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ABSTRACT 

The design of flood defences, such as pumping stations, takes into consideration the 

predicted return periods of extreme precipitation depths. Most commonly these are 

estimated by fitting the Generalised Extreme Value (GEV) or the Generalised Pareto (GP) 

probability distributions to the annual maxima series or to the partial duration series. In this 

paper, annual maxima series of precipitation depths obtained from daily rainfall data 

measured at three selected stations in southeast UK are analysed using a range of 

probability distributions. These analyses demonstrate that GEV or GP distributions do not 

always provide the best fit to the data, and that extreme rainfall estimates for long return 

periods (e.g. 1 in 100 years) can differ by more than 40% depending on the distribution 

model used. Since a large number of properties in the UK and elsewhere currently benefit 

from flood defences designed using the GEV or GP probability distributions, the results from 

this study question whether the level of protection they offer are appropriate in locations 

where data demonstrate clearly that alternative probability distributions may have a better fit 

to the local rainfall data. This work: (a) raises awareness of the limitations of common 

practices in extreme rainfall analysis; (b) suggests a simple way forward to incorporate 

uncertainties that is easily applicable to local rainfall data worldwide; and thus (c) contributes 

to improve flood risk management. 
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1. Introduction 

 

Flooding is the most frequent and damaging natural hazard worldwide, which affected 

178 million people and caused losses that exceeded US$ 40 billion (about £25.32 billion) in 

2010 (Jha et al., 2012). The mortality risk associated with major floods and storms has 

declined globally in the last two decades; however, the exposure of people and economic 

assets to natural hazards is rapidly increasing, especially in developed countries (UNISDR, 

2011). In the UK, for example, about 2.05 million properties were estimated to be at risk from 

flooding in 2004 (Evans et al., 2004). More recently the Environment Agency (EA, 2009) 

estimated that 5.2 million properties were at risk from flooding in England alone. Of these, 

3.8 million properties are at risk from flooding from surface runoff (EA, 2011). Despite 

differences in the methodology used in the two assessments, it is clear that flood risk in 

England (and worldwide) is becoming a much larger threat than previously anticipated. 

Climate change and poor urban planning are likely to increase flood risk in the future; the 

first by affecting local rainfall patterns and enhancing storminess; and the latter for placing 

people and critical infrastructure in flood-prone areas. Despite the implementation of policies 

regulating occupation of flood risk areas, planning systems often favour development needs 

above the need to reduce flood risk (e.g. White and Howe, 2002; Wheather and Evans, 

2009; Jha et al., 2012).  In the last two years, extreme rainfall caused devastating floods in 

developing and developed countries across all continents (e.g. Australia, Pakistan, 

Philippines, Thailand, South Africa, Brazil, France, the UK and the USA).  

Uncertainties are inherent in the prediction of the frequency and extent of all types of 

flood. However, flooding from some sources can be better predicted than others. Coastal 

flooding is a serious threat at many locations, and a network of flood defences is usually in 

place to provide protection from water levels of specific return periods. The cyclic nature of 

tides facilitates the prediction of extreme water levels, which occur when storm surges 

coincide with high spring tides. Despite some uncertainties related to the prediction of storm 

surges, extreme water levels can be modelled with reasonable results (e.g. Pugh, 1996; 

Flather et al., 1998; Verlaan et al., 2005; Brown et al., 2010). Additional uncertainties arise 

when the impacts of climate change are included in the predictions of return periods of 

extreme sea levels (e.g. Lowe and Gregory, 2005; Wang et al., 2008).  

Flooding caused by other processes is more difficult to predict (and mitigate) due to the 

number of influencing variables and their complex relationships. For example, extreme 

rainfall can lead to flooding from overwhelmed rivers and sewers. This is very difficult to 

predict (Wheater and Evans, 2009), especially at meaningful time-scales for adequate 

response. Further complexity is added by urbanisation, particularly by the increase in 



Journal of Environmental Management, 30 January 2013, Volume 115, 98-105. 

3 

 

impervious surfaces and obsolete combined sewer/stormwater drain systems (Thurston et 

al., 2010). Many locations have systems of pumps and water storage to prevent floods from 

surface runoff and/or overwhelmed drains (Wheater and Evans, 2009). However, the 

efficiency of these systems depends on their (flow/volume) capacity, which is designed to 

deal with rainfall of specific return period (e.g. 1 in 100 years). To provide the desired level of 

protection, it is imperative that the precipitation depths used to design flood defences are 

estimated taking into consideration uncertainties related to the method and to the potential 

changes in rainfall patterns and trends caused by climate change.  

At many locations worldwide, flood defences at the coast and in urban areas are in 

urgent need of upgrading to cope with the effects of urban development and predicted 

impacts of climate change (e.g. higher sea levels and more frequent and intense extreme 

rainfall). Return periods of extreme rainfall are usually estimated by fitting a probability 

distribution (PD) to annual maxima series (i.e. datasets comprised by the highest rainfall 

depth in each year) or partial duration series (i.e. datasets formed by rainfall depths 

exceeding a selected threshold) (e.g. Cunnane, 1973; Rosbjerg, 1977; Davidson and Smith, 

1990; Adamowski, 2000). The most common PD used in the analysis of extreme rainfall are 

the Generalised Extreme Value (GEV) or the Generalised Pareto (e.g. Davidson and Smith, 

1990; Coles, 2001; Bodini and Cossu, 2010; Toretti et al., 2010). However, other PDs might 

show a better fit to some datasets and the difference in the precipitation depths for the 

resulting return periods can be significant. Adequate selection of the PD is one of the “more 

important issues in flood frequency analysis” (Adamowski, 2000, p. 220). 

