we can make is that that projected sensitivities to climate 426 

warming are strongly dependent on the spatial resolution of analysis and the model selection 427 

method. Nonetheless, we were able to find some agreement in that almost all models 428 

predicted that the entire landscape would be perceived as unsuitable for C. glabratus 429 

following a 4 ºC rise in temperature.  430 

 431 

There are two comparable studies, which reached opposite conclusions on the effect of 432 

resolution on the apparent suitability of a landscape following climatic change. Randin et al., 433 

(2009) projected higher levels of persistence for high-resolution models of plant distributions 434 

in the Swiss Alps, whilst Trivedi et al., (2008) found lower projected persistence in high 435 

resolution models of Scottish plants than in coarse resolution models. Both studies used 436 

elevation as the sole means for interpolating temperature to finer resolutions (i.e. colder at 437 

higher elevations), without considering the effects of slope and aspect. North and south 438 

facing slopes can differ by as much as 7 ºC (Suggitt et al., 2011), so the coldest place within a 439 

landscape may be on a polewards-facing slope rather than at its highest point. However, 440 

topographic effects depend on the climatic variable considered (Suggitt et al., 2011). Low 441 

elevation areas may experience lower minimum temperatures than mid-elevations due to cold 442 

air pooling (Geiger, 1973), and the highest maximum temperatures are commonly found on 443 

steep south facing hillsides (in the northern hemisphere) rather than at the lowest elevations 444 

(Bennie et al., 2010; Suggitt et al., 2011); whilst the lowest maxima (i.e. areas that are 445 

suitable refugia for species preferring cooler conditions) occur at moderate rather than high 446 

elevations in some landscapes (Ashcroft et al., 2008), where some shelter is available from 447 

hot, dry winds. Hence we suggest that elevation-only models are insufficient for high 448 

resolution modelling of climatic effects on species’ distributions. We suspect that the opposite 449 

results of Randin et al., (2009) and Trivedi et al., (2008) may arise partly because of the 450 
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higher elevational, and hence temperature (based on lapse rate), range of Switzerland than 451 

Scotland. The microclimate model we used makes a step forwards by including the effects of 452 

radiation and wind speed, but there is scope for improvement by including effects such as 453 

cold air pooling. In any case, modelling at a range of different resolutions, rather than just 454 

coarse and fine resolution, highlighted the unpredictability of projections, with different 455 

resolution models predicting different rates of decline of a northern species. Therefore, the 456 

selection of different resolutions by the above-mentioned authors may be one potential source 457 

of their opposite results.  458 

 459 

The observed discrepancy between the perceptions of different resolution models, along with 460 

the fact that finer resolution models have been found to perform better than coarser ones in 461 

predicting species’ distributions (Engler et al., 2004), leads us to conclude that more 462 

modelling should be done at a range of resolutions across different taxa and regions, at least 463 

until we understand the circumstances leading to the prediction of higher or lower estimations 464 

of extinction when fine resolution data are used. Further research on the capacities of species 465 

from different taxonomic groups to persist in local microclimates is also needed. Small areas 466 

of suitable microclimates do not necessarily imply that sufficient area will survive to ensure 467 

long-term population persistence. There is also the question of which is the most appropriate 468 

resolution to model at for any given species. This will vary among species depending on the 469 

movement rates of individuals and the area required to support populations. Where such data 470 

do exist, individual-based mechanistic models (rather than the correlative ones used here) 471 

may be more appropriate as they provide a dynamic response to change based on well 472 

understood processes (e.g. Clark et al., 2001; Wallentin et al., 2008). However, for the vast 473 

majority of species (as for the example species modelled in this study), such data do not exist. 474 

In these cases, comparing results from a range of resolutions to give a range of values for 475 
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predicted suitability of landscapes is a step forward in representing the needs of the species 476 

more accurately. 477 

 478 

A challenge is the need for high resolution analyses over large spatial extents, and a more 479 

systematic approach to sampling would be beneficial (Eyre et al., 2005). To date, studies 480 

(including ours) often focus on relatively small geographical extents when modelling at a fine 481 

resolution. This is because it is impractical to collect distribution data at the fine resolution 482 

required for such studies throughout the whole of a species’ range. However, the approach 483 

that we advocate may become increasingly feasible because: (a) as in this study, one only 484 

needs data from a sample of precisely georeferenced locations (it is not necessary to cover 485 

every cell); (b) many existing records are already at 100 m grid resolution 486 

(http://data.nbn.org.uk); and (c) cheap GPS units mean that many records are now submitted 487 

with location data that have a precision of < 20 m. Such records could be used to model 488 

species distributions at a fine resolution across whole countries in order to make a fair 489 

comparison between coarse and fine resolution models across large geographical extents. 490 

