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ABSTRACT 

 

Surface parameterization is to establish a transformation that maps the points on a 

surface to a specified parametric domain. It has been widely applied to computer 

graphics and image processing fields. The challenging issue is that the usual 

positional constraints always result in triangle flipping in parameterizations (also 

called foldovers). Additionally, distortion is inevitable in parameterizations. Thus the 

rigid constraint is always taken into account. In general, the constraints are 

application-dependent. This thesis thus focuses on the various constraints depended 

on applications and investigates the foldover-free constrained parameterization 

approaches individually. Such constraints usually include, simple positional 

constraints, tradeoff of positional constraints and rigid constraint, and rigid 

constraint. From the perspective of applications, we aim at the foldover-free 

parameterization methods with positional constraints, the as-rigid-as-possible 

parameterization with positional constraints, and the well-shaped well-spaced pre-

processing procedure for low-distortion parameterizations in this thesis. 

The first contribution of this thesis is the development of a RBF-based re-

parameterization algorithm for the application of the foldover-free constrained 

texture mapping. The basic idea is to split the usual parameterization procedure into 

two steps, 2D parameterization with the constraints of convex boundaries and 2D re-

parameterization with the interior positional constraints. Moreover, we further 

extend the 2D re-parameterization approach with the interior positional constraints to 

high dimensional datasets, such as, volume data and polyhedrons. 
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The second contribution is the development of a vector field based deformation 

algorithm for 2D mesh deformation and image warping. Many presented 

deformation approaches are used to employ the basis functions (including our 

proposed RBF-based re-parameterization algorithm here). The main problem is that 

such algorithms have infinite support, that is, any local deformation always leads to 

small changes over the whole domain. Our presented vector field based algorithm 

can effectively carry on the local deformation while reducing distortion as much as 

possible. 

The third contribution is the development of a pre-processing for surface 

parameterization. Except the developable surfaces, the current parameterization 

approaches inevitably incur large distortion. To reduce distortion, we proposed a pre-

processing procedure in this thesis, including mesh partition and mesh smoothing. 

As a result, the resulting meshes are partitioned into a set of small patches with 

rectangle-like boundaries. Moreover, they are well-shaped and well-spaced. This 

pre-processing procedure can evidently improve the quality of meshes for low-

distortion parameterizations. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

 

 

 

 

1.1 MOTIVATION 

 

This thesis addresses a classic topic of differential geometry, surface 

parameterization, with applications to the texture mapping, mesh skinning and image 

warping. Surface parameterization can be viewed as a bijective mapping between a 

surface and a suitable parameter domain. In general, the parameter domain itself is a 

surface and parameterization means computing a both one-to-one and onto mapping 

in between the parameter domain and the embedded surface. Typically, a sphere is 

projected onto a plane domain using a system of gridline, i.e. longitude and latitude. 

In general, a surface is represented or approximated by a triangular mesh and hence 

the problem of computing such a mapping is referred to as mesh parameterization. 

The mapping between the meshes and the parameter domains are piecewise linear. 
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Mesh parameterizations between surface meshes and a variety of parameter 

domains have many applications in computer graphics, geometry processing and 

image processing, such as image registration, scattered data fitting and geometry 

modeling. In recent works, many methods have been presented for satisfying diverse 

parameter domains and maintaining different parameterization properties. However, 

the challenging issues from differential geometry of surface theory and numerical 

computation are becoming desperate for being solved, for example, hard positional 

constraints, foldover or triangle flips, isometric (namely zero distortion), and 

conformal maps. 

The main motivation of this thesis is to look for the mathematic essence 

underlying the distortion challenge, e.g. triangle foldovers. This is because the 

foldover is not only reported to appear in many applications of computer graphics, 

e.g. texture mapping [Kraevoy et al. 2003, Eckstein et al. 2001, Levy 2001, and 

Sander et al. 2001], remeshing [Dong et al. 2006, Gu et al. 2002, and Guskov et al. 

2000, and Lee et al. 2000], mesh editing [Alexa et al. 2000, James et al. 2005, Lewis 

et al. 2000, and Sorkine et al. 2004], but also is reported as differential issue in image 

registration applications [Dong et al. 2009, Wang et al. 2008, Wang et al. 2010, and 

Schaefer et al. 2006] as well. Particularly, due to the quickly developing 3D scanning 

technology and the resulting demand for efficient scattered data fitting, 

parameterization or further compression methods of increasingly complex 

triangulations have been the active research issues in recent years. Usually, such 

applications request some specified positional constraints or area and shape-

preserving properties, which inevitably leads to the triangle foldover in parameter 

domains. This thesis focuses on the specified constraint conditions of 
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parameterizations, since the constraints are always application-dependent and appear 

in applications of both computer graphics and image processing. 

 

1.2 CHALLENGES IN SURFACE PARAMETERIZATION 

 

Surface parameterizations almost always cause distortion in either angles or areas. 

Seeking an allowable mapping (i.e. to achieve some distortion tolerance) is an active 

topic of differential geometry. If the mapping is length-preserving, we call such a 

mapping as an isometry. This is an ideal mapping, since it preserves just about 

everything we request, such as areas, angles and lengths. If we only ask for angle-

preservation, the mapping is called as conformal mapping. If the mapping is only 

area-preserving, we call it as equiareal mapping. To find a well-behaved mapping, 

the constraints of area-preservation and angle-preservation are usually taken into 

account together. Furthermore, since all the parameterization methods are used to 

approximate the underlying smooth surface in a discrete setting (e.g. a triangular 

mesh), we may encounter a serious distortion, i.e. some triangles flip over or 

foldover. Additionally, in various image and graphics applications, parameterizations 

are usually requested to satisfy some specified positional constraints. This further 

aggravates mesh distortion, i.e. foldovers spread over the whole domain. 

The following outlines the challenging issues in different constrained surface 

parameterization applications. 

(1) Parameterization with the fixed boundaries. This kind of constrained 

parameterization methods is categorized into the discrete harmonic maps. In general, 

harmonic maps are guaranteed to be one-to-one for convex regions [Tutte 1963]. 
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However, the convexity constraint may yield big distortions near the boundary. The 

challenging issue from such applications is how to choose a suitable boundary 

mapping such that the constrained parameterization incurs the minimum distortion. 

This implies that we choose the suitable boundaries not only on the parameter 

domain, but also on the original surface. 

(2) Parameterization without the fixed positional constraints. This kind of 

constrained parameterization methods is categorized into the discrete conformal 

mappings. Usually, they maximize the conformality (i.e. angle preservation) of the 

piecewise linear mapping without the fixed positional constraints. Instead, the shapes 

of the parameter domains are determined by the methods themselves. The 

challenging issue from such applications is that a number of constraints have to be 

taken into account to guarantee the validity of the solution. In general, solving a 

large nonlinear system is not simple task. 

The above mentioned parameterization applications indeed pursue the isometric 

mapping. Thus, the constraint of the minimum distortion can be referred to rigid 

constraint. To distinguish from the rigid constraint, we will refer to the internal 

constraint points as the positional constraints in this thesis. 

(3) Parameterization with the internal positional constraints. Unlike the rigid 

constraint, these positional constraints are used to establish maps with feature 

correspondence between objects. The challenging issue is two-fold, 1) 

parameterization can accommodate the specified positional constraints; 2) 

parameterization incurs distortions as small as possible. 

 

1.3 DISSERTATION CONTRIBUTIONS 
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This thesis is concerned with the surface constrained re-parameterization, and 

further investigates the parameterizations (1) and (3) mentioned in Section 1.2. 

Because the constraints are application-dependent, this thesis aims at the following 

three kinds of constraints in terms of applications, that is, positional constraints, 

tradeoff of positional constraints and rigid constraint, and rigid constraint. The 

encountered challenges include, the triangle foldovers, the suitable boundary 

mapping and minimum distortion. Our contributions are shown as follows. 

 

1.3.1 SIMPLE POSITIONAL CONSTRAINTS 

 

We focus on the application of foldover-free texture mapping with the specified 

positional constraints. Texture mapping needs to embed a 3D surface into a 2D 

domain with some positional constraints. Usually, it is concerned with the positional 

constraints instead of the caused distortions. The specified positional constraints 

always result in large deformation in such scenarios. We present the foldover-free 

reparameterization method based on radial basis functions (RBF). The major 

contributions are as follows: 

• To the best of our knowledge, the proposed method is the first RBF-based 

approach that ensures user-specified constraints are satisfied and that foldovers are 

avoided. An explicit mathematical condition guarantees that no mesh foldover is 

generated during the RBF-based reparameterization. This is called the foldover-free 

condition; 

• The RBF-based method is a mesh-free approach. Thus, generating smooth 
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texture mapping is possible without an extra computationally expensive smoothing 

optimization, as required in [Kraevoy et al. 2003 and Lee et al. 2008]; 

• To the best of our knowledge, the proposed method presents the first 

implementation of satisfying positional constraints without predefined fixed 

boundaries. Furthermore, the proposed method can handle models with interior 

boundaries without additional treatment, such as cutting the model into several 

pieces, as required in [Lee et al. 2008]. 

The related work has been published in, 

• Yu, Hongchuan, Lee, TongYee, et al., 2012, RBF-Based Reparameterization 
Method for Constrained Texture Mapping, IEEE Trans. on Visualization and 
Computer Graphics, Vol.18, Issue 7. 

• Yu, Hongchuan, Zhang, Jian J. and Lee, Tong-Yee, Foldover-free High 
Dimensional Deformation, The Visual Computer Journal, (to appear). 

 

1.3.2 TRADEOFF OF POSITIONAL CONSTRAINTS AND RIGID CONSTRAINT 

 

This indeed involves two kinds of constraints, rigid constraint and positional 

constraints. The former refers to the distortion caused by deformation as small as 

possible. Image warping and registration usually expect reduce distortion caused by 

deformation as much as possible. For example, the bones should remain rigid in 

image registration rather than any bending. The latter refers to the usual positional 

constraints. We focus on the application of 2D shape and image deformation with 

such constraints. A segment or patch of an image has been selected. The user 

deforms this segment/patch by moving a set of constraint points within the segment. 

We hope to compute a natural deformation of this segment to align the specified 

positions of the constraint points. Simultaneously, we expect that such deformation 
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causes a fairly minor distortion as well, that is, deformation is close to isometric. The 

challenging issue is to seek a tradeoff between the positional constraints and as-rigid-

as possible deformation. We presented a topology preserved shape deformation 

algorithm accordingly. The major contributions include, 

• Consistency of deformation fields. Unlike the previous approaches, we do 

not directly solve 2D shape and image deformation as a global optimal problem with 

constraints, but first convert the deformation into vector fields taking into account 

the specified positional constraints. Then, the deformation field is further 

reconstructed from a feasible subspace maintaining vector field consistency. This 

can effectively overcome the foldover challenge. 

• As-Rigid-As-Possible Deformation. We incorporate with the consideration of 

as As-Rigid-As-Possible deformation in our implementation. This can effectively 

reduce distortion caused by deformation. 

The related work has been published in, 

• Yu, Hongchuan and Zhang, Jian J., 2012, Topology preserved shape deformation, 
The Visual Computer Journal, Vol.28, No.6-8, pp.849-858. 

 

1.3.3 WELL-SHAPED AND WELL-SPACED MESH 

 

This essentially requests a suitable boundary mapping to reduce distortion caused 

by parameterizations. The emphasis is the rigid constraint instead of the internal 

positional constraints. The rigid constraint is usually requested by various mesh 

editing systems. Consider such a map between two surfaces that allows transferring 

the details from one model to another, or interpolating the shape and appearance of 
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the two models. In this application, overlapping the two 2D parameterizations for 

matching is the foundation. Unfortunately, the current 2D parameterization 

approaches inevitably incur large distortion except the developable surfaces. Recent 

works [Gu et al. 2002, Guskov et al. 2000, and Lee et al. 2000] indicate that the 

small mesh with rectangle, triangle or circle-like and smooth boundaries is easy to 

flatten. Moreover, the well-spaced and well-shaped meshes distribute samples more 

uniformly over the surface and hence better capture surface features. In other words, 

the meshes need to be pre-processed for low-distortion parameterizations. Following 

this issue, we develop two pre-processing procedures for that we would like in our 

application of skin sliding. The main contributions of our work include, 

• Partitioning a whole mesh into a set of patches. Moreover, the boundaries of 

the patches are becoming smooth by a further refinement procedure; 

• Mesh smoothing. We present a new approach to smooth meshes while 

preserving their intrinsic features. The resulting meshes remain well-shaped and 

well-spaced. 

The related work has been submitted to, 

• Yu, Hongchuan, Yang, Xiaosong and Zhang, Jian J., Laplacian Editing For Skin 
Sliding, submitted to Computer Graphics Forum Journal. 

 

1.4 THESIS OVERVIEW 

 

The rest of this thesis is organized in the following six chapters: 

• Chapter 2 gives a detailed literature review of the related works. 
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• Chapter 3 addresses the issue of the positional constraints in surface 

parameterization. In this chapter, this foldover problem is addressed by developing 

the radial basis function (RBF)-based re-parameterization. Given initial 2D 

embedding of a 3D surface, the proposed method can re-parameterize 2D embedding 

into a foldover-free 2D mesh, satisfying a set of user-specified constraint points. In 

addition, this approach is mesh-free. Therefore, generating smooth texture mapping 

results is possible without extra smoothing optimization. 

• Chapter 4 further addresses the generalization of the proposed RBF-based re-

parameterization approach to high dimensional datasets rather than 2D parametric 

domain. We further apply the generalized approach to 3D brain volume dataset 

deformation and 3D polyhedral deformation. 

• Chapter 5 still addresses the positional constraints in 2D parameterization. 

Unlike Chapter 3 and 4, there is an additional constraint to be taken into account here, 

that is, rigid constraint. The main problem in the proposed RBF-based re-

parameterization method and its extension in Chapter 3 and 4 is that they have 

infinite support. This implies that any local deformation could result in small 

distortions over the whole image domain. Our 2D shape and image deformation 

application requests the resulting distortion as small as possible. Thus, this is indeed 

to seek a tradeoff of the positional constraints and as-rigid-as-possible deformation. 

• Chapter 6 addresses the pre-processing for 2D low-distortion 

parameterizations, that is, mesh partition and smoothing. This is because well-spaced 

and well-shaped meshes suffer small distortion in 2D parameterization. The 

application is the skin sliding that simulates the skin moving over underlying layers 

of fat, muscle and bone. Skin sliding, as a secondary animation technique, brings 

about extra realism to character animation. The physically based skin sliding 
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approaches usually suffer from inherent computational complications. To avoid this 

numerical challenge, some interpolation techniques are applied to the 

implementation of skin sliding. However, there are many deficiencies in practice, e.g. 

missing out features of skin surface and smoothness issue etc., which greatly reduce 

a realistic appearance. Essentially, skin sliding assumes that the shape can be 

preserved and the features of skin surface can be transferred to the target mesh. We 

focus on these two aspects and further reformulate the implementation of skin sliding 

based on the graph Laplacian framework, which helps our proposed algorithm to 

implement the mesh partition, shape and feature preservation. The elements worth 

mentioning include the mesh partition and mesh smoothing. The former is a new 

application of the active research issue: mesh segmentation. The novelty of our 

method is to automatically extract the skinning regions and further smooth the 

partition boundaries. The latter is a new method for mesh smoothing. 

• Chapter 7 summarizes our research work presented in this thesis, and further 

gives out our future works. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

 

 

 

 

Surface parameterization was first introduced into computer graphics as a method 

of texture mapping [Bennis et al. 1991], which has been becoming a vital tool for 

many graphics applications in the last decade. Parameterization not only refers to 

mapping a surface into a plane domain, but it is also requested to map the surface 

into some 3D simplex, such as spheres. Floater et al. [Floater and Hormann 2005] 

and Sheffer et al. [Sheffer et al. 2006] have given the detailed surveys on this topic 

respectively. From the viewpoint of users, this chapter surveys the applications 

which benefit from surface parameterization. 

 

2.1 TEXTURE MAPS 
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Texture map is usually expected to enrich the appearance of a model in a static 

image. The challenging problem is computing texture coordinates to satisfy user-

specified correspondence between the 3D model and texture image. However, this 

has not been given much consideration in literature. Few studies have been 

conducted on meeting soft constraints [Levy and Mallet 1998, Cabral et al. 2009] 

(i.e., to satisfy the positional constraints approximately). Levy [Levy 2001] and 

Desbrun et al. [Desbrun et al. 2002] proposed a least-squares system and Lagrange 

multipliers as solutions, respectively. The basic idea can be simply described as 

follows, 

( ) ∫∑
Ω=










∂
∂

+
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22

2

2

1

2)()( λ ,                   (2.1) 

where T is a function representing a surface, jX  denotes a set of m constraint points 

that are passed through by the surface T(U), and these constraint points are 

associated with the parameter-space points jU . Minimizing the above functional 

yields a suitable mapping T from the parameter space to the surface. The first term 

represents the squared deviation at the constraint points and the second term enforces 

the smoothness of the solution. The resulting solution may be a compromise between 

the accuracy of the fitting and the smoothness of the solution. The given constraints 

are therefore called as “soft constraints”. However, these two methods fail to 

guarantee a bijective embedding. Zhang et al. [Zhang et al. 2005] focused on a 

special case (i.e., deforming a patch by stretching its boundary). Occurrence of 

foldovers when internal positional constraints are added in the original patch, and 

whether these can converge to the expected positions, were not clearly stated. 

In contrast, hard constraints were studied in [Kraevoy et al. 2003 and Eckstein et 

al. 2001] because a perfect texture alignment is essential at certain delicate areas of a 
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mesh. Eckstein et al. [Eckstein et al. 2001] proposed a constrained simplification to 

align constraints, adding Steiner vertices to avoid foldovers. Theoretically, although 

the above method can handle large sets of constraints, it is extremely complicated 

and not very robust [Kraevoy et al. 2003]. In addition, only simple examples were 

shown in [Eckstein et al. 2001]. Thus, whether the above method can handle more 

complicated constraints is not clear. Kraevoy et al. [Kraevoy et al. 2003] and Lee et 

al. [Lee et al. 2008] performed embedding by adding a fixed rectangular virtual 

boundary, after which the Delaunay method was applied to triangulate the region 

between true and virtual boundaries. After aligning user-specified hard constraints, 

the embedding is usually highly distorted. Therefore, a post-smoothing procedure is 

required to reduce the distortion, adding to computation costs. To avoid triangle 

foldovers, swapping edge is applied here. Figure 2-1 illustrates the idea of swapping 

edge [Lee et al. 2008]. When the vertex v moves to αv  as shown in Fig 2-1a, the 

shaded triangles will be degenerated. Firstly, we can swap the edge 4vq  with 53qq  to 

the triangle 43qvq∆ . Then, we swap the edge 3vq  with 52qq  to remove the triangle 

32qvq∆ . After that, swapping the edge 7vq  with 86qq  to remove the triangle 87qvq∆ , 

all of the potential folodover triangles are removed. 

Kraevoy et al. [Kraevoy et al. 2003] failed to completely remove foldovers 

because the consistent neighboring ordering was not considered in finding matching 

triangulations. Fujimura et al. [Fujimura and Makarov 1998] presented an image-

warping method. To satisfy positional constraints, the Delaunay triangulation and 

edge swaps were repeatedly used in their work to avoid foldovers. However, edge 

swaps can damage the geometric surface when used to texture map a 3D mesh, as 

discussed in [Eckstein et al. 2001]. 
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Figure 2-1. Illustration of swapping edge. 

 

Tang et al. [Tang et al. 2003] and Lee et al. [Lee and Huang 2003] proposed an 

RBF-based parameterization method. However, neither method mentioned the 

foldover challenge. Tiddeman et al. [Tiddeman et al. 2001] applied the condition of 

positive Jacobian determinant to remove foldovers in their image warping 

application. This condition is well known in differential geometry to ensure one-to-

one mapping [Meisters and Olech 1963]. The method starts from an initial dense 

mapping that is likely to contain foldovers. Foldovers are then removed by 

iteratively scaling the given mapping. However, dense mapping is difficult to 

establish beforehand. Moreover, the primary deficiency of this method is that the 

convergence cannot be guaranteed. In a given discrete setting, scaling a given dense 

mapping usually results in iterative step-length towards zero quickly, as admitted by 

the authors. In a few extreme cases, the method cannot satisfy the specified 

positional constraints. 

 

2.2 TEXTURE SYNTHESIS 
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Texture synthesis refers to creating texture over an arbitrary surface mesh using a 

given 2D texture element, which is usually in the form of an image or a patch. For 

simplicity, we can synthesize the texture directly on a 2D parameterization in terms 

of the given exemplar texture instead of overlapping with a whole texture image. To 

distinguish from solid textures, we use the term of surface texture to describe such 

geometry-influenced textures here. The type of texture can be quite varied, e.g. the 

natural examples of surface texture including the pattern of bark on a tree, spots and 

stripes of horses, fishes and birds etc., and the patterns of flowers and trees on a 

hillside.  