This article draws attention to the limitations of the common approach used in extreme 

rainfall analyses and discusses the potential consequences for the design of flood defences 

and the level of protection they offer. The influence of using different PDs in estimating 

extreme rainfall is demonstrated using, as examples, three selected locations in southeast 

England. A simple way forward to incorporate uncertainties in the estimates of rainfall depths 

of return periods relevant to flood risk management is then suggested. The findings of this 

study will assist local authorities responsible for flood management in improving decision-

making concerning mitigation of flood risk. 

 

2. Methods 

 

Time-series of daily rainfall measurements were obtained from the Met Office MIDAS 

Land Surface Stations2. The data analysis was conducted as part of the EU-funded project 

Solutions for Environmental Contrasts in Coastal Areas (SECOA). The stations analysed 

                                                           
2
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_ukmo-midas 



Journal of Environmental Management, 30 January 2013, Volume 115, 98-105. 

4 

 

here were selected to assess the magnitude and frequency of extreme rainfall in Portsmouth 

and the Thames Gateway, the project’s study areas in the UK. For the area of Portsmouth, 

the Southsea station was selected due to the length of the daily rainfall record. Two locations 

were selected in the Thames Gateway: Southend in the eastern sector of the study area and 

Deptford in the western sector. Table 1 shows the characteristics of the datasets used here 

in the analysis of extreme rainfall. Data from two closely located stations were used to 

extend the time-series at Southend. 

 

Table 1. Summary of the Met Office MIDAS datasets of daily rainfall used in this study. 

Station name (code) Coordinates
a
 (m) Period n Observations 

Southsea 

(src_id 861) 

463700, 99100 

(Hampshire) 
01/01/1916 to 30/06/1997 

29299 days 

966 months 

81 years 

Elevation: 2 m  

Drainage: coastal 

Southend 

(src_id 492) 

 

Southend 

Southchurch Park 

(src_id 496) 

587600, 185200 

 

 

589986, 184998  

(Essex) 

24/01/1961 to 01/01/1971 

 

 

01/01/1971 to 01/10/2010 

(major data gaps 01/1977-

02/1986, 09/2005-08/2008) 

12721 days 

419 months 

39 years 

Elevation: 27 m 

 

 

Elevation: 4 m   

Drainage: coastal 

Deptford P Sta 

(src_id 6704) 

537600, 177000 

(Greater London) 

24/01/1961 to 31/12/2010 

(data gap 02/1999-02/2000) 

11969 days 

580 months 

49 years 

Elevation: 5 m   

Drainage: 

Ravensbourne 

a
Coordinates are provided in the British National Grid system. 

 

Annual maxima series (AMS) for 1-day, 2-day and 3-day durations were produced from 

the daily rainfall time-series at the three locations. Maxima series for winter (WMS) and 

summer (SMS) precipitation were also produced for 1-day, 2-day and 3-day durations. The 

WMS were based on records from December, January and February months and the SMS 

were based on data recorded in June, July and August. The precipitation depths for selected 

return periods were estimated by fitting PDs to the AMS, WMS and SMS datasets for the 

three durations. Six PDs were tested: Generalised Extreme Value (GEV), lognormal (LN), 

Gumbell Maximum (EV1), Log-Pearson III (LP3), Weibull and Burr. Description of these 

distributions can be found on a wide range of publications on statistical distributions (e.g. 

Johnson et al., 1994; Forbes et al., 2011) or in focused articles (e.g. Burr, 1942; 

Tadikamalla, 1980). The goodness-of-fit was measured using the Kolmogorov-Smirnov (K-S) 

and the Anderson-Darling (A-D) tests. Additionally, the software EasyFit3 was used to find 

                                                           
3
http://www.mathwave.com/products/easyfit.html 
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the best-fit distribution to the datasets. Precipitation depths for selected return periods were 

then estimated based on the best-fit probability distributions. 

 

2.1 Kolmogorov-Smirnov Test (K-S) 

 

This test is used to decide if a sample comes from a population with a specific 

distribution (NIST/SEMATECH, 2010). For a detailed description of the test see Chakravarti 

et al. (1967). It is based on the empirical cumulative distribution function denoted by 
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The Kolmogorov-Smirnov statistic (D) is based on the largest vertical difference between 

the theoretical and the empirical cumulative distribution function:  
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The null hypothesis (Ho: the data follow the specified distribution) is rejected at the 

chosen significance level (here α = 0.01) if D is greater than the critical value obtained from 

a table. The P-value is calculated based on the test statistic, and denotes the threshold 

value of the significance level in the sense that the null hypothesis will be accepted for all 

values of α < P. For example, if P = 0.025, the null hypothesis will be accepted at all 

significance levels less than P (α < 0.025) and rejected at higher levels (e.g. α = 0.05). 

