
Software Systems Research Centre,
School of Design, Engineering & Computing,

Bournemouth University

Enabling collaborative modelling for a
multi-site model-driven software

development approach for electronic
control units

Frank Grimm

December, 2012

A Thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy of Bournemouth University

Copyright statement

This copy of the thesis has been supplied on condition that anyone who consults it
is understood to recognise that its copyright rests with its author and due acknow-
ledgement must always be made of the use of any material contained in, or derived
from, this thesis.

Author’s declaration

The work contained in this thesis is the result of my own investigations and has not
been accepted nor concurrently submitted in candidature for any other award.

i

Abstract

Name of Author: Frank Grimm

Thesis Title: Enabling collaborative modelling for a multi-site model-
driven software development approach for electronic control units

An important aspect of support for distributed work is to enable users at differ-
ent sites to work collaboratively, across different sites, even different countries but
where they may be working on the same artefacts. Where the case is the design of
software systems, design models need to be accessible by more than one modeller at
a time allowing them to work independently from each other in what can be called
a collaborative modelling process supporting parallel evolution.

In addition, as such design is a largely creative process users are free to create
layouts which appear to better depict their understanding of certain model elements
presented in a diagram. That is, that the layout of the model brings meaning
which exceed the simple structural or topological connections. However, tools for
merging such models tend to do so from a purely structural perspective, thus losing
an important aspect of the meaning which was intended to be conveyed by the
modeller.

This thesis presents a novel approach to model merging which allows the preser-
vation of such layout meaning when merging. It first presents evidence from an
industrial study which demonstrates how modellers use layout to convey meanings.
An important finding of the study is that diagram layout conveys domain-specific
meaning and is important for modellers. This thesis therefore demonstrates the im-
portance of diagram layout in model-based software engineering. It then introduces
an approach to merging which allows for the preservation of domain-specific mean-
ing in diagrams of models, and finally describes a prototype tool and core aspects
of its implementation.

ii

Acknowledgements

This PhD journey has been quite some learning experience, on many levels, and
there are many people who have had an impact in one way or another.

I would particularly like to say “thank you” to the two gentlemen who had most
influence on me as a researcher and my research, Prof. Georg Beier and Prof. Keith
Phalp. I’m deeply grateful for your constant support, advice, and for helping me to
become a more aware researcher – I thank you both.

I am also very grateful to Prof. Ray Dawson for the most insightful comments and
suggestions on this research he provided during the viva voce.

I would like to take this opportunity to acknowledge the kind support that I received
from my second supervisor Dr. Lai Xu, the School Research Administrator Naomi
Bailey, and especially Dr. Sheridan Jeary.

I am also very grateful to my employer for taking into account that I had additional
research workload.

I would also like to take this opportunity to thank Robert Bosch GmbH for funding
parts of the research that lead to and supporting this thesis. Special thanks to
Markus Schweizer, Martin Magira, and Uwe Maienberg from Bosch’s automatic
gearbox controller software unit for their insights to and support with OMOS-related
topics.

Very special thanks are given to Susi and all my family for their unconditional love,
support, understanding, and patience.

iii

Published materials

1. Phalp, K., Grimm, F., Xu, L., Supporting Collaborative Work by Preserving
Model Meaning when Merging Graphical Models, 13th IFIP Working Conference on
Virtual Enterprises, Bournemouth, UK, 2012

2. Grimm, F., Beier, G., Phalp, K., Vincent, J., Enabling multi-stakeholder co-
operative modelling in automotive software development and implications for model
driven software development. In: Proceedings of the 1st International Workshop
on Business Support for MDA (MDABIZ 2008), co-located with TOOLS EUROPE
2008, ETH Zürich, Zürich, Switzerland, 2008

3. Grimm, F., Increasing the reliability of model-driven software family engineering
and product configuration for automotive controller software, in Pohl, K., Heymans,
P., Kang, K., Metzger A. (Ed.), Second International Workshop on Variability Mod-
elling of Software-intensive Systems (VaMoS’2008), Essen, Germany, 2008

4. Grimm, F., An approach for semi-automatic, mental map preserving visual mer-
ging of UML class models, Young researchers workshop, Westsächsische Hochschule
Zwickau, Germany, 2007

5. Grimm, F., Beier, G., Phalp, K., Vincent, J., Towards semi-automatic, men-
tal map preserving visual merging of UML class models, in Proceedings of IADIS
International Conference of Applied Computing 2007, Salamanca, Spain, 2007

6. Beier, G., Grimm, F., Safety-inherent concepts for model-driven software family
engineering in the automotive controller software domain, in Plödereder, E., Keller,
H.B., Dencker, P., Tonndorf, M. (Ed.), Automotive — Safety & Security 2006 —
Sicherheit und Zuverlässigkeit für automobile Informationstechnik, Stuttgart, Ger-
many, 2006

7. Beier, G., Grimm, F., Approaches to testing UML-based state machines, in
Stolzenburg, F. (Ed.), 7. Nachwuchswissenschaftlerkonferenz mitteldeutscher Fach-
hochschulen, Hochschule Harz, Wernigerode, Germany, 2005

iv

Contents

Abstract ii

Acknowledegments iii

1. Introduction 1
1.1. Overview and motivation for the research presented in this thesis . . 1

1.1.1. Pilot study on model-driven development of software for auto-
motive electronic control units 1

1.2. Aim and objectives of this thesis . 3
1.2.1. The need for parallel working on OMOS models and diagrams 3
1.2.2. The objectives of the research presented in this thesis 5

1.3. Thesis layout . 6

2. Working collaboratively with software models — the need for parallel
working when developing models in general and diagrammatic represent-
ations of models in particular 8
2.1. Introduction to the OMOS software development approach 8

2.1.1. UML class models and diagrams 9
2.1.2. The part of UML used for OMOS 11
2.1.3. The OMOS approach to developing software for automotive

electronic control units . 14
2.2. The need for parallel evolution of OMOS models 18

2.2.1. Meeting with domain experts to learn about the OMOS de-
velopment process . 19

2.2.2. Bosch’s iterative and incremental model-driven development
process based on OMOS . 20

2.2.3. Conclusions . 22
2.3. Literature review on concepts of parallel software evolution 22

2.3.1. Concurrent access for enabling parallel evolution 23

i

2.3.2. Model merging — changes, conflicts, and conflict resolution . 24
2.3.3. Alternative approaches to parallel software evolution 25
2.3.4. Collaboration based on model element locking 27
2.3.5. Summary . 28

2.4. Literature review on collaboration approaches for visually modelling
based on UML class models and diagrams 29
2.4.1. Review on existing tool support for merging UML class dia-

grams provided by the research community 29
2.4.2. Review on existing tool support for merging UML class dia-

grams provided by commercial software vendors 31
2.4.3. Automatic UML class diagram layout as an enabler for con-

current visual modelling . 34
2.5. Conclusions on the envisaged approach for parallel working with OMOS

models . 37
2.6. Chapter summary and outlook . 38

3. Pilot study on conveying additional semantic information in diagrams of
models through their layout 39
3.1. Motivation of the pilot study on semantic information conveyed by

diagram layout . 39
3.1.1. Domain experts reject automatic diagram layout 40

3.2. Literature review on conveying additional semantic information in
diagrams of models through their layout 43
3.2.1. Semantic meaning conveyed through the layout of diagrams of

models . 43
3.2.2. The UML class diagram layout guidelines and diagramming

as a creative process . 44
3.2.3. Secondary notation . 45
3.2.4. The mental map of a diagram 47
3.2.5. Summary . 48

3.3. Introduction to the pilot study . 48
3.3.1. Pilot study research as a strategy of inquiry 49
3.3.2. The pilot study’s research plan 50
3.3.3. Validity and threats to validity 59

3.4. Findings regarding modelling by means of diagrams 63
3.4.1. OMOS diagram Tiptronic . 67

ii

3.4.2. Adding new diagrams to a OMOS model 67
3.4.3. Summary . 68

3.5. Findings regarding conveying additional semantic information in dia-
grams through their layout . 70
3.5.1. OMOS diagrams OutP_IFC_General and OutP_IFC_General-

_Exp as an example for semantic grouping 70
3.5.2. OMOS diagram OutPLss as an example for semantic ordering 72
3.5.3. OMOS diagram OutP_Hss as an example for semantic ordering 75
3.5.4. OMOS diagram OutPCcCo as an example for semantic group-

ing and ordering . 76
3.5.5. OMOS diagram Fahrertyp as an example for semantic grouping 78
3.5.6. Additional OMOS diagrams 80

3.6. Summary of the findings of the model analysis regarding expressing
additional semantic information in diagrams of models through their
layout . 81
3.6.1. Modelling by means of diagrams is a creative process 81
3.6.2. Summary of the pilot study findings regrading semantic in-

formation conveyed through the layout of diagrams and the
mental map . 82

3.6.3. General findings regarding the layout of OMOS diagrams . . 89
3.7. Chapter summary and outlook . 91

4. Principles and objectives of an approach for collaboratively working with
OMOS models 93
4.1. Automatic diagram layout and additional semantic information con-

veyed through the layout of diagrams 93
4.1.1. On the usefulness of automatic graph layout for UML class

diagrams when domain semantics of visualised model elements
are important to modellers 94

4.1.2. Conclusions on visual UML class modelling and parallel soft-
ware development . 99

4.2. General principles on which any software should be based to provide
a solution for working in parallel with OMOS models 101
4.2.1. Motivation: the old sequential, non-parallel approach to work-

ing with OMOS models . 101

iii

4.2.2. Optimistic, merge-based version control supporting parallel
work on OMOS models . 102

4.2.3. Meta-model-based difference and conflict detection and model
merging . 105

4.2.4. Automatic creation of the initial merged model 108
4.2.5. The need for dedicated model merge tooling 110
4.2.6. Dealing with model and diagram changes and merge conflicts 111
4.2.7. Version control system . 117
4.2.8. Summary . 118

4.3. Principles drawn from the pilot study to provide a software-based
solution for working in parallel with OMOS models 120
4.3.1. The need for visually merging OMOS diagrams 120
4.3.2. Detecting and dealing with meaning-related diagram merge

conflicts . 123
4.3.3. Meaning-preserving diagram merging 125
4.3.4. Summary . 126

4.4. Summary and outlook . 128

5. Design and implementation of semi-automatic OMOS class diagram lay-
out enabling efficient, meaning-preserving diagrammatic model merging 129
5.1. Enabling meaning-preserving diagrammerging through semi-automatic

OMOS diagram layout by extending the visual vocabulary of OMOS
diagrams . 129
5.1.1. Fully automatic layout destroys semantic meaning conveyed

through the layout of OMOS diagram 130
5.1.2. The need for some degree of automatic OMOS diagram layout 131
5.1.3. Meaning-preserving semi-automatic layout of OMOS diagrams 134
5.1.4. Semi-automatic OMOS diagram layout details 136
5.1.5. Advantages of semi-automatic layout 147
5.1.6. Limitations and critique . 148

5.2. OMOS model editor . 149
5.2.1. Diagram and model updates and automatic re-layout of all

affected diagrams . 150
5.3. Chapter summary and outlook . 151

6. Design and implementation of visual OMOS model merging 155
6.1. Introduction . 155

iv

6.2. Meta-model- and MOF-based model merging 156
6.2.1. Introduction to MOF-based modelling 158

6.3. Overview of the model comparison process OMOS models 159
6.3.1. State-based model comparison 161
6.3.2. Detecting equivalent model elements based on their identifiers 162
6.3.3. Summary . 162

6.4. Overview of model merge process for OMOS models 162
6.4.1. Accepting and rejecting changes, and detecting model merge

conflicts . 163
6.4.2. Creating the initial merged OMOS model 164
6.4.3. Summary and outlook . 165

6.5. Visualising and dealing with OMOS model and diagram changes and
conflicts . 166
6.5.1. A dedicated merge tool . 166
6.5.2. Standard visualisation for all four model versions involved in

the merge process . 167
6.5.3. Visualising and dealing with model changes and model merge

conflicts in OMOS diagrams 167
6.5.4. Visualising and dealing with changes and conflicts in OMOS

model trees . 169
6.5.5. Resolving merge conflicts and working with the merged model 172
6.5.6. Exchanging partially merged models 177

6.6. Chapter summary and outlook . 178

7. Evaluation, contributions and conclusions 179
7.1. Evaluation of the proposed solution by experts in the field with a

real-world parallel modelling scenario 179
7.1.1. Evaluation approach and test data 179
7.1.2. Evaluation of the OMOS model editor 181
7.1.3. Evaluation of the OMOS model merger 190

7.2. Success and impact of the proposed solution 197
7.2.1. Bad timing for commercialising the solution 199

8. Conclusions 201
8.1. Future work . 207
8.2. Contributions . 208

v

A. Details on the OMOS modelling approach 209
A.1. Variant modelling and OMOS as a software product family approach 209
A.2. The UML profile for OMOS . 211

B. Slides from the diagram layout analysis meeting discussing the pilot study
findings 214

C. Additional analysed OMOS diagrams 218
C.1. Package assignment diagrams . 218
C.2. OMOS diagram “InpP_Chip” . 219
C.3. OMOS diagram “InpP_PSply” . 221
C.4. OMOS diagram “OutP_ObjectModel” 221
C.5. OMOS diagram “InpP_ObjectModel” 224
C.6. OMOS diagram “InpP_IFC_General” 225
C.7. OMOS diagram “InpP_IFC_General_Export” 226
C.8. OMOS diagram “OutPStaLck” . 227
C.9. OMOS diagram “OutPSSply5V” . 227
C.10.OMOS diagram “IFC_OutP_internal” 228

D. Development of tool support for visually creating and merging of OMOS
models 230
D.1. The part of the UML meta-model relevant for OMOS 231

D.1.1. Listing of the UML meta-model elements relevant for OMOS
models . 234

D.2. OMOS model editor . 240
D.2.1. Creating class symbols . 240
D.2.2. Creating connections symbols 241
D.2.3. The model tree . 242
D.2.4. Diagram and model updates and automatic re-layout of all

affected diagrams . 244
D.3. Semi-automatic OMOS diagram layout details 246

D.3.1. Overview . 246
D.3.2. Automatic layout of class symbols 249
D.3.3. Automatic layout of connection symbols 253

D.4. Design and implementation of MOF-based model comparison 257
D.4.1. Introduction . 257
D.4.2. Implementation . 262

vi

D.4.3. Introduction to EMFText as a concrete syntax for Ecore . . . 263
D.4.4. Foundations of MOF/Ecore (meta-) models and model com-

parison . 265
D.4.5. Ecore structural features . 268

D.5. Foundations of model comparison . 273
D.5.1. Meta-models and state- and change-based model comparison 273
D.5.2. Preliminaries . 273
D.5.3. Model element identification and matching equivalent model

elements . 274
D.5.4. Model element comparison 276

D.6. Design and implementation of OMOS model merging 285
D.6.1. Merge conflicts . 285
D.6.2. Accepting and rejecting model changes and detecting merge

conflicts . 287
D.6.3. Detecting merge conflicts . 290
D.6.4. Creating the (model elements of the) initial merged model . . 296

D.7. Design and implementation of differencing and merging of OMOS
diagrams . 303
D.7.1. OMOS diagrams changes and conflicts 304
D.7.2. Differencing OMOS diagrams 313
D.7.3. Model consistency checking 315

Bibliography 316

vii

List of Figures

2.1. UML class diagram showing classes and composite aggregations [OMG10b,
Fig. 7.26, p. 46]. 10

2.2. Tree-table representation of the model presented in Fig. 2.1 as a UML
class diagram. 11

2.3. An example of the four-layer meta-model hierarchy [OMG10a, Fig.
7.8, p. 19]. 13

2.4. Example of an electronic control unit used in cars. 15
2.5. Example of 1-Class and N-Class and whole-part relationships between

OMOS classes. 17
2.6. An example root class. 17
2.7. Example of a model differences tree. 32
2.8. Example of a diagram differences tree compared to the actual diagram

where the differences appear. 33

3.1. OMOS diagram “OutP_ObjectModel” used by Bosch engineers to
demonstrate domain-specific knowledge conveyed through diagram
layout. 41

3.2. List of UML class diagrams from the Ameos modelling tool. 64
3.3. OMOS diagram “FZGG” shown in the Ameos class diagram editor. . 66
3.4. OMOS diagram “Tiptronic”. 68
3.5. OMOS diagram “OutP_IFC_General” (version 1 and 2). 71
3.6. OMOS diagram “OutP_IFC_General” (version 3). 71
3.7. OMOS diagram “OutP_IFC_General_Exp” (version 1 and 2). . . . 72
3.8. OMOS diagram “OutP_IFC_General_Exp” (version 3). 72
3.9. OMOS diagram “OutPLss” (version 1). 73
3.10. OMOS diagram “OutPLss” (version 2). 74
3.11. OMOS diagram “OutPLss” (version 3). 75
3.12. OMOS diagram “OutP_Hss” (version 3). 76
3.13. OMOS diagram “OutPCcCo” (version 1). 77

viii

3.14. OMOS diagram “OutPCcCo” (version 2). 78
3.15. OMOS diagram “OutPCcCo” (version 3). 79
3.16. OMOS diagram “Fahrertyp” (driver type). 80

4.1. Merged diagram with overlapping symbols. 122

5.1. OMOS diagram example 1. 135
5.2. OMOS diagram example 2. 138
5.3. OMOS diagram example 3. 140
5.4. OMOS diagram example 4. 141
5.5. OMOS diagram example 5. 142
5.6. OMOS diagram example 6. 143
5.7. OMOS diagram example 7. 144
5.8. OMOS diagram example 8. 144
5.9. OMOS diagram example 9. 145
5.10. OMOS diagram example 10. 146
5.11. OMOS diagram example 11. 146

7.1. OMOS diagram “Lss” (ancestor version). 183
7.2. OMOS diagram “Ifc” (ancestor version). 184
7.3. OMOS diagram “0_ObjectModel” (ancestor version). 184
7.4. OMOS diagram “PSply” (Team A version). 185
7.5. OMOS diagram “Lss” (Team A version). 186
7.6. OMOS diagram “0_ObjectModel” (Team A version). 187
7.7. OMOS diagram “Ifc” (Team A version). 187
7.8. OMOS diagram “Battery” (Team B version). 188
7.9. OMOS diagram “Lss” (Team B version). 188
7.10. OMOS diagram “ObjectModel” (Team B version). 189
7.11. OMOS diagram “Ifc” (Team B version). 189
7.12. Merged OMOS “0_ObjectModel” diagram and its original versions. 191
7.13. Merged “Ifc” OMOS diagram and its original versions. 192
7.14. Merged “Lss” OMOS diagram and its original versions. 193
7.15. Merged “PSply” OMOS diagram and the underlying UML model and

its original version. 194
7.16. Merged “Battery” OMOS diagram and the underlying UML model

and its original version. 195

A.1. OMOS model showing the base variant of an antilock braking system. 211

ix

A.2. OMOS model showing a specialised anti-slipping regulation variant
together with the basic anti-lock braking system variant. 212

B.1. Layout analysis meeting slides 4 and 5. 215
B.2. Layout analysis meeting slides 10 and 11. 216
B.3. Layout analysis meeting slide 18. 217
B.4. Layout analysis meeting slide 25. 217

C.1. OMOS diagram “ASIS_Pool”. 219
C.2. OMOS diagram “Klassen_Fahrsituationserkennung”. 219
C.3. OMOS diagram “Omm_Packages_SRC” (version 1). 220
C.4. OMOS diagram “Omm_Packages_SRC” (version 3). 220
C.5. OMOS diagram “InpP_Chip”. 220
C.6. OMOS diagram “InpP_PSply”. 221
C.7. OMOS diagram “OutP_ObjectModel” (version 1). 221
C.8. OMOS diagram “OutP_ObjectModel” (version 2). 222
C.9. OMOS diagram “OutP_ObjectModel” (version 3). 222
C.10.OMOS diagram “InpP_ObjectModel” (version 1). 224
C.11.OMOS diagram “InpP_ObjectModel” (version 2). 224
C.12.OMOS diagram “InpP_ObjectModel” (version 3). 224
C.13.OMOS diagram “InpP_IFC_General” (version 2). 225
C.14.OMOS diagram “InpP_IFC_General” (version 3). 225
C.15.OMOS diagram “InpPIfcExp” (version 1). 226
C.16.OMOS diagram “InpP_IFC_General_Exp” (version 2). 226
C.17.OMOS diagram “InpP_IFC_General_Exp” (version 3). 226
C.18.OMOS diagram “OupPStaLck” (version 1 and 2). 227
C.19.OMOS diagram “OupPStlk” (version 3). 228
C.20.OMOS diagram “OupPPSply5V” (version 3). 228
C.21.OMOS diagram “IFC_OutP_internal” (version 2). 228
C.22.OMOS diagram “IFC_OutP_internal” (version 3). 229

D.1. OMOS model tree example. 243
D.2. OMOS diagram with an error resulting from deleting class “LssDuty”

from the model. 245
D.3. Balanced hierarchical class symbol layout. 251
D.4. Relations, attributes, and operations of MOF classes 258
D.5. Relations, attributes, and operations of Ecore’s classes. 266

x

D.6. A meta-model for saving, comparing, and merging OMOS diagrams. 305

xi

List of Tables

3.1. Overview of the analysed versions of the “Adaptive Shifting Strategy
System” model. 55

3.2. Overview of the analysed versions of the “Power Supply Input/Output
and Gearbox Operation Modes” model. 55

3.3. Overview of the numbers of classes and class diagrams of the analysed
“Adaptive Shifting Strategy System” model versions. 63

3.4. Overview of the numbers of classes and class diagrams of the analysed
“Power Supply Input/Output and Gearbox Operation Modes” model
versions. 63

D.1. Mapping from EMFText keywords to Ecore elements. 263

xii

List of Algorithms

D.1. Laying out class symbols horizontally in a balanced manner. 252
D.2. Laying out child class symbols horizontally. 253

xiii

Listings

D.1. The part of the UML meta-model relevant for OMOS models. 234

1

1. Introduction

This chapter provides introductory background information and a motivation to the
research discussed in this thesis. Furthermore, the research aims and objectives are
defined. This chapter closes with an outline of the content discussed in the remainder
of this thesis.

1.1. Overview and motivation for the research presented in
this thesis

Much attention is currently paid to model-driven software development (MDSD)
[VS06]. In MDSD software models are key software development artefacts. They
are first-class development artefacts used by many different stakeholders throughout
the whole software development process. They are certainly no longer just marginal
tools used only by design or analysis teams.

During the last decade, the Unified Modeling Language (UML) [BRJ05] has be-
come a standard language for model-driven software development. It provides a rich
set of complementary model types and graphical notations supporting the whole
(object-oriented) software development process. UML is largely accepted through-
out software industry and academia [DP06].

1.1.1. Pilot study on model-driven development of software for
automotive electronic control units

As part of the research presented in this thesis, an industrial software development
project realised in a model-driven manner was analysed with respect to the role
software models play in this project. While details of this analysis will be presented
in Chapter 3, a short introduction to the project is given below in order to allow for
a better explanation of the research questions this thesis sets out to provide answers
for.

1

1.1 Overview and motivation for the research presented in this thesis

In the analysed project, software for automatic gearbox controllers used in a variety
of passenger car models from several car manufacturers is developed. This software
is developed by Robert Bosch GmbH, one of the largest suppliers of automotive elec-
tronics. About 20 developers from Bosch’s “Automatic Transmission Control Units”
engineering group started working on this project in 2003. The group is located at
two sites, Budapest, Hungary, and Schwieberdingen, Germany. The project is still
being developed today (as Bosch is still building automatic gearbox controllers).

In the following, Bosch’s approach to implementing electronic control unit software
systems is outlined in order to provide an overview of the model-driven development
process discussed in this thesis.

In the software design and implementation phase, i. e., after the analysis phase, the
initial objective is to produce a software model which describes the structure of
the software components implementing the automatic gearbox controller software’s
responsibilities. To do so, the Bosch developers apply an object-oriented modelling
approach called OMOS (which stands for “object-oriented modelling concept for
electronic control unit software systems”). It was developed by Bosch [HN99, HN00,
SB05] and will be described in more detail in Section 2.1.3. OMOS is actively
used to develop embedded real-time electronic control unit (ECU) software in the
automotive domain. It allows to express concepts relevant for software systems for
electronic control units directly by means of models. It is purely based on UML
(class) models and their graphical notation, i. e. UML class diagrams.

UML class models are the most popular type of UML models [DP06]. They are
used to specify the static structure of (object-oriented) software systems [RJB04].
They are often used in the analysis phase of the software development process,
i. e., the problem definition phase when the problem to be solved by the to-be-
developed software system is first analysed before the system is actually specified
and implemented [Lar04]. However, the most popular usage of UML class models is
the phase of development when the software system — i. e., one possible solution to
the aforementioned problem — is actually designed and implemented [MB02]. Class
models — as their name implies — define concepts which also appear in the source
code of a software system — such as classes, attributes, and operations (methods).

One of the most important benefits of models — including software models in gen-
eral and UML class models in particular — is their ability to abstract away from
unnecessary detail and allow to focus on a certain level of desired abstraction. UML
class models hence provide a formalism to specify software systems without the need

2

1.2 Aim and objectives of this thesis

to get into too much detail. For instance, when describing the static structure of a
software system by means of class models, it is often irrelevant which implementa-
tion language is actually used as source code can be automatically generated from
models [Fra02, KWB03]. This is possible because the model notation is formally
described by means of a meta-model (see Section 2.1.1). Models can thus be inter-
preted by computer programs to generate other software artefacts like, for instance,
source code, database schemas, or software design documentation.

Once a OMOS model is complete with respect to the expected functionality to be
realised by the controller software, C source code is automatically generated from
the model using a source code generation approach. Every class in a OMOS model
is transformed into a C header (.h) and a C implementation (.c) file that includes
the attribute definitions for each attribute and (empty) definitions for each opera-
tion defined by the model’s classes. Developers then manually add to those empty
operations source code which implements their behaviour. A OMOS model provides
all information required to generate source code artefacts that could be found in an
(object-oriented) implementation, i. e., module definitions (derived from UML pack-
ages), classes, operations, attributes, relationships between classes (and instances of
these classes), and documentation. The source code that had to be manually added
(inside the automatically generated empty operation definitions/bodies) realised the
behavioural aspects of the gearbox controller software which could not be derived
from the model (since a class model defines mostly static aspects of a software sys-
tem). For example, algorithms to calculate when to shift up or down had to be
manually implemented.

1.2. Aim and objectives of this thesis

In this section, the aims and objectives of the research discussed in this thesis are
presented.

1.2.1. The need for parallel working on OMOS models and diagrams

OMOS is an iterative and incremental model-driven approach. Adding new software
components, modifying, or deleting them is initiated on model level (and only then
source code is automatically generated from the model) for each development cycle
(which is described in Section 2.2.2). The modelling tool used by Bosch to create

3

1.2 Aim and objectives of this thesis

OMOS models did not support parallel development. Modelling tasks could there-
fore not be performed in parallel, i. e., by more than one developer at the same time.
Only source code files could be modified by more than one developer at the same
time. However, since in model-driven development source code gets automatically
generated from models, modifications have to be initiated these models. Only then
does it make sense to manually adjust the generate source code — for instance, to
implement the behavioural parts of the implementation which could not be auto-
matically derived from the model. Modifying the source code before the model had
been modified is, therefore, not possible.

The sequential (as opposed to parallel) nature of the OMOS model development
process has the following drawbacks:

1. Before starting to modify a OMOS model, developers at one development site
have to wait until the developers at other site working with this model have
finished their modifications.

2. When an issue introduced at the model level is detected later during the im-
plementation phase, developers wanting to fix this issue might no longer be
allowed to modify the model because it has already been handed over to the
other development site.

3. In order to understand and communicate how a model has been changed at
one development site, developers have to manually document model changes
(in a purely textual form) or learn about changes by simply looking at the
current (possibly modified) version of the model and its previous version to
figure out which modifications have been made (no tool support is available
for such model comparisons).

One of the motivations of model-driven approaches to software development is the
prospect of reducing the complexity of the systems to be developed by abstracting
away from detailed, technical implementations to problem-oriented models. Another
motivation is to increase the involvement for a range of stakeholders. This inevitably
leads to a greater diversity of roles being involved in the production of models.

The aim of the research presented in this thesis, therefore, is to enable parallel
working on OMOS models. In the next section, the research objectives originating
from this aim are presented.

4

1.2 Aim and objectives of this thesis

1.2.2. The objectives of the research presented in this thesis

OMOS models are created in a graphical way (as UML class models usually are in
general) using UML class diagrams (see Section 2.1.1), with the attendant benefits
of such visual representations, it seems appropriate that the graphical representa-
tion has to be taken into account in collaborative development scenarios. The need
to take graphical representations of models, i. e. diagrams, into account is demon-
strated by the results of a pilot study on the industrial model-driven approach for
developing automatic gearbox controller software (introduced above in Section 1.1).
The pilot study, which is discussed in Chapter 3, demonstrates the importance of
diagram layout for model-based software engineering in generally by analysing a
specific approach. Each diagram represents a different part or aspect of a OMOS
model. Their manually created layouts are important for modellers as they convey
knowledge specific to the domain meaning of the model elements depicted by dia-
gram symbols. They have to be taken into account by approaches to parallel working
on models. Therefore, one premise of this thesis is to analyse the state-of-the-art of
diagram-based UML class modelling and discuss the advantages and disadvantages
of existing approaches that incorporate models and their visual representations into
collaborative software development processes. In addition, the findings of the ana-
lysis of the pilot study are used to further reason about requirements of and provide
implementations for approaches to working collaboratively with OMOS models.

To allow for models being used efficiently, suitable for industrial-scale software devel-
opment, models need to be accessible by more than one user at a time allowing them
to modify them independently from each other in what can be called a collaborative
modelling process supporting parallel working [MBZR03]. The research presented in
this thesis therefore sets out to discuss and provide approaches to parallel working
on OMOS models and their diagrams. Therefore existing approaches to collabor-
ative modelling will be analysed and an new approach for working collaboratively
and concurrently with UML models and their diagrams will be presented to enable
collaborative modelling for the OMOS approach. Based on the need for parallel
working on OMOS models, this thesis sets out to provided answers to the following
research objectives:

1. Analyse the research literature to . . .

a) identify the need for parallel working when developing models in general
and diagrammatic representations of models in particular;

5

1.3 Thesis layout

b) determine whether diagrams of models contain additional semantic in-
formation through their layout;

c) identify solution methods that others have reported that could potentially
resolve the identified problem; and

d) review available software to verify that there is no existing software that
adequately solves the problem.

2. Carry out a pilot study to verify that the problem exists in the pilot study
environment and to identify the extent of the problem.

3. Determine the principles on which any software should be based to provide a
solution for the problem.

4. Design and implement software to carry out a proof of concept.

5. Test the solution using examples from the pilot study environment.

6. Evaluate the usefulness of the proposed solution from the expert opinion of
engineers in the field.

1.3. Thesis layout

This thesis is structured as follows: In Chapter 2, the need for parallel working
when developing models in general and diagrammatic representations of models in
particular is discussed. An introduction to UML in general, UML class models
and diagrams and to the OMOS approach to developing software for automotive
electronic control units is provided. The chapter closes with a review of the research
literature on concepts of parallel software evolution that could potentially enable
parallel modelling and a review on existing tool support for visually merging UML
class models and diagrams. Chapter 2 discusses research objectives 1a, 1c and 1d
defined in Section 1.2.2.

Chapter 3 provides the findings of a pilot study carried out as part of this research to
verify that diagrams of models contain additional semantic information through their
layout. It therefore realises research objective 2 (see Section 1.2.2). This chapter also
answers research objective 1b (a review of previous research on expressing additional
semantic information through diagram layout) and answers parts of objective 1d
(review available software to verify that there is no existing software that adequately
solves the problem).

6

1.3 Thesis layout

Chapter 4 focuses on research objective 3 (see Section 1.2.2): the principles and ob-
jectives of an approach for collaboratively working with OMOS models are defined.
First, the general principles on which any software should be based to provide a
solution for working in parallel with diagrams of models are defined. Then, the
principles drawn from the pilot study to provide a software-based solution for work-
ing in parallel with OMOS models are defined.

Chapter 5 discusses an approach and its implementation for laying out OMOS dia-
grams in a semi-automatic manner supporting parallel evolution of diagrams and
efficient visual model merging by preserving the meaning conveyed by diagrams. In
Chapter 6, an approach (and its implementation) to merging OMOS models and
diagrams is discussed. Both chapters realise research objective 4 defined in Sec-
tion 1.2.2.

An evaluation of the usefulness of the proposed approach to parallel work on OMOS
models is provided in Chapter 7 which reports about the results of testing the pro-
posed solution by OMOS modellers using examples from the pilot study as requested
by research objectives 5 and 6 (see Section 1.2.2).

The main part of the thesis is concluded in Chapter 8 which summarises the research
presented in this thesis.

Appendix A provides further details about the OMOS modelling approach discussed
by this research. Appendix B provides the presentation slides of a meeting with
Bosch engineers to discuss additional semantic meaning conveyed through the lay-
out of OMOS diagrams as identified in Chapter 3. Additional OMOS diagrams
which were analysed as part of the research presented in the thesis are discussed in
Appendix C. The design and implementation of the semi-automatic diagram layout
and OMOS model merge tool are discussed in Appendix D.

7

2. Working collaboratively with software
models — the need for parallel
working when developing models in
general and diagrammatic
representations of models in particular

This chapter first provides an introduction to the OMOS approach to software devel-
opment, then the need for parallel working when developing models in general and
diagrammatic representations of models in particular is established by providing a
review of the research literature on this topic. This review fulfils research objectives
1a (identify the need for parallel working when developing model in general and
diagrammatic representations of models in particular), 1c (identify solution meth-
ods that others have reported that could potentially resolve the identified problem),
and 1d (review available software to verify that there is no existing software that
adequately solves the problem) defined in Section 1.2 for this research.

2.1. Introduction to the OMOS software development
approach

As discussed in Section 1.2 on the aims and objectives of the research discussed in
the thesis, the author of this research has been given the task to enable modellers at
different development sites to work collaboratively with OMOS models. As one of
the first research activities regarding this research the author looked at the OMOS
documentation provided by Bosch (“OMOS User Manual” and “OMOS Primer”) to
gain an understanding of the OMOS approach to developing automotive software.
This software development approach can be summarised as follows: OMOS is used

8

2.1 Introduction to the OMOS software development approach

to model the static structure (classes etc.) of electronic control unit (ECU) software
systems. It is based on UML. The graphical notation for UML class diagrams is
used to create UML class models (called OMOS models).

In the remainder of this section, an introduction to UML in general and the OMOS
software development approach in particular is provided. This introduction provides
essential information required to better reason about the topics discusses in the
remainder of this thesis.

2.1.1. UML class models and diagrams

From a formal point of view, the definition of UML models in general and UML
class models in particular is twofold. A model constitutes of instances of UML
model elements and their representations. The model elements itself are defined by
the abstract syntax which describes the features of these elements independently of
any particular representation (see Section D.4). UML defines, for example, concepts
for modelling the static structure of (object-oriented) software systems using classes,
packages, generalization relationships, associations etc. The concrete syntax defines
how a model is presented to the user, for instance, by UML modelling tools (also
called CASE tools).

The UML standard [OMG10b, OMG10a] defines the abstract syntax and provides
suggestions for the concrete syntax too. The both together form a modelling lan-
guage (instead of merely a definition of the abstract syntax or a notation of the
concrete syntax). UML is mainly a graphical modelling language, the concrete
syntax used by the UML standard are diagrams. They contain graphical symbols
(concrete syntax) which depict model elements (abstract syntax).

The UML Superstructure [OMG10b], which defines UML’s user-level constructs, and
the UML Notation Guide [OMG03] provide basic style guides roughly specifying the
graphical (diagrammatic) representation of UML model elements. With respect to
class models, the following representations are defined (not complete): Classes and
packages are represented as rectangles. Classes may be further subdivided into
compartments. The first compartment, which is mandatory, shows the name of the
class and, if defined for the class, stereotype and tagged value definitions. The other
two compartments are optional, they are used to display attributes and operations
belonging to the class. Relations between classes are represented by lines or poly-
lines. For instance, Fig. 2.1 shows a diagrammatic representation of four classes and

9

2.1 Introduction to the OMOS software development approach

three composite aggregations. Class diagrams are typical line and box diagrams. A
UML (class) model can consist of an arbitrary number of class diagrams. The terms
class diagram and class model are often used interchangeably in the literature, in
this thesis, the term diagram refers to the graphical view of a model. A model is
then referred to as the structure underlying a diagram.

Figure 2.1.: UML class diagram showing classes and composite aggregations
[OMG10b, Fig. 7.26, p. 46].

Most UML modelling tools mainly provide editing capabilities to create models by
means of diagrams. User hence create or modify the underlying model by creating
or modifying diagrams and their symbols.

There exist other forms of concrete syntax for UML, for instance, the Human-Usable
Textual Notation (HUTN) [OMG04]. It allows defining UML models and other
types of models by means of a textual notation. Another type of representation
are trees and tables (see Fig. 2.2). They are often provided by modellings tools in
addition to the diagrammatic representation of a model since they are better suited
for providing an overview of a model and to present details of certain types of model
elements. Creating whole models using the tree-table approach is in general not
feasible because the trees become large and confusing to work with — especially
with respect to dealing with relationships between model elements.

10

2.1 Introduction to the OMOS software development approach

Figure 2.2.: Tree-table representation of the model presented in Fig. 2.1 as a UML
class diagram.

2.1.2. The part of UML used for OMOS

In this section, the elements of UML used to define OMOS models are discussed.
Since OMOS model are UML models, the UML meta-model defines the available
OMOS modelling concepts. The most important elements are: Packages, Profile
applications, Element imports, Classes, Stereotypes, Generalizations, Attributes,
Associations, and Operations.

Most of these elements are known from (object-oriented) software development.
UML uses them to describe the static aspects of the software system being defined in
the model [RJB04]. The structure and semantics of these element are defined by the
UML meta-model. Chapter 7 of the UML Superstructure Specification [OMG10b,
pp. 23] and Section 11.3 of the UML Infrastructure Specification [OMG10a] describe
them in detail.

In general, a meta-model formally defines the elements and relationships available
in models conforming to this particular meta-model. Hence, a meta-model defines
the structure and semantics of model elements that can be created based on this
meta-model. A model is an instantiation of the meta-model by which it is defined.

2.1.2.1. The Meta-Object Facility — UML’s meta-meta-model

The formal structure defining the UML meta-model is again described by a model
called meta-meta-model. UML’s meta-meta-model is defined by the Meta-Object

11

2.1 Introduction to the OMOS software development approach

Facility (MOF) [OMG06a][OMG10a, pp. 11]. At some point this meta-model lay-
ering has to stop in order to be able to actually instantiate meta-models, i. e. create
models. The meta-meta-model, therefore, describes itself. Such self-descriptions
are known as closed meta-modelling architectures: ‘A specific characteristic about
metamodeling is the ability to define languages as being reflective, i.e., languages
that can be used to define themselves. The InfrastructureLibrary is an example of
this, since it contains all the metaclasses required to define itself. MOF is reflective
since it is based on the InfrastructureLibrary. This allows it to be used to define it-
self. For this reason, no additional meta-layers above MOF are defined.’ [OMG10a,
p. 17].

Based on MOF, a modelling hierarchy consisting of four layers is formed (see Fig. 2.3):

Meta-meta-model (M3) Defines the infrastructure for meta-models, i. e., it defines
a language to define (or create) meta-models. A meta-meta-model usually is
an instance of itself. MOF represents a meta-meta-model.

Meta-model (M2) Defines a language for creating models. A meta-model is an
instance of its meta-meta-model. UML is a meta-model and an instance of
MOF.

User model (M1) A language for modelling information (for instance, a UML class
model for gearbox controller software, see Section 2.1.3). A model is an in-
stance of its meta-model. For instance, a UML model is an instance of the
UML meta-model.

Data model (M0) A concrete instantiation of a user model. For instance, gearbox
controller software running in a gearbox embedded in a car.

Additional details about the meta-object facility are provided in Section 6.2.1.

2.1.2.2. Profiles and stereotypes

UML provides mechanisms to extend the elements defined by its meta-model. This
is achieved by means of profiles (see chapter 18 of [OMG10b, pp. 669]). As stated in
[OMG10b, p. 679], “[a] profile is a restricted form of a metamodel that must always
be related to a reference metamodel [e. g., UML]. A profile cannot be used without
its reference metamodel; it defines a limited capability to extend metaclasses of the
reference metamodel via stereotypes. Profiles can be made to reference metaclasses

12

2.1 Introduction to the OMOS software development approach

Figure 2.3.: An example of the four-layer meta-model hierarchy [OMG10a, Fig.
7.8, p. 19].

from metamodels by creating an import relationship between the profile and the ref-
erence metaclass.” The term metaclass refers to the classes defined by the UML
meta-model (see above).

A profile is not part of a UMLmodel. It is defined outside of such models. Models use
the stereotypes provided by a profile. “A stereotype defines how an existing metaclass
may be extended, and enables the use of platform or domain specific terminology or
notation in place of, or in addition to, the ones used for the extended metaclass”
[OMG10b, p. 689] [OMG10a, pp. 177].

For instance, a stereotype called 1-Class is used by OMOS to annotate classes for
which only one instance can exist during the runtime of a controller software system
(see Section 2.1.3). The stereotype is defined in a UML profile [OMG10a, p. 187]
which is imported into a OMOS model and applied to classes defined in this model.

Similar to classes, stereotypes can define properties [OMG10b, p. 689]. These

13

2.1 Introduction to the OMOS software development approach

properties are called tagged values. They are used to define additional features of
stereotypes. When a stereotype is applied in a model, its tagged values become
available and their values can be assigned.

2.1.3. The OMOS approach to developing software for automotive
electronic control units

This section provides an introduction to OMOS (object-oriented modelling concept
for electronic control unit software systems). As mentioned in Section 1.1, OMOS is
used by Robert Bosch GmbH to develop electronic control unit (ECU) software in
the automotive domain [HN99, HN00, SB05]. It is an object-oriented, model-driven
approach based on UML.

In model-driven software development (MDSD), models are not only used as a means
of visualisation and communication of software structures. In MDSD, the value of
models also comes from the fact that other software artefacts, such as source code,
can be automatically derived. Models are, for instance, used as input for computer
programs called source code generators which, as the name suggests, automatically
produce source code from models.

Depending on the information available in a model, the generated source code might
be incomplete with respect to the expected behaviour of the software system to be
built. This is usually the case when source code is generated from UML class models
because only little domain-specific behaviour can be derived from pure class models.
Since UML class models only declare operations, but do not contain any definition
of their behaviour, the source code generated for operations can only represent their
declarations, but not their actual behaviour. An operation’s body, which represents
this behaviour’s implementation on the source code level, is empty and hence has to
be implemented by software developers. When the source code is generated again
because, for instance, the model was updated, the source code generator takes care
of preserving the manually implemented parts.

With the generative, model-driven software development approach outlined above,
software developers usually define all the key aspects of the to-be-built software
system in the model, then generate the source code and manually fill in the missing
parts of the implementation, i. e., the parts that were not defined by the model.

This approach is independent of the development method. No matter if a traditional
waterfall approach or a more en vogue lean or agile approach is practised, the model

14

2.1 Introduction to the OMOS software development approach

acts as the central place to define features of the software under construction.

2.1.3.1. OMOS-based development of automatic gearbox controller software

This section focuses on how the OMOS approach is applied for developing software
for automatic gearbox controllers. This software runs on so-called electronic control
units (ECU) embedded in cars (shown in Fig. 2.4). These ECUs are connected via
communication buses, for instance, Controller Area Network (CAN) or FlexRay, to
allow for exchanging information. For example, the gearbox ECU communicates
with the car engine’s ECU and the car’s Electronic Stability Program’s (ESP) ECU.

Figure 2.4.: Example of an electronic control unit used in cars.

OMOS is used to create software design and implementation models that describe
the static structure of the implementation of ECU software systems. To create
these models, UML class models and diagrams are used. ECU software concepts
are thus represented by UML classes, operations, attributes, associations, packages,
etc. A OMOS model hence provides all information required to automatically gener-
ate source code, i. e., module definitions (packages), classes, operations, attributes,
relationships between classes (and instances of these classes), and documentation.

C source code is automatically generated from the model using a source code gen-
eration approach. Every class in a OMOS model is transformed into a C header
(.h) and a C (.c) file that includes the attribute definitions for each attribute and
(empty) definitions for each operation defined by the model’s classes. Since a OMOS
model defines the static aspects of a software system, source code which realised the
behavioural aspects of the gearbox controller software cannot be derived from the
model. It has to be manually added inside automatically generated empty operation
definitions derived from the operations defined by the model’s classes.

15

2.1 Introduction to the OMOS software development approach

In addition, framework and infrastructure code is generated, for example, code help-
ing to realise single inheritance for ANSI C which does not natively support such
object-oriented concepts1. OMOS allows sub-classes to reuse or override operations
inherited from their base classes and thereby enables polymorphism for the pro-
cedural C programming language. Another example of infrastructure code that is
automatically generated is code that allows for class instances to communicate with
associated instances. The information which instances can communicate with each
other is taken from the model.

2.1.3.2. OMOS classes

As defined by UML, the UML classes used for OMOS contain operations which
represent interfaces to perform a certain behaviour on an instance of the respective
class. Classes also contain attributes to store their instances’ state. By using ag-
gregations, classes can define other classes to become what is called a part-class of
the aggregating class. OMOS does not differentiate between class aggregation and
class composition, both represent whole-part relationships between classes.

Since OMOS is used in embedded real-time environments, there are constraints
concerning the size of the binaries files compiled from OMOS source code. To
allow for runtime- and space-efficient mappings from OMOS models to C code and
consequently to ECU binary code, ECU software characteristics and requirements
have to be considered in OMOS models. Therefore OMOS defines three stereotypes
(see Section 2.1.2) for classes. A class marked by stereotype 1-Class exists at most
once in a OMOS implementation/runtime, i. e., the 1-Class stereotype marks classes
as singletons [GHJV95]. Certain code optimisations can be applied for 1-Classes
when source code is generated from OMOS models. A class marked with stereotype
N-Class can be instantiated more than once.

The following example in Fig. 2.5 shows how these OMOS concepts are used. The
example shows two classes, Engine and Cylinder. Class Engine is a 1-Class since a
car has only one engine. Class Cylinder has to be a N-Class because an engine has
more than one cylinder.

OMOS defines another stereotype for classes called Root. This stereotype, demon-
strated in Fig. 2.6, defines the root class of a OMOS model. A root class is also a
1-Class because exactly one root class exists in a OMOS model.

1The approach to enabling object-oriented concepts in C used for OMOS is conceptually similar

16

2.1 Introduction to the OMOS software development approach

Figure 2.5.: Example of 1-Class and N-Class and whole-part relationships between
OMOS classes.

Figure 2.6.: An example root class.

As part of this thesis, the rather ad hoc application of stereotypes was formalized
by defining a UML profile for OMOS which is discussed in Section A.2.

In OMOS, two types of hierarchies are important: class composition, i. e. whole-part
relationships, and class inheritance, i. e. specialisation hierarchies. Single inheritance
is used, i. e., every sub-class has one direct base class. Regarding class composition,
each class, except the root class, is part of at least one other class, either directly or
by inheritance, i. e., one of its base classes (not necessarily its direct one) is part of
at least one other class. A class can be part of more than one class. Hence, several
classes can contain (by means of composition) the same class.

2.1.3.3. Class hierarchies

Classes are used to represent a certain functionality that is needed in an ECU soft-
ware system. Class inheritance, i. e. generalisation, is used to describe different
variants of a certain functionality. A sub-class can specify additional attributes,
aggregations, and associations. A sub-class can also overwrite operations defined by
its base class. It is possible for a sub-class to provided a different implementation of
a certain operation, i. e., functionality. Hence, sub-classes introduce variations (see

to the approach presented in [Sam02]; it is, however, not based on the same implementation.

17

2.2 The need for parallel evolution of OMOS models

Section A.1).

In OMOS, all base classes, except the root class, must be connected by aggregation
associations (i .e., whole-part relationships) resulting in a class hierarchy that starts
at the root class. Thus, every class, except the root class, is a part class.

2.1.3.4. Communication between classes

In OMOS, aggregation associations are usually undirected which means that in-
stances of both classes (i. e., instances of the aggregating class and instances of the
aggregated class) can communicate with each other. An instance can hence call
public operations of the other instance. It is possible to define directed aggregation
associations such that only instances of the aggregating class can call operations
of instances of the aggregated class (aggregation associations going in the opposite
direction do not make sense because the whole-class of the aggregation has to be
able to communicate with the part-class).

Classes can communicate with classes which they do not aggregate, i. e., they can
call public methods of instances of non-aggregated classes. This kind of communic-
ation is realized by associations. If there is more than one association between the
same classes, the navigable association ends need to have distinct names. As with
aggregations, associations can be directed or undirected.

2.1.3.5. Addition information on OMOS

More details about OMOS are provided in Appendix A.

2.2. The need for parallel evolution of OMOS models

As discussed in Section 1.2, the aim of the research discussed in this thesis is to
provide an approach for working concurrently and collaboratively with OMOS mod-
els, i. e., UML models and class diagrams. Nowadays software is no longer developed
by individual developers but by groups consisting of many developers. In order to
avoid delays during development, the same software should be worked on in parallel
by several developers [MBZR03]. This specific form of iterative and incremental
software development [BSR03] is called parallel evolution [MBZR03].

18

2.2 The need for parallel evolution of OMOS models

With respect to the research discussed here, parallel evolution is necessary in order
to allow different OMOS engineers (possibly at different development sites) to work
in parallel on the same OMOS model, i. e., several engineers or groups of engineers
can work on the same model at a time and do not have to wait for another group
to finish working on the model before they can start working on it.

After making himself familiar with the OMOS documentation (see Section 2.1.3),
the author set out to gain insight into the actual software engineering processes
exercised for developing automotive software following the OMOS approach. The
main objective was to understand the OMOS modellers’ requirements with respect
to enabling parallel evolution of OMOS models.

The results of the analysis of the OMOS development process are discussed in this
section.

2.2.1. Meeting with domain experts to learn about the OMOS
development process

Before the author made himself familiar with the different approaches to model and
diagram evolution described in the research literature (discussed in Section 2.4), he
analysed the development process of a software development project conducted by
Bosch’s “Automatic Transmission Control Units” engineering group. In the ana-
lysed project, automatic gearbox controller software is being developed using the
OMOS approach. The goal of this analysis was to learn about the group’s approach
to software development and to use these findings to be able to better identify prin-
ciple solutions of parallel evolution which allow OMOS modellers to pursue parallel
modelling.

In order to get detailed information about the development process in general and
gain insights for possible types of parallel evolution for OMOS models, the author
met with ten developers from the “Automatic Transmission Control Units” engin-
eering group for a two-day meeting at Bosch’s Schwieberdingen (Germany) site in
September 2005. In this first meeting, the (at this time) current approach to dealing
with OMOS models and the envisaged parallel evolution of OMOS models were dis-
cussed. The author therefore inquired the Bosch engineers about how they developed
OMOS models as a group situated at different development sites. The results of this
meeting are presented next in Section 2.2.2.

The meeting described above was the first of a number of meetings which took place

19

2.2 The need for parallel evolution of OMOS models

over the course of the next three years. In all meetings, the author took notes,
i. e., minutes of meeting, by hand. In addition to meeting up with the engineers in
person, Bosch allowed the author to contact them by phone and email at any time
throughout the entire project.

2.2.2. Bosch’s iterative and incremental model-driven development
process based on OMOS

Models form the centre of the design and implementation phase of the software de-
velopment process following the OMOS approach. Adding, modifying, or removing
functionality from the software system is achieved by modifying the model first,
the respective implementation (source code) modifications then follow automatic-
ally when the source code is automatically generated from the model2. When, for
instance, new functionality (i. e., behaviour) is added to a class, a new UML opera-
tion is added to this class in the OMOS model. Then, the source code is generated
(again) and the operation’s implementation is filled in manually. The model contains
all structural information of the actual software system and is a first-class citizen
in the software development process. In order to update the software system, the
model is modified first and the generated source code is adjusted afterwards. There-
fore, in order to update features of the software system like inheritance relationships,
associations between classes, attributes or operations, the model is updated before
the implementation (source code) — which is updated as a consequence of updating
the model.

The behavioural parts of the software are manually added to the automatically
generated source code. Hence, the software system’s design first manifests itself
in the OMOS models and only then in the generated source code. Models thus
represent a central part in development cycles of software projects which apply the
OMOS approach. Adding new functionalities to the automatic gearbox controller
software, removing obsolete, or updating existing3 ones has to be done through a

2A code generator takes care of preserving manually modified source code sections in the generated
files. Such source code sections are marked as protected regions. They are mainly used to protect
the manual implementation of operations (whose signatures are declared in the model), i. e., to
protect the operation’s body.

3Updating existing functionalities requires model updates if structural aspects of the functionality
have to be updated. No model changes are required when only the implementation (source code)
has to be adjusted. For instance, a model has to be updated if an operation’s signature or an
attribute’s type changes, or a new relation to another class has to be added in order to access
operations of this class from within the updated operation’s implementation.

20

2.2 The need for parallel evolution of OMOS models

model.

For the analysed OMOS project, each development cycle, which is described in
greater detail in Section 2.1.3, usually takes about two to four weeks. For each iter-
ation, a version is created for the model. A version reflects a certain (with respect to
the software system’s requirements) stable development stage. Within an iteration,
the model can only be modified at one of the two development sites, Schwieberdin-
gen or Budapest, and only by one engineer at a time. Hence, modifications can only
be done in a sequential manner, before starting to work on the model and realise
their modifications, engineers at one site have to wait for the engineers at the other
site to finish their model modifications.

Engineers can work in parallel only on source code level, but not on model level. On
source code level this is possible because a shared source code repository managed
by a version control system4 (VCS) is used to manage concurrent access to source
files. Such software tools (for instance, Concurrent Versions System (CVS) [BP01] or
Subversion [Sub]) are one of the most beneficial approaches for collaborative software
development. They support storing all files comprising the implementation of a
software system in a central place and manage access to and modifications of them.
They also keep track of all changes done to a software system’s implementation
files (and any other files) over the course of its development. Concurrent versioning
systems play an important role for industrial-scale software development because
they enable software developers to work concurrently at the same files. When one
developer is modifying a certain source code file, another developer, too, can modify
the same file at the same time. When a developer sends modified files back to
the shared source code repository managed by a VCS, it takes care of making the
developer aware of (potentially) conflicting modifications of the same files.

Bosch’s iterative and incremental model-driven development process approach out-
lined above allows multiple engineers to access and modify the same source code
files at the same time. OMOS, however, is a model-driven approach, adding new
software components, modifying, or deleting them is initiated on model level (and
only then source code is automatically generated from the model). Such modelling
tasks cannot be performed in parallel. Furthermore, since source code can only be
manually modified within the protected regions generated only for operations (by
the code generator), only the implementation of existing operations can be modified

4Microsoft Visual SourceSafe (see http://en.wikipedia.org/wiki/Microsoft_Visual_SourceSafe, ac-
cess date: 4/12/2012).

21

2.3 Literature review on concepts of parallel software evolution

(at source code level). It does, however, not make sense to start implementing new
behaviour (i. e., new operations) on source code level without first declaring them
in the model.

2.2.3. Conclusions

As discussed above, OMOS models could only be modified by one engineer at a
time. This sequential way of modelling is a limiting factor for the OMOS software
development process since models form its centre. It is, therefore, desirable that
several engineers can work on the same OMOS model at the same time. Therefore,
in order to allow for working on OMOS models in a collaborative manner, parallel
evolution of OMOS models has to be supported. This topic is discussed in the next
section.

2.3. Literature review on concepts of parallel software
evolution

As explained in Section 2.2.2, the software tools used to build OMOS models do
not allow for parallel evolution of models. Therefore, after analysing the OMOS
software development approach discussed in Section 2.2, the research literature was
reviewed regarding the need for parallel working when developing models in general
(since OMOS is based on UML class models) and the diagrammatic representations
of models in particular (since OMOS uses UML class diagrams). The literature
review provided in this section fulfils research objective 1a defined in Section 1.2.

Discussing parallel software evolution inevitably leads to discussing concepts from
the domain of version/revision control because this domain deals with approaches
to enabling a group of people to work on the same electronic documents at the same
time. Even though the research presented in this thesis focuses on cooperatively
working with UML class models and diagrams, this section provides a general over-
view of approaches to cooperatively working with electronic documents, i. e., any
kind of computer-created documents, be it source code, other text documents, or
models. Such an artefact is known as a configuration item [HOS90, CW98]. It is
often referred to as a file when dealing with source code, documentation, or other
text documents in general. For instance, such a document could be a word processor
document, a source code file, or a software model.

22

2.3 Literature review on concepts of parallel software evolution

In the context of this thesis, “working cooperatively on a document” means that
the document can be worked on in a parallel manner, i. e., two or more persons
can work on the same document or copies of the same document using different
computers to access this document. As will be discussed below, there is a difference
in editing the same document and editing different copies of the same document.
The latter approach allows more than one person to edit the same document at the
same time to accomplish a certain task. (Each task is usually different from the
tasks any other person is working on at the same time.) The advantage of working
on the same document (as opposed to accomplishing the different tasks in separate
documents) is that existing contents in the document can be referenced, modified,
or even deleted — when separate documents are used, only referencing existing
elements is be possibly.

2.3.1. Concurrent access for enabling parallel evolution

Parallel evolution means that more than one user can access a certain electronic
document (for instance, a model) at the same time. Each user works on its own
copy of the model. With this so-called private workspace approach each user holds
a private working copy of a model. In contrast to the connected approach (which
will be explained below), the user can modify the model independently from any
other user. At some point, the private working copy is send back to the shared
repository to make the updated document available to other stakeholders. A new
version of the document is created in the repository. Hence, there exists more than
one version (also called revision) of the same document. That is why the process of
managing the integration of different versions of a document and the changes made
to it is referred to as version (or revision) control [HOS90, CW98].

2.3.1.1. Optimistic and pessimistic concurrency control/locking

Two approaches for concurrently accessing electronic documents exists: Optimistic
concurrency control and pessimistic concurrency control (or pessimistic locking)
[Men02]. With the former approach, access to a certain electronic document is
granted to anyone at any time. This means that any number of working copies of
a document can be made at any time and there are no restrictions with respect to
the possible types of modifications made to any of these working copies.

23

2.3 Literature review on concepts of parallel software evolution

With the pessimistic approach, a single user is granted exclusive access to a certain
document at a time. All other users can create working copies in order to read this
document, but are not allowed to modify it. Conflicts resulting from elements being
modified in contradicting ways by several users are prevented by granting exclusive
write access to only one user at a time.

Given that many software development projects are worked on by teams which are
spread across the globe, the optimistic approach seems especially beneficial for this
kind of distributed software development. Each team member can work independ-
ently on its own local copy of a project (a working copy). Access to the shared
repository is not required as long as the user does not want to save modifications
from the working copy to the shared repository.

Since the optimistic approach does not restrict the access to shared documents, each
team member can access and modify every shared document independently from any
other member of the team. On the other hand, restricting the access of a shared
document as done by the pessimistic locking approach can become problematic when
a user forgets to unlock a document, and thus prevents other users from modifying
it. The benefits of parallel work can also be contradicted by locking too many
documents by one user at the same time. If a user wants to change a document
already accessed by another user, he/she has to wait until it is released again, even
if the user wants to modify a different part of the this document and both changes
would hence not interfere.

2.3.2. Model merging — changes, conflicts, and conflict resolution

A change represents a modification made to a working copy of a certain document
in comparison to the original version of the document from which the working copy
was created. When more than one person is allowed to modify its working copy of
a certain document at the same time (i. e., when the optimistic concurrency control
approach is applied), conflicts can occur (when concurrently modified document
versions are brought back together) if the same document has been modified in
contradicting ways at the same time. For instance, a conflict might occur if the
same line of a text document has been changed in different ways.

Then, a merge (also called integration) process is required to reconcile changes made
to different working copies (i. e., versions) of the same document. During this pro-
cess, the user has to manually resolve conflicting changes made to the same document

24

2.3 Literature review on concepts of parallel software evolution

in different working copies. For instance, for a text document, it has to be decided
whether to choose one of the conflicting text lines or even define a new one in order
to solve the conflict.

The result of the merge process is a new version of the document which contains the
changes made to potentially more than one of its working copies at the same time
and which has no conflicts any more.

2.3.2.1. Two- and three-way merging

Two approaches to merging electronic documents exist: two- and three-way merging
[CW98]. The former takes two versions of a document into account while the latter
is based on three. For the two-way merge, the two versions are the current version
of a document in the shared repository and a working copy to be integrated into the
repository again. In addition to these two documents, the three-way merge takes
into account the document from which both documents originate. This document
is also called the parent or common ancestor.

The three-way merge approach has advantages because it allows detecting certain
types of changes and conflicts which cannot be detected reliably by the two-way
approach [CW98]. These advantages will be explained in Section 6.3.

2.3.3. Alternative approaches to parallel software evolution

To “work cooperatively on a document” could also mean that several persons merely
see (and possibly comment on) in real-time how a document evolves that is edited
by a single person. However, this kind of approach is not what is of regards for
this research. For instance, in order to access the same document from different
computers at the same time, a desktop sharing approach could be used which allows
multiple users working on different computers to see and work with the desktop
of another computer (provided all these computers are connected via some sort of
computer network). Hence, the application used to edit the shared document runs
on a single computer and its desktop is distributed to several persons. This approach
could also be simulated by passing around a to-be-shared document from one user
to another (for example, via email) in order to allow users to modify and comment
on it (an approach the usually works for nay type of document). Whilst this shared
workspace [LvO92] approach allows more than one person the work on the same

25

2.3 Literature review on concepts of parallel software evolution

document in real-time, it does not yield any advantages with respect to working on
several tasks in parallel on the same document.

2.3.3.1. Connected scenario

Another approach to concurrently working on models (or any other kind of electronic
document) is to synchronise every user’s modelling tool (or document editing applic-
ation) in real-time (via computer network-based mechanisms). This synchronisation
allows all users working on a shared document to access an always up-to-date version
of the document. When working on a shared document using the shared workspace
approach, every user’s computer has to be connected in order to access the docu-
ment and create a virtual workspace shared among all users. Therefore the shared
workspace approach is also called connected or live approach.

A drawback of this approach is the required coordination of editing actions for effect-
ively working on a shared document since the involved users are situated at different
sites. There is most likely some interaction required between the users — possibly
be means of instant messaging or telephone conferencing — in order to orchestrate
their actions. For instance, the participants need to be able to communicate with
each other to agree on who is the next one allowed to modify the document. A
lack of orchestration would most likely override the benefits of shared document
editing, i. e., working in parallel, because only one person at a time would have a
chance to change the document in a meaningful way without risking these changes
to be overridden by other users’ changes at the same time. The risk of interfering
modifications can be reduced or prevented by locking approaches — at the cost of
flexibility and the possible amount of parallelism as will be discussed below.

With the connected scenario, all participants need to be connected at the same time.
This might not always be possible because of users living at different time zones or
computer networks (intranets) being disconnected from the Internet. The applica-
tion of connected scenarios might not even be possible because of legal reasons or
intellectual property-related issues. For instance, in project collaborations, deliver-
ables are exchanged and made available to other parties participating in the project,
however, the very steps required to arrive at a certain deliverable might be tried to
be kept “secret” — especially for projects where suppliers provide deliverables to
customers and try to protect their intellectual property.

26

2.3 Literature review on concepts of parallel software evolution

2.3.4. Collaboration based on model element locking

UML class models consist of individual elements (e. g., package, classes, operations
etc.). Instead of locking a whole model, only certain model elements could be locked
by a modeller in order to get exclusive access to the model element for a certain,
relatively short (when compared to locking a whole model) amount of time. This
approach would still allow other modellers to lock and modify other model elements
at the same time. This approach of course requires a connected or live scenario (see
above) because every modeller’s modelling tool has to be instantly notified when
model elements are locked or unlocked.

However, this approach, generally referred to as graph partitioning [LvO92], is not
without drawbacks: When a certain model element has to be locked, the decision
about which additional model elements have to be locked as well — in order for a
modeller to be able to work with the model element — is twofold. On one hand,
there are additional elements that definitely have to be locked. For instance, the
container (or parent) element has to be locked because the to-be-modified element’s
existence depends on it, or, when a reference (for instance, an association) is to
be edited, the reference’s source and target model element have to be locked in
order to guarantee that the reference itself and the source or target element cannot
be removed. On the other hand, some elements might have to be locked because
the modeller wants to ensure that modifications are consistent. For instance, when
setting the type of an operation parameter, the referenced type (i. e., the referenced
model element) might need to be locked as well. Locking might work better for other
types of documents like source code files which tend to be smaller since software
system implementations usually consist of many source files. Thus, it would be
more feasible to lock a single file without preventing other developers from working
on another part of the implementation (which is realised in different files).

The information about which elements have to be locked is primarily taken from
the UML meta-model (see Section 2.1.1). The meta-model provides information
about, for instance, container/parent-child hierarchies and reference relationships.
This information can be used to derive locking rules which are automatically applied
when an element has to be locked. However, a challenging issue with element locking
is to automatically determine which additional model elements need to be locked. On
one hand, unintended modifications, made by or affecting others, have to be avoided
by locking all possibly involved and affected child and referenced model elements.
On the other hand, locking many elements in order to prevent undesirable effects

27

2.3 Literature review on concepts of parallel software evolution

during the modification of some of these elements leads to a model that is basically
usable by only a single modeller. Hence, other modellers cannot modify the model
any more and the benefits of collaborative modelling, which should be enabled by a
shared modelling approach, are voided.

2.3.5. Summary

Mens [Men02] argues that existing approaches to and tools for distributed software
development concentrate on text files, especially on source code since it is a key
artefact in software development. These approaches work in a line-oriented fash-
ion, i. e., a text file’s lines represent the basic component used to merge different
versions of the text document. Models (and the diagrams presenting them, see Sec-
tion 2.1.1) cannot be handled in a line-oriented manner since they are visualised in
a diagrammatic way, i. e., graphical symbols represent the elements of a diagram
[OWK03a]. Even if the underlying data and file structures are provided in a textual
and line-oriented way, the result of using a text-based merge would not be meaning-
ful with respect to the merged diagrams described by the textual structure. Models,
including UML (class) models, represent structured documents. Even though UML
models can be persisted as text documents using XMI [OMG05], a XML dialect
for persisting models, the structure of the XMI file is automatically generated by
modelling tools. However, users deal with UML models at a different level (usually
diagrams are used to create and visualise them, see Section 2.1.1). Having to deal
with XMI concepts when merging models is not feasible because XMI has nothing
to do with the model’s visual representation familiar to users. Even if the user
was willing to integrate model version based on their XMI representation, there is
another difference from ordinary text formates like source files that makes merging
XMI files rather hard: the logical structure of the XMI file is based on identifiers,
not on a text block’s position in a text file produced by a human being. The next
section will analyse research that sets out to overcome these issues.

28

2.4 Literature review on collaboration approaches for visually modelling based on
UML class models and diagrams

2.4. Literature review on collaboration approaches for
visually modelling based on UML class models and
diagrams

As discussed by the research literature review provided in Section 2.3 (focusing on
research objective 1a, i. e, identify the need for parallel working when developing
model in general and diagrammatic representations of models in particular), a col-
laborative modelling approach has to allow more than one party to modify (OMOS)
models in parallel. As discussed in Section 2.1, OMOS models are created in a visual
way using UML class diagrams and cannot be modified by more than one modeller
at the same time because the available modelling tool does not support concurrent
modelling. It follows that a collaborative modelling approach for OMOS has to take
the models’ diagrams into account. The literature review provided in this section
focuses on identifying solution methods that others have reported that could po-
tentially resolve the problem of working in parallel with diagrams of models. This
section therefore focuses on research objectives 1c (identify solution methods that
others have reported that could potentially resolve the identified problem) and 1d
(review available software to verify that there is no existing software that adequately
solves the problem) defined in Section 1.2.2.

2.4.1. Review on existing tool support for merging UML class diagrams
provided by the research community

This section summarises the literature on visual model merging from a research
viewpoint. Section 2.4.2 then provides an analysis of several industrial CASE tools
regarding their visual model merging capabilities.