 
Figure 2-2. Illustration of texture synthesis. 
 

The current techniques for texture synthesis on surfaces can be roughly 

categorized into two groups. The first group [Gorla et al. 2001, Tong et al. 2002, 

Zhang et al. 2003, and Ashikhmin 2001] is based on per-pixel nonparametric 

sampling. [Heeger et al. 1995] utilizes the image pyramid strategy to capture the 

statistical properties of the exemplar image at different levels of resolution. 
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Initializing the synthesized texture by random noise, each level of the synthesized 

pyramid will converge to the appearance of the corresponding exemplar image 

pyramid by using Histogram matching operator iteratively. However, this approach 

usually works well on stochastic textures while is not suitable for the structured 

exemplar texture. The relationship between pixel color and its spatial neighborhood 

is another research focus of this group. In [Efros et al. 1999], each pixel of the 

exemplar texture is first modeled by its neighborhood kernel. Then, each pixel in the 

target image is substituted one by one with the one that has the most similar neighbor 

in the exemplar texture. [Wei and Levoy 2000] further extends this method in the 

following aspects, implementing multi-resolution by using Gaussian pyramids, and 

modifying the original neighborhood matching to the order-dependent matching. The 

basic idea is illustrated in Figure 2-2. Pixels are generated in scanline order. Thus, 

each pixel maintains their individual L-shaped neighborhood. The value of a pixel is 

determined by choosing the best pixel in the input image. Best pixel is the one whose 

L-shaped neighborhood most closely resembles the neighborhood of the pixel 

currently being synthesized in the output image plane. 

The disadvantage of this group is that per-pixel sampling is susceptible too much. 

This is because the used L2-norm is poor to perceptual similarity. As a result, it is 

difficult for the algorithms in this group to maintain texture patterns with certain 

types [Zhang et al. 2003, Ashikhmin 2001]. 

The second group refers to the patch based methods [Efros and Freeman2001, 

Praun et al. 2000]. Roughly speaking, this kind of algorithms is namely to copy and 

paste image patches repeatedly to fill the target image. [Efros and Freeman 2001] 

makes use of the overlap region between adjacent patches to appropriately quilt them, 

so that these patches all fit together. The patch is selected from a set of candidates 
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according to an overlap error minimization. To speed up this algorithm, [Kwatra et al. 

2003] solves the error minimization problem using a graph-cut algorithm. Moreover, 

[Kwatra et al. 2005] presents a global optimization framework to synthesize a new 

texture. It essentially minimizes an energy function that considers all the pixels 

together. The energy function measures the similarity to the exemplar texture. To 

hide patch seams and enhance the smoothness across the seams, this kind of 

algorithms also performs graphcut on surfaces. 

Additionally, users always interactively select the exemplar texture for the 

different regions of a surface separately in practice, i.e. cutting a patch for texture 

synthesis and then pasting it back. The potential challenges include, surface partition, 

mesh remeshing and seamless embedding. This essentially requires a pre-processing 

on the input meshes before the following parameterization procedure. 

 

2.3 IMAGE WARPING/DEFORMATION 

 

We first mention the medical imaging, since the use of medical imaging has been 

rapidly increasing in recent years. Image registration is indeed one of the kernel 

techniques in medical imaging. Medical image data usually refers to computed 

tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron 

emission tomography (PET) and single photon emission computed tomography 

(SPECT). For visualization and pathology analysis purposes, such image datasets are 

usually required to align to a specified template or vice versa, i.e. to establish a 

bijective mapping between images. Such mapping is called as image registration. 

The ideal registration method should include local as well as global deformation, that 
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is, fully affine and elastic deformation. The usual constraints are the positional 

constraints (also called as landmarks). 

Roughly speaking, image registration can be classified into two categories, PDEs 

based approaches and parametric model based ones. In the first category, image 

registration is usually found by solving a nonlinear PDE system. For example, brain 

tissues are regarded as a linear elastic or viscous fluid that is subject to a constrained 

deformation [Karacali and Davatzikos 2004, Haber and Modersitzki 2007, Beg et al. 

2005]. The basic idea is namely to find a smooth transformation T by minimizing the 

following functional, 

3or  2,,)()))((,()( 10 =∈+= dRXTSXTIIDTE dα ,            (2.2) 

where 0I  and 1I  are the given images and α is a regularization parameter and 

compromises between similarity and regularity. The functional D measures the 

distance between 0I  and 1I  in terms of the sum of squares difference, i.e., 

2
1010 )())(,( TIITIID −= .                                                       (2.3) 

The regularization term is usually expected to yield a smooth and unique 

transformation T. It can be implemented by the elastic regularization as below, 

2
2

2

1)( TTTS
j

j ⋅∇+∇= ∑ ββ ,                                               (2.4) 

where 1β  and 2β  are the so-called Lame-constants. Moreover, for the large 

deformation scenarios, it is hard to prevent foldovers based on the above-mentioned 

functional. To deal with this challenge, Jacobian constraint is requested in many 

algorithms, that is, 

( ) XTITC d  allfor ,det)(0 ∞<∇+=< ,                                 (2.5) 
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where dI  denotes an identity Matrix. As a result, the functional is rewritten as, 

( ) 2
10 1)()()(,)( −++= TCTSTIIDTE γα .                (2.6) 

The second category is to model the registration by a parametric function with a 

set of the undetermined parameters. Usually the mapping is known continuously and 

the resolution of the mapping can be controlled independently of the image 

resolution. [Kybic and Unser 2003] introduced B-splines to model the image 

registration. As the usual PDEs based registration, they added a penalization term as 

the regularization term. [Sorzano et al. 2005] further evaluated the efficiency of 

[Kybic and Unser 2003] and showed that B-splines were a good alternative 

compared to other parameterization, such as wavelet or Fourier representation. In 

[Rohlfing et al. 2003], the penalization term is defined as the absolute value of the 

log of the Jacobian of the deformation or the square of the second derivative for each 

voxel. They used finite differences to compute the gradient of the Jacobian term. 

Due to computational complexity, [Musse et al. 2001] suggested a block nonlinear 

Gauss-Seidel algorithm to minimize the energy between the images with the 

constraint that the Jacobian was continuously positive. We hope to point out that the 

constraints on the Jacobian are also the foldover-free constraint described in this 

thesis. 

Then, we summarize the some recent image warping applications as well. Image 

resizing is used to stretch-and-squeeze image so as to fit different display devices. 

The salient image regions should remain unchanged or have a minimal distortion. 

Video retargeting further extends the image resizing techniques to a video display. 

Like the other image warping or morphing applications [Fujimura and Makarov 

1998, Tiddeman et al. 2001, Weber et al. 2009], the challenges include pixel overlap, 
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jagged and blurred edges. Many current interpolation techniques, e.g. bilinear and 

bicubic interpolation, can effectively amend the issue of edge smoothness. However, 

to the best of my knowledge, pixel overlap (i.e. non-bijective warping) is still an 

unsolved problem. I therefore focus on this challenge in this thesis. Additionally, 

image or video frame are usually viewed as the quadrangle meshes that are initially a 

grid of axis-aligned squares. Pixel overlap can be viewed as triangle/quad flipping. It 

is called the triangle/mesh foldover. Compared to triangle meshes, it is hard to 

formulate this challenge by using quadrangle meshes. 

 

2.4 MESH EDITING 

 

Shape deformation or interpolation is an important research topic in Computer 

graphics. A number of current shape deformation approaches focus on the As-Rigid-

As-Possible techniques [Igarashi et al. 2005] that computes a natural shape 

deformation. This idea is further extended to 3D mesh deformation [Alexa et al. 

2000] and 3D mesh parameterization [Sorkine and Alexa 2007, Liu et al. 2008]. It is 

interesting that they both adopted an alternating least squares scheme (i.e. known as 

local/global algorithm) to approximate the As-Rigid-As-Possible deformation. In the 

local step, to measure the rigidity of a deformed mesh, we have the following 

functional, 

( ) ( )∑ ∑
= ∈

−−′−′=′
n

i iNj
jiijiiji ppRppwwSE

1 )(

2
)( ,                           (2.7) 

where iw  and ijw  are some fixed cell and edge weights, S ′  denotes a deformation of 

the mesh S and iR  denotes a rotation of some cell. For one cell, the optimal rotation 
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iR  bring about rigid deformation instead of any non-rigid ones. Within the 

neighborhood of some vertex, we have the following linear system by minimizing 

the above functional, 

( ) ( )( )∑∑
∈∈

−+=′−′
)()( 2iNj

jiji
ij

iNj
jiij ppRR

w
ppw .                            (2.8) 

In the global step, applying the discrete Laplace-Beltrami here yields the following 

linear system, 

bp =′L ,                                                                                     (2.9) 

where vector p′  contains the unknown coordinates of the vertices, and the constraint 

vertices can be concatenated to the parameter matrix L and vector b. This 

local/global scheme can be applied to 2D meshes as well [Karni et al. 2009]. Other 

approaches, such as [Weng et al. 2005], cast deformation as an energy minimization 

problem. Detail-preserving and positional constraints are added into the energy 

functional as constraint terms. The distinct advantage of the former is to easily add 

the constraints to each triangle by solving a local optimization problem. However, 

regardless of global optimization or local/global schemes, foldovers of the 

underlying mesh have not been overcome yet. [Karni et al. 2009] suggested to 

explicitly restricting the local step to avoid it, while [Wang et al. 2008] proposed to 

prevent it in a heuristic manner. For 3D scenarios, foldovers usually take place at 

skinny triangles. Numerical instability caused by skinny triangles is essentially from 

triangle reflection. 

Moreover, mesh editing benefits from the local parameterization between pairs of 

mesh patches as well. Usually, one can locally parameterize the regions of interest 

(ROI) on the two models in a 2D domain and then overlap the 2D parameterizations. 
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The cut-and-paste transfer presented in [Biermann et al. 2002] can effectively 

transfer the details between models using local parameterization. [Sorkine et al. 2004, 

Levy 2003] also used the local parameterization for mesh composition in a similar 

manner. They first overlapped the 2D parameterizations of ROIs to yield a mapping 

and then made use of it for extracting and smoothly blending shape from the two 

models. In such applications, there are no any positional constraints in 2D 

parameterizations except the fixed boundaries. However, for more precise controls, it 

is natural to add some internal positional constraints. This will lead to the 

challenging issue of triangle foldovers again. 

 

2.5 MESH COMPLETION AND COMPRESSION 

 

Triangulation on range data usually result in a mesh containing holes and multiple 

components. [Levy 2003] extracted the hole boundaries using 2D parameterization 

and triangulated those. To a set of patches, we have to build a model by registration. 

In many cases, there exists prior knowledge on the overall shape of the scanned 

model. For example, for human scan, a generic human shape model is readily 

available. [Allen et al. 2003, Anguelov et al. 2005] respectively used this prior model 

to facilitate completion of scans. They calculated a mapping between the scan and 

the prior human model. Moreover, [Kraevoy and Sheffer 2005] presented a general 

and robust template based approach for completion of any type of scans. They fixed 

the boundary of a group of base mesh faces, updated the barycentric coordinates in 

the interior, and then possibly re-assigned some vertices to different faces inside the 

group. 
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While keeping the mesh completion, mesh compression is used to compactly 

store geometry models [Alliez and Gotsman 2003]. Compression rate is inversely 

proportional to the data entropy. When meshes are regular in both topology and 

geometry, the compression rates are higher. Topological regularity usually refers to 

meshes where almost all vertices have the same degree. Geometry regularity refers 

to meshes where almost all the triangles are similar to each other in terms of shape 

and size, and vertices are close to the centroid of their neighbors [Gu et al. 2002, 

Hoppe and Praun 2005]. Such meshes can be obtained by parameterizing the original 

mesh and remeshing them [Guskov et al. 2000, Khodakovsky et al. 2003]. 
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CHAPTER 3 

RBF-BASED RE-PARAMETERIZATION METHOD 

FOR CONSTRAINED TEXTURE MAPPING 

 

 

 

 

 

 

3.1 PROBLEM FORMULATION 

 

3.1.1 BASIC IDEA AND MOTIVATION 

 

This chapter addresses the surface re-parameterization with the positional 

constraints. The challenging is to overcome the triangle foldovers in mesh 

parameterizations. The overview of the proposed algorithm is as follows. An input 

3D surface is first embedded into a 2D convex domain with harmonic mapping [Guo 

et al. 2005]. A mathematical foldover-free condition (see Section 3.2) is derived, and 

incorporated into an RBF-based reparameterization algorithm. The algorithm then 

iteratively aligns user-specified positional constraints. The main idea is to first 

estimate the iterative step length (i.e., scaling factor) subject to the foldover-free 



 

25 
 

condition, and then to successively approximate the desired positions through RBF-

based deformation. In short, RBF is used to iteratively deform the 2D mesh to align 

user-specified constraints. With the foldover-free condition at each iterative step, the 

deformation is prevented from being over-aggressive (i.e., to induce foldovers). Due 

to more mathematic computations, we first describe the proposed RBF-based re-

parameterization method briefly, and then separately address the each step in details 

in the following sections. 

 

3.1.2 ITERATIVE RBF-BASED REPARAMETERIZATION PROCEDURE 

 

For a given 2D mesh embedding S of 2R , a transformation T is a one-to-one 

mapping of points X∈S onto another 2D parametric domain U∈Ω of 2R , with 

arbitrary m constraint point pairs ( )* *
i iX U↔ : 

* *

( , ) ( ) ( ( ), ( ))
:

subject to ( ) , 1,...,

T T

i i

X x y S U X u X v X
T

U X U i m
 = ∈ → = ∈Ω


= =
.                                    (3.1) 

The reparameterization algorithm is developed based on the RBF scheme. RBF 

ensures a smooth final parameterization due to its numerous excellent properties, 

such as being mesh-free and C2 continuity. Moreover, the most important advantage 

is the suitability of RBF for implementation in a successive approximation. This can 

smoothly deform S to align user-specified constraints, as demonstrated later. The 

RBF-based method is reinforced with the proposed foldover-free condition to 

appropriately control the displacement of X∈S at each iteration. The displacement of 

each point coordinate is computed with the RBF scheme to implement successive 

approximation: 
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( ) ( )
m

i i
i

U P X X Cφ∆ = + −∑λ                                                              (3.2) 

where the coefficient ( ),
Ti i

i u vλ λ=λ  is a vector, ( ),
Ti i

i x yC c c=  denotes the constraint 

points, ( ), TU u v∆ = ∆ ∆ , and P(X) is an affine transformation 

31 2

31 2

( )
aa a

P X X
bb b
  

= +   
   

. Although various radial basis functions exist, thin plate 

spline (i.e., 2( ) lnr r rφ = ) is adopted for its simplicity. The deformed U is obtained 

by updating U(X) = X + ΔU. For the next iteration, let X←U(X). 

The following pseudocode gives an overview of the reparameterization algorithm. 

The algorithm is executed iteratively; the superscript j stands for the iteration index. 

Let the initial 2D mesh embedding be (0)S , a set of user-specified constraint point 

pairs be ( )(0) (*), , 1,...,i iC C i m= , on S and U. *
iC  denotes the final constraint points 

whereas ( )j
iC  is the updated point per iteration. 

Loop: 
(1) Estimate the scaling factor δ by Eq.3.14 (see Section 3.2.2) based on the 
configuration of the current m constraint points ( )j

iC ; 
(2) Compute the current m constraint point displacements by ( ))(*)1( j

ii
j

i CCC −=∆ + δ , 
such that ( 1) ( 1)j j j

i i iC C C+ += + ∆ ; 
(3) If thresholdδ δ< , apply triangle subdivision (see Section 3.3) then go to Step (1); 
otherwise, 
(4) Compute the displacements of the points on ( )jS  by Eq.3.7 (see Section 
3.2.2) based on all m updated ( 1)j

iC +  and updating ( ) ( 1)j jS S +→ ; 
Repeat until ( ) *j

i iC C= . 

In this procedure, *
iC  denotes the desired positions. Initially, if *

iC is applied to 

directly deform S in Equation 3.2, the result is usually too aggressive and foldovers 

may occur. Therefore, in Step (1), a conservative scaling factor δ needs to be 

computed and used to ensure that ( 1)j
iC +  is not over-aggressive. Note that the 

iterative RBF-based reparameterization procedure can definitely change mesh S to a 
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foldover-free state. However, the final positions may not align exactly with the 

constraints *
iC  in some extreme scenarios. This implies that the method is only able 

to handle soft constraints. To alleviate this problem (i.e., to approximate hard 

constraints as much as possible), the mesh in Step (3) is subdivided by adding extra 

Steiner vertices. For more details, see Section 3.3. 

 

3.2 ITERATIVE MECHANISM 

 

3.2.1 FOLDOVER-FREE CONDITION 

 

From a mathematical perspective, a “foldover-free” parameterization yields a 

“one-to-one” mapping between corresponding surfaces (or meshes) and parametric 

domains. In the present work, the initial 2D embedding of a 3D surface is given in 

advance. Focus is given on deforming this initial embedding with a set of internal 

constraint point pairs. This requires that the mapping T is globally univalent or 

“globally one-to-one” (i.e., the topology or the relationship between any pair of 

vertices in the mesh should remain unchanged before and after parameterization). 

Mathematically, this means the determinant of the Jacobian matrix must always be 

positive [Meisters and Olech 1963]: 

det( ) 0U∇ > .                                                        (3.3) 

According to the Gerschgorin circle theorem [26], a sufficient condition of 

satisfying Eq.3.3 can be described as follows: 
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u u
x y
v v
y x

∂ ∂
>∂ ∂


∂ ∂ >∂ ∂

.                                                           (3.4) 

This is usually called as the foldover-free condition. The geometric meaning of 

Eq.3.4 is simply that the two vectors ( , ) , ( , )u x y v x y∂ ∂ ∂ ∂  are linearly independent 

of each other; thus, their included angle is less than π. The former is easy to 

understand. The latter implies that the right-hand rule in vector calculus is satisfied 

over the entire domain. Holding det(∇U) < 0 at any point would result in left-

handedness instead of right-handedness. This change would cause mesh foldover. 

 

3.2.2 ITERATIVE STEP-LENGTH ESTIMATION 

 

Our reparameterization algorithm employs an iterative framework and the 

displacements of vertices are estimated considering the condition of Eq.3.4. Equation 

3.2 must be rewritten to implement the procedure, such that the displacements of 

some points linearly depend on the constrained points. This implies that deformation 

the mesh is achieved by adjusting the displacements of the constrained points in an 

iterative manner. A further expectation is that foldovers will be avoided by 

controlling the displacement of the constrained points in each iteration. 

The RBF coefficients ( , , , )u vλ λ a b  of Eq.3.2 are first computed, where 

1 2 3( , , )Ta a a=a  and 1 2 3( , , )Tb b b=b . For a given set of constrained points and their 

displacements, this can be achieved by solving the following linear system: 
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 and 
0 0

u c v cK K
∆ ∆       

= =       
       

λ x λ y
a b

,                                                  (3.5) 

where 
0T

P
K

P
ϕ 

=  
 

, ( )ij i jC Cϕ ϕ= − , and P contains the constrained points 

coordinates (i.e., 1,, yx cc ) and the vectors ,c c∆ ∆x y  hold the displacements of the 

constraint points as ( ) ( )1 1,..., , ,...,
T Tm m

c x x c y yc c c c∆ = ∆ ∆ ∆ = ∆ ∆x y . This can be 

expressed as follows: 

1

0 0
u v c cK − ∆ ∆   

=   
   

λ λ x y
a b

.                                                 (3.6) 

(For a detailed RBF computation, refer to [Carr et al. 2001].) 

Substituting ( , , , )u vλ λ a b  into Eq.3.2, the new expression is as follows: 

( )

1

1

1

( )
0

( )
0

( ) ( ),..., ( ), , ,1

c

c

m

u X K

v X K

X X C X C x yφ φ

−

−

 ∆ 
∆ =  
  


∆ ∆ =    
= − −

x
M

y
M

M

.                       (3.7) 

Note that Equation 3.7 describes a linear system of the displacement of any X (i.e. 

,u v∆ ∆ ) and of the constraint points (i.e. ,c c∆ ∆x y ). Whether or not the resulting 

mesh satisfies the condition of Eq.3.4 should depend on the configuration of the 

current constraint points [i.e., M(X) and 1K − ], rather than their displacements, 

,c c∆ ∆x y . Moreover, during iterations, M(X) and 1K −  are unfixed and depend on the 

configuration of the current constraint points. Hence, M(X) and 1K −  are given focus. 

