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ABSTRACT 

 

Sports technology can be any product or system used to facilitate, train or 

influence an athlete’s performance. The role of prostheses used for disability 

sport was initially to help facilitate exercise and then ultimately, competition. 

In able-bodied sport, controversy has occasionally been caused through the 

adoption or introduction of sports technology. However, scant attention has 

been paid to sport with a disability with respect to such concerns. This 

research project provides a novel contribution to knowledge by investigating 

the use of lower-limb running prostheses in competition by trans-tibial 

amputees. 

 

A novel study using a mixed method approach has investigated the nature, 

use and assessment of lower-limb running prostheses. It has proposed that 

the unchecked introduction of such technology has affected the sport 

negatively.  From this, the study conducted a stakeholder assessment of the 

sport and provided a proposed series of guidelines for lower-limb prostheses 

technology inclusion. Finally, the recommendation was made that a proactive 

approach to such technologies’ inclusion in the future should be 

implemented.  

 

These guidelines were further developed by assessing symmetrical and non-

symmetrical lower-limb function and proposed that single and double lower-

limb amputees should be separated in competition in the future. To this end, 

it was proposed that lower-limb symmetry, stiffness and energy return were 

important means of monitoring prosthesis performance. Ultimately, a 

dynamic technique which assesses these qualities was proposed as an 

assessment strategy for further development in the future. 
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CONTRIBUTION TO KNOWLEDGE 

 

The novelty or ‘contribution to knowledge’ of this project is that no study to 
date has investigated the role, perception and impact of running lower-limb 
prosthesis used specifically in a mixed amputee classification in disability 
sport. In addition, having investigated such aspects, this study reveals 
several issues with respect to their use so provides proposed guidelines for 
the evaluation and assessment of such technology and a proposed 
technique for doing so. 

 

The project uses a novel mixed methods research approach to provide a 
pragmatic insight into the research objectives and provides direction for 
future research to build on this study’s recommendations. 
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NOMENCLATURE 

 

AS – Amputee Sprinting 

CV – Coefficient of Variation 

DERTIS – Dynamic Elastic Response to Timed Impulse Synchronisation 

ESR – Energy Storage & Return Prostheses 

ESRF – Energy Storage & Return Footwear 

FDE – Fixed at Distal End 

IAAF – International Association of Athletics Federations 

IOC – International Olympic Committee 

IP – Able-bodied Inception Period 

IPC – International Paralympic Committee 

JOST – Jog On the Spot Test 

LLP – Lower-limb Prostheses 

LLRP – Lower-limb Running Prostheses 

LA – Lower-limb to Limb Asymmetry 

LS – Lower-limb to Limb Symmetry 

MMR – Mixed Method Research 

MP – Able-bodied Modern Period 

PII – Performance Improvement Index  

RA – Random Asymmetry  

SDE – Slide of Distal End 

SI – Symmetry Index 

T43 – Double Below-knee Amputee 

T44 – Single Below-knee Amputee 

WADA – World Anti-doping Agency 
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CHAPTER 1: INTRODUCTION 
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1.1 INTRODUCTION 

 

Lower-limb prostheses (LLP’s) have provided the means for an amputee with 

a lower-limb amputation to participate in competitive sport (Lewis et al. 

1996). However, sport can extend from participation into an arena of elite 

competition. An example of competitive amputee running is shown in figure 

1. 

 

 

Figure 1: Lower-limb Amputee Competition (www.bbc.co.uk) 

 

To attain the best possible performance, effort must be made to optimise the 

various components that can contribute to an athletes’ success such as their 

training, nutrition or equipment. Typically, a sports technology is regulated 

via a sport’s governing body to ensure that the role and regulation of such 

technology is known. Despite this, the type of technology employed by 

athletes in a sport can affect the performance outcome. Whether this is 

deemed right or fair is typically determined by the constitutive rules of a 
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sport’s governing body. Such discussion of technology inclusion is often 

attempted to be resolved in academic areas of study such as sports 

philosophy (Lavin 2003) or sports engineering (James 2010). However, 

applying these perspectives independently of each other can have 

limitations. Sports ethics can provide a wide range of viewpoints but only 

moralise ‘on paper’ (Kretchmar 1984). Likewise, sports engineering can 

provide empirical evidence to address a stated controversial issue, yet does 

not consider the ramifications of its findings in a sport (Bruggemann et al. 

2008). As a result, utilising the strengths of both methods may well be a 

better solution. 

 

LLP’s used for running at competitions such as the Paralympic Games has 

typically been described as technology to facilitate a sport (Burkett 2011). An 

example of a typical LLP is shown in figure 2. 

 

 

Figure 2. Running Lower-limb Prostheses (www.dorset-ortho.com) 

 

Thus, LLP’s are integral to the performance of an athlete (Nolan 2008). 

Without them, the athlete would be unable to run. Historically though, little 
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attention was paid to the regulation of such technology until 2008 whereby 

South African Oscar Pistorius attempted to qualify for the Olympic Games 

using LLP’s. Debate raged over whether his LLP’s were judged to be 

performance enhancing. The outcome of the ensuing investigation into 

Pistorius raised conflicting opinions on how prostheses in sport should be 

regarded. Ironically accusations into prosthesis technology were made by 

Pistorius and later American Jerome Singleton in post race BBC interviews 

at the London 2012 Paralympic Games. As such, further investigation into 

the role and use of LLP technology in disability sport would seem of timely 

value. If concerns into the use of LLP technology do exist, assessment and 

regulation strategies should be implemented to maintain the ‘level playing 

field’ of the running events. This research project will provide new knowledge 

by attempting to investigate and define the role of LLP technology in elite 

disability sport. It will examine whether any potential unfairness actually 

exists, and if so, to investigate strategies to improve these in the future. 

 

1.2 OBJECTIVES 

 

The objectives of this study were: 

 

• To investigate the impact of any prostheses technological change that 

has occurred in the sport and to ascertain whether any regulation on 

their acceptability would be of value in the future. 

 

• To investigate current perceptions of lower-limb running prosthesis 

used in competitive disability sport. 

 

• To propose guidelines for lower-limb prosthesis technology inclusion 

when used in competitive running with a lower-limb amputation. 

 

• To investigate the assessment of lower-limb running prosthesis and to 

recommend appropriate testing strategies. 
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1.3 SCOPE OF RESEARCH 

 

This research investigated the use of lower-limb prosthetics in disability sport 

running. The context was limited to the male shorter running distances used 

in the Paralympic Games. These are traditionally the 100m and 200m. Both 

short running distances and male competitors are the only aspects which 

have seen consistent participation during modern Paralympic Games history. 

The project focused on athletes who have below-knee amputations as these 

also have the highest levels of continuous participation at the Paralympics 

and in greater numbers. The project does not focus on the use of such 

technology for above-knee amputees or for the use of such technology when 

used in able-bodied sport - even if some of the study’s findings may be 

applicable to that context. 
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1.4 BENEFICIARIES 

 

The project primarily provides guidelines and empirical evidence that are of 

value to the governance of elite sport with a disability. Such findings 

contribute to any discussion for any rule proposal amendments the governing 

body may wish to suggest in the future. Indirectly, the research findings may 

also provide strands of research that prosthesis manufacturers may pursue 

to assist in the optimisation of clinical prosthesis designs in the future. 

 

1.5 STRUCTURE OF THESIS 

 

The thesis consists of 11 chapters. The synopsis for these is shown below in 

table 1. 

 

Table 1. Thesis Content 

Chapter Synopsis 

1 Introduces the project, its background and provides the rationale for 

the research area.  

2 Covers a literature review of amputee running, prosthesis technology 

and how it is regulated in disability sport. It was proposed that this area 

has seen little attention and is worthy of further study. 

3 Reviews the controversy surrounding the use of technology in sport 

and what methods have been used endorse or reject them. In addition, 

the current legislation for the use of prosthesis in disability sport was 

reviewed and its limitations investigated. It is proposed that issues 

surrounding an unacceptable use of prostheses technology may exist 

but that this research area was a gap in current knowledge. These 

issues were therefore investigated in chapters 5 and 6. 

4 Details the general research methodology of this research project and 

the rationale for doing so. A mixed-method research approach was 
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defined and selected. 

5 Assesses the impact of a known technological change in prosthetics 

technology and determines its impact in disability sport. This chapter 

demonstrated the impact when technology is left unregulated within 

short distance amputee running competition. It is proposed that the 

adoption of LLP’s may have created participation issues in the sport. 

Accepting such technology is currently the norm, the perceptions of 

this current technology were investigated in chapter 6. 

6 This chapter performed a stakeholder assessment to develop 

guidelines for the acceptable inclusion of prosthetics technology in 

disability sport. This determines the core philosophy when designing 

any assessment strategies of running prosthesis in the future. Stride 

length was referred to as an issue and this was investigated in chapter 

7.The proposed guidelines also raised question marks over the 

differences between uni-lateral and bi-lateral lower-limb amputees. 

This aspect was investigated in chapter 8.  

7 This chapter investigated the stride characteristics of athletes with 

lower-limb amputations competing in the 100m in disability sport. It 

confirms the qualitative findings of chapter 6 that inter-limb symmetry 

should be monitored. 

8 This chapter investigated whether bi-lateral and uni-lateral amputees 

have functional differences between them as a result of changes in 

energy return technology. It used a jog hop test technique to create 

cyclic lower-limb to limb ground impacts. This study was important as it 

addressed chapter 6’s finding in that whether single and double 

amputees should continue to race together in a combined 

classification. This informed the design of a proposed assessment 

strategy in chapter 10. 

9 This assessed regulating prosthetics technology using 2 different 

loading methods when in isolation from its user. This extended the 

finding in chapter 6 in that prostheses are ‘equipment’ but ultimately 

conceded that such technology cannot be assessed in isolation from 

its user. This admission also contributed to the proposed assessment 
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strategy in chapter 10. 

10 This assessed the limitations of regulating prosthetics technology by 

proposing a jump test method. The technique was demonstrated to be 

suitable but warranted further development in the future. 

11 This discussed and concluded all chapters and gave recommendations 

for future actions leading from this projects overall research problem. 

 

 

A graphical representation of the thesis chapters and their linkages is shown 
in figure 3. 

 

 

Figure 3. Thesis Chapter Linkages 

 

1.6 ETHICAL APPROVAL 

 

Several experiments within this thesis required ethical approval as they 

required human participation. This approval process was submitted to the 

Research Ethics Committee located within the School of Design, Engineering 

& Computing School at Bournemouth University. The Delphi study in Chapter 

6, the jog/hop tests in Chapter 8, the run tests in Chapter 9 and the drop 

jumps tests in Chapter 10 all required and obtained ethical approval. 
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1.8 BACKGROUND 

 

This section provides a background and context to the research problem. It 

also provides an overview of amputees, disability sport and its governance. 

 

1.8.1 Amputation & Amputees 

Amputation is whereby one or more of the upper or lower limbs are removed 

due to trauma, congenital defects and blood flow issues (Powelson & Yang 

2012) that cannot be remedied using medical science of that time (Couch et 

al. 1977). It is also undertaken to preserve maximum independence of action 

for as long as possible (Geertzen et al. 2001). Prior to discoveries like 

antibiotics, amputation was the only medical procedure available to treat 

infections of the limbs (Coakley 2002). Prior to the widespread use of 

anaesthesia, such surgery carried a high risk of death due to haemorrhage 

or infection (Thurston 2007). One of the earliest examples of amputation is of 

a large toe amputation having been discovered on a 5000 year old Egyptian 

mummy (Thurston 2007).  

 

The goals of modern surgery are to remove the damaged limb segment(s) 

and then to fashion a residual limb that interfaces effectively with a 

prosthesis (Michael & Bowker 1994). Rehabilitation from amputation is 

affected by the severity and magnitude of limb removal (Couch et al. 1977). 

The ultimate goal for the patient is to resume a full and active lifestyle 

(Gutfleisch 2003). 

 

In terms of definition, leg or lower-limb amputation can be summarised as 

below-knee and above-knee (Couch et al. 1977). Alternatively, this has also 

been summarised as trans-femoral (above-knee) or trans-tibial (below-knee) 

(Powelson & Yang 2012). In general, the greater the level of amputation, the 
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greater the functional loss for the amputee (Michael & Bowker 2004). 

Preservation of the knee joint in particular is, desirable as this maintains joint 

articulation therefore making use of a prosthesis easier (Couch et al. 1977).  

 

Post surgery treatment surrounding amputation is an ongoing process which 

covers issues such as fluctuating residual limb volume and prosthetic fit 

(Michael & Bowker 2004). The quality of such fit between prosthesis and 

athlete is fundamental to the overall performance of the athlete (Burkett 

2011). In addition, managing soft tissue injuries due to the competitive use of 

assistive devices such as prosthesis is also a concern (Nyland et al. 2000). 

 

1.8.2 History of Disability Sport 

The Olympic Games is the largest sporting event in the world 

(Kioumourtzoglou & Politis 2002). The largest equivalent for athletes with a 

disability is the Paralympic Games (Kioumourtzoglou & Politis 2002). The 

‘Paralympics’ cover six core disability groups – athletes with cerebral palsy, 

athletes with intellectual disabilities, athletes with visual impairment, athletes 

with spinal cord injuries, Les Autres (French for ‘the others’) and athletes with 

an amputation (Gold & Gold 2007). Whilst other competitions for those with a 

disability exist, it is the Paralympics which form the pinnacle of athletic 

excellence. 

 

Whilst participation for those with a disability can be traced back to events 

such as the first International Silent Games in 1924 for athletes suffering for 

hearing impairments (Gold & Gold 2007), the birth of what became the 

Paralympic Games did not take place until after the Second World War. The 

history of the Paralympics is credited to the work of Dr Ludwig Guttmann, a 

neurosurgeon who founded the spinal cord injuries centre located at Stoke 

Mandeville in Buckinghamshire, England in 1944 (Brittain 2012). Following 

the Second World War, the British Government requested that Guttmann 
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establish a spinal cord injuries centre typically catering for ex-servicemen 

(Gold & Gold 2007). Guttmann made competitive sport an integral part of the 

rehabilitation process for those with spinal cord injuries (Legg & Steadward 

2011). In 1948, two teams took part in an archery contest on the front lawns 

of Stoke Mandeville Hospital (Kioumourtzoglou & Politis 2002) to coincide 

with the opening ceremony of that year’s Olympic Games held in London 

(Gold & Gold 2007). In 1949, Guttmann saw the potential for such 

competitions to become an equivalent of the Olympic Games and in 1952, a 

smaller competition took place across several sports disciplines 

(Kioumourtzoglou & Politis 2002). This saw international participation 

(Vanlandewijck & Chappel 1996) involving competitors from the Netherlands 

(Bressan 2008; Legg & Steadward 2011). Pope John Paul XXIII later 

declared Guttmann the ‘Coubertin of the paralysed’ (Legg & Steadward 

2011) suggesting parallels to the longer established Olympic Games that 

Guttmann had attempted to replicate. By 1960, the first official summer 

Paralympic Games took place in Rome (Vanlandewijck & Chappel 1996) and 

saw 400 athletes from 23 countries competing (Kioumourtzoglou & Politis 

2002). Athletics was included in the full Paralympic programme for the first 

time in 1960 (Gold & Gold 2007) and in 1976, the scope of the Paralympics 

was widened to accept other disabilities (Curran 2012) including amputees 

(Webster 2001). 

 

In 1988 the Paralympics and Olympics were held together in the same year 

using the same hosting city and venues (Brittain 2012). In 2001 the IOC and 

the IPC signed an agreement which established closer ties between the two 

organisations. This strengthened the finances of the International Paralympic 

Committee (IPC) but the International Olympic Committee (IOC) also insisted 

that the Paralympics were restricted in terms of their size (Jones & Howe 

2005). The most recent Paralympic Games were in 2012 and held in London. 

 

It should be noted that whilst the Paralympics and the Olympics are two 

separate sporting events in essence, crossover by athletes from disability to 
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able-bodied sport is allowed. Athletes who have partaken in the Paralympics 

and later the Olympics have included swimmer Natalie du Toit and table 

tennis player Natalia Partyka (Legg & Steadward 2011). In addition, archer 

Paola Fantato in 1996 and most recently runner Oscar Pistorius in 2012 

participated in both the Olympics and Paralympics within the same year. 

 

1.8.3 Classification Of Lower-limb Amputee Runners 

To make disability competition as fair as possible, it was initially decided that 

athletes should be grouped into different ‘classes’ based on the type and 

extent of their disability (Bressan 2008). Classification can be defined as a 

single group of entities or units that are ordered into a number of smaller 

groups based on observable properties they have in common (Tweedy & 

Vanlandewijck 2009). Classification of a disability has been undertaken 

either as a specific designation of their disability, or more recently through 

actual functional assessment. Initially, classification was based on a medical 

opinion of the nature and extent of the disability. However, the process has 

evolved whereby a functional assessment is used to determine which 

classification an athlete is placed into for their competition (Tweedy & 

Vanlandewijck 2009; Bressan 2008). In some cases this could mean a non-

amputee suffering a similar impact of disability would race alongside 

amputees - provided their impairment has a similar impact on performance 

(Bressan 2008) or a similar type of dysfunction (Jones & Howe 2005). 

Classification in this way is a current issue in disability sport (Depauw & 

Gavron 2005) and can have an impact on which athletes are successful 

(Tweedy & Vanlandewijck 2009). Classification was ultimately proposed to 

‘determine eligibility to compete’ and to ‘minimise the impact of the 

impairment on the outcome on the competition’ (Bressan 2008). 

 

As the philosophy for classification has changed, so too has any formalised 

reference or code for an athlete with a below-knee amputation. These codes 

have changed during the 1976-2012 timeframe and have been defined in 

each Paralympic Games as: 
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• M C (1976 & 1980) 

• A4 (1984 & 1988) 

• TS2 (1992) 

• T44 (1988-current) 

 

The current classification system uses a letter and number based system to 

denote the events generalised context. For example, this can mean ‘T’ 

meaning track and ‘F’ meaning field based events. This is followed by a 

number which relates to the type of disability (Webster et al. 2001). The 

larger this number is, the smaller the severity of the disability (Bressan 

2008). Lower-limb amputees who most commonly compete in short distance 

running events are typically ‘T42’, ‘T43’ or ‘T44’ types (www.paralympic.org). 

T42 refers to single (uni-lateral) above knee amputees. T43 refers to double 

(bi-lateral) amputees and T44 refers to uni-lateral below knee amputees.  A 

T44 athlete is illustrated in figure 4. 

 

 

Figure 4. T44 Athlete (www. lewisphoto.wordpress.com) 
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In the case of lower-limb amputees, a race with six T44 athletes and two T43 

athletes would be generally listed as a T44 based event. However, medals at 

the Paralympic Games are awarded to the first three athletes across the 

finishing line of their event, not the first 3 of each classification type 

(www.paralympic.org/results). The Paralympic Games is currently capped at 

a maximum level of 4000 participating athletes. Whilst fewer classifications 

are desirable to make the sporting spectacle easier to understand, 

inaccurate or inequitable classifications could then be considered unfair 

competition (Howe & Jones 2006).  In addition, the governing body has 

determined a minimum athlete participation level to allow an event to have its 

own disability category. In the case of insufficient participation, separate 

classifications can be grouped together. 

 

1.8.4 Race Distances  

Running distances for Paralympians have been adopted from standardised 

formats also used at the Olympic Games (Miller 2003). At the Paralympic 

Games, the same race distances are used. As a result, individual athletes 

with a lower-limb amputation have historically contested the 100m, 200m and 

400m events for both males and females. However due to the IPC’s 

participation requirements, not all of these have been participated in by both 

sexes at the Paralympic Games continually since 1976 

(www.paralympic.org/results). However, there are accounts of athletes with 

amputations competing in able-bodied competition over longer distances or 

durations. These have included Amy Palmeiro-Winters competing in the 

marathon (Wolbring 2012) and Sarah Reinertsen competing in triathlon 

(Booher 2010).  

 

1.8.5 Disability Sport Governance 

Initially, governance at the Paralympic Games was undertaken by consulting 

with several smaller organisations, each with their own interest for a 

particular type of disability (Kioumourtzoglou & Politis 2002, Legg & 
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Steadward 2011). Four of these later recognised the need to coordinate the 

Paralympics and in 1982 created an International Coordinating Committee 

Sports for the Disabled (ICC) (Gold & Gold 2007). This was driven in part by 

the Olympic Games governing body, the IOC wishing to correspond and 

collaborate with one umbrella organisation rather than several smaller ones 

(Legg & Steadward 2011). By 1989, the International Paralympic Committee 

(IPC) was formed (Kioumourtzoglou & Politis 2002) with its constitution and 

byelaws ratified in 1990 (Legg & Steadward 2011). The IPC now serves as 

the umbrella organisation for 162 National Paralympic Committees, five 

regional bodies and four international disability specific sports federations 

(Gold & Gold 2007). Both the Paralympics and the quadrennial World 

Championships for individual sports (such as swimming and athletics) are 

currently organised and managed by the IPC (Jones & Howe 2005). The 

IPC’s formal headquarters were created in Bonn, Germany in 1999 where 

they continue to reside today. 

 

The Paralympics held in 1988 used the same facilities and resources as the 

Olympics so have subsequently been considered to be the first of the 

modern style games (Legg & Steadward 2011). Cities which have sought to 

hold either the 2008, 2010, 2012 or 2014 summer or winter Olympics have 

also had to include the inclusion of the Paralympics and their specific needs 

within the same bid (Gold & Gold 2007). 

 

1.9 CONCLUSION 

 

The current format and governance of lower-limb amputee racing has been 

consistent since 1988 and lower-limb amputees have raced against each 

other since 1976. The alignment of the Paralympic Games to the Olympics 

should ensure the same stability of athletic format for the foreseeable future. 

The use of combined lower-limb amputee classifications when partaking in 

any running events warrants further investigation. 
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CHAPTER 2: TRANSTIBIAL AMPUTEE MOTION 

& PROSTHETICS TECHNOLOGY: A REVIEW 
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2.1 INTRODUCTION 

 

This chapter reviews the history of both amputation and prosthetics. In 

addition, it assesses the research associated with lower-limb amputee 

running and sprinting and ascertains what issues are unresolved with respect 

to amputees, their prosthesis and disability sport. 

 

2.2 A BRIEF HISTORY OF PROSTHESIS 

 

The expression ‘prosthesis’ stems from the Greek word meaning ‘addition’ 

(Gutfleisch 2007). To help patients who have lost a limb due to amputation, 

use of prostheses is recommended to help them resume an active lifestyle 

(Gutfleisch 2003) or to replicate the missing anatomical structure (Hillery & 

Strike 2001). To this end, developments in prosthesis are directed towards 

improving comfort, reducing energy expenditure and improving stability 

(Gutfleisch 2003). 

 

There is evidence that prostheses have been used for at least 5000 years 

(Gutfleisch 2003). An early example from this period included a toe 

prosthesis that had been carved from wood. Early examples of leg prosthesis 

were manufactured using techniques used for heavy armour (Gutfleisch 

2003). In 3500-1800 BC, an early poem was written that concerned Queen 

Vishpla losing her leg in combat and then being fitted with an iron prosthesis 

before then returning to war (Cantos 2005; Thurston 2007).  Prosthesis 

ultimately moved from the aesthetic to increased functionality when 

Ambroise Pare’ (1510-90) designed prosthesis that provided a range of knee 

articulation (Cantos 2005). Later in 1805, James Potts filed a patent for an 

artificial limb that comprised an articulated foot. In 1816, Potts then built a 

limb for the Marquess of Anglesey who had lost their leg in the Battle of 
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Waterloo. This limb became known as the ‘clapper leg’ due to the noise it 

made upon reaching full extension (Gutfleisch 2003). 

 

It has been claimed that war as an event has provided the main catalyst for 

prosthetic innovation (Cantos 2005; Coakley 2002; Guyatt 2001). Conflicts 

such as the American Civil War, the First and Second World Wars, and 

Vietnam all saw significant leaps in prosthetic innovation (Gutfleisch 2003). 

However, it is now proposed that increased population is also contributing to 

the need for improved prostheses development (Gutfleisch 2003).  

 

The basic components of a modern lower-limb below-knee prosthesis are 

shown in figure 5. 

 

 

Figure 5. Typical Contemporary Prosthesis (www.sugru.com) 
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The typical below-knee prosthesis shown in figure 5 comprises a Liner, often 

made of a visco-elastic material (Lewis et al. 1996) such as silicon or gel 

(Webster et al. 2001) which then roll over the top of the residual limb. The 

liner helps to absorb torsion and shear forces, reduce sweat production and 

contribute to a good prosthetic fit (Powelson & Yang 2012; Lewis et al. 

1996). The limb and liner is then inserted into the prosthetic socket. The 

socket is generally considered to be one of the most important components 

of a prosthesis due to its requirements (Powelson & Yang 2012; Laferrier & 

Gailey 2010) and this transmits the forces between the residual limb and the 

prosthetic itself (Powelson & Yang  2012). It has to achieve satisfactory load 

transmission, stability and efficient control of mobility. Due to the shape of 

the socket, the limb is suspended which prevents impact to the sensitive 

distal end. The limb is held inside the socket through means of suction and 

suspension designed to support the prosthesis when no weight is being 

placed upon it (Powelson & Yang 2012). Suction suspension itself was 

patented as an innovation in 1863 but not utilised frequently until nearly 80 

years later (Harvey et al. 2012). Below the socket assembly is the shank or 

pylon (Powelson & Yang 2012) which contributes to providing the correct 

limb length. The shank subsequently then attaches to the foot assembly 

which can be shaped or derived from different materials depending on the 

user’s needs and prostheses application (Powelson & Yang 2012). The 

dimensions of these parts depend on the needs, physiology and 

biomechanics of the intended user. The prosthesis ultimately requires 

adjustment in terms of alignment and this was made possible when German 

company Otto Bock introduced endoskeleton components in 1970 (Harvey et 

al. 2012). The other key requirement is the best possible fit of the socket as 

the limb stump is subjected to volume change. The fit of both socket and 

alignment is normally conducted by a prosthetist. 

 

The development of specific prostheses for sport did not firmly take hold until 

the 1980’s which was potentially caused by a fitness boom (Michael et al. 

1989). The introduction of the Seattle foot in 1981 brought the introduction of 

energy storing prosthetic feet (Hafner et al. 2002b). This comprised a flexible 
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fibreglass keel housed inside a polyurethane shell (shaped like a foot) 

(Bragaru et.al 2012). In the mid 1980’s, a running specific prosthesis 

designed for trans-femoral amputees was created known as the Terry Fox 

design which used a coiled spring shank design (DiAngelo et al. 1989). 

Later, a significant progression for both above and below knee amputees 

was made when Van Philips conceived the Flexfoot in 1987 (Hafner et al. 

2002b). In the media these are sometimes referred to as ‘Cheetah’ legs 

(Zettler 2009; Curran & Hirons 2012) due to their resemblance to the hind 

legs of the animal which formed part of Van Philips inspiration. This design 

(later purchased by the Icelandic company Össur) is the basic principle of 

current energy return prosthesis technology seen in current disability running 

sport today and of those primarily investigated in this research project. 

 

The Flexfoot© design comprises a flexible carbon fibre shank and heel 

spring and is often ‘c’ or ‘j’ shaped in profile. This was first seen on the 

market in 1987 (Hafner et al. 2002b) and in elite competition at the 1988 

Paralympic Games (Nolan 2008). Four years later the prosthetic heel 

component was removed creating the first sprinting specific prosthesis in the 

guise that is currently recognisable today. This innovation allowed amputees 

to run faster (De Pauw & Gavron 2005, p.167). The prescription of such 

prosthesis is defined by the user’s weight and activity level (Curran and 

Hirons 2012). The basic construction of a modern running prosthesis is 

shown in figure 6. 
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Figure 6. Sprint Running Prosthesis (www.mmajunkie.com) 

It should be noted that prosthetics technology can be more complex and 

have greater levels of innovation than those witnessed in lower-limb amputee 

running. Clinical prostheses have seen innovations such as micro-processor 

controlled movements (Harvey et al. 2012) hydraulic knee actuators 

(Webster et al. 2001) or osseo-integration of bone to prosthesis connection 

(Harvey et al. 2012). At this time, such innovations are inherently expensive 

and not allowed for use in elite disability sport under its rules and regulations.  

 

2.3 THE FUNCTION OF RUNNING PROSTHESIS 

 

The modern running prosthesis has been termed dynamic elastic response 

(Geil et al. 2000) or energy storage and return (Hafner et al. 2002a) 

prostheses. In this thesis, the expression, ‘energy storage and return 

prosthesis’ (ESR) will be used. Such technology is typically prescribed to an 

athlete based on their bodyweight coupled with selection of the appropriate 

stiffness category (Lechler & Lilja 2008). 

