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Abstract
The successful implementation of habitat preservation and management demands regular and
spatially explicit monitoring of conservation status at a range of scales based on indicators.
Woodland condition can be described in terms of compositional and structural attributes (e.g.
overstorey, understorey, ground flora), evidence of natural turnover (e.g. deadwood and tree
regeneration), andanthropogenic influences (e.g.disturbance, damage). Woodland condition
assessments are currently conducted via fieldwork, which is hampered by cost, spatial
coverage, objectiveness and repeatability.This projectevaluates the ability of airborne remote
sensing (RS) techniques to assess woodland condition, utilising a sensor-fusion approach to
survey a foreststudy site and develop condition indicators. Here condition is based on
measures of structural and compositional diversity in the woodland vertical profile, with
consideration of the presence of native species, deadwood, and tree regeneration.

A 22 km2 study area was established in the New Forest, Hampshire, UK, which contained a
variety of forest types, including managed plantation, semi-ancient coniferous and deciduous
woodland. Fieldwork was conducted in 41 field plots located across this range of forest types,
each with varying properties. The field plots were 30x30m in size and recorded a total of 39
forest metrics relating to individual elements of condition as identified in the literature.

Airborne hyperspectral data (visible and near-infrared) and small footprint LiDAR capturing
both discrete-return (DR) and full-waveform (FW) data were acquired simultaneously, under
both leaf-on and leaf-off conditions in 2010. For the combined leaf-on and leaf-off datasets a
total of 154 metrics were extracted from the hyperspectral data, 187 metrics from the DR
LiDAR and 252 metrics from the FW LiDAR. This comprised both area-based and individual
tree crown metrics. These metrics were entered into two statistical approaches, ordinary least
squares and Akaike information criterion regression, in order to estimate each of the 39 field
plot-level forest variables. These estimated variables were then used as inputs to six forest
condition assessment approaches identified in the literature.

In total, 35 of the 39 field plot-level forest variables could be estimated with a validated
NRMSE value below 0.4 using RS data (23 of these models had NRMSE values below 0.3).
Over half of these models involved the use of FW LiDAR data on its own or combined with
hyperspectral data, demonstrating this to be single most able dataset. Due to the synoptic
coverage of the RS data, each of these field plot variables could be estimated and mapped
continuously over the entire study site at the 30x30m resolution (i.e. field plot-level scale).

The RS estimated field variables were then used as inputs to six forest condition assessment
approaches identified in the literature.Three of the derived condition indices were successful
based on correspondence with field validation data and woodlandcompartment boundaries.
The three successful condition assessment methods were driven primarily by tree size and
tree size variation. The best technique for assessing woodland condition was a score-based
method which combined seventeen inputs which relate to tree species composition, tree size
and variability, deadwood, and understory components; all of whichwere shown to be derived
successfully from the appropriate combination of airborne hyperspectral and LiDAR datasets.

The approach demonstrated in this project therefore shows that conventional methods of
assessing forest condition can be applied with RS derived inputs for woodland assessment
purposes over landscape-scale areas.
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Chapter 1 – Introduction

This thesis discusses the use of combined remote sensing to estimate forest condition, taking

a case study of the New Forest, Hampshire. The application of such technologies is an

accurate means of assessing forest attributes and could provide an informative tool over

larger areas.

Woodland covers about 10% of the UK’s land area, but little of this is in a completely natural

state. Those woodlands that resemble original forests are more highly prized in nature

conservation terms. For the management of any woodland (whether conservation or

production forests) an indication of woodland quality is required. Typically, the definition is

based on a combination of the woodland’s compositional and structural components, together

with an assessment of disturbance, regeneration and naturalness. There is no single

commonly used definition of ‘quality’ and it also varies between management objectives.

Currently woodland quality assessments are performed through fieldwork, where forest stand

structure, composition, deadwood, regeneration, and ground vegetation are assessed.

Fieldwork is hampered by cost and restricted spatial coverage, and is often neither objective

nor repeatable. Recent developments have allowed the application of new sensors and

methods in airborne remote sensing, offering an alternative or complement to fieldwork and

providing a means of extrapolating metrics over large areas. Combining airborne

hyperspectral and LiDAR data is expected to offer detailed and complementary information

about the structure and composition of woodlands. This project proposes the use of a sensor-

fusion approach to develop methods of estimating forest condition over wide areas.

This chapter provides an overview of the research project, beginning with the rationale for

the research, and a general description of how the researcher has gone about this. The

following section outlines the research aims and objectives, and finally the thesis structure.
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1.1. Rationale
Forests and woodlands are important on a variety of levels. They are exploited as a resource

for a wide range of human activities (Lucas et al., 2008a), as well as being important habitats

for a variety of organisms and storing substantial amounts of above-ground carbon stocks

(Horner et al., 2010). The concept of forest condition or quality is critical to the study of

woodland ecology. Defining what ‘condition’ is in terms of the organism or community is

complicated and problematic (Hinsley et al., 2002). For woodland these difficulties are

compounded by the three-dimensional volume and complexity of the habitat (Hinsley et al.,

2006). There are many differences in the definition of condition between research,

conservation and commercial interests. Condition is often defined in terms of biodiversity,

species richness or productivity dependent upon the management objective.

The relative condition value of certain sites is important in various conservation strategies.

Forest managers cannot measure everything within a forest of interest, thus the choice of

what to measure is critical. These measurements will form the indicators of condition, for

example the monitoring of a certain type of species known to be sensitive to a certain

process, or the fragmentation or isolation of an area (Noss, 1999; Vellend et al., 2007). The

management of an area is often decided through landscape-scale monitoring, whereas

ecological monitoring is often accomplished through extrapolating up from smaller scales

based on field plot assessment (Newton et al., 2009b). With new conservation and monitoring

initiatives being implemented through the European Union, such as Natura 2000 (JNCC,

2004), national scale reporting is required, thus the timeliness and accuracy of condition

metrics becomes all the more important.

Temperate forests have been recognised as important components of the global carbon cycle.

However, a comprehensive understanding of the overall spatial patterns of structural variation

seen in these large landscapes is still largely incomplete (Anderson et al., 2008). Accurate

structural information is required for a number of applications including forest management,

environmental protection, fire behaviour analysis, and global warming and carbon

management allocations (Chen et al., 2007).
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Owing to the spatially heterogeneous nature of landscapes, ecological approaches can

potentially be applied at a variety of scales, from an individual tree to the whole landscape,

and to a wide range of different environments through the use of remote sensing techniques.

Fine spatial resolution hyperspectral imagery and LiDAR data capture differing, yet

complementary characteristics in the estimation of various vertical and horizontal forest

structural metrics, and are often described as synergistic (Anderson et al., 2008; Coops et al.,

2004).

The use of each of these systems addresses some of the limitations of the other. Information

on individual tree species, health and spatial geometry of the tree crown can be provided by

optical/spectral imagery, whereas LiDAR provides data concerning the tree height, 3D crown

shape and texture or outline (Hyyppä et al., 2004; Leckie et al., 2003b). Recent research

projects, in particular for LiDAR, have focused upon the extraction of forest structural

features (Hyyppä et al., 2008; Lucas et al., 2008b; Maltamo et al., 2005). The use of airborne

digital remote sensing technologies for forest ecology is an area of intense research, and there

is little in the way of consistent guidance as to how best the data should be captured,

processed and analysed.

A survey conducted by Newton et al. (2009b) suggested that landscape ecologists have been

rather conservative in their use of remote sensing data sources. In addition, Aplin (2005)

suggested that remote sensing specialists have focused on the technological issues as their

principle concern, rather than ecological problems, which highlights a potential divide

between the different research communities. There is therefore a need for closer integration

and collaboration between these two disciplines. This could potentially offer the

characterisation of horizontal and vertical components of forests of considerable value for

understanding landscape structure and function. To date there has been little work undertaken

to examine the potential for application of LiDAR and hyperspectral survey to characterise

forested areas that exhibit a range of structural and species types, and management

techniques. However, work on forests in Europe, America and Australia have demonstrated

great promise in addressing this potential for the use of remote sensing to quantify forest

structure and condition (Lucas et al., 2008b; Mason et al., 2003; Mutlu et al., 2008; Popescu

et al., 2004).
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1.2 The scope of this research project
This investigation will take place within the New Forest, Hampshire, in the south of the UK.

This area is made up of a complex mosaic of forest structural types, including managed

plantation, semi-ancient coniferous and deciduous woodland in close proximity to one

another, and thus provides a suitable test site. This area provides many structural and

compositional variables of interest. The New Forest is recognised as being of international

importance for nature conservation. The specific study area has also been subject previously

to a number of ecological remote sensing studies (Blackburn and Milton, 1996; Koukoulas

and Blackburn, 2004, 2005a; Milton et al., 1994).

For the management of any woodland an indication of ‘quality’ is required. Recent

developments have allowed the application of new sensors and methods in airborne remote

sensing, offering an alternative to fieldwork and providing a means of intelligently estimating

these metrics over large areas, rather than extrapolation from small samples. Additionally,

remote sensing offers new possibilities when considering the national scale reporting

requirements of existing conservation and monitoring initiatives.

There are many examples of research projects utilising remote sensing methods to extract

metrics relating to forest composition or structure. There are very few studies existing that

explicitly utilise remote sensing for the assessment and mapping of multiple woodland

condition indicators. One such example is Simonson et al. (2013) who focused on combining

spectral and LiDAR data to classify eleven land cover types, and using prior knowledge of

the relationships between height, vegetation structure and species diversity was able to map

three condition classes across a study area in Portugal. This project will adopt a similar

methodology by combining hyperspectral and LiDAR data within the New Forest context.

The processing and usage of the relatively new technology of small-footprint full-waveform

LiDAR is still a matter of intense research activity, and holds great potential for forestry

applications (Adams et al., 2012). As such, many studies have been devoted to the technical

aspects of the systems, and have routinely noted the potential advantages over conventional

systems. There are a small, but growing number of studies documenting the output of such

systems for forest applications, such as in Lindburg et al. (2012). None however have

focused on deriving multiple forest related attributes. The study will address this by exploring

the potential of these datasets.
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In this investigation the researcher will explore the capabilities and methods of airborne

remote sensing for the extraction of relevant metrics in order to assess condition for forests

which can either be related directly to or be used to estimate those metrics recorded in the

field. The complementarity of three remote sensing datasets: hyperspectral, discrete-return

and full-waveform LiDAR, is analysed for the estimation of compositional and structural

metrics. A methodology is demonstrated for the mapping of these forest condition indicators.

The ultimate goal of the project is the creation of a suite of remote sensing derived indicators

of condition and analysis methods designed to aid in the assessment of woodland condition

over wide areas.

1.3 Research aims and objectives
The aim of this research is to assess the information content of combining airborne LiDAR

and hyperspectral remote sensing systems, in order to develop and assess a suite of remotely

sensed indicators of woodland condition which are objective and repeatable. This will be

achieved through the following objectives:

1. To assess, through the recommendations of various advisory bodies and the scientific

literature, the best forest condition indicators and the ideal assessment methods for

application via field survey.

2. To review the utility of airborne remote sensing data for forest analysis and the

understanding of ecological processes therein.

3. To assess the types of forest features that can be extracted from airborne LiDAR and

optical-spectral remote sensing datasets.

4. To determine the best forest condition indicators that can be measured remotely, and

which can be supported by fieldwork assessment.

5. To develop and test a workflow for processing airborne remote sensing data

(hyperspectral and LiDAR) to identify relevant forest features.

6. To evaluate the results of the remote sensing to identify forest condition indicators

(e.g. habitat and vegetation structure).
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1.4 The structure of the thesis
The structure of the thesis is in the style of a report and is organised into eleven chapters,

beginning with: (i) Introduction outlying the research aims and objectives, (ii) Literature

Review, (iii) A description of Study Site and Datasets, (iv) Analysis Methods, (v-ix) Results,

(x) Discussion and (xi) Conclusions. A summary of these chapters are outlined below.

1.4.1 Part one: context of the research
The first section provides an introduction to the research context and a methodological

approach identified by the surrounding academic and public ‘grey’ literature, and discusses

both its theoretical and practical applications. Chapter 1introduces the topic, a basic rationale

behind the research, and outlines the aims and objectives. Chapter 2 provides an in-depth

review of the available surrounding literature. This chapter provides a more detailed

background on forest management and the importance of woodland condition, in addition to

an evaluation of current assessment methods. A review of potential alternative methods is

provided for various remote sensing technologies and applications, examining their relevance

for the assessment of forest condition from airborne platforms.

1.4.2 Part two: dataset collection and analysis
This section of the thesis begins with a description of the field study site, and of the data

sources acquired for addressing the aims of the research project. Data sources from

fieldwork, remote sensing and commercial organisations are summarised in Chapter 3. An

overview of the two field campaigns is given, in addition to an overview of the forest metrics

extracted. A summary of the remote sensing dataset specifications is also noted.

Chapter 4 summarises the methods used to process and analyse the datasets. It begins with

the method of field data capture and the subsequent processing steps applied to derive various

field metrics. The pre-processing and analysis methods applied to the remote sensing datasets

follow. The methods of statistically analysing the remote sensing forest metrics and testing

them against the field datasets are described. The end section summarises the process of

mapping the condition indicators across the whole study site.
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1.4.3 Part three: interpretation, synthesis and conclusion
The final section focuses on the presentation of results and discussion of the implications of

this research project. Chapters 5 to 9 present the various results from the research project.

Chapter 5 concerns the fieldwork results, site descriptions and computed condition index

calculations in addition to reporting any relationships that exist between field variables.

Chapter 6 presents the results for the hyperspectral processing, statistical analysis and

validation. Chapter 7 presents the results for the LiDAR processing, statistical analysis and

validation, in addition to comparing the differences between discrete-return and full-

waveform outputs. Chapter 8 reports the results of fusion between both hyperspectral and

LiDAR datasets, identification of the best overall models, statistical analysis and validation.

Chapter 9 contains the results of the woodland condition indices derived from the remote

sensing data and their validation, in addition to a number of site maps of condition.

Chapter 10 provides a discussion of the results and debates their position within the

surrounding literature. The chapter also discusses the assessment of condition methods tested

within this thesis. The chapter finishes with the identification of the original contribution that

this research makes to its field and proposes several potential areas for future work. The final

Chapter, 11, concludes with a consideration of the implications for future applications of

woodland condition management by remote sensing approaches.
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Chapter 2 – Literature review

This chapter contains a review of the surrounding academic and grey literature concerning

the current definitions and techniques involved in assessing forest condition in order to

complete objective one of this research project. To complete objective two a review was

undertaken to identify examples from the surrounding remote sensing academic literature

which could potentially lead to the detection or estimation of those attributes identified when

answering objective one.

2.1 Definitions of Condition
The concept of condition or quality is critical to the study of ecology. Defining what

condition is in terms of the organism or community is complicated and problematic (Hinsley

et al., 2002). For woodland these difficulties are compounded by the three-dimensional

structure and complexity of the habitat (Hinsley et al., 2006). There are many differences in

the definition of condition between research, conservation and commercial interests.

Condition is often defined in terms of biodiversity, species richness or productivity, amongst

others, dependent upon the management objective. Nevertheless the relative condition value

of certain sites is important in various conservation strategies.

An objective and realistic assessment of condition is a difficult concept. Different methods

have yielded dissimilar results. If the analogy of ecosystem health or integrity is used, then an

argument can be made that certain characteristics, such as the presence of large organisms or

high species diversity, are desirable properties indicative of higher levels of health or

integrity (Keddy and Drummond, 1996). The problem often relates to the existence of an

operational target for woodland environments. For example when considering animal

damage, where damage is classified as ‘a problem caused by an unwanted condition’, this is

an anthropocentric concept used in relation to one or more specific species (Reimoser et al.,

1999). To ascertain condition in an ecological system meaningfully requires that a specific

aim – with a desired condition – be defined and compared with the current condition in order

to determine whether habitat is improving or degrading. Noss (1990) recognised three

primary attributes of ecosystems: composition, structure and function, these are defined as:
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 Composition describes the parts of each biodiversity component in a given area (e.g.

habitat types, species present, genetic populations within species).

 Structure refers to the physical characteristics supporting that composition (e.g. size

of habitats, forest canopy structure, etc.).

 Function relates to the ecological and evolutionary processes affecting life within that

structure (e.g. natural disturbances, predator-prey relationships, and species adaptation

over time).

Ecosystem function can be considered as a temporal component and thus, requires time-series

data in order to be quantified.

An analysis of current habitat states and impacts alone cannot lead to valid estimates of

condition. It is only when a target has been explicitly stated that the actual status can be

related to the probability of achieving that target (Reimoser et al., 1999). Socio-economic

aspects and subjective valuations commonly play an important role in such assessments and

subject to differing viewpoints, targets and thresholds, the estimate of what constitutes

damage or benefit can be markedly different, even with identical levels of environmental

impact.

2.1.1 Ecological considerations in defining forest condition
Recently biodiversity has become a major feature in conservation science, where it is often

considered key in determining areas to spend resources. At present woodland biodiversity in

the UK is in decline due to high rates of forest loss and degradation as a result of over-

exploitation in some cases, neglect in others, and conversion of forest to other land uses

(Newton et al., 2009b; Turner et al., 2003). Here ‘biodiversity’ is referred to as species and

certain characteristics of species, primarily their distribution and number within a given area.

In addition the use of biodiversity is meant more broadly to mean species assemblages and

ecological communities – groups of interacting and interdependent species (Turner et al.,

2003). Scale is an implied and key component of this definition (McElhinny et al., 2005).

Scientifically sound management requires frequent and spatially detailed assessments of

species numbers and distributions (Turner et al., 2003). Such measurements can be

prohibitively expensive to collect directly. Underlying this assessment of ‘condition’ is the

assumption that certain key environmental parameters, which can be detected, will drive the

distribution and abundance of species across landscapes and determine how they occupy
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habitats (Turner et al., 2003). McElinny et al. (2005) state that the quantification of diversity

should be made through the identification of the structural attributes for a forest stand. An

effective and efficient biodiversity surrogate measure needs to be formed from an array of

different structural variables, some of which were identified as: foliage arrangement; canopy

cover; tree diameter; tree height; tree spacing; tree species; stand biomass; understorey

vegetation and deadwood.

Most management programmes to conserve biodiversity focus upon the creation of protected

areas. Conservation status is typically based on the assessment of landscape and ecosystem

level features such as habitat loss, habitat fragmentation, the size and number of large habitat

blocks, the degree of protection, and current potential threats (Noss, 1999). Loss of

biodiversity and ecosystem integrity is often experienced in conjunction with a number of

factors illustrating degenerative trends, for example: old forests have been replaced with

younger forests and plantations; structurally complex stands have been replaced by simplified

ones; large well connected patches have been replaced with smaller, more isolated patches;

natural fires have been suppressed; many miles of road have been built in what were

unbroken landscapes.

There are two general approaches to the measurement of biodiversity (Turner et al., 2003).

The first is the direct measurement of individual organisms, species assemblages, or

ecological communities. This depends upon the scale of measurement, for example surveying

species occurrence or absence from a sample region. Alternatively, there is the indirect

approach to monitoring biodiversity through the reliance on environmental parameters as

proxies. Consider for example, many species are restricted to discrete habitats, such as

woodland or grassland which can be identified at a broader scale. By combining information

about the habitat requirements of species with maps of landcover, estimates of potential

species ranges and patterns of species richness are available (Turner et al., 2003).

Lindenmayer et al. (2006) state that spatial connectivity between habitats should be

maintained, in addition to conservation of landscape heterogeneity and stand structural

complexity, in order to better guide biodiversity conservation, which again engages the idea

of the interplay between different scales.

Measuring progress or change of any kind requires the use of indicators. Typically forest

managers will consider indicator species. Lindenmayer et al. (2006) state that many
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indicators and criteria have been proposed to assess the sustainable management of forests;

however their scientific validity remains uncertain. Because the effects of forest disturbance,

such as logging, are often specific to particular species, sites, landscapes, regions and forest

types, management through the use of indicator species, focal species, or threshold levels of

vegetation cover are argued to be of limited generic value, controversial and difficult to select

dependent upon the species. In many cases, attributes of a species’ population, for example

demographics, would be more useful in validating indicators rather than as indicators

themselves (Noss, 1999).

Species loss is predominantly driven by habitat loss, and thus the overarching goal of

conservation management must be to prevent this. The conservation of forest biodiversity

will depend on the maintenance of habitat across a range of spatial scales. Newton et al.

(2009a) outline several key principles which must be considered in the scope of monitoring

for this objective. The first consideration is that of forest loss and fragmentation.

Deforestation is typically accompanied by substantial forest fragmentation. The changes are

associated with a decrease in percentage area of forest patches and an increase in isolation of

those patches. It is necessary to consider the factor of connectivity. This is the linkage of

habitats, communities and ecological processes at multiple spatial and temporal scales (Noss,

1999). Connectivity influences key biodiversity conservation processes, such as population

persistence, recovery and disturbance, the exchange of individuals and genes in a population,

and the occupancy of habitat patches (Lindenmayer et al., 2006; Newton et al., 2009a).

The characteristics of habitat edges are influenced by patterns of land use surrounding forest

fragments and can have a major impact on biodiversity by affecting ecological processes such

as dispersal, establishment, survival, and growth (Fuller, 2012; Newton et al., 2009a). Edge

effects influence a variety of processes, including seed rain, seed germination, removal and

predation, tree growth, animal movement and avian nest predation (Murcia, 1995). Newton et

al. (2009a) identified that edge effects were influenced by human disturbance within the

forest fragments, such as collection of firewood and livestock browsing. Indeed substantial

forest biodiversity loss can occur due to human disturbance within the fragments themselves,

through activities such as logging of timber, fuel wood cutting, livestock browsing, the

development of infrastructure and fire setting.
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Forest stand structural complexity embodies various stand attributes in addition to how they

are spatially arranged within stands. Such factors contributing to stand structural complexity

can include, for example, the diameter and age-class distributions of individual trees within

the stand, in relation to those trees which survive or are removed. Additional factors are the

spatial distribution of structural elements within the stand, the presence of large living trees,

the presence of deadwood, the presence of gaps within the stand and age since formation. The

vertical heterogeneity created from multiple or continuous canopy layers and horizontal

heterogeneity including foliage density, canopy openness, and horizontal patchiness of profile

types are of importance, for example these attributes have links to light penetration, and

providing resources to various animal species (Lindenmayer et al., 2006; Noss, 1999). This

structural complexity is critical for forest biodiversity conservation because it allows

organisms to persist where they would otherwise be eliminated and facilitates a more rapid

return of logged and regenerated stands to a suitable habitat condition for species which have

been displaced (Lindenmayer et al., 2006).

Tree species richness can be influenced by management activities and disturbance events.

Newton et al. (2009a) report that the total area, core area, edge length and proximity of forest

fragments were all negatively associated with mean species richness of pioneer species, and

positively associated with richness of forest interior species. Patch size appears to be the most

important attribute influencing different measures of species composition. Forest

fragmentation can also affect genetic variation within forest species, by influencing processes

of gene flow, inbreeding and genetic drift.

Velland et al. (2007) indicate that past disturbance and management may cause community

species composition across sites to become more or less homogenous. The author gives the

example of the alpha and beta diversity of forest plants growing on former agricultural fields

in contrast to older (ancient) forests in North-America and Europe. The presence of a number

of ecological filters to colonisation may exist at any stage of the colonisation process for new

sites. For example, recent forests may show reduced beta diversity if habitat specialists were

less successful colonists than generalist species. Strong relationships between species

isolation and species richness have been reported. Velland et al. (2007) present results

suggesting that these filters, including dispersal, lead to reduced alpha diversity in recent

forests and to homogenised species composition across the landscape. Human land uses

would appear to make enduring changes in the patterns of biodiversity at multiple scales,
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effectively decoupling species composition from environmental gradients (Devictor et al.,

2008).

Noss (1999) also reports a number of impacts which may occur following human

modifications to the environment and those related to climate change. Road construction for

example has been correlated highly with disturbance levels, and in the case of road

construction for the harvesting of timber, with habitat destruction. The invasion of exotic

species and their dispersal by vehicles and equipment can alter community composition,

cover and biomass levels. Increased air pollution, including low-level ozone, acid

precipitation and particulates has impacts upon biomass increments and tree productivity due

to changes in soil pH. and nutrient content. Direct damage to leaves and other tissues can

occur. Global warming is also recognised as a modifier of forest condition status due to

changes in temperature and moisture abundance. Forest systems may experience changes in

biomass levels, productivity and species distributions as a result (Read et al., 2009).

It should be noted that the increasing use of forests for recreation, such as the activities of

hiking, hunting, camping, etc. will alter the status of a forest site. Disturbance may take the

form of displacing wildlife, footpath erosion, vegetation damage, changes in ground-level

vegetation density and condition, and exotic species invasions (Noss, 1999).

It is recognised that ungulate herbivores can have a profound impact on the vegetation and

soils within forests (Fuller and Gill 2001). Damage caused through twig browsing and bark

peeling is an increasing problem in many European countries (Reimoser et al., 1999).

Browsing and grazing from wild ungulates have always played a role in determining the

structure and dynamics of natural ecological systems both in terms of their present day

influence on the functioning of those ecological communities and as a powerful selection

pressure in the original development of such systems (Putman, 1996).

Damage caused by large ungulates, such as deer, can occur at many levels, for example

through trampling, feeding on the fruit or germinating seedlings, reducing the seed source

and hampering natural regeneration, fraying, and through browsing or bark stripping of older

trees that have survived the recruitment stage (Putman, 1996; Reimoser et al., 1999). Heavy

grazing pressure can also result in dramatic changes in the composition and relative

abundance of species of the woodland floor, even reducing diversity (Kirby, 2001). Grazing
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does have positive effects via the maintenance of the heterogeneity of structure that many

conservation managers seek to mimic: such as the opening of clearings, treading-in of seeds

into the ground and their dispersal, and reducing canopy shade to permit the existence of

shade-intolerant species (Putman, 1996; Reimoser et al., 1999). Further variability may be

caused by the feeding of ungulates in one place and dunging in another, creating

discontinuities in nutrient flows which may be detrimental or beneficial. It should be noted

that wild herbivores, particularly deer, increase in population rapidly, often to the detriment

of woodland habitats due to overgrazing (Quine et al., 2011). A long term study into Denny

Wood in the New Forest, UK, a semi-ancient woodland, concluded that regeneration of tree

species ceased after 1964, principally due to heavy grazing and browsing by deer and ponies

(Mountford et al., 1999).

It can be argued that damage to forests is not solely dependent upon the number of ungulates

present in an area, but rather a combination of environmental factors. Such factors include:

the forest type, size of available area, availability of cover, habitat structure, and distance to

preferred forages, etc. Therefore, more damage can be anticipated in areas where the

‘attractiveness’ of an area is high, but forage availability is low (Putman, 1996).

2.1.2 Forestry definitions of condition
Common changes in forests in Europe and North America over the past two centuries in

addition to outright deforestation includes the loss of old forests, simplification of forest

structure, decreasing size of forest patches, increasing isolation of patches, disruption of

natural fire regimes, and increased road building, all of which have had a negative effect on

condition (Noss, 1999). These trends can be reversed, or at least slowed, through better

management practices.

As mentioned previously most conservation programmes have focused upon the creation of

protected areas (Lindenmayer et al., 2006). Forest ecosystems are also increasingly expected

to produce multiple goods and services, such as timber, biodiversity, water flows and

sequestered carbon. While many of these are not mutually exclusive, they cannot be

simultaneously maximised so management compromise is inevitable and this involves a great

deal of uncertainty (Horner et al., 2010). How management will in turn affect the condition of

the forest system is a question of prime importance.
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Rombouts et al. (2008) argues a definition of site condition where condition equates to

productivity. Commercial forestry organisations outline the need for sustainable forestry

(Treitz and Howarth, 1999), where the ability of the forest to sustain itself ecologically and

provide societal needs is what defines a healthy forest. Maintaining the balance between

forest sustainability and the production of goods and services is the challenge for managers of

forest sites. These components are intrinsically linked. Many organisations have developed

suites of indicators to monitor forest and environmental condition. The UK’s Forestry

Commission has a suite of ten broad indicator groups including air pollutants, water yield,

river habitat quality, and damage through wind and fire. However, the importance of each of

the indicator groups is not identical; importance is given to those representing the condition

of the trees themselves, as well as a reflection of the health of the wider forest environment

(Forestry Commission, 2011).

Initial site conditions and management practices have profound impacts on the final quality

of timber produced. Vellend et al. (2007) explore the impact of past management practices

from the clearance of forests for agriculture to the recovery and re-plantation of forests, and

its impacts upon the biodiversity patterns for a number of forests in Europe and the USA. The

findings from this research identify the importance of a number of factors such as soil

properties and the dispersal of seeds within the environment which can impact on beta

diversity. This is in part because dispersal plays such an integral part in forest

(re)colonisation.

Forest structure is manipulated in two fundamental ways in plantation forests, the first being

the initial planting density, and the second being the subsequent thinning operations

(Florence 2004). Horner et al. (2009) report that lower density planting produced stands with

higher mean and maximum stem diameters than higher density stands in an Australian forest

in proximity to the Murray River. Stand density is also manipulated routinely by thinning in

many forests to accelerate tree growth, minimise fire risk and restore forest structural

complexity (Horner et al., 2010). When stands are thinned before annual biomass production

has peaked, there is an opportunity to accelerate growth in the retained trees, increasing

crown expansion, diameter growth and the rate at which the stand collectively reaches

maturity. It should be noted that the presence of larger trees is associated with more hollows

and a wider range of hollow sizes than stands with smaller trees. Several studies have shown
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links between faunal diversity and the abundance of large tree hollows (Lada et al., 2007;

Newton, 1994).

The long term effects of thinning on habitat quality and standing above-ground carbon stocks

of forests is poorly understood (Horner et al., 2010). There have been a number of concerns

about the characteristics and properties of the timber to be harvested in the UK. According to

MacDonald and Hubert (2002), the general trend is for increasing knot sizes, reduced wood

densities, increased juvenile core size and higher percentages of compression wood. These

problems are associated with a progressive widening of initial spacing over the years and the

effects of wind exposure.

Reimoser et al. (1999) stated that an objective and realistic assessment of damage is difficult,

particularly as regards to browsing on natural regeneration. The problem often relates to the

absence of an operational target. Damage being an anthropocentric concept, it is necessary to

define a wanted and a current condition in order to determine whether ‘damage’ or merely an

impact or disturbance has occurred. Damage to forests, as opposed to impacts, embraces

concepts such as loss or reduction of increment, economic value, ecological stability,

diversity, etc.

Target values for regeneration may for example be set for different stand types, such as

setting the lowest acceptable number of tree stems or the distribution of tree species

(Reimoser et al., 1999). In the establishment of a damage threshold it is essential to

distinguish whether regeneration targets have been set, for example in terms of forest

inventory requirements (i.e. the optimisation of forest income) or in social terms (i.e. the

sustained protective forest function or landscape design). The effects of ungulates can best be

judged by comparing the lowest acceptable regeneration with and without ungulate impact,

e.g. by comparing inside and outside of an ungulate proof fence.
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2.2 Forest condition assessment
A primary requirement of forest management is to assess the status, condition, and

conservation value of the forest in question, at whatever spatial scale, relative to other forests

(Noss, 1999). Knowledge of what kind of forest occupied the same regions in history, prior to

intensive human activity, is important for the tracking of changes which have occurred and

aiding in the prediction of future events (Noss, 1999). Thus monitoring of forest

environments is a long-term process, often with no immediate results. Being fully aware of

forest status, conditions, trends and conservation value is an enormous task. The consensus to

make the process of assessment and monitoring less overwhelming and more practical to

forest managers is to determine measurable indicators that correspond to the elements of

forest condition, biodiversity, health, and sustainability that society finds valuable (Noss,

1999). Managers cannot measure everything of potential interest, thus the choice of what to

measure is critical.

For management of forest activities the operational units are often defined at the stand-level.

Stands are often the basic survey units for forest inventory. A stand is defined as a contiguous

group of trees sufficiently uniform in species composition, arrangement of age classes, site

quality and condition, to be a distinguishable unit (Pascual et al., 2008). At the scale of a

stand, condition indicators are usually placed into one of two categories: those based on the

identification of key species, and those based upon the identification of key structures

(McElhinny et al., 2005). It should be noted that some approaches utilise a combination of

both key species and key structures as indicators.

Measuring progress or change of any kind requires the use of indicators, for example the

identification of an indicator species. Selection of the best indicator species, or species

population, for the required purposes is difficult and controversial (Noss, 1999).

Nevertheless, it often makes sense to monitor species populations directly. Key species are

often defined as those most influenced by threatening processes, for example those taxon or

taxa most limited by dispersal abilities (Lindenmayer et al., 2006).

Suites of key species are often used for indicators when managing a landscape, each of which

is thought to be sensitive to a particular threatening process. There are serious flaws however;

suites of key species are presumed to act collectively as a surrogate for other elements of the



Chapter 2 – Literature review

18

biota, but a landscape managed for a given set of key species may not meet the requirements

of the remaining biota (Lindenmayer et al., 2006). Key species indicators may also be

hindered by the lack of scientific evidence to guide the reliable selection of indicators.

Indicators based upon species presence or absence data in isolation to structural variables

have had limited success because robust relationships between potential indicator species, or

groups of species, and habitat condition or even biodiversity have not been established

(Lindenmayer et al., 2006; McElhinny et al., 2005).

Key structures, or structural diversity, refers to the physical organisation or pattern of a

system, including the spatial patchwork of different physical conditions in a landscape,

habitat mosaics, species assemblages of different plant and animal communities, and genetic

composition of subpopulations (Stokland et al., 2003). Indicators based upon key structures

have been generating considerable interest. The rationale for this approach is that ecosystems

containing a variety of structural components are considered likely to have a variety of

resources and species that utilise these resources (McElhinny et al., 2005). Thus, there is

often a positive correlation between elements of condition and the measures of variety and/or

complexity of structural components within an ecosystem. From an ecological point of view,

forest structure at the stand-level is of special interest when considering disturbance

dynamics, growth stages and wildlife habitats (biodiversity issues) (Maltamo et al., 2005).

Forest structures vary within and between vegetation zones around the world and are greatly

influenced by silvicultural operations. They represent an indirect approach, as they show how

the woodland may be composed, but give no information on whether the available resources

are utilised (Christensen et al., 2004).

Tree and shrub species composition and structure are often cited as key indicators of the

quality of woodland habitat for a wide range of organisms (Hill and Thomson, 2005).

Additional characteristics such as woodland size, age, spatial arrangement, fragmentation,

past disturbance, past management regimes, species competition and climate all contribute.

Forest stand structure includes both vertical and horizontal layers. The former, concerns the

number of tree layers and understorey vegetation, while the latter covers the spatial pattern of

ground flora, trees and gaps. Additionally species richness is included (Maltamo et al., 2005;

Pascual et al., 2008).
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Simplification of species composition is also a concern, where structurally complex native

forests are converted to simplified secondary stands or plantations over time. Moreover,

fragmentation and isolation effects are of importance where remaining tracts of native forest

are small and separated by terrain that is hostile to many species and pose barriers to

movement (Noss, 1999; Vellend et al., 2007). The act of disturbance by other organisms

should also be considered (Zerger, et al., 2009).

Stand structure is commonly defined in terms of two components in the ecological literature –

stand structural attributes and stand structural complexity. The former can include measures

of:

 Abundance: e.g. the density of tree volume and deadwood (Horner et al., 2010; Kim et

al., 2009b).

 Relative abundance: e.g. foliage height density, DBH diversity, basal area of species

groups (McElhinny et al., 2005).

 Richness: e.g. overstorey species richness, shrub species richness, etc. (Cantarello and

Newton 2008).

 Size Variation: e.g. standard deviation of DBH.

 Spatial Variation: e.g. coefficient of variation of distance to nearest neighbour (Hill et

al., 2010; McElhinny et al., 2005).

Attributes that quantify variation are particularly important because these can also describe

habitat heterogeneity at the stand scale. Stand structural complexity is essentially a measure

of the number of different structural attributes present and their relative abundance.

McElhinny et al. (2005) state that structural complexity is used in preference to structural

diversity because the latter term is considered ambiguous. This reflects the work of a number

of authors in which a diversity measure, such as the Shannon-Weiner Index, has been used to

quantify a single attribute, such as variation in stem diameter. The quantity is then deemed to

be a measure of structural diversity and to be indicative of biological diversity. However, all

that has been quantified is one of many possible attributes.
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The overall richness of wildlife communities can be highly dependent on the three-

dimensional spatial pattern of vegetation, especially in systems where biomass accumulation

is significant (Lefsky et al., 2002). Individual bird species, in particular, have associations

with the three-dimensional features within forests (Fuller, 2012; MacArthur and MacArthur

1961). In addition, other functional aspects of forests, such as productivity, may be related to

forest structure.

As mentioned previously, Cantarello and Newton (2008) utilised four main groups of quality

indicators in their field work assessment, these are summarised in Table 2.1. In contrast Table

2.2 summarises an example from the JNCC guidelines for SSSI assessment.

Table 2.1 – Favourable conservation status indicators for terrestrial habitats (Cantarello and
Newton, 2008)

Key Factor: Indicators:
Forest Structure Number of tree species; basal area; mean stem diameter; tree

heights; number of saplings; and indices of native to foreign
tree species.

Dead Wood Volume of downed deadwood; volume of standing deadwood
(snag); and proportion of decay class.

Tree Regeneration Number of total seedlings; and indices of native to foreign
species.

Ground Vegetation The number of ground vegetation species.

Table 2.2 – Example JNCC guidelines for SSSI assessment (JNCC, 2004)
Attribute: Indicator Target:
Area The existence of ancient or 19th Century broadleaved woodland

and its extent.
Natural Processes and Structural
Development

No evidence of recent felling of native trees; little ground
disturbance; no evidence of recent planting; no evidence of
recent drainage/ditch maintenance; no evidence of forestry
activities; no evidence of essential safety work (e.g. felling);
canopy cover over 30-90%.

Regeneration Potential At least 1 native sapling within 30 minutes of walk start; oak
and beach

Composition Little or no non-native species in the canopy or shrub layers;
occasional (non-dominant) holly thickets (<50% ground cover).

Characteristic Features <55% trees >80 cm DBH showing severe stress or death
attributable to disease or pollution. Damage level inflicted by
wildlife; <10% soil surface poached or trampled; <50% of
vegetation more than 10cm high and <50% more than 40cm
high; <10 of vegetation heavily modified, improved or
exhibiting disturbed communities attributable to recreation
activities.
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2.2.1 Field based methods of forest condition assessment
Current assessment of woodland condition is primarily conducted via fieldwork. Because

there is no consensus concerning which indicator to use in a given situation for monitoring of

forest woodland condition, fieldwork campaigns can vary extensively between projects.

Many countries and organisations utilise a set of guidelines for the capture of information,

where methods can vary as long as the result is of a standard which can be compared

relatively to other sites. One such example in the UK is that of JNCC Common Standards

Monitoring (CSM) guidance (JNCC, 2004). The vast majority of woodlands within the UK

are managed in some form. It should be noted that the nature of management surrounding

these forests can also influence the objectives by which the fieldworkers judge the condition

of a particular site (JNCC, 2004).

2.2.1.1. Fieldwork construction
Quantification of forest structure in the field typically involves multiple measurements of

features such as stem sizes and densities, estimation of plant species composition, and light

penetration through the canopy. Fieldwork typically takes the form of establishing a number

of field plots throughout the study area where there are no obvious forest gradients

(Cantarello and Newton, 2008). A sample plot size can vary significantly between projects,

usually corresponding to a rectangular or circular area of 1ha or smaller, from within the

forest stand (Kim et al., 2009b; Zimble et al., 2003). The number of sample plots varies,

typically consisting of greater than ten permanent sample sites, covering all major structural

types or features of interest (Cantarello and Newton 2008; Kim et al., 2009b; Pesonen et al.,

2008). For extended research projects, mobile sample sites have been instituted (Pesonen et

al., 2008). Selection of plot location can be accomplished through a variety of different

sampling designs, or focussed around a feature of interest, such as the location of bird nesting

sites (Clawges et al., 2008). Sample plot locations are referenced to map coordinates,

commonly through Global Position System (GPS) devices (Cantarello and Newton, 2008;

Kim et al., 2009). Within each plot the condition indicator variables can be collected, some of

which are collected within a smaller sub-plot or transect within the main plot due to the

potentially huge amount of ground vegetation encountered, for example in the number of

ground flora species.
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Alternative fieldwork methods exist, such as the point-transect-based method, which is

appropriate for the estimation of population density of static objects, such as trees, in

inaccessible areas or when time is a limiting factor (Cantarello and Newton, 2008). Another

alternative is that of simple visual assessment; this method involves the surveyor completing

a questionnaire during a structured walk. Such a questionnaire can be designed, for example,

to implement JNCC CSM guidance for woodland habitats (JNCC, 2004).

2.2.1.2 Key-species sampling methods
When considering using key species as condition indicators, measurement must be

accomplished in a different manner. The most common method is to infer quality

retrospectively from bird breeding or territorial occupancy (Hinsley et al., 2009a; Hinsley et

al., 2002). This can be accomplished through producing a census of the species population

within the study area. For example territorial bird species were trapped and colour-ringed

over a period of six years by Broughton et al. (2006) in order to determine compositional and

structural characteristics of viable territories for the birds. Measurements were then taken

from the birds before release, such as weight, wingspan, age and gender. Additionally

assessments such as locations where singing or territorial disputes were observed were also

noted. Hinsley et al. (2006; 2009) utilised measurements from birds breeding in nest-boxes

located throughout Monks Wood, UK, where mean chick body mass for each brood was used

as an indicator of foraging conditions within the territory. Visual or auditory assessment has

also been used to make counts of bird populations within forests, recording species and sex

across multiple site visits to estimate population densities, e.g. Clawges et al. (2008).

2.2.1.3 Key-structures sampling methods
Traditional methods of deriving information on forest stands utilise sampling designs with

transects, or alternatively random or systematically selected plots so that the final stand

parameters can be derived based on statistical extrapolation (Wang et al., 2004). Even when

utilising remote sensing, all forest inventories require the use of a fieldwork component.

Typically fieldwork campaigns are designed to capture a representative range of

characteristics for the various trees within the sample area. Two of the major characteristics

are stem Diameter at Breast Height (DBH) and height of the main section of trunk.

Additional measures such as crown size, vegetative strata, tree age and species type can be

recorded (Thomas et al., 2008). Other environmental factors may also be recorded depending

on the purpose of the survey, such as soil type and climate (Campbell and Wynne 2011).
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These surveys are designed to ensure that all major allometric tree species associations are

captured for the given environment (Rosette et al., 2008; Thomas et al., 2008).

Various measures such as stem DBH and height can be taken in the field with the use of

clinometers and distance tape (Coops et al., 2004), and form the basis of calculating stand

metrics such as mean height, basal area and Lorey’s average height (Hall et al., 2005).

Recently more technologically advanced techniques have been applied, including GPS

receivers and laser rangefinders to determine the locations of trees and their heights

(Anderson et al., 2008). However, difficulties arise in determining tree height, as the apex can

often be obscured and even merged with another tree crown (Boudreau et al., 2008; Lucas et

al., 2008b). GPS receivers suffer positional inaccuracy within forests unless used with a large

antenna taller than the surrounding trees. The accessibility of the site is also an important

concern (Campbell and Wynne 2011). Site knowledge should also not be underestimated, as

often what is documented is related to the knowledge of the surveyor.

The field measures can then be used to develop allometric calculations to estimate

characteristics for other similar trees in the stand or ecosystem. For example canopy

structure, which is essentially the sum of the sizes, shapes, and relative placements of the tree

crowns in a forest stand, is central to many aspects of ecology (Purves et al., 2007). These

equations are typically nonlinear and relate measures of tree size (such as DBH, tree height,

canopy structure and crown area) to the dry weight of the above-ground (leaves, branches,

trunks) and/or below-ground (roots) components of biomass or the sum of these in total

(Lucas et al., 2008b; Purves et al., 2007). These allometric relationships are determined

typically for a particular species by destructively harvesting trees across the size range, as

observed in the field or derived from existing forest inventory data through statistical analysis

(Lucas et al., 2008b; Popescu et al., 2004). Tree height may be used as an input to allometric

equations, most however utilise DBH, which is typically measured 130cm above-ground

level. Problems arise with multi-stemmed individuals. In many cases DBH can be estimated

by its species-specific relationship with height (Lucas et al., 2008b). Crown area is sometimes

used as an input for allometric equations, particularly where individual trees support a large

number of stems, although obtaining reliable ground-based measures for crown areas is often

problematic (Lucas et al., 2008b).
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Allometric equations are typically site-specific. Different environmental factors can be more

or less conducive to tree growth and biomass accumulation (Drake et al., 2003). Problems

can also arise when considering differences with the species and when allometry is applied

outside of the range of the calibration data causing incorrect estimation of tree characteristics.

The major practical constraints are collecting sufficient data from which to determine these

allometric relationships (Koukoulas and Blackburn 2005a).

2.2.1.4 Additional metrics derived through instrumentation
Forest canopy structure represents the complex spatial arrangement of foliage, branches, and

boles of the trees; it has been a significant focus of research because of its influence on a

wide range of biophysical and ecological properties (Frazer et al., 2001). The relationship of

canopy structure and the temporal and spatial distribution of the incident understorey light

have been involved in the study of natural disturbance, forest succession, timber harvesting

and silvicultural prescriptions on the survival, pattern, and diversity of understorey plants and

trees. Numerous ground-based optical tools and techniques have been developed to measure

attributes of forest canopy structure. One optical method that has received increased attention

is hemispherical (fisheye) canopy photography, because of its unique ability to permanently

record the spatial properties of all visible canopy elements, and to rapidly predict seasonal

flux of direct and diffuse light through discrete openings in the canopy (Frazer et al., 2001;

Rautiainen et al., 2007).

One of the most crucial and most uncertain steps in the estimation of canopy structure metrics

from hemispherical photography is the thresholding stage, in which the image is segmented

into foreground (canopy) and background (sky) (Cescatti, 2007; Frazer et al., 2001). Owing

to the high number of factors affecting image grey levels within these photographs, for

example lens vignetting, gamma correction, heterogeneity in sky irradiance, etc., the

estimation of canopy variables is rather uncertain with current thresholding techniques. Both

manual and automatic segmentation techniques are highly dependent upon camera exposure

and operator experience, and therefore can produce rather subjective and non-repeatable

results. Cescatti (2007) proposes a solution for this issue, where the standard in-camera

logarithmic conversion (gamma correction) is replaced with a linear conversion of the sensor

analog signal. Thus the ability to acquire hemispherical photography with digital numbers

proportional to radiance opens new possibilities in the analysis of canopy structure and

microclimate, with important feedbacks in ecology and remote sensing.
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Alternatively, devices such as the LAI-2000 Plant Canopy Analyser (Li-Cor Inc. Nebraska,

USA) instrument can be used to estimate vegetative biophysical variables. The LAI-2000

requires measurements to be made from above and below the forest canopy, using a fisheye

sensor to measure light interception at five angles, from which LAI can be estimated using a

model of radiative transfer within the vegetation canopy. Other biophysical variables can be

extracted such as foliage clumping and solar radiation regimes, and are reviewed elsewhere

(Cescatti, 2007; Frazer et al., 2001; Rautiainen et al., 2010; Rautiainen et al., 2007).

2.2.2 Woodland condition index construction
Woodland structural diversity or complexity is defined as the composition of biotic and

abiotic components in woodland ecosystems (Lexer et al., 2000), the specific arrangement of

components within that system (Gadow, 1999), or as their positioning and combination

(Heupler, 1982 as cited in Lübbers, 1999). The structure can also be characterised

horizontally, i.e. the spatial distribution of the individuals (Zenner, 1999), and vertically in

their height differentiation. An alternative is to define the structure as spatial distribution,

mixture and differentiation of trees within a woodland ecosystem.

A number of methods exist to describe the structure and composition of woodlands utilising

fieldwork captured data as input. The ‘classical’ methods of conveying a qualitative

description either verbally or graphically may not be sufficient to reveal subtle differences

(Kint et al., 2000). Therefore a number of quantitative methods have been proposed which

should overcome this issue, as described in McElhinny et al. (2005), Neumann and Starlinger

(2001) and Merganič et al. (2012).

A stand-level quantitative index of structural complexity is a mathematical construct which

summarises the effects of two or more structural attributes in a single index (numeric) value

(McElhinny et al., 2005). It is believed that as a summary value for a larger group of

structural metrics, such an index could function as a reliable indicator of stand-level

biodiversity and provide a means to rank stands in terms of their potential contribution to

biodiversity (Neumann and Starlinger, 2001).
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It is worthy of note that some authors have erroneously used a diversity measure, such as

Shannon-Weiner index to quantify a single attribute and have then termed this attribute an

index of structural complexity, when they have quantified only one of many possible

attributes (McElhinny et al., 2005).

There is little consensus in the literature as to how to construct a complexity index, there is

also a tendency for researchers to tailor their indices to suit their immediate study needs. As a

result the surrounding literature contains a variety of different indices with no single index

preferred over the others. The most prominent indices are summarised in Table 2.3; a

selection of which are described in further detail below.

2.2.2.1 Horizontal diversity indices
The indices characterising woodland structure usually compare a hypothetical spatial

distribution with the real situation (Neumann and Starlinger, 2001). Probably the most well-

known index is the aggregation index (Clark and Evans, 1954), which describes the

horizontal tree distribution pattern. It is a measure of the degree to which a forest stand

deviates from a Poisson forest, where all individuals are distributed randomly (Tomppo,

1986). It is defined as the ratio of the observed mean distance to the expected mean distance

if individuals were randomly distributed.

2.2.2.2 Vertical diversity indices
While there are many indices which measure horizontal structure, there are only a few for

vertical structure. One such example is the index of vertical evenness, as put forward in

Neumann and Starlinger (2001). The index utilises a Shannon index and stratification of

individual tree heights into height layers, which characterise the vertical distribution of

crown-horizontal coverage within a stand.

2.2.2.3 Complex diversity indices
Complex indices combine several biodiversity components in one measure. These indices are

usually based upon an additive approach – where the final value is obtained as a sum of the

values of individual biodiversity components. One such example of assessing biodiversity

using a simple scoring method was outlined in Van Dem Meerschaut and Vanderkhove

(1998). The authors developed a stand-scale forest biodiversity index based upon available

data from forest inventory. The index combines four main aspects of forest ecosystem
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biodiversity: forest structure, woody and herbaceous layer composition, and deadwood. Each

aspect contains a set of indicators, for example forest structure is defined by canopy closure,

stand age, number of stories, and spatial tree species mixture. The indicators are given a score

determined on the basis of common agreement of their value. The sum of the eighteen scores

(max 100) is the index value.

Table 2.3 – Indices used to quantify structural complexity of woodlands
Index: Number of input

attributes:
Description:

Old-growth index (Acker et al.,
1998) 4 Measures the degree of similarity between old-

growth Douglas fir conditions.
Additive index called the LLNS
diversity index (Lähde et al.,
1999)[The index name is composed
of the four authors initials]

8 Distinguishes between the successional stages of
Finnish boreal forest.

Biodiversity index (Van Dem
Meerschaut and Vanderkhove,
1998)

18
Used to characterise biodiversity in Belgian
forests. Attributes benchmarked against levels in
forest reserves.

Vegetation condition score
(Parkeset al., 2003 *1, Oliver and
Parkes, 2003 *2, Gibbons et al.,
2004 *3)

8*1*2, or 10*3
Assesses vegetation condition in temperate
Australian ecosystems. Attributes benchmarked
at the scale of vegetation community.

Rapid ecological assessment index
(Koop et al., 1994) 9 Attribute levels benchmarked against levels in

unlogged natural forests.

Extended Shannon-Weiner index
(Staudhammer and Lemay 2001) 3

Uses an averaging system to extend the
Shannon-Weiner index to height, DBH and
species abundance.

Index of structural complexity
(Holdridge, 1967, cited in
Neumann and Starlinger, 2001)

4
Based on traditional stand parameters, which are
multiplied together. Sensitive to the number of
species.

Stand diversity index (Jaehne and
Dohrenbuusch, 1997, cited in
Neumann and Starlinger, 2001)

4 Combines measures for the variation in species,
tree spacing, DBH, and crown size.

Structural complexity index
(Zenner, 2000) 2 Measures height variation based on tree height

and spatial arrangement of trees.
Structure index based on variance
(STVI) (Staudhammer and LeMay,
2001)

2 Based on covariance of height and DBH.
Independent of height or DBH classes.

Cantarello and Newton’s (2008)
index of ecological indicators 17

Used to characterise the ecological condition of
UK and Italian woodlands in line with Natura
2000 guidelines. Benchmarked against
documented (semi-ancient) broadleaved
woodland.

Aggregation index (Clark and
Evans, 1954) 2

Describes the horizontal distribution of trees
using the relation of the mean distance between
the reference tree and its nearest neighbour.

Diameter differentiation index
(Füldner, 1995 cited in Vorčáket
al., 2006)

3
Tree differentiation within a stand. The index
quantifies the differentiation between thinner and
thicker DBH between neighbouring trees.
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2.2.2.4 Selection of indices to test

These indices vary in terms of number of inputs and computational complexity; for example

some indices focus on a single facet of the woodland environment, such as the spacing of tree

stems, whereas others utilise multiple facets (up to 17) such as species composition, tree size,

size variability, the presence of deadwood and the regeneration of species. It should be noted

that some indices require the input of area-based or individual tree-based metrics. Thus, a

subset of indices was selected from the horizontal diversity, vertical diversity, and complex

diversity index types for use in this project which represent a range of different inputs and

computational complexity.

These indices were: (i) the Clark-Evans aggregation (Clark and Evans, 1954); (ii) tree

diameter differentiation (Füldner, 1995 cited in Vorčák et al., 2006); (iii) vertical evenness

(Neumann and Starlinger, 2001); (iv) complexity (Holdridge, 1967); (v) complex stand

diversity index (Jaehne and Dohrenbusch, 1997, cited in Newmann and Starlinger); and (vi)

the scoring based index developed by Cantarello and Newton (2008). These indices present

variation in terms of number of inputs and calculation complexity. Each of these indices will

be described in detail in section 4.1.3.

2.2.3 Potential issues with the fieldwork approach

The results of fieldwork are reliant on the judgement of the person carrying out the

assessment (JNCC, 2004). Often visual or qualitative assessments are made, rather than

quantitative measurements (Newton et al., 2009b). This adds concerns over the subjectivity

of data capture, as this will vary for a single person depending on the abilities and bias of the

surveyor.