The derivatives of ( , ) ( , )u v x y∂ ∂  are computed as follows: 
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1

1

1

1

1
0

0

0

1
0

c
x

c
y

c
x

c
y

u K
x

u K
y

v K
x

v K
y

−

−

−

−

 ∆ ∂
= +  ∂  

 ∆ ∂ =  ∂  


∆ ∂ =  ∂  
∆  ∂

= +  ∂  

x
M

x
M

y
M

y
M

                                                           (3.8) 

where (or )x yM M  denotes the partial derivatives of M(X). 

Substituting the above derivatives into Eq.3.4 yields 

1 1

1 1

1
0 0

1
0 0

c c
x y

c c
y x

K K

K K

− −

− −

 ∆ ∆   
+ >    

   


∆ ∆    + >       

x x
M M

y y
M M

.                                        (3.9) 

In general, the displacement vectors of the constraint points ( ),
Ti i

x yc c∆ ∆  can be 

obtained by the differences of the current constraint points’ coordinates and their 

individual targets’ coordinates. To satisfy the above inequalities, we may limit the 

length of each displacement vector by scaling the vectors cc yx ∆∆ ,  as follows, 

1 1

1 1

1
0 0

1
0 0

c c
x y

c c
y x

K K

K K

δ δ

δ δ

− −

− −

 ∆ ∆   
+ >    

   


∆ ∆    + >       

x x
M M

y y
M M

,                                   (3.10) 

where, δ denotes a scaling factor and δ>0. 

The regions defined by the above inequalities can be further described as follows: 
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1 1
1

1 1
2

( ) (1 , ) : , ,1
0 0

( ) ( ,1 ) : , ,1
0 0

c c
x y

c c
x y

K K

K K

δ α β α δ β δ α β

δ α β α δ β δ β α

− −

− −

  ∆ ∆    Ω = + ≤ ≤ + >     
      


 ∆ ∆     Ω = + ≤ ≤ + >    

     

x x
M M

y y
M M

        

(3.11) 

where (α,β) denotes a point in Ω. Figure 3-2 illustrates the regions )(),( 21 δδ ΩΩ . The 

scaling factor δ is not a constant, and depends on the displacements of the constraint 

points. Thus, the dashed line is used to highlight these undetermined boundaries. 

 

 

 

 

 

 

 

 

 

 

The Eq.3.4 condition implies that vectors ( , ) , ( , )u x y v x y∂ ∂ ∂ ∂  should be 

linearly independent of each other. Figure 3-2 intuitively illustrates this concept by 

the five lines: 1 2 3 4 5, , , ,l l l l l . For example, α and β should be above the line 3l  or under 

the ine 4l  and above the line 5l , so that the linear independence can be guaranteed. 

This can be achieved by the scaling factor in Eq.3.11. Moreover, for simplicity, 
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                                                                l3 
                                     Ω1  
 
              l2 
                                         1 
                                                                                          l4 
                l1 
      l5 
 
                                                                                Ω2 
                                                                                                   α 
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                                              -1 
 
 
 
Figure 3-2. Illustration of the condition of Eq.3.4. The dashed lines denote the undetermined 
boundaries  
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would then have the same size in terms of Eq.3.11. This will lead to the overlap of 

straight lines 1 2 and l l  and form a new dividing line, which is α+β=0 in Fig.3-2. Line 

α+β=0 guarantees the included angle is less than π. Consequently, the condition of 

Eq.3.4 can be re-expressed as 

2 2

1 2 1 2

2 2

1 2 1 2

1
0 0 2

1
0 0 2

c c
x y

c c
x y

K K

K K

δ δ

δ δ

− −

− −

 ∆ ∆       + ≤      
       


∆ ∆       
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x x
M M

y y
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.                                           (3.12) 

Notice that the possible values of ( , ) (or ( , ))u x y v x y∂ ∂ ∂ ∂  are assumed to be 

evenly distributed around the center of (1, 0) and (0, 1). This is because of various 

possible configurations of the constraint points (e.g. 1, ,x y K −M M ). Hence, circles 

are employed to estimate the domains of ( , )  and ( , )u x y v x y∂ ∂ ∂ ∂ . 

To satisfy the above inequalities, let 
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Therefore, the scaling factor is estimated as, 

min ( )
X S

Xδ δ
∈

= ,                                                                                                (3.14) 

where, 
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for all vertices X of S. Note that the vectors ,c c∆ ∆x y  are the differences of the 

current constraint points’ positions and their individual tragets’ positions. Scaling 

factor δ depends on the configuration of the current constraint points. For any 

constraint point iC , its displacement needs to be scaled by δ in an iterative way so as 

to approximate its target *
iC . The configuration of all the current constraint points 

may be defined as the current state of the mesh. When the constraint points’ 

positions are updated, the state is changed accordingly as well. Thus, δ can further be 

viewed as the iterative step length of updating state of the mesh. 

Our iterative scheme for constrained texture mapping has been outlined. The 

iterative step length is adaptively estimated by the current constraint point 

configuration. Before proceeding further, the iterative step length δ of Eq.3.14 is 

taken as an estimate of the lower bound for our purpose of foldover-free 

reparameterization. The estimate of Eq.3.14 is sufficient [i.e., there may be an 

iterative step length δ beyond the estimate of Eq.3.14 to yield a foldover-free 

solution]. Note that scaling the displacements of the constraint points only eliminates 

all probable foldover cases in order to guarantee that the mesh topology is 

continually preserved. The goal of Eq.3.14 is to guarantee that the domain is 

completely foldover-free. Thus, Eq.3.14 only provides an estimate of the lower 

bound. 

An inevitable issue is the convergence of the proposed iterative process. To 

answer this issue, let us first give out a proposition, 
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Proposition: 

The algorithm proposed in section 3.1 converges to the desired positions. 

Before proceeding our proof, we need to define some notations. Our algorithm 

proposed in Section 3.3 is denoted as U = P(X), where P denotes the mapping from 

the mesh to the parameteric domain. Following the Banach fixed point theorem 

[Kirk and Khamsi 2001], we rewrite it as, X = P(X) – U + X, and denote it as X = 

A(X), where A is viewed as an operator. We expect that the constrained points X can 

converge to the desired positions *U  in the final deformed mesh. Thus, for the 

constrained points (note that X refers to the constrained points in this appendix), our 

algorithm is expressed as *( )X P X U X= − +  and once converged, it is expected 

that * *( )U A U= . 

Proof: 

Let Ω be a complete metric space, e.g. Euclidean space. Define the sequence { }iX , 

for 1X∀ ∈Ω , let 2 1 3 2( ), ( ),......X A X X A X= =  This means that the constrained points 

in our Algorithm might start from any initial locations. 

First consider ,X Y∀ ∈Ω . Let 0 1α≤ <  and d(.,.) denotes the metric function, e.g. 

Euclidean distance. Herein let ( )* *( , ) max ,d X Y X U Y U= − − . Our algorithm 

yields,
*

*

( )
( )

X P X U X
Y P Y U Y

 = − +


= − +
. Due to radial shrink toward *U , we have 

( ( ), ( )) ( , )d A X A Y d X Yα≤ . 

Then consider the sequence of { }iX . We have, 
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For any natural number k, we can further yield, 

1
1

1 2
1 2

1 2

( , ) ( , )

( ... ) ( , )

( , ) 0, ( )
1

k

n n k n i n i
i

n n n k

n

d X X d X X

d X X

d X X n

α α α

α
α

+ + − +
=

− + −

≤

≤ + + +

≤ → →∞
−

∑
 

Thus, let n→∞, we have *
nX U→ , i.e. * *( )U A U= . 

Furthermore, consider the uniqueness of our algorithm. Suppose that another *Û  

exists and * *Û U≠ . Then we have, 

* * * * * * * *垐 垐0 ( , ) ( ( ), ( )) ( , ) ( , )d U U d A U A U d U U d U Uα< = ≤ < , 

which is contradiction. Proof ends. 

Remark 

A number of existing approaches [Kraevoy et al. 2003, Lee et al. 2008] have also 

been used to achieve a foldover-free solution by adding Steiner vertices and using 

edge-swap operations [Lee et al. 2008]. These are unlike our proposed method, 

which utilizes successive approximation. Compared to the previous approaches, our 

proposed method can generate a smooth solution without the need for postprocessing. 

In addition, because of the continuity of the RBF function, it leads to smaller 

distortion during reparameterization. These advantages over other methods are 

further illustrated in the experiment section. 
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3.3 TRIANGLE SUBDIVISION 

 

In general, the proposed RBF-based reparameterization can effectively generate a 

continuous deformation to match positional constraints exactly. However, for 

extreme scenarios with large deformation, Eq.3.2, together with the estimate of 

Eq.3.14, may not always converge the mesh to the most ideal position. Looking at 

Fig.3-3 for example, two constraint points are to be swapped while the other two 

points are fixed. Without triangle subdivision, although the scheme of Eqs.3.2 and 

3.14 ensure that the mesh will converge to a foldover-free state (see Fig.3-3b), the 

position is not ideal. This is a deficiency of our proposed scheme in Eqs.3.2 and 

3.14. 

New vertices should be added by subdividing the triangles to circumvent this 

issue. This step is similar to that presented in [Kraevoy et al. 2003, Lee et al. 2008], 

in which extra Steiner vertices are added. The basic idea of the subdivision strategy 

in the present study is to first determine the potential folding vertices, and then to 

identify the edges that the vertices will most likely cross. Thus, the triangles sharing 

these edges can be subdivided by adding new vertices around the potential folding 

vertices. The underlying idea is very simple: to approximate the continuous implicit 

function (i.e. RBF) by local upsampling. More sampling points provide more 

freedom and the higher the probability that foldovers could be avoided. The iterative 

step lengths δ(X) is estimated with Eq.3.14 for all vertices, to determine the potential 

folding vertices when their δ(X)s are below an empirically selected threshold thresholdd . 

The approach is summarized as follows. Assume N selected folding vertices: 

Determining the Most Probable Edges 
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DO i = 1, N, 
(1) Extract the 1-ring of the selected vertex iv , then compute the probable 
location iv′  of iv  by Eq.3.7 (Section 4)** using 2–3 times the threshold thresholdδ  (i.e., 
multiplying the vectors  and c c∆ ∆x y  with 2  or 3threshold thresholdδ δ ; 
(2) Determine the 1-ring edge of iv  that intersects with line of i iv v′ . This edge is 
called the most probable edge for iv ; 
(3) Bisect the selected edge. The midpoint is then added to the mesh as a new 
vertex. 
END DO 
**Equation 3.7 is another expression of Eq.3.2 because Eq.3.7 offers a linear 
expression about the displacement of the current constraint points. 
 

3.4 EXPERIMENTS AND DISCUSSIONS 

 

In this section, the proposed method is applied to a number of examples to 

evaluate its validity, efficiency, and robustness. For simplicity, the 2D meshes are 

normalized in [0,1]×[0,1] domain, and the texture images are similarly normalized, 

regardless of the aspect ratio. Based on this normalization, the threshold used in the 

algorithm of Section 3.3 can be preset without further tuning. 

 

3.4.1 FOLDOVER 

 

Figure 3-1 shows the results produced using several established methods 

[Kraevoy et al. 2003, Tang et al. 2003, Sorkine and Cohen-Or 2004]. As shown in 

the figure, the methods are incapable of completely circumventing foldovers during 

the reparameterization process. The first experiment in the present study is to test the 

proposed method on the same head model in shown in Figure 3-1a for comparison 

purposed. The initial 2D mesh (i.e., embedding or parameterization) obtained by 

conventional harmonic mapping is shown in Fig.3-4a. Figure 3-4 shows the results 
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with different iterations of the RBF-based reparameterization. In Fig.3-4a, red stars 

mark the constraints that need to move to the points circled in white. No foldover 

triangles occur during the iterations; thus, the internal constraints are satisfied. Note 

that during the iterative reparameterization process, the boundary of the 2D 

parameterized mesh does not have to be fixed on the initial predefined convex 

domain. Readers are referred to the accompanying video (at 

http://nccastaff.bournemouth.ac.uk/jzhang/projects.htm). This distinct advantage 

offers more freedom than the other methods to reduce mesh distortion. 

a. 3D mesh  

b. 

 
c.  

d. 

 

e. 

 

f.  

Figure 3-1. Illustration of the foldover results using four recent parameterization methods, and 
considering internal constraints (Note: the mesh details can be seen more clearly by zooming in on the 
document): a) 3D mesh; b) least squares meshes [Sorkine and Cohen-Or 2004]; c) RBF-based 
embedding [Tang et al. 2003]; d) harmonic mapping [Guo et al. 2005, Floater and Hormann 2005]; e) 
Delauney triangulation-based mapping [Kraevoy et al. 2003] (the red lines mark the boundaries of the 
triangle patches within which there is no foldover; however, foldover triangles can be observed 
around the red lines.); and f) inset showing the details of distortion around the red line 

a.

 

b.

 

c.

 

Figure 3-4. Illustration of the iterative results of the proposed method: a) initial mesh with constraint 
point pairs; b) 3 iterations; and c) 5 iterations 

http://nccastaff.bournemouth.ac.uk/jzhang/projects.htm
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3.4.2 COMPARISON OF EXPERIMENTAL RESULTS 

 

The techniques proposed in Refs. [Kraevoy et al. 2003, Lee et al. 2008] represent 

state-of-the-art methods in texture mapping subject to hard constraints. [Lee et al. 

2008] experimentally showed that their method is able to handle challenging 

examples and generate satisfactory results. Therefore, in this chapter, the proposed 

algorithm is compared with the work of [Lee et al. 2008], tested on the same set of 

models. A further test was performed with a chessboard texture for smoothness 

comparison. A visual comparison shows that the smoothness of using the proposed 

approach is much better than that in [Lee et al. 2008] (Fig.3-5, fourth column). In 

particular, the areas of the constraint points are smoother with the proposed method. 

This is because the previous method [Lee et al. 2008] cannot ensure smoothness of 

deformation in such areas. As a result, no further postprocessing for smoothing is 

necessary in the implementation of the proposed algorithm. In [Kraevoy et al. 2003, 

Lee et al. 2008], this required postprocessing time usually takes much longer than 

that of the feature matching process, and becomes the bottleneck of the entire 

algorithm. However, their results are not very satisfactory without such 

postprocessing (Fig.3-5, second column). 

Moreover, to quantitatively study the distortion of reparameterization, the stretch 

metrics defined in [Sander et al. 2001] are used. The L-2 norm is used to measure the 

overall stretch of the parameterization, whereas the L-Inf measures the greatest 

stretch. Good parameterization is expected to have very small L-2 and L-Inf. These 

two metrics are used to measure distortion of all the examples in Fig.3-5 (see Table 
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3-1). The proposed approach performs significantly better in most cases than that of 

[Lee et al. 2008], even with their smoothing process. 

Furthermore, the proposed approach is capable of handling special models that 

have more than one border. Figure 3-6 shows an example of texture mapping the 

photograph of an orangutan onto a 3D human head model with three boundaries. 

This figure shows that the proposed method produces a very smooth 

parameterization while keeping the two interior boundaries (i.e., the eyes). Applying 

previous methods [Lee et al. 2008] to this example would usually require extra 

treatment, such as cutting it into several pieces to ensure each piece has no interior 

boundaries. The proposed approach is essentially a mesh-free method and does not 

need new any additional treatment. 
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Figure 3-5. Smoothness comparison. The 1st column shows the texture using the proposed approach. 
The 2nd column shows the results without the post-processing procedure [Lee et al. 2008]. The 3rd 
column shows the results with the post-processing procedure [Lee et al. 2008]. The 4th column shows 
the results using our proposed approach. The 5th column shows the final texture mapping results using 
the proposed approach. 

     

Figure 3-6. Illustration of texture mapping with two interior boundaries. 
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3.4.3 COMPLEXITY ANALYSIS 

 

The core advantage of the proposed RBF-based reparameterization is that the 

RBF coefficients are updated at every iteration. The main computation cost, 3(2 )O M , 

is to determine the inverse of a real symmetric matrix, where M is the number of the 

constraint points. The time complexity can be estimated as 3(2 )O KM , where K 

denotes the number of iterations. Furthermore, considering the triangle subdivision 

procedure, computing the estimated iterative step lengths using Eq.3.14 at every 

iteration is necessary. This will cost O(N) each time, where N denotes the number of 

vertices on the mesh. The time for triangle subdivision is nearly fixed for each 

selected folding vertex. At each iteration, the running time of the triangle subdivision 

depends on the number of selected folding vertices m, which is generally much fewer 

than N. Therefore, the total time cost is 3( (2 ))O K M N m+ + . The majority of the time 

spent is on the computation of matrix inverse when there are a number of constrained 

points. The time spent for triangle subdivision is not an issue. 

All the experiments were conducted with MatLab on an Intel Pentium 4 3.2 GHz 

PC with 1 Gb of RAM. Table 3-2 shows the running time of all the examples in 

Fig.3-5 using the proposed approach, which usually converges around 5–8 iterations. 

Each example usually takes only several seconds to compute with the proposed 

method because post-processing for mesh smoothing is unnecessary. In [Lee et al. 

2008], the post-processing takes more than 1 minute to obtain the result. 

 

3.4.4 LIMITATIONS 
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The proposed method deals with soft constraints. In Section 3.5, a subdivision 

approach is proposed to increase the chances of exactly matching the desired 

positional constraints. However, this simple approach has its limitations. For 

example in Fig.3-3a, two constrained points can move close to each other, but not 

reach the desired positions, even when the triangle subdivision strategy is applied. 

The displacement vectors can be rotated to circumvent this issue. The distance 

between any two constrained points is taken, and the displacement vectors of the two 

selected constrained points are rotated 90° clockwise. Figure 3-3c shows the 

intermediate result of rotating the displacement vectors. Figures 3d–3e show the 

convergence result with triangle subdivision and displacement rotation, where the 

desired deformation is achieved without triangle foldover. Thus, the above issue is 

successfully addressed. However, rotating the displacement vectors might fail if too 

many constrained points crowd together. Fortunately, such extreme cases are rarely 

seen in texture mapping applications. Another limitation is that the convergence of 

the proposed iterative algorithm has not been proven. Although this is not an 

empirical issue, ideally, mathematical comprehensive proof should still be given. 

This will be studied in future work. 

 

Table 3-1. Distortion metrics of texture mapping examples in Fig.3-5. 

 

 
a.                                    b.                                 c.                                   d.                                    e. 

Figure 3-3. Illustration of convergence in an extreme case: a) the initial configuration of constraint points; b) 
the result without triangle subdivision; c) the intermediate result of rotating displacement vectors; d) the final 
result using triangle subdivision and displacement rotation; and e) the zoomed-in image corresponding to the 
selected region. 
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Examples Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 
L-2  2.707 830.1 1.317 1.411 1523.1 1.799 2.781 2.206 
L-Inf 32.901 74714.16 4.406 7.079 13083071.1 9.785 163.521 38.311 
L-2 [Lee] 2.148 4773.1 631.2 631.2 51804.12 1.623 17.413 1.105 
L-Inf 
[Lee] 

193.357 65477071.2 24732.4 24731.4 8751806.2 22.334 1436.4 4.016 

We highlight the cases that the performance of our proposed approach is worse than that of [Lee et al. 2008] by 

shading. 

 

Table 3-2. Statistics of texture mapping examples in Fig.3-5. 

Examples Row 1 Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8 
#Vertices 5184 1770 1808 10017 10736 4149 1772 1657 
#Triangles 10354 3526 3602 20008 21404 8284 3450 3300 
#Features 83 24 25 54 32 71 21 27 
#Added Vertices 0 60 0 0 1556 0 2 0 
#Added Vertices 
[Lee] 

183/38 77/7 128/10 94/34 127/8 122/25 383/21 69/2 

Time (s) 8.94 5.12 3.86 13.71 16.93 7.21 4.08 3.45 

Row 6 shows the numbers of the added points before and (/) after mesh optimization [Lee et al. 2008]. 

 

Table 3-2 shows the results of the triangle subdivision of all the examples in 

Fig.3-5. In Row 5, the number of the added vertices in the proposed approach is 

greater than that in [Lee et al. 2008]. This implies that the simple subdivision 

approach adds multiple redundant vertices. Looking at Fig.3-6, the number of added 

vertices may depend on the level of smoothness and distortion because additional 

vertices are necessary for smoothness and low distortion. Nevertheless, the newly 

added vertices only increase the vertex number N on the mesh, rather than the 

constraint vertex number M or the selected folding vertex number m. Therefore, this 

does not result in a visible increase of total running time. 

Further extension of the triangle foldover issue will incur another research focus: 

global self-intersection, that the boundary intersects itself. This still remains 

challenging. We think, Jacobian constraint of Eq.3.3 cannot sufficiently prevent the 
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global self-intersection. 