 

2.2 Anderson-Darling Test (A-D) 

 

This is a modification of the K-S test that gives comparatively more weight to the tails 

than the centre of the distribution (NIST/SEMATECH, 2010). The A-D test has been used as 

an alternative to the K-S and Chi-square goodness-of-fit tests. For detailed explanation of 

the A-D test see Anderson and Darling (1952, 1954) or Stephens (1974, 1977). The A-D 

statistic (A2) is defined as  
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The null hypothesis (Ho: the data follow the specified distribution) is rejected at the 

chosen significance level (α ) if A2 is greater than the critical value (which in Easyfit is 

dependent on the sample size).  

 

3. Results 

 

Although it is out of the scope of this article to characterise the annual and seasonal 

rainfall at the three locations, a statistical summary of the datasets analysed here is shown in 

Table 2. The highest annual 1-day precipitation was observed in Southend on 16 September 

1968, when 79.5 mm of rain was measured. In Deptford and Southsea, the highest annual 1-

day precipitation was 71 mm on 21 September 1973 and 61.3 mm on 15 September 1927, 

respectively. The highest winter and summer 1-day precipitation were measured in 

Southsea, 51 mm on 8 December 1937 and 59.1 mm on 7 August 1956, respectively. The 

highest 2- and 3-day precipitation reached 110.50 mm and 121.40 mm, respectively (Table 

2), both starting on 15 September 1968 and recorded in Deptford. Note that this is the same 

rainfall event that caused the 1-day highest precipitation in Southend, located about 55 km 

east of Deptford. 

Generally, the summer shows higher mean and maximum precipitation depths than the 

winter and the highest annual maxima do not occur in the winter or summer (Table 2). In 

Southsea, the differences between the annual, winter and summer maximum precipitation 

are considerably smaller than the differences observed at the other stations. The largest 

differences occur between the annual and winter maximum values, which range from 16% to 

26% in Southsea, from 50% to 57% in Deptford and from 58% to 65% in Southend. The 

largest differences between the winter and summer maximum values are observed for the 1-

day durations, which are particularly pronounced in the Thames Gateway stations (39%). 

Southsea shows the highest maximum precipitation in the winter and summer, but annual 

maximum values (23% to 35%) lower than at the other stations. In the summer, differences 

between all stations are small (a maximum of 12% difference is observed for 1-day duration 

between Southsea and Deptford) when compared with the differences in winter (a maximum 

of 38% is observed for 1-day duration between Southsea and Deptford).  
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Table 2. Statistical summary for annual, winter and summer maximum precipitation for 1, 2 and 

3-day durations at Southend, Deptford and Southsea. 

  n Min Mean Max St Dev 

S
o
u
th

e
n

d
 

Annual 1-day 39 14.0 30.97 79.5 13.89 

Annual 2-day 39 19.9 38.56 109.2 16.41 

Annual 3-day 39 24.1 43.98 116.1 16.83 

Winter 1-day 36 4.6 15.03 31.6 7.75 

Winter 2-day 36 5.6 18.61 37.2 9.27 

Winter 3-day 36 6.0 22.31 48.2 11.52 

Summer 1-day 36 6.4 21.82 52.0 11.38 

Summer 2-day 36 7.8 26.21 58.2 12.65 

Summer 3-day 36 11.2 30.02 63.8 14.03 

D
e
p
tf

o
rd

 

Annual 1-day 49 14.0 31.88 71.0 11.32 

Annual 2-day 49 20.1 41.28 110.5 14.67 

Annual 3-day 49 24.4 46.19 121.4 15.76 

Winter 1-day 48 7.1 16.11 35.4 6.58 

Winter 2-day 48 10.4 20.75 47.4 7.66 

Winter 3-day 48 10.7 24.92 58.2 9.92 

Summer 1-day 49 8.0 23.42 57.6 10.61 

Summer 2-day 49 8.2 28.35 60.8 12.36 

Summer 3-day 49 9.6 31.62 62.5 12.96 

S
o
u
th

s
e
a

 

Annual 1-day 81 14.8 33.39 61.3 10.03 

Annual 2-day 81 19.0 41.89 72.2 10.42 

Annual 3-day 81 22.0 49.60 87.4 12.17 

Winter 1-day 76 7.7 22.82 51.0 8.69 

Winter 2-day 76 7.8 31.01 56.4 10.11 

Winter 3-day 76 11.5 38.34 64.4 11.50 

Summer 1-day 76 8.1 24.81 59.1 10.72 

Summer 2-day 76 9.2 30.05 64.8 11.89 

Summer 3-day 76 10.8 33.38 67.6 13.01 

 

 

3.1 Goodness-of-fit tests 

 

Table 3 shows the K-S and A-D statistics indicating the goodness-of-fit of the six 

probability distributions tested to model the AMS, WMS and SMS datasets. The best results 

for each dataset are highlighted in bold, with squares indicating the cases in which both tests 

have identified the same distribution as the best fit (i.e. in five AMS, four WMS and eight 

SMS). The Weibull distribution showed the worst results in both K-S and A-D tests for the 

annual datasets, while the lognormal (LN) distribution performed poorly for the winter and 

summer datasets (Table 3). The Burr distribution showed the best overall result, being the 

best fit for 15 and 14 series based on the K-S and the A-D tests, respectively. The Burr 

distribution performs particularly well for the summer series. However, further analysis 

indicates that improved fit could be provided by other distributions for some of the datasets. 