 

Modern ESR’s are normally manufactured from a composite material (Nolan 

2008) and are effectively a spring (McGowan et al. 2012, Lewis et al. 1996) 
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of a passive nature (Nolan 2008). As a result, such a design under load 

exhibits the characteristics of energy return (Nolan 2008) and stiffness 

(Jaarsveld et al. 1990). Mechanical losses in the form of heat, sound or 

friction will reduce the energy efficiency of the prosthesis (Nolan 2008). The 

energy efficiency of such designs has been reported to be approximately 

95% but this only involved assessment under statically applied loads (Nolan 

2008). Running is a dynamic activity and only a personal communication 

reported by Nolan (2008) provided any evidence of dynamic energy 

efficiency of ESR’s whereby an efficiency of 63% was reported. As a result, 

any claims of efficiency may well significantly overestimate performance 

unless used in dynamic activity. 

 

A fundamental difference when comparing biological lower-limbs to ESR’s is 

that the human ankle has had a reported energy efficiency of 241% 

(Czerniecki et al. 1991) which suggests the human ankle can substantially 

enhance lower-limb energy and power production via its muscles and 

tendons. The ESR is unable to be more than 100% efficient seemingly 

putting it at a disadvantage when compared to the human foot region. Only 

active prosthetic components could correct for this difference (Hafner et al. 

2002b) although additional performance enhancing characteristics may be 

hypothetically possible for amputee runners with bi-lateral amputations  

(Noroozi et al. 2012). ESR’s are fundamentally a passive device (Nolan 

2008). Energy efficiency has been calculated by method of functional testing 

(Michael 1987), mechanical analysis (Bruggemann et al. 2008), kinematic 

analysis using motion capture (Hafner et al. 2002b) and mathematical 

analysis (Prince et al. 1998). A comparison using two kinetic analysis 

methods has been undertaken but provided a lack of correlation in terms of 

efficiency and energy return between them (Geil et al. 2000).  

 

Mechanical stiffness of ESR’s is relevant as high levels of lower-limb 

stiffness are evident in running (McGowan et al. 2012) and has been 

correlated to maximal sprinting performance in able-bodied persons (Chelly 
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& Denis 2001). High stiffness is therefore desirable but needs to be defined 

in uni-lateral amputees by the apparent stiffness of the biological limb as limb 

to limb symmetry has been proposed to improve overall performance (Nolan 

2008).  

 

The question therefore is whether performance enhancement is a valid issue 

at all with lower-limb prostheses design. Adopting Buckley’s’ (1999) 

observation that a lower-limb running prosthesis could need to be 'tuned’, 

some focus has been placed on the adjustment qualities of the lower-limb 

running prostheses. This has been achieved by adjusting its placement of 

the knee joint asymmetrically (Burkett et al. 2001) and placement of mass on 

a LLP (Selles et al 2004; Trabelsi et al. 2005). These studies both showed 

differences in biomechanical asymmetry, energy return efficiency, gait 

patterns and the users metabolic cost. However, it was shown that there was 

considerable scope to investigate and optimise the effects of inertia and 

centre of mass at sprinting speeds (Nolan 2008). These studies indicate 

(along with the acknowledgement that the energy return prosthesis does not 

physically resemble the human limb), that an aesthetically non-biological or 

an asymmetrical functioning prosthesis may be a more effective design 

solution to lower-limb disability running. Demand for optimisation may exist 

and a patent was ultimately lodged regarding tunable prosthesis (US Patent  

No. 7211115). 

No research at this time has shown that the modern prosthesis is able to 

outperform the respective human limb when judged in isolation from the rest 

of the human body, but several studies have shown that variation in 

performance such as energy transfer exist between clinical prostheses 

designs themselves (Michael 1987; Prince et al. 1998; Thomas et al. 2000; 

Barth et al. 1992) and in the composite lay-up prescriptions of ESR’s 

(Lechler 2005). There are concerns that the full understanding of such 

technology may never be known (Nolan 2008). However, the need to 

maximise performance of such technology is obviously desirable by the 

prosthetist and/or the athlete. 



  42 
 

2.4 TRANS-TIBIAL AMPUTEE RUNNING 

 

2.4.1 Lower-limb Amputee Running: A Background 

Enoka et al (1982) published one of the earliest pieces of research to 

investigate below-knee amputee running gait. He demonstrated that a 

degree of asymmetry and loading imbalances existed between a prosthetic 

and a sound limb. Due to the limitations (or possibly the limitations of the 

prosthesis design at that time), the speeds his ten test subjects could 

achieve was 4 m/s which in modern terms is approximately half that of 

current typical amputee sprinting speed (Nolan 2008).  

 

Running specific speeds were later addressed within Lewis et al. (1996) 

research. This work sought to increase the understanding of both amputee 

and prostheses behavior when subjected to higher speeds than previously 

attempted. In addition, the study used athlete test subjects whose inclusion 

in studies had been extremely limited up until this point. This paper was very 

much an extension of Czerniecki and Gitter’s (1992) muscle work analysis of 

amputee running and co-author John Buckley later extended this into a more 

specific context of amputee sprinting (Buckley 1999; Buckley 2000). Buckley 

noted that the needs of the individual athlete with a disability were such that 

it may require prostheses to be individually ‘tuned’ to obtain the best possible 

running gait. This ultimately starts to address the individual needs of lower-

limb disability running technology and demonstrates that a much more 

tailored approach is needed to optimise the activity. 

With the inception of ESR’s, the differences between able-bodied and 

amputee test subjects were evaluated (Czerniecki et al. 1991). These have 

been investigated when walking (Prince et al. 1998; Barth et al. 1992) and 

running (Prince et al. 1992; Czerniecki, Gitter and Beck 1996; Thomas et al. 

2000). The outcome of these demonstrated both biomechanical and 

efficiency based differences in uni-lateral amputees and that the human limb 

performs better both in their resultant ground reaction forces and energy 

return efficiency. These studies therefore propose that in the case of a uni-
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lateral amputee, the LLP is inferior to that of a human leg when using current 

technology although these views were challenged more recently with 

analysis of a bi-lateral amputee (Bruggemann et al. 2008). 

 

Recent published literature reviews have focused on prostheses technology 

mechanical differences to the sound limb in amputee running (Nolan 2008), a 

framework of lower-limb kinematic and kinetic characteristics (Pailler et al. 

2004) and a review of the technology currently employed within running sport 

(Webster et al. 2001). However, whilst studies have evaluated lower-limb 

amputees at a variety of speeds, most studies use steady state running 

speeds to assess test participants. This means the variable speeds evident 

in races such as the 100m or 200m is not considered. In addition, the track 

that athletes compete on comprises two straights and two bends per 400m 

lap. Whilst some evaluation has been undertaken to ascertain changes in 

lower-limb stiffness when running, it is not known of what changes occur to 

lower-limb kinematics and biomechanics with trans-tibial amputees running 

round these bends. Research focusing on competitive amputee runners 

appears to be seeing continual increases in specificity but still lacks the full 

characteristics of the actual event competed in. 

 

2.4.2 The Biomechanics & Kinematics of Amputee Running 

The biomechanics of amputee limbs when running are divided into a limb 

‘stance’ and ‘swing’ phase (Umberto et al. 2006; Gailey 2002). During stance 

phase, the initial contact to mid stance by a limb is referred to as the 

‘absorption phase’ (Umberto et al. 2006; Gailey 2002). The mid stance to 

toe-off period is known as the propulsion phase. This is whereby a single 

lower-limb generates thrust and the body generates the acceleratory forces 

that are carried over as the other limb begins to swing through (Gailey 2002). 

The beginning and end of each swing phase will see a small duration 

whereby neither limb is in contact with the ground. An illustration of amputee 

running as defined by Gailey (2002) is shown in figure 7. 
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Figure 7. Amputee Running. From left to right: ‘stance’ phase, ‘absorption’ phase and ‘swing’ phases (Gailey 2002). 

 

It has been proposed that the stance phase accounts for less than 50% of 

the running gait cycle. As speed increases, the percentage of the stance 

phase decreases (Gailey 2002). The combination of the limb swing and limb 

stiffness determine the ground contact time which has been proposed to be 

an important variable that dictates maximum running speed of the amputee 

(McGowan et al. 2012). 

 

The sprint kinematics of both the hip and the knee has been shown to be 

similar in both biological and artificial lower limbs (Buckley 1999). In addition, 

the hip has been shown to be the main compensatory effect by an amputee 

during stance with increased work at the knee and hip during swing (Sadeghi 

et al. 2001a; Czerniecki et al. 1996).  Increased work at the hip during stance 

has been also witnessed in a small number of trans-tibial amputee sprint 

athletes (Buckley 2000). Lower-limb propulsion is proposed to be lower on 

the amputated limb in uni-lateral amputees (Sadeghi et al. 2001a). 

 

2.4.3 Amputee Running & Lower-limb Symmetry 

Biomechanical asymmetry has been shown to exist in amputee running 

(Buckley 1999; Buckley 2000; Enoka 1982) but has been indicated to be 

affected by the level of disability and the prosthesis employed (Czerniecki, 

Gitter & Beck 1996). 
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Lower-limb symmetry itself has been remarked as desirable in running gait 

(Nolan 2008) and often assumed in literature (Sadeghi et al. 2000). The 

calculation of lower-limb to limb symmetry has been shown to be problematic 

due to the intra-limb variability being greater than the proposed limb 

differences (Exell et al. 2012). However, such concerns are levelled at the 

assessment of able-bodied candidates, not those with lower-limb 

amputations which would be less inclined to be as symmetrical. 

 

In trans-tibial amputee sprinting, there have been observations that typical 

asymmetry exists in stance and swing phase ratio’s and for step lengths 

(Lewis et al. 1996). The pursuit of symmetry specifically may not be the 

answer to a more effective prosthesis design (Burkett 2001) or as important 

as understanding any compensation strategies (Sadeghi et al. 2001b).  

Studies with able-bodied participants have indicated that a natural 

asymmetry does occur between the lower-limbs and may also include the 

impact of any lower-limb dominance known as ‘laterality’ (Sadeghi et al. 

2000). It is not known what role laterality has at faster locomotion speeds 

such as those witnessed in competitive running but it has been remarked 

that use of prostheses does change any impact of laterality (Taylor et al. 

2006).  

 

The measurement of symmetry can be performed merely by comparing 

performance metrics from one side to another. However, statistical methods 

such as the symmetry indices (Karamanidis et al. 2003) or the symmetry 

angle (Zifchock et al. 2008) have been demonstrated to be reliable metrics to 

specify limb-to-limb imbalances. However, symmetry indices have been 

shown under certain conditions to artificially inflate results (Exell et al. 2012). 

A composite method using several metrics has been shown to hopefully 

reduce this issue but either way, it is proposed that inter-limb differences 

must be greater than intra-limb variability (Exell et al. 2012).  
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2.5 CONCLUSION 

 

Research into lower-limb amputee running is still in a state of relative 

infancy. The specialisation of its prosthetics technology is only approximately 

30 years old. The current ESR technology used has only been in service in 

competitive sport for 25 years. Research into high speed running performed 

by athletes with a trans-tibial amputation has only been evident for the last 

14 years and the most detailed holistic evaluation is only 5 years old.  This is 

a relatively short period to expect a thorough understanding of amputee 

running. Case studies or very small numbers of amputees are typically 

evaluated in the studies that exist which make any findings limited. As a 

result, event discipline differences such as duration, length or characteristics 

are still not yet considered in empirical research.  
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CHAPTER 3: SPORTS TECHNOLOGY: A 

REVIEW 
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3.1 INTRODUCTION 

 

This chapter reviews the use of technology in sport, its implications and an 

assessment of criteria used to formulate debate on its inclusion. Some of this 

chapter's content has seen peer review via journal publication (Dyer et al. 

2010) and is contained within Appendices F. 

 

3.2 SPORT TECHNOLOGY INCLUSION 

 

Sports technology and subsequent discussion surrounding potential 

performance enhancement has included artifact (Dyer 2010; Holowchak 

2002; Kyle 1991), material (Stoll et al. 2002; Froes 1997), or chemical 

technologies (Savulescu et al. 2004; Miah 2005; Gardner 1989). Pursuing 

optimised sports technology is valuable when it has been proposed that 

based upon within-event athlete performance variability, any statistical 

performance improvements for able-bodied track athletes can be as small as 

0.3-0.5% to still be deemed worthwhile (Hopkins 2005). 

 

The field of study that surrounds the decision making or debate with respect 

to the actual acceptability, inclusion, or controversy of sport technology has 

been termed performance enhancement (Loland 2009), technosport 

(Freeman 1991) human enhancement technologies (James 2010) or 

mechanical ergogenics (Holowchak 2002; Kyle 1991). Whilst this designation 

may differ, there appears to be no difference between the various titles 

scope.  

 

The means to determine a physical sports technology or equipment’s viability 

and validity has attempted to be resolved using ethical discourse. The 

starting point for such discussion has included being prior to a technology’s 
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adoption (Miah 2000), debate of a technology in service (Hilvoorde 2010; 

Holowchak 2002; Magdalinski 2000) or debate surrounding the illegal use of 

sports technology (Hemphill 2009). It has been argued that the adoption of 

sports technology needs an ‘ethical foundation’ rather than an acceptance of 

an attitude to win at any cost (Freeman 1991). However, a shortcoming of 

resolving the use of sports technologies can be strongly opposing views, 

despite well constructed arguments. For example, with the debate 

surrounding performance enhancing drugs, ethical discourse produced views 

that were either pro-doping (Foddy & Savulescu 2007; Savulescu 2006) or 

anti-doping (Wiesing 2011; Lavin 2003). This means the use of philosophical 

discourse cannot guarantee moral consistency although this disparity has 

been recommended to be overcome by means of obtaining consensus 

directed from a point of authority (Sakine & Hata 2004). What sports 

philosophy can do is to identify values whilst establishing the soundness of 

any arguments (Hemphill 2009). 

 

Quantitative methods have also been used to determine the impact and 

viability of sports technology inclusion and these have included economic 

feasibility studies (Osborne 2005), mathematical modelling (Haugen 2004) 

and legal analysis (Zettler 2009; Shapiro 1991).  Empirical testing has been 

used as evidence to prescribe the acceptance level of performance 

enhancement (Weyand & Bundle 2009; Kram et al. 2009) but typically 

scientific studies present findings related to the performance of sports 

technology as opposed to then arguing for its inclusion/exclusion. Both 

qualitative and quantitative methodologies typically use one of the 

techniques listed but it is not known whether a mixed method or comparative 

approach would be superior approaches.  
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3.3 SPORT TECHNOLOGY CONTROVERSY 

 

There are several case studies within sport of controversy surrounding sports 

technology already adopted for use. Some examples of these are illustrated 

in figure 8. 

 

 

Figure 8. Sports Technology ControversyExamples 

 

The examples in figure 8 include (from top left and clockwise), the Speedo 

Speedsuit swimsuit, Ossur Cheetah Prosthesis, the Polara Golf Ball and 

Graeme Obree’s ‘Old Faithful’ bicycle.  

 

A summary of case studies taken from reviewed literature is shown in table 

2. 
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Table 2. Case Studies of Sports Technology Controversy 

Sports Technology 

Innovation 

Controversy 

Pole Vault: Composite 

Pole 

- Sudden increase in world records (Haake 2009). 

- Last minute ban altered athlete preparation (Millar 2003, p201). 

Tennis: String Patterns 

(‘Spaghetti Stringing’) 

- Allowed a player to generate more power and greater accuracy. 

(Gelberg 1998). 

- The new design saw many lower ranked players suddenly 

gaining the ability to beat higher ranked ones who had not had 

access to the new rackets (Gelberg 1998). 

Swimming: ‘Speedsuits’ - Only Speedo sponsored athletes had access to technology 

(Burkett 2011). Only 5% of male finalists had access to this type 

of suit (Neiva et al. 2011). 

Powerlifting: Squat Suits 

& Knee Straps 

- Technology has increased performance but not increased 

interest in sport (Holowchak 2002). 

Golf: Use of ‘U Grooves’ 

with the Sand Wedge 

club 

- Increased ability to clear golf ball from bunker (Gardner 1989). 

Golf: The Polara Golf 

Ball 

- Reduced hook/slicing of golf ball (Gelberg 1998). 

Track Athletics: Lower-

limb prosthesis use by 

disability runner 

- Use of a prosthetic lower-limb being advantageous over a 

biological lower-limb (Howe 2011; Magdalinski 2009). 

Endurance Sport: Use 

of Altitude Tents 

- Provides higher red blood cell count to an athlete by non-

natural generation (Loland & Murray 2007; Spriggs 2005). 

Speed Skating: The 

Clapskate speedskate 

design 

- Sudden increase in world records (Hilvoorde et al. 2007; Koning 

et al. 2000). 

 

Fencing Rigging of sword to register an hit on the opponent by the 

attacker (Millar 2003) 

 

This listing does not likely cover every historical case of sports technology 

controversy. Even so, even if it did, it has been noted that further controversy 

with sports engineering is inevitable since engineering as a practice involves 
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advancement of technology (James 2010). When considering the case study 

examples in table 2, such implementations have common themes such as 

how the sport is perceived or played (Gardner 1989; Miah 2006), made the 

sport easier (Sheridan 2006) or created issues when accessing technology 

with equal opportunity (Burkett 2011). These themes have also been used 

within qualitative methods and are typical in sports ethics discourse (Miah 

2005). The qualitative themes used for arguing the inclusion or viability of 

sports technology and their subsequent issues surrounding performance 

enhancement are summarised in table 3 below. 

 

Table 3. Summary of Sports Ethics Literature Review 

Criterion References 

Harm or health  

(to the athlete or others) 

(Hemphill 2009; Kayser et al. 2007; Miah 2006; Lavin 

2003;  Morgan 2003; Loland 2002; Stoll 2002; Bjerklie 

1993; Brown 1980) 

Un-naturalness (Hemphill 2009; Miah 2006; Loland 2002; Stoll 2002) 

Unfair advantage or consideration 

of fairness 

(Murray 2010; Hemphill 2009; Carr 2008; Miah 2006; 

Lavin 2003; Stoll 2002; Loland 2002; Gardner 1989; 

Brown 1980) 

Coercion (Lavin 2003; Gardner 1989)  

Safety, and spectator appeal (Gelberg 1998) 

Integrity of the game, harm to or 

advantage over the sport itself, or 

the ‘spirit of the sport’ 

(Wiesing 2011; James 2010; Morgan 2003; Miah 2000; 

Gardner 1989; Feezell 1988) 

Deskilling & reskilling (Miah 2006; Sheridan 2006; Miah 2000; Gardner 1989) 

Dehumanisation (Miah 2000) 

Cost (or excess cost) (James 2010; Froes 1997) 

The internal goods of a sport (Schneider & Butcher 1995) 

Equal opportunity or access (Lenk 2007; Gelberg 1998) 

 

A critical shortcoming of such criteria is knowing when or how to rank or 

prioritise them when more than one is applicable – especially if they conflict. 

For example, if a prosthetic device improves the safety and comfort to its 

user but alters the way the athlete runs in the event, such research typically 

rely on the sports ethicist or philosopher to subjectively rank or prioritise the 

value of such technology. 
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In the case of performance enhancing drugs, there has been support as to 

their legalisation when using some of the criteria in table 3 (Kayser et al. 

2005; Savulescu et al. 2004; Brown 1980). Likewise, other researchers when 

using the same criteria have argued on behalf of upholding the ban 

(Schneider & Butcher 1995). As a result, this demonstrates that despite 

many key themes being consistent, ethical debate alone is not consistent 

enough to seek objective resolutions on sports technology inclusion. 

 

3.4 DISABILITY SPORT TECHNOLOGY CONTROVERSY 

 

Whilst there are several occurrences of issues surrounding sports technology 

inclusion in able-bodied sport, disability sport has seen fewer such cases. 

Despite this, there are some published case studies of elite athletes who 

have competed either in disability sport or have attempted to use their 

assistive devices in able-bodied sport that have created controversy. 

 

3.4.1 Casey Martin 

American Casey Martin was a professional golfer during the mid to late 

1990’s. Martin was a registered disabled citizen who suffered from a 

circulatory disorder in his lower right leg yet participated at an elite level on 

the PGA national tour (Charlish & Riley 2008). Golf carts were banned in 

professional golf at the time as it was felt that such technology would change 

the nature of the game by reducing the impact of the walk between and 

during each hole (Charlish & Riley 2008). Such use of technology can be 

interpreted from the PGA’s position as being an advantage over the sport 

(Gardner 1989). 

 

Martin contacted golf’s governing body with the view to having the rule 

changed but the PGA refused (Charlish & Riley 2008). As such, Martin 
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attempted to force such a change through use of the American legal system 

and its current disability equality laws (Silvers & Wasserman 2000). The 

supreme court ruled that the walk aspect during the game of golf was not 

considered part of the sport and therefore ruled in Martin’s favour in 1998 

(Silvers & Wasserman 2000). 

 

3.4.2 Oscar Pistorius 

South African, Oscar Pistorius (figure 9) is a bi-lateral below-knee amputee 

who won gold medals in the 2004, 2008 (Jones & Wilson 2009) and 2012 

Paralympic Games and is a World Record Holder (Camporesi 2008; 

Wolbring 2008).  

 

 

Figure 9. Oscar Pistorius 

 

As the result of a congenital defect, he was born without fibulae bones (Lippi 

2012). His legs were amputated when he was 11 months old (Edwards 

2008). Pistorius wanted to participate in able-bodied athletic competition 

despite his disability. Approaches in literature to resolve or clarify his case 

have taken a scientific (Bruggemann et al. 2008), philosophical (Edwards, 

2008) or a legal basis (Charlish & Riley 2008; Wolbring 2008). 
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During late 2007, Pistorius signalled his intentions to qualify for both the 

2008 Paralympic and Olympic Games (Edwards 2008; Jones & Wilson 2009) 

based upon finishing second at the 400m at South African National Athletics 

Championships (Charlish & Riley 2008) or possibly due to coming 2nd in a 

Golden League track (Mokha & Conrey 2007). Pistorius uses energy return 

lower-limb prosthesis currently legal for use in IPC governed events. 

However, the governing body of able-bodied athletics, the IAAF, argued that 

the use of such technology contravened its rule 144.2 which forbade the use 

of ‘a technical device which uses ‘springs, wheels or any other element that 

provides the user with an advantage over another athlete not using such a 

device’ (Jones & Wilson 2009). Whilst ESR’s are sprung devices, it was 

argued that this rule was not specifically intended to prevent participation by 

the disabled (Mokha & Conrey 2007) nor was it known at the time if such 

technology was actually advantageous. In response, the IAAF commissioned 

research to ascertain whether any advantage existed (Jones & Wilson 2009). 

The results of this research proposed that ESR’s manifest advantages over 

able-bodied participation. These include an increase in energy efficiency of 

upto 25%, the provision of three times the energy return than a human ankle 

joint and finally, providing a mechanical advantage in relation to a healthy 

ankle joint of more than 30% (Bruggemann et al. 2008). However, this 

research did not consider the many phases of a sprint event such as the 

acceleration from the starting blocks, running the bends, or any other 

additional disadvantages Pistorius felt he personally had (Jones & Wilson 

2009). In addition, the research evaluated Pistorius himself as a sole case 

study rather than as a sample population of bi-lateral amputees 

(Bruggemann et al. 2008). As a result of this, any empirical findings may be 

because of Pistorius skill rather than as a trait of the bi-lateral amputee 

athlete community. It was also reported that the type of athletes used as a 

baseline that Pistorius himself was compared against were defined as ‘elite’. 

The Bruggemann et al. study (2007) used typical 400m finishing times of the 

test subjects to define this. It is contentious whether this key performance 

indicator is the one that should be used. Even if this was the case, any 
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decision from the IAAF rested on findings based on tests tailored to the 

needs of the 400m event despite that the physiological needs of the shorter 

100m event were not considered. Any decision to ban Pistorius from able-

bodied competition seems to have ultimately been based on incomplete 

empirical information.  

 

The decision to initially ban Pistorius based was challenged. A legal 

evaluation using the basic principles of justice have argued that he should 

have been cleared to run immediately (Charlish & Riley 2008). A 

philosophical exploration of what it means to be disabled or whether he has 

an unfair advantage on a philosophical level have also supported this 

(Edwards 2008). It has been argued that an advantageous characteristic is 

the same for any elite level athlete (Edwards 2008). His prosthesis, even if 

advantageous, were argued to be no different in essence to an Ethiopian 

distance runner living at altitude having an increased red blood cell count to 

improve their aerobic abilities. The critical distinction here though is that 

Pistorius prosthesis are manufactured and therefore not naturally obtained. 

Either way, the IAAF upheld a ban based upon the evidence provided in the 

Bruggemann et al. (2007) study. 

 

Some months later, a study commissioned in the USA argued that in fact 

Pistorius did not have any advantages (Weyand et al. 2009). In the result of 

conflicting arguments, the Court of Arbitration for Sport overturned the IAAF’s 

ban (Camporesi 2008) therefore clearing Pistorius to take part in his bid to 

qualify for the Olympics. In the end, Pistorius failed in his bid by only 

achieving the prerequisite time for the 400m once rather than the necessary 

twice. However, he did later achieve selection and participated in both the 

400m and the 4x400m relay at the 2012 Olympic Games. The Pistorius 

controversy was a landmark case because the nature of disability or the 

consideration that someone disabled could be advantaged was not 

previously unheard of. However, Pistorius himself was beaten in the 2012 

Paralympic Games 200m final by Brazilian Alan Oliveira 
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(www.paralympic.org/results). Oliveira is, like Pistorius, a bi-lateral below-

knee amputee. It would seem that the acceptability of prosthetics technology 

in able-bodied competition is potentially an area urgently requiring attention, 

especially as Pistorius is no longer the only amputee with the potential to 

crossover to able-bodied sport, let alone the potential of other types of 

athletes with a disability such as above-knee amputees. 

 

Despite this case study not being centred within disability sport, the key issue 

that this highlights is a lack of a comprehensive understanding of the nature 

and regulation of prosthesis as well as the functional differences when 

comparing biological to artificial limbs. 

 

3.5 SPORT TECHNOLOGY REVENGE EFFECTS 

 

Once a technology has been determined to be included, a secondary, 

indirect or negative effect has been proposed to sometimes occur (Tenner 

1996). This has been proposed as the ‘Revenge Effect’ and acts as a 

‘Paradox of Improvement’. Case study examples of this are listed in table 4. 
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Table 4. Case Studies of Sports Technology ‘Revenge Effects’. 

Sports Technology 

Innovation 

Controversy 

Amateur Boxing: Protective 

Headgear 

Increase in head injuries caused by boxers feeling they have 

an increased invulnerability (Miah 2005; Tenner 1996). 

Tennis: Racket Head Size 

Increase 

Impact of rallies reduced. Ball pressure had to be changed to 

compensate (Savulescu 2006) 

Field Athletics: Javelin 

material change 

Safety of officials at risk due to javelins increasing throw 

length. Javelins centre of gravity altered to compensate 

(Froes 1997).  

Track Athletics: Lower-limb 

running prosthesis 

Technology defined as advantageous over non-disabled 

participants (Bruggemann et al. 2008. 

 

As a result, the repercussions of a sports technology inclusion can have 

wider repercussions that could inadvertently create some of the arguments 

listed in table 3. 

 

3.6 SPORT TECHNOLOGY ACCEPTABILITY FRAMEWORKS 

 

Whilst moral discourse often uses selected criteria chosen by the author to 

determine technology’s inclusion, an extension to ethical or moral discourse 

is whereby performance enhancement scenarios are judged against 

structured frameworks to determine whether such an enhancement is 

acceptable. The suitability of those in published literature are evaluated when 

considering LLP’s for their suitability. 

 

Gardner (1989) defines a four point framework to help structure ethical 

discourse to determine acceptable performance enhancement. He defined 

an enhancement as inappropriate for use in sport if it caused: 
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• harm 

• coercion 

• unnaturalness  

• an unfair advantage 

 

This framework considers the result of the technologies inclusion rather than 

considering the actual intent behind the technology’s introduction. Artificial 

limbs are by their very nature not natural products and also essential to 

perform the act of running therefore these criteria is too limited in its scope. 

Prosthesis use in competition has also been reported to cause injuries when 

under competitive conditions (Nyland et al. 1999). As such this framework is 

not suitable for use when evaluating current ESR technology. 

 

Miah (2005) later summarised several ethicist’s attempts to structure ethical 

discourse by providing an expanded framework from that of Gardner’s. 

Miah’s six point framework for determining sports technology non-inclusion: 

 

1) Technology that makes sport possible. 

2) Technology that affect safety and harm. 

3) Technology that de-skills or re-skills sport.  

4) Technology that dehumanises performance. 

5) Technology that affects participation and/or spectatorship.  

6) Technology that has a negative, secondary effect on a sport. 