3.5 CHAPTER SUMMARIZATION 

 

This Chapter addresses the issue of the surface parameterization with the usual 

positional constraints. The motivation is from the classic texture mapping 

applications. Thus, this chapter focuses on the positional constraints and the caused 

triangle foldovers rather than the caused distortions. To this end, we first presented 

the foldover-free condition, and further proposed the RBF-based reparameterization 

approach incorporating with this constraint condition. However, in some extreme 

scenarios, the proposed method cannot converge to the desired positions. To handle 

such challenges, we have to introduce the triangle subdivision techniques into the 

implementation of the proposed RBF-based reparameterization approach. 

Our method is applied to the applications of 2D mesh re-parameterization. It can 

actually be extended into 3D or higher dimensional datasets, e.g. volume data and 

polyhedrons. This will be the task of the next chapter. 
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CHAPTER 4 

EXTENSION OF RBF-BASED RE-

PARAMETERIZATION METHOD TO HIGH 

DIMENSIONAL DATASETS 

 

 

 

 

 

 

4.1 FOLDOVERS IN HIGH DIMENSIONAL DATASETS 

 

This chapter will extend the RBF-based reparameterization approach presented in 

Chapter 3 to high dimensional datasets. In computer graphics, high dimensional 

warping approaches have been widely applied to scattered data interpolation, 

feature-based metamorphosis for 2D images and 3D volume data [Lerios et al. 1995], 

texture mapping, motion synthesis [Kovar and Gleicher 2004], free form 

deformations (FFDs) [Sederberg and Parry 1986] and many more. For visualization 

purposes, we perform it on surface parameterization, polyhedral deformation and 3D 

volume data registration. 
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In surface parameterization, a 3D surface might firstly be mapped onto a convex 

2D domain without foldovers, and then the resulting parameterization is further 

deformed to match the internal positional constraints. Foldovers within a mesh can 

be observed when the internal constraint points are taken into account. Figure 3-1 of 

Chapter 3 shows some examples of parameterization, which satisfy the given 

positional constraints. Triangle foldovers can be observed clearly. 

Voxel-based volume deformation has been widely used in image segmentation 

and registration, e.g. CT and MRI datasets. Foldovers within the volume deformation 

usually hide in the volume dataset instead of its surface. For images or volume 

dataset warping, the connection relationship of the pixels or voxels is pre-defined by 

their grid structures. Due to dense pixels or voxels, it is easy to observe that multiple 

pixels or voxels are mapped into the same place, which is called foldover [Fujimura 

and Makarov 1998]. Usually, foldovers result in unexpected unsmooth features in 

the deformed images or volume datasets, such as irregular edges, spikes and jumps. 

To see it clearly, we performed 3D FFDs on the precentral gyrus of a segmented 

MRI brain volume dataset as shown in Figure 4-6a to 6c. We use the Marching 

Cubes algorithm to extract the isosurface. One can observe the tetrahedral folding. 

For 3D meshes, although the distribution of the vertices is sparser than that of the 

voxels in 3D volume dataset, foldovers would still take place during a large 

deformation. Figure 4-1 shows a simple example of blowing up a segment of tube. 

The internal and external surfaces of the tube are represented in a polyhedral form. 

When the deformation of the internal surface is too large, the internal surface 

intersects with the external one. 

Our experience from implementing the six existing methods suggests that none of 

them are able to robustly overcome the challenge of mesh or tetrahedral foldover, 
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which is an unsolved issue in high dimensional deformable fields as well. In the 

following we present our solution to this issue. We will first give out an overview of 

our foldover-free deformation method, which incorporates radial basis functions in 

our iterative deformation mechanism. Then, we will further give out the estimate of 

the iterative step length for 2D mesh and high dimensional dataset deformation. 

 

  
Figure 4-1. The illustration of the tetrahedral foldover on a 3D polyhedral tube. The red denotes the 
vertices of the internal surface, while the blue denotes those of the external surface. For illustration, 
we only show the vertices here. 
 

4.2 ALGORITHM OVERVIEW 

 

    Considering a given dataset S in nR , a transformation T is a one-to-one mapping 

which maps the points X S∈  into another desired domain U ∈Ω  of nR  with arbitrary 

m constraint point pairs ( )* *
i iX U↔ , i.e. 





==
Ω∈→∈

miUXU
XUSX

T
ii ,...,1,)( subject to
)(

: ** .                                                    (4.1) 

    Our algorithm is developed based on radial basis functions. This is due to many 

well behaved properties of the RBF scheme, e.g. mesh-free and C2 continuous. The 

most important is that the RBF scheme is suitable for implementation in an iterative 

manner, as will be seen later. 
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    Unlike the previous applications of RBFs [Guo et al. 2005, Tang et al. 2003], in 

our algorithm, the RBF scheme is used to compute the displacement of the point’s 

coordinates, 

( ) ( ) , 1,...,
m

i i ij j
j

u P X X C i nλ φ∆ = + − =∑                                             (4.2) 

where the displacement is represented as a vector of ( )1,...,
T

nU u u∆ = ∆ ∆ , RBF 

coefficients denote ijλ , n
jC R∈  denotes the constraint points, and ( )iP X  is a affine 

transformation, i.e. 0( )
n

i i ik k
k

P X a a x= +∑ , n denotes the dimensionality of the datasets. 

    Although there are various forms of radial basis functions, we adopt the thin plate 

spline as φ here for simplicity. The deformed U is obtained by updating 

( )U X X U= + ∆ . For next iteration, let ( )X U X← . 

    Our deformation algorithm is summarized as below. The proposed algorithm is 

executed iteratively, and the superscript j stands for the iteration index. The iterative 

mechanism will be described in detail in the following section. 

(1) Input: Initial dataset (0)S  and a set of user-specified constraint point pairs 
( )(0) *, , 1,...,i iC C i m= ; 

(2) Loop: estimate the scaling factor δ by Eq.4.15 (see section 4.3.2) based on the 
configuration of the current m constraint point pairs miCC i

j
i ,...,1),,( *)( = ; 

(3) Computing the current constraint points’ displacements by ( ))(*)1( j
ii

j
i CCC −=∆ + δ , 

such that ( 1) ( 1)j j j
i i iC C C+ += + ∆ ; 

(4) Computing the displacements of points on ( )jS  by Eq.4.6 (see section 4.3.2) and 
updating ( ) ( 1)j jS S +→ ; 

(5) End Loop until ( ) *n
i iC C= . 

 

4.3 FOLDOVER-FREE ITERATIVE MECHANISM 
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From a mathematical point of view, a “foldover-free” deformation gives a “one-to-

one” mapping between the original surfaces (or datasets) and their target domains. 

We will first give out the foldover-free condition, and then formulate our iterative 

mechanism in a general form. 

 

4.3.1  FOLDOVER-FREE CONDITION 

 

    The goal of our work is to develop a foldover-free deformation approach with a 

set of the positional constraints. This requires that the mapping T is globally 

univalent or “globally one-to-one”, that is, the topology or the connection 

relationship between any pair of vertices in the datasets should keep unchanged 

before and after the deformation. Mathematically it means the determinant of the 

Jacobian matrix must be positive everywhere, 

det( ) 0U∇ > .                                                                                (4.3) 

According to the Gerschgorin circle theorem, a sufficient condition of satisfying 

Eq.4.3 is expressed as, 

1,

n
i i

j j ii j

u u
x x= ≠

∂ ∂
>

∂ ∂∑ ,                                                                           (4.4) 

where i = 1,…,n. The geometric meaning of Eq.4.4 is that the vectors 

1( ,..., )i nu x x∂ ∂  are linearly independent of each other. For 2D scenarios, this 

implies that the included angle of the vectors is less than π. For 3D scenarios, such 

three vectors should not stay within a plane. Usually, Eq.4.4 is called as the foldover-

free condition. 
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4.3.2  ITERATIVE FRAMEWORK 

 

    Our deformation algorithm employs an iterative framework and the displacements 

of vertices are determined considering the condition of Eq.4.4, which eliminates 

foldovers if satisfied. We rewrite Equation 4.2 here, such that the displacements 

linearly depend on the constraint points. To this end, the RBF coefficients 

( , ), 1,...,i ia i nλ =  can be computed by the following linear system, where 

1 0( ,..., ) , ( ,..., )m T n T
i i i i i ia a aλ λ λ= = , 

1 .
0

i i

i

c
K

a
λ − ∆   

=   
  

                                                                             (4.5) 

Herein, there are m given constraint points. The displacements of such constraint 

points denotes as ( )1,...,
Tm

i i ic x x∆ = ∆ ∆ . K is a symmetric matrix filled with the radial 

basis functions ( ) , , 1,...,kj k jC C k j mϕ ϕ= − =  and the constraint points’ 

coordinates. (For a detailed RBF representation, refer to [Carr et al. 2001]) 

    Substituting ( , )i iaλ  into Eq.4.2, we can obtain a new expression of Eq.4.2 as 

follows, i=1,…,n, 

( )

1

1 1

( )
0

( ) ( ),..., ( ), ,..., ,1

i
i

m n

c
u M X K

M X X C X C x xϕ ϕ

− ∆ 
∆ =  

 
 = − −

                       (4.6) 

Note that Equation 4.6 describes a linear system of solving the displacement of any 

X (i.e. { }iu∆ ) by using those of the constraint points, (i.e. { }ic∆ ). The kernel is 
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1( )M X K −  that describes the current configuration of the constraint points. The 

displacements { }ic∆  guide to the convergence direction. The derivatives of 

1 1( ,..., ) ( ,..., )n nu u x x∂ ∂  are computed as follows, 

1

1

1
0

, , 1,...,
0

j

j

i
x

i

j i
x

c
M K i j

u
x c

M K i j i j n

−

−

 ∆ 
+ =  

∂   = ∂ ∆  ≠ =   

,                                           (4.7) 

where 
jxM  denotes the partial derivatives of M(X). 

    Moreover, substituting the above derivatives into Eq.4.4 yields, 

1 1

1,

1
0 0i j

n
i i

x x
j j i

c c
M K M K− −

= ≠

∆ ∆   
+ >   

   
∑ , i=1,…,n.                              (4.8) 

In general, the displacements of the constraint points { }ic∆  can be obtained by the 

differences of the current constraint points’ coordinates and their individual targets’ 

coordinates. To satisfy the above inequalities, we may limit the length of each 

displacement vector by scaling the vectors { }ic∆  as follows, 

1 1

1,

1
0 0i j

n
i i

x x
j j i

c c
M K M Kδ δ− −

= ≠

∆ ∆   
+ >   

   
∑ ,                                         (4.9) 

where δ denotes a scaling factor and δ>0. 

    The regions defined by the above inequalities can be further described as follows, 

i=1,…,n, 

1
1

1,

( ,...,1 ,..., ) : , 1,...,
0

( )
1

j

i
i n j x

i n

i j
j j i

c
r r r r M K j n

r r

δ
δ

−

= ≠

 ∆ 
+ ≤ =  

  Ω =  
 + >  

∑
,          (4.10) 
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where 1( ,..., )nr r  denotes a point in Ω. The scaling factor δ is not a constant, and 

depends on the displacements of the constraint points. For simplicity, assume that 

the vectors { }ic∆  have the same distribution. The regions ( )i δΩ  would then have 

the same size in terms of Eq.4.10. In a n-dimension Euclidean space, the condition of 

Eq.4.4 can be described as, 

2

1 2

1

1
0j

n
i

x
j

c
M K

n
δ−

=

∆  
<  

  
∑ ,                                                                      (4.11) 

for the region ( )i δΩ  and i=1,…,n. 

    To further illustrate the geometric meaning of Eq.4.10, we consider the 2D and 3D 

scenarios here. When n=2, Eq.4.10 is expressed as, 

1 11 1
1 1 2 1 2 1 2

2 21 1
2 1 2 1 2 2 1

( ) (1 , ) : , ,1
0 0

( ) ( ,1 ) : , ,1
0 0

x y

x y

c c
r r r K r K r r

c c
r r r K r K r r

δ δ δ

δ δ δ

− −

− −

  ∆ ∆    Ω = + ≤ ≤ + >     
      


 ∆ ∆     Ω = + ≤ ≤ + >    

     

M M

M M

.  (4.12) 

Figure 4-2 illustrates the regions of )(),( 21 δδ ΩΩ . The dashed line is used to highlight 

these undetermined boundaries. 

    The condition of Eq.4.4 implies that vectors ( , ) , ( , )u x y v x y∂ ∂ ∂ ∂  should be 

linearly independent of each other. Figure 4-2 intuitively illustrates this concept by 

the five lines: 1 2 3 4 5, , , ,l l l l l . For example, 1r  and 2r  should be above the line 3l  or 

under the line 4l , and above the line 5l , so that the linear independence can be 

guaranteed. This can be achieved by the scaling factor in Eq.4.10. Moreover, for 

simplicity, assume that the vectors 1 2,c c∆ ∆  have the same distribution. The regions 

)(),( 21 δδ ΩΩ  would then have the same size in terms of Eq.4.10. This will lead to the 
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overlap of straight lines 1 2 and l l  and form a new dividing line, which is 1 2 0r r+ =  in 

Fig.4-2. Line 1 2 0r r+ =  guarantees the included angle is less than π. Consequently, 

the condition of Eq.4.4 can be re-expressed as, 

2 2
1 11 2 1 2

2 2
2 21 2 1 2

1
0 0 2

1
0 0 2

x y

x y

c c
M K M K

c c
M K M K

δ δ

δ δ

− −

− −

 ∆ ∆       + <      
       


∆ ∆       
+ <       

      

.                                  (4.13) 

    Moreover, when n=3, Eq.4.10 is expressed as, 
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1 2 3 1
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Figure 4-3 shows the regions of 1 2 3( ), ( ), ( )δ δ δΩ Ω Ω . Taking the condition of Eq.4.4 

into account, we hope to point out that the dividing plane of 1 2 3 0r r r+ + =  can 

guarantee the determinant of Jacobians is greater than Zero. Similar to 2D scenarios, 

the condition of Eq.4.4 is expressed as, 

2 2 2
1 1 11 2 1 2 1 2

2 2 2
2 2 21 2 1 2 1 2

2
3 31 2 1

1
0 0 0 3

1
0 0 0 3

0 0

x y z

x y z

x y

c c c
M K M K M K

c c c
M K M K M K

c c
M K M K

δ δ δ

δ δ δ

δ

− − −

− − −

− −

∆ ∆ ∆          
+ + <          

          

∆ ∆ ∆          
+ + <          

          

∆ ∆      
+      

      

2 2
32 1 2 1

0 3z

c
M Kδ δ−










∆   + <     

.             (4.14) 

    Furthermore, the scaling factor is estimated as, 

min ( )
X S

Xδ δ
∈

=                                                                                                        (4.15) 

where, 

1 22

1

1 1

1( ) min
0j

nn
i

xi j

c
X M K

n
δ

−

−

=
=

  ∆    =          
∑ . 

Note that the vectors , 1,...,ic i n∆ =  are the differences of the current constraint 

points’ positions and their individual targets’ positions. Scaling factor δ depends on 

the configuration of the current constraint points. For any constraint point iC , its 

displacement needs to be scaled by δ in an iterative way so as to approximate its 

target *
iC . The configuration of all the current constraint points may be defined as 

the current state of the dataset. When the constraint points’ positions are updated, the 

state is changed accordingly as well. Thus, δ can further be viewed as the iterative 

step length of updating the state of the dataset. 
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Figure 4-3. The illustration of the condition of Eq.4.4 in 3D scenarios. 

 

So far we have outlined the proposed iterative deformation mechanism and given 

out an estimate of the scaling factor. The displacements of the constraint points are 

adaptively changed in terms of the estimated scaling factor δ of Eq.4.15. However, a 

critical problem arises, that is, because the proposed iterative mechanism is namely 

                                       r1 
 
 
                                                        l3 
                                Ω1  
 
              l2 
                                        1 
                                                                                  l4 
             l1 
    l5 
                                                                      Ω2 
              -1                   0                         1                     r2 
               
 
 
 
                                         -1 
 
 
 
Figure 4-2. Illustration of the condition of Eq.4.4 in 2D scenarios. The dashed lines denote the 
undetermined boundaries. 
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to divide * (0)
i i iC C C∆ = −  into a few segments in terms of the scaling factor, how does 

it guarantee that the dataset could be deformed to the desired deformation in such a 

successive approximation manner? Before proceeding further, we firstly assume that 

there exists a foldover-free solution for deformation based on the given constraint 

point pairs. This is because for some special constraint configurations, the final 

deformed dataset may not always converge to the most ideal positions, although it 

can produce a valid useable deformation. Looking at Figure 4-4 for example, there 

are two constraint points to be moved in opposite directions in a mesh. Occasionally 

their moving paths may intersect each other, e.g. moving from a red point to the 

white point. Our approach can only converge at an intermediate state. Obviously, 

there is no foldover-free solution for the final desired mesh deformation here. 

Then, we also hope to point out that Equation 4.15 is a sufficient condition, which 

means that there might be some solution that does not satisfy Equation 4.15 but still 

is foldover-free. Note that the presented foldover free condition of Eq.4.15 only 

eliminates all probable cases of the foldover (see the dividing lines in Fig.4-2 and 4-

3), otherwise cannot guarantee the mesh topology-preserving continually. The usual 

case is that the warp against the Equation 4.15 is foldover-free at some points while 

causes foldovers at the other points. The goal of Equation 4.15 is to eliminate all 

potential foldover cases over the domain. 

   
Figure 4-4. Illustration of convergence of an extreme case. 
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    In general, to estimate the scaling factor δ, it is required to test all the points X 

within a dataset. However, our observation suggests that the constraint points always 

hold larger displacements than others at each iteration. Thus, it is sufficient to 

estimate the δ only by testing the constraint points instead of all the points. 

    The core of our RBF-based deformation approach is to update the RBF 

coefficients at each iteration. The main cost is therefore to compute the inverse of a 

real symmetric matrix, which costs 3( )O nm , where m is the number of the constraint 

points and n denotes the dimensionality of the dataset. The time complexity can be 

estimated as 3( )O knm , where k denotes the iteration number. In practice, the number 

of constraint points is always far smaller than that of the points within a dataset. And 

our algorithm usually converges with 3-6 iterations. Although it is costly to invert a 

matrix, because the dimension of the matrices to be inverted is small, in practice the 

cost is negligible. 

 

4.4 EXPERIMENTS AND DISCUSSIONS 

 

    In this section, we perform the above-developed method on three kinds of datasets, 

3D human brain volume data, 3D polyhedron and 2D mesh. 

 

4.4.1  EXPERIMENTS 
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a

 

b

 

c

 

Figure 4-5. Illustration of the foldovers on 3D volume data. 
Applying 3D FFD to the gyrus of brain volume data, and the 
resulting deformation in a) the whole deformed brain gyrus; b) the 
local detail of foldovers; c) the isosurface with mesh corresponding 
to b). For comparison, the results by using our approach are shown 
in d)-f). 

 

d

 

e

 

f

 

 

3D Volume Data 

    The first 3 images of Figure 4-5 show the deformed precentral gyrus of a human 

brain MRI volume data using the 3D FFD approach. For comparison, the last 3 

images of Figure 4-5 show the results of our approach. We utilized the Marching 

Cubes to extract the isosurface for rendering purposes. This can highlight the 

foldovers occurred in the 3D volume data by comparing the meshes shown in Figure 

4-5c and 5f. One can note the folding of triangles, i.e. some edges insert in the faces 

instead of connecting the edges or vertices of triangles in Fig.4-5c. 
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(a) 

 

 

(c)  

(b) 

Figure 4-6. Illustration of muscle deformation. (a) shows the surface meshes at the binding pose; (b) 
shows the collision occurs between the bone and muscle; (c) shows the foldover-free result by using 
our method, i.e. collision is solved. 

 

3D Mesh 

Figure 4-6 shows another useful application of our method for muscle deformation. 

In this skeleton-muscle-skin three layers system, the bone’s movement follows rigid 

transformations, while the skin and muscle are deformed by using the Maya muscle 

package. When a character moves its arm, sometimes the collision between these 

three structures is inevitable. So, we converted the three surface models into a 

tetrahedral volume mesh. The collision between the surface meshes becomes a 

foldover problem in the polyhedral mesh. One can note that the low bone goes in the 

muscle in Fig.4-6b. 

 
a. Initial 

 
b. Iteration 3 

 
c. Iteration 5 

Figure 4-7. Illustration of the iterative results of our method. 
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Figure 4-8. Illustration of texture mapping. 

 

2D Mesh 

    Figure 3-1 shows the results created with four recently published methods, which, 

as can be seen from the Figure 3-1b to 1f, are not able to avoid foldovers completely 

during the re-parameterisation process. In order to make a comparison with them, we 

first tested the above-developed method on the same head model as shown in Figure 

3-1a. An initial 2D mesh is generated by harmonic mapping in advance, and the 

constraint point pairs are shown in Figure 4-7a. The constraint points marked with 

the red stars need to move to the individual targets with white circles. The results of 

each iteration with our RBF-based re-parameterisation are shown in Figure 4-7b and 

7c. The results confirm that by incorporating our iterative deformation mechanism, 

no folding of triangles appears during the deformation. 