Parameter values for the Burr and best-fitted distributions for the AMS are shown in the 

Appendix A. 
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The K-S and A-D tests have identified the same distribution as the best fit only for eight 

datasets: Southend WMS 1 and 2-day durations; Deptford AMS 1, 2 and 3-day durations; 

Southsea WMS 3-day duration and SMS 2 and 3-day durations. In half of these datasets, 

the Burr distribution was found to be the best fit. In total, the Burr distribution showed the 

best fit nine times according to the K-S test and six according to the A-D test, being the best-

fit distribution to the largest number of datasets. However, in addition to the Burr, a further 17 

distributions were identified as the best fit by either the K-S or A-D tests. The second most 

common best fit was provided by the Dagum distribution (also known as the Burr Type 3 or 

inverse Burr), appearing twice in the K-S results and seven times in the A-D. The third 

distribution best fitting the datasets was the GEV, once in the K-S test and five times in the 

A-D. There was no pattern of specific distributions fitting better datasets of specific locations, 

durations or maxima series. 

 

Table 3. Results of the Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) goodness-of-fit 
tests for the six probability distributions tested. 

 Southend Deptford Southsea 

 1-day 2-day 3-day 1-day 2-day 3-day 1-day 2-day 3-day 

K-S (P-value given in brackets) 

A
n
n
u
a
l 

GEV 
0.1044 

(0.750) 

0.0971 

(0.821) 

0.0713 

(0.980) 

0.0605 

(0.989) 

0.0941 

(0.743) 

0.0669 

(0.970) 

0.0581 

(0.933) 

0.0513 

(0.977) 

0.0920 

(0.479) 

LN 
0.1375 

(0.415) 

0.1453 

(0.349) 

0.1110 

(0.682) 

0.0622 

(0.985) 

0.0748 

(0.928) 

0.0667 

(0.971) 

0.0513 

(0.976) 

0.0545 

(0.961) 

0.0880 

(0.536) 

EV1 
0.1519 

(0.298) 

0.1329 

(0.457) 

0.0965 

(0.826) 

0.0591 

(0.992) 

0.0831 

(0.859) 

0.0779 

(0.905) 

0.0597 

(0.918) 

0.0511 

(0.978) 

0.0841 

(0.593) 

LP3 
0.1096 

(0.696) 

0.0927 

(0.860) 

0.0692 

(0.986) 

0.0608 

(0.988) 

0.1012 

(0.660) 

0.0782 

(0.902) 

0.0661 

(0.848) 

0.0632 

(0.887) 

0.1077 

(0.290) 

Weibull 
0.1652 

(0.213) 

0.1715 

(0.179) 

0.1372 

(0.418) 

0.0836 

(0.855) 

0.0932 

(0.753) 

0.0727 

(0.941) 

0.1046 

(0.315) 

0.0975 

(0.406) 

0.1215 

(0.173) 

Burr 
0.0857 

(0.914) 

0.1098 

(0.694) 

0.0828 

(0.932) 

0.0725 

(0.943) 

0.0741 

(0.932) 

0.0596 

(0.991) 

0.0701 

(0.794) 

0.0573 

(0.942) 

0.0822 

(0.622) 

W
in

te
r 

GEV 
0.1410 

(0.432) 

0.1353 

(0.483) 

0.0920 

(0.893) 

0.0736 

(0.940) 

0.1136 

(0.528) 

0.0710 

(0.955) 

0.0678 

(0.853) 

0.0585 

(0.943) 

0.0513 

(0.982) 

LN 
0.1654 

(0.249) 

0.1364 

(0.473) 

0.0935 

(0.883) 

0.0824 

(0.874) 

0.1204 

(0.454) 

0.0649 

(0.979) 

0.0677 

(0.854) 

0.0925 

(0.504) 

0.0824 

(0.650) 

EV1 
0.1873 

(0.140) 

0.1612 

(0.276) 

0.1208 

(0.626) 

0.0815 

(0.881) 

0.1150 

(0.512) 

0.0675 

(0.971) 

0.0641 

(0.894) 

0.1069 

(0.326) 

0.0975 

(0.438) 

LP3 
0.1491 

(0.364) 

0.1413 

(0.420) 

0.1053 

(0.781) 

0.0752 

(0.930) 

0.1185 

(0.474) 

0.0673 

(0.971) 

0.0633 

(0.902) 

0.0614 

(0.920) 

0.0588 

(0.941) 

Weibull 
0.2051 

(0.083) 

0.1791 

(0.175) 

0.1323 

(0.512) 

0.0952 

(0.741) 

0.1061 

(0.614) 

0.0731 

(0.943) 

0.0799 

(0.686) 

0.0514 

(0.982) 

0.0541 

(0.970) 

Burr 
0.1158 

(0.677) 

0.1160 

(0.675) 

0.0833  

(0.946) 

0.0888 

(0.811) 

0.1222 

(0.436) 

0.0639 

(0.982) 

0.0719 

(0.801) 

0.0547 

(0.968) 

0.0642 

(0.893) 
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S
u
m

m
e
r 

GEV 
0.0817 

(0.954) 

0.1006 

(0.824) 

0.0829 

(0.948) 

0.0978 

(0.670) 

0.0741 

(0.932) 

0.0602 

(0.990) 

0.0483 

(0.991) 

0.0760 

(0.743) 

0.0422 

(0.998) 

LN 
0.0907 

(0.902) 