Ohst et al. [OWK03a, OWK03b, OWK04] present an approach and a prototype
tool for visually merging UML class diagrams based on the Fujaba CASE tool
[Nie04, KWN05, Fuj]. Two models are visually merged using a three-way merging
algorithm (see Section 2.3.2) that allows to display fine grained differences between
compared versions based on their common ancestor version. A “pre-merged” dia-
gram is automatically generated. As the name suggests, this diagram contains the
elements of both versions. Elements unchanged in both versions are included auto-
matically in the diagram. Elements changed in only one version are also included
automatically but in a different colour. Deleted elements are crossed out with red,

29

2.4 Literature review on collaboration approaches for visually modelling based on
UML class models and diagrams

for the first version, and green, for the second version. Elements that are changed
simultaneously in both versions need special treatment because of potentially con-
flicting changes. There exist two kinds of conflict: element properties are conflict-
ingly changed in both versions and deletion-modification conflicts which occur when
an element is deleted in one version and the element is modified in the other ver-
sion. To allow the user to solve conflicts, the conflicting elements are highlighted.
Elements deleted in one version and modified in the other version are crossed out
with grey lines and marked with a warning symbol. The changed (sub-)elements are
underlined in their respective version colour, i.e., red or green. When text elements,
i.e., class or package names, or attributes or operations belonging to classes, are
changed simultaneously, both versions are displayed side by side using the colour of
their respective version, and the user has to decide which of the conflicting versions
is used for the merged version. For example, in the case of deletion-modification
conflicts this means to either accept to delete the element, and thus discard the
change made to the element or its sub-elements in the other version, or to reject the
deletion. Similar to conflicting changes, it is possible to undo non-conflicting changes
as well since changes made only in one version of the document are highlighted.

The approach described by Ohst et al. has limitations regarding the treatment of
diagrams, i. e., the graphical representation of models. It does not take the original
diagram layout into account, i. e., layout changes are not considered when models
are merged. Instead, Ohst et al. advocate for the use of automatic layout tech-
niques treating UML class models as directed and connected acyclic graphs. The
layout algorithm lays out classes hierarchically using inheritance relationships as the
hierarchy definition criterion. As stated by Ohst et al. [OWK04], the authors did
not focus on a perfect solution to lay out diagrams but to provide tool support for
visually merging diagrams. Hence, the automatic layout algorithm is very basic. It
uses only inheritance hierarchies to calculate the positions of elements. Base classes
are positioned above their sub-classes and associated classes are placed at the left
or right hand side of the associating class. Ohst et al. state that only diagrams with
a small number of classes and associations are be drawn nicely. Furthermore, this
approach lays out a whole merged model in one single diagram, i. e., all elements of
a model are depicted in one diagram. Section 2.4.3 discusses further details about
approaches to automatic diagram layout and their advantages and disadvantages.

The UML class model merging prototype tool developed by Mehra et al. does not
use automatic diagram layout [MGH05]. Their approach takes all the differences

30

2.4 Literature review on collaboration approaches for visually modelling based on
UML class models and diagrams

between two model versions into account, including changes of graphical elements.
Graphical changes, such as resized or repositioned UML class symbols, are detected
by the tool and displayed in the merged diagram. The merged diagram uses the
layout of one of the to-be-merged diagram. Changes made in the other diagram
are displayed and highlighted in the merged version. Added or changed elements
are displayed in red. Deleted or relocated elements are surrounded by dotted lines.
Although preserving the original layout of one version, this approach has major
drawbacks. One drawback is that the user has to accept or reject every individual
layout change. Another drawback is that diagram symbols may even overlap. The
user is then forced to manually disentangle them. The authors of the tool admit that
this layout technique can lead to cluttered and unreadable diagrams when complex
diagrams are used and many changes are to be displayed and dealt with by users.

2.4.2. Review on existing tool support for merging UML class diagrams
provided by commercial software vendors

While the literature on tools support for visual model merging from a research
viewpoint is summarised in the previous section, the capabilities of several industrial
CASE tools regarding visual model merging are analysed in this section.

The following commercial CASE tools were analysed in order to ascertain the abil-
ities of concurrent modelling using UML class models: IBM Rational Software Ar-
chitect 6 [Let05, IBM06], No Magic MagicDraw UML (Teamwork Server Edition)
[NoM06], I-Logix Rhapsody 6.2 [IL06], microTool ObjectIF [mic06], Visual Paradigm
for UML (Teamwork Server Edition) [Vis], and Ameos 9.15 [Aon06]. While all the
tools announce support for concurrent modelling, the actual support ranges from al-
most none to paying attention to graphical representations. Most of the tools follow
an optimistic approach to concurrent modifications (see Section 2.3.1), i. e., parallel
changes to models are achieved using local copies of a shared model repository. One
tool uses the pessimistic approach, but access management has to be carried out
manually. A pessimistic approach allows only one developer at a time to modify
models (see Section 2.3.2).

In order to merge a local model copy back into the shared model repository, all the
tools using the optimistic approach allow only for merging on the structural level
of UML class models. This means that models in order to find conflicts between

5Ameos is the UML modelling tool used by Bosch to create OMOS models.

31

2.4 Literature review on collaboration approaches for visually modelling based on
UML class models and diagrams

the repository and the local copy, they are compared based on their hierarchical
structure. Differences among model elements are displayed in a tree-like manner:
UML packages represent outer elements, followed by classes, which act as parent tree
nodes of operations, attributes, and association ends. Fig. 2.7 shows an example of
such a differences tree.

Figure 2.7.: Example of a model differences tree.

In order to compare the current model version and the local copy to be checked
in, a tree based comparison approach is used. Changes between the two versions
are represented by two trees that are displayed side by side. Each tree shows one
version of the differing model elements and their sub-elements. Changes made to
elements in the local copy can be accepted or rejected. Conflicts are highlighted and
annotated with details regarding the conflicting changes.

Only two tools, Rational Software Architect and MagicDraw, take the graphical
representation of models, i. e., their diagrams, into account. The other tools do
not consider at all the diagrams used to create the models. Only changes made to
the class models are, therefore, recognised when the models are merged. Graphical
changes at the diagram level are not considered during the merge process. Diagram
changes are, therefore, lost during the merge process. A merged model version’s
diagrams have to be manually created.

The tools which take the graphical representation of models into account use the
same above-mentioned tree structure to show differences between model versions
and, additionally, display graphical changes directly in the respective diagrams. The
tools consider only the position and size of elements, and changes to these properties
are graphically represented. However, tree-based comparison and merge still domin-
ates the merge process. Comparing and merging models is not done on a graphical
level. Even worse, all changes of diagram symbols have to be handled (accepted
or rejected) manually in the tree view, they cannot be handled in a diagrammatic
way. Fig. 2.8 shows an example differences tree where graphical differences are also
highlighted in the corresponding diagram. The visualisation of graphical changes
directly in diagrams is a first step to take diagrammatic model representation into

32

2.4 Literature review on collaboration approaches for visually modelling based on
UML class models and diagrams

Figure 2.8.: Example of a diagram differences tree compared to the actual diagram
where the differences appear.

account during the merge process. This, however, is not sufficient. Since the model
are created using diagrams, users should be able to merge models in a diagram-
matic way. Representing models as trees is very different from the diagrammatic
representation used to create them and makes it difficult to understand differences
between two model versions [OWK04].

A similar approach for differencing models and diagrams as presented in Fig. 2.8
is taken by EMF Compare6 and Westfechtel [Wes10]. It allows to compare and
merge models which are defined by arbitrary meta-models (see Section D.4). EMF
Compare recently added support for comparing, but not for merging diagrams of
models7. However, the diagram differencing approach has limitations. For instance,
it does not take differences between different diagrams and their effect on the com-
mon underlying model into account.

To summarise, commercial CASE tools do not provide sufficient support for concur-
rent modelling of UML class models created in a diagrammatic way because they
do not support for visual model merging, diagrams have to be merged manually
[Sel03, OWK04].

6http://wiki.eclipse.org/EMF_Compare (access date: 4/12/2012)
7http://wiki.eclipse.org/EMF_Compare/CompareUMLPapyrusAPI (access date: 4/12/2012)

33

2.4 Literature review on collaboration approaches for visually modelling based on
UML class models and diagrams

2.4.3. Automatic UML class diagram layout as an enabler for
concurrent visual modelling

As described in Section 2.4.1 and Section 2.4.2, existing tools for merging UML class
models and diagrams either impose the layout of merged diagrams on users or do
not take diagrams into account at all. Since laying out merged diagrams manually
is not an option for large-scale projects (due to the large number of diagrams), the
approach by Ohst et al. (see Section 2.4.1) appears to be the most promising solution
method for enabling parallel work on OMOS models. Their approach takes into
account UML class models as well as the class diagrams used to visualise them. The
diagrams are merged by applying automatic layout. However, the authors state that
their automatic diagram layout has limitations. The approach to automatic diagram
layout, therefore, has to be improved to become usable for (laying out merged)
OMOS diagrams. This section, therefore, discusses approaches to automatic UML
class diagram layout described in the research literature.

2.4.3.1. Hierarchical layout approaches

The graph layout community advocates for automatic layout of UML class diagrams.
UML itself states that models can be represented as graphs [OMG10b] but does
not say anything about how the graph should be laid out, i. e., how a model’s
graph should be visualised as a diagram. As stated by Sugiyama in [Sug02], in
particular UML class diagram drawing methods are relatively underdeveloped. A
first adoption of an existing automatic graph layout algorithm to the particular
problems of UML class diagrams was done by Seemann in 1997 [See97] using an
hierarchical approach. The hierarchical approach used by Seemann was originally
developed by Sugiyama and his colleagues [STT81]. It is also known as the Sugiyama
approach. The approach is used for drawing directed acyclic graphs [JM03]. It
consists of three processing steps: layer assignment, crossing minimisation and node
replacement. During the layer assignment step each node v of a directed acyclic
graph G is assigned to a horizontal layer l(v) such that all edges extend from a
lower layer to a higher layer. The second step computes horizontal permutations of
the nodes of each layer so that the number of edge crossings is minimised. Before
permuting the nodes of a layer, all nodes are normalized by replacing edges that span
more than one layer, i. e., connect nodes that are not placed on consecutive layers,
by several consecutive edges that span exactly one layer and connect dummy nodes.

34

2.4 Literature review on collaboration approaches for visually modelling based on
UML class models and diagrams

In the third step, the coordinates of the nodes are calculated. All nodes in a layer get
the same horizontal, i. e., y, value. The x values of the nodes are assigned according
to the node’s permutation that was calculated in the second step. Coordinates of
dummy nodes become bends in the original edge.

Sugiyama’s hierarchical approach was enhanced by Seemann [See97] to cope with
UML class diagrams. Seemann’s approach is capable of handling undirected edges,
for example, symmetric associations or links to association classes and notes, and
direct cycles, i.e. self edges, which the original approach by Sugiyama cannot deal
with. The algorithm works as follows: Nodes that are not adjacent to generalization
edges are removed temporarily from the graph. Then, the first two phases of the
Sugiyama algorithm are executed on the sub-graph formed by the generalisation
edges. The removed nodes are then inserted iteratively in the layers. The last step
calculates the node positions and routes the edges. Generalization edges are drawn
as direct lines while association edges are drawn as orthogonal lines.

First analyses and experiments that examined UML class diagrams in terms of read-
ability, comprehension and user performance were published by Purchase and her
colleagues in 2001 [PCM+01, WPCM02]. Based on the results of this research,
aesthetic criteria for the layout of UML class diagrams were inferred [PMCC01].
Eichelberger conducted additional research on aesthetics of UML class diagram lay-
out and developed another algorithm, called “SugiBib” [Eic02c], to automatically
lay out UML class diagrams. This layout algorithm creates diagrams according to a
large number of aesthetic criteria for UML class diagrams [Eic02a, EvG03a, EvG03b,
Eic05, Eic06]. These aesthetic criteria are discussed in Section 4.1.1.1.

Eiglsperger et al. come to the conclusion that the hierarchical approach is often unus-
able in practice because class diagrams may not contain any hierarchical structure at
all. For instance, class diagrams can contain only associations (but no composition-
s/aggregations or inheritance relations). There can even be problems with diagrams
containing a lot of hierarchical information, since these hierarchies are usually not
very deep. Thus, diagrams tend to get wider but not higher since many nodes are
assigned to the same horizontal layer. As stated by Gutwenger et al. [GJK+03], the
problem with solely using inheritance trees as the hierarchy criterion used to layout
a graph is that there may be other hierarchy-defining relations like associations or
compositions. Eichelberger’s SugiBib algorithm is a generalisation of the Seemann
algorithm. It is able to cope with further layout constraints that are based on aes-
thetic criteria. According to Eiglsperger et al., it is the “most sophisticated hierarchic

35

2.4 Literature review on collaboration approaches for visually modelling based on
UML class models and diagrams

layout algorithm for class diagrams at the moment” [EKS03]. This algorithm is no
longer restricted to generalisations as the hierarchy-defining edge type. Any edge
type, i. e., any UML class relationship type, can be used as the hierarchy-defining
edge type. In addition, it supports UML packages, also called clustering or clustered
(sub-) graphs [JM03] since packages can contain nested elements like classes, notes,
or packages.

2.4.3.2. The topology-shape-metrics layout approach

Eiglsperger and his colleagues [WEK02, EKS03, EGK+04] suggest an alternative ap-
proach for UML class diagram layout based on the topology-shape-metrics approach
[BDPP99]. It is called “GoVisual” [EGK+04] and part of the “yFiles” graph layout
tool. When compared to the hierarchical layout approach discussed above, this al-
gorithm produces good results even for models with few or no hierarchy information,
i.e., when inheritance hierarchies are missing. However, since the algorithms espe-
cially focuses on hyper edges, i. e., multiple generalisations relationships to the same
base class are joined into one edge, the default algorithm is based on the directed
acyclic graph that results from the generalisation hierarchy. The algorithm can work
on other types of relationships, like class aggregation, composition, or association, if
no generalisation hierarchies are defined in a model. As with the hierarchy approach,
three phases are performed for the topology-shape-metrics approach: planarisation,
orthogonalisation, and compaction. In the planarisation step, the topology of the
drawing is determined. The topology is described by a planar embedding. A graph
is planar, if it can be drawn in the plane without edge crossings. The resulting
drawing divides the plane into regions, called faces. A planar embedding is a com-
binatorial description of the faces. It contains for each face the sequence of edges
that contour it. A planar embedding implicitly defines a cyclic ordering of the edges
around a vertex. To produce a planar graph from a non-planar one, dummy nodes
are inserted which represent crossings to make the resulting graph planar. In this
step, the mixed upward planarisation approach [EKE03] is used to assure that edges
belonging to the same hierarchy criterion are drawn in the same direction. The or-
thogonalisation step determines the angles and bends in the drawing. To assure that
a drawing is orthogonal, only angles with multiples of 90 degrees are applied. In the
final compaction step, coordinates are assigned to the nodes and to the edge bends.
The dummy nodes that were introduced in the planarisation step are removed.

As described by Eiglsperger&Kaufmann [EKE03] for their mixed upward planar-

36

2.5 Conclusions on the envisaged approach for parallel working with OMOS models

isation approach to UML class diagram layout, it is assumed that the input graph is
connected. Since UML models can contain elements that are not connected with any
other element, this assumption does not have to hold for every UML class diagram
and its underlying model.

2.5. Conclusions on the envisaged approach for parallel
working with OMOS models

In the following, the findings from the literature on concepts of parallel software
evolution discussed in Section 2.3 are combined with the findings from the analysis
on parallel evolution of OMOS models presented in Section 2.2 to define objectives
for an approach to enabling collaborative working with OMOS models.

OMOS models are build in a visual way by means of UML class diagrams. The ap-
proach to enabling collaborative modelling for OMOS based on UML class diagrams
developed as part of this research thus has to provide solutions to the following
problems:

1. In order to enable parallel working on OMOS models, it has to be possible to
modify the same model in parallel. Therefore, multiple parties (at different
sites) have to be allowed to work in parallel on the same OMOS model at a
time allowing them to modify it independently from each other. Working in
parallel on the same model will result in different versions of this model.

2. An efficient and automatic way of combining (i. e., merging) different versions
of a model (modified in parallel) back into one model has to be provided.

3. The diagrams of models have to be taken into account by any approach for
parallel working on OMOS models. It is not sufficient to take only models into
account without considering their graphical representations (i. e., the diagrams
used to create and visualise the models).

a) Versioning of diagrams is currently not sufficiently supported by existing
version management systems. Existing CASE tools offer little or no sup-
port for versioning and working in parallel [Sel03]. This is mainly because
the format of stored diagrams differs from their actual visual presenta-
tion format in CASE tools [Ohs02]. Existing visual approaches to and
tools for merging UML class models and diagrams either force the user to

37

2.6 Chapter summary and outlook

manually lay out merged diagrams or do not take diagrams into account
at all during the merge process.

4. Tool support for visual differencing and merging must be available to OMOS
modeller in order to allow for parallel modelling: Since OMOS models are
created in a diagrammatic fashion, the UML class diagrams representing the
models have to be taken into account too (in addition to the underlying mod-
els). Therefore the merge approach has to take diagrams into account too. As
discussed in Section 2.4, existing tools for visually merging UML class mod-
els and diagrams either did not take diagrams into account at all, burdened
the modellers with manually resolving diagram layout conflicts (i. e., diagrams
have to be manually uncluttered), or used automatic diagram layout to en-
able efficient merging of diagrams. Only the latter approach (by Ohst et al.,
see Section 2.4.1) appears to be a viable solution method for parallel work-
ing with OMOS models. The former two approaches are not efficient as they
require modellers to merge diagrams manually.

2.6. Chapter summary and outlook

In this chapter, an introduction to the OMOS approach to software development
was provided and the need for parallel working when developing models in general
and diagrammatic representations of models in particular was established from the
research literature to fulfil research objectives 1a (identify the need for parallel work-
ing when developing model in general and diagrammatic representations of models
in particular), 1c (identify solution methods that others have reported that could po-
tentially resolve the identified problem), and 1d (review available software to verify
that there is no existing software that adequately solves the problem) defined in
Section 1.2.

In the next chapter, a pilot study on an industrial software development project
which used the OMOS approach is presented.

38

3. Pilot study on conveying additional
semantic information in diagrams of
models through their layout

This chapter reports about a pilot study conducted as part of this research to determ-
ine whether diagrams of models convey additional (inherent) semantic information
through their layout.

In Section 3.1, the motivation for conducting the pilot study is provided. In Sec-
tion 3.2, the research literature related to the study is discussed, i. e., a review of
the research literature on conveying additional semantic information in diagrams of
models through their layout is provided. Section 3.3 provides an outline of the actual
study as well as an introduction to the scientific foundations of pilot study research.
The study’s findings are discussed in Section 3.4 and Section 3.5 and summarised in
Section 3.6.

This chapter focuses on research objective 1b (determine from the research literature
whether diagrams of models contain additional semantic information through their
layout) and research objective 2 (carry out a pilot study to verify that diagrams
actually convey semantic information in the pilot study environment and identify
the extent of the problem) defined in Section 1.2.2.

3.1. Motivation of the pilot study on semantic information
conveyed by diagram layout

As discussed in Section 2.1.3, OMOS models are created in a diagrammatic way.
Diagrams therefore need to be taken into account by any approach providing a solu-
tion for enabling parallel work on OMOS models (which is one the main objectives
of this research). As stated by the research literature review in Section 2.4, a pop-
ular approach for enabling parallel evolution of visual models is automatic diagram

39

3.1 Motivation of the pilot study on semantic information conveyed by diagram
layout

layout. With this approach, there is no longer a need for merging diagrams because
they are laid out automatically according to the underlying (merged) model (res-
ulting from merging two versions of a model which evolved in parallel). Based on
the findings from the research literature, an approach based on automatic layout as
an enabler for parallel work on OMOS models was discussed with Bosch engineers.
Their reaction is presented in the following section.

3.1.1. Domain experts reject automatic diagram layout

After the author made himself familiar with the software development process fol-
lowed by Bosch’s “Automatic Transmission Control Units” engineering group (de-
scribed in Section 2.2) and the different approaches to model and diagram evolution
described in the research literature (discussed in Section 2.4), another meeting with
OMOS modellers took place in March 2006. The main objective of this meeting was
to discuss possible ways forward with respect to enabling parallel work on OMOS
models. The same ten Bosch engineers (from the “Automatic Transmission Control
Units” engineering group) who participated in the first meeting (which took place
on September 2005, see Section 2.2.1) participated in this meeting (not all of them
participated all the time, though). It took again place at Bosch’s development site
at Schwieberdingen.

Based on the findings from the research literature regarding support for parallel
evolution of models and diagrams provided in Section 2.4, the author presented the
idea of using automatic diagram layout to enable parallel work on OMOS models to
the Bosch engineers. Much to his surprise, they objected to this idea!

Asked why they oppose automatic diagram layout, the modellers argued that, in
their experience, automatic layout would not allow them to lay out diagrams the
way they intended, it would destroy the effort they put into manually laying out
diagrams. The engineers stated that the layout is important for them: according to
the engineers, their OMOS diagrams contain semantic information which is solely
conveyed through their layout. In order to demonstrate their understanding of
domain-specific meaning inherently conveyed through the layout of their diagrams,
modellers used the diagram shown in Fig. 3.1 for explanation.

40

3.1 Motivation of the pilot study on semantic information conveyed by diagram
layout

Figure 3.1.: OMOS diagram “OutP_ObjectModel” used by Bosch engineers to
demonstrate domain-specific knowledge conveyed through diagram layout.

The modellers explained that, in this diagram, classes representing the high-side
current sensor controller (class CL_OutPHssCtl) and its CL_OutPHssCtl_Mn sub-
class (providing monitoring capabilities) are positioned next to the classes repres-
enting the low-side current sensor controller (CL_OutPLssCtl) and the respect-
ive monitoring-enabled sub-class (CL_OutPLssCtl_Mn). According to the OMOS
modellers, these classes are semantically (very closely) related in the gearbox con-
troller software domain and thus should be positioned in close visual proximity.

The modellers hence use secondary notation called semantic grouping (see Sec-
tion 3.2.3) to express the classes’ close semantic relationship through diagram layout
features (even though they were not aware of the fact that this is described as se-
mantic grouping by the research literature).

The fact that the classes are semantically related is not expressed in the respective
OMOS model itself. However, the classes are documented (using free-form text).
The documentation of class CL_OutPLssCtl and CL_OutPHssCtl reads:

• “Description of the class CL_OutPLssCtl: With this class the other functions
of this system are able to calculate and update the low side information. For
example it is possible to get information if selected low side is available. [...]”

• “Description of the class CL_OutPHssCtl: This class provides the high side
control information (calculation and updating of high side control). [...]”

41

3.1 Motivation of the pilot study on semantic information conveyed by diagram
layout

The modellers argued that the documented domain knowledge is expressed in the
diagrams by visually grouping semantically related class symbols according to the
domain meaning of the classes they depict.

The minutes of the March 2006 meeting, prepared by Bosch engineer Uwe Maien-
berg, highlight the OMOS modellers’ issues with automatic layout and semantic
information conveyed through the layout of diagrams: “Predefined layout schema
[as used by automatic layout algorithms] might destroy the consciously chosen rela-
tion of [diagram] elements to an extend that these relations are no longer visually
apparent. Therefore, a suitable approach should be defined as part of the disserta-
tion that eliminates these drawbacks. The approach has to preserve the character [or
nature] of the [manually laid out] diagrams.”1

3.1.1.1. Consequences of the domain experts’ rejection of automatic diagram
layout

With respect to the research presented here, the OMOS modellers’ rejection of auto-
matic diagram layout as an approach for enabling parallel work on OMOS models,
had two important consequences. Firstly, another review of the research literature
was conducted in order to identify previous research on conveying additional se-
mantic meaning through the layout of diagrams. As a second consequence, a pilot
study was conducted in order to analyse existing OMOS projects to test OMOS
diagrams against the layout phenomena conveying semantic meaning as pointed out
by Bosch engineers and as discussed by other research.

Existing research on conveying additional semantic information in diagrams of mod-
els through their layout is identified by the literature review provided in Section 3.2.
The pilot study is discussed in Section 3.3 and following sections.

1The original minutes of meeting by Uwe Maienberg read (in German): “Durch ein vorgegebenes
Layout-Schema kann die Relationen der Elemente, die der Entwickler bewusst gewählt hat, zer-
stört werden und damit nicht mehr visuell ersichtlich sein. Die Dissertation soll sich u.a. damit
beschäftigen, diese Nachteile durch einen geeigneten Ansatz zu beseitigen. Dieser Ansatz soll
den Charakter eines Diagramms erhalten.”

42

3.2 Literature review on conveying additional semantic information in diagrams of
models through their layout

3.2. Literature review on conveying additional semantic
information in diagrams of models through their layout

This section provides a review of the research literature on diagram layout and
expressing additional semantic information in diagrams of models through their
layout. As will be shown by the literature review, previous research identifies and
acknowledges that modellers use layout of diagrams (including diagrams of UML
models) to convey additional semantic information. The research presented in this
literature review serves as the basis for the pilot study on expressing additional
semantic information in diagrams of OMOS models presented in Section 3.3 and
following sections.

3.2.1. Semantic meaning conveyed through the layout of diagrams of
models

As argued by Hendrickson et al. [HJvdH06], creating diagrams and thereby building
the underlying software models can be regarded as a creative process. Sugiyama
describes the combination of individual elements of a diagram and rules for arranging
elements as a diagram language, i. e., the syntactic grammar [Sug02].

As stated by Koschke [Kos03], semantic layout, i. e., the meaning of diagram ele-
ments in the application domain, plays an important role for software engineers.
Batin et al. [BFN85] argue that users apply their implicit and intimate knowledge
about the semantics of the application domain when laying out diagrams. The
human perception of diagrams thus depends on a diagram’s application domain.
This findings is further supported by research on UML class diagrams conducted by
Tilley & Huang [TH03]. According to them, the modellers’ domain knowledge has
an important impact on a diagram’s spatial layout.

Eichelberger [Eic03] states that in UML, the size of a node, for instance, class or
packages symbol, does not say anything about the magnitude of this element. UML
introduces elements that can contain nested elements, e. g., packages can contain
other packages, and classes can contain so-called inner classes. According to Eichel-
berger [Eic05], this introduces semantics that can be dishevelling. Furthermore,
UML defines neither the meaning of proximity nor spatial ordering of model ele-
ments. Thus, depending on the user’s interpretation, both meanings can vary widely.

43

3.2 Literature review on conveying additional semantic information in diagrams of
models through their layout

3.2.2. The UML class diagram layout guidelines and diagramming as a
creative process

UML defines a set of layout guidelines for its diagrammatic notation [OMG03,
OMG10b]:

1. The layout should expose hierarchical structures if such structures exist;

2. Hierarchical structures should be drawn horizontally;

3. Inheritance relationships should be drawn in vertical direction with base classes
above sub-classes;

4. Symbols should appear close to connected symbols like association classes,
constraints, or comments;

5. Different edges belonging to the same relationship hierarchy should go into the
same direction; and

6. Symbols should not overlap.

However, the UML notation specification does not impose any rules on how to
structure a diagram, i. e., no rules exist on where diagram elements have to be
positioned. As long as the UML class model syntax rules are followed, elements can
be arranged in any way in a diagram. A diagram, as one of the structural elements
of the UML notation, can be seen as a canvas that holds the graphical elements used
to depict a certain aspect of a software system. For instance, when defining a class
inheritance hierarchy, a subclass can be placed at any position (above, below, on the
right, on the left etc.) in a class diagram, their is no rule to place it, for example,
below its base class. This kind of layout is suggested, but not enforced by UML’s
guidelines. Elements may even overlap.

It follows that a certain semantic fact can be expressed in a UML class diagram
in many different ways. Since there are no rules for a standardised layout, layouts
may vary significantly between different users [PCM+01]. There is no layout and
notation that can be seen as the standard one that should be favoured. As stated
by Eichelberger [Eic05], the concrete layout of a UML class diagram is one degree of
freedom when creating class diagrams. The UML Notation Guide [OMG03] confirms
that the freedom of layout that is inherent to the graphical notation of the UML
is intentional: “Dynamic tools need the freedom to present information in various
ways and we do not want to restrict this excessively. In some sense, we are defining

44

3.2 Literature review on conveying additional semantic information in diagrams of
models through their layout

the ‘canonical notation’ that printed documents show, rather than the ‘screen nota-
tion’. [...] We have not sought to eliminate all the ambiguity that some of these
presentation options may introduce, because the presence of the underlying model in
a dynamic tool serves to easily disambiguate things.”

Even when following the UML layout guidelines (defined in [OMG03] and [OMG10b]),
the diagram language (as defined by Moody [Moo10]) for UML class diagrams
provides a high degree of freedom when creating class diagrams. The graphical
notation of class diagrams allows to express the same semantic fact in different
ways. Results of diagram layouts evaluations from a comprehension point of view
show that layouts of class diagrams may differ depending on the task or problem that
is described by a certain diagram [PCM+01]. Thus, a certain element type could be
visualised in different ways to realise different tasks. Even though Moody [Moo10]
does discuss about how (UML) diagrams can be effectively visualised, he criticises
the UML layout guidelines because they do not provide any design rationale for any
of its graphical conventions, it simply defines symbols and provides examples on how
to lay them out. According to Moody, those guidelines are debatable: “Just putting
information in a graphical form does not guarantee that it will be worth a thousand
of any set of words.” In addition, he criticises that UML diagrams do not provide
any ways of dealing with the complexity of the models they depict. Moody argues
that UML does not define rationales for the chosen notation and states that espe-
cially the UML class diagram notation has flaws regarding the meaning of certain
layout constellation.

This finding is in line with earlier research conducted by Purchase et al. [PCM+01]
who argue that little research has been performed on the readability and under-
standability of diagram layout. Eichelberger [Eic02a] argues that the diagram layout
guidelines provided by the UML standard do not take diagram readability aspects
into account. As a result, there is no common agreement on the criteria of readable
and understandable layout of class diagrams.

3.2.3. Secondary notation

Secondary notation is defined as “layout or graphical cues which are not part of the
formal notation” [Pet95], for instance, adjacency, clustering, white space, position,
symmetry, or colour [PCA02]. In the context of this research the formal notation is
UML’s class diagram notation (see Section 3.2.2).

45

3.2 Literature review on conveying additional semantic information in diagrams of
models through their layout

Purchase et al. [PMCC01] discuss the results of experiments on UML class and
composition diagram comprehension. These results show that the understanding
of diagrams is not merely related to aesthetic diagram layouts but to the semantic
grouping of related objects. For example, it could be desirable to position semantic-
ally related subclasses in an inheritance hierarchy close together even if this means
to disregard some aesthetics criteria. The grouping of semantically related elements,
therefore, has to be recognised as an important layout aspect. The absolute posi-
tion of graphical elements is not as important as their adjacency to other, related
elements. Eichelberger [Eic02a] concludes that a lot of diagrams seem to follow
inherent rules when positioning classes and relations.

As stated by Tamassi et al., a diagram is readable if its meaning is easily captured
by the way it is drawn [TBB88] and supports the capability to clearly communic-
ate information about the conceptual structure [Tam85, Sug02]. Eiglsperger et al.
[EKS03] looked at another aspect of the layout aesthetics of class diagrams, the
user performance. User performance is the users’ ranking of aesthetic criteria of
class diagrams. It is only indirectly linked to the readability of a diagram, i. e., a
user may prefer a certain visualisation even though it decreases readability. Thus,
a diagram is more readable for a user when it matches with her or his preferences.

Larkin&Simon [LS87, pp. 2] state that the position, grouping, and proximity of
elements in node-link diagrams play an important role. These finding are backed by
the gestalt theory [MF93] that was one the first theories on the human perception
of visual representations. The law of proximity in gestalt theory says that regional
closeness of elements are grouped by our mind and seen as belonging together. The
law of similarity says that our mind groups similar elements to an entity. Form,
colour, size, and brightness of elements constitutes this similarity. On the other
hand, when examining the visual proximity of objects, Petre [Pet95] found that
placing unrelated elements close to each other leads to the misinterpretation that
they are semantically related.

Ware et al. [WHF93] consider the problem of semantic clustering as the most crucial
issue in graph layout, and the meaning of nodes and edges is regarded as the most
important criterion for laying out information by means of diagrams.

46

3.2 Literature review on conveying additional semantic information in diagrams of
models through their layout

3.2.4. The mental map of a diagram

When users create or read a diagram, they learn about its structure and understand
its meaning. The effort of becoming familiar with a diagram or drawing has been
termed “building a mental map” by Eades et al. [ELMS91]. They suggest that
the orthogonal ordering has an important influence on preserving the mental map
and should thus be kept stable. Misue et al. [MELS95] explain that the most
important concepts for the mental map are orthogonal ordering, proximity relations,
and topology. According to them, the mental map of a diagram refers to the model
of this diagrams that a modeller has in mind. They introduce three mathematical
models for what is important in order to preserve the mental map of a drawing when
it is modified. Theses models are used to evaluate to which extend automatic graph
layout algorithms preserve the mental map of a graph drawing.

The most basic classification of the mental map is the orthogonal ordering of diagram
elements, i. e., up, down, left and right of a diagram. Thus, orthogonal ordering refers
to the concept of positioning graphical elements on a diagram’s canvas. Preserving
the directional relations between model elements when a diagram is modified is
desirable because it preserves the user’s mental map of a diagram.

Another classification of the mental map is the topology of a drawing. The topolo-
gical structure of a drawing is represented by the dual graph that results from the
drawing’s curve set. This curve set is represented by the edges of a diagram. Curves
divide the plane into subregions, called faces. If the graph is connected, then subre-
gions do not contain vertices. If the graph drawing is not planar, i. e., if it contains
edge crossings, a planar graph drawing can by created by temporarily replacing edge
crossings with pseudo-vertices. A face is defined by the circular list of the edges and
vertices that results from the clockwise traversal of the boundary of the face. Then,
the dual graph of a graph drawing D is the graph that represents the faces of D
as its vertices where subregions that share a common border in D, i. e. adjacent
faces, result in an edge between the faces corresponding to these subregions. Two
visual representations have the same topology if they have the same dual graph.
Preserving its topological structure when changing a drawing helps to preserve the
mental map.

Bridegman&Tamassia [BT00] suggest to compare the angles between straight con-
nections between all pairs of elements on the old and new diagram layout since it
is a more gradual measure than just taking the ordering of elements into account.
Furthermore, it considers the intuition that elements that are further apart can be

47

3.3 Introduction to the pilot study

allowed larger absolute movements relative to each other but will still result in the
same angular move. The authors suggest that the change of angles between elements
is more significant for the user’s mental map if the positioning is diagonal rather
than if two elements are horizontally or vertically on the same level, i. e., side by side
or on top of each other. This suggestion contradicts with the orthogonal ordering
argument, because changes that influence the orthogonal ordering are considered
less significant for destroying the user’s mental map.

Mandelin et al. [MKY06] present an approach to detect similar elements in different,
unrelated diagrams. Beside using semi-semantic information, for example, vertex
and edge types and vertex names, they use visual information, for example, position,
shape, and colour of diagram elements, to reason about similar elements in different
diagrams. The decision to use visual information is based on the finding that similar
elements in different diagrams were placed at similar locations.

3.2.5. Summary

The findings from the research literature reviewed in this section confirm the im-
portance of diagram layout because modellers use diagrams to convey additional
semantic information through their layout and because the layout constitutes their
mental map of a diagram. Based on these research findings, the pilot study discussed
in this chapter sets out to determine whether for real-world OMOS diagrams convey
additional information through their layout.

3.3. Introduction to the pilot study

In this section, the foundations and prerequisites for and the approach to conducting
the pilot study (on additional semantic information conveyed through the layout of
diagrams of OMOS models) are discussed. First, an introduction to the scientific
method of pilot study research in general is provided. Then, the actual research plan
for the pilot study conducted as part of this research (i. e., the study’s “blueprint”)
is presented. This section will discuss the objectives of this pilot study, how the
analysed OMOS diagrams were chosen, and which diagrams were provided by Bosch.

48

3.3 Introduction to the pilot study

3.3.1. Pilot study research as a strategy of inquiry

The research technique chosen for conducting the research presented in this chapter
is a pilot study approach. Pilot (and case) study research is an accepted research
strategy in information systems [Cav96] for studying the use of information tech-
nology in organisational contexts [DSB98]. It is used to collect “data with which
to develop grounded theory” [Lub03] and to identify themes particular to the ana-
lysed case. “As a research strategy the case [and pilot] study research method is a
technique for answering who, why and how questions” [Lub03]. It is therefore par-
ticularly suited for the type of qualitative information empirically analysed by this
research. However, Yin argues that gathering multiple evidence does not necessar-
ily prove (or disprove) a theorem [Yin03]. This issue is discussed in more detail in
Section 3.3.3 on the study’s validity and threats to it.

In order to successfully conduct empirical research such as a pilot study, a research
design has to be defined. Yin describes it as “the logical sequence that connects
the empirical data to a study’s initial research questions and, ultimately, to its con-
clusions” [Yin03]. The components of research designs for pilot (and case) studies
are: the study’s questions and propositions (i. e., a definition of what questions to
study), its units of analysis (i. e., a definition of what data is relevant), the logic
linking the data to the propositions, and the criteria for interpreting the findings
(i. e., a definition of what data to collect and how to analyse the results) [Yin03].
According to Yin, the prior development of theoretical questions and propositions
helps to guide data collection and analysis. Each research question and proposition
therefore directs attention to something that should be examined within the scope
of the study.

The unit of analysis is related to the fundamental problem of defining what the pilot
study is actually going to analyse. It is therefore related to the research questions
and propositions, selection of the appropriate unit of analysis will occur when the
research questions and propositions are accurately defined [Yin03].

Yin argues that previous research described in the research literature needs to be
taken into account and compared when defining the study’s research questions and
propositions and its units of analysis [Yin03].

For the actual pilot study presented here, these components are discussed in Sec-
tion 3.3.2.

Another important component of pilot (or case) studies is validity. It is used to

49

3.3 Introduction to the pilot study

ensure that the interpretations of the data collected by the pilot study will be both
reliable and valid. In order to construct validity, it is important to use multiple
sources of evidence and create chains of evidence during a study’s data collection
phase. Furthermore, experts in the field should review the study’s outcome [Yin03].

There are mainly two types of validity: internal and external. Internal validity
“reflects the extent to which a causal conclusion based on a study is warranted. Such
warrant is constituted by the extent to which a study minimizes systematic error (or
‘bias’)” [Wikb]. According to Yin, internal validity is concerned with “whether there
is sufficient evidence to support the [study’s] claim” [Yin03]. External validity “is
the extent to which the results of a study can be generalized to other situations and
to other people” [Wika]. According to Yin, it “deals with the problem of knowing
whether a study’s findings are generalizable beyond the immediate study” ; theoretical
findings presented in the research literature should be used to prove external validity
[Yin03].

The validity of the pilot study conducted as part of the research presented here is
discussed in Section 3.3.3.

3.3.2. The pilot study’s research plan

After the theoretical foundations of pilot study research have been discussed in
Section 3.3.1, the components of the actual pilot study conducted as part of this
research are discussed in this section.

As discussed in Section 3.1, when automatic diagram layout was suggested as an
approach for enabling parallel work on OMOS models, the OMOS modellers ob-
jected to this suggestion. They argued that, in their experience, automatic layout
destroys their manually created diagrams. According to the modeller, the diagrams’
layout, however, conveys important semantic information, and, therefore, must not
be destroyed.

Using a OMOS diagram (discussed in Section 3.1 and shown in Fig. 3.1) to illustrate
their issues with automatic layout, modellers explained to the author examples of
what they considered important inherent information conveyed through the layout
of diagrams. In the example diagram, modellers visually grouped class symbols
whose classes are semantically related in close visual proximity.

As reported in this chapter, a study was conducted to analyse OMOS models to
determine whether and, if so, to which extend OMOS diagrams convey additional

50

3.3 Introduction to the pilot study

meaning through their layout. The overall goal of the study was to determine
whether OMOS diagrams do convey inherent domain-specific information through
their layout. Therefore, rather than developing a new theory on meaning conveyed
through diagram layout, the study tests the theory that OMOS models convey
additional semantic information through the layout of diagrams.

In contrast to an explanatory approach, an exploratory approach is used to answer
who, where, and when questions, an explanatory approach is taken by this study,
i. e., what and why questions are answered. The exploratory approach would not
help to answer this study’s questions (defined in the next section).

3.3.2.1. The study’s questions and propositions

To conduct the study, the research literature was consulted in a first step to re-
view previous research on semantic meaning only expressed through the layout of
diagrams. The findings of this literature review are presented in Section 3.2. They
confirm that additional semantic information is conveyed through the layout of dia-
grams. Then, real-world OMOS models and their diagrams were analysed in order
to learn how OMOS models are build by means of diagrams and to learn about the
diagrams’ content and layout. (Details about the analysed models and diagrams
will be discussed in the following sections.)

In order to direct attention to the nature of the analysed diagrams’ layouts which
should be examined within the scope of the study, propositions and questions are
defined. The study answers those questions and prove (or disprove) the propositions.

Based on the information provided by OMOSmodellers regarding the need for group-
ing symbols of semantically related classes (discussed in Section 3.1) and based on
the findings from the research literature, detailed study questions and propositions
are defined (see below).

The study’s propositions and questions are answered based on the findings of the dia-
gram analysis. The findings and conclusions are provided in Section 3.4, Section 3.5
and Section 3.6.

3.3.2.1.1. Propositions This study considers the following propositions:

• Proposition 1: Modellers convey semantic information through the layout of
diagrams of OMOS models.

51

3.3 Introduction to the pilot study

• Proposition 2: The importance of layout can be observed by the fact that
layout structures will be preserved in consecutive diagram versions.

These propositions will be investigated in the following sections.

3.3.2.1.2. Questions The study is going to investigate the following questions:

• Question 1: How are diagrams used to visually construct OMOS models?

• Question 2: Which, if any, particular semantic information (specific to the
model’s domain) are implicitly conveyed by means of diagram layout?

• Question 3: Which kinds of diagram symbols convey additional domain-specific
knowledge through their of layout?

• Question 4: Which layout features are considered important by OMOS model-
lers in order to express implicit domain-specific knowledge through the layout
of diagrams?

• Question 5: To what extent do diagrams convey domain-specific knowledge
through their layout?

• Question 6: Is the mental map of diagrams important? What drives diagram
layouts changes in consecutive diagram versions?

Questions 1 to 5 focus on proposition 1, and question 6 focuses on proposition 2. A
summary of the answers to theses questions and the evidence gathered by the study
in order to answer them is provided in Section 3.6. Details of the evidence gathered
as part of this study to investigate the above questions is provided in Section 3.4
and 3.5. The evidence to answer question 1 is provided in Section 3.4. The evidence
for answering the other questions (2 to 6) is covered in 3.5.

3.3.2.2. The study’s units of analysis

In this section, the elements on which the study focuses are defined based on the
study’s questions and propositions (see Section 3.3.2.1). As will be explained in
detail below, OMOS is a visual modelling approach. Therefore, the main elements
the study focuses on are OMOS models and especially their diagrams, namely UML
class diagrams. The remainder of this section explains how evidence was gathered
for this pilot study.

52

3.3 Introduction to the pilot study

3.3.2.2.1. The analysed models: Bosch provided two OMOS models used to build
automatic gearbox controller software2. These models represent the study’s units
of analysis. The OMOS models are part of model-driven software development
projects dealing with software for automatic gearbox controllers (see Section 2.1.3).
As explained in Section 2.1, OMOS models are visual UML class models, UML class
diagrams are used to define the static parts of the modelled software systems. The
models are part of the solution space (rather than problem-space models like, for
instance, requirement models). With respect to the software development cycle,
they are of course created before the implementation (i. e., source code). Large parts
of the implementation are then automatically derived from the OMOS models which
are turned into source code by means of automatic source code generation.3

Bosch provided the author of this research with a licence for the Ameos modelling
tool used to create to models. It was, therefore, possible to access the models in the
same way the OMOS engineers did and without any limitations.

The first OMOS model provided by Bosch is called “Power Supply Input/Output
and Gearbox Operation Modes.” It deals with managing the gearbox’s mode of oper-
ation (for example, standby, cruise, or manual) and mode switching. Furthermore,
this model deals with accessing various information of a car, for instance, trans-
mission input speed recognition, the transmission input speed signal and gradient,
automatic transmission fluid temperature, transmission output speed signal and
gradient, (de)activating the power supply output, and monitoring of selected power
supply output.

The second OMOS model provided by Bosch is called “Adaptive Shifting Strategy
System” (ASIS). It deals with adapting the automatic gearbox’s shifting schema
(i. e., calculations determining when and how to shift gears) to the driving habits
of the driver, i. e., to adapt shift points and so on according to the selected driving
style (for example, economic or sportive).

2From the minutes of the March 2006 meeting with Bosch engineers at Schwieberdingen: “To
analyse the OMOS development process (models and diagrams), it is required to analyse dif-
ferent version of a model. RB [Robert Bosch GmbH] will send those versions to FH Zwickau
[University of Applied Sciences Zwickau, the author’s employer at that time].”
Original note (in German): “Zur Analyse des OMOS-Entwicklungsprozesses (Modelle und Dia-
gramme) ist es notwendig, Modellversionen in größeren Zeitabständen zu haben. RB sendet
entsprechende Versionen an die FH Zwickau.”

3The systems are implemented in C and use a framework which allows to realise object-oriented
concepts (e. g., polymorphism) in native C. In order to automatically generate syntactically
correct source code, the OMOS models have to be complete with respect to class definitions
including operations, attributes, and (inheritance, composition, and association) relationships
between classes.

53

3.3 Introduction to the pilot study

The two models are independent from each other, i. e., they are not connected.
However, on source code level, the ASIS part of the software uses functionality
provided by the “Power Supply Input/Output and Gearbox Operation Modes” to
get access to various information about a car’s state.

Both OMOS models are created and consumed by software engineers who are ex-
perts in the domain of automotive controller software with a strong background in
embedded software development for automatic gearbox controllers. Regarding the
creation of OMOS diagrams, their layout and secondary notation (discussed in Sec-
tion 3.2.3), the modellers share the “same perceptual and cognitive hardware and
software” [Moo10]. Following practices from the extreme programming and agile
software development community [BA04], all developers “own” all the source code
[Gre02][SG09, pp. 183] and all parts of the models they work with. In order to
increase the awareness of the team with respect to models and source code, an effort
is made to make all the team’s members familiar with and responsible for all parts
of the software on both model- and implementation-level.

While source code could potentially be modified in parallel, the analysed models
were not worked on in parallel — enabling parallel modification (i. e., collaboration)
on the model level is one of the main objectives of the research this thesis reports
about.

3.3.2.2.2. Modelling by means of diagrams: The analysed OMOS models rep-
resent the static structure of the automatic gearbox controller software. OMOS is
based solely on UML. The analysed OMOS models were entirely created by means
of UML class diagrams. This UML diagram type defines UML’s visual notation
for modelling the static structure of software systems [OMG10b, p. 23]. The UML
modelling tool (CASE tool) used to create the models, called Ameos, provides only
tooling for creating UML models by means of diagrams4. This feature is emphasised
by the fact that Ameos was formerly called Software through Pictures.

Since the study is mainly dealing with diagram layout, it is important to note that
the analysed OMOS diagrams were manually created by modellers who were also
involved with the validation of the study’s findings (as will be explained later).

4A free and open-source version of Ameos, called OpenAmeos, is available at
http://www.openameos.org (access date: 4/12/2012). It is similar, but not identical to
the Ameos modeller which Bosch uses; for instance, the OMOS extension (UML profile,
see Section 2.1.2.2) and the OMOS source code generation templates are not part of the
OpenAmeos distribution.

54

3.3 Introduction to the pilot study

Diagrams can be freely laid out with respect to positioning class nodes and routing
edges. The Ameos modelling tool used to create the OMOS models and diagrams
does not impose any layout constraints on users. Class diagram symbols can be freely
positioned on an (with respect to its width and height) unlimited 2-dimentional
canvas. A class diagram’s canvas hence provides a free-form layout. For instance,
the rectangle representing a UML class could be placed anywhere in a diagram and
it could be of any size — of course, it would be at least large enough to show all
its contained information like the class’s attributes and operations —, or a poly-line
depicting an association could form any sort of path — it can even cross or overlap
with other symbols.

3.3.2.2.3. The analysed model versions: In order to be able to analyse how mod-
els and diagrams evolve over time, Bosch provided three consecutive versions of each
model. The first model, “Adaptive Shifting Strategy System”, had been in develop-
ment for about one and a half year until the first analysed version was created. The
second model, “Power Supply Input/Output and Gearbox Operation Modes”, had
been developed for about a year until the first analysed version was created.

The following versions of the ASIS model were analysed:

Analysed model version Date
1 End of December 2005
2 Beginning of February 2006
3 End of March 2006

Table 3.1.: Overview of the analysed versions of the “Adaptive Shifting Strategy
System” model.

Analysed model version Date
1 End of February 2006
2 End of March 2006
3 End of April 2006

Table 3.2.: Overview of the analysed versions of the “Power Supply Input/Output
and Gearbox Operation Modes” model.

As explained above, the models were developed for some time before the versions of
the models analysed here were created. It follows that “analysed version 1” does not
refer to the very first version of the model, but to the first model version actually
analysed as part of this research.

55

3.3 Introduction to the pilot study

As will be explained in Section 3.3.2.3.1, the possibility to analyse several evolutions
of the same models and diagrams allows to better understand how modellers use
diagram layouts.

3.3.2.2.4. Summary: In this section, the elements on which the study focuses are
defined. Based on the study’s questions and propositions (see Section 3.3.2.1), the
main elements the study focuses on are OMOS models and their diagrams. All
diagrams constituting each of the three versions of both OMOS models were analysed
as part of this research to answer the study’s questions and prove (or disprove) its
propositions. The modellers who created them were available for answering questions
about the diagrams and were involved in the evaluation of the findings of the diagram
analysis.

Regarding the extent of control over the study’s environment, the author of this
research had none at all since the OMOS models were created before they were
analysed as part of this research, they were created before it was even known to the
modellers that there will be a diagram analysis.

3.3.2.3. Map of evidence: the process of and the criteria for interpreting the
findings and the logic for linking them to the propositions

The examples on semantic information conveyed by the layout of diagrams provided
by the OMOS modellers (see Section 3.1), the definition of secondary notation phe-
nomena, and the findings on the mental map taken from research literature (see
Section 3.2) served as a starting point for defining criteria for conducting the study’s
model and diagram analysis and interpreting its findings.

Besides grouping symbols of semantically related classes in a diagram as pointed
out by the OMOS modellers, the following diagram layout features were identified
in the research literature domain-specific diagramming (see Section 3.2.2) and on
secondary notation (see Section 3.2.3) as playing an important role when modellers
apply their implicit and intimate knowledge about the semantics of the application
domain when laying out diagrams (Batin et al. [BFN85]):

• Semantic clustering and ordering (as identified by Ware et al. [WHF93], Pur-
chase et al. [PMCC01] and Eichelberger [Eic02a])

• Position, grouping, and proximity (as stated by Larkin&Simon [LS87])

56

3.3 Introduction to the pilot study

In order the answer the study’s questions and prove (or disprove) its propositions,
an important part of the diagram analysis conducted as part of the study is to de-
tect diagram layout phenomena described as secondary notation, especially semantic
grouping, clustering and ordering as described in the research literature and by the
OMOS modellers. In order to be able to determine whether a collection of dia-
gram symbols actually represents a semantic group and/or is semantically ordered,
all available textual documentation of the model elements (packages, classes and,
where available, associations) depicted in diagrams was analysed. The meaning of
model elements was understandable for the author because model elements were
documented directly in the respective model by means of free-form text. Based on
the documentation, a list of (according to the documentation) semantically related
elements was compiled.

In addition to detecting semantic grouping and ordering in diagrams, deviations from
the standard UML layout guidelines (as discussed in Section 3.2.2) were identified
in the analysed OMOS diagrams, i. e., layout constellations which differ from the
layout suggested by UML. Such deviations could be an indicator for the application
of secondary notation because the modellers might have consciously chosen not to
use UML’s suggested layout in order to convey domain-specific meaning through
the domain-specific layout. UML class diagrams can be regarded as a free-form
“canvases” on which diagram symbols (for instance, rectangles representing classes
and lines depicting associations and generalisations) can be laid out freely [OMG10a].
Modellers can therefore use this freedom to create layouts which do not always
follow the layout style proposed by the UML standard, but which better depict
their understanding of certain model elements depicted in a diagram. This finding
is further supported by research on secondary notation phenomena discussed in
Section 3.2.3.

As explained in Section 3.3.2.2, Bosch provided three consecutive versions of two
real-world OMOS models (and all their diagrams). All diagrams of the three versions
of both OMOS models were manually analysed as part of the pilot study. The
diagram analysis was done as follows: First, (using the same OMOS modelling tool
as used by Bosch to create the models in the first place) all diagrams of all three
versions of both analysed OMOS models were printed on paper (this allowed for a
more convenient visual comparison of different versions of a diagram than comparing
them on-screen). Each diagram was then manually analysed in a visual way, i. e., by
“looking at it”, to identify diagram symbols in close proximity as well as deviations

57

3.3 Introduction to the pilot study

from the suggested UML layout guidelines.

Diagram symbols in close proximity were compared with the semantically related
elements identified from the documentation. If the model elements depicted by the
closely positioned diagram symbols were indeed semantically related, the diagram
symbols then became a candidate for a semantic group. Also, the OMOS diagrams
were manually searched for layout constellations that were uncommon in the sense
that following UML’s notation guide would lead to layouts that differ from the actual
diagrams’ layouts. These uncommon diagram symbol constellations then became
secondary notation candidates.

3.3.2.3.1. Evolving diagrams help to identify secondary notation phenomena and
to reason about the mental map: Since Bosch provided three consecutive versions
of each model, three different versions of each diagram were available for the diagram
analysis conducted as part of the pilot study.

The possibility to analyse different versions of the same diagrams allows gaining
insights into the evolution of diagrams. For instance, by analysing three consecutive
versions of a diagram, it becomes possible to see how the diagram evolved over the
period of several weeks or months. The evolution of diagrams provides valuable
information about where, in a diagram, symbols are added, deleted, or modified.
Insights drawn from evolving diagrams are thus especially valuable for learning about
how OMOS modellers create and modify diagrams. These insights can thus provide
strong and compelling indications regarding secondary notation phenomena which
become more apparent due to being able to see how a diagram evolves over time.
For instance, as will be shown in Section 3.5, for symbols added or relocated in
later versions of a diagram it can be determined in which visual context they are
positioned, for instance, whether they are positioned in close visual proximity to
symbols depicting semantically related model elements, i. e., it could be determined
whether the added symbol’s position (visually) conveys semantic meaning. The
comparison of different versions of a diagram also helps with respect to identifying
deviations from the standard UML layout guidelines: Symbols added or relocated
in later versions of a diagram can be compared with (in terms the UML model
element type) similar symbols already belonging to a diagram. If added or relocated
symbols are positioned in different ways than the existing ones (even if the done in
accordance with UML’s layout guidelines) or than advertised by the UML layout
guidelines, there is a possibility that the modellers do so in order to consciously

58

3.3 Introduction to the pilot study

convey additional semantic meaning through a diagram’s layout.

3.3.2.3.2. Summary: As will be explained in the next section, all identified can-
didate semantic groups (which were identified during the diagram analysis) were
discussed with OMOS modellers to verify whether the grouped diagram symbols do
indeed depict groups of semantically related model elements. Furthermore, second-
ary notation candidates resulting from diagram symbol constellations which did not
follow UML’s diagram layout guidelines were discussed with the OMOS modellers.

With respect to pilot study research (see Section 3.3.1), the study presented here
is a contemporary one — as opposed to a historic study which deals with events
from the “dead past.” It is a contemporary study because the OMOS modellers who
created the analysed diagrams were still available and took part in the investigation
by reviewing and providing feedback on the study’s findings.

3.3.3. Validity and threats to validity

As discussed in Section 3.3.1, the validity of a pilot study has to be taken into
account. In order to ensure its internal validity, which refers “specifically to whether
there is sufficient evidence to support [a] claim [i. e., proposition]” [Yin03], multiple
sources of evidence should be used and a chain of evidence should be established
during the study’s data collection phase. In addition, experts in the field should
review the study’s findings. In order to ensure external validity — which deals
with “knowing whether a study’s findings are generalizable beyond the immediate
study” [Yin03] —, it should be tried to generalize the study’s findings to the theory
described by the respective research literature.

3.3.3.1. Ensuring the study’s internal and external validity

The following approach is taken to ensure the study’s internal validity with respect
to collecting sufficient evidence to support the study’s findings: In order to validate
the findings of the pilot study, noticeable diagrams identified (by the author of this
research) during the diagram analysis were discussed with the Bosch engineers who
actually created them. This discussion took place in a two-day meeting in September
2006 and via phone.

The following findings help to ensure the study’s internal validity with respect to
using multiple sources of evidence and establishing a chain of evidence during the

59

3.3 Introduction to the pilot study

study’s data collection phase: All the semantic grouping and secondary notation can-
didates identified during the OMOS diagram analysis (as defined in Section 3.3.2.3)
were discussed with the Bosch engineers who created the analysed OMOS models
and diagrams. The respective diagrams (whose symbols were believed to express
semantic grouping or other secondary notation phenomena) were presented to the
modellers (in the meeting) and it was discussed whether the layout constellations
were important for the modellers and if they did actually convey semantic meaning.
The engineers then verified whether a diagram’s layout indeed conveyed additional
semantic meaning and, if so, explained what kind of meaning is intended to be
conveyed.

A selection of the slides used to discuss diagram layouts with the OMOS modellers
during the meeting is provided in Appendix B. The slides were used to present
the findings of this pilot study to the modellers and to validate these findings by
discussing them with the modellers who created the analysed diagrams.

To summarize, the following measures were taken to ensure the study’s internal
validity:

• Two different OMOS models were analysed. All (100 per cent of the) diagrams
of all three versions of both OMOS models were analysed as part of the pilot
study. Hence, all available data (as provided by Bosch) was taken into account.

• Experts in the field (i. e., the OMOS modellers) were involved when the study’s
findings were analysed.

• As will be explained in more detail when the findings of the case are discussed
in Section 3.5, diagrams dealing with similar domain concepts had similar
layouts. These diagrams contained also similar secondary notation phenomena.
Hence, a chain of evidence can be established because if only a few diagrams
contained secondary notation phenomena, these phenomena could be visual
noise rather than semantic information conveyed through the layout of the
diagrams or these phenomena might not be representative for the analysed
models. However, when diagrams representing different, but related concepts
expose similar layouts, this is a strong indicator that the diagrams do indeed
convey semantic information through the layout modellers had deliberately
chosen for several diagrams. This finding is further supported by the fact
that new diagrams could not simply be copies of existing diagrams since the
diagrams depicted different (but related) classes. Hence, a chain of validity
can be established based on the layout similarity between several diagrams.

60

3.3 Introduction to the pilot study

• The analysed OMOS models and diagrams were created before the decision to
conduct this study was taken. At the time the modellers created the diagrams
they were unaware that their diagrams might become subject of an analysis
on meaning-conveying layouts.

The following findings help to ensure the study’s external validity by generalising
the study’s findings:

• Another software development group at Bosch — which used the OMOS ap-
proach to develop embedded software for car air bag controllers — used similar
secondary notation phenomena (i. e., similar diagram layout patterns) in the
layouts of their diagrams to express domain-specific meaning. The author of
this research got to know about this group’s diagram layouts when he discussed
the topic of OMOS models and meaning-conveying diagram layout with one
of the group’s engineers (during a coffee break — the air bag controller soft-
ware group’s offices were next to the automated gearbox controller software
team’s). The author had access to some of the OMOS diagrams. The diagram
layout patterns identified (by this research) for the “Adaptive Shifting Strategy
System” and “Power Supply Input/Output and Gearbox Operation Modes”
models are, therefore, not unique. The analysed project is hence a typical
representative regarding visual modelling based on the OMOS approach.

• The author worked on a space systems engineering project for EADS/Astrium
and the European Space Agency. In this project [EMdK09], UML class dia-
grams were used to define meta-models for model-based space systems engin-
eering. These diagrams shows similar layout pattern as identified in OMOS
diagrams by this pilot study, additional semantic meaning is expressed through
the layout of diagrams.

• The research literature confirms that layouts of diagrams are used to convey
inherent semantic information. The research literature on secondary notation
phenomena in diagram layouts and on the mental map of diagrams discussed
in Section 3.2 acknowledges that grouping, ordering and, proximity of diagram
symbols is important when users apply their implicit and intimate knowledge
about the semantics of the application domain when laying out diagrams (see,
Larkin&Simon [LS87], Batin et al. [BFN85], Ware et al. [WHF93] and Eichel-
berger [Eic03]).

• It is argued that the findings of the pilot study are generalisable to modelling
contexts...

61

3.3 Introduction to the pilot study

– in which models are created by means of diagrams which are created
manually, and

– in which models are constituted from of a large number of diagrams, and

– which, instead of applying domain-specific visual languages, use general
purpose diagram notations like UML which do not allow formally defining
domain-specific meaning in diagrams.

While acknowledging the limitations of pilot studies, the above findings are con-
sidered to ensure the study’s internal and external validity.

3.3.3.2. Threats to validity

Care has to be taken in order to not mistake diagrammatic noise for layout constel-
lations conveying semantic meaning through layout of diagrams. A possible threat
to the study’s validity thus is that, during the diagram analysis, secondary notation
phenomena are wrongly identified to convey meaning, which, however, are rather dia-
grammatic noise not actually conveying any additional semantic meaning. In order
to avoid such false positives, i. e., to decide whether the layout is consciously chosen
and indeed conveys meaning, OMOS modellers involved with creating or modifying
the respective diagrams reviewed the findings (as explained in Section 3.3.3.1).

In addition, the respective research literature on secondary notation phenomena in
diagram layouts and the mental map of diagrams was reviewed (see Section 3.2)
before the study was conducted in order to ensure that the diagram analysis took
into account the findings on additional meaning conveyed through the layout of
diagrams identified by other research.

As discussed in Section 3.1, OMOS modellers had also explained some of the sec-
ondary notation phenomena they applied in their diagrams to convey additional
semantic meaning before the study was conducted. The phenomena described by
the OMOS modellers were, therefore, taken into account during the diagram ana-
lysis.

However, when asked about the candidates of secondary notation phenomena (as
identified during the diagram analysis, see Section 3.3.2.3), OMOS modellers might
falsely state that they do indeed convey semantic information while in reality they
do not. Since the findings of the diagram analysis were discussed in a meeting with
several modellers, the threat that modellers accept the author’s false findings can

62

3.4 Findings regarding modelling by means of diagrams

be considered a minor threat since more than one modeller is usually familiar with
a certain diagram.

3.4. Findings regarding modelling by means of diagrams

Before the pilot study’s findings regarding meaning-conveying diagram layout are
discussed in detail in Section 3.5, the findings regarding the analysed OMOS models
in general are discussed in this section. This section, therefore, focuses on the pilot
study’s first research question defined in Section 3.3.2.1: How are diagrams used to
visually construct OMOS models?

The two analysed models, “Adaptive Shifting Strategy System” and “Power Supply
Input/Output and Gearbox Operation Modes”, consists of several dozens to more
than 130 class diagrams. Table 3.3 and Table 3.4 show the number of classes and
diagrams for each version of both analysed models.

Analysed model version № classes № class diagrams
1 272 138
2 272 137
3 272 137

Table 3.3.: Overview of the numbers of classes and class diagrams of the analysed
“Adaptive Shifting Strategy System” model versions.

Analysed model version № classes № class diagrams
1 186 43
2 223 47
3 231 49

Table 3.4.: Overview of the numbers of classes and class diagrams of the analysed
“Power Supply Input/Output and Gearbox Operation Modes” model versions.

Each diagram represents a different part or aspect of the underlying OMOS model.
On the structural level, the classes comprising a OMOS model (and which represent
the concepts realised by the software system defined by the model) are organised
in a hierarchical manner. In order to access the diagrams, the UML modelling tool
presents the user with a list of the names of all class diagrams (see Fig. 3.2). This
list provides the entry point into a model. A model’s class diagram listing, shown
in Fig. 3.2, reflects this hierarchical organisation of the model.

63

3.4 Findings regarding modelling by means of diagrams

Figure 3.2.: List of UML class diagrams from the Ameos modelling tool.

The name of each diagram reflects its purpose. It reflects the part of the software
system’s domain which is represented by the symbols in the respective diagram. The
names of the diagrams show that the model is decomposed into smaller components.
For each component in the system there is a diagram named like the component. For
instance, a diagram called “ESP” (short for Electronic Stability Program) contains
classes dealing with the car’s electronic stability control. OMOS diagrams contain
classes from different packages. In the following, the features of the model and its
constituting diagrams are explained in detail.

Both models also have a OMOS diagram called “Object model” which repres-
ents the system’s top-most classes. For the “Adaptive Shifting Strategy System”
model, the “Object model” root diagram contains the root class of the model, called
“CL_FAPR” (which stands for “Fahrprogramm”, which is German for “driving pro-
gram”). This class defines composition associations to the top-level domain classes
contained in the model, i. e., those classes are defined in this diagram as part classes
of the root class. For instance, some of the top-level concepts define driver type
detection, power train, vehicle status, electronic stability program (ESP), and drive
situation detection. These classes are top-level classes, i. e., they do not have super
classes. The root diagram does not contain any other classes than the root class

64

3.4 Findings regarding modelling by means of diagrams

and the top-level classes. For these classes, no details like attributes, operations,
or associations are shown in this diagram. These details are defined in other dia-
grams. For each of these top-level classes, a diagram with the same name exists.
Such diagrams contain the respective top-level class again, but this time attributes,
operations, sub- and part classes, and associations to other classes are defined.

For instance, the “FZGG” diagram (which stands for “Fahrzeuggrößen” or “vehicle
status values” in English) defines these details for two classes (see Fig. 3.3), “CL_-
FZGG” and “CL_FZGG_KOMP.” Class “CL_FZGG_KOMP” is a sub-class or
variant of class “CL_FZGG.” In the diagram, one attribute is defined for class
“CL_FZGG” and 13 attributes are defined for class “CL_FZGG_KOMP”, for in-
stace, “slope”, plus 18 operations, for instance, “getSlope” and “getState.” For class
“CL_FZGG”, four associations to associated classes are defined. For instance, class
“CL_FZGG” associates class “CL_GETR” (“Getriebe”, which is German for gear-
box) and “CL_MOT” (for “Motor”, or engine in English). Class “CL_FZGG_-
KOMP” associates two other classes, for instance, “CL_FZFWB” (“Fahrtwider-
standsberechnung”, German for tractive resistance calculation). All associations are
directed, i. e., they point from class “CL_FZGG” and “CL_FZGG_KOMP” to the
associated classes. No details (such as attributes, operations, or associations) of the
associated classes are shown in this diagram.

The diagrams discussed so far serve two purposes: (1) define classes and their de-
tails and (2) define the inheritance hierarchy, i. e., define OMOS variants (see Sec-
tion 2.1.3). This approach is applied for a number of main classes in a certain dia-
gram. In case main classes associate classes other than the diagram’s main classes,
the associated classes are also part of this diagram together with associations point-
ing from the main classes to these associated classes. Except for public operations,
which are sometimes displayed, no further details are shown for associated classes —
those details are defined in other diagrams. A certain main class is always defined
in one particular diagram, but there can be several diagrams in which this class is
displayed as an associated class.

If a main class has further part-classes, i. e., if the domain concept represented by
the class is further divided into sub-concepts, the diagram that shows the class as
a main class also contains its part-classes. Depending on the complexity of the
sub-classes and part-classes their details — attributes, operations, sub-classes, part-
classes, and associated classes — are either defined in the same diagram or in new
diagrams dedicated in particular to the details of the part-classes. If the part-classes

65

3.4 Findings regarding modelling by means of diagrams

Figure 3.3.: OMOS diagram “FZGG” shown in the Ameos class diagram editor.

have themselves sub-classes and/or part-classes or relationships to many associated
classes, new diagrams are created for the part-classes. Then, the details of the part-
classes are not defined in the same diagram; they are defined in other diagrams
which are named like the part-classes.

For example, class “CL_FAPR” (which means “Fahrprogramm” and is German for
driving program) defined in diagram “Fahrprogramm” (driving program) has a part-
class called “CL_KRITV” (which means “Kriterienverwalter”, [gear change] criteria
manager in English). Diagram “Fahrprogramm” does not define any details of this
class. This is done in another diagram called “Kriterienverwaltung” (German for
[gear change] criteria management) where attributes, operations, sub-classes, and
associated classes of class “CL_KRITV” are defined.

Another example for the creation of new diagrams is class “CL_FZGG_KOMP.” As
explained above, this class is defined in diagram “FZGG.” However, another diagram,
called “Fahrzeuggroessen” (meaning “vehicle status values” in English), exists which

66

3.4 Findings regarding modelling by means of diagrams

defines the seven part-classes of class “CL_FZGG_KOMP.” Three of those part-
classes are “CL_FZRAD”, “CL_FZAQ”, and “CL_FZSLP” which represent classes
for accessing a vehicle’s wheel, lateral acceleration, and slip state respectively. The
details of these classes are not defined in diagram “Fahrzeuggroessen.” For each
of the seven part-classes another diagram exists in which the details of each class
are defined. Even though the seven part-classes have no part-classes themselves —
because they represented the states of vehicle components which were not further
dividable — each part-class has one to three sub-classes (i. e., variants) which in
turn have one or two sub-classes.