As mentioned previously, it is impossible for the researcher to measure every possible thing

within the environment. The scope of measurement of potential indicators and the spatial

extents in which to record them must include substantial consideration of costs in terms of

both labour and time (Aplin, 2005). Ecosystems are in a constant state of change, fieldwork

must be planned in a manner to minimise temporal delay between data collected from

different areas in order to be representative of the site conditions as a whole at a given time.

Datasets recorded years apart could contain drastically different information.
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Not including destructive methods of data capture, fieldwork can potentially be disruptive or

damaging to organisms or environments within field plot areas, for example through the

potential trampling of vegetation or the unintentional movement of organisms which may

colonise a site. Another point to consider is the representativeness of the sample plot to the

whole of the area under investigation. Additionally in some situations access to a specific

area may be an issue, for example due to inaccessible terrain or land ownership (Campbell

and Wynne, 2011).

2.2.4 Assessment of forest condition within this project
Due to the differences in the definitions of woodland condition between different

management objectives it is necessary to define what condition is in the context of this

research project and to identify the critical environmental metrics necessary in order to assess

it.

2.2.4.1 Woodland condition definition

Condition can be defined according to compositional and structural attributes, evidence of

natural turnover and anthropogenic influences. For the composition attributes, tree species

richness and the presence of native species are considered necessary for condition

assessment. For the structural components, the density of individual trees, tree size, and

variation in size are considered necessary. Natural turnover refers to the presence of

regenerating tree species (seedlings and saplings) and native regenerating trees, in addition to

the availability of dead material. Anthropogenic influences such as disturbance and damage

are linked to the previously mentioned attributes. However disturbance and damage is

difficult to quantify, and therefore condition assessment in this project will focus upon

compositional, structural, and natural turnover attributes. Thus, a site which optimises each of

these facets (e.g. large tree sizes with high species richness), relative to one another, would

constitute a site of high value or good condition.

2.2.4.2 Identification of required field metrics

The previous sections have highlighted the need for and examples of field condition

indicators for various forest structural and compositional elements. In reference to objective

one of this research project, a listing of forest condition indicators considered important in

both the academic and grey literature are presented in Table 2.4. The following sections of

this literature review will focus upon identifying examples of airborne remote sensing based
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research relevant to the extraction and the estimation of those relevant forest indicator metrics

in order to complete objective two.

Condition monitoring requirements in the context of this thesis are therefore defined as

methods capable of reporting on each of the various composition and structural attributes

reported in Table 2.4. The list of required monitoring attributes satisfies both forestry and

ecological information requirements. Therefore, the remainder of this literature review will

identify the remote sensing technologies and techniques which offer the potential to satisfy

the information requirements of assessing forest condition.

Table 2.4 – A listing of forest condition indicators assessed through field operations
No. Indicator name Description Authors
Stand structure
1 Stem density Composition and density will have a primary

influence on woodland structure and composition at
lower vertical levels via shading and the abundance
and the distribution of gaps.

(Cantarello and
Newton 2008)

2 Tree size Tree size is typically quantified in terms of mean
DBH and basal area. Biomass can also be
calculated.
DBH generally increases with stand age and is
generally used to discriminate between successional
stages in pine and boreal forests. Stand basal area is
an attribute directly related to mean DBH. It is also
indicative of stand volume and biomass.

(Cantarello and
Newton, 2008)
(McElhinnyet al.,
2005)
(Vorčák et al., 2006)
(Van Den
Meersschaut and
Vandekerhove, 1998)

3 Number of storeys Also known as canopy layers or strata.
Multi-layered stands are expected to increase the
diversity of habitat niches within stands.
There are also links to light penetration through the
canopy.

(Van Den
Meersschaut and
Vandekerhove, 1998)
(McElhinny et al.,
2005)
(Neumann and
Starlinger, 2001)

4 Canopy closure Defined as the proportion of the stand covered by
live crown, where the crown is often considered as
an opaque object.
There are also links to light penetration through the
canopy.

(Van Den
Meersschaut and
Vandekerhove, 1998)
(McElhinny et al.,
2005)

5 Average height (m) Links have been made between successional stages,
the number of vertical strata and stand biomass.
Tree height has also been used as a surrogate for
tree age/maturity. Older trees are more likely to
produce various resources for the local
environment.

(Cantarello and
Newton, 2008)
(McElhinny et
al,2005)
(Hinsley et al., 2006)

6 Tree spacing Stands with lower tree spacing or which have been
thinned produce larger trees more quickly than
denser, non-thinned stands.

(Horner et al., 2010)
(Kim et al., 2009a)
(Vorčák et al., 2006)
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Table 2.4 (continued)
7 Tree crown dimensions

(e.g. crown horizontal
area, depth, and height
to the first live branch)

Crown dimensions are strongly correlated with
stem diameters and, therefore, to forest volume and
biomass.
Competition between trees within denser stands
may reduce the size of the live crown, and by
extension, stem diameters.
Crown sizes have links to total photosynthetic
potential and light penetration through the canopy.

(Kalliovirta and
Tokola 2005)
(Popescu and Zhao
2008)
(Jaehne and
Dohrenbusch, 1997, in
Newmann and
Starlinger, 2001)

Stand composition
1 Number of tree species Overstorey trees will influence the availability to

the understorey of other resources, such as water
and nutrients, and can modify the chemical
characteristics of the litter layer, which in turn can
affect the diversity of the understorey.

(Van Den
Meersschaut and
Vandekerhove, 1998)
(Hill et al., 2010)
(Noss, 1990)

2 Tree species diversity Species diversity as a composition which refers to
the identity and variety of elements in a population
includes species lists and measures of species
diversity and genetic diversity. An example is the
Shannon-Weiner index.

(Cantarello and
Newton, 2008)
(Van Den
Meersschaut and
Vandekerhove, 1998)

Deadwood
1 Volume of downed

deadwood
The importance of deadwood for biodiversity in
forests is high; this is mainly due to its role in
nutrient cycling and species habitation.
Thinned timber which has been left on the ground
has been found to produce additional biodiversity
benefits. Slow decomposing woody material may
provide additional carbon storage.

(Cantarello and
Newton, 2008)
(Pesonen et al., 2008)
(Horner et al., 2010)
(Van Den
Meersschaut and
Vandekerhove, 1998)

4 Volume of standing
deadwood

Standing dead trees can be an important source for
tree hollows which are of importance to species
habitation and nutrient cycling.

(Cantarello and
Newton, 2008)
(Pesonen et al., 2008)
(Van Den
Meersschaut and
Vandekerhove, 1998)

Regeneration of trees
1 Number and

composition of total
saplings and seedlings

Composition and density will have a primary
influence on woodland structure and composition at
lower levels via shading and the abundance and
distribution of gaps.
Regeneration is mainly of interest for future
biodiversity, however because of its sensitivity for
silvicultural measures, it is an important parameter
for evaluating the impact of forest management.

(Cantarello and
Newton, 2008)
(Van Den
Meersschaut and
Vandekerhove, 1998)

Ground Vegetation
1 Number of vascular

plant species,
bryophytes species and
total ground vegetative
cover

The diversity of vascular plants, bryophytes and
proportional cover are indicators of biodiversity.
Vascular plants host specialised animal species and
thus have a link to faunal diversity. Bryophytes can
act very quickly to changing environmental
conditions.

(Cantarello and
Newton, 2008)
(Van Den
Meersschaut and
Vandekerhove, 1998)
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2.3 Applications of remote sensing for forest condition assessment
The use of remote sensing data in ecological studies has been relatively limited (Newton et

al., 2009b). Owing to the spatially heterogeneous nature of landscapes, ecological approaches

can potentially be applied at a variety of scales to a wide range of different environments.

Ecology involves the investigation of organisms in their environmental setting. These

investigations require spatially explicit data. Traditionally ecological data are collected

through manual field observations, as described in sections 2.1 and 2.2. The benefit of this

approach can be high accuracy because of its labour-intensive nature, but it is generally

impractical for anything other than local scale studies (Aplin, 2005; Vierling et al., 2008).

However, ecological analysis can extend well beyond the local scale and there is considerable

need for, and interest in, ecological investigation at wider spatial scales (Newton et al.,

2009b; Turner et al., 2003). Remote sensing techniques have consequently become more

frequent in many ecological investigations, providing the only realistic, cost-effective means

of acquiring data over large areas (Ker and Ostrovsky, 2003). Airborne and spaceborne

remote sensing technologies are recognised as powerful tools to acquire detailed and synoptic

data on various landcover types. To date however, remote sensing has seen limited uptake in

the discipline of ecology. The role of remote sensing in landscape ecology might be

strengthened by greater integration of diverse remote sensing data with a broader range of

ecological data (e.g. beyond species presence/absence), and by increased recognition of the

value of remote sensing beyond landcover mapping or pattern description (Newton et al.,

2009b).

The reporting of forest habitat status requires detailed knowledge of many aspects of habitats

at multiple spatial levels. The techniques commonly used for assessing forest environments in

the UK for multiple land uses are field survey and aerial photography (Falkowski et al.,

2009b). Aerial photography is chiefly used by the Forestry Commission for inventory

purposes, commonly through manual interpretation of the imagery. Both of these techniques

have distinct disadvantages for determining measures of vegetation structure, composition,

and spatial metrics at larger (landscape) scales.
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Ground surveys utilise sampling designs to select plots where details of woodland condition

are recorded; these parameters are then extrapolated up to stand-level and above (Wang et al.,

2004). Ground survey information is typically detailed, covering many attributes such as

vegetation types, structure, abundances, dead materials and assessment of vegetative growth

(Cantarello and Newton, 2008). Regardless of sampling design, ground survey is expensive,

time consuming and limited by those features encountered in the sample plots (MacArthur

and MacArthur 1961; McRoberts et al., 2003). Additionally, many vegetation structural

elements are also often out of reach of ground sampling.

Aerial photography however can cover vast areas, in the order of kilometres, in a fraction of

the time fieldwork can be accomplished. Measurements from air photos are made manually,

which is time consuming and prone to being inconsistent between interpreters (Culvenor,

2002; Koukoulas and Blackburn, 2005a). Another major limitation is the inability to see

through the tree canopy, thus only inferences of tree height and structure can be made.

Monitoring, conservation and management of forests are hindered by the lack of spatially and

temporally extensive information on tree species and floristic composition, and are further

hindered by prohibitive costs, site inaccessibility and lack of the ability to measure attributes

in an objective and repeatable manner. Additionally measurements such as vertical structure,

biomass and species composition are difficult to extrapolate to the landscape scale because of

the complexity of the system (Lee et al., 2004). Remote sensing technologies have facilitated

considerable advances in the modelling, mapping, and understanding of ecosystems. Typical

applications involve either aerial photography or satellite imagery, such as that of Landsat

Thematic Mapper or to a lesser degree active radar sensors (Lefsky et al., 2002). These types

of sensors have been proven to be satisfactory for many ecological applications, and enable

researchers to analyse spatial patterns. Although Synthetic Aperture Radar (SAR) offers

promise for identifying sparse vegetation and mapping vegetation in floristically simple

landscapes, this technique is too insensitive to high biomass levels, and is therefore

unsuitable for mapping some types of forest vegetation (Rignot et al., 1994; Smith et al.,

1994; Waring et al., 1995).
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However, conventional sensors have significant limitations for ecological applications, in

terms of the spatial resolution and the amount of information which can be extracted. The

sensitivity and accuracy of both spectral and Radar devices have been shown to fail with

increasing above-ground biomass and leaf area index (LAI) levels. Optical data in particular

is limited to only representing two-dimensional spatial patterns.

With the advent of fine-scale spectral and spatial resolution remote sensing technologies

alternatives for the retrieval of forest floristic and structural information can be realised

(Lucas et al., 2008a). The presence of specific organisms and overall species richness is

strongly dependent on the three-dimensional spatial pattern of vegetation. For example, bird

species in particular are often associated with specific three-dimensional structural features

within forest environments (Hinsley et al., 2002; 2009a). In addition, such remote sensing

capabilities can reduce the amount of field work necessary and fulfil the needs of special

purpose surveys (Leckie et al., 2003b).

To date many of the remote sensing studies within the academic literature have focused upon

specific issues or the extraction of a selection of attributes, where not all of them are relevant

to the assessment of forest condition. Only a limited number of studies have been aimed at

assessing forest condition. A number of recent studies have attempted to map one of the key

components of condition, for example the volume of standing and fallen deadwood (Mücke et

al., 2012), or have attempted to assign a basic three-tier classification through the

identification of species richness, vegetation height and patch connectivity (Simonson et al.,

2013). Thus they have been limited to a single potential component or to a relatively coarse

scale with a basic classification

What follows is an overview of the surrounding remote sensing literature, with examples of

research into extracting metrics identified as indicators of forest condition utilising two of the

most promising digital data sources, namely passive optical spectral sensors and active

LiDAR sensors.
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2.3.1 Multispectral and hyperspectral sensors
Hyperspectral sensors are a passive sensor technology whereby images of a scene are

collected in tens to hundreds of narrow spectral bands nearly simultaneously (Campbell and

Wynne, 2011). They represent the next step in the spectral dimension of the evolution of

multispectral imaging radiometers. The term hyperspectral usually refers to an instrument,

whose spectral bands are constrained to the region of solar illumination, i.e., visible through

shortwave infrared and in the remote sensing context has an observing platform that is either

airborne or spaceborne. The data collected are often termed an ‘image cube’ where the two

spatial dimensions are joined by a third ‘spectral dimension’.

Multiple airborne sensor designs exist, such as optical-mechanical scanners and charged-

coupled devices (Campbell and Wynne, 2011). Two examples of well-established aircraft

mounted sensors are the Compact Airborne Spectrographic Imager (CASI) and Airborne

Visible/Infrared Imaging Spectrometer (AVRIS) (Lucas et al., 2008a). A review of the

specific technology is beyond the scope of this project, but a comprehensive guide is

available in Campbell and Wynne (2011). These sensors are coupled with differential Global

Positioning Systems (GPS) to provide an aircraft inertial measurement data; this is required

in later stages when the imagery is processed (Campbell and Wynne, 2011).

There are two main optical sensor types: multispectral and hyperspectral. The multispectral

sensor records reflectance at the sensor through several broadly defined spectral channels,

typically 3 to 15 (Campbell and Wynne, 2011). Hyperspectral sensors expand on the capacity

of multispectral sensors, by allowing the detection of a greater number of spectral bands,

which can have hundreds of narrowly defined spectral channels (Lefsky et al., 2001). Spatial

resolution for both systems can vary between centimetres and tens of metres depending upon

the device and operating platform.

High spatial resolution imagery in which individual trees can be separated is necessary for

forestry management; current airborne optical sensors can potentially perform this role in

terms of spectral and spatial resolution (Clark et al., 2005; Leckie et al., 2003a). Success in a

number of fields has been presented using hyperspectral sensors for determining species-level

abundance patterns in a variety of biomes (Zhang et al., 2006).
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The following sections identify those multi or hyperspectral remote sensing case-studies

which extract or estimate the forest condition indicator metrics as stated in Table 2.4.

2.3.1.1 Forest structure
The majority of studies which estimate biophysical variables from multi and hyperspectral

remotely sensed data have used empirical techniques to relate spectral data and various

derivatives to biophysical parameters. If biophysical parameters are strongly correlated with

remotely sensed radiance data, then these data can be used to predict those biophysical

characteristics over large areas (Treitz and Howarth, 1999).

Franklin et al. (2001) utilised a hierarchical classification to identify species composition in

some 30 stands in New Brunswick, Canada. Utilising multispectral data from a CASI-2

sensor, stands of differing species composition, crown closure and stem density were

classified using a combination of parcel-based texture analysis and standard pixel-based

nearest-neighbour spectral classification algorithms. Classification accuracy increased from

54% to 75% by the inclusion of image texture. Influences of shadowing in stands of a

different structure create different texture patterns in different stem densities, even if they

have the same species composition. Airborne spectral data can be used to derive surrogates

for stand structure, but cannot supply direct measurements of canopy height and surface

roughness, or estimates of tree stem diameter or timber volume.

Optical sensors with high enough spatial resolution have been demonstrated to estimate

canopy characteristics of crown diameter, crown closure, and stand density. In some cases

automated methods have been utilised to extract individual tree crown (ITC) information

from optical imagery, such as that used in Bunting and Lucas (2006) in Queensland,

Australia. ITCs were delineated using a spectral index created from CASI multispectral bands

to discriminate forest and non-forest vegetation, known as the forest discrimination index

(FDI) and an automated watershed segmentation technique was used to identify tree crowns

and tree clusters. Tree locations, species and crown dimensions were then extracted. This

approach provided accuracies of >~70% for individual trees and clusters of trees of the same

species, with lower accuracies associated with denser stands containing multiple canopy

layers. Similarly automated methods can be applied to delineate forest stands (Leckie et al.,

2003b).
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The vast majority of studies which estimate biophysical variables from optical data have used

empirical techniques to relate spectral data to biophysical parameters. Remotely sensed

radiance data can be used to predict those biophysical characteristics over large areas.

Spectral index-based approaches have been used to estimate vegetation parameters such as

LAI and biomass (Asner, 1998).

Plant health and vigour have been examined through the use of high spectral resolution

remote sensing, whereby sensitive features within the returned spectra are identified, such as

the ‘green peak’ and ‘red-edge’ which are located within the spectral curve (Treitz and

Howarth, 1999). Examples of insensitive features can correspond to the ‘chlorophyll well’ or

the ‘near-infrared plateau’ within the spectral curve for vegetation responses. Broad

waveband sampling, such as that in many multispectral systems, can easily combine the

reflectance from narrow sensitive and insensitive features, masking out the response of

sensitive features. Developments in hyperspectral sensors have reduced this problem (Lefsky

et al., 2001).

Reflectance in the visible (400-700nm) and the near-infrared (700-2500nm) portions of the

electro-magnetic spectrum is most important in the detection of vegetation stress, since

changes in leaf chlorophyll and/or water content significantly affect leaf reflectance (Treitz

and Howarth, 1999). Work by Pu et al. (2008) utilised CASI hyperspectral imagery to detect

mortality and vegetation moisture stress caused by hardwood oak disease, suspecting that the

foliage of the infected trees, even if appearing green, had a different water and biochemical

status as compared with healthy leaves. The spectral difference between healthy and stressed

oak leaves may be slight however. Given a traditional classification strategy, the separation

of healthy from non-healthy trees was almost impossible. Using a multilevel classification

and principle component analysis for the visible region and NIR bands, living and dead

vegetation could be determined to 80% accuracy, while separation of non-stressed oak trees

was accurate to 76%. Levels of accuracy were influenced by levels of shade and shadow, in

addition to the timing of imagery acquisition.
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Airborne optical remote sensing has well-developed and understood techniques for vegetation

mapping, following the development of technologies and techniques over the past 30 years

for forest ecosystem management applications. This development has produced mature

techniques ready for implementation in the management of forest resources. Examples of

established techniques include spectral data transformations, typically vegetation indices,

often used to identify vegetation (Bork and Su, 2007).

A common assumption with spectral indices is that the transformations of spectral band

reflectance are more closely correlated with plant biophysical qualities and are generally less

sensitive to external variables such as solar zenith angle (Treitz and Howarth, 1999). A

frequently used index is the normalised difference vegetation index (NDVI) contrasting

optimum reflection and absorption characteristics, although other indices assist in vegetation

and soil identification (Bork and Su, 2007), often being applied to satellite or large scale

multispectral imagery. Along with the NDVI, the most common vegetation indices utilise the

information content of the red and near-infrared canopy reflectance, being highly correlated

with green-leaf biomass. Table 2.5 lists the most commonly referred to spectral indices cited

in the surrounding literature.

Estimating leaf area index (LAI) from remote sensing relies upon the unique spectral

response of green leaves in contrast to other land surface materials. LAI is a standard

expression for leaf area of a plant community and is generally defined as the total leaf area

per unit of ground cover. LAI has been found to have close associations with light

interception, gas exchange, carbon flux, photosynthesis and biomass production (Treitz and

Howarth 1999; Zheng and Moskal 2009). Zheng and Moskal (2009) mention that a number

of spectral indices have been used to extract estimates of LAI, typically from passive satellite

remote sensing. In addition to NDVI, the enhanced vegetation index (EVI), and reduced

simple ratio (RSR) have been used. One major issue of retrieving LAI from vegetation

indices based on the different band combinations from multi or hyperspectral remote sensing

is saturation at high LAI, which means the relationship between an index and LAI will not

increase linearly (Zheng and Moskal, 2009).
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Another use of spectral indices is the estimation of chlorophyll concentrations within the

forest canopy, again utilising bands in the narrow visible and near infrared (Dash and Curran,

2004). Chlorophyll is an important foliar chemical and the content within a canopy is related

positively to both the productivity of that vegetation and the depth and width of the

chlorophyll absorption feature in the reflectance spectra. The position of this spectral

absorption feature influences the position of the red edge feature, moving it to longer

wavelengths. Thomas et al. (2008) investigate twenty such indices which have demonstrated

strong relationships to chlorophyll content in complex mixed wood forest canopies. Each of

these indices was combined with a LiDAR derived canopy height model and compared using

regression analysis. Many of those indices proved to be insufficient in mixed forest, but

proved effective in single species forest. With the inclusion of height data the relationship

between index and chlorophyll was strengthened.

Spectral data have been used to model the movement of different animal species and foraging

dynamics, for example Mongolian gazelles (Procapragutturosa), using NDVI-based

estimators, derived from 16 day composite satellite MODIS imagery. Such measures of

landscape resistance based on habitat characteristics could help to explain gene flow in the

species (Mueller et al., 2008). By estimating local environmental conditions, researchers have

been able to predict the likelihood of animal species presence (Geffen et al., 2004; Pilot et al.,

2006). Thus, spectral data could be a convenient way of characterising individual plot-scale

areas or entire landscapes in terms of their environmental characteristics, and ultimately to

aid studies in adaptive landscape genetics.
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Table 2.5 – A list of the most common vegetation indices derived from spectral imagery
Index: Description: Authors:

Greenness – High pixel values indicate high proportions of green biomass

Normalized Difference
Vegetation Index
(NDVI)

Normalized difference of green leaf scattering in near-infrared,
chlorophyll absorption in red wavelengths.

(Jackson et al.,
1983; Rouse et al.,
1973; Sellers,
1985; Tucker,
1979)

Simple Ratio Index
(SRI)

Ratio of green leaf scattering in near-infrared, chlorophyll
absorption in red wavelengths.

(Rouse et al.,1973;
Tucker, 1979;
Sellers, 1985)

Red Edge Normalized
Difference Vegetation
Index (RENDVI)

A modification of the NDVI using reflectance measurements
along the red edge.

(Gitelson and
Merzlyak, 1994;
Sims and Gamon,
2002)

Vogelmann Red Edge
Index 1 (VOG1)

A shoulder of the RED-to-NIR transition that is indicative of
canopy stress.

(Vogelmann et al.,
1993)

Red Edge Position
Index (REP)

The location of the maximum derivative in near-infrared
transition, which is sensitive to chlorophyll concentration.

(Curran et al.,
1995)

Light Use Efficiency – A measure of the efficiency with which vegetation is able to use incident light for
photosynthesis.

Photochemical
Reflectance Index
(PRI)

Useful to estimate absorption by leaf carotenoids (especially
xanthophyll) pigments, leaf stress, and carbon dioxide uptake.

(Gamon, 1992)

Structure Insensitive
Pigment Index (SIPI)

Indicator of leaf pigment concentrations normalized for
variations in overall canopy structure and foliage content.

(Penuelas, 1995)

Dry or Senescent Carbon – Provides an estimate of the amount of carbon in dry states of lignin and cellulose

Normalized Difference
Lignin Index (NDLI)

Detects leaf lignin increases at the 1754 nm feature relative to
the 1680 nm canopy structure region.

(Serrano et al.,
2002)

Cellulose Absorption
Index (CAI)

Detects absorption features due to cellulose above 2000 nm
wavelength.

(Daughtry et al.,
2004)

Leaf Pigments – Designed to provide a measure of stress-related pigments present in vegetation.

Carotenoid
Reflectance Index 1
(CRI1)

Detects a relative difference in absorption indicative of changes
in leaf total carotenoid concentration relative to chlorophyll
concentration.

(Gitelson et al.,
2002)

Anthocyanin
Reflectance Index 1
(ARI1)

Changes in green-wavelength absorption relative to red-
wavelength absorption indicating leaf anthocyanins.

(Gitelson et al.,
2001)

Canopy Water Content – Applications include canopy stress analysis, productivity prediction and modelling,
fire hazard condition analysis, cropland management, and studies of ecosystem physiology

Water Band Index
(WBI)

Absorption intensity at 900 nm increases with canopy water
content.

(Penuelas et al.,
1995)
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2.3.1.2 Forest composition
The developments in high spatial resolution airborne hyperspectral imagery have allowed

greater discrimination of tree species when compared with data collected by previous coarser

(>5m) spatial resolution multispectral sensors (Lucas et al., 2008a). The discrimination of

species through image spectra however remains complicated as canopy elements can obscure

each other in the overstorey, the reflectance of many vegetation species is similar, and there

is often as much spectral variability within tree crowns of the same species as between

species (Lucas et al., 2008a).

Many studies have utilised automated techniques to classify different surface materials, such

as vegetation, water and man-made structures. The most dominant of these methods is that of

per-pixel classification, where a defined set of spectral characteristics is set as a particular

landcover class. More recently object-oriented approaches have been explored, for example

detection of a group of pixels conforming to a tree crown, and examining the combined

values of the pixels within the group.

A number of studies have succeeded in the discrimination of and/or mapping of individual

tree species. Many of these have focused upon temperate forested areas within northern

latitudes, where forests are generally of simpler structure and contain fewer species types.

Leckie et al. (2003b) for example, attempted to discriminate between seven tree vegetation

classes in British Columbia, Canada, using data acquired from a CASI sensor. The imagery

used had spatial resolution sufficient to delineate individual tree crown information. Thus

applying an appropriate automated individual tree crown (ITC) delineation algorithm each

tree crown could be identified and assigned a species classification. This research also

proposed the measurement of spectra from the best illuminated region within each crown in

an effort to account for differing illumination. By aggregating the ITCs, counts of each

species within each stand were produced.

Similarly Lucas et al. (2008a) used an ITC delineation algorithm, and assigned classifications

based upon the reflectance spectra within those areas identified as the tree crowns, to produce

species maps at the individual tree crown/cluster level. The study was performed in central

Queensland, Australia, using CASI and HyMap sensors acquired in the autumn of 2000. The

standard visible to near infrared spectra recorded from the CASI data were found to be

insufficient in many cases for accurate species classification, but the inclusion of shortwave
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infrared spectra recorded by the HyMap system improved classification accuracies for most

species.

Mapping tree species in optical imagery is a difficult task as spectral variation within species

is typically higher than between them. As a result considerable variation has been reported in

the accuracy of species mapping in single date optical imagery (Hill et al., 2010). This is

especially true in the case of deciduous species. The problem can be at least partly overcome

by the use of time-series data, which can capture phenological change such as leaf flush or

senescence and are likely to increase the spectral separability of deciduous tree species,

ideally across a single growing season. Hill et al. (2010) investigated the ability to create an

overstorey tree species map using five dates of airborne multispectral imagery, which

captured information over a single growing season. The study compared the classification of

six tree species on individual images and different combinations of images. One of the single

images achieved a classification accuracy of 71%. However higher accuracies were achieved

when combining three of the images producing an overall accuracy of 88% after processing.

For individual tree-level characteristic estimation for inventory, species typing is required and

this is potentially best provided by hyperspectral data (Lucas et al., 2008b). While readily

providing information on the horizontal organisation of vegetation canopies, vertical structure

has generally proven difficult to obtain (Bork and Su 2007; Lucas et al., 2008a). Knowledge

of the vertical distribution of canopy elements may enhance species classification accuracy,

in addition to aiding in understanding a number of ecosystem processes. Vertical structure

has been indirectly assessed through the influence of variation in shadowing with changing

density, as with photogrammetry, or by the identification of spectrally unique scene

components within the canopy, such as lichen (Bork and Su, 2007). The reflectance of the

vegetated canopy is influenced by shadowing within and between tree crowns. This varies

with tree shape, structure, density and the relative positions of individuals in the vertical

profile (Bunting and Lucas, 2006), complicating the delineation procedure.
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Finding ecological proxies of species diversity is important for developing effective

management strategies and conservation plans over multiple scales. As mentioned previously,

biodiversity assessment has traditionally been carried out via fieldwork. The causal

relationship between species diversity and environmental heterogeneity has been of long-

standing interest amongst ecologists, when considering that areas with higher environmental

heterogeneity can host more species due to a greater number of available niches (Rocchini et

al., 2010a). The use of remote sensing for estimating environmental heterogeneity and hence

species diversity is a powerful tool as it can provide a synoptic view and cover large areas.

Spectral variability, or heterogeneity, in the remotely sensed signal is expected to be related

to environmental heterogeneity and could be used as a proxy for species diversity (Oldeland

et al., 2010; Rocchini et al., 2010a; Rocchini et al., 2010b), with correlations with landscape

structure and complexity. Palmer et al. (2002) state the spectral variation hypothesis as that of

the greater the habitat heterogeneity, the greater the species diversity within it, regardless of

taxonomic group under consideration. Rocchini et al. (2010a) report that the higher the

spectral resolution (number of bands), the higher the power to discriminate objects which

reflects in a different manner, or the power to detect an area’s heterogeneity. Different

vegetative species for example will respond differently to light in the electromagnetic

spectrum. It is more efficient to identify those spectral bands which really matter in terms of

diversity for research efforts. Further details of this can be found in Rocchini et al. (2010a). It

is important to note that the measure of spectral heterogeneity being applied depends on the

final goal of a study.

2.3.1.3 Attribute summary
From the above discussion it is clear that spectral remote sensing, primarily hyperspectral,

can provide a wealth of information for the modelling, definition and mapping of spatial,

biophysical and temporal patterns in forest ecosystems. In terms of attributes relevant to the

assessment of forest condition, research into hyperspectral derived metrics indicates that

many overstorey structural and composition components may be extracted or derived.

However metrics relating to tree size and heights of canopy components cannot be achieved.

The estimation of elements of the understorey, such as deadwood, regenerating species and

ground vegetation metrics are also underrepresented here.
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2.3.2 Light Detection and Ranging (LiDAR)
Light Detection and Ranging (LiDAR) it is an active remote sensing technology that

determines distance or range, by taking the product of the speed of light and the time required

for an emitted laser pulse to travel to and return from a target object (Lim et al., 2003b). The

elapsed time from when the laser pulse is emitted to when it is received can be measured and

used to identify the three-dimensional position of each range point.

LiDAR is quickly gaining prominence in natural resource research and management due to

its inherent ability to represent complex vertical structures and ground surfaces with very

high precision (Evans et al., 2009). LiDAR is capable of providing both geo-referenced

horizontal and vertical information on the structure of forest canopies with sampling

dependent on the type of LiDAR system used (Evans et al., 2009).

Multiple LiDAR system designs exist which have applications within forested environments.

What follows is a brief description of the two main groups, scanning and profiling.

2.3.2.1 Types of airborne LiDAR systems
The LiDAR active sensor design uses pulsing lasers which generate very specifically timed

bursts of light. There are two main forms of airborne LiDAR system: profiling, discrete-

return and waveform. The first of these, profiling lasers, refers to the application of lasers

aimed directly beneath the aircraft to illuminate a single region in the nadir position. When

these devices are used to acquire topographic data they are known as ‘airborne laser

altimeters’. The forward motion of the aircraft carries the illuminated region forward to view

a single track directly beneath the aircraft. The echoes from the repetitive LiDAR pulses

provide an elevation profile of the narrow region beneath the aircraft platform (Campbell and

Wynne, 2011). This system does not generate imagery in the traditional sense, but rather spot

measurements along the flightline.

Profiling laser systems usually operate with a large footprint; this refers to the area

illuminated by the laser pulse. A large footprint typically refers to illumination of an area

with a diameter > 1m. Such systems can use continuous wave lasers, which generate a

continuously modulated beam of light. The instrument transmits this radiation to the ground

and receives a digitised representation waveform for each pulse, providing vertical profile

measurements (Coops et al., 2004). Each waveform consists of a series of temporal modes
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(called echoes), where each of them correspond to an individual reflection from an object,

and sometimes with the ability to discern changes in signal amplitude, phase and intensity.

A scanning LiDAR system utilises a scanning mirror which directs the laser pulses back and

forth across a horizontal swath beneath the aircraft. Such a scanning system can transmit

upwards of 2,000 pulses each second, thus as the aircraft moves forward points are captured

either side of the aircraft’s position, building up measurements from multiple swaths

(Campbell and Wynne, 2011). Scanning LiDAR typically use wavelengths in the near-

infrared region of the spectrum (~1.64μm) due to its sensitivity to vegetation features and

freedom from atmospheric scattering. LiDAR data are typically acquired in parallel strips that

stitch to form a continuous area of coverage. Scanning LiDAR systems record discrete-return

data, and due to recent technological improvements waveform data can now also be recorded.

Scanning LiDAR can operate using discrete-return or waveform techniques.

Discrete-return LiDAR (DR) system operate using a small footprint which may acquire data

from areas as small as 0.15-0.60m in diameter (Campbell and Wynne, 2011). The criterion

for collecting multiple returns is based on the intensity of the laser energy returned to the

sensor, with up to five returns per laser pulse systems being most common. The DR system

records one to several returns through the vegetated canopy, in a vertically non-systematic

manner (Evans et al., 2009).

More recent developments in sensor design have allowed the advance of small-footprint and

continuous wave LiDAR, in order to produce a ‘hybrid’ of the two technologies, this is

known as full-waveform (FW) LiDAR. FW sensors digitize the total amount of energy

returned to the sensor in fixed distance intervals, providing a continuous distribution of laser

energy for each laser pulse (Evans et al., 2009). Instead of clouds of individual three-

dimensional points, such as with DR LiDAR, FW devices provide connected profiles of the

3D scene, which contain more detailed information about the structure of the illuminated

surfaces (Alexander et al., 2010; Mallet et al., 2009; Miura and Jones 2010). Each waveform

consists of a series of temporal modes (called echoes), where each of them correspond to an

individual reflection from an object, in much the same way as large-footprint continuous

wave systems. Differences in signal amplitude, phase and intensity can also be derived.
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DR systems suffer from a sizable ‘blind spot’ following each detected return, during which

no other returns can be detected (Reitberger et al., 2008). This blind spot can be 1.2-5m,

because of limitations in the sensor design. FW systems remedy this problem through post-

processing the waveform data to identify proximal peaks which would otherwise be treated as

one, for example Chauve et al. (2007) resolved an additional 40-60% of returns from FW

data in comparison to DR. The most common approach is to approximate the waveform as a

series of Gaussian curves; fitted by a non-linear least squares approach (Wagner, 2006). FW

LiDAR datasets can also provide additional information about the structure of the illuminated

surfaces from interpretation of the backscattered waveform (Chauve et al., 2007). Amplitude,

echo-width and the greater number of returns are examples of additional information obtained

from waveform data.

2.3.2.2 Applications of LiDAR remote sensing for ecology
Lefsky et al. (2002) state that only a few areas of application for LiDAR remote sensing have

been rigorously evaluated, while many other applications are considered feasible but have not

yet been explored. The developments within the field of LiDAR are occurring so rapidly that

it is difficult to predict which applications will come to the fore in the years to come.

Scanning LiDAR systems provide spatially intensive and extensive canopy height measures

that could facilitate forest inventory at much finer spatial scales than the basic stand operating

unit. To estimate forest structural attributes of interest besides canopy height, the LiDAR

height measures must be related to field measures of these attributes, recorded in field plots

distributed across the full range of variation (Hudak et al., 2008a). Currently, applications of

LiDAR remote sensing for forest ecology fall into three broad categories: (i) remote sensing

of ground topography; (ii) measurement of the three-dimensional structure and function of

vegetation canopies; and; (iii) the prediction of forest structure attributes (such as above-

ground biomass).

The following sections identify those DR and FW remote sensing case-studies which extract

or estimate those forest condition indicator metrics as stated in Table 2.4.
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2.3.2.3 Forest structure
The mapping of topographic features is the largest application area of LiDAR remote sensing,

due to its use in land surveys and producing accurate measures of elevation to fulfil a variety

of objectives. Within the realm of ecology, the topography of an area both inside and outside

of the forest often has a strong influence on the structure, composition and function of

ecological systems (Lefsky et al., 2002). For example, many species are constrained by

microhabitats resulting from changes in altitude. In addition, the spatial distribution of

elevation is a determinant of watershed flow (Turner et al., 2003). Traditional survey and

photogrammetric methods are limited because of the lack of characterisation of 3D surfaces

(Hudak et al., 2009; Lefsky et al., 2002). LiDAR can penetrate the tree canopy layer

providing height information from beneath and within the canopy.

Vegetation height metrics
The most obvious vegetation measure extracted from LiDAR is that of canopy height

information which is commonly used to describe forest structure. Calculation of canopy

heights requires the identification of a ground reference level, allowing canopy heights to be

calculated by subtracting the difference between those LiDAR returns for the canopy and a

surface representing the terrain (Lim et al., 2003b). Once the LiDAR point cloud is filtered

and the ground returns identified, a digital elevation model (DEM) can be produced for the

ground surface by interpolating between these classified points, producing the digital terrain

model (DTM). DEMs typically take the form of raster data. The highest elevations from the

LiDAR points within a defined grid extent, i.e. raster resolution, can be used to produce a

digital surface model (DSM) of the tree crown. The DTM elevations can be subtracted from

the DSM to remove the effects of the underlying terrain and produce a normalised digital

surface model (nDSM). This is also known as a canopy height model (CHM). Such an

approach was employed in Patenaude et al. (2004) for Monks Wood, UK, where the nDSM

allow accurate estimate of canopy height to be made.

Vegetation height measurements can be made accurately even on vegetation of short stature

(~1m), at least in areas of relatively flat terrain (Lefsky et al., 2002). Lucas et al. (2008a) state

that LiDAR data have been shown to produce estimates of tree height that are considered to

be at least equivalent to and often more accurate than those obtained at ground-level using

traditional approaches, for example with the use of a clinometer. This occurs partly because

of the difficulty with ground based measurements in sighting the top of tree crowns that are
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expansive or occur where the canopy is dense. However LiDAR derived tree top heights can

be less accurate, albeit often to a lower level than ground survey, for trees where the crown

tapers to a point, such as in many conifer species, unless a very high sampling density LiDAR

system is used (Lovell et al., 2005). Gaveau and Hill (2003) put forward that LiDAR pulses

penetrate into the shrub and tree canopy before being returned resulting in an underestimation

of height. The penetration of the upper canopy by each laser pulse will vary with small scale

variation in closure of the upper canopy surface (i.e. the gaps at a spatial resolution

corresponding with laser footprint size) as with variation with leaf area, density, reflectivity,

and orientation. This is especially the case in broadleaved deciduous tree species.

As with optical data, LiDAR can be used to estimate planimetric cover and additionally to

facilitate retrieval of cover at different layers within the forest itself (Lucas et al., 2008b).

LiDAR data can provide densely spaced canopy height measures that can be empirically

related to field measures of stand height and other measures of stand structure. The focus

upon tree canopy height has been due to its link to predicting variables for other forest

attributes, such as biomass and volume. Other studies have used canopy height and the

presence of shrub layers as a proxy to estimate tree maturity (Broughton et al., 2006; Hinsley

et al., 2006). Information regarding light gaps can be explored using canopy height

distributions (Koukoulas and Blackburn, 2004). Many studies for forest based applications

for LiDAR have focused upon calibrating and validating the accuracy of LiDAR attribute

estimates against those recorded in the field through statistical analysis, where features and

predictors are used directly for forest parameter estimation (Hyyppä et al., 2004).

Stand structure metrics
Lindberg et al. (2012) outline a method to analyse both DR and FW LiDAR data for the

estimation of vegetation volume (m3) for coniferous and deciduous forest in south-west

Sweden. The vegetation volume profile was thus described as the volume of all tree crowns

and shrubs in 1 dm [10cm] height intervals in a field plot and total vegetation volume as the

sum of the total vegetation volume profile in the field plot. LiDAR profiles were developed

from the distribution of 3D points above the ground in 1 dm intervals. Estimates of vegetation

volume were then performed using the ratio of vegetation classified points against the total

number of points with a log-linear model based on Beer-Lambert law and then rescaled. The

Beer-Lambert law relates the absorption of light to the properties of the material through

which the light is travelling. The best result was the normalised FW waveform (RMSE
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27.6%) whilst the worst was the DR points (RMSE 36.5%). The results suggested that FW

data could predict vegetation volume somewhat more accurately, especially so when

corrections were applied for the shielding effects of higher vegetation layers.

Naesset (2002) presents a method of estimating forest stand characteristics from airborne

LiDAR data for three types of forest using 144 sample field sites – each 200m2 in size, which

were classified as young, mature (poor condition) and mature (good condition), within a

forest site in Våler, Norway. The stand characteristics of mean tree height, dominant height,

mean DBH, stem number, basal area and timber volume were estimated through regression

analysis using various statistical attributes extracted from the LiDAR data. The assessed

accuracies of the predicted metrics were calculated using RMSE as: mean tree height

(0.06m), dominant height (0.07m), mean DBH (0.12cm), stem number (0.31ha-1), basal area

(0.19m2ha-1) and timber volume (0.19m3ha-1).

A number of studies have explored the extraction of forest attributes at the stand and plot

scale using airborne LiDAR. More recently however research has been performed concerning

the delineation of individual trees. These categories relate to forestry information

requirements whereas from a methodological point of view it is better to divide them into

statistical and image processing-based retrieval methods. In the statistical methods, features

and predictors are assessed from the laser derived digital elevation models (DEM) and point

clouds which are used directly for forest parameter estimation, typically using regression or

discriminant analysis (Hyyppä et al., 2004).

The use of height percentiles has become a method of estimating forest structural

components. The height percentile refers to the distribution of canopy heights and has been

used as predictors in regression analysis or non-parametric models for the estimation of

canopy density, mean tree height, basal area and volume for the relevant plot or stand (Lefsky

et al., 2002; Lim et al., 2003a; Lim et al., 2003b; Maltamo et al., 2005; Naesset 1997a, 1997b,

2002; Naesset and Okland, 2002). Basal area, or cross section of the tree truck, is calculated

from measured tree diameters, which is then summed and divided by plot area (Hudak et al.,

2008a). Measurements are usually made for 1 hectare of land for comparison purposes to

examine a forest's productivity and growth rate. Forest attributes are then estimated using

canopy height and canopy density metrics and generally conform to the proportion of LiDAR

returns recorded at the 0, 10, 20…to…90 percentiles of the height distributions to the total
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number of pulses. These values are often recorded alongside distributional measures, such as

the maximum and mean values, variance, skewness, kurtosis and coefficients of variation

(Hudak et al., 2009).

Stand structure attributes and above-ground biomass have been successfully estimated across

different forest biomes using a variety of statistical techniques. For example at the stand scale

Naesset (1997b) used airborne LiDAR data to produce estimates of timber volume for two

Norwegian forests with relatively sparse point densities of approximately one laser pulse

every three metres-squared. A multi-regression analysis was used to develop models for stand

volume related to predictor variables derived from the LiDAR data. The initial three predictor

variables were: mean stand height, mean height of all laser pulses within a stand and mean

canopy cover density. The latter is simply the number of tree canopy hits divided by the total

number of transmitted pulses. A relationship was found between total vegetation volume,

LiDAR stand mean height and mean laser canopy cover density. This resulted in correlation

coefficients (R2) in the range between 0.472 and 0.838 for the two sites. Naesset (1997b)

concludes by stating that variables such as stand age and tree species will influence the model

produced.

Anderson et al. (2006) utilised LiDAR-derived estimates of several critical forest inventory

parameters, in a study carried out in Capital Forest, Washington state, USA. Using 99 field

plots, many strong regression relationships were observed between basal area (R2 = 0.91),

stem volume (R2 = 0.92), dominant height (R2 = 0.96), biomass (R2 = 0.91) and LiDAR

metrics. The same approach was used to estimate several important canopy fuel indicators

using LiDAR data (Andersen et al., 2006). Estimates of canopy height, canopy bulk density,

and total canopy fuel weight at the stand-level were used for input into wildfire simulation

models. Previous estimates were based on plot-scale fieldwork data collection; unfortunately

this was unable to capture the variability in stand structure at larger scales. Predictor variables

of maximum and mean height, coefficient of variation, several percentile-based metrics and a

canopy density metric were regressed against field inventory measures to estimate canopy

fuel input variables, resulting in strong relationships being observed.
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The random forest (RF) classification algorithm is a statistical classification and regression

tree technique, which can also be utilised for variable selection, interaction detection,

clustering, etc. The RF algorithm has achieved excellent results in classifying LiDAR remote

sensing datasets (Falkowski et al., 2009a; Hudak et al., 2008a; Hudak et al., 2008b). The

iterative nature of RF affords it a distinct advantage over other statistical methods. RF grows

many classification trees based on the input data, and requires a training dataset. Each forest

or tree object will be assigned a class based upon the number of classification tree ‘votes’

accrued. RF has been utilised to provide pixel and plot-scale estimates of forest structure such

as basal area, tree density and even tree species (Hudak et al., 2008a; Hudak et al., 2008b),

and classification of up to six forest succession stages (Falkowski et al., 2009a) using derived

LiDAR metrics. As many as 60 input variables can be entered into the RF algorithm,

examples include: topographic slope; heights of various percentiles; intensity range; mean

and standard deviation; percentage of vegetation returns at discrete height ranges; etc.

Forest canopy metrics
Leaf Area Index (LAI) is a key forest structural characteristic that serves as a primary control

for exchanges of mass and energy within a vegetated ecosystem (Jensen et al., 2008). Most

previous attempts to measure LAI from remotely sensed data have relied on empirical

relationships between field measures and various spectral indices derived from optical

imagery. However as biomass within an ecosystem increases, accurate LAI estimates are

more difficult to quantify (Zheng and Moskal, 2009). Jensen et al. (2008) utilised a

combination of airborne LiDAR and SPOT-5 imagery derived indices to estimate LAI values

over conifer forest stands in the Northern Rocky Mountains, USA. The results from the

SPOT-5 data were poor for the study area, explaining less than 50% of the LAI observed in

the field, while the LiDAR LAI estimated from the plot based metrics, such as height

percentiles, accounted for a higher amount of variation within both of the study sites, with R2

values between 0.61 and 0.86. It should be noted that R2 coefficient values were

incrementally improved with the inclusion of both SPOT spectral indices and LiDAR

estimates, increases ranging from 0.2-0.4.

A relatively recent approach to the quantification of forest structure using LiDAR has been

the ‘binning’ of the normalised 3D point cloud to reduce the data volume to a single

measurement (Chasmer et al., 2004; Lee et al., 2004; Popescu and Zhao 2008; Wang et al.,

2008). This method classifies height ranges within the canopy as a set of volumetric pixels, or
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voxels. A voxel can be conceptualised as 3D cubes with X, Y and Z dimensions that can be

used to classify laser pulse counts within the voxel extent. Voxel size can be altered, for

example to represent where LiDAR returns are clumped, where smaller voxels can be used to

classify dense clusters.

Another measure having a direct physical basis is canopy cover, calculated as a percentage of

LiDAR returns intercepted by the vegetation canopy, within a vertical height bin size (grid

cell resolution) specified by the user. The amount of light penetrating the forest canopy and

reaching the ground has a strong influence on understorey composition (Martinuzzi et al.,

2009). Hudak et al. (2009) state that vegetative cover at various heights for example can be

placed in height ‘bins’ and output as two-dimensional raster layers. Thus, the distribution of

canopy height values within a bin is effectively a ‘structural signature’ analogous to the

‘spectral signature’ of a multi or hyperspectral image pixel, although describing very

different vegetation properties.

Lee et al. (2004) utilise the voxel-based approach for quantifying vertical forest stand

structure. Small footprint first and last return LiDAR with a nominal spatial resolution of 1m

was used in a mixed species forest dominated by white cypress pine (Callitris), smooth

barked apple (Angophora costata) and eucalyptus (Eucalyptus globus) tree species in central

Queensland, Australia. The voxel matrix was intersected with a tree crown map derived from

fieldwork, classifying cells as either trunk or canopy. Various attributes from each of the

individually identified trees could then be extracted, such as crown dimensions, species and

growth stage. A value of crown openness was calculated for each of the individual trees,

based upon published records for selected species.

LiDAR has the ability to measure the vertical structure of forest stands accurately (Lim et al.,

2003b; Naesset, 2002). These approaches typically focus upon the characteristics of the top

canopy layer. Methods have been presented for estimating vertical canopy structure from the

raw point cloud, addressing the major task of detecting the number of main canopy layers and

the height range of each layer. For example, Wang et al. (2008) proposed a method using a

statistical process on a normalised point cloud which was segmented into a number of tiles

due to the volume of data. Canopy layers were then detected using a salient curve detection

algorithm based on a height distribution probability function. The number of canopy layers

for each tile and the height range of each canopy layer were the main attributes to be derived.
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Individual tree detection
LiDAR sensors, typically DR, can collect data at point densities sufficient to identify

individual tree crowns in open canopies. The primary hurdle in large scale applications is the

separation of tree crowns in dense forest (Maltamo et al., 2004; Wang et al., 2004). In dense

closed canopies tree crowns overlap, causing a model to perceive several trees as one,

producing high rates of commission and omission errors in estimated single tree attributes

from canopy height models. Recent developments in the computer analysis of high spatial

resolution DEMs (equal or less than 1m2 per raster cell) are leading towards the semi-

automated production of forest inventory information from remote sensing, which can be

divided into finding tree locations with crown size parameterisation or full crown delineation

(Gougeon and Leckie, 2003; Hyyppä et al., 2008). Methods already developed using high

spatial resolution aerial optical imagery can be utilised for this purpose. Alternatively, in laser

scanning it is possible to improve the image-based approaches by using statistical algorithms,

voxelisation, and knowledge-based approaches.

There is an extensive literature concerned with the automated extraction of features from

elevation data, but only a subset of these studies have focused upon natural environments

(Koukoulas and Blackburn, 2005a). A number of organisations, especially the Canadian and

Australian forest organisations, have driven the development of many of these tree-crown

detection algorithms (Bunting and Lucas, 2006).

In research presented by Kaartinen and Hyyppä (2008) a high degree of variation in the

quality of published methods was found between studies with the percentage of correctly

delineated trees ranging from 40-93%. Kaartinen et al. (2012) reviewed nine separate

methods of individual tree detection in the literature based upon both image-based and point-

cloud-based methods. Within the results of this work, many approaches were found to

provide a means to delineate dominant trees in terms of location, height and crown extent.

However, crown size estimates could vary significantly. The highest accuracy was achieved

using a minimum curvature-based approach which was applied to the canopy height model

(CHM), where the minimum value coincides with the tree top, and the maximum value

coincides with the valleys surrounding the crown. This was accompanied by point-cloud-

based cluster detection for suppressed trees. FW technology is expected to improve

individual tree detection, especially in the case of suppressed trees, as waveform analysis can

be used to provide denser point clouds within the tree crowns.
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Forest gap characteristics
A number of studies have focussed upon the importance of gap openings within the forest

and demonstrated the associations between the gap characteristics and ecosystem functioning

and the importance of gaps in determining species composition and controlling regeneration

processes (Runkle, 1982; Platt and Strong, 1989).

The work presented in Koukoulas and Blackburn (2005b) demonstrates the capability of

LiDAR for the detection of forest gaps using GIS contouring procedures. Forest gap size,

shape and height diversity (within the gap) parameters, in addition to tree size parameters

were extracted for a deciduous tree species dominated area within the New Forest, UK. The

relationships between the spatial patterns of gaps and trees were characterised using a

Ripley’s K-function analysis. The researches findings indicated that large gaps and large trees

are randomly distributed, whilst smaller tress and smaller gaps are clustered. Significant

relationships were also recorded between patterns of tree species and different size classes, as

well as between patterns of trees and gaps with specific properties. The quantification of

these gap characteristics alone is insufficient to provide conclusive evidence on specific

processes, but Koukoulas and Blackburn (2004) state that such information can be indicative

of the general status of a forest and can provide new perspectives and possibilities or further

ecological research and forest monitoring activities.

2.3.2.4 Forest composition
LiDAR metrics relating to return heights and intensity, in addition to waveform metrics for

FW data, can potentially be used to classify image object types. Considering the case of FW

LiDAR, in theory this technique provides the amplitude and echo width in addition to a 3D

point cloud (Wagner et al., 2008; Wagner et al., 2006). The amplitude provides information

on the target’s reflectance, and the echo width is a measure of the range variation of scatterers

within the laser pulse footprint contributing to a single echo and is therefore an indicator for

surface roughness (Chauve et al., 2007), although there may be issues in transferring the

method to other sites.
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Forest tree species classification
In many forest applications, tree species is of particular interest as an essential component of

forest studies, inventories and managements. At present, species classification can be

accomplished using both optical and laser data. Conventionally, tree species information is

extracted from high spatial resolution aerial photographs or multi-/hyper-spectral imagery. A

number of pieces of research have focused upon classifying tree species using LiDAR.

Holmgren and Persson (2004) for example state that it is possible to separate coniferous and

deciduous species in the Reminigstorp area, Sweden, using near infrared images. However,

the coniferous species of pine and spruce have similar spectral signals. The structure and

shape of the tree crowns can be extracted from airborne LiDAR data and used for the

discrimination between spruce and pine species at an individual tree-level. The proportion of

correctly classified trees was 95%.

Research presented by Moffet et al. (2005) explored the use of the proportion of single

returns from multiple return LiDAR systems, as an important predictor for tree species

classification, namely poplar box (Eucalyptus populnea) and cypress pine

(Callitriscolumellaris) species. This research was conducted in South-East Queensland,

Australia. A map of different returns overlaid upon field species data indicated it was

possible to distinguish between vegetation types that produce a large proportion of single

returns, compared with vegetation types that produce a lower proportion of single returns.

While a clear distinction was not always obvious at the individual tree-level for the two

species, due to extraneous sources of variation in the dataset, the observation was supported

in general at the site-level. Sites dominated by poplar box generally exhibited a lower

proportion of singular returns compared with sites dominated by cypress pine. This research

also explored the use of return intensity statistics; unfortunately this was found to be less

useful for classification purposes.