As an application of surface parameterization, we then applied our approach to 

texture mapping. The texture of an orangutang’s photo is mapped onto the 3D human 

head model as shown in Figure 4-8. The zoomed-in image shows that our method 

produces a very smooth parameterization. This example also demonstrates that our 
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method is very fast. It converges in only five iterations, even when a large number of 

constraints are involved. This is very encouraging as high quality texture mapping is 

essential in animation production. 

 

4.4.2  DISCUSSIONS 

 

    There is already existing literature on distortion measurement for 2D meshes 

[Sander et al. 2001, Knupp 2001]. [Sander et al. 2001] proposed some stretch metrics, 

whereby the L-2 norm is used to measure the overall stretch of the parameterization, 

while the L-Inf is used to measure the greatest stretch. A good parameterization is 

expected to have very small L-2 and L-Inf. Although a full treatment of distortion 

measurement is beyond the scope of this paper, it is informative to use these two 

metrics (i.e. L-2 and L-Inf) to measure the distortion from our texture mapping 

experiment in Fig.4-9 (#vertices:1672, #constraints:51, #iteration:5, L-2:1.019, L-

Inf:4.447, time:3.17s). We also used an extreme example similar to Figure 12 in [Lee 

et al. 2008] for comparison purposes. A square mesh is deformed by our foldover-

free re-parameterization approach with some specified constraint points. To highlight 

the issue of distortion, in Figure 4-9a only one constraint point is specified to move 

to a new location (white circle). The orientation of the other two constraint points is 

unchanged. It can be seen that our approach does not result in large deformation. 

Compared with the result (Figure 12e) from [Lee et al. 2008], in terms of 

deformation, ours is more desirable. 
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a.initial mesh  

b.result from our method  
c. result from [LYY08] 

Figure 4-9. Distortion from surface re-parameterization. 
 

    As can be seen from the results, although our RBF-based deformation approach 

does specifically aim for minimal distortion, the iterative deformation mechanism 

guarantees the deformation fields to be diffeomorphic. This is in favour of distortion 

reduction. 

The experiments were undertaken using Matlab on an Intel Pentium 4 3.2GHz PC 

with 1 Gbyte of RAM. Although the code is far from optimised, because our method 

has a low computation complexity as discussed earlier, it is very fast for 2D meshes 

and 3D polyhedrons. 

 

4.5  CHAPTER SUMMARIZATION 

 

This chapter extends the RBF-based reparameterization method proposed in 

Chapter 3 to high dimensional datasets. The main contribution is to give the 

generalization of the RBF-based reparameterization with the positional constraints. 

However, Chapter 3 and 4 focuses on the positional constraints rather than the 

caused distortion (i.e. rigid constraint). Next chapter will take the caused distortion 

into account as well. 
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CHAPTER 5 

TOPOLOGY PRESERVED SHAPE DEFORMATION 

 

 

 

 

 

 

 

5.1 PROBLEM FORMULATION 

 

Topology preservation and low distortion are always concerned in many image 

and shape deformation applications. Indeed, the challenging issue is to seek a 

tradeoff between the topology preservation and the distortion in terms of various 

applications. In this chapter, we will address these two issues. 

Regarding image warping, there exist two kinds of meshes for image 

discretization, i.e. triangle and quadrangle meshes. In our paper, we prefer triangle 

mesh. This is due to the following observation. Consider a quad cell of a quad mesh 

as shown in Fig.5-1a. If we allow a large irregular deformation, the quad mesh can 

cause many numerical difficulties. For example as shown in Fig.5-1b, point A moves 

a large distance across the edge BC to A′ . This movement causes a twist of the quad 
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ABCD, and this twist cannot be detected by computing the area of this quad. The 

quad area is obtained by the difference between the areas of the triangles DCB′  and 

A BB′ ′ . Let point A′  be close to point B. The quad area increases while the twist 

happens. If the quad cell is split into two triangles, the twist makes the area of 

triangle A BB′ ′  become negative. This is called triangle flipping or foldover. There is 

no foldover if the sign of the triangle area keeps unchanged. Therefore, discretization 

on a triangulation will effectively help detect and further prevent foldovers and 

singular Jacobians during deformation. 

A                                  B         A                                   B 
 
                                                                                             A’ 

                                                                                        B’ 
 
 
 
 
 
D                                  C         D                                  C 
a) a quad cell                    b) twist 

Figure 5-1. Deformation on quad and triangle meshes. 
 

Moreover, we further illustrate that the triangle foldovers cannot be avoided by 

using the current proposed As-Rigid-As-Possible approaches [Igarashi 2005, Karni 

2009] in Fig.5-2. We first performed these algorithms on an example “mm” of 

[Igarashi 2005]. To demonstrate triangle foldovers, we set the constraint points (red 

stars) in an extreme configuration in Fig.5-2. Figure 5-2a and 5-2b are from [Igarashi 

2005] with and without scale-adjust respectively. It appears the foldover problem 

was not considered in [Igarashi 2005]. Sorkine et al. in [Sorkine and Alexa 2007] 

proposed to apply a local/global scheme to the As-Rigid-As-Possible deformation. 

The shape deformation with positional constraints was first carried out. Then, the 

eigenvalues of Jacobian matrix were restricted in the local step for foldover 

avoidance. The global step was used to reconcile these triangles modified in the local 



 

66 
 

step. The usual procedure of the global step is to solve a sparse Poisson-type system 

with specified positional constraints. However, there exist two questions as follows, 

(1) Is it true that modifying the eigenvalues of Jacobian matrix in the local step could 

overcome foldovers? 

(2) Is it possible that the global step may introduce foldovers again? 

To answer these two questions, we designed two approaches for the local step and 

two for the global step respectively based on the local/global scheme. The local step 

includes the method of eigenvalue modification and that of affine decomposition. 

The former is proposed in [Karni 2009]. The latter will be addressed in the following 

section. The global step includes the methods of solving a sparse Poisson-type 

system with and without the specified positional constraints. Figure 5-2c and 5-2d 

show the combination of the eigenvalue modification (in the local step) plus the 

global step with and without positional constraints respectively. As can be seen, 

foldovers occur due to the positional constraints used in the global step (Fig.5-2d). 

Additionally, due to lack of scale-adjust, the deformed parts appear too large or too 

small. This means the eigenvalue modification in the local step causes a large scaling 

distortion. To get around this deficiency, we try to utilize the affine decomposition 

technique here. The basic idea is to decompose a local triangle affine transform into 

rotation and scale-shear transformations, and then further constrain the rotation and 

scale-sheer transformations respectively for a natural shape deformation. Figure 5-2e 

and 5-2f show the combination of the affine decomposition (in the local step) plus 

the global step with and without positional constraints respectively. It can be 

observed that foldovers enter through the positional constraints in the global step 
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again (Fig.5-2f). Both Figure 5-2d and 5-2f show that foldovers are caused by the 

positional constraints and enter through the global step again. 

It can also be noted that there is no foldover found in Fig.5-2c and 5-2e. 

Foldovers do not arise via the global step if the positional constraints are not 

involved. However, this is not enough to conclude that the local step can overcome 

foldovers, which are still seen in some cases. To illustrate this, we performed the 

above two local/global algorithms that do not involve the positional constraints in 

global step on a square triangle mesh as shown in Fig.5-3. 

 

a  
b  c  d  

Figure 5-2. Illustration of foldovers by using recent 
approaches. Red stars indicate the specified constraint 
points. Foldovers are highlighted by circles. a) and b) 
are from [Igarashi et al. 2005]; c) eigenvalue 
modification in the local step plus the global step 
without constraints; d) eigenvalue modification in the 
local step plus the global step without constraints; e) 
motion decomposition in the local step plus the global 
step without constraints; f) motion decomposition in 
the local step plus the global step with constraints. 
 

e  
f  

    
a. eigenvalue modification in the local step 

    
b. motion decomposition in the local step 

Figure 5-3.  Illustration of foldovers by using the local/global schemes. The red stars indicate the specified 
constraint points. 
 

Figure 5-2 and 5-3 have shown that the issue of foldover cannot be resolved by 

existing approaches. An important observation is that the previous approaches 

cannot enforce consistency under the composition of all local triangle deformations, 
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(i.e. the field that is formed by the displacement of the vertices over a mesh should 

be smoothed). From a mathematical point of view, the term consistency accounts for 

the properties of vector fields, i.e. integrability or smoothness. For some large 

deformation scenarios, Poisson-type systems in the global step is not able to average 

out the inconsistency between the local deformations. The inconsistency usually 

leads to numerical instability of Poisson systems, such as foldovers. This paper aims 

to tackle this challenge and further formulate a generalized solution to the foldover-

free 2D mesh deformation. 

 

5.2 PROPOSED METHOD 

 

To deform a continuous surface is to determine a displacement field d between 

the surfaces before and after deformation. The deformation transformation φ is 

modelled as, φ(X) = X + d(X) or 1( ) ( )X X d Xφ− = − , with X in domain Ω. The 

deformation gradient refers to the derivatives of φ called the Jacobian matrix, ∇φ. 

Topology preservation in a displacement filed is to preserve the connectivity 

between the neighbouring structures, i.e. the resulting mapping is bijective. If 

foldover appears in the displacement, it indicates the resulting mapping is not one-to-

one and is not invertible. An indicator of determining whether there is foldover is the 

determinant ( )dJ X  of the Jacobian matrix ∇φ over the whole domain Ω, which can 

be computed by, 

( ) det( ) det( ( ))dJ X I d Xφ= ∇ = +∇ ,                                                      (5.1) 
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where I denotes an identity matrix. The Jacobian matrix ∇φ encodes the local 

stretching, shearing and rotating of the displacements d(X). If the determinant dJ  at 

some X is negative, this implies that the one-to-one mapping has been broken. To 

prevent foldovers from occurring, we need to restrict φ with the constraints of 

positive dJ  during the deformation. 

 

5.2.1  OUTLINE OF OUR PROPOSED METHOD 

 

Regarding 2D discrete settings, let X and Y denote the vertices in the meshes 

before and after deformation respectively, and the deformation transforms defined by 

Y = φ(X). For 2D mesh deformation, due to piecewise affine transformations, the 

deformation of each triangle can be simply defined by the corresponding edges 

instead of the vertices, 

Y = φ(X) = AX,                                                                                        (5.2) 

where, A is a 2×2 matrix, ( )2 1 3 1,X X X X X= − −  and ( )2 1 3 1,Y Y Y Y Y= − − . Herein, 

A is namely the Jacobian matrix that is constant within a triangle. Following Eq.5.1, 

it is requested to restrict the deformation φ with the piecewise positive Jacobians 

det(A) to avoid foldovers. Figure 3 further shows that even if the Jacobian of every 

triangle det(A) is positive, the displacement vectors between the neighbours may still 

be inconsistent and can further result in foldovers. Thus, the encountering difficulties 

include, 

(1) how to add the constraint of positive Jacobian det(A) for every triangle; 
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(2) how to guarantee the desired accord or consistency over the displacement 

field. 

Our basic idea is to restrict Jacobians for every triangle and further construct a 

consistent displacement field by the feasible subspace method that will be addressed 

later. Our proposed method also adopts the local/global scheme due to its simple 

implementation. Essentially, this scheme is an alternating least squares iterative 

framework, and in particular, it has been proved to yield an optimal solution in a 

least squares sense [Karni 2009]. For clarity, our algorithm is outlined as follows. 

Foldover-free Constrained Deformation Algorithm 

 

The above presented algorithm is actually a generalized framework. The local 

step can adopt various Jacobian constraints in terms of different applications. For 

example, Section 3.2 will introduce two methods of Jacobian constraints. In the 

global step, besides the interpolation approaches based on Poisson-type system that 

will be addressed in Section 3.3, one can adopt other interpolation techniques for 

deformation, e.g. radial basis functions. Herein, we hope to point out that 

constructing a consistent displacement field in advance is independent of the 

Initialize: (0)X X= ; 
Local Step: 
1) Compute the affine for each triangle with the specified positional constraints in 

terms of the current ( 1)iX − ; 
2) Add the positive Jacobian constraint to the affine for each triangle 

respectively; 
Global Step: 
1) Construct a feasible subspace with the displacement  field consistency; 
2) Project the inconsistent displacement field onto the feasible subspace; 
3) Reconstruct the deformed *X  from the resulting displacement field; 
Convergence: 
If convergence is reached up to some tolerance, then end; otherwise, go to Local 

Step. 
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following interpolation methods and is a crucial step to obtain a stable solution at 

this stage. Moreover, in the following sections we will also address the other issue, 

that is, the generation of super-resolution image patches, which will be applied to the 

development of an image and video magnifier. 

 

5.2.2 POSITIVE JACOBIAN CONSTRAINTS 

 

Initially, the undeformed mesh is first deformed with all positional constraints 

by using the approach of [Igarashi et al. 2005], harmonic map [Eck et al. 1995] or 

others. There might be foldovers on the resulting mesh. Then, we can determine the 

affine transform for every triangle accordingly. In the local/global scheme, the target 

mesh is updated iteratively until convergence is reached. 

In the local step, we focus on the affine transform of each triangle. Usually, 

Jacobian constraints are carried out at that time. In terms of Eq.5.2, the Jacobian 

matrix ∇φ of the triangle T is denoted by matrix A, i.e. A = ∇φ. In order to add the 

Jacobian constraint, we can simply prescribe the thresholds min max( , )ε ε  to bound the 

Jacobian det(A), and then modify matrix A by solving the following inequality, 

min max

det( ( ) )
J

J I A I
α

α

ε ε
α

≤ ≤
 = + −

,                                                                        (5.3) 

where 0 ≤ α ≤ 1. It can be noted that the Jacobian of the triangle T can be bounded in 

the desired interval by adjusting α. However, this processing usually results in some 

unexpected distortion. 
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Moreover, for the purpose of the As-Rigid-As-Possible deformation, matrix A 

can be further decomposed into a rotation component and a scale-shear one by polar 

decomposition as suggested in [Alexa et al. 2000], 

TA RVDV= ,                                                                                        (5.4) 

where D is a diagonal matrix containing the singular values of A. These two singular 

values indicate the amount of the triangle stretchiness. Applying logarithm to the 

rotation matrix R yields the rotation angle, i.e. log(R). One thus can prescribe the 

thresholds to the rotation angle and singular values for the As-Rigid-As-Possible 

deformation. 

Nevertheless, the modified Jacobian matrices A′  must guarantee the Jacobians 

det( )A′  positive everywhere. 

 

5.2.3. CONSISTENCY OF DISPLACEMENT FIELDS 

 

Following the local step, we obtain a set of modified deformation Jacobian 

matrices { }iA′ , i=1…m, corresponding to the individual triangles of the mesh, where 

m denotes the number of triangles. The global step will make the deformation 

Jacobian matrices consistent and reconstruct the deformed mesh by Poisson solver. 

Taking Cartesian system into account, it can be noted that for triangle iT , the two 

row vectors of iA′  contribute the displacements to the Cartesian components of the 

affine iϕ  along x and y axes by, 
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( )
( )

( ) (1,1), (1,2)
( )

(2,1), (2,2)( )
i i i

i
i ii

f X A A X
X

A A Xg X
ϕ

′ ′ ⋅  
= =    ′ ′ ⋅   

.                                       (5.5) 

To deform the mesh, the two Cartesian components f and g of deformation φ need to 

be reconstructed separately from their individual corresponding gradient fields, i.e. 

( )(1,1), (1,2) TA A′ ′  and ( )(2,1), (2,2) TA A′ ′ . 

For simplicity, consider the deformation of a scalar field f(X) associated with a 

gradient field that is denoted as ( ) ( , ) ( , )T T
x yv X X X p q= ≡  in 2R . The given 

gradient fields v(X) are usually inconsistent because of the internal positional 

constraints and modifications of the local step. Similar to the traditional PCA 

technique, our basic idea is to construct a subspace of gradient fields with gradient 

vector consistency, and then project the original field v(X) onto it to form a feasible 

gradient field, which will be used to reconstruct the desired deformed scalar fields 

*( )f X . The challenge is how to build up a feasible subspace of gradients from the 

given v(X). 

Since the unknown *( )f X  is a scalar field, the consistent gradient field v(X) 

should be a potential vector field and satisfy the integrability condition, i.e. 

( ) 0y xcurl v p q= − = , over the domain [Arfken and Weber 1995]. Due to the above-

mentioned constraints, the given v(X) usually cannot satisfy the curl-free condition. 

To get round this issue, we subtract the curl components from the given v(X). The 

problem can then be further formulated that for a given vector field v(X), our goal is 

to find a vector field ( )cv X  whose curl captures the curl part of the original v(X). 

This happens to be the solution of the following minimization problem, 

2min ( )
c

cv
v v dV

Ω

∇× −∫ .                                                                          (5.6) 
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In a discrete setting, solving the above minimization problem requests to 

overcome the irregular connectivity of meshes or polyhedral. Recent work on 

overcoming this difficulty is to approximate the smooth fields with discrete fields 

and redefine the discrete differential operators for triangulated 2D manifolds 

[Desbrun et al. 2002, Tong et al. 2003]. A discrete vector field on a mesh is defined 

as a piecewise-linear one with a constant vector within each triangle. The vector field 

cv  can be expressed in an affine fashion within a neighbourhood of vertex X, i.e. 

( )c i ci
i

v X vφ= ∑ , with iφ  being the piecewise-linear basis function valued 1 at vertex 

iX  and 0 at all other vertices and civ  being the value of cv  at vertex iX . For a given 

discrete vector field v(X) on a mesh, its curl at iX  is defined as, 

( )

(  )( ) ( )
k

i ik k k
T N i

curl v X v Tφ
∈

= ∇ ×∑ ,                                               (5.7) 

where, N(i) is the set of triangles sharing the vertex i within 1-ring range, kT  denotes 

the triangle k and kT  is area of kT , ikφ∇  is the gradient vector of iφ  within kT , and kv  

denotes the vector of v(X) inside the kT . According to the definition of Eq.5.7, for 

each vertex iX , one can yield the following sparse and linear system for the 

unknown curl part vector field cv  by a simple sum over the 1-ring neighbourhood of 

the underlying mesh [Tong et al. 2003], 

( ) ( )

( )
k k

ik c k k ik k k
T N i T N i

v T v Tφ φ
∈ ∈

∇ × ∇× = ∇ ×∑ ∑ ,                              (5.8) 

where, i = 1…n, with n being the vertex number. Subtracting the resulting vector 

fields ( )cv X  from the original v(X) yields a consistent gradient field, i.e. 
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( ) ( ) ( )g cv X v X v X= − , that can further be applied to the reconstruction of the 

unknown *( )f X . 

Remark 

As far as Eq.5.7 and 5.8 is concerned, we prefer to subtract the curl field ( )cv X  

from the non-integrable filed v(X) rather than to estimate the divergence field ( )gv X  

directly. This is due to the fact that the curl part of a non-integrable field contains 

information about the divergence of the underlying integrable field, that is, the 

divergence part contains incomplete information about the divergence of the 

underlying integrable field. We further explain it by the following example. Suppose 

due to noise or unexpected disturbance, a non-integrable field v(X) in 2R  is equal to 

the true gradient field 0( )v X  rotated by an angle θ. The divergence and curl of the 

field v(X) are computed respectively as, 

( ) ( )
( )
( )

0 0

0

0

( ) cos sin

cos

( ) sin

Div v v v

v

Curl v v

θ θ

θ

θ

= ∇ ⋅ + ∇×

= ∇⋅

= − ∇ ⋅

. 

It can be noted that the divergence part of the field v(X) is only the projection of 

the v(X) onto the divergence dimension. Partial information of the field 0( )v X  hides 

in the curl part of the field v(X). Thus, we hope to keep the magnitude of the 

estimated divergence field ( )gv X  as that of the 0( )v X , such that, 

2 2
0( ) ( ) ( )gDiv v Div v Curl v v= + = ∇ ⋅ . 

To this end, we need to firstly estimate the curl field ( )cv X  from the given non-

integrable field v(X), and then subtract it from the v(X). Because, 
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0( ) ( ) ( )
( )

c

c

Curl v Curl v Curl v
Curl v

= +
=

, 

where, 0( ) 0Curl v = , one can estimate the curl field ( )cv X  accordingly. Then 

0( ) ( ) ( )cv X v X v X= − . This can be viewed as an explanation of Eq.5.8. 

So far, we have been able to apply the scheme of Eq.5.7 and 5.8 respectively to 

the Cartesian components f and g of Eq.5.5 for their individual consistent gradient 

fields that form feasible Jacobian matrices iA′′ . However, it can be noted that there is 

a large difference between the resulting { }iA′′  and the original { }iA . It is natural to 

seek a set of feasible Jacobian matrices as close to the original { }iA  as possible. Here, 

we need to approximate the original { }iA  based on the resulting { }iA′′ , i.e., to 

approximate the two gradient fields of iA , ( )(1,1), (1,2) T
i iA A  and ( )(2,1), (2,2) T

i iA A ). 