3.4.1. OMOS diagram Tiptronic

An example demonstrating the OMOS modellers’ approach to partition models by
means of diagrams is shown in Fig. 3.4. This figure shows the “Tiptronic” diagram
from the “Adaptive Shifting Strategy System” model. This diagram defines classes
which deal with information from the car’s tiptronic5 for deciding and calculating
when and how to shift gears. Tiptronic allows the driver (of a car with automatic
transmission) to manually control the gear selection. The main classes defined in
this diagram are

• Class “CL_UKTIP”, which represents a whole-class; and

• Classes “CL_TIPIM”, “CL_TIPZA”, and “CL_TIPAN”, which represent part-
classes of class “CL_UKTIP”; and

• Classes “CL_UKTIP_ASIS”, “CL_UKTIP_ADVW”, “CL_UKTIP_PORS”,
and “CL_UKTIP_PAG”, which represent sub-classes of class “CL_UKTIP.”

The other three classes, “CL_GETR”, “CL_GBF”, and “CL_STAT”, in diagram
“Tiptronic” are associated classes.

3.4.2. Adding new diagrams to a OMOS model

New diagrams are created when new functionality, represented by one or more new
classes, is added to a model. Then, part-classes belonging to different classes that
are defined in different diagrams are grouped into a single new diagram to again
define parts-classes of these part-classes. The classes are grouped together into this

5See http://en.wikipedia.org/wiki/Manumatic for an explanation of tiptronic (access date:
4/12/2012).

67

3.4 Findings regarding modelling by means of diagrams

Figure 3.4.: OMOS diagram “Tiptronic”.

diagram to realise a certain problem in terms of the functionality that a model is
expected to provide. Part-classes of each of these (in terms of the diagram) top-
level classes of the whole-part hierarchy represent further sub-components of the
functionality.

Even if the functionality realised by a new class conceptually belonged to an existing
diagrams, adding new classes will result in new diagrams if an existing diagram
becomes too complex in terms of the layout of its whole-part and/or inheritance
hierarchies. Usually the elements of a diagrams fit on a single screen. If they do not
fit on a screen, they are, if possible, arranged in a way which requires scrolling in
only one direction (usually this is the vertical axis).

3.4.3. Summary

This section’s findings can be summarised as follows: Given a OMOS diagram D,
the classes presented in this diagram play different roles. The classes can act as
whole- or part-classes and/or super/sub-classes or associated classes.

1. Whole- and super classes are those classes for which no super or whole-class
is depicted in diagram D.

2. Sub- or part-classes are those classes which are sub- or part-classes of a super-
or whole-class or another sub- or part-class in diagram D.

As the names of these class types suggest, the class symbols in diagram D are connec-
ted by inheritance or composition relationship symbols. Like the classes themselves,
their relationships are defined in diagram D.

68

3.4 Findings regarding modelling by means of diagrams

For the purpose of the pilot study discussed here, these two types of classes are
called a diagram’s main classes. Then, associated classes are those classes which
main classes connect to only by means of associations. Associations are usually, but
not always, directed from the main to the associated class.

For associated classes, none of their attributes or associations, inheritance, and
whole-part relationships are displayed in diagram D. This is different for an associ-
ated class’s operations: the modelling tool allows the user to select the attributes
and operations that are shown for a class. Hence, the user can show or hide some
or all of a class’s attributes and operations. Sometimes some or all of an associated
class’s public operations are shown (because the object-oriented approach followed
by OMOS allows only publicly visible operations to be called by (instances of) classes
associating (instances of) other classes). Visualising the public operations makes the
behaviour/functionality provided by the associated class and used by the associating
main class explicitly visible in the diagram. If only some of the public operations are
shown, it is indicated that the associating main class does only use these particular
operations.

The details of classes acting as associated classes in one digram are of course defined
in other diagrams for which these associated classes act as main classes.

There is exactly one diagram for which a certain class acts as a main class. However,
there can be many diagrams for which this class acts as an associated class. To
support navigation between diagrams, the modelling tool provides a list of diagrams
in which a certain model element (for instance, a class represented in a displayed
diagram) is shown as well. The user can then open these diagrams too, and the
diagram’s representation of the model element from which the selection started gets
selected in these diagrams.

A OMOS diagram displays a section of the whole-part (i. e., containment) class
hierarchy. Classes of two or three consecutive levels of the whole-part hierarchy are
shown in a single diagram. If part-classes belonging to the lowest class containment
level shown in this diagram have again part-classes, they are defined in another
diagram. Then, the whole-class whose parts are defined is also shown in this new
diagram. Thus, a part-class shown on the lowest level of a diagram is included in
another diagram used to define its part-classes. So, a part-class on the lowest level
of the section of the whole-part hierarchy defined in a diagram can result in a (in
terms of class containment) next-lower-level diagram on the next lower level in the
diagram hierarchy. Since there can be more than one part-class on this lowest level,

69

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

several other diagrams may be use to define the details of these classes depending
on the complexity of these part-classes.

However, not every part-class will result in a sub-diagram defining this class’s details
(i. e., part-classes, sub-classes, and associated classes). Diagrams include more than
one class representing a whole-class on the topmost level of the whole-part hierarchy
shown in this diagram. The documentation of these classes (shown at the topmost
level in the same diagram) indicates that they are related in terms of the function-
ality they represent. Furthermore, the name of a diagram is related to a certain
part/functionality of the domain defined in the respective model.

3.5. Findings regarding conveying additional semantic
information in diagrams through their layout

While the analysis findings regarding the analysed OMOS models in general are
discussed in the previous section, the findings of the diagram layout analysis con-
ducted as part of this research are discussed in detail in this section. In this section,
actual diagrams are discussed which have been identified (by Bosch engineers who
created and worked with them) to convey additional semantic information through
their layout. The objective of this discussion is to investigate if and how modellers
use layout to convey domain-specific meaning which is informal and not part of un-
derlying model. This section therefore focuses on the pilot study’s first proposition
defined in Section 3.3.2.1.

3.5.1. OMOS diagrams OutP_IFC_General and
OutP_IFC_General_Exp as an example for semantic grouping

Diagram “OutP_IFC_General” demonstrates an important layout finding regard-
ing the presence of secondary notation in OMOS diagrams: semantic grouping —
symbols of semantically related classes are grouped in close visual proximity.

In version three of diagram “OutP_IFC_General” (see Fig. 3.6) and “OutP_IFC-
_General_Exp” (see Fig. 3.8), classes “CL_OutPIfcHss”, “CL_OutPIfcHss_Hss”,
and “CL_OutPHssCtl” were added to the “Power Supply Input/Output and Gear-
box Operation Modes” model. These classes realise the high-level functionalities
of the high-side sensors (HSS) control. The (lower-level) sub-components of the

70

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.5.: OMOS diagram “OutP_IFC_General” (version 1 and 2).

Figure 3.6.: OMOS diagram “OutP_IFC_General” (version 3).

high-side sensors control (software function) are defined in another OMOS diagram,
“OutP_Hss” (see Section 3.5.3), which also has been added in analysed model ver-
sion three.

An interesting aspect of both diagrams’ layout is that the newly added classes
(“CL_OutPIfcHss”, “CL_OutPIfcHss”, and “CL_OutPHssCtl”) are placed next
to the classes realising the low-side sensor control (LSS). It would have been easier
for the modellers to simply add the new classes to the far left or right of the diagram
(see version one and two of the diagrams in Fig. 3.5 and Fig. 3.7 respectively) where
no rearrangements of existing diagram symbols would have been required. However,
the modellers decided to place the new classes for the high-side sensor control in
visual proximity of the low-side sensor control classes — taking into account that
existing diagram symbols had to be rearranged.

When the diagrams were discussed with the OMOS modellers who created them,
they explained that the extra effort of rearranging existing diagram symbols was
made in order to add the new class symbols for the high-side sensor control next to
the low-side sensor control classes. Positioning low- and high-side high-side sensor

71

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

control classes next to each other is important for the modellers because these classes
are semantically closely related. The modellers hence visually convey this semantic
relationship in the diagrams by applying the secondary notation phenomenon known
as semantic grouping.

Figure 3.7.: OMOS diagram “OutP_IFC_General_Exp” (version 1 and 2).

Figure 3.8.: OMOS diagram “OutP_IFC_General_Exp” (version 3).

The finding of semantic grouping as an important means to convey semantic in-
formation through the layout of OMOS diagrams is further supported by the fact
that classes semantically related to the concepts shown in diagram “OutP_IFC_-
General_Exp” (discussed in this section) are placed in the identical order (as in this
diagram) in diagram “OutP_ObjectModel” (see Section C.4). When the high-side
control classes were added in version three, the “OutP_ObjectModel” diagram was
modified in a similar way as described above: Instead of simply positioning the new
classes at the left or right side of the diagrams, they were added next to the low-side
sensor controller classes — this, again, required rearranging other diagram elements.
This layout was consciously chosen because the modellers want to emphasise that
the new classes (added to diagram “OutP_ObjectModel”) are semantically related
to the existing low-side sensor controller classes and are, therefore, positioned in
close proximity to them.

3.5.2. OMOS diagram OutPLss as an example for semantic ordering

The classes defined in diagram “OutPLss” deal with the inner components of the
low-side sensor (LSS) control. The main class, “CL_OutPLssCtl”, is defined as a
part-class of class “CL_OutP” in OMOS diagram “OutP_ObjectModel” (discussed
in Section C.4).

72

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.9.: OMOS diagram “OutPLss” (version 1).

In version 2, class “CL_OutPLssCtl_Mn” was added to the diagram (and to the
model). It is placed at the same horizontal position as its base class “CL_OutPLss-
Ctl” and its part-class “CL_OutPLssDuty.” This way of positioning class “CL_-
OutPLssCtl_Mn” is in contrast with the UML class diagram layout suggestions (see
Section 3.2.2) and also in contrast to the layout patterns applied in other OMOS
diagrams belonging to the same OMOS model, for instance, diagram “OutP_IFC_-
General_Exp” and “OutP_IFC_General” discussed in Section 3.5.1. If this diagram
would follow the layout approach applied in these diagrams, class “CL_OutPLss-
Ctl” would be placed in the top centre of the diagram and sub-class “CL_OutP-
LssCtl_Mn” would be positioned directly below. Part-classes “CL_OutPLssMon”
and “CL_OutPLssDuty” would be positioned side-by-side below their whole-class
“CL_OutPLssCtl_Mn.”

The OMOS modellers who created this diagram explained that the reason for the de-
viation from the UML layout suggestions is that the software functionalities realised
by these classes belong to different software (and hardware) layers in the software
system. As can be seen in version 3 of diagram “OutPLss” (Fig. 3.11), the classes
depicted in this diagram belong to different packages, some classes belong to package
“OutPL3” (which represents software layer 3) and some classes belong to package
“OutPL2” (representing “layer 2”)6.

The OMOS modellers further explained that because class “CL_OutPLssMon” be-
longs to the same domain layer as its whole-class “CL_OutPLssCtl_Mn”, it is

6Each class’s fully-qualified name including the package it belongs to is shown in the diagram
below the class’s name to demonstrate that the classes indeed belong to different packages.

73

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.10.: OMOS diagram “OutPLss” (version 2).

positioned below its whole-class, as suggested by the UML layout guidelines for
part-classes. However, class “CL_OutPLssDuty”, the other part-class of whole-class
“CL_OutPLssCtl_Mn”, belongs to a different domain layer, it is, thus, positioned
on the right side of the whole-class — not below it as UML’s layout guidelines
suggest.

The diagram layout approach which positions classes according to the domain layers
they belong to is used for all three versions of the diagram (shown in Fig. 3.9,
Fig. 3.11 and Fig. 3.11). The diagram hence demonstrates an important layout
finding regarding the presence of secondary notation in OMOS diagrams: semantic
ordering — class symbols are ordered from left to right and top to bottom according
to the order of the domain layers their respective classes belong to.

Other OMOS diagrams exist whose layouts are similar with respect to classes being
positioned according to their domain layers, for instance, diagram “OutP_Hss”
discussed in Section 3.5.3, diagram “InpP_Chip” discussed in Section C.2, diagram
“InpP_PSply” discussed in Section C.3, and diagram “OutPStaLck” discussed in
Section C.8. In those diagrams, classes are defined for which the name of the layer is
part of the class name, for instance, classes “CL_OutPRstL2”, “CL_OutPSenL3”
and “CL_OutPRstL3” belonged to software layer “L2” and “L3” of the software
system, respectively. As explained above, this layering is also visualised in the
diagrams.

The layout similarities of all these diagrams further support the finding of semantic
ordering as an important means to convey semantic information through the layout
of OMOS diagrams.

74

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.11.: OMOS diagram “OutPLss” (version 3).

An example for diagram symbols for which ordering is not important (according to
the creators of the diagram) is associated class “SFRMIFC.” Even though it was
added (in version 2 of the diagram shown in Fig. 3.10) between associated class
“CL_OutPPSplyCtl” and “OUTDSM” — not to the left or right —, the particular
order of the three classes is not important with respect to their domain meaning,
i. e., according to the OMOS modellers the class symbol’s horizontally ordered layout
does not convey additional domain-specific information.

3.5.3. OMOS diagram OutP_Hss as an example for semantic ordering

Diagram “OutP_Hss” (shown in Fig. 3.12) was added in version 3 of the “Power
Supply Input/Output and Gearbox Operation Modes” model. In this diagram,
classes realising the high-side sensor (HSS) control are defined.

The diagram’s layout is similar to OMOS diagram “OutP_Lss” which defines classes
dealing with the low-side sensor (LSS) control (diagram “OutP_Lss” is discussed
in Section 3.5.2). Its layout is also similar to OMOS diagram “OutPStaLck” (dis-
cussed in Section C.8) which defines the software functionalities for controlling and
monitoring the electronic starter and steering locking device.

Following layout patterns similar to those diagrams, the class symbols in diagram
“OutP_HSS” are laid out in a left-right and top-down manner. Classes belonging

75

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.12.: OMOS diagram “OutP_Hss” (version 3).

to layer 3 (see the package names displayed in Fig. 3.12) are positioned on the left of
the diagram while class “CL_OutPHssDuty”, which belongs to layer 2, is positioned
further to the right. Class “CL_OutPHssMon”, which is a part-class of class “CL_-
OutPHssCtl_Mn”, is positioned below its whole-class (i. e., top-down layout is used
as suggested by the UML layout guidelines), and associated class “CL_OutPPSply-
Ctl”, which also belongs to layer 3, is positioned below the whole-part class hierarchy.

This diagram, too, demonstrates the importance of semantic ordering used by OMOS
modellers to convey semantic information through the layout of diagrams (also dis-
cussed in Section 3.5.2 and Section 3.5.4).

3.5.4. OMOS diagram OutPCcCo as an example for semantic grouping
and ordering

The findings of the analysis of diagram “OutPCcCo”’s layout properties are provided
in this section. The classes defined in this diagram deal with controlling and man-
aging the communication of the gearbox controller’s electronic control unit and other
control units. The three versions of this diagram are shown in Fig. 3.13, Fig. 3.14,
and Fig. 3.15, respectively.

A general layout finding is that the sub-classes of class “CL_OutPCcCo”, i. e. classes
“CL_OutPCcCo07”, “CL_OutPCcCo0708”, and “CL_OutPCcCo08”, and their
part-classes “CL_OutPCc07Ctl”, “CL_OutPCc0708”, and “CL_OutPCc08Ctl”, are
horizontally ordered from left to right.

76

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.13.: OMOS diagram “OutPCcCo” (version 1).

The OMOS modellers explained that these sub- and part-classes represent different
communication modes and that class “CL_OutPCcCo” coordinates the flow between
the different modes — from mode “07” to mode “07+08” to mode “08.” This flow is
expressed in the diagram by ordering the respective class symbols from left to right
— mode “07” left of mode “07+08” left of mode “08.”

This diagram again demonstrates the importance of semantic ordering used by mod-
ellers to convey semantic information through the layout of diagrams. However, the
ordering found in diagram “OutPCcCo” is in contrast to diagram “OutP_Lss” and
“OutP_Hss” (discussed in Section 3.5.2 and Section 3.5.3, respectively) where the
semantic ordering of class symbols is motivated by the modellers’ intent to visually
order class symbols according to the domain layers the depicted classes belong to. In
terms of diagram “OutPCcCo”, the modellers’ intention for ordering class symbols
is to visually convey the flow of information coordinated by class “CL_OutPCcCo.”

Furthermore, when class “CL_OutPLssCtl” was added in version 2 of diagram
“OutPCcCo” (see Fig. 3.14), it was placed next to and at the same horizontal po-
sition as “CL_OutPCcCo”’s three sub-classes even though it is not a sub-, but an
associated class of “CL_OutPCcCo.” In contrast, in version 3 of this diagram, class
“CL_OutPSys” was added at the diagram’s top even though it is associated by class
“CL_OutPCcCo” in the same way class “CL_OutPLssCtl” is.

The OMOS modellers explained that class “CL_OutPLssCtl” plays an active part in
controlling and managing the communication controlled by class “CL_OutPCcCo.”
That is why class “CL_OutPLssCtl” is positioned in close proximity to “CL_-

77

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.14.: OMOS diagram “OutPCcCo” (version 2).

OutPCcCo”’s three sub-classes instead of positioning it next to the other associated
classes “OUTDSM” and “ECE_PSYS_D.” Furthermore, class “CL_OutPLssCtl”’s
public methods are displayed in the diagram which is not the case for all other
associated classes. This further demonstrates the different role (compared to all
other associated classes) of class “CL_OutPLssCtl” in this diagram.

This last finding again demonstrates that, for OMOS modellers, grouping class sym-
bols according to their domain meaning is an important means to convey semantic
information. (Semantic grouping is also discussed in Section 3.5.1 and Section 3.5.5.)
This finding also shows that relationship symbols (i. e., connections between pairs
of class symbols) are not necessarily a key factor for defining the position of class
symbols as suggested by UML’s layout guidelines.

3.5.5. OMOS diagram Fahrertyp as an example for semantic grouping

Diagram “Fahrertyp” (shown in Fig. 3.16), meaning “driver type” in English, defines
classes which deal with the concept of determining and assessing various driver types
in order to adjust the style of gear shifting to the car driver’s driving habits. Class
“CL_FTYP” (meaning “Fahrertyp” or “driver type”) represents the whole-class of
all other classes of this diagram. There are eight classes for assessing/weighting
different driver types, for instance, kick-down (of the accelerator pedal) and sporti-
ness, they are positioned below their whole-class class “CL_FTYP.” The three other
part-classes of class “CL_FTYP” do not present driver types, they provide func-
tionalities to manage and access information from the driver types classes. Class

78

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.15.: OMOS diagram “OutPCcCo” (version 3).

“CL_TYERM” (meaning “Fahrertypermittler” or “driver type detector”) provides
an interface to the driver type detection used by other classes (which are not shown
in this diagram). Class “CL_TYZAL” (meaning “Fahrertypbewertungszähler”, or
driver type assessment/weighting counter in English) is responsible for counting
and weighting the information provided by the different driver type classes. Class
“CL_TYVER” (short for “Fahrertypbewertungsverwalter” or “driver type assess-
ment/weighting manager”) is responsible for internally managing and coordinating
the driver type assessments.

Instead of following the UML layout guidelines suggesting to position part-classes
below their whole-class, the layout of this diagram demonstrates the grouping of
classes according to their domain meaning. For instance, class “CL_TYERM” is
a part-class of class “CL_FTYP” (as are all the other classes in the diagram).
However, in contrast to the other part-classes, class “CL_TYERM” is positioned
next to the whole-class, not below it. This position is intentionally chosen by the
OMOS modellers because class “CL_TYERM” presents the interface to the driver
type detection functionality and is used by other parts of the ASIS software. It
therefore belongs to a different domain level than the other part-classes of class
“CL_FTYP.”

Class “CL_TYVER” and “CL_TYZAL” represent different semantic functional-
ities than the eight driver type assessment classes. To visually differentiate them
from these classes, they are placed at different horizontal layers. Even though the

79

3.5 Findings regarding conveying additional semantic information in diagrams
through their layout

Figure 3.16.: OMOS diagram “Fahrertyp” (driver type).

diagram’s layout — with respect to the hierarchical arrangement of the diagram’s
class symbols — visually exposes the whole-part class hierarchy as the classes are
positioned at different horizontal layers, the whole-part hierarchy is not the most
important criteria for positioning the part-classes in this diagram (as would have
been the case when UML’s standard layout guidelines were followed).

The layout of this diagram again demonstrates that visually grouping class symbols
according to their domain meaning is an important means to convey semantic in-
formation through the layout of a diagram. (Semantic grouping is also discussed in
3.5.1 and Section 3.5.4.) The layout of this diagram also shows that relationship
symbols are not necessarily a key factor for defining the position of class symbols.

Furthermore, in order to avoid edge crossings class “CL_TYVER” is positioned
below the eight driver type assessment classes, and class “CL_TYZAL” above them.
Also, a balanced layout is tried to achieve for class “CL_FTYP” and “CL_TYVER”
by horizontally centring them below or above the other classes.

3.5.6. Additional OMOS diagrams

As discussed in Section 3.3.2.2, all diagrams of both OMOS models were analysed
as part of this pilot study. Appendix C provides the analysis findings of additional
OMOS diagrams which could not be included in this chapter due to space limitations.

80

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

In Section C.1, package assignment diagrams are discussed. OMOS modellers use
this kind of diagrams to assign each class of a OMOS model to a UML package.
As identified by the diagram analysis conducted as part of the pilot study and as
confirmed by the OMOS modellers who created them, package assignment diagrams
do not convey domain-specific meaning through their layout.

3.6. Summary of the findings of the model analysis
regarding expressing additional semantic information in
diagrams of models through their layout

A summary of the results of the analysis of the OMOS models discussed in Section 3.4
and Section 3.5 is provided in this section. Following research objective 2 defined
in Section 1.2.2, this analysis set out to determine how OMOS models are created
and if and how additional semantic information are conveyed through the layout of
diagrams of OMOS models.

3.6.1. Modelling by means of diagrams is a creative process

In this section, the study’s first research question (How are diagrams used to visually
construct OMOS models?) is discussed and linked to the study’s findings.

The analysed OMOS models are partitioned into a large number of diagrams. As
the number of diagrams in Table 3.3 and Table 3.4 (in Section 3.4) indicate, both
analysed OMOS models consist of many (in total about 200) diagrams. Each dia-
gram represents a different part of the software system’s domain which is depicted
by the symbols in the respective diagram. The model elements belonging to a cer-
tain diagram realise a certain part of the overall functionality the respective model
provides.

The partitioning of the model into diagrams is often, but not always organised along
the lines of the model’s whole-part hierarchy and the inheritance hierarchy. A single
diagram focuses on defining the classes which represent a certain domain function-
ality; it “encapsulates” the classes representing a certain domain-specific part of a
OMOS model. Depending on the number of classes realising this functionality, the
classes could be defined in several diagrams if there are too many classes to fit into

81

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

one diagram. The name of a diagram reflects which part of the software system (rep-
resented by the model) the classes contained in this diagram realise. The diagrams’
names thus represent domain knowledge.

New diagrams are created when new functionality, represented by one or more new
classes, is added to a model. A OMOS model is partitioned into diagrams accord-
ing to the model’s semantic building blocks, i. e., the automatic gearbox controller
domain concepts it represents. Even if the functionality realised by new classes con-
ceptually belongs to an existing diagram, adding new classes results in new diagrams
if an existing diagram becomes too complex in terms of the layout of its whole-part
and/or inheritance hierarchies. Usually, all elements of a diagrams fit on a single
screen. If they do not fit on a screen, they are arranged in a way which requires
scrolling in only one direction (usually the vertical axis).

The findings are confirmed by other research too. Moody [Moo10] argues that using
smaller, less complex diagrams instead of creating just one big, complex diagram
helps to cope with complexity. Hahn & Kim [HK99] state that decomposition and
layout organisation help to decrease the number of analysis and design errors. As
discussed in the literature review on diagram layout in Section 3.2.2, assigning classes
to diagrams is a creative act as it focuses on the domain meaning of the classes rather
than its hierarchical features defined by means of UML elements (when following
UML hierarchies this would mean to, for instance, include all part-classes and sub-
classes for each whole-class in a diagram). This finding is also supported by other
research: Complexity has a major effect on cognitive effectiveness as the amount of
information that can be effectively conveyed by a single diagram is limited by human
perceptual and cognitive abilities. Moody states that the number of “bubbles”
per diagram should not exceed seven plus/minus two because the human working
memory is limited to dealing with this number of things at the same time [Moo10].

3.6.2. Summary of the pilot study findings regrading semantic
information conveyed through the layout of diagrams and the
mental map

The research presented in this chapter set out to investigate the importance of
diagram layout for model-based software engineering in generally by analysing a
specific approach by means of a pilot study. The most important finding of the
pilot study presented here is that diagram layout is important for OMOS as diagram
layout conveys additional domain-specific meaning which is important for modellers.

82

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

The study’s findings on semantic information conveyed through the layout of dia-
grams provided in Section 3.5 confirm that modellers convey additional semantic
information through the layout of OMOS diagrams. In regards to the study’s first
proposition (see Section 3.3.2.1), the pilot study confirms that this information is
only defined by means of secondary notation, but is not formally defined in the model
itself (i.e., there are no model elements defining the conveyed meaning). Modellers
use grouping and ordering of class symbols to visually indicate that the underlying
class symbols are semantically related, that a certain domain order or layering ex-
ists (in the modelled software system), and that information flows in a certain order
from one depicted class to another.

As the pilot study shows, the position of class symbols (i. e., diagram symbols rep-
resenting classes) depends on the class’s domain meaning, for instance, its meaning
in the domain of automatic gearbox controller software. Another finding is that the
position of class symbols also depends on the meaning of the specific class diagram
to which they belong, i. e., the way class symbols are laid out depends on the visual
context in which they are visualised. Another finding made by the pilot study is that
even in diagrams whose symbols are laid out according to UML’s guidelines certain
secondary notation, like the order of adjacent class symbols, is used by modellers to
convey domain-specific meaning through the diagram’s layout.

In the following, the study’s propositions and (remaining) research questions (the
first question has been discussed in Section 3.6.1) are connected with the study’s
findings and the results from other research identified in the respective research
literature on meaning conveyed through the layout of diagrams.

3.6.2.1. Question 2: Which particular semantic information are implicitly
conveyed by means of diagram layout?

The additional semantic information modellers intent to convey through the layout
of OMOS diagrams are close semantic (domain) relations, domain layering, and
domain flow. The layout features used to convey this semantic information are
discussed next.

3.6.2.1.1. Domain layering: In order to express a certain domain layering of classes,
the class symbols belonging to a layer are visually separated from class symbols
whose classes belong to different software layers. The classes of each layer are

83

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

grouped together, and the groups of classes are ordered from left to right. Mod-
ellers applied layering to convey information on how the (respective underlying)
classes (of the depicted and visually ordered class symbols) are assigned to the dif-
ferent domain layers of the software system. For instance, in diagram “OutPLss”
(see Section 3.5.2) and diagram “OutPHss” (see Section 3.5.3), classes are assigned
to layers “L2” and “L3.” This layering is depicted by ordering the respective classes
from left to right (with classes belonging to layer “L3” positioned on the left and
layer “L2”’s classes positioned further to the right). Class symbols depicting classes
belonging to the same layer are grouped, but not ordered, in close visual proximity.

3.6.2.1.2. Domain flow: Modellers express the flow of domain information in a
similar layout manner as used for expressing layering discussed above. For instance,
modellers ordered classes in diagram “OutPCcCo” (see Section 3.5.4) from left to
right to emphasise that the information provided by (instance of) the ordered classes
flow from left to right.

3.6.2.2. Question 3: Which kinds of diagram symbols convey additional
domain-specific knowledge through their of layout?

The pilot study’s findings identified that domain-specific knowledge is conveyed by
class symbols. This finding is not surprising since the diagrams used to build OMOS
models (and analysed by the study) are UML class diagrams and the most important
symbol type of this diagram notation are class symbols.

Classes (and the symbols depicting them in diagrams) represent the main compon-
ents of the software design models realised by both analysed OMOS models. Each
class represents a certain software functionality in the domain of gearbox controller
software.

3.6.2.3. Question 4: Which layout features are considered important by OMOS
modellers in order to express implicit domain-specific knowledge
through the layout of diagrams?

The study’s findings identified that OMOS modellers use visual grouping and order-
ing of class diagram symbols as means to convey domain-specific knowledge through
the layout of diagrams.

84

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

When the results of the diagram analysis conducted as part of this study were dis-
cussed with the OMOS modellers, they stated that they use visual grouping and
ordering of (symbols of) semantically related classes. However, they do not con-
sider the grouping of (possibly semantically related) relationship symbols depicting
association and inheritance relations and symbols depicting packages important.

3.6.2.3.1. Visual grouping of class symbols: Visual grouping is expressed by
means of visual proximity. For expressing grouping of class symbols, the particular
order, i. e., left-right or top-down, of these symbols is not important to modellers,
only their visual proximity is. Diagrams “OutP_IFC_General” and “OutP_IFC-
_General_Exp” discussed in Section 3.5.1 demonstrate the secondary notation for
the visual grouping of class symbols.

Visually grouping semantically related class symbols is often used when UML in-
heritance or whole-part relationships are visualised in a diagram too. Following the
UML relationships, the diagram is then hierarchically laid out: base/whole classes
above sub-/part-classes. Class symbols of semantically related classes are then adja-
cent within such layout hierarchy. Therefore, when UML inheritance and hierarchies
are depicted in a diagram, semantically related base classes are grouped on the same
horizontal layer above semantically related sub-classes which are also grouped on an-
other horizontal layer (below the base classes). For instance, if the (underlying UML)
classes of grouped class symbols form an inheritance hierarchy shown in the diagram,
the base classes are positioned above sub-classes. Nevertheless, semantically related
base and/or sub-classes are positioned in close visual proximity.

3.6.2.3.2. Visual ordering of class symbols: Similar to visual grouping, visual or-
dering is expressed by means of visual proximity of class symbols. In contrast to
visually grouped class symbols, when OMOS modellers use the ordering of class
symbols to express domain meaning, the symbol’s particular left-to-right order is
indeed important. In the analysed OMOS diagrams, modellers use visual ordering
to express domain layering and flow (see above). No cases were found during the dia-
gram analyses where class symbols were ordered vertically (top-down) and conveyed
additional semantic meaning apart from the meaning express by UML relations (i. e.,
inheritance and whole-part or association relations).

85

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

3.6.2.3.3. Summary: According to the modellers who created the OMOS diagrams
analysed as part of this study, the decision of where elements are placed is (often)
made by the modellers based on their knowledge and understanding of semantic re-
lationships between elements and how they intent this knowledge to be represented
in a diagram. When diagrams are created (or modified), software engineers, there-
fore, apply layout rules that are often informal but intentional for the domain to
which the elements depicted in the diagram belong. The analysis of OMOS models
shows that the position of an element in a diagram depends on an element’s semantic
meaning, i. e., the element’s domain-specific meaning. For example, modellers often
visually group and order symbols of UML classes based on their semantic meaning
in the application domain. The domain-specific ordering of class symbols can result
in layouts which are in contrast with UML’s layout guidelines. Often, the UML
class diagram layout guidelines are not followed in the analysed OMOS diagrams,
for instance, base classes or whole-classes are not positioned above sub-classes or
part-classes, respectively. The domain meaning expressed by the layout hence takes
precedence over the UML guidelines; modellers consider the domain meaning more
important and it thus overrules the suggested UML layout guidelines. This find-
ing is further supported by other research regarding diagram layout discussed in
Section 3.2.2 and Section 3.2.3. Modellers working with OMOS diagrams are actu-
ally asked (but not rigorously enforced) by Bosch-internal OMOS diagram layout
guidelines to adhere to the UML class diagram layout guidelines defined by UML.
Moody argues that the layout guidelines given by the UML standard are flawed in
several ways [Moo10]. As the results of the diagram analysis show, those guidelines
are not followed rigorously for OMOS diagrams. Hence, diagram layouts can differ
and are merely subject to the interpretation of the modellers who create or modify
them. The layout that modellers choose for a diagram is intentional and can follow
informal, unspecified rules. The position where class symbols are placed is chosen
according to the symbol’s semantic (i. e., domain) meaning and the modeller’s un-
derstanding of this meaning. Elements that are closely related in terms of their
domain semantics are likely to be positioned in close visual proximity in a digram.

The principle layout of class symbols is (often but not always) determined by the
“model facts” to be expressed in a diagram, i. e., UML model hierarchies (inherit-
ance, compositions and associations) influenced the visual context a class symbol
belongs to. For example, the proximity of class symbols is determined by their
connections to other class symbols. Class symbols close to each other are often
connected by inheritance or association connections. For instance, base classes are

86

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

positioned above sub-classes which are positioned in close proximity below their base
classes (top-down layout). On the other hand, the visual relations of classes, i. e.
their layout, of the classes is not always as advertised by the UML layout guidelines
(see Section 3.2.2). In such cases, domain-specific facts “overruled” the UML layout
suggestions. For instance, the position and grouping of several class symbols con-
nected with each other by means of UML relationships (inheritance, association or
composition) does not necessarily follow the layout suggested by UML. For instance,
when two or more sub-classes are connected with the same base class, not all of them
may be positioned below the base class (as suggested by the UML layout guidelines).
A similar finding was made for composition: Given several part-classes, connected
to the same whole-class, not all of them are positioned below this whole-class. For
instance, the diagrams discussed in Section 3.5.4 demonstrate such layouts. Hence,
even if the UML class diagram layout guidelines are followed, class symbols are often
ordered according to their domain meaning. Symbols of closely related classes are
then positioned in close visual proximity to each other. This is, for instance, the
case for containment (whole-part) and inheritance hierarchies. The visual grouping
and ordering of class symbols within such a hierarchy is then defined by the domain
meaning of the depicted classes.

3.6.2.4. Question 5: To what extent do diagrams convey domain-specific
knowledge through their layout?

Not all class symbols of every diagram convey additional semantic meaning (solely
expressed by their layout through secondary notation). However, for many diagrams
at least a number of class symbols do. About two thirds of the analysed OMOS
diagrams convey domain-specific knowledge through their layout. This holds for all
three versions of the both analysed OMOS models.

Most (about 95 per cent) of the analysed diagrams are used to define the classes
constituting the modelled software system7. Classes belonging to a diagram are
often semantically related since these classes together realise a certain part of the
model’s functionality. Because a diagram depicts semantically related classes, there
is a high possibility that diagrams convey additional meaning through their layout
if such meaning exists and is important for modellers.

7The remaining less than 5 per cent of the diagrams are package assignment diagrams which do
not convey additional semantic meaning through their layout (see Section C.1).

87

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

3.6.2.5. Question 6: Is the mental map of diagrams important and what drives
diagram layouts changes in consecutive diagram versions?

Diagrams dealing with similar domain concepts, i. e., representing classes whose se-
mantics are closely related, often expose a similar layout structure (see, for instance,
Fig. 3.12, Fig. C.5, and Fig. C.6). Together with the finding that certain groups of
classes appear in similar groupings/have similar ordering in several diagrams, this
finding confirms the importance of the diagrams’ mental map (see Section 3.2.4)
for OMOS modellers. The overall layout of the diagrams of both analysed OMOS
models does not change significantly over the course of the three analysed versions.
This finding confirms the study’s second proposition, even though diagrams provide
a high degree of freedom with respect to layout, the mental map of a diagram and,
therefore, stable layout is important to modellers — even in consecutive versions of
a diagram.

When diagram symbols were added in the version 2 or 3 of the analysed models,
the overall layout of the respective diagrams did not change. When class symbols
were added to a diagram, they were positioned in close proximity to existing class
symbols depicting classes semantically related to the new classes. Then, existing
diagram symbols were often rearranged to make space for the new symbol. Such
rearrangements were done in a way that preserves the overall relationship of a dia-
gram’s class symbols. Class symbols that were positioned in close proximity in the
old layout were also close in the new layout. Hence, the visual context of class
symbols did not change.

Several new diagrams were added in later version of the analysed models, for in-
stance, the diagram shown in Fig. 3.12 in Section 3.5.3. The new diagrams define
concepts similar (but not identical) to those already defined in earlier versions of the
models, for example the diagram depicted in Fig. 3.12 is similar to the one depicted
in Fig. 3.9 in Section 3.5.2 which already exists in the first analysed model version.
Newly defined diagrams are laid out in a similar way as diagrams created in earlier
versions.

In the analysed diagrams, symbols were only rearranged when new class symbols
were added to a diagram. The analysis could not identify other reasons for diagram
layout changes. A possible reason for rearranging class symbols may, for instance, be
that the domain meaning of the depicted class, i. e., the modellers’ understanding
of this class, changed as the understanding of the domain grew. However, such
considerable layout rearrangements could not be observed by the diagram analysis.

88

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

One reason for this could be that too few model versions were taken into account
by the pilot study.

3.6.2.5.1. Visual context: With respect to the mental map, the visual context of
class symbol is, therefore, defined by its adjacent class symbols, but also by the
semantic meaning conveyed by this symbol. The visually closest adjacent symbols
might therefore not always fully define a symbol’s visual context, but symbols in
close, but not immediate visual proximity can be important, too, for the symbol’s
visual context as perceived by modellers.

3.6.2.5.2. Summary: Regarding the study’s findings on the importance of the
mental map of diagrams, it can be summarised that the mental map is important
to OMOS modellers since the principle layout of the analysed diagrams is stable.
Furthermore, as discussed in Section 3.1, OMOS modellers insisted that the con-
sciously chosen relations of diagram symbols are important to them. It, therefore,
follows that this statement, too, indicates that the mental map of the diagrams is
important for the OMOS modellers.

After the pilot study’s research questions and propositions have been discussed in
this section, the next section will provide an overview of additional, more general
findings regarding the layout of the OMOS diagrams analysed as part of the pilot
study.

3.6.3. General findings regarding the layout of OMOS diagrams

The following general findings regarding the layout of the OMOS diagrams were
made by the OMOS diagram analysis conducted as part of the pilot study presented
in this chapter:

1. OMOS diagrams are laid out following the UML class diagram layout guidelines
(see Section 3.2.2) and implicit layout rules conveying additional domain know-
ledge. The latter rules are more important to OMOS modellers than UML’s
layout guidelines.

2. Even though the same model element (class, package, inheritance, association,
composition etc.) could be depicted more than once in the same diagram using
the Ameos modelling tool, none of the analysed diagrams contains a certain
model element more than once, a certain model element is only depicted once

89

3.6 Summary of the findings of the model analysis regarding expressing additional
semantic information in diagrams of models through their layout

in a diagram. However, a model element can appear in many diagrams. This
is because the model is partitioned into many diagrams and because classes
are used in different contexts in different diagrams. That is why the same
association and inheritance relations could also appear in many diagrams.

3. Packages are only depicted in the package assignment diagrams (see Sec-
tion C.1), they are not used in the majority (about 95 per cent) of the diagrams
comprising the analysed OMOS models (see Section 3.6.1).

4. All diagram symbols are drawn in black colour (the default colour of the Ameos
modelling tool).

5. Regarding the diagram canvas size used to position diagram symbols, the
OMOS modellers try to avoid scrolling in two directions. If a diagram exceeded
the screen’s size, symbols are positioned in a way that requires only scrolling
on one axis (usually to vertical one). The width of a diagram usually does not
exceed the width of a standard desktop PC’s screen resolution. The hight of
a diagram could exceed the screen’s height.

The following findings regarding the layout of class symbols and the expression of
additional semantic information in diagrams through their layout were made:

1. The absolute position of a class symbol is meaningless, the symbol’s prox-
imity (visual context) and relation the other class symbols is important for
the modellers’ mental map of a diagram (see Section 3.2.4) and for conveying
additional semantic information through the diagram’s layout.

2. Classes are often laid out in a top-down, left-right manner. Thus, class symbols
are often arranged in horizontal layers.

3. For top-down layouts, classes on a upper layer are often centred above classes
on the next lower layer. With respect to layout aesthetics, some degree of
layout symmetry is thus tried to achieve if UML class hierarchies are depicted
in a diagram.

4. Class symbols do not overlap (which is a fundamental requirement for creating
readable diagrams).

The following findings regarding the layout of connection symbols and the expression
of additional semantic information in diagrams through their layout were made:

1. Connections between adjacent class symbols are often drawn as straight lines.
OMOS modellers stated that (with the Ameos modelling tool) straight con-
nections are easier to draw than bended ones.

90

3.7 Chapter summary and outlook

2. Where possible, the crossing of straight lines is tried to be avoided since such
lines usually connect adjacent class symbols. However, many line crossings
can be found in the analysed symbols, often for longer, bended lines.

3. Orthogonal routing of the line segments of connections is not overly important.

4. The visual context of class symbols is more important to OMOS modellers than
the possibility to draw connections as straight lines. Positioning class symbols
in their preferred visual context overweighted the class symbol’s connections
to other class symbols in this diagram.

5. There is no preferred direction of connections. If a diagram’s layout mainly
focuses on depicting a UML hierarchy (with class symbols being arranged in
horizontal layers), then a top-down direction of connections is preferred.

6. Unlike class symbols, connections are not ordered according to their domain
meaning. The OMOS modellers stated that, for them, associations and inher-
itance relations have no additional domain-specific meaning.

7. Regarding their type, connections are usually not mixed, i. e., in a certain
diagram, the same two connected class symbols are either connected by an
association or generalisation edge, but not by both. The reason is that with
the OMOS approach is based on whole-part and inheritance hierarchies. There
hence is usually no reason for a whole- or part-class to also define a general-
ization from the opposite part- or whole-class and vice versa for generation
relations between the two classes.

3.7. Chapter summary and outlook

This chapter discussed research objective 1b (determine from the research literat-
ure whether diagrams of models contain additional semantic information through
their layout) and 2 (carry out a pilot study to verify that diagrams actually convey
semantic information in the pilot study environment and identify the extent of the
problem), defined in Section 2.1.1.

The results of the pilot study presented in this chapter show that the analysed
OMOS diagrams have layout features which do not always follow the layout conven-
tions suggested for UML class diagrams (see Section 3.2.2). These layout features
are intentionally used by the OMOS modellers to visually express semantic mean-
ings and relations between model elements (by means of secondary notation, see

91

3.7 Chapter summary and outlook

Section 3.2.3). The semantic meaning conveyed by a diagram’s layout is neither
part of the model nor is it formally defined in the diagram, it is only known to the
modellers (domain experts) who create the diagrams. For instance, class symbols
depicting semantically related classes are ordered according to their meanings in the
automotive controller domain (see Section 3.5.1), and classes are laid out according
to the domain layers these classes belonged to (see Section 3.5.2 and Section 3.5.3).

While acknowledging the limited scope of the pilot study, its results confirm the
general importance of diagram layout for users of model-based software development
approaches by analysing a specific case. The most important finding of the pilot
study is that OMOS modellers use layout to convey domain-specific meaning which
is informal and not part of the model.

The findings on semantics information conveyed through diagram layout are not
unique to the analysed OMOS models. The author had the opportunity to in-
formally look at OMOS diagrams created by another engineering group at Bosch
developing software for anti-lock breaking systems. These diagrams reveal similar
layout patterns as identified in the diagrams analysed as part of the pilot study
discussed in this chapter. The author later had access to diagrams from the space
systems engineering domain [EMdK09]. Again, these diagrams show similar layout
pattern. In all those cases, the additional semantic meaning expressed through the
layout of diagrams is not defined by the model itself, it is only manifested in the dia-
gram layout by means of secondary notation. Such phenomena are well known and
described by other research as the literature review provided in Section 3.2 confirms.

Based on the findings summarized above, the principles on which any software should
be based to provide a solution for working in parallel with diagrams of models will
be defined in the next chapter.

92

4. Principles and objectives of an
approach for collaboratively working
with OMOS models

As discussed in Section 1.2.2, an important objective of the research presented in
this thesis is to overcome the limitation of only one modeller being able to modify
a OMOS model at a time and enable a collaborative approach to OMOS modelling.
This chapter focuses on research objective 3 defined in Section 1.2.2: the general
principles are established which any software should be based on to provide a solu-
tion for working in parallel with OMOS models and their diagrams. Furthermore,
principles are established which are specifically drawn from the findings of the pilot
study on semantic meaning conveyed through the layout of diagrams (discussed in
Section 3.6).

4.1. Automatic diagram layout and additional semantic
information conveyed through the layout of diagrams

As stated by other research discussed in Section 2.4, when diagrammatic models
are merged manually, laying out their merged diagrams is not an option for models
consisting of more than a few diagrams. The same conclusion can be drawn from the
pilot study discussed in the previous chapter as the OMOS models analysed as part
the study consist of almost 200 diagrams (see Section 3.4). Therefore, automatic
layout of UML class diagrams appears to be a feasible solution for enabling parallel
work on OMOS model. Ohst et al. [OWK03b, OWK03a, OWK04] advocate for the
usage of automatic layout for merging UML class diagrams (see Section 2.4.1)1. This
section, therefore, validates the suitability of automatic diagram layout for enabling

1The foundations of automatic layout approaches and an overview of the concepts and tools for
the automatic layout of UML class diagrams are discussed in Section 2.4.3.

93

4.1 Automatic diagram layout and additional semantic information conveyed
through the layout of diagrams

parallel modelling with OMOS taking into account the findings from the pilot study
and from the research literature on conveying additional semantic information in
diagrams of models through their layout provided in Chapter 3. That is, having
established that layout is important to modellers, it has to be preserved when models
are merged. However, as the following section describes, current automatic layout
approaches are not suitable for this purpose. Automatic diagram layout approaches
are, therefore, evaluated regarding their support for parallel modelling with OMOS
in Section 4.1.

As discussed in Section 3.1, OMOS modellers rejected the usage of automatic lay-
out approaches. They claimed that semantic information conveyed solely through
the layout of OMOS diagrams is lost when the diagrams are laid out automatically.
Based on the pilot study’s findings regarding which and how additional semantic
information is actually conveyed through the layout of OMOS diagrams (see Sec-
tion 3.4 and Section 3.5), automatic layout approaches are evaluated in this section
to determine whether such approaches are able to take into account the modellers’
intention to convey additional semantic information through the layout of diagrams.

4.1.1. On the usefulness of automatic graph layout for UML class
diagrams when domain semantics of visualised model elements
are important to modellers

Automatic UML layout techniques (see Section 2.4.3) lay out diagrams by apply-
ing layout rules which are solely based on information from the UML model. For
laying out UML class diagrams, these information are taken from the UML (class)
model. For example, classes and packages represent (graph) vertices and associ-
ation and inheritance relationship between classes represent (graph) edges. Fully
automatic layout hence cannot/does not take the layout of existing, manually cre-
ated diagrams into account, furthermore, the diagrams do not yet exist because they
are automatically created. To produce readable and aesthetically pleasing looking
layouts, aesthetic criteria are applied (to arrange the (graph’s) vertices and edges),
for instance, rules for creating layouts with few edge bends, orthogonal edges, and
symmetrically distributed nodes.

Automatic layout algorithms group diagram symbols based on the semantics of the
UML diagram notation (see Section 3.2.2), for example, the class symbols depicting a
certain inheritance hierarchy or symbols depicting classes involved in an association

94

4.1 Automatic diagram layout and additional semantic information conveyed
through the layout of diagrams

relation are positioned in close visual proximity. However, even though it is called
semantic clustering [Eic05], automatic layout algorithms do not and cannot group
diagram symbols in a way that conveys semantic meaning inherent to the application
domain, i. e., a layout that modellers would create if these elements were placed by
humans, since their manually created layouts convey semantic information inherent
to the application domain (as the study shows, this is important for OMOS modeller
too). By semantic/domain meaning it is referred to an element’s meaning in its
domain, not the UML semantics (for instance, classes belonging to the same UML
inheritance hierarchy). Automatic diagram layout algorithms produce layouts that
are based on a set of aesthetic criteria. Hence, diagram symbols are placed at the
best position according to theses criteria, not according to their semantic meaning
in the application domain. These criteria are based on aspects such as placing a
certain set of vertices near to each other or specific vertices on top of others or in
the centre of a drawing with respect to the meaning of these elements regarding the
elements’ UML meaning, not their meaning in the application domain since these
information are not known to automatic diagram layout algorithms.

Automatic diagram layout algorithms for UML diagrams are often used for re-
engineering [BETT99, OWK03a], i. e., when existing source code artefacts are used
to create UML diagrams, such as class, collaboration, or activity diagrams. Auto-
matically generating diagrams from source code is useful since it would be very te-
dious and error-prone to create them manually — especially because the model that
is underlying to and represented by the diagram has an already existing pendant:
the source code. However, it is argued that when diagrams are created from scratch,
developers have to be able to create diagrams in a way that does not inhibit their
creativity and freedom to create diagrams according to their understanding of the
domain problem or solution depicted in the diagram.

Batin et al. [BFN85] and Fleicher&Hirsch [FH01] state that automatic layout tools
are often based on fixed presumptions concerning layout aesthetics and trade-offs
between conflicting layout rules. Whereas modellers apply their implicit and intim-
ate knowledge about the semantics of the application domain to solve such trade-offs.
Thus, the human perception of diagrams depends on the application domain of the
diagrams. Eichelberger [Eic05] suggests to define a rule set that follows the beha-
viour of modellers drawing UML class diagrams. Batin et al. [BFN85] suggests to
enumerate as many layout criteria as possible and rate them in terms of model-
ler preferences for solving conflicts between these criteria. Sugiyama [Sug02] states

95

4.1 Automatic diagram layout and additional semantic information conveyed
through the layout of diagrams

that, for automatic layout approaches, semantic rules, i. e., rules depending on the
semantics of diagram elements and on the application domain, should be rated with
a higher priority than structural rules, i. e., common rules that are independent from
the meaning of elements and that are common to all diagram layouts.

Dengler et al. [DFM93] suggest that perceptual organisation has to be taken into
account in addition to pure layout aesthetics. The authors argue that in order to
automatically generate high-quality diagrams, for instance, certain groups of sym-
bols must form perceptual groupings by visual proximity. Whilst their study does
not consider UML class diagrams in particular, the finding that diagram symbol
proximity is important to modellers applies to UML class diagrams too as the find-
ings of the pilot study show (see Chapter 3).

When a model changes, because, for example, elements are added, deleted, or mod-
ified, the new diagram layout produced by automatic layout algorithms can be very
different from the previous layout. Even small changes to the model can result
in significant layout changes since automatic layout algorithms often apply incre-
mental layout and layout heuristics since optimising layout criteria (like minimising
the number of edge crossings and minimising edge bends) which are often NP-hard
computational problems [Nor95, See97, Eic06]. The mental map (discussed in Sec-
tion 3.2.4) that modellers have established for an existing diagram, therefore, gets
destroyed/becomes meaningless. This drawback can be diminished when dynamic
graph drawing algorithms are used, also called interactive graph drawing algorithms
since graphs are modified interactively by the user [BETT99]. The goal of these
algorithms is to preserve the mental map of a graph when it is changed [BT00]
such that modellers are not forced to spend considerable effort relearning the new
diagram, i. e., to visually parse [Moo10] and understand it.

Approaches to preserving the mental map often try to minimise the changes between
diagrams. This is achieved by allowing only limited modifications of an already
existing layout regarding the position of vertices and edge bends in the diagram
[MELS95]. However, to the best of the author’s knowledge there appears to be
no CASE tool that supports the layout of evolving models (i. e., dynamic graphs).
Eichelberger explicitly emphasises that the “SugiBib” diagram layout algorithm (see
Section 2.4.3) does not consider dynamic graphs [Eic05]. Eiglsperger and his col-
leagues admit that incremental editing can be easier especially when diagrams are
complex [EGK+04]. Their “yFiles” graph layout tool which is based on the “GoV-
isual” automatic graph layout algorithm (see Section 2.4.3) supports dynamic graphs

96

4.1 Automatic diagram layout and additional semantic information conveyed
through the layout of diagrams

but provides only very basic support for elements as they are used in UML class
models/diagrams since it is a general purpose graph layout tool and by no means a
CASE tool.

The proximity of elements is another property that is considered important for the
user’s mental map [KW01]. Miuse et al. ask for dynamic graph layout algorithms
that honour the proximity of elements when existing layouts are adjusted due to
modifications of the underlying graph [MELS95]. When diagrams are modified,
proximity relations should be preserved in order to preserve the user’s mental map.
Hence, diagram symbols which are close together should stay close together. Ele-
ments that are close in the old layout should also be close in the new layout. North
argues that the position of elements is more important than the routing of edges
because elements are remembered as locations, while edges are traced “on the fly”
[Nor95].

Sugiyama states that UML class diagram layout methods in particular are relatively
underdeveloped [Sug02], and Eichelberger [Eic02b] compared forty-two CASE tools
regarding their ability to automatically create UML class diagram layouts and con-
cludes that none of the tools is able to create readable layouts. This situation might
have changed today, since the two new graph layout algorithms, “SugiBib” and “Go-
Visual”, can produce better UML class diagram layouts according to certain layout
aesthetics. However, as stated by Lee et al. [LLY06], the concept of the mental
map is largely ignored by many graph drawing techniques. This finding appears to
hold for automatic UML class diagram layout algorithms as well because only one
approach exists that pays attention to the mental map by applying dynamic graph
layout techniques as described in this section.

4.1.1.1. Diagram layout aesthetics criteria, diagram comprehension and
semantic information embedded in the layout of diagrams

Several studies evaluate different types of class diagram layouts to reason about
which layout styles result in diagrams that are easy to understand. Purchase et al.
conducted usability studies on software engineering documents, for instance, UML
diagrams and entity-relationship diagrams [PCM+01, PCA02], and in [WPCM02]
and [Pur04] they present the results of experiments with computer science students
on the perception of diagrams as well as a number of metrics for diagram layout
aesthetic criteria originating from graph drawing. The studies aim to identify the
aesthetic criteria that are most important for the visualisation of diagrams with

97

4.1 Automatic diagram layout and additional semantic information conveyed
through the layout of diagrams

respect to the extent to which the aesthetics produce diagrams that are easy for
human readers to understand. Subjects were asked to perform comprehension tasks
on the same UML class diagram laid out with different aesthetic emphases. The res-
ults reveal that modellers preferred diagrams with fewer bends and crosses, shorter
edge lengths and an orthogonal structure. However, the authors of these studies
state that the semantics of the diagram are not taken into account by automatic
diagram layout algorithms. They state that there are additional semantic aspects
that have to be considered when layout algorithms are used for domain-specific ap-
proaches [PMCC01]. Ware et al. report that most of the layout aesthetics criteria
have not been validated by empirical studies. Many criteria discussed in the graph
drawing community refer to general graphs where edges are lines and vertices are
points which do not bear any domain/semantic meaning [WPCM02].

As discussed in Section 2.4.3, Eichelberger developed an approach that automatically
lays out UML class diagrams according to certain layout aesthetics [Eic05]. He
states that there are no commonly agreed criteria to describe the features necessary
to support for diagram readability. Eiglsperger et al. [EKS03] conclude that it is
not clear which is the most important aesthetic criterion for class diagram layouts.
Aesthetic criteria regarding edge crossing and the number of bends of an edge seem
to play an important role. They state that the importance of aesthetic criteria
that lay out (model element) hierarchies in a certain direction, for instance, class
inheritance hierarchies in vertical direction, and position diagram symbols in an
orthogonal manner is not backed by the above studies, partially because they have
not been investigated. Because the situation seems to be unclear they advocate for
an automatic layout algorithm for UML class diagrams that is flexible enough to let
the modeller choose the aesthetic criterion to optimize diagram layouts for.

4.1.1.2. Automatic layout of multiple diagrams

Different UML class diagrams are usually used to either display different parts of a
model at the same level of abstraction, for instance, several diagrams represent the
functional elements of a system, or to display the system at different abstraction
levels, for example, diagrams representing high-level views on the domain analysis
level and low-level diagrams presenting functional and non-functional elements on
the implementation level. UML class models per se do not contain enough informa-
tion to automatically decide which model elements should be displayed in separate
diagrams. Dividing UML class models into several diagrams when they are gener-

98

4.1 Automatic diagram layout and additional semantic information conveyed
through the layout of diagrams

ated using an automated approach can only be based on model information. For
instance, a diagram could be generated for each UML package and its classes. How-
ever, automatic approaches cannot decide when new diagrams should be created for
a certain group of elements that should be visualised in a separate diagram. This
information would only be known to humans that are aware of the semantic of these
elements in the application domain and who can also reason about a diagram’s lay-
out complexity. As reported by Ware et al., studies on diagram layout aesthetics
and comprehension focus only on one diagram per evaluation presuming that one
diagram is sufficient to represent the static structure of a software system. Also,
automatic UML class diagram layout algorithms are developed with only one dia-
gram in mind which then visualises all the model elements [WPCM02]. However,
as the pilot study confirms, OMOS models consist of a (large) number of diagrams
(see 3.6). Therefore, this drawback of existing automatic layout approaches has to
be taken into account when deciding about its suitability for the envisaged approach
to collaborative modelling with OMOS models.

4.1.2. Conclusions on visual UML class modelling and parallel software
development

Ohst et al. [OWK03a, OWK03b] argue that state-of-the-art software development
processes are often based on models, but concepts and tools that allow to efficiently
include models into distributed development processes are not as evolved as required.
The problem is that models are usually represented using diagrammatic notations
and that the respective diagrams are created manually. Most tools that support
distributed software development only consider textual software artefacts like source
code. As discussed in Section 2.4, two research approaches support visually merging
UML class models. However, both approaches do not pay the required attention to
UML class diagrams when merging them. One approach creates a kind of overlay
of the two diagram versions to be merged and, therefore, imposes the effort of
untangling overlapping diagram symbols on the user. The other approach uses an
automatic diagram layout approach. When this automatic approach is applied, the
elements of a merged UML class model are laid out according to diagram layout
aesthetics as discussed in Section 4.1.1.1. The original diagram layouts of both
manually created to-be-merged diagram versions are not considered at all when
the new layout is generated. Automatic diagram layout algorithms produces nice
layouts according to aesthetic criteria, but they do not allow to preserve the mental

99

4.1 Automatic diagram layout and additional semantic information conveyed
through the layout of diagrams

map of a diagram when semantic information from the application domain is not
explicitly described/modelled in the model but only expressed by the position and
grouping of model elements, i. e., expressed by the diagram’s layout (see secondary
notation in Section 3.2.3). Thus, when diagram versions that are to be merged were
created manually, automatic diagram layout algorithms are likely to destroy the
meaning of the diagram that users intentionally and implicitly conveyed through
the layout of this diagram. Thus, the user’s mental map (see Section 3.2.4) is
destroyed. Destroying the semantic information conveyed by means of secondary
notation and, thus, destroying the mental map is not desirable because diagrams
have to be relearned after there have been merged.

Using automatic layout algorithms for UML class diagrams has the advantage, that
every diagram of a given model is laid out in the same way. This it the case be-
cause automatic layout algorithms apply rules to decide where diagram symbols
(i. e., vertices for, for instance, classes and packages, and edges and edge bends
for, for instance, association and inheritance relationships) are positioned. Fully
automatic layout algorithms focus on laying out (UML class) diagrams in an aes-
thetically pleasing way based on the elements of the underlying UML model. They
cannot take semantic information from the application domain into account since
this information is not defined in the models. When dealing with evolving models, a
major disadvantage of automatic layout algorithms is that the layout of the revised
model’s diagram can significantly differ from the diagram of the previous model ver-
sion. Thus, the modeller’s mental map of the previous version is destroyed. Hence,
modellers are forced to spend a lot of effort relearning the newly laid out diagrams.
Even worse, the semantic information conveyed by the diagram’s layout is lost since
it is not formally defined in the model itself and thus cannot be taken into account
by automatic layout approaches.

These drawbacks caused the initial decline of automatic diagram layout by the Bosch
engineers (as discussed in Section 3.1). The additional semantic information ex-
pressed through the layout of their OMOS diagrams could not be taken into account
by automatic layout approaches and was lost when the models changed and, as a
consequence, diagrams were automatically laid out again.

4.1.2.1. Summary

To summarise, the following conclusions regarding automatic diagram layout are
drawn from the findings of pilot study presented in the previous chapter and the

100

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

research literature discussed in this section:

1. Currently available (UML) model merge approaches and tools do not provide
viable solutions for enabling parallel work on visual models which convey ad-
ditional semantic information through the layout of their diagrams [Men02,
OWK03a, OWK03b].

2. Conventional approaches to automatic (UML class) diagram layout are not
a viable solution to parallel evolution of OMOS models because they cannot
take into account the additional information conveyed only through the layout
of the models’ diagrams. Automatic diagram layout algorithms are based on
layout aesthetics and information solely defined by the model underlying the
diagrams. However, the additional information conveyed by OMOS diagrams
is not described by means of model elements but only by means of secondary
notation. As stated by Larkin & Simon [LS87, pp. 2] and, as confirmed by
the pilot study, the visually grouping and proximity of diagram symbols play
important roles for the modellers’ understanding of diagrams. When diagrams
are laid out fully automatically, this (solely visually conveyed) information is
likely to be lost and the mental map is likely to be destroyed. Besides the draw-
back of losing additional semantic meaning conveyed through the diagram’s
layout, the mental map would have to be relearned after OMOS models have
been merged. Therefore, laying out (evolving) diagrams (depicting evolving
models) in a fully automatic manner will not work.

4.2. General principles on which any software should be
based to provide a solution for working in parallel with
OMOS models

This sections defines the principles and objectives on which any software should
be based to provide a solution for the problem of working in parallel with OMOS
models.

4.2.1. Motivation: the old sequential, non-parallel approach to working
with OMOS models

As discussed in 1.2.1 and Section 2.2.2, each iteration of Bosch’s sequential, i. e.
non-parallel, software development approach works as follows:

101

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

1. Firstly, the objectives of the iteration are defined, i. e., the requirements (func-
tionalities) to be realised by the OMOS-based software system under develop-
ment are defined.

2. Secondly, in order to implement the requirements, the (already existing) OMOS
model (or models) belonging to this software system has to be developed fur-
ther, i. e., functionality is added to, modified in, or removed from this model.
Each iteration is based on the previous iteration’s model (or models). This
model provides the basis for implementing the new iteration’s requirements.

3. Thirdly, since the OMOS software development approach is a model-driven
one, models are modified first, source code is then automatically generated
from these models and implementation details which could not be derived
from the model are manually added to the generated source code.

The existing OMOS tooling does not allow for collaborative modelling; only one
team member can work on a OMOS model at a time. Hence, the OMOS tools
do not support parallel modelling, only sequential, i. e. one modeller at a time,
modelling is supported. One of the main objectives of this research therefore is to
enable parallel work on OMOS models. Since the OMOS development team was
located at different sites (in Hungary and Germany), this will allow the two groups
of the team to work in parallel on the same models.

4.2.2. Optimistic, merge-based version control supporting parallel work
on OMOS models

As discussed in Section 3.3.2.2, Bosch’s projects for electronic control unit software
realised with OMOS tend to consist of only few, but large models. Therefore, a
pessimistic collaboration approach (introduced in Section 2.3.1) is not an option
for enabling collaborative work with OMOS models. With the pessimistic approach
model-based collaboration is enabled by granting exclusive access to a certain model
to only one modeller at a time, locking the model for all other modellers. With the
pessimistic approach, the need for merging different versions of a model and for
dealing with conflicts (during the merge) does not exist since models can only be
modified by one modeller at a time. However, locking a whole model to prevent
modifications by more than one modeller does not offer any advantages regarding
collaborative OMOS modelling. Hence, it does not provide any benefits with respect
to more than one modeller working (on several tasks) in parallel on the same model.

102

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

As discussed in Section 2.3.4, model partitioning is another approach supporting
parallel work (on the same model). It is related to the pessimistic approach. With
this approach exclusive access to parts of a model is granted to only one modeller
at a time by partitioning models on a per-element basis and granting exclusive
modification (i. e., write) access to each model element to only one modeller at a time
— locking these elements to prevent concurrent modifications by other modellers.

However, as explained in Section 2.3.4, locking single model elements is in general not
very useful since it does not allow a modeller to accomplish a reasonable modelling
task — such a task usually involves more than one model element at a time. For
instance, the element’s container has to be locked, too, in order to prevent other
modellers from deleting the container element and thus its sub-elements. The need
for locking additional model elements to allow a modeller to modify some model
element is likely to result in large parts of a model being locked by a certain modeller.
However, granting exclusive access to a large part of a model to only a single modeller
contradicts the benefits of collaborative modelling — even more so because the same
OMOS modeller usually works on different parts of a OMOS model and thus needs
to access and modify various model elements at a time.

As explained above and as further discussed in Section 2.3.4, pessimistic (locking-
based) collaboration approaches do not provide any advantages for the envisaged
approach for working in parallel with OMOS models. As explained further in
Chapter 2, each modeller usually works only on a subset of the new requirements to
be fulfilled by a OMOS model. Each of these evolved models, therefore, represents
only a subset of the (desired) model which fulfils all the requirements. More than
one modeller should hence be able to modify the same model at the same time.
The advantage of working on the same model — as opposed to accomplishing the
different tasks in separate models — is that existing model elements can be refer-
enced, modified, or even deleted — whereas with separate models only referencing
existing elements would be possible. Each task is usually different from the tasks
of other modellers working on the same model at the same time. It follows, that,
to accomplish a certain modelling task, each modeller should, therefore, be able to
work independently from any other modellers working on the same OMOS model
(i. e., be able to independently modify his/her version of this model). Furthermore,
the collaboration approach should not require modelling tools to be connected via
some kind of computer network. The necessity for software tools to have access to
company networks is often difficult to justify (at large companies like Bosch) be-

103

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

cause of computer security issues and firewall restrictions. It follows that the most
suitable approach for collaboratively working with OMOS models is, therefore, the
optimistic collaboration approach discussed in Section 2.3.1.

Based on the findings from Chapter 2 and Chapter 3, the following principles and
objectives of a parallel and, because of teams being split across different sites, distrib-
uted (also called multi-site) modelling approach for OMOS are defined: Following
the established OMOS (model-based) development approach, each development it-
eration should be based on the OMOS model (or models) created in the previous
iteration since this model provides the basis for realising new requirements. In or-
der to allow several modellers to work in parallel on the same OMOS model, each
modeller should be able to work on its own copy of this model. Since it provides the
basis for the updated models (being worked on in parallel), it is called the common
ancestor model. The updated models are called evolved models. Each evolved model
realises a part of the requirements defined for the current development iteration. All
evolved models combined realise all the iteration’s requirements.

After the desired requirements have been realised, the evolved models have to be
combined into one model again. This is necessary because the model is only com-
plete, i. e., fulfils all requirements, after the parallel work of all modellers has been
brought back together into a single model. This model then serves as the basis
(i. e. common ancestor) for the next (collaborative and distributed) development
iteration.

The process of combining both evolved models into one model is called merging
(see Section 2.3.2). It is one of the main topics discussed by this research (see
Section 1.2.2). The result of merging both evolved models is called the merged
model.

Since evolved models are modified independently from each other, the same model
elements might have been modified in different and potentially contradicting ways.
For instance, an UML class called “A” in the common ancestor model might have
been renamed “A1” in one evolved model and “A2” in another, or an element could
have been modified in one evolved model but deleted in another. For instance,
UML class “A” might have been deleted in one evolved model, but a new operation
“foobar” may be added to “A” in the other model. These situations are called model
merge conflicts. They usually cannot be solved automatically by the merge tool
since it cannot decide which element version to use in the merged model [CW98].
Hence, modellers have to manually resolve conflicts (see Section 2.3.2).

104

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

The approaches to merging electronic documents in general and UML models in
particular discussed in Section 2.3.2 merge two evolved models (originating from the
same common ancestor model) at a time. While it would technically be feasible
to merge more than two evolved models at the same time, however, this is likely
to make the merge process too complex for users and prone to errors — especially
when conflicts have to be resolved. Users would then have to reason about changes
made to more than two evolved models in order to resolve conflicts. That is why the
envisaged approach to merging OMOS models has to take only two evolved models
(and their common ancestor) into account.

Given the above assumptions, the envisaged approach for working in parallel with
OMOS models should be based the principles and objectives defined in the remainder
of this section.

4.2.3. Meta-model-based difference and conflict detection and model
merging

The merged model resulting from merging two evolved OMOS models has to be
based on the same meta-model as the evolved models, and all other OMOS models,
namely the UML meta-model (see Section 2.1.2). This guarantees that a merge
model is an ordinary OMOS model (i. e., a UML class model and its class diagrams)
and can be worked on with ordinary OMOS modelling tools.

4.2.3.1. State-based merging

The envisaged approach to OMOS merging should be based on the changes made
to the two to-be-merged evolved model versions in comparison to their common
ancestor model. Each model element’s changes between both versions have to be
determined and merged based on the element’s state. This approach is called state-
based merging [Fei91]. The states of the evolved models must not change during the
process of merging them.

The approach for determining a OMOS model element’s state is defined by the
UML meta-model (see Section 2.1.2) and UML’s meta-meta-model, called meta-
object facility (MOF, see Section 2.1.2.1). The possible state of a OMOS model
element is thus defined by the UML meta-model [Wes91, KWN05]. UML proper-
ties are the meta-model constructs used to define the possible state of instances of

105

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

the respective meta-model elements. For instance, a class (i. e., an instance of the
UML meta-model element Class) has a name attribute property (inherited from
its super class NamedElement which is also defined by the UML meta-model) and
an ownedOperation reference property (representing the operations belonging to a
concrete class). Hence, when two versions of a class are compared (as part of the
OMOS model merge process), the values of their name attribute properties and their
ownedOperation reference properties have to be compared (among other properties).