0.1064 

(0.771) 

0.0838 

(0.944) 

0.1024 

(0.645) 

0.0976 

(0.702) 

0.1142 

(0.509) 

0.0565 

(0.957) 

0.0941 

(0.483) 

0.0808 

(0.674) 

EV1 
0.1176 

(0.659) 

0.1270 

(0.560) 

0.1002 

(0.828) 

0.0884 

(0.806) 

0.0747 

(0.929) 

0.0874 

(0.816) 

0.0465 

(0.994) 

0.0733 

(0.782) 

0.0739 

(0.773) 

LP3 
0.0948 

(0.873) 

0.1076 

(0.759) 

0.0811 

(0.956) 

0.0985 

(0.691) 

0.0724 

(0.943) 

0.0713 

(0.950) 

0.0519 

(0.981) 

0.088 

(0.565) 

0.048 

(0.991) 

Weibull 
0.1246 

(0.588) 

0.1427 

(0.417) 

0.1044 

(0.790) 

0.1082 

(0.578) 

0.0662 

(0.973) 

0.0701 

(0.956) 

0.0757 

(0.747) 

0.0954 

(0.465) 

0.0452 

(0.996) 

Burr 
0.0795 

(0.963) 

0.0981 

(0.846) 

0.0933 

(0.884) 

0.0982 

(0.695) 

0.0603 

(0.989) 

0.0555 

(0.996) 

0.0375 

(0.999) 

0.0699 

(0.826) 

0.0391 

(0.999) 

A-D  

A
n
n
u
a
l 

GEV 0.3188 0.3230 0.2452 0.2023 0.3086 0.3005 0.3276 0.2631 0.3685 

LN 0.5080 0.6370 0.4004 0.2006 0.3166 0.2772 0.3425 0.2883 0.4293 

EV1 0.6041 0.8663 0.5502 0.2001 0.6043 0.5171 0.4859 0.4044 0.6152 

LP3 0.3130 0.3166 0.2481 0.2059 0.3917 0.4107 0.3514 0.3257 0.4473 

Weibull 1.5951 2.1532 1.7600 0.8520 2.5805 2.3729 1.1337 1.1660 1.0863 

Burr 0.3554 0.3196 2.6082 0.2021 0.1568 0.1795 0.4620 0.2346 0.2731 

W
in

te
r 

GEV 0.6150 0.6989 0.3550 0.2429 0.4512 0.2194 0.3499 0.2270 0.1421 

LN 0.8102 0.7025 0.3747 0.2621 0.4670 0.2501 0.3630 0.7200 0.6098 

EV1 1.1059 0.8680 0.4851 0.2725 0.4463 0.2309 0.3508 1.2317 1.1262 

LP3 0.6555 0.7136 0.3939 0.2407 0.4970 0.2402 0.3661 0.2098 0.1490 

Weibull 1.9346 1.3903 0.8955 0.9858 0.8302 0.6060 1.2813 0.2410 0.2063 

Burr 0.4480 0.6157 0.3330 0.3137 0.4786 0.2360 0.3355 0.2308 0.2072 

S
u
m

m
e
r 

GEV 0.2820 0.4216 0.3184 0.2814 0.1328 0.1906 1.9897 0.5526 0.2689 

LN 0.3142 0.4488 0.3136 0.2769 0.2268 0.6303 1.8899 0.9648 0.8387 

EV1 0.4352 0.5560 0.3959 0.3058 0.1625 0.6090 1.9809 0.7193 0.7738 

LP3 0.3181 0.4472 0.2939 0.2663 0.1441 0.2249 1.7028 0.6540 0.3389 

Weibull 0.9194 1.1613 0.7228 0.7890 0.3765 0.2320 0.5248 0.8568 0.3417 

Burr 0.2358 0.3838 0.3877 0.3492 0.1542 0.1849 0.8168 0.4238 0.2219 

Bold indicates the best fit for each series; squares indicate cases in which the same best-fit distribution was identified by both 

tests. 

 

3.2 Comparing estimated return periods 

 

The objective here is to quantify the influence of using different distributions to estimate 

the return periods of extreme rainfall. Therefore, precipitation depths of selected return 

periods were estimated based on the Burr and best-fit distributions according to the K-S and 

A-D tests. Appendix B shows the resulting precipitation depths of 5-, 10-, 25-, 50- and 100-

year return periods for Southend, Deptford and Southsea. Figure 1 illustrates the 

precipitation depths estimated for up to 1 in 100 years return periods based on the best-fit 

distributions according to the K-S and A-D tests and the Burr distribution. 
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Figure 1. Precipitation depths estimated for up to 1 in 100 years return periods based on the 
best-fit distributions according to the K-S and A-D tests and the Burr distribution for the AMS 
(a), WMS (b) and SMS (c) obtained at Southend, Deptford and Southsea. 