Most discrete return LiDAR systems also record the return intensity of the laser pulse. Thus

LiDAR return intensity values are becoming increasingly used. This may aid in interpreting a

particular sample pulse as belonging to either ‘ground’ or ‘crown’ classes, considering that

each surface will produce differing return intensities. Intensity is the ratio of the power

returned to the power emitted and is mainly a function of surface reflectivity at the emitted

wavelength. It is also a function of the area of the object that returns the pulse, and the

portion of the pulse remaining after previous returns (Kaasalainen et al., 2009; Kim et al.,
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2009a). Intensity data are not generally calibrated for differences in receiver gains and are

periodically adjusted during acquisition. Gain settings are currently proprietary, and typically

are not made available to the end user. The use of intensity data is complicated because of a

variety of factors affecting the reflected laser signals from the surface including range,

incidence angle, bidirectional reflectance, atmospheric transmittance and attenuation,

transmitted power and beam divergence (Hyyppä et al., 2008). If these factors are

compensated for, intensity values can be used effectively. The majority of airborne LiDAR

systems use an infrared laser, thus the return intensity of the reflection is sensitive to

vegetative materials (Andersen et al., 2006). Kaasalainen et al. (2009) illustrated the potential

to calibrate this return intensity data with reference targets to enable classification of land

cover types, such as trees and vegetation.

Brandtberg et al. (2003)utilised a method focusing upon individual trees, creating tree crown

polygons from applying an automated procedure to the LiDAR derived CHM, which is

discussed in greater detail in the next section. The intensity of the near-infrared reflection

from the LiDAR data acquired in leaf-off conditions were used to determine species type in a

West Virginian deciduous forest, USA. LiDAR return intensity successfully discriminated

leaf-off oak, maple and poplar species to a moderate to high degree of accuracy.

Vaughn et al. (2012) documents another approach to use either DR or FW LiDAR for species

classification for a total of five coniferous and deciduous tree species in the Pacific North-

West United States. The authors state that LiDAR data can be used to extract: crown density,

crown shape, crown surface texture, and received energy from individual peaks (i.e. return

intensity). These metrics are summarised in Table 2.6. A computationally intensive method

of producing a 3D voxel-based region-growing segmentation algorithm for identification of

individual tree crowns was instituted. Various point and voxel cluster characteristics relating

to spatial arrangement and waveform statistics, such as amplitude, width, and distances

between returns in a waveform were extracted and utilised as input into the classification

algorithm, in addition metrics from a Fourier Transform analysis were applied to the

individual waveforms. Using a Support Vector Machine (SVM) classification, Vaughn et al.

(2012) achieved a classification accuracy of tree crowns for DR data alone of 79.2% overall

(kappa = 0.74). The incorporation of waveform information improved the overall accuracy to

85.4% (kappa=0.817) for five tree species, two were coniferous (douglas fir and western red

cedar) and three were broadleaved (bigleaf maple, red alder, and black cottonwood).
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Table 2.6 – Summary of tree canopy descriptor concepts
Key Concept Description

Crown density
Describes leaf and branch size and arrangement and is typically measured using the
proportions of the returns hitting vegetation versus those hitting the ground (Brandtberg
et al., 2003; Moffiet et al., 2005).

Crown shape This information is often compared using parameters of surface models fit over the top
of the LiDAR point cloud (Holmgren and Persson, 2004; Reitberger et al., 2009).

The distribution of
return heights

This metric is often described using selected percentiles of the return heights which
include information about both crown density and crown shape (Korpela et al., 2012).

Crown surface
texture

Crown surface texture refers to the roughness of the tree crown surface, and has been
measured using a canopy height model (Vauhkonen et al., 2009).

The measured
intensity

The measured intensity is affected by several physical traits such as leaf size, chemistry,
and incidence angle, which in turn are effected by species type. While most researchers
incorporate intensity, a number of authors have found intensity alone could be a
reasonable predictor of species (Kim et al., 2009b).

2.3.2.5 Forest understorey and deadwood components
Mapping the distribution of snags and understorey shrub species across the landscape has

presented a major challenge in previous research for the management of biodiversity and

wildlife habitat. Characteristics associated with forest structure, such as the height of trees,

presence or absence of understorey, canopy closure, tree diameter, abundance and size of

dead trees, etc. are factors which may explain the presence of many species of wildlife, the

functional use of the habitat and the overall diversity of wildlife species in the forest

(Martinuzzi et al., 2009). Additionally, animal use of different understorey does vary. Recent

studies have been able to characterise height, understorey vegetation cover and the detection

of suppressed trees (Hill and Broughton, 2009; Maltamo et al., 2005). This work was

accomplished through the use of canopy height thresholds, cluster analysis and visual

interpretation. These studies have shown that assessments of understorey vegetation with

LiDAR is less accurate under dense tree canopies due to the lower proportion of LiDAR

returns reaching the lower forest strata (Maltamo et al., 2005).

Hill and Broughton (2009) showed it is possible to characterise understorey vegetation in

closed deciduous forests in Monks Wood, UK, through the integration of leaf-on and leaf-off

LiDAR data. Leaf-off data were acquired at a time when the understorey had begun to leaf-

up, thus representing the understorey and ground better than the leaf-on data (the understorey

and overstorey canopies in lowland broad leaved woodland can merge into one another).

Comparisons between different species groups were made using an ancillary tree species map
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and field data. The resultant understorey map had a 72% correspondence with field data on

the presence/absence of suppressed trees and shrubs.

Martinuzzi et al. (2009)utilised a method to use LiDAR to derive a variety of environmental

factors to explain the presence/absence of understorey vegetation and standing dead trees

(snags), in addition to testing it as an input for a habitat suitability index (HSI) for bird

species. HSIs have been used to assess the potential of an area to support the resource,

shelter, or reproductive needs for a given wildlife species, the output of which is a map

depicting suitability values across the landscape for the target species. Fieldwork measures

were statistically regressed against LiDAR metrics for forest structure and topography using

the random forest algorithm in the statistical package R (Hudak et al., 2008a). The

understorey shrub presence/absence prediction yielded an overall accuracy of 83%. Similarly,

snag classification yielded accuracies ranging between 72% and 80%. The HSI map produced

had an accuracy range of between 79% and 90% depending upon the species.

Korpela et al. (2012) outlined a method of estimating the number of understorey trees in

multi-layered pine stands using small-footprint FW LiDAR data. The overstorey layers often

obstruct ‘wall-to-wall’ sampling of the understorey using LiDAR because of transmission

losses which affect triggering probabilities and peak-amplitude (intensity) observations. The

study employed a method where transmission loss compensation models were based on the

returned power of each return pulse waveform and the total, employing the geometry of the

pulses in relation to reference trees and overstorey intensity observations as predictors. The

analysis was carried out via a custom Java program, where each pulse echo was assigned to

objects which triggered it (e.g. a reference tree). The area-based LiDAR height metric of the

proportion of ground returns had correlations with understorey stem density for low standing

trees (height >0.3m), where the R2 value was 0.55-0.87 (p< 0.05). Detailed knowledge of

trees within an area is required for this method, and as such it may be impractical for cost-

and temporally-efficient assessment methods.

It should be noted that a variety of environmental factors can influence the presence of coarse

woody debris (CWD) and understorey shrubs in the forest and therefore have the potential to

serve as predictor variables in a distribution modelling approach. An evaluation of the

structure and composition of understorey vegetation found that the overstorey canopy

structure, topography and land use can all influence the understorey in forests. Martinuzzi et
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al. (2009) determines that understorey is denser in open forests, where more light can

penetrate to the ground, highlighting the importance of estimating overstorey density.

With regard to the presence of deadwood in the overstorey and understorey, accurate

estimations of alive and dead biomass in forested ecosystems is important for studies on

carbon dynamics, biodiversity, habitat assessment and wildfire behaviour. Traditional

methods of measuring deadwood, or CWD, are expensive and suffer from low accuracy as

dead trees are often rare and their existence is clustered (Pesonen et al., 2008). LiDAR remote

sensing has been used successfully to estimate live biomass, whereas studies focusing on

dead biomass are rare (Kim et al., 2009b; Pesonen et al., 2008). Pesonen et al. (2008) outlined

a project where estimates of downed and standing deadwood volumes were investigated in

the Koli National Park, Finland. Using field data gathered from 33 plots and site fertility

estimates, variables for CWD and living biomass were produced and used to create regression

models with various LiDAR height and intensity metrics. The resulting accuracy was stated

to be adequate for predicting downed deadwood volumes (RMSE 51.6%); however the

standing deadwood volume estimates were poorer (RMSE 78.8%). A similar approach was

also attempted by Kim et al. (2009) for mixed coniferous woods of the Grand Canyon

National Park, USA, including the use of LiDAR intensity metrics. This study provided

slightly better estimates of CWD through the study area.

Mücke et al. (2012) described research into mapping fallen dead tree stems within North-East

Germany using very high density FW LiDAR acquired from a helicopter platform for leaf-on

(21.8 echoes/m2) and leaf-off (16.9 echoes/m2) conditions. Under the Natura 2000

framework, the assessment of ecosystem condition is of paramount importance. One such

indicator is the abundance of deadwood in forested ecosystems, which was identified as an

important indicator for habitat condition (European Commission, 2012). The orientation and

processing of airborne laser scanning data (OPALs) software was utilised for all processing

tasks. In order to detect downed dead tree stems the work of Wagner (2006) was utilised. FW

return echo width relates to small height variations of scattering elements within the footprint

of the laser beam, and was considered a means of inferring surface roughness.  Forest

ground-level and downed stems were assumed to have smooth surfaces, whereas other

vegetated elements, such as shrub vegetation, were considered to be rougher. For the whole

study area, out of a total of 193 manually digitized stems, 72 stems were fully detected

(37.3%), 64 partly (33.2%) and 57 were not found (29.5%).
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2.3.2.6 Attribute summary
Airborne DR and FW LiDAR technologies have been applied to extracting many forest

attributes, some of which are not mentioned here, such as the modelling of successional

stages (Falkowski et al., 2009a; Zimble et al., 2003). In terms of metrics related to assessing

forest condition, examples of LiDAR based research have provided many possible metrics

and methods for many of those variables listed in Table 2.4. Research identified from the

surrounding literature provide examples of LiDAR techniques to estimate forest structure for

both individual tree and area-based metrics, such as the numbers of trees within an area,

metrics of tree size, e.g. basal area, number of canopy layers, average stand height, and

canopy dimensions. Forest compositional metrics have been estimated for the classification

of small numbers of species and land-cover types. The composition of forest understorey

components such as volumes of deadwood and understorey vegetation structure was also

covered.

2.3.3 Fusion of optical and LiDAR data
Fusion between LiDAR and other data sources is becoming a research topic in itself. Some

studies concern the simultaneous use of LiDAR and multi or hyperspectral datasets, while

others consider the combination of 3D information obtained from LiDAR and

photogrammetric techniques (St-Onge et al., 2008) using both aerial and satellite imagery.

The combination of the 3D LiDAR and 2D spectral information is an area of significant

potential. For example the expected combination of information from optical and LiDAR

data will be better able to delineate tree crowns from above (Holmgren et al., 2008; Leckie et

al., 2003a). Another area of research has involved the use of combining optical multispectral,

LiDAR and radar data. Hyde et al. (2006) outline an approach combining such information

sources statistically in order to extract forest structure information for wildlife habitat

analysis. The results concluded that LiDAR was the best single sensor for estimating canopy

height and biomass. With the addition of multispectral data, improvements were made in the

estimation of tree structure. Hyde et al. (2006) concluded by saying that the structural metrics

extracted from LiDAR combined with radar were essentially redundant.

Fine resolution multi or hyperspectral imagery and LiDAR data capture differing, yet

complementary characteristics in the estimation of forest structure, often described as

synergistic (Anderson et al., 2008; Coops et al., 2004). The use of each of these systems

addresses some the limitations of the other. Most information on individual tree species,
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health and spatial geometry of the tree crown is provided by multi or hyperspectral imagery.

LiDAR however, provides data concerning tree height, 3D crown shape and texture or outline

(Hyyppä et al., 2004; Leckie et al., 2003a). It should be noted that LiDAR and optical data do

not have to be collected at the same time (Hyyppä et al., 2004). Non-coincident data capture,

for example, optical imagery collected in the vegetation growth season with LiDAR data

captured over the vegetation in leaf-off conditions, allow obvious advantages in winter

months where lasers can penetrate the canopy of deciduous trees so that vertical structure can

be better discerned (Brandtberg et al., 2003).

Only a small amount of literature has been published on the topic of fusing different sensor

technologies together for forest applications (Hyyppä et al., 2004). Of the published literature

concerning data fusion, examples have been presented where high resolution optical data

have proven to better outline tree crowns in dense forest situations when compared with

LiDAR. LiDAR data however, can reduce the commission errors that occur in open stands

with optical imagery, for example the application of a height filter to remove sub-canopy

vegetation (Hyyppä et al., 2004; Leckie et al., 2003).

The following sections identify those fusions of multi or hyperspectral and LiDAR remote

sensing case-studies which extract or estimate those forest condition indicator metrics stated

in Table 2.4.

2.3.3.1 Forest structure
Lucas et al. (2008b) utilised a combination of CASI-2 multispectral data at a nominal spatial

resolution of 1m and covering the spectral range of visible to near-infrared, and DR LiDAR

data acquired using an Optech 1020 scanner with a sample density of a point every ~1m. The

aim of this research was to develop a method to extract estimates of biomass for individual

trees for mixed species forests in Queensland, Australia. Individual trees were identified

using a combination of the tree crowns delineated automatically through segmentation using

the CASI data and stems located using a LiDAR height scaled canopy openness index

(HSCOI). Tree species information was then extracted for each of the identified tree crown

objects using the multispectral data, unless it was a suppressed tree. The component for

biomass of individual trees was estimated using LiDAR-derived height and stem diameter as

input to species-specific allometric equations. These estimates corresponded to plot-based

estimates with an R2 value of 0.56. Additionally, a second approach utilised a jack-knife
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linear regression using LiDAR-derived heights and crown cover at the plot scale and

produced more robust estimates of biomass (R2=0.90). A number of issues were highlighted

in terms of over/under-estimations from the LiDAR data dependent on forest cover species

type and stem density due to the complexity of the woodland and to the sometimes poor

correspondence with objects generated through segmentation.

Popescu et al. (2004) proposed a fusion of small-footprint LiDAR and multispectral data to

estimate timber volume and biomass at the plot-level in deciduous and coniferous forests in

Virginia, USA. Individual tree heights and crown diameters were estimated using ITC

algorithms. An assumption was made that there was a relationship between the height of the

tree and its crown size. A regression analysis was then performed to relate field measures of

tree DBH and height against those retrieved from the remote sensing data. Regression models

and cross validation were then used to estimate inventory data including volume (R2

deciduous 0.39; coniferous 0.83) and biomass (R2 deciduous 0.32; coniferous 0.82).

A number of studies have focused upon combining LiDAR and spectral data for the purpose

of modelling fire behaviour. In order to satisfy the criteria laid out for fire monitoring

applications, factors such as canopy height, vegetation type, dead and live fuel load, and

percent canopy cover must be estimated. Mutlu et al. (2008) utilised raster products from

multispectral Quickbird satellite image bands and multiple LiDAR height bins and canopy

height for characterising forest fuels, for a study site in eastern Texas, USA. A combination

of Principle Components Analysis and minimum noise fraction was used to remove the least

relevant raster products in an attempt to improve supervised classification accuracy. This

resulted in an accuracy of 90.1% with the fusion of airborne LiDAR and satellite Quickbird

imagery.

2.3.3.2 Forest composition
LiDAR data can be used to predict the species of individual trees, at least in boreal forests

with relatively few tree species (Hyyppä et al., 2008). Such predictions can be improved

using a fusion of LiDAR and optical imagery. However, dense LiDAR data have been shown

to produce accurate tree-level classification, even without optical imagery (Hyyppä et al.,

2008; Reitberger et al., 2008).
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Hill and Thompson (2005) outline a method utilising both airborne hyperspectral data

acquired using the HyMap sensor, at 4m spatial resolution covering the spectral range from

visible to shortwave infrared (0.437-2.486μm), and discrete return LiDAR data, from an

Optech ALTM 1210, with an average point density of one point for every 4.83m2. Their

research investigates the ability of the combined dataset to generate unique thematic classes

based upon the tree and shrub species composition and vegetation structure, for a site in

Cambridgeshire, UK. Classification of the ten various thematic classes was based on the

National Vegetation Classification (NVC) scheme for woodlands and scrub. This was

achieved using principle components analysis and LiDAR-derived canopy height models.

Automated segmentation algorithms were then applied to identify spatial groupings with

similar characteristics. It should be noted that this method does not provide information on

ground flora composition.

Dalponte et al. (2008) proposed an alternative method in fusing high spatial resolution

airborne hyperspectral and LiDAR remote sensing for classification of tree species in

complex environments, in this case a nature reserve in the Po Plain, Italy. A software system

was produced to provide inputs from hyperspectral image bands and LiDAR-derived canopy

height and intensity raster layers for two tree species classification approaches, these were

Gaussian maximum likelihood and Support Vector Machines. A total of 19 tree species

classes were extracted and assessed against field validation data. The combination of the two

data sources resulted in increased classification accuracy, over using one data source only,

particularly in relation to the discrimination of very similar species. The kappa accuracies

obtained with different classifiers were as high as 0.89 when incorporating hyperspectral and

LiDAR layers.

Simonson et al. (2013) addressed the potential for remote sensing with regard to Natura 2000

habitat monitoring objectives. The potential benefits include the cost-effective production of

habitat distribution mapping; in addition to providing biophysical indicators of functioning

relevant to favourable conservation status such as LAI and vegetation fractional cover

amongst others. The research tests the complementarity of multispectral and DR LiDAR in

providing a robust indicator of conservation status, in this case an estimate of species

richness. A raster-based analysis was conducted upon LiDAR data, where raster layers were

derived for measures of image texture and the maximum, minimum, standard deviation of the

first return heights and mean of last return heights. Dimension reduction was performed upon
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the multispectral data in the form of Principle Components Analysis (PCA). A supervised

maximum-likelihood classification was then performed upon the combined dataset creating a

total of 11 land-cover classes relating to semi-natural forest, plantation forest, agricultural

land, rocky surfaces and urban environments. A land cover classification accuracy of 70%

was achieved using the combined dataset. Then utilising known relationships (r = 0.75, p =

0.001) between mean vegetative height, overstorey and understorey species richness, and

spatial aggregation calculations using FRAGSTATS, were combined to provide a proxy

indicator was created for habitat condition. The result of this calculation was a map with three

classes relating to high, medium and low condition.

2.3.3.3 Summary of attributes
Example case studies concerning the combination of hyperspectral and LiDAR datasets are

limited, especially for the application area of forest research. Of those relevant example case

studies mentioned here for forest condition assessment, many were concerned with the

enhancement of tree species classification. Other examples included the research of Lucas et

al. (2008b) and Popescu et al. (2004) into the extraction of individual tree parameters and

estimates of biomass. Of particular note was the research performed by Simonson et al.

(2013) in order to provide forest biophysical monitoring information for a conservation

initiative.

2.4 Conclusions
The traditional methods of assessing woodland condition require the collection of data

manually through fieldwork. While this approach is often highly accurate, it is labour

intensive, in addition to having a number of issues related to representativeness over wider

areas. Remote sensing technologies are recognised as powerful tools for ecological

investigation at wider spatial scales. They are seen as providing the only realistic, cost-

effective means of acquiring continuous data over large areas (Ker and Ostrovsky, 2003). To

date however remote sensing has seen limited uptake in the discipline of ecology. A greater

integration of remote sensing and ecology disciplines should be very valuable beyond the

traditional landcover mapping and pattern description (Newton et al., 2009b).

The analysis of airborne multi and hyperspectral data has well-developed and understood

techniques for vegetation mapping, following the development of new technologies and

techniques over the past 30 years for forest ecosystem management applications. This
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development has produced mature techniques for the extraction of metrics such as the

classification of species and the extraction of biophysical variables such as LAI, biomass, or

chlorophyll content.

Analysis of DR LiDAR is quickly gaining prominence in natural resource research and

management due to its inherent ability to represent complex 3D structures and ground

surfaces with very high precision (Evans et al., 2009). These techniques are able to estimate

metrics related to canopy heights, the ground surface underneath the canopy, canopy 3D

structure, the detection of vegetation layers, and the estimation of attributes such as basal

area, stem volume and biomass, amongst others. The ability to detect individual trees from

LiDAR has seen recent activity (Kaartinen et al., 2012).

There have been relatively few studies involving small-footprint FW LiDAR, especially so

for ecological analysis, which is a method which offers a number of advantages over the

conventional DR systems. One of the main advantages is in theory a higher number of return

points per pulse than conventional DR systems; this is due to the removal of issues related to

dead-zones inherent in deriving multiple returns from DR pulses. FW data offers greater

potential for detecting a greater number of surface interactions from the entire returned

waveform. This is in addition to added metrics related to the returned waveform, such as

pulse-width. Studies using FW data have been successful in the detection of understorey

components (Korpela et al., 2012) and the characterisation of 3D canopy structure (Lindberg

et al., 2012) for example.

There are a small, but growing number of studies concerned with the integration of remote

sensing techniques. Fine resolution multi or hyperspectral imagery and LiDAR data capture

differing, yet complementary characteristics in the estimation of forest structure (Anderson et

al., 2008; Coops et al., 2004). Application areas include the delineation and species

classification of individual trees (Lucas et al., 2008b), the classification of landcover (Hill

and Thompson, 2005), and the modelling of fire behaviour (Mutlu et al., 2008).

Very few projects have attempted to assess woodland condition using remote sensing. A

number of recent studies have attempted to map some of the key components of condition,

for example the volume of standing and fallen deadwood (Mücke et al., 2012), or through

assigning a basic three-tier classification through the identification of species richness,
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vegetation height and patch connectivity (Simonson et al., 2013). These studies have

attempted to assess woodland condition for one potential component or at a relatively coarse

scale with a basic classification.

As identified previously, woodland condition is related to a complicated arrangement of

compositional and structural characteristics which is typically assessed through manual

fieldwork at a small scale and is then extrapolated up to the required scale. This research

project attempts to address some of the gaps in research by exploring the contribution that the

combination of hyperspectral and LiDAR data can make to assessing woodland condition

using a suite of potential remote sensing derived indicators within a UK context. This will

comprise the extraction of remote sensing metrics at the individual tree and field-plot scales

to estimate field metrics over larger areas for a site within the New Forest, UK. In addition

FW LiDAR holds great promise for ecological studies, an area which has yet to be fully

explored. Both DR and FW LiDAR data will be analysed and compared in their relative

abilities to predict woodland attributes.
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Chapter 3 – Field site and data acquisition

3.1 Study site

The study site is located within the New Forest in southern England. The New Forest lies to

the west of Southampton, in south-west Hampshire and covers 37,677 hectares (Forestry-

Commission 2011). The New Forest is recognised as being of international importance to

nature conservation for its extensive tracts of semi-natural vegetation and ecologically

valuable habitats, in addition to a large number of plant and animal species. The New Forest

encompasses lowland heath, valley mire and ancient woodlands. Its extensive areas of semi-

natural habitats, occurring in a complex mosaic, justify its inclusion amongst the most

valuable areas for biodiversity conservation in Western Europe. It is mostly Crown property

and managed by the Forestry Commission, however one quarter of the areas consists of

farmland and settlements. Over centuries of human management and livestock grazing the

New Forest has become a combination of heathland, ancient woodland, plantation woodland,

wetlands and grassy plains, with many inclosures of both coniferous and deciduous

woodland.

The New Forest lies on a series of gravel terraces overlying sedimentary sands and clays of

Tertiary age, located within the Hampshire Basin. As noted by Tubbs (2001) the New Forest

as an ecological system has developed under the influence of large, free-roaming herbivores,

including deer as well as livestock. The present character of the New Forest is therefore

strongly dependent on its history as a medieval hunting forest, and the survival of the

traditional ‘commoning’ system. The crownlands include inclosures, designated for

silviculture and unenclosed land over which commoners’ rights prevail. The unenclosed land

is referred to by Tubbs (2001) as the largest area of semi-natural vegetation in lowland-

Britain. The total approximate area accounts for 20,000 ha; within that 3,700 ha is oak, beech,

and holly woodland.

The New Forest National Park was designated in 2005 and extends over 57,100 ha (Chatters

and Read, 2006). The conservation value of the National Park is reflected in a variety of

designations, with some twenty SSSIs, six Natura 2000 sites and two Ramsar Convention

sites which intersect the Park’s boundaries. Woodlands classified as ‘ancient and ornamental’

are estimated to occupy 3,671 ha (Tubbs, 2001). Many of the largest ancient and ornamental

woodlands are distributed in a belt centred around Lyndhurst (Peterkin et al., 1996). The
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same general pattern has persisted for at least 200 years, although during that time some

ancient woodlands have been incorporated within silvicultural inclosures and replaced by

plantations. Ancient woodlands are dominated by beech (Fagussylvatica), oak (Quercusrobur

and Quercuspetraea), birch (Betulapubescens and Betulapendula) and holly (Ilexspp).

Typically beech and oak dominate the canopy, with birch occurring on the edges of woodland

blocks and holly occupying the understorey.

Many of the ancient woodlands are classified as such because they have been in existence for

at least 400 years, some of which can be considered direct descendants of the original

‘wildwood’. While the structure and composition of the woodlands have been greatly

influenced by a long history of human intervention, and in particular the activities of

livestock and deer, which greatly modify forest understorey, the presence of large trees and

large quantities of deadwood create a structure which is said to resemble wild ancient

woodland. The New Forest inclosure comprises woodland communities which are not subject

to livestock grazing until most trees are past browsing height. The inclosures are of relatively

recent plantations on former heathland or ancient woodland stands, fenced off to the

commoners’ animals, but accessible by deer.

The unenclosed forests are permanently open to grazing by the ponies and cattle of the

commoners (Forestry Commission 2011). In recent years some 6,000-7,400 ponies, cattle,

donkeys, pigs and sheep have been kept in the forest by about 550 commoners. Heavy

grazing and browsing by ungulates is of concern within areas of the New Forest, this is

because of the impact it has upon the regeneration of tree species according to the long term

study into Denny Wood of Mountford et al. (1999).

This study is focused upon an approximately 22 km2 area including the Frame Heath and

Hawkhill, New Copse, Parkhill and Denny inclosures, in addition to Tantany, Denny and

Frame Woods which are unenclosed. The study site bounding box corresponds to north-west

corner437455E: 107543N, and the south-east corner432529E: 100857N (see Figure 3.1). A

number of photographs are presented in Figure 3.2 to exemplify the various forest structural

types and environments within the New Forest.
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Figure 3.1- Study site locations within the New Forest
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Figure 3.2 – Various photographs taken during fieldwork to exemplify the various forest
structural types and environments surrounding the forest.
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3.1.1Field-plot site locations visited in 2010
The initial study sites focused upon an area including the Frame Heath and Hawkhill

inclosures, in addition to Tantany and Frame Woods (see Figure 3.3). These woodlands

contain several types of semi-natural and plantation coniferous and deciduous woodlands.

 Frame-Heath inclosure (~175ha) (5 plots): was first enclosed in 1852.The site

contains conifer stands of modest size, primarily containing corsican pine

(Pinusnigravar maritime), scots pine (Pinussylvestris), douglas fir

(Pseudotsugamenziesii) and norway spruce (Piceaabies). The inclosure also contains

a considerable number of mature broadleaved trees, primarily oak (Quercusspp).

 Hawkhill inclosure (~190ha) (11 plots): was first enclosed in 1870.This inclosure is

principally coniferous, comprising corsican pine, scots pine, douglas fir, and norway

spruce. The inclosure contains a small proportion of ancient and ornamental

woodlands. It should be noted that remnants of buildings remain in the south of the

inclosure which potentially date back to the Second World War.

 Frame Wood (~60ha) (2 plots): is dominated by oaks (Quercusrobur and

Quercuspetrea) and beech (Fagussylvatica) with planting beginning in the 17th

century (Koukoulas and Blackburn 2004; Newton et al. 2010). The area also includes

holly (ilex aquifolium) pasture. There was selective felling during the 18thand

19thcenturies, seeing the gradual removal of older trees. Thus, the site is best

described as semi-natural.

 Tantany Wood (~200ha) (3 plots): is similarly dominated by old beech, oak and holly

(Newton et al. 2010). Occasional tree blow-downs have been reported in this area.

This array of forest types within close proximity of each other presents a wide range of forest

structural variables of interest in this research project, such as canopy gaps and the presence

of deadwood.
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Both Frame-Heath and Hawkhill inclosures are worked for timber harvesting operations, the

most recent of which was conducted between 2010 and 2011, at the time of writing. Frame

Wood has been the subject of a number of previous remote sensing studies to determine

ecological characteristics performed as part of airborne remote sensing campaigns for the UK

(Koukoulas and Blackburn 2004).

It should be noted that the field plots enumerated at these sites were used to supply data for

establishing relationships between field structural and compositional metrics with those

derived from remote sensing datasets.

Figure 3.3 – Study site location within the New Forest. The small map in the bottom-right
corner represents the total field site area; inclosures with field plot sites are indicated in red.
Base Map layer is © Crown Copyright/database right 2010. An Ordnance Survey/EDINA
supplied service.
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3.1.2Field-plot site locations visited in 2012
Field work designed to provide validation data was conducted within the New Copse, Denny

Lodge and Denny inclosures in addition to Denny Wood between June and July 2012. Again

these woodlands contain several types of semi-natural and plantation coniferous and

deciduous forests (see Figure 3.4).

 New Copse inclosure (~120ha) (2 plots): first enclosed 1808. Some conifers, but a

great many mature oak and beech trees, including a small number that probably pre-

date enclosure.

 Parkhillinclosure(~375ha) (6 plots): first enclosed, in part, in 1751. This is an

enormous inclosure that contains a mixture of broad-leaved trees and conifers.

 Denny inclosure (~125ha) (6 plots): first enclosed, in part, in 1750. Contains broad-

leaved trees, mainly oak.

 Frame-Heath inclosure (~176ha) (1 plot): see above.

 Frame Wood (~60ha) (1 plot): see above.

 Denny Wood (~110ha) (1 plot): this woodland is an ancient, mixed deciduous wood-

pasture dominated by beech and pedunculate oak whose canopy trees range in age

from approximately 70 years to over 300 years (Mountford et al., 1999). In addition

holly is present within the understorey.

 Stockley inclosure (~33ha) (1 plot): contains a mix of semi-ancient woodlands

dominated  by oak and sweet chestnut (Castaneasativa) in addition to plantation

woodland containing japanese larch (Larixkaempferi) western hemlock

(Tsugaheterophylla), douglas fir and scots pine.

 Stubby-copse inclosure (~45ha) (2 plots): contains plantation woodland dominated by

beech, oak, douglas fir and scots pine.
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Figure 3.4–Study site location within the New Forest. The small map in the top-right corner
represents the total field site area; inclosures with field plot sites are indicated in red. Base
Map layer is © Crown Copyright/database right 2010.An Ordnance Survey/EDINA supplied
service.
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3.2 Data sources

The following section summarises each of the datasets available to and collected during the

research project. These are:

1. published data from the Forestry Commission inventory;

2. fieldwork data collection;

3. remote sensing datasets (multi-/hyper-spectral and LiDAR).

3.2.1 Forestry Commission inventory data

Existing forest inventory information from the Forestry Commission’s (FC) National

Woodland Survey carried out between 2009 and the present was made available for all New

Forest inclosures. The FC data was originally created using a base map derived from aerial

photography data, with attributes populated through detailed field survey. This field survey

was conducted using 1 ha sample plots, the locations of which were selected by a random

process. Details such as the area, distribution, composition and condition of woodlands,

together with information about the species, ages and sizes of trees were included. This

dataset was compiled for both forest management and research activities (Forestry

Commission, 2011).

Compartment and sub-compartment boundaries within the inclosures were provided in ESRI

shape file format. Each shape file contained data giving information for each compartment

and sub-compartment. Data was available at the sub-compartment scale, which included sub-

compartment size (m2), sub-compartment type, plantation year, yield class, dominant-,

secondary-, and tertiary-species type, and cultivation status.

3.2.2 Field data capture

The aim of the field data capture was primarily to select sites which sampled as many forest

structural types as possible for an initial selection of field plots in order to provide training

data for predicting field plot-level metrics over wider areas. Subsequent field data capture, in

2012, focused upon collecting data for validation of those predictive models.

The following sections define how field plot locations were initially determined and what

measurements were performed within each field plot extent.
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3.2.2.1 Number of field plot samples

A total of 21 field plots were enumerated in the summer of 2010. This number of sites was

determined by logistical reasons, including available time, travel costs, and Forestry

Commission site access restrictions due to active forestry operations. Each field site took

approximately six hours to enumerate due to the large number of metrics recorded (50 in

total), in addition to travel time (on foot) to and from each field plot location.

Subsequent field data capture in summer 2012 focused upon collecting data for the validation

of predictive models developed using the 2010 field data. A total of 20 validations field plots

were enumerated in 2012, in order to provide a similar population size to that of the initial

training dataset.

3.2.2.2 Field data plot size

Guidelines from the Forestry Commission recommend a circle or square sample plot area of

between 0.005 and 1 ha, which is dependent upon the objective of the survey (Matthew and

Mackie, 2006). A field plot size of 50x50m was recommended by Cantarello and Newton

(2008) for measuring metrics for Natura 2000 assessment with a single sub plot of 10x10m

within for detailed assessment of variables with large populations and small size (e.g.

counting of seedlings) due to its intensive nature. Lee and Lucas (2007) used a square field

plot sample size of 50x50m with five 10x10 sub-plots within for the sampling of forest

attributes in order to produce estimates from remote sensing data, whilst Naesset (2002) and

Naesset and Økland (2002) utilised a somewhat smaller circular field plot size of 200m2.

These plot sizes can be used for extracting or estimating both area-based and individual tree

metrics.

A pilot field data collection day was undertaken in 2010 to test the feasibility of recording

forest information for the metrics identified in section 3.2.2.4, at location 1 in Figure 3.5. Plot

sizes of 60x60m, 50x50m, 30x30m and 25x25m were assessed. Three sample metrics were

selected to compare the ability of the plot sizes to capture trends, these metrics were(i) mean

DBH, (ii) standard deviation of DBH and (iii) tree species number. The assumption was made

that other metrics would follow the overall trends made by these three examples. Plot

location 1 was composed of a mix of plantation conifers, scots pine (Pinussylvestris) and

corsican pine (Pinusnigra) with small numbers of silver birch (Betulapendula) and beech

(Fagus) tree species. Figure 3.6 illustrates the summary metrics recorded at all four field plot
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sizes. The four plot sizes record similar area-based data overall, with only small differences

observed between mean and standard deviation of DBH. Species number detected decreased

with plot area size which was related site conditions. Smaller samples contained less

information, where the 25x25m size was the poorest.

In addition to concerns over the time necessary to enumerate the data in the field, a field-plot

sample size of 30x30m, with a single sub plot size of 10x10m,was selected as a compromise

between the sample-sizes tested here and utilised in the literature. The decision of sample size

was also linked to the ability of the possible use of satellite datasets in future work, for

example the resolution was comparable with multispectral satellite datasets, such as Landsat

ETM+.

3.2.2.3 Field data collection locations
In order to determine the Forestry Commission sub-compartments in which to locate a field

plot site, a basic remote sensing analysis was carried out in order to delineate areas which

corresponded to a range of different potential forest structural types. The authors Kalacska et

al. (2004) and Manes et al (2010) state that Normalised Difference Vegetation Index (NDVI)

values and their variability correlate with different forest canopy structural types. Thus, field

plot locations were selected across a range of NDVI values.

An NDVI image was calculated from airborne CASI-2 multispectral imagery acquired in

2007 for the New Forest study site in ENVI 4.7 (ITT Visual Information Solutions) image

analysis software. The details of this dataset are presented in section 3.2.3. All non-forest

areas were masked and removed based on an NDVI threshold discriminating forest and non-

forest. The NDVI image was then subset to produce images of deciduous or coniferous areas

based on Forestry Commission mapping. This allowed an equal number of sample sites for

deciduous and coniferous woodland types to be identified, thereby reducing potential bias

towards one broad structural type.
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Figure 3.5 – Field plot locations. Blue points represent those plots surveyed in 2010 whilst red
indicate the plots surveyed in 2012. Base Map layer is © Crown Copyright/database right
2010. An Ordnance Survey/EDINA supplied service.
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Figure 3.6 – A comparison of field plot summary statistics between four sample plot sizes.

Eight NDVI classes were created manually for the two images. The classes covered an equal

NDVI range which occupied the values in-between 0.4 to 0.8 (i.e. the range of values for

green vegetation in the imagery). A stratified random sampling technique was then applied

to both of the classified images where an equal number of sample points were produced for

each class-strata. An arbitrary minimum distance was enforced between sample points

(100m) in addition to a minimum distance from the perimeter, or of no-data value (100m).

The Forestry Commission sub-compartments in which a sample point was located were

identified and visited within the field. Attempts were then made to locate a position as close

as possible to the sample point coordinates in which to establish a field plot.

The 21 training data plots were visited during the months of June to September 2010, whilst
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(SOKKIA TOPCON Co. Ltd.). The total station was used to traverse from these reference

points to each of the plot corners beneath the canopy, recording each in British National Grid

(BNG) coordinates.

Post-processing position corrections were applied to the dGPS coordinate information using

UK Ordnance Survey RINEX data using the Leica Geo Office software. Overall this

provided a positional accuracy for dGPS positions of ≤0.03m overall horizontal accuracy.

The appropriate coordinate corrections were then applied to total station measurements.

When conducting the surveying work with the total stations, reference points were set up

along the traverse, and sighted before and after the total station was relocated to provide a

measure of accuracy. Through back-sighting the horizontal error was calculated as ≤8.11cm

overall.

3.2.2.4 Field data measurements
There is little consensus in the literature concerning the best indicators to use for assessment

of condition at the individual tree and field plot-area scales. Those used were based on the

above review of the available information (see section 2.2) and are listed in Table 3.1 for

structural variables, Table 3.2 for regeneration and deadwood variables and Table 3.3 for

disturbance and soil variables.

Figure 3.7 – Field plot design.30x30m north orientated plot, with
10x10m subplot in south-west corner.
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Table 3.1 – Forest structure variables recorded in the field
Metric: Measurement type: Plot area:
LAI Ring 4 Hemispherical camera 16 samples per plot
LAI Ring 5 Hemispherical camera 16 samples per plot
Canopy openness Hemispherical camera 16 samples per plot
Estimate of canopy layers Visual assessment Whole plot
Canopy density (%) Visual assessment Whole plot
X,Y coordinates of each tree Combined dGPS and total station Whole plot
Tree species Visual assessment Whole plot
Girth (m) (circumference at 1.3m height) Measurement tape Whole plot
Tree height (m) Combined measurement tape and

clinometer
Whole plot

Height of first live branch (m) (canopy base) Combined measurement tape and
clinometer

Whole plot

North-South horizontal crown extent (m) Measurement tape Whole plot
East-West horizontal crown extent (m) Measurement tape Whole plot
Note if the tree has been 'pruned' Visual assessment Whole plot
Assessment of canopy condition: [Open (1) -
Closed (4)]

Visual assessment Whole plot

Number of saplings Visual assessment Whole plot
Number of seedlings Visual assessment Sub-plot

Table 3.2 – Ground vegetation and deadwood variables recorded in the field

Metric: Measurement type: Plot area:
Ground vegetation
Species of shrub vegetation (if >1m height) Visual assessment Whole plot
Height of shrub individual (m) (if >1m height) Combined measurement tape and

clinometer
Whole plot

Horizontal extent of shrub individual (m) (if >1m
height)

Measurement tape Whole plot

Vascular plants percentage cover (%) Visual assessment Whole plot
Estimate of percentage bare soil (%) Visual assessment Whole plot
Estimate of percentage cover of moss on trees
(%)

Visual assessment Whole plot

Estimate of percentage cover of moss on ground
(%)

Visual assessment Whole plot

Deadwood
Height of snags (m) Combined measurement tape and

clinometer
Whole plot

Girth of snag (m) Measurement tape Whole plot
Snag decay class: [Light (1) - Heavy (3)] Visual assessment Whole plot
Fallen tree length (m) Measurement tape Sub-plot
Fallen tree girth (m) Measurement tape Sub-plot
Fallen tree decay class: [Light (1) - Heavy (3)] Visual assessment Sub-plot
Fallen branch length (m) Measurement tape Sub-plot
Fallen branch girth (m) Measurement tape Sub-plot
Fallen branch decay class: [Light (1) - Heavy (3)] Visual assessment Sub-plot
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Table 3.3 – Disturbance and soil variables recorded in the field

Metric: Measurement type: Plot area:
Disturbance

Evidence of bark stripping (%) Visual assessment Whole plot
Obvious browse line on trees: [Light (1) - Heavy
(4)]

Visual assessment Whole plot

Height of browse line (m) if different from crown
base

Measurement tape Whole plot

Evidence of trampling of ground flora Visual assessment Whole plot
Tree seedlings and saplings projecting above
ground vegetation height (y/n)

Visual assessment Sub-plot

Evidence of browsing of tree seedling or sapling
shoots (y/n)

Visual assessment Sub-plot

Dung from animals: [Abundant (1) - None (4)] Visual assessment Whole plot
Evidence of human activity (e.g. vehicle tracks in
site)

Visual assessment Whole plot

Direct evidence of human activity (e.g. presence
of rubbish)

Visual assessment Whole plot

Soil attributes
Soil pH Tecpel PH-707 meter 4 plot corners
Soil moisture Tecpel PH-707 meter 4 plot corners

Within each plot, the number and spatial location of each tree stem was recorded. Girth at

Breast Height (GBH) of each tree >30cm GBH (i.e. approximately >10cm diameter) was

measured to the nearest centimetre using diameter tape at a height from the base of 1.3m in

accordance with Forestry Commission guidelines, as in Matthews and Mackie (2006). GBH

can be used to determine Diameter at Breast Height (DBH) assuming the tree stem cross-

section is that of a circle. Tree height and height of the first live branch (i.e. height of the

living crown) was estimated for each tree (DBH>10cm) using a clinometer to measure angles

from the surveyor and a measuring tape for determining distance from the tree base. Heights

were derived through trigonometry (Matthews and Mackie, 2006). Tree crown horizontal

extent was measured by projecting the crown onto ground-level, where the north-to-south and

east-to-west extent was measured with tape (Suárez, 2004). A rough estimate of each tree’s

canopy condition was then undertaken according to 4 classes: (i) very sick/dying; (ii) more

sick than healthy; (iii) more healthy than sick; and (iv) healthy, with little sign of deadwood

and lots of green leaves (Hendry et al., 2002). The number of canopy layers was estimated at

the plot-level for all species present.

The total number of saplings (and number of native saplings) were counted, with saplings

being defined as trees species with DBH<10cm and>1.3m in height (Cantarello and Newton

2008). The total number of tree seedlings (and native tree seedlings) were recorded within the
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10x10m sub-plot, with seedlings defined as individuals <1.3m in height. The number of

ground flora species and their percentage cover was recorded within the subplot; this

included vascular plants and bryophytes.

Downed deadwood (DDW) was defined as deadwood logs of at least 10cm diameter lying on

the ground (Spies et al., 1988). Measurements were made in the 10x10m sub-plot only

(Cantarello and Newton, 2008). Length and girth around the maximum and minimum

diameters of the log were recorded. Length and girth of fallen branches >2cm in diameter

were also recorded for the sub-plot. To assess DDW decay class, logs and branches were

divided into three decay classes according to the following criteria: (i) logs with a low decay

state, no surface breakdown, bark still intact, wood structure firm; (ii) logs with a moderate

decay state, with some surface breakdown, wood structure weaker but bole mostly sound; and

(iii) logs with high decay state, extensive surface breakdown, bark mostly absent, bole with

no sound wood present and colonised with vegetation (Cantarello and Newton, 2008).

Snags were defined as standing deadwood>10cm DBH (Spies et al., 1988). Girth was

measured at a height of 1.3m from the base using measuring tape. Trigonometry was used to

derive the heights of the snags using a clinometer and measuring tape. All snags within the

30x30m plot were measured. Snag decay class was assessed using a three-class system,

identical to that described for DDW.

Soil pH and moisture measurements were taken in all of the 41 plots. Measurements were

taken in each of the four corners using a Tecpel-707 (TECPEL Co. Ltd.), recording soil pH

and soil moisture content. The sensitivity of the equipment could range from 3-8 pH, with an

accuracy of ±0.2 pH, and soil moisture content could range between 10-80%. It should be

noted that pH and moisture readings were taken on different days for each of the plots, and

thus may not be representative.

Hemispherical photography was used in order to estimate Leaf Area Index (LAI) and Canopy

Closure (CC). Neither LAI nor canopy closure can be estimated accurately from a single

image; Weiss et al. (2004) suggest a minimum of 8 images is required. In this study a total of

16 images were taken for each field plot at a height of 1m from the ground using a

horizontally levelled digital camera. A uniform 4x4 cell grid was laid out in each field plot

(see Figure 3.8) where a photograph was taken in each cell as close to the centre as possible,
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allowing for obstructions. All photographs were taken between 10am and 2pm under overcast

conditions to ensure a homogenous illumination of the overstorey canopy and a correct

contrast between the canopy and the sky, as in Riano et al (2004).

Hemispherical photography was acquired using a Nikon Coolpix 5400 digital camera and

Nikon FC-E9 fisheye converter (combined focal length equivalent to 7.2mm, and the

combined F number is f/2.4). The field of view of this lens is approximately 183°.The Nikon

Coolpix 5400 employed a high density 1/1.8" colour CCD sensor with a maximum pixel

density of 13 MP/cm².Photographs were taken at a resolution of 2592 x 1944 pixels,

illustrated in Figure 3.9.Each of the photos was oriented north to south in the field, according

to the markers present on the self-levelling mount (SLM5, Delta-T Devices Ltd.), so north is

always to the top-left of the image.

3.2.3 Airborne remote sensing
This section contains a summary of the remote sensing datasets acquired for the New Forest

study site. Multi and hyperspectral imagery is outlined first, followed by discrete return and

full-waveform LiDAR systems. Remote sensing datasets for the New Forest have been

provided by the Airborne Research and Survey Facility (ARSF), a department of the Natural

Environment Research Council (NERC). Bespoke data was acquired using the Dornier 228-

101 research aircraft at an altitude of 5700ft (1737m), and speed of 135 knots (250 kph) for

both April and July 2010.Thus, leaf-off and leaf-on datasets were acquired. A full listing of

the remote sensing datasets is given in Table 3.4. Figure 3.10 illustrates the overlapping

extents of the 2010 April and July remote sensing acquisitions.
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Figure 3.8 – A hemispherical photograph was taken as
close to the centre of each of the 16 grid cells for each field

plot site.

Figure 3.9 – Hemispherical photograph taken
underneath semi-ancient deciduous woodland. The

pointed marker (top-left) denotes north.
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Figure 3.8 – A hemispherical photograph was taken as
close to the centre of each of the 16 grid cells for each field

plot site.

Figure 3.9 – Hemispherical photograph taken
underneath semi-ancient deciduous woodland. The

pointed marker (top-left) denotes north.
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Figure 3.8 – A hemispherical photograph was taken as
close to the centre of each of the 16 grid cells for each field

plot site.

Figure 3.9 – Hemispherical photograph taken
underneath semi-ancient deciduous woodland. The

pointed marker (top-left) denotes north.
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Table 3.4– A summary of all remote sensing datasets currently acquired for the New Forest.
Sensor name: Description: Resolution:
July 11/07/2007
CASI-2 [Archived]

14 spectral bands (visible to near-
infrared) set to MERIS specifications.

2x2m pixel size

April 08/04/2010
Eagle 252 spectral bands (visible to near-

infrared).
~1.1 x 1.1m pixel size
Swath = 1013.05m

Hawk 233 spectral bands (shortwave infrared). ~2.1 x 2.1m pixel size
Swath = 681.03m

ALS50-II LiDAR (DR&FW) Discrete return (4 returns) and full
waveform (2ns waveform sampling).

Discrete return at ~3.4 pulses
returned per m2.Waveform data at
~2.2 pulses per m2.

July 06/07/2010
Eagle 252 spectral bands (visible to near-

infrared).
~1.1 x 1.1m pixel size
Swath = 1013.05m

Hawk 233 spectral bands (shortwave infrared). ~2.2x 2.2m pixel size
Swath = 681.03m

ALS50-II LiDAR (DR&FW) Discrete return (4 returns) and full
waveform (1ns waveform sampling).

Discrete return at ~3.7 pulses
returned per m2.Waveform data at
~2.4 pulses per m2.

Figure 3.10 – The overlapping extents of the 2010 April and July airborne remote sensing
acquisitions. Base Map layer is © Crown Copyright/database right 2010. An Ordnance
Survey/EDINA supplied service.
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3.2.3.1 Archived airborne multispectral data
The CASI-2 data acquired in 2007 were used to guide fieldwork only through a random

stratification of the NDVI product. The CASI data were not used in any further analysis due

the relatively low spatial and spectral resolution and data acquisition being three years prior

to this research project.

3.2.3.2 Airborne hyperspectral data
The ARSF acquired Specim AISA Eagle and Hawk hyperspectral datasets for leaf-off and

leaf-on conditions in 2010 (April 8th and July 6th). The Eagle is a 12-bit, push-broom,

hyperspectral sensor with a 1000 pixel swath width, covering the visible and near infra-red

spectrum (400 - 970nm). For this research the nominal spatial resolution for the Eagle sensor

was approximately 1.1x1.1m for both acquisition dates. The Eagle data contains 252

contiguous spectral bands at approximately 2.2nm bandwidths. The Hawk is a 14-bit sensor

able to capture shortwave infrared wavelengths (970 - 2450nm). The Hawk has 320 spatial

pixels, 244 spectral bands and a maximum spectral resolution of 8nm.The Hawk imagery was

produced with a nominal spatial resolution of 2.1x2.1mfor leaf-off and 2.2x2.2m for leaf-on

acquisitions. The Hawk data contained 233 contiguous spectral bands, at approximately

6.2nm bandwidths. The dataset was distributed at level 1b, which has had radiometric

calibration algorithms applied, to produce radiance or irradiance, and to which location and

navigational information has been appended. These levels are named according to the

National Aeronautics and Space Administration (NASA) standard product definitions.

The April and July Hawk data was not used in the course of this analysis due to errors in the

data which could not be resolved due to sensor faults, in addition to the relatively coarse

spatial resolution. Therefore only the leaf-on and leaf-off Eagle hyperspectral data were

employed within this thesis.

3.2.3.3 Airborne LiDAR data (discrete and full-waveform)
The LiDAR data for this research were acquired in conjunction with the hyperspectral

imagery by the ARSF. The LiDAR instrument used was the Leica ALS50-II airborne laser

scanner. The system uses a scanning laser to measure the distance between the aircraft and

the ground surface. The operating specification of the system includes a maximum pulse rate

of 83 KHz, and up to 4 returns from each discrete laser pulse. The LiDAR was installed in the

Dornier 228-101 research light-aircraft and flown over the area of interest. The position of
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the aircraft whilst in the air was recorded using a differential GPS, with positional

information being relayed from base stations in known positions. Orientations (roll, pitch,

and bearing) of the aircraft were recorded through the Inertial Measuring Unit (IMU). The

accuracy of geographical coordinates of the system is estimated at a maximum of ±11 cm

(including GPS errors) (Leica Geosytems, 2003).

In 2010, discrete return (DR) LiDAR data were captured at an altitude of approximately

5700ft (1737m), with a swath width of 612m across each flightline and a scan half-angle of

10°.Up to four returns could be extracted from each laser pulse. The DR LiDAR data

provided from the ARSF were in LAS (version 1.2) file format, of X, Y and Z coordinates,

intensity, and return number, for the first, intermediate, and last significant return per laser

pulse. The X and Y location was supplied in British National Grid (BNG) coordinates, while

elevation was supplied in metres above the Ordnance Survey of Great Britain 1936 Datum. In

addition, a basic point classification of these points was provided by the ARSF, who used the

Terrascan software (http://www.terrasolid.fi), to identify potential erroneous or noise points.

The Leica ALS50-IIincluded an upgrade to record both discrete return and full-waveform

(FW) LiDAR data for a small footprint simultaneously. The FW data was provided in LAS

(version 1.3) file format, which contained GPS, IMU, and laser pulse return waveform data.

For the April 2010 acquisition the ALS50-II scanner provided a measurement point density

of 3.4 pulses per m2 for discrete return measurements and approximately 2.2 pulses per m2

for full-waveform measurements. For July 2010 data the measurement point density was3.7

pulses per m2 for discrete return measurements and approximately 2.4 pulses per m2 for full-

waveform measurements. The full-waveform measurements were of a lower pulse density

due to the setup of the data capture and the additional processing time required to store the

digitised waveform response. The full-waveform system allowed the full return waveform to

be digitised and recorded with a digitisation sampling period of 1ns or 2ns.This sampling

period defines the time intervals of sampling. The waveform is not completely recorded, but

sampled over a predefined number of nano-seconds, 64, 128 or 256 (ARSF, 2011a). These

samples are recorded from the time of the first return, with a small buffer before that (default

is 5m) which in theory allows the lead-in to the first pulse. Both leaf-on and leaf-off full-

waveform acquisition used 8-bit (or 256 nano-second) samples.
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The 2010 leaf-off (April)waveform dataset was acquired with a 2ns sampling interval, whilst

the 2010 leaf-on (July) dataset was acquired with a 1ns sampling interval. The sampling

period imposes a number of peculiarities to the system, the first of which being the range

resolution. Waveform digitisation sampling can be set to either 1 or 2ns (1ns is equivalent to

15cm distance travelled and 2ns equivalent to 30cm). The second peculiarity is that of

maximum vertical range covered, where the digitiser starts recording from the first returned

peak for the required sample number, e.g. 256, so this will define the maximum possible

elevation of the last recording. The device was set to 256 samples at 2ns intervals for the leaf-

off dataset, thus the maximum possible recorded height range per pulse is 76.8m from the

first significant pulse (at nadir). For the leaf-on dataset the device was set to 256 samples at

1ns intervals, thus the maximum possible recorded height range per pulse is 38.4m.

The next chapter outlines the data processing and analysis methods applied to both the field

data and the remote sensing datasets.
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Chapter 4 –Methods

The following chapter concerns the processing steps involved in converting the raw datasets

identified in Chapter 3 into data which can be analysed to achieve objectives 3-6 of this

research project. To retrieve and assess metrics required to map woodland condition at the

individual tree-level, plot- or stand-level, processing steps were developed for:

1. processing of field data to estimate critical plot-level variables and calculation of

condition indices;

2. processing of hyperspectral datasets to generate usable individual tree and area-based

metrics for analysis;

3. processing of DR LiDAR datasets to generate usable individual tree and area-based

metrics for analysis;

4. processing of FW LiDAR datasets to generate usable individual tree and area-based

metrics for analysis;

5. use of statistical methods to estimate comparable field-level attributes from the

remote sensing data which would relate to condition assessment;

6. validation of the estimates for field plot-level data;

7. mapping the estimated field plot-level metrics across the study area and the

calculation of condition indices from this data.