4.2.3.2. Operation-based merging

In addition to state-based merging, there exists operation-based merging [KTW97].
It is based on the actual operations (user actions) which are performed by a modelling
tool to modify a model according to the tool commands the user executed [RW98].
The operation-based approach requires the modelling tool to create an edit log of
the user’s operations. Therefore, in order to enable model comparison and merging,
modelling tools have to be extended to support the creation of edit logs. In addition
to the technical challenge of such a tool extension, there exists a legal one: it is
not always desirable to record the exact user actions performed to modify a model.
Especially in industrial environments edit logs might not be feasible because they
might disclose intellectual property that companies might want to protect from, for
example, customers which work collaboratively with the company on a model.

4.2.3.3. Identifier-based determination of equivalent model elements

Equivalent to-be-compared and to-be-merged model elements have to be matched
by their identifier. As argued by Ohst et al. [OWK04], identifier-based matching of
equivalent model elements if preferable to similarity-based matching because the lat-
ter might not detect certain model elements as equivalent if, for example, they were
relocated to different container elements. However, the identifier-based approach
has the arguable disadvantage that when model element are added, they are guar-
anteed to have distinct identifiers. When a structurally/semantically identical model
element is added to both evolved models (and thus the different element versions
have different identifiers), two distinct, but semantically identical model elements
will, therefore, be added to the merged model.

However, the advantages of the identifier-based approach far outweigh its disad-
vantages — the disadvantages can, for instance, be mitigated by similarity analysis

106

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

performed for added model elements (which is outside the scope of this research).

4.2.3.4. Consistent merged models

The state of model elements, i. e., the values of their properties can, of course,
only be assigned according to the rules defined by the meta-model of the merged
model. As further explained in Section 6.2.1, a fundamental rule inherent to all
MOF-based meta-models is that each model element (except for the model’s root
element) belongs to a container element. Since this meta-model is based on MOF,
the rules defined by MOF have to be adhered to by the merged model. Therefore, the
process of deciding whether model element changes are conflicting is primarily driven
by the rules defined by MOF [KWN05, Wes10]. The merge approach envisaged for
OMOS models thus has to adhere to the fundamental syntax rules defined by MOF.
However, more complex syntax rules defined by the UML meta-model in addition to
the MOF rules have to be checked by additional tooling (which is outside the scope
of this research). Such tools are usually part of the modelling tools used to create
the UML models. For instance, UML modelling tools usually provide the possibility
to validate a UML model based on the syntax rules defined by the UML standard
(see Section 2.1.2).

4.2.3.5. No meta-model extension or profiling

During the model merge process, change and conflict information have to be as-
sociated with model elements. One possible way to achieve this is extending the
UML meta-model by means of a UML profile (see Section 2.1.2.2) to add change
and conflict information [LWWC11]. Extending the UML meta-model to better
support merging is, however, likely to cause problems because the UML meta-model
is complex, extending it in a way that does not contradict with the rules defined
by the UML standard is only possible by means of UML profiles. However, using a
profile to, for example, support for two classes containing the same operation at the
same time requires extending the model merge tool to be able to deal with those
operations. Therefore, the editing possibilities provided by standard, non-extended
tooling do not work. In addition, model consistency rules defined by the UML
standard cannot be applied to the extension. For instance, applying UML consist-
ency rules for operations will not work for the operation brought into the merged
model by the profile extension because the operation is outside of the scope of the

107

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

consistency rules since it is not part of an ordinary class (due to the container class
conflict). Another example of why UML extensions supporting model merging can
contradict with the UML standard are single-value properties, i. e. attributes or ref-
erences whose multiplicity has an upper bound of one. If such a property is modified
in different ways in both evolved models, it is not possible to assign both values in
the merged model because the property has an upper bound of one. For instance, a
class’s attribute can only have one type. When the type is conflictingly modified in
both evolved models, it is not possible to assign both types to this attribute in the
merged model.

The envisaged approach for merging OMOS models shall, therefore, use the standard
UML meta-model and shall not apply a UML profile for annotating model elements
with change and conflict information.

4.2.4. Automatic creation of the initial merged model

Following the optimistic collaboration approach suggested in this chapter for the to-
be-developed model merge tool, the process of merging concurrently evolved models
consists of two phases [CW98, OWK04]. In the first phase, the model merge tool
automatically creates the initial merged model. Because of merge conflicts, this
model may not be complete. Then, modellers have to solve these conflicts in the
second phase of the merge process.

Regarding the envisaged OMOS model merge tool, the principles and objectives of
the first phase (whose details are further discussed in Section 6.4) are as follows:

1. The merge process has to allow the merging of two evolved models (which
are the result of two modellers independently modifying a common ancestor
model in parallel). For the envisaged approach to merging OMOS models,
this means that, in a first step, the OMOS models should be automatically
merged. As shown in Chapter 3, OMOS models are created in a visual way
using diagrams. Therefore, diagrams as well as the underlying OMOS models
themselves have to be taken into account by the automatic merge approach,
i. e., the underlying UML models and the OMOS (UML class) diagrams de-
picting the model elements should be merged (this step is discussed in detail
in Section 6.4).

2. The merge process should detect all possible types of changes and conflicts.
Therefore, a three-way merge approach has to be used (see Section 2.3.2). The

108

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

common ancestor model hence has to be taken into account in addition to both
to-be-merged evolved models. Non-conflicting and conflicting changes of both
evolved models have to be detected during the merge process. (This step is
discussed in detail in Section 6.3.)

3. Changes made in both to-be-merged evolved models in comparison to their
common ancestor have to be taken into account during the merge process.
The changes of both evolved models should be automatically applied to the
merged model. The merged model should thus represent the union of the
changes of both evolved models (based on their common ancestor).

4. Because of merge conflicts, i. e. conflicting changes, fully automatically mer-
ging the evolved models might not be possible. Conflicting changes cannot
be automatically merged. The merged model resulting from automatically
merging evolved models is therefore called the initial merged model.

5. Conflicting changes should be automatically detected. Non-conflicting changes
of an evolved model should be automatically applied (i. e., accepted) to the
merged model. One could argue that only non-conflicting model elements
should become part of the merged model. This would mean that model ele-
ments which had, for instance only a name conflict, would not be part of the
initial merge model. Since the existence of (non-root) model elements depends
on the existence of their container, all the children of these elements would,
therefore, not be part of the merged model, too, no matter whether they had
merge conflicts or not. This is too restrictive, therefore, a conflict of a property
value that is not the model element’s containment reference should not prevent
the model element from becoming part of the merged model. If a concurrent
modification conflict exists for an attribute property, the ancestor value shall be
used in the merged model to ease manual conflict resolution for modellers. For
instance, if the attribute property was the model element’s name, it is helpful
to modellers if at least the model element’s name from the common ancestor
is presented in the merged model during the conflict resolution phase. This
approach is not useful for reference properties because the referenced model
element from the common ancestor might not exist in the merged model (for
instance, it may have been deleted from both evolved models).

Model and diagram conflicts cannot be resolved automatically, modellers have to
resolve them manually. This is done as part of the conflict resolution process. The
goal of this process is to solve all merge conflicts (in the merged model) and, thereby,

109

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

create a merged OMOS model which does not contain any merge conflicts. The
objectives and principles of the conflict resolution process are explained next.

4.2.5. The need for dedicated model merge tooling

The purpose of this section is to discuss how to cope with merge scenarios that
may or may not be conflicting and, if they are conflicting, may thus need user
interaction. This discussion is mainly related to the need of the model merge tool to
automatically accept certain types of changes. The main issue with automatically
accepting changes is that it is unfeasible to define a meta-model-based approach that
is able to decide (1) which changes are not conflicting, and can thus be automatically
accepted (and applied to the merged model), and (2) which changes are indeed
conflicting, and thus need to be solved manually by modellers (as will be explained
next).

For individual changes of single model element properties, it might seem sensible to
automatically deal with those changes in most cases (provided they are not direct
deletion-modification or concurrent-modification conflicts). For instance, individual
attribute property value changes, like changing the name of an element, or reference
property value changes, such as an element referencing new elements or not anymore
referencing certain elements. When reasoning about those changes in isolation, it is
obvious to conclude whether some change is conflicting or not: changing an element’s
name to “X” in one evolved model and to “Y” in the other are of course conflicting
changes. However, determining conflicting changes becomes less obvious in a model-
wide context. Should, for instance, adding (in one evolved model) a reference called
“myA” to an element “A” be regarded as conflicting with “A” being renamed to “X”
(in another evolved model)? It can be argued that these changes are semantically
conflicting because the expectation that an element named “A” is being referenced
is no longer met. However, there might be other situations where it is acceptable
to change “A”’s name (to “X” in one evolved model) and reference it as “myA”
(in another evolved model), and, thus, accept both changes in the merge model.
Those simple examples already demonstrate that distinguishing between conflicting
and non-conflicting changes is not a black or white, one-size-fits-all decision, but is
something that has to be decided on a case-by-case basis by domain experts, not
automatically by the merge tool. The merge tool can only detect structural conflicts
based on the meta-model, however, it cannot detect semantic conflicts.

The examples above make it clear that, in isolation, most changes appear to be easily

110

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

and automatically decidable, however, when reasoning about them in a broader,
model-wide context they no longer appear to be so easily decidable. There are, of
course, changes that are easy to decide upon: changing the very same element in
different ways (in two model versions) is certainly a conflict or deleting an element
in one version and modifying it in the other is also a conflict. However, there are
other cases which are not as easy to decide and should thus not be dealt with
purely automatically. There simply is no silver bullet. Hence modellers (domain
experts) have to be involved in the merge process. A dedicated model merge tool
is, therefore, required — it should guide modellers through the merge process by
visually communicating how elements changed and how they are connected to each
other to allow modellers to reason about changes and their impacts and ultimately
decide which changes to accept or reject.

4.2.6. Dealing with model and diagram changes and merge conflicts

After the initial merged model has been automatically created, modellers have to
manually solve merge conflicts (which shall be automatically detected when the ini-
tial merged is created). During the conflict resolution phase of the merge process,
in order to resolve merge conflicts, modellers first of all have to understand why
conflicts exist, i. e., they have to understand which and for what reason contradict-
ing model element changes (made in both evolved models) are causing conflicts.
Therefore, information about changes and conflicts have to be communicated to the
modellers.

The merged OMOS model should be presented to modellers in a similar fashion
as provided by the modelling tool used to create the (original) models. For the
envisaged approach, and for merging UML models in general, this means that the
original diagrammatic representation of models has to be used for the merge tool
too. The OMOS model merge tool should provide a similar user experience as
the modelling tool used to created OMOS models in the first place. To resolve
merge conflicts, the merge tool should, therefore, allow modellers to work on the
same level of abstraction and visualisation as the modelling tool used to create the
original models provides. With respect to merging OMOS models, it follows that
modellers should be able work with the merge model in a graphical way through
OMOS diagrams and in a structural way by means of a model hierarchy tree (see
Section 3.6).

111

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

Regarding conflict resolution, the envisaged approach to collaborative OMOS mod-
elling has to be efficient in order to provide any advantages compared to the existing
sequential single-model approach. In order to ease the conflict resolution process,
model elements and diagram symbols should be annotated with change and con-
flict information to allow modellers to reason about non-conflicting and conflict-
ing changes made in both evolved models (in comparison to the common ancestor
model). The merge tool should communicate changes and conflicts to modellers
by visualising them as part of the respective model elements and diagram symbols.
As further discussed in Chapter 6, the visualisation should be done for the evolved
models and in the common ancestor model, but not in the merged model, because,
due to merge conflicts, the latter might not contain all model elements and is likely
to change in the process of resolving merge conflicts. It follows that the ancestor
model, both evolved models and the merged model have to be accessible to modellers
during the conflict resolution process. These models have to be taken into account
and have to be presented to modellers during the conflict resolution process.

In order for modellers to be able to efficiently reason about conflicts and solve them,
conflicts have to be presented to the modellers in a way that is familiar to them from
the model creation process which took place before the models were merged. Most
importantly, conflicts have to be presented in the original diagrammatic modelling
context. Conflicts exist because the to-be-merged evolved models were concurrently
modified in conflicting ways. In order for modellers to solve conflicts, the conflicting
modifications have to be communicated to them so they can reason about possible
ways to solve the conflicts. These modifications therefore have to be brought to the
modellers’ attention during the conflict resolution phase. Resolving merge conflicts
then means that modellers have to decide which of the conflicting changes are ap-
plied to the merged model. For instance, if an operation was moved to different
(container) classes in both evolved models, the modeller has to decide to which class
the operation belongs in the merged model. Modellers could choose between one of
the two (container) classes used in the evolved models. However, they might also
decide to leave the operation at the (container) class it belonged to in the common
ancestor model (in case the container class still exists in the merged model), or they
might even choose for the operation to be contained by a different class (i. e., a class
which was not the operation’s container neither in any of the evolved models nor in
the common ancestor model).

It is, therefore, not sufficient to provide, for instance, a textual description of changes

112

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

and conflicts, and let modellers resolve them by means of an ordinary UML mod-
elling tool — i. e., the kind of “collaborative modelling” approach implemented by
most commercial UML modelling tools (see Section 2.4). Instead, dedicated tool-
ing is required which supports annotating model and diagram elements with change
and conflict information. In addition to visualising change and conflict information
in an appropriate graphical manner in the actual diagrammatic modelling context
modellers are familiar with, modellers have to be supported by a merge tool during
the conflict resolution process.

4.2.6.1. Standard model visualisation

Adding a model element twice in a model and/or a diagram to visualise changes and
conflicts as suggested by other research (for instance, [LWWC11]) discussed in 4.2.3
raises the question of how to present its sub-elements. For instance, if a package was
conflictingly moved to other container packages in both evolved models, then the
moved package will have to be shown at both of its container packages. Should the
packages sub-elements, for instance, its classes and sub-packages, be displayed for
both variants of the package, which would mean that they are displayed twice? What
if a sub-element was added or removed in one of the evolved models, is it then only
displayed or not displayed as a sub-element of the respective variant of the package
resulting from the respective evolved model? It can even be argued that the relocated
package should also be displayed as part of the package it belonged to in the common
ancestor version (and from which it was moved away in both evolved models). Doing
so would display the same package at three different container packages. Another
question then is what if the old container package in the common ancestor was (non-
conflictingly) deleted from both evolved models, should the deleted element become
part of the merged model again in order to display the sub-package? The same
question holds for changes of the package itself. For instance, the package could be
renamed in the evolved models. Which name is used for displaying the variants of the
package? All those unanswered questions demonstrate that visualising (conflicting)
model modifications in the merged model does not work because, in order for it to
do so, elements from four different models (the common ancestor, the two to-be-
merged models, and the merged model with conflicts) would have to be presented as
a single model element. Furthermore, modifications from two evolved models would
have to be visualised for this one element too. Therefore, a different approach to
visualise and deal with merge conflicts and the involved models has to be used. This

113

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

approach should work as follows:

All four models (the common ancestor, the two to-be-merged models, and the merged
model) involved in the merge processes should be part of the conflict resolution
process. They should be presented to modellers in the same visual way they are
familiar with from creating OMOS models, i. e, as OMOS diagrams and model trees.
The common ancestor and the two to-be-merged models should be used to visualise
model changes and conflicts, therefore, model elements should be visually annotated
with change and conflict information. Providing access to all three original models is
beneficial because it allows modellers to inspect the complete models. The common
ancestor model can be investigated to reason about the “old” state of the model,
both evolved models can be investigated to understand how both models changed
in comparison to the common ancestor and which changes are conflicting. Because
the common ancestor model is part of the conflict resolution phase, model elements
which were deleted in one or both evolved models can nonetheless be visualised (as
part of the common ancestor model) and annotated with information about the
deletion changes enabling modellers to learn about model element deletions.

As defined in Section 4.2.3, the models should not be extended in any way, they
should be ordinary UML models. In order to resolve conflicts, the modeller should
only be allowed to modify the merged model, the common ancestor and the two
to-be-merged models must not be modified.

The same approach should be taken for visualising changes and conflicts of diagram
symbols: All three original OMOS diagrams (i. e., the common ancestor and the two
evolved diagrams) and the merged diagram have to be presented to the modellers
in the OMOS merge tool. The three original diagram versions (of every OMOS
diagram) should be annotated with change and conflict information. However, the
merged diagram should not be annotated with such information.

Since the information presented to modellers is taken from the models, this informa-
tion is based on the models’ state, i. e., the values of their elements’ properties. Since
all change and conflict information (regarding model/diagram merging) are based
on the state too (see Section 4.2.3), it is possible for this information to become part
of a model’s or diagram’s visualisation because change and conflict information are
based on the properties of the model elements and diagram symbols.

114

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

4.2.6.2. Visualising changes and conflicts in OMOS diagrams

All diagrams changes have to be communicated to modellers in order to allow them
to reason about what changed in a diagram in both its evolved versions, why these
changes are conflicting (if they are), and how to resolve the conflicts. As explained
in the previous section, change and conflict information have to be visualised in the
context of the changed model elements and diagram symbols directly in the original
diagrams, not in the merged diagram (and model) because the elements might not
exist in the merged diagram (and model). Like the merged model’s elements, the
merged diagram’s symbols should thus not be annotated with any change or conflict
information.

The conflict resolution phase should, therefore, involve four versions of each diagram
(provided the diagram was not added or deleted): the three original diagram versions
(the common ancestor and the two evolved diagrams) and the merged diagram. The
ancestor diagram of course depicts the diagram as it was before the two evolved
diagram version were modified in parallel. Deleted symbols should be annotated in
the ancestor diagram version because they do not exist in the evolved diagram(s) in
which they were deleted. If the diagram symbol deletion is in conflict with changes
made to the symbol in the other evolved diagram version, both symbols should then
be annotated with conflict information.

4.2.6.3. Visualising UML model element changes and conflicts directly at the
respective diagram symbols

Symbols of OMOS diagrams depict elements of the underlying UML model. There-
fore, changes and conflicts of the underlying UML elements should be also visualised
as part of the respective diagram symbols. It should be possible for modellers to
visually distinguish between diagram symbol changes and conflicts and model ele-
ment changes and conflicts. This allows modellers to get direct visual feedback for
model element changes and conflicts directly in the diagrams depicting those model
elements and allows them to distinguish between changes and conflicts affecting dia-
gram symbols and those affecting UML model elements. For instance, in addition
to presenting its diagram changes and conflicts, a class symbol should be visually
annotated with information about changes and conflicts of its underlying UML class
as well as the class’s attributes and operations displayed as part of the class symbol.

115

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

4.2.6.4. Resolving merge conflicts and working with the merged model

Modellers have to resolve merge conflicts by either accepting or rejecting the re-
spective model changes which caused the conflicts. Conflicts have to be resolved in
the merged model. Modellers should not be required to modify the evolved mod-
els to resolve merge conflicts. Therefore, changes should by applied to the merged
model, not to the evolved models in which the changes were made. The common
ancestor model and both evolved models involved in the merge process have to be
read-only models, they shall (only) be used to visualise the previous model versions
(from which the merged model has been created) and their changes and conflicts.

The merge tool should automatically annotate resolved conflicts as “resolved” to
visually indicate to modellers that the conflicts have already been resolved. Ac-
cepting or rejecting a change (from one evolved model) which conflicts with other
changes from the other evolved model should automatically reject or accept the con-
flicting change. When modellers accept or reject conflicting changes, their resolution
state should automatically become “resolved.” If modellers decide that none of the
conflicting changes can be accepted, is has to be possible for modellers to manually
set a conflict’s resolution state to “resolved”, both conflicting changes then have to
be automatically rejected.

The conflict resolution process is mainly, but not only, based on accepting and
rejecting conflicting changes. It should also be possible for modellers to accept or
reject non-conflicting changes. This is necessary because modellers might want to
reject a certain change and maybe accept it later again (as part of the same model
merge process) in case the rejection turned out to be the wrong decision. Modellers
might also want to reject changes because they are semantically (not syntactically)
conflicting, i. e., a certain change does not reflect the desired semantics and should,
therefore, be rejected.

4.2.6.5. Visualising changes and conflicts in a model tree

In addition to diagrammatic modelling capabilities, UML modelling tools usually
provide some kind of model (hierarchy) tree which visualises a model’s (contain-
ment) hierarchy and provides a textual overview of the model (in addition to the
information depicted in diagrams) in a condensed form. For example, the visibility
of a class’s attributes is presented as a “+” or “-” sign in a diagram, but the model
tree presents it as “visibility: public” or “visibility: private.” Since it displays all

116

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

model elements, a model tree provides a consolidated view on the model. This is
usually not the case for a diagram; it only depicts a sub-set of a model’s elements.
For example, the model tree presents all association and inheritance relations of a
class, while a certain diagram usually only depicts some of these relations.

In addition to visualising changes and conflicts of OMOS model elements in dia-
grams, they should be presented in the respective (common ancestor or evolved
model’s) model tree. A model tree should be shown for each of the four models
involved in the merge process (i. e., the common ancestor, the two evolved models,
and the merged model). The model tree should visualise the elements of a model ac-
cording to their containment hierarchy (starting with the root model element, going
to packages, classes, attributes, operations and so on). The ancestor and evolved
models’ trees should display change and conflict information and allow modellers to
deal with them (i. e., accept or reject them).

To allow modellers to understand the impact of accepting or rejecting changes, for
each model element the model tree should visualise those model elements which ref-
erence it (by means of reference properties). Information of the referencing elements’
changes and conflicts (if they exist) including their acceptance and resolution state
should be visualised too.

4.2.6.6. Directly modifying the merged model and diagrams

Modellers should be able to modify the merged model and its diagrams in any way
during the conflict resolution phase of the model merge process. It should be possible
for modellers to create new model elements and diagram symbols and to modify or
delete existing ones. This will allow modellers to resolve merge conflicts in a more
flexible way than would be possible by merely accepting or rejecting conflicting
changes.

4.2.7. Version control system

Realising the principles and objectives of the collaborative OMOS modelling ap-
proach defined in the previous sections does not require implementing a complete
version control system (VCS). The principles and objectives rather outline the core
building blocks of a VCS, i. e., differencing, merging, conflict detection and resol-
ution. A collaboration approach can be based on a VCS, but this is not strictly

117

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

required [CW98]. With a VCS, a new version of a document can be integrated into
the shared repository at any time. This (modified) version then becomes the newest
version in the repository. For collaborative approaches not based on a VCS, mer-
ging (supported by a merge tool) different document versions has to be initialised
manually [Leb95]. The approach envisaged for working collaboratively with OMOS
models should therefore be based on copying complete models (including their dia-
grams) between modellers in order to distribute them to allow modellers to work in
parallel on (the copies) of the same models.

4.2.8. Summary

To summarise, the collaborative modelling approach envisaged for OMOS should be
based on the following principles and objectives (and take the following issues into
account):

1. Optimistic, merge-based collaboration approach: The approach for enabling
parallel work on OMOS models has to be an optimistic approach, i. e., it
has to allow more than one modeller to work one the same OMOS model in
parallel and has to allow for merging the concurrently modified models (see
Section 2.3). Because of the optimistic approach, copies of a model (including
the diagrams representing it) can be modified independently by more than
one modeller in parallel without affecting each other or limiting the possible
ways of modifying a model. In order to arrive again at a single model which
represents the combination of models which evolved in parallel, they have to
be merged into this single model. The merge process should allow merging two
evolved models (originating from the same common ancestor model) at a time.
The merge process (as a result of which the merged model is created) should
be performed automatically by a computer program, called model merge tool,
to avoid the repetitive and error-prone task of manually creating the merged
model from the two evolved models.

2. Automatic creation of the initial merged model and change and conflict de-
tection: The merge process should be as automatic as possible. Thus, the
initial merge model and its diagrams have to be created automatically. All
non-conflicting changes of both to-be-merged evolved models should be auto-
matically applied to the merged model. Only conflicting changes should have
to be deal with manually by modellers. Merge conflicts can occur during this

118

4.2 General principles on which any software should be based to provide a solution
for working in parallel with OMOS models

merge process. They result from contradicting modifications made in the dif-
ferent, evolved versions of a model. Conflicts have to be detected automatically
(when the initial merged model is created) and need to be dealt with manually
by modellers since a computer program cannot always automatically resolve
them in a meaningful way.

3. State-based merging: The envisaged OMOS merge model approach has to be a
meta-model-based one. It should leverage the information defined by the meta-
model of OMOS models, namely the UML meta-model, to detect changes and
conflicts between OMOS models based on the state of the models’ elements
and diagram symbols.

4. During the merge process, modellers should be able to work with the merged
OMOS model in a similar way they are familiar with from creating the model
in the first place. This means that models should be presented to diagram-
matic way using the same UML class diagram notation used when the models
were created. Accepting and rejecting model and diagram changes and solv-
ing model and diagram merge conflicts should immediately update the merge
model and diagrams so that modellers get direct visual feedback regarding the
resolution of model merge conflicts.

5. When manually resolving merge conflicts during the conflict resolution process,
modellers have to be supported by the model merge tool. Modellers should be
able to resolve merge conflicts directly in the merged model. Merge conflicts
should be resolved in the merged model by accepting and rejecting conflicting
changes. The merge process should support accepting or rejecting conflicting
changes (in order to solve merge conflicts) and should also allow assigning
arbitrary values to conflicting, non-conflicting, and unchanged properties, i. e.,
for properties of any model element and diagram symbol. It should also be
possible to create and delete arbitrary model elements and diagram symbols.

6. The model merge tool should allow modellers to exchange a partially merged
model with other modellers. This will allow a team member to resolve some
of the merge conflicts and leave other conflicts to be resolved by others. It
should therefore be possible to save changes and their acceptance state as well
as conflicts and their resolution state and, of course, the merged model itself
including all the already (automatically and manually) merged changes.

119

4.3 Principles drawn from the pilot study to provide a software-based solution for
working in parallel with OMOS models

4.3. Principles drawn from the pilot study to provide a
software-based solution for working in parallel with
OMOS models

This section defines the principles of a software-based solution (i. e., a merge tool)
for working in parallel with OMOS models which are specifically drawn from the
pilot study on semantic meaning conveyed through the layout of diagrams (see Sec-
tion 3.6).

4.3.1. The need for visually merging OMOS diagrams

As discussed in Section 2.4.2, existing UML modelling tools (which were analysed as
part of this research regarding tool support for parallel modelling) provide solution
methods for merging only UML models, but do not consider (UML class) diagrams
as first class citizens. While these tools support modellers with reason about changes
and conflicts made to UML model elements, they ignore (the) diagrams (visualising
these model elements). It is argued that these approaches do not support efficient
merging of visual models. If one accepts the argument that graphical representations
of models offer advantages to developers, in terms of understandability and so on,
then it follows that tools should allow for the merging of such models based on their
graphical representation.

4.3.1.1. Three-way diagram merging

When two evolved versions of a OMOS model are merged, all diagrams belonging to
both evolved models have to be merged as well. Therefore both evolved versions of
each diagram have to be combined. The resulting merged diagram should apply all
changes made in both evolved diagrams (in comparison to their common ancestor
diagram). Similar to the approach used for merging evolved versions of a UML
model, a three-way merge approach should be used to merge two evolved versions of
a OMOS diagram. As for merging UML model elements, OMOS diagrams should
be merged based on their state and state changes (see Section 4.2.3).

Since the evolved models were independently modified by different modellers, both
evolved diagrams were also modified independently. As discussed in Section 3.4,
OMOS diagrams are manually created free-form (UML class) diagrams. Hence, the

120

4.3 Principles drawn from the pilot study to provide a software-based solution for
working in parallel with OMOS models

content and layout of the same diagram can be changed independently for both
evolved model versions. Even if an evolved diagram was not modified manually, its
layout might have changed because, for instance, the size of class symbols change be-
cause its visualised details (name, operations, attributes, stereotypes etc.) changed
due to modifications of the underlying UML model (these UML model changes might
have been initiated in other diagrams) or because of diagram symbol deletions as
a consequence of deleting their underlying UML model elements. That is why the
merged diagram has to be synthesised based on the changes of both evolved diagrams
(in comparison to their common ancestor diagram).

4.3.1.2. Diagram merge conflicts

Because of the independent evolution of a diagram, diagram merge conflicts can
occur when two evolved versions of a OMOS diagram are merged. They are sim-
ilar to model merge conflicts which can occur when two evolved versions of a OMOS
model (underlying the OMOS diagrams, see Section 4.2.2) are merged. As for model
merge conflicts, these conflicts occur if the same diagram symbol has been modified
in different ways in both evolved diagram versions in comparison to their common
ancestor diagram. Like model merge conflicts, diagram merge conflicts cannot be
dealt with automatically. Therefore, conflicting diagram symbols cannot be auto-
matically integrated into the merged diagram when the initial merged diagram is
automatically created. The conflicts have to be dealt with manually, modellers have
to resolve them during the OMOS merge process.

That is why the merged diagram that is automatically generated by the model
merge tool is called the initial merged diagram. It is called “initial” because, due to
diagram merge conflicts, it might not contain all diagram symbols.

Whilst diagram merge conflicts are discussed in Section 4.3.2, there is another kind
of conflict that has to be taken into account during diagram merging: overlapping
diagram symbols. When two evolved diagrams are merged by simply creating an
overlay of both diagram’s symbols (as suggested by other research discussed in Sec-
tion 2.4.1), symbols may overlap in the merged diagram because different symbols
are placed at similar positions in both evolved diagrams. For instance, Fig. 4.1
shows a cluttered merged diagram with overlapping symbols (taken from an early,
obsolete version of the diagram merge tool developed as part of this research).

As discussed in Chapter 3, OMOS models are built from a large number of class

121

4.3 Principles drawn from the pilot study to provide a software-based solution for
working in parallel with OMOS models

Figure 4.1.: Merged diagram with overlapping symbols.

diagrams (several dozens to about 140) and consist of hundreds of classes (and even
more class symbols). Hence dealing with changes and conflicts has to be efficient
in order for the collaborative approach to provide an advantage over the existing
sequential single-model approach to OMOS modelling. Taking into account that
models consist of more than one diagram thus becomes crucial when merging dia-
gram versions that are produced in a distributed modelling process. Given that
OMOS models consist of a large number of diagrams, burdening modellers with
manually disentangling overlapping diagram symbols during the merge process is
not an option. Merging OMOS diagrams by simply laying out both evolved dia-
grams on top of each other is therefore not a viable approach to merging OMOS
diagrams. The large number of diagrams also rules out fully manual approaches
to diagram merging burdening modellers with manually creating merged diagrams
based on the evolved diagrams.

122

4.3 Principles drawn from the pilot study to provide a software-based solution for
working in parallel with OMOS models

4.3.1.3. The necessity of automatic disentanglement of diagram symbols

To produce readable and usable merged diagrams, overlapping symbols have to be
repositioned (moved) to disentangle them. For instance, if class symbols are moved
in one evolved diagram version, and additional class symbols are added in close
visual proximity of these class symbols (at their old positions) in the other evolved
diagram version, the added symbols will not be positioned in close visual proximity
in the merged diagram because the relocated class symbol will be positioned at its
new position (taken from the evolved diagram version in which it was moved) and
the added class symbols will be positioned at the (old) position (taken from the
other evolved diagram version in which the diagram symbol was not moved).

Given that neither manual merging nor the simplistic “one diagram on top of the
other” diagram merge approach is feasible, the only remaining option then is to auto-
matically merge diagrams in a way that automatically yields disentangled diagrams.
In order to disentangle overlapping diagram symbols, the layout of a merged dia-
gram has to be automatically modified to allow for merging both evolved diagrams
in an efficient and uncluttered manner.

Section 4.3.3 will provide a more detailed analysis of the issue of automatically
rearranging the symbols of merged diagrams in a meaning-preserving manner.

4.3.2. Detecting and dealing with meaning-related diagram merge
conflicts

Diagram merge conflicts occur if the same diagram symbol is modified in different
ways in both evolved diagram versions. The most fundamental properties of diagram
symbols are their position and size. If a symbol is moved by just one pixel in opposite
directions in both evolved diagrams, a diagram merge conflicts occurs since a merge
tool can no longer automatically decide which symbol position to choose for the
merged diagram. Conflicts can also occur if the size of a symbol changes in different
ways in both evolved diagrams.

Diagram merge conflicts would have to be resolved manually by modellers. It is,
however, argued that this particular type of conflicts should not have to be solved
manually. Taking the large number of OMOS diagrams constituting a OMOS model
into account, it becomes clear that manually resolving such basic layout issues should
not be burdened on modellers. Besides the number of diagrams there is another

123

4.3 Principles drawn from the pilot study to provide a software-based solution for
working in parallel with OMOS models

reason why modellers should not have to deal manually with such layout issues: a
symbol’s visual context does not change if the symbol is moved by a few pixels or if its
size changes. As identified by the pilot study, modellers perceive the visual context
of a class symbol as the meaning it conveys in a diagram. This context hence has to
be taken into account for determining “real” diagram merge conflicts. Such conflicts
occur if a class symbol’s visual context was changed in both evolved diagrams in
different ways. Based on the findings from the pilot study regarding addition of
semantic meaning conveyed through the layout of diagrams, contradicting changes
of a class symbol’s visual context occur if modellers relocate it to a different group
of class symbols or change the symbol’s order within a group (see Section 3.5).

Like overlapping diagram symbols, which can appear when evolved OMOS diagrams
are merged (discussed in 4.3.1), diagram merge conflicts for which a symbol’s visual
context does not change are not considered “real” diagram merge conflicts. Overlap-
ping diagram symbols and layout conflicts related to contradicting symbol positions
or sizes are therefore not referred to as diagram merge conflicts. Modellers should
not have to deal with them manually. They should be resolved automatically.

The kind of diagram merge conflict that cannot be dealt with automatically are
those for which a symbol’s visual context has indeed changed in different ways in
both evolved diagram versions. Modellers have to manually resolve these conflicts
since they reflect changes in the semantic meaning conveyed through the layout of
the respective class symbols. The envisaged approach for merging OMOS diagrams
hence has to detect and differentiate between automatically resolvable layout issues
(overlapping symbols and layout changes which do not alter a class symbol’s visual
context) and real diagram merge conflicts resulting from changing the visual context
of class symbols.

Ideally, diagram symbol modifications that lead to irrelevant diagram conflicts could
be avoided in the original (to-be-merged) evolved diagrams — possibly by allowing
modellers to explicitly express meaning in diagrams, not jut through their layout
by means of secondary notation. Such an approach would allow for automatically
detecting diagram modifications which alter the visual context of class symbols (be-
sides from adding or removing class and connection symbols) and would, therefore,
ease the (diagram) merge process.

124

4.3 Principles drawn from the pilot study to provide a software-based solution for
working in parallel with OMOS models

4.3.3. Meaning-preserving diagram merging

As identified by the pilot study in Chapter 3, diagrams are of crucial importance
for the OMOS approach because OMOS models are constructed by creating class
diagrams which convey additional (but informal) meaning through their layout. As
demonstrated by the pilot study, OMOS modellers make use of grouping and or-
dering of class symbols to convey semantic meaning through the layout of OMOS
diagrams. The visual context of a class symbol is chosen by modellers to convey
this additional semantic meaning through the diagram’s layout. The semantic in-
formation is important for modellers since it is part of their mental map of a OMOS
diagram (see Section 3.2.4). It follows that groupings and orderings of class symbols
have to be preserved when symbols are repositioned as part of an automatic OMOS
diagram merge process (as asked for in the previous section). Therefore, when one
class symbols is repositioned, the other class symbols that belong to the same visual
context might have be repositioned as well to preserve this context and the visual
relations of the context’s class symbols.

Class symbols are the most important diagram symbols modellers focus on when
creating diagrams, the process when the modeller’s mental map of this diagram
is established (see Section 3.2.4). They, therefore, are the most important diagram
elements during diagram merge process, too, with respect to preserving both evolved
diagrams’ mental maps in the merged diagram. The layout (i. e. the visual contexts)
of class symbols (of evolved diagrams), therefore, has be be preserved as much as
possible when diagrams are merged.

When diagram symbols are moved from their original (evolved diagram’s) position
to a new position during the disentanglement, the mental map (see Section 3.2.4)
of the diagram has to be taken into account. A diagram’s mental map is important
because (as stated by other research discussed in Section 3.2.4 and as confirmed
by the pilot study’s results provided in Section 3.6) the layout of OMOS diagrams
conveys inherent semantic meaning. This semantic meaning must not be lost when
diagrams are merged. However, this meaning is not formally defined by means
of model or diagram data (i. e., model element or diagram symbol properties), it
is only conveyed through a diagram’s layout by means of secondary notation (see
Section 3.2.3), i. e., by the symbols’ visual context.

The layout of connection symbols (representing inheritance, composition, and as-
sociations relations) does not bear domain-specific information as the pilot study

125

4.3 Principles drawn from the pilot study to provide a software-based solution for
working in parallel with OMOS models

showed (see Section 3.6). The preservation of the layout of connections is, therefore,
not strictly required when diagrams are merged.

4.3.4. Summary

To summarise, with respect to the findings drawn from the pilot study and from
the research literature, the envisaged collaborative modelling approach for merging
OMOS models should be based on the following principles and objectives:

1. The diagrams of the to-be-merged OMOS models have to be taken into account
by any approach to visually merging OMOS models. It is not sufficient to only
merge OMOS models without considering their graphical representations, i. e.
the diagrams.

2. As identified by the pilot study (see Chapter 3), the following diagram symbols
are used for OMOS diagrams: classes, inheritance, association and composition
symbols (depicting the respective UML model elements)23. They have to be
taken into account by any OMOS diagram merge approach. The layout of to-
be-merged diagrams is important for modellers as it conveys domain meaning.
The pilot study also identified that class symbols are those symbols which
convey additional semantic meaning through their layout.

3. During the merge process, diagram merge conflicts (i. e., conflicts related to
graphical properties of diagram symbols) have to be considered in addition to
conflicts resulting from model modifications. However, modellers should only
be required to resolve semantically meaningful diagram conflicts. Diagram
merge conflicts should, therefore, only be brought to the modeller’s attention if
they are “real”, meaningful conflicts, i. e., if the visual context of a class symbol
was changed in contradicting ways in both evolved diagram versions. Modellers
should not have to deal with basic layout issues (i. e., overlapping symbols and

2The envisaged approach to visually merging OMOS models does not have to deal with package
assignment diagrams (discussed in Section 3.5). Automatic layout can be used for OMOS
package assignment diagrams since their layout does not convey additional semantic information.
That is why those diagrams are not taken into account for the layout approach for OMOS class
diagrams discussed here.

3Even though comment/note symbols are used in OMOS diagrams, they shall be omitted from
the diagram layout approach to be implemented as part of this research since they are very
rarely used and most of the time represented “to do” notes for the modellers working on the
diagram. Comment symbols would therefore usually be removed before the model is merged.
Since comment symbols are rectangles, their shape is identical to class symbols. So the layout
approach applied for class symbols can be applied to comment symbols as well.

126

4.3 Principles drawn from the pilot study to provide a software-based solution for
working in parallel with OMOS models

layout changes which do not affect or alter the class symbols’ visual contexts)
which can be automatically resolved. Overlapping diagram symbols should
be automatically untangled in merged diagrams, neither class nor connections
symbols should overlap in merged diagrams. Such an approach will support
efficient visual model merging because fundamental diagram conflicts caused
by absolute position conflicts of diagram symbols (caused by free-form diagram
layout) can be avoided [RW98].

4. Even if (some degree of) automatic layout is desirable (especially when dia-
grams are being merged as port of an optimistic collaborative modelling ap-
proach), fully automatic diagram layout as used by the approaches for work-
ing concurrently with UML model discussed in Section 2.4 has to be avoided
since it is based on diagram layout aesthetics criteria which only take into
account information from a UML model but do not take existing (manually
defined) diagram layouts into account. Another disadvantage of those partic-
ular automatic diagram layout approaches is that when diagrams are merged
and modellers resolve model merge conflicts, the UML model (underlying the
merged diagrams) changes. Since the diagram layout aesthetics criteria are
solely based on the UML model elements underlying the symbols represen-
ted in a diagram, changing these model elements can lead to diagram layout
modifications. Because of the changed model elements, applying the same
layout aesthetics criteria can lead to different diagram layouts. This leads
to unstable diagrams layouts and destroys the additional semantic meaning
conveyed through a diagram’s layout and the modellers’ mental map of the
diagram. Therefore, criteria used for automatically laying out OMOS dia-
grams (during the merge process) have to take the layout of diagrams into
account. It follows that the additional semantic information conveyed through
the layout of the diagrams is then also taken into account.

5. OMOS diagrams should be merged as automatically as possible. However, the
semantic information conveyed through the layout of the diagrams has to be
preserved as much as possible when diagrams are merged. Since class symbols
convey semantic information though their layout they play an important role
for preserving a diagram’s mental map. The meaning-conveying grouping and
ordering of class symbols manually defined by modellers should only change
when modellers manually change it, and should, however, not be changed
automatically by a merge tool or when the underlying UML model is manually

127

4.4 Summary and outlook

changed by the modeller (for instance, because model changes are accepted or
rejected during the merge process).

6. Even if diagrams do not convey additional semantic meaning through their
layout, the mental map a modeller has established while creating or reading
a diagram is important (for the modeller). Modellers should not be forced to
relearn (and, therefore, rebuild their mental maps of) the layout of merged
diagrams. A merged diagram’s layout should be similar to the original evolved
diagrams’.

7. In order to reason about model element changes and conflicts as well as diagram
changes and conflicts, both evolved diagrams, the common ancestor diagram
as well as the merged diagram shall be accessible by the user during the conflict
resolution process.

8. To allow for convenient reasoning about changes and conflicts, they should be
presented in a visual form directly in the respective evolved diagrams where
these changes occurred in the first place. Model element changes and conflicts
as well as diagram changes and conflicts should be visualised diagrammatically.
This will allow modellers to reason about changes and conflicts in the same
context they used to create the OMOS models and their diagrams.

4.4. Summary and outlook

This chapter focused on research objective 3 defined in 1.2.2: the principles and
objectives were established on which any software should be based to provide a
solution for working in parallel with OMOS models and their diagrams in general
as well as the principles on which a solution has to be based on regarding the pilot
study findings (see 3.6) in particular.

In the next chapter, an approach to laying out OMOS diagrams is presented that
facilitates the preservation of semantic information conveyed through their layout
when diagrams which evolved in parallel are merged.

128

5. Design and implementation of
semi-automatic OMOS class diagram
layout enabling efficient,
meaning-preserving diagrammatic
model merging

Whilst the approach for visually merging OMOS models (developed as part of this
research) is presented in Chapter 6, a layout approach which allows for efficient
merging of OMOS diagrams and supports the preservation of the meaning conveyed
through their layout is provided in this chapter. This chapter (as well as Chapter 6),
therefore, discusses the realisation of research objective 4 defined in Section 1.2.2:
design and implement software to carry out a proof of concept.

5.1. Enabling meaning-preserving diagram merging through
semi-automatic OMOS diagram layout by extending
the visual vocabulary of OMOS diagrams

This section presents the design and implementation of a layout approach for OMOS
diagrams which enables efficient diagram merging based on the principles defined
in Section 4.3. A semi-automatic layout approach for OMOS diagrams is presented
which allows modellers to manually define the grouping and ordering of class diagram
symbols according to their understanding of the domain meaning represented by
these symbols. As required by these principles, the approach allows the preservation
of the semantic meaning conveyed through the layout of OMOS diagrams when the
diagrams are merged.

129

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

5.1.1. Fully automatic layout destroys semantic meaning conveyed
through the layout of OMOS diagram

With respect to diagram merging in general, the more automatically diagrams are
laid out when they are created (as part of model creation process, not during the
merge process), the better they can be merged. When diagrams are laid out fully
automatically, diagram merge conflicts are avoided because modellers cannot in-
fluence the diagram layout at all (see Section 2.4). As required by the principles
defined in Section 4.3, in order to allow for efficiently merging OMOS diagrams, mod-
ellers should not be required to manually disentangle overlapping symbols of merged
diagrams. Therefore, automatic diagram layout may seem to be a viable solution
for realising automatic diagram symbol disentanglement (as it takes care of laying
out diagrams in a way that avoids overlapping symbols). However, as discussed
Section 4.1, automatic algorithms lay out diagrams according to layout aesthetics
criteria — an approach which often involves iterative layout and applying heurist-
ics to create aesthetically pleasing layouts. Fully automatic layout (solely based on
models), therefore, comes at the price of potentially destroying the original diagram
layout (see Section 3.2.4) and, therefore, destroying the modellers’ mental maps and
the additional semantic information conveyed through the diagram’s layout (see
Section 3.2.3). For instance, adding or removing a connection symbol (represent-
ing a relationship between two classes) might place the (no longer) connected class
symbols at different positions because the connection symbol “binds” the respective
(now-connected or -disconnected) classes closer together according to the automatic
layout algorithm’s aesthetics-based layout rules.

Because of the domain-specific information inherent, but not formalised in OMOS
diagrams, applying conventional UML class diagram layout approaches to automat-
ically create OMOS diagrams and at the same time expecting stable diagram layout
does not work. These approaches focus on creating aesthetically appealing diagram
layouts in an automatic way, but, of course, cannot take into account domain-specific
information which is not part of the OMOS model providing the information/ele-
ments to be depicted and laid out in a diagram. Laying out diagrams fully auto-
matically (when they are created in the first place and during the merge process)
is hence not feasible because conventional UML class diagram layout algorithms
strive for aesthetically pleasing diagrams solely based on the model’s structure and
apply layout heuristics. Even worse, a OMOS diagram’s secondary notation used
to convey semantic meaning cannot be taken into account by fully automatic layout

130

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

approaches because the semantic relations cannot be derived from the UML model
because this information is not formally defined.

To summarise, with regards to laying out OMOS diagrams, fully automatic diagram
layout has the following main drawbacks: Automatic layout algorithms are based
on UML model elements, i. e., semantic elements like packages, classes, and inher-
itance, and association relations between classes. They cannot take domain-specific
information into account because it is not part of the model. Hence, the automatic
layout of OMOS diagrams would be solely based on UML elements and could not
take into account domain-specific relations between classes. Laying out diagrams
fully automatically is not a viable option for the envisaged approach to working in
parallel with OMOS models because diagrams convey additional semantic meaning
through their layout. OMOS diagrams contain layout constellations which reflect
the domain-specific meaning of the model elements depicted in the diagrams. This
meaning is not formally defined by means of data available in an OMOS model.
It is rather something that exists in the OMOS developers’ minds and, at best, in
the textual documentation of the model elements. As identified by the pilot study,
the grouping and ordering of class symbols conveys semantic meaning (for example,
classes belonging to certain software layers or certain information/control flowing
from one class to another). These informal layout features have to be preserved as
much as possible when diagrams are merged (see the merge tool principles defined
in Section 4.3). The diagram merge approach thus has to account for the fact that
diagram symbols are laid out according to their domain meaning and the manu-
ally defined grouping and ordering of class symbols has to be preserved in merged
diagrams.

However, applying some degree of automatic layout is useful when merging OMOS
diagrams as will be explained in the next section.

5.1.2. The need for some degree of automatic OMOS diagram layout

Since the layout of OMOS diagrams conveys meaning, the layouts of both evolved
diagrams (merged into the merged diagram) has to be preserved when OMOS models
are merged in order to preserve the modellers’ mental maps of the diagram and thus
its additional semantic meaning conveyed through its layout in the automatically
created merged diagram (see the merge tool principles defined in Section 4.3). The
semantic meaning inherently conveyed through a diagram’s layout is, however, not
explicitly defined by means of “diagram data.” Since diagram symbols can be freely

131

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

laid out in a OMOS diagram without any layout restrictions, semantic meaning is
only manifested in the position of class diagram symbols (see Section 3.4). There-
fore, merging freely laid out diagrams in an automated way while still preserving
the informal layout aspects which convey meaning (and are thus important for mod-
ellers) is not possible (see Section 4.1). An ideal solution would allow modellers to
create diagrams the way they want with all possible layout freedom, but still allow
meaning-preserving automatic layout (which would ease the diagram merge process).
These two objectives are of course contradicting each other — layout freedom and
automatic layout cannot be combined without limitations for one or the other (see
also the discussion about dynamic graphs in Section 4.1.1).

However, as defined by the principles of OMOS diagram merging in Section 4.3, the
layout of a merged diagram has to be automatically modified in order to combine
both (to-be-merged) evolved diagrams in an efficient manner that, on one hand, pre-
serves the class symbols’ visual context and, on the other hand, allows the automatic
rearrangement of symbols to merge both evolved diagrams in a meaningful way.

The diagram layout, therefore, has to be “understood” by the (diagram) merge
tool. It has to extract information about meaning-conveying layout constellations
(i. e., visual contexts) from the to-be-merged diagrams in order to preserve their
semantic meaning in merged diagrams. As explained above, for free-form OMOS
diagrams the only available diagram information hinting towards meaning-conveying
class symbol constellations is the position of class symbols (see also the discussion
on secondary notation in Section 3.2.3). However, defining a class symbol’s visual
context based only on the (adjacent) class symbols that are positioned in close visual
proximity might not correctly capture its visual context and thus misinterpret its
domain meaning as the following examples show.

OMOS diagram “Lss” discussed in Section 3.5.2 provides examples of possible misin-
terpretations regarding the visual context of class symbols: class “CL_OutPLssDuty”
is visually closer to its associated class “CL_InpPIfcPSply_PSply” (association rela-
tionship) than to its whole-class “CL_OutPLssCtl_Mn” (whole-part relationship).
However, the two class symbols connected by the whole-part relationship, define
the classes visual context, because those classes are semantically related and this
relation is semantically more important than the association relationship. On the
other hand, in diagram “OutP_IFC_General” (Fig. 3.5) and “OutP_IFC_General”
(Fig. 3.6), and in Fig. 4.1, visual contexts formed by the class symbols connected by
association (and the generalisation) relationships are indeed important because the

132

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

associated classes are semantically related.

It follows that, when related symbols (which have to be re-arranged together/as
a group when one of these symbols has to be re-arranged in order to disentangle
overlapping symbols in a way that preserves the symbols’ visual context, i. e., their
semantic relations) are automatically determined during the process of untangling
overlapping symbols, relying solely on the symbols’ position is very error-prone.
The process of determining the visual context of class symbols, therefore, cannot be
based solely on proximity and the connection symbols (relationships) between class
symbols.

5.1.2.1. Semi-automatic layout based on explicitly defined semantic
information to be conveyed through the layout of diagrams

As explained in the previous section, fully automatic layout is not suited for mer-
ging OMOS diagrams with respect to the preservation of both evolved diagrams’
mental maps and domain-specific information conveyed through the diagrams’ lay-
out in the resulting merged diagram. Because of their drawbacks regarding the
preservation of the mental map and semantic meaning conveyed in diagrams, con-
ventional automatic diagram layout approaches do not provide appropriate solutions
for merging OMOS diagrams. One of the challenges of this research therefore is to
enable efficient model and diagram merging while still allowing the preservation of
the domain-specific information inherent in OMOS diagram layouts.

Given the drawbacks of fully automatic diagram layout, but acknowledging that
automatic layout is useful to some extent, and given that merging freely laid out
diagrams in a meaningful way is not possible, a layout approach for OMOS diagrams
is suggested (by this research) that allows modellers to explicitly define the visual
context of class symbols, i. e., they can define the symbols’ grouping and ordering
according to their semantic relations. As demonstrated in the next section, if the
layout approach is used for creating OMOS diagrams in the first place, they can be
merged in an efficient manner as required by the principles regarding OMOS diagram
merge process defined in Section 4.3. Despite using semi-automatic diagram layout,
modellers are still able to arrange class symbols in a way that allows them to convey
additional semantic information as the modellers used to do through the layout of
freely laid out diagrams. This approach is discussed in the next section.

133

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

5.1.3. Meaning-preserving semi-automatic layout of OMOS diagrams

In this section, the main features of the semi-automatic layout approach are provided
first, it is then explained how modellers can create OMOS diagrams and define the
semantic meaning to be conveyed through the diagrams’ layout.

A hybrid approach to laying out OMOS diagrams is proposed and implemented (by
this research). It makes use of automatic layout features, but at the same time
allows OMOS modellers to express domain-specific meaning through the layout of
diagrams.

The semi-automatic layout approach presented in this section (and implemented as
part of this research) allows modellers to explicitly define the grouping and ordering
of class symbols. As discussed in Section 3.6 and Section 4.3, these two layout
features were identified as the ones used by modellers to define and convey additional
domain-specific meaning through the layout of OMOS diagrams.

The additional diagram information (on grouping and ordering of class symbols)
is used to lay out OMOS diagrams in an automatic fashion. The information is
leveraged to position class symbols according to the manually defined grouping and
ordering. Thus, modellers are able to explicitly define the principle horizontal and
vertical layout of class symbols. The diagram is then automatically laid out in a
hierarchical, top-down manner, i. e. as trees.

For instance, Fig. 5.1 presents a OMOS diagram which has been laid out according
to these rules: “C1” and “C3” are root class symbols, “C2” and “C4” are “C1”’s
children class symbols, “C5” is the child class symbol of “C4”, and “C6” is the
child class symbol of “C3.” The layout of this diagram was created in an automatic
manner. However, the top-down (parent-child) and left-right order of class symbols
has been manually defined.

The semi-automatic layout approach is used for both manually creating diagrams
by OMOS modellers and automatically merging them as part of the OMOS models
merge process. The reason why the layout approach is also used when diagrams are
created in the first place is that this allows to lay out the original diagrams in the
same way as the merged diagrams. Therefore, original and merged diagrams will
look similar. Furthermore, when the semi-automatic approach is used, modellers
can be relieved of manual diagram symbol re-arrangements which can be required
in several diagrams even for a single model element modification since the element
can appear in more than one OMOS diagram. With fully manual layout, modellers

134

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

Figure 5.1.: OMOS diagram example 1.

would have to manually rework all these diagrams’ layouts because, when model-
lers modify models and diagrams (as part of their normal modelling activities, not
during the merge process), fully manual, free-form diagram layout requires them to
manually rework several diagrams’ layouts when model elements depicted in those
diagrams are modified. This can cause considerable manually effort for modellers.
With the suggested semi-automatic “tidying up” diagrams is done automatically
— which results in less cluttered and more readable diagrams. Automatic layout
can therefore help to keep diagrams readable and relieve modellers from having to
manually disentangle diagram symbols.

However, the most important advantage of applying the semi-automatic layout ap-
proach when diagrams are created is that, since the semantic relations of class sym-
bols are explicitly defined, readable and semantically meaningful diagram layouts
can be automatically created. A certain degree of automatic layout is, therefore,
desirable when diagrams are created as part of the modelling process (as well as for
merging diagrams).

When modellers create OMOS diagrams using the suggested layout approach, they
can only define the grouping and ordering of class symbols. This is the only layout
information that can be defined manually. This limitation is made in order to facil-
itate efficient diagram merging. The more layout features modellers can manually

135

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

influence, the more diagram merge conflicts can occur because (the values of) these
features may have been conflictingly changed in parallel in different evolved diagram
versions. These conflicts then would have to be manually resolved by modellers.

It can be argued that defining only the class symbol hierarchy in an explicit manner,
in comparison to free-form layout, limits modellers with respect to diagram layout
expressiveness. These limitation are discussed in Section 5.1.6; it is, however, ar-
gued that the suggested approach enables automatic diagram layout and merging
without the drawbacks of fully automatic diagram layout (see Section 2.4.3) while
still allowing OMOS modellers to express relevant (as identified by the pilot study
in Section 3.6) semantic meaning through the layout of diagrams.

5.1.4. Semi-automatic OMOS diagram layout details

While its details are discussed in D.3, the main features of the semi-automatic layout
approach for OMOS diagram are discussed in this section.

As required by the principles defined in Section 4.3, the suggested OMOS diagrams
layout approach takes into account class symbols, association, composition and in-
heritance relationships1. All diagram symbols are drawn in black colour. With re-
spect to a class’s details, i. e., attributes and operations, depicted by class symbols,
modellers can choose between three different options for displaying them: display all
attributes and operations, display only public ones, or do not display any attributes
and operations.

5.1.4.1. Manually established and automatically laid out parent-child class
symbols hierarchy

Each OMOS diagram’s class symbols are laid out in a top-down manner as a tree
(parent-child) hierarchy according to the hierarchy manually defined by modellers.
Each class symbol has one parent symbol — except for root, i. e. top-most, symbols
which have no parent. When creating a OMOS diagram, modellers manually define
the (top-down) parent-child hierarchy of the diagram’s class symbols (see Fig. 5.1).
When a class symbol is added to a diagram, the modeller defines the parent of a class
symbol and its direct neighbours within the parent’s (direct) child class symbols, i. e.,

1As defined in Section 4.3, OMOS package assignment diagrams do not convey semantic meaning.
That is why packages and package assignment diagrams are not taken into account here.

136

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

the modeller defines the class symbol’s visual context by defining its grouping and
ordering. The actual layout of the class symbol (with respect to its position and
size) is done automatically.

Class symbols are automatically laid out as a balanced top-down tree hierarchy, i. e.,
parent class symbols are centred above their child class symbols. The top of each
class symbol belonging to the same “tree level” (or rank) is horizontally aligned. The
“tree level” is referred to as the layer of the class symbol. Layers are not diagram
elements, they are rather a concept for referring to all class symbols belonging to a
certain tree level and to emphasize their horizontal alignment. Each class symbol
is assigned to exactly one layer — root class symbols on the highest layer, followed
by the layer to which the children class symbols of all root symbols belong. For
instance, all root class symbols belong to the first layer, the direct children of each
root symbol belong to the next lower layer, their children to the next lower layer
and so on.

The horizontal position of a layer is defined by the largest class symbol of the layer
above. This guarantees that class symbols on adjacent layers do not overlap (as
requested in Section 4.3). Furthermore, a vertical gap guarantees that connection
symbols do not overlap (see Section D.3). For instance, in Fig. 5.1, “C1” and “C3”
are top-aligned on the first layer. “C1” is the highest class symbol in this layer
and thus defines the layer’s height. The class symbols of the second layer are again
top-aligned at the top of this layer. Hence, “C3”’s child “C6” is top-aligned with
“C1”’s children “C2” and “C4.”

5.1.4.2. Manually defining the ordering of class symbols

As requested by the principles defined in Section 4.3, the grouping and ordering of
a class symbol’s direct children is manually defined by modellers to allow them to
express additional semantic information through a diagram’s layout. The order of
class symbols does only change if modellers manually modify it. (In the diagram
editor, the order can be altered by dragging a class symbol to the left or right border
of another class symbol, or, if the desired parent class symbol has no children yet,
by dragging the class symbol to the bottom border of the parent.) When a class
symbol is relocated to a different parent class symbol or reordered within its current
parent’s children, all its (direct and indirect) children will be relocated as well; they
“follow” their relocated parent class symbol and are, therefore, still be children of
the relocated class symbol, furthermore, their order will not be altered when they

137

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

are automatically relocated. They are positioned below the updated position of the
actively relocated class symbol.

Figure 5.2.: OMOS diagram example 2.

For instance, in Fig. 5.2, “C1”’s children “C4” and “C2” have been reordered in
comparison to Fig. 5.1. Hence, “C4”’s child class symbol “C5” was moved too. This
approach ensures that the visual context of a class symbol is preserved as required
by the principles defined in Section 4.3.

5.1.4.3. Connection symbols

This section discusses the layout of connection symbols. As defined by the principles
in Section 4.3, connections should be laid out in a stable way: their layout should
only change if the order of class symbols changes.

With the suggested layout approach, modellers only define that a certain association,
composition or generalisation (model element) should be depicted in a diagram (as
a connection between the two class symbols depicting the connected classes). The
connection is then automatically routed. Modellers can neither influence where it
connects to the class symbols nor any other layout aspect, for instance, bend points.

The connection symbols between class symbols are depicted as poly-lines. They are
automatically laid out. If possible, connections are be depicted as short, straight

138

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

lines. They may however have bends if required. Connections are not necessarily
drawn in an orthogonal style.

The process of laying out connections consists of two steps: After the class symbols
were laid out (see above), the connections are ordered according to their category
(see below) in a first step. Then, the connections are laid out (as poly-lines). Both
steps are discussed in detail in Section D.3. Connections are positioned in a way
that arranges them around the centre of the respective class symbol’s border.

The layout approach taken for a connection depends on which layer its source and
target class symbols reside. The following connections categories are differentiated:

1. Inter-layer connections, i. e., connections between class symbols belonging to
different layers

a) between class symbols belonging to adjacent layers; or

b) between class symbols belonging to non-adjacent layers.

2. Intra-layer connections, i. e., connections between class symbols belonging to
the same layer

a) between adjacent class symbols; or

b) between non-adjacent class symbols.

5.1.4.3.1. Inter-layer connections are routed in a vertical manner since they con-
nect class symbols whose vertical positions differ, i. e., one of the class symbols is
aligned to a higher layer (closer to the top of the diagram) than the other. The
former class symbol is called the source class symbol and the latter the target one.
An inter-layer connection, therefore, connects the bottom of the source class symbol
and the top of the target symbol.

5.1.4.3.2. Inter-layer connections between class symbols belonging to adjacent
layers are drawn as straight lines of any angle. They connect to their source and
target class symbol at the bottom and top, respectively. For example, in Fig. 5.1, all
three connections are inter-layer ones connecting class symbols belonging to adjacent
layers.

139

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

5.1.4.3.3. Inter-layer connections between class symbols belonging to non-adj-
acent layers are routed along the parent class symbols of the connection’s target
class symbol. They are poly-lines consisting of (1) straight vertical lines (called
parent-passing segments) passing by at the side of the parent class symbols and
(2) straight lines (layer-connecting segments) of any angle between the layers. For
instance, in Fig. 5.3, the connection going from “C3” to “C5” is an inter-layer one
connecting class symbols belonging to non-adjacent layers.

Figure 5.3.: OMOS diagram example 3.

140

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

Figure 5.4.: OMOS diagram example 4.

The first segment of any non-adjacent inter-layer connection goes from its source
class symbol to its target class symbol’s (direct or indirect) parent — a layer-
connecting segment. Then, a vertical segment follows which passes by this parent
class symbol (“C4” in Fig. 5.3 and Fig. 5.4), this is a parent-passing segment. This
type of segment does not directly connect to the class symbol, but ends on the left-
or right-hand side, just next to the class symbol.

141

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

Figure 5.5.: OMOS diagram example 5.

On which side a parent-passing segment is drawn next to the parent depends on
their source class symbol. For instance, in Fig. 5.5, the composition connection going
from “C3” to “C5” passes “C4” on the left-hand side because “C3” (the connection’s
source class) is left of “C4.” But the inheritance connection between “C2” and “C5”
passes by “C4” on the right-hand side because “C2” (the connection’s source class)
is right of “C4.”

As demonstrated by the association connection named “c5s” connecting “C4” and
“C5” in Fig. 5.6, parent-passing segments passing by parent class symbols (“C6”)
which are directly below the source class symbol (“C4”) are passed on the left-hand
side.

142

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

Figure 5.6.: OMOS diagram example 6.

If the connection’s target class symbol belongs to the next lower layer, the approach
for connecting inter-layer connections between class symbols on adjacent layers is
used to draw a line segment from the parent to the target class symbol. If the connec-
tion’s target class symbol does not belong on the next lower layer, a layer-connecting
segment which goes to the next (direct or indirect) parent of the connection’s target
class symbol is drawn, and so on until the target class symbol (belonging to the
next lower layer) is reached. For example, in Fig. 5.6, the composition connection
connecting “C3” and “C5” (source and target class symbol) passes “C5”’s parent
class symbols (“C4” and “C6”).

143

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

Figure 5.7.: OMOS diagram example 7.

As Fig. 5.7 demonstrates, a class symbol’s parent-passing segments coming from the
same source class symbol are ordered such that the inheritance connection connects
closer to the centre of its source class symbol.

Figure 5.8.: OMOS diagram example 8.

144

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

As demonstrated in Fig. 5.8, parent-passing segments passing at the same side of
a class symbol are ordered according to their source class symbol. Parent-passing
segments coming from source class symbols further left will be positioned before
those coming from further right.

5.1.4.3.4. Intra-layer connections between adjacent class symbols are drawn
as a straight (but not necessarily orthogonal) lines connecting to the respective
left-hand side class symbol (source) at its right side and attaching to its target
class symbol (right) on its left side. For instance, the composition association and
the generalisation connections between “C1” and “C2” in Fig. 5.9 are intra-layer
connections between adjacent class symbols.

Figure 5.9.: OMOS diagram example 9.

5.1.4.3.5. Intra-layer connections between non-adjacent class symbols are drawn
as three orthogonal lines segments as shown in Fig. 5.10. A connection’s start and
end segment are both vertical lines connecting to the top of the source and target
class symbol, respectively. The middle segment is a horizontal line connecting the
two vertical ones.

145

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

Figure 5.10.: OMOS diagram example 10.

Figure 5.11.: OMOS diagram example 11.

The layout of intra-layer connections guarantees that such connections do not cross
or overlap. This is achieved because a class symbol’s connections coming from class
symbols positioned further to the left connect to this class symbol before (i. e., further
left of) interlayer connections and intra-layer connections going to non-adjacent class
symbols further to the right. For instance, in Fig. 5.11, the composition association
(intra-layer connection) from “C3” is positioned before (i. e, further left) of the inter-
layer connection from “C1” and the intra-layer connection to “C7” (depicting an

146

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

inheritance relationship). Overlapping of intra-layer connections (belonging to the
same layer) are prevented by drawing each horizontal line on a separate horizontal
position (see the two intra-layer connections in Fig. 5.10).

However, as Fig. 5.10 demonstrates, a limitation of this approach is that, if the
same class symbol has intra- and inter-layer connections, this can lead to crossing
connections. This issue is further discussed in Section 5.1.6. A possible solution is
to draw inter-layer connections as orthogonal segments (as is done for intro-layer
connections), but because of the additional space required to avoid overlapping
orthogonal lines (see the two horizontal lines in Fig. 5.10), the height of the diagram
would then increase.

5.1.5. Advantages of semi-automatic layout

Compared to conventional automatic UML class diagram layout approaches, the
most import advantage of the semi-automatic layout approach is that modellers
explicitly define the grouping and ordering of class symbols. This enables software
tools to “understand” the diagram layout. Information about class symbol groups
and their order as manually defined by modellers becomes a formally defined part of
the diagram’s layout data. The explicitly defined class symbol hierarchy allows for
the automatic rearrangement of diagram symbols (in order to untangle overlapping
diagram symbols) in a meaning-preserving way. If this information was not available,
semantic information conveyed through the layout of diagrams would be lost when
diagrams are merged and a lot of manual work regarding the layout of diagrams
would have to be burdened on modellers.

In order to automatically merge OMOS diagrams, the structure and relations of
the diagram symbols have to be understood by the merge tool in order to be able
to merge diagram symbols from both evolved diagrams and position them in the
same visual context they belong to in their evolved diagram (if this context is not
conflictingly defined for both to-be-merged diagram versions) in order to preserve
the symbols’ semantic meaning (inherently conveyed through the diagram’s layout)
and thus preserve the evolved diagrams’ mental maps in the merged diagram. The
explicitly defined class symbol hierarchy can be taken into account when two evolved
versions of a diagram are merged. The additional layout information allows the
automatically creation of meaningful merged diagrams according to the class symbol
grouping and ordering which was manually defined by modellers. The explicitly
defined class symbol hierarchy allows automatically laying out diagram in a stable

147

5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS
diagram layout by extending the visual vocabulary of OMOS diagrams

and meaning-preserving way. As required by the principles for merging the OMOS
diagrams defined in Section 4.3, the layout of class symbols is manually defined
by modellers and should change only if modellers change it. The manually defined
diagram hierarchy allows the preservation of the diagram’s layout during the diagram
merge process if it was not changed in conflicting ways (diagram merge changes and
conflicts will be discussed in Chapter 6).

This approach enables diagram symbols to become automatically re-arrangeable
during diagram merging in a way that preserves the original grouping and ordering
of diagram symbols. Being able to automatically re-arrange diagram symbols during
the diagram merge process relieves modellers from having to deal with unimportant
layout merge conflicts (for instance, symbol overlapping conflicts) and allows the
automatic creation of uncluttered diagrams during the merge process. Modellers
then only have to deal with real layout merge conflicts, i. e., conflicts of the diagram’s
mental-map-defining features which are manually defined by the modellers and cause
merge conflicts if modified in conflicting ways.

The layout approach nevertheless takes into account and allows the creation of dia-
gram layouts according to the UML layout suggestions for UML class diagrams.
It, therefore, allows the creation of inheritance and whole-part hierarchies as well
as association relationships between class symbols following the hierarchical layout
suggested by UML.