 

Miah’s framework is more comprehensive but still retains the issues of 

Gardner’s proposal. This is now compounded if prosthesis technology is 

intended to restore function via any means of enhancement. Under this 

scenario, such technology would also arguably de-humanise sport. The best 

prosthesis technology can hope to do is to simulate any lost limb. Yet the 

nature of ESR’s does not achieve this functionally or aesthetically as they 

have no ankle joints. 
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When specifically regarding chemical performance enhancement specifically, 

the World Anti-doping Agency (WADA) regulates and polices the use of such 

technology (Foddy & Savulescu 2007) and later implemented a code to 

define acceptability (Miah 2006). A chemical sports technology product may 

be designated as illegal if it infringes any 2 of its 3 core criteria. As such, an 

enhancement shall be judged illegal if it: 

 

• Is detrimental to the health of an athlete. 

• Is deemed performance enhancing. 

• Violates the ‘spirit of sport’. 

The first two criteria of the WADA framework are as per Miah's previous 

proposal in that prosthesis could be infringing conditions of enhancement or 

health. The last term is highly ambiguous. The subjectivity of the term ‘spirit 

of sport’ has been attempted to be classified by Loland & Murray (2007). 

Products which are determined to fail the framework are then added to a list 

of banned methods. Such a list is useful. However, the ability of this 

framework would be limited if when applied to sports equipment like 

prosthesis that would need to be tailored to the individual (Nolan 2008). As 

such, this framework is not specific enough to the prosthetics context. 

 

Loland (2009) took an alternative approach to determining performance 

enhancement acceptability by providing a model for 3 ethical belief systems 

to be utilised by a sport. His model was described as ‘ideal-typical normative’ 

views of technology and were defined as: 

 

• The ‘Relativist’ theory – that technology is acceptable if it provides the 

opportunity for prestige or profit. 

 

• The ‘Narrow’ theory – that any technology is acceptable to help take 

us to our natural conclusion – the absolute maximisation of human 

performance using all technology available to achieve it. 
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• The ‘Wide’ theory – that sport has meaning beyond that of the 

athlete’s performance and in addition that athletes are moral agents. 

As such, regulations with respect to technology are essential. 

 

Such a model is advantageous as it effectively encourages the governing 

body to reconsider its policy to sports technology at a fundamental level. The 

issue with such ideological models such as Loland’s, is that it glosses over 

the resultant (and varied) impacts of technology in different sports. 

Ultimately, Loland’s model would be suitable as a starting point for a 

rewritten framework, provided the identified stakeholders adopted one of its 

options. 

 

3.7 LEGISLATION OF LOWER-LIMB PROSTHESES IN DISABILITY 

SPORT 

 

The legislation of LLP’s is overseen and defined by the IPC. Such legislation 

is a series of evolving constraints that are periodically reviewed. The current 

rules dictating prosthesis use were updated during the course of this 

research project. It should be disclosed at this point that the author was part 

of an IPC working group from 2009-2010 that contributed to discussion with 

respect to rule amendments regarding prosthesis use in athletics. This 

section will review the rules and analyse the limitations of them. 

 

The rules regarding prosthesis are contained within the ‘IPC Athletics Rules 

& Regulations (IPC 2012). The philosophical underpinning of technology’s 

use in disability sport as defined in the IPC Rules & Regulations 2011-12 

from page 12-14 are summarised in figure 10. 
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3.3 Technology Equipment 

3.3.1 Fundamental Principles 

The fundamental principles that IPC Athletics is promoting regarding the evolution of 

equipment used during Recognized Competitions are: 

 

a) Safety (i.e., to the user, other competitors, officials, spectators and the environment); 

b) Fairness (i.e., the athlete does not receive an unfair advantage that is not within the 

“spirit” of the event they are contesting); 

c) Universality (e.g., reasonably commercially available to all); 

d) Physical Prowess (i.e., human performance is the critical endeavor not the impact of 

technology and equipment). 

 

Note: The IPC is currently investigating ways to define and regulate equipment in order 

to secure the above goals and to establish valid and reliable methods for testing 

equipment to ensure that it complies with the above fundamental principles and any 

other regulations laid down. 

These principles apply in particular (but not exclusively) in relation to the development 

of: 

a) Sports specific prosthesis; 

b) Specification for Throwing Frames and materials for Holding 

Bars; 

c) Wheelchair componentry. 

 

3.3.2 Monitoring of the Use of Technology and Equipment 

The IPC Athletics Technical Delegate, or his designee, will monitor the use of 

technology and equipment at IPC Athletics Recognized Competitions to ensure that it 

conforms to the principles outlined in 

3.3.1 above. This monitoring may include the assessment of (but will not be limited to): 

a) Unrealistic enhancement of height of release in throwing events; 

b) Unrealistic enhancement of stride length; 

c) Whether or not equipment and/or prosthetic components are commercially available 

to all athletes (i.e., prototypes that are purpose built by manufactures exclusively for the 

use of a specific athlete should not be permitted, and; 

d) Whether equipment used contains materials or devices that store, generate or deliver 

energy and/or are designed to provide function to enhance performance beyond the 

natural physical capacity of the athlete. 

 

3.3.3 Prohibited Technology 

Use of the following technology is prohibited at IPC Athletics 

Recognized Competitions: 
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a) Equipment that breaches the above fundamental principles; 

b) Equipment that results in athletic performance being generated by machines, engines 

or robotic mechanisms, and; 

c) Osteo-integrated prosthesis. 

At any Recognized Competition the IPC Athletics Technical Delegate shall be entitled to 

prohibit the use of equipment prohibited by these Regulations and he shall in every case 

of a suspected breach (whether the equipment is in fact prohibited or not) report the 

matter to the IPC Athletics Sport Manager. Upon receiving such a report the IPC 

Athletics Sports Manager should refer the matter to the Sports Technical Committee and 

the IPC Medical & Scientific Director for further investigation and action on a case-by-

case basis. The STC shall be entitled to prohibit the use of equipment either 

permanently or on a temporary basis (to allow for further investigation) where it 

considers, acting reasonably, that any of the fundamental principles of equipment design 

and availability are breached. 

 

Figure 10. Technology Regulations 

 

The core principles of safety, fairness, universality and the physical 

prowess of the athlete are the key fundamental philosophical criteria 

listed by the IPC. These echo those listed in table 3. These are also 

subjective expressions but the IPC does attempt to clarify the meaning of 

these. However, these explanations use further ambiguous descriptors 

such as ‘unfair advantage’. Likewise, it is also not known what 

‘reasonably available to all’ means. Is this defined by access to a 

prosthesis or the cost of it ? Additionally it also states that the emphasis is 

on the athletes ability, not on the prosthesis technology used. This 

suggests the prosthesis design is a restorative agent (Lavin 2003) or an 

act of therapy (Miah 2005) which is unlike general sports equipment 

which would be additive in nature (Lavin 2003). Yet these rules are also 

stated to apply to racing wheelchair events which currently use disc 

wheels and allow aerodynamic helmets for its athletes. Bearing in mind 

the importance of aerodynamics of sports technology when in motion 

(Kyle 1991) it would seem that the current norm does not follow these 

guidelines and that it is unclear whether this technology complies with the 

need for universality the IPC requests. If wheelchairs are non compliant, 
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the associated norms with disability technology seem to be set at quite a 

high level. 

 

Section 3.3.2 in figure 10 details the thresholds of performance of LLP’s. 

The criteria covers what constitutes an advantage but does not detail 

objectively what an ‘unrealistic enhancement’ or what ‘natural physical 

capacity’ is. As it stands, the only criteria specifically defined by the IPC is 

the length of the prosthesis itself. This suggests more objective measures 

are required to help define the nature and role of the prosthesis. 

 

Section 3.3.3 in figure 10 covers banned technology or surgical 

procedures, which include newer procedures such as osseo-integration. 

Such a procedure reduces the emphasis on socket fit therefore making 

prosthesis use more comfortable. This, like the ethic based discourse 

reviewed in chapter 3 creates moral conflict involving an athlete’s health. 

It is not clear if increased health or risk to a small number of athletes is 

more valuable than fairness to the sport as a whole. 

 

Prostheses must be used by athletes performing track running as 

summarised on page 40 of the IPC’s rules and regulations. These are 

shown in figure 11. 

 

Prosthetics & Orthotics 

10. For Sport Classes T/F35-38 & T/F42-46 athletes may wear a prosthetic/s or 

orthotic/s in order to ensure both legs are of equal length but not for any other purpose, 

and they must not otherwise provide assistance to the athlete. 

 

11. Prosthetics Compulsory for T42-44 Track Events. 

In track events athletes in Sports Classes T42-44 must use leg prostheses. Hopping is 

not allowed in track events. 

 

Figure 11. Prosthesis Rules 
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These rules would seem to outlaw ESR’s for use in disability sport. An 

ESR is a sprung device which does provide some level of energy 

return (Nolan 2008). As such, it provides performance assistance 

beyond merely providing stability when either standing or running. In 

addition, this contribution cannot be normalized as it was indicated in 

the review in section 2.3 that different ESR’s produce different 

mechanical performance. As such, rule 10 would seem to infer that 

ESR’s are the accepted norm. 

 

To determine the length of the prosthesis used by an athlete, article 

3.2.10.10 of the 2011 IPC Classification Rules & Regulation is used 

(IPC 2011) and is shown in figure 12. 
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3.2.10.10 Determining prosthesis length for lower limb amputees 

 

The following rules apply to the length of prostheses used by lower limb amputees . 

Athletes with either unilateral above knee or unilateral below knee amputation can use a 

prosthesis for competition purposes which will result in the amputated side being longer 

or shorter than the functional length of the non-amputated side. 

 

The length of prostheses used by athletes with bilateral lower limb amputations (bilateral 

below knee amputees, bilateral above knee amputees or combination unilateral above 

knee and unilateral below knee amputation) will be determined using the 3-Step process 

described below.  

 

Step 1: Estimate maximum standing height from Ulna length. 

Measure the distance between point of the elbow (olecronon process) and the ulna 

styloid using the technique depicted in the figure below. Measurement technique for ulna 

length. The maximum standing height in metres is determined from the chart below. 

 

Step 2: Estimate maximum standing height based on measurement of demi-span. 

Demi-span is measured as the distance from the middle of the sternal notch to the tip of 

the middle finger in the coronal plane. The measure is best obtained with the 

athlete standing with their back against a stable wall, right shoulder abducted to 90° with 

the palm of the hand facing forward. Maximum standing height is then calculated from 

the following formulae. 

 

Females: Height in cm. = (1.35 x demi-span (cm)) +60.1 

Males: Height in cm. = (1.40 x demi-span (cm)) +57.8 

 

• Step 3 - final estimate of maximum standing height. 

Take the mean of the two estimates, maximum standing height estimated from ulna 

length and maximum standing height estimated from demi-span. The overall standing 

height of the athlete with their competitive prostheses on must be less than or equal to 

the mean estimated height plus 2.5% . the maximum standing height will be kept on 

permanent record in the IPC Athletics Sports Management Data System (SMDS)  

database 3.2.10.12 It will be a matter of technical routine that all athletes with double 

lower limb amputations who compete standing up will be measured either before the 

competition starts, or in the call up room prior to the event or after the event the athlete 

has competed in. The measure obtained must at all times be less than the maximum 

standing height on the SMDS. 

 

Figure 12. Limb Length Regulations 
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The calculation for limb length uses a quantifiable method coupled with a 

tolerance. This height is determined as the athlete’s standing erect. 

However, this may prove problematic in a combined classification of T43 and 

T44 athletes as the amount the prosthesis will compress by could be very 

different in uni-lateral athletes when compared to the biological limb. This 

could lead to greater asymmetry between their limbs or gait characteristics. 

Bi-lateral athletes will not have this issue as both limbs are artificial and an 

assumption is made that these would compress by the same amount on both 

sides. 

 

3.8 CONCLUSION 

 

Whilst the cases of controversy surrounding technology used in disability 

sport are few in number, those that do occur have the same issues as those 

in able-bodied sport. As a result, this coupled with evidence of ambiguity in 

the current rules would suggest an investigation into prosthetics technology 

is warranted. 

 

To address such issues, ethical and philosophical discourse is more typically 

used as a means to resolve debate into whether a technology is used in 

sport or not. However, this is normally conducted retrospectively once the 

technology is already in service. The contested nature of philosophical 

debate would mean that use of this method alone is not enough to achieve 

the most robust and reliable attitude to managing technology’s use in sport. 

However, the studies that use more quantifiable or measured data do not 

extend their findings to declare a clear position on such technology’s 

inclusion.  
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As a result, a mixed method approach which uses the strengths and 

minimises the weaknesses of both quantitative and qualitative methods 

would be recommended to address the objectives of this thesis. 
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CHAPTER 4: RESEARCH METHODS 
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4.1 INTRODUCTION 

 

Chapter 3 discussed how ethical and philosophical discourse is typically 

used as a means to resolve debate into the acceptability of technology within 

competitive sport. It was also reflected that the limitations of such 

approaches is that such methods can provide inconsistent, inconclusive or 

impractical findings. However, studies in the literature review that use a 

quantitative approach alone, have not offered any insight with respect to the 

sociological impact of performance inhibition or enhancement. It was 

therefore recommended that this research project would be best served by 

utilising techniques which have the strengths of both approaches to research 

method design. To reinforce this, the objectives of this research project are 

re-listed as follows: 

 

1) To investigate the impact of any technological change of prostheses 

that has occurred in the sport and to ascertain whether any regulation 

on their acceptability would be of value in the future. 

 

2) To investigate current perceptions of lower-limb running prosthesis 

used in competitive disability sport. 

 

3) To develop guidelines for LLP technology inclusion when used in 

competitive running with a lower-limb amputation. 

 

4) To investigate the assessment of lower-limb running prosthesis and to 

recommend appropriate testing strategies. 

 

Objectives one and two refer to qualities such as ‘impact’ and ‘perceptions’ 

and are potentially qualitative in nature. These are balanced by objective 

three’s ‘guidelines’ and objective four which refers to recommending 

appropriate testing strategies. Whilst this could also be satisfied using 

qualitative research methods such as interviews, surveys or quantitative 
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alternatives, the diversity of the objectives lend themselves to considering 

the merits of any research method rather than rigidly determining between a 

qualitative or quantitative approach. This is especially important as this the 

context of this research problem was one of a practical application. As a 

result, a mixed method approach was proposed to satisfy the research 

objectives of this research project. 

 

4.2 MIXED METHOD RESEARCH 

 

4.2.1 Background 

Mixed method research (MMR) is based upon the concept of triangulation – 

‘a combination of methodologies in the study of the same phenomenon’ 

(Johnson et al. 2007). It has been defined as the application of different 

approaches when applied at any or all stages of a research project (Bazeley 

2004) or single study (Driscoll et al. 2007). It has also been suggested as the 

logical alternative to the unproductive debate over the advantages or 

disadvantages of either qualitative or quantitative research methods (Feilzer 

2010). It has become increasingly popular as the means to ‘combine 

elements from both qualitative and quantitative paradigms to produce 

converging findings’ (Lingard et al. 2008) and as the ability to provide much 

more comprehensive solutions that using either qualitative and quantitative 

methods alone. Mixed methods has been proposed as disseminating 

knowledge for practical use (Sale et al. 2002) or that today, its primary 

philosophical advantage is one of pragmatism (Feilzer 2010) and a high 

regard for reality (Johnson et al. 2007). As such, the advantages of MMR 

have been suggested as the ability to expand the scope of breadth of 

research by offsetting the weaknesses of either approach alone (Doyle et al. 

2009; Driscoll et al. 2007) or by combining the strengths of both (Morgan 

1998). It allows researchers to be more flexible and holistic in their 

investigative techniques (Onwuegbuzie & Leech 2004).  
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Ultimately, mixed method research has been proposed (after both qualitative 

and quantitative method research) as the third paradigm or methodological 

movement (Doyle et al. 2009, Johnson and Onwuegbuzie 2004). 

 

MMR has also been referred to in name as multi-method, integrated, hybrid 

or combined research (Driscoll et al. 2007), blended, triangular studies 

(Johnson et al. 2007), multi-strategy (Bryman 2006), mixed research 

(Onwuegbuzie & Johnson, 2006) or mixed model (Tashkkori & Teddlie, 

1998). The variation in the practises definition has been suggested that this 

is due to the impact of combining different techniques beyond that of just the 

initial data collection methods used (Tashkkori & Teddlie, 1998) and should 

refer more so as a research approach covering research methods, data 

analysis, procedures or inferences (Johnson et al. 2007). 

 

4.2.2 The Nature of Mixed Method Research 

The mixing of methods to resolve research questions can be a parallel or 

sequential use of different methods or that both are being fully integrated into 

a single analysis (Bazeley, 2004). 

 

Whilst, the expression ‘mixed methods’ suggests a general approach, a 

developed five point model for mixed method research’s rationale was 

summarised by Onwuegbuzie and Leech (2004) and Bryman (2006) as: 

 

• Triangulation - seeking convergence and corroboration of findings 

from different methods that study the same phenomenon. 

• Complementarity - seeking elaboration of one method with results 

from another. 
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• Development – using the findings from one method to help inform the 

other method. 

• Initiation – discovering paradoxes and contradictions that lead to a 

reframing of the research question. 

• Expansion – seeking to expand the breadth and range of inquiry by 

using different methods for different inquiry components. 

 

Onwuegbuzie and Leech (2004) suggest that every MMR study would likely 

have one or more of these underlying purposes.  

 

Further detail of MMR practise refers to how multiple research methods 

relate or are undertaken with respect to each other. These have been 

defined as parallel mixed analysis, sequential mixed analysis and concurrent 

mixed analysis (Onwuegbuzie & Leech 2004). 

 

Parallel Mixed Analysis 

The basic premise of parallel mixed analysis is that the multiple studies are 

conducted separately, that one does not influence the other and that the 

results of either are neither compared nor consolidated until both sets of data 

analyses have been completed (Onwuegbuzie & Leech 2004). They do 

require pre-planning of the separate strands of the research once the 

research objectives have been determined (Johnson & Onwuegbuzie 2004). 

An example of this, as defined by Driscoll et al. (2007) is shown in figure 13. 
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Figure 13. Parallel MMR 

 

Sequential Mixed Analysis 

With sequential mixed analysis, the multiple periods of data collection, 

analysis and inference are employed in a series of phases. In this case, data 

analysis will take place before all date for the research project is collected 

(Onwuegbuzie & Leech 2004). An example of this, as defined by Driscoll (et 

al. 2007) is shown in figure 14. 
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Figure 14. Sequential MMR 

 

Concurrent Mixed Analysis 

With concurrent mixed analysis, all the data is collected at the same time but 

unlike the parallel approach, integration takes place at the analysis stage not 

after these have been completed independently (Onwuegbuzie & Leech 

2004). An example of this, as defined by Driscoll et al. (2007) is shown in 

figure 15. 
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Figure 15. Concurrent MMR 

 

The number and style of activities for the configurations in figures 13-15 are 

not rigid and may be unbalanced or non-symmetrical as research and 

expertise requires.  

 

Whilst the different methods within MMR are generally defined, the rationale 

for choosing, sequential over concurrent mixed analysis is not clear. It is 

therefore assumed that this is left to the individual based on the specific 

characteristics of the research problem or using frameworks such as the five 

point guidance model outlined by Onwuegbuzie and Leech (2004) earlier. As 

such, the guidance is descriptive rather than prescriptive. 

 

An alternative approach is to define the structure based upon the weighting 

of the qualitative research against of the quantitative portions. These have 

been defined in a model by Johnson et al. (2007) as: 
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• QUAL+ (qualitative research phases are dominant) 

• QUAN+ (quantitative research phases are dominant) 

• Equal Status (equal status of all phases) 

 

4.2.3 Criticism of Mixed Method Research 

The criticism surrounding MMR approaches is that the level of integration 

can vary in some cases so that the various qualitative and quantitative 

approaches are treated as separate domains rather than being woven 

together (Bryman 2007). This criticism has centred on how two sub-studies 

are directly related to each other and just how much integration between 

them is required (Tashakkori & Creswell 2007) or evident (Feilzer 2010). 

However, it is not clear whether this is actually a shortcoming of the 

technique or merely a characteristic of it. It is suggested that additional 

research in the area of MMR integration is required to clarify this further 

(Johnson et al. 2007). It is offered by Bryman (2007) that research may 

actually be informed differently and be of even greater value if the various 

strands of research activity are allowed to inform each other rather than 

remaining independent of each other.  

 

It has been argued that by using MMR, the depth and flexibility of qualitative 

research is lost by then attempting to quantify it. It would seem that such 

concerns would be minimised or prevented, dependant on whether a 

researcher uses a parallel, sequential or concurrent method. In addition, the 

very advantage of MMR is that is provides findings that can be both practical 

and pragmatic (Johnson et al. 2007). As such, there would seem to be a 

trade off between a loss of quality vs an increase in practical application of 

research findings to researchers that would likely have to be weighed up on 

an individual case by case basis. Crucially, it is conceded that all research 

methods are superior to others under different circumstances (Johnson & 

Onwuegbuzie 2004). 
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Other criticisms of MMR are that researchers may naturally weight or favour 

methodological preferences over others in their findings (Bryman 2007: 

Johnson et al. 2007). However, this would be evident with any research 

method selection process, not just those using MMR approaches.  In 

addition, they have been shown to write their findings for different audiences 

by unknowingly biasing one set of findings over another (Bryman 2007). The 

creation of models which acknowledge different balances attempts to counter 

some arguments over whether equal status is even realistically possible 

(Johnson et al. 2007) especially as this can produce contradictory findings or 

be reasonably assessed coherently (Morgan 1998). Any claims of bias would 

depend on the background of the researcher but also on the vehicle for the 

researchers findings – i.e. whether for a particular journal publication 

(Bazeley 2004). In which case, alternative writing styles could be mistaken 

for bias rather than as a fault of the MMR approach itself. 

 

Finally, it is claimed that by using MMR, it can lead to research findings that 

have unanticipated outcomes (Bryman 2006). However, in this case of the 

objectives of this research project, insight is required therefore unanticipated 

findings are welcomed and not seen as a negative impact of the technique. 

 

Ultimately, a researcher should identify whether their understanding has 

been improved by using an MMR approach (Feilzer 2010; Bryman 2007). If 

the answer is that it has not, then arguably an MMR approach has either not 

been of value or incorrectly selected.  

 

MMR application has historically been used in health and healthcare related 

research (Ostlund et al. 2011; Palinkas et al. 2011; Doyle et al. 2009) and 

also to develop sports policy regarding elite athletes (De Bosscher et al. 

2010). This makes its intent attractive for this research project. 
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4.2.4 The Application of Mixed Method Research in This Project 

Using the five point model as suggested by Onwuegbuzie and Leech (2004), 

this project required development. The project worked from a position that it 

is not known what current perceptions of LLP in running exist. As a result, it 

was not clear what opinions existed first before any steps could be taken to 

create or disregard assessment strategies of such technology.  

 

This project used a consensus based technique (Chapter 6) to identify the 

current perceptions of LLP’s. This then expanded the project into using other 

methods to develop these findings. As a result, the project followed a hybrid 

parallel and sequential mixed analysis model. The research’s emphasis on 

providing insight into a novel area required the consensus technique to 

provide the insight and a catalyst that subsequent quantitative approaches 

would then be used (either sequentially or in parallel) to provide the 

proposed findings and solution.  

 

A graphical representation of this projects process is shown in figure 16. 

 

Figure 16. MMR Process  

 

5 
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Phase 1,3,4,5 and 6 are qualitative driven studies. However, phase 2 is a 

consensus technique. Whilst consensus techniques have been defined as 

qualitative approach’s (Williams & Webb 1994; Bowles 1999), these claims 

have been opposed by suggesting that they can generate both qualitative 

and quantitative data and should be considered an approach rather than 

categorised as a generalised research philosophy (Stewart, 2001). 

Therefore, for reasons of clarity, phase two is not considered exclusively a 

qualitative study in this project, even if it uses such approaches in its data 

analysis. Ultimately, the mixed methods philosophy in this project is defined 

as a combination of different research approaches and analysis as 

expressed by Johnson et al. (2007) rather than whether the data collection 

was undertaken using qualitative or quantitative methods in isolation. 

 

Since a sequential/parallel hybrid mixed method research strategy was 

employed, the specific research methods for each phase of this project will 

be addressed within their respective chapters of this thesis rather than this 

section. 
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CHAPTER 5: THE IMPACT OF LOWER-LIMB 

PROSTHESES TECHNOLOGY ON RUNNING 

PERFORMANCE & PARTICIPATION (1976-2012) 
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5.1 INTRODUCTION 

 

Chapters 2 and 3 concluded that the understandings of ESR’s function were 

still in a state of relative infancy. It was also discussed how controversy and 

issues surrounding sports technology inclusion and its ethics have taken 

place in both able-bodied and disability sport.  

 

Disability sport is unique when considering sports technology inclusion in that 

it requires technology to help facilitate it (Burkett 2010). It has been 

suggested that artificial aids have no place in sport (Holowchak 2002) yet 

events like amputee sprinting or wheelchair racing would not be possible 

without assistive technology. Taking both of these views onboard, if 

prosthesis technology is purely to facilitate the ability to undertake disability 

sport, it should hypothetically be (philosophically speaking) performance 

neutral.  

 

Whilst it is problematic to predict what technology may be introduced in the 

future, an evaluation of a major technological change in the past was 

investigated to identify what issues existed in competitive amputee running. 

ESR’s have now been used in competitive racing since 1988 (Nolan 2008) 

but it was not known what impact such technology may have had when it 

was introduced. By investigating the known change in technology from non-

ESR’s to ESR’s, such information would provide insight into the background 

of running prosthetic limbs and help the pursuit of any assessment 

strategies.  
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5.2 OBJECTIVES 

 

The aim of this chapter is to investigate the introduction of ESR’s into 

widespread use of the Paralympic Games competition in lower-limb amputee 

running. The objectives of this study are defined as: 

 

a) To identify if the performance of lower-limb amputees significantly 

changed over the assessed timeframe 

b) To identify if any performance increase by amputee runners were 

different to their able-bodied direct equivalent. 

c) To see if any changes in athlete performance are linked to 

participation levels. 

d) To propose if the 1988 anecdotal introduction of ERRP has any 

impact in the sport. 

e) To identify if any evidence exists for a model to define the 

acceptability of LLP’s in amputee running. 

 

5.3 METHODS 

 

When considering historical data from 1976-2008, the only publically 

available and consistent data available was information regarding athlete 

performance, athlete participation and medal allocations. To determine 

ESR’s impact and assessments of fairness, all of these were used to 

evaluate the proposed 1988 technological introduction of the ESR in the 

male 100m event. This event was the only one that can be selected as either 

the longer 200m and 400m distances or female athletes had not been run 

continuously or over the allotted timeframe. 
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Whilst it was stated in chapter 1 that the classification code has been 

changed several times since amputee racings inception in1976, all the codes 

comprising trans-tibial amputees from 1976-2012 were included in the study 

for analysis. 

 

5.3.1 Performance Improvement 

Performance data has been used as a means to imply some level of societal 

change in sports events (Balmer et al. 2011; Foster et al. 2010; Haake 2009; 

Munasinghe 2001). The limitations of relying on the most basic qualitative 

data is that such variation in sporting performance can only imply, not 

specifically identify the rationale for any change.  

 

Whilst several mathematical methods have been used to model athlete 

performances (Watts et al. 2012; Foster et al. 2011; Munasinghe 2001), few 

have been proposed to investigate the specific impact of sports technology 

(Balmer et al. 2011; Haake 2009). The Balmer (et al. 2011) method uses 

double logistical growth as a means to determine the impact of technological 

innovation. However, the Haake (2009) method is more specific as it 

considers the actual physics that applies to a sport and then uses any 

significant changes in event specific physics to act as an indicator of 

technological impact. The Performance Improvement Index (PII) primarily 

assesses sports performance change from one date to another using the 

results of an event (Haake 2009). It ultimately identifies proportions that may 

be attributed to sports technology and provides a metric which forms a direct 

comparison to other sports that rely on different metrics (such as speed, 

distance, or time). The PII has also been used to explore the impact of World 

Wars 1 and 2 upon running short, middle and long distance world records 

(Foster et al. 2010), and on the impact of technological innovation in Olympic 

field jumping events (Balmer et al. 2011). The PII cannot currently identify 

the exact proportion of impact of sports technology change, but it has been 

shown to corroborate anecdotal evidence of change such as the inception of 
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new materials used for the pole vault or a change in the aerodynamic design 

of bicycles (Haake 2009). As a result, it is a complementary tool to inform 

debate rather than to generate substantive findings.  

 

When considering timed events over fixed distances, Haake (2009) defines 

the Performance Improvement Index as: 

 

 

 

This formula has been derived as part of a linear regression from a larger 

formula (Haake 2009). This formula addresses work done by a body 

overcoming aerodynamic drag when moving and for a fixed air density. It 

comprises a first timed perform t1 divided by a second performance t2. The 

rest of the formula converts the change between two performances and 

expresses it as a percentage. 