Figure 4.1, 4.2 and 4.3 provides flowcharts to illustrate the overall approach of this method to

processing and analysing the two field datasets and the three remote sensing datasets (in

addition to their combination) for predicting forest metrics necessary for assessing forest

condition.

 Figure 4.1 depicts the basic processing steps necessary for fieldwork data analysis.

 Figure 4.2 illustrates the processing and analysis steps necessary for all remote

sensing datasets.

 Figure 4.3 shows the necessary calculation steps for applying the field plot-level

metric predictions across the whole study site in addition to the calculation of

condition indices.
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Figure 4.1 – A flowchart illustrating the processing and analysis steps for the field data
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Figure 4.1 – A flowchart illustrating the processing and analysis steps for the field data
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Figure 4.2 – A flowchart illustrating the analysis steps for remote sensing datasets.
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Figure 4.2 – A flowchart illustrating the analysis steps for remote sensing datasets.
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Figure 4.2 – A flowchart illustrating the analysis steps for remote sensing datasets.
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Figure 4.3 – Flowchart illustrating the selection of the best predictive models and the
production of condition indices
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Figure 4.3 – Flowchart illustrating the selection of the best predictive models and the
production of condition indices
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4.1 Fieldwork analysis
What follows is a description of the calculation and processing steps applied to the data

recorded in the field in order to provide the input required for the various condition indices.

Choice of field metrics was selected through a broad search of the surrounding literature (see

Chapter 2.2.4).

4.1.1 Calculations applied to the field datasets
A number of calculations needed to be applied to the fieldwork data in order to provide the

required information for the various analysis steps outlined in section 3.2.2. Appendix A

contains a full description of calculations applied to the fieldwork data; these variables are

summarised in Table 4.1. The heights of trees and height of the first live branch (crown base)

were calculated through the use of trigonometry from a combination of distance and angular

measurements. Crown horizontal area was calculated through the use of the formula to derive

the area of an ellipse. Diameter at Breast Height (DBH) and Basal Area (BA) were calculated

using formulae for finding the diameter and area of a circle respectively from the

circumference (i.e. tree girth). Deadwood volume was also calculated for snags and downed

deadwood, using formulae for finding the volume of either cylinders or a truncated cone

shape depending on the deadwood item (Cantarello and Newton, 2008). Each of the

calculations mentioned were performed in Microsoft Excel 2007 (Microsoft Corp.).

4.1.2 Hemispherical photography processing
A total of 643 hemispherical photographs were taken in the field. Multiple images per site

position were taken in order to experiment with exposure settings. Photographs were selected

on the basis of the absence of blurs, distortions, saturation and the ability to discern tree

features. A single photograph for each field plot division was chosen (see Figure 3.7). Each

of the selected photographs was then input into Gap Light Analyser (GLA) software (version

2.0.4)(Frazer et al., 1999, 2001).

Figure 4.4 summarises the key steps for estimating canopy openness and Leaf Area Index

(LAI) using GLA software. Image registration was applied manually by the user, selecting

north as indicated on each the photographs from fibre optic markers, and defining the image

area for analysis onto each photograph (see Figure 4.5). Figure 4.6 illustrates a sample

photograph with the manually set threshold applied, in order to delineate tree canopy from
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sky pixels. The intensities below the threshold were considered to be foliage (black), whilst

those above are classified as sky (white) (Frazer et al. 2001). This process was subjective.

Canopy openness (the opposite of canopy closure) is a sine-weighted measure which

represents the relative amount of unobstructed (open) sky visible from an unobstructed point

in the understorey (Frazer et al. 1999). LAI is a dimensionless variable, the ratio of leaf area

per unit of ground surface area. This indirect method of LAI estimation uses a modified

Beer’s Law light extinction model, by mathematically analysing the light intercepting effect

of leaves with different angular distributions using a simplified assumption of randomly

distributed foliage elements. LAI is discussed in greater detail in Zheng and Moskal (2009).

Table 4.1 – Summary of calculations applied to field recorded data (more detailed descriptions
in appendixA).
Calculation: Description:
Number of tree stems per hectare The field plot size corresponds to 9% of 1 ha. The total number of tree

stems was extrapolated accordingly
Number of saplings and seedlings
per hectare

The number of native and total saplings and seedlings were totalled and
extrapolated to their occurrence at 1 ha.

Diameter at breast height (DBH)
(m)

Estimated from girth measurement for individual trees. A mean and
standard deviation were also calculated for each plot. Plot mean and
standard deviation were then calculated.

Percentage of big trees per plot Those trees with DBH between 0.4-0.8 and DBH>0.8 were counted relative
to the total number of trees within the plot as a percentage.

Basal area (BA) (m2) BA is essentially the horizontal area taken up by the tree trunk. This was
calculated for each tree and summed to the plot-level. An estimate of BA
per hectare was produced.

Tree heights (m) Derived through trigonometric calculations using tape and clinometer
measurements for total tree height.

Lorey's mean height (m) Lorey's mean height weights the contribution of trees to the plot height by
their basal area.

Height to the first live branch (m) Derived through trigonometric calculations using tape and clinometer
measurements for height from base of the stem to first live branch. Plot
mean and standard deviation were then calculated.

Crown horizontal area (m2) To estimate the horizontal coverage of the crown the North-South and East-
West extents were input into the formula to estimate the area of an ellipse.
Plot mean, standard deviation and total were then calculated.

Volume of downed deadwood
(DDW) (m3)

Includes fallen trees and fallen branches. Volume was estimated from
length and diameter measurements.

Volume of snags (m3) Standing dead trees only. Volume was estimated through height (assessed
through the same method as for tree height) and girth measurements.

Number of ground flora species
per hectare

Concerning vascular plants. The total number was counted.The subplot size
corresponds with 1% of 1 ha. The total number was extrapolated.

Sum of DBH differences between
neighbouring trees

Input to the Tree Diameter Differentiation index (Vorčák et al., 2006). Sum
of DBH differences between neighbouring trees.

Index of vertical structure Part of the Stand Diversity Index (Jaehne and Dohrenbusch, 1997, in
Newmann and Starlinger, 2001, Vorčák et al., 2006). The ratio of the three
smallest DBHs against the three largest DBH values within the plot.
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The LAI index value can range from 0 for bare ground to 6 for a dense forest. Two types of

LAI estimation were made, those calculated from LAI ring 4 and LAI ring 5. LAI ring 4 is

the effective LAI calculated over zenith angles 0 to 60° from the centre of the hemispherical

photograph (i.e. the central 30% area of the image). LAI ring 5 is the effective LAI

integrated over zenith angles of 0 to 75°.Estimates of canopy openness and the two LAI

approximations were recorded for each hemispherical photograph, and the values averaged

for each field plot using Microsoft Excel 2007.

Figure 4.4 – The 5 key steps to analysing hemispherical photographs
for forest canopies.

1. Input – Image
selection

2b. Image editing –
channel selection
and enhancement
(grey-scale image)

2a. Registration –
size alignment and

orientation

3. Classification –
threshold applied
to create binary

image

4.Data extraction –
canopy openness

and LAI

5. Output –
spreadsheet of

results
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Figure 4.5 – (Left) Registered image, note the red circle in the top left corner identifies
geographic north (0°). (Right) the original photograph with north and south marked at time of
exposure using fibre optics mounted at the edge of the fish-eye lens.

Figure 4.6 – (Left) The original photograph, (right) the binary threshold image, where foliage is
considered black and sky as white.
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4.1.3 Calculating compositional and structural indices
With the field data available, nine measures for both species and structural diversity were

calculated for each plot. Thus, all the indices refer to within plot structure and composition.

There are a considerable number of other indices for describing spatial structure (see section

2.2.2). Further examples are available in Pommerening (2002, 2006) and Staudhammer and

Lemay (2001).

Only a subset of indices was explored within the course of this project, the choice of which

was determined by their number of inputs and computational complexity. Some indices used

focus on a single facet of the woodland environment, such as the spacing of tree stems,

whereas others utilise multiple facets such as species composition, tree size, size variability,

the presence of deadwood and the regeneration of species. In addition some indices require

the input of area-based or individual tree-based metrics. The aim was to test for which of the

techniques provide a better woodland condition indicator. What follows is a description of the

indices chosen for this research project.

4.1.3.1 Species composition indices
The species compositional indices of the Shannon-Wiener index (SH) (Shannon, 1948) and

the Simpson index (SI) (Simpson, 1949) were utilised in this study. These indices are a

mathematical measure of species diversity within a community. Both SH and SI were

calculated with the proportion of stems of that species within the plot, and the proportional

basal area of the species within the plot. In addition a measure of Evenness (E) was

computed, which is a measure of how similar the abundances of different species are. The SH

has been criticised however because it is sensitive to sampling size and over-emphasises rare

species (Magurran, 2004). An alternative is the SI. A combination of indices was chosen to

take advantage of the strengths of each and develop a better understanding of species

composition.

The SH diversity index for all tree species, and native seedling species was calculated as:

= [4.1]

Where pi = the proportion of individuals (trees count/seedlings count/total basal area) in the

ith species, and n is the number of species. The Shannon index was calculated for stem

number for tree and seedlings species, in addition to basal area for tree species. Typically the
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value of the index ranges from 1.5 (low species richness and evenness) to 3.5 (high species

evenness and richness).

The Evenness index (E) removes the influence of species number by standardisation, and is

performed upon the Shannon-Wiener Index (as above), it is calculated as:= ⁄ [4.2]

E is a measure of how similar the abundances of different species are. When there are similar

proportions of all subspecies then E = 1, but when the abundances are very dissimilar (some

rare and some common species) then the value increases.

The Simpson index was calculated for tree species in each plot as:

= 1 − (1 − ) [4.3]

Note this is the ‘Complementary’ form of the index. Index values can range between 0 and 1,

where diversity increases, the index value increases. It should be noted that using the

Simpson index with low numbers, misleading results can be obtained. A low Simpson index

value equates to high diversity, whereas a high value correlates to a low diversity.

4.1.3.2 Structural indices
The indices for spatial distribution or horizontal structure compare a hypothetical distribution

with the real situation. The first of these is the Clark-Evans aggregation index (R) (Clark and

Evans, 1954). This index was developed for the purposes of botanic and phytocoenologic

studies. In forestry research it has been used very rarely (Vorčák et al., 2006). The

aggregation index describes the horizontal distribution of trees using the relation of the mean

distance between the reference tree and its nearest neighbour and the expected distance

between them for a random distribution in the stand. This is calculated as follows:

= ∑0.5 × [4.4]

Where ri is the distance of tree i to the nearest neighbour, N is the number of trees on the

sample plot, and Pl is the area of the sample plot (m2). The aggregation index can

theoretically range from 0 at maximum tree clustering, to 2.15 at the regular hexagonal

distribution of trees. An index value of 1 indicates that the trees are distributed randomly
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within the stand. Thus, stands with the index value > 1 show a tendency towards regular

distribution, while values of < 1 show a tendency towards clustering.

Vorčák et al. (2006) state however that it is not enough to know the index value alone. In

nature most variables have a stochastic character and this index belongs to this type of

variable. It is therefore important to know whether the difference between the calculated

index and the index expected from a random distribution is significant. This fact can be tested

with: = − = −. × [4.5]

Where rR is the real distance between the tree and its nearest neighbour, rT is the expected

distance to the nearest neighbour, σT is the standard error of the mean for the expected

distance to the nearest neighbour, N is the number of trees on the sample plot and Pl is the

area of the sample plot (m2). If the t-value is higher than 1.96 with 95% probability, the trees

in the stand have a clustered or regular distribution according to the value of the R for the

given stand.

Tree diameter differentiation has been identified as another potentially important parameter

of structural diversity, for which an index (TM)was created by Füldner (1995 cited in Vorčák

et al., 2006). It can be calculated from various tree attributes (diameter, perimeter, basal area,

height, or volume). Diameter is the most commonly used attribute. The differentiation can be

quantified by the following formula:

= 1 1 − [4.6]

Where N is the number of trees on the sample plot, and dij is the relation between thinner and

thicker DBH in the analysed neighbour tree pair. The index values range from 0 to 1. The

stands with small diameter differentiation have the index values near 0, whilst stands with

high diameter differentiation reach index values closer to 1. Aguirre et al. (1998cited in

Vorčák et al., 2006) suggested a 5-level scale in order to simplify the comparison of the

stands as follows: low differentiation (0.0-0.2); medium differentiation (0.2-0.4); obvious

differentiation (0.4-0.6); strong differentiation (0.6-0.8); and very strong differentiation (0.8-

1.0).
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There are comparatively fewer indices for the measurement of vertical structure (Neumann

and Starlinger, 2001). Neumann and Starlinger (2001) outline the vertical evenness index

(VE), in order to characterise the vertical distribution of coverage within a stand. The trees

within the plot were stratified into four layers (100-80%; 80-50%; 50-20%; 20-0% of the

maximum height of the plot), their crown projection area was then calculated, and the

Shannon formula applied to the resulting proportions. Furthermore the results were

standardised by the four layers according to the Evenness formula. Thus the equation is:

= (− log ) [4.7]

Where πi is the relative crown area of all trees in the ith height layer. Low values of VE

characterise single storied stands while the theoretical maximum of 1 would result for forest

canopies which contained a high degree of different vertical layers.

4.1.3.3 Combined indices
All of the indices documented so far concentrate upon single elements of diversity. The

complexity index (HC) by Holdridge (1967) relies on combining traditional measures of

stand description: = ( × × × )10000 [4.8]

where multiplying the number of trees species (n) by stem number per ha (N), dominant

height (H), and basal area per ha (BA), divided by the field plot area. The index is determined

strongly by the number of species and measures growth performance but contains no

information on spatial distribution nor accounts for within-stand variation. Typically, a target

index value is assigned from an ‘ideal’ woodland and other sites are assessed against this

value (McElhinny, 2005).

Jaehne and Dohrenbusch (1997, cited in Newmann and Starlinger, 2001, Vorčák et al., 2006)

proposed the complex stand diversity index (CSDI), which was stated as integrating the main

elements of diversity by combining measures for the variation of species composition (A),

vertical structure (S), spatial distribution (V), and crown dimensions (K) into a single figure.

This index can be presented as: = ∗ + ∗ + + [4.9]

wherep and q are factors of importance (p=4 and q=3). Table 4.2 describes each of the four

variables of stand structural diversity. Jaehne and Dohrenbusch (1997, Vorčák et al., 2006)
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also offered the general evaluation of the stand diversity according to the CSDI value, these

are:

1. B ≥ 9.0 = a very heterogeneous stand structure;

2. 8.0 ≤ B < 8.9 = heterogeneous stand structure;

3. 6.0 ≤ B<7.9 = uneven stand structure;

4. 4.0 ≤ B<5.9 = homogenous stand structure;

5. B< 4.0 = monotonous stands.

Table 4.2 – Components of the CSDI of stand structural diversity.

Component: Description:
1. Index of tree species
composition (A)

= log( ) × ( − + )
Where n is the number of species; Z is a control parameter (the authors suggest
the value 1.5); Mamax is the relative proportion of the most abundant tree species;
and Mamin is the relative proportion of the least abundant tree species.

2. Index of vertical structure
(S) = 1 − ∑∑

Where N is the number of measured trees (3 thickest and 3 thinnest trees);
DBHmin is the DBH of the thinnest trees (in cm); and DBHmax is the DBH of the
thickest trees (in cm).

3. Index of spatial
distribution (V) = 1 − ∑∑ × ×

Where n is the number of measured distances (3 shortest and 3 longest distances
between neighbour trees); Ab is the distance between trees (m); and fis the
correction for stand density (in the pole stage and older stands this can be
omitted); = 1∑ + ∑
stis the factor considering coppice sprouts;= × 0.1 + 1
N250 is the number of coppice sprouts per 250m2; and Y is the control
parameter.

4. Index of crown
differentiation (K) = 1 − log ∑ + ∑∑

Where n is the number of selected trees (2 trees with the smallest and 2 trees
with the largest crown diameter); Kamin is the smallest height to the crown base
(m); Kdmin is the smallest crown diameter (m); and Kdmax is the largest crown
diameter (m).

4.1.3.4 Score-based indices
The scoring method was defined by Cantarello and Newton (2008) and requires the definition

of target indicator values for the forest type in question. Their study was focused upon old

growth deciduous woodland in the New Forest, UK, rather than a combination of plantation

coniferous and deciduous woodlands. Thus, all the targets used in this approach were

typically based upon ‘ideal’ deciduous forest conditions. After a review of various

biodiversity indicators was undertaken for habitat monitoring under the Natura 2000
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initiative, 17 indicator variables were selected for the investigation, see Table 4.3.Those

indicators were reported as the most commonly featured in the literature, focusing primarily

on indicators of forest structure and function which have been tested at the local scale. Field

plot measures were assessed against the target values and assigned a 0 if lower and 1 if equal

to or above the target. The sum of the scores for the indicators represents the index. This

index was aimed mainly at assessing old-growth deciduous woodlands; predominantly the

targets for deciduous trees were based upon published figures for Denny Wood, New Forest

(Mountford et al., 1999)

Table 4.3 – List of ecological indicators analysed and their target values for the New Forest
Key Factor Indicator Target
Forest Stand Structure 1. Number of trees (ha-1) 222*3

2. Shannon-Wiener index for native trees 0.87*3

3. Basal area (m2ha-1) 23*3

4. Mean DBH (cm) 32*3

5. Standard deviation of diameters (cm) 14*4

6. Percentage of big trees 7*3

7. Mean height (m) 17*1

8. Number of total saplings(ha-1) 91*3

9. Number of native saplings (ha-1) 91*3

Deadwood 10. Volume of downed deadwood (m3ha-1) 26*3

11. Downed deadwood decay class 0.5*2

12. Volume of snag (m3ha-1) 16*3

13. Snag decay class 0.4*2

Tree Regeneration 14. Number of seedlings (ha-1) 63,219*3

15. Number of native seedlings (ha-1) 63,219*3

16. Shannon-Wiener index for native seedlings 0.89*3

17.Number of ground vegetation species 33*3

*1Ferrettiet al. (2006); *2Keddy and Drummond (1996). *3Mountford et al. (1999); *4 Van den Meersschaut and
Vanderkerkhove (1998);

4.2 Hyperspectral data processing
This section describes the pre-processing steps required in order to allow any form of analysis

with the hyperspectral datasets. Only the Eagle leaf-off (April) and leaf-on (July) datasets

acquired in 2010 were used for this part of the processing.

4.2.1 Hyperspectral data pre-processing

The hyperspectral datasets were supplied in level 1a format by the ARSF according to the

standard NASA definition (ARSF, 2011b). These data cannot readily be used for analysis.

The following pre-processing steps were required to generate level 3b data, as defined by the

ARSF (2011b), for analysis purposes. For example, a number of pre-processing steps were

required in order to correct the hyperspectral imagery for illumination, geometric and

atmospheric effects. Each of the flightlines was a single file and required merging with its
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neighbours in order to create a continuous coverage. In addition, steps to eliminate noise and

extraneous data were implemented. The following sections describe in detail each of these

necessary pre-processing steps in order.

4.2.1.1 Cross-track correction
Upon visual examination of each of the Eagle flightlines a limb-brightening effect was

observed. This effect will have been caused by both path length effects and differential

scattering angles of atmospheric aerosols (Hill et al. 2009a). The hyperspectral data were

acquired near to mid-day in order to maximise solar irradiance and signal strength, with the

majority flown in a north-south orientation. This orientation resulted in minimised limb-

brightening, by reducing aerosol optical depth which was symmetrical about the nadir-line of

the flightline. For the few flight strips flown perpendicular to the solar azimuth, limb-

brightening was at its greatest and asymmetric as a result of the larger scattering angle

between the solar zenith/azimuth angle and the across scan angle (±45°).

Radiometric corrections were applied using ENVI 4.7 (ITT Visual Information Solutions) to

minimise the limb-brightening effect and reduce the general upward trend in spectral

response towards the edge of each scan line. Along-track mean values were calculated and

were used to show the mean variation in the cross-track direction. This captured the overall

limb-brightening for each flightline. Third order polynomial functions were used to fit the

means and remove the illumination variance across the image (ENVI-Online-Help 2005).

This minimised the limb-brightening effect while retaining scene variability. This step was

required before geo-corrections could be applied.

4.2.1.2 Geo-corrections
The level 1a hyperspectral flightline data contained no location information to match pixels

to a known coordinate system. Thus, hyperspectral imagery was geometrically corrected

utilising an Azimuth Systems program AZGCORR (http://arsf.nerc.ac.uk/data/azimuth.asp)

which was used to (i) apply aircraft navigation data to each scan line and (ii) project this data

upon a geoid-based projection to determine the exact intersection of each pixel’s view angle

with a high spatial resolution Digital Surface Model (DSM). The DSM used here had a 1m

spatial resolution and was generated from the concurrently captured LiDAR data (see section

4.3). The product of this was a geo-correction aligned to the British National Grid (BNG).
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The Eagle imagery was re-sampled to 1.1m pixel spatial resolution utilising a bilinear

interpolation algorithm.

Each of the geo-corrected flightlines for each of the dates was checked visually for geometric

accuracy by overlaying vectors of road edges, building outlines, and water features from the

Ordnance Survey Meridian 2 dataset, as demonstrated by NCAVEO (2005). The ARSF also

checked the geospatial integrity of the data in this manner prior to delivery for this project

(ARSF 2011b), and stated that the hyperspectral data corresponds spatially to within 0-2m of

the Ordnance Survey vector overlay maps. This process was repeated here and the

registration between the hyperspectral data and OS vectors was confirmed as being within

2m.

4.2.1.3 Atmospheric correction
The solar radiation reflected from the Earth’s surface must pass through part of the

atmosphere before it is collected by the airborne instrument. Thus the recorded data contains

information about the atmosphere as well as the Earth’s surface. For a quantitative analysis of

surface reflectance to be performed, the removal of the influence of the atmosphere is a

critical pre-processing step. The properties of water vapour and aerosols within the

atmosphere are rarely known; but there are techniques to infer them from their imprint on

hyperspectral radiance data (ENVI-Online-Help 2005). These properties can then be used

within highly accurate models of atmospheric radiation transfer to produce estimates of true

surface reflectance. Atmospheric corrections can be applied on a pixel-by-pixel basis.

It should be noted that the atmospheric correction step is necessary as all vegetation indices

require high-quality reflectance measurements from either multispectral or hyperspectral

sensors. Measurements in radiance units that have not been atmospherically corrected are

unsuitable, and typically provide poor results (San and Suzen, 2010).

As close range calibration data were not available for all datasets, a repeatable solution for

both 2010 Eagle datasets was required. The atmospheric correction model in ENVI 4.7 was

used for this task, i.e. FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-

cubes), which is a first-principles atmospheric modelling tool for retrieving spectral

reflectance from hyperspectral radiance images. FLAASH incorporates the MODTRAN 4

radiation transfer code; for more details on this code see Matthews et al. (2000). Atmospheric
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corrections of this type can be applied on a pixel-by-pixel basis because each pixel in a

hyperspectral image contains an independent measurement of atmospheric water vapour

absorption bands.

FLAASH operates from the standard spectral radiance equation, as described in Matthews et

al. (2000). The calculations are based on the viewing and solar angles and the mean surface

elevation measurement, assuming a certain type of atmosphere, aerosol level and visibility.

Corrections are made for water vapour column amount by analysing selected wavelength

channels to retrieve estimated amounts for each pixel.

Close range spectral radiometry was only available for the April 2010 data capture, and as

such empirical line correction could not be applied to both sets of imagery. The ARSF Field

Spectroscopy Facility (FSF) in Edinburgh (http://fsf.nerc.ac.uk/) loaned a number of pieces of

equipment for this task. These included four reflectance tarpaulins to provide a uniform

spectral target for detection by the airborne imagery and for the following device. The

Spectra Vista Corp (SVC) HR-1024 Field Spectroradiometer records the spectra of surface

material within the visible to short-wave infrared wavelength range (350-2500nm). This was

utilised to sample the reflectance tarpaulins and a number of other vegetated and ground

cover types, most notably gravel, leaf-litter, grassland, heathland and various tree and

heathland vegetation types. In addition, the Microtops II Sunphotometer, a hand-held

instrument for measuring the atmospheric column, was also available. This device is used for

the determination of aerosol optical thickness (AOT), utilising filters at 936nm and 1020nm

for the measurement of total water vapour in the atmospheric column. A reading on this

device was taken every five minutes while the ARSF data acquisition was under-way.

The data recovered from the fieldwork in April 2010 was used for assessing the accuracy of

the FLAASH corrections. Calculated radiance values were checked against values recorded

in the field.

4.2.1.4 Between flightline radiometric difference correction

In the 2010 Eagle data some minor variation in pixel reflectance values was evident when

comparing adjacent flightlines. These differences were caused by changing levels of solar

illumination of the study area during the time of the flight, primarily caused by changing
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positions of cloud or by the automated changing of settings with the sensors on the aircraft. In

addition there may have been residual errors in the cross-track illumination corrections.

A histogram matching approach was implemented in order to account for these differences.

This function within ENVI 4.7 makes the brightness distribution of two flightlines as close as

possible through a method of stretching the pixel values of one image to approximate another

for each spectral band (ENVI-online-help, 2005). Errors unable to be mitigated (i.e. cloud

shadow areas) were manually digitised and masked out of the flightline prior to mosaicking.

4.2.1.5 Image mosaicking
Image mosaics were produced from the hyperspectral datasets in order to produce a

continuous high spatial-resolution surface. The Eagle images were mosaiced according to

their geo-reference information within ENVI 4.7.The geometric and radiometric accuracy of

the airborne remotely sensed data are better towards the central nadir viewpoint of the

individual flightlines (Hill et al. 2009a). Thus, subsetting and the use of feathering options

were used within ENVI to preserve these near-nadir areas where possible. Preference was

given to the north-south flightline images to ensure similar illumination characteristics. Those

areas where clouds or illumination anomalies had been masked out and removed in one

flightline were filed with data from an overlapping flightline.

4.2.1.6 Quantification of horizontal accuracy
Consideration must be made with regards to spatial accuracy and co-registration with other

datasets. A total station was utilised to provide accurate positional information for the

training and validation field plot locations. Inaccuracy with spatial locations would introduce

additional uncertainties in being able to relate field measurements with remote sensing

metrics.

As the spatial accuracy of the LiDAR data was considered sufficient, as defined in section

4.3, the geometric accuracy and co-registration of data layers was tested by calculating the

displacement error of features in the hyperspectral dataset compared with those in the

rasterised LiDAR digital elevation model (DEM).

Error was estimated by using the georeferencing tool within Arcmap (version 10) by

assigning 20 ground control points (GCP) to the hyperspectral image and DR LiDAR derived
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raster DEM. A first order polynomial transform was applied to these GCPs to compute the

route mean square error (RMSE) between the two datasets. For the leaf-on Eagle

hyperspectral dataset assessed against leaf-on DR LiDAR the total RMSE was calculated as

1.38m. The leaf-off Eagle dataset assessed against the leaf-off DR LiDAR had a total RMSE

calculated as 1.42m

4.2.1.7Image dimensionality reduction
The hyperspectral dataset covered a large spatial extent in addition to a large, and finely

defined, spectral extent. The following defines the pre-processing steps necessary to combine

the datasets prior to analysis.

The Eagle imagery has a high number of spectral bands, often referred to as a high-

dimensionality dataset. The benefits of such a dataset can be the better discrimination among

similar spectral signatures than the more common multispectral sensors with limited spectral

resolution (Huang and He, 2005). However the vast amount of data presents a challenge for

information processing in terms of heavy computational burden and problems in storing such

datasets, known as the Hughes phenomenon(Hughes, 1968). The image dataset may contain

redundancies. Here these are bands whose reflectance correlates significantly with another band.

The image bands may also contain noise. The definition of noise is: signal that does not correlate

at all between bands.

The purpose of the dimensionality reduction was to reduce the complexity of tree species

classification and classification process execution time. Within ENVI 4.7 there are two

potential methods of dimensional reduction, each of which produce uncorrelated output

bands, segregate noise components, and reduce the dimensionality of datasets. These are the

Principle Component Analysis (PCA), and the Minimum Noise Fraction (MNF) transforms.

Table 4.4 summarises the two procedures. A full description of theory behind these

approaches is available in Chang (2007).
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Table 4.4 – Methods of reducing image dimensionality in ENVI (version 4.7)
Name: Description:
Principle
Component
analysis
(PCA)

 PCA is used to produce uncorrelated output bands. This is accomplished by finding a new
set of orthogonal axes that have their origin at the data mean and that are rotated so the
data variance is maximized.

 The resultant PCA bands are linear combinations of the original spectral bands and are
uncorrelated. The same number of output PCA bands can be calculated as input spectral
bands. The first PCA band contains the largest percentage of data variance and the second
PC band contains the second largest data variance, and so on. The last PCA bands appear
noisy because they contain little variance, much of which is due to noise in the original
spectral data (Richards, 2012).

Minimum
Noise
Fraction
(MNF)

 A minimum noise fraction (MNF) transformation is used to reduce the dimensionality of
the hyperspectral data by segregating the noise in the data. The MNF transform is a linear
transformation which is essentially two cascaded Principal Components Analysis (PCA)
transformations Green et al. (1988). The first transformation de-correlates and rescales the
noise in the data. This results in transformed data in which the noise has unit variance and
no band to band correlations. The second transformation is a standard PCA of the noise-
reduced data. [ENVI-online-help, 2005]

The PCA and MNF transformations were applied to both leaf-on and leaf-off Eagle

hyperspectral data. Each approach provided up to ten image-bands per dataset. The pixel

values contained within each of the bands could not be related to any specific spectral

measurements after the transform. Each of the resultant image-bands was inspected for the

presence of noise and artefacts. If the image-band was considered too noisy it was removed.

PCA and MNF transforms were applied to the leaf-on and leaf-off datasets, which produced

summary statistics for each image band (total no. 252). A subset of the first 10 is presented

in Table 4.5 which represents the percentage of total variance (derived from Eigenvalue)

accounted for each of the PCA and MNF transformed Eagle datasets. For both leaf-on and

leaf-off PCA transformed datasets the first principle component accounts for over 97% of the

total variance. The first four image bands which exhibited the largest Eigenvalues were

examined visually and did not contain noise. The remaining transformed bands exhibited

small Eigenvalues and contained a great deal of noise indicating little informational content

would be lost if these bands were removed.

For both the leaf-on and leaf-off MNF transformed datasets the percentage of total variance

(see Table 4.5) is distributed across the ten bands to a greater degree than for PCA for both

the leaf-on and leaf-off datasets. The first 10 MNF bands for both leaf-on and leaf-off

datasets contained the highest Eigenvalues accounting for >90% of the total variance. Upon

visual inspection these MNF bands did not contain noise. Again the remaining bands had

small Eigenvalues and when inspected visually contained a high proportion of noise.
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The MNF transformed dataset was selected for future operations as it produced a greater

number of usable bands, which were free from noise and captured differing elements within

the hyperspectral data to a greater degree than PCA.

Table 4.5– A comparison of Eigen values from leaf-on and leaf-off PCA and MNF
transforms for the first 10 bands

Leaf-on PCA Leaf-off PCA Leaf-on MNF Leaf-off MNF
PCA/MNF
band

% of total
variance

% of total
variance

% of total
variance

% of total
variance

1 98.38 97.20 36.06 50.17
2 1.29 2.33 19.60 12.72
3 0.19 0.31 8.73 8.49
4 0.06 0.09 6.49 5.63
5 0.03 0.02 4.97 4.78
6 0.02 0.02 4.64 3.56
7 0.01 0.01 4.08 2.53
8 0.01 0.01 3.53 2.35
9 0.01 0.01 2.38 1.80
10 0.01 0.00 2.07 1.71

4.2.2 Spectral indices
Vegetation Indices (VI) are produced from reflectance measurement combinations of several

spectral values (between 400 nm to 2500 nm), which are calculated in a manner designed to

yield a single value that indicates, for example, the amount of biomass, vegetative vigour or

water content (Campbell and Wynne 2011, ENVI-online-help, 2005). Although vegetative

foliage, such as leaves, needles and other green materials will often look very similar in the

visible wavelengths, they will vary greatly in shape and chemical composition. Such indices

may yield insights into the structural properties and condition of the vegetation.

Within ENVI 4.7 there are 21 possible vegetation indices which could be applied to the Eagle

dataset. There were eight additional indices available within ENVI software, but these cannot

be applied due to specific wavelength requirements (i.e. > 1000nm); for example the

assessment of canopy nitrogen. The 21 used indices correspond to five broad groups of

indices: (i) Greenness – (broadband and narrowband variants) designed to measure the

overall quantity and vigour of vegetation within each pixel; (ii) light use efficiency –

designed to estimate a measure of the efficiency with which vegetation is able to use incident

light for photosynthesis; (iii) dry or senescent carbon – designed to provide an estimate of the
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amount of carbon in its dry states; (iv) leaf pigments – designed to provide an estimate of the

stress related pigments present in vegetation (e.g. carotenoids); and (v) canopy water content

– designed to provide an estimate of the amount of water held in the foliage canopy. It should

be noted that broadband greenness indices are not designed for use with the high spectral

resolution hyperspectral datasets, while narrowband greenness indices are.

Within ENVI each of the indices were calculated for both the 2010 leaf-on and leaf-off Eagle

hyperspectral data. Eight of the 21 indices did not function as intended and were removed

from the analysis, examples include the enhanced vegetation index (broadband greenness),

the plant senescence reflectance index (dry and senescent carbon) and the Cartnoid

reflectance index 2 (leaf pigments). Appendix B sectionB.1summarises the indices attempted

in the analysis which functioned as intended. The index images were then exported to

ArcMap in GeoTiff format. Zonal statistics functions were then used to extract raster image

statistics for each of the field plot polygon extents in addition to a 30x30m grid produced

using GME tools (Hawthorne, 2012) (http://www.spatialecology.com/gme/). The summary

statistics of maximum, minimum, range, mean, standard deviation and sum were produced

for each index within each 30x30m grid-cell, as in Hyde et al. (2006). Table 4.6 summarises

the spectral indices which were successfully implemented. A total of 149 metrics were

calculated for each cell. A full listing of metrics output for each 30x30m grid cell is available

in Appendix B section B.2.

4.2.3 Object-based tree species classification using hyperspectral data
Vegetation interacts with solar radiation differently from other natural materials, such as soils

and water bodies. Different plant materials will interact with solar radiation through

absorption and reflection in different wavelengths. The different chemical components will

be expressed in the reflected optical spectrum from 400 to 2500nm, with spectrally distinct

and often overlapping reflectance behaviours. It is possible to classify different landcover

materials according to the spectral profile of their image pixels or groups of pixels.
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Table 4.6 – A summary list of successfully applied spectral indices using ENVI software
No. Input dataset: Index group: Index name:
1 Leaf-off Eagle Broadband greenness NDVI – normalised difference vegetation index
2 Leaf- off Eagle Broadband greenness SRI – simple ratio index
3 Leaf- off Eagle Broadband greenness ARVI – atmospherically resistant vegetation index
4 Leaf- off Eagle Narrowband greenness RENDVI – red edge normalised difference vegetation

index
5 Leaf- off Eagle Narrowband greenness MRESRI – modified red edge simple ratio index
6 Leaf- off Eagle Narrowband greenness MRENDVI – modified red edge normalised difference

vegetation index
7 Leaf- off Eagle Narrowband greenness VREI – Vogelman red edge index 1
8 Leaf- off Eagle Light use efficiency SIPI – structure insensitive pigment index
9 Leaf- off Eagle Light use efficiency RGRI – red green ratio index
10 Leaf- off Eagle Light use efficiency PRI – photochemical reflectance index
11 Leaf- off Eagle Leaf pigments ARI – anthocyanin reflectance index 2
12 Leaf- off Eagle Leaf pigments CRI – carotenoid reflectance index 2
13 Leaf- off Eagle Canopy water content WBI – water band index

14 Leaf- on Eagle Broadband greenness NDVI – normalised difference vegetation Index
15 Leaf- on Eagle Broadband greenness SRI – simple ratio index
16 Leaf- on Eagle Broadband greenness ARVI – atmospherically resistant vegetation index
17 Leaf- on Eagle Narrowband greenness RENDVI – red edge normalised difference vegetation

index
18 Leaf- on Eagle Narrowband greenness MRESRI – modified red edge simple ratio index
19 Leaf- on Eagle Narrowband greenness MRENDVI – modified red edge normalised difference

vegetation index
20 Leaf- on Eagle Narrowband greenness VREI – Vogelman red edge index 1
21 Leaf- on Eagle Light use efficiency SIPI – structure insensitive pigment index
22 Leaf- on Eagle Light use efficiency RGRI – red green ratio index
23 Leaf- on Eagle Light use efficiency PRI – photochemical reflectance index
24 Leaf- on Eagle Leaf pigments ARI – anthocyanin reflectance index 2
25 Leaf- on Eagle Canopy water content WBI – water band index

Initially two conventional classification techniques were attempted:(i) maximum likelihood

supervised and (ii) IsoData unsupervised within ENVI 4.7 utilising both the entire combined

leaf-on and leaf-off datasets and the combined dimensionally reduced datasets. The pixel-

based classifiers took a great deal of time to execute and performed poorly when compared

with field data. Multiple classes were often found within individual tree crowns, because of

differences in illumination and shadow for different parts of the tree crown.

In order to mitigate some of these issues, an approach for tree species classification was

employed for this study utilising an object-based method. The object-based method extracts

information from images using a hierarchy of image objects, forming groups of pixels for

analysis. The approach was developed using the eCognition Developer 8.7 software (Trimble

Navigation Ltd., 2012). Conventional segmentation algorithms typically group pixels based

upon some degree of similarity between neighbouring groups of pixels. For the changing

elevation of a tree crown however this type of segmentation is not applicable. The goal was
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to perform a hierarchical classification on automatically delineated individual tree crowns

(ITC) of varying dimension in the upper strata of the forest and to classify their species type.

A crown-centroid detection approach was performed; this involves the identification of local

intensity maxima (bright or high points) and the mapping of crown boundaries by expanding

to local minima (Bunting and Lucas, 2006).

4.2.3.1 Development of the eCognition workflow
The process can be divided into four main areas, these are: (i) the construction of a forest area

mask; (ii) the delineation of individual tree crown objects; (iii) the broad classification of

coniferous and deciduous areas; and (iv) the more specific classification of tree species types.

A combination of leaf-on and leaf-off geo-corrected hyperspectral MNF image-bands and a

leaf-on DR LiDAR-derived canopy height model (CHM) (this dataset is defined in section

4.3.3) were added together into an image stack and used for this approach. Table 4.7

summarises all these input datasets. Those hyperspectral MNF image-bands which were

chosen contained the most distinction between ground cover types and contained the fewest

artefacts.

The object-based classification algorithms were developed in the ‘Cognition Network

Language’ (CNL). CNL is a modular programming language allowing typical programming

tasks such as branching, looping and variable definition (Tiede et al., 2006). Thus, these

modular algorithms can be combined to form a complete ‘ruleware’ for automated

information extraction. A workflow was thus devised for the identification of the forest area,

the creation of ITC segments and species classification of each object within a class

hierarchy.

A class hierarchy is defined broadly as a series of interrelated classes, which form a series of

parent and child classes. Only specific child classes can be selected based upon the parent

class.
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Table 4.7 – Hyperspectral data derived image input list
Dataset Name: Description:
LiDAR CHM (leaf-on) LiDAR derived CHM (leaf-on). 1.1x1.1m pixel size
Leaf-on MNF 1 Hyperspectral data derived MNF band 1 from leaf-on eagle data
Leaf-on MNF 2 Hyperspectral data derived MNF band 2 from leaf-on eagle data
Leaf-on MNF 3 Hyperspectral data derived MNF band 3 from leaf-on eagle data
Leaf-on MNF 4 Hyperspectral data derived MNF band 4 from leaf-on eagle data
Leaf-on MNF 5 Hyperspectral data derived MNF band 5 from leaf-on eagle data
Leaf-on MNF 6 Hyperspectral data derived MNF band 6 from leaf-on eagle data
Leaf-off MNF 1 Hyperspectral data derived MNF band 1 from leaf-off eagle data
Leaf-off MNF 2 Hyperspectral data derived MNF band 2 from leaf-off eagle data
Leaf-off MNF 3 Hyperspectral data derived MNF band 3 from leaf-off eagle data
Leaf-off MNF 4 Hyperspectral data derived MNF band 4 from leaf-off eagle data
Leaf-off MNF 5 Hyperspectral data derived MNF band 5 from leaf-off eagle data
Leaf-off MNF 6 Hyperspectral data derived MNF band 6 from leaf-off eagle data

4.2.3.2Creation of the forest mask
The forest mask process used only the CHM raster layer as input. This process began with the

use of a contrast-split segmentation, where the raster was segmented based upon the contrast

between high and low regions (Trimble Navigation LTD., 2012). Matthews and Mackie

(2006) broadly define saplings as tree species which are below 1.3m in height; heights above

this threshold are considered as trees. Thus, raster grid-cell values above a height threshold

value of 1.3m were considered forest. Initial segments were created around these regions

classifying high (>1.3m) areas as forest and low (≤1.3m) areas as non-forest.

What followed was an additional optional step to classify any segments which remained

unclassified based upon the mean height values of the object. The final operations were to

merge all forest or non-forest segments. This step created the first level of the class hierarchy,

forested and non-forested areas.

4.2.3.3 Individual tree crown delineation
The method used to segment the data into ITC objects is a modification of the approach

presented in Bunting and Lucas (2006), where the crown-centroids were detected through the

use of a LiDAR-derived CHM instead of spectral data. Tree tops or ‘local maxima’ were

detected by a moving search window, once found these maxima cells were reclassified to

crown seeds. Further iterative steps were then implemented for growing ITC objects around

these seed points into grid-cells of lower elevation using a progressive set of rules to

delineate the crowns/clusters. A description of the process employed within this project

follows.
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The CHM raster layer height values were used as input for the ITC delineation procedure.

The first step was to identify any isolated tree crowns from the application of the forest mask;

i.e. these trees could exist separately from larger forested areas and would be surrounded by

non-forest objects. This was performed by identifying these forest objects based on size and

shape parameters of the object segment (e.g. area, elliptic fit, length/width ratios, and

roundness). If the tree crown shape and size criteria were met these objects were given the

class of ‘tree crown’, and not considered in further delineation steps.

The larger forest segments, or clusters of trees, were visited and processed iteratively. The

first process within each iteration was to perform a chessboard segmentation, effectively

separating that cluster region into its individual raster grid-cells (1x1m), or rather each raster

grid-cell in a forest classified area had a corresponding object. An iterative procedure was

then implemented to delineate ITC objects. In theory, tree crowns form ‘dome’ shapes within

the CHM raster surface, where the higher (brighter)dome tops correspond with the crown

tops. Therefore by identifying these tops as seeds and expanding the seeds into neighbouring

areas of lower height the ITCs were delineated. ITC object growing could also halt in a

particular direction if it came into contact with other seed or crown object boundaries. The

‘find local extrema’ algorithm was used to find the highest points within a mobile initial

search window size with a radius of 5m.What followed was an iterative expansion of tree

crown objects from the seed points, where 1x1m objects bordering the seed point of the same

or lower height were merged, and the process repeated until height values bordering the

object increased or the object boundaries came into contact with other ITC objects or non-

forested areas. This process was applied to each of the forest cluster objects.

The final stage was to merge any remaining unclassified forest or crown objects (that wereleft

where no crown seeds have been identified)and then re-apply the isolated tree crown

identification procedure using the aforementioned criteria (area, elliptic fit, length/width

ratios and roundness). Those objects which remained unidentified were assessed individually

by the user.

The result of this processing is a map of overstorey tree crown locations, see Figure 4.7.It

should be noted that this was a very computationally intensive process, taking on average one

hour for a single 1x1km area (at a spatial resolution of 1m).
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Figure 4.7 – An example of the ITC segments created through the crown-centroid
detection approach, overlaid on the CHM.

4.2.3.4 Broad tree species classification
A broad classification was then applied to the ITC segments to distinguish deciduous and

coniferous species types. This was accomplished through a membership function applied to

the mean of the groups of pixels intersecting each ITC object, which was applied to only

forest classified objects. Values derived from a single hyperspectral image, MNF3 (leaf-on),

was utilised to determine which areas belonged to the different broad species types. For the

case of the MNF 3 (leaf-on) image, it was found that it best exemplified the difference

between coniferous and deciduous species. Thus, the average pixel value was calculated for

those pixels in the MNF3 (leaf-on) image intersecting each ITC segment. The classification

was based upon membership function thresholds, where higher values (2 to 50) were

classified as a coniferous ITC, whereas lower values (-40 to 2) were classified as deciduous.

An additional class was added at this stage to encompass man-made structures and potential

edge effects. The former related to the small number of houses located in the field plot
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region, whereas the latter related to the slight misalignment of LiDAR derived ITC objects

and the hyperspectral image, often at the edge between forest and open areas, where non-tree

pixels could skew the results of the classification. Both of these features could be determined

by high pixel values (>50) in the leaf-on MNF3 image. These objects were then removed

from the classification process.

This step formed the second level of the class hierarchy where forested areas became one of

the three classes, coniferous, deciduous or man-made.

4.2.3.5 In-depth tree species classification
The next step was to add another level in the class hierarchy; a more detailed classification of

tree species types within the existing coniferous and deciduous class contexts. Those species

types the user would expect to occur within the study area, according to fieldwork and FC

inventory data, were entered into the appropriate class hierarchy. For example the deciduous

class was expanded to include many sub-classes such as oak, beech, silver birch, sweet

chestnut, and holly. Likewise the coniferous class could be broken down into sub-classes

such as scots pine, corsican pine, douglas fir, or norway spruce. All input hyperspectral MNF

rasters (leaf-on and leaf-off) including those raster layers derived from LiDAR data could be

used as an input to the classification process.

Owing to the presence of plantation woodland and the age differences in the tree species

between stands an additional step was added to the classification: a separation of older and

younger trees .Difference in ages within a tree species group could potentially result in a

different hyperspectral signature within the MNF-bands. An additional classification step was

applied to both the coniferous and deciduous classified ITC objects. A ‘height filter’ was

used to classify those objects above a certain height threshold as ‘mature’ woodland (CHM

>15m in height), whereas values below this threshold were classified as ‘immature’

woodland (CHM <15m in height). The choice of the threshold was determined by

information provided in the Forestry Commission inventory data and unsatisfactory

classification results whilst experimenting with the method. Recently planted tree species

were typically below 15m in height and some of which exhibited different pixel values to

those of the same species in other compartments.
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A number of studies (e.g. Gougeon and Leckie, 2003; Leckie et al., 2005) have extracted tree

spectra from the mean-lit (sunlit) sections of the proportions of the crown rather than

individual pixels. MNF image values cannot be related to any spectral measurements because

of how they were calculated. Information held within the MNF images is sufficient for

classification purposes however (Onojeghuo and Blackburn, 2011). The dimensionally

reduced Eagle datasets were then used to identify young and mature tree species types.

Each of the input images was interrogated by calculating the mean or maximum value of the

image layer’s pixels which intersect each ITC object, creating a value for each. Classifying

tree species from ITC objects is a complicated task due to the variability of each of the

hyperspectral input data for each object. A number of membership functions were developed

manually for each tree species class. Each species potentially utilise a number of input

images, combinations of functions based on the relationships between that ITC object and its

neighbours. Logical operators (e.g. AND, OR, NOT) were also used to account for

conflicting or consistent features between different class membership functions. A full list of

all classes and membership functions is listed in Table 4.8.

The final stage to complete within eCognition was to export the classified ITC layer, using

the ‘export as vector’ function. The output file was set as an ESRI format shapefile, where

each ITC object was converted to a polygon, and the species type added as an attribute in the

linked database table. A total of 28 tree species classes were developed.
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Table 4.8 – Class list and membership functions

Class name Class hierarchy
(parent classes)

Membership
function 1

Membership
function 2

Membership
function 3

Forest - N/A – assigned by
segmentation - -

Non-forest - N/A – assigned by
segmentation - -

Crown Forest
N/A – assigned

height maxima search
and region growing

- -

Coniferous Crown
Difference in Leaf-on

MNF image 3
(values: -40>x<2)

- -

Deciduous Crown
Difference in Leaf-on

MNF image 3
(values: 2>x<50)

- -

Manmade
structures and
edge effects

Crown
Difference in Leaf-on

MNF image 3
(values: 50>x)

- -

Immature
Coniferous Coniferous

Maximum CHM
value within object
(values: 1.3>x<15)

- -

Mature
Coniferous Coniferous

Maximum CHM
value within object
(values: 15>x<50)

- -

Immature
Deciduous Deciduous

Maximum CHM
value within object
(values: 1.3>x<15)

- -

Mature
Deciduous Deciduous

Maximum CHM
value within object
(values: 15>x<50)

- -

(Young)
corsicanpine
(Pinusnigra)

Immature
Coniferous

Mean leaf-on MNF 2
(values -6>x<-1) - -

(Young)
douglasfir

(Pseudotsugamen
ziesii)

Immature
Coniferous

Mean leaf-on MNF 2
(values -13>x<-6)

<NOT>Mean leaf-off
MNF 4

(values -16>x<0)

<NOT>Mean leaf-
on MNF 3

(values -11>x<11)

(Young) grand fir
(Abiesgrandis)

Immature
Coniferous

Mean leaf-on MNF 2
(values -15>x<-6)

MeanMNF 3 (values
-1>x<11)

MeanMNF 4
(values -4>x<7)

(Young)
japaneselarch

(Larixkaempferi)

Immature
Coniferous

Mean leaf-off MNF 4
(values -16>x<0) - -

(Young) hybrid
larch

(Larixeurolepis)

Immature
Coniferous

Mean leaf-on MNF 5
(values 2>x<7) - -

(Young)
norwayspruce
(Piceaabies)

Immature
Coniferous

Mean leaf-on MNF 4
(values -1>x<7)

<NOT>Mean leaf-on
MNF 3

(values -25>x<-14)

<NOT>Mean leaf-
on MNF 3

(values -1>x<11)
(Young)scots

pine
(Pinussylvestris)

Immature
Coniferous

Mean leaf-on MNF 2
(values -1>x<6) - -

(Young) western
hemlock

(Tsugaheterophyl
la)

Immature
Coniferous

Mean leaf-on MNF 3
(values -25>x<-14) - -
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Table 4.8 (continued)

coast redwood
(Sequoia

sempervirens)

Mature
Coniferous

Mean leaf-on MNF 2
(values -15>x<-6)

Mean leaf-on MNF 3
(values -1>x<11)

Mean leaf-on MNF
4

(values -4>x<7)

corsicanpine Mature
Coniferous

Mean leaf-on MNF 2
(values -1>x<20) - -

douglasfir Mature
Coniferous

Mean leaf-on MNF 2
(values -8>x<-2)

Mean leaf-on MNF 3
(values -7>x<0) -

grand fir Mature
Coniferous

Mean leaf-on MNF 2
(values -15>x<-6)

MeanMNF 3 (values
-1>x<11)

MeanMNF 4
(values -4>x<7)

hybrid larch Mature
Coniferous

Mean leaf-on MNF 5
(values 2>x<7) - -

japaneselarch Mature
Coniferous

Mean leaf-off MNF 4
(values -16>x<0) - -

norwayspruce Mature
Coniferous

Mean leaf-on MNF 4
(values -1>x<7)

<NOT>Mean leaf-on
MNF 3

(values -25>x<-14)

<NOT>Mean leaf-
on MNF 3

(values -1>x<11)

scots pine Immature
Coniferous

Mean leaf-on MNF 2
(values -1>x<6) - -

lawsons cypress
(Chamaecyparisl

awsoniana)

Mature
Coniferous

Mean leaf-off MNF 4
(values 7>x<13) - -

western hemlock Mature
Coniferous

Mean leaf-on MNF 3
(values -25>x<-4) - -

(Young) common
alder

(Alnusglutinosa)

Immature
Deciduous

Mean leaf-on MNF 4
(values -13>x<-6) - -

(Young) oak
(Quercusrobur)

Immature
Deciduous

Mean leaf-on MNF 4
(values -5>x<2) - -

(Young) beech
(Fagussylvatica)

Immature
Deciduous

Mean leaf-on MNF 4
(values 2>x<25) - -

(Young) silver
birch

(Betulapendula)

Immature
Deciduous

Mean leaf-on MNF 4
(values -20>x<-5) - -

(Young) sweet
chestnut

(Castaneasativa)

Immature
Deciduous

Maximum pixel
values of leaf-on

MNF 3 (Values from
24 to 45)

- -

common alder Mature
Deciduous

Mean leaf-on MNF 4
(values -13>x<-6) - -

oak Mature
Deciduous

Mean leaf-on MNF 3
(values 1>x<20)

<AND>Mean leaf-on
MNF 4

(values -7>x<2)
-

beech Mature
Deciduous

Mean leaf-on MNF 4
(values 2>x<25) - -

silver birch Mature
Deciduous

Mean leaf-on MNF 4
(values -20>x<-7) - -

sweet chestnut Mature
Deciduous

Maximum pixel
values of leaf-on

MNF 3 (Values from
24 to 45)

- -
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4.2.3.6 Classification of 30x30m summary metrics
Area-based summaries of the classified ITC-objects were required for input into statistical

modelling for the estimation of forest attributes. The resulting classified ITC map was then

exported as a shapefile for use in ArcMap. Point-centroids were extracted from the ITC

polygons using the GME software. Summary metrics were extracted for the 30x30m field-

plot extent shapefiles (generated from the coordinates recorded in the two fieldwork

operations) and for a regularly spaced grid of 30x30m shapefiles produced by the GME

software for the whole study site. A spatial join operation was then performed with thefield-

plot location shapefiles, and separately, for the whole study site.

Area based metrics were extracted and/or calculated for the 30x30m extents using custom R

code (http://cran.r-project.org/), documented in Appendix B section B.3. This R script

calculated the number of ITC objects, number of species and number of native species. A

Shannon and Simpson index was calculated using the R package: Vegan (http://cran.r-

project.org/web/packages/vegan/index.html)(Oksanenet al., 2012). A total of eight output

metrics were derived, these were: (i) number of ITC objects which intersected the grid cell;

(ii) number of native tree species classified objects which intersected the grid cell; (iii)

number of tree species encountered; (iv) number of native tree species encountered (i.e. of the

species: oak, beech, silver birch, scots pine, or common adler); (v) Shannon Index calculated

from counts and species within the cell; (vi) Simpson Index calculated from counts and

species within the cell; (vi) Evenness index, derived from the Shannon Index; (vii) a count of

the ITC objects of the same species with the largest population relative to the others in the

30x30m extent; and (viii) a count of the ITC objects of the same species with the lowest

population relative to the others in the 30x30m extent. The initial six metrics were extracted

for the field plot areas and used for statistical analysis. The remaining two were required for

use as input for the Complex Stand Diversity Index (Jaehne and Dohrenbusch, 1997 in

Vorčák et al., 2006).
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4.3 Discrete-return LiDAR processing
This section describes the pre-processing steps required in order to allow analysis with the

LiDAR datasets.