5.1.6. Limitations and critique

The semi-automatic layout approach presented in this chapter focuses is on laying
out the manually defined class symbol hierarchies in a balanced way. Doing so puts
an emphasis on the parent-child hierarchy of class symbols and results in aesthet-
ically pleasing and stable layouts of class and connection symbols. The layout of
connection symbols is not done in such a balanced way; only the connection sym-
bol’s position at the source and target class symbol are balanced. Also, passing-by
connections are not balanced. Depending on their source connection symbol, they
are positioned at one side of passed-by class symbols. This can lead to unbalanced
connection layout if several connections are routed along the same side of a class
symbol.

The layout approach tries to avoid connection symbol crossings for certain constella-
tions by ordering connections such that they cannot cross. For instance, intra-layer

148

5.2 OMOS model editor

connection are positioned at the left or right side of inter-layer connections such that
both do not interfere and, therefore, do not cross. However, because all layout de-
cisions are taken a priori, connections are in, contrast to class symbols, not laid out
in a balanced manner. A balanced approach could potentially yield more aesthet-
ically pleasing layouts. For instance, “nicer” layouts might be achieved by allowing
one connection symbol to pass on the left-hand side of a passed-by class symbol
and the other on the right-hand side, even if both originate from the same class
symbol. However, such decisions could then also depend on whether connections
cross. As soon as such dynamism becomes part of the then iterative and possibly
heuristics-based layout process, layouts are not as stable and predictable any more
— although they might be more aesthetically pleasing.

With the suggested approach to connection symbol layout, the presence of orthogon-
ally laid out connections (intra-layer connection symbols between non-adjacent class
symbols) and other connections laid out as non-orthogonal straight lines (inter-layer
connection symbols) at the same class symbol may lead to overlapping symbols.
This can be avoided by drawing inter-layer connections in an orthogonal way; the
first line segment leaving the source or target class symbol is then drawn as a vertical
line, then a non-orthogonal straight line follows before a vertical segment finishes
the connection by connecting to the source or target class symbol. A completely
orthogonal approach for laying out connection symbols could also be used. However,
doing so will potentially increase the height of diagrams because the horizontal gaps
between layers have to get wider in order to avoid crossings of connection symbols.

The layout approach presented here is of course not suitable to expressing any kinds
of layouts. However, it works well for the OMOS diagrams analysed in the pilot
study in Chapter 3 as experts in the field (i. e., OMOS modellers; see Section 7.1)
who evaluated the approach confirm. The details of the evaluation of the suggested
approach are discussed in Chapter 7.

5.2. OMOS model editor

A OMOS model editor prototype was implemented as part of this research. An
overview of the editor’s capabilities is provided in this section. Its design and im-
plementation details are discussed further in Section D.2.

The editor allows the creation of OMOS models and diagrams. It implements the
semi-automatic approach for laying out OMOS diagrams discussed previously in this

149

5.2 OMOS model editor

chapter. The model editor allows the creation and manipulation of OMOS models in
a visual manner. The editing capabilities provided by the editor are similar to those
provided by other UML modelling tools. A unique feature of the editor, however,
is that it allows the creation of OMOS diagrams using the semi-automatic layout
approach discussed in this chapter.

The editor allows modellers to create OMOS models by means of OMOS diagrams.
It also provides a model tree. This tree provides an overview of all model elements
constituting a OMOS model and allows modellers to navigate to diagrams and dia-
gram symbols which visualise the respective model element.

The editor allows modellers to create OMOS diagrams by explicitly defining the
grouping and ordering of class symbols. Using the editor, modellers can, therefore,
manually define the additional semantic meaning conveyed through the layout of
class diagrams. This information can then be used to merge diagrams in a way that
preserves the diagrams’ additional semantic meaning.

5.2.1. Diagram and model updates and automatic re-layout of all
affected diagrams

With respect to diagram editor tooling, diagrams have to be updated when the
states of their diagram symbols are updated. For the OMOS model editor, symbol
updates can occur because of the following reasons:

• Purely graphical updates affecting only a certain diagram but not the under-
lying UML model. Those updates are interactively initiated by the modeller
by modifying the graphical properties of symbols of a certain diagram, for in-
stance, relocating a class symbol. The updates only affect the symbols of the
respective diagram but no other diagrams.

• Graphical updates which affect the underlying UML model and, thus, affect
all diagrams depicting these model elements.

– An end of a connection symbol is relocated (this update does affect the
underlying UML model; so, moving a connection end to another class
symbol relates the underlying model element(s) to a different class);

– Deleting a class or connection symbol from a diagram and the underlying
class or relationship from the model will affect all diagrams depicting the
respective model element.

150

5.3 Chapter summary and outlook

• When modellers use the model tree to directly modify the UML model, all
diagrams depicting the modified model elements are automatically updated.
For instance, when the parameter list of an operation is modified, all class
symbols depicting this operation have to be updated because their widths
may have changed. The width update, in turn, will require the respective
diagrams to be newly laid out because changing the width of a class symbol
requires rebalancing of the class symbol tree. This, in turn, might result in
updating the position of class and connection symbols.

The ability to automatically update a diagram’s layout when its symbols were up-
dated (directly in the diagram editor and/or by altering the underlying UML model)
and still preserve the layout features of this diagram (as requested by the OMOS
diagram layout principles defined in Section 4.3) is one of the advantages of the
approach to laying out OMOS diagrams developed by this research.

5.3. Chapter summary and outlook

This chapter presented a semi-automatic layout approach for OMOS diagrams. The
appraoch was implemented as a proof of concept and represents one of the main
contribution of this research. With this approach, modellers are able to define
the horizontal and vertical order and grouping of class symbols as an ordered tree
(parent-child hierarchy). The diagram is then automatically laid out based on the
manually defined hierarchy. Class and connection symbols are automatically aligned
according to this hierarchy. This chapter (together with Chapter 6) discusses the
realisation of research objective 4 defined in Section 1.2.2.

The semi-automatic diagram layout approach presented in this chapter strives for
creating stable and balanced class symbol hierarchies. Since the order of class sym-
bols can only be changed manually by the modellers, a diagram’s layout structure
will only change if the order of class symbols is modified manually. Connection
symbols are laid out fully automatically, modellers only manually define which re-
lationships should be depicted in a diagram (as connection symbols). Connection
symbols do not influence the layout of class symbols. Adding or deleting connection
symbols, therefore, preserves the grouping and order of a diagram’s class symbols.

The actual diagram layout does not rely on incremental layout and heuristics to
create more aesthetically pleasing diagrams. All layout decisions are defined a priori,

151

5.3 Chapter summary and outlook

i. e., there is a constant set of layout rules (see Section D.3) which is applied to a
given diagram’s graph (see Section D.7.1.1) in order to lay out its diagram symbols.

These two diagram layout features (manually defined parent-child class symbol hier-
archy and the static layout rules) facilitate the preservation of a diagram’s overall
structure when it evolves and allow the preservation of the modellers’ mental map
(see Section 3.2.4) of a diagram. These features are, therefore, also important when
diagrams which evolved in parallel are merged.

As discussed in Chapter 6, the parent-child class symbol hierarchy allows the auto-
matic merging of diagram symbols and the production of meaningful and uncluttered
merged diagrams. Futhermore, change and conflict detection during diagram mer-
ging and diagram merge conflict detection and resolution can be based on the expli-
citly defined visual contexts of class symbols (see Section 6.5.5).

The semi-automatic layout approach presented in this chapter facilitates the realisa-
tion of the requirements of meaning-preserving visual OMOS model merge approach
defined in Section 4.3. The features and advantages of the semi-automatic layout
approach presented in this chapter can be summarise as follows:

1. By extending the visual vocabulary of OMOS diagrams, the semi-automatic
OMOS diagram layout enables efficient diagram merging by explicitly defining
the grouping and ordering of class symbols to allow for meaning-preserving
automatic layout.

2. Modellers have control over the grouping and ordering of class symbols, i. e.,
about the main properties that define the mental map of a OMOS diagram
and convey semantic meaning. Class symbols are manually ordered on a per-
diagram basis allowing the user to express domain-specific grouping of class
symbols.

3. The semi-automatic layout approach is used both when diagrams are created
in the first place and when diagrams are automatically merged. The manually
defined information regrading the visual contexts of class symbols (explicitly
defined by OMOS diagrams) are used during the automatic diagram merge
process to preserve the semantic information in merged diagrams.

4. The layout approach strives for stable and predictable layouts. The overall
structure of a diagram’s symbols does not change when class or connection
symbols are added or removed from a diagram. The order of connections
between two class symbols is kept constant to support the preservation of the

152

5.3 Chapter summary and outlook

diagram’s mental map, i. e., adding or removing connections does not cause
re-ordering of any other connections — not even between the two respective
class symbols. Relocating a class symbol might, however, influence the order
of connections because the order of connections is determined by the order of
the class symbols they connect. The stability of a diagram’s layout is increased
by avoiding iterative layout and layout heuristics. The semi-automatic layout
approach, therefore, facilitates the preservation of the diagram’s mental map
and, thus, the preservation of the semantic meaning conveyed through the
layout of diagrams.

5. Connections are laid out fully automatically. Connections are ordered such
that crossings and overlappings are avoided. However, no heuristics are used
to minimise crossings because this could lead to unstable layout (for example,
“jumping edges”). The number of bends of a connection is not minimised
because this would require the usage of iterative layout and, possibly, heuristics
which, again, could lead to unstable layout.

6. The model editor has the following advantages:

a) Modellers can partition a model into any number of diagrams and, hence,
create a hierarchy of diagrams depicting the various parts of a OMOS
model as discussed in Section 3.6.1.

b) Modeller can define the principle layout of each diagram. They can define
which UML classes should be depicted in a particular diagram and in
which visual context (i. e., define the respective class symbol’s semantic
relation). Modellers can choose for each class symbol whether all, only
public, or no attributes and operations of the respective UML class are
displayed.

c) Furthermore, modellers can also define the UML relations to be depicted
in a particular diagram. Adding or removing connection symbols from
a diagram does not change the principle layout of the class symbols it
connects; their visual context does, therefore, not change.

d) Since the model editor uses the semi-automatic approach, the manually
created OMOS diagrams are automatically laid out in the same way
merged diagrams are laid out during the merge process.

The next chapter will discuss the design and implementation of a visual merge
approach for OMOS models based on the semi-automatic diagram layout presented

153

5.3 Chapter summary and outlook

in this chapter. An evaluation of this diagram layout approach is then provided in
Chapter 7.

154

6. Design and implementation of visual
OMOS model merging

This chapter presents the approach for merging OMOS models, i. e., their diagrams
and the underlying UML models. This chapter (together with Chapter 5) discusses
the realisation of research objective 4 defined in Section 1.2.2, namely, to design and
implement software to carry out a proof of concept.

6.1. Introduction

As defined in Section 4.2, the principal approach to collaborative modelling envis-
aged for OMOS is based on the following premisses: Software engineers can work
independently and in parallel on copies of a OMOS model. This model is the common
ancestor model which serves as the starting point for any modifications made in both
copies. After the engineers have finished working on their versions the model, called
evolved model versions, these models have to be brought back into one model again.
This process is called merging. As a first step during the model merge process, the
initial merged model is automatically created; it contains all non-conflicting modi-
fications made to both evolved models’ elements. Because both evolved models were
modified independently from each other in parallel, contradicting modifications can
occur; they cannot be automatically integrated into the merged model. These model
merge conflicts have to be detected automatically and resolved manually during the
merge process.

Based on the common ancestor OMOS model, two to-be-merged evolved versions
(which were modified independently from each other at the same time) of this model
are automatically merged to create the initial merged model. This first merge step
is divided into two sub-steps. First, the differences between both evolved versions
compared to their common ancestor are calculated. In a second step, the calculated
differences are then applied to (a copy of) the common ancestor model. However,

155

6.2 Meta-model- and MOF-based model merging

because of conflicting modifications in both evolved models, the merged model might
not contain all modifications. Then, human interaction is required to solve these
merge conflicts.

This chapter provides an overview of the design and implementation of the approach
to visual OMOS model merging taken by this research. A detailed discussion on the
implementing the OMOS model merger is provided in Appendix D.

6.2. Meta-model- and MOF-based model merging

Following the principles of merging OMOS models defined in Section 4.2, the merge
and conflict resolution process developed as part of this research takes into account
the UML class diagrams constituting a OMOS model as well as the underlying UML
class model. Furthermore, the principles ask for merging OMOS models based on the
state of the elements constituting the to-be-merged models. UML (class) models are
formally defined by the UML meta-model discussed in Section 2.1.2. A meta-model
defines the possible types of model elements that can exist in a model adhering to
this meta-model and also defines the possible state of these model elements. As will
be explained in detail below, state-based model merging approaches can make use
of the information provided by a meta-model. This approach is taken by the OMOS
model merger implemented as part of this research.

As explained in Section 2.1.3, OMOS models are ordinary UML models. OMOS is
completely based on UML concepts, for instance, classes, operations, associations,
generalisations etc. A OMOS model element is an instance of such a UML concept.
As further described in Section D.5.1, the instance is defined by its state. The pos-
sible state of an instance depends on its type (i. e., the UML concept it represents).
The UML meta-model, which is discussed in Section 2.1.1, formally defines all the
concepts (types) and their allowed state. For instance, a class (i. e., an instance
of UML concept Class defined by the UML meta-model) has a name attribute
(inherited from its super class NamedElement which is also defined by the UML
meta-model) and an ownedOperation reference (representing the operations belong-
ing to this class). The name attribute holds the class’s name state, for instance,
“CarEngine”, and the ownedOperation reference points to the class’s operations,
i. e., instances of UML concept Operation (also defined by the UML meta-model),
for instance, operations “accelerate” and “break.” A more detailed discussion of the
part of the UML meta-model relevant for OMOS is provided in Section D.1.

156

6.2 Meta-model- and MOF-based model merging

As discussed in Section 2.1.2.1, the UML meta-model is formally defined by the
meta-object facility (MOF). It follows that UML model elements are instances of
MOF classes defined by the MOF-based UML meta-model. For instance, (the) UML
(meta-model) defines a class called Operation (an instance of MOF class Class)
and its properties (instances of MOF class Property), for example, name (attribute
property) and ownedParameters (reference property). A meta-model hence defines
the types of the model elements (instances of the meta-model) available in models
which adhere to this meta-model. A type’s properties and their actual features
(for instance, name, ordering, uniqueness or upper/lower bound) are defined by this
meta-model too. The possible features of properties are defined by MOF, the meta-
model’s meta-model. The properties then “come to life” as part of model elements,
for which the property values define a model element’s state.

The findings above show that, in order to create a state-based model merging ap-
proach, the to-be-merged model’s meta-model and the meta-meta-model provide
important information for determining the actual state of the to-be-merged mod-
els’ elements and for gaining information on how this state can change. The latter
information is important for determining the modifications between to-be-merged
models in order to apply those modification to create the merged model as well as to
detect merge conflicts. Regarding model merging, meta-models provide information
about the possible model elements which can exist in to-be-merged models as well as
their state, and the meta-meta-model (i. e., MOF) provides information about the
structure and state-defining features of a meta-model’s elements and, thus, allows
gaining insights aobut the possible state changes of actual model elements to be
taken into account during the model merge process. All this information can be
leveraged to automatically generate the initial merged model and to detect modi-
fications and merge conflicts. Further information on the meta-meta-model aspects
regarding model merging are provided in Section D.4, and the relevant meta-model
aspects are discussed in Section D.6.

The UML meta-model formally defines the UML class models underlying the UML
class diagrams visually representing OMOS models. However, the UML meta-model
does not take into account their visual representation, i. e., diagrams; the UML
standard does not define a meta-model for UML diagrams because such meta-models
are considered to be tool-specific. In order to apply the meta-model-based merge
approach used for merging UML models for merging OMOS diagrams, a meta-model
for OMOS diagrams is defined as part of this research. As the UML meta-model,

157

6.2 Meta-model- and MOF-based model merging

this meta-model is based on the meta-object facility. The details of OMOS diagram
meta-model are provided in Section D.7, and details of the UML meta-model are
provided in Section D.1.

Since the OMOS diagram meta-model is based on the meta-object facility, the same
model merge approach (based on the state of model element properties defined by
MOF-based meta-models) can be applied for merging OMOS diagrams as well as
the underlying UML models. This approach is, therefore, taken by this research for
merging the UML models and UML class diagrams constituting OMOS models.

6.2.1. Introduction to MOF-based modelling

Based on the introduction to UML provided in Section 2.1.2 and the meta-object
facility (MOF) in Section 2.1.2.1, this section outlines the features of UML and MOF
which are relevant for differencing and merging MOF-based models as used in the
context of this research. The details of MOF-based modelling and model comparison
are further discussed in Section D.4.

6.2.1.1. Models as graphs

As demonstrated in the previous section, models in general are structured documents
since they are based on meta-models [Wes91, KWN05]. With respect to containment
reference properties, UML models and all other models adhering to MOF-based
meta-models represent trees. However, because of the non-containment reference
properties, UML models and any other MOF-based models are not pure trees in the
mathematical sense, they are networks of model elements, i. e., a graph [KWN05].

MOF-based models (i. e., instances of MOF-based meta-models) can be represented
as graphs in the following way:

• Nodes (the model graph’s nodes represent either model elements or attributes)

– Nodes are typed (their possible types are defined by the model’s meta-
model). They are either

∗ model elements whose types are defined by classes (instances of MOF
element Class) in the meta-model; or

∗ attributes whose types are instances of MOF class data type/attrib-
ute Property also defined by the meta-model.

158

6.3 Overview of the model comparison process OMOS models

– Nodes can define relations to other nodes (see “edges” below).

• Edges (the model graph’s edges represent relations between nodes)

– Two categories of edges exist: relations between (1) two model elements
and (2) a model element and an attribute.

– The following features are relevant for both categories: Ordered/un-
ordered values, single-/multi-valued, and unique/non-unique values.

– Edge category 1 (defining a relation between two model elements):

∗ The relation type is defined by a meta-model reference (i. e., an in-
stance of MOF class type/reference Property).

∗ In addition to the relation features described above, two additional
features can be defined for this type of relations: composition and
uni-/bi-directionality.

– Edge category 2 (defining a relation between a model element and an
attribute):

∗ Their types are defined by meta-model attributes (i. e, instance of
MOF data type/attribute Property).

∗ The composition and bi-directionality features (mentioned above for
edge category 1) are irrelevant for this kind of relations because at-
tribute values always belong to a certain model element (compos-
ition) and, because their values are unstructured, cannot reference
the owning model element.

Further details of the meta-object facility (MOF) and MOF-based model merging
are provided in Section D.4.

6.3. Overview of the model comparison process OMOS
models

In order to merge OMOS models, the differences between the two evolved (to-be-
merged) models and their diagrams in comparison to their common ancestor have to
be determined. Taking the common ancestor model into account enables three-way
merging which allows to detect and handle more types of changes and conflicts than

159

6.3 Overview of the model comparison process OMOS models

a two-way merge approach (see Section 2.3.2). An introduction to model comparison
in general is provided in this section, the design and implementation of comparing
OMOS models and diagrams is discussed in detail in Section D.4.

As further explained in Section D.5.1, the merge process implemented by this re-
search is based on the state of model elements. The determination of how two
models changed thus requires that the differences between both models are calcu-
lated. Difference calculation (i. e., model comparison) is based on the state of the
models’ elements. In contrast to the edit log approach (to determining differences
between two model versions) which lists all operations applied to a model (by a
modeller by means of a modelling tool), the state-based model comparison is solely
based on the current state of the compared model elements. Of course, the state
of the to-be-merged models elements has been defined by modellers by means of a
modelling tool. However, the modelling actions performed by the modeller in order
to arrive at a model’s current state are not part of the model and are, therefore, not
known during the model merge process.

The calculation of differences between both evolved models in comparison to their
common ancestor model works as follows:

1. Given the common ancestor model A and the evolved models B and C (which
are the result of independently modifying copies of the common ancestor
model), calculate

a) all changes (change set ΔB) between (the state of the model elements of)
common ancestor A and evolved model B, and

b) all changes (change set ΔC) between (the state of the model elements of)
common ancestor A and evolved model C.

2. Create the merged model by applying the modifications described by the
change sets ΔB and ΔC to (a copy of the) common ancestor model.

Since the evolved models share a common ancestor model, the following principle
types of changes can exist in an evolved model in comparison to the common an-
cestor [Wes91]: modification, deletion, and addition changes. The former two types
of changes, modification and deletion, apply to elements that already exist in the
common ancestor model. Addition changes apply to elements that are added to an
evolved model. Modification changes refer to differences in the state of two versions
of the same model element belonging to the two compared models.

160

6.3 Overview of the model comparison process OMOS models

The following principle types of chances can be detected when comparing two models
(for instance, UML models or OMOS diagrams):

1. Existence change: A model element with a certain identifier exists in one
model, but not in the other. When comparing an evolved model version with
its ancestor, existence changes can be further specialised as addition or deletion
changes because it is known that the ancestor model has been created before
the evolved one.

2. State change: The state of two versions of a model element with a certain
identifier (i. e., equivalent elements from the two different models) differs.

Additional information about model changes and a meta-model for describing them
(in the form of models) developed as part of this research are provided in Sec-
tion D.5.4.2.

6.3.1. State-based model comparison

The process of comparing two models (i. e., an ancestor and an evolved model)
consists of the following steps:

1. First, the model elements which are equivalent in both compared model ver-
sions are detected in order to determine which element pairs have to be com-
pared. The equivalence of model elements is based on their identifiers as
explained in Section 6.3.2.

2. After equivalent model elements were determined, added and deleted model
elements (i. e., existence changes) are determined. Those are the model ele-
ments for which no equivalent elements exist in the other model version.

3. Finally, the values of the properties (defined by the meta-model for the re-
spective element type) of equivalent model elements are compared to detect
state changes.

Since each OMOS diagram represents an individual (diagram) model (based on the
meta-model OMOS diagram meta-model defined in Section D.7.1.1), a set of changes
is detected for each diagram. Therefore, the result of comparing two versions of a
OMOS model is a set of UML model changes and a set of OMOS diagram change
sets (one for each diagram model).

161

6.4 Overview of model merge process for OMOS models

6.3.2. Detecting equivalent model elements based on their identifiers

According to the principles defined for the envisaged approach to working in par-
allel with OMOS models (see Chapter 4), the determination of equivalent model
elements is be based on element identifiers. Further information on model element
identification and matching equivalent model elements is provided in Section D.5.3.

6.3.3. Summary

The result of comparing an ancestor model with an evolved model is a set of changes.
Before the actual merge process is initiated, the two change sets of the two to-be-
merged evolved models are calculated by comparing both evolved models with their
common ancestor model.

The model comparison approach explained in this section works for UML models as
well as for diagram models or any other model whose meta-model is based on MOF.
Since model elements are defined by their state, it is based on comparing the states
of the elements of to-be-merged models.

A detailed discussion of comparing UML models and OMOS diagrams and the im-
plementation developed as part of this research is provided in Section D.5 and Sec-
tion D.7.

6.4. Overview of model merge process for OMOS models

This section provides an overview of how the initial merged OMOS model is created.
Further details for the design and implementation of the model merging approach
developed as part of this research are provided in Section D.6.

The model merge approach allows merging models which are instances of meta object
facility (MOF)-based meta-models. This means that, like the model comparison
approach, the merge approach is independent of the actual to-be-merged models. In
the context of this research, it is not only used for merging UML class models but
also for merging the OMOS diagrams visualising the elements of these UML models.

As required by the principles of the OMOS merge approach defined in Chapter 4,
this approach has to ensure that the merged model only contains model elements
which can be contained in a model according to the rules of the model’s (MOF-
based) meta-model. The reasons why model element cannot exist in a merged model

162

6.4 Overview of model merge process for OMOS models

are discussed below. Creating merged models which only contain “allowed” model
elements according to their MOF-based meta-models has the advantage that all
tooling infrastructure used to create such models in the first place can be leveraged
in the merge process too. The model merge tool, therefore, is based on the same
meta-models as used by the to-be-merged models. It is, therefore, not necessary
to define and deal with meta-models different from those used for the to-be-merged
models.

When the initial merged OMOS model is created (see below), in order for it to con-
tain the changes of both evolved model versions, the changes made to the evolved
models (in comparison to the common ancestor model version) have to be applied
automatically to the initial merged model. However, conflicting changes can occur,
they cannot be applied automatically. Therefore, the changes resulting from com-
paring both evolved model versions with their common ancestor have to be compared
with each other in order to decide which changes are not conflicting each other and
can thus be applied to the merged model and which changes cause model merge
conflicts. This process is performed for the model changes of the to-be-merged UML
models and the model changes of every OMOS diagram belonging to these UML
models.

6.4.1. Accepting and rejecting changes, and detecting model merge
conflicts

The objective of the conflict detection process is to detect changes made in parallel
in both evolved models which contradict each other and thus cannot be applied
to the merged model without further consideration by modellers. If changes are
found (by the merge tool) to be non-conflicting, they are automatically accepted and
the respective model element in the initial merged OMOS model will be changed
accordingly (if it is part of it). As further discussed in Section D.6.3, depending
on the type of conflict, conflicting changes are rejected or accepted. When a model
merge conflict is created (by the merge tool as part of the process of creating the
initially merged model), its resolution state is unresolved. Modellers have to deal
with the conflicts and resolve them manually.

In order to detect model merge conflicts, the changes made in one evolved OMOS
model are compared to the changes made in the other evolved OMOS model. The
two change sets produced during model comparison are analysed for conflicting

163

6.4 Overview of model merge process for OMOS models

changes, i. e., for each change from one change set it is analysed whether it conflicts
with changes made in the other change set.

First, model element addition and deletion changes are analysed (by the merge tool)
in order to decided whether the addition or deletion can be accepted. Then, model
element relocation changes are handled, and, thereafter, property value changes are
checked for conflicts.

Based on the change types mentioned in Section 6.3 and defined in Section D.5.4.2,
the following types of conflicts can be distinguished [Wes91]:

• Concurrent property value change conflicts indicate contradicting changes (ma-
de in both evolved models) of a model element’s property value(s).

• Concurrent model element relocation change conflicts indicate that a model
element was relocated in conflicting ways in both evolved models, i. e., it was
moved to a new container element which is a different one for both evolved
models.

• Deletion-modification conflicts occur when a certain model element was deleted
in one evolved model and its properties’ values were modified in the other one.

• Existence conflicts: A model element cannot be part of the merged model
because, according to the rules of meta-object facility (MOF), it cannot be
contained in its container element.

6.4.1.1. Summary

As a result of analysing the UML model and OMOS diagram changes for merge
conflicts, every change is either accepted or rejected (called the acceptance state
of a change). If it was rejected, the change conflicts with changes from the other
evolved model. A merge conflict is thus created which references the conflicting
model changes. The details of analysing changes and detecting UML model merge
conflicts and OMOS diagram merge conflicts are discussed in Section D.6.3 and
Section D.7.1.3.

6.4.2. Creating the initial merged OMOS model

Based on the UML model and OMOS diagram changes and their acceptance state,
the initial merged UML model and its initial merged OMOS diagrams are created

164

6.4 Overview of model merge process for OMOS models

by applying the accepted changes to the ancestor version of the OMOS model. The
creation of the initial merged UML model works in the same way as creating the
model’s initial merged OMOS diagrams. This is possible because the meta-model
of the UML model and the diagrams are based on the meta-object facility, applying
model changes thus works identically.

The input for the UML model merge process are the three OMOS model versions
(the common ancestor and, if they exist, both evolved OMOS model versions), the
model changes, and model merge conflicts.

The process of creating the initial merged UML model and the initial merged dia-
grams starts with the respective model’s root element (which is the Model element
for UML model and the Diagram element for each diagram) and first merges the val-
ues of the containment reference properties before the values of all other properties
are merged. Merging property values is based on the acceptance state of property
value changes, values with accepted changes or without changes are automatically
merged, rejected changes are not automatically applied.

The resulting (initial) merged diagrams are instances of the graph model of a diagram
(see Section D.7.1.1) describing the OMOS diagram’s class symbol hierarchy. The
merged diagram models are, however, not instances of the fully laid out version of a
diagram model describing the OMOS diagram’s actual layout by means of absolute
symbol positions and sizes as used by the model editor to visualise OMOS diagrams.
The fully laid out diagram model is derived from the hierarchical diagram model
which, as explained in Section D.7.1.1, contains all information required for laying
out the OMOS diagram.

A detailed discussion of the creation of the initial merged OMOS model as imple-
mented by the research is provided in D.6.4.

6.4.3. Summary and outlook

The details of the model merge implementation realised as part of the research
presented in this thesis are provided in Section D.6.

After the initial merged UML model and all initial merged OMOS diagrams have
been automatically created, the second phase of the merge process starts in which
modellers manually resolve model merge conflicts. This process’s details are dis-
cussed in the next section.

165

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

6.5. Visualising and dealing with OMOS model and diagram
changes and conflicts

After the initial merged model has been automatically created (as described in the
previous section), it may not contain all modifications made to both to-be-merged
evolved models. This may happen because of conflicting modifications (i. e., because
of merge conflicts). Some types of merge conflicts, called existence conflicts (see Sec-
tion 6.4), can even prevent model elements from becoming part of the initial merged
model. There are other types of conflicts which do not prevent model elements from
becoming part of the initial merged model (for instance, concurrent value change
conflicts of attribute properties). All merge conflicts ultimately have to be solved
manually by modellers. Resolving conflicts is the main objective of the second phase
of the merge process. This section presents the approach (taken by this research) to
supporting modellers with resolving UML model and diagram merge conflicts.

As required by the principles of the OMOS merge process defined in Chapter 4, the
approach is based on the four OMOS models participating in the merge process,
i. e., the common ancestor model, both evolved models, and the merged model. In
addition, the both change sets and the set of conflicts derived from them are used
as well (see Section 6.3). Each change set includes change information regarding
the UML model and all diagrams belonging to the merged OMOS models (see Sec-
tion D.7.1.2), and the conflict set contains information about model merge conflicts
of the UML model and its OMOS diagrams (see Section 6.4).

6.5.1. A dedicated merge tool

The change and conflict information (i. e., the change sets and the conflict set) is
not part of the models or diagrams themselves, this information is kept outside the
actual models and diagrams. It is only accessed by the OMOS model merge tool
which visualises models and diagrams together with change and conflict information
and supports modellers to reason about model changes and resolve model merge
conflicts. An extended version of the OMOS model editor which is used to create
OMOS models and their diagrams in the first place (see Section 5.2) is, therefore,
used to visualise change and conflict information of the diagram symbols and the
underlying UML model elements, and to dealing with them (see Section 6.5.5). In
addition to visualising models in a diagrammatic manner, the model editor provides
a model tree which is annotated with change and conflict information.

166

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

The next sections discusses the approach to visualising and dealing with merge
changes and conflicts as defined in Chapter 4 and implemented by this research.

6.5.2. Standard visualisation for all four model versions involved in the
merge process

As requested in Chapter 4, the model merge conflict resolution approach implemen-
ted by this research takes into account all four OMOS models (the common ancestor,
the two to-be-merged models, and the merged model). All four OMOS models are
presented to modellers during the conflict resolution process. The models are visu-
alised in the same diagrammatic way that is used to create OMOS models. All
UML model and OMOS diagram changes and conflicts are visualised in the com-
mon ancestor and the two to-be-merged model versions. The merged model and its
diagrams are not annotated with change or conflict information.

6.5.3. Visualising and dealing with model changes and model merge
conflicts in OMOS diagrams

As discussed in the previous section, in order for modellers to efficiently reason about
model merge conflicts and to solve them, the model merge tool presents changes
and conflicts to modellers in the same way as used for creating the to-be-merged
models. Chances and conflicts are presented in the original visual modelling context.
For instance, if an operation was relocated to different (container) classes (in both
evolved models), the operation is visualised as an operation of either class to allow
modellers to see which container class the operation was relocated from and to.
This is, of course, not possible in the merged model because, according to the UML
meta-model, an operation can only belong to one class. There are two ways to solve
this issue: Extend the UML meta-model to support merging or visualise conflicts in
a different way which does not require conflicting model elements to be part of the
merged model. As defined in Chapter 4, the merge approach implemented as part
of this thesis takes the latter approach.

All diagram changes are communicated to modellers in order to enable them to learn
about what changed in a diagram in both its evolved versions, why these changes
are conflicting (if they are), and how to resolve the conflict.

Because the approach to merging OMOS diagrams can take the explicitly defined
information regarding the diagrams’ layout hierarchies into account, modellers have

167

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

to deal only with real diagram changes and conflicts which relate to modifications of
the visual contexts of class symbols (manually made by modellers in evolved diagram
versions). As further explained in Section D.7.1, modellers do not have to deal with
“pixel” changes and conflicts related to the modification of the absolute position or
size of diagram symbols.

Changed symbols are highlighted in diagrams by means of colours, annotating a
diagram symbol with diagram change and conflict information is achieved by paint-
ing the symbol’s border in a colour other than black (which is the colour used for
diagram symbol borders). A yellow border indicates that the symbol was added to
the diagram, grey indicated that it was deleted, blue means it was modified, and
red indicates unresolved conflicts. If colours cannot be used, change and conflict
information can be visualised as icons attached to the diagram symbols instead of
colouring them. Displaying change and conflict information by means of icons will
also help to overcome challenges colour-impaired modellers may experience with
coloured diagram symbols.

When diagram symbols have changes which are not accepted in the merged diagram
(i. e., their acceptance state is “rejected”), these symbols have a dotted-line border
(instead of solid-line border). Diagram symbol changes which could not be accepted
when the initial version of the diagram was created, are marked as conflicting. That
is why their border is drawn as a red coloured dotted line. After the conflict has
been resolved, the symbol’s border will not be coloured red any more (but in the
diagram symbols’ default black colour).

As defined in Section 4.3, modellers are allowed to delete symbols from a merged
diagram which do not have deletion changes. Doing so is an ordinary diagram editing
action like it is used when a diagram is created (not during diagram merging). The
deleted symbol’s border is then also painted in grey in any diagram of the original
ancestor and evolved model versions depicting the deleted symbol’s UML class.

Annotating changes and conflicts by means of colour (or icons) provides direct visual
feedback and allows modellers viewing a diagram to immediately understand which
symbols have (conflictingly) changed — without the need to select the symbols in the
diagram and to open a list (or similar) of changes and conflicts — and indicates to
modellers which diagram symbols and model elements need further investigation. In
case unresolved conflicting changes exist, modellers can immediately see that there
are unresolved conflicts.

168

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

6.5.3.1. Visualising UML model changes and conflicts directly at the respective
diagram symbols

As requested by the principles and objective defined for OMOS model merge tools in
Section 4.2, changes and conflicts of the UML model element shall be directly visu-
alised at the respective diagram symbols. Therefore, changes and conflicts of the
underlying UML elements are also visualised as part of the diagram symbols depict-
ing the UML elements. In order to distinguish between diagram symbol changes and
conflicts and model element changes and conflicts, the latter are visualised by filling
the background of the respective diagram symbol using the same colours defined
above. This way, modellers get direct visual feedback for model element changes
and conflicts directly in diagrams as well and can distinguish between changes and
conflicts affecting diagram symbols and those affecting UML model elements. For
instance, a class symbol visually annotates changes and conflicts of its underlying
UML class as well as the class’s attributes and operations if they are visible for this
class symbol (depending on its details visibility level).

With respect to UML model element changes and conflicts, their respective diagram
symbols do not provide all information available about its (conflicting) changes. De-
tailed change and conflict information are provided in the model tree which presents
the respective model elements of the respective model version. This visualisation is
discussed in the next section.

6.5.4. Visualising and dealing with changes and conflicts in OMOS
model trees

The merge process’s conflict resolution phase involves four versions the UML model
(underlying the class definition diagrams of a OMOS model): The three original
models (the common ancestor and the two evolved models) and the merged model.

In addition to visualising them in diagrams, changes and conflicts of UML model
elements are presented in the respective model tree too. The model tree is also part
of the OMOS model editor (implemented as part of this thesis) used to create OMOS
models in the first place (see Section 5.2). A model tree visualises the elements of a
UML model according to their containment hierarchy (starting with the root model
element, going to packages, classes, attributes, operations and so on). It consists
of tree items. Each item consists of a text labels and an optional icon. For the
conflict resolution phase of the model merge process, the model trees are extended

169

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

to display change and conflict information and to allow modellers to deal with them
(see Section 6.5.5).

As for merging diagrams, there exist four model trees, one is depicting the common
ancestor model’s elements, another two are depicting each of the two evolved models’
elements, and the fourth one visualises the merged model’s elements. As for merged
diagrams, the merged model’s elements are not annotated with change and conflict
information in the merged model’s model tree. The ancestor model’s model tree
visualises the ancestor model’s elements. It provides a view of the model as it was
before the two evolved models were modified in parallel. Like the symbols of an
ancestor diagram, the ancestor model’s tree highlights model elements which are
deleted in one or both evolved models. This model tree hence annotates model
elements which have deletion changes and deletion conflicts in one or both evolved
models. Deleted model elements are annotated in the ancestor model tree because
they are not part of the evolved model in which they were deleted.

In addition to annotating model elements which have deletion changes, each model
element’s property values which have property value removed changes (see Sec-
tion D.5.4.2) are annotated as well because the value is only available for the re-
spective model element and the respective property in the ancestor model. If the
respective property is a reference property (i. e., it references model elements), it also
shows information about whether elements removed from the property were deleted
from the model (or still exist and are just no longer referenced). If the property is
a containment reference property, removing values means that the respective model
element was either relocated to a different container element or deleted from the
model. Information about both types of changes and, if they exist, conflicts are
displayed for these removed values in the ancestor model tree too. If the property is
an ordered one, reordered values are also annotated with property value reordered
changes and, if a conflict exists, with conflict information in the ancestor model tree
too. The reason for showing this information in the ancestor model tree is again
because the ancestor may be the only model for which the property value exists at
this very position because it may have been (conflictingly) reordered or deleted in
both evolved models.

In addition to visualising the actual model elements, each evolved model’s model
tree visualises change and conflict information. Information about changes regard-
ing the “whole” element and not particular properties, i. e., model element addition
or relocation changes (see Section D.5.4.2), are displayed in front of each element’s

170

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

tree item; “+” and “*” are used to indicate addition and relocation changes respect-
ively. (As discussed above, deleted model elements and the respective model element
deletion changes are visualised in the ancestor model’s tree.)

Property value changes are visualised at the respective property’s values. Property
values with property value added or reordered changes are marked with “+” and
“*” signs. (As discussed above, removed property values and the respective property
value removed changes are visualised in the ancestor model’s tree.)

If a change is not accepted (in the merged model), the sign indicating this change
for the respective model elements is put in parentheses, i. e, “(“ and “)”, to indicate
that the change was rejected.

If changes are conflicting and the conflict is unresolved, they are marked as such
by adding a “!” (exclamation mark) in front of the conflicting changes. When a
conflict has been solved (see Section 6.5.5 below), the exclamation is removed from
the respective changes’ visualisation.

As will be discussed in Section 6.5.5, modifying the merged model during conflict res-
olution by accepting or rejecting changes or by changing the merged model directly,
will update the acceptance state of changes and the resolution state of conflicts. The
respective tree items in the model trees will then be updated accordingly.

By selecting a model element or a property value in a model tree, the respective
element’s tree items get automatically selected (i. e., highlighted) in the other model
trees if this element exists there; this way, modellers can easily see if and how the
element changed in the evolved models and what it was like in the common ancestor
model.

If a model element has an unresolved (direct or indirect) existence conflict (i. e.,
it does not exist in the initial merged model), it will be annotated with a “!” to
indicate the conflict.

6.5.4.1. Visualising diagram changes and conflicts as part of UML model
elements

Because OMOS models are constructed by means of diagrams, the UML model
elements visualised in model trees are depicted in diagrams. In addition to depicting
UML model elements, the model tree provides information about the diagrams in
which the UML model elements are depicted. As for UML model elements, diagram

171

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

symbol change and conflict information are provided if the symbol is changed in
a respective diagram. The change and conflict information regarding the diagram
symbols of a certain UML model element can be leveraged in model trees because
the diagram symbols reference the UML model elements they depict1. This allows
modellers to learn in which diagrams symbols representing a certain model element
changed, and allows them to access the symbol in these diagrams in a convenient
way by navigating from the model tree directly to the respective diagrams.

6.5.4.2. Model change impacts

In order to allow modellers to understand the impact of accepting or rejecting a
change (which will be discussed in Section 6.5.5), the model tree shows for each model
element those model elements which reference it (by means of reference properties).
So even though the model element does not reference those referencing elements,
information about those referencing model elements are visualised at the referenced
model element. In addition to showing the type and name of each referencing model
element, change and conflict information of the referencing property’s property value
are visualised (including the acceptance state of the change and the resolution state
of the conflict). As discussed above, the visualisation of both states is updated when
they change because the modeller accepts or rejects the respective changes during
the process of resolving merge conflicts. This process is discussed in the next section.

6.5.5. Resolving merge conflicts and working with the merged model

After the initial merged OMOS model was automatically created (as discussed in
Section 6.4), merge conflicts may exist. They are caused by contradicting changes
made in parallel to both evolved models and/or diagrams. Modellers have to manu-
ally resolve conflicts in order to finally arrive at a merged OMOS model that does
not have model merge conflicts (in its OMOS diagrams and the underlying UML
model).

Conflict resolution is mainly based on accepting and rejecting conflicting changes.
Doing so will automatically set the respective conflict’s resolution state to “resolved.”

1UML attributes and operations are not directly referenced from the class symbols which depict
them in diagrams, but based on the class symbols reference to the UML class it depicts and
the class symbol’s details visualisation level, the depicted attributes and operations can be
automatically determined.

172

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

The actual consequences of accepting or rejecting changes are discussed below. In
case none of the conflicting changes should be accepted, modellers can also manually
set a conflict’s resolution state to “resolved.”

As for accepting or rejecting conflicting changes, the same can be done for non-
conflicting ones. Modellers might also want to reject changes because they are
semantically (not syntactically) conflicting, i. e., a certain change does not reflect
the envisaged semantics and is thus rejected by modellers.

The merge process, therefore, not only supports accepting or rejecting conflicting
changes (in order to solve merge conflicts), it also allows (1) assigning arbitrary
values for conflicting, non-conflicting, and unchanged property values, i. e., for any
property of any model element, and (2) creating and deleting arbitrary model ele-
ments. The tooling provided for the conflict resolution process is, therefore, similar
to the modelling tools used to create the original, to-be-merged OMOS models.

Accepting or rejecting changes affects the state of the merge model’s element. The
actual effect of accepting or rejecting them depends on the type of changes as is
explained in the next sections.

6.5.5.1. Accepting an addition change

When an addition change is accepted, the respective UML model element or dia-
gram symbol is added to the merged UML model or diagram. When an element is
added to the merged model, its non-conflicting contained elements (referenced via
containment reference properties), i. e., all elements which do not have direct exist-
ence conflicts, are automatically added to the merged model or diagram. Adding
contained elements is done in a recursive manner. Elements contained by contained
elements and so on are, therefore, also added to the merged model. Contained
elements which have indirect existence conflicts can be accepted/added since these
conflicts only exists because their container elements were not part of the merged
model or diagram. Contained elements which were already added to the merged
model or diagram are ignored.

Adding an element is only possible if the container element exists in the merged
model or diagram. The container element is defined by the evolved model or diagram.
If this element does not exist in the merge model or diagram, the modeller can choose
to add the element to a different container element.

173

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

All elements added to the merge model by manually accepting an addition change
will also reference those elements which they reference by means of non-containment
reference properties if those elements exist in the merge model, i. e., if they do not
have existence conflicts and were not deleted manually from the merged model or
diagram (see Section 6.5.5.8).

The property values of the added elements are calculated in the same way as was
used for calculating the property values of elements of the initial merged model
elements or diagram (see Section D.6.4).

Elements already existing in the merged model or diagram might define references
to added elements (these reference were, of course, defined in the evolved models or
diagrams, not in the merged one). When the to-be-referenced elements are added to
the merged model/diagram, the dangling references are updated and turned into real
references. The respective dangling reference conflicts are removed. The property
values of the referencing elements cannot be calculated in the same way as was
used for calculating the property values of elements of the initial merged model
elements or diagram (see Section D.6.4) because their values might have already
been manually modified by modellers (see Section 6.5.5.8), therefore the element is
appended to reference properties’ values of the referencing elements; for single-valued
references, this means the value is simply set.

If an addition change is conflicting, the conflict will be resolved when the addition
change is accepted.

6.5.5.2. Rejecting an addition change

If the model element or diagram symbol is part of the merged model or diagram,
rejecting an addition change will delete the element or symbol. This works in the
same way as accepting a deletion change which will be explained next. If an addi-
tion change is conflicting, the conflict will be resolved when the addition change is
rejected.

6.5.5.3. Accepting a deletion change

When a deletion change is accepted, the respective UML model element or diagram
symbol will be deleted from the merged UML model or diagram. All its directly and

174

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

indirectly contained elements will be deleted as well. All deleted elements are also
removed from (the reference property values of) any referencing elements.

If a deletion change is conflicting, the conflict will be resolved when the deletion
change is accepted.

6.5.5.4. Rejecting a deletion change

If the model element or diagram symbol is not part of the merged model or diagram,
rejecting a deletion change will add it. This works in the same way as accepting
an addition change explained previously. If an deletion change is conflicting, the
conflict will be resolved when the deletion change is rejected.

6.5.5.5. Dangling reference conflicts

Such conflicts exist when a UML model element or diagram symbol references an-
other one which is not part of the merged model or diagram. Modellers can resolve
those conflicts by either adding the referenced element to the merged model or
diagram, or by directly setting the conflict’s resolution status to “resolved.” The
reference to the element which is missing in the merged model or diagram is then
no longer marked as conflicting. The modeller thereby indicates that not referen-
cing the element in the merged UML model or diagram is accepted and, therefore,
resolves the dangling reference conflict.

6.5.5.6. Resolving conflicting concurrent model element relocation changes

When a model element was conflictingly relocated to different container elements,
none of the two relocation changes is automatically accepted when the initial merged
model is created and thus the model element does not automatically become not
part of the merged model. In order to resolve model element relocation change
conflicts, modellers thus either have to accept that the model element is not part of
the merged model or have to define a container element (which already exists in the
merged model) for it. The container element can be one of the container elements
to which the element had been (conflictingly) relocated to in the evolved models, or
it could also be a different model element (see Section 6.5.5.8). In the former case,
the respective conflicting model element relocation change is accepted. In the latter
case, both model element relocation changes are still rejected. In any case, the model

175

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

element relocation change conflict is resolved and the model element does not have
an existence conflict any more because it is now part of the merged model. Identical
to accepting an addition change (as previously described), resolving a concurrent
model element relocation conflict by bringing the respective model element into the
merged model will also include its direct and indirect contained elements which do
not have direct existence conflicts.

6.5.5.7. Resolving conflicting concurrent value property changes

Resolving concurrent value property conflicts is based on the individual values of
the property (since each individual property value change is marked as conflicting).
For single-valued properties, modellers can chose between one of the two evolved
values or the ancestor; but they can also chose a completely different one (see Sec-
tion 6.5.5.8). Doing so will update the property’s value in the merged model, accept
or reject the respective property value changes, and resolve the respective conflict.

For multi-valued properties, changes of individual values can be accepted or rejected.
Doing so has the same effect as dealing with value changes of single-valued properties
described above.

If the changed property is a reference one, accepting value property added changes
or rejecting value property removed changes can only be done if the respective
referenced model element actually exists in the merged model.

If the property is a containment reference one, accepting value property added
changes or rejecting value property removed changes will affect the existence of
the contained model element and all its direct and indirect sub-elements. Accepting
or rejecting those changes has the same effect as accepting or rejecting an addition
change as described previously.

6.5.5.8. Directly modifying the merged UML model and diagrams

As already mentioned in the previous section, modellers can modify the merged
model and diagrams in any way during the conflict resolution phase of the model
merge process. New model elements and diagram symbols can be created or existing
ones can be deleted or modified. This allows modellers to resolve merge conflicts in
a more flexible way than simply accepting or rejecting conflicting changes.

176

6.5 Visualising and dealing with OMOS model and diagram changes and conflicts

Modifying the merged model elements or diagrams might affect changes and conflicts
of these elements. The respective changes and conflicts can be detected because
a connection between elements and their changes and conflicts exists. Therefore,
when elements and symbols are directly modified, the acceptance state of changes
and the resolution state of conflicts is updated automatically. Their acceptance and
resolution state are, therefore, kept up to date with the merged model’s elements
even though modellers did not directly deal with the respective changes and conflicts,
but directly modified the respective model elements.

6.5.6. Exchanging partially merged models

According to the principles defined for the envisaged approach to working in parallel
with OMOS models (see Chapter 4), modellers should be able to exchange partial
merged models (during the merge process) with other modellers. These modellers
can then resolve merge conflicts their fellow modellers could not solve. The OMOS
model merge prototype discussed in this chapter, therefore, allows the storing of the
partially merged model (and its diagrams), the changes and their acceptance state as
well as conflicts and their resolution state. The merge approach allows the exchange
of partially merged models between different modellers. This is made possible in or-
der to allow one modeller to verify the elements of the merged model he worked on,
and allows him to resolve merge conflicts involving these model elements. Another
modeller could then do the same for the model elements he is responsible for. So,
some merge conflicts can be resolved by one modeller and other conflicts by another
modeller. Being able to exchange partially merged models therefore allows them
to merge models (i. e., resolve conflicts) in a cooperative manner. This possibility,
therefore, helps to increases the acceptance of merge-based collaboration approaches
because all modellers who worked (in parallel) on the to-be-merged models can parti-
cipate in the merge process. Dedicated meta-models are thus defined for describing
and managing changes and conflicts. The part of the UML meta-model used for
OMOS models is discussed in Section D.1, the meta-model for OMOS diagrams is
provided in Section D.3 and a meta-model for changes and conflicts (including their
acceptance and resolution state) is discussed in Section D.5.4.2.

177

6.6 Chapter summary and outlook

6.6. Chapter summary and outlook

In this chapter, a visual merge approach for OMOS models (i. e., OMOS diagrams
and the underlying UML model) was discussed. It was implemented as a proof of
concept and represents one of the main contribution of this research. This chapter
(as well as Chapter 5), therefore, discussed the realisation of research objective 4
defined in Section 1.2.2: design and implement software to carry out a proof of
concept.

The diagram merge approach is based on the semi-automatic OMOS diagram layout
presented in Chapter 5. Because the hierarchy of class symbols is explicitly defined
by modellers, the diagrams’ structure is formally defined and can be represented as a
model (see D.7.1.1). This allows applying the same model differencing and merging
approach to the diagrams as is applied to their underlying UML models.

With respect to diagram merging, the extension of the visual grammar of UML
class diagrams to support user-defined hierarchical layout of class symbols allows for
efficient model merging because fundamental diagram conflicts caused by absolute
position conflicts of diagram symbols occurring for free-form diagram layout [RW98]
can be avoided. Since a diagram can be modified by different modellers independ-
ently, the merge approach based on the semi-automatic layout therefore does not
require modellers to rearrange diagram symbols in order to untangle merged dia-
grams. Two versions of a diagram can thus be combined without user interaction if
there are no conflicts.

The next chapter will discuss the evaluation of the diagram layout approach and the
visual merging approach for OMOS models provided in this chapter and Chapter 5.

178

7. Evaluation, contributions and
conclusions

An evaluation of the usefulness of the proposed solution for working in parallel with
OMOS models (whose principles and objectives are defined in Chapter 4 and whose
design and implementation is discussed in Chapter 5 and Chapter 6) from the expert
opinion of engineers in the field is provided in this chapter. This chapter provides
answers to research objectives 5 and 6 defined for this research in Section 1.2.2,
namely, test the solution using examples from the pilot study environment and
evaluate the usefulness of the proposed solution from the expert opinion of engineers
in the field.

7.1. Evaluation of the proposed solution by experts in the
field with a real-world parallel modelling scenario

The suggested solution to working in parallel with OMOS models (i. e., semi-auto-
matic layout for creating OMOS diagrams provided in Chapter 5 and the visual
OMOS model merge approach including conflict resolution during the merge process
as discussed in Chapter 6) has been evaluated by testing it. Two test cases are used
to evaluate the suggested solution by experts in the field: parallel OMOS modelling
using the semi-automatic layout approach and visual merging of the concurrently
evolved OMOS models (which were created using the former approach).

7.1.1. Evaluation approach and test data

In order to validate the proposed solution for working in parallel with OMOS mod-
els, a part of the “Power Supply Input/Output and Gearbox Operation Modes”
model (which was used for the pilot study presented in Chapter 3) was used. Three
engineers from Bosch’s “Automatic Transmission Control Units” group took part in

179

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

the evaluation. The engineers tested the OMOS model editor and the model merger
prototypes developed as part of this research (see Chapter 5 and Chapter 6). Both
tools were installed at Bosch’s (Schwieberdingen) site.

In order to validate the tools (and, thereby, the suggested approaches), a part of the
“Power Supply Input/Output and Gearbox Operation Modes” model, which also
has been used to the pilot study (see Chapter 3) was re-created by the engineers
(using the tools). This part of the model was chosen because it reflects modelling
use cases which are representative for the Automatic Transmission Control Units
group’s use cases. The re-created model represents only a part of the “Power Supply
Input/Output and Gearbox Operation Modes” model. This part, however, consists
of actual elements taken from the original OMOS model. Furthermore, the layout
of the OMOS diagrams visualising the selected part of the model contains layout
phenomena that convey semantic meaning (as discussed in Section 3.6), namely the
grouping of class symbols to visually express their assignment to software layers
and the ordering of class symbols in order to visually express their close semantic
relationship. The engineers (evaluating the proposed solution) also worked on the
original OMOS model. In terms of evaluating the solution they are, therefore,
experts in the field (of modelling automotive software using the OMOS approach).

In order to validate the proposed approach for concurrent OMOS modelling based
on scenarios which can occur in real-life situations for real OMOS models, two
modelling tasks were defined (by the OMOS engineers in close collaboration with
the author). Both tasks were previously realised in the original “Power Supply
Input/Output and Gearbox Operation Modes” model — but back then, of course,
in a sequential manner as there was no support for concurrently modifying OMOS
models. As will be explained in the next section, the tasks were realised by different
OMOS modellers in a parallel manner. The criteria for selecting the tasks for testing
concurrent modelling are as follows:

• Both tasks should realise real-world use cases as they were already realised
for the original “Power Supply Input/Output and Gearbox Operation Modes”
model.

• The software components implemented/affected by both modelling tasks have
to be thematically close enough to allow for concurrent modifications of the
same model elements and diagrams in order to evaluate the suggested ap-
proach to dealing with conflicting changes. If the tasks were thematically very
different, concurrent changes of the same parts of the model would be unlikely.

180

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

However, both tasks should be sufficiently different such that they can be real-
ised in a concurrent manner by different modellers in different versions of the
same model.

• The tasks should involve the creation and modification of diagrams. The same
diagram symbols should be modified by both tasks to evaluate the visual model
merge approach and its support for conflict reasoning, handling, and resolu-
tion. Furthermore, to verify the handling of UML model element changes and
conflicts, it should also be possible to change the model elements underlying
the diagram symbols.

• In order to evaluate the semi-automatic diagram layout approach and the
meaning-preserving merge approach based on it, the original OMOS diagrams
(re-created as part of the evaluation) should convey additional meaning through
their layout, i. e., class symbols should be visually grouped and ordered as
identified by the pilot study (see Chapter 3). Furthermore, the visual contexts
of the same diagram symbols should be modified concurrently (by different
modellers in different versions of the same model) in order to evaluate the
visualisation and handling of diagram conflicts.

Based on the above criteria, two tasks for evaluating the proposed solution are
defined as will be explained in the next section.

7.1.2. Evaluation of the OMOS model editor

In a first step, the engineers evaluated the OMOS model editor (implemented as
part of this research, see Chapter 5). Using the editor, they created three OMOS
models (an ancestor model and two evolved ones). Using the model editor allowed
the evaluation of the semi-automatic layout approach (discussed in Chapter 5) for
creating and laying out real-life OMOS diagrams (and for creating the underlying
model). The created model elements and diagrams, including their names, are all
taken from the original OMOS model. The model is partitioned into several diagrams
in the same way the original model is partitioned. The diagram layouts are, where
possible, kept similar to the original layouts (this is not always possible because of
the hierarchic layout, but the class symbols are arranged and related to each other
in a similar fashion as in the original diagrams).

Before the model merge tool can be evaluated in a second evaluation step, the two
evolved models have to be created to evaluate the concurrent evolution of a model

181

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

(i. e., to evaluate parallel work on the same model). These two models represent the
result of two modelling tasks (see below) that are realised in parallel and independ-
ently based on (two copies of) the ancestor model (of course, including its diagrams).
The description of both modelling tasks is based on real requirements defined for the
real-world “Power Supply Input/Output and Gearbox Operation Modes” model.

In order to better distinguish the evolved models and the modelling tasks realised
in the models, the metaphor of two teams is used in the following discussion. The
two teams could, for example, represent OMOS developers working on the gearbox
controller software in Hungary and Germany (see Chapter 3). For the purpose of
the evaluation, the OMOS engineers formed two teams and worked on the model in
parallel.

Before the details of the three models are presented in the following section, an
overview of the functionalities defined by those models is provided next.

Each team was assigned one of the following modelling tasks. Team A’s objectives
were (1) to realise support for communicating with a car’s power supply electronic
control unit (ECU), i. e., provide interfaces to access power supply information, and
(2) to extend the low-side sensor control to support monitoring low-side stages.
Team B’s objective was to realise support for dealing with a car’s battery ECU,
i. e., provide interfaces to access battery information. The battery component is
different from the power supply component, dealt with by team A, because (for
gearbox controller software) a battery is (just) a storage device whilst the power
supply takes into account additional components, for example, the dynamo.

Team A’s first task, i. e., adding power supply information to the model, is mainly
realised by the classes in diagram “PSply” presented in Fig. 7.4. Classes “PSplyL3”
and “PSplyL2” provide the implementation and classes “IfcPSupply” and “IfcPSup-
ply_PSply” (see Fig. 7.7) provide the interface classes for accessing power supply
information. All these classes were added to team A’s model.

Team A’s second task, i. e., replacing the basic monitoring functionality (already
realised by class “LssCtrl” in the ancestor model, see diagram “Lss” in Fig. 7.1)
with dedicated fault/malfunction monitoring functionality, is mainly realised by class
“LssCtrl_Mn” and “LssMon” (see Fig. 7.5). The latter class replaces the fault mon-
itoring formerly provided by class “LssCtrl.” That is why operation “Calc_LssMon”
has been moved from “LssCtrl” to “LssMon.”

Team B’s task, i. e., providing access to a car’s battery information, is realised in

182

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

a second model version (again a copy of the ancestor model). OMOS diagram
“Battery” (see Fig. 7.8) defines the main classes realising the access to battery
information (class “BatL3” and “BatL2”). Furthermore, the low-side sensor control
class now accesses battery information via class “IfcBattL3.” This model information
was added in team B’s version of diagram “Lss” (see Fig. 7.9)

7.1.2.1. The common ancestor model and its diagrams

Figure 7.1.: OMOS diagram “Lss” (ancestor version).

In order to evaluate the concurrent modification of the model, a first model (the
ancestor) has been created which provides the basis for parallel modifications of the
model by the two teams. The OMOS model which serves as the starting point for the
two parallel modelling tasks defines classes for controlling the “low-side sensors” (see
Fig. 7.1). The layout of this diagram follows the original diagram’s layout discussed
in Section 3.5.2.

183

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

Figure 7.2.: OMOS diagram “Ifc” (ancestor version).

The ancestor OMOS model also provides functionalities for calculating low-side
sensors input signals and for basic fault monitoring of the low-side controller. It
defines interface classes dealing with the “wake-up signal” handling and “sensor
supply voltage” access (see Fig. 7.2) used by other classes of this OMOS model.
The layout of this diagram follows the original diagram’s layout discussed in Sec-
tion 3.5.1.

Figure 7.3.: OMOS diagram “0_ObjectModel” (ancestor version).

Finally, diagram “0_ObjectModel”, shown in Fig. 7.3, defines the hierarchy of the

184

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

ancestor model’s root classes. Again, the layout of this diagram follows the original
diagram’s layout discussed in Section C.4.

7.1.2.2. Team A’s evolved model and its diagrams

Figure 7.4.: OMOS diagram “PSply” (Team A version).

Fig. 7.4 presents diagram “PSply” added by team A to model the power supply
classes (“PSplyL3”, “PSplyL2”, and “ECE_ADC”) and their operations and attrib-
utes. The layout of this diagram follows the original diagram’s layout discussed in
Section C.3 and reflects the assignment of the depicted classes to software layers as
discussed in Section 3.5 (using the OMOS model editor, modellers explicitly defined
the order of the class symbols).

185

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

Figure 7.5.: OMOS diagram “Lss” (Team A version).

Fig. 7.5 presents team A’s evolved version of diagram “Lss.” According to team
A’s tasks, fault monitoring support for the low side controller (i. e., dedicated fault
monitoring replacing the basic monitoring previously realised by class “LssCtrl”)
was added in team A’s version of the model. The resulting evolved version of this
diagram is similar to the original “Lss” diagrams discussed in Section 3.5.2. Its class
symbols are arranged in the same way that reflects their assignment to software
layers as the original diagrams were. However, with the OMOS model editor and
its semi-automatic layout approach, the modellers were able to explicitly define the
arrangement of the class symbols.

186

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

Figure 7.6.: OMOS diagram “0_ObjectModel” (Team A version).

The new class “PSplyL3” defined in diagram “PSply” (Fig. 7.5) was added to dia-
gram “0_ObjectModel” (Fig. 7.6) which represents the hierarchy of the model’s root
classes.

Figure 7.7.: OMOS diagram “Ifc” (Team A version).

According to team A’s tasks, the new power supply interface classes are modelled in
diagram “Ifc” (Fig. 7.7). This diagram defines all interface classes other classes in the
OMOS model can make use of to, for instance, access information provided by other

187

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

electronic control units. The new class symbols added in diagram “0_ObjectModel”
and “Ifc” were arranged in the same as done in the original diagrams.

7.1.2.3. Team B’s evolved model and its diagrams

Figure 7.8.: OMOS diagram “Battery” (Team B version).

Team B’s new classes (“BatL3”, “BatL2”, and “ECE_ADC”) are modelled in a new
diagram called “Battery” (Fig. 7.8). As requested by team B’s modelling tasks,
these classes realise the functionality for accessing a car’s battery information.

Figure 7.9.: OMOS diagram “Lss” (Team B version).

Access to battery information was added to the low side control via interface class
“IfcBattL3” in diagram “Lss” (Fig. 7.9).

188

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

Figure 7.10.: OMOS diagram “ObjectModel” (Team B version).

Team B added class “BatL3”, defined in diagram “Battery” (Fig. 7.8), to diagram
“0_ObjectModel” (Fig. 7.10) which defines the hierarchy of the model’s root classes.

Figure 7.11.: OMOS diagram “Ifc” (Team B version).

The new battery interface classes (“IfcBatt”, “IfcBattL3”, and “BatL3”) are mod-
elled in diagram “Ifc” (Fig. 7.11) which defines all interface classes other classes in
the OMOS model can make use of. The class symbols added to diagram “0_Ob-
jectModel” and “Ifc” were arranged according to the original diagram versions.

189

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

7.1.2.4. Summary

As explained above, to evaluate the semi-automatic layout approach (and the model
editor realising it), the diagrams created by the modellers for all three models are laid
out in a similar way as the original diagrams from the “Power Supply Input/Output
and Gearbox Operation Modes” model. The additional semantic meaning conveyed
through the original layouts (see Chapter 3) is now explicitly defined by the model-
lers by means of grouping and ordering class symbols. At the same time, class sym-
bols can be arranged according to UML’s layout guidelines (see Section 3.2.2). For
instance, in diagram “Ifc”, the newly added class symbols (i. e., “IfcSupply”, “IfcSup-
ply_PSply”, and “PSplyL3” for team A’s evolved diagram version, and “IfcBatt”,
“IfcBattL3”, and “BatL3” for team B’s) are positioned in the same visual context
as in the original diagram discussed in Section 3.5.1. Because of the OMOS model
editor’s semi-automatic layout, the modellers did not have to rearrange the diagram
layout when symbols were added (or removed), they simply dropped the classes
symbols next to the desired neighbour or parent class symbols and the respective
diagrams (7.7 and Fig. 7.11) were automatically laid out according to the class
symbol hierarchy defined by the modellers.

With the suggested layout approach, modellers can only define the grouping and
ordering of class symbols to define the symbol’s hierarchy, however, they cannot
influence the actual positions of the symbols. Nevertheless, the semi-automatic
layout approach allowed modellers to re-create diagrams with similar layouts as the
original diagrams. This confirms that the suggested layout approach allows the
explicit definition of the secondary notation features required by OMOS modellers
to define semantic relations conveyed through the layout of OMOS diagrams. As
discussed in Section 7.2, this has also been acknowledged by the Bosch engineers
who evaluated the approach.

7.1.3. Evaluation of the OMOS model merger

This section discusses the evaluation of the model merge tool (developed as part of
this research, see Chapter 6). The tool is used to merge the OMOS test models and
diagrams whose creation process is described in the previous section. The Bosch
engineers used the merge tool to create the initial merged model from the evolved
models created by team A and B (based on the common ancestor model). This
model served as the starting point for evaluating the layout of the merged diagrams,

190

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

the visualisation of (model and diagram) changes and merge conflicts, and the tool
support related to change handling and conflict resolution.

7.1.3.1. Accessing all four models and visualising changes and conflicts

Following the principles of visual OMOS model merging defined in Chapter 4, the
OMOS merge tool visualises changes and conflicts in the original versions of the
models and diagrams (i. e., the ancestor and the two evolved versions). All four
versions of each diagram and the underlying model are accessible to modellers during
the merge process.

Figure 7.12.: Merged OMOS “0_ObjectModel” diagram and its original versions.

191

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

For example, for diagram “0_ObjectModel” shown in Fig. 7.12, the initial merged
diagram version is shown on the top-right, the ancestor diagram version is shown
on the top-left, and the both evolved diagram versions are shown at the bottom.
The latter three versions are visually annotated with information regarding changes
and conflicts of the respective diagram and the respective underlying UML model
(diagram “0_ObjectModel” has only model and diagram changes, but no conflicts).
Furthermore, the diagram list including change information regarding the diagrams
is shown at the bottom. This kind of visualisation of model and diagram changes
and conflicts is also requested by the principles of visual OMOS model merging
defined in Chapter 4 to allow convenient access to change and conflict information.

Figure 7.13.: Merged “Ifc” OMOS diagram and its original versions.

In Fig. 7.13, all four versions of diagram “Ifc” are presented. Again, the initial
merged diagram version is shown on the top-right, the ancestor diagram versions
is shown on the top-left, and the both evolved diagram versions below them. The
latter three versions are annotated with change and conflict information regarding
the diagram and the underlying UML model (the symbols of those diagrams and

192

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

the underlying model element had no conflicts, but non-conflicting changes).

Figure 7.14.: Merged “Lss” OMOS diagram and its original versions.

To evaluate the OMOS model merger’s approach to reasoning about and resolving
model and diagram merge conflicts, the Bosch engineers made contradicting model
and diagram changes to both evolved OMOS models. In Fig. 7.14, all four ver-

193

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

sions of diagram “Lss” are presented. Some diagram symbols and some UML model
elements they depict were changed conflictingly. They are highlighted in red col-
our. To evaluate the visualisation and handling of diagram conflicts, class symbol
“CcAuxMon” had been conflictingly relocated to different parent class symbols in
both evolved diagram versions. That is why it is annotated with a diagram conflict
(concurrent relocation conflict) and is not part of the initial merged diagram (shown
on the top-right of Fig. 7.14).

Figure 7.15.: Merged “PSply” OMOS diagram and the underlying UML model
and its original version.

Diagram “PSply”, shown in Fig. 7.15, was added in team A’s evolved model version.
That is why there exist only two versions of this diagram, the evolved diagram version
(shown on the left) and the merged one (shown on the right). The evolved diagram
version’s class and connection symbols are visually annotated with information about

194

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

changes of the symbols themselves and their underlying model elements (if they have
changed).

Figure 7.16.: Merged “Battery” OMOS diagram and the underlying UML model
and its original version.

Diagram “Battery” shown in Fig. 7.16 was added in the evolved model version of
team B. Similar to diagram “PSply” (which was added by team A), that is why
there exist only two versions of this diagram, the evolved diagram version (shown
on the left) and merged one (shown on the right). The evolved diagram’s symbols
are visually annotated with change information regarding these symbols and, if they

195

7.1 Evaluation of the proposed solution by experts in the field with a real-world
parallel modelling scenario

have changed, their underlying model elements.

7.1.3.2. Summary

As the examples in this section show, the suggested OMOS model merge process
allows for automatically creating the initial merged model and its initial merged
diagrams. Because the to-be-merged (ancestor and evolved) diagram versions (cre-
ated in Section 7.1.2) contain information about the explicitly defined class symbol
hierarchy, they can be automatically merged in a meaning-preserving way. For ex-
ample, the initial merged version of diagram “0_ObjectModel” (on the top-right
in Fig. 7.12) preserves the layout of both evolved diagram versions (shown on the
bottom of Fig. 7.12). The same holds for the initial merged version of diagram “Ifc”
in Fig. 7.13.