This can be fulfilled as follows. 

Consider an integrable vector field v(X) and its counterpart ( )gv X  with the 

vector consistency. We seek a feasible solution as close to the original v(X) as 

possible. The given ( )gv X  is utilized to construct a feasible subspace of gradient 

fields with the vector consistency. The optimal approximation is then obtained by the 

projection of v(X) onto the feasible subspace. 

In general, each sample of ( )gv X  can be extended as a vector in a 2n-

dimensional Hilbert space, where n denotes the sample number. Such n vectors can 

further span a subspace which has dimensionality not greater than n. The 

orthonormal basis vectors { }iu  can be constructed by applying the Gram-Schmidt 

orthonormalization approach to the sample set of ( )gv X . Suppose that the given 
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field v(X) belongs to the resulting subspace spanned by the resulting orthogonal basis 

{ }iu . We can express it as, 

( )
1

k
T T
i i

i
v u v u

=

= ∑ . 

If the vector field v(X) does not belong to this subspace, they can be approximated by, 

( )
1

ˆ
k

T T
i i

i
v u v u

=

= ∑ .                                                                                   (5.9) 

The geometry meaning says that the projection ˆ( )v X  of v(X) onto the subspace 

spanned by the basis vectors { }iu  is the closest to v(X) in this subspace. Indeed, 

Eq.5.9 gives out a minimum norm solution in the specified gradient subspace. 

Applying Eqs.5.5-5.9 to the Cartesian components f and g yields the desired 

deformation φ. Moreover, to reconstruct the vertices *X  of the deformed mesh, we 

define a quadratic error functional associated with each edge of a triangle by, 

( ) ( )( )
2

*

( , ) {(1,2),(2,3),(1,3)}

,
T

ij ij ij
i j

E X f X g X
∈

= −∑ , 

where the edge of i jX X  denotes as ij j iX X X= − . Instead of a single triangle, we 

solve this quadratic functional on a triangulation { }1 2 3( , , )i i iT T=  by minimizing, 

{ }1 ,...,
min

m
iX X i T

E
′ ′

∈
∑ ,                                                                                       (5.10) 

where m denotes the vertex number. The solution to this minimization problem can 

be obtained by the linear system of normal equations of Eq.5.10. Note that we do not 

add any positional constraints into this linear system at this stage in order to maintain 

the consistency of displacement field. The specified constraints will be approximated 

gradually in an iterative manner. Although we have not been able to provide a strict 



 

78 
 

proof of reaching the desired positional constraints exactly by our proposed approach, 

our experiment results have been very positive. 

In the following we will apply the above 2D mesh deformation technique to the 

application of an image and video magnifier for amplifying any specified ROIs 

within a view field. The amplified ROI patch is usually expected to preserve its 

original aspects with little distortion. Moreover, the outside of the ROIs should be 

kept as close to isometric as possible. This can be fulfilled because of the affine 

decomposition utilized in the local step. 

 

5.3 APPLICATION: IMAGE/VIDEO MAGNIFIER 

 

As an image and video magnifier, in addition to zooming in a specified ROI for 

high resolution, we set all vertices of the ROI patch boundary as positional 

constraints to preserve the relationship between the ROI and the surrounding image. 

We first generate a super-resolution image patch corresponding to the specified ROI 

and then paste it onto the amplified ROI within the low resolution image/video. This 

produces the amplified ROI patch without any distortion. The XSW’s SR algorithm 

[Xiong et al. 2010] is used to generate the desired SR image patches. 

The XSW’s SR algorithm includes two steps. The first one is the PDE-based 

anisotropic regularization that needs balance artefact removal and primitive 

preservation. The other one is the learning-based pair matching. Unlike other SR 

approaches, the training dataset consists of a set of co-occurring patch pairs extracted 
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from example images at two different resolution levels. The final SR effect mainly 

relies upon the pair matching accuracy. 

Different from the single-image scenario, the interframe interaction and spatio-

temporal coherency are taken into account in video application. Fortunately, the PDE 

regularization strength used in XSW’s SR algorithm can well adapt to the variable 

degradation between the successive frames caused by fast motion or scene switch. 

Moreover, primitives in the interpolated frames also need to be enhanced. This can 

be achieved by simply thresholding the pair matching tolerance in the XSW’s SR 

algorithm, effectively reducing the compression artefacts. This is well suitable for 

various compressed videos. 

Before embedding a super-resolution patch into a low resolution image/video, 

the specified ROI within the original view field is firstly amplified by our foldover-

free constrained deformation technique presented in section 3.1. The original low 

resolution image is then mapped onto the deformed view field. Embedding the SR 

patch into the specified ROI within the deformed view field is implemented by the 

Poisson cloning method [Pérez et al. 2003]. Although embedding a super-resolution 

patch into a low resolution image/video always results in distinct transition of 

boundaries, the Poisson system can effectively remove them. The solution is 

obtained by solving the following Laplace equation with boundary conditions, 

( )*0,  over ,  with f f f g
∂Ω ∂Ω

∆ = Ω = −  ,                                           (5.11) 

where, g and *f  denote the super-resolution and low resolution image intensities 

respectively. f  within Ω is a membrane interpolation of the difference *( )f g−  

between the super-resolution and low resolution images along the boundary ∂Ω. 
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5.4 EXPERIMENTS AND ANALYSIS 

 

We first perform our proposed deformation algorithm on the example “mm” in 

Fig.5-2 and the rectangular triangle mesh in Fig.5-3. Eq.5.4 is employed in the local 

step. The intermediate and final iterative results are shown in Fig.5-4. 

a.  

b.    
Figure 5-4.  The iterative results of examples in Fig.5-2 and Fig.5-3 by our approach. Red stars 
indicate the positional constraints. 
 
 

a.  
b.  c.  d.  

Figure 5-5.  Illustration of texture mapping. a) original 3D model; b) matching 2D 
parameterization of 3D model with texture image; c,d) mapping fish image to 3D model. 
 
 
a.

 

b.

 

c. 

 

e.

 

f.

 

g.
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Figure 5-6.  Comparison of smoothness. a and b) chessboard mapping results before and after 
smoothing using [Lee et al. 2008]; c) chessboard mapping result using our method; e and f) 
texture mapping results before and after smoothing using [Kraevoy et al. 2003]; g) texture 
result using our method. Figures of 6e and 6f are from [Kraevoy et al. 2003]. 
 

Comparing Fig.5-4a with Fig.5-2a and 5-2b, it can be noted Eq.5.4 in the local 

step can effectively solve the elbow-collapse problem shown in Fig.5-2a and 5-2b. 

Moreover, the intermediate interpolated shapes show little distortion. Our approach 

does not need any post-processing for reducing distortion, such as the scale-adjust 

presented in [Igarashi et al. 2005]. Thus, it is useful in producing 2D animation. 

Figure 5-4b shows that the amplified region can keep its original aspect without 

distortion during mesh deformation. Our approach satisfies the specified positional 

constraints iteratively given any tolerance. 

Image warping or mesh deformation is also the basis for texture mapping. 

Readers are referred to [Lee et al. 2008] for a state of the art review on texture 

mapping. One usually first deforms the parameterization of the 3D model to match 

the given texture image with some specified positional constraints, and then maps 

the texture image to the 3D model according to the resulting (/deformed) re-

parameterization. Any foldovers arisen will lead to unpleasing artefacts in the final 

textured model. In Figure 5-5, we perform our foldover-free constrained deformation 

algorithm on the parameterization of the snake head model to match the image of a 

tropical fish. Positional constraints are placed on the eye, nose and mouth. The 

mapped texture is well fit, which can be seen from the smoothly spread strips on the 

snake head model. 

Existing texture mapping methods employ a smoothing process for reducing 

distortion after aligning the positional constraints. Because of the feasible subspace 

with the vector consistency, our method can yield a smooth re-parameterization 

without any post-processing. To highlight this advantage, in Fig.5-6, we compare our 
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deformation method with two state-of-the-art methods published in [Lee et al. 2008] 

and [Kraevoy et al. 2003]. Figure 5-6a, 6b and 6c show the chessboard texture 

mapping results by using the algorithm of [Lee et al. 2008] and our method. Figure 

5-6d, 6e and 6f show the results by [Kraevoy et al. 2003] and ours. Among the three 

methods, ours produces the most smooth results. The experiments are undertaken 

using Matlab on an Intel Pentium 4 3.2GHz PC with 1 Gbyte of RAM. The running 

time of our method is 1.91 sec. 

In the implementation of our image and video magnifier, we paste the super-

resolution image patches onto the amplified ROIs within a deformed view field to 

avoid any potential distortion. The ROI is a square region. We performed our 

proposed magnifier presented in section 3.4 on a video as shown in Fig.5-7. The 

upscaling factor is 4 for SR patches. The SR algorithm is able to upscale an image 

patch sized under 50×50 around 1 second on average. 
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f
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f
207 
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227 

 
Figure 5-7.  Illustration of video magnifier, total 9 frames shown here. The video resolution is of 480x270. For 
comparison, we put the original frames (upper) and their amplified versions (lower) together. The amplified ROIs 
are embedded by the super-resolution patches. 

 

5.5 CHAPTER SUMMARIZATION 

 

This chapter addresses the 2D shape deformation with the positional constraints 

and rigid constraint into consideration. Unlike the previous chapters, the rigid 

constraint is taken into account beside the usual positional constraints here. This is 

indeed to seek a tradeoff of the positional constraints and minimum distortion in 

terms of various applications. To highlight this issue, we further develop an 

image/video magnifier that is requested to both satisfy the positional constraints and 

cause as-rigid-as-possible deformation. 

The next chapter will focuses on the rigid constraint rather than the positional 

constraints based on the mesh editing applications. 
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CHAPTER 6 

WELL-SHAPED AND WELL-SPACED MESH 

 

 

 

 

 

 

 

6.1 PROBLEM FORMULATION 

 

This chapter addresses an application based on the surface parameterization with 

constraint of minimal distortion. Unlike the previous chapters, this chapter focuses 

on the rigid constraint instead of the positional constraints. The challenge is to 

generate a quality mesh after deformation so as to preserve the details with the 

minimal distortion. Inspired by the application of the skin sliding simulation, the 

goal is to develop a pre-processing procedure for low-distortion parameterization. 

For clarity, we address this application in details as below. 

In human skin simulation, the initially created model normally has a very high 

quality mesh configuration, in order to present delicate details and beautiful textures. 

However along with the movement of the underlying skeleton, large distortions are 
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frequently observed on the skin surface. This greatly reduces the realistic appearance. 

From an anatomical perspective, the skin surface, as an elastic layer covering 

multiple anatomy structures, should preserve its own tension during deformation 

rather than over-stretches and compression that only happen in some local areas (e.g. 

joint). In practice, due to large-scale deformation and lack of precise control, the 

appearance of many skinny triangles is unavoidable [Yang et al. 2009, Zhang et al. 

2011]. This further results in many visible artifacts or distortions on the surfaces. For 

realistic purposes, skin sliding is presented to deal with this challenging issue. Figure 

6-1 illustrates the intuitional geometric meaning of skin sliding. Roughly speaking, 

skin sliding is a variant of remeshing for removing skinny triangles, which is 

resampling the 3D coordinates of vertices while preserving the mesh connection 

relationship. Some efforts have been made to implement this real life effect into 

character animation. For example, in the movie Hellboy [Stinson and Thuriot 2004], 

the system employed a spring network, where all the vertices of the skin mesh are 

individually connected to the muscles or the bones using spring forces. This allows 

skin surface “slides” above the underlying structures instead of fixing solidly to 

certain points on bones or muscles. However in this system, since the elasticity of 

the skin mesh itself was not considered, some distortions can still be seen on the skin 

surface. One possible solution is to replace the edges of the skin mesh with springs 

as well. This would incur a drastic increase in the computation burden. Moreover, 

tuning so many spring parameters would also be a big challenge to animators. To 

avoid such a complicated control system, some interpolation techniques were applied 

to simulate the elastic property of the skin surface instead of the spring network. The 

mesh before deformation is regarded as a reasonable skin mesh, while after 

deformation it is always largely distorted. Hence, skin sliding is applied to the mesh 
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after deformation for removing distortion. To improve the reality, it is further 

proposed to, 

• Keeping the geometry and topology attributes of skin mesh as close as 

possible to the mesh before deformation, which is assumed to have the desired 

features of the skin surface. The geometry attributes of a mesh refer to the relative 

positions between vertices, while the topology attributes refer to the connection 

relationship of vertices. It is desired to transfer the attributes of skin mesh onto the 

mesh after deformation; 

• Increasing smoothness. Intuitively, it is always desired to generate a smooth 

“skin surface”; 

• Keeping the skin mesh as close as possible to the shape after deformation, 

which is assumed to be the desired shape created by animators. Usually, animators 

pay attention to the global shape of the mesh after deformation rather than the local 

skinny triangles, since the shape results from underlying anatomical structures. It is 

expected that the skin surface at least overlays multiple layers of the underlying 

anatomical structures without any unexpected bulge or shrinkage. 

a.  

b.  

c.  

Figure 6-1. Schematic diagram of the effect of skin slide over an underlying structure. (a) The three 
blue points denote points on the skin surface over the underlying anatomical structure. (b) Incorrect 
sliding, the blue points shift along with the underlying structure, and the skin is stretched on one side 
and compressed on the other side. (c) Correct sliding, the blue points remain static thus making the 
skin appear to slide over the internal structure. (from [Yang et al. 2009]) 
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To this end, [Yang et al. 2009] applied a linear interpolation method to skin 

sliding simulation based on 2D parameterizations. Because of linear interpolation, 

the computation is very simple. However, the deficiencies are distinct. The main 

challenge is that there is no guarantee of preserving the shape and feature of the 

original surface. There is a tradeoff between the computational complexity and 

realism on this issue. It is inevitable that linear interpolation incurs a big loss of 

realism. These issues will be further addressed later. 

In pursuit of a realistic appearance, we focus on two aspects of skin sliding in 

terms of the above-mentioned goals, that is, partitioning the meshes and preserving 

the details of the mesh before deformation. This is due to the following observation. 

Skin sliding is always performed on a set of distorted patches instead of the whole 

mesh domain. Hence, removing distortion from a skin mesh implicitly demands two 

procedures, one is to partition meshes into a set of patches (e.g. distorted and non-

distorted patches) for further resampling, and the other is to preserve the original 

features or details of the skin mesh. We further reformulate the skin sliding 

implementation by introducing the graph Laplacian framework [Sorkine 2006]. The 

main contributions include, partitioning a whole mesh into a set of patches, 

transferring and preserving features and shape without any unexpected bulge and 

shrinkage, which will be addressed later. Moreover, our proposed method can be 

integrated into the developed animation pipeline [Yang et al. 2009] without any 

interference with the traditional methods of skinning, giving the animator the 

freedom to control and design actively during the skinning phase. 
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6.2 METHOD OVERVIEW 

 

We first recap the skin sliding method presented in [Yang et al. 2009] briefly, and 

then point out some existing challenges. After that, our proposed algorithm will be 

outlined. 

In [Yang et al. 2009], skin sliding method is usually applied to a specified region 

of interest (ROI) instead of the whole mesh domain. The input is a pair of patches 

0M  and dM  before and after deformation. The correspondence between them is 

established by embedding 0M  and dM  into a common 2D domain. In terms of the 

resulting embedding maps 0U  and dU , one can find out the facets of dU  where the 

vertices of 0U  fall in, that is, the correspondence between the facets of dU  and 

vertices of 0U . Moreover, the vertices of dM  are updated by the vertices interpolated 

in the facets of dM  accordingly. The resulting patch is finally embedded back into 

the deformed mesh domain. 

It is worth noting that these two patches 0M  and dM  before and after deformation 

are matched by overlapping the 2D embeddings 0U  and dU . Intuitively, this is to 

build up a sampling mesh over the patch dM . As a result, the resampling is fulfilled 

by a linear interpolation accordingly. A simple assumption arises here, that is, the 

vertices of dM  moving to their updated locations can be mirrored in the embeddings 

dU  and 0U , just like the effect of the vertices moving across the surface. This indeed 

risks a big distortion. All of the existing 2D embedding approaches inevitably 

introduce large distortion, such as the cotangent weighted Laplacian coordinates 

[Desbrun et al. 1999], bar-net embedding [Yang et al. 2009] and Mean Value 
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Coordinates [Floater 1997]. The resulting sampling mesh based on 2D embeddings 

might lead to the worst case that sparse sampling is performed on a high-frequency 

region while dense sampling on a low-frequency region. To deal with this challenge, 

the skin sliding method proposed in [Yang et al. 2009] was performed on small 

patches that were manually cropped in advance. This is because a small patch is 

easily flattened with little distortion. Moreover, skin deformation always appears at 

some local regions rather than the whole surface. Desirably, skin sliding methods 

should be performed on the skinning regions instead of the whole surface. The 

challenging issues raised here are how to cut the surface into a set of patches and 

how to remove the visible seams on the reconstructed surface. Our first contribution 

in this chapter is to present an approach for automatically detecting and segmenting 

skinning regions of a skin surface. 

Another point worth noting is that interpolation takes place on the facets of the 

patch dM  rather than others. This guarantees that the interpolated mesh complies 

with the deformed patch dM . However, the deficiency is also clear, that is, there is 

no guarantee of transferring the details of 0M  to the target skin mesh. Moreover, 

because of linear interpolation, the noticeable drawback is that if two adjacent 

patches are resampled individually and then embedded back to the original deformed 

mesh domain, there are visible seams across the patch boundaries on the 

reconstructed surface. Additionally, there is the visible shrinkage of the skin mesh, 

since the over-stretch of the local triangles misses out some prominent parts. Our 

second contribution is to overcome these challenges in this chapter. 

Compared to the previous approaches, our proposed algorithm reformulates the 

skin sliding implementation based on the graph Laplacian framework. The distinct 

advantage is that this framework covers two important applications, spectral 
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clustering [Shi and Malik 2000] and differential coordinates [Sorkine 2006]. The 

former has been applied to machine learning and computer vision fields. Recent 

work further demonstrates that it can be applied to mesh parameterization [Mullen et 

al. 2008], segmentation [Liu and Zhang 2007] and compression [Karni and Gotsman 

2000] as well. The latter can be viewed as a combinatorial analog of Laplace-

Beltrami operator defined on a manifold. It can effectively approximate the 

differential properties of a smooth surface and further results in the desired detail-

preserving manipulations. Our skin sliding algorithm is outlined as follows. 

 

Graph Laplacian based skin sliding algorithm 

(1) Partitioning a given pair of meshes by Normalized cut algorithm; 

(2) Smoothing specified patch pairs; 

(3) Resampling by Laplacian coordinates; 

(4) Embedding the resampled patches back to the original mesh domain for the 
reconstructed surface. 

 

The proposed algorithm can provide a global, shape and detail-preserving 

solution. In the following sections, we will further address the implementation of 

each step. 

 

6.3 PARTITION BY NORMALIZED CUTS 

 

To deform a skin surface, the following can be applied over the whole mesh 

domain: stretching, compression and non-deformation. In terms of the given mesh 

pair before and after deformation, the goal of the surface partition step is to identify 
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these three types of Regions Of Interest (ROIs). It is always expected that the 

partitioned patch boundaries can maintain more natural shapes with genus-0, such as 

quadrangle, triangle and circle-like boundaries, in order to reduce distortion in the 

following step. This is because the following step will embed the cropped patches 

into a common 2D parametric domain for further resampling. Our algorithm utilizes 

one of the spectral clustering approaches, i.e. normalized cut algorithm [Shi and 

Malik 2000], to partition the given meshes. Although it has been applied in mesh 

segmentation [Liu and Zhang 2007], we further extend it to smooth the resulting 

cluster boundaries by using the min-cut/max-flow algorithm [Boykov and 

Kolmogorov 2004] here. The starting point is the graph Laplacian matrix, which is 

application-dependent. In the partition step, we construct the graph Laplacian as 

follows. 

Let 0M  and dM  be the meshes before and after deformation with the definition as 

M = {V,E,F}, i.e. vertex set denotes { 1,..., }iV v i n= = , edge set denotes 

1 2
{ ( , ) 1,..., }i i iE e v v i m= = =  and facets set denotes 

1 2 3
{ ( , , ) 1,..., }i i i iF f v v v i h= = = . 

Our goal is to partition the mesh into a set of patches in terms of the three categories, 

stretch, compression and non-deformation. Consider a dual graph G={F,E} with the 

facets as nodes. For each pair of the corresponding triangles (0) ( ), d
i if f  from 0M  and 

dM , we can separately add the 4th vertex to form a pair of corresponding tetrahedrons 

as used in [Sumner and Popović 2004] and then compute the affine transformation 

iA  between them. Further consider the following identity, 

0det( )i dA Vol Vol= , 
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where Vol denotes the volume of the if . The volume ratio has the three possible 

values, i.e. greater than 1, equal to 1 and less than 1, corresponding to the three 

deformations of the if  respectively, i.e. stretch, non-deformation and compression. 