The 2010 LAS files were delivered by the ARSF in a format in which the following

processing steps could be directly applied. It should be noted that for each of the pre-

processing steps listed in sections 4.3.1 – 4.3.3 both the leaf-on and leaf-off DR LiDAR

datasets were processed independently of one another. Only leaf-on LiDAR data was utilised

in the ITC delineation however.

The initial quality assessment provided by the ARSF prior to delivery of the datasets

indicates the geometric accuracy of the LiDAR data agrees with the Ordnance Survey vectors

on average to within 0-1 metres. The geometric accuracy for the scanner is stated as a vertical

nominal accuracy of 0.05-0.10m, and a horizontal accuracy of between 0.13-0.61m (Leica

Geosytems, 2003).

4.3.1 Filtering ground and non-ground points

LAS file processing tasks, such as noise removal from the delivered files and sub-setting of

areas were performed using the ‘LAStools’ software

(http://www.cs.unc.edu/~isenburg/lastools/) (Isenburg, 2013). The LAS files were delivered

with a basic classification already applied by the Terrascan software

(http://www.terrasolid.fi). This classification identified probable ‘noise’ points, which could

be removed from the dataset completely. In order to remove noise points the ‘lasclip’ tool

provided in LAStools was used. This set of tools allows for the removal of noisy areas

completely, in addition to the removal of noise identified above or below certain limits in all

three dimensions. Figure 4.8 illustrates the effects of clouds, some distance above the ground,

upon the data, which must be removed. Fortunately all these erroneous areas could be

removed from the point data. Point data from adjacent flightlines were used as a substitute

(i.e. to fill the gaps). Once the point cloud was modified to remove these erroneous effects

the subsets were sequentially merged back into a single LAS file containing all the point data

for the study area using ‘LASmerge’ (LAStools).
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As Sithole and Vosselman (2004)indicate, the filtering of bare-earth airborne LiDAR points

is a crucial procedure for LiDAR data processing. This particular step can take up to 60 to 80

per-cent of the processing time (Chen et al. 2007b). The basic principle of surface-based

methods is to create a surface with a corresponding buffer zone above it, where the buffer

zone defines the region in 3D space where terrain points are expected to reside (Sithole and

Vosselman 2004). The method creates a surface approximating the bare-earth elevations.

Filtering the LiDAR point cloud into ground and non-ground returns is required in order to

generate bare-earth data and perform further analysis, such as deriving height information for

trees and buildings. The RSC LAStools software (http://code.google.com/p/rsclastools/)was

utilised to filter the DR LiDAR datasets. This software was provided by John Armston, from

the University of Queensland, Australia (Armston, 2011). The program was written in

Interactive-Data-Language (IDL) (ITT Visual Information Solutions) and runs through the

IDL Virtual Machine with a (32-bit) Windows XP desktop computer. The filtering method

used in the software is outlined in Zhang et al.(2003), and utilises a progressive

morphological filter. The algorithm classifies non-ground and ground LiDAR measurements

by passing a search window across the extent of the LiDAR point cloud. It has been found

that fixed window sizes can encounter difficulty in detecting all non-ground objects. This

problem can be solved by increasing the window sizes of morphological filters gradually

through a number of iterations. Using elevation and difference thresholds, the measurements

of buildings and vegetation are removed while ground vegetation is preserved. Figure 4.9

illustrates a classified point cloud and a simple representation of a ground model. The initial

settings for these filtering procedures are not automatic, and it is necessary for a number of

attempts in order to produce an optimal classification. Owing to the often changing forest

structure located in each of the flight strips, increased search window sizes were used for all

filtering operations. The window size was set to 25min order to identify the lowest point in

often densely vegetated areas. The filtering technique process is not automatic, filter

parameters needed tuning and the process repeated in order to get the best results.
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Figure 4.8 – Cloud within the flightline caused erroneous measurements in the data. As seen in
the left image (a) where data about the tree canopy is lost. The right image (b) shows the extent
of the errors below what is supposed to be the ground surface (blue line). This area was
removed from the analysis.Screenshots taken in the Fugro Viewer software
(http://www.fugroviewer.com/).

Figure 4.9 – (a) Gives an example of a classified point cloud where green is classified as non-
ground (mostly vegetation within this scene) and purple as ground.(b) A Triangular-Irregular-
Network (TIN) of the ground points.Screenshots taken in the Fugro Viewer software
(http://www.fugroviewer.com/).

(a) (b)

(a) (b)
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4.3.2 Ground separation and normalisation
In order to remove the effects of terrain variation upon forest tree height measurements it is

necessary to interpolate a DTM from the classified ground points. Once interpolated the

DTM is used to subtract the elevations of the terrain from the remaining points within the

LAS file, normalising the dataset to above-ground height. With RSC LAStools , the DTM

was interpolated using the Natural Neighbour interpolation method. The DTM produced from

these operations is then used to remove the effects of terrain from the non-ground classified

points, effectively subtracting the terrain elevations from the rest of the point cloud, as

illustrated in Figure 4.10.

Figure 4.10 – The same area as in figure 4.8, with the effects of the underlying
terrain removed

4.3.3 Extraction of DR LiDAR structure related metrics
It was necessary to extract area-based metrics for the same spatial extent of the field data

collection, in this case 30x30m. Metrics were extracted for all of the field-plot locations and

separately for the 30x30m grid shapefile of the whole study site. To reiterate the GME

software was used to generate a coverage of 30x30m grid cell shapefiles for the entirety of

the New Forest study site.
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The RSC LAStools software was capable of producing the common rasterised surface layers,

such as the DTM, DSM, intensity image (from first returns only), and CHM. Raster layers

can be generated for various attributes for both ground and non-ground points. ASCII

summary statistics were calculated, including metrics such as canopy openness, height

percentiles, mean, variance, skewness and kurtosis. Summary statistics were generated for (i)

all the points, (ii) those points classified as ground and (iii) those points classified as non-

ground. Table 4.9 reports all the extracted indicator metrics from this software for both leaf-

on and leaf-off datasets. All of the extracted metrics have been used in previous research as a

way of classifying forest structure (Falkowski et al. 2009a; Hudak et al. 2008). Each of these

metrics was calculated for a defined output extent of 30x30m.Table 4.10 describes

mathematically the necessary calculations. A full listing of extracted metrics is given in

Appendix C sections C.1 and C.2. The next stage in the research was to perform statistical

analysis utilising these area-based metrics and their relationships to the metrics collected in

the field. A total of 187 metrics were extracted for each field plot extent, this included leaf-on

and leaf-off datasets.

RSC LAStools can produce a number of additional statistics which were not included in this

analysis. Point density metrics were not used due to the differences between areas where

flightlines overlap and do not overlap, leading to obvious disparities between areas.LiDAR

intensity was uncalibrated as its values could be altered during the acquisition flight

(Lindberg et al., 2012). Hölfe and Pfeifer (2007) also state a number of problems if using the

original intensity values relating to the influences of topographic and atmospheric effects

which would influence the backscatter of the emitted laser pulse. Thus, metrics relating to the

maximum, minimum and range of intensity values were removed. Instead only statistics

regarding the distribution of intensity values, such as skewness and kurtosis, were employed.

In addition a CHM raster layer was produced in order to delineate ITC objects in eCogntion

as reported in section 4.2.3. The spatial resolution of the LiDAR layer was produced to be

1.1x1.1m (i.e. the same as the Eagle resolution), and the raster grid was aligned to that of the

hyperspectral data.
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Table 4.9 – Extracted DR LiDAR metrics used in this study
Ground and above-ground height metrics: Intensity:

Ground terrain metrics (slope/roughness) -
Canopy cover -

Canopy relief ratio -
Maximum -

Mean Mean
Median Median

Standard deviation Standard deviation
Variance Variance

Absolute deviation Absolute deviation
Skewness Skewness
Kurtosis Kurtosis

Percentiles at 5% intervals (5,10…90,95) Percentiles at 5% intervals (5,10…90,95)

Table 4.10 – Mathematical descriptions of computed metrics. Metrics are calculated directly
from binned point cloud and can be calculated on elevation, heights, intensity and point density.
Where x = numeric variable, n = number of observations, µ = mean, σ = standard deviation, and
λ = frequency (Evans et al., 2009).
Metric: Description:

Topographic slope The topographic slope estimated from a DEM generated from
the ground classified points (Burrough and McDonell, 1998).

Topographic roughness The topographic roughness estimated from a DEM generated
from the ground classified point.

Canopy Cover
= ℎℎ

Where hng and hall denote the sum total of non-ground returns
and the sum of all returns respectively.

Canopy relief ratio

= ℎ − ℎℎ − ℎ
Where hmean, hmin and hmax are the mean, minimum and
maximum canopy heights, respectively (Pike and Wilson,
1971).

Minimum Minimum value (x)
Maximum Maximum value (x)
Range [Maximum value (x) - Minimum value (x)]

Arithmetic Mean (µ) μ = ∑ =1
Standard Deviation (σ) σ = ∑ − (∑ )− 1
Variance (σ2) σ = ∑( − μ)
Mean Absolute Deviation from Mean (MADM) = μ − μ
Skewness = √ ∑ ( − μ)(∑ ( − μ) ) /
Kurtosis = ∑ ( − μ)∑ ( − μ) − 3
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4.3.4 Individual tree crown delineation
As stated in section 4.2.3 an automated ITC delineation approach was implemented within

eCognition. The ITCs were produced primarily for species classification purposes. Additional

metrics such as tree crown radius were not readily available and would require additional

calculations to be produced and implemented in order to extract them. Another piece of

software was available to provide automated ITC delineation which would provide additional

metrics regarding the individual tree crowns location, crown horizontal radius, area and

geometric volume. Such ITC crown size metrics have been identified as important inputs into

predicative models in other studies (e.g. Hyyppä et al., 2001; Person et al., 2002; Popescu et

al., 2004; Maltamo et al., 2004). The Toolbox for LiDAR Data Filtering and Forest Studies

(TIFFS) software (http://www.globalidar.com) was utilised to this end. TIFFS is commercial

software provided by Globlidar, which utilises the Matlab runtime library.

The identification of individual tree crowns (ITC) was performed using leaf-on LiDAR data

only. The above process of filtering ground and non-ground points and normalisation of non-

ground returns produced using RSC LAStools could not be utilised within the TIFFs

software. Thus it was necessary to repeat the filtering pre-processing steps within the TIFFS

software.

The first part of data processing in TIFFS was to tile the raw LiDAR data of all the recorded

flight strips, re-ordering the data into grid cells which can combine parts of different

flightlines. The filtering method used is that of Chen et al. (2007b) where a mobile filtering

window was utilised to identify the minimum elevation. Different mobile filtering search

window sizes were tested and a size of 25m diameter was found to be optimal in this context.

The lowest elevations recorded were interpolated into a grid using the Nearest Neighbour

method. This grid now becomes the Digital Terrain Model (DTM). As with the previous

filtering technique the process is not automatic, filter parameters need tuning in order to get

the best results. The DTM creation conforms to the definition of Nearest Neighbour

interpolation. The DTM produced was subsequently used to normalise the non-ground data

points to derive canopy height.

Trees were isolated using a marker-controlled watershed segmentation method as used in

Chen et al.(2006). The treetops were detected by searching for local maxima in a Canopy

Maxima Model (CMM) with variable window sizes. Window sizes varied depending on the
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lower-limit of the prediction intervals of the regression curve between crown size and tree

height. Chen et al. (2006) reports the CMM was created to reduce the commission errors of

treetop detection. The TIFFS software extracted individual tree height, crown radius and 3D

crown area of those trees in the forest overstorey. The extraction technique is based upon the

theory presented in Chen et al.(2007a), predicted through a metric termed ‘canopy geometric

volume’ (CGV). The CGV is the volume encircled by the outer surface of the crown, which

can be derived easily by combining the canopy height model and individual-tree crown

map.The default output of this process is in the shapefile format for Esri ArcGIS. Table 4.11

summarises the attributes which can be extracted for each potential tree crown available in

the shapefile generated by TIFFS. Figure 4.11 illustrates the estimation of tree crown location

(points) and area (polygon) overlaid upon the CHM.

In order to utilise these overstorey canopy metrics for the 30x30m grid based analysis the

ITC point metrics were summarised for each of the field-plot location shapefiles and for the

30x30m grid coverage of the whole study site. Spatial join operations within ArcMap 10

were utilised to calculate the average and total values for all ITC objects (trees) located

within a cell polygon, metrics included the number of tree points, height, crown radius,

horizontal area and CGV. All gridded-ITC summary metrics are listed in Appendix C section

C.3. Metrics relating to the number of trees, average height, average and total crown area,

average and total crown volume, the average tree nearest neighbour (NN) spacing and

standard deviation of the tree NN spacing were all calculated using the statistical package R,

and is reported in Appendix C section C.4. The spacing of trees was calculated using the X

and Y coordinates of each ITC point intersecting the 30x30m grid-cell ploygon, where mean

spacing and standard deviation were calculated. These ITC metrics were then added to the

30x30m grid shapefile based on cell ID. Nine summary metrics were produced; these are

given in Table 4.12.

The construction of the complex stand diversity index (CSDI) required a number of

additional ITC related metrics for its construction, these were the three largest and three

smallest tree stem NN distances, in addition to two maximum and two minimum tree crown

horizontal diameters within the 30x30m field-plot or grid cell area. These data were extracted

using an R-script, which is reported in Appendix C section C.5.
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Table 4.11 – All extracted ITC metrics for a single crown derived from TIFFS
Metric: Metric description:
XY
coordinates

The geometric coordinates of the tree crown maxima (assumed centre).

crownRad Crown radius calculated from tree crown centre to edge of supposed crown (m).

Crown_area* Crown horizontal area was calculated from the crown radius using the equation for the area of
a circle:=
whereA is the crown area in metres square, and r is the crown radius.

treeHt Height of the tree crown maxima point (m)

canopyVol The canopy geometric volume (GMV) (m3) (Chen et al., 2007a)

*Derived from data extracted in the TIFFs software

Figure 4.11 – ITC points and polygons generated through TIFFS, shown for conifer stands of
plantation forest.
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Table 4.12 – ITC area summary values of ITC objects within each 30x30m grid cell
Metric: Description:
TIF_TreeNo A count of ITC objects within a given 30x30m area
TIF_Space The average stem nearest neighbour (NN) distance (m)
TIF_STD The standard deviation of stemnearest neighbour (NN) distance (m)
TIF_CR Average crown radius (m)
TIF_m_area Average crown horizontal area (m2)
TIF_to_area Total crown horizontal area (m2)
TIF_HT Average tree height (m)
TIF_meanCV Average crown geometric volume (m3)
TIF_totalCV Total crown geometric volume (m3)

4.4 Full-waveform LiDAR processing
For leaf-on and leaf-off 2010 acquisitions small-footprint full waveform LiDAR was

provided by the ARSF. The individual flight strips were delivered in LAS (version 1.3)

format, which provides coordinate information of the aircraft, the X, Y and Z location of the

first major return for each waveform, and the 256 waveform samples for each laser pulse.At

the time of writing, there are few examples of processing software capable of extracting any

coordinate data from a small-footprint waveform system, or more specifically this particular

file format.

It should be noted that for each of the pre-processing steps listed in sections 4.4.1 – 4.4.2 both

the leaf-on and leaf-off FW LiDAR datasets were processed independently of one another.

The use of FW LiDAR posed a number of problems, where one of the major issues was the

lack of software being capable of interpreting the unique format of the files and processing

the waveform into point information for analysis. One of the possible software was that of

‘orientation and processing of airborne laser scanning data’ (OPALS)

(http://geo.tuwien.ac.at/opals/html/index.html). Unfortunately at the time of this project

OPALS could only operate upon proprietary Riegl data formats for FW LiDAR data. Instead

the Sorted Pulse Software Library (SPDlib) (http://www.spdlib.org/) software was used,

which was developed by Bunting et al. (2011b, 2011a). SPDlib is set of open source

software tools for processing laser scanning data.
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SPDlib was designed to provide the ability to process small-footprint full-waveform LiDAR

data, provide output products and support the analysis and interpretation of large datasets.

The SPD format supports the storage of waveform and discrete return data whilst providing

spatial (grid based) indexing of the data for efficient data processing. This system uses pulse

waveforms rather than the traditional points as the main data type. This structure allows the

full waveform to be processed and stored using the same model in which the data were

acquired. It should be noted that at the time of writing SPDlib was still under development.

The software is free and distributed under a GPL3 license.

SPDlib is implemented within C++ and was run on a system running Ubuntu (release 11.10)

(32-bit). Additional functionality was brought through python bindings. This suite of

programs is available to convert LiDAR dataset types, decompose points from waveform

data, classify ground returns, interpolate raster height and elevation products and for the

calculation of metrics (mostly for vegetation) (Bunting et al., 2011b). Bunting et al. (2011a)

outlines the recommended workflow for processing data through the software. Additional

steps were required for converting the LAS (1.3) files to the Unsorted Pulse Data (UPD)

format, see Figure 4.12. The file conversion was accomplished through using python code

which was developed by collaboration between Emma Carolan (Plymouth marine

laboratories) and Peter Bunting (Aberystwyth University). The coordinate system was then

set to the British National Grid by entering the correct string, as provided by the Geospatial

Data Abstraction Library (GDAL) (http://www.gdal.org/), using the HDF5 viewer software

(The HDF group) (http://www.hdfgroup.org).
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4.4.1Full-waveformGaussian fitting
The SPDlib software utilises Gaussian decomposition (Wagner et al., 2006) to retrieve

individual returns. The received power of the waveform (Pi) is linked to the waveforms

within the SPD file for each pulse by time (ti). The zero-crossings of the waveform first

derivative above a nominal noise threshold are identified and used as the starting values for N

Gaussian amplitude (Qi) and time (ti) parameters (Equation 4.10).

P ( ) = ( )
[4.10]

A baseline threshold needed to be fitted for every entered waveform. Upon inspection of a

sample of individually extracted waveforms a single value of 15 was found to account for

much of the noise within each waveform. The baseline value of 15 was applied to all

waveforms universally. Boundaries were also placed on the pulse width parameter (Sp). An

example waveform can be visualised in Figure 4.13.A combination of angular measurements,

bearing, positional information of the aircraft and first peak coordinates, trigonometry and the

relevant pulse timings (2ns or 1ns) allowed the estimation of the 3D locations for each of the

extracted Gaussian peaks fitted.
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Figure 4.12 – SPDlib airborne waveform LiDAR processing chain. Modified from
that presented in Bunting et al. (2011a).
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Figure 4.12 – SPDlib airborne waveform LiDAR processing chain. Modified from
that presented in Bunting et al. (2011a).
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Figure 4.12 – SPDlib airborne waveform LiDAR processing chain. Modified from
that presented in Bunting et al. (2011a).
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Figure 4.13 – An example of one of the extracted waveforms (viewed in FitYK software). Each
of the green dots in the image represents one of the 256 waveform samples (a). Gaussian peaks
can be fitted to these data (b) which correspond to the laser pulse interacting with a surface.

4.4.2 Filtering and area-based metric extraction
The classification of those returns which correspond with the ground surface was the next

step. The classification algorithm applied was the Progressive Morphological Filtering (PMF)

approach by Zhang et al. (2003), which can be applied to landscapes with variable terrain.

However as seen in Figure 4.14, it was necessary to include an additional noise filtering

processing step to remove some of the vertical errors.

Once the ground returns have been classified the height of each return can be defined in

relation to the ground and normalised. The ground is a continuous surface and as such

classified points will need to be interpolated into a surface. The natural neighbour algorithm

was used for interpolations. As Bater and Coops (2009) demonstrated, this algorithm

produced the closest surface to the actual when deriving height surfaces from LiDAR data.

(a)

(b)
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The non-ground heights are then subtracted from the ground heights to remove the effects of

the terrain.

Raster outputs of the DTM, DSM and CHM were produced, again interpolated by the natural

neighbour algorithm, which were outputted in 32-bit floating ENVI image files. Extracting

LiDAR metrics with SPDlib is handled through interrogating an Extensible Markup

Language (XML) file. A summary of all extracted metrics is given in Table 4.13. Appendix C

sections C.6, C.7 and C.8 contain a full list of extracted metrics. These metrics were output

for statistical analysis through applying shapefile inputs of required areas; the table within the

shapefile is then populated with the metrics. These metrics were extracted for both leaf-on

and leaf-off datasets and the outputs merged, giving a total of 252 metrics. Alternatively,

outputs can be set to standard ENVI image files. SPDlib provided the functionality of

producing more metrics than RSC LAStools, such as the number of canopy layers, canopy

depth, canopy maximum gap and dominant height.

A greater number of metrics can be extracted from waveform LiDAR data, mainly those

relating to the amplitude and width of each of the echoes (or returns) within each waveform.

A more detailed description of the information in the surrounding literature concerning these

metrics is summarised in Appendix C section C.9. The amplitude is defined as the

measurement which characterises the peak power of the echo for each individual return

(Wagner et al., 2008), representing the reflection of the laser pulse back in the direction of the

receiver. Alexander et al. (2010) state that the amplitude values for a given object would vary

depending upon flying height or elevation differences from the emitted laser pulse, even

within a single dataset. Thus, as with the DR LiDAR intensity, only metrics related to the

distribution of values were utilised, for example skewness and kurtosis.

As mentioned previously backscatter waveforms are popularly modelled by a mathematical

function such as the Gaussian function. The extracted parameter representing echo-width can

be defined as the width of the fitted Gaussian curve. Again a value of echo-width is generated

for each individual return. According to Lin and Mills (2010) the echo-width is related to the

slope and the surface roughness of the target that the laser pulse interacts with. More

information can be found in Wagner et al. (2006) concerning the definitions of echo-

amplitude and echo-width.
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The dominant height metric is average height of the non-ground returns in the highest 20% of

returns. The metrics of: (i) number of canopy layers, (ii) canopy depth, and (iii) canopy

maximum gap were produced through the SPDprofile tool and output in a raster format with

30x30m cell size.The metrics were derived through calculating a two-dimensional vertical

profile of returned LiDAR height points per 30x30m grid-cell. This can be conceptualised as

height versus number of LiDAR returns. Similarly to the Gaussian decomposition of pulse

waveforms, functions were fitted to the vertical profile for each 30x30m cell extent to

estimate each of the three metrics. Briefly, the first metric (i) number of canopy layers was

determined through calculating the distinct number of groupings within the vertical profile.

The second (ii) canopy depth could be calculated by determining the maximum peak width of

the peak in the upper stratum. Finally the third (iii) canopy maximum vertical gap, is simply

the largest gap, or height range, detected between canopy layers.

It should be noted that the dataset produced from merging the flightlines together caused a

number of calculation anomalies to be present in the statistical results. The areas of overlap

between lines exhibited drastically different values than for areas where there was no overlap

for certain metrics, as illustrated in Figure 4.15.The metrics effected by this related to

amplitude and width calculations, such as mean, variance and percentiles. In order to solve

this problem the individual flightlines were processed in isolation and the metrics extracted as

documented above. The metric shapefiles were then merged together in ArcMap 10.Grid cells

in overlapping areas were filtered, removing those grid cells furthest from nadir. No further

work was implemented in order to understand this phenomenon, however in the future its

understanding should be considered critical.
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Figure 4.14 – Illustrates the classification of the waveform-derived point cloud
with ground (red) and non-ground (white) and a number of errors present in the

processing of waveform data.

Table 4.13 – Summary of extracted metrics from waveform LiDAR
Height: Amplitude: Width:

Canopy cover - -
No. canopy layers - -

Canopy depth - -
Canopy max. gap - -
Dominant height - -

- - Minimum
Maximum - Maximum

Mean Mean Mean
Median Median Median

Standard deviation Standard deviation Standard deviation
Variance Variance Variance

Absolute deviation Absolute deviation Absolute deviation
Skewness Skewness Skewness
Kurtosis Kurtosis Kurtosis

Percentiles at 5% intervals
(5,10…90,95)

Percentiles at 5% intervals
(5,10…90,95)

Percentiles at 5% intervals
(5,10…90,95)
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Figure 4.15 – Errors observed in initial FW metric extraction. North to south artefacts are
visible due to erroneous values encountered in areas of flightline overlap.

4.4.3Individual tree detection
In order to compute the same ITC metrics for FW LiDAR as for DR, the SPD format files

were converted to LAS 1.2 format (via the ‘spd2spd’ command in the SPDlib software)with

the additional amplitude and width metrics removed. They were then input into TIFFS and

processed, as in section 4.3.4, to delineate individual tree crowns, and extract metrics related

to tree locations, heights and crown dimensions. All 30x30m area summaries were computed

as before for the field-plot extents and for the whole study site.

4.4.4 Additional metrics for DR and FW data derived using the FW processing chains
The SPDlib software could also process and extract metrics from the DR LiDAR datasets,

utilising much of the same approach identified in the previous sections apart from the

waveform decomposition. The SPDlib software could produce a number of additional metrics

which could not be calculated through RSC LASTools, namely canopy depth (m), number of

canopy layers and the maximum gap between canopy layers (m).
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The additional SPDlib metrics (canopy depth, number of canopy layers and the maximum

gap between canopy layers) were computed for both the leaf-on and leaf-off DR LiDAR

datasets respectively, for both the field plot polygons and the 30x30 m grid-cell polygons.

The SPDprofiles and SPDmetrics functions were used for the computation.

4.5Data analysis methods
This section describes in detail the statistical methods implemented in order to,firstly

determine the relationships between field plot-level variables to one another and then to

derive field-level metrics (as described in section 4.2) from the metrics extracted from the

airborne remote sensing datasets. Initially the analysis was conducted on the hyperspectral,

DR LiDAR and FW LiDAR data metrics in isolation to one another. The hyperspectral

metrics were then combined separately with each of the DR and FW LiDAR data metrics.

It should be noted that a number of metrics recorded in the field relating to animal damage

and disturbance, LAI, soil moisture and pH, in addition to the Evenness index were not

included in the analysis. These metrics exhibited small ranges between field plot sites and

proved to be difficult to model from remote sensing data inputs and map. None of these

metrics are required for the selected condition indices.

4.5.1 Field data analysis
The goal of the following procedures was twofold: the first was to assess the similarity of the

two field campaign datasets, and secondly was to identify if there were any significant

statistical relationships between individual field metrics. Relationships between metrics were

investigated using correlation and regression modelling. This process was necessary for

assessing the ability to reduce the number of measurements required by field data collection

in future works.

4.5.1.1 Comparison of the 2010 and 2012 field populations
In order to be able use the validation field dataset, it was first necessary to determine the

overall similarity or dissimilarity between the individual recorded field metrics recorded in

2010 and 2012. This was necessary in order to assess the dataset best used for validation

purposes. For the purposes of this research each of the recorded field metrics, such as mean

DBH, is considered a population: i.e. population one – the 21 mean DBH values from plots

enumerated in 2010; and population two – the 20 mean DBH values from plots enumerated in
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2012. Two non-parametric tests, both utilising two independent samples, were utilised to test

the two populations, the Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov test. These

tests can be used to test if the population distributions are identical without assuming them to

follow the normal distribution. Both the Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov

tests were implemented through the R software.

The Mann-Whitney-Wilcoxon test is used in experiments in which there are two conditions

and different subjects have been used in each condition (Field, 2013),in this case data from

two field campaigns. Operating under the assumption the observations are independent of one

another, the observations from both groups are combined and ranked, with the average rank

assigned in the case of ties. The number of ties should be small relative to the total number of

observations. If the populations are identical in location, the ranks should be randomly mixed

between the two samples.

The Kolmogorov-Smirnov test is a more general test that detects differences in both the

locations and shapes of the distributions between the two populations (Field, 2013). The

Kolmogorov-Smirnov test is based on the maximum absolute difference between the

observed cumulative distribution functions for both samples. When this difference is

significantly large, the two distributions are considered different.

For both of these statistical techniques the null hypothesis was that the two populations were

identical. The hypothesis was tested by applying the two independence tests within the R

software. The p< 0.05 significance level was used, thus if the p value met this criterion the

null hypothesis is rejected.

4.5.1.2 Spearman’s rho bivariate correlation
In order to determine if there were any correlations between collected field metrics a bivariate

correlation analysis was instituted within the SPSS (version 19) (IBM) statistical software.

The bivariate correlation method was that of Spearman’s rho. The Spearman correlation

coefficient is a non-parametric measure of the strength and direction of association that exists

between two variables measured on an ordinal scale.Spearman’s tests works by first ranking

the data, and then applying Pearson’s equation to those ranks (Field, 2013). As the direction

of the relationship is unknown between variable pairs, all correlations use the two-tailed

method.



Chapter 4 – Methods

142

A correlation matrix was created where every field metric was tested against every other field

metric, thus a correlation coefficient and an estimate of significance (p) was calculated for

every relationship.

4.5.1.3Ordinary Least Squares (OLS) regression analysis
Linear regression was used to determine the nature of the relationships between all field plot-

level metrics. More specifically this method uses the least squares regression approach.

‘Ordinary Least Squares’ (OLS) means that the overall solution minimizes the sum of the

squares of the errors. OLS is a method for estimating the unknown parameters in a linear

regression model. A more detailed outline of this approach is available in Field (2013). The

resulting relationship can be expressed by a simple formula (see Equation 4.11).

The multiple linear regression approach was implemented through the SPSS software.

Multiple forward stepwise regression approach was used, assessing the outputs for evidence

of supporting the assumptions of:

(i) linearity;

(ii) normality;

(iii)homogeneity of variance;

(iv) independence;

(v) model specification.

Those factors are summarised in Table 4.14.

Table 4.14 – Testing the assumptions of a regression analysis (Chen et al., 2003)
Assumption/concern: Description:

i Linearity The relationships between the predictors and the outcome variable should
be linear.

ii Normality The errors should be normally distributed – technically, normality is
necessary only for the t-tests to be valid, estimation of the coefficients
only requires that the errors be identically and independently distributed

iii Homogeneity of variance
(homoscedasticity)

The error variance should be constant

iv Independence The errors associated with one observation are not correlated with the
errors of any other observation

v Model Specification The model should be properly specified (including all relevant variables,
and excluding irrelevant variables)

vi Influence Individual observations that exert undue influence on the coefficients
vii Multicollinearity Predictors that are highly collinear, i.e. linearly related, can cause

problems in estimating the regression coefficients.
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Considering the important issue of multicollinearity within this situation, when there is a

perfect linear relationship among the predictors, the estimates for a regression model cannot

be uniquely computed (Field, 2013). As the degree of multicollinearity increases, the

regression model estimates of the coefficients become unstable and the standard errors for the

coefficients can get wildly inflated. Through the examination of diagnostic statistics available

in SPSS: (i) ‘tolerance’; (ii) ‘variance inflation factor’ (VIF); and (iii) the ‘condition index’,

multicollinearity can be detected. Explanations of these metrics can be found in Field (2013).

Each of the various diagnostics was used to test the correlations between all of the field-plot

metrics. If an assumption was found to be false, of concern or to be out of tolerance, the

regression was re-run and one or more predictor values removed in order to improve the

regression. The output was then assessed again.

The regression result was then assessed for its significance using an Analysis of Variance

(ANOVA) F-test and the student’s t-test. Here if a value of p is below 0.05, it is reported as

significant for both F- and t-values (Chen et al., 2003; Field, 2013). If a coefficient was not

significant, it was dropped from the regression. Additionally, the Residual Standard Error

(RSE) was checked for each model; out of all the models produced those which minimised

the RSE were selected.

In order to get an indication of how much of the variance encountered in the dependent

variable was accounted for by the regression model, the R-squared statistic was utilised. This

is an overall measure of the strength of association and does not reflect the extent to which

any particular independent variable is associated with the dependent variable.

The output from the regression model yields the inputs for the regression equation. These are

the values in the regression equation for predicting the dependent variable (Y) from the

independent variables (x). The regression equation is presented as:= 0 + 1 ∗ 1 + 2 ∗ 2. . . + ∗ [4.11]

whereb0 is the intercept, b1…bn is the coefficient which corresponds to the independent

(predictor) variable x1…xn (e.g. b1 corresponds to x1). This equation was generated for each

individual field plot attribute, as predicted by combinations of other field plot metrics using

multiple forward stepwise regression. Non-significant metrics were removed from the
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analysis to produce minimum adequate models. Additionally, efforts were made to limit the

standard errors of the best models.

4.5.2 Hyperspectral analysis
As outlined in section 4.4, metrics extracted from hyperspectral datasets totalled 5 from the

ITC classification and 149 from the spectral indices (154in total). This combined both leaf-on

and leaf-off datasets. Below is a description of various statistical approaches used to derive a

statistical method of predicting field-level attributes from hyperspectral data. Hyperspectral

statistics were derived for the 30x30m areas corresponding to the field-plot locations. Data

from the 21 field-plots visited in 2010, one attribute at a time, were then regressed against the

hyperspectral values as a means of generating the required equations for predicting the field

plot-level metrics over the whole study site.

4.5.2.1 OLS linear multiple regression
As in section 4.5.1 an OLS regression analysis was performed in order to determine the

nature of the relationships between a field plot-level metric (dependent variable) and one or

more hyperspectral-derived metrics (explanatory variables) using SPSS. Multiple forward

stepwise regression was used as described above, to produce minimum adequate models

predicting field plot-level attributes from the hyperspectral-derived metrics.

4.5.2.2 Akaike's Information Criterion
As an alternative method of deriving the regression relationships the Akaike's Information

Criterion (AIC) technique was explored.AIC in essence balances the number of parameters

and fit to the data (likelihood). This technique was implemented using the R statistical

software. AIC is a measure of the relative ‘goodness of fit’ of a statistical model and is

defined by the equation of: = 2 − 2ln( ) [4.12]

where k is the number of parameters in the regression model, and L is the maximized value of

the likelihood function for the estimated model. A small value of AIC indicates a better

combination of simplicity and fit to the data.

Given the relatively small sample size (n=21) and large predictor size (k=196) it was

necessary to consider a modification to ‘AIC’, termed ‘AICc’ (Burnham and Anderson,

2002). AICc is defined as:
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= + 2 ∗ ( + 1)− − 1 [4.13]

where n denotes the sample size. Therefore, AICc includes a penalty correction for extra

parameters.

Within the R software the “MuMin” (Multi-Model Inference) package(Barton, 2012) was

used to run the AICc analysis, using the ‘Dredge’ function. This function generates a set of

models with combinations (subsets) of the terms in the global model, with optional rules for

inclusion. The function runs through each possible combination of variables in order to derive

the most significant regression equation which accounted for the most variance.

Unfortunately the statistical tool could not accept more than 30 input metrics due to computer

memory limitations.

The number of possible combinations of predictor variables (≥155) presented a number of

problems as the number of potential permutations was vast. There was therefore a high risk of

identifying spurious relationships. Below is an adaption of the methods outlined in Langton et

al. (2010) and Burnham and Anderson (2002). To avoid this problem a further phase of

modelling was carried out in an attempt to identify those variables which would be significant

while reducing the potential for collinearity.

A ‘data mining’ exercise was conducted in order to investigate other important predictor

variables. To determine which variables had the most potential for prediction of forest

attributes, automatic stepwise AICc selection was used on a subset of six random predictor

variables for500,000 iterations. If a predictor variable was significant, it was recorded for

each of the iterations. Each application of an AICc model was assessed using ANOVA test.

Each input variable had a corresponding F-test and p-value. As before, a variable was

considered significant if p ≤ 0.05.The result of this process was a table summarising which

variables were significant for each of the random subset selection iterations. A results table

was then produced where a count for each time an attribute was significant was calculated as

a measure of which attributes were of most relevance to a given field plot-level variable. A

full list of this R code for this task is presented in Appendix D section D.1. This was applied

for each of the field-level variables.
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Following this process, the 20 predictor variables with the highest counts were input into a

further AICc process in order to derive a regression equation. If variables were known a

priori to have no relation to the independent variable they were removed and the next best

predictor variable was added. At this stage a limit was imposed on the number of predictor

variables allowed into the stepwise AICc regression in each step. A maximum of 6 of the 20

predictor variables could be entered in any single iteration of the model, this was in order to

account for processing time and system memory limitations. The AICc was run adding in

each possible combination of 1-6 variables. The delta-AIC value of each model was then

assessed in order to determine the likelihood of the candidate model. When delta-AIC was

less than or equal to 2, the given model was suggested to be within the range of plausible

models that best fit the observed data (Burnham and Anderson, 2002). Therefore any model

with an AIC above 2 was discounted.

As in the previous section, a number of diagnostic tests were applied to assess the regression

assumptions in this model, as listed in Table 4.14.Significance tests such as the ANOVA and

students t-test were available as before. Diagnostics designed to detect multicollinearity were

VIF and tolerance. These were calculated using the ‘Faraway’ package in R (Faraway, 2011).

The condition index was calculated using the ‘perturb’ package (Hendrickx, 2012). A full

listing of this R code is presented in Appendix D section D.2. If the model failed these

diagnostic tests, the variable(s) identified as not significant and/or collinear were removed

from the analysis and the AICc procedure re-run. Efforts were made to limit the standard

error of the model. AICc delta and weight values were reported for each model.

4.5.3 Discrete-return and full-waveform LiDAR analysis
As outlined in section 4.4 a total of 196 and 261attributes for DR and FW data respectively,

were extracted for the combined leaf-on and leaf-off datasets, including those derived from

ITC centroids. These attributes included those metrics which could be directly related to

fieldplot-level metrics and those which required statistics to determine a relationship.

Below is a description of various approaches used to derive a statistical means of predicting

field-level attributes from LiDAR data. LiDAR statistics were derived for the 30x30m areas

corresponding to the field-plot locations. Data from the 21 field-plot sites recorded in 2010

were regressed against the LiDAR values one attribute at a time to generate equations for

predicting the field plot-level metrics over the whole study site.
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4.5.3.1 OLS linear multiple regression
An OLS regression analysis was performed to determine relationships between a field plot-

level metric and one or more LiDAR derived metrics, using SPSS. A multiple forward

stepwise regression approach was used, assessing the outputs for evidence of supporting the

assumptions summarised in Table 4.14. It should be noted that multicollinearity between

LiDAR attributes was of critical concern. As before, non-significant metrics were removed

from the analysis and the regression process re-run and efforts were made to limit the

standard errors of the models.

4.5.3.2 Akaike's Information Criterion
As in section 4.5.2.2, a two stage AICc procedure was implemented, in order to first identify

those metrics most likely to be correlated with a field-level metric. The second step was to

perform an AICc stepwise regression approach to model the DR and FW LiDAR metrics

against field-level metrics. To reiterate, the field data collected in 2010 were used, in addition

to the remote sensing metrics extracted for the same spatial extents for both leaf-on and leaf-

off data. The assumptions summarised in Table 4.14were tested. Students-t test, ANOVA,

VIF and condition indices were utilised. Efforts were made to limit the standard error of the

model. AICc delta and weight values were reported for each model.

This procedure was applied to the DR and the FW datasets separately to produce predictive

equations relating the LiDAR variables to the field plot-level attributes.

4.5.3.3 Direct calculation of indexes from individual tree detection data
Two of the condition assessment indices, as listed in section 4.1.3, require the explicit

measurement of individual trees in order to be calculated, these were the Vertical Evenness

(VE) index (Neumann and Starlinger, 2001) and the Clark-Evans Aggregation index (Clark

and Evans, 1954). The R software was used to calculate statistics based on the individual tree

crown (ITC) centroids as derived through TIFFS. Each ITC point contained coordinates and

an estimate of height. Custom R script was developed to estimate the VE index by stratifying

the individual heights of the ITC objects based on the maximum height recorded in the

30x30m plot and applying a modified Shannon Index. This R script is documented in

Appendix C section C.10. The Aggregation index was calculated using the distances between

ITC point coordinates and an estimate of the number of tree stems within the plot. The code

is documented in Appendix C section C.11.
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4.5.4 Combined hyperspectral and LiDAR analysis
Hyperspectral metrics were combined first with DR LiDAR and then with FW LiDAR in

isolation from one another. This combined both leaf-on and leaf-off datasets. Due to the large

number of potential predictor variables in the combined datasets, there was a concern that this

could cause problems with both multicollinearity and the limitations of the available

computer hardware.

4.5.4.1 Defining combined variable subsets
Hyperspectral-derived data and DR LiDAR metrics, of 155 plus 196 variables, respectively

(total 351), were processed in the aforementioned manner. Likewise, hyperspectral derived

data and FW LiDAR metrics, of 155 plus 261 variables, respectively (total 416) were

processed by the same approach.

To reduce the number of variables whilst retaining key predictors, for the combination of

remote sensing variables a modification of the method outlined in section 4.5.2.2 was

adopted. To reiterate, the first part of the procedure was to perform a ‘data mining’ exercise

using 500,000 iterations to identify the variables likely to be the most significant. This

procedure was used for derived hyperspectral, DR and FW LiDAR datasets. To combine the

two remote sensing datasets the 20 most frequently selected remote sensing variables for each

field metric were extracted for each of the two combined datasets.

4.5.4.2 OLS linear and AICc regression
OLS regression analysis and AICc regression were then performed as described above in

sections 4.5.1 and 4.5.2.2. For the OLS analysis, a total of 20 metrics from hyperspectral

derived data and 20 from DR/FW LiDAR were identified for each of the field-plot metrics.

For the AICc, the process was modified to include only 10 metrics from each of the two

remote sensing sources, i.e. 10 from the hyperspectral and 10 from the LiDAR datasets.

Exceptions were made to this rule to include those remote sensing metrics identified as

significant in the previous AICc selection procedures conducted for both hyperspectral and

LiDAR analysis in isolation (see sections 4.5.2.2. and 4.5.3.2). The number of values input

into the AICc procedure was limited to a maximum of 24 due to computer memory

limitations. The R-script developed to perform this task is documented in Appendix D section

D.3.
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4.6. Validation using field data
The 2012 field data was acquired for the explicit reason of validation of the predictions made

through the various statistical methods reported in the previous (sections 4.2 to 4.5).

4.6.1 Using remote sensing to predict field plot-level metrics
The coordinates of the four corners of the 2012 field plot locations were used to produce Esri

format shapefiles, these extents were then used to extract the required remote sensing metrics

from the three datasets. Direct comparison of field metrics and remote sensing derived field

plot-level metrics could be made for a small number of metrics, summarised in Table 4.15.

Table 4.15 – Field measurements and remote sensing metrics for comparison
No. Field Metric: RS Metric:

1 Canopy height (mean, max.) (m) Mean TIFFS height (m) (LiDAR); Dominant
Canopy Height (m) (LiDAR).

2 Canopy layers Leaf-on and leaf-off canopy layers (LiDAR).

3 Overstorey species present (height >15m) Species classifications from ITC count
(Hyperspectral/LiDAR).

4 Number of overstorey trees (height >15m) ITC count (Hyperspectral/LiDAR)

The remote sensing metrics were then extracted by the methods outlined in the previous

sections for the extents of the 2012 field work polygons for hyperspectral, DR and FW

LiDAR datasets. These metrics were used as inputs to the various statistical equations

generated in section 4.5 for the prediction of field plot-level metrics. Comparisons between

validation 2012 field work data and airborne remote sensing derived plot-level metrics were

made for each of the field measured plot-level metrics outlined in section 4.1.

An R-script was developed in order predict the field plot-level metric from remote sensing

data from each of the 10 statistical models (5 datasets and 2 regression approaches); this is

documented in Appendix E section E.1. Once the relevant remote sensing metrics were

extracted for the spatial extents of the 2012 validation fieldwork polygons, the regression

model equations were applied in order to predict field plot-level information.

A comparison of the field plot metrics with the estimated values from the remote sensing

derived sources was then performed. The Root Mean Square Error (RMSE) and the

Normalized Root Mean Square Error (NRMSE) were computed for each of these

comparisons as a measure of accuracy. These functions are defined as:
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= ∑ ( − ) [4.14]

where xi is the predicted value and yi is the value recorded by fieldwork. The product of

subtracting yi from xi is known as a residual. Squaring the residuals for the population,

averaging the squares, and taking the square root gives the RMSE.

Normalized Root Mean Square Error (NRMSE) was calculated in order to provide a scale-

independent measure of accuracy. This is defined as:= − [4.15]

RMSE is divided by the range of observed values, where field observed maximum is ymax,

and observed minimum is ymin.

4.6.2 Computationand validation of condition indices
Condition indices were computed from the remote sensing derived field-level metrics and

compared with those calculated from the field data. The remote sensing derived field metrics

produced as part of the previous step (section 4.5)with the lowest relative RMSE and

NRMSE were selected as inputs into the various condition index methods. The process was

carried out using the best models from any of the five datasets, as defined by the lowest

RMSE/NRMSE. The construction of the indices is described in section 4.1.3.

The eight indices tested are as follows: (i) Shannon index; (ii) Simpson index; (iii) Clark-

Evans aggregation index (Clark and Evans, 1954); (iv) tree diameter differentiation index

(Füldner, 1995, cited in Vorčák et al., 2006); (v) vertical evenness (VE)index (Neumann and

Starlinger, 2001); (vi) the complexity index (Holdridge, 1967); (vii) complex stand diversity

index (CSDI) (Jaehne and Dohrenbusch, 1997, cited in Newmann and Starlinger, 2001,

Vorčák et al., 2006); and (viii) a scoring method, as defined by Cantarello and Newton

(2008). The construction of these indices is documented in section 4.1.3.

The Shannon and Simpson indices were calculated directly from hyperspectral data in

addition to using statistical means. It should be noted that a number of indices did not use

regression derived inputs, and will not be discussed here. For example, the VE and

aggregation indices were computed from ITC information extracted from DR LiDAR data

due to the requirements for the condition index to use individual tree data.
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Tree diameter differentiation and the CSDI required additional statistical models to be created

for their inputs. The former required the computation of the sum of the differences in DBH of

stems within the field plot. The latter required the sum of the three largest and three smallest

DBH values recorded within the field plot to be calculated. Both of these metrics were

estimated through the regression approaches defined previously for all five datasets. The

model estimates with the smallest RMSE/NRMSE were selected for input into the condition

index calculation.

The CSDI required a number of metrics derived from regressions and extracted directly from

both the hyperspectral and LiDAR ITC objects in order to be computed for three of four of its

component indices. The first of these related to the estimation of the relative proportions of

the tree species with the highest population to that of the lowest population. This was

calculated using the classified ITC objects produced in eCognition, where each ITC object

was considered as an individual tree stem. The second component index, the index of vertical

separation, was estimated statistically using regression, as defined before. Component index 3

required estimates of the three minimum and three maximum nearest neighbour distances in-

between DR LiDAR ITC objects. Component index 4 required the two minimum and two

maximum tree crown diameters from DR LiDAR ITC data, in addition to the ‘best’

regression estimates(i.e. with the lowest RMSE), for estimates of the stem count, height to the

lowest live branch and standard deviation of the height to the first live branch.

Modifications were made to two of the components of the complex stand diversity index:

(CSDI-3) the index of spatial distribution and(CSDI-4) the index of crown differentiation.

These modifications were necessary to take account of some of the initial findings relating to

the LiDAR TIFFs ITC outputs and statistical estimates of forest metrics.

For CSDI-3 these were the underestimation of detecting individual trees, and the

overestimation of the distance between nearest neighbouring (NN) trees using TIFFS ITC

data. The distances between NN trees as derived from ITC centroids were modified by

subtracting two times the standard deviation of NN distances (derived from statistical

outputs, not ITC metrics) from the actual ITC distances. This was done so the values better

resembled 2010 fieldwork measurements for NN distances.
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The index for crown differentiation required an estimate of the lowest possible height of the

first live tree branch (a.k.a. crown base height); a simple surrogate was constructed

subtracting the standard deviation of the height of the first live tree branch from the plot

average height to the first live branch. If the height was below an arbitrary 2m threshold the

average height to the first live branch was used. The threshold was instituted to reduce the

possibility of a negative height value being entered into the calculation.

An R script was developed to calculate all the condition indices:

(i) the tree diameter differentiation index;

(ii) the complexity index;

(iii) the CSDI; and

(iv)the scoring index (Cantarello and Newton, 2008).

The R-script developed for this purpose is documented in Appendix E section E.2.

Thefieldwork derived index values were then compared with the remote sensing derived

values, where RMSE and NRMSE were calculated.

4.7 Mapping the resultsacross the study site
Utilising the 30x30m grid polygon produced using the GME software each of the distinct

remote sensing metrics could be mapped. There were approximately 32,100 30x30m grid-

cells within the study site extent. Hyperspectral index data were added to the grid shapefile

along with overstorey species number and TIFFS ITC summary metrics relating to stem

number, average height, crown area and crown volume within ArcMap. DR LiDAR metrics

were obtained through the RSC LAStools software using a 30x30m pixel sized raster grid for

each of the extracted metrics aligned to the coordinates used in the polygon cells. They were

extracted using a combination of generating a central point within the polygon cell, sampling

the pixel value which intersected with this point and adding the value to the polygon grid via

a spatial join. SPDlib metrics for FW LiDAR were output directly into the polygon shapefile.

Each of the remote sensing attributes were then mapped at the 30x30m resolution for the

whole of the study site, these datasets are summarised in Table 4.16.Once the field-level

attributes were predicted by the various statistical methods, estimates of field-level

information could be made for each 30x30m shapefile extent through the application of an

appropriate regression model formula. A total of ten potential model formulae existed for

each of the field-level metrics to be estimated.
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Table 4.16 – Summary of inputs for full study site
Datasets foreach 30x30m area:

Hyperspectral DR LiDAR FW LiDAR
eCognition (and R) output:
 Population composition

summary;
 Diversity indices from

classified over-storey.

RSC LAStools outputs:
 Height and intensity metrics

for ground, vegetation and all
returns [for both leaf-on and
leaf-off data].

SPDlib outputs:
 Canopy depth; canopy max

vertical gap and no. canopy
layers.

SPDlib outputs:
 Height, amplitude and width

metrics for ground,
vegetation and all returns
[for both leaf-on and leaf-off
data].

 Canopy depth; canopy max
vertical gap and no. canopy
layers.

Hyperspectral Index area
summaries
 Summary of 13 spectral

indicates [for both leaf-on and
leaf-off data].

TIFFS outputs:
 No. of stems;
 Tree height summary;
 Crown parameter summary;
 VE index estimate;
 Aggregation index estimate.

TIFFS outputs:
 No. of stems;
 Tree height summary;
 Crown parameter summary;
 VE index estimate;
 Aggregation index estimate.

In order to apply each of the model equations to the appropriate 30x30m cell, the R-script

documented in Appendix E sectionE.1 (also in section 4.6.3) was modified to apply the

calculation to all 30x30m grid cells across the study site extent. The output from R was a

database (.dbf) file which could be combined with the grid shapefile using the Cell ID

attribute. Once completed each of the polygon grid cells could be used to map field attributes,

such as mean DBH(m) and standing deadwood volume (m3) across the whole study site.

Finally, it was necessary to calculate the condition indices using the outputs of the previous

calculations applied to the remote sensing metrics. In relation to the validation work (section

4.6.3), the most accurate model equations were selected for input into the condition index

calculations. An R script was developed to extract the relevant field estimate inputs from the

30x30m polygon grid cells as inputs to condition index calculations. The R script presented

in Appendix E sectionE.2was modified to account for the greater number of polygons for

which estimates were required. Multiple indices were calculated through the R script, these

were: (i) tree diameter differentiation (Füldner, 1995); (ii) the complexity index (Holdridge,

1967); (iii) CSDI (Jaehne and Dohrenbusch, 1997, in Newmann and Starlinger, 2001, Vorčák

et al., 2006) and (iv) the scoring method, as defined by Cantarello and Newton (2008). The

Shannon, Simpson, Evenness, VE and aggregation indices were calculated using

modifications to the R-scripts documented in Appendix sections B.2, C.10 and C.11.
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Once the R-script calculations were completed, the condition index values were output from

R in the database (.dbf) format and combined with the 30x30m polygon grid in ArcMap by

linking the Cell IDs. Thus, each grid cell within the study-site map contained an estimate of

each indicator metric and the nine predicted index values.

4.8 Methods summary
The methods chapter began with an overview of the field datasets for the 41 field plots, 21 of

which were visited in 2010 and 20 visited in 2012.Various area-based summary metrics were

calculated for each field-plot, to produce estimates such as mean DBH, basal area and canopy

openness. In addition, nine condition indices relating tree species or structural diversity, or

both, were calculated for each field plot. A total of 39 metrics were generated for each field

plot.

The hyperspectral datasets required a number of pre-processing steps in to make the data

suitable for analysis. These steps involved the application of radiometric, geometric, and

atmospheric corrections to the hyperspectral imagery, followed by mosaicing the individual

flightlines together. Once pre-processing steps were complete a total of 13 VI were then

calculated from the leaf-on and leaf-off datasets. These VIs related to the greenness, light use

efficiency, leaf pigments, and canopy water content.

A process to reduce the high-dimensionality of the hyperspectral data was instated,

employing concepts such as PCA and MNF. This was to reduce the dataset size and reduce

noise and extraneous data. Hyperspectral data processed using MNF was selected as the best

approach. This dataset was then classified using an object-based classification method. The

object-based method employed a combination of ITC delineation algorithms to identify ITC

objects, then employed hierarchical classification using fuzzy class membership rules.

Summary metrics were produced for each of the field plot areas for species classification and

VI metrics.

The DR LiDAR data required various pre-processing steps to be implemented to filter the

LiDAR point cloud to identify ground and non-ground points(using a progressive

morphological filter), and then to normalise each point’s height information to above-ground

height only. Again, the flightlines were mosaiced into one file. Various area-based metrics

were extracted from the DR LiDAR dataset. A total of 187 area based statistics were
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extracted from leaf-on and leaf-off data for both height distribution and intensity metrics for

each of the plot areas. Metric examples include the mean height, canopy closure and the

skewness of LiDAR intensity values.

ITC analysis was performed upon the leaf-on 2010 DR LiDAR data, where estimates of tree

height, crown radius and canopy geometric volume could be made for each tree. These

metrics were averaged or totalled for area-based metrics, for example, an estimate of the

number of trees per 30x30m area could be made.