Diagram “Lss” (Fig. 7.14) could not be entirely merged automatically since it has a
diagram layout conflict: class symbol “CcAuxMon” had been relocated in different
ways in team A’s and B’s evolved diagram versions. However, despite the diagram
merge conflict, the initial merged “Lss” diagram (shown on the top-right in Fig. 7.14)
is still automatically laid out in a meaningful way and preserves the layout of both
evolved diagram versions (shown on the bottom of Fig. 7.14). By looking at the
change and conflict annotations visualised in the evolved diagram versions, modellers
can reason about the diagram merge conflict and learn how to solve it.

In regards to visualising model and diagram changes and conflicts in a diagram-
matic manner directly in (the ancestor and both evolved) diagrams, diagram “Lss”
(Fig. 7.14) demonstrates that diagram changes and conflicts as well as those regard-
ing model elements are directly visualised for the respective diagram symbols. For
example, in addition to the diagram merge conflict of class symbol “CcAuxMon”,
the addition of associations and classes is visualised in the respective evolved mod-
els (by means of “+” labels and beige colour) and conflicting model elements are
highlighted in red colour (some of the attributes and operations shown in diagram
“Lss” were modified in conflicting ways). To allow users to distinguish between sym-
bol and model element changes and conflicts, model element changes and conflicts
are visualised by filling the respective diagram symbol with the respective colour,
whilst only the border to the symbols if coloured accordingly for diagram changes
and conflicts.

Fig. 7.16 and Fig. 7.15 provide examples for visualising model and diagram changes

196

7.2 Success and impact of the proposed solution

and conflicts in the model tree view. Changes and conflicts of model elements are
visualised directly at the affected model elements in the respective model tree views
of the ancestor and both evolved model versions.

7.2. Success and impact of the proposed solution

The evaluation based on real OMOS models presented in the previous section focused
on evaluating the three major approaches implemented as part of this research: the
applicability of the suggested semi-automatic layout for creating meaning-conveying
OMOS diagrams (discussed in Section 7.1.2), automatic meaning-preserving OMOS
diagram merging and efficient handling of changes and conflicts during the merge
process (as discussed in Section 7.1.3). Two test cases were, therefore, used to
evaluate the solutions suggested by this research, i. e., parallel OMOS modelling
based on a semi-automatic layout approach and visual merging of the concurrently
evolved OMOS models.

As explained in Section 7.1.1, three Bosch engineers from the “Automatic Trans-
mission Control Units” group who worked with OMOS on a daily basis evaluated
the prototype tools developed as part of this research. The OMOS modelling tool
as well as the merge tool were installed at Bosch’s site and the experts in the field
tested the proposed solution with real OMOS models.

In addition to providing feedback via email and phone calls, the tools developed as
part of this research were discussed with the Bosch engineers in a meeting (which
took place in November 2008). In this meeting, the engineers gave positive feedback
regarding the results of their evaluation of the usefulness of the tools. Regarding
the evaluation results, the most important feedback provided by Bosch is that they
confirm that the solution allows them to work in parallel on OMOS models and,
therefore, they will be able to use the OMOS approach to modelling automotive
software systems in a more efficient way. The Bosch modellers also acknowledged
that the semi-automatic layout approach suggested (which limits diagram layout
freedom in favour of efficiently merging models, see Section 5.1.6) by this research
allows them to convey the desired domain-specific information through the layout
of diagrams and, at the same time, gain the ability to work in parallel on the same
OMOS models because of the meaning-preserving diagrammatic merge approach.
The engineers regard the semi-automatic diagram layout approach as an advantage
for diagram merging since it allows automatically merging different versions of a

197

7.2 Success and impact of the proposed solution

diagram in a meaning- and, therefore, mental-map-preserving way. The modellers
are positive about the visualisation of changes and conflicts directly in the common
ancestor model and both evolved models because this approach provides access to
all the models involved in the merge process. The modellers are also positive about
the approach of visualising UML model element changes and conflicts directly at the
affected symbols in diagrams. This way, they can reason about and deal with model
and diagram changes and conflicts directly in the diagrammatic manner they are
familiar with (from creating the diagrams in the first place), and can still distinguish
between model and diagram changes and conflicts. Furthermore, the model trees
(which are annotated with change and conflict information) allow them to reason
about and deal with changes and conflicts in a model-wide context.

Regrading the semi-automatic diagram layout approach the Bosch engineers provided
positive feedback on this approach since it allows them to create diagrams whose
layout reflect their understanding of the domain and still lays out diagrams in an
automatic, meaning-preserving way saving a lot of manual layout effort with respect
to undesired diagram layout rearrangements. Here is an excerpt from an email to
the author (from 13.06.2008) by M. Magiera, one of the engineers who took part
in the evaluation, regarding the results of creating the three evaluation models (see
Section 7.1.1) using the OMOS model editor:

Hello Mr. Grimm,

thank you for the delivery [of the OMOS model editor]. The tool is
starting to look really good! The diagrams look quite good now! [...] We
like the graphical layout. The dynamic adjustment of the [model tree
view’s] column width looks really great :) Using the tool is really fun.
Keep up the good work!1

As explained above, apart from minor issues the Bosch engineers also gave positive
feedback on the visual OMOS model merge approach too. Here is a excerpt from
an email to the author (from 21.10.2008) by M. Magiera regarding the results of
merging the independently evolved OMOS models using the merge tool developed
as part of this thesis:

1The original email (in German) read: “Hallo Herr Grimm, danke für die Auslieferung. Langsam
sieht das Tool wirklich gut aus! Die Diagramme sehen nun wirklich recht gut aus! [...] Die
grafischen Darstellungen gefallen uns. Das Feature mit der dynamischen Änderung der Spalten-
breite sieht wirklich sehr gut aus :) So macht es so richtig Spaß das Tool zu bedienen. Weiter
so! [...]”

198

7.2 Success and impact of the proposed solution

Hello Mr. Grimm,

[...] your [OMOS merge tool] delivery looks quite good. Generally, we
like the [diagram] layout.

We identified the following issues: A tad of colour would help to better
recognise [model and diagram] changes. Could you please add graphical
icons to modified relationships? The textual [icons] <+>, <!> or <*>
are sometimes hard to recognize. The green check box looks a bit blurred.
However, this is a minor issue.2

The official minutes of meeting of the final (prototype evaluation) meeting with
Bosch conclude with

We [Bosch] would like to thank Mr. Grimm for his excellent and dedicated
work on this project.3

7.2.1. Bad timing for commercialising the solution

The prototype tools for working in parallel with OMOS models developed as part of
this research were evaluated in 2008. Unfortunately, an economic downturn began
in 2008 and Bosch was not prepared to provide additional funding to turn the proto-
types into industrial-grade products. However, the author later had the opportunity
to work on a project funded by the European Space Agency (ESA). This project
[EMdK09] dealt with model-based space systems engineering (based on the ECSS-
E-TM-10-23 meta-model4) and its requirements asked for the possibility for space
systems engineers to work in parallel on the same model. The author, therefore,
implemented a similar approach to model merging as has been done for working in
parallel on OMOS models.

Encouraged by the success of the ESA project, the author’s current employer now
has enough interest to, together with Bosch, pursue further the business oppor-
tunity of implementing industrial-strength model merge tooling for Bosch’s OMOS

2The original email (in German) read: “Hallo Herr Grimm, [...] Ihre Auslieferung sieht ganz
gut aus. Grundsätzlich finden wir die Darstellung gut gelungen. Uns sind die folgenden Punkte
aufgefallen: Bei einer Änderung wäre ein bisschen Farbe schön damit die Änderungen gleich
sichtbar sind. Könnten Sie bei Änderungen an Beziehungen hier auch grafische Icons hinzufügen?
Die textuellen <+>, <!> oder <*> sind teilweise nur schwer zu erkennen. Der Grüne Hacken
ist noch ein wenig verzerrt. Ist aber nicht zu wild. [...]”

3The original minutes of meeting read: “Wir danken Herr Grimm für die stets sehr gute und
engagierte Arbeit für dieses Projekt.”

4http://atlas.estec.esa.int/uci_wiki/tiki-index.php?page=ECSS-E-TM-10-23 (access date:
4/12/2012)

199

7.2 Success and impact of the proposed solution

approach to automotive software development based on the solutions suggested by
and developed as part of this research.

200

8. Conclusions

The research presented in this thesis looks at an industrial, model-driven approach
to developing software for electronic control units called OMOS (see Section 2.1.3).
OMOS models are UML models used to model the static structure of electronic
control unit software. OMOS models are created in a diagrammatic manners using
UML class diagrams (called OMOS diagrams). The goal of this research is to allow
more than one software engineer (potentially at different development sites) to work
in parallel on the same OMOS models.

Following research objective 1 defined in Section 1.2.2, the need for parallel working
when developing models in general and diagrammatic representations of models in
particular was identified in the research literature discussed in Chapter 2. Further-
more, solution methods that others have reported that could potentially solve the
problem were reviewed and available software was evaluated in this chapter to verify
that there is no existing software that adequately solves the problem.

As requested by research objective 1b (see Section 1.2.2), it is confirmed by previous
research (discussed in Chapter 2) that diagrams of models do indeed convey addi-
tional semantic information through their layout. Based on the findings from the
research literature, a pilot study (see research objective 2 in Section 1.2.2) was then
carried out in Chapter 3 to verify that the problem exists in the pilot study envir-
onment and to identify the extent of the problem. A real-life, industrial software
project consisting of two OMOS models was analysed for the pilot study. The most
important findings of this pilot study are:

1. OMOS models are constructed in a visual way using UML class diagrams.
Each model is composed of a (potentially large) number of diagrams. Each
diagram is used to model a part of a OMOS model which represents a certain
area of the electronic control unit software defined in the particular OMOS
model.

2. OMOS diagrams convey additional domain-specific knowledge through their
layout. The pilot study determined that the class symbols of OMOS diagrams

201

Conclusions

are positioned in ways which reflect the modellers’ domain understanding of
these classes. This phenomenon is known as secondary notation (see Sec-
tion 3.2.3), it refers to the fact that diagram layouts convey additional semantic
information which are not part of the actual diagram notation but which bear
semantic meaning important for modellers. The pilot study identified grouping
and ordering of class symbols as the layout features used by modellers to convey
domain-specific meaning through diagrams. It also identified that relationship
symbols (i. e., connections between pairs of class symbols representing UML
relationships like inheritance, association, and composition) are not the key
factor for defining the position of the class symbols. Class symbols may thus
be laid out in ways that do not follow the diagram layout guidelines suggested
by the UML standard. The modellers’ intention to express certain domain
facts through diagram layout, therefore, “overruled” the UML guidelines.

Given that more than one OMOS modeller has be able to work independently and
in parallel on a certain OMOS model, the envisaged (and implemented) approach
for working collaboratively with OMOS models has to be an optimistic, i. e., merge-
based one. Based on the literature review (see Section 2.3) on parallel work in general
and parallel modelling in particular, a merge-based approach was chosen because it
allows any modeller to potentially modify any model element independently from
any other modeller.

The specifics of OMOS diagrams explained above had to be taken into account for
the considerations made in order to provide an approach for collaborative modelling
for OMOS models. On one hand, there is a potentially large amount of manually
created UML class diagrams (one of the analysed OMOS models consisted of about
140 diagrams), and, as stated by the research literature (reviewed in Section 3.2),
automatic diagram layout could help to merge these diagrams. However, merging
manually laid out diagrams is a difficult (possibly futile) endeavour and will most
likely result in cluttered diagrams which have to be untangled manually in order to
remove overlapping symbols and layout issues (see Section 2.4). The resulting dia-
grams’ layout might be destroyed and the semantic information conveyed through
their layout is lost. On the other hand, merging all those diagrams manually or even
requiring to manually untangle them after they have been automatically merged in
a rudimentary way would be too time-consuming. Automatic layout approaches for
laying out the diagrams comprising a OMOS model might appear to be a possible
solution to this dilemma. Then, only the UML models comprising a OMOS model

202

Conclusions

would have to be merged. Diagrams would not need merging because they are laid
out automatically. Existing UML class diagram layout approaches are purely based
on the information available in the model (see Section 2.4.3). UML class diagrams
are, therefore, laid out according to a model’s (inheritance and containment) rela-
tionships and the resulting hierarchies. However, as discussed in Section 4.1, this
approach is not suited for laying out OMOS diagrams because:

1. Modellers have no influence on the way these model elements are laid out in
a diagram. When a model element is removed, the layout of the diagrams
depicting this model element might change considerably because the diagrams
are newly laid out when the underlying UML model changes.

2. Automatic layout algorithms focus on laying out a model in a single diagram, a
OMOS model, however, consists of a large number of diagrams. This drawback
can be circumvented by allowing modellers to define which model elements
should be depicted in a certain diagram and then use automatic diagram lay-
out algorithm to arrange these model elements — with all the drawbacks of
automatic layout.

3. The additional semantic information conveyed through the layout of diagrams
is neither part of a diagram itself nor part of the underlying model. That is why
conventional automatic diagram layout algorithms cannot take this informa-
tion into account. Therefore, using conventional UML class diagram layout
algorithms will remove the possibility of laying out class symbols of OMOS dia-
grams in a domain-specific way allowing to convey additional meaning through
the layout of diagram symbols. The semantic information conveyed through
the layout of diagram will, therefore, be lost.

Given the above drawbacks of conventional automatic layout, a semi-automatic ap-
proach to laying out OMOS diagrams was implemented as part of this research.
With this approach, modellers are able to manually define the grouping and order-
ing of class symbols on a per-diagram basis. This manually provided domain-specific
layout information is then used to automatically lay out OMOS diagrams. Model-
lers, therefore, define the layout information the pilot study revealed to be important
for them with respect to embedding domain knowledge into the layout of OMOS
diagrams. The layout itself is done in a completely automated fashion taking the
class symbol grouping and ordering information defined by modellers into account.
This approach allows modellers to build diagrams in accordance with their mental
map (see Section 3.2.4) which reflects the modellers’ understanding of the domain-

203

Conclusions

specific relations of the depicted classes while still enabling efficient diagrammatic
merging of OMOS models.

Following research objective 3 (defined in Section 1.2.2), the principles on which any
software should be based to provide a solution for visually merging OMOS models
in a meaning-preserving way are defined in Chapter 4.

Efficient diagram merging is enabled by semi-automatic OMOS diagram layout ex-
tending the visual vocabulary of OMOS class diagrams. Two prototype tools, a dia-
grammatic modelling tool and a diagrammatic model merging tool, were designed
and implemented as part of this research (realising research objective 4 as defined in
Section 1.2.2: design and implement software to carry out a proof of concept). The
two main components of this tool are a diagram editor for visually creating OMOS
models and a merge tool for merging OMOS models and interactively resolving
merge conflicts.

Compared to completely manually or completely automatically laid out diagrams,
the semi-automatic layout approach has two important advantages:

1. Because the grouping and ordering of class symbols can be manually defined
(i. e., the grouping and ordering of class symbols is made explicit), additional
domain-specific knowledge (conveyed by the layout of class symbols) is formally
defined in OMOS diagrams.

2. Based on the manually provided layout information, OMOS diagrams can
be automatically laid out and merged. Because of the explicit hierarchy of
class symbols, a diagram’s class symbols can be merged in a meaningful way
which allows the preservation of the mental map of a diagram (in case no
diagram merge conflicts exists). The automatic layout, therefore, yields un-
tangled merged diagrams while preserving the manually defined grouping and
ordering of class symbols. The modellers’ mental maps and the additional
semantic information conveyed through the diagram’s layout are preserved.
Modellers, therefore, do not have to rearrange diagram symbols to “unclutter”
merged diagrams. Concurrent modifications of diagrams may lead to conflict-
ing diagram layout changes (with respect to the grouping and ordering of class
symbols) which might corrupt a modeller’s mental map of a certain diagram.
However, since the class symbol ordering and grouping (which, as the pilot
study and other research confirm, are the most important features constitut-
ing the modellers’ mental maps of OMOS diagrams) is explicitly defined, it is
taken into account when diagrams are merged and, thus, changes and conflicts

204

Conclusions

can be detected and communicated to the modellers for them to verify the
grouping and ordering of a diagram’s class symbols and adjust it to resolve
contradicting diagram layout changes.

The semi-automatic layout approach implemented for OMOS diagrams is a trade-
off between diagram “mergablity” and manually creating OMOS diagrams with all
the freedom with respect to positioning/laying out diagram symbols. The freedom
of manual layout was reduced in favour of efficiently merging OMOS diagrams.
However, the most important layout features (with respect to conveying additional
domain-specific information through the layout of OMOS diagrams) can be manually
and explicitly defined by modellers.

In contrast to other automatic UML class diagram layout approaches, no layout
heuristics or iterative layout are applied by the implemented layout approach. These
approaches are used to create more aesthetically pleasing and potentially more read-
able diagram layouts, but they have the drawback that the resulting layout might be
different every time a diagram is laid out or when the model is updated (and, thus,
the information used to calculate the layout changes). The layout approach imple-
mented as part of this research aims for stable, predictable, and mergeable layout.
This means that the grouping and ordering of class symbols is not altered as long
as modellers do not change it. Connection symbols (depicting relationships between
classes) are laid out completely automatically. A connection symbol’s layout does
not change as long as the order of the connected class symbols does not change.

Because the diagrams of a OMOS model evolve in a parallel manner (as their under-
lying UML models do), it is necessary to merge the diagrams comprising the OMOS
models which evolved in parallel. Because modellers can manually modify diagrams,
diagram merge conflicts can occur. Therefore, an approach allowing modellers to
reason about and solve diagram merge conflicts was implemented. As described
in Chapter 6 and Chapter 7, in addition to the semi-automatic layout approach
for OMOS diagrams, an approach for differencing and merging OMOS models and
models representing OMOS diagrams was implemented. The merge process consists
of two steps. In the first step, the initial merged model is automatically created by
determining the differences between two to-be-merged models and applying them to
their common ancestor model. In a second step, modellers have to manually resolve
merge conflicts. Tooling for manually dealing with merge conflicts were developed
as part of this research.

All change and conflict information are directly visualised as part of the actual

205

Conclusions

models and diagrams at the (conflictingly) changed model elements. This allows
modellers to learn about changes and conflicts within the same visual/diagrammatic
context they are familiar with from creating the to-be-merged models in the first
place.

Besides visualising change and context information directly as part of the respect-
ive model elements, dedicated tooling supporting the resolution of merge conflicts
has been defined and implemented. The merge tooling provides modellers with the
possibility to resolve merge conflicts by accepting and rejecting model and diagram
changes. Modellers cannot only modify the merged model/diagram by means of
accepting or rejecting changes, they can modify it in any way. Even model ele-
ments/diagram symbols which were not changed at all (not even non-conflictingly)
can be modified. The implement OMOS model merge tool provides specific editing
capabilities for dealing with changes and conflicts, but it also provides the common
editing functionalities of ordinary modelling tools used when models and diagrams
are created in the first place. The dedicated merge tooling takes care of updating
the acceptance status of changes when the merged model or diagram is updated —
so that modellers can learn whether a change made in one model/diagram is (still)
part of the merged model/diagram.

As requested by research objectives 5 and 7 (defined in Section 1.2.2), the usefulness
of the proposed solution was evaluated by engineers in the field (see Chapter 7).
Bosch engineers who worked with the OMOS models used for the pilot study (see
Chapter 3) evaluated the semi-automatic diagram layout approach and the visual
merge approach by testing the prototype tools developed as part of this research.
Using the model editor, they re-created, in a collaborative manner using the parallel
modelling approach suggested by this research, parts of the real-world OMOS models
(developed by Bosch and) used for the pilot study. The engineers then merged the
concurrently evolved OMOS models using the model merge prototype developed
as part of this research. Bosch provided positive feedback about both prototype
tools and the collaborative OMOS modelling approach. The semi-automatic layout
approach allows them to convey semantic information through the layout of diagrams
and enables efficient model merging preserving the additional meaning conveyed
through the diagrams’ layout. It also enables engineers (possibly at different sites)
to work in parallel on the same OMOS models (which is one of the main objectives
of the research presented here).

206

8.1 Future work

8.1. Future work

As discussed in Section 5.1.6, further research is required on the semi-automatic dia-
gram layout approach presented in this thesis which gives modellers control over the
parent-child hierarchy of class symbols and fully automatically lays out the respect-
ive diagram as a balanced tree (including connection symbols). This hierarchical
approach enables meaningful merging of two versions of a diagram which evolved in
parallel. In order to preserve the mental map of OMOS diagrams (see Section 3.2.4),
the layout is kept stable by avoiding iterative and heuristics-based layout approaches
as used by other automatic layout approaches to create more aesthetically pleasing
layouts. To allow for more aesthetically pleasing layouts, trade-offs between stable,
mental-map-preserving layout and layout aesthetics have to be made. Therefore,
further research is required on the impact of rearranging diagram symbols on the
mental map and layout aesthetics.

Furthermore, limiting the overall structure of diagrams to tree layouts could be
avoided by defining several layout types. For example, certain types of diagram lay-
outs might be better supported by not aligning all class symbols in horizontal layers
but by aligning only a certain subset of closely related class symbols. This would
then extend the visual expressiveness [Moo10] of (OMOS) diagrams by allowing
modellers to define additional types of relations between diagram symbols.

Taking the extension of the visual expressiveness further, it might be feasible to
define a visual language/grammar [Moo10] for OMOS diagrams which allows the
expression of visual sentences and lets modellers define their intentions to express
domain meaning in diagrams in an even more explicit way. The diagram merge
approach could then take into account the visual tokens of this language to de-
tect conflicts based on the visual language’s grammar. Then, more educated merge
decisions could be automatically taken and change and conflict visualisation and
handling could be based on the visual grammar which would then allow the expres-
sion, visualisation, and reasoning of/about contradicting changes directly based on
the visual language’s grammar and its tokens.

Furthermore, on a more general note on future work, drawing from the success of
another project (implemented by the author) which re-used parts of this research
to implement concurrent modelling in the space systems domain, the author’s cur-
rent employer now has enough interest to pursue further the business opportunity
of implementing industrial-strength model merge tooling based on this research’s

207

8.2 Contributions

solutions.

8.2. Contributions

In conclusion, the contributions of this thesis are viewed to be as follows:

• An analysis of an industrial model-driven approach to developing software for
electronic control units used in cars was conducted as part of this research.
The findings of this analysis confirm that UML class diagrams are important
for modellers because they convey additional meaning through their layout.

• The case of the general importance of diagram layout for model-based software
engineering approaches has been made for a specific development approach
(i. e., OMOS, see Section 2.1.3). This research confirms that modellers use
diagram layout to convey additional meaning. This finding then has implica-
tions on collaborative modelling since diagrams have to be taken into account
in addition to the models (i. e., structures) underlying them.

• An approach for laying out class diagrams in a semi-automatic fashion was im-
plemented that allows modellers to manually define the grouping and ordering
of class symbols and, at the same time, aims for diagrams to be mergeable.
This approach provides a trade-off between layout freedom regarding the posi-
tion of diagram symbols and the ability to create meaningful merged diagrams
whose layout are untangled and preserve the manually defined class symbol
hierarchy.

• An approach to visualising and dealing with differences and merge conflicts
of merged OMOS models and their diagrams is presented in this thesis and
implemented as part of this research. It enables modellers to work with merged
models in the same way they are familiar with from creating OMOS models
in the first place. It also allows the exchange of partially merged models
between modellers in order to further support collaborative modelling during
the conflict resolution phase.

208

A. Details on the OMOS modelling
approach

A.1. Variant modelling and OMOS as a software product
family approach

Bosch produces electronic control units (ECU) software systems for several custom-
ers. For example, gearbox controller software and hardware is produced for more
than seven car manufacturers. Since each manufacturer usually has several different
products (cars types) which all require, for instance, gearbox controller software, a
large number of projects dealing with gearbox controller software can exist. Since all
these projects have to cope with similar problems and belong to the same problem
domain, i. e., gearbox controller software, the premise of OMOS is to allow to handle
more than one project within a single OMOS model. OMOS is an approach that
is capable of defining different, but related projects belonging to the ECU domain
in the same models. Thus, OMOS is an industrial, model-driven product family
approach for ECU software engineering [WL99, TH02, SDNB04].

Each customer (i. e., car manufacturer) has different requirements on the software
controlling a gearbox. The requirements depend on the price category, type of the
car (roadster, saloon car, etc.) and the driving experience (elegant, sporty, etc.) that
customers expect from a certain kind of car. To fulfil these different requirements,
different software implementations are necessary. However, even if requirements
on ECU software systems may differ from customer to customer, all systems share
many commonalities. Since the purpose of all systems is to control gearbox ECUs,
the overall architecture of all systems is similar and different implementations usually
share many functionalities. For instance, different products may use the same gear
calculation functionality or may use the same protocol for communication with other
ECUs (for instance, the controller area network, CAN). Since all implementations
belong to the same problem domain and solve similar problems, they belong to the

209

A.1 Variant modelling and OMOS as a software product family approach

same product family, for instance, the family of gearbox controller software. The
members of this family are called products [TH02].

OMOS focuses on efficient handling of a whole software product family within one
OMOS model describing the design and implementation of several products. For
example, a single OMOS model describes several gearbox controller software im-
plementations. Thus a model contains classes that are used by all or a number of
products and classes that are used by only one specific product.

Each base class in a OMOS model represents a certain functionality required to
implement the ECU software. Since there can be variations between products on
the same functionality, class inheritance is used to describe variations directly within
the model. Hence, it is possible to include several variants of a certain functionality
in the same model.

Base classes introduce a certain functionality, i. e., the realisation of a certain (set
of) requirement(s). Concerning this specific functionality, this base class may not
be suitable to realise the requirements of all products that are contained in the
OMOS model. Therefore, subclasses are used to create a solution that realises the
requirements on a specific functionality of a certain product or a number of products.

In OMOS, subclasses are called variants since they represent product-specific solu-
tions of functionalities introduced by their base classes. Base classes are called base
variants.

To realise the requirement that are specific for a certain product or set of products,
a variant can override public and protected operations inherited from its base class,
and introduce additional methods and attributes to realize its specialized function-
ality.

Variants may aggregate additional classes. This allows defining class hierarchies
whose instances are included in some, but not in all products described by a OMOS
model. This technique, allowing variants (sub-classes) to aggregate classes inde-
pendently from its base class, is known as the Bridge design pattern [GHJV95].
This design pattern allows variants to add functionality in a more fine grained way
than class inheritance does. Using this pattern, a variant can aggregate other classes
which support it to realise the functionality specific to this variant. Therefore, sub-
classes do not necessarily need to rely on extending or overriding behaviour inherited
from their base class. This allows to enable additional functionality to be used by
certain variants only.

210

A.2 The UML profile for OMOS

Fig. A.1 shows a OMOS model for cars with wheels controlled by the anti-lock
braking system (ABS).

Figure A.1.: OMOS model showing the base variant of an antilock braking system.

Fig. A.2 shows a refined version of the ABS model shown in Fig. A.1. The refined
model extends the ABS model by adding anti-slipping regulation (ASR). The model
thus contains two OMOS products (implementations), the basic ABS controller soft-
ware and the extended ARS version.

As mentioned in Section 2.1, each base class (except the root class) has to be aggreg-
ated by another class. Subclasses of aggregated classes inherit the class ownership
defined by the aggregation. Therefore subclasses do not need to be aggregated by
other classes. Aggregation is hence used to define the class structure (containment
structure), while inheritance is used to describe the different variants.

A.2. The UML profile for OMOS

The details of the OMOS UML profile are be discussed in this section. Following
UML’s profiling mechanism discussed in Section 2.1.2.2, a UML profile for OMOS
has been defined by this research. The original OMOS approach already supported
the stereotypes defined below, but they were not formally defined by means of a

211

A.2 The UML profile for OMOS

Figure A.2.: OMOS model showing a specialised anti-slipping regulation variant
together with the basic anti-lock braking system variant.

UML profile, they were instead used in an ad hoc manner in OMOS models (which
was possible because the UML modelling tool used to created OMOS models allowed
to do so). The OMOS profile defines stereotypes for classes and properties:

• Profile OMOS

– Stereotype 1-Class (extension of UML meta-class Class).

– Stereotype N-Class (extension of UML meta-class Class).

– Stereotype Root (specialization of Stereotype 1-Class).

– Stereotype RAM_Groesse1 (extension of UML meta-class Property).

– Stereotype Kennwert2 (extension of UML meta-class Property).

– Stereotype Kennwerteblock3 (extension of UML meta-class Property).

– Stereotype Festkennfeld4 (extension of UML meta-class Property).

– Stereotype Systemkonstante5 (extension of UML meta-class Property).
1German for RAM value.
2German for characteristic value.
3German for block of characteristic values.
4German for constant characteristic value.
5German for system constant.

212

A.2 The UML profile for OMOS

No tagged values (see Section 2.1.2.2) were used in OMOS; that is why the OMOS
stereotypes do not define any properties.

213

B. Slides from the diagram layout
analysis meeting discussing the pilot
study findings

This chapter provides a selection of the slides used to discuss diagram layouts with
to the OMOS modellers during the meeting (discussed in Section 3.3.3.1) which took
part to discuss with Bosch the results of the pilot study conducted as part of this
research (see Chapter 3). The slides were used to present the findings of the pilot
study to the modellers and to validate these findings by discussing the diagrams
with the modellers who created them.

214

Slides from the diagram layout analysis meeting discussing the pilot study findings

Figure B.1.: Layout analysis meeting slides 4 and 5.

215

Slides from the diagram layout analysis meeting discussing the pilot study findings

Figure B.2.: Layout analysis meeting slides 10 and 11.

216

Slides from the diagram layout analysis meeting discussing the pilot study findings

Figure B.3.: Layout analysis meeting slide 18.

Figure B.4.: Layout analysis meeting slide 25.

217

C. Additional analysed OMOS diagrams

This chapter provides additional results of the OMOS model and diagram analysis
conducted as part of the pilot study discussed in Chapter 3.

C.1. Package assignment diagrams

In UML, packages are used to group classes into modules [OMG10b, p. 109]. Instead
of displaying the package a class belongs to in each class diagram which contained
symbols of this class. In OMOS, dedicated class diagrams are used to (1) assign
classes to their package and (2) define the packages’ hierarchy. These diagrams are
called package assignment diagrams. The layout of package assignment diagrams
does not convey domain-specific meaning. Packages are only visualised in these
diagrams, they were not shown in diagrams used to define classes. However, the
UML modelling tool (used to create the diagrams) allowed to display the package
scope (i. e., the fully-qualified name) of classes on demand.

For the ASIS model the package hierarchy is defined in diagram “ASIS_Pool” (see
Fig. C.1). It defines only packages and their hierarchy, additional package assign-
ment diagrams exist for each of its sub-packages. For instance, for package “Fahrsitu-
ationserkennung” (driving situation detection in English) there was a diagram called
“Klassen_Fahr situationserkennung” (“driving situation detection classes” in Eng-
lish) in which classes realising concepts belonging to the driving situation detection
sub-domain are assigned to package “Fahrsituationserkennung” (see Fig. C.2). Since
the only purpose of the diagrams is to add the classes to the package, only the names
of the classes, but no details of any class are shown.

Package assignment diagrams are, of course, updated by modellers (in addition to the
main diagrams used to define these classes) when classes are added to or deleted from
a model. For instance, Fig. C.3 shows version 1 of diagram “Omm_Packages_SRC”,
in version three of this diagram, shown in Fig. C.4, several classes had been added
to several packages.

218

C.2 OMOS diagram “InpP_Chip”

Figure C.1.: OMOS diagram “ASIS_Pool”.

Figure C.2.: OMOS diagram “Klassen_Fahrsituationserkennung”.

C.2. OMOS diagram “InpP_Chip”

OMOS diagram “InpP_Chip” is depicted in Fig. C.5.

• Purpose of this diagram: Get input values from a chip.

• Layout findings: Flow from left to right (layer 3 to layer 2 to ECE); see
Section 3.6 for a discussion on assigning class symbols to layers.

219

C.2 OMOS diagram “InpP_Chip”

Figure C.3.: OMOS diagram “Omm_Packages_SRC” (version 1).

Figure C.4.: OMOS diagram “Omm_Packages_SRC” (version 3).

Figure C.5.: OMOS diagram “InpP_Chip”.

220

C.3 OMOS diagram “InpP_PSply”

C.3. OMOS diagram “InpP_PSply”

OMOS diagram “InpP_PSply” is depicted in Fig. C.6.

Figure C.6.: OMOS diagram “InpP_PSply”.

• Purpose of this diagram: Get input values from power supply.

• Layout findings: Flow from left to right (layer 3 to layer 2 to ECE); see
Section 3.6 for a discussion on assigning class symbols to layers.

C.4. OMOS diagram “OutP_ObjectModel”

• The first analysed version of this diagram is shown in Fig. C.7.

Figure C.7.: OMOS diagram “OutP_ObjectModel” (version 1).

• The second analysed version of this diagram is shown in Fig. C.8.

– Layout changes in comparison to the first version:

∗ New classes: CL_OutPIfcInt, CL_OutPPkHldL3, CL_OutPPkHld-
L3_MN, CL_OutPLssCtl_Mn.

∗ Class CL_OutPPkHldL3 (output for peak and hold injection) and
CL_OutPPkHldL3_MN added in centre, i. e., in close proximity to

221

C.4 OMOS diagram “OutP_ObjectModel”

Figure C.8.: OMOS diagram “OutP_ObjectModel” (version 2).

symbols of semantically related classes (see Section 3.6 for a discus-
sion on grouping semantically related class symbols in close visual
proximity).

• The third analysed version of this diagram is shown in Fig. C.9.

Figure C.9.: OMOS diagram “OutP_ObjectModel” (version 3).

– Layout changes in comparison to the second version:

∗ New: Class CL_OutPHssCtl (high-side current sensor controller)
and CL_OutPHssCtl_Mn. It was positioned next to CL_OutP-
LssCtl (low-side current sensor controller) and CL_OutPLssCtl_Mn
which is a sign for semantic grouping.

222

C.4 OMOS diagram “OutP_ObjectModel”

∗ Class CL_OutPPclkCtl was moved to centre of the diagram, i. e.,
closer to symbols of semantically related classes (see Section 3.6 for
a discussion on grouping semantically related class symbols in close
visual proximity).

∗ Class CL_OutPPkHldL3 and CL_OutPPkHldL3_Mnmoved to right
of CL_OutPOpsCtl (output safety controller).

• Layout findings:

– Structure, especially horizontal ordering of classes identical to diagram
“OutP_IfcGeneral” discussed in Section 3.5.1.

223

C.5 OMOS diagram “InpP_ObjectModel”

C.5. OMOS diagram “InpP_ObjectModel”

• The first analysed version of this diagram is shown in Fig. C.10.

Figure C.10.: OMOS diagram “InpP_ObjectModel” (version 1).

• The second analysed version of this diagram is shown in Fig. C.11.

Figure C.11.: OMOS diagram “InpP_ObjectModel” (version 2).

• The third analysed version of this diagram is shown in Fig. C.12.

Figure C.12.: OMOS diagram “InpP_ObjectModel” (version 3).

• Layout findings: Layout, especially horizontal ordering of classes identical to
diagram “InpP_IFC_General” discussed in Section C.6 and diagram “InpP_-
IFC_GeneralExp” discussed in Section C.7.

224

C.6 OMOS diagram “InpP_IFC_General”

C.6. OMOS diagram “InpP_IFC_General”

• Version 1: Does not exist.

• Version 2 is shown in Fig. C.13.

Figure C.13.: OMOS diagram “InpP_IFC_General” (version 2).

• Version 3 is shown in Fig. C.14.

Figure C.14.: OMOS diagram “InpP_IFC_General” (version 3).

• Layout findings: Layout, especially horizontal ordering of classes identical to
diagram “InpP_ObjectModel” discussed in Section C.5 and diagram “InpP_-
IFC_GeneralExp” discussed in Section C.7.

225

C.7 OMOS diagram “InpP_IFC_General_Export”

C.7. OMOS diagram “InpP_IFC_General_Export”

• Version 1 is depicted in C.15.

Figure C.15.: OMOS diagram “InpPIfcExp” (version 1).

• Version 2 is depicted in: C.16.

Figure C.16.: OMOS diagram “InpP_IFC_General_Exp” (version 2).

– Changes: Diagram renamed from “InpPIfcExp” to “InpP_IFC_General_-
Exp.”

• Version 3 is depicted in: C.17.

Figure C.17.: OMOS diagram “InpP_IFC_General_Exp” (version 3).

• Layout findings: Layout, especially horizontal ordering of classes identical to
diagram “InpP_ObjectModel” discussed in Section C.5 and diagram “InpP_-
IFC_GeneralExp” discussed in Section C.7.

226

C.8 OMOS diagram “OutPStaLck”

C.8. OMOS diagram “OutPStaLck”

• Software functionality: Control and monitor the electronic starter and steering
locking device

• Version 1 and 2 are depicted in Fig. C.18.

Figure C.18.: OMOS diagram “OupPStaLck” (version 1 and 2).

• Version 3 is depicted inFig. C.19.

– Changes: Diagram renamed to “OutPStlk.”

• Layout findings: Layout similar to diagram “OutP_Lss” disucssed in Sec-
tion 3.5.2 and diagram “OutP_Hss” discussed inSection 3.5.3. The layout of
all those diagrams changed from version 2 to 3 in a similar way.

C.9. OMOS diagram “OutPSSply5V”

• Version 3 of this diagram is shown in Fig. C.20.

– Changes: The diagram was added in version 3 of the analysed OMOS
model.

227

C.10 OMOS diagram “IFC_OutP_internal”

Figure C.19.: OMOS diagram “OupPStlk” (version 3).

Figure C.20.: OMOS diagram “OupPPSply5V” (version 3).

– Layout findings: “CL_OutPSSply5Ctl” on same horizontal layer as “CL-
_OutPSSply5Ctl_Mn”; see Section 3.6 for a discussion on assigning class
symbols to layers.

C.10. OMOS diagram “IFC_OutP_internal”

• Version 2 of this diagram is shown in Fig. C.21.

Figure C.21.: OMOS diagram “IFC_OutP_internal” (version 2).

228

C.10 OMOS diagram “IFC_OutP_internal”

– Changes: The diagram was added in version 2 of the OMOS model.

• Version 3 if the diagram is shown in Fig. C.22.

Figure C.22.: OMOS diagram “IFC_OutP_internal” (version 3).

– Changes: Now attributes and operations were added to class “CL_-
OutpSys.”

229

D. Development of tool support for
visually creating and merging of
OMOS models

A prototype OMOS modelling tool for creating UML models and OMOS diagrams
(see Chapter 5) as well as a merge tool for differencing and merging UML models
and OMOS diagrams (see Chapter 6) were implemented as a proof of concept for
the research discussed here. The most important components of these tools will be
outlined in this chapter.

The tools were implemented based on the Eclipse platform1 as an Eclipse rich client
application using the Java programming language. The implementation is based
on the Eclipse Modelling Framework (EMF) which is an implementation of (parts
of) meta-object facility (MOF, see Section 2.1.2.1) called Ecore which is part of
the EMF [SBPM09]. Ecore and EMF are explained in more detail in Section D.4.
Ecore substantially influenced the current MOF standard and lead to Essential MOF
(EMOF), “a lightweight core of the metamodel that quite closely resembles Ecore”
[SBPM09, p. 39]. Ecore models can be transformed into EMOF and vice versa
[SBPM09, p. 129]. Ecore is an integral part of the Eclipse platform, and many
other tools are based on EMF which provides a modelling framework and tools for a
vast spectrum of application domains. EMF models are now becoming the standard
facility for defining graphical user interfaces in the Eclipse platform. As explained
in Section D.4, an implementation of the UML meta-model called Eclipse UML22

served as the basis for the implementation of the UML models underlying the OMOS
diagrams.

The graphical parts of the prototype OMOS model editor and the model merge tools
were implemented on the basis of the Eclipse Graphical Editing Framework (GEF)3.

1http://www.eclipse.org/ (access date: 4/12/2012)
2http://www.eclipse.org/uml2/ (access date: 4/12/2012)
3http://eclipse.org/gef/ (access date: 4/12/2012)

230

D.1 The part of the UML meta-model relevant for OMOS

The reason for implementing the OMOS model editor and the merge tool on top
of Eclipse instead of using the Ameos modeller which is used by Bosch to create
OMOS models is that a rich set of freely available software tools and frameworks
(for instance, EMF, UML2, or GEF) exist for the Eclipse platform. Futhermore,
Ameos is implemented in C and C++, therefore, reusing existing tooling from the
Java-based Eclipse ecosystem is not trivial.

D.1. The part of the UML meta-model relevant for OMOS

The following UML meta-model elements are relevant for OMOS. They represent
the building blocks OMOS models can be built from. The elements on the first level
shown in the list below are instance of MOF class Class (see previous section). The
first-level elements are defined by the UML meta-model. Their instances represent
actual model elements.

The second-level elements below represent UML meta-model properties (i. e., in-
stances of MOF class Property) of the first-level elements. They are either primitive,
unstructured properties representing attributes, for instance, the name attribute of
UML meta-model class Parameter, or structured properties representing references
to other model elements, for instance, UML meta-model class Operation defines ref-
erence ownedParameter pointing to class Parameter. Some of the properties listed
below are not directly defined by the classes defined below but by their (abstract)
super classes. In such cases the name of the property is prefixed with the name of
the UML meta-model class that actually defined the property. The complete set of
UML meta-model classes and properties relevant for OMOS, including super classes
which were not listed here, is presented in Section D.1.1.

Derived properties (see Section D.4.1.1) were not taken into account in the following
list of OMOS-relevant UML meta-model elements because they are not important
regarding to model comparison because their values are automatically calculated
and thus cannot be changed manually by modellers.

• class Model

– A model is a package (see class Package below). A OMOS model has exactly
one Model instance, the model’s root element.

• class Package

– Name (value of attribute property NamedElement::name)

231

D.1 The part of the UML meta-model relevant for OMOS

– Profile applications (value of reference property Package::profileApplication)

– Element imports (external model elements like primitive types (Boolean, String,
etc.)) (value of reference property Namespace::elementImport)

– Classes (value of reference property Package::packagedElement of type Class)

– Packages (value of reference property Package::packagedElement of type Pack-
age)

– Associations (values of reference property Package::packagedElement of type As-
sociation)

• class Class

– Stereotypes (values of reference property Element::appliedStereotypes)

– Generalizations (values of reference property Classifier::generalization)

– Attributes (values of reference property StructuredClassifier::ownedAttribute);
attributes are of type Property, therefore, the attributes and reference defined
above for class Property are of interest for OMOS.

– Operations (values of reference Class::ownedOperation)

• class Property

– Name (value of attribute property NamedElement::name)

– Stereotypes (value of operation (query) Element::getAppliedStereotypes)

– Type (value of reference property TypedElement::type)

– Visibility (value of attribute NamedElement::visibility)

– Staticness (value of attribute property Feature::isStatic)

– Ordering (value of attribute property MultiplicityElement::isOrdered)

– Uniqueness (value of attribute property MultiplicityElement::isUnique)

– Lower bound (value of reference property MultiplicityElement::lowerValue)

– Upper bound (value of reference property MultiplicityElement::upperValue)

– Default value (value of reference property Property::defaultValue)

• class Operation

– Name (value of attribute property NamedElement::name)

– Abstractness (value of attribute property BehavioralFeature::isAbstract)

– Parameters (value of reference property Operation::ownedParameter)

232

D.1 The part of the UML meta-model relevant for OMOS

• class Parameter

– Name (value of attribute property NamedElement::name)

– Type (value of reference property TypedElement::type)

– Direction (value of attribute property Parameter::direction)

– Ordering (value of attribute property MultiplicityElement::isOrdered)

– Uniqueness (value of attribute property MultiplicityElement::isUnique)

– Lower bound (value of reference property MultiplicityElement::lowerValue)

– Upper bound (value of reference property MultiplicityElement::upperValue)

– Default value (value of reference property Parameter::defaultValue)

• class Generalization

– Generic class (value of reference property Generalization::general)

– Specific class (value of reference property Generalization::specific)

• class Association

– Association ends (value of reference properties Association::ownedEnd and As-
sociation::navigableOwnedEnd); association ends are of type Property, therefore,
the attributes and reference properties defined above for class Property are of
interest for OMOS.

• class Profile

– Name (value of attribute property NamedElement::name)

• class Stereotype

– Name (value of attribute property NamedElement::name)

• class ProfileApplication

– Applied profile (value of reference property ProfileApplication::appliedProfile)

Since the implementation of the prototype software tools discussed in this chapter
uses the Eclipse UML2 implementation (see above), the part of UML meta-model
used for the tools could not be modified in order to reduce it to the required model
elements only (i. e., remove superfluous elements not required for defining OMOS
models). Instead, the tools were configurable with regards to the UML meta-model
elements whose instances should (not) be take into account (see above).

233

D.1 The part of the UML meta-model relevant for OMOS

D.1.1. Listing of the UML meta-model elements relevant for OMOS
models

Following the discussion on the UML meta-model elements relevant for OMOS
above, Listing D.1. provides the parts of the UML meta-model which are relev-
ant for OMOS models (i. e., UML class models) using a properly defined syntax
conforming to the meta-object facility (see Section 2.1.2.1). The textual syntax
(EMFText) used to present the UML meta-model is explained in Section D.4.3.

1 impor t (" e c o r e ")
2
3 package uml uml " h t tp : // e c l i p s e . org /uml2 "
4 {
5
6 c l a s s Model e x t end s Package
7 {
8 // has no OMOS−r e l e v a n t f e a t u r e s
9 }
10
11 c l a s s Package ex t end s Namespace , Packageab leE lement ,

Templateab leE lement
12 {
13 unorde red conta inment r e f e r e n c e P r o f i l e A p p l i c a t i o n p r o f i l e A p p l i c a t i o n

(0 . . −1) o p p o s i t e app l y i ngPackage ;
14 unorde red conta inment r e f e r e n c e Packageab leE lement packagedElement

(0 . . −1) ;
15 }
16
17 c l a s s E lement Import e x t end s D i r e c t e d R e l a t i o n s h i p
18 {
19 unorde red r e f e r e n c e Packageab leE lement importedE lement (1 . . 1) ;
20 unorde red r e f e r e n c e Namespace import ingNamespace (1 . . 1) o p p o s i t e

e l ement Impor t ;
21 }
22
23 c l a s s C l a s s e x t end s E n c a p s u l a t e d C l a s s i f i e r , B e h a v i o r e d C l a s s i f i e r
24 {
25 conta inment r e f e r e n c e Ope ra t i on ownedOperat ion (0 . . −1) o p p o s i t e c l a s s

;
26 }
27
28 c l a s s G e n e r a l i z a t i o n ex t end s D i r e c t e d R e l a t i o n s h i p
29 {
30 unorde red r e f e r e n c e C l a s s i f i e r g e n e r a l (1 . . 1) ;

234

D.1 The part of the UML meta-model relevant for OMOS

31 unorde red r e f e r e n c e C l a s s i f i e r s p e c i f i c (1 . . 1) o p p o s i t e
g e n e r a l i z a t i o n ;

32 }
33
34 c l a s s A s s o c i a t i o n ex t end s C l a s s i f i e r , R e l a t i o n s h i p
35 {
36 r e f e r e n c e Prope r t y memberEnd (2 . . −1) o p p o s i t e a s s o c i a t i o n ;
37 }
38
39 c l a s s P rope r t y ex t end s S t r u c t u r a l F e a t u r e , Connectab leE lement ,

DeploymentTarget
40 {
41 unorde red conta inment r e f e r e n c e V a l u e S p e c i f i c a t i o n d e f a u l t V a l u e

(0 . . 1) ;
42 unorde red a t t r i b u t e Aggregat ionK ind a g g r e g a t i o n = " none " (1 . . 1) ;
43 unorde red r e f e r e n c e A s s o c i a t i o n a s s o c i a t i o n (0 . . 1) o p p o s i t e memberEnd

;
44 }
45
46 c l a s s Ope ra t i on ex t end s B e h a v i o r a l F e a t u r e , Parameterab leE lement ,

Templateab leE lement
47 {
48 unorde red r e f e r e n c e C l a s s c l a s s (0 . . 1) o p p o s i t e ownedOperat ion ;
49 }
50
51 c l a s s Parameter e x t end s Connectab leE lement , M u l t i p l i c i t y E l e m e n t
52 {
53 unorde red a t t r i b u t e Pa rame t e rD i r e c t i onK ind d i r e c t i o n = " i n " (1 . . 1) ;
54 unorde red conta inment r e f e r e n c e V a l u e S p e c i f i c a t i o n d e f a u l t V a l u e

(0 . . 1) ;
55 }
56
57 a b s t r a c t c l a s s M u l t i p l i c i t y E l e m e n t ex t end s Element
58 {
59 unorde red a t t r i b u t e Boolean i s O r d e r e d = " f a l s e " (1 . . 1) ;
60 unorde red conta inment r e f e r e n c e V a l u e S p e c i f i c a t i o n upperVa lue (0 . . 1) ;
61 unorde red conta inment r e f e r e n c e V a l u e S p e c i f i c a t i o n l owe rVa lue (0 . . 1) ;
62 }
63
64 a b s t r a c t c l a s s V a l u e S p e c i f i c a t i o n ex t end s Packageab leE lement ,

TypedElement
65 {
66 // has no f e a t u r e s
67 }

235

D.1 The part of the UML meta-model relevant for OMOS

68
69 a b s t r a c t c l a s s L i t e r a l S p e c i f i c a t i o n ex t end s V a l u e S p e c i f i c a t i o n
70 {
71 // has no f e a t u r e s
72 }
73
74 c l a s s L i t e r a l I n t e g e r e x t end s L i t e r a l S p e c i f i c a t i o n
75 {
76 unorde red a t t r i b u t e I n t e g e r v a l u e = "0" (1 . . 1) ;
77 }
78
79 c l a s s L i t e r a l S t r i n g ex t end s L i t e r a l S p e c i f i c a t i o n
80 {
81 unorde red u n s e t t a b l e a t t r i b u t e S t r i n g v a l u e (0 . . 1) ;
82 }
83
84 c l a s s L i t e r a l B o o l e a n ex t end s L i t e r a l S p e c i f i c a t i o n
85 {
86 unorde red a t t r i b u t e Boolean v a l u e = " f a l s e " (1 . . 1) ;
87 }
88
89 c l a s s L i t e r a l N u l l e x t end s L i t e r a l S p e c i f i c a t i o n
90 {
91 // has no f e a t u r e s
92 }
93
94 c l a s s L i t e r a l U n l i m i t e d N a t u r a l e x t end s L i t e r a l S p e c i f i c a t i o n
95 {
96 unorde red a t t r i b u t e U n l i m i t e d N a t u r a l v a l u e = "0" (1 . . 1) ;
97 }
98
99 enum Parame t e rD i r e c t i onK ind

100 {
101 0 : i n = " i n " ;
102 1 : i n o u t = " i n o u t " ;
103 2 : out = " out " ;
104 3 : r e t u r n = " r e t u r n " ;
105 }
106
107 a b s t r a c t c l a s s Type ex t end s Packageab leE lement
108 {
109 // has no OMOS−r e l e v a n t f e a t u r e s
110 }
111

236

D.1 The part of the UML meta-model relevant for OMOS

112 a b s t r a c t c l a s s TypedElement ex t end s NamedElement
113 {
114 unorde red r e f e r e n c e Type type (0 . . 1) ;
115 }
116
117 a b s t r a c t c l a s s Connectab leE lement ex t end s TypedElement ,

Paramete rab l eE l ement
118 {
119 // has no OMOS−r e l e v a n t f e a t u r e s
120 }
121
122 enum Aggregat ionK ind
123 {
124 0 : none = " none " ;
125 1 : sha r ed = " sha r ed " ; // not used f o r OMOS
126 2 : compos i t e = " compos i t e " ;
127 }
128
129 enum V i s i b i l i t y K i n d
130 {
131 0 : p u b l i c = " p u b l i c " ;
132 1 : p r i v a t e = " p r i v a t e " ;
133 2 : p r o t e c t e d = " p r o t e c t e d " ;
134 3 : package = " package " ; // not used f o r OMOS
135 }
136
137 a b s t r a c t c l a s s Fea tu r e ex t end s R e d e f i n a b l e E l e m e n t
138 {
139 unorde red a t t r i b u t e Boolean i s S t a t i c = " f a l s e " (1 . . 1) ;
140 }
141
142 a b s t r a c t c l a s s S t r u c t u r a l F e a t u r e ex t end s Feature , TypedElement ,

M u l t i p l i c i t y E l e m e n t
143 {
144 unorde red a t t r i b u t e Boolean i sReadOn ly = " f a l s e " (1 . . 1) ;
145 }
146
147 a b s t r a c t c l a s s B e h a v i o r a l F e a t u r e ex t end s Namespace , Fea tu r e
148 {
149 unorde red a t t r i b u t e Boolean i s A b s t r a c t = " f a l s e " (1 . . 1) ;
150 conta inment r e f e r e n c e Parameter ownedParameter (0 . . −1) ;
151 }
152

237

D.1 The part of the UML meta-model relevant for OMOS

153 a b s t r a c t c l a s s C l a s s i f i e r e x t end s Namespace , Rede f i nab l eE l ement , Type ,
Templateab leE lement

154 {
155 unorde red a t t r i b u t e Boolean i s A b s t r a c t = " f a l s e " (1 . . 1) ;
156 unorde red conta inment r e f e r e n c e G e n e r a l i z a t i o n g e n e r a l i z a t i o n (0 . . −1)

o p p o s i t e s p e c i f i c ;
157 }
158
159 a b s t r a c t c l a s s S t r u c t u r e d C l a s s i f i e r e x t end s C l a s s i f i e r
160 {
161 conta inment r e f e r e n c e P rope r t y ownedAt t r i bu t e (0 . . −1) ;
162 }
163
164 a b s t r a c t c l a s s E n c a p s u l a t e d C l a s s i f i e r e x t end s S t r u c t u r e d C l a s s i f i e r
165 {
166 // has no OMOS−r e l e v a n t f e a t u r e s
167 }
168
169 a b s t r a c t c l a s s B e h a v i o r e d C l a s s i f i e r e x t end s C l a s s i f i e r
170 {
171 // has no OMOS−r e l e v a n t f e a t u r e s
172 }
173
174 a b s t r a c t c l a s s R e d e f i n a b l e E l e m e n t ex t end s NamedElement
175 {
176 // has no OMOS−r e l e v a n t f e a t u r e s
177 }
178
179 c l a s s P r o f i l e e x t end s Package
180 {
181 unorde red d e r i v e d v o l a t i l e t r a n s i e n t r e f e r e n c e S t e r e o t y p e

ownedSte reotype (0 . . −1) ;
182 unorde red r e f e r e n c e E lement Import m e t a c l a s s R e f e r e n c e (0 . . −1) ;
183 }
184
185 c l a s s P r o f i l e A p p l i c a t i o n ex t end s D i r e c t e d R e l a t i o n s h i p
186 {
187 unorde red r e f e r e n c e P r o f i l e a p p l i e d P r o f i l e (1 . . 1) ;
188 unorde red a t t r i b u t e Boolean i s S t r i c t = " f a l s e " (1 . . 1) ;
189 unorde red r e f e r e n c e Package app l y i ngPackage (1 . . 1) o p p o s i t e

p r o f i l e A p p l i c a t i o n ;
190 }
191
192 c l a s s S t e r e o t y p e ex t end s C l a s s

238

D.1 The part of the UML meta-model relevant for OMOS

193 {
194 // has no OMOS−r e l e v a n t f e a t u r e s
195 }
196
197 a b s t r a c t c l a s s Element
198 {
199 unorde red o p e r a t i o n S t e r e o t y p e (0 . . −1) g e t A p p l i e d S t e r e o t y p e s () ;
200 }
201
202 a b s t r a c t c l a s s NamedElement ex t end s Element
203 {
204 unorde red u n s e t t a b l e a t t r i b u t e S t r i n g name (0 . . 1) ;
205 unorde red u n s e t t a b l e a t t r i b u t e V i s i b i l i t y K i n d v i s i b i l i t y = " p u b l i c "

(0 . . 1) ;
206 unorde red d e r i v e d unchangeab le v o l a t i l e t r a n s i e n t a t t r i b u t e S t r i n g

qua l i f i e dName (0 . . 1) ;
207 }
208
209 a b s t r a c t c l a s s Namespace ex t end s NamedElement
210 {
211 unorde red conta inment r e f e r e n c e E lement Import e l ement Impor t (0 . . −1)

o p p o s i t e import ingNamespace ;
212 }
213
214 a b s t r a c t c l a s s Paramete rab l eE l ement ex t end s Element
215 {
216 // has no OMOS−r e l e v a n t f e a t u r e s
217 }
218
219 a b s t r a c t c l a s s Packageab leE lement ex t end s NamedElement ,

Paramete rab l eE l ement
220 {
221 // has no OMOS−r e l e v a n t f e a t u r e s
222 }
223
224 a b s t r a c t c l a s s Templateab leE lement ex t end s Element
225 {
226 // has no OMOS−r e l e v a n t f e a t u r e s
227 }
228
229 a b s t r a c t c l a s s R e l a t i o n s h i p ex t end s Element
230 {
231 // has no OMOS−r e l e v a n t f e a t u r e s
232 }

239

D.2 OMOS model editor

233
234 a b s t r a c t c l a s s D i r e c t e d R e l a t i o n s h i p ex t end s R e l a t i o n s h i p
235 {
236 // has no OMOS−r e l e v a n t f e a t u r e s
237 }
238
239 a b s t r a c t c l a s s DeploymentTarget e x t end s NamedElement
240 {
241 // has no OMOS−r e l e v a n t f e a t u r e s
242 }
243
244 da ta t ype I n t e g e r " i n t "
245
246 da ta t ype Boolean " boo l ean "
247
248 da ta t ype S t r i n g " j a v a . l ang . S t r i n g "
249
250 da ta t ype U n l i m i t e d N a t u r a l " i n t "
251
252 }

D.2. OMOS model editor

A OMOS model editor prototype was implemented as part of the research presented
in this thesis (see Section 5.2). The editor allows to create OMOS models and dia-
grams. It implements the semi-automatic approach for laying out OMOS diagrams
discussed in Chapter 5 and in this chapter. The editing capabilities provided by
the editor are similar to those provided by other UML modelling tools. However,
a unique feature of the editor is that it allows to create OMOS diagrams using
the semi-automatic layout approach. The editor’s capabilities are discussed in this
section.

D.2.1. Creating class symbols

By means of creating symbols in diagrams, modellers can either add an existing class
(which is already part of another diagram) to this diagram or create a new class.
When a new class is created, the modeller selects the package to which it should
belong. It is not possible to display a class more than once in a diagram. There is
hence at most one class symbol of each class in a certain diagram. The position of

240

D.2 OMOS model editor

the class symbol in the parent-child hierarchy has to be defined when a class symbol
is added to a diagram. To do so, the modeller drags the class symbol to the left or
right border of another class symbol. Doing so adds the new class symbol to children
of the existing class symbol’s parent class symbol (or, if the existing class symbol
is a root one, the new class symbol is added to the diagram’s root class symbols).
The new class symbol is inserted before or after the existing class symbol which it
gets dragged to — it is inserted on the left-hand side (i. e., before the symbol), if it
was dragged to right border, and inserted at the right-hand side of the existing class
symbol (i. e., after the symbol), if it was dragged to the symbol’s left border.

If the UML class underlying the added class symbol already exists in the UML
model, the model will not be modified. If the class is newly created, it will, of
course, be added to the UML model.

D.2.1.1. Relocating class symbols

A OMOS diagram’s class symbols can be relocated. A class symbol can be moved
to a new parent node or reordered within its current parent’s children. Similar to
adding a class symbol to a diagram, this is done by dragging a class symbol to the
left or right border of another class symbol. Moving class symbols in a diagram does
not modify the underlying UML model.

D.2.1.2. Details visibility

For a class symbol, the OMOS editor prototype provides functionality for modellers
to define which attributes and operation of a symbol’s class are displayed for this
symbol. They could chose between displaying all attribute and operations, only
public ones, or none at all (then, only the class’s name and its stereotypes are shown
for the class symbol).

D.2.2. Creating connections symbols

In order for OMOS modellers to depict association or inheritance (UML) relation-
ships, the diagram editor offers to create connections symbol depicting those re-
lationships. Starting from a class symbol, a new relationship could be created by
dragging the yet “dangling” end of the connection (which was created by the diagram
editor to depict the relationship) to another class symbol. If there already exists a

241

D.2 OMOS model editor

relation of the same type as the to-be-created one, the user can select one from a
list of existing relationships (those already depicted in diagram are highlighted and
cannot be selected). If an existing one is selected, no new model element is created,
but the existing relationship is displayed in this diagram. It is not possible to display
a certain relationship more than once in a certain diagram. There is hence at most
one connection symbol of each UML relationship in a diagram.

D.2.2.1. Moving connection ends

The ends of connection symbols can be moved from one class symbol to other class
symbol. Doing so, of course, changes the diagram, but also changes the under-
lying UML model. All other connection symbols in other diagrams depicting the
changed model element will be deleted from the respective diagrams because the
model changed and thus these connection symbols are outdated since the relation-
ship they depicted no longer exists. The modified connection will be updated only
in the diagram where the modeller modified the connection.

D.2.2.2. Automatic update of diagram symbols when model elements are
updated

Diagram symbols are hence automatically updated if the underlying UML model
changes. For instance, moving a generalisation connection’s end from one class
symbol to another will update the underlying UML model and by doing so all
connection symbols depicting the old generalization will be deleted.

D.2.3. The model tree

All model elements are displayed in a modelling tree (see Section 5.2) shown in
Fig. D.1.

The model tree allows modellers to navigate to diagrams and diagram symbols which
visualise the respective model element. OMOS modellers can do so by making use
of the list of diagrams which is discussed next.

D.2.3.1. List of diagrams depicting model elements

For each model element, a list of diagrams containing a symbol which depicts this
element is provider by the modelling tool.

242

D.2 OMOS model editor

Figure D.1.: OMOS model tree example.

D.2.3.2. Packages, attributes, and operations

Creating classes and association and inheritance relationships can only be done in
a visual way by adding class symbols to diagrams. Because package assignment
diagrams — the only kind of OMOS diagrams displaying package symbols (see
Section C.1) — were not implemented by the modelling tool prototype, packages
can be created directly in the model tree, however, they cannot be displayed in
OMOS diagrams.

Creating, modifying, and deleting packages, attributes, and operations is accom-
plished via the model tree. Depending elements will also be deleted automatically.
For instance, when a package is deleted, all its class and sub-packages and their
depending elements are deleted. Since the model is modified, diagrams depicting
deleted elements will be affected too (see Section D.2.4).

D.2.3.3. Deleting diagram symbols and model elements

When a symbol is deleted in a diagram, the modeller can chose whether only the
symbol or, in addition to the symbol, the underlying model element(s) are deleted.
Deleting only the diagram symbol does not modify the model element it depicted.
However, deleting also the model element(s) will delete all the model elements be-
longing to the depicted symbol from the model. This will also remove all symbols
depicting the removed model elements from all diagrams. When a class is removed

243

D.2 OMOS model editor

from the model, all its attributes, operations, stereotype assignments, association
and generalisation relationships are removed, too.

The ability to automatically update a diagram’s layout when its symbols were up-
dated — directly in the diagram editor and/or by altering the underlying UML
model — and still preserve the layout features of this diagram is one of the advant-
ages of the approach to laying out OMOS diagrams developed by this research (see
Chapter 5).

D.2.4. Diagram and model updates and automatic re-layout of all
affected diagrams

In order to avoid orphaned model elements (i. e., classes and association and inherit-
ance relationships) which are not depicted in any diagram any more but is still part
of the underling model, deleting a symbol from a diagram which is not displayed in
any other diagram will also remove the symbol’s model element(s).

When a class is deleted from the model and thus all its class symbols are removed
from all diagrams depicting the class, the deleted symbols’ children class symbols are
not deleted. Instead, in each diagram in which the deleted class symbol has children
class symbols, it is replaced by a place-holder symbol which acts as a temporary
parent symbol of these children symbols (see class symbol “LssDuty” in Fig. D.2).
Each diagram which has such a place holder is marked with a error. The user then
has to move the children class symbols to other parent class symbols or delete them
too. This approach has been chosen in order to avoid recreating parts of a diagram
in case a class (which was depicted in this diagram) is deleted from the model.

244

D.2 OMOS model editor

Figure D.2.: OMOS diagram with an error resulting from deleting class “LssDuty”
from the model.

With respect to diagram editor tooling, diagrams have to be updated when the
states of their diagram symbols are updated. For the OMOS diagram editor, symbol
updates can occur because of the following reasons:

• Purely graphical updates affecting only a certain diagram, but not the under-
lying UML model. Those updates are interactively initiated by the modeller
by modifying the graphical properties of symbols of a certain diagram, for in-
stance, relocating a class symbol. The updates only affect the symbols of the
respective diagram, but no other diagrams.

• Graphical updates which affect the underlying UML model and thus affect all
diagrams depicting these model elements.

– A connection symbol’s end is relocated (this update does affect the un-
derlying UML model since a diagram contains at most one symbol of a
certain class; moving a connection end to another class symbol, therefore,
also relocates the underlying model element(s) to a different class).

– Deleting a class or connection symbol from a diagram and the respect-
ive class or relationship from the model. This will affect all diagrams
depicting the respective model element.

• When modellers use the model tree to directly modify the UML model, the
resulting model updates which affect all diagrams depicting the modified model
elements. For instance, when the parameter list of an operation is modified, all
class symbols depicting this operation have to be updated because their widths

245

D.3 Semi-automatic OMOS diagram layout details

might have changed. The width update in turn will require the respective
diagrams to be newly laid out because changing the width of a class symbol
requires rebalancing the class symbols. This in turn might cause modifications
of the class symbols’ position and the positions of connections.

Since a diagram’s layout is only calculated and relevant when the diagram is actually
opened in the modelling tool, only currently opened diagrams are affected by model
updates and have to be laid out again.

D.3. Semi-automatic OMOS diagram layout details

This section discusses the semi-automatic approach for laying out OMOS diagrams
presented in 5.

D.3.1. Overview

First, two meta-models for describing OMOS diagrams and an overview of the sym-
bols used in OMOS diagrams are presented.

D.3.1.1. Depicting classes

Classes are depicted as rectangles. Each rectangle is divided into three compartments
containing textual labels. The class’s name and the names of the stereotypes assigned
to it are displayed in the first compartment. The second and third compartment
show labels of the class’s attributes and operations, repsectively. Depending on
which class details are shown for the symbol, these two latter compartments may be
empty (i. e., show no details), depict only public attributes and operations, or all of
them. In this section, these labels are referred as the class details labels.

D.3.1.2. Depicting connections

Connections visualise UML relationships between (two) UML classes, they are presen-
ted as poly-lines. A connection may have a decoration figure at its beginning and/or
end: an open arrowhead for navigable associations, a filled diamond for composition
associations, and an unfilled triangle for generalisations. For associations whose
association’s name is defined and/or whose upper or lower bound does not equal

246

D.3 Semi-automatic OMOS diagram layout details

one, a text label depicting the name and/or upper and lower bound is part of the
decoration, too.

D.3.1.3. A meta-model for OMOS diagram layout calculation

A meta-model used by the OMOS diagram editor and the OMOS merge tool to
automatically calculate the layout of OMOS diagrams according to the approach
defined in Chapter 5 has been defined as part of the research presented here. It
describes the directed acyclic graph of class symbols and the set of connections
belonging to each class symbol used to describe the principle structure/hierarchy
of an OMOS diagram without describing the concrete graphical properties (i. e.,
position and size) of its symbols. The graph defines the class symbols’ parent-
children hierarchy (each parent class symbol has an ordered list of direct children
symbols, all belong to the layer directly below its parent’s layer) and the layers (or
ranks) of the class symbols which are derived from the class symbol layout hierarchy
manually defined by modellers. Like all meta-models provided by this research, this
meta-model is based on the meta-object facility (see Section 2.1.2.1).

• Class symbols

– Parent class symbol.

– Children class symbols (ordered collection/sequence).

– Inter-layer connections

∗ Adjacent layer connection

· Source connections (ordered collection/sequence).

· Target connections (ordered collection/sequence).

∗ Non-adjacent layer connections

· Connections passing on left-hand side (ordered collection/sequ-
ence).

· Connections passing right-hand side (ordered collection/sequence).

– Intra-layer connections

∗ Connections to adjacent class symbols

· Source connections (ordered collection/sequence).

247

D.3 Semi-automatic OMOS diagram layout details

· Target connections (ordered collection/sequence).

∗ Connections to non-adjacent class symbols

· Source connections (ordered collection/sequence).

· Target connections (ordered collection/sequence).

This meta-model is used for creating the principal class symbol hierarchy and to
define the routing of connection symbols. It is, however, not used to visually depict
OMOS diagrams. This is done using another meta-model which is discussed in the
next section.