It is evident that results for some datasets are more consistent (i.e. when both tests 

indicate the same best-fit distributions or estimates obtained from different distributions were 

similar), while large differences are observed for others. Generally, differences between 

estimates of rainfall with return periods shorter than 25 years are less than 8%. Consistent 

results are found for Deptford and Southsea AMS for 1, 2 and 3-day durations (Figure 1a), 

where extreme rainfall estimates using the best fit models were smaller than a few 

millimetres. Therefore, estimates of extreme rainfall even for longer return periods are 

considered more reliable. A contrasting situation is found for Southend AMS (Figure 2), 

where the 1 in 100 year rainfall depths for the 1-day duration differ 32.7 mm or 42% when 

estimated by the best-fit distributions according to the K-S or A-D test (i.e. Burr and Johnson 

SB, respectively). Other datasets, such as Southend and Southsea WMS (Figure 1b), show 

reliable results for some durations and larger variation for others. For Southend WMS, for 

instance, both tests indicated the Burr distribution as the best fit for 1 and 2-day durations. 

However, for the 3-day duration, the best-fit distributions resulted in divergent estimates of 

rainfall depths for return periods longer than 10 years, reaching a maximum 24% difference 

for 1 in 100 year values. For Southsea WMS, the 1-day duration estimates showed divergent 

results for return periods longer than 30 years.  
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Figure 2 shows the largest differences between the estimates of precipitation depths 

found for the AMS, WMS and SMS at each location and for the 1, 2 and 3-day durations. It is 

evident that differences are larger for the AMS and smaller for SMS with maximum 

differences found for return periods of 100 years, varying from 15% (SMS) to 42% (AMS). 

Estimates for Southsea appear to show smaller differences (always <10%) when compared 

with the other two locations. It is also evident that, in some cases, the 1-day duration series 

show larger differences than the other durations at the same locations (i.e. Southend AMS; 

Southsea WMS and SMS; and Deptford SMS). Interestingly, differences between the 5-year 

return period estimates are larger than the 25-year return period for some series, noticeably 

the 1-day duration estimates for Southend AMS and Deptford WMS and SMS. 

 

Figure 2. Largest differences between the estimates of precipitation depths found for the AMS, 
WMS and SMS at Southend, Deptford and Southsea for the 1, 2 and 3-day durations. 

4. Discussion 

 

This study demonstrates that estimates of extreme rainfall return periods can vary 

considerably depending on the PD used (see Figure 1). The analysis of rainfall time-series 

from three locations in southern England has also revealed that the magnitude of differences 

(i.e. the sensitivity to specific PD) is spatially variable even between stations closely located. 

In Southsea, for example, differences in estimates of rainfall depths based on best-fit 

distributions (identified by more than one goodness-of-fit test) are always smaller than 10% 

independently on the return period. For the other two locations, differences are smaller than 

8% for return periods of less than 25 years and reach 42% for a return period of 100 years 

(at Southend, Figure 2). Previous studies (e.g. the analysis of a long AMS of daily rainfall in 

Athens by Koutsoyiannis and Baloutsos, 2000) have also acknowledged the limitations of 

using specific PDs in extreme rainfall analysis. The similarity of findings suggests that the 

sensitivity to the model used to estimate extreme precipitation is observed in rainfall data 

recorded in England and elsewhere. It is then probable that the large differences between 

extreme rainfall estimates obtained for Southend can also be observed in other locations 

worldwide, making the results of this study widely applicable.  
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Results presented here raise concerns about the common practice of using specific PDs 

in extreme rainfall analysis when other PDs provide a better fit to the data and, 

consequently, more accurate estimates of return periods relevant to flood risk management. 

To improve the assessment of the level of protection offered by flood defences, it is 

necessary to account for the uncertainties inherent to the method of extreme rainfall 

analysis. The magnitude of the differences in the estimates of extreme rainfall return periods 

can be used as a measure of uncertainty. Uncertainties in the magnitudes observed in 

Southend have serious implications for the design of local flood defences. Here, flood 

defences designed to cope with 1 in 50 years rainfall events based on the best-fit distribution 

according the K-S test would provide an actual level of protection well above flood defences 

designed to offer 1 in 100 year level of protection estimated based on the best-fit distribution 

identified by the A-D test. The large difference between estimates provided by different PDs 

might explain how flood defences can be overwhelmed by events of return periods 

(supposedly) within their designed protection level.  

Analysis of the flood risk from rivers is usually based on the rainfall over the catchment 

area and the characteristics of river flow capacity. However, in areas where the topography 

and/or the limitations of drains/sewage systems indicate a potential for localised flooding 

from surface runoff due to heavy downpours, better assessment of risk is provided by the 

analysis of local rainfall measurements. According to Arnaud et al. (2002, p.229), “in most 

cases design storms do not need to respect the whole rain field, but can be derived from 

statistics at a given point”. Other studies (e.g. Bodini and Cossu, 2010) also advocate the 

use of local rainfall data to improve model results, especially at locations where local 

particularities affect the rainfall distribution over small areas. Properly assessing the capacity 

of flood defences is key to ensure that they will not be overwhelmed by extreme rainfall 

events. Therefore, it is advocated here that the design of local flood defences, such as the 

capacity of pumping stations, should be based on statistics of local rainfall data calculated 

using PDs offering the best-fit to the observations. It is also suggested here that the 

sensitivity of the datasets to the model used is assessed by the application of more than one 

goodness-of-fit tests (e.g. A-D, K-S and Chi-squared). 