FW LiDAR data presented a number of unique problems in terms of processing it to a level

to make is usable for analysis. This dataset type required additional pre-processing steps to

derive a ‘traditional’ point cloud. Therefore a method utilising Gaussian decomposition was

used to identify individual returns from each of the pulse waveforms, and calculate its

position in 3D space. Once complete, filtering of ground and non-ground points could be

performed, again using a progressive morphological filter, followed by normalising the point

heights to above ground height. The FW dataset allowed additional area-based metrics to be

calculated based on the size and shape of the waveform response to the return, i.e. wave

amplitude and width, in addition to height information. A total of 252 metrics were extracted

for both leaf-on and leaf-off datasets.

Once the metrics had been extracted from the various field and remote sensing datasets a

statistical analysis was implemented. Beginning with the field dataset, three statistical

techniques were applied. The first was in order to determine similarity or dissimilarity of the

data collected in the two field campaigns. The second, to determine if any of the field metrics

correlated with any of the others, using a Spearmans rho bivariate correlation analysis. The

third technique was to employ OLS multiple regression in order to determine if the individual

field metrics were related to any combinations of the other field metrics.

Regression of remote sensing metrics against 39 field data metrics was done to develop

predictive models to estimate these field data metrics in other forest areas assessed by the

remote sensing data. Both OLS and AICc regression approaches were used to test the five

datasets, these were: (i) hyperspectral metrics; (ii) DR LiDAR metrics; (iii) FW LiDAR

metrics; (iv) hyperspectral combined with DR LiDAR metrics; and (v) hyperspectral

combined with FW LiDAR metrics.
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Fieldwork plots recorded in 2012 were used for validating the OLS and AICc regression

models for the 39 field plot-level metrics. Thus, each of the remote sensing metrics identified

in the statistical models were extracted for the extents in the validation field plots. The

regression model equations generated in the previous steps were applied to this dataset.

RMSE and NRMSE were calculated for each result of the statistical model estimates. In

addition, a number of measurements which could be extracted directly from the data, such as

tree counts and canopy openness, were tested.

The same approach was applied to the calculation of condition indices, where field calculated

index values were compared with those calculated from indicators derived from regression

model estimates using remote sensing metrics. RMSE and NRMSE values were calculated

for the 20 validation field plot-extents.

Slight modifications were made to the workflow employed in the methods of validation to

apply the regression model calculations to the entire study site, where remote sensing area-

based metrics were extracted for a regularly spaced grid of 30x30m areas. A number of

mapping products were created for estimates of condition indicator values such as mean DBH

or species richness across the whole study site. Condition indices were calculated from the

estimated indicator values and validated against 2012 field data. As before the condition

index values were then mapped across the study site.
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Chapter 5 – Fieldwork results

This chapter reports the results of the various forest structural and compositional metrics

collected during fieldwork. It includes:

1. an overview of fieldwork data characteristics;

2. any significant statistical relationships between field recorded metrics;

3. the presentation of calculated condition indices from the field data.

It should be noted that the field data collected in 2010 were used to build the models

documented in subsequent chapters, whereas field data collected in 2012 were used to

validate these models.

5.1 Overview of fieldwork data
This section discusses the results of both the summer 2010 and 2012 field campaigns, as

identified in Chapters 3 and 4. Table 5.1 summarises the fieldwork data for the field plots

recorded in 2010, while Table 5.2 summarises the fieldwork data for the field plots recorded

in 2012 to illustrate some of the differences per plot. Species richness varied between one and

four for over-storey species in the sample plots. Many of the plots visited in the fieldwork

campaign had very few instances of regenerating tree species in terms of saplings or

seedlings, and therefore the native seedling SH values were low. It is worth considering that

these small population sizes may influence the strength of the produced regression models.

Between sites, vascular plant species richness was comparable between mixed, coniferous

and deciduous plots. Overall however vascular plant diversity was low. The volume of

standing and fallen deadwood was greater in deciduous woodland. As expected, tree DBH

size varied significantly between trees within the older growth deciduous plots, and was

significantly less in the conifer plantation plots. The proportion of larger trees also followed

this pattern.

The metrics recorded for each of the plots exhibit a different spatial structure, and a pattern

can be seen between mean DBH and height (and to a lesser extent spacing). However, total

downed deadwood seems to be unrelated to tree size.
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Table 5.1 – Summarised Descriptions for field plots visited in 2010
Plot location Tree Species Layer Regeneration & under-

storey
Deadwood Amount

#1
E 435820;
N 102950.
(Hawkhill)
*Plantation*
(Soil pH 5.1)

Species: Scots Pine; Silver
Birch; and Beech.
Spacing: low (2.5m). Canopy
openness 20.5%. Mean height
is 17m.
Mean DBH is 30cm.

Species: Silver Birch;
Holly,
Density: low
Understorey: ferns (45%)
and grass (54%).
*Animal browsing.

No standing dead and few
fallen trees.  Downed
deadwood volume is low (10
m3ha-1) in none to moderate
decay state.

#2
E 435621;
N 102857
(Hawkhill)
*Plantation*
(Soil pH 5.7)

Species: Corsican Pine; and
Oak.
Spacing: low (4m).
Canopy openness: 17%. Mean
height is 18.3m.
Mean DBH is 34cm.

Species: Holly
Density: low
Understorey: ferns (80%),
grass (15%), foxgloves
(0.5%) and moss (4%).
*Animal browsing

No standing or fallen dead
trees.  Downed deadwood
volume is low (13 m3ha-1) in
a moderate to high decay
state.

#3
E 435794;
N 102614
(Hawkhill)
*Plantation*
(Soil pH 6.0)

Species: Corsican Pine; Birch;
and Oak.
Spacing: low (4.5m).
Canopy openness: 19.6%.
Mean height is 18m.
Mean DBH is 36cm.

Species: Holly.
Density: low.
Understorey: grass (80%),
Gorse (3%), and fern (15).
*Animal browsing.

No standing or fallen dead
trees.  Downed deadwood
volume is low (2 m3ha-1) in a
moderate to high decay state.

#4
E 435543;
N 103100
(Frame Wood)
*Semi-ancient*
(Soil pH 6.0)

Species: Oak; Holly; and
Silver Birch.
Spacing: low (4.8m).
Canopy openness: 21%.
Mean height is 17.5m,
Mean DBH is 57cm.

Species: Holly.
Density: low.
Understorey: fern (50%),
grass (20%), and moss
(5%).
*Animal browsing.

Standing dead found (47
m3ha-1) in moderate decay
state.  Downed deadwood
volume is low (9 m3ha-1) in a
moderate to high decay state.

#5
E 434808;
N 101918
(Hawkhill)
*Plantation*
(Soil pH5.7)

Species: Douglas Fir; Scots
Pine; and Silver Birch.
Spacing: low (3.5m).
Canopy openness: 23%.
Mean height is 24m.
Mean DBH is 34cm.

Species: Holly.
Density: low.
Understorey: grass (90%),
and fern (5%).

Standing dead found (0.8
m3ha-1) in a moderate decay
state.  Downed deadwood
volume was low (8.6 m3ha-1)
in a moderate to high decay
state.

#6
E 434549;
N 101919
(Hawkhill)
*Semi-ancient*
(soil pH 5.5)

Species : Oak; and Holly.
Spacing: high (8.5m).
Canopy openness: 13%.
Mean height is 33m.
Mean DBH is 62cm.

Species: Holly.
Density: low.
Understorey: fern (50%),
nettles (5%), with
bluebells, moss and
nettles.

Standing dead found (47
m3ha-1) in moderate decay
state.  Downed deadwood
volume is low (10 m3ha-1) in
a high decay state.

#7
E 435071;
N 102558
(Hawkhill)
*Plantation*
(Soil pH 5.2)

Species: Douglas Fir; Oak;
and Silver Birch.
Spacing: moderate (5.2m).
Canopy openness: 26%.
Mean height is 22m.
Mean DBH is 40cm.

Species: Holly; Douglas
Fir, Silver Birch; and Red
Cedar
Density: High.
Understorey: grass (30%),
Fern (20%), with moss
(10%) and heather.

No standing dead and few
fallen trees.  Downed
deadwood volume is low (16
m3ha-1) in none to moderate
to high decay state.

#8
E 435021;
N 102399
(Hawkhill)
*Plantation*
(Soil pH 5.7)

Species: Douglas Fir; Norway
Spruce; and Silver Birch.
Spacing: low (2.9m).
Canopy openness: 22%.
Mean height is 17m.
Mean DBH is 33cm.

Species: Holly; and
Norway Spruce.
Density: low.
Understorey: grass (60%),
and fern (30%).

Standing dead found (3 m3ha-

1) in a moderate decay state.
Downed deadwood volume
was low (3 m3ha-1) in a
moderate decay state.
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Table 5.1 (continued)
Plot location Tree Species Layer Regeneration & under-

storey
Deadwood Amount

#9
E 436549;
N 103213
(Tantany
Wood)
*Semi-ancient*
(Soil pH 6.1)

Species: Oak; and Beech;
Field Maple; hawthorn; and
Holly. Spacing: moderate
(5.3m).
Canopy openness: 15%.
Mean height is 28m.
Mean DBH is 48cm.

Species: Holly, Beech and
Ash.
Density: moderate.
Understorey: (sparse) grass
(3%), and fern (3%).
*Animal browsing

High volume of standing
dead (112 m3ha-1) in a
moderate to high decay state.
Downed deadwood volume
was high (98 m3ha-1) in a
moderate to high decay state.

#10
E 436351;
N 103769
(Tantany
Wood)
*Semi-ancient*
(Soil pH 6.5)

Species: Oak; and Beech; and
Ash.
Spacing: low (2.6m).
Canopy openness: 15%.
Mean height is 31m.
Mean DBH is 50cm.

Species: Holly; and Ash
Density: moderate.
Understorey: (sparse) grass
(20%), and a mix of sorrel,
moss and ground
*Animal browsing Ivy.

High volume of standing
dead (77 m3ha-1) in a
moderate to high decay state.
Downed deadwood volume
was high (162 m3ha-1) in a
moderate decay state.

#11
E 436793;
N 103778
(Tantany
Wood)
*Semi-ancient*
(Soil pH 5.9)

Species; Oak; Silver Birch;
Yew; Alder Buckthorn; Elm;
Holly; and Douglas Fir.
Spacing: low (3.2m).
Canopy openness: 16%.
Mean height is 18m.
Mean DBH is 30cm.

Species: Holly; Alder
Buckthorn; and Ash.
Density: moderate
Understorey: (sparse)
grass (15%), and moss
(15%).

Standing dead found (1.8
m3ha-1) in a moderate to high
decay state.  Downed
deadwood volume was low
(5.4m3ha-1) in a moderate
decay state.

#12
E 435480;
N 102014
(Hawkhill)
*Plantation*
(Soil pH 4.7)

Species: Douglas Fir; and
Scots Pine.
Spacing: moderate (5.3m).
Canopy openness of 19%.
Mean height is 25m.
Mean DBH is 43cm.

Species: Scots Pine and
Bramble
Density: low.
Understorey: fern (65%),
grass (20%), and moss
(15%).

No standing or fallen dead
trees.  Downed deadwood
volume is low (1m3ha-1) in a
moderate to high decay state.

#13
E 435616;
N 102208
(Hawkhill)
*Semi-ancient*
(Soil pH 4.6)

Species: Oak; Beech; and
Silver Birch.
Spacing: low (4.2m). Canopy
openness:16%.  Mean height
is 22m.
Mean DBH is 46cm.

Species: Holly and Silver
Birch.
Density: moderate.
Understorey: fern (50%)
and grass (40%).

High volume of standing
dead (450 m3ha-1) in a
moderate to high decay state.
Downed deadwood volume
was high (1202 m3ha-1) in a
moderate decay state.

#14
E 435493;
N 102483
(Hawkhill)
*Plantation*
(Soil pH 5.1)

Species: Douglas Fir; Norway
Spruce; Silver Birch.
Spacing: low (3m).
Canopy openness: 21%.
Mean height is 23m.
Mean DBH is 34cm.

Species: Beech; Holly;
Norway Spruce; Scots
Pine; Oak; Silver Birch;
and Douglas Fir
Density: moderate
Understorey: fern (70%)
and grass (15%).

No standing or fallen dead
trees.  Downed deadwood
volume is low (5m3ha-1) in a
moderate to high decay state.

#15
E 434237;
N 103181
(Frame-Heath)
*Plantation*
(Soil pH 5.5)

Species: Beech; Oak; Douglas
Fir and Silver Birch.
Spacing: low (3m).
Canopy openness: 14.7%.
Mean height is 17.5m.
Mean DBH is 31cm.

Species: Holly
Density: low.
Understorey: (sparse)
Grass (5), and Fern (5%).
*Animal browsing

Standing dead found (0.3
m3ha-1) in a moderate decay
state.  Downed deadwood
volume was low (4 m3ha-1) in
a moderate decay state.

#16
E 434311;
N 103473
(Frame-Heath)
*Plantation*
(Soil pH 5.7)

Species: Scots Pine; Norway
Spruce; Oak and Ash.
Spacing: is low (4m).
Canopy openness: 24%.
Mean height is 25m.
Man DBH is 40cm.

Species: Holly and Ash,
Density: low.
Understorey: grass (70%),
fern (10%) and moss
(10%).
*Animal browsing

No standing or fallen dead
trees.  Downed deadwood
volume is moderate to high
(85m3ha-1) in a moderate
decay state.
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Table 5.1 (continued)
Plot location Tree Species Layer Regeneration & under-

storey
Deadwood Amount

#17
E 434148;
N 103503
(Frame-Heath)
*Plantation*
(Soil pH 4.9)

Species: Scots Pine; Beech;
and Silver Birch.
Spacing: moderate (5m).
Canopy openness: 24%.
Mean height is 23m.
Mean DBH is 44cm.

Species: Silver Birch,
Density: low.
Understorey: grass (50%)
and fern (45%).

No standing dead and few
fallen trees.  Downed
deadwood volume is high
(104 m3ha-1) in moderate to
high decay state.

#18
E 435143;
N 104030
(Frame-Heath)
*Plantation*
(Soil pH 6.6)

Species: Scots Pine; Norway
Spruce; and Oak.
Spacing: moderate (5m).
Canopy openness: 18%.
Mean height is 26m.
Mean DBH is 45cm.

Species: Scots Pine and
Holly,
Density: moderate
Understorey: Grass (70%)
and Fern (20%).
*Animal browsing

Standing dead found (6 m3ha-

1) in a moderate decay state.
Downed deadwood volume
was low (11m3ha-1) in a
moderate decay state.

#19
E 435425;
N 103880
(Frame-Heath)
*Plantation*
(Soil pH 4.5)

Species: Silver Birch; Oak,
Norway Spruce; Corsican
Pine; and Scots Pine.
Spacing: low (3m).
Canopy openness: 23%.
Mean height is 20.5m.
Mean DBH is 29cm.

Species: Scots Pine; and
Holly.
Density: low.
Understorey: fern (60%)
and grass (35%).
*Animal browsing

Standing dead found (4.5
m3ha-1) in a moderate decay
state.  Downed deadwood
volume was low (8.4m3ha-1)
in a moderate decay state.

#20
E 435310;
N 103502
(Frame Wood)
*Semi-ancient*
(Soil pH 6.7)

Species: Oak; Beech;
Hawthorn; Holly; and Silver
Birch.
Spacing: low (4.5m).
Canopy openness: 16%.
Mean height is 21.5m;
Mean DBH is 48cm.

Species: Beech; and Holly,
Density: moderate
Understorey: fern (50%)
and grass (10%).
*Animal browsing

Standing dead found (49
m3ha-1) in a moderate decay
state.  Downed deadwood
volume was high (101m3ha-1)
in a moderate decay state.

#21
E. 435648;
N 103012
(Hawkhill)
*Plantation*
(Soil pH 6.0)

Species: Norway Spruce;
Douglas Fir; and Silver Birch.
Spacing: low (3m).
Canopy openness: 10%.
Mean height is 24m.
Mean DBH is 27cm.

Species: Holly.
Density: moderate.
Understorey: grass (30%),
moss (40%) and fern
(10%).
*Animal browsing

Standing dead found (1.9
m3ha-1) in a low to moderate
decay state.  Downed
deadwood volume was
moderate (34m3ha-1) in a
moderate decay state.
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Table 5.2 –Summarised Descriptions for field plots visited in 2012
Plot location Tree Species Layer Regeneration & under-

storey
Deadwood Amount

#22
E 435165
N 102932
(Frame)
*semi-ancient*

Species: Oak, Beech, silver
birch, Common Hawthorn and
Midland hawthorn.
Spacing:5m
Canopy openness:25-50%
Mean height: 12.8m
Mean DBH: 35cm

Species: Holly
Density: very low
Understorey: fern (40%),
moss (15%) and grass
(25%).

Standing dead found (91.8
m3ha-1) in high decay state.
Downed deadwood found
(5.6 m3ha-1) in a moderate to
high decay state.

#23
E434535;
N 103238
(Frame-heath)
*plantation*

Species: Hybrid larch and
silver birch.
Spacing: 2m
Canopy openness:5-10%
Mean height: 17m
Mean DBH: 18cm

Species: None
Density: n/a
Understorey: fern (20%),
moss (50%) and grass
(30%).

Standing dead found (1.1
m3ha-1)  in a moderate decay
state.  Downed deadwood
(10.6 m3ha-1) in a low to
moderate decay state.

#24
E432686;
N 105989
(Denny Wood)
*Deciduous
woodland*

Species: Oak, Beech, Corsican
Pine.
Spacing: 2m
Canopy openness: 15%
Mean height: 19m
Mean DBH: 20m

Species: Beech and Holly.
Density: very low.
Understorey: moss (20%),
grass (10%), fern (5%) and
unidentified flower (2%).

Standing dead found (1 m3ha-

1) in a high decay state.
Downed deadwood found (11
m3ha-1) in a high decay state.

#25
E 432700;
N 106332
(Denny Wood)
*deciduous
woodland*

Species: Oak, Beech and
holly.
Spacing: 2.5m
Canopy openness: 15%
Mean height:22m
Mean DBH: 38cm

Species: Beech and Holly
Density:  High
Understorey: fern (1%),
moss (15%) and grass
(25%).

Standing dead found (1.3
m3ha-1) in a moderate to high
decay state.  Downed
deadwood found (21.7 m3ha-

1) in a moderate to high decay
state

#26
E433456;
N 105675
(Denny Wood)
*deciduous
woodland*

Species: Oak, Beech and
Holly.
Spacing: 2m
Canopy openness:70%
Mean height: 21m
Mean DBH: 41cm

Species: Oak, Beech and
Holly.
Density: Moderate.
Understorey: Bracken
(50%), Ivy (0.01%), moss
(10%) and grass (30%).

Standing dead found (15
m3ha-1) in a moderate to high
decay state.  Downed
deadwood found (9 m3ha-1) in
a moderate to high decay
state.

#27
E 434562
N 104627
(Denny-Lodge)
*Deciduous
woodland*

Species: Oak, Beech and
Holly.
Spacing:1.8m
Canopy openness: 15%
Mean height:25m
Mean DBH: 23cm

Species: Holly, Beech,
Privet, Whitebeam,
Dogwood.
Density: Moderate
Understorey: Ivy (0.5%)
and Moss (5%).

Standing dead found (37
m3ha-1) in a moderate decay
state.  Downed deadwood
found (103 m3ha-1) in a high
decay state.

#28
E434716;
N 104281
(Denny-Lodge)
*Coniferous
plantation*

Species: Scots Pine, Douglas
Fir and Oak.
Spacing: 3m
Canopy openness: 25-50%
Mean height: 23m
Mean DBH: 35cm

Species: Hawthorn, Silver
Birch, Douglas fir, Oak
and Scots pine.
Density: Low
Understorey: Foxglove
(0.01%), Bracken (0.01%),
Nettle (0.01%), grass (6%)
and moss (70%).

Standing dead found (0.08
m3ha-1) in a low decay state.
Downed deadwood found (23
m3ha-1) in a moderate decay
state.

#29
E433379;
N 104757
(Denny-Lodge)
*Deciduous
woodland*

Species: Beech and Oak.
Spacing: 2.3m
Canopy openness: 20%
Mean height: 18m
Mean DBH: 30cm

Species: Beech, Hawthorn,
holly and Oak.
Density: Low
Understorey: Bracken
(50%), grass (50%) and
Moss (5%).

Standing dead found (0.4
m3ha-1) in a low decay state.
Downed deadwood found (20
m3ha-1) in a moderate decay
state.
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Table 5.2 (continued)
Plot location Tree Species Layer Regeneration & under-

storey
Deadwood Amount

#30
E433959;
N 101966
(Stockley)
*Coniferous/
Deciduous
mix*

Species: Douglas fir, Scots
pine, Silver Birch, Sweet
Chestnut.
Spacing: 1.8m
Canopy openness: 5%
Mean height: 19m
Mean DBH: 22m

Species: Silver Birch,
Douglas Fir, Holly.
Density: low
Understorey: Nettle
(0.01%), Ivy (0.01%),
bracken (1%), grass (0.05)
and moss (7%).

Standing dead found (22
m3ha-1) in a moderate decay
state.  Downed deadwood
found (17 m3ha-1) in a
moderate deadwood state.

#31
E432859
N 104606
(Stubby-Copse)
*Coniferous
plantation*

Species: Douglas fir
Spacing: 4.4m
Canopy openness: 10-20%
Mean height: 29%
Mean DBH: 40cm

Species: Holly, Beech,
Hawthorn and Norway
spruce.
Density: low
Understorey: Nettle (2%),
Clover (0.01%), Moss
(40%), grass (25%) and
bracken (30%).

Standing dead not found.
Downed deadwood found
(15.6 m3ha-1) in a moderate
decay state.

#32
E 433048;
N 104205
(Stubby-Copse)
* Coniferous/
Deciduous
mix*

Species: Scots Pine, Douglas
Fir, Oak and Beech.
Spacing: 4.5m
Canopy openness: 15%
Mean height: 25.6m
Mean DBH: 48cm

Species: Oak, Douglas Fir,
Beech and Holly.
Density: Low.
Understorey: Bracken
(5%), Grass (10%) and
moss (5%).

Standing dead found (19
m3ha-1) in a moderate to high
decay state.  Downed
deadwood found (7 m3ha-1) in
a moderate to high decay
state.

#33
E433123
N 102447
(Irons-Hill)
*Coniferous
plantation*

Species: Corsican Pine,
western hemlock, birch,
lawsons cypress.
Spacing: 4m
Canopy openness: 30%
Mean height: 28m
Mean DBH: 39cm

Species: western hemlock
Density: high
Understorey: grass (5%)
and moss (30%).

Standing dead found (0.2
m3ha-1) in a high decay state.
Downed deadwood found (7
m3ha-1) in a moderate decay
state.

#34
E 433692
N 104195
(Denny-Lodge)
*Coniferous/
Deciduous
mix*

Species: Corsican pine,
douglas fir, Norway spruce,
Oak and silver birch.
Spacing: 3.5m
Canopy openness: 30-40%
Mean height: 23m
Mean DBH: 31cm

Species: Douglas fir,
Norway spruce, silver
birch, hawthorn and holly.
Density: low
Understorey: Apple
(0.01%), Dog Violet
(0.01%), Ivy (0.01%),
braken (50%), Grass
(40%), Thistle (1%),
Wood spurge (2%) and
Rose (0.1%).

Standing dead found (1.2
m3ha-1) in a high decay state.
Downed deadwood found
(426 m3ha-1) in a moderate to
high decay state.

#35
E 434052
N 104683
(Denny-Lodge)
*Coniferous
Plantation*

Species: Coast redwood,
douglas fir, silver birch,
beech.
Spacing: 3m
Canopy openness: 20%
Mean height: 24m
Mean DBH: 38cm

Species: Coastal redwood,
silver birch, Douglas fir,
holly and Hawthorn.
Density: High
Understorey: Ivy (0.01%),
grass (20%), woodspurge
(0.01%) and moss (20%).

Standing dead found (1.2
m3ha-1) in a moderate to high
decay state.  Downed
deadwood found (29 m3ha-1)
in a moderate to high decay
state.

#36
E 433308
N 105150
(Denny-Lodge)
*Coniferous
woodland*

Species: Douglas Fir, Scots
pine, silver birch and Oak.
Spacing: 4m
Canopy openness: 60%
Mean height: 25m
Mean DBH: 37cm

Species: Holly, Oak, Scots
pine, hawthorn.
Density: moderate
Understorey: Heather
(1%), Nettle (1%),
Bracken (60%), Grass
(30%) and moss (50%).

Standing dead found (0.1
m3ha-1) with a high decay
state.  Downed deadwood
found (15 m3ha-1) with a
moderate to high decay state.
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Table 5.2 (continued)
Plot location Tree Species Layer Regeneration & under-

storey
Deadwood Amount

#37
E 434339
N 104046
(Denny-Lodge)
*Deciduous
woodland*

Species: Hawthorn, Beech and
oak.
Spacing: 3.5m
Canopy openness: 20%
Mean height: 18m
Mean DBH: 38cm

Species: Hawthorn, Beech,
Holly and Scots pine.
Density: moderate
Understorey: Braken
(15%), grass(2%),
Ivy(1%), moss (5%) and
nettles (1%).

Standing dead not found.
Downed deadwood found (24
m3ha-1) with a moderate to
high decay state.

#38
E 432837
N 105538
(Denny-Lodge)
*Coniferous
dominated
woodland*

Species: Western Hemlock,
Oak and Beech.
Spacing: 3m
Canopy openness: 20%
Mean height: 21m
Mean DBH: 30cm

Species: Holly
Density: low
Understorey: Moss (3%),
Bracken (2%) and grass
(2%).

Standing dead not found.
Downed deadwood found (19
m3ha-1) with a moderate to
high decay state.

#39
E 432695
N 106680
(Denny Wood)
*Coniferous
woodland*

Species: Douglas Fir
Spacing: 5m
Canopy openness: 40%
Mean height: 33m
Mean DBH: 39cm

Species: Holly, Oak,
Douglas fir, Hawthorn and
Lawsons Cypress.
Density: moderate
Understorey: Blackberry
(0.5%), sage (1%),
foxglove (1%), clover
(2%), grass (60%) and
moss (40%).

Standing dead found (0.8
m3ha-1) with a moderate to
high decay state.
Downed deadwood found (61
m3ha-1) with a moderate to
high decay state.

#40
E 433070
N 103862
(Perrywood
Haseley)
*deciduous
woodland*

Species: Oak beech, douglas
fir
Spacing: 4m
Canopy openness: 20%
Mean height: 24m
Mean DBH: 34cm

Species: Douglas Fir,
Beech, Hawthorn, Silver
Birch and Oak.
Density: moderate
Understorey: Grass (80%),
moss (15%), bracken
(0.01%), unknown
(0.01%).

Standing dead not found.
Downed deadwood found (43
m3ha-1) with a moderate to
high decay state.

#41
E 432632
N 103088
(New Copse)
*Coniferous/
Deciduous
mix*

Species: Beech, Oak, Corsican
Pine, Scots pine, Norway
Spruce.
Spacing: 3.3m
Canopy openness: 60%
Mean height: 19m
Mean DBH: 33cm

Species: Holly, Bramble,
Douglas Fir, Beech, Scots
pine and Oak.
Density: moderate
Understorey:Blackbery
(0.01%), Ivy (1%), Vetch
(0.01%), Grass (20%),
Bracken (30%) and moss
(25%).

Standing dead not found.
Downed deadwood found (31
m3ha-1) with a moderate to
high decay state.

A summary of the 39 field plot metrics for the 2010 fieldwork plots is given in Table 5.3,

whilst the metrics for the 2012 fieldwork are summarised in Table 5.4. It should be noted that

canopy openness measurements were only available for field data collected in 2010. There

are a number of trends evident within this dataset. In terms of the forest structure, generally,

deciduous field plots exhibit a smaller stem number, contain a higher proportion of native

tree species, have higher DBH values, higher DBH standard deviation values, a higher

percentage of large trees, lower height to the first live branch, larger average and total crown

horizontal areas than their coniferous or mixed counterparts for both 2010 and 2012. There
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are a few examples of deciduous plots containing a much higher stem density, for example

plot 24, which contains 53 stems, but also has much lower mean DBH (19.52cm) and average

crown horizontal area (29.48m2) values, whereas plot 39, located in a coniferous stand,

contains 16 stems, has a relatively high mean DBH (39.61cm) and a higher average crown

horizontal area (50.96m2). On average, coniferous and deciduous plots contain similar

numbers of trees or tree species. Additionally, there is no clear difference between the

numbers of canopy layers between the two broad tree types. Estimates of canopy openness

and average tree spacing also vary between all plot sites and broad tree types.

In terms of deadwood, the majority of deciduous plot sites contain a higher volume of

standing deadwood, although some plots contain none at all, such as with plots 37 and 40.

Many of the plots surveyed in 2010 within coniferous stands did not contain much in the way

of standing deadwood. For coniferous plots the decay class for standing deadwood varied

from low (0.3) to high (1.0), the majority occupying the range of 0.55-0.70. For deciduous

plots the decay class showed less variability between plots and ranged from 0.59-0.98, with

the majority occupying the range of 0.67-0.83. Again, the larger values for downed

deadwood (DDW) volume are mostly encountered within deciduous plots; however there is a

large range of 0.33-14.62m3. Plots within coniferous stands are typically more similar,

varying by ±2m3. There are a number of plots where the DDW volume for coniferous plots is

very high, the most dramatic example being plot 34, which is a mixed (about one third

deciduous) but predominantly coniferous plot, with approximately one-third of the population

being deciduous trees. The DDW decay class for coniferous plots ranges from 0.48-0.9 and is

quite variable between plots. For deciduous plots, the range is less variable from 0.69-0.95.

In terms of understorey composition, many of the coniferous and deciduous plots have no

saplings whatsoever (17 plots). Generally, sapling population is very low overall, and is

typically below 10 per plot. There are two exceptions however, plot 14 (coniferous) and plot

27 (deciduous) which contain drastically higher populations. The majority of saplings were of

native species. The maximum number of sapling species was 4, but the average was 2. There

was a much higher proportion of seedlings discovered through all but one of the field plots

visited, where the values ranged from 9 to 936. There was again a great deal of variability in

population numbers, but deciduous plot sites typically recorded the highest values. For

coniferous plots there was a greater disparity in seedling counts, although the highest

population numbers were recorded for this woodland type. The majority of seedlings were of
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native species. Species number ranged from 1 to 17, the average value was 4, and was

variable between both coniferous and deciduous woodland types. A Shannon-Wiener (SH)

diversity index was calculated for native seedlings for each plot, and was extremely variable

between plots, ranging from 0.2-1.41.

The number of vascular plant species within the plots varied between 2 and 8. Coniferous

plots generally recorded higher values, but included the most variability. The number of

bryophyte species encountered within each plot varied between 5 and 25, and was highly

variable between plots, but seemed to achieve higher values with higher values of canopy

openness. The estimate of percentage bare soil was again highly variable between plots.

To examine the similarity between the field-plot data collected in 2010 and 2012 for each of

the 37 field attribute populations, summary statistics (mean, standard deviation and range)

were calculated. These populations were stratified by (i) the total number of field plots (see

Table 5.5), (ii) those of predominantly coniferous species (see Table 5.6), (iii) those of

predominantly deciduous species (see Table 5.7), and finally (iv) those of mixed species (see

Table 5.8).

The first of these, concerning data collected across all field-plots (Table 5.5), indicates on

average, similar values for the majority of field metrics. There are exceptions however, for

example a slightly higher mean stem density and total number of seedlings for data collected

in 2012 over that collected in 2010. This pattern is again repeated for the coniferous

dominated subset (Table 5.6). For both the predominantly deciduous subset (Table 5.7) and

those of mixed species (Table 5.8), the stem density is more similar between 2010 and 2012

data; however the number of seedlings is much higher for 2012.
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Table 5.3 – 2010 Field metrics summary
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Table 5.3 – 2010 Field metrics summary
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Table 5.3 – 2010 Field metrics summary
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Table 5.4– 2012 Field metrics summary
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Table 5.4– 2012 Field metrics summary
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Table 5.4– 2012 Field metrics summary
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Table 5.5 – Summary values (mean, standard deviation and range) for all field plots for each
attribute in 2010 and 2012 data.

2010 all 2012 all
Mean STD Range Mean STD Range

No. Canopy Layers 2.10 0.70 2.00 2.00 0.73 2.00
Number of trees per 30x30m 24.86 11.12 45.00 32.20 18.86 74.00
Number of native trees per 30x30m 15.67 9.46 32.00 19.85 12.66 52.00
Percentage of native trees 69.36 35.28 93.55 67.73 36.03 100.00
No. of tree species per 30x30m 3.52 1.40 6.00 3.45 1.28 4.00
Average tree spacing (m) 4.09 1.33 5.80 3.20 1.05 3.32
STDev. Of tree spacing (m) 1.76 0.59 2.12 1.27 0.27 0.83
Mean DBH (cm) 40.06 9.41 34.39 33.71 7.72 29.14
STDev. of DBH (cm) 16.62 8.57 31.28 17.36 10.36 48.76
Basal area within 30x30m 3.28 0.83 3.14 3.26 0.86 3.21
Percentage big trees  (DBH 40>x<80cm) 42.14 19.48 56.06 33.11 19.31 70.00
Percentage very big trees (DBH >80cm) 4.12 8.04 27.27 0.95 2.17 6.06
Percentage big trees (DBH >40cm) 46.26 20.44 69.05 34.40 18.66 70.00
Loreys Mean Height (m) 21.19 3.05 10.11 22.40 4.70 20.30
Shannon Index (by stem count) 0.86 0.39 1.47 0.86 0.41 1.43
Simpson Index (by stem count) 0.50 0.27 1.00 0.73 0.36 1.29
Shannon Index (by BA) 0.57 0.29 1.14 0.49 0.21 0.77
Simpson Index (by BA) 0.58 0.31 1.18 0.80 0.62 2.89
Average height of the first live branch (m) 8.00 3.20 10.64 7.78 3.10 10.84
STDev. of the height of the first live branch (m) 3.31 1.34 4.48 3.80 1.44 5.16
Average crown horizontal area (m2) 57.52 28.96 96.30 49.67 23.55 87.08
STDev. Crown horizontal area (m2) 35.04 25.89 107.80 30.82 15.99 57.19
Total Crown horizontal area (m2) 1219.05 402.72 1608.58 1236.94 382.30 1443.67
Standing dead wood volume (m3) 1.93 3.22 10.12 0.87 1.97 8.27
Standing dead wood decay class 0.73 0.14 0.54 0.74 0.18 0.67
Downed dead wood volume (m3) 3.54 4.58 14.53 4.44 8.29 38.21
Downed dead wood decay class 0.78 0.13 0.43 0.68 0.11 0.47
No. saplings per 30x30m 4.33 9.31 42.00 9.85 24.74 108.00
No. native saplings per 30x30m 3.86 7.72 34.00 2.90 8.45 38.00
Percentage of native saplings per 30x30m 49.57 49.27 100.00 30.58 43.06 100.00
No. of sapling species per 30x30m 1.00 1.22 4.00 1.00 0.97 3.00
No. seedlings per 30x30m 145.29 206.44 855.00 339.70 297.62 936.00
No. native seedlings per 30x30m 109.29 123.94 396.00 230.60 278.95 936.00
Percentage of native seedlings per 30x30m 94.64 18.41 83.33 69.36 39.13 100.00
No. of seedling species per 30x30m 2.05 1.40 6.00 4.40 2.89 13.00
Seedlings Shannon Index for native species 0.30 0.38 1.27 0.84 0.51 1.61
No. Vascular Species 3.86 1.35 4.00 4.55 1.82 6.00
No. Bryophyte Species 14.52 5.90 20.00 18.50 3.66 10.00
Percentage of bare soil within 30x30m 21.69 26.45 90.00 43.50 38.01 95.00
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Table 5.6 – Summary values (mean, standard deviation and range) for the coniferous field plots
for each attribute in 2010 and 2012 data.

Class 2010 Conif. 2012 Conif.
Site No. Mean STD Range Mean STD Range
No. Canopy Layers 2.00 0.67 2.00 1.75 0.71 2.00
Number of trees per 30x30m 27.00 10.42 35.00 40.25 26.01 74.00
Number of native trees per 30x30m 12.60 7.81 24.00 15.75 14.17 42.00
Percentage of native trees 50.14 33.23 90.00 41.87 37.88 100.00
No. of tree species per 30x30m 3.60 1.07 4.00 3.00 1.51 4.00
Average tree spacing (m) 4.08 0.85 2.29 3.53 1.12 3.32
STDev. Of tree spacing (m) 1.44 0.37 1.04 1.15 0.29 0.82
Mean DBH (cm) 37.57 5.52 17.17 33.96 8.38 22.64
STDev. of DBH (cm) 11.72 2.45 7.39 12.06 5.25 15.57
Basal area within 30x30m 3.15 0.66 1.98 3.53 1.12 3.00
Percentage big trees  (DBH 40>x<80cm) 49.86 16.81 45.90 33.60 22.62 58.33
Percentage very big trees (DBH >80cm) 0.00 0.00 0.00 0.90 2.12 6.06
Percentage big trees (DBH >40cm) 49.86 16.81 45.90 34.50 22.07 58.33
Loreys Mean Height (m) 22.31 3.15 10.11 24.86 5.26 16.27
Shannon Index (by stem count) 0.93 0.28 0.86 0.62 0.40 1.02
Simpson Index (by stem count) 0.52 0.27 1.00 0.50 0.43 1.29
Shannon Index (by BA) 0.66 0.26 0.72 0.37 0.24 0.60
Simpson Index (by BA) 0.57 0.25 0.81 0.38 0.30 0.84
Average height of the first live branch (m) 10.18 2.63 7.17 10.78 1.98 6.28
STDev. of the height of the first live branch (m) 3.93 1.29 4.08 3.64 1.09 2.82
Average crown horizontal area (m2) 43.59 12.85 33.34 32.50 12.15 37.93
STDev. Crown horizontal area (m2) 18.88 11.54 33.92 16.89 7.65 19.48
Total Crown horizontal area (m2) 1094.98 268.00 890.59 921.50 173.31 480.19
Standing dead wood volume (m3) 0.11 0.19 0.57 0.29 0.69 1.99
Standing dead wood decay class 0.62 0.14 0.31 0.71 0.24 0.67
Downed dead wood volume (m3) 2.44 3.35 9.34 2.37 1.45 4.84
Downed dead wood decay class 0.75 0.14 0.38 0.59 0.10 0.23
No. saplings per 30x30m 4.70 13.17 42.00 3.63 5.37 15.00
No. native saplings per 30x30m 3.90 10.65 34.00 1.13 1.46 4.00
Percentage of native saplings per 30x30m 28.10 45.53 100.00 25.21 35.36 100.00
No. of sapling species per 30x30m 0.60 1.26 4.00 1.13 1.13 3.00
No. seedlings per 30x30m 149.40 262.09 855.00 250.75 268.65 729.00
No. native seedlings per 30x30m 73.80 74.07 189.00 116.38 168.77 522.00
Percentage of native seedlings per 30x30m 88.75 26.06 83.33 53.35 44.28 100.00
No. of seedling species per 30x30m 2.30 1.89 6.00 4.75 3.85 13.00
Seedlings Shannon Index for native species 0.37 0.44 1.27 0.85 0.51 1.58
No. Vascular Species 3.80 1.03 4.00 4.88 1.89 6.00
No. Bryophyte Species 12.00 2.58 5.00 16.88 2.59 5.00
Percentage of bare soil within 30x30m 13.50 12.92 35.00 34.38 38.59 90.00



Chapter 5 – Fieldwork results

170

Table 5.7 – Summary values (mean, standard deviation and range) for the deciduous field plots
for each attribute in 2010 and 2012 data.

Class 2010 Decid. 2012 Decid.
Site No. Mean STD Range Mean STD Range
No. Canopy Layers 2.13 0.83 2.00 2.13 0.64 2.00
Number of trees per 30x30m 20.25 13.02 37.00 26.75 12.08 36.00
Number of native trees per 30x30m 18.00 9.13 27.00 26.25 12.14 37.00
Percentage of native trees 94.38 10.40 22.73 97.56 4.29 11.76
No. of tree species per 30x30m 3.63 1.77 6.00 3.50 1.07 3.00
Average tree spacing (m) 4.47 1.85 5.80 2.61 0.99 2.53
STDev. Of tree spacing (m) 2.24 0.62 1.89 1.38 0.22 0.65
Mean DBH (cm) 46.45 11.15 31.42 32.42 7.66 21.31
STDev. of DBH (cm) 24.70 8.82 23.18 18.95 3.82 11.36
Basal area within 30x30m 3.64 1.04 2.98 2.90 0.51 1.56
Percentage big trees  (DBH 40>x<80cm) 40.74 20.57 54.55 29.81 16.31 52.26
Percentage very big trees (DBH >80cm) 10.80 10.10 27.27 1.47 2.72 5.88
Percentage big trees (DBH >40cm) 51.55 22.03 67.54 32.13 15.42 51.28
Loreys Mean Height (m) 20.61 3.01 7.14 20.03 3.95 11.96
Shannon Index (by stem count) 0.91 0.42 1.47 0.89 0.30 0.93
Simpson Index (by stem count) 0.56 0.25 0.80 0.77 0.15 0.47
Shannon Index (by BA) 0.52 0.34 1.14 0.53 0.16 0.52
Simpson Index (by BA) 0.60 0.35 0.95 1.14 0.77 2.18
Average height of the first live branch (m) 4.85 1.50 3.54 5.53 1.32 4.36
STDev. of the height of the first live branch (m) 2.59 1.29 3.71 3.71 1.33 4.30
Average crown horizontal area (m2) 83.34 29.79 73.13 59.75 25.14 70.63
STDev. Crown horizontal area (m2) 58.88 26.06 78.37 41.58 15.98 46.45
Total Crown horizontal area (m2) 1418.40 506.91 1359.39 1393.69 394.23 1128.94
Standing dead wood volume (m3) 4.89 3.68 10.09 1.66 2.92 8.27
Standing dead wood decay class 0.79 0.11 0.29 0.77 0.14 0.41
Downed dead wood volume (m3) 5.89 5.89 14.29 3.27 3.09 9.10
Downed dead wood decay class 0.85 0.08 0.20 0.76 0.09 0.26
No. saplings per 30x30m 4.25 4.65 14.00 7.13 13.04 38.00
No. native saplings per 30x30m 4.25 4.65 14.00 6.00 13.15 38.00
Percentage of native saplings per 30x30m 75.00 46.29 100.00 38.75 50.83 100.00
No. of sapling species per 30x30m 1.38 1.19 3.00 0.88 0.99 2.00
No. seedlings per 30x30m 187.88 156.21 387.00 462.38 352.49 891.00
No. native seedlings per 30x30m 187.88 156.21 387.00 392.63 351.28 891.00
Percentage of native seedlings per 30x30m 100.00 0.00 0.00 89.95 27.44 77.92
No. of seedling species per 30x30m 2.00 0.76 2.00 3.63 1.69 5.00
Seedlings Shannon Index for native species 0.32 0.32 0.86 0.78 0.44 1.33
No. Vascular Species 4.13 1.81 4.00 3.75 0.71 2.00
No. Bryophyte Species 18.75 6.94 20.00 20.00 4.63 10.00
Percentage of bare soil within 30x30m 38.75 34.72 90.00 48.75 41.73 95.00
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Table 5.8 – Summary values (mean, standard deviation and range) for the mixed field plots for
each attribute in 2010 and 2012 data.

2010 mixed 2012 mixed
Mean STD Range Mean STD Range

No. Canopy Layers 2.33 0.58 1.00 2.25 0.96 2.00
Number of trees per 30x30m 30.00 2.65 5.00 27.00 6.83 16.00
Number of native trees per 30x30m 19.67 15.37 28.00 15.25 4.50 9.00
Percentage of native trees 66.73 52.30 93.55 59.80 24.38 55.56
No. of tree species per 30x30m 3.00 1.73 3.00 4.25 0.96 2.00
Average tree spacing (m) 3.10 0.66 1.19 3.58 0.65 1.50
STDev. Of tree spacing (m) 1.56 0.27 0.51 1.33 0.25 0.60
Mean DBH (cm) 31.37 2.62 5.10 35.81 8.13 17.39
STDev. of DBH (cm) 11.43 3.63 6.83 24.79 20.63 43.20
Basal area within 30x30m 2.76 0.21 0.40 3.42 0.80 1.56
Percentage big trees  (DBH 40>x<80cm) 20.15 3.09 5.91 38.73 21.77 50.56
Percentage very big trees (DBH >80cm) 0.00 0.00 0.00 0.00 0.00 0.00
Percentage big trees (DBH >40cm) 20.15 3.09 5.91 38.73 21.77 50.56
Loreys Mean Height (m) 19.03 1.29 2.29 22.26 2.79 6.65
Shannon Index (by stem count) 0.51 0.54 0.97 1.27 0.25 0.53
Simpson Index (by stem count) 0.26 0.29 0.52 1.12 0.11 0.26
Shannon Index (by BA) 0.37 0.05 0.09 0.64 0.14 0.27
Simpson Index (by BA) 0.60 0.51 0.98 0.97 0.04 0.09
Average height of the first live branch (m) 8.07 0.92 1.75 6.27 2.68 6.39
STDev. of the height of the first live branch (m) 3.16 0.81 1.62 4.29 2.38 5.16
Average crown horizontal area (m2) 35.14 12.15 22.95 59.58 21.65 46.07
STDev. Crown horizontal area (m2) 25.36 3.03 5.41 33.69 6.96 13.57
Total Crown horizontal area (m2) 1100.99 377.48 737.56 1514.66 254.83 592.78
Standing dead wood volume (m3) 0.14 0.24 0.41 0.46 0.85 1.74
Standing dead wood decay class 0.75 0.12 0.17
Downed dead wood volume (m3) 0.97 0.25 0.49 10.90 18.37 37.81
Downed dead wood decay class 0.71 0.13 0.25 0.70 0.02 0.04
No. saplings per 30x30m 3.33 2.89 5.00 27.75 53.51 108.00
No. native saplings per 30x30m 2.67 2.52 5.00 0.25 0.50 1.00
Percentage of native saplings per 30x30m 53.33 50.33 100.00 25.00 50.00 100.00
No. of sapling species per 30x30m 1.33 1.15 2.00 1.00 0.82 2.00
No. seedlings per 30x30m 18.00 0.00 0.00 272.25 188.12 405.00
No. native seedlings per 30x30m 18.00 0.00 0.00 135.00 146.42 315.00
Percentage of native seedlings per 30x30m 100.00 0.00 0.00 60.19 37.90 86.67
No. of seedling species per 30x30m 1.33 0.58 1.00 5.25 2.99 7.00
Seedlings Shannon Index for native species 0.00 0.00 0.00 0.92 0.74 1.61
No. Vascular Species 3.33 1.15 2.00 5.50 2.89 5.00
No. Bryophyte Species 11.67 5.77 10.00 18.75 2.50 5.00
Percentage of bare soil within 30x30m 3.50 5.63 10.00 51.25 35.21 85.00
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5.1.1 Statistical comparison of 2010 and 2012 fieldwork populations
The two fieldwork populations, i.e. those plots enumerated in 2010 and those in 2012, were

statistically compared using the Mann-Whitney-Wilcoxon and Kolmogorov-Smirnov two-

independent-samples tests. Each of the field metrics were considered as a separate

population. The null hypothesis was that the two populations were identical. The hypothesis

was tested by applying the two independence tests using R statistical software. The p < 0.05

significance level was used, thus if the p value met this criterion the null hypothesis is

rejected.

Table 5.9 presents the Mann-Whitney-Wilcoxonand Kolmogorov-Smirnov test results. The

majority of field metric populations have p values for both statistical measures above 0.05;

therefore the null hypothesis is retained. Seven of the field metric populations were

significantly different at p< 0.05 for both statistical tests. These metrics were the standard

deviation of tree NN spacing, the Simpson index (by stem count), DDW decay class, the

number of native saplings, the percentage of native saplings, the number of seedling species

and the Shannon index for native seedling species. The majority of these metrics relate to

understorey composition.

Five field metrics had significance values of p<0.05 for the Mann-Whitney-Wilcoxon test

only. These were the average tree NN spacing, the number of sapling species, the number of

seedlings, the percentage of native seedlings, and number of bryophyte species. Only one of

the field metrics had significance values of p<0.05 for the Kolmogorov-Smirnov test only,

this was the total DDW volume.



Chapter 5 – Fieldwork results

173

Table 5.9 – Statistical comparisons between 2010 and 2012 fieldwork populations

Metric name

Mann-Whitney-
Wilcoxon Kolmogorov-Smirnov
W p D p

No. Canopy Layers 225.00 0.68 0.06 1.00
Number of trees per 30x30m 164.00 0.23 0.18 0.88
Number of native trees per 30x30m 173.50 0.35 0.23 0.65
Percentage of native trees 218.00 0.84 0.12 1.00
No. of tree species per 30x30m 203.50 0.87 0.10 1.00
Average tree spacing (m) 275.00 0.04 0.37 0.10
STDev. of tree spacing (m) 302.00 0.00 0.52 0.00
Mean DBH (cm) 275.00 0.09 0.38 0.06
STDev. of DBH (cm) 197.00 0.75 0.22 0.63
Basal area within 30x30m 225.00 0.71 0.18 0.80
Percentage big trees  (DBH 40>x<80cm) 260.00 0.20 0.28 0.38
Percentage very big trees (DBH >80cm) 228.00 0.53 0.24 0.61
Percentage big trees (DBH >40cm) 269.00 0.13 0.32 0.24
Loreys mean height (m) 170.00 0.31 0.21 0.68
Shannon index (by stem count) 226.00 0.69 0.21 0.75
Simpson index (by stem count) 113.00 0.01 0.56 0.00
Shannon index (by BA) 219.00 0.82 0.23 0.65
Simpson index (by BA) 163.00 0.23 0.27 0.44
Average height of the first live branch (m) 211.00 0.78 0.20 0.83
STDev. of the height of the first live branch (m) 153.00 0.21 0.27 0.48
Average crown horizontal area (m2) 231.00 0.41 0.29 0.29
STDev. crown horizontal area (m2) 202.00 0.96 0.18 0.82
Total crown horizontal area (m2) 182.00 0.86 0.20 0.75
Standing deadwood volume (m3) 228.00 0.64 0.27 0.43
Standing deadwood decay class 107.00 0.68 0.39 0.24
Downed deadwood volume (m3) 161.00 0.21 0.42 0.04
Downed deadwood decay class 316.00 0.01 0.52 0.01
No. saplings per 30x30m 151.50 0.09 0.47 0.09
No. native saplings per 30x30m 186.50 0.00 0.67 0.00
Percentage of native saplings per 30x30m 187.50 0.00 0.75 0.00
No. of sapling species per 30x30m 159.50 0.04 0.40 0.21
No. seedlings per 30x30m 119.00 0.02 0.40 0.07
No. native seedlings per 30x30m 145.00 0.09 0.42 0.05
Percentage of native seedlings per 30x30m 302.00 0.00 0.41 0.07
No. of seedling species per 30x30m 92.00 0.00 0.56 0.00
Seedlings Shannon index for native species 83.50 0.00 0.61 0.00
No. vascular species 171.50 0.31 0.16 0.95
No. bryophyte species 117.50 0.01 0.38 0.10
Percentage of bare soil within 30x30m 154.00 0.14 0.36 0.14
Sum of DBH differences (cm) 245.00 0.21 0.37 0.44
Index of vertical separation 147.00 0.16 0.28 0.35

[Underlined values indicate the populations are significantly different (p<0.05)]
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5.2 Relationships between field metrics
Two statistical processes were implemented to determine if there were any relationships

between each of the field metrics (for the 2010 field data), first with a bivariate correlation

and secondly with a standard OLS multiple regression.

5.2.1 Bivariate correlation
A bivariate correlation matrix using the spearman’s rho was used to investigating correlations

between the 37 metrics of the 2010 dataset. This matrix of correlation coefficients and

significance (p) values are presented in Table 5.10. Each of the correlation pairs were

classified into one of four arbitrary classes based upon the correlation coefficient value

(where p<0.05), where:

1. strong (r ≥ 0.8 or r ≤ - 0.8) – blue;

2. medium (0.6 ≥ r < 0.8 or -0.8 >r ≤ -0.6) –green;

3. weak (0.4 ≥ r < 0.6 or -0.6 >r ≤ -0.4) – grey;

4. none (0 ≥ r < 0.4 or -0.4 > r < 0) – white.

A total of 8 metric pairs received a ‘high’ classification, 43 were ‘moderate’, and 75 were

‘low’. It is clear from Table 5.10 that there is a great deal of interrelationship between the

field metrics. For example mean DBH has strong correlations with the total number of trees

and the average crown horizontal area within the 30x30m plot, moderate correlations with

average tree nearest neighbour (NN) spacing and the percentage of big trees, whereas week

correlations were observed for the standard deviation of crown area, standing deadwood

(snag) volume and downed deadwood (DDW) volume. Average crown horizontal area

medium correlations with the number of trees, average tree NN spacing, percentage very big

trees and snag decay class, in addition to weak correlations with the standard deviation of tree

spacing, percentage of all big trees, average height of the first live branch, standing

deadwood volume and DDW decay class. The Shannon index (from basal area) has a high

correlation with the number of saplings present in the plot. Total basal area has a medium

correlation with total crown horizontal area within the plot.

Strong correlations were identified between the number of sapling and number of native

saplings, and between the number of seedlings and the number of native seedlings. This is

probably due to many of the seedlings and saplings encountered in the field being of native

species.
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5.2.2 OLS multiple regression
For the 2010 field data, a total of 15 field metrics out of the 39 could not be estimated using

an OLS multiple regression approach, i.e. there were no significant relationships. Table 5.11

summarises the 24 models which could be produced. Of the metrics used in the significant

models, mean DBH was the most frequently used predictor (for estimating the number of

trees, percentage of very big trees and horizontal crown dimensions). The second most

frequent predictor was average horizontal crown area, which had relationships with mean and

standard deviation of DBH, average crown base height and the volume of standing

deadwood. A number of the other metrics were used in two models, such as canopy openness,

which was related with the number of trees and total crown horizontal area. Canopy openness

could not be modelled by any combination of other field metrics, nor could basal area, DDW

class, number of canopy layers, number of tree species and by extension the Shannon and

Simpson indices of diversity and the number of native trees. The number of native saplings

and number of vascular species could also not be estimated.
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Table 5.10 – Spearman’s rho bivariate correlation matrix (colours indicate strength of the correlation: blue = strong; green = medium; grey = weak; white = none)

Canopy
openness

Can.
Layers No. trees

No. native
trees

Tree
species

Av. Tree
NN space

StDev tree
NN space Mean DBH STD DBH Total BA

%big trees
(40-80cm)

% big
trees
(80+)

%all big
trees
(40+) Av. height

SH (stem
count)

SI (stem
count) SH (by BA) SI (by BA)

Av. Ht. Live
crown

STD Ht.
Live crown

Av. crown
area

STD
crown
area Total CA

Standing
dead vol.