D.3.1.4. A meta-model for OMOS diagram layout

In addition to the meta-model for describing the principle structure/hierarchy of
class symbols discussed in the previous section, a meta-model (used by the OMOS
model editor and the merge tool) for visualising (i. e., laying out) OMOS diagrams
in an automatic manner was defined as part of the research presented here. This
meta-model, too, is based on the meta-object facility (see Section 2.1.2.1).

• Class symbols

– Reference to depicted class from the underlying UML model.

– Size and position.

– Bounding box (including the bounding boxes of connection decorations,
the horizontal lines/segments of (incoming and outgoing) connections
from/to non-adjacent class symbol’s, and the vertical lines/segments of
passing-by connections). (The bounding box is required for calculating
the size of the layer to which the class symbol belongs.)

– Reference to incoming, outgoing, and passing-by connection symbols.

• Connection symbol

– Reference to depicted relationship from the underlying UML model.

– Source and target location and bounding boxes of source and target dec-
oration.

– Bend point locations.

248

D.3 Semi-automatic OMOS diagram layout details

• Attribute symbol

– Reference to depicted attribute from the underlying UML model.

• Operation symbol

– Reference to depicted operation from the underlying UML model.

• Place holder symbol for deleted class symbols (see Fig. D.2).

• Diagram conflict state (derived from presence of place holder symbols; not
related to merge conflicts).

D.3.2. Automatic layout of class symbols

This sections discusses the algorithm for laying out OMOS diagrams in an automatic
way based on the meta-model for describing the principle class symbol hierarchy
discussed in the previous section.

D.3.2.1. Calculating the sizes of class symbols

The calculation of the size of each class symbol consists of two steps: Step one
calculates the size of class symbol. Step two calculate size of class symbol’s bounding
box. The latter step is required for visually separating the horizontal diagram layers.
The directed acyclic graph of class symbols and a set of connections belonging to
each class symbol serves as the input for both steps.

D.3.2.1.1. Calculating a class symbol’s width and height:

• Input: A class symbol, its connections (separated in connections leaving at the
top or bottom and at the left or right side), and its class details labels.

• Output: The given class symbol with its width and height assigned.

• Algorithm: Calculate class symbol width and height

1. Assign given class symbol’s width and height to default value (50 pixels
and 80 pixels).

2. Calculate the width and hight of the class details labels (since they influ-
ence the symbol’s size).

249

D.3 Semi-automatic OMOS diagram layout details

3. Assign new width/height to the maximum of current width/height of the
class details labels, i. e., if necessary, the class symbol is enlarged such
that the text of all labels is displayed properly.

4. The size of the decoration of a class symbol’s outgoing and incoming con-
nections (for which the class symbol acts as its source or target, respect-
ively) is taken into account. Inter- and intra-layer connections between
non-adjacent class symbols connect to the class symbol at top or bottom;
they therefore may influence the width of the class symbol. Intra-layer
connections between adjacent class symbols connect to the class symbol
at its side; they therefore may influence the height of the class symbol.

a) Calculate the width and height of the class symbol’s connections
(default minimum size: 15 pixels wide and 15 pixels heigh).

– The class symbol’s new width is the maximum of (1) the current
width and (2) the maximum of (a) the sum of the widths of all
connections connected at the top of the class symbol and (b) the
sum of the widths of all connections connected at the bottom of the
class symbol.

– The class symbol’s new height is, therefore, the maximum of (1) the
current height and (2) the maximum of (a) the sum of the heights of
all connections connected at the left side of the class symbol and (b)
the sum of the heights of all connections connected at the right side
of the class symbol.

D.3.2.1.2. The bounding box of class and connection symbols: The reason why
bounding boxes are required for laying out class and connection symbols is the
balanced layout of class symbols. The bounding box is required to calculate the
horizontal position of the diagram’s class symbols. A class symbols bounding box
takes into account all (left/right-hand side) decorations (of intra-layer connections
between adjacent class symbols) and passing-by line segments; they add to the class
symbol’s width.

The bounding boxes of connections and their decorations are taken into account to
prevent connection decorations from crossing with line segments of other connec-
tions. This approach ensures that if case line segments cross, they should cross the
line instead of the decoration in order not to compromise readability of the dec-
oration (which might be a label). This approach also prevents (straight vertical)

250

D.3 Semi-automatic OMOS diagram layout details

line segments of passing-by connections from crossing the decorations of intra-layer
connections between adjacent class symbols. It also prevents (straight vertical) line
segments of intra-layer connections between non-adjacent class symbols from cross-
ing with decorations of inter-layer connections between class symbols on adjacent
layers (passing by connections do not have decorations).

D.3.2.2. Calculating a class symbol’s position

This step in the OMOS layout approach determines the horizontal position of the
diagram’s class symbols. It creates a balanced tree of class symbols as outlined in
Fig. D.3 according to the manually defined class symbol hierarchy:

4U

4U4U

4U

2U

Default gap

4U2U

5U

2U

Figure D.3.: Balanced hierarchical class symbol layout.

251

D.3 Semi-automatic OMOS diagram layout details

D.3.2.2.1. Calculating a class symbol’s horizontal (x) position

• Input: A diagram for which the width and height of all its class symbols
assigned (see above).

• Result: The x position of all the diagram’s symbols has been assigned.

• Algorithm: see Algorithm D.1.

Algorithm D.1 Laying out class symbols horizontally in a balanced manner.
Input: Class symbol cs
Input: Left x position leftX
Output: Class symbol tree’s right x position
if cs has childre class symbols then
Layout children class symbols starting at given (leftX) x position
{See "Laying out children class symbols horizontally" below.}

end if
bbWidth := width of cs’s bounding box
if cs has no children class symbols then
treeWidth := bbWidth
x := leftX

else
{Position class symbol centred above its children:}
subtreeWidth := maximum of all class symbols’ bounding box widths in the
sub-tree formed by cs’s children class symbols
if bbWidth > subtreeWidth then
{cs is wider than sub-tree; balance sub-tree’s class symbols:}
rightShift := bbWidth/2− subtreeWidth/2
Recursively move sub-tree class symbols to the right by rightShift pixels.
x := leftX
treeWidth := bbWidth

else
{cs is smaller than sub-tree symbols; no children balancing needed, just po-
sition it at the centre above children:}
x := leftX + (subtreeWidth/2)− (bbWidth/2)
treeWidth := subtreeWidth

end if
end if{Set cs’s x position.}
cs.x := x
return leftX + treeWidth;

252

D.3 Semi-automatic OMOS diagram layout details

Algorithm D.2 Laying out child class symbols horizontally.
Input: Ordered list of class symbols
Input: Left x position leftX
Output: None.
x := leftX
for cs ← each of given class symbols do
{Assign cs’s horizontal (x) position:}
x := horizontalLayout(cs, x)
{Add default horizontal gap:}
x := x + 50 {

end for}

D.3.2.2.2. Calculating a class symbol’s vertical (y) position

• Input: A diagram for which the width and height of all its class symbols is set
(see above).

• Result: The y position of all the diagram’s symbols is set

• Algorithm:

– y := 0

– For each layer

∗ For all class symbols belonging to this layer:

· Assign the y position to each class symbol.

∗ y := maximum of (1) layer gap (40 pixels) and (2) the maximum
height of the layer’s class symbols’ bounding box heights.

D.3.3. Automatic layout of connection symbols

D.3.3.1. Sorting connections symbols

Input:

• Class symbol graph (parent-child hierarchy; each parent class symbol has an
ordered list of direct children symbols (all belong to the layer directly below
its parent’s layer)).

253

D.3 Semi-automatic OMOS diagram layout details

• Each class symbol’s connection groups (each group contains all connections
going to/coming from the same class symbol)

– Outgoing inter-layer connection groups (outgoing: class symbol (source)
on higher layer than the other (target) class symbol’s layer).

– Incoming inter-layer connection groups (incoming: class symbol (target)
on lower layer than the other (source) class symbol’s layer).

– Outgoing intra-layer connection group to adjacent class symbol (single)
(outgoing: class symbol (source) whose position order within the layer is
lesser than the other (target) class symbol’s, i. e., class symbol on left-
hand side).

– Incoming intra-layer connection group from adjacent class symbol (single)
(incoming: class symbol (target) whose position order within the layer
is greater than the other (source) class symbol’s; i. e., class symbol on
right-hand side).

– Outgoing intra-layer connections groups to non-adjacent class symbols
(outgoing: class symbol (source) whose position order within the layer is
lesser than the other (target) class symbol’s, i. e., class symbol on left-
hand side).

– Incoming intra-layer connections groups from non-adjacent class symbols
(incoming: class symbol (target) whose position order within the layer
is greater than the other (source) class symbol’s; i. e., class symbol on
right-hand side).

• Notes:

– The input is a directed acyclic graph of class symbols and a set of con-
nections belonging to each class symbol.

– The layer (or rank) of class symbol is known due to its position in the
class symbol hierarchy/graph.

– The class symbols’ size and position are not relevant at this stage.

Determining the sort order of connections:

• Calculate passing by connection groups (Note: there are only incoming ones
since a passing-by connection is presented as a vertical line (i. e., passing-by
segment)).

254

D.3 Semi-automatic OMOS diagram layout details

• Sort the connection groups.

– Outgoing inter-layer connection groups (result: sorted group list): The
outgoing inter-layer connections of a source class symbol are sorted ac-
cording to the target class symbol’s order within its layer. The connection
group with the leftmost target class symbol becomes the first in the list
and so on. Since target class symbols can belong to different layers, their
order could be identical to the order within their layers. Then, the con-
nection whose target class symbol is on a higher layer is ordered before
the connection going to a target class symbol on a lower layer.

∗ Two criteria for ordering connection are applied: the horizontal order
of source class symbol serves as the first ordering criterion. A second
criterion is applied if the first one yields identical results for different
target class symbols. Then, connections are sorted according to their
target class symbol’s layer: a connection going to a symbol on a
higher layer is sorted before a connection whose target class symbol
is on a lower layer.

∗ Rational: The reason for this approach to ordering connection sym-
bols is to avoid connection crossings as much as possible.

– Incoming inter-layer connection groups: Same algorithm as applied for
outgoing inter-layer connection groups of source class symbol is applied;
but instead of using the target class symbol for determining the sort order,
the source class symbol is used.

– Outgoing intra-layer connection group to adjacent class symbol: Only a
single group of connections has to be taken into account since there is
at most one adjacent class symbol on the same layer for which the class
symbol has outgoing connections. The sort order of the connections of
this group is discussed below.

– Incoming intra-layer connection group to adjacent class symbol: Only a
single group of connections has to be taken into account since there is
at most one adjacent class symbol on the same layer for which the class
symbol has incoming connections. The sort order of the connections of
this group is discussed below.

– Outgoing intra-layer connections groups to non-adjacent class symbols:
The outgoing intra-layer connections of a source class symbol are sorted

255

D.3 Semi-automatic OMOS diagram layout details

according to the target class symbol’s order within its layer (in the same
way as used for the respective source class symbol). The target class
symbols’ layer order can only be greater (i. e., further to the right) than
the (source) class symbol. The connection group whose target class sym-
bol has with lowest greater layer order (i. e., is closest to the source class
symbol) is first in the list and so on.

– Incoming intra-layer connections groups to non-adjacent class symbols:
The same algorithm as applied for outgoing intra-layer connection groups
is applied to non-adjacent class symbols of source class symbol. However,
instead of using the target class symbol for determining the sort order,
the source class symbol is used.

– Passing-by connection groups: They are ordered in the same way as out-
going inter-layer connection groups discussed above.

• Sorting within connection groups: The original order is kept, but the general-
isation connection (there can at most be one per pair of class symbols, i. e., in
a connection group) comes first (during the actual diagram layout it will be
positioned closer to the centre of the source/target class node).

Result:

• The connections in each class symbol’s connection groups are sorted according
to the criteria shown above.

D.3.3.2. Laying out connections symbols

The layout process of connection symbols is based on the layout of the class symbols
(described above) which has already been done when connections symbols are laid
out. The calculation of the class symbols’ width and hight already took into account
the connection symbols belonging to the class symbol. Therefore the connection can
be positioned at the class symbol without the need to resize it. Furthermore, the
gaps between layers, i. e., the gap between the bottom and the top of class symbols
on adjacent layers, are calculated such that connections do not overlap with class
symbols.

256

D.4 Design and implementation of MOF-based model comparison

D.4. Design and implementation of MOF-based model
comparison

This section discusses the details of the meta-object facility (MOF) which are rel-
evant for differencing and merging MOF-based models.

D.4.1. Introduction

MOF provides elements4 for defining (see Fig. D.4):

• Packages (used for scoping elements);

• Classes (used to define the structure and behaviour of instances of classes, i. e.,
objects)

– Data type properties (to define primitive, unstructured properties of
classes);

– Class type properties (for referencing instances of classes, i. e., for building
networks of objects, i. e., models);

– Operations (for declaring behavioural aspects of objects);

– Inheritance (for reusing/extending existing classes).

To quote from section 2.3 of the Human-Usable Textual Notation Specification
[OMG04]: “The Meta-Object Facility (MOF) specifies a small but complete set of
modeling concepts that can be used to express information models. [...] There are
a number of essential concepts used in MOF modeling. A Package is used to en-
capsulate a collection of related Classes and Associations. [...] Classes exist in the
commonly-used sense of the word, describing an object and its properties. These
properties are represented through Attributes and References, which can be inherited
using a multiple-inheritance system based on that of CORBA IDL. Attributes have a
name and a type, selected from the CORBA type system1. This includes a range of
types from basic types such as integers, strings, and booleans to more complex types
such as enumerations, and through to structured types. In addition, attributes have
both upper and lower limits on the number of times that they can appear within a

4All these elements are MOF elements. Even though UML meta-model has elements with similar
names, they are not the same. The MOF elements are, in (meta-) modelling terms, one level
below (M3) the UML meta-model elements (M2). All elements of the UML meta-model are
instances of elements defined by MOF.

257

D.4 Design and implementation of MOF-based model comparison

class instance. An Association is used to represent a relationship between instances
of two classes, each of which plays a role within the association. Associations can
have the additional property of containment; an association represents a contain-
ment relationship if one of the participant classes does not exist outside the scope of
the other. A Class participating in an association can also contain a Reference to the
association. A reference appears much like an attribute, but reflects the set of class
instances that participate in the Association with the containing class instance.”

Figure D.4.: Relations, attributes, and operations of MOF classes ([OMG06a, Fig.
12.2, p. 33]).

The UML Infrastructure Specification describes the relation between UML and MOF
as follows [OMG10a, p. 14]: “[...] UML is defined as a model that is based on MOF
used as a metamodel [...]. Note that MOF is used as the metamodel for not only
UML, but also for other languages such as CWM. [...] An important aspect that
deserves mentioning here is that every model element of UML is an instance of
exactly one model element in MOF.”

258

D.4 Design and implementation of MOF-based model comparison

D.4.1.1. Property features

Properties (instances of MOF class Property) have several features (which, due to
the recursive nature of meta-meta-models, are instances of MOF class Property too)
which are important for merging models. These features are discussed next and
referred to in other sections discussing the model merge process.

D.4.1.2. Attribute and reference properties

As explained in Section 2.1.2.1, there exist two categories of properties (instances of
MOF class Property, see [OMG06a, p. 36]): Data type (or attribute) properties (see
[OMG06a, p. 17, p. 36]) represent values of simple, unstructured types. These types
do not represent model elements. For instance, the name property of NamedEle-
ment, a MOF class (instance) which is defined by the UML meta-model, is such an
unstructured one as its value is a string. The second property category are class type
(or reference) properties (see [OMG06a, p. 36]) representing references to model ele-
ments. The ownedOperation property (defined by MOF class instance Class in the
UML meta-model) is such a one, its values are operations, i. e., instances of (UML)
class Operation (defined by the UML meta-model).

D.4.1.3. Name and type

Each property has a name and a type. The name is used to distinguish different
properties (belonging to the same instance of a MOF class, for instance, UML’s
Operation class). The type is important for distinguishing between attribute and
reference properties and for defining which values an instance of the property can
hold as explained above.

D.4.1.4. Single- and multi-valued properties

Properties can either be single- or multi-valued. For instance, in the UML meta-
model, the NamedElement::name property is a single-valued one, while the Class-
::ownedOperation property is a multi-valued one since a class in a UML model may
have many operations. Whether a property is single- or multi-valued depends on
the values of its lowerBound and upperBound features.

259

D.4 Design and implementation of MOF-based model comparison

D.4.1.5. Order and unordered properties

Another important feature of properties is their ordering. For ordered properties
the order of their values is relevant. For instance, the ownedParameter of UML
class Operation is ordered (see [OMG10a, p. 97]) because in UML the order of an
operation’s parameters matters (as it often does for programming languages too).
The packagedElement property of UML class Package is not ordered (see [OMG10b,
p. 110]) because the order of the classes belonging to a package is not relevant.

For models which are instance of MOF-based meta-models, MOF defines how (the
values of instances) of properties can be accessed and how they behave [OMG06a,
p. 16]: “If the Property has multiplicity upper bound of 1, get() returns the value
of the Property. If Property has multiplicity upper bound >1, get() returns a Re-
flectiveSequence containing the values of the Property. If there are no values, the
ReflectiveSequence returned is empty.”

The value of a single-value property hence is simply its value, i. e. either a attribute
value (for attribute properties) or a model element (for reference properties). De-
pending on whether the property is ordered, the value of a multi-valued property
is either an instance of ReflectiveCollections or an instance of ReflectiveSequences
[OMG06a, pp. 24]. Both instances provide access to the actual values of the property
(either an attribute value for attribute properties or a model element for reference
properties). ReflectiveCollection, which is used for unordered properties, simply
allows to add, access (traverse), and remove (by value) its values. In addition to
the value-based access provided by ReflectiveCollection, its specialisation (sub-class)
ReflectiveSequence used for ordered properties allows — since the order of values is
relevant — index-based access, addition, and removal of values.

D.4.1.6. Default values and unset properties

In addition to setting (manipulating) a property’s value, it is also possible to unset
it [OMG06a, pp. 17]: “If the Property has multiplicity upper bound of 1, unset()
atomically sets the value of the Property to its default value for DataType type prop-
erties and null for Class type properties. If Property has multiplicity upper bound
>1, unset() clears the ReflectiveSequence of values of the Property.”

An important feature for properties with respect to comparing model elements is the
ability to determine whether the value of a property is set or not (unset). Models

260

D.4 Design and implementation of MOF-based model comparison

created from MOF-based meta-models thus allow to detect whether a property’s
value is set [OMG06a, pp. 17]: “If the Property has multiplicity upper bound of 1,
isSet() returns true if the value of the Property is different than the default value of
that property. If Property has multiplicity upper bound >1, isSet() returns true if
the number of objects in the list is > 0.”

D.4.1.7. Unique and non-unique properties

MOF also provides a feature for meta-models to define the uniqueness of multi-value
properties. While unique properties may hold a certain value not more than once,
their non-unique counterparts may hold a certain values multiple times. The UML
meta-model defines four non-unique attribute properties — OpaqueExpression::body,
OpaqueBehavior::body, FunctionBehavior::body, and OpaqueAction::body; all of them
are unordered and none of them is relevant for OMOS models (see Section D.1). No
non-unique reference properties are defined in the UML meta-model because it does
not make sense for UML reference properties to reference the same model element
more than once by the same property.

D.4.1.8. Containment properties and the model element containment hierarchy

MOF allows to define containment reference properties; this is accomplished by using
Property’s isComposite feature. This way containment hierarchies can be defined.
Model elements belonging to a containment reference are “owned” by the model
element to which this reference belongs. For instance, in UML each model element,
except for the root Model element, must be owned by exactly one other model
element, called its container (see [OMG10a, p. 74]). The elements of a UML model
thus define a strict containment hierarchy. For example, packages (instances of
UML class Package) contain classes (instances of UML class Class), classes contain
operations (instances of UML class Operation) and so on. The containment of
operations inside classes is defined by reference property ownedOperation defined
for Class in the UML meta-model as mentioned above. This reference property is a
(multi-values) containment reference.

Non-containment references are used to reference model elements without containing
them. In UML, an attribute’s type (reference property TypedElement::type of UML
class Attriubte) is, for instance, defined by referencing another type (for instance,

261

D.4 Design and implementation of MOF-based model comparison

another class) in the model. Which model element actually contains the referenced
type (model element) does not matter for defining the attribute’s type.

D.4.1.9. Bidirectional properties

MOF allows to define bidirectional reference properties; this is accomplished by
Property’s opposite feature (see [OMG10a, pp. 33]). Since the values of bidirec-
tional properties reference each other, bi-directionality makes only sense for reference
properties. Then, each model element referenced from the opposite property also
references the referencing model element with its property (which is the opposite of
the former property).

D.4.1.10. Derived properties

MOF allows to define so-called derived properties via the isDerived feature (see
[OMG10a, pp. 36]). The values of such properties are derived from the values of
other (non-derived) properties. For instance, the qualifiedName property defined for
UML meta-model class NamedElement (see [OMG10a, p. 71]) is a derived property,
its value is created from the name property’s value of the NamedElement and the
qualifiedName value of the container element — which is, again, calculated in the
same way. The values of derived properties cannot be changed directly. They are
thus not relevant with respect to comparing model elements.

D.4.2. Implementation

The software tools implemented as part of this research use Ecore [SBPM09], the de-
facto standard implementation of the meta-object facility (MOF), for implementing
tools for UML class model and diagram comparison and merging. Therefore, Ecore
terminology (with respect to element names and features) will be used to discuss
the implementation of UML model and diagram comparison. Since Ecore and MOF
are closely related, the element names are similar to those defined by MOF (see
Section D.4.1.1).

No matter what UML or diagram element types have to be compared, the type’s
structure is defined by means of MOF/Ecore concepts. The inner structure of those
elements is then described by the MOF/Ecore meta-model itself: An EClass has
structural features (of abstract type EStructuralFeature), which are either attributes

262

D.4 Design and implementation of MOF-based model comparison

(instances of EAttribute) or references (instances of EReference). An EClass can also
have super types (instances of EClass).

Therefore, when dealing with a UML or diagram model element (i. e., an instance
of the UML or diagram meta-model), its structure is described in terms of MOF/E-
core elements. For instance, Class from the UML (meta-model) has an EAttribute
(inherited from its super-class NamedElement) called name which defines that each
Class has a name of type String:

unordered unsettable attribute String name (0..1);

Therefore, instead of comparing a Class’s specific attribute name and other specific
attributes, its sufficient to compare all its attributes. A custom comparison for
class names is not necessary. It is thus not even required for the model comparison
to be aware that it deals with instances of UML meta-class Class. Thus, model
comparison can be based on the information defined by the meta-meta-model since
it provides the mechanisms for accessing model elements (defined by a meta-model).

D.4.3. Introduction to EMFText as a concrete syntax for Ecore

A textual syntax called EMFText5 is used to present Ecore-based meta-models in
this thesis. It is a concrete syntax for Ecore. The following relation between EMF-
Text keywords and Ecore elements exists:

EMFText keyword Instance of Ecore element
package EPackage
class EClass

abstract class EClass with attribute “abstract” set to “true”
interface EClass with attributes “abstract” and “interface” set

to “true”
enum EEnum

datatype EDataType
attribute EAttribute
reference EReference
operation EOperation
Table D.1.: Mapping from EMFText keywords to Ecore elements.

5http://emftext.org/ (access date: 4/12/2012)

263

D.4 Design and implementation of MOF-based model comparison

Instantiating an Ecore package (instance of EPackage):
package <package name > <namespace prefix > <namespace prefix >
{

// ...
}

Example:
package Ecore ecore "http :// www. eclipse .org/emf /2002/ Ecore" { ... }

Instantiating an Ecore class (instance of EClass):
[abstract] class <class name > [extends <supertype [, <supertype >]*]
{

// ...
}

Example:
abstract class ENamedElement extends EModelElement {...}

Instantiating an Ecore attribute (instance of EAttribute):
attribute <type > <attribute name > [= "< default value >"]

[(< lower multiplicity >..< upper multiplicity >)];

Examples:

• attribute EString name = "not set" (1..1);

• attribute EBoolean serializable = "true" (0..1);

Instantiating an Ecore reference (instance of EReference):
[containment] [unordered] reference <type > <reference name >

[(< lower multiplicity >..< upper multiplicity >)]
[opposite <name of opposite reference >];

• containment: Referenced element is contained by referencing element, the
latter is the parent element of the former.

• opposite: Defines the other/opposite end of a bi-directional reference.

264

D.4 Design and implementation of MOF-based model comparison

Examples:

• reference EPackage eSubpackages (0..-1) opposite eSuperPackage;

• reference EPackage eSuperPackage (0..1)opposite eSubpackages;

• reference ETypeParameter eTypeParameters (0..-1);

D.4.4. Foundations of MOF/Ecore (meta-) models and model
comparison

From a meta-modelling point of view, the main concept for creating meta-models
with Ecore [SBPM09] are EClasses (see Fig. D.5 taken from the EMF website6).
They define concepts (or “things”) in the domain described by the meta-model, for
instance, UML classes, packages, operations, associations, generalization, etc. from
the software modelling domain. From a modelling point of view, Ecore-/MOF-based
models consists of model elements which are instances of non-abstract and non-
interface EClasses (called Classes in MOF) defined by the meta-model underlying
the model. The model elements present actual instances of the concepts defined by
their meta-model. For instance, package Transportation and class Car.

A model element is thus similar to the concept of an entity in information modelling
[SM88], i. e., it describes a “thing” in the domain defined by the meta-model the
entity belongs to. One model element can be distinguished from another, even
if they have identical types (i. e., are instance of the same EClass) and identical
structure (i. e., the values of their features are identical) — for instance, the same
name (if such a feature was defined by the meta-model).

For comparing models, the state of model elements is most important (see Sec-
tion D.5.1). On the meta-model level, the state an instance of a EClass can hold
is defined by the EClass’s EStructuralFeatures, i. e., its attributes and references
(and those inherited from its super EClasses) which are instances of EAttribute and
EReference, respectively. Hence, in order to compare model elements, the values of
their features have to be compared. For instance, when comparing two versions of
a Class, the two values of its feature “name” (and other features) have to be are
compared.

Since MOF/Ecore are object-oriented modelling approaches, in addition to their
state, the behaviour of EClasses can be defined too — since the object-oriented

6http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/org/eclipse/emf/ecore/package-
summary.html (access date: 4/12/2012)

265

D.4 Design and implementation of MOF-based model comparison

Figure D.5.: Relations, attributes, and operations of Ecore’s classes.

paradigm advocates for coupling state and the behaviour which operates on this
state [Mey97]. In Ecore, behaviour is defined by means of EOperations. In contrast
to features, behaviour is irrelevant for comparing model elements since it does not
hold state.

Thus, with respect to defining a model’s state, features are most important as their
values are persisted and preserved throughout the life-cycle of a model, i. e., a model’s
elements are created by a computer program, stored (to, for instance, a disk or data-
base), restored back into a computer program and so one. Instances of operations
are not persisted since they “live” on a model’s definition (i. e., meta-model) level
whereas instances of features “live” on the instance level.

In contrast to instances of EClasses, instances of EDataTypes and EEnums are not
considered model elements in the sense that they represent entities in the domain
defined by the meta-model. Merks et al. [SBPM09, p. 116] define them as concepts

266

D.4 Design and implementation of MOF-based model comparison

without an inner structure: “data types represent a single piece of ‘simple data’.”
The can only become part of a model as the value of attributes (i. e., instances of
EAttributes) belonging to model elements (instances of EClasses). For instance, the
name of an Operation belongs to the Operation (model element) in the sense that it
defines the Operation’s state, but the name itself is not a model element on its own.

An instance of an EDataType or EEnum (which is a special kind of EDataType)
is identified by its value. For instance, there is no difference between the “name”
attribute’s value “C” for all the Classes named “C” — all the Classes have the same
name.

The values of attributes may only be instances of data types (instances of EClass
EDataType) and (its subclass) enumerations (instances of EClass EEnum). This is
a consequence of EClass EAttriubte’s “eAttributeType” reference which is of type
EDataType (of which EEnum is a subclass):

derived unchangeable volatile transient
reference EDataType eAttributeType (1..1);

For instance, UML’s NamedElement defines an EAttribute “name” of type String,
and the visibility of NamedElement instances like packages, classes, or operations
is defined by NamedElement’s “visibility” EAttribute which is of type VisibilityKind
and is an instance of EClass EEnum (see Section D.1):

abstract class NamedElement extends Element
{

unordered unsettable attribute String name (0..1);
unordered unsettable attribute VisibilityKind visibility

= " public " (0..1);
// more features

}

enum VisibilityKind {
0 : public = " public ";
1 : private = " private ";
2 : protected = " protected ";
3 : package = " package ";

}

The possible values of attributes whose type is an instance of EEnum are hence
defined by the meta-model — these values are the enumeration’s EEnumLiterals.

267

D.4 Design and implementation of MOF-based model comparison

In contrast to EAttributes, EReferences are used to define structured state as they
reference instances of EClasses, i. e., model elements. This is a consequence of EClass
EReference’s “eReferenceType” reference being of type EClass:

derived unchangeable volatile transient
reference EClass eReferenceType (1..1);

For instance, the UML meta-model defines for EClass Package an EReference called
“packagedElement” which is of type PackageableElement which is an EClass also
defined by the UML meta-model:

class Package extends
Namespace , PackageableElement , TemplateableElement

{
unordered containment reference

PackageableElement packagedElement (0.. -1);
// more features

}

abstract class PackageableElement
extends NamedElement , ParameterableElement

{
}

D.4.5. Ecore structural features

Similar to the meta-object facility (MOF), Ecore defines EStructuralFeature, EAt-
tribute, and EReference as the state-defining property of meta-models. There details
are discussed in this section:

D.4.5.1. EStructuralFeature

• name (EAttribute): The name of the feature.

• eType (EReference): The type of the feature’s value(s); it has to be an instance
of an EClassifier, which is the common super-class of EDataType and EClass
(which are the required types for EAttribute and EReference, respectively, see
below).

268

D.4 Design and implementation of MOF-based model comparison

• lowerBound (EAttribute): Defines the minimum number of values (multipli-
city) hold by an instance of this feature; it has to be equal or greater than
0.

• upperBound (EAttribute): Defines the maximum number of values (multipli-
city) hold by an instance of this feature; it has to be greater than 0 and greater
or equal to the feature’s lower bound. -1 is used to indicate unbounded upper
bound multiplicity (only the upper bound of a feature may be unbounded).

• many (EAttribute): If a feature’s upper bound multiplicity is larger than one,
this feature is called multi-valued (see Section D.4.1.1) or multiplicity-many
since it can hold more than one value. The actual values are stored in a list
(called EList for Ecore and ReflectiveCollection or ReflectiveSequence for MOF
[OMG06a, p. 28]).

• required (EAttribute): A feature’s lower bound multiplicity is equal or larger
than one.

• unique (EAttribute): The values of this feature are distinct, i. e. a single value
may only occur once for an instance of a unique feature. Uniqueness is only
relevant for multiplicity-many features.

• ordered (EAttribute): The order of values is relevant (in the domain defined
by the meta-model). Ordering is only relevant for multiplicity-many features.

• changeable (EAttribute): Defines whether the feature’s value can be set or not.
If a feature cannot be set, its state cannot change. Unchangeable features are
therefore irrelevant for model comparison.

• unsettable (EAttribute): These features have “an additional possible state,
called unset, that is distinguishable from that of being set to any value at
all” [SBPM09, p. 108]. Since the unset state is an additional possible state,
unsettable features have to be taken into account for model comparison.

• transient (EAttribute): The values of transient features are not serialised when
the model is persisted (i. e. stored in a file or database). Since models need to
be de-serialised in order to compare them, transient features have to be taken
into account for model comparison.

• derived (EAttribute): The values of derived features are calculated from the
value(s) of other features. However, when comparing model elements, derived
features cannot be ignored and thus have to be treated as ordinary features.

269

D.4 Design and implementation of MOF-based model comparison

For instance, in Ecore, the “many” EAttribute defined by ETypedElement (a
super-class of EStructuralFeature) is a derived feature: Its value is calculated
from the value of the “upperBound” EAttribute (also defined by ETypedEle-
ment).
Derived features are often also transient and/or unchangeable. For instance,
all derived features of the UML meta-model are also transient. (This was as-
certained by querying all EClass instances of the UML meta-model for derived
EFeatures.)

• volatile (EAttribute): Similar to derived features, volatile features do not have
state directly associated with them. However, in contrast to derived features,
volatile ones are not guaranteed to be directly derived from other features.
Hence they have to be taken into account for model comparison.

D.4.5.2. EAttribute

The following properties are only defined for attributes, not for references (see be-
low):

• iD (EAttribute): The value of this attribute can be used to identify the model
element it belongs to in a model. Of all attributes of an EClass, only one may
act as an identifying attribute. With respect to an EClass’s inheritance hier-
archies (its direct and indirect super-classes), there can only be one identifying
attribute within this hierarchy.

• eAttributeType (EReference): This derived reference casts the “eType” ERefer-
ence inherited from EStructuralFeature into EDataType. This reference en-
sures that an instance of EAttribute can only reference instances of EData-
Types.

D.4.5.3. EReference

The following properties are only defined for references, not for attributes (see
above):

• eReferenceType (EReference): This derived reference casts the “eType” ERefer-
ence inherited from EStructuralFeature into EClass (similar to EAttribute’s
“eAttributeType”). This reference ensures that an instance of EReference can
only reference instances of EClasses.

270

D.4 Design and implementation of MOF-based model comparison

• containment (EAttribute): Instances of the EClass (to which this reference
belongs) contain the referenced model elements (instance of EClasses) in the
sense of a whole-part relationship. “[A]n object cannot, directly or indirectly,
contain its own container; it can have no more than one container; and its
life span ends with that of its container” [SBPM09, p. 111]. Multiplicity-
many containment references have to be unique since they cannot own model
elements more than ones.

• eOpposite (EReference): This EReference is used to establish bidirectional
associations, it refers to the EReference pointing into the opposite direction of
the bidirectional association. Each EReference of such an association defines
the other EReference as its “eOpposite.” Since a model element can only
have one container, the opposite reference of containment references (so-called
container references, see next) must have an upper bound of one and, therefore,
cannot be multiplicity-many references.

• container (EAttribute): If a containment EReference takes part in an bidirec-
tional association (see above), the opposite EReference’s “container” EAttrib-
ute’s value is true. This EAttribute is a derived one.

Like for MOF properties, null values only allowed for single-valued Ecore features
but not for many-valued ones [SBPM09, p. 11]. It follows that many-valued refer-
ences cannot have “holes” (i. e., cannot hold null values).

Reflection-based model comparison MOF and Ecore define Element and EObject,
respectively, which allow to access the type, i. e., meta-class (EClass), defining the
model element at hand. Since they are the implicit root super-class of each model
type, each model element’s type can be accessed – no matter if the model element
is an instance of a UML model element like a class, package, or operation, or if the
model element is an element of the UML meta-model itself.

Instead of implementing model comparison based on the UML meta-model, this
research implemented comparison directly based on the Ecore implementation of
the meta-object facility (MOF). Since each model element’s Ecore type is accessible,
the whole meta-model is accessible without actually having to know the meta-model
before hand. One can reflectively access all concepts defined in the unknown meta-
model using MOF/Ecore concepts, be it EClasses, super types (again EClasses)
thereof, features (EAttributes and EReferences) and so on. Since the meta-model
is build from instances of the MOF/Ecore meta-meta-model. So given a model

271

D.4 Design and implementation of MOF-based model comparison

which adheres to a certain known or unknown meta-model, for instance, the UML
meta-model, full access to the meta-models elements (or concepts) is available by
reflection using elements defined by the MOF/Ecore meta-meta-model:

modelElement . eClass . eAllStructuralFeatures

D.4.5.4. Assigning identifiers to UML model elements

Assigning identifiers to model elements can be achieved by means of the following two
approaches: Ecore annotations or UML profiles (see Section 2.1.2.2). Annotations
represent a simple mechanism for associating a set of annotation details (key-value
pairs) to an annotation key (a string). UML profiles allow to extend UML meta-
model elements. In order to add identifier attributes the UML model elements, a
profile could be created that adds such an attribute to the UML meta-model’s most
basic EClass, namely Element.

Ecore annotations are defined in the Ecore meta-model by EClass EObject. Since
EObject is the (implicit) super type of all EClasses and all their instances, any model
element, i. e. any instance of an EObject, defined by any Ecore-based meta-model
can have annotations (instances of EAnnotation) [SBPM09, p. 119] “Annotations
constitute a mechanism by which additional information can be attached to any object
in an Ecore model.”

Since Ecore and MOF are related, a concept similar to annotations exists for MOF
too. This MOF concept is called MOF Extension: “[...] it is sometimes necessary
to dynamically annotate model elements with additional, perhaps unanticipated, in-
formation. This information could include information missing from the model, or
data required by a particular tool. The MOF Extension capability provides a simple
mechanism to associate a collection of name-value pairs with model elements in
order to address this need. [...] They are included to reduce the need to redefine
metamodels in order to provide simple, dynamic extensions” [OMG06a, p. 27].

EMF Profiles [LWWC11] is a (prototypical) approach to adapting UML’s profile
concept to Ecore-based meta-models.

It was decided to use Ecore annotations (for implementing the software tools dis-
cussed in this chapter) because they provided sufficient mechanisms for assigning
and assessing model element identifiers.

272

D.5 Foundations of model comparison

D.5. Foundations of model comparison

This section discusses the foundations of model comparison as used by the approach
to merging OMOS models implemented as part of this research and discussed in
Chapter 6.

D.5.1. Meta-models and state- and change-based model comparison

As explained in Section 2.1.3, OMOS models are ordinary UML models. based on
the UML meta-model. UML, however, does not provide a standard for diagrams.
It does define an approach — called UML Diagram Interchange [OMG06c] — for
exchanging diagramming data between modelling tools. A proposal for standardising
diagram definitions has been published [OMG11]; however, at the time of writing
this (November 2012), is was still in beta version and has not been officially released.
Of course a generic approach for defining the content of diagrams, i. e., providing
a meta-model for diagrams, cannot provide the specific information required for
OMOS diagrams proposed and implemented by this research. This is because OMOS
diagrams define an explicit parent-child hierarchy for the class symbols they contain.
So even though the (with respect to their layout features like the symbol’s position
and size) ordinary diagram symbols are used for OMOS diagrams, they contain
information regarding the class symbols’ parent-child hierarchy and the visibility of
a attributes and operations.

Therefore, a specific meta-model for OMOS diagrams was developed by this research
(see Section D.7.1.1). This meta-model is used by the prototypical modelling tool
which was developed as part of this research to support creating OMOS diagrams
(and the underlying UML models). The meta-model is also used for calculating
differences between two versions of a diagram and for merging two evolved versions
of a diagram (which is discussed in Section 6.4).

Of course, the UML meta-model and the meta-model for OMOS diagrams are com-
pletely different meta-models. However, both are defined using a meta-meta-model,
namely the meta-object facility (MOF, see Section 2.1.2.1).

D.5.2. Preliminaries

For the approach to differencing and merging OMOS models presented in this thesis,
the following preliminaries are expected to be met:

273

D.5 Foundations of model comparison

D.5.2.1. Stable meta-models and profiles

It is expected that the OMOS models involved in the merge process (i. e., the an-
cestor model and the two evolved models) are based on identical meta-models. This
precondition holds since OMOS models are based on the UML meta-model. In case
the meta-model would change, all three models would need to be migrated to the
new meta-model before they are merged.

A similar precondition exists for UML profiles which are used by OMOS models.
When a certain profile is applied in any of the models has, it has to be ensured that
the other two models apply the same version of this profile (if they apply it at all).
If the profile changes, all of the models applying it have to be migrated before they
are merged.

The preliminaries above guarantee that the models can be merged and that the
merged models will then be based on the same meta-model as the input models.

D.5.2.2. Valid models

It is expected that the OMOS models involved in the merge process are valid ac-
cording to the fundamental rules defined by the meta-object facility (MOF), i. e.,
every model element (except for the root elements) has a container. Merged models
will then adhere to the same fundamental MOF rules (Chapter 6).

D.5.3. Model element identification and matching equivalent model
elements

When comparing models, there needs to be a way of determining whether a certain
model element from one model exists in another model and, if it exists, get access
to it in order to compare both elements. Thus, there needs to be some mechanism
for identifying equivalent model elements. Most importantly, this mechanism has to
support identifying equivalent elements across models. It is not sufficient to identify
an element within its model. The element has to be identifiable in other models, too,
in order to compare different versions of the element existing in the different models.
Model elements hence need to be globally — meaning across models — identifiable
in order to be able to access them in different models and compare them. The
approach taken by this research to achieve this is discussed in the next section.

274

D.5 Foundations of model comparison

D.5.3.1. Model element identification and matching equivalent model elements

Names of elements might change and elements might move between owners. It is,
therefore, insufficient to base the identification of elements on their fully-qualified
names. Many meta-model’s define name attributes for assigning names to model
elements. For instance, class NamedElement from the UML meta-model defines
a name attribute and meta-object facility’s (MOF) meta-model defines a similar
MOF class NamedElement — both classes represent super-classes of most (meta-)
meta-model elements defined in MOF and UML. A fully-qualified name then is a
concatenation of a model element’s name and the name of its owner and so on until
a root model element is reached (names are separated by a delimiter). For instance,
“Model1::P1::C1” would be the fully-qualified name for class “C1” belonging to
package “P1” in a UML model named “Model1.”

The following two requirements have to be met by identification mechanisms suitable
to enable model comparison:

1. A model element’s identifier has to be constant for its whole lifespan.

2. It has to be globally unique such that when model elements are added to one
of the to-be-compared models, their identifiers do not collide with elements
from this model and from other to-be-compared models.

For identifier-based equivalence, accessing matching model elements can then be
realised by a repository (one for each compared model) which provides access to
model elements by means of their identifiers.

Regarding UML, there exist model elements which should be identified by their value
rather than their identifier (value-based equivalence) in order to yield better merge
results. For instance, the lower and upper bounds of instance of UML’s Property
class. Their equality is defined by the ValueSpecification’s concrete type’s value
reference property (concrete types are LiteralInteger for the lower bound whose
value can only be 0 or >1 and LiteralUnlimitedNatural for the upper bound whose
value can be -1, 0, or >1). Even if these elements have different global identifiers
which are be assigned when the bounds were changed, they might still have the
same value assigned and can, therefore, be regarded as identical. It follows that the
value of the model element defines its “local identity.” The identification is local
because it is defined from the container element’s point of view (for instance, from
the UML Property’s lowerValue and upperValue containment reference properties’

275

D.5 Foundations of model comparison

point of view), not from the viewpoint of the referenced element’s type (for instance,
ValueSpecification).

Nevertheless, UML model elements which, according to their “local identity” value,
are equal but have different identifiers are not equivalent if other properties are
assigned (for instance, the name or stereotype property for ValueSpecification). For
the merge approach implemented as part of this research, only the lower and upper
bound of UML properties are defined to be locally identifiable. For them it is very
unlikely that their name or stereotypes will be assigned.

Of course, for each model element only one identifier can be used in the merged
model. That is why the identifiers of model elements which have different identifiers,
but are found to be locally identical have to be harmonised. The identifier as assigned
for the common ancestor is then used for both evolved models, too. This approach
guarantees that merge conflicts can be detected (see Chapter 6) because the same
identifier is used for both evolved model elements.

D.5.3.2. External model elements

External model elements are not themselves taken into account during comparison.
External model elements are those not contained in compared models, but referenced
by element from those models. External model elements are thus not contained
by any containment reference property of any of the model’s elements, but only
referenced by reference properties. They are, therefore, taken into account when the
(reference) property values of internal model elements are compared because those
elements can reference external ones.

D.5.4. Model element comparison

In terms of comparing model elements, the identification of values of attribute prop-
erties is based on the actual values. The comparison of reference properties’ values
cannot be based on their values because these values represent model elements from
different models. These model elements are, of course, defined in terms of properties
and, since they come from different models, the values of these properties might dif-
fer (because the model was modified). Therefore, the values of reference properties
have to be compared based on the identifiers of the referenced model elements.

276

D.5 Foundations of model comparison

D.5.4.1. Collecting the to-be-compared model elements into model element
repositories

Before the actual model comparison is performed, a so-called model element repos-
itory is create for each of the two compared models. It provides access to a model’s
element via their identifiers. Starting with a model’s root element and recursively
following the containment reference properties, all model elements are added to the
model element repository. This way, only those elements which actually belong to
the model by means of containment are handled during the model element compar-
ison. External model elements (see Section D.5.3.2) which are not part of the model
by means of containment are thus not compared themselves. External elements are
thus only relevant when properties referencing them are compared.

When the two to-be-compared models are compared, added and deleted model ele-
ments are detected first. In a second step, the property values of equivalent model
elements are compared. Property values are compared from the point of view of the
model element to which the properties belong. Only these values are compared. In
case the values are themselves model elements again (values of reference properties),
property changes of these model elements are not taken into account for this specific
comparison. The property values of these model elements will be or were already
compared when the two equivalent model elements of this are/were compared. If
the referenced model element was an external one, the values of its own properties
won’t be compared at all.

All detected changes are added to the change set (or change repository) which con-
tains all changes detected when two models (i. e., the ancestor and an evolved model)
are compared. The two change sets resulting from comparing the common ancestor
model with the two to-be-merged evolved models are then used to create the merged
model and to detect merge conflicts.

D.5.4.2. A meta-model for model element changes

Based on the property features defined by UML’s meta-meta-model, the following
types of model element changes can to be defined for and detected when comparing
(based on their states which are defined by the values of the properties) two models
which adhere to MOF-based meta-model (not only the UML meta-model):

• Model element addition change

277

D.5 Foundations of model comparison

– Reference to the corresponding containment property value added change
belonging to the added element’s container model element.

• Model element deletion change

– Reference to the corresponding containment property value removed change
belonging to the deleted element’s container model element.

• Model element relocation change

– Reference to the corresponding containment property value removed change
belonging to the relocated element’s container model element in the com-
mon ancestor model.

– Reference to the corresponding containment property value added change
belonging to the relocated element’s container model element in the evolved
model.

– Note: A relocation change is defined from the point of view of the con-
tained (i. e., child) model element. From the container model element’s
point of view, a property value change exists which lists the child as added
(for the new container in the evolved model) and removed values (for the
old container in the ancestor model). Model element relocation changes
are thus created when the values of containment reference properties are
compared (see Section D.5.4.8).

• Unordered property value change (for single- and multi-valued unordered prop-
erties)

– Fully-qualified name of the property.

– Added values (collection of values).

– Removed values (collection of values).

– Note: For attribute properties, the values are instance of the property’s
type data type. For reference properties, the values are the identifiers
of the referenced model elements. (The author decided against directly
referencing the model elements because doing so would bind the changes
to the compared models, i. e., in order to deal with the changes the two
compared models would have to be available, too, because their model
element need to be referenced. So, this indirection by means of referencing

278

D.5 Foundations of model comparison

model elements only by their identifier make the changes independent of
the compared models). For consistency reasons, a collection of values is
used even if the compared property was a single-valued one.

• Ordered property value change (for multi-valued ordered properties)

– Fully-qualified name of the property.

– Added values (pairs of added value and index representing the position
at which the value was added).

– Removed values (pairs of removed value and index representing the pos-
ition from which the value was removed).

– Reordered values (pairs of reordered value and pairs of indexes; each
indexes pair represents a reordered value’s old (common ancestor model)
and the new (evolved model) index).

– Note: As for unordered property value changes, the values of attribute
properties are instances of the property’s type data type. For reference
properties, the values are the identifiers of the referenced model elements.
The added, removed, or reordered value is part of the change informa-
tion in order to allow for convenient change interpretation when merge
conflicts are detected. It would, however, also be possible to access the
changes’ values directly in the respective models using the index inform-
ation provided by the changes.

D.5.4.3. Detecting model element additions and deletions

The detection of added and deleted model elements is based on a collection of model
elements belonging to a model. It is not based on the model’s containment hierarchy
as defined by the containment reference properties because model elements can be
relocated in the compared model versions.

Since equivalent model elements are identified by their identifier (see D.5.3), a set
of identifiers representing all model elements is created for the ancestor model (ID
set A) and the evolved model (ID set E). Then, the differences of both sets are
calculated in order to detect added and deleted model elements. For each model
element which was detected as added or deleted, a corresponding model element
change is created and registered at the change repository:

279

D.5 Foundations of model comparison

• Input: Ancestor model’s set of model element identifiers (ID set A); evolved
model’s set of model element identifiers (ID set E).

• Detect deleted elements, i. e., those elements identifiers that remain when ID
set E is subtracted from ID set A (ArE).

• Detect added elements, i. e., those elements identifiers that remain when ID
set A is subtracted from ID set E (ErA).

After all added and deleted model elements were detected, the states of the model
elements which exist in the ancestor and the evolved model are compared. This is
done by comparing the values of their properties as explained next.

D.5.4.4. Detecting properties value changes

In order to detect property value changes and model element relocation changes, the
property values of all model elements which exist in the ancestor and the evolved
model are compared. The respective identifiers (see D.5.4.3) of these model elements
are determined by calculating the union of the ancestor model’s set of model element
identifiers (ID set A) and the evolved model’s set of model element identifiers (ID set
E): A e E. For each model element identifier contained in the resulting ID set, each
property’s values are compared for the corresponding ancestor and evolved model
element.

For single-valued properties, the property’s value represents at most one value (or
null if no value has been assigned). The values of multi-valued properties are con-
tained in either a collection or sequence (see [OMG06a, pp. 24]). A collection is
used for unordered properties, and a sequence is used for ordered ones.

As explained in D.4.1.1, derived properties cannot be changed directly by modellers.
That’s why they do not need to be taken into account during model comparison.

When comparing attribute properties, the actual values of each property are com-
pared. When reference properties are compared, it has to be taken into account that
their values represent model elements. Since the compared property values belong to
different models, by definition the model elements are different instances. Therefore,
in order to determine if a value represents the same two model elements, the identi-
fiers of the actually referenced model elements are used during model comparison.

The following sections explain how property values are compared and changes are
detected (and registered at the change repository).

280

D.5 Foundations of model comparison

D.5.4.5. Comparing values of single-valued properties

A single-valued property’s values can only be modified in one way in the evolved
model: the value is changed. However, since MOF-based properties allow to distin-
guish whether a property’s values was set or unset, the latter case is regarded as a
special case and distinguished from assigning the property’s value.

1. Input: Ancestor model version’s property value; property value from evolved
model version.

2. Compare values and, if the values are not identical, create and register (1) a
property value removed change if the property’s value has been assigned in the
ancestor model version and (2) a property value added change if the property’s
value has been assigned in the evolved model version.

D.5.4.6. Comparing values of unique, unordered, multi-valued properties

1. Input: Collection of the property’s values from ancestor model (collectionA);
collection of the property’s values from evolved model (collectionE).

2. Detect removed values, i. e., those values which exist in the ancestor model’s
property values, but not in the evolved model. They are represented by
those values which remain when collectionE is subtracted from collectionA
(collectionArcollectionE). Create and register a property value removed change
for each of the removed values.

3. Detect added values, i. e., those values which exist in the evolved model’s
property values, but not in the ancestor model. They are represented by
those values which remain when collectionA is subtracted from collectionE
(collectionErcollectionA). Create and register a property value added change
for each of the added values.

D.5.4.7. Comparing values of unique, ordered, multi-valued properties

Since there cannot be gaps (i. e., null values) in values of multi-valued properties
(see Section 2.1.2.1), removing a value from its current position will move the values
behind it one position to the left (i. e., its new index is its old index minus one),
inserting a values at a certain position will likewise move the current value at this
position and all values on its right-hand side by one position to the right (i. e., their

281

D.5 Foundations of model comparison

new indexes are their old indexes plus one). For ordered features, three types of
changes can be distinguish: value added, removed, and value reordered. Except
for adding a value to or removing it from the end of the sequence of property
values, these three types of changes will always cause the indexes of other values
to change. Since the merge approach implemented by this research is based on the
state of the to-be-merged models and not on the actual operations performed by the
modelling tools (used to create the models), element re-orderings detected by the
change detection algorithm presented below do not necessarily have to be the ones
made by modellers in the modelling tool used to create the to-be-compared models.
This is because the current state of the model versions is compared, not the course
of editing actions (in the modelling tool) that lead to this state.

Reorder modifications are not necessarily minimal with respect to the distance
between the value’s index in model version A and its index in model version B.
This is because value reorder detection starts from the beginning (index 0) of the
sequence. In order to ensure the detection of minimal reorder modifications, the
so-called edit distance has to be taken into account: “The term ‘edit distance’ is
sometimes used to refer to the distance in which insertions and deletions have equal
cost and replacements have twice the cost of an insertion” [Jac04, p. 190]. The min-
imal reorder problem faced here is similar to the string-to-string correction problem
which refers to the minimum number of edit operations necessary to change one
string into another. A single edit operation changes a single character (a property
value in the case of model elements) of the string into another by deleting or inserting
a character [WF74].

The approach taken here does not strive for the value reordered detection to be
minimal because, as discussed above, the real course of user actions (performed by
means of a modelling tool) which lead to the value reorder changes is not known.

The first two steps of comparing values of unique, ordered, multi-valued properties
are identical to comparing values of unique, unordered, multi-valued properties (see
Section D.5.4.6). However, when property value changes are created, information
about the index of the added or removed values is added to the respective property
value change.

1. Input: Sequence of values from the ancestor model; sequence of values from
the evolved model.

2. Detect removed values, i. e., those values which are in the ancestor, but not in
the evolved model.

282

D.5 Foundations of model comparison

3. Detect added values, i. e., those values which are not in the ancestor, but in
the evolved model.

4. Detect reordered values, i. e., those values which exist in the ancestor and
the evolved model, but whose position (i. e., index) changed. Only explicit
reorder changes are taken into account. Reorder changes resulting from adding
or removing values are not regarded as reorder changes and are, therefore,
ignored.

a) Create two new sequences: sequenceA := ancestor model values not in-
cluding the values removed in the evolved model (as determined above);
sequenceE := evolved model values not including the values added in the
evolved model (determined above). As a result, two sequences which con-
tain only those values that exist in both models and, therefore, may have
been reordered in the evolved model are taken into account.

b) Compare the indexes (i. e., positions) of sequenceA and sequenceE ’s val-
ues. If a value’s ancestor and evolved indexes differ, create a property
value reorder change. Use the value’s indexes from both original se-
quences, not from the sequences without added/removed values (i. e., se-
quenceA and sequenceE).

D.5.4.8. Detecting model element relocation changes

Model element relocation changes refer to model elements being moved to a different
container model element and/or a difference containment reference property. There-
fore, if a model element is relocated, it is removed from one containment reference
property and added to another one. Then, the old (ancestor model) container is the
property and container element which the model element was removed from, and
the new (evolved model) container is the property and container element which the
element was added to.

Therefore, when a compared property (no matter if it is a single- or multi-valued one)
is a containment reference one, model element relocation changes can be detected
(for the contained model elements, i. e., to property’s values, not the container model
element itself):

• If a value was removed from the property, but the model element it represents
was not deleted from the evolved model, the ancestor containment part of the
model element relocation change (see Section D.5.4.2) is created and registered.

283

D.5 Foundations of model comparison

• If a value was added to the property, but the model element it represents was
not added to the evolved model, the evolved containment part of the model
element relocation change (see Section D.5.4.2) is created and registered.

Reordering a model element in an ordered containment reference property (i. e., a
property value reordered change exists), is not regarded as a containment change.
It is a reorder change from the view point of the container element’s property.

D.5.4.9. Comparing values of non-unique, multi-valued properties

The comparison of non-unique properties was not implemented as part of this thesis
because it was not relevant for OMOS; neither the part of the UML meta-model
relevant for OMOS (see Section D.1.1) nor the diagram models (explained below)
has non-unique properties.

D.5.4.10. Type changes

Meta-model-based model (state) comparison approaches can also detect type changes
of model elements. For instance, a UML modelling tools might allow for classes to
become interfaces and vice versa. This means that the type of a model element
can change. In MOF-terms, the model element’s instance of its MOF Class, there-
fore, became a different one (in the example above, the type changed from Class to
Interface).

With a comparison approach based on model element identifiers, type changes can
of course only be recognised if the respective model elements will still have the same
identifiers. So, the possibility of changing a model element’s type then means that
after the type change, the model element still has to be one single element in order
to be recognised during model comparison.

Since the to-be-compared properties depend on the model element’s type, the types
of equivalent model elements have to be detected before the property values of are
compared.

Since type changes are not relevant for OMOS models, they are not taken into
account in this thesis.

284

D.6 Design and implementation of OMOS model merging

D.6. Design and implementation of OMOS model merging

Based on the overview provided in Chapter 6, this section discusses the details of
the approach to merging OMOS models implemented by this research.

D.6.1. Merge conflicts

This section provides an overview of the merge conflicts which can occur when
models are merged.

D.6.1.1. Concurrent property value change conflicts

• The values of a property were changed in different ways in both evolved models.

• Each of the property’s value changes is marked with a conflict. By doing
so modellers can later decide about and resolve each value’s conflict state
individually (instead of dealing with the property as one single value).

D.6.1.2. Deletion-modification conflicts

• Conflict between a model element deletion change and ...

– property value added changes (as will be explained below, property value
removed changes do not conflict with the deletion change, they are con-
sidered non-conflicting changes);

– a model element relocation change; or

– property value added changes for referencing model elements (again,
property value removed changes of referencing model elements do not
conflict with the deletion change, they are considered non-conflicting
changes).

D.6.1.3. Model element existence conflicts

• Concurrent model element relocation change conflict (i. e., two value added
changes at different container model element); or

285

D.6 Design and implementation of OMOS model merging

• Concurrent property change conflict for single-valued containment reference
property (both contained elements from both evolved models, therefore, cannot
be contained in the merged model as well as their direct and indirect contained
elements).

D.6.1.4. Indirect model element existence conflicts

Modellers have to know about model elements which are not part of the merged
model because some container element had a direct existence conflict. Therefore,
model elements which themselves do not have model element existence conflict but
belong to a container which has a direct or indirect model element existence conflict,
are annotated with indirect model element existence conflicts.

D.6.1.5. Dangling reference conflicts

Each element (i. e., value) of a reference property which has an (indirect) existence
conflict is marked with a dangling reference conflict because the referenced element
does not exist in the merged model. Modellers can then decide that the conflicts of
a sub-set of values are resolved. References to non-existent elements and the non-
existence of the element itself are handled separately in order to allow modellers
to express that it is fine for the referencing element not to reference elements with
dangling reference conflicts, but still leave open whether the non-existence of the
element is conflicting. Accepting the non-existence will also accept the inability to
reference the element.

Dangling reference conflicts are derived from existence conflicts, they are not created
when the initial merged model is created. When the modeller manually define that
it is fine to not reference the dangling element, this information is explicitly created
and persisted.

Conflicts have to be calculated for all model elements, not just for those which are
part of the merged model. This is done to ensure that when model elements with
existence conflicts become part of the merged model again their dangling reference
conflicts are known (i. e., references to other model elements which might have been
part of the merged model, but were manually removed during the merge conflict
resolution phase).

286

D.6 Design and implementation of OMOS model merging

D.6.2. Accepting and rejecting model changes and detecting merge
conflicts

Each model change (model element added, deleted, or relocated change and each
value property added, removed, or reordered change) have an acceptance state. The
change is, therefore, either accepted or rejected. The details of accepting and reject-
ing changes will be discussed next.

The model merge approach developed as part of this research focuses on merging
models adhering to MOF-based meta-models. It is based on the rules defined by
MOF:

• Every model element must have a container model element (except for the
model’s root elements).

• Single-valued properties can have at most one value.

• Multi-valued properties with a limited upper bound must not have more values
than defined by the upper bound (see Section D.6.4.6).

• Multi-valued reference properties cannot have “holes”, i. e., every value of such
a property must be a model element: “Null is not a valid value within the list”
[OMG06a, p. 36]. Multi-valued attribute properties may contain null values
“to indicate the absence of a value” [OMG06a, p. 11].

The values (state) of properties can of course only be assigned according to the rules
defined by the meta-model of the (merged) model. Since this meta-model is based
on MOF, the rules defined by MOF have to be adhered to by the (merged) model.
Therefore, the process of deciding whether model element changes are conflicting
is primarily based on the rules defined by MOF. Additional conflict types can be
defined as will be demonstrated for merging OMOS diagrams in Section D.7.1.3. The
merge process defined by this research can thus be used to merge models adhering
to any MOF-based meta-model, not only UML.

Validating the correctness of the merged model’s syntax in terms of additional rules
specifically defined by the meta-model has to be validated by applying model consist-
ency checking tools specific to a model’s meta-model. The merge approach applied
here guarantees that the fundamental syntax rules as defined by MOF are met.
However, more complex syntax rules defined by the meta-model in addition to the
MOF rules have to be validated by additional tooling. Such tools are usually part
of the modelling tools used to create the models. For instance, UML modelling

287

D.6 Design and implementation of OMOS model merging

tools usually provide the possibility to check a UML model against the syntax rules
defined by the UML standard Section 3.2.2.

The first step for creating the merged model is to determine which model element
changes can be accepted in the merged model and which are conflicting with changes
from the other evolved model. These merge conflicts are detected based on the two
sets of changes resulting from comparing the common ancestor model with each
evolved model.

A model element is only omitted from the merge model if it cannot become part of
the merge model because it cannot be contained by its container. This is the case
if:

• the model element was relocated to different containers in both evolved model
versions;

• the capacity of the container element’s containment property value is exceeded
(this happens if the containment property is a single-valued one and two differ-
ent model elements are “competing” to become the value of this property, or
if the property is a multi-valued one with a limited upper bound, i. e., cannot
contain an unlimited number of values);

• the model element’s container element is not part of the merge model because
of one of the reasons mentioned above (i. e., the container element has an
existence conflict).

D.6.2.1. Concurrent modification conflicts

• Concurrent property value change conflict

– The value of a property of a model element was changed in both evolved
models in different ways, i. e., there exist different property value changes
for this property.

– Each property value gets marked with a conflict.

• Concurrent model element containment change conflicts with different new
container elements.

288

D.6 Design and implementation of OMOS model merging

D.6.2.2. Deletion-modification conflicts

In addition to the two conflict types above, deletion changes are also conflicting if
the respective model element has property value changes and/or a container change,
i. e., it was deleted in one evolved model and modified and/or relocated in the other
evolved model.

However, a deletion change is not conflicting if the property changes represent only
value removed changes. This approach guarantees that removing values from a model
element which was deleted in the other evolved model does not cause conflicting
deletions. However, depending on the actual changes, a semantic conflict might
exist. Therefore, the changes have to be validated by modeller in during the second
phase of the merge process when merge conflicts are solved (see Section 6.5.5).

As explained in Section D.6.3, model elements with existence conflicts are not part
of the merge model. However the property value changes and/or container change
made to the respective model element in the other model version are nevertheless
accepted — since the model element is not part of the initial merged model, no
property values are actually changed. This approach guarantees that changes made
in the evolved model in which the model element was not deleted can actually be
applied if this element becomes part of the merged model. For example, if the model
element was relocated to a different container in this evolved model, the respective
relocation change is accepted and this model element is no longer part of the old
container element in the merged model (as it would if the container change was not
accepted).

D.6.2.3. Accepting changes

All non-conflicting changes are accepted, i. e., the changes can be applied to the
respective model element in the merged model. However, non-conflicting (i. e., ac-
cepted) changes can only by applied in the merged model if the respective model
element exists in the merged model. The reason why model elements may not exist
in the merged model is explained next.

D.6.2.4. Merge conflict repository

If conflicting changes exists for a model element, a merge conflict is created and
registered for the respective model element in the merge conflict repository. Each

289

D.6 Design and implementation of OMOS model merging

conflict has a conflict resolution state. Until the modellers manually resolve the
merge conflicts, each conflict’s resolution state is unresolved.

D.6.3. Detecting merge conflicts

The objective of the conflict detection process is to detect changes (made in parallel
in both evolved models) which contradict each other and thus cannot be applied to
the merged model without further considerations by modellers. If changes are found
to be non-conflicting, they are accepted and the respective model element will be
changed accordingly in the merged model (if it is part of it). Depending on the type
of conflict, conflicting changes are rejected or accepted as will be discussed below.

First, model element deletion changes are handled in order to decided whether the
deletion can be accepted. Then, model element relocation changes are handled, and
after that, property value changes are checked for conflicts.

Based on the change types defined in Section D.5.4.2, the following types of conflicts
exists:

• Concurrent property value change conflicts indicate contradicting changes (made
in both evolved models) of a property’s value(s) of a model element.

• Concurrent model element relocation change conflicts refer to the fact that a
model element was relocated in conflicting ways in both evolved models.

• Deletion-modification conflicts occur when a certain model element was deleted
in one evolved model, but modified in the other one.

D.6.3.1. Analysing model element deletion changes to detect
deletion-modification conflicts

The following approach is applied for analysing deletion changes to verify whether
these changes can be accepted:

1. If the model element was only deleted in one evolved model, it is checked
whether it was modified in the other evolved model version. A model element
deletion change for model element e in evolved model eA is in conflict with
the following types of changes made in the other evolved model eB:

• All property value added, removed, or reordered changes of e in eB.

290

D.6 Design and implementation of OMOS model merging

• e’s model element relocation change.

• All property value added, remove, or reordered changes of properties of
other model elements referencing e.

2. If any of those changes exist, a deletion-modification conflict is created and
registered at the conflict repository. The model element deletion change and
each of the conflicting changes above is registered at the deletion-modification
conflict.

In case a deletion-modification conflict exists, it has to be decided which changes are
accepted and which are rejected. For the merge approach implemented at part of this
thesis, it was decided that property value removed changes of the model element’s
properties itself and of any referencing model elements’ properties are treated as
conflicting with the model element deletion change, but do not prevent the model
element from being deleted. The rationale behind this decision is that removing
property values should not prevent the model element from being deleted because
(1) property values were only removed from the to-be-deleted model element (in
evolved model eB) and (2) elements which referenced it are no longer referencing it
(in evolved model eB). Since the model element deletion change and its conflicting
changes were registered as conflicting, the modeller has to verify whether the deletion
can indeed be accepted or not (during the conflict resolution phase of the merge
process, see Section 6.5.5).

The following rules for accepting and rejecting a model element deletion change and
its conflicting changes are defined:

1. If the model element was deleted in both evolved models, i. e., each change
set has a model element deletion change for this model element, accept both
deletion changes.

2. If e has (1) property value added and/or reordered changes, (2) a model ele-
ment relocation change, and/or (3) property value added and/or reordered
changes referencing e of properties of other model elements in eB, then:

• Reject the deletion change; and

• Accept all property value (added, reordered, removed) changes of the e
itself.

• Note: Changes of referencing elements are handled when these elements
are handled (see below).

291

D.6 Design and implementation of OMOS model merging

3. Else, accept the deletion change and all property value removed changes of e
itself.

The analysis of changes presented in the following sections is performed for model
elements which were not deleted in any of the evolved models, i. e., model elements
which either exist in the ancestor model element and both evolved versions, or were
added to an evolved model version.

D.6.3.2. Analysing model element addition changes to detect addition conflicts

Whether a model element can be added to an evolved mode depends on the to-be-
added model element’s containment. If the container model element does not exist
in the merged model, the added model element cannot be part of the merged model.
For the merge approach implemented at part of this research, it was decided that
model element addition changes are always accepted, even if the model element itself
cannot be part of the merged model. In such cases, existence conflicts exist for the
respective model elements and the model element addition changes are registered as
conflicting. The reason for accepting the addition change is that when the existence
change is resolved, the model element can then become part of the merged model.

D.6.3.3. Analysing model element relocation changes to detect concurrent
model element relocation change conflicts

The following approach is applied for analysing model element relocation changes
to verify whether these changes can be accepted:

1. If the model element has a relocation change in only one evolved model, it is
accepted.

2. If the model element has relocation changes in both evolved models, accept
both changes if the new containment references are identical (i. e., the model
element was relocated to the same container element and the same contain-
ment reference property), else, both changes are rejected. In the latter case,
a concurrent model element relocation change conflict is created and both
changes are registered for it.

For the model merge approach implemented as part of this research, it was decided
that model elements with rejected concurrent model element relocation changes
should not be part of the merged model. This means that even if the model element

292

D.6 Design and implementation of OMOS model merging

relocation changes were rejected, the relocated model element is not contained by its
ancestor model version’s container element the in the merged model. This decision
was taken because the container element as it was in the ancestor model version
might have been non-conflictingly deleted in both evolved model elements and this
won’t be part of the merged model. Therefore, since a model element with a con-
current container change conflict cannot be part of the merged model, an existence
conflict exists for the conflicting relocation changes.

D.6.3.4. Analysing property value changes to detect concurrent property value
change conflicts

After deletion-modification conflicts and concurrent relocation conflicts were detec-
ted, property value changes are analysed to detect conflicting changes. The analysis
is based on the different property types: For single- and multi-values properties, a
concurrent property change conflict is created if the property values of both evolved
models are not identical. The decision as of when value property changes are re-
garded as conflicting depends on the properties type. A definition of conflicting
changes for the three different property types relevant for merging OMOS models is
presented next.