 

This formula assumes events requiring motion to be dominated by 

aerodynamics. However, it should be noted that air resistance increases 

exponentially as speed increases (Kyle 1991). The proportion attributed to 

the air resistance of a 100m sprinter running at 22.5mph is going to be 

proportionally less than a cyclist performing a 4Km individual pursuit at 

31mph. As a result, the magnitude of the PII index may be skewed if 

comparing events that result in different absolute and average speeds. 

 

To reinforce the PII, the second method will be the percentage increase of a 

performance from one Paralympics Games to the next. This is expressed as: 

 

���1�2� − �1� 	× 100 
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Like the PII, t1 is the first performance and t2 the subsequent performance. 

The result of this change is also expressed as a percentage. 

 

The mean average of the fastest 3 runners in each successive Paralympic 

Games were used as a basis for assessment. These fastest three athletes 

would be those who would ‘podium’ thereby winning bronze, silver or gold 

medals. By considering a mean of a group of runners rather than outright 

world records or event winners, outliers or generation defining athletes were 

reduced in impact which could skew any analysis. However, the full field of a 

final was not used as it was an issue that the early Paralympic Games saw 

incomplete 8 person finals and a relatively novice standard of competition. 

By limiting this sample to the medallists, it was felt that those that may have 

been merely attending and having not needed to formally qualify to be of a 

competitive standard (unlike able-bodied athletes at the Olympic Games) 

was felt would reduce skew in the data. 

 

The results of amputee sprinting at the Paralympic Games were taken and 

compared to the nearest able-bodied equivalent, the Olympic Games. Both 

competitions take place every 4 years, are accessible by the same countries 

of athlete origin and since 1992 have taken place at the same venue using 

the same facilities.  

 

Three 36 year data evaluations were compared: 

 

• Amputee sprinting (AS): The change from Paralympic Games to 

Paralympic Games over the 1976-2012 time period. 

• Able-bodied Modern Period (MP): The change from Olympic Games 

to Olympic Games over the 1976-2012 time period. 

• Able-bodied Inception Period (IP): The change from Olympic Games 

to Olympic Games over the 1896-1932 time period. 

 

The AS to the MP comparison provided information that shows the 

performance of athletes over the same time period. The AS to IP comparison 
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provided information that shows the impact of a new event developing at the 

highest elite level of competition. In the case of the able-bodied 100m sprint, 

this took place nearly 100 years prior to the Paralympic Games equivalent. 

 

5.3.2 Participation Data 

Athlete participation data was used to track trends to ascertain any level of 

change over the 32 year time periods. This interest was based on a previous 

study that has claimed technological change is more responsible for 

increases in performance than widening participation (Munasinghe 2001) 

and that increases in global population will not impact on athlete 

performances (Foster et al. 2010). This data was drawn from the 

classifications inception in 1976 up to the 2012 games. The athletes’ total 

participation number and country of representation was recorded. 

 

The data of both athlete performances and athlete participation have been 

taken from the official governing body’s website 

(http://www.paralympic.org/Athletes/Results). This data is available within the 

public domain. 

 

5.3.3 Medal Allocations 

The results from 1976 to 2012 were assessed to determine which countries 

won gold, silver or bronze medals and how many athletes started each event 

at the Paralympic Games. 

 

5.4 RESULTS 

 

5.4.1Performance Improvement of Amputee Sprinting 

The data derived from the timed performance of lower-limb amputee 

sprinting from Paralympics to subsequent Paralympics over the 1976-2012 

timeframe is shown in Table 5.  
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Table 5: Amputee Sprinting Improvements 1976-2008 

 

Paralympic 

Games 

Mean 

podium 

time (s) 

Percentage 

improvement 

from prior 

games (%) 

PII 

improvement 

from prior 

games (%) 

PII 

improvement 

from 1976 

baseline (%) 

1976 14.40 n/a n/a n/a 

1980 14.01 2.7 6 6 

1984 13.62 2.8 6 12 

1988 12.37 9.2 21 36 

1992 12.19 1.5 3 40 

1996 11.78 3.4 7 49 

2000 11.40 3.2 7 60 

2004 11.12 2.5 5 68 

2008 11.29 -1.5 -3 63 

2012 11.00 2.6 5 71 

Note. PII = performance improvement index 

 

It is evident that both the ‘games to games’ percentage increase and the PII 

demonstrates substantial improvement in 1988 with an increase well in 

excess or other AS ‘games to games’ scores. There is no evidence of 

change in PII in amputee sprinting either prior to or since 1988.  Progress in 

improvements can be demonstrated until 2008 when performance times 

generally decrease.  

 

5.4.2 Performance Improvement of Able-bodied 100m: IP 

The data derived from the timed performance of able-bodied sprinting from 

their inception at the Olympics over the 1896-1932 timeframe is shown in 

Table 6.  
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Table 6: Inception Period Improvements 1896-1932 
 

Olympic 

Games 

Mean 

podium 

time (s) 

Percentage 

improvement 

from prior 

games (%) 

PII 

improvement 

from prior 

games (%) 

PII 

improvement 

from 1896 

baseline (%) 

1896 12.27 n/a n/a 0 

1900 11.10 9.5 22 22 

1904 11.13 -0.3 -1 21 

1908 10.90 2.1 4 27 

1912 10.87 0.3 1 27 

1920 10.80 0.6 1 29 

1924 10.70 0.9 2 31 

1928 10.87 -1.6 -3 27 

1932 10.42 4.29 9 39 

Note. PII = performance improvement index 

 

Able bodied sprinting from its Olympic Games inception saw progressively 

low rates of improvement. However, there was a spike, equal to that of the 

AS 1984-88 Paralympic sprinting improvement from 1896-1900. The reason 

for this (be it social, technological or other) is not known. 

 

5.4.3 Performance Improvement of Able-bodied 100m: MP 

The data derived from the timed performance of able-bodied sprinting from 

their inception at the Olympics over the 1976-2012 timeframe is shown in 

Table 7.  
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Table 7: Modern Period Improvements 1976-2012 
 

Olympic 

Games 

Mean 

podium 

time (s) 

Percentage 

improvement 

from prior 

games (%) 

PII 

improvement 

from prior 

games (%) 

PII 

improvement 

from 1976 

baseline (%) 

1976 10.09 n/a n/a 0 

1980 10.31 -2.2 -4 -4 

1984 10.13 1.7 3 -3 

1988 9.96 1.7 4 3 

1992 9.99 -0.3 -1 2 

1996 9.88 1.1 2 4 

2000 9.97 -0.9 -2 3 

2004 9.86 1.1 2 5 

2008 9.83 0.3 1 5 

2012 9.72 1.1 2 8 

Note. PII = performance improvement index 

 

The general trend progressions of the mean podium of all three time periods 

in this study are compared in Figure 17. 
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Figure 17. Performance Improvement Index of Timeframes 

 

It can be seen that at the start of the evaluated time period, the three traces 

are wide apart. However, by the end of the 36 year duration they have 

narrowed significantly. Whilst the MP group has seen relatively little 

progression, the AS mean time has been subjected to a substantial reduction 

in the mean podium performance. 

 

The ‘games to games’ PII changes of AS and able-bodied MP and IP over 

their 36 year periods can be compared together as shown in Figure 18. 

 

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8

T
im

e
 (

S
e

cs
)

Consecutive Games No.

IP MP AS



  92 
 

 
 

Figure 18. Performance Improvement Index of Timeframes 

 

It should be noted that the gap in IP’s trace was due to there being no 

Olympic Games held in 1916. The magnitude of the change in the AS (T44) 

event is shown by the steep peak in 1988 (games no.3). After this point, the 

AS rate reduces in magnitude until 2012. The IP timeframe also sees a slight 

increase at the end of its 30 year period despite relative stability prior to it. 

The MP period seemed to be in a state of relatively marginal improvement. 

 

 

5.4.4 Participation Data 

36 countries have sent athletes to the eight Paralympic Games held between 

1976 and 2012. The total number of eligible race ‘starts’ by athletes was 159 

(inclusive of those who did not finish).  

 

Figure 19 illustrates the number of nations participating and the total number 

of athletes competing in the lower-limb amputee 100m sprint event at each 

games.  
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Figure 19. Amputee Sprinting Historical Participation Levels 

 

It can be seen that the number of competing athletes peaked in 1984 with a 

sharp decline in 1988. There is a gradual second minor peak at the 1996 

games and then a gentle decline until the biggest increase seen since 1984 

in 2012. This trend is also reflected by the total number of countries sending 

athletes to compete in this event. It is unclear what may have caused a 

positive change in 2012 having suffered a gradual decline prior to it. It should 

be noted that (as mentioned in the introduction) the disability classifications 

were changed over this period. However, there was no such change 

between 1984 and1988. 

 

5.4.5 Medal Allocations 

The total number of medals awarded from 1976 to 2012 was 30. The medal 

allocations and the number of athlete ‘starts’ are shown in Table 4. An 

athlete ‘start’ is an athlete who had been stated on the results sheet as 

having signed on for the event. Such athletes may have suffered a ‘did not 

finish’ classification (DNF) in some cases and therefore not recorded a result. 
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The data showed that the USA have the highest level of athlete ‘starts’ and 

are the most prolific medal winners taking most of the medals awarded over 

the ten games. Before 1988 the USA have a medal win ratio of 0, but this 

increases substantially to 0.61 from that point onwards. Australia had the 

second highest level of participation with 16 athlete ‘starts’ and a relatively 

balanced medal win ratio of 0.5 and 0.42, pre and post 1988 respectively. 

Germany (inclusive of West Germany’s results pre 1992) and Canada had 

the next highest level of participation, but return low rates of medal tally. 

South Africa shows a high start/win ratio since 1988, but it should be noted 

that the majority of these wins were attributed to Oscar Pistorius who is 

actually a T43 athlete included within the T44 classification. All the other 

nations with early support of the event up until 1988 had failed to secure a 

medal or to participate since the 1988 games – notably Myanmar, Poland 

and Israel. 

 

5.5 DISCUSSION 

 

Able-bodied sprinting has generally shown consistent, yet marginal 

improvements in performance. Amputee sprinting on the other hand has not 

directly followed the trends of able-bodied sprinting, either with its original 

inception into the Olympic Games nor over the same timeframe from 1976-

2012. A spike in 1988’s amputee sprinting results was clearly identified 

whereas able bodied sprinting appeared much more stable. Whilst the PII 

value cannot specifically identify whether this is solely due to the known 

change in prosthetics technology, such information does corroborate the 

published introduction of ESR’s (Nolan 2008). In addition, the magnitude of 

change is extremely large compared to any other Paralympic games to 

games increase over the evaluated period. This would suggest it is entirely 

plausible that the root cause is specifically related to changes in disability 

sports and technology. The rate of progression, whilst positive, has then 

generally decayed since 1988. An events decaying trend in performance 
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improvement has also been witnessed before in the able-bodied 100m world 

record (Foster et al. 2010).  

 

It is shown that a PII of 21% occurred from 1984-1988. This is not as high as 

other values generated by Haake (2009) describing the changes in javelin 

technology, pole vault design or the cycling one hour event, but these were 

all over timeframes of at least 80 years. Considering that the maximum 

change in able-bodied sprinting would be 24% over a 100 year period 

(Haake 2009), the level of progression shown over a 4 year window could be 

regarded as somewhat unusual. 

 

It is proposed that the spike seen in 1988 is attributed to the major revolution 

in the prosthetics technology as reported by Nolan (2008). It has been 

demonstrated that of a typical historical performance improvement change, 

some of this can be attributed to clothing (Haake 2009) or the social impact 

of war (Balmer et al. 2011), but the able-bodied athletes samples in this 

paper do not reflect any of the major spikes in PII that the T44 class had 

demonstrated. Acknowledging that there were no changes in disability 

classification at the Paralympics between 1984 and 1988 which could 

account for the sudden rise in performance, this suggests that there were 

other causative factors involved which are unique to disability sprinting.  

 

Running performances themselves in the T44 event has continued to 

improve up until 2012. This demonstrated that medal winning performance 

had been unaffected with any issues relating to participation. However, it 

would be interesting to see in the future if the same applies to athletes who 

did not medal. 

 

Increase in the cost or limited access to new prosthesis designs have been 

described as a basis of unfairness (Zettler 2009) and such issues have been 
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seen in other sports before such as with the introduction of clapskate 

speedskates (Van Hilvoorde et al. 2007). Unless new designs in lower-limb 

prosthetics are at least to the same level of access or cost as current ESR’s, 

serious concerns are raised here to allowing them in the future. It is therefore 

proposed that the current level of technology is maintained until such time 

that newer prosthesis technologies are proactively reviewed before formal 

adoption to ensure that all competitors could reasonably afford and access it.  

 

As for measuring success, many nations which won medals prior to 1988 

ceased to do so after 1988. Nevertheless, excluding the 2008 games, the 

mean podium time of an athlete’s performance has generally continued to 

improve. A large decrease in participation levels occurred for the 1988 

games but did not drop substantially again until 1996. The analysis indicated 

that the introduction of the ESR may be the cause of the uncharacteristic rise 

in performance, overshadowing other more subtle potential improvements in 

athletes’ achievements.  It is proposed here that the excessive rate of 

progression from games to games compared to able-bodied competition had 

highlighted that the 100m T44 event has potentially been re-skilled through 

use of prosthesis technology.  Re-skilling has been proposed as being used 

as a mechanism to consciously improve the game of tennis (Sheridan 2006). 

However, this explanation fails to take account of the magnitude of the 

technological intervention required to bring about this level of improvement. 

The participation data suggests it may have taken 24 years for the sport as a 

whole to recover from this.  

 

The evidence presented here demonstrated a declining level of participation 

coupled with increasing levels of performance, even though overall athlete 

attendance at the games has been shown to continually increase (Legg & 

Steadward 2011). There are caveats to this proposal - it was not known what 

restrictions any nations might have applied to the number of athletes sent 

during this allotted time-period. The changes in participation levels could 

hypothetically be attributed to countries changing their attitude to athlete 
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selection. As a result, this warrants further investigation in the future. This 

said, a restricted athlete population in this class would seem unusual when it 

would require more than one nation simultaneously to be the cause. It would 

also seem unusual when it was considered that the overall Paralympic 

Games athlete population has steadily increased over this timeframe. It is 

worthwhile to find out why smaller nations such as Poland, Israel or 

Myanmar (who sent several athletes prior to 1988) suddenly failed to do so 

from this point onwards. It is possible that their athletes simply were not 

replaced when they retired, with younger ones of comparable standard but it 

would be a significant coincidence that several nations had this issue around 

the same time, who were all previously successful. The observations in this 

study do support Munasinghe’s work (2001) that athletic performance is 

driven by changes in technology as opposed to just increases in 

globalisation.  

 

In effect, if the LLP technology became less accessible (either in terms of 

cost or its supply chain) when prosthesis changed from 1988, then allowing 

such a change was ultimately an undesirable one. 

 

It is also noted that the current T44 event was made up of both uni-lateral 

and bi-lateral amputees. Acknowledging that ESR’s should likely remain in 

service for the foreseeable future, a review of how both types of amputee 

may have been advantaged or disadvantaged would seem to be of intrinsic 

value both to the athletes themselves and to the sport at large. 

 

While the methods in this paper cannot conclusively point to the introduction 

of ESR’s as being the root cause of change, their introduction at the same 

time as published improvements of such technology would seem to be a 

reasonable supposition. Considering that prostheses are proposed to be only 

restorative in nature (Burkett 2010), and demonstrating that the sports 

increases in performance to be excessive compared to able-bodied racing, it 
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was argued here that such change should have been investigated for its 

potential impact prior to its introduction. 

 

This case study indicates several issues surrounding the value of technology 

in amputee running at the Paralympics. The increase in performances 

demonstrated that the prostheses used are either not ‘performance neutral’ 

or that alternatively, that they are still progressing towards a basic level of 

limb function restoration. What level of restoration required would require a 

baseline to be established. This study also raised indications that disability 

sport could also potentially be negatively affected by technology, echoing 

Tenner’s ‘revenge effects’ (Tenner 1996) explained in chapter 3.  

 

If another technological change was made within the sport but one that was 

not adopted by everyone (or took a period of time to do so), an underlying 

climate of fairness would be created. As a result, it is felt that the further 

development of a framework or model to determine the acceptability of 

prosthesis technology is warranted. 

 

5.6 CONCLUSION 

 

Amputee sprinting was evaluated over a 36 year period and compared to 

able-bodied sprinting over the same duration and time period to ascertain the 

impact of energy return prostheses. A major change in performance in 1988 

was identified. However, it is proposed that such an introduction was 

excessive in impact when compared to the equivalent able-bodied racing. As 

an additional observation, participation levels have also not increased over 

this time period. As a result, it is proposed that the 1988 change was of little 

actual value to the sport as a whole in the short term. Whilst the innovation of 

energy return prostheses deliver proven health benefits to amputees in the 

general population, such technology should have been investigated for its 

potential impact prior to its introduction in elite disability sport. It is 

recommended for the foreseeable future, that the current appearance and 

basic spring-like function of prosthesis technology is maintained. 
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The issues caused by the introduction of ESR’s in the case study 

demonstrate that the further development of a framework or model to 

determine the acceptability of prosthesis technology in the future is 

warranted. If any further technological change was made by an individual or 

a sport as a whole, a climate of technological unfairness would be created. 
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CHAPTER 6: DEVELOPMENT OF A 

FRAMEWORK FOR THE ACCEPTABILITY OF 

LOWER-LIMB PROSTHETICS TECHNOLOGY IN 

DISABILITY SPORT 
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6.1 INTRODUCTION 

 

Chapter 2 and 3’s literature reviews demonstrated that several ethical issues 

surrounded the use of technology in sport generally and that this has also 

occurred when using disability technology in able-bodied sport.  

 

New technologies open up new possibilities for better outcomes and 

processes as well as increased performance. The latter applies particularly 

to lower-limb running prostheses in disability sport. However, as for any new 

technology, there is the potential for unintended consequences and 

unforeseen implications for practice to arise as raised by Tenner (1996). As a 

result, the application of technological advances in the design of lower-limb 

running prostheses may threaten the integrity and fairness of the sport. Such 

issues were proposed as being apparent in chapter 4.  

 

Chapter 3’s literature review demonstrated that, despite well understood and 

common frameworks of philosophical criteria upon which to determine an 

appropriate outcome, such methods would often conflict or lack consensus. 

This conflict has been recommended to be overcome by means of obtaining 

consensus directed from a point of authority (Sakine & Hata 2004). It is 

important to find a direction informed by common values and shared notions 

of what is in the spirit of fairness in disability sport with a view to ensure a 

‘level playing field’. Thus a method was selected which allows the researcher 

to elicit and synthesize the opinion of people with specific experience and 

expertise as well as a stake in this area. Data obtained through such a 

method can generate informed perspectives on issues in relation to 

acceptability with the use of lower-limb running prostheses in disability sport. 

 

The aim of the research in this chapter was to establish a consensus on the 

use of LLP used in running at the Paralympic Games and to better 
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understand the role and perception of such technology. From this 

information, proposed guidelines for defining LLP’s use in disability sport will 

be made. This chapters study has seen peer review via journal publication 

(Dyer et al. 2011; Dyer et al. 2010) and is contained within Appendices F. 

 

6.2 OBJECTIVES 

 

The objectives of this chapter are: 

• To determine what role running lower-limb running prostheses play 

within disability sport. 

• To understand what (if any) limitations should be placed upon 

disability sport lower-limb running prostheses. 

• To explore the perception of lower-limb running prostheses within an 

area of emerging interest. 

• To create and to define a framework and/or guidelines for LLP 

acceptability in disability sport. 

 

6.3 METHODS 

 

A qualitative research strategy was deemed the most appropriate strategy in 

this Chapter. Such research does not necessarily require the inclusion of 

large sample groups which is important when considering that sport with a 

disability is performed by athletes in small numbers and has had a relatively 

short period of time to develop (as illustrated in Chapter 5). As a result, 

qualitative methods were selected as the more effective strategy at this stage 

of the mixed-method research process. 
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Due to the sensitive nature of disability, the research method selected should 

allow the generation of knowledge or opinion without the implications of 

intimidation, coercion or bias. As a result, research which provides anonymity 

was deemed desirable before selecting which method would be used to 

obtain this information. From this, whilst methods such interviews (both 

structured and semi-structured) would be an applicable method, this 

technique throws the proposal of any framework solely onto the researcher. 

However, it was felt that methods which allowed stakeholders to evaluate 

and refine any proposals using their own expertise would provide more 

pragmatic and realistic solutions to the research objectives.  

 

The method selected to obtain the perspectives of a number of different 

groups and stakeholders and experts is a consensus based methodology 

and referred to as the Delphi Technique and is widely used in inter alia 

information and communication research, education, health and social care, 

and management studies. It seeks to elicit expert (Sackman 1975; Martino 

1983), peer (Thompson et al. 2004) or informed individuals (McKenna 1994) 

opinion in a systematic manner. It is used to assist with decision making and 

can also be applied when there is incomplete knowledge about a problem or 

phenomenon (Skulmoski et al. 2007). It has also been employed whereby 

answers are vague, or subject to many interpretations (Chang & Kim 2003) 

or as a way to determine priorities and alternative futures (Beech 1999). 

These applications are particularly relevant as chapters 2 and 3 concluded 

that some of these principles are required to ascertain the acceptable use of 

prostheses technology for competitive purposes.  

 

The Delphi method is a group technique with the aim to obtain the most 

reliable consensus of views of a group of purposively selected key 

informants, stakeholders or experts by means of a series of questionnaires 

which become progressively more focused. The process also involves 

controlled feedback to the respondents whilst maintaining their anonymity 

(Gupta & Clarke 1996; Kennedy 2003). The technique was originally 
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developed at the Rand Corporation in 1948 (Sackman 1975) and is named in 

deference to the legend of the Greek Oracle at the Temple of Delphi. The 

iterative process involves a series of ‘rounds’ of questioning to the same 

panel. The subsequent findings from each previous round are then 

communicated back to the respondents and the scope for variation reduced 

in the next round in order to achieve convergence of opinion (Sackman 

1975). The purpose of the technique is to produce consensus among a 

group of informed individuals using flexible methods, reiteration and 

statistical results. It is not a method of discovery, but a way of accessing 

prevailing perspectives, values and opinions which is particularly appropriate 

in this context which is characterised by rapid change and still relatively 

unstable knowledge structures. The classic text by Linstone and Turoff 

(1975) includes a fuller explanation of this method. Whilst both interviews 

and focus groups could also be used to achieve the same objectives, the 

Delphi process has its unique advantages of its anonymity coupled with an 

ability to still achieve consensus on the issues at question. 

 

The Delphi Technique has not been identified in published research having 

being applied to issues surrounding sports technology. However, it has been 

used to ascertain general priorities in disability sport (Wilhite et al. 2004), 

issues of health (Beech 1999), surgical intervention (Baumann et al. 2001), 

creating ethical frameworks (Winstanley & Stuart-Smith 1996) and in new 

and not fully understood technology (Sackman 1975). All of these 

applications of the technique are related in one aspect or another to the 

research aims in this chapter. 

 

In the case of this study, three rounds took place involving electronic mail 

submission.  The Delphi questionnaire design was not pilot tested due to the 

relatively small panel size and limitations of panelist availability typical within 

this context of study (Skulmoski et al. 2007). However, the questionnaire 

design was assessed by academic peers for suitable refinement and/or 

feedback. The Delphi process ran for three rounds, but also included some 
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additional e-mail contact during this process to some of the respondents 

when further clarification of their answers was required. The response rate of 

the Delphi process was high. This rate was 100% from the initial contact e-

mail through to round one, 90% from round one to round two, and 100% from 

round two to round three. The duration of the study was approximately 6 

months from initial agreement of participation of the respondents to the end 

of round three (inclusive of analysis). 

 

6.3.1 Expert Panel Selection 

The key principle of the Delphi technique is the recruitment and composition 

of an expert panel. The literature on the Delphi technique  does not 

recommend one particular method to determine a credible number or type of 

‘expert’ used as this will depend on the topic under investigation and the 

context in which it is being undertaken. For doctoral studies for example, 

expert panel size has varied from 8-345 participants (Skulmoski et al. 2007). 

As Bowles (1999) indicated, ‘Expertise is a valid construct but it is not easy 

to identify who possesses it’. This opinion is echoed by Sackman (1975) in 

that definition or allocation of the term ‘expert’ is highly problematic but only 

strengthens the need to select a panel extremely carefully. A review of 

postgraduate use of the technique has shown most panel sizes being 5-20 

participants in number. In its use as a forecasting tool, a typical range of 4-20 

experts have been used with occasional occurrences with panels as big as 

98 (Rowe & Wright 1999). 

 

The experts for this study were selected through purposive sampling on the 

basis of their involvement with disability sports. Institutional ethical approval 

was obtained for the study before any contact of the respondents took place. 

The relationships between all stakeholders in disability sport were initially 

mapped graphically taken from the perspective of an athlete being at the hub 

and other areas of expertise connected to them. Anonymity of the panelists’ 

identity and responses to each other is paramount to the Delphi technique. 

Without compromising participants identities, the final panel selected for this 
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research project included a number of lower-limb disability athletes (both 

active and retired), prosthetists (with experience of working with elite 

athletes), coaches, academics from a variety of related disability disciplines 

(ethics, physiology, sociology, philosophy, and biomechanics) and spectators 

of disability sport (who have witnessed disability running). The composition of 

the panel is shown in table 8. 

 

Table 8. Delphi Panel 

Panel Member Type No. 

Prosthetist 3 

Disability Sport Academic 8 

Disability Sport Athlete 4 

Disability Sport Governing Body Member 1 

Disability Sport Spectator 5 

 

All expert panelists had direct experience of disability sport either through 

participation with or by academic publication within. Other than this primary 

engagement, an exact amount of the expertise experience was not specified. 

Once the stakeholders making up the potential panel were identified, all of 

the targeted panelists were contacted and invited to take part by e-mail prior 

to the formal start of the Delphi process. In total 21 experts were selected for 

the panel.  

 

6.3.2 Definition of Consensus 

The notion of consensus is difficult to define and thus problematic. Published 

research practice in the area suggests that the Delphi process continues 

through a number of rounds until a level of consensus is reached. It has 

been suggested that this is set prior to the study being undertaken (Fink et 

al. 1984). However, there is a range of percentage levels of agreement that 

are defined as consensus from 70% in some research (Hasson 2000) or 
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80% (Finger et al. 2006). Many published accounts do not set a pre-defined 

consensus level, merely stating the final percentage of agreement achieved 

(Abernethy et al. 2003; Thompson et al. 2004). It has been reported that 

some have taken consensus as low as 55% or as high as 100% ‘leaving it up 

to the reader to determine whether consensus has been determined’ (Powell 

2003). A two-thirds majority was used for this study. This figure requires 

twice the level of positive agreement than for the views opposing it. This 

figure has been recommended a suitable level for defining consensus (Fink 

et al. 1984) and has been used successfully in health related studies (Barton 

2009). 

 

For the present study, two key conditions were put in place to act as 

definitions of consensus: 

i)  A two thirds majority is obtained from a line of questioning (66.6%).  

ii)  That the panelists failed to change their opinions on two 

consecutive rounds. 

These conditions were defined in concordance with common principles which 

emerged as the literature of the Delphi technique was reviewed.  

 

6.3.3 Round 1 

The questionnaires (Appendices A.1) were sent as the main page of an 

individual e-mail to each panelist. The questions were preceded by a short 

introduction explaining the stage of the process. It was made clear that the 

process would involve subsequent rounds.  

 

Round one asked three open ended questions based on the core aims of the 

study. It was to seek the expert’s views on: 

i) What role they felt a lower-limb sports prostheses played in the 

context of competitive running. 

ii) What they saw as fair or unfair when using a sports prostheses. 
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iii) What limitations they felt should or should not exist on such 

technology. 

 

All three questions contained phrases such as ‘in your view’, ‘if you can’, or 

‘in your opinion’ in order to invite and encourage respondents’ personal 

views (grounded in their expertise) of the issues being investigated. This 

personal view is integral to the Delphi technique (Rowe & Wright 1999).  

 

On completion of round one which achieved a 100% response rate the data 

was analysed and 17 themes (Appendices A.2) were identified through a 

process of open coding.  

 

Coding is defined as an analytic process whereby qualitative data is 

categorised and named into cohesive themes (Moghaddam 2006; Ryan & 

Bernard 2003), whereby it is fractured, conceptualised and integrated to form 

theory (Strauss & Corbin 1998) or generate categories for integrating into a 

theory (Glaser 1978). Typically, coding was described by Strauss and Corbin 

(1990) with three basic styles. These are open, axial and selective coding. 