Through the use of accessible specialist software, it is now relatively simple to identify 

the best-fit PD for a given local rainfall dataset and to compare estimates of return periods 

obtained from a range of PDs. To adopt a conservative approach, the design of flood 

defences should be defined by the highest rainfall depth estimated for the desired level of 

protection. Although trend analyses have not yet observed strong evidence of increasing 

rainfall in Europe (e.g. Bodini and Cossu, 2010; Toretti et al., 2010; Norrant and 

Douguédroit, 2006; Klein Tank and Können, 2003), enhanced extreme rainfall events are 
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anticipated as a result of climate change (e.g. IPCC, 2007; Ekström et al., 2005; Palmer and 

Räisänen, 2002). Therefore, an additional leverage to accommodate such increases should 

be considered for the life-time of the flood defences. 

Results presented here are particularly relevant to support organisations responsible for 

flood risk management. In England and Wales, for example, local authorities, as the 

designated Lead Local Flood Authority4, have the responsibility of coordinating, planning, 

preparing and responding to local flood risk. At locations benefiting from flood defences, 

flooding occurs when defences fail or are overwhelmed by extreme events exceeding the 

level of protection they offer. This problem is illustrated by two recent flood events that 

occurred in Portsmouth in September 2000 and May 2008 where, despite the presence of 

pumping stations the local area was flooded by extreme rainfall. On 15 September 2000, 60 

mm of rain fell in three hours causing a failure at the pumping station in Eastney, which 

resulted in foul water flooding affecting 114 properties (PCC, n/a). Some properties were 

once again flooded with raw sewage on 26 May 2008 due to overwhelmed drains when the 

area received 30 mm of rainfall in 12 hours (The News, 27 May 2008). Southern Water 

reported that the pumping station was working at full capacity but simply could not cope with 

the volume of water (The News, 27 May 2008).  

The events described above resulted in the construction of a £10 million emergency 

pumping station to prevent sewer flooding in Portsmouth from rainfall events of 1 in 76 year 

return period (Roberts and Potter, 2010). Results shown in this article indicate only a small 

variation between estimates of extreme rainfall for Southsea when different PDs are used. 

Therefore, the actual level of protection offered by the new pumping station is likely to be 

very close to the expected. Nevertheless, the same should not be assumed to be valid in all 

places. One can only hope that the capacity of new flood defences in England and 

elsewhere are designed taking into consideration the uncertainties of assigning one specific 

PD to the rainfall time-series. The high investment involved in building or upgrading flood 

defences warrant that robust methods of analysis are used to ascertain that the investment 

will provide the desired level of protection.  

 

5. Conclusions 

 

This work raises awareness of the limitations of common practices in extreme rainfall 

analysis by demonstrating that estimates of rainfall depths can differ significantly depending 

on the PD used. Although distributions traditionally used (e.g. GEV, Generalised Pareto, 

EV1) fit reasonably well maxima series of measured rainfall, they are not necessarily the 

                                                           
4 A role created by the Flood and Water Management Act (implemented in October 2010). 
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models best fitting the data. It is suggested here that the design of local defences should be 

based on the statistics of local rainfall data and take into consideration the range of extreme 

values estimated by the best-fit distributions identified by more than one test (e.g. A-D, K-S 

and Chi-squared). Comparing the results of rainfall depths of selected return periods 

estimated by the best-fit PDs according to different tests provides a measure of uncertainty. 

The use of dedicated and accessible software facilitates the identification of the best-fit 

distributions. Therefore, this is a practical and straightforward approach that can be widely 

applied to assess uncertainties related to extreme rainfall analysis commonly used in the 

design of flood defences. 

As shown by the selected case studies, the sensitivity of local rainfall datasets to the 

application of specific PDs can vary considerably even between closely located stations 

exposed to similar weather patterns. For some of the maxima series analysed here, the use 

of different tests and distributions resulted in very similar estimates of extreme rainfall 

depths. Other maxima series showed variations up to 42% between the results obtained 

from the best-fit distributions identified by different tests, especially for return periods longer 

than 25 years. Similar variability can be found worldwide where local particularities affect the 

rainfall distribution over small areas and/or time-series of rainfall measurements are 

relatively short. The extra effort of using a range of models in the analysis of extreme rainfall 

is well justified as it can improve the assessment of the level of protection provided to people 

and infrastructure by the expensive investments in upgrading or building new flood defences. 
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Appendix A: Parameter values for the Burr and best fit distributions according to K-S 
and A-D tests for the AMS datasets. 

 
 

 Burr K-S A-D 

S
o
u
th

e
n

d
 

1-day k=0.44272  =6.4071  =21.777 

Johnson SB 

=2.1583  =1.1044 

=121.95  =12.082 

2-day k=0.34143  =8.9089  =27.27 

Gen Pareto 

k=-

0.05242=17.56  =21.8
79 

Dagum 

k=21.114  =3.5594   

=13.116 

3-day k=0.44739  =8.0258  =33.68 

LP3 

=7.7125  =0.11808 

=2.8163 

GEV 

k=0.15081  =10.398   

=36.169 

D
e
p
tf

o
rd

 

1-day k=1.0652  =5.1021  =30.661 EV1=8.8288  =26.788 

2-day k=0.78356  =6.6233  =36.846 

3-day k=0.85043  =6.5685  =42.27 

S
o
u
th

s
e
a

 

1-day k=1.543  =5.0469  =36.293 
LN 

=0.30232  =3.4656 

GEV 

k=-0.07073  =8.6535   

=29.031 

2-day k=1.193  =6.6965  =41.798 
EV1 

=8.0793  =36.724 

Dagum 

k=0.93684  =7.2684   

=40.758 

3-day k=1.305  =6.8098  =50.652 

Pearson 6 

1=48.345  2=26.351   

=25.637 

Log-logistic 3P 

=10.358  =66.588   

=-18.535 
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Appendix B: Precipitation depths (mm) for selected return periods (years) based on 
the Burr and best fit-distributions for Southend, Deptford and Southsea. 
 