Standing
dead
decay DDW vol.

DDW
decay

No.
saplings

No. Nat.
saplings

Sapling
species

No.
seedlings

No. Nat.
seedlings

Seedling
species

Seedlings
SH

Vascular
species

Bryophyte
species

% Bare
soil

Canopy openness 1.000 .000 .057 -.152 .355 -.059 -.036 -.191 -.426 -.343 -.057 -.342 -.065 -.167 .333 .073 .056 .281 .326 .341 -.364 -.639 -.383 -.515 -.052 -.314 -.310 .065 -.106 .362 -.170 -.321 .273 .090 -.232 -.477 -.289
Can. Layers 1.000 .185 .352 .482 -.161 .031 -.326 .225 .213 -.386 .003 -.354 -.446 .594 .575 .112 .325 -.429 .024 -.115 .178 .150 .022 -.525 -.101 -.004 -.222 -.352 .328 -.228 -.232 -.072 -.315 -.109 -.028 .320
No. trees 1.000 .325 .243 -.702 -.604 -.889 -.388 .245 -.581 -.617 -.647 -.242 .102 -.014 .210 .227 .357 .392 -.782 -.502 .348 -.378 -.467 -.330 -.160 -.062 -.145 .070 -.208 -.193 -.276 -.332 -.271 -.084 .039
No. native trees 1.000 .414 -.422 -.014 -.277 .247 .355 -.349 -.010 -.347 -.091 .233 .133 .064 .226 -.194 .352 -.088 .135 .345 .103 -.119 .204 .128 .032 -.106 .150 -.131 -.061 -.180 -.222 -.278 .050 .225
No. Tree species 1.000 -.304 .193 -.348 .260 .135 -.167 -.158 -.196 -.214 .901 .612 .327 .363 -.344 .376 -.205 -.117 .133 -.054 -.107 -.136 -.096 .073 -.061 .562 .284 .243 .460 .223 -.105 -.082 .321
Av. Tree NN space 1.000 .153 .671 -.051 -.284 .682 .146 .724 .292 -.192 -.142 -.179 -.158 .051 -.457 .635 .318 -.175 .083 .263 .084 .318 -.028 .119 -.246 -.046 -.047 .070 .269 .082 -.020 -.303
StDev tree NN space 1.000 .430 .666 -.156 .008 .684 .093 -.129 .164 .209 -.421 -.101 -.639 -.358 .503 .552 -.238 .381 .454 .066 .146 .576 .569 .454 .220 .247 .400 .217 .271 .256 .234
Mean DBH 1.000 .406 .092 .656 .700 .731 .342 -.256 -.109 -.209 -.276 -.250 -.316 .845 .564 -.058 .491 .504 .468 .236 -.189 -.005 -.295 .164 .199 .147 .225 .328 .201 .061
StDev DBH 1.000 .357 .080 .727 .151 -.062 .224 .324 -.152 .049 -.768 -.192 .412 .669 .025 .771 .370 .301 .242 .028 .092 .222 .425 .513 .406 .178 .275 .476 .557
Total BA 1.000 -.103 .381 -.051 .035 .086 .105 .075 -.036 -.086 .205 .065 .247 .621 .309 -.327 .388 .094 -.300 -.202 .183 -.017 .075 -.093 -.155 .235 .213 .435
%big trees (40-80cm) 1.000 .087 .980 .636 -.150 -.284 -.013 -.389 .220 .046 .458 .057 -.253 .134 .154 .312 .129 -.215 -.129 -.450 .227 .214 .270 .473 .330 .124 -.023
% Big trees (80+) 1.000 .206 .022 -.072 .135 -.319 -.203 -.531 -.326 .653 .701 .047 .644 .205 .412 .229 .132 .233 .132 .143 .205 .045 -.098 .465 .247 .481
% all big trees (40+) 1.000 .650 -.169 -.285 -.125 -.380 .176 .012 .531 .138 -.220 .168 .226 .346 .231 -.104 -.005 -.356 .203 .191 .274 .455 .342 .155 .023
Av. height 1.000 -.246 -.434 -.188 -.441 .567 .340 .142 -.064 -.062 .069 .038 .475 .047 .304 .317 -.010 .295 .325 .107 .426 .371 .042 .009
SH (stem count) 1.000 .793 .502 .437 -.407 .211 -.075 -.034 .152 -.025 -.155 -.140 -.082 -.141 -.225 .431 .266 .190 .356 .125 -.151 -.138 .366
SI (stem count) 1.000 .426 .584 -.628 -.097 .139 .211 .228 .264 .075 -.057 .057 -.312 -.356 .295 .349 .293 .286 -.036 -.183 -.083 .283
SH (by BA) 1.000 .364 -.137 .123 -.138 -.215 .262 -.066 -.208 -.111 -.117 -.876 -.734 -.439 .189 .111 -.039 .041 -.327 -.049 .092
SI (by BA) 1.000 -.327 -.118 -.129 .013 .200 .199 .168 -.375 .221 -.372 -.556 -.133 .032 .001 .177 -.112 -.620 .045 -.060
Av. Ht. Live crown 1.000 .451 -.471 -.666 -.113 -.585 -.511 -.108 -.191 .333 .282 -.013 -.281 -.312 -.304 -.013 .124 -.363 -.271
STD. ht. Live crown 1.000 -.490 -.569 .012 -.365 -.390 .133 -.250 .268 .149 .404 .131 .069 .103 .121 .087 -.119 .248
Av. crown area 1.000 .736 .209 .447 .645 .423 .456 -.198 -.110 -.352 .085 .103 .052 .084 .152 .285 .059
STD crown area 1.000 .300 .648 .498 .182 .267 -.097 -.005 -.101 .062 .207 -.008 -.043 .115 .418 .274
Total CA 1.000 .061 .148 .192 .291 -.456 -.422 -.179 -.116 -.042 -.285 -.224 -.281 .312 .170
standing dead vol. 1.000 .260 .413 .214 -.298 -.347 -.146 .415 .537 .207 .026 .249 .399 .303
standing dead decay 1.000 .049 .372 .359 .359 .029 .396 .411 .493 .444 -.400 .378 -.244
DDW vol. 1.000 .141 .120 .124 .266 .310 .326 .041 .131 .301 .125 .005
DDW decay 1.000 .104 .069 -.344 .007 -.059 -.024 -.056 -.084 .411 .150
No. saplings 1.000 .930 .668 .196 .232 .188 .184 .291 -.146 .070
No. Nat. saplings 1.000 .631 .268 .304 .149 .289 .311 -.174 .063
Sapling species 1.000 .450 .451 .479 .334 .229 -.359 .068
No. seedlings 1.000 .961 .698 .655 .219 .117 .104
No. Nat. Seedlings 1.000 .638 .625 .221 .183 .130
Seedling species 1.000 .827 .138 .200 -.105
Seedlings SH 1.000 .122 .208 -.289
Vascular spec. 1.000 .023 .388
Bryophyte spec. 1.000 .186
% Bare soil 1.000
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Table 5.11 – OLS regression model relationships between field metrics. (All models
were significant at p<0.05)

Metric R2 Variables in regression equation
No. trees per 30x30m plot 0.826 MeanDBH Canopy openness -
Average tree spacing (m) 0.827 (iii) Percentage

big trees
StDev. crown
base height

DDW volume

StDev. tree spacing (m) 0.677 StDev. horizontal
crown area

Total horizontal
crown area

-

MeanDBH (cm) 0.926 Avg_crown (iii) Percentage
big trees

Average crown
base height

StDev. DBH (cm)
0.706

StDev. crown
base height

Average
horizontal crown
area

-

(i) Percentage big trees (DBH
40>x<80cm) 0.625 Snag volume - -

(ii) Percentage very big trees
(DBH >80cm) 0.774 STDev. DBH - -

(iii) Percentage big trees (DBH
>40cm) 0.749 Mean DBH StDev.DBH -

Average crown base height (m) 0.587 StDev. Tree
spaceing

- -

StDev. crown base height (m) 0.284 StDev. horizontal
crown area

- -

Average horizontal crown area
(m2) 0.789 Mean DBH - -

StDev. horizontal crown area
(m2) 0.914 Mean DBH - -

Total horizontal crown area (m2) 0.404 Canopy openness Average tree
spacing

-

Standing deadwood volume (m3)
0.485

Average
horizontal crown
area

- -

Standing deadwood class 0.821 No seedlings per
30x30m plot

- -

DDW (m3) 0.895 Mean DBH - -
No. Sapling species 0.992 StDev. tree

spacing
No. tree species -

No. seedlings per 30x30m plot 0.403 Snag class - -
No. Native seedlings per 30x30m
plot 0.986 Snag class (ii) Percentage

very big trees
-

Percentage native seedlings per
30x30m plot 0.606 DDWclass -

No. seedlings species 0.446 No seedlings per
30x30m plot

Total horizontal
crown area

-

Native seedlingsShannon index 0.966 No. seedlings per
30x30m plot

No. Tree species -

No. Moss species 0.635 Shannon index
(stem count)

- -

Percentage cover of bare soil 0.678 No. seedlings
species

- -

Field metrics for which no model could be produced: Canopy openness (%); No. canopy layers; No. native
trees per 30x30m plot; Percentage of native trees per 30x30m plot; No. Tree species; Total BA per 30x30m
plot (m2); Average tree height (m), Shannon index (stem count); Simpson index (stem count); Shannon index
(BA); Simpson index (BA); DDWclass; No. saplings per 30x30m plot; No. Native saplings per 30x30m plot;
Percentage native saplings per 30x30m plot; and No. vascular species.
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5.3 Condition index results for field plots
The compositional and structural indices, as identified in section 4.2.3, were calculated for

both the 2010 and 2012 fieldwork datasets. A full list of the indices produced for 2010 and

2012 data are presented in Tables 5.12 and 5.13 respectively. The compositional indices, the

Shannon (SH) and the Simpson (SI) varied a great deal between field plots. For example in

plot 6, there was only a single tree species, oak, which resulted in SH and SI scores of 0.The

SH and SI calculated for the proportions of stem numbers of a species and the total basal area

of that species varied significantly. For plot 7, the SH and SI of basal area were less than for

stem count, because the relative proportions differed between stem count and total basal area

for the same species. For example, Douglas fir proportions change from 52% (stem count) to

74% (basal area). For plot 10, SH and SI behaved differently, but the cause was the same; as

beech was the most numerous species (55%), but accounted for a small basal area (17%).

The aggregation index varied from 0.5 to 1.65 amongst the 41 plots, indicating a tendency

towards clustering for the former, and a tendency towards a regular hexagonal distribution of

trees for the latter. It should be noted that the 2012 dataset contained five plots with an index

value less than 1, compared with just one such plot in the 2010 data. For example plot

number 26, which is a mix of deciduous species of various sizes located in semi-ancient

woodland, had an index score of 0.52. In contrast, plot 31, which is located within a single

species coniferous plantation where many if not all the trees were planted at the same time,

had an index score of 1.45.

The DBH or diameter differentiation index (TM) illustrates the differentiation between

neighbouring trees DBH values, where values for 2010 ranged from 0.18 to 0.99 indicating

stands with smaller diameter variability and high variability, respectively.

The vertical evenness (VE) index characterises the vertical distribution of horizontal cover

within a plot within four height layers. These height layers correspond to percentages relative

to the maximum tree height recorded within the plot, the divisions being: (i) 0-19%; (ii) 20-

49%; (iii) 50-79%; and (iv) 80-100%.Within the dataset VE ranged from 0.28 to 1.04.Low

values characterise single storied stands while index values closer to 1 would be indicative of

trees which were evenly vertically distributed. For example, plot number 27, is within

deciduous woodland and has approximately three canopy layers present, with a height range

of 7m to 27m, with significant vegetative cover within each of these height layers, giving it a
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VE index of 0.68. Plot number 31 by contrast had a VE index score of 0.28. Plot number 31

is a single species dominated coniferous plantation, with a limited height range of 27 to 32 m

and while there is a great deal of vegetation within the upper strata, there is very little at

lower levels.

The complexity index (H) represents the first of the composite indices, which takes into

account number of tree stems, the number of tree species, dominant height and basal area. For

this study, the index values range from 6.5 to 567.4. For example, plot number 39 exhibits a

small index value, 14.8, due to a relatively low stem density, being composed of only one tree

species and a relatively low basal area value (2.3m2 per 30x30m), but high average height

(33m). In contrast plot 30 had the highest value of 567.4, and was a plot characterised by five

different tree species at high density (90 stems within 30x30m), and high basal area value

(5.2m2 per 30x30m), although with a relatively small dominant height (19m).

The second composite index was the complex stand diversity index (CSDI). This is

constructed from four separate indices, which include measures of species diversity, DBH

differentiation, nearest neighbour proximity, and crown dimensions. Values derived from

field data ranged from 2.3 to 12.8, where values less than 4 are considered indicative of

homogeneous woodland, and values above 9 indicate a very heterogeneous structure. For

example, plot 12 had a low index value of 3.29 due to the plot being dominated by a single

species, Corsican pine, with little DBH differentiation, and tree spacing and crown

dimensions differing only by 3-5 metres. An example of a plot with a high index value

(12.78) is number 24, where the plot contains three tree species, DBH values can vary by

~40cm, neighbouring tree distances can vary up to 7m, and crown dimensions up to 10m.
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Table 5.12 – Indices derived from 2010 field data

Plot no.
Aggregation
Index (R)

Diam
eter

differentiati
on index
(TM

)

Vertical
Evenness
(VE)

Com
plexit

y Index
(HC)

Com
plex

Stand
diversity
index (CSDI)

Shannon
Index (Tree
Stem

 count)

Shannon
Index
(Basal
Area)

Evenness
Index (E)

Sim
pson

Index
(Tree
Stem
count)

Sim
pson

Index
(Basal
Area)

Class
P

lot 1
1.08

0.31
0.47

52.45
6.16

0.16
0.42

0.16
0.07

0.42
M

ixed
P

lot 2
1.47

0.19
0.67

41.95
4.20

0.24
0.35

0.24
0.12

0.20
M

ixed
P

lot 3
1.36

0.22
1.01

34.67
6.84

1.19
1.02

0.60
1.00

0.59
C

onif.
P

lot 4
1.06

0.52
1.04

27.20
6.55

0.99
0.24

0.63
0.67

0.95
D

ecid.
P

lot 5
1.31

0.26
0.50

77.65
5.00

0.88
0.76

0.56
0.57

1.00
C

onif.
P

lot 6
1.49

0.25
0.41

6.57
2.35

0.00
0.00

0.00
0.00

0.00
D

ecid.
P

lot 7
1.42

0.35
1.00

44.33
6.28

1.15
0.85

0.57
0.67

0.74
C

onif.
P

lot 8
1.16

0.36
0.99

109.17
6.61

1.13
1.02

0.57
0.65

0.76
C

onif.
P

lot 9
1.17

0.32
1.04

27.23
6.44

0.93
0.75

0.59
0.64

0.88
D

ecid.
P

lot 10
0.79

0.42
0.90

116.92
6.46

0.85
0.57

0.53
0.56

0.40
D

ecid.
P

lot 11
1.05

0.45
0.88

177.13
8.00

1.14
0.47

0.49
0.75

0.89
D

ecid.
P

lot 12
1.58

0.19
0.56

36.41
3.29

0.33
0.49

0.33
0.00

0.47
C

onif.
P

lot 13
1.19

0.42
1.02

52.76
5.83

0.83
0.48

0.52
0.54

0.37
D

ecid.
P

lot 14
1.13

1.00
1.00

76.95
7.11

0.94
0.30

0.47
0.52

0.19
C

onif.
P

lot 15
1.39

0.34
0.87

145.16
7.15

1.07
1.14

0.53
0.55

0.87
D

ecid.
P

lot 16
1.30

0.26
0.84

144.88
7.96

1.16
0.67

0.45
0.28

0.39
C

onif.
P

lot 17
1.65

0.23
0.54

92.26
5.01

0.59
0.35

0.37
0.34

0.27
C

onif.
P

lot 18
1.57

0.20
0.93

73.07
5.56

0.84
0.43

0.53
0.51

0.72
C

onif.
P

lot 19
1.02

0.36
0.93

113.20
7.28

1.13
0.33

0.49
0.59

1.18
M

ixed
P

lot 20
1.19

0.40
0.97

97.71
7.90

1.47
0.54

0.63
0.80

0.42
D

ecid.
P

lot 21
1.39

0.32
0.97

173.24
7.67

1.07
0.70

0.68
0.66

0.53
C

onif.



Chapter 5 – Fieldwork results

181

Table 5.13– Indices derived from 2012 field data

Indicies
A

ggregation
Index (-R

)

D
iam

eter
differentiation
index (-TM

)

V
ertical

E
venness

(V
E

)
C

om
plexity

Index (H
C

)

C
om

plex
S

tand
diversity
index (C

S
D

I)

S
hannon

Index (Tree
S

tem
 count)

S
hannon

Index
(B

asal
A

rea)
E

venness
Index (E

)

S
im

pson
Index
(Tree
S

tem
count)

S
im

pson
Index
(B

asal
A

rea)
C

lass
P

lot 22
-

0.19
0.32

45.93
-

1.39
0.90

0.60
0.75

0.77
D

ecid.
P

lot 23
1.34

0.22
0.38

67.46
11.50

0.65
0.39

0.65
0.46

0.41
C

onif.
P

lot 24
0.97

0.52
-

88.47
12.78

0.46
0.86

0.29
0.24

0.86
D

ecid.
P

lot 25
0.70

0.26
0.48

59.63
9.92

0.98
0.81

0.62
0.61

0.75
D

ecid.
P

lot 26
0.52

0.25
0.44

64.69
10.22

1.15
0.97

0.50
0.63

0.80
D

ecid.
P

lot 27
0.72

0.35
0.69

109.91
11.47

0.96
0.77

0.60
0.59

0.71
D

ecid.
P

lot 28
1.22

0.36
0.37

109.48
6.88

0.74
0.75

0.47
0.48

0.66
C

onif.
P

lot 29
0.83

0.32
0.54

38.56
10.46

0.54
0.68

0.54
0.37

0.73
D

ecid.
P

lot 30
1.17

0.42
-

567.43
-

0.98
1.29

0.42
0.57

0.84
m

ixed
P

lot 31
1.45

0.45
0.29

28.22
4.27

0.00
0.00

0.00
0.00

0.00
C

onif.
P

lot 32
1.34

0.19
0.40

100.28
9.22

1.35
1.24

0.67
0.77

0.93
m

ixed
P

lot 33
1.41

0.42
0.39

137.89
9.51

0.74
0.30

0.37
0.38

0.20
C

onif.
P

lot 34
1.24

1.00
0.56

106.47
12.39

1.43
1.15

0.62
0.76

1.01
C

onif.
P

lot 35
1.17

0.34
0.48

194.75
10.15

1.02
0.67

0.51
0.60

0.51
C

onif.
P

lot 36
1.42

0.26
0.33

92.20
7.42

0.82
0.58

0.41
0.46

0.41
m

ixed
P

lot 37
1.14

0.23
0.50

45.53
8.38

0.78
0.50

0.49
0.50

1.60
D

ecid.
P

lot 38
1.20

0.20
-

120.84
8.78

0.90
1.09

0.57
0.54

0.97
m

ixed
P

lot 39
1.38

0.36
0.52

14.84
5.76

0.00
0.00

0.00
0.00

0.00
C

onif.
P

lot 40
1.21

0.40
0.50

31.78
8.11

0.87
0.70

0.55
0.54

2.89
D

ecid.
P

lot 41
1.09

0.79
0.58

78.52
10.64

1.41
0.99

0.61
0.50

0.97
m

ixed
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The third composite index (score-based), was computed from a total of 17 metric scores

(Cantarello and Newton, 2008). It should be noted that a number of metrics had to be

modified to account for the requirements of the scoring system by extrapolating attributes

relating to counts or totals for areas to one hectare. The premise of the approach is based on

plot values exceeding targets of ‘ideal’ plot conditions, these targets are listed in both Tables

5.14 and 5.15 along with plot values, for 2010 and 2012 fieldwork respectively. If a target

was exceeded the field plot was scored as one, otherwise it received a zero. A plot meeting or

exceeding all targets will get a maximum score of seventeen.

For the 41 field plots there is a range of values from 3 to a maximum of 13. Generally,

coniferous plots had lower index scores than deciduous plots. The lowest score of 3 was

determined for plot number 23, which is a coniferous stand dominated by hybrid larch. The

three targets exceeded were the number of trees within the plot, basal area and standing

deadwood decay class. Plot number 15, had the lowest value for a deciduous plot, with a

score of 6, this plot however showed evidence of active management by forestry personnel,

which may explain this relatively low score. The six targets exceeded were the number of

trees, basal area, standard deviation of DBH, mean height, and standing and downed

deadwood decay classes.

The plot with the highest index value, 13, was plot number 27. This plot was located within

isolated old growth deciduous woodland. All targets were exceeded apart from average DBH,

number of seedlings and number of native seedlings. Plot number 35 had an index score of

10, this was the highest value for coniferous woodland. The plot was located within

plantation woodland, containing a mix of coast redwood (sequoia sempervirens) and Douglas

fir. The seven targets the plot failed on were species diversity, total number of saplings (and

natives), standing deadwood volume, number of seedlings (and natives), and finally the

number of ground vegetation species.
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Table 5.14 – Score-based condition assessment for 2010
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Table 5.14 – Score-based condition assessment for 2010
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Table 5.14 – Score-based condition assessment for 2010
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Table 5.15 – Score-based condition assessment for 2012
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Table 5.15 – Score-based condition assessment for 2012
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Table 5.15 – Score-based condition assessment for 2012
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5.4 Summary of field plot data results
Field data capture was carried out in the summers of 2010 and 2012 covering a variety of

deciduous, coniferous and mixed stands. There are a number of trends evident in the field

data which highlight the differences between the woodland types. Deciduous plots generally

have a smaller stem count, larger and more variable tree sizes, lower heights to the first live

branch, and larger horizontal crown areas in contrast to coniferous plots.  Fewer trees within

a plot generally indicate presence of larger tree sizes.  The volume of standing deadwood

encountered within field plots is generally low, although decay class is more variable in

coniferous plots, and consistently high in deciduous plots.  Higher DDW volume is

encountered in deciduous plots, showing similar variability in decay class. Regeneration

levels of saplings are low across all plots. Seedling populations were very variable across all

plots, although those of deciduous plots are generally higher.

Non-parametric two-sample population tests were employed in order to determine if the 2010

and 2012 fieldwork populations were similar or dissimilar. For 31 of a total of 41 field

metrics both tests indicated there was no significant difference between populations. For

seven of the remaining metrics both tests indicated the populations were significantly

different. These metrics were the standard deviation of DBH value, Shannon index (by stem

count), DDW decay class, the number of native saplings, the percentage of native saplings,

the number of seedling species, and the native seedlings Shannon index. Six further metrics

where highlighted as significant using one test, but not the other. These 13 field metrics are

typically related to understorey composition.

A bivariate correlation matrix was constructed where all field metrics were assessed against

one another. A high number of significant (p<0.05) correlations were present with correlation

coefficient values above 0.4 (or below -0.4). Eight were identified with strong, 39 with

medium, and 33 with weak correlations. The metrics which were correlated with the most

other metrics were mean DBH and average crown horizontal area. The application of OLS

regression between field metrics found that the most critical field measurements were mean

DBH, crown horizontal area and canopy openness, each of these being the most frequent

predictors of other metrics. 15 of a total of 39field metrics could not be modelled using the

other field metrics in OLS regression.



Chapter 5 – Fieldwork results

186

A total of 11 condition indices were calculated for each plot, all of which showed a great deal

of variability. General trends were evident between coniferous and deciduous plot types

however, for example the Clark-Evans aggregation index values indicated a regular

distribution of tree stems for coniferous plots but a random distribution for deciduous ones.
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Chapter 6 – Forest assessment using airborne hyperspectral data

This chapter presents the results of the individual tree crown (ITC) object-based classification

of tree species using hyperspectral data. It also reports the regression models produced for

estimating the required field plot-level metrics for assessing condition. The regression models

used both summary statistics generated from vegetation indices (VI) and ITC classification

information.

6.1 Object-based tree species classification
A LiDAR-derived CHM was used in the eCognition image analysis software to automatically

delineate ITC objects and crown clusters using a region-growing algorithm based on height

maxima. Classification of the ITC objects was then performed using leaf-on and leaf-off

Eagle hyperspectral data from 2010. The hyperspectral dataset comprised six MNF

transformed bands for leaf-on and six more for leaf-off data. Classification of ITC objects

was implemented through a hierarchical method, utilising fuzzy-membership functions

producing a total of 26 tree species classes. These included a number of classes specifically

for young tree species types, which exhibited a height less than 15m, and often a different

signature in the MNF transformed hyperspectral data.

Three large-scale subsets of the entire classified map for the study site are presented in

Figures 6.1-6.3. A smaller and more detailed example subset is presented in Figure 6.4.As

illustrated in Figure 6.5, there were a number of examples of over-segmentation of tree crown

structures caused by the automated ITC delineation approach.  This over-segmentation was

more prevalent in deciduous areas.
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Figure 6.1 – Classification map part 1: Frame-Heath, Lady-Cross, Stockley and New Copse
inclosures (Note that “Y.<class_name>” denotes ‘young’, i.e. lower tree height and/or different
hyperspectral signature than mature trees)
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Figure 6.2 – Classification map part 2: Tantany and Frame Woods, and much of Hawkhill and
part of Frame-Heath inclosures. (Note that “Y.<class_name>” denotes ‘young’, i.e. lower tree
height and/or different hyperspectral signature than mature trees)
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Figure 6.3 – Classification map part 3: Denny Lodge, Stubby Copse and Denny inclosures, in
addition to Denny Wood. (Note that “Y.<class_name>” denotes ‘young’, i.e. lower tree height
and/or different hyperspectral signature than mature trees)
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Figure 6.4 – A sample subset of the eCognition-derived classification
map (Note that “Y.<class_name>” denotes ‘young’, i.e. lower tree height

and/or different hyperspectral signature than mature trees)
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Figure 6.5 – Examples of over segmentation resulting in poor tree crown
delineationillustrating both deciduous (left) andconiferous (right). The latter
is generally less effected.

6.1.1 Assessment against Forestry Commission stand inventory information
To assess the remote sensing derived product against Forestry Commission (FC) stand

inventory data, ten FC compartments were randomly selected from the supplied shapefile and

compared against the species information from the intersecting classified tree crown objects.

For the FC polygons only general species information is given in the form of up to three

species and an estimate of the per-cent area coverage. Table 6.1 summarises the results from

the ten FC polygons and species information from coincident derived tree crown objects. It

should be noted that the values of species proportions for the remote sensing classification are

for the cumulative area of each species class, a total calculated from the area in square metres

of classified ITC objects, and converted into a percentage relative to the total area of ITC

objects intersecting the FC polygon.
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For each of the sample FC polygons, the ITC classification detects the dominant species

types within the shapefile extents. The percentage cover of the remote sensing derived

species information can differ by up to 40% from that in the FC data. A greater number of

tree species types are detected within the polygons by the remote sensing classification,

which may account for the disparity. The polygon boundaries for one compartment may also

straddle other compartments.

It should be noted that the likelihood of there being only one-to-three tree species in the

extent of one compartment is unlikely, a supposition generally supported by fieldwork

results. This may cause large bias in the results presented in Table 6.1. For example,

compartment number 4634 is reported by the FC as being 100% oak trees, whereas this is

only accounted for by 62% of the ITC area classified as oak. Thus, one must question the

validity of this comparison.

Commission and omission errors were calculated in addition to an estimate of map accuracy

(MA), defined as follows (Short, 2005):= ( + + ) [6.1]

For the ten sample FC compartment areas commission errors can vary from 25-51%, with an

average of 32%. Omission error ranges from 15-48% with an average of 26%. Overall MA

ranges from 52-67% with an average of 57%.

6.1.2 Assessment of classification against 2012 field validation data
This section presents the comparison of the field validation plots (recorded in 2012) against

the remote sensing derived species classification ITC map, see Table 6.2 where the tree

species and proportions in which they were encountered per plot are summarised. At the most

basic level the number of species identified within an area corresponds closely between field

data and the classified ITC map. The average remote sensing deviation is ±1 with a maximum

of 3 and a minimum of 0, against both total field-recorded stems and those classified as

overstorey. The highest differences are encountered in plots of uniform species, i.e. plots 31

and 39.
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Table 6.1 – Comparison between 10 FC compartments and coincident remote sensing derived
classified objects.

FC
compart
ment

FC Species and
relative
abundance:

Remote sensing derived species and
relative abundance based on ITC
objects:

Commission/Omission
errors and Map accuracy

ID: 4632
(b)
436142 E;
102716 N

Scots pine: 55%
Corsican Pine:
30%
Not planted: 15%

Percentage cover:
Corsican Pine 39.6% Scots Pine 20.1%
Douglas Fir 6.7% Silver Birch15.1%
Oak 17.6%

Commission:35%
Omission:27%
Map accuracy:52%

ID: 4634
(a)
435670 E;
102323 N

Oak: 100% Percentage cover:
Beech 21.8% Oak 60.5%
Corsican Pine 3.8% Scots Pine 7.0%
Douglas Fir 3.1% Silver Birch 3.6%

Commission:26%
Omission:48%
Map accuracy: 55%

ID: 4641
(a)
434679 E;
101985 N

Scots pine: 83%
None: 17%

Percentage cover:
Corsican Pine 22.1% Japenese Larch 2.2%
Douglas Fir 2.9% Scots Pine 66.3%

Commission:34%
Omission:22%
Map accuracy:54%

ID: 4624
(a)
434542 E;
101971 N

Oak: 100% Percentage cover:
Corsican Pine 2.1% Oak 62.1%
Douglas Fir 5.0% Scots Pine 3.0%
Grand Fir 3.8% Silver Birch 11.7%
Japenese Larch 3.7% Sweet Chestnut 7.1%

Commission:51%
Omission:15%
Map accuracy: 58%

ID: 4626
(a)
434611 E;
102566 N

Corsican Pine:
100%

Percentage cover:
Corsican Pine76.1% Oak2.9%
Hybrid Larch2.0% Scots Pine17.1%

Commission:25%
Omission:20%
Map accuracy: 64%

ID: 4410
(a)
434570 E;
104637 N

Beech: 89%
Oak: 11%

Percentage cover:
Beech59.7% Oak27.4%
Japenese Larch4.3% Sweet Chestnut4.8%

Commission:34%
Omission:19%
Map accuracy: 52%

ID: 4419
(a)
433660 E;
104220 N

Scots Pine: 46%
Douglas fir: 35%

Percentage cover:
Beech3.5% Oak5.3%
Corsican Pine30.3% Scots Pine41.0%
Douglas Fir18.5%

Commission:24%
Omission: 43%
Map accuracy:64%

ID: 4439
(a)
433182 E;
104521 N

Beech: 71%
Oak: 19%
Birch: 9%

Percentage cover:
Beech 47.4% Sweet Chestnut 2.8 %
Oak 45.2

Commission: 33%
Omission: 31%
Map accuracy:56%

ID: 4404
(a)
433349 E;
105139 N

Scots Pine: 96%
Mixed
broadleaves: 4%

Percentage cover:
Beech2.0% Oak15.8%
Corsican Pine11.1% Scots Pine59.8%
Douglas Fir 6.2% Silver Birch1.5%
Norway Spruce3.2%

Commission:41%
Omission:19%
Map accuracy: 56%

ID: 4406
(a)
433363 E;
104784 N

Oak: 50%
Beech: 39%

Percentage cover:
Beech20.9% Silver Birch3.9%
Oak70.5% Sweet Chestnut2.3%

Commission:25%
Omission: 16%
Map accuracy: 67%
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The dominant tree species type can be detected using remote sensing methods in all but one

of the validation field plots. Plot number 38, misclassified the coniferous species within its

extent. There are examples of misclassifying species in all but two plots; typically this is for

coniferous species. There are also a number of examples where deciduous species such as

oak are misclassified.

ITC objects produced were fewer in number than tree stems in the field, typically less than

half. Given the presence of suppressed trees encountered in a number of plots it is helpful to

consider overstorey trees only; they are defined here as trees with a height equal to or greater

than 15m.

The most noticeable examples of underestimation were in deciduous plots, for example plot

22 had a total of 20 stems (17 overstorey), whereas there were only 10 intersecting ITC

objects. Similarly, plot 29 had a total of 30 stems (21 overstorey) and a total of 12 ITC

objects. Extremely densely populated plots such as plots 23 and 30,suffered the greatest

underestimation. For example, plot 23 received few ITC objects, of 71 stems (54

overstorey),there were only 32 ITC objects. Uniform composition plots, such as plots 31 and

39 fair slightly better. For example, plot 31 is composed of 24 stems and 22 ITC objects were

located, whereas plot 39 has 16 stems and is overestimated with 23 ITC objects.

Commission and omission errors were calculated in addition to estimates of MA for the (i)

correspondence between field data stem species counts and classified ITC objects, and (ii) the

correspondence between field data relative total crown horizontal area of species types

against the relative total crown area for classified ITC objects. For the former (i), the average

MA was calculated as 48.7% from all 20 validation field plots for the correspondence of

classified ITC objects against individual overstorey tree stems. For mainly deciduous plots

MA was 51.2%, and for mainly coniferous plots MA was 48.3%. Average commission error

for all 20 plots was 14%, and average omission error was 49%. For the latter (ii), the average

MA was calculated as 62% from all validation field plots. For mainly deciduous plots the MA

was 64%, and for mainly coniferous MA was 57%. Average commission error for all 20 plots

was 27% and average omission error was 26%.
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Table 6.2 –Comparison between fieldwork validation plots from 2012 and the remote sensing
derived classification ITC map.(Overstorey defined as trees with a height >50% of the
maximum within the plot)

Site
no.

Dom.
site
speci
es

Field plot data – tree species
and number
*(…) denote overstorey

Remote sensing
derived species and
number based on
ITCs

Commission/
Omission errors and
Map accuracy
(ITC counts)

Commission/
Omission errors and
Map accuracy
(ITC areas)

22 Decid
.

[Spec. No.: 5 (3)]
Beech: 3 (2)
Common Hawthorn:2 (0)
Midland Hawthorn:  1 (0)
Oak: 8 (7)
Silver Birch: 6 (6)

[Spec. No.: 2]
Oak: 9
Scots Pine: 1

Commission:22.2%
Omission:44.4%
Map accuracy:53.9%

Commission:23%
Omission:23%
Map accuracy:62%

23 Conif
.

[Spec. No.: 2 (1)]
Hybrid Larch: 46 (44)
Silver Birch: 25 (10)

[Spec. No.: 4]
Corsican Pine: 4
Hybrid Larch: 22
Oak: 4
Silver Birch: 2

Commission: 17.5%
Omission: 52.4%
Map accuracy:42.9%

Commission:33%
Omission:33%
Map accuracy:49%

24 Decid
.

[Spec. No.: 3 (3)]
Beech: 47 (24)
Corsican pine: 2 (2)
Oak: 5 (4)

[Spec. No.: 4]
Beech: 10
Corsican pine: 1
Oak: 2
Scots Pine: 1

Commission: 3.3%
Omission: 56.7%
Map accuracy:41.9%

Commission:13%
Omission:13%
Map accuracy:77%

25 Decid
.

[Spec. No.: 3 (2)]
Beech: 12 (10)
Holly: 4 (0)
Oak: 5 (5)

[Spec. No.: 3]
Beech: 6
Norway Spruce: 1
Oak: 3

Commission: 6.7%
Omission: 53.3%
Map accuracy:47.1%

Commission:23%
Omission:23%
Map accuracy:63%

26 Decid
.

[Spec. No.: 5 (3)]
Beech: 4 (2)
Douglas fir: 1 (1)
Holly: 1 (0)
Oak: 10 (10)
Silver birch: 1 (0)

[Spec. No.: 4]
Beech: 2
Douglas Fir: 1
Norway Spruce: 2
Oak: 4

Commission:15.4%
Omission:46.15%
Map accuracy:46.7%

Commission:21%
Omission:21%
Map accuracy:65%

27 Decid
.

[Spec. No.: 3 (2)]
Beech: 19 (8)
Holly: 9 (0)
Oak: 5 (5)

[Spec. No.: 3]
Beech: 8
Oak: 1
Scots Pine: 1

Commission: 7.7%
Omission: 30.1%
Map accuracy:64.3%

Commission:1%
Omission:1%
Map accuracy:82%

28 Conif
.

[Spec. No.: 3 (3)]
Douglas Fir: 23 (22)
Oak: 1 (1)
Scots Pine: 11 (11)

[Spec. No.: 4]
Corsican Pine: 1
Douglas Fir: 10
Oak: 2
Scots Pine: 7

Commission: 5.9%
Omission: 47.1%
Map accuracy:51.4%

Commission:9%
Omission:9%
Map accuracy:84%

29 Decid
.

[Spec. No.: 2 (2)]
Beech: 23 (14)
Oak: 7 (7)

[Spec. No.: 2]
Beech: 4
Oak: 8

Commission: 4.8%
Omission: 47.6%
Map accuracy:52.2%

Commission:19%
Omission:19%
Map accuracy:69%

30 Conif
.

[Spec. No.: 5 (3)]
Douglas Fir: 47 (40)
Horse Chestnut: 1 (1)
Scots Pine: 3 (0)
Silver Birch: 36 (0)
Sweet Chestnut: 3 (3)

[Spec. No.: 7]
Corsican Pine: 3
Douglas Fir: 8
Japanese Larch: 2
Norway Spruce: 1
Oak: 2
Silver Birch: 5
Sweet Chestnut: 1

Commission: 17.0%
Omission: 61.7%
Map accuracy:27.5%

Commission:37%
Omission:30%
Map accuracy:48%

31 Conif
.

[Spec. No.: 1 (1)]
Douglas fir: 24 (24)

[Spec. No.: 3]
Corsican Pine: 2
Douglas Fir: 13
Scots Pine: 7

Commission: 37.5%
Omission: 45.8%
Map accuracy:39.4%

Commission:20%
Omission:20%
Map accuracy: 66%
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Table 6.2 (continued)
Site
no.

Dom.
site
species

Field plot data – tree species
and number
*(…) denote overstorey

Remote sensing
derived species and
number based on
ITCs

Commission/
Omission errors and
Map accuracy
(ITC counts)

Commission/
Omission errors and
Map accuracy
(ITC areas)

32 Mixed [Spec. No.: 4 (4)]
Beech: 3 (1)
Douglas fir: 7 (7)
Oak: 5 (4)
Scots Pine: 5 (5)

[Spec. No.: 4]
Douglas Fir: 12
Corsican Pine: 2
Oak: 2
Scots Pine: 3

Commission: 41.2%
Omission:29.4%
Map accuracy:50.0%

Commission:45%
Omission:45%
Map accuracy: 38%

33 Conif. [Spec. No.: 4 (4)]
Birch: 3 (2)
Corsican Pine: 2 (2)
Lawson Cypress: 1 (1)
Western Hemlock:22 (22)

[Spec. No.: 4]
Corsican Pine: 1
Oak: 1
Scots Pine: 10
Western Hemlock:24

Commission: 51.9%
Omission: 3.7%
Map accuracy:60.5%

Commission:30%
Omission:28%
Map accuracy:54%

34 Mixed [Spec. No.: 5 (4)]
Corsican Pine: 10 (9)
Douglas Fir: 6 (3)
Norway Spruce: 2 (0)
Oak: 8 (4)
Silver Birch: 2 (1)

[Spec. No.: 4]
Beech: 1
Corsican Pine: 10
Douglas Fir: 3
Scots Pine: 6

Commission: 47.0%
Omission: 5.6%
Map accuracy:57.1%

Commission:33%
Omission:35%
Map accuracy:49%

35 Conif. [Spec. No.: 4 (4)]
Beech: 1 (1)
Coast redwood: 11 (11)
Douglas Fir: 18 (17)
Silver Birch: 3 (2)

[Spec. No.: 5]
Beech: 1
Coast Redwood: 10
Douglas Fir: 2
Oak: 6
Scots Pine: 3

Commission: 30.0%
Omission:56.7%
Map accuracy:33.3%

Commission:32%
Omission:30%
Map accuracy:52%

36 Conif. [Spec. No.: 4 (4)]
Douglas Fir: 1 (1)
Oak: 5 (2)
Scots Pine: 18 (18)
Silver Birch: 1 (1)

[Spec. No.: 4]
Beech: 2
Douglas Fir: 3
Oak: 3
Scots Pine: 13

Commission: 22.7%
Omission: 22.7%
Map accuracy:63.0%

Commission:35%
Omission:24%
Map accuracy:51%

37 Decid. [Spec. No.: 3 (2)]
Beech: 7 (4)
Hawthorn: 1 (0)
Oak: 15 (12)

[Spec. No.: 2]
Coast Redwood: 1
Oak: 10

Commission: 6.2%
Omission: 37.5%
Map accuracy:58.8%

Commission:31%
Omission:31%
Map accuracy:52%

38 Mixed [Spec. No.: 3 (3)]
Beech: 7 (7)
Oak: 6 (6)
Western Hemlock:23 (15)

[Spec. No.: 5]
Beech: 8
Douglas Fir: 3
Norway Spruce: 1
Oak: 3
Scots Pine: 1

Commission: 21.4%
Omission: 64.3%
Map accuracy:29.4%

Commission:36%
Omission:36%
Map accuracy:47%

39 Conif. [Spec. No.: 1 (1)]
Douglas fir: 16 (15)

[Spec. No.: 4]
Beech: 5
Corsican Pine: 3
Oak: 1
Douglas fir: 14

Commission: 60.0%
Omission: 6.7%
Map accuracy:58.3%

Commission:32%
Omission:32%
Map accuracy:51%

40 Decid. [Spec. No.: 3 (3)]
Beech: 11 (8)
Douglas Fir: 2 (1)
Oak: 4 (4)

[Spec. No.: 3]
Beech: 2
Oak: 9
Sweet Chestnut: 1

Commission: 46.2%
Omission:52.9%
Map accuracy:45.8%

Commission:42%
Omission:42%
Map accuracy:40%

41 Mixed [Spec. No.: 5 (4)]
Beech: 11 (3)
Corsican Pine: 2 (2)
Norway spruce: 1 (0)
Oak: 4 (3)
Scots Pine: 6 (6)

[Spec. No.: 5]
Beech: 2
Corsican Pine: 4
Douglas Fir: 3
Oak: 4
Scots Pine: 3

Commission: 35.7%
Omission: 35.7%
Map accuracy:50%

Commission: 20%
Omission:15%
Map accuracy:60%
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6.2 Statistical models for estimating forest structural and compositional metrics from
hyperspectral remote sensing
This section outlines the statistical models applied to the hyperspectral remote sensing

metrics to estimate field plot-level metrics. A total of 155 remote sensing metrics were

generated for each field plot extent and comprised summary metrics for both classified ITC

objects and calculated VI products. Two statistical models, using Ordinary Least-Squares

(OLS) and Akaike information criterion (AICc) multiple regression approaches, were

calculated for each of the 39 field metrics using the inputs from the hyperspectral remote

sensing dataset. Each of the coefficients and variables presented in this section were

statistically significant (p<0.05), and the fit of regression models to the data (field data

collected in 2010) is indicated by R2. This section summarises the regression models

produced by forest structural, forest compositional, deadwood, and regeneration and

understorey metrics, and the two additional metrics required for condition index construction.

6.2.1 Forest structure within the plot
A listing of the 14 forest structural metrics and their associated R2 values are given in Table

6.3, while the inputs to the regression models are listed in Table 6.4.When considering the

statistical methods, OLS and AICc, in the majority of cases (nine of fourteen)AICc produced

better R2 values. Seven of the total fourteen field metrics have similar R2 values (±0.1) for

AICc and OLS, the others can vary up to ±0.2.The greatest disparities are for the standard

deviation of tree NN spacing, total plot basal area, percentage big trees (DBH > 40cm),

average crown horizontal area, and standard deviation of crown horizontal area. In reference

to Table 6.4 for structural metrics, where there is a higher R2 value, the model invariably has

more predictor inputs. For example the standard deviation of tree NN spacing has one input

for OLS and three for AICc, with R2 values of 0.571 and 0.812, respectively. Typically, AICc

regression models utilise more predictor input variables than their OLS counterparts, for

example average crown horizontal area has one input for OLS, and three for AICc. There is

only one example of an OLS model using more predictor inputs; this was the percentage of

big trees (DBH>40cm).
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AICc weights are presented in Table 6.3(from the iterative regression model process), for the

selected model, with the highest weight, and then the second highest weighted model. It

should be noted that this model selection approach required many thousands of iterations. All

delta AICc values for the selected model were 0, and all secondary models were ∆ i< 2.The

AICc weight represents the ratio of delta AIC (∆ i) values for each model relative to the

whole set of candidate models computed within the R software. The interpretation of Akaike

weights is straightforward: they indicate the probability that the model is the best among the

whole set of candidate models. One can compare the Akaike weights of the “best” model and

competing models to determine to what extent it is better than another, this is termed the

evidence ratio. For example the ratio for ‘number of trees’ is 1.091, thus the model is

therefore 1.091 times more likely than the second model to be the best, given the set of

candidate models and the data. This suggests that the rank of the model might change if the

researcher was to take a series of independent samples of identical size (Burnham and

Anderson 2002). In other words, there would be a high degree of uncertainty regarding the

best model in all cases.

In Table 6.4, the first four attributes utilise various component in their model construction.

The first attribute, (1) number of trees, uses hyperspectral metrics relating to leaf pigment

absorption and a broadband measure of vegetation greenness for both OLS and AICc models,

the latter also uses the number of ITC objects detected. Both OLS and AICc (2) ‘average tree

NN spacing’ models utilise metrics relating to narrow band vegetation greenness and canopy

water content. The models for (3) ‘standard deviation of tree NN spacing’ differ for OLS and

AICc, the former uses one measure of narrowband vegetation greenness, whilst the latter uses

metrics related to the number of ITC objects, light use efficiency and broadband greenness.

The fourth field metric, (4) ‘mean DBH’ is estimated by one narrowband greenness index for

OLS, whereas AICc utilises a narrowband greenness index, the number of ITC objects and an

estimate of canopy water content. A number of models include the SI index as a metric

related to tree species diversity, for example the total basal area and standard deviation of the

height of the first live branch.
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Table 6.3 – Forest structural metrics, R2 and AICc weights (all models p<0.05). Underlined
values indicate highest R2 value.

Metric Name: OLS R2 AICcR2 AICc
weight

AICcwei
ght of

2nd best

AICc
evidence

ratio

Number of trees per 30x30m 0.749 0.808 0.036 0.033 1.091
Average tree spacing (m) 0.482 0.609 0.024 0.024 1.000
STDev. of tree spacing (m) 0.571 0.812 0.143 0.116 1.233
Mean DBH (cm) 0.549 0.691 0.057 0.045 1.267
STDev. of DBH (cm) 0.768 0.796 0.055 0.047 1.170
Basal area within 30x30m 0.753 0.484 0.239 0.116 2.060
Percentage big trees (DBH
40>x<80cm) 0.505 0.554 0.075 0.047 1.596

Percentage very big trees (DBH
>80cm) 0.771 0.744 0.029 0.029 1.000

Percentage big trees (DBH >40cm) 0.735 0.581 0.126 0.076 1.658
Average height of the first live branch
(m) 0.692 0.672 0.075 0.063 1.190

STDev. of the height of the first live
branch (m) 0.464 0.588 0.077 0.062 1.242

Average crown horizontal area (m2) 0.564 0.879 0.144 0.061 2.361
STDev. crown horizontal area (m2) 0.520 0.727 0.194 0.077 2.519
Total crown horizontal area (m2) 0.820 0.716 0.148 0.092 1.609
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Table 6.4 – Hyperspectral metric inputs for each forest structural metric regression model
(Appendix B.2 should be consulted for a description of hyperspectral metric names).
Metric Name: OLS model input metrics AICc model input metrics

Number of trees
per 30x30m (1) cri1_Sum(leaf-pigments)[Leaf-off]

(2) sri2_Min(greenness) [Leaf-on]
(3) sri2_STD(greenness) [Leaf-on]

(1) cri1_Sum(leaf-pigments) [Leaf-off]
(2) no_tree(Direct – no. of ITC objects)
(3) sri2_Min(greenness) [Leaf-on]
(4) sri2_STD(greenness) [Leaf-on]

Average tree
spacing (m) (1) wbi1_STD(canopy water content) [Leaf-

off]
(2) rendvi2_Min(greenness) [Leaf-on]

(1) rendvi2_Min(greenness) [Leaf-on]
(2) vrei2_STD(greenness) [Leaf-on]
(3) wbi1_STD(canopy water content) [Leaf-
off]

STDev. of tree
spacing (m) (1) mresri1_Max(greenness) [Leaf-off]

(1) no_tree(Direct – no. of ITC objects)
(2) pri2_STD(light-use efficiency) [Leaf-on]
(3) sri2_Range(greenness) [Leaf-on]

Mean DBH (cm)
(1) vrei1_STD(greenness) [Leaf-off]

(1) mresri2_STD(greenness) [Leaf-on]
(2) no_tree(Direct – no. of ITC objects)
(3) wbi1_Range(greenness) [Leaf-off]

STDev. of DBH
(cm) (1) mresri1_STD(greenness) [Leaf-off]

(2) mrendvi1_Min(greenness) [Leaf-off]

(1) mrendvi1_STD(greenness) [Leaf-off]
(2) mresri1_Sum(greenness) [Leaf-off]
(3) sri1_Sum(greenness) [Leaf-off]

Basal area within
30x30m

(1) SI(Direct – from ITCobjects)
(2) arvi1_STD(greenness) [Leaf-off]
(3) pri2_STD(light-use efficiency) [Leaf-on]

(1) arvi2_Min(greenness) [Leaf-on]
(2) mrendvi1_Max(greenness) [Leaf-off]

Percentage big
trees (DBH
40>x<80cm)

(1) rgri2_Range(light-use efficiency) [Leaf-
on]
(2) nat_spec(Direct – from ITC objects)

(1) arvi2_Min(greenness) [Leaf-on]
(2) mresri2_STD(greenness) [Leaf-on]
(3) pri2_Range(light-use efficiency) [Leaf-
on]

Percentage very
big trees (DBH
>80cm)

(1) mresri1_STD(greenness) [Leaf-off]
(2) rgri1_Range(light-use efficiency) [Leaf-
off]

(1) mrendvi1_STD(greenness) [Leaf-off]
(2) no_tree(Direct – from ITC objects)

Percentage big
trees (DBH
>40cm)

(1) rgri2_Range(light-use efficiency) [Leaf-
on]
(2) SI(Direct – from ITC objects)
(3) vrei1_STD(greenness) [Leaf-off]
(4) ari2_STD(leaf-pigments) [Leaf-on]
(5) no_nat_t(Direct – from ITC objects)

(1) mresri2_STD(greenness) [Leaf-on]
(2) no_tree(Direct – from ITC objects)
(3) sri2_Min(greenness) [Leaf-on]

Average height of
the first live
branch (m)

(1) vrei1_Mean(greenness) [Leaf-off]
(2) ari1_Range(leaf-pigments) [Leaf-off]

(1) nat_spec(Direct – from ITC objects)
(2) rgri1_Sum(light-use efficiency) [Leaf-
off]

STDev. of the
height of the first
live branch (m)

(1) ari2_Min(leaf-pigments) [Leaf-on]
(2) SI(Direct – from ITC objects)

(1) SI(Direct from ITC objects)
(2) sri2_Max(greenness) [Leaf-on]
(3) sri2_Sum(greenness) [Leaf-on]

Average crown
horizontal area
(m2) (1) mresri1_STD(greenness) [Leaf-off]

(1) mresri2_Max(greenness) [Leaf-on]
(2) no_tree(Direct – from ITC objects)
(3) sri2_STD(greenness) [Leaf-on]
(4) wbi1_STD(canopy water content) [Leaf-
off]

STDev. crown
horizontal area
(m2)

(1) mresri1_STD(greenness) [Leaf-off] (1) ari2_Min(light-use efficiency) [Leaf-on]
(2) no_tree(Direct – from ITC objects)

Total crown
horizontal area
(m2)

(1) pri2_Max(light-use efficiency) [Leaf-on]
(2) arvi2_Min(greenness)[Leaf-on]
(3) mresri2_Range(greenness) [Leaf-on]

(1) ari2_Sum(leaf-pigments) [Leaf-on]
(2) pri2_Range(light-use efficency) [Leaf-
on]
(3) SI(Direct – from ITC objects)
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6.2.2 Forest composition within the plot
A listing of the seven forest compositional metrics and their associated R2values are given in

Table 6.5, while the inputs to the regression models are listed in Table 6.6.Regression models

could not be completed for three compositional metrics using OLS and one for AICc. For the

former, the number of species, SH (by stem count) and SI (by basal area) failed, whereas only

SI (by basal area) failed for AICc. It should also be noted that the number of species could be

extracted directly, see section 6.3.When considering the statistical methods of OLS and AICc,

three of the remaining four regression models in which a comparison can be made, had lower

R2 values for AICc. The difference was small however, <0.05.The regression models for the

SH index (by basal area) for the AICc had a higher R2 value. Again, the AICc evidence ratio

shows low ratio values for the selected model and the second ‘best’ model.

Table 6.6 indicates that various area-based facets of indices related to narrowband and

broadband greenness, leaf-pigment canopy water content and light-use efficiency were used,

from both leaf-on and leaf-off data. The first metric, the number of native trees, used the

same metrics for both OLS and AICc regression models, which produced a different R2 value

due to different coefficients. The two inputs were indices of greenness from leaf on-data.SI

(by stem count) uses different inputs when considering OLS and AICc models, the former

uses greenness and canopy water content, while the latter uses light-use efficiency and

canopy water content related variables, and also had a lower R2value. For the final metric, SH

(by basal area), OLS has one input relating to ITC object intersecting the field plot extent

classified as native species. The AICc equivalent was composed of four index-derived

metrics relating to greenness and light use efficiency.
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Table 6.5 – Forest composition metrics, R2and AICc weights (all models p<0.05). Underlined
values indicate highest R2 value.