Open coding typically takes place at the beginning of a study and involves 

looking for emerging patterns and common themes (Moghaddam 2006). A 

theme is identified either through common typology, categories, metaphors, 

similarities and differences or merely through raw repetition in the transcribed 

text (Ryan & Bernard 2003). Both axial and selective coding refer to methods 

of formulating linkages and structure to the themes typically identified during 

after the open coding phase (Hoepfl1997). However, since the Delphi round 

to round process through using an expert panel is intended to do this anyway 

(through the advantages of its very nature), those methods were not actively 

pursued in this study. 
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The limitations of the open coding process is that it has no preconceived 

process to follow (Walker & Myrick 2006) so there is a risk of bias 

(Moghaddam 2006) or varied interpretation (Kendall 1999) imposed by the 

researcher. However, this is a risk using many techniques of qualitative 

analysis. However, any bias can be reduced when using the Delphi 

technique as it uses the panel to form consensus and conclusions rather 

than the researcher. 

 

Round 1’s data was ultimately developed into a set of 12 closed questions 

for inclusion in round two with the aim of gaining consensus.  

 

6.3.4 Rounds 2-3  

Round two’s closed ended questions used a 4 point modified Likert scale 

(Appendices A.3). This method was designed as a scale for assessing the 

respondent’s attitudes (Clason & Dormody 1994). The intervals between 

each category cannot be considered equally when using ordinal data 

(Jamieson 2004) and as a result the mode was used to determine 

consensus. A neutral fifth choice was deliberately omitted in order to direct 

respondents towards a clear opinionated decision. A comments box was 

provided to allow the respondent to elaborate if they felt uncomfortable with 

this option. 

 

A horizontal structure was used for the scale which provides a balanced 

visual layout between the views but also saves space within the 

questionnaire e-mail meaning the respondents would not have to scroll down 

great distances to complete it.  An example of the round two question layout 

is shown in Figure 20. 

 

 



  110 
 

No. Statement 

2 The ongoing development of lower-limb running prostheses is part of the character of 

disability running competition. 

Strongly Disagree Disagree Agree Strongly Agree 

 

Figure 20: Delphi study round two question layout 

 

The terminology used in the round two comprised the options ‘strongly 

agree’, ‘agree’, ‘disagree’ and ‘strongly disagree’.  

 

As a result of round two, several of the themes were removed from 

subsequent rounds as consensus had already been obtained. This process 

kept the following rounds e-mails as short (and therefore as quick to 

complete) as possible. 

 

Three themes based upon 5 questions did not obtain suitable consensus in 

round two. These questions were then reformulated on the basis of the 

qualitative feedback obtained in the previous round. The percentages of 

round two’s consensus were given to the panel for round three.  

 

It became apparent upon review of round two that although there were 4 

Likert options, respondents generally only used the middle two choices 

(agree/disagree) upon which to make their decisions. No questions had a 

mode average located within the ‘strongly disagree’ or ‘strongly agree’ 

options. As a result, it was decided that consensus would then be obtained 

by adding both the ‘strongly agree’ and ‘agree’ options together and likewise 

for the ‘disagree’ and ‘strongly disagree’ options. Ultimately round three 

moved to a two point Likert scale of ‘agree’ and ‘disagree’ with the comments 

box maintained but using the same, familiar layout and method as in round 
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two (Appendices A.5).  An example of a round 3 layout is shown in Figure 

21. 

 

No. Statement 

1 The lower-limb running prosthesis is a piece of sports equipment. 

Disagree Agree 

 

Note to respondent: In the last round of questions, 63% of respondents agreed with this. 

 

Figure 21. Delphi study round three question layout 

 

Three questions were posed within the third round of the Delphi. All of these 

obtained the suitable consensus conditions as defined within this study. The 

respondents who had not agreed were contacted to see why they would not 

be willing to change their view. A fourth round was not deemed necessary as 

the consensus percentage obtained by this point then fell into the parameters 

set at the beginning of the study.  

 

6.4 RESULTS 

 

Round 1 of the Delphi involved a qualitative coding analysis. From the open 

coding process, 17 common themes were identified. These are shown in 

Table 9. 
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Table 9: Summary of Delphi Round 1 Themes 

The role of the prostheses in disability sport  

What the utilisation of a sports lower-limb prostheses provides to its user? 

Is the prostheses part of the user? 

Is it restorative or enhancement based prostheses technology? 

What does a prostheses do ? (it’s specific performance) 

Is the user an athlete?, Which environment is it used in?  

What external effect is caused through use of a sports lower-limb prostheses? 

Issues relating to equity of access to prostheses technology. 

Issue relating to the cost of prostheses technology. 

Issues relating to mixed disability participation within a classification. 

The use of passive or active technology in lower-limb prostheses design. 

Issues relating to the ethos of Paralympic competition. 

Issues relating to prosthetic limb length manipulation.  

Recognising that a performance contribution exists through use of lower-limb prosthesis. 

The physical effect of using a prosthesis. 

The Delphi respondents’ opinion to potential solutions at this stage. 

Issues relating to prostheses stride length. 

 

The themes identified in Table 8 each then had a question(s) developed to 

determine the actual opinionated stance of the expert panelists in these 

areas. Each theme provided the basis for a question that was developed for 

the following round in order to elicit panelists’ responses. 
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Of the 12 close ended questions in round two, consensus of greater than 

66.6% was obtained in 7 of the questions/statements (Appendices A.4). 

These are shown in Table 10. 

 

Table 10: Delphi Round 2 Areas of Consensus 

Delphi round 2 theme/statement/question 
Level of 

consensus 
Stance 

The users of sports lower-limb prosthesis can be classified as 

‘athletes’ as a definition 

90% Agree 

The ongoing development of lower-limb running prostheses is 

considered part of the character of disability running competition 

79% Agree 

The lower-limb running prosthesis is for restoring the physical ability 

of the missing leg to the athlete 

79% Agree 

The lower-limb running prosthesis is to restore the functional ability of 

the missing leg to the athlete 

89% Agree 

The lower-limb running prosthesis performance needs to have some 

form of control  

83% Agree 

The lower-limb running prostheses maximum leg length should be 

restricted 

74% Agree 

The lower-limb running prostheses should not provide a stride length 

beyond that of the users’ current naturally determined level 

83% Agree 

 

Five additional areas failed to gain enough consensus so these were further 

pursued into round three by question reformulation which were based upon 

the three themes from round 1. 

 

The questions were refined based on both the comments and closed 

answers of round two. In addition, any terms that were seen to have assisted 

in obtaining consensus in round two were now integrated into round three’s 
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questions. An example of this is use of the word ‘athlete’.  The conclusions of 

round three are shown in Table 11. 

 

Table 11: Delphi Round 3 Areas of Consensus 

Delphi round 3 theme/statement/question 
Level of 

consensus 
Stance 

The lower-limb prosthesis is a piece of running equipment 70% Agree 

In the case of an athlete with a single leg amputation, it is 

acceptable for a lower-limb running prosthesis to outperform their 

natural leg 

70% Agree 

As long as it is within the rules of a sport, athletes with a lower-limb 

disability have the right to choose what technology they feel is 

appropriate to use 

85% Agree 

 

Consensus on the issue of whether the lower-limb running prostheses was 

considered equipment increased from 63% at round 2 to 70% at round three. 

 

The theme relating to the issue of a prosthesis being restorative in nature 

saw the consensus increase from 53% in round two to 70% in round three. 

This line of investigation saw some refinement in its question design with the 

addition in round three of a specific context.  
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6.5 DISCUSSION 

 

The findings from the Delphi technique point to a number of common 

concerns among stakeholders related to use of lower-limb running 

prostheses in competitive disability sport which can be grouped around two 

themes:  

• the nature of the function of lower-limb prostheses technology 

• the nature of acceptability in relation to lower-limb prostheses 

technology 

 

Following the second round of the Delphi study, agreement was reached in 

that a prostheses limb length and stride length should be measured against 

what would be achieved naturally if the athlete were not disabled and that 

critically prosthetic technology should be restorative in nature. Of course, this 

agreement is one of principle insofar as it would be problematic to ascertain 

what performance athletes with a unilateral amputation would have been 

capable of had they not been disabled, and virtually impossible in congenital 

bilateral amputees. In the case of unilateral amputees, a potential solution is 

to use their human limb as a datum of attainable performance for the 

prosthetic leg. This was supported after round two when it was agreed that a 

prostheses performance needs to be controlled and that the prosthetic 

technology should be limited to restoring both the function and the ability of 

the athlete. In summary, the prosthetic leg should not be able to outperform 

the sound limb. This does not clarify whether such technology should 

continue to be passive in nature although if it were not, could create short 

term adoption issues such as those illustrated in Chapter 5. 

 

Related to the notion of prostheses being of restorative nature was the issue 

of whether prostheses were considered to be part of the athlete’s body or as 

a form of ‘equipment’ and thus purely functional. Agreement on the latter 

view was achieved in the third round. Respondents were reluctant to agree 
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on the use of any type of technology being employed to restore function 

without knowing what that technology specifically involved. This was despite 

having already agreed that any prosthetic product used in competition had a 

defined limit to its performance. Such reluctance is probably due to an 

individual’s decision on acceptability only being achievable when in full 

knowledge of the factors that have an impact on athletes’ performances.  

 

Additional concerns from the panel also related to both the cost and access 

to running ESR technology. The problem is that these are not realistically 

controllable on an international basis. Practically speaking, the variety of 

countries economical strengths (as well as the variability of a prosthetics 

manufacturers supply chain) would mean this would not be feasible unless 

the method by which equipment is currently provided is focused and 

controlled. The highly skilled nature of prosthetists and their availability would 

cause problems to athletes in developing nations if product distribution was 

affected. This approach however is not uncommon as one-design sailing 

dinghies such as the Laser Class have a focused, sole supplier to their World 

Championship and Olympic Games regattas. It is noted that both of these 

concerns were also detected in the general literature review in chapter 3. 

 

Broadly speaking, agreement was obtained that in competitive disability 

sport, in order to measure, compare and rank competitors according to 

performance in a meaningful way, there is a need for equality of 

opportunities. This resonates with Loland’s argument in relation to the role of 

technology in sport in that every competitor must be given equal access to 

resources such as equipment and equal opportunity to perform through a 

process of standardisation, specification and regulation of such equipment 

(Loland 2002). Such specifications will necessarily be related to what 

constitutes fair contests. Similarly, the findings of this Delphi study suggest 

that the prostheses development and use is considered part of the sport. It 

follows that the disability running legislation needs to reflect the attention to 

equipment similar to sports that have a similar human interactivity and 
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technological input (such as cycling).  The stakeholders identified within 

round one that an enhancement based technology could be seen as unfair in 

several ways. Furthermore, agreement was eventually reached on the need 

for some form of limitation being placed on prosthetic technology. It is likely 

that this view is shared more widely among other stakeholders who suggest 

the need for an evaluation and clarification of the rules in order to ensure that 

it does not present unnecessary risks for harm, is acceptable and is of 

constitutive function and value in sport (Loland 2002).   

 

6.5.1 Proposal of LLP Acceptability Guidelines 

It was discussed in chapter 3 that the existing models of sports technology 

acceptability are too generic to be applicable in this context. In addition, it is 

not known if the more generalised ethical criteria used as basis for argument 

(summarised in table 3, chapter 3) were applicable in this context. The 

objectives of this chapter are used to develop a series of context specific 

guidelines for the use of LLP technology in disability sport.  The objectives of 

this chapter were: 

 

• To determine what role running lower-limb running prostheses play 

within disability sport. 

• To understand what (if any) limitations should be placed upon 

disability sport lower-limb running prostheses. 

 

It is argued that these have been resolved in the findings of this study by 

being designated as requiring to be regulated and being ‘designated as 

equipment’. 

 

The other objectives of this chapter were: 

 

• To explore the perception of lower-limb running prostheses within an 

area of emerging interest. 
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This was resolved in the findings that the perceptions of LLP’s are 

determined as a form of equipment and do not serve as an extension of the 

human body. It was also identified that the nature of this technology is that 

they are purely restorative both in terms of function and limb lengths (stride 

and general limb length). 

 

The remaining objective in this chapter is : 

 

• To create and to define a framework and/or guidelines, specific in the 

context of lower-limb prosthesis acceptability in disability sport. 

 

All the findings in this study will be summarised into guidelines for LLP 

acceptability to satisfy this final objective. In addition, one of the key findings 

of chapter 4 recommended that any new technology should be reviewed 

prior to approval for racing as opposed to retrospective evaluation. This 

finding will also be incorporated into the guidelines. 

 

The findings from chapter’s 4 and 5 are amalgamated together to form the 

proposed guidelines. These are shown in table 12. 
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Table 12. Proposed Summary of LLP Acceptability Criteria 

1 Lower-limb prosthesis used for competitive running are classed as 

equipment and will be formally legislated 

2 Prosthetics technology not formally approved by the IPC should be 

submitted for evaluation to them ahead of any use of such designs in 

competition. 

3 Lower-limb running prosthesis are restorative in nature.  

4 Lower-limb running prosthesis will restore functionality to the user of no 

greater magnitude than that exhibited by the athlete’s biological lower-

limb. 

5 Lower-limb running prosthesis will contribute to a limb and stride length 

of no greater magnitude than that exhibited by the athlete’s biological 

lower-limb. 

 

Point 1, 2 and 3 define the core philosophy behind LLP’s use in disability 

sport. Point 2 will not fully resolve any revenge effects but will at least 

facilitate discussion. This may lead to further investigations using techniques 

such as those in this chapter.  

 

Points 4 and 5 define LLP’s intended performance. These points are 

problematic as they do not resolve the participation of bi-lateral amputees. It 

is argued that the use of a combined classification needs to be investigated 

further. 

 

Point 4 and 5 defines that a threshold of lower limb function is an outcome 

measure but it needs to be investigated what (if any) tolerances should be 

applied to such recommendations. It is conceded that this study proposed in 

the discussion section that the athlete with a uni-lateral amputation biological 

lower-limb may have been functionally superior had he not been an 

amputee. However, this hypothesis is beyond the scope of this study and it is 
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felt that the remaining biological lower-limb is an objective governor for the 

performance of the artificial limb. 

 

It is argued that point 5 (whilst a concern of the stakeholders in this study) is 

already dealt with via the IPC’s legislation for calculating appropriate 

prosthetic limb length. As such, it is felt it should be included in these 

proposed guidelines. However, the literature reviewed in Chapters 1, 2 and 3 

have shown that such behaviours have not been assessed under race 

conditions. It was also raised in Chapter 2’s literature review of the potential 

importance of lower-limb to limb symmetry. As such, it is felt that such 

concerns over limb length manipulation should be investigated further. 

 

6.6 LIMITATIONS  

 

The Delphi process did have some limitations. The results generated are a 

‘moment in time’ evaluation (Kennedy 2003). This means that any decisions 

based on the findings of this study have a timeframe of credibility before the 

exercise should be repeated. However, this would be evident with any 

legislative proposals or changes within governance. 

 

Criticism of the Delphi technique has suggested a lack of credible validity 

and reliability and lacks professional standards (Sackman 1975). However, 

the very ethos behind the Delphi technique is to solicit expert opinion rather 

than empirical reliability (Martino, 1983). This means the exercise is only as 

good as the expert panel selected (Armstrong 2001; Gupta & Clarke 1996). 

The expertise evident within the panel in this study was extremely diverse 

from a wide range of stakeholder interests. 
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Sackman (1975) also suggests that the Delphi technique creates a ‘forced 

consensus’ or a watering down of opinion yet this would be evident with 

many survey techniques used across a broad spectrum of respondent 

demographics (Kennedy 2003).  In addition, the breadth of an individual’s 

opinion could mean that this problem would never be attempted to be 

resolved unless a consensus could be obtained. This is what this very study 

provided. 

 

Round 1 of this study also raised the theme of whether the prosthesis should 

remain passive or not but it was felt after the Delphi study was concluded 

that this was not sufficiently followed up on. Chapter 5 proposed that the 

current level of technology should be maintained in the short term. Chapter 

6’s study does define the maximum threshold of performance as ‘restorative’ 

but did not address whether the sports technology could move beyond 

passivity as the minimum threshold. 

 

Some refinement of the questions took place between all three rounds. It 

could be argued that such a refinement means any shift in consensus is not 

a true reflection of a change in opinion. However in this case, this allowed 

the panel to help refine as well as respond to themes and questions. This not 

only enriched the process but reinforces the very nature of the Delphi 

technique. 

 

6.7 RECOMMENDATIONS 

 

The aim of this study was to provide a set of shared views and values in 

relation to the role of technology in disability sport in particular based on the 

agreement achieved by a panel of stakeholders. The information supports 

the need for increased regulation of lower-limb running prosthesis 

technology.  The values defined by this study will serve as an ethical 
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foundation (Freeman 1991) upon which any assessment strategy could be 

based. This research could be enhanced further by conducting a similar 

process periodically to help approve or refine proposed assessment 

strategies.  

 

The proposed guidelines in section 5.5.1 require further clarification. The 

definition of ‘functionality’ of the lower-limb is not clear and is ambiguous at 

this time. Such ambiguity should be resolved by determining context specific 

assessments with respect to this thesis’ research aims and objectives. 

Despite proposing the need to regulate such technology, it is not yet clear 

whether the prosthesis would be attached to the user or not when assessed 

(or both). The suggestion in this study is that by being equipment, the 

prosthesis would be independent. As a result, with current levels of 

technology, only mechanical properties could be assessed due to ESR’s 

passive nature. This may not be applicable in this context so such methods 

should be investigated further. 

 

Whilst these guidelines have attempted to define what is fair, acceptable and 

considered a natural limit to such technology, it is not known how bi-lateral 

amputees can be accommodated by these proposed guidelines. Consensus 

cannot be guaranteed by extending the study in this chapter either. As a 

result, a more practical solution is suggested by addressing the future 

viability of hosting a combined running race with both single and double 

amputees together. If any functional differences exist between them, the new 

proposals will address the single amputee category and separate research 

would then be needed to address the acceptability of prosthetics technology 

for bi-lateral lower-limb amputees. 
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6.8 CONCLUSION 

 

There were several core aims of chapter 6. These were the investigation of 

the role, limitations to the ability of, and the acceptability of lower-limb 

running prostheses technology in competition with a disability. These would 

be used to help define guidelines to manage such technology within disability 

sport. The Delphi technique was selected through its ability to solicit expert 

opinion, anonymously, and in a developing area of expertise. High levels of 

consensus of 70% or greater were obtained for the studies aims from a 

purposively selected expert panel of 22 members. The Delphi process ran for 

three rounds. 

 

It investigated what was understood, in the context of the research aims as 

acceptable or unacceptable with regards to the use of lower-limb sports 

prostheses in disability sport. It was felt that the technology employed in a 

prosthesis design could be unacceptable, even if this conflicts with new 

innovations which may help the athletes’ quality of use or health. The need 

for ongoing vigilance was highlighted as a result. It was also implied that 

inequity in both the access and the cost of ESR technology raised concerns 

of acceptability but it is conceded within this study that these are difficult to 

regulate generally and within the scope of this study.  

 

It is proposed that for reasons of acceptability, the prosthesis is defined as a 

‘restorative’ form of ‘equipment’ used by an ‘athlete’ to take part in 

competitive disability sport. This means that a limit has to be applied to what 

the running ESR provides functionally even though this may conflict with new 

innovations designed to assist the athlete with their disability. In addition, the 

development of new technology is considered an integral sports ethos. 
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It was agreed that the appropriate limit of a running ESR’s ability would be if 

the prostheses performance does not exceed that of a ‘naturally determined’ 

level. This was refined to reflect the limb to limb relationship in uni-lateral 

amputees.  

 

It was agreed by the expert panel that running ESR technology does need to 

be monitored and limited in its performance to provide a fair sport to both its 

participants and its stakeholders. The rules and regulations that govern the 

sport are recommended to be revisited. To assist this, a series of guidelines 

to help regulate such technology has been proposed for further development. 

These include stride parameters of athletes under race conditions, whether 

double and single amputees should be separated from each other and 

further detail on how assistive technology should be assessed. 
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CHAPTER 7: STRIDE CHARACTERISTICS OF 

LOWER-LIMB AMPUTEE ELITE RUN RACES: A 

CASE STUDY 
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7.1 INTRODUCTION 

 

Chapter 6 has provided proposed guidelines for the assessment of LLP use 

in competitive running. One of the recommendations was that “Lower-limb 

running prosthesis will contribute to a limb and stride length of no greater 

magnitude than that exhibited by the athlete’s biological lower-limb”. Whilst 

stride characteristics have been investigated in athletes with an amputation 

(Grabowski et al. 2009; Wilson et al. 2009), such studies typically use 

experimentation of test candidates under tightly controlled conditions and 

tests to objectively assess the balance of one lower-limb compared to the 

other. In addition, there are few studies which have assessed elite level 

athletes with an amputation (Bruggemann et al. 2007; Bruggemann et al. 

2008). As a result, whilst observations surrounding stride mechanics in 

lower-limb amputees have generally taken place, evidence of this with elite 

athletes when performed under racing conditions has not been investigated. 

If asymmetries are shown to take place, the recommendations into the 

proposed guidelines in Chapter 6 should be expanded from merely 

considering a limb to limb threshold to acknowledging considerations of limb 

symmetry. 

 

This chapter evaluates step inter-limb symmetry and step count data over 

race distances from race footage. This information will provide further insight 

into the current characteristics of T43/44 racing and ascertain how symmetry 

impacts athletes when assessed under competitive conditions 
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7.2 OBJECTIVES 

 

This chapter investigates the following research objectives: 

 

a. To record inter-limb timing symmetry of elite T43/44 athletes competing 

over a fixed distance. 

b. To record the step count of elite T43/44 athletes competing over a fixed 

distance. 

c. To ascertain the severity of (any) lower-limb asymmetry in T43/44 racing. 

 

7.3 METHODS 

 

To assess competitive running under race conditions, quantitative based 

analysis using video footage or more qualitative methods such as 

ethnography could be used as viable techniques for obtaining context 

specific activity information. However, to maximise the raw data sample, 

multiple events would be required. As a result, video footage is the most 

feasibly accessible source of information. Real time analysis or observation 

is not realistic due to the speed and number of athletes involved in any one 

event. In addition, TV footage utilises the best field of vision of an event that 

would not be easily possible as an observer. The footage used for this study 

was derived from public domain sources including Paralympics TV 

(http://www.paralympic.org/Videos) via Youtube (www.youtube.com). The 

identity of the athletes in each piece of footage is a matter of public record. 

 

There are 3 competitive running distances that occur in the current 

Paralympic Games format. These events are the 100, 200 and 400m running 

distances. However, the issue with such events and subsequent footage is 
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that due to the switch between and panning of multiple video cameras, the 

same athletes do not always remain in shot or in clear view. This makes any 

assessment of their stride characteristics problematic. The only event which 

minimises such issues is the 100m sprint event. As a result, only the 100m 

event is feasible for evaluation in this study. As remarked in chapter 4’s 

study, the T44/T43 has been a combined classification event relatively 

unchanged in nature since 1976. As a result, both types of amputees are 

evaluated together in this study.  

 

The video footage was checked to ensure that its televised recording speed 

was the same as the actual events results and it was also assessed for its 

visual quality to allow clarity of an athlete’s ground impact. This ultimately 

meant only HD quality pieces had the desired resolution. The footage was 

then imported into the Quintic Biomechanics 9.0 software (Quintic 

Consultancy Ltd., Coventry, UK) which allowed frame by frame evaluation at 

the footages maximum specification of 0.04 second increments (25 frames 

per second). The analysis in this study is split into step count and step 

symmetry.  

 

7.3.1 Step Count 

When reviewing the footage to assess step count, the numbers of steps 

taken in the footage (by as many athletes that remain in shot for its duration) 

are recorded to achieve the 100m race distance. As the step count to 

achieve the 100m is never exact, the number of steps judged closest to the 

actual finish line is taken as the measured value. 

 

The four events and its source evaluated for step count were: 
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• 1996 Paralympic Games T44/T43 100m Final 

(http://www.youtube.com/watch?v=WYxBWIY8iYc)  

• 2008 Paralympic Games T44/43 100m Final 

(http://www.youtube.com/watch?v=UDDhZx54Jy4)  

• 2011 IPC World Athletics Championships T44/43 100m Final. 

(http://www.youtube.com/watch?v=LTxypZ71-30)  

• 2012 Paralympic Games T44/43 100m Final. 

(http://www.youtube.com/watch?v=mcdUsMULNzo)  

 

7.3.2 Step Timing Symmetry 

Whilst several videos were found to be available, only seven HD quality 

pieces of video footage had the visual resolution it was felt to be examined in 

close enough detail to evaluate the footfall data accurately. Of these, four 

pieces of footage were of qualification heats of both the 2008 and 2012 

Paralympic Games. However, these were discounted from this analysis as it 

was seen that several athletes intentionally slowed down before the finish 

line. It is assumed that this took place due to either an athlete had estimated 

that their qualification was already secured or that they felt this had not been 

achieved and therefore gave up. This meant their stride would sometimes be 

seen to visibly slow down or shorten in stride length towards the end of an 

event. This made such data not representative of the events maximal effort 

and was therefore rejected. In addition, the athlete’s reaction time to the 

starting pistol could not be evaluated as this exact moment was not within 

the unit of measurement of the analysis software or the footage. 

 

The three suitable races evaluated for step frequency and symmetry were: 
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• 2008 Paralympic Games T44/43 100m Final 

(http://www.youtube.com/watch?v=UDDhZx54Jy4)  

• 2011 IPC World Athletics Championships T44/43 100m Final. 

(http://www.youtube.com/watch?v=LTxypZ71-30)  

• 2012 Paralympic Games T44/43 100m Final. 

(http://www.youtube.com/watch?v=mcdUsMULNzo)  

 

When reviewing the footage, a definition of ground impact was needed to 

record when a step had taken place. A ground impact was determined 

whereby the foot is seen to contact the ground just prior to the lower-limb 

beginning to bend at the knee or the prosthesis is seen beginning to 

compress 

 

The greatest possible error of this evaluation is defined as half of the 

measurement unit. Therefore, potential errors in the step symmetry data are 

0.02 seconds. The tolerance interval (or margin of error) is defined as +/- 

0.02 over the established measurements. However, due to the relatively 

large precision (due to the limitations of the footage), the largest error 

possible is defined here as one measurement increment of +/- 0.04. 

Therefore, only a change of greater than +/-0.04 from the previous data point 

is proposed to be significant in this study to then be defined as lower-limb 

asymmetry. Due to this relatively large tolerance, interval typical calculations 

such as the symmetry index (Noyes et a. 1991) would be misrepresentative 

of asymmetry so were not used in this study. 

 

The athletes were classified as having three types of lower-limb behaviour. 

These are designated as lower-limb to limb symmetry (LS), lower-limb to 

limb asymmetry (LA), and random asymmetry (RA). LS is defined as a limb 

to limb timing within the measurement precision. LA is defined as a 

consistent limb to limb timing imbalance of greater than 0.04 seconds. RA is 
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considered a single event limb to limb timing imbalance of larger than 0.04 

seconds. 

 

7.4 RESULTS 

 

7.4.1 Step Count 

The recorded step count data is shown in figure 22. 

 

Figure 22. 100m T44/43 Step Count Data 

 

It can be seen typically that in the race footage samples, the lowest step 

count is desirable to achieve the best possible finishing position. An event 

winner typically has no more than 49 steps with other medal winners typically 

a step behind. Interestingly, some slower runners in both 2011 and 2012 also 

exhibited a low step count yet performed poorly. 
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7.4.2 Step Symmetry 

When reviewing the footage, three athletes gave an appropriate level of 

visibility in the 2008 event. There were also six from 2011 and four from 

2012. 

The three athletes’ lower-limb to limb timing footfalls in 2008 are shown in 

figure 23. 

 

 

Figure 23. 2008 World Championships athlete gait symmetry summaries for athletes a) Pistorius, b) Singleton and 

c) Fourie. 

 

Figure 23 illustrates the time taken for a foot’s impact on the track to the 

alternate foot’s impact upon the track. Both Pistorius and Singleton exhibited 

a lower-limb symmetry within the acceptable tolerance range of the study. 

However, Fourie demonstrated significant step to step RA in the first few 

strides of his race. It took him 4 steps to reduce to a more typical level of the 

LS seen with the other athletes. Fourie’s mid section of his race shows an 

extremely symmetrical period of gait. Singleton demonstrated relatively 

consistent LS during his event. However, the last 3 steps of his event were 

slightly slower in duration.  
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The 6 runners from the 2011 World Championships are shown in figure 24.  

 

Figure 24. 2011 World Championships athlete gait cycle symmetry summaries for athletes a) Singleton, b) 

Pistorius, c) Oliveira, d) Fourie, e) Leeper and f) Peacock. 