We employ the volume ratio as the attribute of the if  here. Moreover, for a pair of 

the adjacent if  and jf , we define the distance between them as 

( , ) det( ) det( )i j i jdist f f A A= − . The edge connecting the if  and jf  in the dual graph 

G is further weighted as, 

2

2

( , )
exp i j

ij

dist f f
w

σ
 

= − 
 

,                                                                   (6.1) 

otherwise 0ijw =  for the nonadjacent facets. The kernel width σ is the standard 

deviation of pairwise distance between facets. It does not obviously influence the 

partition results, as long as it is not too small. 

In terms of such weighted adjacency matrix, we can further construct the graph 

Laplacian of G as, 

L = D – W,                                                                                           (6.2) 

where D is a diagonal matrix with the degrees, 
1

n

i ij
i

d w
=

= ∑  on the diagonal. 

Moreover, we apply the normalized cuts to the graph Laplacian of Eq.6.2 for 

partition purposes. Herein, the resulting graph Laplacian L is very sparse, large and 

symmetric. To exploit these properties of our eignsystem, Lanczos algorithm [Golub 

and Van 1996] is thus employed. 

Note that each eigenvector x may take on h real values, and the elements of x 

individually correspond to the facets of the mesh. Consequently, h facets can be 
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mapped into the subspace (also called eigenspace) spanned by the t eigenvectors 

associated with the first t smallest eignevalues. This mapping is regarded as a t-D 

embedding of the vertex set. Accordingly, the normalized cut algorithm iteratively 

approximates the desired solution by thresholding the resulting t-D embedding. 

Although the weighted adjacency matrix W is employed in Eq.6.2, the t eigenvectors 

can smoothly distribute over the eigenspace rather than the distinct gaps inbetween 

them. At each iteration, we have to choose a splitting point to bipartition the given 

facet set into two parts in our implementation. To search for such splitting point, the 

normalized cut employs the following metric, 

1
1

,

( , )( ,..., )
( )

( , )

( )

k
i i

k
i i

ij
i P j Q

i
i P

cut P PNcut P P
assoc P

cut P Q w

assoc P d

=

∈ ∈

∈


=

 =

 =


∑

∑

∑

,                                                      (6.3) 

where P  is the complement of the set P and k denotes the number of means (Refer to 

[Shi and Malik 2000] for details). The terminating criterion here is defined by 

measuring the cluster divergence in the eigenspace. To this end, we first construct 

the covariance matrices for the individual clusters in the current eigenspace, and then 

carry out the SVD decomposition on them to obtain their individual ratios between 

the minimum and maximum singular values. The greater the cluster divergence, the 

smaller the ratio will be. In our experiments, we found that simple thresholding on 

the ratio can effectively alleviate the over-segmentation. We set that threshold value 

at 0.25 in our experiments. In addition, post-processing is still needed to deal with 

the resulting fragments. 

However, applying the Normalized cuts algorithm to the graph Laplacian L yields 

a coarse partition, since the cluster boundaries tend to be jagged. These irregular 
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boundaries usually incur large distortion in the subsequent 2D parameterization 

procedure. Further refinement is thus necessary to identify accurate and sound 

boundaries. To this end, we employ the min-cut/max-flow algorithm [Boykov and 

Kolmogorov 2004] here, that is, to find a cut that has the minimum cost among all 

cuts based on a graph. Since our goal is to refine the boundaries of the resulting 

clusters, we can define a narrow band enveloping the boundaries and perform the 

min-cut/max-flow algorithm on it instead of the whole mesh domain. In our 

implementation, the neighborhood of the boundaries typically covers the 4 rings of 

the vertices on the boundaries. We thus construct the desired dual graph in terms of 

the selected narrow band. In the context of the graph cut based minimization 

techniques, the min-cut/max-flow algorithm essentially solves the shortest path 

problem on a weighted graph. The edge weights need to involve the cue of the edge 

length. Accordingly, the edge weight between the facets if  and jf  is re-defined as, 

2

2

( , )
exp i j

ij ij

dist f f
w e

σ
 

′ = − 
 

,                                                          (6.4) 

where ije  denotes the edge shared by the facets if  and jf  in the mesh 0M . As a 

result, this refinement makes the boundaries smoother. One can compare the effects 

of the partition procedure before and after refinement processing in the following 

experiment. Our partition procedure is summarized as follows, 

 

Partition Procedure 

(1) Given a pair of meshes, set up a weighted adjacency matrix W and degree 
diagonal matrix D; 

(2) Solve the generalized eigensystem Lx = λDx for eigenvectors x with the 
smallest eigenvalues λ; 
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(3) Use the t eigenvectors with the first t smallest eigenvalues to bipartition the 
meshes, e.g. k-means clustering algorithm; 

(4) Recursively re-partition the segmented parts if necessary; 

(5) Employ min-cut/max-flow algorithm to refine the partition boundaries. 

 

a.  

b. 

 

c.  

Figure 6-2. The partition result of a hand skin surface. (a) shows the partition results of the fingers 
before and after deformation without refinement; (b) plots the eigenvectors corresponding the 2nd 
smallest eigenvalue to the 7th smallest one; (c) shows the refinement results. 

Figure 6-2 shows the partition results of a hand model that contains 7997 vertices 

and 15855 triangular facets. In the original normalized cut algorithm, only the 

eigenvector with the 2nd smallest eigenvalue is used, whereas the next few smallest 

eigenvectors indeed contain useful partition cues as well. This can be observed in the 

plots of the 2nd, 3rd and 4th smallest eigenvectors in Fig.6-2c. The other eigenvectors 

(i.e. 5th, 6th and 7th smallest eigenvectors in Fig.6-2c) almost have the same 

distribution. Obviously, it is enough to span the eigenspace by using the 2nd, 3rd and 

4th eigenvectors here. Additionally, it can be noted that the skinning regions (i.e. 
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stretch and compression ROIs) appear around joints while others belong to non-

deformation regions. The stretch (compression) ROIs maintain quadrangle-like 

boundaries in Fig.6-2c. In skin surface deformation, we pay attention to stretch ROIs 

rather than others. The compression ROIs usually come along with self-intersection. 

From the perspective of an animator, the outward appearance of a deformed model 

receives more attention than inside. 

 

6.4 SMOOTHING AND RESAMPLING 

 

Our basic idea consists of: (1) firstly generating the base of the original mesh, (2) 

then extracting the details accordingly, (3) further transferring them to a specified 

surface. For clarity, we first address the Laplacian Coordinates briefly and then 

present our smoothing and resampling steps separately. 

 

6.4.1 DIFFERENTIAL SURFACE REPRESENTATION 

 

The graph Laplacian has long been viewed as a combinatorial version of the 

Laplace-Beltrami operator and applied to geometry processing. Unlike the spectral 

clustering, it works directly on a mesh rather than a dual graph of the mesh. For 

completeness, we first address how to represent a surface by changing the weights of 

the graph Laplacian matrix Eq.6.2, i.e. Laplacian Coordinates, and then return to the 

smoothing and resampling procedures. Consider a triangle mesh M = {V,E,F}. The 
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graph Laplacian of Eq.6.2 is viewed as a discretization of the continuous Laplace-

Beltrami operator as follows, 

1L I D W−= − ,                                                                                       (6.5) 

where I denotes an identity matrix. Usually, we simply assume that the mesh M is a 

piecewise-linear approximation of a smooth surface. The Laplacian operator at 

vertex iv  is written as, 

( )
( )

( )i ij j i
j N i

L v w v v
∈

= −∑ ,                                                                   (6.6) 

where N(i) denotes the 1-ring neighborhood of the vertex iv , and ijw  is the weight of 

edge ije  subject to 
( )

1ij
j N i

w
∈

=∑ . The basic geometric meaning of Laplacian operator 

is that the relative location of vertices is encoded in δ-coordinates (or called 

Laplacian coordinates) as follows, 

( )i iL vδ = .                                                                                       (6.7) 

Intuitively, the details of the mesh M are preserved in δ-coordinates. To perform 

surface modeling by using Laplacian coordinates, one can fix the absolute position 

of several vertices as Dirichlet boundary conditions and further solve a sparse linear 

system, Lv = δ, derived from Eqs.6.5 and 6.7 for restoring a global solution v of 

Cartesian coordinates of the vertices. 

 

6.4.2 SMOOTHING STEP 
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The cropped patches need to be smoothed. The smoothed version of a patch is 

viewed as its base so that the details of the patch can be represented by the offsets. 

An efficient smoothing approach is the curvature flow smoothing algorithm 

proposed in [Desbrun et al. 1999]. The distinct advantage is speed. But there is also 

an obvious deficiency that the curvature flow may shrink the volume of a mesh 

substantially. Moreover, for irregular connectivity meshes, there is a lack of 

sufficient control over global behaviour during smoothing, such as large inaccuracies 

for irregular meshes. This implies that the sharp features will be smoothed out firstly 

by the curvature flow. In our skinning applications, large deformation always yields 

many skinny triangles, and hence the smoothing step is expected to generate a well 

spaced and well shaped mesh. For all the above-mentioned purposes we would like, 

we present a smoothing method based on the tangent plan of a surface in this 

chapter. 

From a differential geometry perspective, Laplacian coordinates of Eq.6.5 can be 

viewed as the discrete version of the mean curvature normal of a surface by using 

cotangent weights instead of uniform ones [Meyer et al. 2003]. The curvature flow 

drives the surface shrink or expansion along the normal direction of the surface. In 

essence, the curvature flow reduces curvatures and ends up removing them 

everywhere. Inspired by the anisotropic diffusion techniques in image processing, 

our basic idea is to smooth the surface along some tangent direction of the surface 

rather than the normal ones here. This can preserve the underlying structures of the 

surface as much as possible during smoothing. Our method exploits the tangent 

planes and restricts the updated vertices within the tangent planes. 
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Consider the vertex iv  of a given mesh M. The normal of the tangent plane at iv  

can be determined by covariance matrix as follows. Let ( ) ( )
( )

T

i j i j i
j N i

C v v v v
∈

= − −∑ , 

where N(i) denotes the 1-ring neighborhood of iv . Taking SVD on the real and 

symmetric matrix iC  yields three orthogonal bases of the local frame at iv . The 

eigenvector associated with the minimum singular value is namely the normal iN  of 

the tangent plane at iv . 

Once the normal iN  at iv  available, the tangent plane is determined accordingly. 

Vertex iv  will be updated within it. The neighbours in N(i) are projected onto the 

tangent plane. Our goal here is to determine a proper location for updating iv  on the 

tangent plane in terms of these projections. It is clear that iv  will move within the 

tangent plane instead of the normal direction of the mesh. 

Choosing a proper location for updating iv  should tend to alleviate the issue of 

skinny triangles and improve the triangle quality as much as possible. To this end, 

we weight the projections ˆ jv  of the neighbors , ( )jv j N i∈  of the iv  by the areas of 

the adjacent triangles instead of the centroid of the projections ˆ jv . This is illustrated 

in Fig.6-3a. 

For each projection ˆ jv , there exist two adjacent triangles 1垐( )j j iv v v−∆  and 

1垐( )j j iv v v+∆  sharing the edge ˆ j iv v  on the tangent plane. We weight the ˆ jv  by, 

1

( )

2
j j

j
j

j N i

A A
w

A
−

∈

+
=

∑
,                                                                             (6.8) 



 

100 
 

where jA  denotes the area of the jth adjacent triangle. As a result, the iv  is updated 

within the tangent plane by, 

( )
( )

垐i i j j i
j N i

v v w v vλ
∈

= + −∑ .                                                          (6.9) 

where λ denotes the iterative step length. Moreover, for the entire mesh M, Eq.6.9 

yields a highly nonlinear system. To deal with such nonlinear optimization problem, 

we utilize a Gauss-Seidel style iteration to smooth the mesh with a series of local 

optimization steps instead of solving this problem globally. The proposed smoothing 

procedure is summarized as follows. 

 

Tangent Plane Based Smoothing Method 

Input: the current mesh M; 

Repeat 

(1) Choose a vertex iv  and compute its normal vector iN  by the 1-ring 
neighborhood; 

(2) Project all the neighbors onto the tangent plane of iv ; 

(3) Compute the weights and update the iv  by Eq.6.9 within the tangent plane; 

Until numerical convergence. 

 

Figure 6-3c to 3d show the smoothing results achieved using our tangent plane 

based smoothing method and the curvature flow algorithm respectively. It is obvious 

that the proposed smoothing method can effectively preserve the sharp features and 

areas with large curvatures compared to the curvature flow algorithm. Moreover, it 

can also be observed that our method can alleviate the issue of skinny triangles and 

effectively improve the mesh quality. However, the proposed tangent plane based 

smoothing method essentially minimizes the curvature of a surface in a subspace of 
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the tangent space. Much iteration may still degrade the order of accuracy. In 

addition, the stability criterion requires the iterative step length of Eq.6.9 λ<1. If this 

criterion is not satisfied, ripples appear and further result in serious oscillations of 

growing magnitude over the entire surface. In our implementation, let λ<0.25. 

Before proceeding further, we assume that the partition step has cut off a pair of 

ROI patches respectively from the skin meshes before and after deformation, and the 

smoothing step has further produced the smoothed versions of these patches. We 

assume that these two patches share the same connectivity. Hence the 

correspondence is readily given. To define the mapping between these two patches, 

we apply the 2D embedding to them as described in [Yang et al. 2009]. Since the 

cropped patches usually maintain the quadrangle-like boundaries from the partition 

procedure, we identify corresponding boundary vertices and fix them at the same 

boundaries of a unit square domain in our implementation. However, we also have to 

point out a special case, i.e. surface twist. Although it seldom appears in skin 

deformations, we still encounter this challenge, for example, turning the head. It can 

be observed that the stretched and compressed triangles mix together in the region of 

neck. Thus, such skinning region is viewed as an entire ROI patch instead of as 

stretch and compression ROI patches individually. Additionally, to speed up the 

correspondence between the 2D embeddings, we apply the approximate nearest 

neighbour (ANN) search [Merkwirth et al. 2009] to the 2D embeddings here. 

Remark 

We hope to point out that the distinct advantages of the partition and smoothing 

steps, that is, smooth partition boundaries and well-shaped and well-sapced meshes. 

In the following 2D parameterization, smooth boundaries can reduce distortion 
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compared to the jagged boundaries. Well-shaped and well-sapced meshes can further 

yield a plausible correspondence by overlapping the two parameterizations. 

 

 

 
b. 

 
c. 

 

d. 

Figure 6-3. Comparison of mesh smoothing. a) The dashed lines show the projections of 1-ring 
neighbourhood on the tangent plane at the ith vertex; b) shows the original bent tube model; c) shows 
the smoothing result produced by our proposed smoothing method; d) shows the smoothing result 
produced by the curvature flow algorithm. 

 

6.4.3 RESAMPLING STEP 

 

Our goal is to resample the coordinates of the vertices based on the above-

mentioned mapping between the cropped ROI patches. To this end, Eq.6.7 is 

employed for extracting and transferring the details of the skin surface. However, the 

challenging issue is that δ-coordinates are usually not invariant to rotation and 

scaling. Indeed, these differential coordinates are sensitive to linear transformations 

[Sorkine 2006]. Roughly speaking, Laplacian coordinates are encoded in a global 

coordinate system while deformations are always local and non-rigid. For example, 

if a surface were bent, preserving the δ-coordinates in their original orientation with 

respect to the global coordinate system would lead to the distorted orientation of the 

local details. Thus, δ-coordinates need to be properly reoriented for deformation 

purposes as shown in Fig.6-4a. This seems to be a typical “chicken and egg” 

 
                         j-1 
 
 
                             î  
 
                                   i 
 
 
                    j 
 
                        j+1 
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problem. To reorient these δ-coordinates, we need to know the geometry of the 

unknown deformed model and vice versa. We attempt to solve this challenge 

through two matched ROI patches. 

 

a.  
b.     c.  

Figure 6-4. Illustration of reorienting δ-coordinates. a) During deformation, δ-coordinate is reoriented 
within 1-ring neighborhood of iv ; b) shows the original dM ; c) shows the shrinkage of overlapping 

dM  and dM ′ . 

Reorienting δ-Coordinates 

It is natural to apply an appropriate local transformation to each vertex for the 

rotation-invariant representation of the details similar to [Sorkine et al. 2004]. 

Nevertheless, the main difference here is that in our skin sliding application, the 

local transformation for the individual vertices can be obtained explicitly through the 

two matched patches rather than an implicit optimization procedure as used in 

[Sorkine et al. 2004]. For clarity, we consider the rotation and scaling of the local 

transformation separately here. 

Let 0M  and dM  be the smoothed versions of the given ROI patches 0M  and dM  

respectively that have been well matched in advance. The local details of meshes are 

encoded into the δ-coordinates by Eq.6.7, i.e. ( ), 1,...,i iL v i nδ = = . In terms of the 

mapping between the smoothed versions 0M  and dM , a vertex in 0M  can be 

mapped to some arbitrary point inside a triangular facet in dM . This is indeed a 

resampling point in dM  that we can determine by using the Barycentric coordinates, 

       iv  

          iδ  
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that is, computing the Barycnetric coordinates in 2D embeddings and applying them 

to 3D surface accordingly. We can therefore set up a resampling mesh over the entire 

dM  and further replace dM  with this resampling mesh (that still denotes it as dM  

thereafter). Moreover, for each pair of corresponding vertices between 0M  and dM , 

we can define their individual affine transformations in terms of the 1-ring 

neighborhood. 

Usually, the polar decomposition is employed here for shear and rotation 

decomposition [Alexa et al. 2000]. However, this decomposition may yield a 

reflection matrix instead of rotation. To overcome this drawback, we develop a 

rotation-scale-shear decomposition as below, i.e. to decompose the affine iA  of the 

ith pair of the corresponding vertices into the shear iSh , scaling iSc  and rotation iR  

matrices i i i iA Sh Sc R= . 

Without loss of generality, let A be a given affine transformation of size 3-by-3. 

We will decompose it into an orthogonal matrix R and an upper triangle matrix U, 

and hence denote the row vectors of R and A as ( )1 2 3, , TR r r r=  and ( )1 2 3, , TA a a a=  

respectively. In terms of the Gram-Schmidt orthonormalization, we have, 

3 3
3

2 3
2 3 2

2 2

1 3 1 2
1 3 2 1

1 1 1

1

, 1

, , 1

r a
a

a r
r r a

a a

a r a r
r r r a

a a a


= ′

 = − + ′ ′

 = − − +

′ ′ ′

,                                                    (6.10) 

where ,  denotes the inner product, and the row vectors of A are orthonormalized 

by, 
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3 3

2 2 2 3 3

1 1 1 3 3 1 2 2

,

, ,

a a
a a a r r

a a a r r a r r

 ′ =

′ = −

 ′ = − −

. 

We can yield the orthogonal matrix R accordingly. Moreover, we further construct 

the upper triangle matrix U as follows, 

1 1 2 1 3

2 2 3

3

, ,
,

a a r a r
U a a r

a

′ 
 ′=  
 ′ 

.                                                              (6.11) 

It can be observed that the diagonal items are positive here. U is therefore positive 

definite. We define the scaling transform as a diagonal matrix, i.e. 

1

2

3

a
Sc a

a

′ 
 ′=  
 ′ 

,                                                                      (6.12) 

and the shear transform as an upper triangle matrix, i.e. 

1 2 1 3

2 3

1 , ,
1 ,

1

a r a r
Sh a r

 
 =  
 
 

.                                                                (6.13) 

As a result, factoring A yields, 

A Sh Sc R= ⋅ ⋅ .                 End of the proof. 

We refer to it as the rotation-scale-shear decomposition. Compared to the polar 

decomposition, the proposed rotation-scale-shear decomposition can explicitly give 

out the rotation, scaling and shear components of a given affine transformation. Note 

that multiplying the shear with the scaling yields an upper triangle matrix that is 

positive definite. For the resulting iR , there is no guarantee that iR  is definitely a 

rotation. Taking the Eign-Value Decomposition on iR , it can be noted that the 

eigenvalues are of , , 1 / 1i ie eθ θ− + −  respectively. Obviously, when the eigenvalues 
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involve -1, iR  is a reflection matrix. Hence, we can utilize a trick to deal with this 

issue here. If iR  is a reflection matrix, let 
1

1
1

i iB A
 
 =  
 − 

 (assume that the 3rd 

eigenvalue is of -1 here). The resulting iB  is positive definite. Applying our 

proposed rotation-scale-shear decomposition to iB  updates the shear iSh , scaling 

iSc  and rotation iR . Then, we can further yield, 

1
1

1
i i i iA Sh Sc R

 
 =  
 − 

.                                                              (6.14) 

This guarantees that the updated iR  is a rotation matrix rather than others. The 

scaling matrix might be negative definite. In general, the scaling iSc  is of a diagonal 

matrix and the shear iSh  satisfies det( ) 1iSh = . Thus, the shear iSh  can be omitted 

here. 