These models would then give conservation managers a better idea of the priority areas that 491 

should be managed for species of interest, both within single sites and on a national and 492 

international basis. 493 

 494 
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Table 1: Summary of the Generalised Linear Models fitted at each resolution (Res), with number of sample locations N. Shown are the β-704 

coefficient of the relationship between abundance of Carabus glabratus and annual mean temperature (β Tmean), winter minimum temperature (β 705 

Tmin) and summer maximum temperature (β Tmax) with standard errors in brackets, along with their associated p-values. A + in the Effort column 706 

indicates that the log trapping effort was included as an offset in the model. Delta AIC of the best model and prediction error (PE) are also 707 

shown.  708 

 709 

Res N  Effort β Tmean  p  β Tmin  p β Tmax   p DeltaAIC  PE  710 
5 40 + -  -  -  - -0.91 (0.23) <0.0001 -11.09  143.83 711 
100 40 + -1.21 (0.71) 0.0879  -  - -  - -3.21  176.65  712 
200 40 + -  -  -  - -1.05 (0.25) <0.0001 -12.62  157.53 713 
300 36 + -  -  -  - -1.17 (0.26) <0.0001 -12.50  202.42 714 
400 34 + 0.84 (0.90) ns  -  - -0.57 (0.31) 0.0709 -2.17  212.20 715 
500 30 + -  -  1.08 (0.83) ns -0.59 (0.27) 0.0296 -5.54  110.98 716 
600 28 + -  -  -  - -0.92 (0.43) 0.0338 -2.21  366.30 717 
700 25 + -1.63 (0.98) 0.0950  -  - -  - -6.86  501.38 718 
800 22 + -0.82 (0.87) ns  -  - -  - -3.22  532.21 719 
900 20 + -  -  -  - -0.76 (0.40) 0.0608 -7.84  296.40 720 
1000 20 + -  -  0.07 (1.12) ns -  - -3.12  530.38 721 
 722 
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Table 2: Summary of the Generalised Linear Models fitted at each resolution (Res), with number of sample locations N. Shown are the β-723 

coefficient of the relationship between abundance of Poecilus versicolor and annual mean temperature (β Tmean), winter minimum temperature (β 724 

Tmin) and summer maximum temperature (β Tmax) with standard errors in brackets, along with their associated p-values.  A + in the Effort column 725 

indicates that the log trapping effort was included as an offset in the model. Delta AIC of the best model and prediction error (PE) are also 726 

shown.  727 

 728 

 729 

Res N Effort β Tmean  p β Tmin  p β Tmax  p DeltaAIC  PE  730 
5 40 + 4.44 (0.71) <0.0001 -  - -  - -24.54  25.58 731 
100 40 + -  - -  - 1.44 (0.44) 0.0012 -8.61  32.59 732 
200 40 + 4.34 (0.82) <0.0001 -  - -  - -19.38  30.54 733 
300 36 + -  - 4.30 (0.93) <0.0001 0.60 (0.31) 0.0494 -15.98  25.43 734 
400 34 + 4.06 (1.12) 0.0003 -  - -  - -10.07  39.23 735 
500 30 + 4.29 (1.29) 0.0008 -  - 0.41 (0.46) ns -16.24  47.25 736 
600 28 + 5.34 (1.83) 0.0035 -  - -  - -11.96  63.09 737 
700 25 + -  - 2.54 (1.78) ns 1.65 (0.64) 0.0096 -7.65  9.99 738 
800 22 + 4.25 (1.28) 0.0009 -  - -  - -9.67  60.18 739 
900 20 + 3.57 (2.18) ns -  - -  - -3.28  93.82 740 
1000 20 + -  - 40.60 (1.59) 0.0038 -  - -13.42  82.55 741 
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Figure legends 742 

Figure 1: Locations within the landscape that were sampled for Carabus glabratus. Presences 743 

(black circles) and Absences (white circles) are shown on a 1 km resolution grid of cells with 744 

presence only (dark grey), absence only (pale grey) and containing both presence and absence 745 

records (mid grey) 746 

 747 

Figure 2: The maximum temperature in July 2008 (Tmax) across the Lake Vyrnwy field site, 748 

shown at four different resolutions a) 5 m b) 100 m c) 500 m d) 1000 m 749 

 750 

Figure 3: The relationship between input data resolution and perception of various parameters 751 

at 2008 conditions; a) the maximum of Tmax (black squares), minimum of Tmax (black 752 

triangles), maximum of Tmean (grey squares), minimum of Tmean (grey triangles), maximum of 753 

Tmin (open squares) and minimum of Tmin (open triangles) in the landscape. 754 

  755 

Figure 4: The proportion of the landscape predicted to remain thermally suitable for Carabus 756 

glabratus following climate warming based on the model with the lowest prediction error. 757 

Each line represents a different resolution model.  758 

 759 

Figure 5: The proportion of the landscape predicted to become thermally suitable for Poecilus 760 

versicolor following climate warming based on the model with the lowest prediction error. 761 

Each line represents a different resolution model. 762 
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