 

In this event it can be seen that bi-lateral amputees Pistorius (2nd) and 

Leeper (5th) exhibit very high levels of lower-limb symmetry. Singleton has 

brief RA at the start and again with his finish. Oliveira’s run was only visible 

for the first half of the event. This aside, he exhibited RA at his start and 

sporadically throughout the first half of the event. Pistorius had relative LS 

but his last stride saw a one-off RA. Peacock had extremely consistent initial 

LA until the latter part of the race whereby his gait reflected LS. 

 

At the 2012 Paralympic Games, 4 athletes produced clear line of sight for 

evaluation. These are summarised in figure 25. 
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Figure 25. 2012 Paralympic Games athlete gait symmetry summaries for athletes a) Peacock, b) Browne, c) Fourie 

& d) Pistorius 

 

Peacock showed great improvement in terms of his actual performance from 

2011 by winning this event. However, his run still demonstrated significant 

RA. Unlike 2011, this took place towards the middle rather than the start of 

his race. Browne’s run is perpetuated by RA throughout his event. Fourie 

exhibits RA after his start and towards the final stages of his run. Pistorius 

exhibits LS typical of both his 2008 and 2011 events. 

 

The number of RA’s of athletes from the 2008, 2011 and 2012 events are 

summarised in table 13. 
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Table 13. 2011 World Championship Performance 

Athlete Year Place Amputation 

Type 

No. of RA 

Events 

(>0.04s) 

Singleton 2008 2nd  Uni-lateral 0 

Singleton 2011 1st Uni-lateral 3 

Pistorius 2008 1st  Bi-lateral 0 

Pistorius 2011 2nd  Bi-lateral 0 

Pistorius 2012 4th  Bi-lateral 0 

Oliveira 2011 3rd Bi-lateral 5 

Fourie 2008 5th  Uni-lateral 10 

Fourie 2011 4th Uni-lateral 5 

Fourie 2012 3rd Uni-lateral 6 

Leeper 2011 5th Bi-lateral 5 

Peacock 2011 6th Uni-lateral 13 

Peacock 2012 1st  Uni-lateral 16 

Browne 2012 2nd  Uni-lateral 9 

 

The finishing position does not correlate to the number of RA events. 

Peacock has improved his finishing position performance in the 100m 

between 2011 and 2012 significantly yet still displays a large level of random 

RA between his two lower-limbs.  
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7.5 DISCUSSION  

 

7.5.1 Step Count 

The step count data suggested that at elite level, a low step count of no more 

than 49 steps is required to win the event. An assumption can be made that 

the step distance itself will vary throughout the event due to the rate of 

acceleration or speed at a given moment. However, the low step counts 

exhibited here suggest that step to step flight time is paramount. It is not 

clear of the performance of the start between the athletes. It is conceded that 

this may affect the step count, if the first step out of the start blocks is 

performed poorly or is very short. 

 

Whilst the morphology and weight of all the athletes is not known in this 

study to ascertain other complicit factors, it is a reasonable assumption to 

recommend that stakeholders such as coaches could assess step count to 

ascertain the potential competitiveness of the athlete. A high step count 

could indicate a lack of ability or that their prosthesis requires assessment. 

 

7.5.2 Step Timing Symmetry  

This study shows that in the limited number of case studies available, 

randomised asymmetry behaviour does take place in elite 100m competition.  

 

It is conceded that the limited 25 frames per second is not a high enough 

resolution to detect the exact level of asymmetry. However, the degree of 

consistent LA here seen in running is similar to those reported in controlled 

studies such as Sanderson & Martin (1996) which saw lower-limb step timing 

asymmetry of 0.02 sec at 3.5m/s and 0.03 at 2.7m/s. However, this study 

saw random asymmetry events of upto 0.08 seconds. From this it could be 

concluded that athletes under race conditions can create occasional 
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asymmetry that may not be reflected when running at either slower speeds, 

at a steady state or in non competitive environments. Differences in 

prosthetic length as the root cause as reported by Hafner et al. (2002) are 

unlikely to be the reason when the outcome is randomised asymmetry lower-

limb timing. 

 

Despite such asymmetry, there are several cases of randomised asymmetry 

performed by athletes in races. This does not seem to be a barrier to 

success as Peacock went from finishing 6th to 1st from 2011 to 2012 yet still 

exhibited a similar level of RA. However, what might be more important is 

where he exhibited the RA. In 2011 it was at the start whilst he was trying to 

accelerate. Yet in 2012 it took place when he was already closer to a steady 

state speed therefore it is proposed that the net loss in speed would be 

lower. The impact of randomised asymmetry within the 100m event and its 

impact on running speed are recommended for further study in the future. 

 

The actual cause of RA’s is unknown. However, in some cases, a root cause 

can be identified by qualitatively assessing the race footage. For example, 

Singleton in 2008 and both Singleton and Pistorius in 2011 demonstrated RA 

in the last few steps of their events. The reason for this could conventionally 

be assumed to be fatigue yet when looking at the video, both athletes were 

involved with a lunge for the line as both attempted to win. Figure 26 shows 

the position of the athletes when this occurred. 
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Figure 26. 2008 (above) 2011 (below): Singleton/Pistorius finish 

 

It is proposed that the action of lunging for the line slows the stride slightly as 

the runner positions their torso. Singleton exaggerated this by so much in 

2011 that he fell forwards after crossing the finish line.  

 

When reviewing other athletes mid race asymmetry, the root causes could 

not be identified. It is proposed that the cases of RA need to be evaluated 

qualitatively alongside the quantitative data. The RA’s at the beginning and 

end of races could be attributed to a poor or slow start with the finish RA 

being attributed to fatigue, falls, or torso lunging as per figure 26 above. 

However, it is possible that mid race RA’s may not be the fault of the athlete 
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but equally in them dealing with their technology and the constraints of the 

event such as remaining within the lanes. 

 

As an aside, when reviewing the race footage, all athletes exhibited 

behaviour of start with an acceleration from rest, the maximal speed being 

obtained, a brief speed maintenance phase and then a level of evident 

fatigue. However, in two separate cases, there was visually unusual 

behaviour by an athlete in the 100m. Bi-lateral athletes, Pistorius in 2008 and 

Volpentest in 1996 exhibited unusual accelerations through the field. These 

took place around the midpoint for Volpentest and within the last 3 seconds 

of the event for Pistorius. These are shown in figures 27 and 28. 
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Figure 27. 2008 Pistorius Acceleration 

 

At approximately half distance, Pistorius is lying in 6thposition. By 7.7 

seconds he is in 4th and already reducing the distance to the runners in the 

lead. By 10.2 seconds he is in 2nd. Pistorius went from being 4th into 

challenging for the lead in just 2.5 seconds (or 7-8 steps). The 1996 event is 

shown in figure 28. 
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Figure 28. 1996 Volpentest Acceleration 

 

In figure 28, Volpentest enjoys a start similar to the rest of the competitors. At 

5.4 seconds (and approximately halfway duration) he is in 2nd but still 

accelerating. By 10.8 seconds he is clear, winning by 6-7 metres.  
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The reason for such a dramatic acceleration once the race was already 

underway is not clear. A potentially performance enhancing effect that may 

be a reason for this was recently proposed by Noroozi et al. (2012) of which 

this thesis author was a co-author. A ‘dynamic elastic response to timed 

impulse synchronisation’ (DERTIS) has been proposed to potentially 

enhance an amputees running if they are at a steady state speed and 

possess symmetrical lower-limb dynamic properties. It was demonstrated by 

Noroozi et al. (2012) that if the natural characteristics of a system are 

identified and synchronised with the physiological gait behaviour of a runner, 

performance enhancement can occur, resulting in more potential energy 

being stored in the system. This can later be recovered and will increase 

vertical flight time. Ultimately, a bi-lateral amputee athlete with near 

symmetrical gait could potentially  recover the stored energy during the 

steady state or latter phases of a running event and this would be more 

beneficial the greater the proportion of steady state speed that took place in 

a running event. 

 

The limitations of the DERTIS proposal are that to date it has not been 

replicated using human participation. This effect may only be unique to 

disability sport and sprung prosthesis since vertical impulse has been 

proposed as being potentially a disadvantage with able-bodied sprinters 

(Hunter et al. 2005). If this is true, this is significant because if both Noroozi 

et al. and Hunter et al. are correct, it means that an athlete with a uni-lateral 

amputation should not get any benefit from DERTIS (due to still having one 

intact limb) whereas the bi-lateral amputees could. If any disparity existed 

between bi-lateral and uni-lateral athletes, such an effect would constitute an 

unfair advantage possibly unique to one type of amputee over another. This 

effect is recommended being investigated further.  

 

In summary, this study sought to ascertain if limb to limb asymmetry existed 

in current elite racing. This study demonstrated that it does so and can be 

classified as: 
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• lower-limb asymmetry that is consistent  

• asymmetry that occurs randomly.  

 

Consistent asymmetry was not clearly obvious due to the measurement 

resolution feasible using the assessment methods in this study. This is 

not to say that it does not exist, but that it is not obvious within the margin 

of error. However, randomised asymmetry was still seen to occur. The 

cause of this could not easily be explained but that root causes are 

proposed here as: 

 

a. The fault of the prosthetic design for the athlete 

b. A conscious or unconscious tactical decision of the process of gait on 

the part of the athlete when running. 

c. Unclear events due to unknown stresses of the racing experience. 

 

The responsibility for cause a. is that of the athlete and therefore the 

proposed guidelines in Chapter 5 should not attempt to mitigate for this. 

Examples of cause b. such as finishing dips were given in this chapter and 

would also be the responsibility of the athlete. Again, the acceptability 

guidelines should not mitigate for an individual’s personal strategic decision 

making during a race. However, there were also cases of c. This occurred in 

more than one athlete and would therefore suggest asymmetry is a key 

characteristic within the event and should be monitored.  

 

It would have been ideal if uni-lateral and bi-lateral athletes could have been 

separated but the limited sampling of bi-lateral athletes could not support this 

conclusively. However, whilst uni-lateral athletes could occasionally exhibit 

relatively symmetrical limb to limb behaviour when racing, this was not the 

typical norm. However, in the few bi-lateral athletes evaluated here, they 

were typically always symmetrical (albeit within the measurement resolution 



  144 
 

of this study). As a result, it is proposed that the impact of inter-limb 

symmetry, as well as merely adopting the limb to limb functional threshold 

guidelines in Chapter 6, are relevant when proposing guidelines for 

acceptability in this project. However, whilst it is argued here that an 

acceptable amount of lower-limb asymmetry is undesirable; this experiment 

does not establish what would be an appropriate range due to the limited 

athlete sample. 

 

7.6 RECOMMENDATIONS  

 

This study should be expanded in the future to cover a larger sample of 

athletes and more competition footage to support these findings. In addition, 

the measurement resolution to identify a ground footfall should be improved 

beyond that employed in this study (0.04 seconds). This would be dependant 

of the quality of the TV footage in the future. 

 

There were two cases of unusual accelerations or speed maintenance 

phases of bi-lateral amputees in races. The simulation of the proposed 

DERTIS effect by human participation is proposed necessary for further 

study to ascertain if this was the root cause in these cases. This has not 

been fully pursued within this thesis at this time as this aspect is already 

being undertaken predominantly by this projects first supervisor (Prof. 

Siamak Noroozi) and assisted by other contributors, including this thesis 

author. 

 

7.7 CONCLUSION 

 

It was seen that within the samples in this study, a low step count of <50 

steps is recommended for being successful in the 100m T44/43 event. In 
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addition, flight time between steps would also seem to be a key performance 

indicator. 

 

It was seen that randomised asymmetry took place in athletes in 100m 

lower-limb amputee racing in 2008, 2011 and 2012. There was evidence of 

consistent lower-limb step timing asymmetry but little greater than 0.04 

seconds. There were cases of randomised limb to limb asymmetry that 

occurred in several athletes that could not always be explained. The 

pragmatic proposal is not only to place a performance ceiling when defining 

guidelines for prosthesis acceptability, but also to allow a range which 

incorporates a minimum value too. As such inter-limb symmetry guidelines 

are also recommended to be included in any proposed acceptability 

guidelines. 

 

This study has demonstrated that the inclusion of limb to limb stride 

characteristics proposed in Chapter 6 should be included in the final proposal 

of such guidelines. 
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CHAPTER 8: THE FUNCTIONAL DIFFERENCES 

BETWEEN SYMMETRICAL AND 

ASSYMETRICAL LOWER-LIMBS: A CASE 

STUDY 
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8.1 INTRODUCTION 

 

Chapter 6 proposed guidelines for the assessment of LLP use in competitive 

running. A key recommendation was to potentially use a biological limb as a 

reference for a prosthetic limb to be directly compared against. It was also 

found that LLP were deemed a form of equipment to be judged 

philosophically as a separate entity from the human body. A functional 

change on the part of the technology is then used to determine its 

inclusiveness (or not) in the sport.  

 

Chapter 6’s outcomes would not be easily applied to bi-lateral amputees as 

they do not have a biological limb to act as a baseline reference to compare 

their prosthetic limbs against. However Chapter 2’s literature review 

remarked that both bi-lateral and uni-lateral amputees still have historically 

competed alongside each other as part of a combined T44/43 classification 

at the Paralympic Games. Whilst the current IPC’s regulations do cover the 

determination of limb length for bi-lateral amputees, they do not cover the 

functional performance of such limbs. As a result, rather than immediately 

pursue an assessment protocol solution, the research investigated whether 

bi-lateral and uni-lateral runners have functional differences that would 

provide basis for separating them in competition.  

 

8.1.1 Differences between Uni-lateral & Bi-lateral Lower-limb Amputee 

Runners 

Accepting that running is a specialised activity and that as noted earlier in 

this thesis that ESR prosthesis have only been evident since 1988, specific 

research comparing single and double lower-limb amputees in this area is 

understandably limited in availability. Several studies have compared uni-

lateral lower-limb amputees to able-bodied runners (Grabowski et al. 2009; 

Umberto et al. 2006; Buckley 1999; Prince et al. 1992; Czerniecki & Gitter 
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1992; Czerniecki et al.1991). There are also studies that have compared bi-

lateral lower-limb amputee runners to able-bodied runners (Weyand et al. 

2009; Bruggemann et al. 2008). The lack of published research regarding bi-

lateral lower-limb amputee runners was acknowledged as a limitation in the 

understanding of amputee locomotion by Lechler and Lilja (2008). The recent 

publications that have addressed bi-lateral lower-limb amputee running have 

done so in an attempt to directly address the controversy surrounding Oscar 

Pistorius (Weyand et al. 2009; Bruggemann et al. 2008). In such examples, a 

single bi-lateral lower-limb amputee test subject was used and was typically 

a case study approach involving Pistorius himself. More recently, a study by 

McGowan et al. (2012) has attempted to compare both uni-lateral and bi-

lateral amputees to able-bodied running participants and use at least two of 

each test subject type. In all of these studies, differences both in terms of 

running gait and muscular work compensation have been reported as well as 

those remarked in Chapter 7’s analysis of step timing performed by both 

types of amputees in elite races. 

 

The majority of studies assessing running amputees use comparably low 

speeds of less than 5 metres per second (Prince et al. 1992; Czerniecki & 

Gitter 1992; Czerniecki et al.1991). Studies which examine running with an 

amputation at 100-400m event specific speeds are extremely limited in 

number (Bruggemann et al. 2008; Umberto et al. 2006). In addition, it has 

been proposed that the properties of a biological limb alter in stiffness with 

increasing running speed (Hafner et al. 2002). However, with amputees, 

stiffness in a biological limb increases with speed but decreases if the 

participant uses a lower-limb ESR (McGowan et al. 2012). Ultimately, the 

speed (or the result of that speed), is of key importance when comparing 

biological to artificial limbs. However, no study to date has compared both 

uni-lateral and bi-lateral lower-limb amputees together when running at event 

specific elite competition speeds. Bi-lateral lower-limb amputee race speed 

assessment has been attempted on a track (Bruggemann et al. 2009) and 

more commonly using a treadmill (McGowan et al. 2012; Weyand et al. 

2009). The treadmill does not take into account the aspects evident in a race 



  149 
 

such as the starting blocks, any bends and aerodynamic considerations. As 

such, context specific comparisons of the actual loads and demands of 

events such as the 100-400m have not been evaluated. 

 

When considering the differences between single and double lower-limb 

amputees, such comparison has typically been proposed through differences 

in physiological markers such as oxygen uptake (Weyand et al. 2009; 

Bruggemann et al. 2008), biomechanical comparison such as limb path and 

ground reaction forces (Weyand et al. 2009), lower limb stiffness (McGowan 

et al. 2012) and metabolic energy costs (Weyand et al. 2009). 

 

It could be proposed that study of uni-lateral lower-limb amputee athletes is 

ideal as both prosthetic and biological limbs can be compared 

simultaneously. Such a hypothesis has only been evaluated from a 

physiological perspective. This was proposed by Grabowski et al. (2009). 

However, with uni-lateral runners, compensation of the lack of muscular work 

of the prosthetic limb has been shown to be performed by the non-amputated 

limb by extra work at its knee and hip (Czerniecki & Gitter 1996) and that a 

biological limb can be adjusted unconsciously to maintain a runner’s step 

frequency (Sanderson & Martin1996). The Grabowski study (et al. 2009) 

insinuated an improved understanding of all running amputees who use 

ESRP’s through its testing. However, this study only tested uni-lateral 

amputees to determine their conclusions and ultimately still confirmed that 

limb interdependence was probably a factor. In addition, the physiological 

energy cost is reported to be higher in an amputated limb using a prosthesis 

compared to a biological limb (Czerniecki & Gitter 1996). A bi-lateral 

amputee has lost two limbs, which would suggest an increased metabolic 

cost over that of a uni-lateral amputee as physiological demand is greater 

with the level of amputation to the overall body (Lewis et al. 1996). To date, 

only one study exists in the literature that has compared both amputee types 

and this study did not evaluate metabolic differences between amputee 

types. However, there are opposing arguments that a bi-lateral lower-limb 
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amputee has a lower (Bruggemann et al. 2008) or higher (Weyand et al. 

2009) overall metabolic cost than the able-bodied equivalent. The key 

difference in these studies is the type of control group the amputee is 

compared against. Either way, due to the lack of published knowledge, an 

evaluation of the uni-lateral to explain the possible ability of a bi-lateral would 

seem to be inappropriate.  

 

Aside from using physiological or biomechanical characteristics to determine 

the differences between amputee types, a mechanical approach has also 

been proposed (Noroozi et al. 2013; Noroozi et al. 2012). The Noroozi 

studies proposed that the response of a LLP could be syncronised with the 

response of a runner’s body mass and step frequency when running to 

enhance vertical displacement. This effect was defined as the ‘dynamic 

elastic response timed impulse to syncronisation (DERTIS). The Noroozi  

studies demonstrated through simulations that by syncronising the ground 

impact, athletes mass and the subsequent response of ESR’s, the vertical 

displacement could be enhanced in the same way that a gymnast gains 

height when bouncing on a trampoline. Alternatively, by not syncronising 

these elements (or ‘damping’ them by bouncing out of phase), the vertical 

displacement would be decreased. The Noroozi studies postulated that a bi-

lateral amputee using ESRP’s with perfect limb to limb symmetry could 

ultimately be performance enhanced under certain conditions by obtaining 

benefits that a uni-lateral amputee could not equally receive. This effect 

would achieve an increase in vertical displacement which would 

hypothetically increase the flight time of a runner. This flight time aspect with 

amputee runners has been referred to as a ‘float phase’ (Umberto et al. 

2006). It has been suggested that with lower-limb amputee running that step 

frequency is primarily used to increase speed (Enoka et al. 1982). However, 

more recent research has instead claimed that stride length is of greater 

value (Sanderson & Martin 1996). Chapter 7 of this thesis illustrated the 

importance of lower step counts by race winners. If the DERTIS effect were 

possible, this would provide an argument for separating the two amputee 

types from each other in competition. However, the limitations are that the 
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effect has not yet attempted to be replicated using human participation. In 

addition, it was conceded that any changing of boundary conditions (such as 

those caused by human gait) could reduce the effect.  

 

Whilst a case could already be established to separate the two types of 

amputees based on reported differences in terms of their physiological and 

kinematic differences, this chapter attempted to do so when adopting 

Chapter 5 recommendations that the inclusion of prosthetics technology 

should centre on the direct influence of that technology itself. It also focused 

on maintaining symmetry of functionality between lower-limbs in response to 

the use of energy storage and return (ESR) technology. The impact of 

changing the technology itself to create varying degrees of lower-limb 

functional symmetry was used as a basis of this investigation. 

 

8.2 OBJECTIVES 

 

This chapter has the following research objectives: 

 

a. To distinguish any differences between symmetrical and asymmetrical 

sprung lower-limbs in response to direct changes in ESR technology when 

subjected to cyclic impacts under controlled conditions. 

b. To propose if bi-lateral and uni-lateral amputees should be separated 

when competing in running races at the Paralympic Games due to key 

differences created by changes in lower-limb prosthetic function. 
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8.3 METHODS 

 

Whilst running would be the most context specific method for evaluation, 

testing would require multiple cameras and large assessment areas. 

Alternatively, treadmills could be used to achieve a context specific activity 

but they do not allow for an instantaneous change in running speed should a 

participant wish or safely need to. It is felt that safety is paramount when 

encouraging motion using intentionally imbalanced lower-limbs. However, to 

compare the effect of ESR technology, the selected method would only need 

to simulate ground limb to limb impacts as opposed to full gait cycles. As a 

result, this experiment attempted to create cyclic limb to limb impacts within a 

constrained environment that was easily controllable by participants.  

A suitable solution in generating limb-to-limb impacts was proposed by 

performing jogging on the spot. The jog on the spot tests (JOST) were 

intended to replicate an alternate single lower-limb impact coupled with the 

ability to easily track the resultant changes in limb response. This was not 

proposed as a means to replicate running but moreso to replicate cyclic 

ground based impacts. Jogging on the spot has been undertaken within a 

controlled and confined environment and has been used for limb to limb 

assessment for patients with likely lower-limb asymmetry due to hip 

replacement (Bassey et al. 1997) or more typically as a warm up strategy 

prior to other activity (Sharma et al. 2004). A participant jogging on the spot 

will still produce exchanges between potential and kinetic energy as they 

launch from the ground, achieve upward thrust, and reach the highest point, 

before then falling to earth.  

 

Unlike running, because leg sweep angle and a directed forward thrust do 

not take place, any change in the participants’ height would be predominantly 

vertical. The limitations of such technique is that the level of footroll seen in 

running gait (Mero 1992) are likely to be smaller as forward motion is not 

undertaken. When running, the exact path of the centre of mass of a body 
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has been proposed to be a combination of leg stiffness and sweep angle and 

landing velocity (McGowan et al. 2012). By performing a test and assessing 

a fixed spot, the vertical displacement and speed of this is as a result of the 

footwear’s mechanical properties and minimises the impact of the 

biomechanics of the leg swing and sweep. This test method is assuming a 

response to a ground impact based upon the spring like nature of a lower-

limb. The limitation by the participant remaining on the spot means does not 

account therefore for any impact of input such as power generation caused 

by the foot roll of the foot. However, since energy generation in sprint 

runners has been credited as being derived from the ankle and the knee 

(Mero 1992) this test still maintains that relationship. 

 

The outcome measure in this study was determined as a person’s change in 

vertical displacement and their velocity of fixed points. This change is 

typically caused by the transfer of potential energy to kinetic energy of a 

moving body (Hibbeler 1997, p.172) driven by the legs (Mero 1992). Vertical 

displacement in itself is considered important in running as this provides a 

‘float phase’ - i.e. when neither feet are touching the ground (Umberto et al. 

2006). A float phase ultimately contributes to the distance travelled between 

steps when running.  Along with displacement, the speed of a fixed point 

indicated its movement behaviour. A change in speed of a limb could 

indicate a compensatory effect or the benefits of impulse synchronisation, 

unique to using ESRP’s when running as proposed by Noroozi et al. (2012). 

 

8.3.1 The JOST Protocol 

The JOST test was performed by a participant jogging on the spot. As a 

result, this involves an impact applied to each alternate limb independently 

and forms the basis of any limb to limb comparison.  
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A sole participant was used for this experiment as a case study. A unique 

approach is proposed by using an able-bodied participant who is wearing 

energy storage and return footwear to simulate ESR prostheses. A non-

disabled participant allowed for a standardisation of impact load and natural 

limb-limb to performance whilst then creating the opportunity to adjust either 

legs mechanical properties. This would not be possible with participants who 

are disabled and therefore maintained the focus on the impact of the 

technology itself – as per Chapter 6’s findings. Whilst it could be argued that 

using athletes with lower-limb amputations as test subjects would be more 

representative of the end user, this experiment places its emphasis on the 

performance of the technology and the robustness of the JOST test rather 

than the specific nuances of a amputee test population. As a result, at this 

preliminary stage, amputees were not needed. 

 

The case study participant was a current able-bodied amateur athlete with a 

history of competitive running participation in events ranging from 100m up to 

the marathon distances. The participant used energy storage and return 

footwear (ESRF) which would allow the simulation of relative changes in 

lower-limb performance and symmetry. The footwear (Tramp-it BV, Den 

Haag, The Netherlands) is shown in figure 29. 

 

 

   

 

 

 

Figure 29. Energy Return Footwear 
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The blade of the ESRF is manufactured from a toughened steel material. 

The boots are worn by securing several ratchets and straps along with laces. 

These heavily restrict (but likely do not fully remove) the ankles impact.  

 

Because only absolute marker response and repeatability of each limb was 

being checked, any limb to limb length discrepancy was not deemed as a 

primary concern for these trials. Conventional athletes with a uni-lateral 

amputation would also have a limb length discrepancy as the amount of 

compression an energy return prosthesis would be subjected to, would differ 

at various running speeds throughout their race. This could also be 

compounded if an amputated limbs stump would be subjected to ‘pistoning’ 

(or undesirable vertical movement) inside a prosthesis socket. As a result, 

exact lower-limb length symmetry at all times is not achievable if using ESR 

technology.  

 

The JOST was performed by a participant initially standing on both feet. 

When the test started, the participant began to jog on the spot, landing each 

time on alternate legs. Chapter 7 indicated that step timing was reasonably 

constant during elite running with an amputation. As a result, the JOST were 

undertaken at a fixed footfall frequency to isolate any vertical displacement 

change. As such, the footfall frequency was defined through use of a 

metronome for the participant to follow as a guide. The metronome used an 

audible alarm to signify a constant step frequency of 3Hz. This frequency is 

less than those recorded in high speed sprinting shown in Chapter 7 to be 4-

5Hz but pre experiment trials determined that this frequency was the fastest 

that could be safely undertaken by the participant. The test duration was 10 

seconds. The floor was marked using tape to provide guidance lines for the 

participant to ensure they maintained a repeatable landing position to help 

minimise horizontal drift. This is shown in figure 30. 
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Fig 30: JOST Test Experiment 

 

Five different asymmetrical limb to limb conditions were assessed using the 

ESRF. This was achieved by adjusting the stiffness settings of each ESRF 

by altering the blade length. These five conditions are shown in table 14. 

 

Table 14. Energy return footwear settings 

Condition Left Shoe 

Setting 

Right 

Shoe 

Setting 

1 Long Long 

2 Short Long 

3 Short  Short 

4 Long Short 

5 Long 

(reversed) 

Long 

(reversed) 
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Whilst bare feet could have been used to identify any natural asymmetry in 

the participant’s limbs, Condition 5 was instead used to account for any such 

issues by switching the energy return springs over between the shoes.  

 

Each symmetry condition was tested individually and cycled sequentially with 

a 5 minute seated recovery rest period to allow for the shoes to be 

mechanically adjusted and to minimise the participant to unconsciously 

compensate for each condition. In total, 5 trials of each symmetry condition 

were undertaken meaning for the purposes of this study, 25 tests in total 

were completed.  

 

The tests were filmed using a single camera recording at 210Hz. Lower-limb 

vertical displacement and speed was recorded for analysis. The metrics were 

captured through the use of 8 light reflective markers. These were placed on 

the tip of the ESRF blade, top of the ESRF boot, mid shin, and knee on both 

legs. Light reflective markers have been used when assessing the motion of 

athletes with a lower-limb amputation (Bruggemann et al. 2008). The vertical 

displacement and speed of the knee markers were used as the key 

reference to track lower-limb behaviour as each test is performed. The other 

markers acted as back ups on any runs that suffered from marker tracking 

loss. A centre of mass marker was initially considered for use but was later 

rejected as pilot testing revealed that the participant’s arms would cross in 

front of their chest during the trials thereby obscuring the markers tracking 

path. This problem increased with higher intensity efforts. The head and neck 

region was also proven to chaotically move in a manner. It is conceded that 

the knee markers, whilst not a fixed point of reference, would still allow for 

lower-limb comparison. 

 

The footage was calibrated and analysed using Quintic motion analysis 

software (Quintic Consultancy, Coventry, UK). The data was then smoothed 

using Butterworth filters within the software. 
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8.4 RESULTS 

 

The mean step frequency and displacement results of the JOST are shown in 

Table 14. The knee marker data is contained in appendices B.1. The 

Coefficient of Variation is used as a measure of absolute test consistency 

and is calculated as Standard Deviation divided by the mean and multiplied 

by 100. This provides the measure as a percentage. 