Moreover, to compare the influence of rotation and scaling, we first consider the 

rotation iR  here, i.e. to apply the resulting iR  to the δ-coordinates. Applying Eq.6.7 

to the smoothed and unsmoothed versions of the patch 0M  respectively yields their 

individual δ-coordinates, iδ  and iδ . Moreover, the details of 0M  can be obtained by 

their difference, i.e. i i iξ δ δ= −  . To transfer the details to the smoothed version of the 

patch dM , we can update the δ-coordinates of dM  by, 

( ) ( )d d
i i i iRδ δ ξ= + ,                                                                      (6.15) 

where ( )d
iδ  is the δ-coordinates of the smoothed version dM . Obviously, the 

reoriented ( )d
iδ  can be computed explicitly and individually here. 
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We can further solve the resampling vertices iv′  in dM  by minimizing the 

following error function, 

2 2( )

1 ( )

( ) ( )
n

d c
i i j j

i j N c
E V L v v vδ

= ∈

′ ′ ′= − + −∑ ∑ ,                               (6.16) 

where V ′  denotes the set of the unknown vertices iv′ , cv  denote the given 

constrained vertices, and N(c) denotes the set of the constrained vertices. The 

constrained vertices refer to the specified boundary of the patch dM  here. The 

resulting patch denotes as { , , }dM V E F′ ′= , that preserves the original topology. 

Fitting the Laplacian coordinates of the unknown geometry V ′  to the given δ-

coordinates yields an over-determined and sparse linear system. As a result, we can 

obtain a global, detail-preserving and non-iterative solution V ′ . However, since 

Eq.6.15 just takes into account rotation rather than scaling, it can be observed that 

the Laplacian coordinate framework leads to some geometric distortion, such as 

shrinkage as shown in Fig.6-4c. 

 

Shape and Feature Preservation 

Our goal is to transfer the desired details to the surface of another specified model 

without any noticeable artifacts. Shape and feature preservation depends on the 

smoothed version dM  and the details iξ  of 0M . Assume that dM  is smooth enough 

here. Appropriately reoriented and scaled details iξ  will not lead to unexpected 

distortions. In some scenarios, improper scaling may lead to visible artifacts. Our 

basic idea is to take scaling into account in the transformation Eq.6.15 between the 

smoothed versions 0M  and dM  as well as rotation for shape and feature 
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preservation. Similar to rotation, the scaling has been obtained by our rotation-scale-

shear decomposition. Accordingly, the δ-coordinates of dM  can be updated by the 

revised version of Eq.6.15 as follows, 

( ) ( )d d
i i i i iSc Rδ δ ξ= + .                                                                    (6.17) 

In general, compared to rotation, the influence of the scaling seems fairly 

imperceptible. This is because Eq.6.16 gives out a solution of the resampling vertices 

V ′  in a least square sense, which can alleviate the errors from the scale 

disagreement. However, the least squared solution is not always valid in some 

scenarios. To emphasize this issue, we deliberately twist a tube and transfer the 

protuberant characters from on another tube to it as show in Fig.6-5. Since the tube is 

a regular geometry model, it is easy to extract the character details by simply 

subtracting the estimated base of the tube in Fig.6-5a. This helps us to exclude the 

effects from the previous steps, particularly the smoothing step which cannot yield a 

smooth base just like the tube without protuberant characters. Moreover, it can be 

observed that the topologies of the models in Fig.6-5a and 5b are different. We thus 

specify some positional constraints (e.g. red lines) manually and further deform the 

2D embeddings to match them. This guarantees that the characters can be properly 

mapped to the desired positions. For comparison, we employ Eq.6.15 and 6.17 to 

Eq.6.16 respectively to illustrate the effects of the detail transferring with and 

without scaling constraints in Fig.6-5c and 5d. Note that the twisted tube in Fig.6-5b 

contains both rotation and shrinkage. Due to a lack of scaling constraint, it can be 

observed that the resulting mesh in Fig.6-5c has visible artifacts. This is due to the 

fact that the volume change from Fig.6-5a to Fig.6-5b (i.e. middle part of tube) is too 

large to overcome the scale disagreement of the characters and the twisted tube 
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effectively in the least squares sense. When further investigating the local mesh, it 

can be observed that there are many self-intersection triangles in Fig.6-5c. 

a.

 

b.

 

c.

 

d.

 

Figure 6-5. Transfer the characters on the tube 
in (a) to the twisted tube surface in (b), and 
show the results in (c) by using Eq.6.15 and (d) 
by using Eq.6.17 respectively. The red lines in 
(a) and (b) indicate the positional constraints 
using for matching 2D embeddings. 

  

 

6.5 IMPLEMENTATION AND ANALYSIS 

 

In our proposed skin sliding algorithm, the partition step needs to solve a 

generalized eigensystem with a large, sparse and symmetric matrix by using Lanczos 

algorithm. Figure 6-2 indicates that we just need to compute the first t eigenvectors 

of the graph Laplacian instead of all eigenvectors. We thus utilized a freely available 

code--eigifp() at [Money and Ye 2005] here, which implements an inverse free 

preconditioned Krylov subspace projection method. The cropped skinning patches 

(i.e. stretch regions in our experiments) can usually maintain quadrangle-like 

boundaries. 

 

a.
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b.

    
 

c.

   

d.

 
   

e.

 
   

    

Figure 6-6. (a) shows the arm muscle bulge. The first 3 images demonstrate the mesh change during arm 
bending. We highlight the results by our method in blue while the result by [Yang et al. 2009] in red. The 
last 2 images show the difference of the character locations due to skin sliding by our method (the 4th 
image) and the linear interpolation [Yang et al. 2009] (the 5th image) respectively. (b) shows the skin sliding 
effect of clenching the fist. The red mesh is maded by our method while the blue one by [Yang et al. 2009]. 
(c) shows the skin sliding effect at the elbow during arm bending. The red mesh is maded by our method 
while the blue one by [Yang et al. 2009]. (d) shows the skin sliding effect of frowning expression. The blue 
mesh is made by our method while the red one by [Yang et al. 2009]. (e) shows the skin sliding effect of 
elephant running. The blue mesh is made by our method while the red one by [Yang et al. 2009]. Since the 
cropped compression and stretch ROIs are adjacent to each other here, we set them as a whole skinning 
patch for further processing. 

 

In some rare scenarios, it is possible to encounter some large skinning patches. 

The small patches are easier to flatten into such a 2D rectangular parametric domain 
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with low distortion. We thus have to cut them into a set of adjacent small patches 

manually. However, in the resampling step, such adjacent patches are not processed 

individually but are stacked together into Eq.6.16 for a quasi global solution. 

Moreover, it is possible to stack all of the adjacent and nonadjacent patches together 

into Eq.6.16 for a global solution. However, due to the inverse of the large Laplacian 

matrix, we still processed the nonadjacent patches individually in our 

implementation. 

In the following experiments, we first performed our proposed skin sliding 

algorithm on a set of human skinning regions in Fig.6-6. To demonstrate the efficacy 

of our proposed method in comparison to the existing method [Yang et al. 2009], we 

overlapped the resulting meshes by using our algorithm and [Yang et al. 2009] 

respectively together. 

In the above experiments, the skin surfaces are too smooth. To demonstrate the 

feature preservation and transferring, we performed our proposed graph Laplacian 

based skin sliding algorithm on the tail of a seahorse model. The seahorse tail was 

bent up here. Because of the large stretch and bend, the bumpy surface of the tail 

became both very flat and very smooth, that is, it lost many concave convex details 

(see Fig.6-7b). Our goal is to recover the details of the tail mesh as much as possible 

rather than its volume before deformation. The skin sliding result is shown in Fig.6-

7c. For the comparison purposes, we also show the result using linear interpolation 

method [Yang et al. 2009] in Fig.6-7d. It can be observed that the result achieved 

using the linear interpolation method in Fig.6-7d is smoother than that achieved 

using our proposed skin sliding algorithm in Fig.6-7c. This implies that the linear 

interpolation method cannot transfer details to the surface of the target model. 

Moreover, one can observe that the seahorse tail after bending in Fig.6-7b is very 
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close to the interpolation result in Fig.6-7d. Since the tail surface after bending is too 

smooth in Fig.6-7b, performing any interpolation technique on it without any extra 

cues of the surface will not bring about any new details or features. This further 

justifies that the linear interpolation methods cannot transfer the features to the target 

surface. 

Further Extension 

a.  

b.  

c.

 
 

d.

 
 

Figure 6-7. The original seahorse models before and after bending its tail are shown in (a) and (b) respectively. 
Since the tail is bent up and stretched, the surface is too smooth. The result produced by our proposed skin 
sliding algorithm is shown in (c). For comparison, the result achieved using the linear interpolation method in 
[Yang et al. 2009] is shown in (d). Our method is performed on the tail part instead of the whole seahorse 
mesh. Thus, the entire tail was first cropped manually as the input of the partition step, containing vertices 3153 
and triangles 6774. Then the partition step yielded two patches, stretch and compression ROIs. Since they were 
adjacent, we viewed them as an entire skinning patch containing vertices 765 and triangles 1467. 

a.  b.  c.  

Figure 6-8. Illustration of transferring the characters to a twisted tube 
surface. The source and target models are shown in (a) and (b) 
respectively. (c) shows the result of our proposed method. Since the 
partition step only determines the skinning region rather than stretching 
and compressing regions correspondingly, we performed our method on 
a skinning part of tube (i.e. highlighted by red rectangle) instead of the 
whole tube. The cropped mesh contains the vertices 33170 and triangles 
66191. 
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In the above skin sliding applications, the details/features are transferred between 

the source and target meshes, which share the same topology. In partice, the detail 

transferring is usually requested to perform between arbitrary surfaces with the 

different topologies as well. This causes a big challenge, that is, how to establish the 

correspondence between the source and target meshes. The following experiment 

shows that our proposed skin sliding algorithm can deal with such challenging issue 

well. We performed our method on the character transferring test, that is, transferring 

4 sets of the protuberant characters—“computergraphic” from a tube to another 

twisted tube surface, as shown in Fig.6-8. It can be observed that the twisted tube 

maintains high distortion in the middle part in Fig.6-8b, i.e. large rotation (rotation 

angle up to 135°) and shrinkage. This implies that the Laplacian coordinates 

encounter both rotation and scaling challenges here. Moreover, unlike the seahorse 

surface, the character geometry is both regular and complicated in general. Any 

distortion is prone to cause visible artifacts. This is in favorable in relation to 

evaluating the performance of our proposed algorithm. Since the topologies of the 

source and target models in Fig.6-8a and Fig.6-8b are different to each other, the 2D 

embedding maps need to be deformed with some positional constraints for further 

establishing the correspondence between them. This is indeed the well known topic 

of the 2D parameterization with positional constraints. We employed the previous 

method—RBF based re-parameterization method here [Yu et al. 2011]. The red lines 

in Fig.6-8a and 8b indicate the positional constraints. In addition, since the twisted 

regions were obvious and the meshes were too large, we cropped the skinning 

patches manually. Using our proposed method, the transferred characters almost 

retain their shapes, giving the impression of underlying motion. 
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Moreover, we also show the computational times in Table 6-1. The computer 

configuration for these experiments was an Intel Pentium 4 CPU 2.8GHz with 2 GB 

RAM and Nvidia GeForce 8400 GS. All the codes were not optimized in MatLab in 

our implementation. Since the human skinning regions in Fig.6-6 are very small 

compared to the hand in Fig.6-2, the seahorse tail in Fig.6-7 and the twisted tube in 

Fig.6-8, Table 1 only shows the computational times of each step of the hand, 

seahorse tail and twisted tube respectively. Note that the partition step performs on 

the whole mesh domain, while the following steps perform on the resulting patches. 

Thus, the running time of the partition step is obviously much more compared to the 

following steps. 

 

Table 6-1 Running Time 

 Vertices/triangle
s 

Partition Vertices/triangles 
(per patch) 

Smoothing Corresponding Re-
sampling 

Hand 7997/15855 126.21 sec 191/358 0.12 sec 0.06 sec 0.03 sec 
Seahorse 
tail 

3153/6774 52.18 sec 765/1467 2.91 sec 2.16 sec 0.67 sec 

Twisted 
tube 

-- -- 33170/66191 97.27 sec 17.12 sec 7.98 sec 

In the twisted tube test, we cropped the ROI by manual instead of the partition step. 

 

6.6 CHAPTER SUMMARIZATION 

 

This chapter addresses the application of skin sliding based on the graphic 

Laplacian framework. The foundation of this mesh editing system is to overlap the 

2D parameterization of the two skinning patches before and after deformation for 

preserving and transferring mesh features. Thus, in order for the small distortion 

caused by parameterizations, the proposed pre-procedure, including mesh partition 
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and mesh smoothing, is performed on the meshes in advance to generate the well-

shaped and well-spaced skinning patches. This is essentially to satisfy the rigid 

constraint for the following parameterization procedure. 

Unlike the methods presented in the previous chapters, the rigid constraint is 

carried out in a pre-processing procedure instead of the parameterization procedure 

here. 
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CHAPTER 7 

CONCLUSIONS 

 

 

 

 

 

 

 

This thesis focuses on the constraints underlying various surface parameterization 

applications. Usually, the specified constraints include positional constraints, area or 

angle etc. Moreover, minimum distortion is desired as well, which is called as the 

rigid constraint in this thesis. These constraints are usually application-dependent. 

For different application purposes, the emphasis of these constraints may be 

changeable accordingly, that is, positional constraints, tradeoff of positional-rigid 

constraint, and rigid constraint. The main challenges addressed in this thesis include 

the triangle flipping (or called foldover) and the suitable boundary mapping. This 

thesis explores the mentioned challenges by the implementations of the following 

applications, texture maps, image warping and mesh editing. 

 

7.1 SUMMARY 
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Simple positional constraints. 

This kind of constraints is most popular in surface parameterization applications. 

The challenges include one-to-one mapping (also called topology preservation) and 

minimal distortion. In this research, we focus on the topology preservation rather 

than others. It is frequently observed that many deformations might result in self-

intersecting meshes. This issue is also called mesh foldover. The first contribution of 

my work is to formulate a mathematic condition, called the foldover-free condition 

that guarantees the connection relationship of a mesh is preserved during 

deformation. Furthermore, incorporating with this foldover-free condition, a 

foldover-free iterative mechanism is presented. Inspired by the application of texture 

mapping, the proposed iterative mechanism is employed and an RBF-based re-

parameterization method with positional constraints is presented for texture mapping 

3D models from 2D texture images. The second contribution of my work is that the 

proposed RBF-based method provides the estimate of the scaling factor as the 

iterative step-length. 

Compared to the existing techniques, the proposed method does not require 

predefined restrictions in the implementation, such as fixing the boundaries of the 

mesh. This adds greater freedom for reducing distortion than do other methods 

[Kraevoy et al. 2003, Lee et al. 2008], and the resulting 2D parameterization has 

smaller distortion. In addition, the method is a mesh-free approach, allowing direct 

treatment of multiborder topology. Complexity analysis suggests a low computation 

cost, which depends mainly on the number of the vertices. 
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Moreover, foldover is not only observed in the triangular meshes but also in the 

high dimensional datasets, e.g. polyhedral meshes and volume data. The third 

contribution of my work is to extend the proposed RBF-based re-parameterization 

method to the high dimensional datasets. The high dimensional deformable fields 

usually require a high-dimensional dataset to be optimally deformed in terms of the 

constraints of both the geometry and the topology. It is straightforward to apply the 

surface parameterization techniques to high dimensional space. Therefore, we further 

focused on the high dimensional deformable fields with internal hard constraints and 

revised the RBF-based reparameterization method to solve this particular issue. Our 

experiments suggest our method works very well even in situations where there exist 

a large number of constraints. 

 

Tradeoff of positional-rigid constraint. 

This kind of constraints is usually employed to image deformation applications. 

Large distortions inevitably bring about the noticeable artifacts. This is unacceptable 

in such applications. The main contribution of my work is to introduce the feasible 

subspace approach to the deformation field. As a result, applying the reconstructed 

displacement fields to the deformation can approximate the positional constraints 

with minimal distortion. Our proposed framework maintains two distinct advantages. 

The first is to enforce the topology preservation constraints on a given displacement 

field. This allows us to develop a foldover-free constrained deformation approach. 

The second is the ability to easily incorporate the rigid constraint, e.g. As-Rigid-As 

Possible deformation. It guarantees the resulting distortions are as small as possible. 

Experimental results further validate the effectiveness of our proposed feasible 

subspace based deformation method. Moreover, another important application is the 
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volume data registration. The challenging issue is to estimate the divergence and curl 

fields in 3D space. Unfortunately, this still remains open. 

 

Rigid constraint. 

This kind of constraints is always requested in various mesh editing applications. 

Essentially, it requests a suitable boundary mapping to reduce distortion caused by 

parameterization. In this research, we present a pre-processing procedure for the 

surface parameterization with minimum distortion, i.e. the rigid constraint is carried 

out in the proposed pre-processing procedure instead of in the following surface 

parameterization procedure. Our application aims at the skin sliding simulation. 

Modeling skin sliding realistically is a notoriously difficult task due to the complex 

anatomical dependencies of the outer layers of the human body. Although the mass 

spring system may yield realistic results, it is very expensive, both in terms of 

computation time and the difficulty of specifying a highly sophisticated system. It is 

an appropriate alternative to resampling the target mesh with some specified shape 

and feature constraints. However, in practice there are many challenging issues, e.g. 

missing out features of skin surface and smoothness issues etc. This greatly reduces 

the realism of the appearance. Essentially, skin sliding assumes that the shape can be 

preserved and the features of skin surface can be transferred to the target skin mesh. 

The key step of our skin sliding approach is to parameterize the regions of interest 

in 2D domain and overlap them for matching. Due to the distortion caused by 2D 

parameterization procedure, a challenging issue arise, that is, the shape/details 

preservation and transfer raise challenge. We focus on these issues here and further 

reformulated the implementation of skin sliding based on the graph Laplacian 
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framework, including mesh partition, shape and feature preservation. The elements 

worth mentioning are the mesh partition and mesh smoothing. The former is a new 

application of the active research issue: mesh segmentation. We apply the 

Normalized cuts to its implementation here. Compared to the existing mesh 

segmentation approaches, the novelty is that the partition boundaries can be 

smoothened effectively by the min-cut/max-flow method. The latter is a new method 

for mesh smoothing that is implemented using our proposed tangent plane based 

smoothing method. These two procedures can effectively improve the mesh quality. 

 

 

7.2 FUTURE WORK 

 

Because the constraints of the constrained surface parameterization are 

application-dependent, this thesis focuses on the three kinds of constraints based on 

the different applications. This further incurs more challenging issues in these 

parameterization applications. 

In texture mapping application, we employ the triangle subdivision technique for 

some extreme cases in our presented RBF-based reparameterization algorithm. This 

leads to the addition of redundant vertices. Thus, new methods to reduce the 

redundant vertices with a minimum loss of smoothness will be developed in a future 

work. In addition, the analysis of the time complexity indicates that running time 

could rapidly increase when adding a number of constraint vertices. The primary 

performance cost is to compute the inverse of the large symmetric matrix. In future, 

a GPU-based algorithm will be developed to speed up the computation. 
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Furthermore, to extend the RBF-based reparameterization algorithm to high 

dimensional datasets, the main challenge is to save running time. Thus, developing a 

GPU-based algorithm will be our future work. 

Compared the RBF-based deformation algorithms presented in Chapter 3 and 4 

with the feasible subspace based deformation approach presented in Chapter 4, the 

former has infinite support while the latter maintains more rigidity. Thus, for some 

scenarios with large deformation, the feasible subspace based deformation algorithm 

may become invalid. However, it is able to reduce distortion as much as possible. 

This is the distinct advantage against the other deformation methods. In future, it is 

natural to extend this algorithm to medical volume data, since it is vital to reduce the 

distortion caused by any local deformation in medical imaging. 

In skin sliding application, we focus on the rigid constraint rather than the 

positional constraints. The proposed pre-processing procedure, involving mesh 

partition and smoothing procedures, can effectively reduce distortion caused by the 

following parameterization procedure. However, for large meshes, it is necessary for 

our skin sliding algorithm to speed up the partition and smoothing steps. An 

alternative is to implement our algorithm with GPU. The challenging issues include, 

computing preconditioners in a parallel way to solve the generalized eigensystem in 

the partition step and using the Jacobi style iteration instead of the Gauss-Seidel 

iteration in the smoothing step. It is worth exploring a more effective implementation 

of these specific challenges in our future work. 
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