Southend       

Return periods (yrs) 5 10 25 50 100 Distribution 

AMS 

1-day 
38.25 49.00 67.73 86.48 110.43 Burr 

40.48 50.05 61.93 70.17 77.69 Jonhson SB 

2-day 

46.24 58.13 78.57 98.68 123.93 Burr 

48.98 59.97 73.89 83.99 93.72 Gen Pareto 

47.02 58.10 75.87 92.46 112.50 Dagum 

3-day 

52.55 63.91 82.54 100.12 121.44 Burr 

53.81 64.35 79.33 91.77 105.36 LP3 

53.67 64.03 78.91 91.41 105.20 GEV 

WMS 

1-day 18.94 24.83 35.29 45.98 59.90 Burr 

2-day 24.17 30.69 41.23 51.26 63.62 Burr 

3-day 
29.50 36.90 46.75 54.27 61.85 Burr 

29.47 37.46 50.16 62.08 76.63 Log-Logistic 3P 

SMS 

1-day 

28.44 35.67 46.91 57.25 69.67 Burr 

28.56 36.11 48.08 59.29 72.96 Log-Logistic 3P 

28.45 35.70 47.00 57.42 69.93 Dagum 

2-day 

33. 79 42.34 55.90 68.58 83.97 Burr 

34.76 43.75 56.50 67.05 78.52 Log-Gamma 

34.04 42.83 56.83 70.00 86.12 Log-Logistic 3P 

3-day 

39.64 48.50 61.19 72.07 84.43 Burr 

40.59 49.82 61.01 68.94 76.54 Weibull 3P 

40.06 48.98 60.31 68.71 77.01 Fatigue Life 

 

 

Deptford       

Return period (yrs) 5 10 25 50 100 Distribution 

AMS 

1-day 

 

39.95 46.40 54.62 60.89 67.35 Burr 

40.03 46.66 55.03 61.24 67.40 EV1 

2-day 49.21 56.95 68.34 78.22 89.45 Burr 

3-day 55.00 63.17 74.95 85.02 96.33 Burr 

WMS 

1-day 

 

20.32 24.43 30.54 35.93 42.18 Burr 

21.25 25.65 31.16 35.20 39.15 Erlang (3P) 

21.20 25.46 30.28 33.36 36.01 Johnson SB 

2-day 

 

25.88 30.23 36.30 41.37 47.01 Burr 

27.20 30.57 34.16 36.49 38.57 Normal 

26.38 30.90 36.48 40.55 44.52 Inv. Gaussian 

3-day 
31.69 37.25 44.87 51.14 58.02 Burr 

32.20 38.04 45.36 50.76 56.08 GEV 

SMS 

1-day 

 

30.74 37.12 46.14 53.79 62.39 Burr 

32.69 39.05 45.80 49.95 53.46 Pert 

31.78 38.38 46.05 51.18 55.79 Johnson SB 

2-day 

 

37.65 44.52 53.37 60.24 67.45 Burr 

37.94 45.30 54.42 61.06 67.55 GEV 

3-day 
42.92 49.22 56.27 61.03 65.48 Burr 

42.23 48.61 57.00 63.80 71.20 Dagum 
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Southsea       

Return period (yrs) 5 10 25 50 100 Distribution 

AMS 

1-day 

 

40.94 46.38 53.45 59.00 64.89 Burr 

41.27 47.14 54.32 59.53 64.64 LN 

41.35 47.03 53.80 58.54 63.01 GEV 

2-day 

 

48.88 54.47 61.89 67.81 74.15 Burr 

48.84 54.90 62.57 68.25 73.89 EV1 

48.83 54.62 62.53 68.99 76.01 Dagum 

3-day 

57.72 63.85 71.82 78.08 84.68 Burr 

58.18 64.95 73.18 79.12 84.95 Pearson 6 

57.59 63.79 71.96 78.42 85.23 Log-Logistic 3P 

WMS 

1-day 

 

28.51 33.50 40.57 46.55 53.26 Burr 

29.21 34.15 40.19 44.53 48.75 Fatigue Life 3P 

28.75 33.69 40.36 45.77 51.65 Burr 4P 

2-day 

 

39.58 44.10 48.93 52.06 54.89 Burr 

39.46 43.92 48.54 51.46 54.03 Weibull 

39.84 44.52 49.25 52.11 54.51 LP3 

3-day 
48.27 53.17 58.22 61.39 64.18 Burr 

48.31 53.75 59.37 62.79 65.66 GEV 

SMS 

1-day 

 

31.94 38.19 46.98 54.39 62.69 Burr 

31.83 38.30 47.83 56.18 65.83 Dagum 

2-day 

 

38.59 44.97 53.24 59.72 66.57 Burr 

38.08 44.26 52.79 59.89 67.78 Dagum 

3-day 
43.52 50.14 58.05 63.79 69.47 Burr 

43.01 49.47 58.08 65.09 72.74 Dagum 

 

 