 

Table 15. JOST Test Repeatability 

Condition Mean Step 

Frequency 

(Hz) 

CV 

(%) 

Leg to 

leg knee 

marker 

diff. (m) 

Dominant limb 

by 

displacement 

1 3.00 1.3 0.00 Symmetrical 

2 3.00 1.2 0.04 Left 

3  3.00 0.7 0.01 Marginal 

asymmetry 

4 3.01 1.4 0.05 Right 

5  3.01 1.1 0.01 Marginal 

asymmetry 

 

It can be seen in table 15 that all the tests were at or extremely close to the 

3Hz target with very low coefficient of variations demonstrating high 

repeatability of the trials and a sustainable effort despite any levels of 

imposed asymmetry. There are also clear differences between symmetrical 

and asymmetrical conditions with a 40-50mm difference in obtained knee 

marker height symmetry. Whilst the participant was non-disabled, they were 

still able to produce a significant limb to limb asymmetry. 
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In addition to the displacement, the mean velocity of the left and right limbs 

being raised and lowered whilst undertaking the JOST is shown in table 15. 

The low to high phase is the direct response to the ground impact of the 

mechanical properties of the energy return technology blade whereas the 

high to low is under the control of the participant to return the limb to the 

point of ground impact. The Symmetry Index (SI) was used to define the 

level of discrepancy from limb to lower-limb as described by Barber et al. 

(1990) as: Non dominant leg/dominant leg x100. 

 

The units for the movement of markers were measured as metres per 

second. 

 

Table 16. JOST Test Symmetry 

 Left Right Mean of 

Up/down Knee 

Speed 

Condition Mean 

Velocity 

– High 

to low 

(m/s) 

Mean 

Velocity 

– Low to 

high 

(m/s) 

Mean 

Velocity 

– High 

to low 

(m/s) 

Mean 

Velocity 

– Low to 

High 

(m/s) 

Left Right Symmetry 

Index (%) 

1 0.51 0.30 0.37 0.40 0.41 0.39 95 

2  0.48 0.27 0.46 0.45 0.38 0.46 82 

3 0.48 0.40 0.47 0.42 0.44 0.45 99 

4  0.50 0.45 0.37 0.31 0.48 0.34 72 

5 0.48 0.26 0.41 0.26 0.37 0.34 91 
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Conditions 1, 3 and 5 were intended to be symmetrical and the overall 

means speeds does show a relative symmetry between conditions 1 and 3. 

Condition 5 showed a slightly wider asymmetry. Condition 5 should ideally 

also be the same as condition 1. Its only difference is that the blades have 

been switched over between the shoes. It did not produce the same results, 

thereby suggesting that a natural asymmetry between the participant’s limbs 

exists or that the ESRF blades are marginally different in their properties.  

 

The greatest range between the 5 conditions in knee marker speed is when 

the limb moves from the lowest point to its highest point. The knee speed is 

moving faster when the leg is returning to the ground. The only exception to 

this was the right leg of condition 1 which was nearly the same speed 

between raising and lowering the limb.  

 

The typical differences in marker tracking seen between conditions 1-5 are 

shown graphically in figure 31. 
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Figure 31. JOST1 Test 1-5 (left to right) 

The path traces of each marker are shown in figure 31 with a different colour. 

It is seen by the markers used in these tests that in asymmetrical conditions 

the marker stroke increased the higher up the leg it is. The symmetrical 

condition has a much more even stroke range of marker through the whole 

lower-limb. This shows that some compensation in movement (not clearly 

visible in this frontal view) likely took place. The only way the variable marker 

stroke in the asymmetrical could have had a longer stroke at the knee (but 

less at the foot) would be by changing the leg effective length possibly by 

utilising the joints such as the ankle.  

 

The marker traces at the knee in the examples in figure 31 demonstrate that 

the knee follows a slightly arc trajectory. 

1 2 

3 4 

5 
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8.5 DISCUSSION 

 

By imposing a fixed step frequency, it was assumed that the participant 

would either not be able to maintain 3Hz or that they would adjust for any 

asymmetry to re-establish symmetry between the 2 lower-limbs. It can be 

seen in the results that the step rate was both maintained successfully and 

that the participant could cope with the level of asymmetry in any of the 

assessed conditions. However, to do so, the participant had to vary the 

speed of the limb stroke to account for changes in the upstroke behaviour. In 

the case of the symmetrical lower-limb conditions the limb to limb speed was 

symmetrical between both legs. It would be recommended to assess a uni-

lateral amputee to see if they also vary their limb downstroke if step 

frequency is at a constant. 

 

To counter any limb to limb difference in performance, the participant could 

have theoretically changed the footwear’s response by pivoting at the ankle 

joint to change the blade length and thus its stiffness. This may still have 

occurred to some degree but this test indicated that the participant was still 

unable to fully counter the basic asymmetry of conditions 2 and 4. The fact 

that an asymmetrical condition required an adjustment of limb path speed 

(that the symmetrical conditions did not) suggests a key functional difference 

between such types of arrangement. An asymmetrical lower-limb 

arrangement would require extra energy on the part of the athlete to be 

expended that the symmetrical case would not have to in the form of 

acceleration of the lower-limb. This does not prove that one condition is 

superior to the other. It does imply that they can be shown to be clearly 

functionally different and under different conditions from each other. 

 

It is also noted that the overall mean speed of symmetrical conditions 1 and 

3 demonstrated a relative symmetry yet condition 5 did not. Condition 5 is 

the same as condition 1 but with the blades switched over. It is proposed that 
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this arrangement exaggerated (or that conditions 1 and 3 shrouded this to a 

lesser extent) the natural limb to limb asymmetry of the participant. However, 

bearing in mind that the marker displacement and speed results of conditions 

2 and 4 were virtually inverse of each other, suggests that the participant’s 

natural imbalance was still very small. 

 

The provision of symmetry indices data from these trials is useful as, like 

Chapter 7, provides a case that a symmetry threshold could be established 

between types of amputees as an objective means to separate them. A 

robust sample would be needed to provide an exact point of this threshold as 

well as the exact criteria to be compared using the symmetry indices.  

 

This experiment did not investigate the impact of fatigue to lower-limb 

symmetry. This may well be a factor in longer length trials. It would be 

interesting to investigate the fatigue behaviour between lower-limbs when 

limb to limb ground impact testing is performed. This would be useful when 

accounting for the longer duration events such as the 400m.  

 

8.6 CONCLUSIONS 

 

This chapter sought to ascertain if there were any differences between 

symmetrical and asymmetrical sprung lower-limbs in response to direct 

changes in ESR technology when subjected to cyclic impacts. In this case 

study, it was shown that the human body could not fully filter out such 

changes and attempted to adjust for any discrepancies via unconscious 

adjustment of lower-limb speed. It is proposed that any acceleration of a 

lower-limb that an asymmetrical user has to undertake is costing them 

energy that a bi-lateral candidate does not. It is assumed that any energy 

cost within a racing environment to an athlete would cause them to fatigue 

before others or would provide penalties to their effective running gait. Either 
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way, it is not known if this change is advantageous or disadvantageous but 

does highlight a key functional discrepancy between such cases. As a result, 

it is proposed that it is not appropriate for locomotively different lower-limb 

persons to compete alongside each other. 

 

8.7 LIMITATIONS 

 

By using a single candidate, the findings in this study cannot be unilaterally 

assumed to take place in all T44/T43 major competitions. However, it does 

now provide a case to investigate a larger amputee based sample. 

 

Motion capture marker placement was suitable to detect lower-limb 

differences in this study but should be expanded to include multiple fixed 

points of reference as well as both relative and absolute marker information. 

Such data was not available using the technology in this study. 
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CHAPTER 9: THE NATURE OF ENERGY 

STORAGE & RETURN PROSTHESES   
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9.1 INTRODUCTION 

 

The literature review in Chapter 3 remarked that an energy return prosthesis 

was a simple spring (Nolan 2008) and passive in nature. Chapter 6’s Delphi 

study recommended that a limb to limb comparison has been agreed by the 

stakeholders as a preferred regulatory guideline. To do this, the nature of the 

ESRP was investigated to see what its behavior is when in actual use.  

 

An ESRP should be designed with the requirements of high speed running in 

mind. When isolating the limb itself when running, one of its key performance 

indicators has been proposed as limb stiffness (Nolan 2008; Bret et al. 

2002). Whilst stiffness is important as a starting point for prosthesis 

prescription (Lechler & Lilja 2008; Personal communication, Blatchford & 

Sons, January 2007), it is not a destination in itself. A patient’s anecdotal 

feedback and qualitative outcome measures are still used extensively to 

determine prescription (Laferrier & Gailey 2010). Ultimately, high stiffness is 

integral to sprint running performance but increasing limb stiffness 

considerably may be made at the cost of energy efficiency (Nolan 2008). 

 

With a non-disabled participant, it has been reported that stiffness of the 

biological lower-limb typically remains the same upto moderate running 

speeds due to the leg spring length changing to compensate (Brughelli & 

Cronin 2008) and has been shown to increase with higher speeds 

(McGowan et al. 2012; McMahon & Cheng 1990). However, in the case of 

lower-limb sprinters with a below-knee amputation, it is assumed that the 

disabled runner cannot modulate lower-limb mechanical properties of their 

prosthesis due to its passive nature and the lack of an ankle and/or knee 

(Nolan 2008). If an energy return prosthesis is inherently a spring of fixed 

mechanical properties, it will have a uniform stiffness (Nolan 2008) and could 

be calculated using a force-displacement curve (Hafner et al. 2002). 

However, there has been a reported variability in the lower-limb stiffness of 
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amputee prostheses when running (McGowan et al. 2012). If a uniform 

stiffness was evident, then prescription of ESRP technology could be made 

based upon the athletes mass and expected bodyweight impact of their 

chosen event. This would then indicate the required stiffness of the 

prosthesis required and make regulation of LLP a non invasive, low exertion 

practice. It was investigated whether this is the case. Some of this chapters 

content has seen peer review via journal publication (Dyer et al. 2013) and is 

contained within Appendices F.  

 

9.2 OBJECTIVES 

 

This chapter investigated the following research objectives: 

 

a. To investigate the nature of ESR technology behavior at the point of 

ground contact. 

 

b. To investigate the ESR technology stiffness characteristics. 

 
c. To propose whether prescription of ESR technology could be made 

using non-invasive means by assuming a linear-like behavior of the 

prosthesis spring. 

 

9.3 METHODS 

 

Objective a. was addressed by performing run tests using ESR technology 

when running at the highest possible speed. This method provides specific 

assessment for the technology as it would be used. 
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Objective b. assessed the linearity behavior of ESRP’s when loaded with 

increasing force.  

 

9.3.1 Energy Return Technology Run Tests 

The behaviour of ESR technology was investigated by undertaking a series 

of steady state running test trials. These were performed to simulate the 

ground contact behaviour of energy return technology when performing 

context specific activity.  

 

A non- disabled participant performed the trials. The participant was a 

current amateur athlete with a history of competitive running participation in 

events ranging from 100m upto the marathon distance. They performed a 

self-selected warm up prior to the tests and gave written consent for this 

experiment. 

 

For the run tests, the same participant and energy return footwear in Chapter 

8’s investigations were used. Use of this footwear and an able bodied 

participant was considered appropriate as it is adequate to demonstrate 

energy storage and return behaviour and that use of an amputee would not 

add value at this stage. Two different stiffness settings of the footwear were 

used to provide variety to the technology’s response. This was achieved by a 

fixed adjustment of the blade length of each shoe. The trials were both run 

under a self-perceived speed by the participant which was requested to be 

as fast as they could feasibly achieve.  In total, 7 trials of each condition were 

undertaken meaning for the purposes of this study, 14 runs in total were 

completed. 

 

The run tests were conducted within an indoor, dry environment. The running 

area was segregated using tape into 3 distinct zones. There was an initial 15 
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metre zone used for the participant to accelerate from rest, a 4 metre zone 

whereby the participant was asked to ensure their best maximal (but steady 

state) speed, and finally another 15 metre zone used for the participant to 

safely slow down. These distances were defined as the maximum available 

within the test location. An indoor assessment took place as this reduced the 

impact of external factors such as changing wind strength and direction 

which would impede running speed. A treadmill could have been used but it 

was felt this did not allow for an instantaneous controllable reduction in 

speed that was felt necessary for someone using the technology. 

 

The running order of each trial was to perform 7 fast of the less stiff shoe 

setting and then 7 fast of the shoes stiffer setting. Whilst the stiffer blade 

setting of the shoe was achieved by shortening the blade, this actually 

changed the geometry of the blade and increased the shoes total height by 

55mm when unloaded. The 7 trials of the less stiff blade were followed by the 

7 trials of the stiffer setting. A sequential running order was used. 

 

The trials were filmed using a single video camera positioned opposite the 

steady state run zone, 20 metres away and were filmed at a frequency of 

210Hz. The footage was analysed using the Quintic software as per Chapter 

8. 

 

The information of interest in this trial was the steady state speed achieved 

(to ensure test repeatability) the stride length and a qualitative visual 

examination of the shoe blade behaviour. The visual examination of the trials 

was undertaken by reviewing the video footage.  
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9.3.2 Prostheses Linearity Assessment 

A case study was conducted to investigate the linearity and resultant 

stiffness of energy return prosthesis. An ‘Elite Blade’ composite energy 

return foot prosthesis (Chas A Blatchford & Sons Ltd, Basingstoke, UK) is 

used. This ESRP is shown in figure 32. This prosthesis is designed to 

undertake a range of activity including low speed running for a user having a 

mass of circa 55Kg.  

 

  

   

 

 

 

Figure 32. Elite Blade prosthesis 

 

The prosthesis is compressed using a static load. A dynamic method using 

cycling loading machines could also have been used but since the effect due 

to changing contact point was the main aim of the study, a less dynamic 

method was required. A Testometric strength testing machine was used for 

this experiment (Testometric Company Ltd, Lancashire, UK). The test 

prosthesis is shown in figure 32 and the test machine set up is shown in 

figure 33. 
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Figure 33. Prosthetic Blade Loading 

 

In lieu of the fact that no formalised test exists, two different methods of 

prosthesis loading were undertaken in this experiment. A schematic of the 

two conditions is shown in figure 34. 

 

 

 

 

 

 

 

 

Figure 34. Testometric Loading Conditions for a) SDE and b) FDE method 

 

a) A 28mm slide of the distal end before becoming fixed at the distal end 

(SDE) 

b) Fixed at the distal end (FDE) 
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Condition ‘a’ demonstrates a compression of the prosthesis but the distal end 

is initially free to move under load. It does so for a fixed distance of 28mm 

after which it then locks into position and continues to be loaded. Condition 

‘b’ demonstrates a prosthesis compressive load method whereby both the 

shank and the distal end are fixed. As such, this trial simulates a controlled 

change in length by allowing for the prosthesis to bend under load.  

 

The prosthesis distal end of both conditions was fixed by locating against a 

ledge within an acetyl block as the load is applied. Ten loadings of each 

condition to a maximum load of 2000N were conducted. 2000N is used as 

this is approximately four times the bodyweight of the intended user for this 

prosthesis specification. Such a bodyweight impact has been suggested as 

being consummate of high speed running (Mero et al. 1992). The mean of 

each loading was recorded and the Coefficient of Variation (CV) is used to 

ensure statistical repeatability and stability of the process. The CV is defined 

as Standard Deviation divided by the mean then multiplied by 100 to reflect 

this ratio as a percentage. The load application rate of each loading was 

50mm per minute. Mechanical stiffness was calculated as load (N) divided by 

deflection (mm). The stiffness’s of both the peak loading and the average of 

the full load cycle was recorded for later comparison. 

 

9.4 RESULTS 

 

9.4.1 Run Tests 

The summarized results showing the conditions of the trials are presented in 

table 17. The raw data is contained in Appendices D.1. 
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Table 17. Condition 1&2 Summary 

 

The Coefficient of Variation scores are of a low percentage especially 

considering the subjective nature of the running speeds by the participant. As 

a frame of reference, the typical step to step timing was ~0.3 seconds which 

is slower than the race specific typical steps of 0.2 seconds indicated in 

chapter 7. 

 

The behaviour of the ESRF technology at the point of ground contact is 

shown in figure 35. Figure 35 demonstrates the ground contact point shifting 

due to running gait. In both images, point 1 indicates the initial ground 

contact point. The arrow in 35(a) shows the shift from heel strike to mid 

stance. The arrow demonstrates the mid stance distal end of the blade 

upward deflection. Figure 35(b) shows the ground point of contact shift from 

heel strike (1) to toe off (2). The arrow demonstrates the displacement of the 

boots ankle point from initial contact to toe off.  
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Figure 35. Heel strike to mid stance (a) & heel strike to toe off (b) 

 

The blade contacted the ground roughly midfoot of the blade which then 

moved marginally to the rearfoot due to the blade bending. However, once 

mid stance was achieved, the point of contact begins to shift forwards until 

take-off. This meant that the effective spring length of the blade at the 

beginning of the gait cycle was quite short but then progressively lengthened 

towards toe-off. This demonstrates a non-linear response in stiffness from a 

blade of this nature when under compression. Ultimately the blades stiffness 

will reduce as the ground contact phase continues and potential energy is 

converted to kinetic energy through vertical movement of the athlete.  

 

9.4.2 Prostheses Linearity Assessment 

The results of the FDE and SDE loading conditions are shown in table 18. 

The graphs of the tests are contained in appendices C.2. 
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Table 18. Loading Method Results 

 

 

The low coefficient of variation suggested extremely high levels of 

repeatability of the prosthesis behaviour using both the FDE and SDE 

methods. The SDE method had a CV of 0.1%. The SDE method had a CV of 

1.7%. The obtained stiffness from the two methods does highlight a 

distinctive difference in measured performance. Since the deflection 

measured by the assessment machine will be relative, it is obvious to see a 

difference in the overall mean. However, there is also a difference when 

measuring the last 450N loading sample too. 

 

The typical load/deflection plots of both the FDE and SDE methods can be 

seen in figure 36.  
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Figure 36. FDE & SDE Load/Deflection Behaviour 

  

It was seen that allowing a slide of the distal end did create a significantly 

different obtained stiffness. The FDE method had a higher overall mean 

stiffness. The SDE method can be seen to be initially less stiff as the 

changing spring length is altering the load cycles boundary conditions and 

thus its mechanical properties. 

 

Most importantly, from these plots it can also be seen that the prosthesis 

exhibited initial non-linear behaviour irrespective of which loading methods 

were used. The SDE method does show a decrease in stiffness caused by 

the controlled distal end slippage which will be due to the relative 

measurement of the machine. However, once engagement of the distal end 

takes place, a reduced, progressive non-linearity is witnessed and a near 

parallel trace of the two methods takes place. However, whilst it appears 

identical, the SDE and FDE mechanical stiffness of the upper 450N final load 

cycle of the graph trace still had a slight difference which was shown in table 

18 to be 7N/mm. 
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9.5 DISCUSSION 

 

The first research objective sought to establish the stiffness behavior of 

ESRP when subjected to running. The performed runs tests were undertaken 

under repeatable conditions. The runs produced a step frequency of around 

3Hz which is less than the reported 5Hz witnessed in able-bodied 100m 

sprinting (Mero et al. 1992). However, such a comparable effort would have 

meant excessive fatigue on the part of the participant coupled with safety 

concerns using the shoe technology at such speed and the larger 

acceleration and de-acceleration zones required. 

 

The run tests produced a fundamental change in boundary conditions due to 

deflection and stiffness variation of the blade due to foot roll through. This 

was due to the amount of clockwise rotation the blade was subjected to 

during the gait cycle. Further investigation is required to ascertain the 

magnitude of this foot roll in amputee elite athletes. However, qualitative 

variation in the ground contact position of bi-lateral amputee Oscar Pistorius 

during competitive racing is shown in figure 37. 
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Figure 37. Oscar Pistorius Prosthesis Ground Contact Position Change. 

 

Prosthesis foot roll is going to alter the blade length and therefore its stiffness 

response. This would also contribute to the second objective as this 

demonstrates a likely non-linearity of the technology when running. 

 

The second objective was addressed with the static load tests. There was a 

difference in performance of the prosthesis depending on its length or 

contact point. Non-linearity was witnessed in the early stages of loading. It is 

proposed that this was due to the tapered profile of the ‘foot’ region of 

composite material. The magnitude and proportion of such non-linearity 

would likely be small and unique to each design but it should be noted that 

such a characteristic exists nonetheless. This supports previous claims that 

variable stiffness parameters could be important for running prostheses 

design in the future (Farley & Gonzalez 1996). 

 

This study investigated whether the prediction of ESR technology stiffness 

was possible when using static load techniques. With the SDE method, the 

obtained bending deflection would be inaccurate due to the constantly 

shortening spring length of the ‘toes’ arching through. The 28mm slippage of 
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the SDE method created a 12% perceived loss in prosthetic stiffness. This 

was caused by a combination of the change in spring length and the relative 

measurement of compressed deflection of the machine. Such a 

characteristic makes the prediction of ESR stiffness (by then extending the 

linear portion) increasingly inaccurate and therefore unfair to assess or 

regulate the technologies response. From a clinical point of view, not 

ensuring the ground contact point and the point statically loaded are the 

same, could mean that at best, significant tuning of an athlete’s prosthesis 

geometry would be required and at worst that an incorrect prosthesis would 

be fitted. Fixing at the distal end would underestimate the ESRP mechanical 

stiffness. If such static loading was used to prescribe or evaluate ESRP 

technology in the future, the lower portions of such graph traces should be 

disregarded and the linear-like section of a load as close to those expected 

in the individual’s event should be selected.  When this data is combined with 

the run tests change in the ground contact boundary conditions these 

experiments have highlighted that any assessment strategy of ESRP’s 

should use more dynamic loading methods to compare lower-limbs. 

 

9.6 CONCLUSION 

 

ESRP technology was investigated to ascertain whether it was, as per this 

thesis literature review, a simple spring with linear qualities. Run tests 

demonstrated that the foot is subjected to constant boundary condition 

changes at the point of ground contact. This will change the spring length 

and therefore its effective stiffness. 

 

Compression load tests of ESRP demonstrated that it can also possess non-

linear behavior even when assuming the point of contact does not change. If 

the point of contact does change, this will further change its stiffness 

qualities. It is recommended that standardisation of such tests is also 
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recommended as fixing at the distal end is the most accurate but likely 

underestimates the ESRP stiffness when in use. 

 

As a result, prescription of such technology assuming linear qualities cannot 

be recommended. A more dynamic method of direct limb to limb assessment 

is preferred. 
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CHAPTER 10: A PROPOSAL FOR AN 

ASSESSMENT STRATEGY OF LOWER-LIMB 

RUNNING PROSTHESIS - A CASE STUDY 

  



  182 
 

10.1 INTRODUCTION 

 

Chapter 6 proposed guidelines to regulate the performance of a running 

prosthesis. It encouraged prostheses to be judged as a form of sports 

equipment. However, it also was shown in Chapter 9 that such technology 

has a non-linear stiffness. As a result, it was recommended that the 

prosthesis should be attached to its user and assessed dynamically when 

judging its performance. This aside, Chapter 6 also recommended using 

techniques that would provide direct limb to limb comparison. With this in 

mind, this chapter proposed an assessment method for the regulation of 

lower-limb running prostheses. This chapters study has seen peer review via 

journal publication (Dyer et al. 2012) and is contained within Appendices F. 

 

10.2 OBJECTIVES 

 

The objectives for the proposed assessment technique are: 

a. To investigate the repeatability of a functional lower-limb assessment. 

b. To investigate the symmetry of a functional lower-limb assessment. 

c. To recommend approaches to further develop the proposed 

assessment strategy in the future. 

 

10.3 METHODS 

 

A functional method which has been shown to have metrics that correlate 

with running performance is proposed as a less demanding assessment 

method than running.  This chapter investigates the feasibility of using jump 

testing as a need to regulate lower-limb running prosthesis (Chapter 5 & 6) 

by investigating the qualities identified in this thesis as stiffness (Chapter 2 & 
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9), limb symmetry (Chapter 2 & 7) and energy return (Chapters 3 & 6). Jump 

testing is used as the proposed method to assess uni-lateral amputees. 

Whilst run testing has been performed by amputees on treadmills, jump tests 

have been correlated to sprint performance (Holm et al. 2008), can provide 

independent leg assessment (Strike & Taylor 2004) and provide a ‘float 

phase’ i.e. with neither feet touching the ground, as per running (Umberto et 

al. 2006). 

 

The limitations of any proposed assessment strategy was that due to the 

non-linear stiffness of a lower-limb, Chapter 9 recommended a method which 

was as context specific as possible. However, it is not realistic to expect an 

athlete to perform a maximal, race pace effort of an event like the 100m, 

200m or 400m reliably. In addition, this would not be realistic as only one run 

could be feasibly realistic yet statistical robustness would ideally demand 

several runs. Therefore, a jump test was proposed as a dynamic method 

which could produce race specific ground impacts which would allow the 

lower-limb to respond accordingly. In addition, aspects such as test induced 

limb fatigue were alluded to in Chapter’s 9 and 10 but this had also not been 

investigated yet in this thesis.  

 

10.3.1 Drop Jumping  

To potentially obtain the ability to measure the ability to monitor the limb to 

limb symmetry of the lower limbs of the amputee runner, a uni-lateral drop 

jump is proposed as a solution. The test is specified as a uni-lateral (rather 

than a bi-lateral) drop jump as this will allow the left and right legs to be 

separately evaluated and then compared when subjected to pre load and 

propulsive forces (Stalbom et al. 2007). The load upon the limb is provided 

by a freefall phase of the drop rather than the athlete’s efforts. This 

minimises the ability to ‘cheat’ the test. 
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The bi-lateral or uni-lateral drop jump test is typically undertaken by having a 

participant stand on a platform of a given height above the ground. Once 

commenced, the participant jumps down to the floor landing on either one or 

(more typically) two feet and then immediately executes a vertical or 

horizontal jump on the same foot/feet (depending on the technique method 

chosen). The achieved displacement is then measured as the magnitude of 

muscular power. The height of the jump creates the running events expected 

magnitude of ground impact (thereby generating context specific lower-limb 

stiffness response). The landing phase could be used to calculate lower-limb 

stiffness. The launch phase can then be used to form the basis of energy 

generation limb to limb comparison. The advantage of this technique is that it 

uses a manipulation of drop height and the person’s weight to provide a 

ground impact to create the lower-limbs appropriate stiffness response, as 

opposed to the athlete’s effort. Alternatively, by standardising the 

participant’s weight, drop height and impact of gravity means, that the 

potential energy can be quantified and standardised (in Joules) using this 

technique. An additional advantage is that the secondary, vertical launch 

phase can assess the energy return of the overall limb although it was 

conceded that due to the passive nature of the current acceptable level of 

technology, this may not be currently relevant. 

 

Drop jumps are typically used as a form of dynamic training to improve 

jumping performance (Bobbert et al. 1987a), as a form of strength training 

(Wang 2008), plyometric training which involves eccentric muscular 

contraction (Baca 1999), or for sprint training to improve the horizontal 

impulse (Holm et al. 2008). The jumping phase is an indicator of lower-limb 

power. It has additionally been used to ascertain the stiffness in the limbs 

upon landing (Devita & Skelly 1992).  Lower-limb stiffness has been 

calculated through application of the spring mass model (Wang 2008; 

Cavagna 1964) and with a ratio of peak vertical force and maximum change 

in length between two fixed points (McGowan et al. 2012) or using a sine 

wave method (Morin et al. 2005). The drop jump is used either as a training 

method to improve the physical ability of jumping or is used as a diagnostic 
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assessment to measure jumping strength. In this case, a uni-lateral drop 

jump would allow the performance of a prosthesis to be compared and 

limited by the naturally generated performance of the athlete’s biological 

limb. 

 

The impacts of drop height used for this method (and its effects) have also 

been investigated. Several studies with able-bodied participants have used 

comparatively low heights of 20cm (Baca 1999; Bobbert et al. 1987a), 12 

inches (Noyes et al. 2005), 30cm (Barber-Westin et al. 2006), 31cm (Earl et 

al. 2007), medium sized drops of 39cm (Baca 1999), 40cm (Bobbert et al. 

1987a) and large heights such as 45cm (Ambegaonkar et al. 2005), 60cm 

(Bobbert et al. 1987a) and 80cm (Viitasalo et al. 1998). Several comparative 

studies of varying heights have been investigated (Viitasalo et al. 1998; 

Bobbert et al. 1987a) to determine the optimum height but validity has been 

established for heights as low as 20cm (Bobbert et al. 1987a).  