D.6.3.5. Analysing property value changes of single-valued properties

For a single-valued property, a concurrent property value change conflicts exists if
the property’s value was changed in contradicting ways in both evolved models. The
following approach is applied for accepting or rejecting property value changes:

1. Accept all property value removed changes, no matter if they were done for one
evolved model only or for both (for a single-valued property, a value removed
change means that the property’s value was unset).

2. If there exist a property value added change for only one evolved model, ac-
cept it and create concurrent property value change conflict for the value prop-
erty added and the respective value property removed change from the other
evolved model (if it exists).

3. Else, if there exist a property value added change for both evolved models,

a) Accept both changes if the added value is the same for both.

293

D.6 Design and implementation of OMOS model merging

b) If not, reject both changes and create a concurrent property value change
conflict for both value property added changes. If the property is a con-
tainment reference property, create an existence conflict for both model
elements referenced by both value property added changes to indicate
that these children elements cannot be part of the merged model because
both changes were rejected.

D.6.3.6. Analysing property value changes of multi-valued, unique, unordered
properties

For a multi-valued, unique, unordered property, a concurrent property value change
conflicts exists if the property’s value was changed in contradicting ways in both
evolved models. The following approach is applied for accepting or rejecting property
value changes:

1. Input: Two sets of property value added and removed changes.

2. Accept all property value removed changes (independently in which evolved
model version they exist).

3. Accept all property value added changes (independently in which evolved
model version they exist).

4. Create a concurrent property value change conflict for property value ad-
ded/removed change only made in only one evolved model.

By applying this approach, all changes are accepted in the merged model, but the
property gets a concurrent property value change conflict if different changes were
applied to it in both evolved models.

D.6.3.7. Analysing property value changes of unique, ordered, multi-valued
properties

The following conflicting changes per value and approach to accepting/rejecting
changes can occur for unique, ordered, multi-valued properties:

• If value was only added in one evolved model, then accept this change and add
it to the property’s concurrent property value change conflict.

• If value was only removed in one evolved model, then accept this change and
add it to the property’s concurrent property value change conflict.

294

D.6 Design and implementation of OMOS model merging

• If value was added (in both evolved models, but) at different positions or
reordered (in both evolved models, but) to different positions, then it cannot
be guaranteed that at least one new position (as defined in one of the evolved
models) can be kept in merged model (because of other value reorderings,
additions, removals; also, there cannot be holes in sequences). Therefore,
accept both changes and add it to the property’s concurrent property value
change conflicts.

• If value was removed in one evolved model, but reordered in the other evolved
model, then accept reorder change and reject value removed change and add
both to the property’s concurrent property value change conflicts. Again, it
cannot be guaranteed, that the new value position (as defined in the evolved
model) can be kept in the merged model (because of other value reorderings,
additions, and removals, and because there cannot be holes/null values).

The following algorithm is applied for accepting or rejecting value property changes
of unique, ordered, multi-valued properties:

• Input: Two sets of property value added, removed, and reordered changes.

• If not exactly the same addition and removal and reorder changes were made
to the property in both evolved model’s (i. e., if not all property values of
both evolved model elements are identical), then create a (unresolved) concur-
rent property value change conflict for the property and assign the following
property value changes to it:

– Assign all addition and reorder changes to the conflict (reason for the
conflict: because of other reorderings, additions, removals and because
there cannot be holes, it cannot be guaranteed, that the new position can
be kept in merged model).

– Assign removal changes only made in one evolved model to the conflict.

• Accept all property value added changes (even if their positions differ, they
are is marked with conflicts (see above) and, therefore, have to be taken into
account during the conflict resolution phase).

• Accept all value reordered changes (even if their positions differ or if the value
was removed, they are marked with conflicts (see above) and, therefore, have
be taken into account during the conflict resolution phase).

295

D.6 Design and implementation of OMOS model merging

• Accept property value removed changes which do not have corresponding con-
flicting reordering changes in the other evolved model (i. e., the value was
removed in both evolved models or was not modified in the other evolved
model).

D.6.4. Creating the (model elements of the) initial merged model

After the merge conflicts were detected, all non-conflicting changes were accepted,
and all conflicting changes were rejected, the process of creating the initial merged
model starts with the root model elements. First, the values of the root element’s
containment reference properties are merged. This process is recursive, i. e., the
values of all containment reference properties of all the model elements handled for
the root element are merged and so on. The approach for merging the property
values is explained in the next sections.

As explained in Section 6.2.1, a fundamental rule inherent to all MOF-based meta-
models is that each model element (except for the model’s root element) has to
belong to a container element. This element contains children elements by means
of its containment references. Therefore, in order to create the merged model, the
values of all containment properties (i. e., containment hierarchy) are merged first.
This guarantees that all model elements can be referenced in the second merge step
when the values of non-containment reference (and attribute) properties are merged.

In the first step, an empty copy of each model element which does not have an exist-
ence conflict is created, its identifier is set, and it is added to its container’s respective
containment property’s values. The merged model elements are created starting at
the root model element and following the containment reference properties.

In the second model merge step, the values of attribute and non-containment refer-
ence properties are merged. In case non-containment reference property reference a
model element which has an existence conflicts it is, therefore, not assigned to the
property’s values in the merged model. The details of merging property values are
explained in the next sections. As with comparing property values, the values of
attribute properties represent attribute values while the values of reference property
represent actual model elements. When dealing with model elements as property
values, the identifiers of the model elements are used to access equivalent model ele-
ments from different models (i. e., common ancestor, evolved, and merged models).
However, the actual model elements (not just the identifiers) are, of course, used as

296

D.6 Design and implementation of OMOS model merging

the values of these reference properties.

D.6.4.1. Merging single-valued properties

1. If the property is an attribute property and if concurrently property value
change conflict exists, then value := property’s value from ancestor model.

2. Else

a) value := property’s value from ancestor’s model.

b) Apply accepted property value removed change (if any exists) to value.

c) Apply accepted property value added change (if anyexists) to value.

3. Assign value to merge model element’s property.

If a concurrent modification conflict exists for an attribute property, the ancestor
value is used in the merged model to ease manual conflict resolution for modellers.
For instance, if the attribute property was the model element’s name, it is helpful
if at least the model element’s name from the common ancestor is presented in the
merged model during the conflict resolution phase. This benefit does not exist for
reference properties because the referenced model element from the common ancestor
might not exist in the merged model (for instance, it may have been deleted from
both evolved models).

D.6.4.2. Merging unique, unordered, multi-valued properties

Merging the values of a multi-valued property whose values are unique and unordered
means to assign the values (if any exist). The following possible changes and conflicts
have to be taken into account:

• Possible changes (independently for both evolved models): Value added and
removed changes.

• Possible conflicts: Deletion-modification conflict; in this case, the model ele-
ment is not part of the merged model and thus the property value is not as-
signed. Concurrent modification conflicts (i. e., value changed in contradicting
ways in both evolved models) cannot exist because removing and/or adding
same and/or different values in both evolved models is not regarded as con-
flicting for unique, unordered, multi-valued properties. It is possible that there

297

D.6 Design and implementation of OMOS model merging

exist semantic conflicts for the property’s merged values, but this has to be de-
cided by the modellers during the conflict resolution phase (see Section 6.5.3).
All value added and value removed changes are, therefore, non-conflicting.

1. collection := property’s values from ancestor model.

2. Remove all values from collection which have accepted property value removed
changes by applying the property value removed changes.

3. Add all values to collection which have accepted property value added changes
by applying changes by applying the property value added changes.

4. If the property is a reference one, remove all those values form collection which
represent model elements with existence conflicts. This has to be done to
ensure that only model element are referenced which actually exist in the
merged model.

5. Assign the values for merge model element’s property by copying from the
values in collection.

As will be discussed in Section D.6.4.6, for properties with a limited upper bound,
only the amount of values which fit into the merged model’s collection can actually
be assigned. The limit might have been exceeded because the values from the two
evolved models were used. However, upper bound limits are not defined by the UML
meta-model for any of the UML elements relevant for OMOS.

D.6.4.3. Merging unique, ordered, multi-valued properties

Merging the values of a multi-valued property whose values are unique and ordered
means to assign the values from the evolved models (if they exist). The following
possible changes and conflicts have to be taken into account:

• Possible changes (independently for both evolved models): Value added, re-
moved, and reordered changes.

• Possible conflicts: Deletion-modification conflict; in this case, the model ele-
ment is not part of the merged model and thus the property value is not as-
signed. As for unordered properties, concurrent modification conflicts cannot
exist because removing, adding, and/or reordering the same and/or different
values in both evolved models is not regarded as conflicting. It is possible
that there exist semantic conflicts for the property’s merged values, but this

298

D.6 Design and implementation of OMOS model merging

has to be decided by the modellers during the conflict resolution phase (see).
All value added, value removed, and value reordered changes are, therefore,
non-conflicting.

Values of multi-valued, unique, ordered properties can be modify in the evolved
models in ways which can be regarded as contradicting. This is because the order of
the property’s values is relevant. As explained in Section D.5.4.7, adding, removing,
and reordering values in an evolved model will change the position of other values
too. Therefore, the position of identical values in both evolved model’s sequences
can differ. Since the order of values is relevant, differing positions of identical values
could be regarded as merge conflicts. If different values were added, deleted, and/or
reordered in both evolved models, it is impossible to automatically merge the values
in a manner that preserves both sequences’ value order. Therefore, the merge ap-
proach presented here automatically merges the property’s values from both evolved
models by iterating over the sequences of both evolved values starting from their be-
ginning (leftmost value) and using only the first occurrence of a value in the merged
model. This approach may potentially not take into account the value’s position in
the other evolved model’s sequence. All removed values are not part of the merged
model. This means that values which have value removed changes either in one of
the evolved models or in both models are excluded from the property’s value in the
merged model. This holds even if removed values have value reordered changes in
the other evolved model.

The algorithm for merging the values of unique, ordered, multi-valued properties
presented below is based on the state of of the two to-be-merged value sequences
(taken from the evolved versions of to-be-merged model elements). Utilising the
actual value property changes to merge the order property’s values did not appear
to be feasible because the actual positions at which values are inserted may be
different than the position given by the property changes because of value added,
removed, and conflicting reordered changes. However, care was taken for the merge
algorithm to be in sync with the algorithm for accepting and rejecting value property
changes and for detecting conflicts.

D.6.4.3.1. Merge algorithm: The merge algorithm uses pivot values for determ-
ining the position at which added values are inserted into the merged property’s
sequence. The pivot value of an added value is the first value left of the added value
in this value’s evolved property values which exists in the merged model’s values. If

299

D.6 Design and implementation of OMOS model merging

the value was added at the beginning, before any non-added value, the beginning of
the list represents the “pivot value.”

1. Preparation

a) Create a copy sequence (sequence1) of the property’s values from evolved
model 1. Remove all values with accepted value removed changes in
evolved model 2.

b) Create a copy sequence (sequence2) of the property’s values from evolved
model 2. Remove all values with accepted value removed changes in
evolved model 1.

c) If the property is a reference property, remove all values which represent
model elements with existence conflicts from sequence1 and sequence2.
This has to be done to ensure that only model elements are referenced
which actually exist in the merged model.

d) Create an empty sequence (sequenceM) which represents the merged val-
ues.

2. Calculate the sequence of values to be used in merged model

a) Merge values (from both evolved models) which were not added (, but
were potentially reordered). To do so, copies of sequence1 and sequence2
are created and all values with addition changes are removed. The copies
now only contain elements which already existed in the common ancestor
model and were not removed in the respective evolved model.

i. value1 := value from beginning of sequence1.

ii. Append value1 to sequenceM.

iii. value2 := value from beginning of sequence2.

iv. If value1 equals value2, do not add it to sequenceM because this was
already done above.

v. Else, append value2 to sequenceM.

vi. Remove value1 and value2 from sequence1. The latter removal en-
sures that value2 is only added once to the merged model in case
sequence1 contains this value too. If value1 and value2 are identical,
only one removal is required.

300

D.6 Design and implementation of OMOS model merging

vii. Remove value1 and value2 from sequence2. The former removal en-
sures that value1 is only added once to the merged model in case
sequence2 contains this value too. If value1 and value2 are identical,
only one removal is required.

viii. Repeat from the beginning until sequence1 and sequence2 are empty
or the property’s upper bound limit was reached (see Section D.6.4.6).

b) Merge values which were added either in one of the evolved models or
both (potentially at different positions). To do so, copies of sequence1
and sequence2 are created and all values without value added changes
are removed. The copies now only contain element which were added in
one or both evolved models.

i. For sequence1...

A. value := value from beginning of sequence1.

B. Append value to sequenceM after the last value with a value ad-
dition change after (i. e., right of) value’s pivot value (see above).

C. Remove value from sequence1 and sequence2. The latter removal
ensures that value is only added once to the merged model in
case sequence2 contains this value too. This means that if value
was added to the property’s values in both evolved models (po-
tentially at different positions), only its first occurrence is used.

ii. Repeat the steps above for all remaining values of the sequence2.
(These values were only added to the property’s values in evolved
model 2, but not in evolved model 1.)

A. value := value from beginning of sequence2.

B. Append value to sequenceM after the last value with a value ad-
dition change after (i. e., right of) value’s pivot value (see above).

C. Remove value from sequence2.

3. Assign the values of the merged model element’s property by copying them
from the values of sequenceM in their exact same order.

The approach for merging the values of unique, ordered, multi-valued properties has
to following consequences:

301

D.6 Design and implementation of OMOS model merging

• It is a asynchronous merge approach [Wes91] because evolved model 1’s values
are handled before evolved model 2’s, and, if a value occurs in the property’s
values in both evolved model’s, it is added to the merged model’s property
values at the first occurrence.

• Values with addition changes are grouped with respect to the evolved model
they were added: By merging added values in the way described above (i. e.,
evolved model 1’s values are merged before evolved model 2’s values), the order
of added values is (mostly) preserved in the way the values were added in the
evolved models. However, for values which were added in both evolved models
after different pivot values, the order from evolved model 1 is preserved in
the merged model. Furthermore, if different values were added after the same
pivot value (or at the beginning of the property’s values), the added values
from evolved model 1 are added to the right of their pivot value, while the
added values from evolved model 2 are added after the added values from
evolved model 1 belonging to the same pivot value.

Discussion of an alternative approach: Another possible approach (which was
not implemented as part of this research) is to calculate the the longest common
sub-sequence [Mai78] for the property’s values from both evolved models. However,
by doing so, only the values which occur in a property’s values in both evolved
models in the same order would be used in the merge model. (Added values could
be merged by applying the pivot value concept used for the implemented approach
above.) But because other existing values (i. e., values without addition changes)
would not become part of the property’s values in the merged model, this approach
may potentially exclude values from the merged model which are included by the
implemented approach.

D.6.4.4. Merging non-unique multi-valued properties

Non-unique multi-valued properties were not relevant for the merge approach im-
plemented as part of this research since all multi-valued properties relevant for were
defined as unique ones (see Section D.1).

302

D.7 Design and implementation of differencing and merging of OMOS diagrams

D.6.4.5. Bidirectional properties

The bidirectionality of (reference) properties is not taken into account when their val-
ues are merged. Setting the values of a property is therefore handled independently
for the opposite property. Thus, values of properties belonging to a bidirectional
reference will be merged by applying the merge approaches presented above. For
ordered reference properties, this will ensure that the values of both properties are
in the ordered determined during the merge process.

D.6.4.6. Taking the upper bound of multi-valued properties into account
during merging

For multi-valued properties with a limited upper bound, only a certain (limited)
number of values can be included in the merged model’s property values in order
not to exceed this limit. This limit may be exceeded during the merge process
because the values from the two evolved models were used.

If such a property is a containment reference property, existence conflicts have to be
created for the model elements which “do not fit into the property’s values.” These
model elements cannot be part of the merged model.

However, the UML meta-model does not define upper bound limits for any of the
UML elements relevant for OMOS. The only multi-valued property with limited
upper bound defined by the UML meta-model is reference property DurationOb-
servation::event with an upper bound (limit) of two.

D.7. Design and implementation of differencing and
merging of OMOS diagrams

Similar to the approach used for merging evolved versions of a UML model, a three-
way merge approach is used for merging two evolved versions of a OMOS diagram.
Like UML model elements, OMOS diagrams are compared and merged based on
their states and state changes. Based on the possible state changes modellers can
cause in OMOS diagrams by modifying them, an approach of differencing and mer-
ging OMOS diagrams was implemented as part of this research. It will be discussed
in this section.

303

D.7 Design and implementation of differencing and merging of OMOS diagrams

Each OMOS model has a collection of OMOS diagrams belonging to this model.
This collection is not part of the UML model underlying the OMOS diagrams, but
is maintained independently from the UML model. For the prototype modelling
tool implemented as part of this research, the OMOS diagrams constituting a UML
model are maintained in addition to the model itself in a diagram collection which
is a multi-valued, unordered reference property containing diagrams.

D.7.1. OMOS diagrams changes and conflicts

Before the approach to detecting diagram changes and conflicts is discussed below,
this section discusses diagram changes and conflicts. In the context of this research
and for the prototype merge tool developed as part of it, diagrams are models. They
are hence defined by means of a meta-model. Like the UML meta-model, this meta-
model is based on the meta-object facility (MOF, see Section 2.1.2.1). That is why
the approaches to differencing and merging UML models discussed previously in this
chapter apply for diagrams as well. The meta-model for OMOS diagrams used in
the context of this thesis is presented next.

D.7.1.1. A meta-model for saving, comparing, and merging OMOS diagrams

In this section, the meta-model used to persist, compare, and merge OMOS diagrams
is presented. It is presented in a textual form called EMFText (which is explained
in Section D.4.3). EMFText is a concrete syntax of Ecore which (as explained in
Section D.4) is an implementation of MOF. The elements defined by the meta-model
are thus fully compatible with the MOF-based approach for model comparison and
merging discussed in this chapter.

No textual labels (for class names, attributes, association end names and multipli-
cities, etc.) are part of OMOS diagram meta-model above. The information are
derived from the respective UML model element when the diagram is actually dis-
played (see also Section D.3). The meta-model for OMOS diagrams focuses on the
information required to create/define OMOS diagram, use them as input for the
actual diagram layout algorithm, and to store them. As will be discussed in the
next section, the diagram meta-model also enables detecting the possible changes
which can be made in a diagram when modellers modify it manually. Therefore this
diagram meta-model represents the diagram’s graph. As all meta-models presented
in this thesis, it is based on MOF. The state of diagram models is, therefore, defined

304

D.7 Design and implementation of differencing and merging of OMOS diagrams

@" import "(" UML ")

class Diagram
{

attribute String GUID (1..1);
attribute String name (0..1);
containment reference ClassSymbol classSymbols (0.. -1);
containment reference ConnectionSymbol connectionSymbols (0.. -1);
ordered reference ClassSymbol rootClassSymbols (0.. -1);

}

abstract class Symbol
{

reference uml :: Element umlElement (1..1);
}

class ClassSymbol extends Symbol
{

reference ClassSymbol parentClassSymbol (0..1);
ordered reference ClassSymbol childClassSymbols (0.. -1);
ordered reference ConnectionSymbol connectionSymbols (0.. -1);
attribute ClassSDetailsVisibility detailsVisibility (1..1);

}

class ConnectionSymbol extends Symbol
{
}

enum ClassDetailsVisibility
{

0 : public = " public ";
1 : all = "all ";
2 : none = "none ";

}

Figure D.6.: A meta-model for saving, comparing, and merging OMOS diagrams.

by the (attribute and reference) properties defined for the meta-model’s classes. As
will be explained below, the state (i. e., the values) of these properties is used to
compare diagrams in the same way UML models are compared.

Class Diagram represents the root element of a OMOS diagram (model). A diagram
has a name, a globally unique identifier (the diagram’s name cannot be used as dia-
gram’s globally unique identifier because it may change), contains all class symbols
(via containment reference property classSymbols) and connection symbols (via con-
tainment reference property connectionSymbols), and references its root layer class
symbols (via the ordered reference property rootClassSymbols). Like all multi-valued

305

D.7 Design and implementation of differencing and merging of OMOS diagrams

properties in this diagram meta-model, they are unique properties because a certain
diagram symbol can only appear once in a diagram.

By means of the umlElement reference, each ClassSymbol and ConnectionSymbol
references the UML model element (i. e., a class or the inheritance or association
relationship) it depicts. By means of this reference, all information from the UML
model element(s) required to visualise the symbol are accessed. Since a certain
diagram can only depict a certain UML model element at most ones, the umlElement
also serves for identifying diagram symbols. Because each UML model element has
a globally unique identifier (see Section D.5.3), the identifier of the UML element
depicted by a diagram symbol serves as this symbol’s identifier within its diagram.
As a diagram’s symbols only need to be identifiable within this diagram, using the
UML model element’s identifier will thus not compromise the (global) identifiability
of the UML model element itself or other diagram symbols depicting this UML
element in other diagrams.

It is not useful the assign dedicated globally unique identifiers to diagram symbols
because the symbols can be deleted and recreated later on in the same diagram for
the same evolved model version, i. e., in the same modelling cycle between two merge
processes. It then has to be guaranteed that a diagram symbol is still identified as
the same one because it still depicts the same UML model element.

In case it is not a root level one, a class symbol’s parentClassSymbol reference prop-
erty references the symbol’s parent. Its childClassSymbols reference property refer-
ences the symbol’s children class symbols in an ordered manner. The reason why
all ClassSymbols are contained by the Diagram root element and not by their re-
spective parent ClassSymbol (i. e., the reason why ClassSymbol::childClassSymbols is
not a containment reference property) is that it must be possible to delete a parent
class symbol in a diagram without removing all its children class symbols from the
diagram. As explained in Section 5.2 and shown in Fig. D.2, the deleted class sym-
bol is then replaced with a place-holder symbol to allow the modellers to relocate
“dangling” children class symbols to other class symbols or delete them as well.

The ordered reference propertiesDiagram::rootClassSymbols and ClassSymbol::child-
ClassSymbols define a diagram’s (horizontal and vertical) class symbol hierarchy.

A class symbol’s connectionSymbols reference property references all the class sym-
bol’s incoming and outgoing connection symbols, i. e., inter- and intra-layer ones.
However, it does not contain the class symbol’s passing-by connections because (as

306

D.7 Design and implementation of differencing and merging of OMOS diagrams

explained in D.3) they are automatically determined because passed-by class sym-
bols are not end points (source or target) of connection symbols and cannot be
manually modified by modellers.

The connectionSymbols reference is an ordered one because the order is relevant
for laying out connections and for merging them (as explained in Section D.3).
Because class symbols can be moved and connections may thus change from one
connection type to another — with respect to the connection types distinguished
during automatic diagram layout, for instance, inter- and intra layer connections,
not with respect to the actual UML relationship depicted by the connection, for
instance, association or inheritance, this type does, of course, not change — it is not
useful to separate connections by their type as done when the diagram is actually
laid out (see meta-model for OMOS diagram editors in Section D.3).

The detailsVisibility attribute is used to define which attributes and operations of a
ClassSymbol’s underlying class are depicted for this symbol.

Class ConnectionSymbol does not define references to the class symbols it connects
to because this information can be derived from the connection symbol’s UML model
elements. Storing this information for ConnectionSymbols would be redundant and
is, therefore, not explicitly defined by the meta-model.

D.7.1.2. Diagram changes

As discussed in Section 5.2, modellers can modify OMOS diagrams by means of the
following diagram editor actions:

• Add to and delete diagrams from a OMOS model.

• Change a diagram’s name.

• Add and delete class and connection symbols to/from diagrams.

• Relocate a class symbol to a different parent class symbol.

• Reorder a class symbol within its parent’s children class symbols.

• Change a class symbol’s details visibility.

• Relocate a connection symbol’s end to a different class symbol. This editor
action will also modify the UML model itself because the association or inher-
itance relationship depicted by the connection symbol is modified itself since

307

D.7 Design and implementation of differencing and merging of OMOS diagrams

a OMOS diagram can only contain one symbol of a certain class, so relocat-
ing a connection’s end will connect it to a different class symbol and thus the
model element underlying the connection will be added to a different class.
As discussed in Section 5.2, this editor action will remove all other symbols of
the connection from all other diagrams which depict it because the underlying
UML model is updated.

Based on the diagram modification types presented above, the following types of dia-
gram changes have to be detected when an evolved version of a diagram is compared
to the common ancestor diagram version; the names of properties from the OMOS
diagram meta-model (see Section D.7.1.1) which are affected by these changes are
presented as well:

• Diagram added and deleted change (diagram collection).

• Diagram name change (Diagram::name).

• Class and connection symbol added and deleted change (Diagram::classSymbols,
Diagram::rootClassSymbols or ClassSymbol::childClassSymbols, and ClassSymbol-
::parentClassSymbol for class symbols, and Diagram::connectionSymbols and
ClassSymbol::connectionSymbols for connection symbols).

• Class symbol relocation change and class symbol reordered change (Diagram::-
rootClassSymbols or ClassSymbol::childClassSymbols and ClassSymbol::parent-
ClassSymbol in case of a relocation change).

• Class symbol details visibility change (ClassSymbol::detailsVisibility).

The relocation of a connection symbol’s end to a different class symbol (see the
diagram editor actions described above) is not regarded as a diagram change since
modifying connection symbols will always affect the underlying UML model. There-
fore, whether an connection symbol was relocated can be detected by analysing the
UML model changes of the connection’s UML element. Details of the approach of
comparing diagrams as implemented by this thesis are explained in Section 6.3.

D.7.1.3. Diagram merge conflicts

Similar to conflicting concurrent modifications of UML model elements, diagrams
may be modified in both evolved models in conflicting ways. The following concur-
rent diagram modifications can occur:

308

D.7 Design and implementation of differencing and merging of OMOS diagrams

D.7.1.3.1. Concurrent diagram modification conflicts:

• A diagram’s name was changed in different ways for both evolved diagrams.

D.7.1.3.2. Concurrent diagram symbol modification conflicts:

• Concurrent class symbol relocation change conflict: A class symbol was relo-
cated to different parent class symbols in both evolved diagrams.

• Concurrent class symbol reorder change conflict: A class symbol was reordered
in different ways within its parent’s children class symbols in both evolved
diagrams.

• Concurrent class symbol details visibility change conflict: A class symbol’s
details visibility was changed in conflicting ways in both evolved diagrams.

Diagram conflicts are only detected for class symbols, not for connection symbols.
Since the modification of connection symbols will always affect the underlying UML
model, conflicting connection symbol modifications are detected based on UML
model element conflicts. The diagram changes of connection symbols will then be
annotated with conflicts because their underlying UML element have conflicts (see
Section 6.5.3).

Concurrent diagram modification conflicts are detected by applying the same ap-
proach used for detecting conflicting changes for UML models discussed previously
in this chapter.

D.7.1.3.3. Diagram symbol deletion-modification conflicts: A diagram symbols
could be modified in one evolved diagram, but deleted in the other evolved one. The
deletion change then conflicts with the following diagram modifications:

• Deleting a diagram conflicts with changing the diagram’s name.

• Deleting a class symbol conflicts with:

– relocating the class symbol to a different parent class symbol;

– re-ordering the class symbol within its parent’s children class symbols;

– changing the class symbol’s details visibility level; and

– adding connection symbols to the class symbol, either by relocating an
existing connection symbols end or by adding a new connection symbol to

309

D.7 Design and implementation of differencing and merging of OMOS diagrams

the diagram. (Since property value removed changes are not conflicting
with deleting the respective element, removing connection symbols from
the class symbol is not regarded as conflicting with the class symbol’s
deletion.)

• Deleting a connection symbol conflicts with modifying the connection symbol.
Since modifying connection symbols will always affect the underlying UML
model, connection symbol modifications are detected though the connection
symbol’s UML model element’s changes.

D.7.1.3.4. Conflicting diagram symbol deletion-addition changes: The detection
of conflicting diagram changes also has to take into account deletion changes made to
the underlying UML model (which was potentially modified by modifying diagram
symbols). For class or connection symbols, the following type of conflict has to be
detected: A class or connection symbol S is added to diagram D in an evolved model.
In the other evolved model, S ’s respective model element(s) and all its diagram
symbols (which were already part these diagrams in ancestor model) are deleted.
Both evolved models and diagrams were changed in seemingly non-conflicting ways.
However, the class or connection symbol added to diagram D has a conflict because
its underlying UML model element does not exist in the merged model because it
was non-conflicting deleted from the model. Furthermore, its diagram symbols were
seemingly non-conflictingly removed.

Diagram symbol S added to diagram D can therefore not exist in the merged diagram
because its underlying UML model element(s) is missing from the merged model.

D.7.1.4. Diagram merge conflicts resulting from UML model updates

Detecting diagram conflicts also has to take into account that the same UML model
element can be depicted and thus potentially modified in several diagrams. This has
to be taken into account when deciding whether diagram changes are conflicting or
not.

D.7.1.4.1. Model change conflicts for diagram symbols — the duality between
UML model elements and diagram symbols: If a diagram symbol was deleted in
only one evolved model, then the question is whether the deletion change can be
accepted. As explained above, it cannot be accepted if there are diagram conflicts

310

D.7 Design and implementation of differencing and merging of OMOS diagrams

(i. e., changes in the other evolved diagram version). Another question is how UML
model element changes and conflicts affect the diagram symbol’s deletion. Is it
conflicting if the model element was modified or if the model element has conflicts?
Clearly the modifications of the UML elements must have been initiated from a
diagram symbol (since those UML elements cease to exist if all their symbols are
removed; i. e., when the last diagram symbol depicting a UML element is deleted, the
UML element is deleted too). However, if more than one diagram depicts a certain
model element, it cannot be detected in which diagram the UML model element
modification were initiated. It might even be that the modification was done via a
symbol that was removed afterwards. It is, therefore, difficult to decided for which
of a modified UML model element’s diagram symbols to accept or reject changes.

Therefore, if a diagram symbol’s underlying UML model element(s) have conflicting
changes and if this symbol has a deletion change, this change is only accepted if
it exists in both evolved diagrams (i. e., the symbol was deleted in both diagrams).
If not, the symbol’s deletion is conflicting too. This way it is guaranteed that a
diagram symbol is not (silently) removed from the merged diagram even though the
UML model might have been modified via this symbol in one of evolved diagram
versions.

If the diagram symbol’s UML element(s) has non-conflicting changes, the symbol
deletion change is accepted even if it was done in only one evolved diagram. This is
feasible because if all symbols of the respective UML element’s symbols were deleted
in one evolved model, a model element modification conflict would exist (because
the model element was deleted too). Therefore, at least one symbol must exist in
each evolved model version.

D.7.1.4.2. Diagram symbol existence conflicts resulting from model element
changes and existence conflicts: Diagram symbols can only be merged if the un-
derlying UML model element exists in the initial merged model. In case of existence
conflicts of their underlying UML model elements, the respective diagram symbols
cannot become part of the respective initial merged diagrams. Then, a diagram
symbol existence conflict exists for each of these diagram symbols too.

Existence conflicts can also occur for diagram symbols which have not been modified
in any evolved diagram. They occur when the underlying UML model element was
modified through symbols in different diagrams. For instance, a class could be
conflictingly relocated to different packages in both evolved diagrams (i. e., the class

311

D.7 Design and implementation of differencing and merging of OMOS diagrams

has a container conflict). Then, the class cannot become part of the initial merged
merged and the conflict has to be manually resolved. If the class again becomes part
of the merged model (i. e., when the existence conflict was manually resolved), the
diagram symbols, too, can become part of the receptive diagrams.

The following rules regarding diagram symbol existence conflicts can be drawn from
the findings above:

• Class symbol:

– The UML class the symbol references must exist in the merged UML
model.

– If the class symbol is not a root one (i. e., is not referenced by reference
property Diagram::rootClassSymbols; see Section D.7.1.1), its parent class
symbol (ClassSymbol::parentClassSymbol) has to exist in the merged dia-
gram (i. e., it has no existence conflict).

• Connection symbol:

– Both class symbols connected by a connection have to exist in the merged
diagram (i. e., they have no existence conflicts).

• Association connection symbol:

– The underlying UML association has to exist in the merged UML model
(i. e., has no existence conflict), and

– both UML properties belonging to the association have to exist (i. e., they
have no existence conflicts), and

– both UML classes referenced by the properties have to exist in the merged
model (i. e., both must not have existence conflicts).

• Generalisation connection symbol:

– UML generalisation has to exist in the merged UML model (i. e., has no
existence conflict), and

– both UML classes referenced by the generalisation have to exist in the
merged model (i. e., both must not have existence conflicts).

Diagram symbol existence conflicts can also occur because a diagram symbol’s exist-
ence depends on the existence of other diagram symbols in the respective diagram.
Situations like the following have to be taken into account during diagram merging:

312

D.7 Design and implementation of differencing and merging of OMOS diagrams

1. A connection symbol C is added between class symbols depicting class A and
B to diagram D in an evolved model. The UML model elements underlying
C were not created or modified, they already existed in the common ancestor
model.

2. C ’s underlying relationship (UML model element) is modified in the other
evolved model such that it now connects to at least on different class (i. e.,
class A and/or B are no longer referenced).

3. As a result, C no longer connects the class symbols depicting class A and B
in the merged version of diagram D, but will have to connect to at least one
other class. However, diagram D does not necessarily contain a class symbol
depicting this class. Connection symbol C would therefore have at least one
dangling end, i. e., it would not be connected to a class symbol on at least one
end. Such situations must be avoided because the syntax of a diagram would
be violated.

In such cases, the connection symbol addition change becomes a conflicting one
because the underlying UML model changed and the connection symbol cannot
be added to the diagram. The conflict’s type then is a diagram symbol existence
conflict.

D.7.2. Differencing OMOS diagrams

D.7.2.1. Matching equivalent diagram elements

As explained in Section D.7.1.1, a OMOS diagram is identified by a globally unique
identifier (Diagram::GUID) which is assigned when the diagram is created. The
diagram’s symbols are also identifiable, the identifier is not globally unique, but
only unique within this diagram. However, this local uniqueness is sufficient since
only the contents (symbols) of a certain diagram are compared and since diagram
symbols cannot be moved from one diagram to another.

D.7.2.2. Detecting diagram addition and deletion changes

Similar to merging UML models, in a first step, added and deleted diagrams are
detected for each of the two evolved diagram models. To do so, the value of the
evolved model’s diagrams collection is compared to the common ancestor collection’s

313

D.7 Design and implementation of differencing and merging of OMOS diagrams

value. As explained in Section D.5.4.3, a diagram addition or deletion change is
registered for each added or deleted diagram, respectively.

Since diagram symbols are local to a diagram, i. e., they cannot be relocated to other
diagrams; it follows that when a diagram was added or deleted, its diagram symbols
must have been added or deleted as well. Addition or deletion changes are, therefore,
also registered for each symbol of each added or deleted diagram respectively.

D.7.2.3. Comparing equivalent diagram model elements

After added and deleted diagrams were detected, equivalent diagrams which exist in
the ancestor and the evolved model version are compared. A set of diagram symbols
and their identifiers is created for each of the two diagram versions by following the
containment reference properties of the diagram model.

D.7.2.3.1. Detecting diagram symbol additions and deletions: Based on the dia-
gram symbols’ identifiers of the two to-be-compared diagrams, added and deleted
symbols are detected. A diagram symbol addition or deletion change is registered
for each added or deleted diagram symbol, respectively.

D.7.2.3.2. Comparing equivalent diagram model elements: After added and de-
leted diagram symbols were determined, diagram model elements which exist in
the ancestor and evolved diagram are compared. In a first step, diagram symbol
relocation changes are detected — they can only occur for class symbols, but not
for connection symbols because reference Diagram::connectionSymbols is the only
containment reference property for connection symbols in the diagram meta-model
(see Section D.7.1.1).

Finally the property values of all diagram model elements and the diagram element
itself are compared including the properties of the diagram root element (for which
only the Diagram::name property can be modified).

D.7.2.3.3. External model elements: The UML elements referenced by the dia-
gram symbols (see Symbol::umlElement in Section D.7.1.1) are not taken into ac-
count when diagram are compared. The purpose of this reference property is to
link a diagram symbol to the UML element it depicts and to identify the diagram
symbol within its diagram. Therefore, the value of this property will not change.

314

D.7 Design and implementation of differencing and merging of OMOS diagrams

The comparison this property will, therefore, not yield a value property change.
And the referenced UML element is, of course, not compared as part of the diagram
comparison; this is done during UML model comparison.

The referenced UML element is not taken into account when comparing equivalent
OMOS diagrams because it is not contained by any of the diagram’s elements.
When the to-be-compared elements of both diagrams are collected (into an element
repository) by following the containment reference properties of a diagram, the UML
element is not taken into account.

D.7.3. Model consistency checking

The model merge approach presented in this chapter and implemented as part of
this research does not take consistency rules defined by the actual meta-model into
account when the initial merged model is created. However, in the case where such
consistency rules are defined, the merged model can be checked for consistency once
it has been created and repeatedly throughout the whole conflict resolution phase of
the model merge process. Applying consistency rules to a model will reference the
model elements which violate these rules, the respective merged model elements can
thus be annotate with consistency errors and brought to the modeller’s attention.
It is then possible for modellers to analyse whether the violation of consistency
rules was related to model changes and, if so, deal with those changes to make the
respective model elements adhere to the consistency rules again.

Consistency rules for models defined by means of the meta-object facility (MOF, see
Section 2.1.2.1) meta-models can be defined as part of the meta-model by means of
the Object Constraint Language (OCL) [OMG06b]. The UML standard states the
following about model consistency [OMG10a, p. 23]: “The well-formedness rules of
the metaclass, except for multiplicity and ordering constraints that are defined in the
diagram at the beginning of the package sub clause, are defined as a (possibly empty)
set of invariants for the metaclass, which must be satisfied by all instances of that
metaclass for the model to be meaningful. The rules thus specify constraints over
attributes and associations defined in the metamodel. Most invariants are defined
by OCL expressions together with an informal explanation of the expression, but
in some cases invariants are expressed by other means (in exceptional cases with
natural language).”

315

Bibliography

[Aon06] Aonix. Ameos CASE Tool. http://www.aonix.com/, 2006. Access date:
4/12/2012.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Em-
brace Change (2nd Edition). Addison-Wesley Professional, 2004.

[BDPP99] Giuseppe Di Battista, Walter Didimo, Maurizio Patrignani, and Maur-
izio Pizzonia. Orthogonal and quasi-upward drawings with vertices of
prescribed size. In GD ’99: Proceedings of the 7th International Sym-
posium on Graph Drawing, pages 297–310, London, UK, 1999. Springer-
Verlag.

[BETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice-Hall, 1999.

[BFN85] Carlo Batini, L. Furlani, and Enrico Nardelli. What is a good diagram?
a pragmatic approach. In Proceedings of the Fourth International Con-
ference on Entity-Relationship Approach, pages 312–319, Washington,
DC, USA, 1985. IEEE Computer Society.

[BP01] B. Berliner and J. Polk. Concurrent Versions System (CVS).
http://www.cvshome.org/, 2001. Access date: 4/12/2012.

[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, Reading, MA, 2nd edition,
June 2005.

[BSR03] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-
wise refinement. In Proceedings of the 25th International Conference on
Software Engineering, ICSE ’03, pages 187–197, Washington, DC, USA,
2003. IEEE Computer Society.

316

Bibliography

[BT00] Stina S. Bridgeman and Roberto Tamassia. Difference metrics for in-
teractive orthogonal graph drawing algorithms. J. Graph Algorithms
Appl., 4(3):47–74, 2000.

[Cav96] A L M Cavaye. Case study research: a multi-faceted research approach
for is. Information Systems Journal, 6(3):227–242, 1996.

[CW98] Reidar Conradi and Bernhard Westfechtel. Version models for soft-
ware configuration management. ACM Comput. Surv., 30:232–282, June
1998.

[DFM93] Ed Dengler, Mark Friedell, and Joe Marks. Constraint-driven diagram
layout. In Proceedings of the 1993 IEEE Symposium on Visual Lan-
guages, pages 330–335, August 1993.

[DP06] Brian Dobing and Jeffrey Parsons. How UML is used. Communications
of ACM, 49(5):109–113, 2006.

[DSB98] Peta Darke, Graeme Shanks, and Marianne Broadbent. Successfully
completing case study research: combining rigour, relevance and prag-
matism. Information Systems Journal, 8(4):273–289, 1998.

[EGK+04] Markus Eiglsperger, Carsten Gutwenger, Michael Kaufmann, Joachim
Kupke, Michael Jünger, Sebastian Leipert, Karsten Klein, Petra Mutzel,
and Martin Siebenhaller. Automatic layout of UML class diagrams in
orthogonal style. Information Visualization, 3(3):189–208, 2004.

[Eic02a] Holger Eichelberger. Aesthetics of class diagrams. In Proceedings of the
First IEEE International Workshop on Visualizing Software for Under-
standing and Analysis, pages 23–31. IEEE, 2002.

[Eic02b] Holger Eichelberger. Evaluation-report on the layout facilities of UML
tools. Technical report, 2002.

[Eic02c] Holger Eichelberger. Sugibib. In P. Mutzel, M. Jünger, and S. Leipert,
editors, Proc. Graph Drawing, 9th International Symposium, GD ’02,
volume 2265 of Lecture Notes in Computer Science, pages 467–468.
Springer, Springer, 2002.

[Eic03] Holger Eichelberger. Nice class diagrams admit good design? In SoftVis
’03: Proceedings of the 2003 ACM symposium on Software visualization,
pages 159–167, New York, NY, USA, 2003. ACM Press.

317

Bibliography

[Eic05] Holger Eichelberger. Aesthetics and automatic layout of UML class
diagrams. Ph.D. thesis, Fakultät für Mathematik und Informatik,
Würzburg University, Germany, 2005.

[Eic06] Holger Eichelberger. On class diagrams, crossings and metrics. In
Michael Jünger, Stephen Kobourov, and Petra Mutzel, editors, Graph
Drawing, Dagstuhl Seminar Proceedings, 2006.

[EKE03] Markus Eiglsperger, Michael Kaufmann, and Frank Eppinger. An ap-
proach for mixed upward planarization. J. Graph Algorithms Appl.,
7(2):203–220, 2003.

[EKS03] Markus Eiglsperger, Michael Kaufmann, and Martin Siebenhaller. A
topology-shape-metrics approach for the automatic layout of UML class
diagrams. In SoftVis ’03: Proceedings of the 2003 ACM symposium on
Software visualization, pages 189–ff, New York, NY, USA, 2003. ACM
Press.

[ELMS91] P. Eades, W. Lai, K. Misue, and Kozo Sugiyama. Preserving the mental
map of a diagram. In Proceedings of Compugraphics ’91, pages 24–33,
1991.

[EMdK09] Harald Eisenmann, Juan Miro, and Hans Peter de Koning. MBSE
for European Space-Systems Development. INCOSE INSIGHT, 12(4),
December 2009.

[EvG03a] Holger Eichelberger and Jürgen Wolff von Gudenberg. Demonstration
of Advanced Layout of UML Class Diagrams by SugiBib. In Proceed-
ings of Vissoft 2003, International Workshop on Visualizing Software
for Understanding and Analysis, pages 53–54, 2003.

[EvG03b] Holger Eichelberger and Jürgen Wolff von Gudenberg. UML class dia-
grams - State of the art in layout techniques. In Proceedings of Vissoft
2003, International Workshop on Visualizing Software for Understand-
ing and Analysis, pages 30–34, 2003.

[Fei91] Peter H. Feiler. Configuration management models in commercial en-
vironments. Technical report, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania, 1991.

[FH01] Rudolf Fleischer and Colin Hirsch. Graph drawing and its applica-
tions. In Michael Kaufmann and Dorothea Wagner, editors, Draw-

318

Bibliography

ing Graphs: Methods and Models, number 2025 in LNCS, pages 1–22.
Springer-Verlag, Berlin, Germany, 2001.

[Fra02] David Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons, Inc., New York, NY, USA, 2002.

[Fuj] Fujaba. Fujaba CASE Tool. http://www.fujaba.de/. Access date:
4/12/2012.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison-Wesley Professional, January 1995.

[GJK+03] Carsten Gutwenger, Michael Jünger, Karsten Klein, Joachim Kupke,
Sebastian Leipert, and Petra Mutzel. A new approach for visualizing
UML class diagrams. In SoftVis ’03: Proceedings of the 2003 ACM
symposium on Software visualization, pages 179–188, New York, NY,
USA, 2003. ACM Press.

[Gre02] James Grenning. Extreme programming and embedded software devel-
opment. In Embedded Systems Conference, San Jose, CA, 2002.

[HJvdH06] S.A. Hendrickson, B. Jett, and A. van der Hoek. Layered class diagrams:
Supporting the design process. In Ninth International Conference on
Model Driven Engineering Languages and Systems, October 2006.

[HK99] Jungpil Hahn and Jinwoo Kim. Why are some diagrams easier to work
with? Effects of diagrammatic representation on the cognitive intergra-
tion process of systems analysis and design. ACM Trans. Comput.-Hum.
Interact., 6(3):181–213, 1999.

[HN99] W. Hermsen and K.-J. Neumann. Object-oriented modeling concept for
software of electronic control units in vehicles. it+ti - Informationstech-
nik und Technische Informatik, 5, 1999.

[HN00] W. Hermsen and K.-J. Neumann. Application of the object-oriented
modeling concept OMOS for signal conditioning of vehicle control units.
Technical report, SAE 2000 World Congress, March 2000, Detroit, MI,
USA, 2000.

[HOS90] William H. Harrison, Harold Ossher, and Peter F. Sweeney. Coordinat-
ing concurrent development. In Proceedings of the 1990 ACM conference
on Computer-supported cooperative work, CSCW ’90, pages 157–168,
New York, NY, USA, 1990. ACM.

319

Bibliography

[IBM06] IBM. Rational Software Architect. http://www.ibm.com/, 2006. Access
date: 4/12/2012.

[IL06] I-Logix. Rhapsody CASE Tool. http://www.ilogix.com/, 2006. Access
date: 4/12/2012.

[Jac04] Nico Jacobs. Relational sequence learning and user modelling. PhD
thesis, Informatics Section, Department of Computer Science, Faculty
of Science, October 2004.

[JM03] Michael Jünger and Petra Mutzel. Graph Drawing Software. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[Kos03] Rainer Koschke. Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. Journal of Software
Maintenance, 15(2):87–109, 2003.

[KTW97] Justus Klingemann, Thomas Tesch, and Jürgen Wäsch. Enabling co-
operation among disconnected mobile users. In Proceedings of the
Second IFCIS International Conference on Cooperative Information
Systems, COOPIS ’97, pages 36–46, Washington, DC, USA, 1997. IEEE
Computer Society.

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing graphs:
methods and models. Springer-Verlag, London, UK, 2001.

[KWB03] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained:
The Model Driven Architecture: Practice and Promise. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[KWN05] Udo Kelter, Jürgen Wehren, and Jörg Niere. A generic difference al-
gorithm for UML models. In Proceedings of the SE 2005, Essen, Ger-
many, March 2005.

[Lar04] Craig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development (3rd Edition).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[Leb95] David B. Leblang. The CM challenge: configuration management that
works, pages 1–37. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[Let05] Kim Letkeman. Comparing and merging UML mod-
els in IBM Rational Software Architect. http://www-

320

Bibliography

128.ibm.com/developerworks/rational/library/05/712_comp/, July
2005. Access date: 4/12/2012.

[LLY06] Yi-Yi Lee, Chun-Cheng Lin, and Hsu-Chun Yen. Mental map preserving
graph drawing using simulated annealing. In APVis ’06: Proceedings of
the 2006 Asia-Pacific Symposium on Information Visualisation, pages
179–188, Darlinghurst, Australia, Australia, 2006. Australian Computer
Society, Inc.

[LS87] H. J. Larkin and A. H. Simon. Why a diagram is (sometimes) worth
ten thousand words. Cognitive Science, 11:69–99, 1987.

[Lub03] Sam Lubbe. The development of a case study methodology in the in-
formation technology (IT) field: a step by step approach. Ubiquity,
2003, September 2003.

[LvO92] Ernst Lippe and Norbert van Oosterom. Operation-based merging. In
Proceedings of the fifth ACM SIGSOFT symposium on Software devel-
opment environments, SDE 5, pages 78–87, New York, NY, USA, 1992.
ACM.

[LWWC11] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot.
From UML Profiles to EMF Profiles and Beyond. In Objects, Models,
Components, Patterns - 49th International Conference, TOOLS 2011,
Zurich, Switzerland, June 28-30, 2011. Proceedings, pages 52–67, 2011.

[Mai78] David Maier. The complexity of some problems on subsequences and
supersequences. J. ACM, 25(2):322–336, April 1978.

[MB02] Stephen J. Mellor and Marc Balcer. Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[MBZR03] T. Mens, J. Buckley, M. Zenger, and A. Rashid. Towards a taxonomy
of software evolution, 2003.

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjust-
ment and the mental map. Journal of Visual Languages and Computing,
6(2):183–210, 1995.

[Men02] T. Mens. A state-of-the-art survey on software merging. IEEE Trans.
Softw. Eng., 28(5):449–462, 2002.

321

Bibliography

[Mey97] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[MF93] P. Moore and C. Fitz. Gestalt: Theory and instructional design. Journal
of Technical Writing and Communication, (2):137–157, 1993.

[MGH05] Akhil Mehra, John Grundy, and John Hosking. A generic approach to
supporting diagram differencing and merging for collaborative design.
In ASE ’05: Proceedings of the 20th IEEE/ACM international Confer-
ence on Automated software engineering, pages 204–213, New York, NY,
USA, 2005. ACM Press.

[mic06] microTOOL. ObjectIF UMLModeler. http://www.microtool.de/, 2006.
Access date: 4/12/2012.

[MKY06] David Mandelin, Doug Kimelman, and Daniel Yellin. A bayesian ap-
proach to diagram matching with application to architectural models. In
ICSE ’06: Proceeding of the 28th international conference on Software
engineering, pages 222–231, New York, NY, USA, 2006. ACM Press.

[Moo10] Daniel L. Moody. The physics of notations: a scientific approach to
designing visual notations in software engineering. In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering -
Volume 2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages
485–486, 2010.

[Nie04] Jürgen Niere. Visualizing differences of UML diagrams with Fujaba. In
Proceedings of the Fujaba Days 2004, 2004.

[NoM06] NoMagic. MagicDraw UML. http://www.magicdraw.com/, 2006. Ac-
cess date: 4/12/2012.

[Nor95] Stephen C. North. Incremental layout in dynadag. In Franz-Josef
Brandenburg, editor, Graph Drawing, Symposium on Graph Drawing,
GD ’95, volume 1027 of Lecture Notes in Computer Science, pages 409–
418, Passau, Germany, September 1995. Springer.

[Ohs02] Dirk Ohst. A fine-grained version and confguration model in analysis
and design. In Proceedings of the International Conference on Software
Maintenance (ICSM’02), ICSM ’02, pages 521–, Washington, DC, USA,
2002. IEEE Computer Society.

[OMG03] OMG. UML Notation Guide. Object Management Group, 2003.

322

Bibliography

[OMG04] OMG. Human-Usable Textual Notation (HUTN) Specification. Object
Management Group, http://www.omg.org/spec/HUTN/1.0/, 2004. Ac-
cess date: 4/12/2012.

[OMG05] OMG. MOF 2.0/XMI Mapping Specification. Object Manage-
ment Group, http://www.omg.org/spec/XMI/2.1/, 2005. Access date:
4/12/2012.

[OMG06a] OMG. Meta Object Facility (MOF) Core Specification. Object Manage-
ment Group, http://www.omg.org/spec/MOF/2.0, version 2.0 edition,
2006. Access date: 4/12/2012.

[OMG06b] OMG. Object Constraint Language (OCL), v2.0. Object Management
Group, 2006.

[OMG06c] OMG. UML Diagram Interchange version 1.0. Object Management
Group, http://www.omg.org/spec/UMLDI/1.0/, 2006. Access date:
4/12/2012.

[OMG10a] OMG. UML 2.3 Infrastructure Specification. Object Management
Group, http://www.omg.org/spec/UML/2.3/, 2010. Access date:
4/12/2012.

[OMG10b] OMG. UML 2.3 Superstructure Specification. Object Management
Group, http://www.omg.org/spec/UML/2.3/, 2010. Access date:
4/12/2012.

[OMG11] OMG. Diagram Definition 1.0 - Beta 2. Object Management
Group, http://www.omg.org/spec/DD/1.0/Beta2/, 2011. Access date:
4/12/2012.

[OWK03a] Dirk Ohst, Michael Welle, and Udo Kelter. Difference tools for analysis
and design documents. In ICSM ’03: Proceedings of the International
Conference on Software Maintenance, page 13, Washington, DC, USA,
2003. IEEE Computer Society.

[OWK03b] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between versions
of UML diagrams. In Proceedings of the 9th European software engin-
eering conference held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 227–236, New
York, NY, USA, 2003. ACM Press.

[OWK04] Dirk Ohst, Michael Welle, and Udo Kelter. Merging UML documents.
Technical report, University of Siegen, Germany, 2004.

323

Bibliography

[PCA02] Helen C. Purchase, D. A. Carrington, and J-A. Allder. Graph layout
aesthetics in UML diagrams. Journal of Graph Algorithms and Applic-
ations, 6(3):255–279, 2002.

[PCM+01] Helen C. Purchase, Linda Colpoys, Matthew McGill, David Carrington,
and Carol Britton. UML class diagram syntax: An empirical study of
comprehension. In Peter Eades and Tim Pattison, editors, Australian
Symposium on Information Visualisation, (invis.au 2001), Sydney, Aus-
tralia, 2001. ACS.

[Pet95] Marian Petre. Why looking isn’t always seeing: readership skills and
graphical programming. Commun. ACM, 38(6):33–44, 1995.

[PMCC01] Helen C. Purchase, Matthew McGill, Linda Colpoys, and David Car-
rington. Graph drawing aesthetics and the comprehension of UML class
diagrams: An empirical study. In APVis ’01: Proceedings of the 2001
Asia-Pacific symposium on Information visualisation, pages 129–137,
Darlinghurst, Australia, 2001. Australian Computer Society, Inc.

[Pur04] Helen C. Purchase. Evaluating graph drawing aesthetics: defining and
exploring a new empirical research area. In J. DiMarco, editor, Com-
puter Graphics and Multimedia: Applications, Problems and Solutions,
pages 145–178. Ed. Idea Group Publishing, 2004.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling
Language Reference Manual. Addison-Wesley Professional, 2nd edition,
July 2004.

[RW98] Jungkyu Rho and Chisu Wu. An efficient version model of software
diagrams. In APSEC ’98: Proceedings of the Fifth Asia Pacific Software
Engineering Conference, page 236, Washington, DC, USA, 1998. IEEE
Computer Society.

[Sam02] Miro Samek. Practical UML Statecharts in C/C++: Event-Driven Pro-
gramming for Embedded Systems. CMP Books, 2002.

[SB05] Markus Schweizer and Michael Benkel. Development of product families
— an example from the automobile industry. In Third Workshop on
Object-oriented Modeling of Embedded Real-Time Systems (OMER3),
2005.

[SBPM09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

324

Bibliography

EMF: Eclipse Modeling Framework. Addison-Wesley, Boston, MA, 2.
edition, 2009.

[SDNB04] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan Bosch. Covamof:
A framework for modeling variability in software product families. In
Proceedings of the Third International Conference on Software Product
Lines (SPLC), pages 197–213, 2004.

[See97] Jochen Seemann. Extending the Sugiyama algorithm for drawing UML
class diagrams: Towards automatic layout of object-oriented software
diagrams. In G. DiBattista, editor, Proc. Graph Drawing, 5th Interna-
tional Symposium, GD ’97, Rome, Italy, September, 1997, volume 1353
of LNCS. Springer, 1997.

[Sel03] Petri Selonen. Set operations for unified modeling language. In Pro-
ceedings of the Eight Symposium on Programming Languages and Tools,
SPLST 2003, pages 70–81, 2003.

[SG09] Andrew Stellman and Jennifer Greene, editors. Beautiful Teams: In-
spiring and Cautionary Tales from Veteran Team Leaders. O’Reilly,
Beijing, 2009.

[SM88] Sally Shlaer and Stephen J. Mellor. Object-oriented systems analysis:
modeling the world in data. Yourdon Press, Upper Saddle River, NJ,
USA, 1988.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understand-
ings of hierarchical system structures. IEEE Transactions in Systems,
Man, and Cybernetics, smc-11(2):109–125, February 1981.

[Sub] Apache Subversion. Subversion homepage.
http://subversion.apache.org/. Access date: 4/12/2012.

[Sug02] Kozo Sugiyama. Graph Drawing and Applications for Software and
Knowledge Engineers, volume 11 of Series on Software Engineering and
Knowledge Engineering. World Scientific, 2002.

[Tam85] Roberto Tamassia. New layout techniques for entity-relationship dia-
grams. In Proceedings of the Fourth International Conference on Entity-
Relationship Approach, pages 304–311, Washington, DC, USA, 1985.
IEEE Computer Society.

325

Bibliography

[TBB88] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. Automatic
graph drawing and readability of diagrams. IEEE Trans. Syst. Man
Cybern., 18(1):61–79, 1988.

[TH02] Steffen Thiel and Andreas Hein. Modeling and using product line vari-
ability in automotive systems. IEEE Software, 19(4):66–72, 2002.

[TH03] S. Tilley and S. Huang. A qualitative assessment of the efficacy of UML
diagrams as a form of graphical documentation in aiding program under-
standing. In SIGDOC ’03: Proceedings of the 21st Annual International
Conference on Documentation, pages 184–191. ACM Press, 2003.

[Vis] Visual Paradigm. Visual Paradigm for UML. http://www.visual-
paradigm.com/. Access date: 4/12/2012.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software Development:
Technology, Engineering, Management. John Wiley & Sons, June 2006.

[WEK02] Roland Wiese, Markus Eiglsperger, and Michael Kaufmann. yFiles:
Visualization and automatic layout of graphs. In Petra Mutzel, Mi-
chael Jünger, and Sebastian Leipert, editors, Graph Drawing, Vienna,
Austria, September 23-26, 2001, pages 453–454. Springer, 2002.

[Wes91] Bernhard Westfechtel. Structure-oriented merging of revisions of soft-
ware documents. In Proceedings of the 3rd international workshop on
Software configuration management, pages 68–79, New York, NY, USA,
1991. ACM Press.

[Wes10] Bernhard Westfechtel. A formal approach to three-way merging of EMF
models. In Proceedings of the 1st International Workshop on Model
Comparison in Practice, IWMCP ’10, pages 31–41, New York, NY,
USA, 2010. ACM.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correc-
tion problem. J. ACM, 21:168–173, January 1974.

[WHF93] Colin Ware, David Hui, and Glenn Franck. Visualizing object oriented
software in three dimensions. In CASCON ’93: Proceedings of the 1993
conference of the Centre for Advanced Studies on Collaborative research,
pages 612–620. IBM Press, 1993.

[Wika] Wikipedia. External validity. http://en.wikipedia.org/wiki/External
_validity. Access date: 4/12/2012.

326

Bibliography

[Wikb] Wikipedia. Internal validity. http://en.wikipedia.org/wiki/Internal
_validity. Access date: 4/12/2012.

[WL99] D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A
Family Based Software Development Process. Addison-Wesley, 1999.

[WPCM02] C. Ware, Helen C. Purchase, L. Colpoys, and M. McGill. Cognitive
measurements of graph aesthetics. Information Visualization, 1(2):103–
110, 2002.

[Yin03] Robert K Yin. Case Study Research: Design and Methods, volume 5.
Sage Publications, 2003.

327

	Abstract
	Acknowledegments
	Contents

	1 Introduction
	1.1 Overview and motivation for the research presented in this thesis
	1.1.1 Pilot study on model-driven development of software for automotive electronic control units

	1.2 Aim and objectives of this thesis
	1.2.1 The need for parallel working on OMOS models and diagrams
	1.2.2 The objectives of the research presented in this thesis

	1.3 Thesis layout

	2 Working collaboratively with software models — the need for parallel working when developing models in general and diagrammatic representations of models in particular
	2.1 Introduction to the OMOS software development approach
	2.1.1 UML class models and diagrams
	2.1.2 The part of UML used for OMOS
	2.1.3 The OMOS approach to developing software for automotive electronic control units

	2.2 The need for parallel evolution of OMOS models
	2.2.1 Meeting with domain experts to learn about the OMOS development process
	2.2.2 Bosch's iterative and incremental model-driven development process based on OMOS
	2.2.3 Conclusions

	2.3 Literature review on concepts of parallel software evolution
	2.3.1 Concurrent access for enabling parallel evolution
	2.3.2 Model merging — changes, conflicts, and conflict resolution
	2.3.3 Alternative approaches to parallel software evolution
	2.3.4 Collaboration based on model element locking
	2.3.5 Summary

	2.4 Literature review on collaboration approaches for visually modelling based on UML class models and diagrams
	2.4.1 Review on existing tool support for merging UML class diagrams provided by the research community
	2.4.2 Review on existing tool support for merging UML class diagrams provided by commercial software vendors
	2.4.3 Automatic UML class diagram layout as an enabler for concurrent visual modelling

	2.5 Conclusions on the envisaged approach for parallel working with OMOS models
	2.6 Chapter summary and outlook

	3 Pilot study on conveying additional semantic information in diagrams of models through their layout
	3.1 Motivation of the pilot study on semantic information conveyed by diagram layout
	3.1.1 Domain experts reject automatic diagram layout

	3.2 Literature review on conveying additional semantic information in diagrams of models through their layout
	3.2.1 Semantic meaning conveyed through the layout of diagrams of models
	3.2.2 The UML class diagram layout guidelines and diagramming as a creative process
	3.2.3 Secondary notation
	3.2.4 The mental map of a diagram
	3.2.5 Summary

	3.3 Introduction to the pilot study
	3.3.1 Pilot study research as a strategy of inquiry
	3.3.2 The pilot study's research plan
	3.3.3 Validity and threats to validity

	3.4 Findings regarding modelling by means of diagrams
	3.4.1 OMOS diagram Tiptronic
	3.4.2 Adding new diagrams to a OMOS model
	3.4.3 Summary

	3.5 Findings regarding conveying additional semantic information in diagrams through their layout
	3.5.1 OMOS diagrams OutP_IFC_General and OutP_IFC_General_Exp as an example for semantic grouping
	3.5.2 OMOS diagram OutPLss as an example for semantic ordering
	3.5.3 OMOS diagram OutP_Hss as an example for semantic ordering
	3.5.4 OMOS diagram OutPCcCo as an example for semantic grouping and ordering
	3.5.5 OMOS diagram Fahrertyp as an example for semantic grouping
	3.5.6 Additional OMOS diagrams

	3.6 Summary of the findings of the model analysis regarding expressing additional semantic information in diagrams of models through their layout
	3.6.1 Modelling by means of diagrams is a creative process
	3.6.2 Summary of the pilot study findings regrading semantic information conveyed through the layout of diagrams and the mental map
	3.6.3 General findings regarding the layout of OMOS diagrams

	3.7 Chapter summary and outlook

	4 Principles and objectives of an approach for collaboratively working with OMOS models
	4.1 Automatic diagram layout and additional semantic information conveyed through the layout of diagrams
	4.1.1 On the usefulness of automatic graph layout for UML class diagrams when domain semantics of visualised model elements are important to modellers
	4.1.2 Conclusions on visual UML class modelling and parallel software development

	4.2 General principles on which any software should be based to provide a solution for working in parallel with OMOS models
	4.2.1 Motivation: the old sequential, non-parallel approach to working with OMOS models
	4.2.2 Optimistic, merge-based version control supporting parallel work on OMOS models
	4.2.3 Meta-model-based difference and conflict detection and model merging
	4.2.4 Automatic creation of the initial merged model
	4.2.5 The need for dedicated model merge tooling
	4.2.6 Dealing with model and diagram changes and merge conflicts
	4.2.7 Version control system
	4.2.8 Summary

	4.3 Principles drawn from the pilot study to provide a software-based solution for working in parallel with OMOS models
	4.3.1 The need for visually merging OMOS diagrams
	4.3.2 Detecting and dealing with meaning-related diagram merge conflicts
	4.3.3 Meaning-preserving diagram merging
	4.3.4 Summary

	4.4 Summary and outlook

	5 Design and implementation of semi-automatic OMOS class diagram layout enabling efficient, meaning-preserving diagrammatic model merging
	5.1 Enabling meaning-preserving diagram merging through semi-automatic OMOS diagram layout by extending the visual vocabulary of OMOS diagrams
	5.1.1 Fully automatic layout destroys semantic meaning conveyed through the layout of OMOS diagram
	5.1.2 The need for some degree of automatic OMOS diagram layout
	5.1.3 Meaning-preserving semi-automatic layout of OMOS diagrams
	5.1.4 Semi-automatic OMOS diagram layout details
	5.1.5 Advantages of semi-automatic layout
	5.1.6 Limitations and critique

	5.2 OMOS model editor
	5.2.1 Diagram and model updates and automatic re-layout of all affected diagrams

	5.3 Chapter summary and outlook

	6 Design and implementation of visual OMOS model merging
	6.1 Introduction
	6.2 Meta-model- and MOF-based model merging
	6.2.1 Introduction to MOF-based modelling

	6.3 Overview of the model comparison process OMOS models
	6.3.1 State-based model comparison
	6.3.2 Detecting equivalent model elements based on their identifiers
	6.3.3 Summary

	6.4 Overview of model merge process for OMOS models
	6.4.1 Accepting and rejecting changes, and detecting model merge conflicts
	6.4.2 Creating the initial merged OMOS model
	6.4.3 Summary and outlook

	6.5 Visualising and dealing with OMOS model and diagram changes and conflicts
	6.5.1 A dedicated merge tool
	6.5.2 Standard visualisation for all four model versions involved in the merge process
	6.5.3 Visualising and dealing with model changes and model merge conflicts in OMOS diagrams
	6.5.4 Visualising and dealing with changes and conflicts in OMOS model trees
	6.5.5 Resolving merge conflicts and working with the merged model
	6.5.6 Exchanging partially merged models

	6.6 Chapter summary and outlook

	7 Evaluation, contributions and conclusions
	7.1 Evaluation of the proposed solution by experts in the field with a real-world parallel modelling scenario
	7.1.1 Evaluation approach and test data
	7.1.2 Evaluation of the OMOS model editor
	7.1.3 Evaluation of the OMOS model merger

	7.2 Success and impact of the proposed solution
	7.2.1 Bad timing for commercialising the solution

	8 Conclusions
	8.1 Future work
	8.2 Contributions

	A Details on the OMOS modelling approach
	A.1 Variant modelling and OMOS as a software product family approach
	A.2 The UML profile for OMOS

	B Slides from the diagram layout analysis meeting discussing the pilot study findings
	C Additional analysed OMOS diagrams
	C.1 Package assignment diagrams
	C.2 OMOS diagram ``InpP_Chip''
	C.3 OMOS diagram ``InpP_PSply''
	C.4 OMOS diagram ``OutP_ObjectModel''
	C.5 OMOS diagram ``InpP_ObjectModel''
	C.6 OMOS diagram ``InpP_IFC_General''
	C.7 OMOS diagram ``InpP_IFC_General_Export''
	C.8 OMOS diagram ``OutPStaLck''
	C.9 OMOS diagram ``OutPSSply5V''
	C.10 OMOS diagram ``IFC_OutP_internal''

	D Development of tool support for visually creating and merging of OMOS models
	D.1 The part of the UML meta-model relevant for OMOS
	D.1.1 Listing of the UML meta-model elements relevant for OMOS models

	D.2 OMOS model editor
	D.2.1 Creating class symbols
	D.2.2 Creating connections symbols
	D.2.3 The model tree
	D.2.4 Diagram and model updates and automatic re-layout of all affected diagrams

	D.3 Semi-automatic OMOS diagram layout details
	D.3.1 Overview
	D.3.2 Automatic layout of class symbols
	D.3.3 Automatic layout of connection symbols

	D.4 Design and implementation of MOF-based model comparison
	D.4.1 Introduction
	D.4.2 Implementation
	D.4.3 Introduction to EMFText as a concrete syntax for Ecore
	D.4.4 Foundations of MOF/Ecore (meta-) models and model comparison
	D.4.5 Ecore structural features

	D.5 Foundations of model comparison
	D.5.1 Meta-models and state- and change-based model comparison
	D.5.2 Preliminaries
	D.5.3 Model element identification and matching equivalent model elements
	D.5.4 Model element comparison

	D.6 Design and implementation of OMOS model merging
	D.6.1 Merge conflicts
	D.6.2 Accepting and rejecting model changes and detecting merge conflicts
	D.6.3 Detecting merge conflicts
	D.6.4 Creating the (model elements of the) initial merged model

	D.7 Design and implementation of differencing and merging of OMOS diagrams
	D.7.1 OMOS diagrams changes and conflicts
	D.7.2 Differencing OMOS diagrams
	D.7.3 Model consistency checking

	Bibliography