 

The technique when performing the drop jump has been suggested to be 

tightly controlled (Bobbert et al. 1987b) although prior familiarisation or 

training of the drop jump technique has also been suggested as not being 

required to obtain test reliability (Laffaye et al. 2006).  

 

Within sport science, the drop jump has been performed by sports 

performers. These have included physically active individuals, (Stalbom et al. 

2007; Schot et al. 1994; Bobbert et al. 1987a) adolescent athletes (Barber-

Westin et al. 2006), elite level biathletes (Krol & Mynarski 2012),Norwegian 

national level triple jumpers (Viitasalo et al. 1998), basketball and hockey 

players (Rishiraj et al. 2012), volleyball players (Bobbert et al. 1987b) and 

men from team sports (Baca 1999).  
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Several studies have attempted to identify the correlation between sprinting 

ability and jump testing performance using able-bodied participants to 

ascertain its ability as a diagnostic or talent identification test. Some studies 

have shown a direct correlation with bi-lateral jump testing and short distance 

sprinting (Maulder & Cronin 2005) however; this has been disputed (Kukoli et 

al. 1999). However, these two studies both agree that vertical jump 

displacement and sprinting performance correlate significantly. Additionally 

further work using several dynamic jump methods has shown improved 

correlation within different phases of the 100m sprint using different jump 

methods (Bret et al. 2002) or similarly different leg strength qualities 

(Maulder & Cronin 2005). A single leg horizontal drop jump has been shown 

to be highly related to sprinting (Holm et al. 2008) with the observation that 

(whilst not often used), horizontally performed jumps are better predictors of 

sprint performance (Maulder & Cronin 2005). However, it is not known at this 

time any issues regarding test subject safety when performing horizontal 

jumps within a clinical setting as opposed to vertical jumps which 

alternatively use a smaller footprint and less forward momentum of the 

amputee which still demonstrate qualities representative of sprinting 

(Maulder & Cronin 2005; Kukoli et al. 1999). As a result, dynamic leg power 

assessment methods such as the drop jump have been shown to be 

applicable to sprinting but their selection may relate to a particular phase 

within short distance sprinting with increasing/decreasing correlation. 

 

Little evidence has been seen of drop jump use when performed directly on 

lower-limb amputees. Lower-limb amputees have however performed other 

jump test variants such as uni-lateral vertical jumping (Strike & Diss 2005) 

and a one-foot vertical jump with approach with uni-lateral trans-tibial 

amputees (Strike & Taylor 2004). In the 2004 study, the maximum height and 

flight time were reduced noticeably on the prosthetic side but this study’s 

findings should be taken with a degree of caution as it was only performed 

with two participants. No studies of athletes with a lower-limb amputation 

performing uni-lateral or bi-lateral drop jumps are currently evident within the 

literature. This also means that any differences in lower-limb damping 
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between an artificial sprung prosthesis and the natural spring characteristics 

of a biological leg have also not been investigated. 

 

A single leg drop jump is a relatively recent variation of the drop jump 

method. A horizontal variant of the uni-lateral drop jump has been shown to 

be reliable (Stalbom et al. 2007). Whilst a relatively recent development, the 

uni-lateral drop jump has been performed to determine kinematic and kinetic 

joint differences (Weinhandl et al. 2011), ankle joint instability (Delahunt et al. 

2006), differences in sex (Russell et al. 2006). The heights used to perform 

this jump have included 20cm (Weinhandl et al. 2011; Stalbom et al. 2007), 

35cm (Delahunt et al. 2006), 60cm (Russell et al. 2006). The minimum height 

of 20cm has been used as this has been shown to be a height that untrained 

participants could still be accustomed to undertaking (Stalbolm et al. 2007). 

Drop jumping in practise does have several concerns as to its use. The 

magnitude of the height used has been cited as modifying the technique 

used to perform it (Bobbert et al. 1987a), likewise upper-limb motion has 

been shown to affect the generated impulse (Laffaye et al. 2006) meaning 

arm motion to stabilise height or create comfort to the participant of the 

dropping height would have to be removed. If this is not controlled, the effect 

of the arms may influence the results affecting its correlation to sprinting. It 

has also been suggested that to increase the jump height up to 60cm creates 

net joint reaction forces with sharp peaks (Bobbert et al. 1987a), as well as 

observations of an altered jump technique performed by the participants 

(Viitasalo et al. 1998). It has been proposed that there is a potential for injury 

in the ankle if 10 or more jumps are performed (Delahunt et al. 2006) and 

that fatigue will lead to changes in movement patterns in the lower-limbs 

(Weinhandl et al. 2011). These observations may be less desirable or raise 

ethical issues. However, in terms of test competence, it should be noted that 

athletes with a lower limb amputation already performed the long jump event 

at the 2008 Paralympic Games (www.paralympic.org/Sport/Results/) and 

empirical assessment of jumping events have taken place (Nolan et al. 2012; 

Nolan & Lees 2007; Nolan & Lees 2000). The problems may not be linked to 
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competence to complete the technique itself but merely the methodology of 

the experiment undertaken. Finally, the technique may not be used as a 

means to easily compare above-knee to below-knee amputees directly. 

Since trans-tibial amputees still have the use of their knees, it is likely that 

the lower limbs knee (rather than the prosthesis) will damp the drop jumps 

ground impact due to their leg bending. However, a trans-femoral amputee 

does not have a knee therefore they may use other compensatory strategies 

- thereby changing the tests boundary conditions. 

 

Ideally, the height for the drop jump should be optimised through testing to 

create a lower-limb stiffness response applicable to the athletes running 

event – for example, a 400m runner would see less stiffness and therefore 

drop from a lower height than the 100m sprinter equivalent. However, at this 

stage, this case study investigates the basic feasibility of the technique when 

dealing with highly asymmetrical lower-limb functionality. Optimisation of the 

drop height will not be considered in this case study. 

 

10.4 TEST PROTOCOL 

 

Ethical approval for the pilot test was formally registered and approved by 

the author’s research institution. A single male able-bodied candidate with a 

background in international level sport acted undertook these pilot tests and 

was the same candidate as the one used in Chapter 9. The test candidate 

was male, 195cm tall and had a mass of 90kg.   

 

The protocol of the drop jump was to stand on the intended landing leg on 

top of a 20cm high platform. The lowest height would be used for reasons of 

safety and this height had been indicated within the literature review as the 

lowest that had achieved reliable results (Bobbert et al. 1987a). With a 

standardised height, mass of participant and impact of gravity, the potential 
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energy would be mass x gravity x height therefore being 176.58 Joules for 

each drop to first impact.  

 

When ready, the drop down action were performed, landing in the centre of 

the pressure pad and then, using the same take off leg, immediately execute 

a maximal effort single leg vertical jump. The jump procedure is concluded 

by landing on both feet. Any required ‘run off’ for the participant after the 

jump was performed was allowed. There was a 1 minute timed break 

between each jump being performed. The left and right feet were alternated 

and 12 jumps on each leg were performed. Any changes in performance 

over the course of the jump testing were assessed by comparing jumps 1-6 

and 7-12. Due to the case study approach, the impact of the designed lower-

limb asymmetry and to minimise any safety concerns, the lowest recorded 

reliable drop jump was used as reported Bobbert et al. (1987a).  

 

A RS Footscan pressure pad, (RSscan Ltd, Ipswich, UK) sampling data at 

253Hz was used to record the mean ground reaction force data of the drop 

jumps first and second contact phases and the duration from the first to final 

landing. Force data was used in this pilot study so as to easily measure a 

metric from both landing and takeoff. The pad was used as it was 

conceptualised that this test would be performed quickly at a major sporting 

event and that this method was fast and simpler to set up than many other 

measurement tools. Ground reaction force is relevant to sprinting 

performance as promoted by Weyand et al. (2000). The Footscan’s accuracy 

was checked beforehand by calibrating using known masses. In addition, the 

symmetry index (SI) of both limbs was used as described by Barber et al. 

(1990) as: Non dominant leg/dominant leg x100. 

 

Due to the test subject not using a running prosthesis, the subject’s limb to 

limb performance difference was created through use of footwear on one 

limb. The participants left foot was bare (dominant) whereas the right foot 
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was shod (non-dominant) using new and previously unused sports footwear. 

This was undertaken to help provide a greater difference in the mechanical 

behaviour between the left and right feet that overcomes a typical limb 

asymmetry such as those indicated by Sadeghi et al. (2000) and limb to limb 

symmetry indices differences observed from several jump test experiments 

by Maulder and Cronin of a 4-11% range (Maulder & Cronin 2005). It was 

conceded that use of the footwear on one side would increase the drop 

height by a small fraction but the magnitude of the force data was not being 

assessed in this pilot. Alternatively knee braces have been used to create 

lower-limb imbalances (Rishiraj et al. 2012). This technique was rejected 

since it was felt that even a below-knee amputee often still retains the use of 

their knee and that the strapping and adoption of a knee brace could not be 

fitted from trial to trial reliably or repeatedly. 

 

The mean and standard deviation is used to calculate the coefficient of 

variation (CV) of the results. The CV has been defined as a measure of 

absolute consistency when evaluating a series of results (Stalbom et al. 

2007) and is calculated as SD/Mean*100.  

 

10.5 RESULTS 

 

The raw data of the drop jump test is contained in Appendices E.1. 

 

The coefficient of variation (CV) in ground reaction force (GRF) of the full 

landing to landing phase across the 12 unilateral drop jumps was 6% (left 

side barefoot) and 8% (right side shod). The coefficient of variation of the 

duration of the first to second landing of the 12 unilateral drop jumps was 5% 

(left side barefoot) and 11% (right side shod). The Pearson Coefficient 

Correlation (PCC) is used as a measure of the strength of the association 
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between two variables. This is defined by Rodgers and Nicewander (1988) 

as: 

 

 

The PCC between the left and right side average force outputs was 0.12 

indicating a low relationship of the two data sets. 

 

The Symmetry Index (SI) was calculated as per chapter 8. The SI of the 

average GRF of the full landing to landing phase was a 29% impairment to 

the side that was shod.  

 

To check how the jump performance changed over the series of drop jumps, 

the 12 jump set was also split into jumps 1-6 and jumps 7-12. In this case, 

the mean GRF created by the left foot (bare) saw a CV of 6% (jumps 1-6) 

and 7% (jumps 7-12). The mean GRF created by the right foot (shod) saw a 

CV of 3% (jumps 1-6) and 8% (jumps 7-12). The SI impairment on the shod 

side was 32% from jumps 1-6 and 26% from jumps 7-12. 

 

The first landing to second landing time duration from the left foot (bare) saw 

a CV of 2% (jumps 1-6) to 7% (jumps 7-12). The first landing to second 

landing time duration from the right foot (shod) saw a CV of 11% (jumps 1-6) 

to 12% (jumps 7-12). 
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10.6 DISCUSSION  

 

This chapter had three core objectives. The first was to investigate the 

repeatability of lower-limb landing and launch forces when performing the 

uni-lateral drop jump. A pilot test of the uni-lateral drop jump was undertaken 

to assess the statistical viability of the technique. From 12 jumps, there was 

a marked difference in mean jump GRF behaviour between jumps 1-6 and 7-

12 in both feet. For the left bare foot, jumps 1-6 saw a relatively minor GRF 

CV increase of 6% to 7% from jumps 7-12. Such values of variance are 

typical of ground reaction forces in reliability studies of the uni-lateral drop 

jump when using able-bodied participation (Stalbolm et al. 2007). However 

the right shod side saw a marginally larger change of CV from jumps 1-6 and 

7-12 in GRF data of 3% to 8%. This increase still maintains a desirable level 

of CV but does indicate a marked increase in variance of the data as the test 

jumps increase. It is possible that use of the footwear created some degree 

of fatigue and/or jump technique degradation on the shod side as the series 

of jumps continues. Such an effect could be evident when assessing an 

amputee’s biological limb compared to their prosthesis. 

 

The duration of the jump being performed from drop landing to final landing 

saw CV’s from the left bare foot of 2% (jumps 1-6) and 7% (jumps 7-12) 

whereas the right shod side saw 11% (jumps 1-6) and 12% (jumps 7-12). 

This larger variability in the behaviour of the footwear continues the theme of 

either fatigue and/or jump technique degradation. However, the mean 

average of landing to landing jump duration over jumps 1-6 and 7-12 are 

virtually identical suggesting that limb fatigue per se’ may or may not be the 

cause but that some kind of technique change occurred over the length of 

the test. Like the GRF data, this shows greater variability after 6 jumps. On 

this basis, it is proposed that the technique is reliable and repeatable but that 

the number of jumps in future trials needs to be as few as possible to 

maintain good technique. It needs to be ascertained whether this 

degradation in an impaired limb is also seen when using an energy return 
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prostheses. Motion capture assessment of the joints, limbs and overall 

kinematics could go some way to identify this as well as more detailed 

investigations into energy generation and consumption using an amputee 

participants. 

 

The chapter’s second objective was to investigate the symmetry of lower-

limb landing and launch forces when performing the uni-lateral drop jump. 

The Pearson Coefficient Correlation between the left and right side average 

force output data sets was 0.12 and is very low. It could be speculated that 

one side will fatigue at a different rate to the other and therefore potentially 

behave very differently. The fact that the CV of the right hand side was much 

greater than the left coupled with both the symmetry index indicating a 29% 

(across all 12 jumps) and the mean durations being similar across both 

halves of the trials suggests the shoe acted as a major impairment and 

behaved much more erratically in continued use. Whilst no SI data has been 

identified historically for when performing the unilateral drop jump technique, 

the SI score of 29% in this study is considerably higher than an 11% range 

recorded when performing a vertical squat jump with able bodied subjects 

(Maulder & Cronin 2005). This demonstrates a consistent limb to limb 

performance significant impairment and therefore satisfies the second 

objective. 

 

The studies final objective was to determine whether this technique should 

be recommended for use in the future. The greater erratic performance of the 

shod side after 6 jumps suggests that whilst mean performances are stable, 

the number of jumps should be kept fewer than 6 if performance repeatability 

is the goal. This raises an interesting point about the evaluation of mixed limb 

performances. The SI between the two limbs when the limbs are fresh 

compared to when the limbs are fatiguing towards the end of a 100m sprint 

could be very different. As a result, this pilot study raises the philosophical 

question of not only viability of this evaluative technique but also at which 

prior state of limb fatigue are compared as both are part of the nature of the 
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100m sprint race. This fatigue profile and SI will vary when based upon 

Nolan’s observations that prostheses designs behave very differently (Nolan 

2008). As such, the technique is recommended but that further investigation 

is required into the impact of fatigue as well as philosophically how this 

should be accounted for when creating a context specific assessment of 

LLP. The stiffness of the lower-limbs was not calculated in this study to 

ascertain if a 20cm drop provoked a response typical of that experienced by 

the limb in running events such as the 100m. This was because the 

emphasis was placed on using force to determine the techniques 

repeatability whilst maintaining the best possible safety to the candidate 

rather than to optimise the drop height. Further studies are required to 

determine what height based on body weight provokes the same stiffness 

response as those found at a specific events running speed. 

 

As a final observation, concerns could be raised that athletes could cheat by 

purposely underperforming the drop jump test when in actual use. Whilst the 

final vertical phase could be manipulated, the initial drop is governed by the 

athletes mass, gravity and the height of the drop and therefore could not be 

underperformed. As a result, the calculated limb stiffness could not be 

cheated. If limb power from the vertical phase were intentionally 

underperformed, it is plausible that several successive jumps would likely 

highlight an erratic behaviour and thus signify potential cheating. Ongoing 

competition to competition testing would likely build up a long term 

performance profile of the athlete to monitor this. 

 

In summary, no concerns were raised in the pilot testing that suggests this 

technique is not a viable solution for the evaluation of sprint athletes with uni-

lateral lower-limb amputations. This technique is recommended for further 

development by assessing a larger test subject group of athletes with a 

lower-limb amputation with greater lower-limb asymmetries.  
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10.8 CONCLUSION 

 

This chapter conceptualised use of a uni-lateral drop jump technique as a 

realistic means to monitor limb to limb symmetry of lower-limb stiffness. 

 

This case study of the uni-lateral drop jump noted that the number of jumps 

executed should be less than 6 and that limb to limb symmetry drifts once 

the number of jumps is increased. The characteristics of limb-to-limb 

performance and the rate and type of fatigue is an observation 

recommended for further study with athletes with an amputation. Provided 

the number of jumps is kept low, this technique is felt to be a valid method for 

this application but that further investigation is required to optimise its use as 

an assessment tool. 

 

10.7 RECOMMENDATIONS 

 

The uni-lateral drop jump technique should now be developed by using a 

range of amputee athletes to further prove its reliability. Additionally, the best 

measurement method to measure the jump metrics such as energy return or 

lower-limb stiffness should be established. Alternatively, standardised test 

metrics such as potential energy could be used to normalise the tests for 

different athletes or race distances (based upon varying the drop height). 

The pressure plate could be substituted by use of motion capture technology 

or sensors such as accelerometers. Ideally, a highly portable, quick to set up 

and cost effective solution should be sought out. The drop height in this 

study was established when reviewing the current literature of the technique 

coupled with the unique needs of amputees. However, it should be 

investigated if a calculated drop height (based upon the participant’s 

bodyweight) that would represent the ground impact of an individual’s 
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athletes chosen event is feasible so as to increase the specificity of the test 

with the intended context in mind. 

 

Whilst the uni-lateral drop jump technique itself is proposed here as robust, 

the role and impact of lower-limb fatigue is also worthy of further study. 

Accepting that a prosthetic limb cannot fatigue but that the biological limb 

can, the limb to limb symmetry indices change might prove useful when 

discussing the regulation of such technology philosophically. For example, at 

the start of a 100m event the athlete’s lower-limbs will not be fatigued. 

However, once the event is underway, the limb to limb symmetry ratio of 

ground reaction force will change as the biological limb fatigues. What is not 

known is whether this effect should be accounted for when designing 

regulation strategies for lower-limb prosthesis technology. Fatigue when 

performing the bi-lateral drop jump has been identified (Skurvydas et al. 

2011) but with athletes. A ‘fatigue index’ may be more applicable to limb to 

limb behaviour in a race rather than assuming such a relationship is static.  
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CHAPTER 11: CONCLUSIONS & 

RECOMMENDATIONS 
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11.1 SUMMARY 

 

A literature review, documented in Chapters 1 and 2, revealed the sports 

background relatively recent introduction and that it was currently stable in 

both its racing formats and expectations. It was also revealed that research 

(specifically those regarding athletes with lower-limb amputations) were little 

more than 14 years old and saw low participant numbers due to the limited 

number of athletes being available.  

 

A literature review was performed in Chapter 3 that sought to investigate 

what issues occur when technology is used in sport and what cases of 

controversy had occurred before. It was shown that cases had occurred in 

able-bodied sport frequently plus that some athletes with a disability within 

able-bodied sport had been the source of controversy. As a result, it was 

concluded that there was no reason why disability sport specifically would 

not suffer the same controversies. 

 

Chapter 4 proposed a mixed method research approach as this would allow 

the investigation of philosophical issues but would also provide pragmatic 

outcomes that could be recommended as practical guidance to the sport. 

 

Chapter 5 attempted to address the first objective of this project research by 

investigating the impact of any prostheses technological change that has 

occurred in the sport and to ascertain whether any regulation on their 

acceptability would be of value in the future. It undertook a performance 

improvement statistical evaluation. This proposed that technological change 

can create changes that may not be of value to the sport and can create 

negative ones such as decreased participation levels. It also demonstrated 

improvements in the sport, well in excess of the able-bodied equivalent. This 

information proposed that historical changes in technology were not of value 



  199 
 

but that any further changes in the future would require a proactive review 

prior to adoption. Crucially, it was concluded that acceptability guidelines 

were necessary as part of amputee running in disability sport.  

 

Chapter 6 investigated two further objectives of the research project. These 

were illustrating the current perceptions of lower-limb running prosthesis 

used in competitive disability sport and to propose guidelines for LLP 

technology inclusion when used in competitive running with a lower-limb 

amputation. The chapter undertook a stakeholder review by using the Delphi 

Technique to obtain consensus on the perception and role prosthetics 

technology played in disability sport. A three round process proposed a 

series of consensual guidelines. These guidelines were descriptive and not 

fully prescriptive. Some guidelines were stated to require further clarification 

upon which to propose any form of assessment. The guidelines requested 

that running prosthesis were, as a maximum, restorative forms of equipment 

in terms of both stride characteristics and mechanical contribution. Crucially, 

it confirmed the proposal in Chapter 5 that such technology should be 

regulated through assessment methods. 

  

Whilst Chapter 6 advocated restorative step characteristics to the amputee, 

the literature demonstrated that the nature of step behaviour in an actual 

racing environment was not currently known. This was investigated in 

Chapter 7. A video analysis revealed that a low step count was desirable for 

success but crucially that limb to limb asymmetry, much larger than those 

reported in previous studies, took place in 100m racing. The reasons for this 

could not always be given. As a result it confirmed that inter-limb comparison 

should be included as a quality in the acceptability guidelines but that also 

that limb to limb symmetry should be included as a metric within any 

proposed assessment strategy. 
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Chapter 8 sought to explore an issue created as a result of the Delphi study 

in Chapter 6. Chapter 6 proposed that a prosthetic limb should be of no 

greater performance than a biological limb. With uni-lateral amputees this is 

a straightforward comparison but it could not be easily seen how this could 

be achieved with bi-lateral amputees – especially those with congenital 

origination of their limb loss. Bi-lateral amputees simply have no reference 

data. It was decided that if functional differences could be established 

between them, then an argument would be made to separate the racing 

styles. This would not totally resolve the issue but it would allow both uni-

lateral and bi-lateral amputees to be taken on their own merits and likely 

warrant their own separate assessment strategies. A case study was 

undertaken which standardised the participant but varied the limb to limb 

mechanical performance symmetry. It was demonstrated that the participant 

was forced to vary their limb speed to maintain symmetry of lower limb 

mechanical function. It was proposed that extra metabolic energy would have 

to be expended by the participant to accelerate their limb downstroke to do 

so which the symmetrical lower-limb would not have to do. It was suggested 

that this would need to be validated through assessment of amputees 

however, this study proposed that functional differences would exist as a 

result of the prosthesis technology and that the T43 and T44 classes should 

therefore be separated when racing. At this point, this thesis focused on the 

provision of an assessment strategy for lower-limb uni-lateral amputees only. 

 

Chapter 9 investigated conflicting claims in the literature review whether 

lower-limb running prosthesis were linear-like springs. If this was proven to 

be the case, any proposed assessment strategy could have been non-

invasive and easier to implement. Unfortunately, both run tests and 

compression loading tests demonstrated that in actual use, LLRP’s have 

non-linear stiffness due to both footroll and a changing point of ground 

contact. Due to their construction, it was also shown that further non-linearity 

existed and that therefore prediction of their behaviour was not possible. It 

was recommended that any assessment strategy should be dynamic in 

nature and allow direct limb to limb comparison. 
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The final chapter proposed a suitable concept of assessing athletes with a 

uni-lateral amputation’s based upon the need established in Chapter 5, the 

criteria of Chapter 6 and the further investigations of Chapters 7, 8 and 9. A 

drop jump test method was proposed and pilot tested. This method would 

allow a reliable assessment of lower-limb stiffness and the limb to limb 

symmetry. Should the technology be allowed to further develop in the future, 

this technique would also be able to assess the passivity of prosthetics 

technology by being able to assess energy return if required. The technique 

can be conducted within a restricted environment and could be developed to 

investigate elements such as limb to limb fatigue and allow for variation in 

different drop heights or potential energy to specifically replicate the limb 

impact of different events. 

 

11.2 CONTRIBUTIONS TO KNOWLEDGE 

 

The research question for this thesis was:  

“What is an acceptable use of lower-limb prostheses in short distance 

running at the Paralympic Games and how should such technology be 

assessed?” 

 

This research has four key contributions that directly address this question: 

 

1. It established a need for prostheses technology acceptability 

guidelines and assessment in lower-limb amputee competitive 

running. This discovered need was new knowledge in the context of 

running with an amputation competition. 
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2. It produced a set of guidelines that define the role and perception of 

lower-limb running prosthesis in current competitive running with an 

amputation. These guidelines are offered as new knowledge in this 

context. 

 
3. It proposed that the athlete amputee runner population should race 

separately in their T43 and T44 classifications. Whilst the 

classification of amputee athletes has evolved over the last 35 years, 

this novel finding provides guidance as to the structure of amputee 

competition in the future. 

 

4. It pilot tested a concept dynamic assessment method which can 

assess the limb to limb performance properties of an athlete with a 

uni-lateral lower-limb amputation. This is a new application of an 

existing technique but in a novel context. 

 

11.3 EVALUATION OF OVERALL RESEARCH METHOD 

 

This project adopted a mixed method approach when resolving the key aims 

and objectives of the research question. This proved a successful as its 

experience fell in line with Chapter 4’s literature review of the technique. For 

example, it made it possible to provide practical and pragmatic solutions to 

the contextual research problem rather than relying on just qualitative or 

quantitative methods alone which would have had limitations in their direct 

impact to the sport. 

 

However, it was noted in Chapter 4 that one of its drawbacks was that bias 

could occur based on the nature or background of the researcher. The 

author’s educational background was of a mixed art and science nature so it 

was felt that this issue did not knowingly occur here. However, it is worth 

noting that when journal publication was sought throughout this research 
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project, it seemed apparent that it was more difficult to find suitable 

destinations to publish. Journal reviewers would often be solely qualitative or 

quantitative based in background and some proposals were commented that 

they contained content that was unnecessary or out of scope with the 

targeted journal. Researchers should be prepared to defend mixed methods 

approaches from all research quarters. 

 

The real value of the parallel mixed method approach was the responsive 

and relatively blank canvas it provided to investigate key themes as 

unexpected findings were presented. For example, the Delphi study in 

Chapter 6 provided several different findings that could still be seen as 

ambiguous by other reviewers of this research. The use of several case 

studies such or experiments such as those in Chapters 7, 8 and 9 allowed 

the further clarification of these to provide greater and more solid insight into 

the overarching research question.  

 

11.4 LIMITATIONS OF OVERALL STUDY 

 

There are several limitations of the overall research project: 

 

1. The proposed uni-lateral drop jump test has not been validated using 

amputee subjects. For reasons already expressed in the literature review, 

test subjects have limited availability. Use of these candidates would further 

validate the technique but a reliable sample was not possible to locate easily 

when it was considered that the number of elite amputee sprinters within the 

UK currently numbered no greater than three. 

 

2. This research project is very much a ‘snapshot in time’. The historical data 

in Chapter 5, the Delphi process in Chapter 6 and the stride analysis data in 
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Chapter 7 could all evolve as the athlete participants would increase or 

change over time. However, the recommendation is that all technology in the 

future should be evaluated by a governing body prior to its introduction in 

competitive sport.  This would minimise any major issues until further 

information was supplied on new innovations. 

 

3. The final concept proposal of the drop jump test as a means to regulate 

LLRP’s excluded bi-lateral amputees. Chapter 7 proposed that they should 

be separated and this thesis does not address how they should be evaluated 

as a class. It is felt that further research into the hypothetical prediction of 

their lower-limbs performance would be required to address this.  

 

11.5 OVERALL RECOMMENDATIONS   

 

Due to the broad nature of this thesis and some of the insight obtained in the 

course of this project, several areas of this research are considered worthy of 

further study. 

 

1. A stakeholder evaluation should be extended to consider the impact of 

lower-limb fatigue, the differences between specific events and to determine 

exactly how passive prostheses technology should remain in the future. 

 

2. The impact of specific elements with sprint running such as running round 

a bend, the starting blocks and changes in race speeds should be 

considered when functionally evaluating lower-limb amputees. 

 

3. The dynamic elastic response timed to impulse synchronisation mentioned 

in Chapter 7 should be investigated as to whether it truly exists in both/either 
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uni-lateral and bi-lateral amputees. This may provide further evidence into 

their racing classification separation. 

 

4. The relationship of functional lower-limb to limb performance over longer 

durations should be investigated. 

 

11.6 FINAL STATEMENT 

 

When this project was started in November 2007, the literature review 

revealed not only a relative infancy of research regarding athletes with a 

lower-limb amputation but that nobody had really considered or was 

concerned about the acceptability of prosthetics technology used in 

competitions like the Paralympic Games. From purely a personal 

perspective, when the Paralympic Games occurred in September 2012 (and 

towards the end of this project), the requirements for this projects aims was 

ultimately showcased when complaints were made by athletes over 

technological unfairness between their prostheses. There were further calls 

made later in the games for the separation between single and double 

amputees in sprint running at the Paralympic Games. It was not clear at the 

projects inception whether the findings of the study would be of practical 

value outside of the PhD process as the research might have led to a 

negative conclusion requiring no impact in current practise. Not only did this 

not prove to be the case but the research provided several positive 

experiences well beyond that of this PhD’s remit. As a result, the research 

documented in this thesis will continue in the future, past this thesis’ borders. 
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