Metric Name: OLS R2 AICc R2 AICc
weight

AICc
weight
of 2nd

best

AICc
evidence

ratio

Number of native trees per 30x30m 0.641 0.623 0.033 0.032 1.031
Percentage of native trees 0.752 0.720 0.022 0.02 1.100

No. of tree species per 30x30m - 0.560 0.065 0.043 1.512
Shannon index (by stem count) - 0.647 0.059 0.058 1.017
Simpson index (by stem count) 0.408 0.345 0.089 0.064 1.391

Shannon index (by BA) 0.188 0.620 0.159 0.071 2.239
Simpson index (by BA) - - - - -

Table 6.6 – Hyperspectral metric inputs for each forest compositional metric regression model
(Appendix B.2 should be consulted for a description of hyperspectral metric names).
Metric Name: OLS model input metrics AICc model input metrics

Number of
native trees
per 30x30m

(1) sri2_Min(greenness) [Leaf-on]
(2) vrei2_STD(greenness) [Leaf-on]

(1) sri2_Min(greenness) [Leaf-on]
(2) vrei2_STD(greenness) [Leaf-on]

Percentage of
native trees

(1)mresri1_Sum (greenness) [Leaf-off]
(2)ari2_Min(pigment) [Leaf-on]
(3)arvi1_Min(greenness) [Leaf-off]

(1) arvi1_Min(greenness) [Leaf-off]
(2) sri1_Sum(greenness) [Leaf-off]
(3) wbi2_STD(canopy water) [Leaf-on]

No. of tree
species per

30x30m
-

(1) rgri1_Min(light-use efficiency) [Leaf-off]
(2) sri2_STD(greenness) [Leaf-on]
(3) wbi1_STD(canopy water) [Leaf-off]

Shannon index
(by stem
count)

-

(1) rgri1_Min(light-use efficiency) [Leaf-off]
(2) rgri2_Min(light-use efficiency) [Leaf-on]
(3) sri2_Range (greenness) [Leaf-on]
(4) wbi1_Range(canopy water content) [Leaf-off]
(5) wbi2_STD(canopy water content) [Leaf-on]

Simpson index
(by stem
count)

(1) rendvi1_Min(greenness) [Leaf-off]
(2) wbi2_Mean(canopy water content)
[Leaf-on]

(1) sipi2_STD(light-use efficiency) [Leaf-on]
(2) wbi2_Range(canopy water content) [Leaf-on]

Shannon index
(by BA)

(2)no_nat_t(direct – ITC objects of native
class)

(1) ndvi2_STD(greenness) [Leaf-on]
(2) pri2_Max(light-use efficiency) [Leaf-on]
(3) rendvi2_Range(greenness) [Leaf-on]
(4) sipi1_STD(light use efficiency) [Leaf-off]

Simpson index
(by BA) - -



Chapter 6 – Forest assessment using
airborne hyperspectral data

204

6.2.3 Deadwood within the plot
A listing of four forest deadwood metrics and their associated R2values are reported in Table

6.7, while the inputs to the regression models are listed in Table 6.8.All but one of the AICc

models produced higher R2 values than OLS, although the values were close

(±0.07).Regression results for standing deadwood volume and class had high R2 values

approaching or above 0.9.Downed deadwood R2 values were lower however. The AICc

evidence ratio shows that the selected model is at least two times better than the second

potential regression model.

In Table 6.8, the most commonly used input metrics relate to either greenness of vegetation

or the efficiency of light-use within the canopy.The first regression model for the volume of

standing dead wood uses four inputs for OLS and two for AICc, the first two of these are the

same in both models. The additional two inputs for OLS only yield an additional 0.07

increase in R2 value. The standing deadwood decay class models differ in their inputs,

although both utilise a measure of species richness or diversity. For OLS this is combined

with metrics relating to canopy light-use efficiency, whereas AICc uses greenness. It should

be noted that VI values for deciduous areas were different to those in coniferous areas, and

standing deadwood was small or non-existent in coniferous areas. Both of these issues may

cause issues with the validity of the regression model. Both downed deadwood volume and

decay class models produced through OLS contain one input, whereas those of AICc contain

two.

Table 6.7 – Forest deadwood metrics, R2and AICc weights (all models p<0.05). Underlined
values indicate highest R2 value.

Metric Name: OLS R2 AICc R2 AICc
weight

AICc
weight
of 2nd

best

AICc
evidence

ratio

Standing dead wood volume (m3) 0.967 0.889 0.079 0.045 1.756
Standing dead wood decay class 0.885 0.903 0.078 0.065 1.200
Downed dead wood volume (m3) 0.392 0.548 0.021 0.018 1.167
Downed dead wood decay class 0.335 0.418 0.061 0.035 1.743
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Table 6.8 – Hyperspectral metric inputs for each forest deadwood metric regression model
(Appendix B.2 should be consulted for a description of hyperspectral metric names).
Metric Name: OLS model input metrics AICc model input metrics

Standing dead
wood volume
(m3)

(1) mresri1_STD (greenness) [Leaf-off]
(2) rgri2_Max(light-use efficiency) [Leaf-on]
(3) pri1_Max(light-use efficiency) [Leaf-off]
(4)arvi1_Min(greenness) [Leaf-off]

(1) mresri1_STD(greenness) [Leaf-off]
(2) rgri2_Max(light-use efficiency) [Leaf-
on]

Standing dead
wood decay
class

(1) rgri1_Range(light-use efficiency) [Leaf-
off]
(2) SH(Direct – from ITC objects)
(3)pri2_Max(light-use efficiency) [Leaf-on]

(1) spec_no(Direct – from ITC objects)
(2) sri1_Sum(greenness) [Leaf-off]
(3) sri2_Range(greenness) [Leaf-on]

Downed dead
wood volume
(m3)

(1)rendvi1_Max(greenness) [Leaf-off] (1) ari2_Max(leaf-pigment) [Leaf-on]
(2) mrendvi1_Max(greenness) [Leaf-off]

Downed dead
wood decay
class

(1)sri2_Mean(greenness) [Leaf-off] (1) rendvi2_STD(greenness) [Leaf-on]
(2) sri2_STD(greenness) [Leaf-on]

6.2.4 Understorey metrics within the plot
A listing of the 12 forest understorey metrics and their associated R2values are given in Table

6.9, while the inputs to the regression models are listed in Table 6.10.There are a number of

metrics here with high standard error values, most notably those related to the number of

seedlings, and number of native seedlings. The number of seedlings could not be predicted

using the AICc method. The AICc method overall produced higher R2 values than OLS,

except for three metrics, which were the number of native seedlings, the number of seedling

species and the number of vascular species. The final two metrics, relating to the number of

bryophyte species and the percentage of bare soil were identical, including the input metrics

and coefficients. When considering the AICc evidence ratio the first two metrics relating to

the number of saplings and the native saplings within the plot showed the highest ratio

values. The ratio values for the other understorey metrics fall within the range of 1 to 2.

In Table 6.10, except for the last two metrics relating to the number of bryophyte species and

percentage of bare soil, there is a great deal of difference between the inputs used. Canopy

vegetation greenness, leaf-pigments and light-use efficiency are all used, in addition to the

occasional use of direct estimates of overstorey species. The first four metrics listed in Table

6.10, illustrate the differences in input metric usage, where OLS models typically employ

measures of greenness, while AICc models use leaf-pigment input metrics. The three AICc

models with low R2 values relating to seedling and vascular species contain only one or two

input predictor metrics. The same can be said when comparing the R2 values for the seedlings
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SH index for native species, where the OLS value is much lower than the AICc counterpart.

The OLS model uses two light-use efficiency and greenness inputs, whereas the AICc model

uses four inputs: greenness, two metrics related to light-use efficiency and an estimate of

overstorey species number.

Table 6.9 – Forest understorey metrics, R2, standard error and AICc weights (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS R2 AICc R2 AICc
weight

AICc
weight
of 2nd

best

AICc
evidence

ratio

No. saplings per 30x30m 0.597 0.727 0.346 0.149 2.322
No. native saplings per 30x30m 0.646 0.678 0.584 0.113 5.168

Percentage of native saplings per
30x30m 0.692 0.911 0.364 0.205 1.776

No. of sapling species per 30x30m 0.663 0.798 0.189 0.096 1.969
No. seedlings per 30x30m 0.809 - - - -

No. native seedlings per 30x30m 0.642 0.310 0.146 0.081 1.802
Percentage of native seedlings per

30x30m 0.816 0.856 0.071 0.066 1.076

No. of seedling species per 30x30m 0.860 0.423 0.101 0.063 1.603
Seedlings Shannon index for native

species 0.415 0.735 0.281 0.263 1.068

No. vascular species 0.855 0.437 0.043 0.032 1.344
No. bryophyte species 0.439 0.439 0.025 0.024 1.042

Percentage of bare soil within
30x30m 0.518 0.518 0.038 0.034 1.118
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Table 6.10 – Hyperspectral metric inputs for each forest understorey metric regression model
(Appendix B.2 should be consulted for a description of hyperspectral metric names).
Metric Name: OLS model input metrics AICc model input metrics

No. saplings per
30x30m (1) mresri2_Max (greenness) [Leaf-on]

(1) ari2_Min(leaf-pigments) [Leaf-on]
(2) pri1_Range(light-use efficiency)
[Leaf-off]

No. native saplings
per 30x30m

(1)mresri2_Max(greenness) [Leaf-on]
(2) sipi2_STD(light-use efficiency) [Leaf-
on]
(3)arvi2_Range(greenness) [Leaf-on]

(1) ari2_Min(leaf-pigments) [Leaf-on]
(2) pri1_Range(light-use efficiency)
[Leaf-off]

Percentage of native
saplings per 30x30m (1)mresri2_STD(greenness) [Leaf-on]

(1) ari1_Mean(leaf-pigments) [Leaf-off]
(2) cri1_Range(leaf-pigments) [Leaf-off]
(3) mresri2_STD(greenness) [Leaf-on]

No. of sapling species
per 30x30m

(1) sri2_Range(greenness) [Leaf-on]
(2) ndvi2_STD(greenness) [Leaf-on]
(3) SI(Direct – from ITC objects)
(4)sipi1_STD(light-use efficiency) [Leaf-
off]

(1) ari1_Mean(leaf-pigments) [Leaf-off]
(2) cri1_Range(leaf-pigments) [Leaf-off]
(3) mresri2_STD(greenness) [Leaf-on]

No. seedlings per
30x30m

(1) ari2_Min(leaf-pigments) [Leaf-on]
(2) pri2_Sum(light-use efficiency) [Leaf-
on]
(3) Per_nat_tree2(Direct – from ITC
objects)
(4)spec_no(Direct – from ITC objects)

-

No. native seedlings
per 30x30m

(1) pri2_Sum(light-use efficiency) [Leaf-
on]
(2)spec_no(Direct – from ITC objects)

(1) wbi2_Max(canopy water content)
[Leaf-on]

Percentage of native
seedlings per 30x30m (1) ari2_Min(leaf-pigments) [Leaf-on]

(2)pri2_Max(leaf-pigments) [Leaf-on]
(3) ari2_Mean(leaf-pigments) [Leaf-on]

(1) ari2_Min(leaf-pigments) [Leaf-on]
(2) mresri2_Max(greenness) [Leaf-on]
(3) wbi1_STD(canopy water content)
[Leaf-off]

No. of seedling
species per 30x30m

(1) mresri2_Max (greenness) [Leaf-on]
(2) rgri1_Min(light-use efficiency) [Leaf-
off]
(3)spec_no(Direct – from ITC objects)
(4)vrei2_STD(greenness) [Leaf-on]

(1) ari2_Min(leaf-pigments) [Leaf-on]

Seedlings Shannon
index for native
species (1) pri2_Range(light-use efficiency)

[Leaf-on]
(2)arvi1_Min(greenness) [Leaf-off]

(1) arvi2_Range(greenness) [Leaf-on]
(2) rgri1_Min(light-use efficiency) [Leaf-
off]
(3) sipi2_Range(light-use efficiency)
[Leaf-on]
(4) spec_no(Direct – from ITC objects)

No. vascular species (1) sri2_Range(greenness) [Leaf-on]
(2) mrendvi1_STD(greenness) [Leaf-off]
(3)nat_spec(Direct – from ITC objects)
(4)sipi1_Min(light-use efficiency) [Leaf-
off]

(1) mresri2_Range(greenness) [Leaf-on]
(2) vrei1_STD(greenness) [Leaf-off]

No. bryophyte species (1)ari1_Min(leaf-pigments) [Leaf-off]
(2)rgri2_Range(light-use efficiency)
[Leaf-off]

(1) ari1_Min(leaf-pigments) [Leaf-off]
(2) rgri2_Range(light-use efficiency)
[Leaf-on]

Percentage of bare
soil within 30x30m

(1)mresri2_Sum(greenness) [Leaf-on]
(2)sipi1_STD(light-use efficiency) [Leaf-
off]

(1) mresri2_Sum(greenness) [Leaf-on]
(2) sipi1_STD(light-use efficiency) [Leaf-
off]
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6.2.5 Metrics required for condition index construction
The two forest metrics necessary for index construction and their associated R2values are

given in Table 6.11, while the inputs to the regression models are listed in Table 6.12.These

two metrics could not be modelled by OLS regression, therefore only AICc model summaries

are reported. The AICc models produced are very similar to the second best model. The input

metrics in the model for the Sum of the DBH differences between neighbouring trees are

indices related to greenness, the number or overstorey tree objects and a measure of leaf-

pigments. For the second metric, the index of vertical separation, inputs are composed

entirely of measures of greenness.

Table 6.11 – Condition index construction metrics, R2, standard error and AICc weights (all
models p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS R2 AICc R2 AICc
weight

AICc
weight
of 2nd

best

AICc
evidence

ratio

Sum of the DBH differences between
neighbouring trees (cm) - 0.815 0.043 0.043 1

Index of vertical separation - 0.547 0.044 0.044 1

Table 6.12 – Hyperspectral metric inputs for each forest condition index metric regression
model (Appendix B.2 should be consulted for a description of hyperspectral metric names).
Metric Name: OLS model input metrics AICc model input metrics

Sum of the DBH
differences
between
neighbouring
trees (cm)

-

(1) cri1_Sum(leaf-pigments) [Leaf-off]
(2) no_tree(Direct – from ITC objects)
(3) sri2_Min (greenness) [Leaf-on]
(4) sri2_STD (greenness) [Leaf-on]

Index of vertical
separation - (1) mresri2_STD (greenness) [Leaf-on]

(2) ndvi2_Min (greenness) [Leaf-on]
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6.3Validation of hyperspectral remote sensing derived model estimates against field
data
This section outlines the various direct and statistical model estimates in comparison with

validation field data. It begins with the direct comparisons which can be made via remote

sensing data, principally individual tree number. This is followed by a summary of the

various statistical model estimates derived from remote sensing and their relation to field

validation measurements. RMSE and NRMSE values are presented to illustrate the accuracy

of each model prediction. NRMSE is a modified RMSE value to account for the field data

population range, and produces a value of 0 to 1. NRMSE values of 0.5 or greater indicate

poor model performance.

6.3.1 Direct comparisons between field measurements and hyperspectral remote sensing
metrics
Table 6.13 summarises the relative proportions of native tree species detected within the field

plot extents. Since actual population counts may not be accurate, due to over-/under-

segmentation, a relative proportion was calculated as a percentage. Overall RMSE was

calculated as 22.47% with a NRMSE of 0.22.Likewise the Shannon and Simpson indices of

diversity were calculated from classified hyperspectral data, this is summarised in Table

6.14.For the Shannon index the RMSE was 0.56 and NRMSE was 0.39.For the Simpson

index the RMSE was 0.28 and NRMSE was 0.22.

A number of additional metrics were required for the construction of the complex stand

diversity index (CSDI). The CSDI is composed of four component indices relating to

different forest stand attributes. The first of the CSDI component indices requires inputs from

metrics calculated from the classified ITC hyperspectral map. This index relates to the total

number of tree species and the relative proportions of the most and least abundant tree

species. Table 6.15 summarises tree species number and maximum and minimum relative

abundance. The disparity between remote sensing estimated and field recorded tree species

numbers is relatively low. RMSE for estimates of the maximum population number are high,

with a tendency to underestimate the field value. Likewise minimum population estimates

also underestimate field recorded values, but given the smaller range of values the difference

is less noticeable.
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Table 6.13 – The proportion of native species according to classification
Site no. Field

native
proportion
(%)

eCognitionnative
tree proportion
(%)

22 100.00 100.00
23 35.21 21.21
24 98.11 92.86
25 100.00 90.00
26 94.12 60.00
27 100.00 90.91
28 34.29 42.86
29 100.00 100.00
30 46.67 31.82
31 0.00 31.00
32 65.00 26.32
33 10.71 30.56
34 46.43 35.00
35 12.12 43.48
36 96.00 81.82
37 100.00 90.91
38 36.11 75.00
39 100.00 60.87
40 88.24 91.67
41 91.67 61.11

RMSE 22.47
NRMSE 0.22
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Table 6.14 – Comparison of diversity indices produced from remote sensing data and field data
Site no. Field

Shannon
index
(by stem
no.)

Hyper.
Shannon
index

Field
Simpson
index
(by stem
no.)

Hyper.
Simpson
index

22 1.39 0.33 0.75 0.18

23 0.65 1.06 0.46 0.52

24 0.46 0.90 0.24 0.46

25 0.98 0.90 0.61 0.54

26 1.15 1.47 0.63 0.74

27 0.96 0.89 0.59 0.45

28 0.74 1.23 0.48 0.65

29 0.54 0.64 0.37 0.44

30 0.98 1.83 0.57 0.81

31 0.00 0.73 0.00 0.43

32 1.35 1.06 0.77 0.55

33 0.74 0.83 0.38 0.48

34 1.43 1.14 0.76 0.64

35 1.02 1.46 0.60 0.71

36 0.82 1.21 0.46 0.60

37 0.78 0.3 0.50 0.17

38 0.90 1.32 0.54 0.67

39 0.00 1.45 0.00 0.74

40 0.87 0.72 0.54 0.40

41 1.41 1.54 0.50 0.77

Hyper. Shannon
index

Hyper. Simpson
index

RMSE 0.56 0.28

NRMSE 0.39 0.22
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Table 6.15 – A summary of input metrics for the first component index of the CSDI relating to
relative species abundance. (Field = field data; RS = remote sensing data)

Site no. Species
no.
[Field]

Species
no.
[RS]

Max.
pop.
[Field]

Max.
pop.
[RS]

Min.
pop.
[Field]

Min.
pop.
[RS]

22 4 4 8 8 1 1
23 2 4 46 22 25 1
24 3 4 47 10 2 1
25 3 4 12 6 4 1
26 5 3 10 4 1 1
27 3 5 19 8 5 1
28 3 4 23 10 1 1
29 2 4 23 8 7 4
30 5 4 47 7 1 1
31 1 4 24 12 0 2
32 4 3 7 12 3 2
33 4 1 22 24 1 1
34 5 4 10 10 2 1
35 4 3 18 10 1 1
36 4 4 18 13 1 1
37 4 5 15 10 1 1
38 3 4 23 8 6 1
39 1 2 16 8 0 1
40 3 4 11 9 2 1
41 5 5 11 6 1 2

- RMSE 1.414 RMSE 15.392 RMSE 5.679
- NRMSE 0.354 NRMSE 0.385 NRMSE 0.227
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6.3.2 Validation of hyperspectral remote sensing derived statistical models against field data
This section contains the results of the regression models derived from hyperspectral remote

sensing data compared to 2012 field data measurements. RMSE and NRMSE were calculated

for each of the hyperspectral data derived models in order to identify which of the regression

models best estimated reality. An overview of the OLS and AICc regression model

predictions validated against field data is presented in Tables 6.16 and 6.17, for overstorey

and understorey metrics respectively. In addition six metrics derived from the ITC classified

image are presented in Table 6.16 for comparison, these were the number of trees, the

number of native trees, the percentage of native trees, the number of tree species, the ITC

derived Shannon index and the ITC derived Simpson index.

Two field-level metrics could not be adequately modelled by either regression method; these

were SI index (by basal area) and the number of bryophyte (moss) species. A number of field

metrics could only be modelled by one of the statistical approaches. Those modelled only by

OLS are the number of sapling species and the number of seedlings per 30x30m,whereas that

only modelled by AICc was the number of tree species.

In reference to both Tables 6.16 and 6.17,ten of the metrics produced poor RMSE and

NRMSE results, arbitrarily considered here to be NRMSE values over 0.5.Four of these

metrics relate to overstorey and understorey composition, whereas the remaining six relate to

various structural metrics. The statistically derived estimates of the number of tree species are

very poor; however the direct count of tree species provided from the classification is much

better. The assessment of hyperspectral derived regression model estimates here also shows

that twelve forest structural metrics, such as average height to the first live branch and the

total crown area, produced good (NRMSE <0.4) estimates of validation field data.
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Table 6.16 – The OLS and AICc hyperspectral regression models. Part 1: overstorey
composition.
Field metric ITC Direct

RMSE*
ITC Direct
NRMSE*

OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Number of trees per
30x30m

22.659 0.306 31.468 0.425 29.775 0.402

Number of native trees
per 30x30m

15.987 0.307 15.676 0.301 15.636 0.301

Percentage of native
trees

30.050 0.300 33.022 0.330 36.474 0.365

No. of tree species per
30x30m

1.830 0.305 - - 6.047 1.008

Average tree spacing
(m)

- - 6.573 1.979 6.344 1.910

STDev. Of tree spacing
(m)

- - 1.142 1.375 1.101 1.325

Mean DBH (cm) - - 23.098 0.793 14.503 0.498

STDev. of DBH (cm) - - 16.697 0.342 22.858 0.469

Basal area within
30x30m

- - 1.550 0.483 1.414 0.441

(i) Percentage big
trees (DBH
40>x<80cm)

- - 25.824 0.369 31.199 0.446

(ii) Percentage very
big trees
(DBH >80cm)

- - 13.374 2.207 10.330 1.704

(iii) Percentage big
trees (DBH >40cm)

- - 44.407 0.634 36.286 0.518

Shannon index (by
stem count)

0.560 0.380 - - 0.669 0.467

Simpson index (by
stem count)

0.280 0.220 0.420 0.326 0.519 0.403

Shannon index (by BA) - - 0.453 0.589 0.737 0.959

Simpson index (by BA) - - - - - -

Average height of the
first live branch (m)

- - 4.115 0.380 3.446 0.318

STDev. of the height of
the first live branch
(m)

- - 2.090 0.405 2.030 0.394

Average crown
horizontal area (m2)

- - 43.783 0.503 70.562 0.810

STDev. crown
horizontal area (m2)

- - 27.243 0.476 25.377 0.444

Total crown horizontal
area (m2)

- - 568.027 0.393 538.763 0.373

*Denotes that this was not derived statistically and cannot be applied to all metrics
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Table 6.17 – The OLS and AICc hyperspectral regression models. Part 2: understorey
composition.

Field metric OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Standing dead wood volume (m3) 5.422 0.656 3.915 0.474

Standing dead wood decay class 0.269 0.403 0.238 0.357

Downed dead wood volume (m3) 6.911 0.759 6.467 0.711

Downed dead wood decay class 0.159 0.339 0.219 0.467

No. saplings per 30x30m 24.418 0.226 25.247 0.234

No. native saplings per 30x30m 7.442 0.196 6.761 0.178

Percentage of native saplings per 30x30m 78.581 0.786 77.872 0.779

No. of sapling species per 30x30m 1.118 0.373 - -

No. seedlings per 30x30m 362.970 0.388 - -

No. native seedlings per 30x30m 239.764 0.333 226.335 0.314

Percentage of native seedlings per 30x30m 43.431 0.434 47.492 0.475

No. of seedling species per 30x30m 4.658 0.358 4.105 0.316

Seedlings Shannon index for native species 0.890 0.552 0.867 0.537

No. vascular species 4.327 0.721 3.491 0.582

No. bryophyte species - - - -

Percentage of bare soil within 30x30m 47.157 0.496 47.157 0.496

Sum of the DBH differences between
neighbouring trees (cm)

- - 3.271 0.409

Index of vertical separation - - 0.303 0.600

6.4 Summary of findings
The object-based classification produced a total of 26 tree species classes, including young

and mature trees. A number of issues were encountered however. The first of these related to

the over-segmentation of tree crowns, i.e. creating more than one object for a single tree

crown, which could be miss-classified. The total number of tree crown objects did not

typically represent the total number of tree stems within a sample plot, although a better

comparison was achieved with overstorey trees.

The FC inventory data only provided up to three species classes which were present within

that stand along with their relative proportions as a percentage. Overall map accuracy of the

object-based classification against the FC species classes was 57% using the relative total

area of those classified objects which intersected with the FC compartment boundaries. It
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should be noted however that the field data often identified that more than three species were

present indicating that some error was due to the FC data itself.

An assessment of the object-based classification was performed against field data in two

ways. The first was a comparison of the species proportions of overstorey stem species (i.e

those trees larger than 15m tall) and the second was in terms of the relative total horizontal

crown area of the identified species types. For the former, average species classification

mapping accuracy was calculated as 49% comparing counts of classified ITC objects to the

validation field plot counts of individual trees. For the latter, the mapping accuracy increased

to 62% when comparing the relative total horizontal crown area of species for field and ITC

objects by species type. The latter is probably the most valid approach.

Regression models could be created for all but two of the total thirty-nine indicator metrics,

SI index (by basal area) and number of bryophyte species. Four OLS regression models and

two AICc models did not produce acceptable results. Of the remainder, thirteen models

produced poor results, based on RMSE and NRMSE values, for both OLS and AICc models.

The number of species, SI and SH indices were better predicted directly and not through

statistical means.OLS methods performed better for seven of the remaining twenty-three

models. NRMSE is a modified RMSE value to account for the field data population range,

and produces a value of 0 to 1. NRMSE values of 0.5 or greater indicate poor model

performance.

Those models predicted most accurately (NRMSE <0.35), were the number of native trees,

the percentage of native trees, the standard deviation of DBH, DDW decay class, number of

saplings, number of native saplings, number of seedlings and number of seedling species.

Direct estimates of SH and SI indices of diversity and the number of tree species performed

better than those derived statistically. The CSDI had four component indices, one of which

relates to tree species abundance. This component index derived from the classified ITC map

underestimated both maximum and minimum populations.
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Chapter 7 – Forest assessment using LiDAR data

LiDAR products are assessed within this section in relation to field measurements, in addition

to a broad comparison of the outputs of DR and FW LiDAR systems. The section begins with

a comparison of LiDAR DTM products with ground GPS and total station measurements

outside and underneath the canopy. A basic comparison of DR and FW datasets is presented

for three sample flight lines. The remaining sections document the statistical models for

forest field variable estimation created through the two regression approaches (OLS and

AICc), first for DR and then for FW datasets.

7.1Assessment of DR and FW LiDAR pre-processing data products

7.1.1 Accuracy assessment of DTMs against GPS ground control
This section concerns the accuracy assessment of the LiDAR derived elevation models, or

more specifically ground-level. A total of 95 dGPS and total station measurements were

taken in 2010 coincident with the fieldwork campaign at ground-level, both outside the forest

and under forest canopy. These measurements consisted of Easting (X), Northing (Y) and

elevation (Z) using the British National Grid coordinate system and the OS GB 1936 Datum.

For the same coordinates elevation values were extracted from DTMs produced from DR and

FW LiDAR under both leaf-on and leaf-off conditions, resulting in four datasets. Table 7.1

reports the calculated RMSE and NRMSE of the DTMs in relation to the field data. All

LiDAR derived DTMs have an RMSE of <2m, where FW estimates have slightly smaller

RMSE, by approximately 0.06m. Both leaf-off RMSE values are marginally smaller than

their leaf-on counterparts.

Table 7.1 – RMSE and NRMSE of LiDAR DTMs in relation to ground GPS and total station
measurements for all 95 values.

DR Leaf-on (m) DR Leaf-off (m) FW Leaf-on (m) FW Leaf-off (m)
All points
RMSE 1.879 1.784 1.823 1.763
NRMSE 0.075 0.071 0.073 0.070
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7.1.2 Comparison of DR and FW small-footprint LiDAR outputs
This section summarises the observed differences in the DR and FW LiDAR datasets for a

sample of forested areas. It should be reiterated that the pulse spacing for DR and FW

datasets was not equal resulting in FW having a lower pulse density for both data acquisition

dates. For the purposes of comparison three sample flight lines were selected from the leaf-on

2010 datasets, corresponding to flight lines 11, 12 and 16, and subset to include only forested

areas, as illustrated in Figure 7.1.Non-overlapping flight lines were chosen to avoid the

complication of double sampling in the readout statistics, in addition to their coverage of

different forest structural types.

The DR data had a maximum of four returns per pulse whereas the FW data could have up to

ten returns per pulse which were generated through applying Gaussian curve fitting to each of

the returned laser waveforms. Table 7.2 summarises the total number of emitted pulses and

derived points for both DR and FW datasets by flight line subset after pre-processing. The

total number of initial FW pulses were equivalent to approximately 40% of total number of

initial DR pulses. From the values in Table 7.2, the difference in initial pulses compared with

the total number of points for DR LiDAR only represents, on average, a 30% increase,

whereas for FW LiDAR there is, on average, a 143% increase in the number of points relative

to the initial number of pulses.

It should be noted that the different pulse rate between the DR and FW LiDAR datasets

influenced the 3D spatial sampling and point density within the forest canopy. DR LiDAR

had a higher density of spatial sampling overall, whereas the FW LiDAR had more points

vertically; however there was a larger horizontal spacing at all vertical levels.

To compare the ability of the LiDAR systems to record points beneath the forest canopy, four

sample areas were created in each of the three flight line extents. These twelve sample areas

were 100m by 20m in size and the corners were oriented north to south. Figure 7.2 illustrates

their locations. A number of statistics were calculated for both DR and FW LiDAR data

subset areas. The number of points located at ten vertical levels (height-bins) was calculated.

The ten height-bins were delineated as (i) 0-3m, (ii) 3-6m, (iii) 6-9m, (iv) 9-12m, (v) 12-15m,

(vi) 15-18m, (vii) 18-21m, (viii) 21-24m, (ix) 24-27m and (x) 27m and higher. Figures 7.3-

7.5 summarise the point totals for each of these height bins located within the sample areas.

Figure 7.3 relates to flight line 11, and indicates that FW provides a higher number of points
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within the mid canopy for both deciduous and coniferous sites, at approximately 9-18m. High

numbers of points for both DR and FW appear in the 0-3m height bin, but DR usually has a

higher return count. This pattern is repeated in Figure 7.4, which relates to flight line 12.

Sample site 3 (line 12), a conifer stand, shows FW returns drastically outnumber the DR

counterparts. In Figure 7.5, which relates to flight line 16, the same pattern is repeated,

although DR counts can exceed FW in the upper canopy. For sample site 1 (line 16), a

deciduous stand, FW produces larger height return counts in the mid canopy, (9-15m).

Overall however there are no systematic differences within the overall distributions of

LiDAR points between DR and FW datasets.

Figure 7.1 – An illustration of the locations of flight lines 11, 12
and 16 for 2010 leaf-on LiDAR data acquisitions. Base Map layer
is © Crown Copyright/database right 2010. An Ordnance
Survey/EDINA supplied service.
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Table 7.2 – Summary of DR and FW number of recorded pulses and points by flight line subset.
Flight line no. Extent (km2) DR total no.

pulses
DR total no.
points

FW total no.
pulses

FW total no.
points

11 1.292 4706392 6146380 3083695 7267835
12 1.838 12063215 15816682 4790090 11469291
16 1.737 11376678 14912713 4360583 11028303

Figure 7.2 – The locations of samples sites
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Figure 7.3 – Summary of height bin point counts for each of the sample areas in flight line 11
(both DR - blue, and FW - red)

Figure 7.4 – Summary of height bin point counts for each of the sample areas in flight line 12
(both DR - blue and FW - red)
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Figure 7.3 – Summary of height bin point counts for each of the sample areas in flight line 11
(both DR - blue, and FW - red)

Figure 7.4 – Summary of height bin point counts for each of the sample areas in flight line 12
(both DR - blue and FW - red)
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Figure 7.3 – Summary of height bin point counts for each of the sample areas in flight line 11
(both DR - blue, and FW - red)

Figure 7.4 – Summary of height bin point counts for each of the sample areas in flight line 12
(both DR - blue and FW - red)
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Figure 7.5 – Summary of height bin point counts for each of the sample areas in flight line 16
(both DR - blue and FW - red)
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Figure 7.5 – Summary of height bin point counts for each of the sample areas in flight line 16
(both DR - blue and FW - red)
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Figure 7.5 – Summary of height bin point counts for each of the sample areas in flight line 16
(both DR - blue and FW - red)
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7.2 Estimating field-level forest structural and compositional metrics from DR LiDAR
data
The statistical models applied to the DR LiDAR remote sensing dataset to estimate field plot-

level metrics are presented here. Two statistical models, using Ordinary Least-Squares (OLS)

and Akaike information criterion (AICc) multiple regression approaches, were calculated for

each of the 39 field metrics using the inputs from the DR LiDAR remote sensing dataset.

These inputs can be summarised as those statistics derived from ITC objects and area-based

statistical summaries of LiDAR data layers. All ITC summary statistics were calculated using

leaf-on LiDAR data. What follows is a breakdown of the regression models produced by

forest structural, compositional, deadwood, regeneration and understorey metrics, and finally

the two additional metrics required for index construction in further steps (see Chapter 9). In

the models, the coefficients and variables were statistically significant at p<0.05.

7.2.1 Forest structure within the plot
Table 7.3 gives the R2 value for each of the regression models produced for DR LiDAR data

for the estimation of the 14 structural metrics. When considering the statistical methods, OLS

and AICc, the former performs better for eight of fourteen models, although eight of the R2

values are very similar (±0.1) to one another. The larger differences between the two methods

are as follows: number of trees, mean DBH, standard deviation of DBH, average crown area,

standard deviation of crown area and total crown area. AICc weights do not differ by much

for the majority of the fourteen cases; typically the values vary between 1 and 2.Larger values

are evident for the standard deviation of tree spacing and the standard deviation of the height

of the first live branch

The input metrics for the 14 regression models are reported in Table 7.4. Many DR LiDAR

metrics are used including from ITC-summaries, all and non-ground point metrics,

percentiles, and intensity. ITC-summary metrics are common to almost all these models,

followed by area-based summary metrics utilising all point distributions. Leaf-on metrics are

used slightly more for model inputs than leaf-off metrics. When comparing OLS and AICc

models for deriving average tree NN spacing, completely different model inputs are used,

with the former having a higher R2. The OLS model uses one metric, the variance of all

points in the leaf-on data, whereas the AICc model uses four inputs relating to the mean

absolute deviation of points within the plot and three ITC-summary metrics for mean crown

area, average NN spacing and number of overstorey trees.
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Table 7.3 – Forest structural metrics, R2and AICc weightsfor DR LiDAR data (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
Number of trees per 30x30m 0.862 0.672 0.140 0.087 1.609
Average tree NN spacing (m) 0.799 0.906 0.149 0.119 1.252
STDev. Of tree NN spacing (m) 0.753 0.682 0.835 0.165 5.061
Mean DBH (cm) 0.663 0.796 0.058 0.057 1.018
STDev. of DBH (cm) 0.625 0.819 0.056 0.041 1.366
Basal area within 30x30m 0.580 0.658 0.474 0.277 1.711
Percentage big trees (DBH
40>x<80cm) 0.628 0.651 0.031 0.031 1.000

Percentage very big trees (DBH
>80cm) 0.628 0.471 0.134 0.116 1.155

Percentage big trees (DBH >40cm) 0.839 0.920 0.092 0.054 1.704
Average height of the first live branch
(m) 0.896 0.876 0.057 0.038 1.500

STDev. of the height of the first live
branch (m) 0.824 0.817 0.187 0.062 3.016

Average crown horizontal area (m2) 0.748 0.629 0.104 0.066 1.576
STDev. crown horizontal area (m2) 0.857 0.633 0.211 0.107 1.972
Total crown horizontal area (m2) 0.748 0.690 0.035 0.028 1.250
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Table 7.4– DR LiDAR metric inputs for each forest structural metric regression model
(Appendix C.1-C.3 should be consulted for a description of DR LiDAR metric names)
Metric Name: LiDAR OLS model input metrics LiDARAICc model input metrics

Number of trees
per 30x30m

(1) TIF_m_area (ITC)
(2) p020_2 (point-all) [leaf-on]
(3) SHN_Med (point-non-ground) [leaf-off]

(1) SHA_Kur_2 (point-all) [leaf-on]
(2) TIF_m_area (ITC)
(3) TIF_TreeNo (ITC)

Average tree
spacing (m) (1) SHA_Var_2 (point-all) [leaf-on]

(1) SHA_MAD_2 (point-all) [leaf-on]
(2) TIF_m_area (ITC)
(3) TIF_Space (ITC)
(4) TIF_TreeNo (ITC)

STDev. Of tree
spacing (m)

(1) p045 (point-all) [leaf-off]
(2) SHN_Kur(point-non-ground) [leaf-off]

(1) p060 (point-all) [leaf-off]
(2)TIF_CR (ITC)

Mean DBH (cm)
(1) TIF_space (ITC)
(2) TIF_meanCV (ITC)

(1) SHA_Var_2 (point-all) [leaf-on]
(2) SIN_Kur (intensity-non-ground) [leaf-
off]
(3) TIF_m_area (ITC)

STDev. of DBH
(cm)

(1) TIF_TreeNo (ITC)
(2) p035_2(point-all) [leaf-on]
(3) SHN_Ske(point-non-ground) [leaf-off]

(1) p090i (Intensity-all) [leaf-off]
(2) TIF_TreeNo (ITC)

Basal area within
30x30m

(1) p055i_2 (intensity-all) [leaf-on]
(2) TIF_space (ITC)
(3) SIA_Kur_2 (intensity-all) [leaf-on]

(1) p055i_2 (intensity-all) [leaf-on]
(2) TIF_Space (ITC)

Percentage big
trees (DBH
40>x<80cm)

(1) SHA_Var_2 (points-all) [leaf-on]
(2) TIF_STD (ITC)
(3) SHN_Var (points-non-ground) [leaf-off]
(4) SHA_Kur (point-all) [leaf-off]

(1) SHA_Var_2 (point-all) [leaf-off]
(2) TIF_space (ITC)

Percentage very
big trees (DBH
>80cm)

(1) TIF_CR (ITC) (1) TIF_TreeNo (ITC)

Percentage big
trees (DBH
>40cm)

(1) SHA_STD_2 (points-all) [leaf-on]
(2) TIF_m_area (ITC)

(1) SHA_STD_2 (points-all) [leaf-on]
(2) TIF_Space (ITC)
(3) TIF_TreeNo (points-all)

Average height of
the first live
branch (m)

(1) SHA_Var_2 (points-all) [leaf-on]
(2) TIF_Space (ITC)
(3) TIF_meanCV (ITC)

(1) lon_can_depth (points-all) [leaf-on]
(2) SHA_STD(points-all) [leaf-off]
(3) SIN_Ske (intensity-non-ground) [leaf-
off]

STDev. of the
height of the first
live branch (m)

(1) SIA_Ske (intensity-all) [leaf-off]
(2) TIF_Space (ITC)
(3) p060i (intensity-all) [leaf-off]
(4) SHN_Mean_2 (points-non-ground)
[leaf-off]

(1) SHA_Max_2 (points-all) [leaf-on]
(2) TIF_STD (ITC)
(3) TIF_to_area (ITC)

Average crown
horizontal area
(m2) (1) TIF_CR (ITC)

(1) SIN_Kur (intensity-non-ground) [leaf-
off]
(2) TIF_Space (ITC)
(3) TIF_to_area (ITC)

STDev. crown
horizontal area
(m2)

(1) TIF_m_area (ITC)
(2) SIA_Mean_2 (intensity-all) [leaf-on]
(3) SIN_Kur(intensity-non-ground) [leaf-
off]

(1) SIA_Med (intensity-all) [leaf-off]
(2) TIF_m_area (ITC)

Total crown
horizontal area
(m2)

(1) SHA_Ske_2 (points-all) [leaf-on]
(2) TIF_Space (ITC)
(3) SHA_Ske (points-all) [leaf-off]

(1) SHA_Mean_2 (points-all) [leaf-on]
(2) SHA_STD_2 (points-all) [leaf-on]
(3) SIA_Var_2 (intensity-all) [leaf-on]
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7.2.2 Forest composition within the plot
The R2values for each of the eight regression models for the prediction of forest

compositional metrics is given in Table 7.5. Two of the field plot-level metrics could not be

modelled using OLS regression, the SI (by stem count) and SH (by basal area).Only one

metric, the number of tree species, had a lower R2 value for the AICc models. The AICc

evidence ratio indicated there was not much difference between the first and second ‘best’

models generated through the AICc approach.

DR LiDAR metric inputs into the regression models, as given in Table 7.6, included many

types of area-based metrics for both point heights and intensity. Both leaf-on and leaf-off data

were used. Intensity metrics saw greater usage for composition metrics than for structural

metrics, as did the metric related to non-ground points.

Table 7.5 – Forest composition metrics, R2and AICc weights for DR LiDAR (all models p<0.05).
Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
Number of native trees per 30x30m 0.428 0.552 0.133 0.093 1.430

Percentage of native trees 0.435 0.528 0.181 0.111 1.631
No. of tree species per 30x30m 0.673 0.426 0.104 0.104 1.000
Shannon index (by stem count) 0.571 0.696 0.126 0.095 1.326
Simpson index (by stem count) - 0.589 0.055 0.043 1.279

Shannon index (by BA) - 0.773 0.375 0.214 1.752
Simpson index (by BA) 0.448 0.473 0.035 0.034 1.029
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Table 7.6 – DR LiDAR metric inputs for each forest compositional metric regression model
(Appendix C.1-C.3 should be consulted for a description of DR LiDAR metric names)
Metric Name: DR LiDAR OLS model input metrics DR LiDARAICc model input metrics

Number of native
trees per 30x30m

(1) SHA_Kur_2 (points-all) [leaf-on]
(2) p075_2 (points-all) [leaf-on]

(1) SHA_Ske (points-all) [leaf-off]
(2) SHA_Ske_2 (points-all) [leaf-on]
(3) TIF_m_area (ITC)

Percentage of
native trees

(1) SIA_Kur (intensity-all) [leaf-off]
(2) SIN_Var_2 (intensity-non-ground) [leaf-
on]
(3) p050 (points-all) [leaf-off]

(1) TIF_TreeNo (ITC)

No. of tree species
per 30x30m

(1) SIN_STD_2 (intensity-non-ground)
[leaf-on]

(1) p050(points-all) [leaf-off]
(2) SIN_Var_2 (intensity-non-ground) [leaf-
on]

Shannon index
(by stem count)

(1) SIN_Kur_2 (intensity-non-ground)
[leaf-on]
(2) p050i_2 (intensity-all) [leaf-on]
(3) SHN_STD_2 (points-non-grounds)
[leaf-on]

(1) SHN_Med (points-non-grounds) [leaf-
off]
(2) SIN_Ske_2 (intensity-non-ground) [leaf-
on]
(3) TIF_to_area (ITC)
(4) TIF_totalCV (ITC)

Simpson index (by
stem count) -

(1) SHN_Mean_2 (points-non-grounds)
[leaf-on]
(2) SHN_STD_2 (points-non-grounds)
[leaf-on]
(3) SIA_Kur_2 (intensity-all) [leaf-on]
(4) TIF_totalCV (ITC)

Shannon index
(by BA) -

(1) DEM_Slope_2 (points-ground) [leaf-on]
(2) p015_2 (points-all) [leaf-on]
(3) SHN_STD_2 (points-non-ground) [leaf-
on]
(4) SIA_Med (intensity-all) [leaf-off]

Simpson index (by
BA)

(1) TIF_HT (ITC)
(2) SIN_Ske_2 (intensity-non-ground)

(1) p070_2 (points-all) [leaf-on]
(2) SIN_Ske_2 (intensity-non-grounds)
[leaf-on]

7.2.3 Deadwood within the plot
The R2 values for the regression models for the estimation of the four forest deadwood

metrics are given in Table 7.7. Comparing the OLS and AICc models, three of the four of the

latter had lower R2 values, although the values for standing deadwood volume were very

similar. AICc weights and evidence ratios indicate there was not much difference between the

first and second ‘best’ models. DR LiDAR metric inputs into the regression models for

deadwood included primarily metrics related to the LiDAR intensity of both ground and non-

ground points, as seen in Table 7.8. Both leaf-on and leaf-off data were used. The standard

deviation of ITC tree crown spacing was utilised for both OLS and AICc models for

predicting the volume of standing deadwood.
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Table 7.7 – Forest Deadwood metrics, R2 and AICc weights for DR LiDAR data (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
Standing dead wood volume (m3) 0.920 0.906 0.113 0.105 1.076
Standing dead wood decay class 0.541 0.883 0.251 0.202 1.243
Downed dead wood volume (m3) 0.511 0.420 0.024 0.019 1.263
Downed dead wood decay class 0.786 0.472 0.049 0.044 1.114

Table 7.8– DR LiDAR metric inputs for each forest Deadwood metric regression model
(Appendix C.1-C.3 should be consulted for a description of DR LiDAR metric names)
Metric Name: OLS model input metrics AICc model input metrics

Standing dead
wood volume (m3) (1) TIF_STD(ITC)

(2) SIN_Kur (intensity-non-ground) [leaf-
off]
(3) SIG_Kur_2 (intensity-ground) [leaf-on]

(1) SIN_Kur (intensity-non-ground) [leaf-
off]
(2) SIN_Med (intensity-non-ground) [leaf-
off]
(3) TIF_STD (ITC)

Standing dead
wood decay class (1) SIA_Ske (intensity-all) [leaf-off]

(2) SIG_Ske_2 (intensity-ground) [leaf-on]

(1) p015i_2 (intensity-all) [leaf-on]
(2) SIN_Ske_2 (intensity-non-ground) [leaf-
on]
(2) SIN_STD (intensity-non-ground) [leaf-
off]

Downed dead
wood volume (m3) (1) SIG_MAD_2 (intensity-ground) [leaf-

on]

(2) SHA_STD_2 (points-all) [leaf-on]
(2) SIN_Ske (intensity-non-ground) [leaf-
off]

Downed dead
wood decay class

(1) SIN_Mean_2 (intensity-non-ground)
[leaf-on]

(1) SIN_Med_2 (intensity-non-ground)
[leaf-on]

7.2.4 Understorey metrics within the plot
There were 12 understorey field-level metrics in total; Table 7.9 gives the R2 value for each

regression model and AICc weights. Overall, R2 values were high for both OLS and AICc

models. Seven of the twelve regression model comparisons had very similar in the R2 values,

and five of the AICc models had lower R2 values than the OLS counterpart. Three of these

had a difference of up to ±0.3.One metric could not be estimated by OLS regression, the

number of vascular species.R2 values for the estimate of the SH index for native seedlings

were low, for both OLS and AICc. Again, AICc weights and evidence ratio indicate there

was not much difference between the first and second ‘best’ models.
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The DR LiDAR metric inputs for each of the regression models are listed in Table 7.10. The

majority of models utilise some measure of DR LiDAR return intensity as an input, whereas

ITC-summary and point-height metrics are in the minority. AICc models typically use leaf-on

data, where OLS generally includes both leaf-on and leaf-off data. There are a number of

occurrences of intensity values from percentiles in the upper canopy being used in the models

for estimating field-level metrics, these being the number of saplings and the number of

seedling species. Measures of ground slope and roughness were used as inputs for estimating

metrics on the forest floor.

Table 7.9 – Forest understorey metrics, R2and AICc weights for DR LiDAR data (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
No. saplings per 30x30m 0.965 0.922 0.152 0.135 1.126

No. native saplings per 30x30m 0.890 0.896 0.043 0.043 1.000
Percentage of native saplings per

30x30m 0.879 0.951 0.172 0.138 1.246

No. of sapling species per 30x30m 0.905 0.938 0.175 0.104 1.683
No. seedlings per 30x30m 0.821 0.527 0.073 0.050 1.460

No. native seedlings per 30x30m 0.413 0.631 0.026 0.022 1.182
Percentage of native seedlings per

30x30m 0.920 0.585 0.018 0.017 1.059

No. of seedling species per 30x30m 0.739 0.594 0.077 0.069 1.116
Seedlings Shannon index for native

species 0.212 0.212 0.124 0.091 1.363

No. vascular species - 0.746 0.054 0.044 1.227
No. bryophyte species 0.835 0.858 0.123 0.100 1.230

Percentage of bare soil within
30x30m 0.761 0.737 0.183 0.102 1.794
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Table 7.10– DR LiDAR metric inputs for each forest understorey metric regression model
(Appendix C.1-C.3 should be consulted for a description of DR LiDAR metric names)
Metric Name: OLS model input metrics AICc model input metrics

No. saplings per
30x30m

(1) p060i_2 (intensity-all) [leaf-on]
(2) TIF_HT (ITC)
(3) p045i_2 (intensity-all) [leaf-on]
(4) SIN_Var (intensity-non-ground) [leaf-
off]

(1) p060i_2 (intensity-all) [leaf-on]
(2) p060_2 (points-all) [leaf-on]
(3) SIA_Mean (intensity-all) [leaf-off]

No. native
saplings per
30x30m

(1) p060i_2 (intensity-all) [leaf-on]
(2) p050_2 (poinst-all) [leaf-on]
(3) SIA_Mean (intensity-all) [leaf-off]

(1) p060i_2 (intensity-all) [leaf-on]
(2) SHN_Med_2 (points-non-ground) [leaf-
on]

Percentage of
native saplings
per 30x30m (1) SHN_Ske_2 (points-non-ground) [leaf-

on]
(2) p095_2 (points-all) [leaf-on]

(1) SHN_Ske_2 (points-non-ground) [leaf-
on]
(2) SIN_Mean_2 (intensity-non-ground)
[leaf-on]
(3) SIN_Var(intensity-non-ground) [leaf-
off]

No. of sapling
species per
30x30m

(1) p045_2 (points-all) [leaf-on]
(2) TIF_CR (ITC)
(3) SIG_Med (intensity-ground) [leaf-off]

(1) p060i_2 (intensity-all) [leaf-on]
(2) loff_can_depth (poinst_all) [leaf-off]
(3) SIG_Med (intensity-ground) [leaf-off]

No. seedlings per
30x30m

(1) DEM_Slope (poinst-all) [leaf-off]
(2) SIG_Kur (intensity-ground) [leaf-off]
(3) SIN_Var (intensity-non-ground) [leaf-
off]
(4) p015i_2 (intensity-all) [leaf-on]

(1) SIG_MAD (intensity-ground) [leaf-off]
(2) SIG_Mean_2 (intensity-ground) [leaf-
on]

No. native
seedlings per
30x30m

(1) TIF_STD (ITC)
(2) TIF_meanCV (ITC)

(1) SIA_Mean (intensity-all) [leaf-off]
(2) SIG_Kur (intensity-ground) [leaf-off]
(3) SIG_Ske_2 (intensity-ground) [leaf-on]
(4) TIF_meanCV (ITC)

Percentage of
native seedlings
per 30x30m

(1) SIG_Ske (intensity-ground) [leaf-off]
(2) SIG_Kur (intensity-ground) [leaf-off]
(3) SIN_Mean (intensity-non-ground) [leaf-
off]
(4) SHN_Kur_2 (points-non-ground) [leaf-
on]

(1) p045_2 (points-all) [leaf-on]
(2) SIA_Med_2 (intensity-all) [leaf-on]

No. of seedling
species per
30x30m

(1) p060i_2 (intensity-all) [leaf-on]
(2) p060_2 (points-all) [leaf-on]
(3) CR_ratio (points-all) [leaf-off]

(1) DEM_Slope_2 (points-ground) [leaf-on]
(2) SHA_Mean_2 (points-all) [leaf-on]
(3) SIA_Ske_2 (intensity-all) [leaf-on]

Seedlings Shannon
Index for native
species

(1) TIF_m_area (ITC) (1) SIG_Ske_2 (intensity-ground) [leaf-on]

No. Vascular
Species -

(1) DEM_Rough (points-ground)[leaf-off]
(2) p025i_2 (intensity-all) [leaf-on]
(3) SHA_Ske_2 (points-all) [leaf-on]
(4) TIF_HT (ITC)

No. Bryophyte
Species (1) p085i(intensity-all) [leaf-off]

(2) lon_max_gap (points-all) [leaf-on]
(3) TIF_m_area (ITC)
(4) TIF_Space (ITC)

(1) lon_can_layer (points-all) [leaf-on]
(2) p010_2 (points-all) [leaf-on]
(3) SIN_Kur (intensity-non-ground) [leaf-
off]
(4) SIN_STD (intensity-non-ground) [leaf-
off]
(5) TIF_STD (ITC)

Percentage of
bare soil within
30x30m

(1) p020_2 (points-all) [leaf-on]
(2) SHA_Var (poinst-all) [leaf-off] (1) p025i_2 (intensity-all) [leaf-on]
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7.2.5 Metrics required for condition index construction
Regression modelling techniques were applied to the two field data derived metrics required

for input into two condition indices, the R2 values and AICc weights are given for the models

in Table 7.11. The R2 values for the sum of the DBH differences are high and similar

between OLS and AICc. LiDAR intensity and ITC-summary metrics are both used, and in

addition, the OLS method also uses a metric relating to the distribution of point heights. The

regression models for the index of vertical separation differ, and the OLS model has the

lower R2 value. The regression models are listed in Table 7.12. The input metrics for the

index of vertical separation differ between the two models; OLS uses non ground point

distributions, whilst AICc utilises metrics related to the crown shape and coverage. AICc

weights and evidence ratio indicate there was a slight difference between the first and second

‘best’ models generated through the AICc approach.

Table 7.11 – Condition index construction metrics, R2and AICc weights for DR LiDAR (all
models p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
Sum of the DBH differences between
neighbouring trees (cm) 0.873 0.924 0.155 0.092 1.685

Index of Vertical Separation 0.526 0.743 0.152 0.093 1.634

Table 7.12 – DR LiDAR metric inputs for each forest condition index metric regression model
(Appendix C.1-C.3 should be consulted for a description of DR LiDAR metric names.)

Metric Name: OLS model input metrics AICc model input metrics

Sum of the DBH
differences between
neighbouring trees (cm)

(1) TIF_TreeNo (ITC)
(2) SHA_Kur_2 (points-all) [leaf-on]
(3) p045i_2 (intensity-all) [leaf-on]

(1) p015i_2 (intensity-all) [leaf-on]
(2) SIA_MAD_2 (intensity-all) [leaf-on]
(3) TIF_m_area (ITC)
(4) TIF_meanCV (ITC)

Index of Vertical
Separation

(1) SHN_Ske (points-non-ground) [leaf-off]
(2) SHN_STD_2 (points-non-ground) [leaf-on]

(1) CC (points-all) [leaf-off]
(2)CR_ratio (poinst-all) [leaf-off]
(3) TIF_to_area (ITC)
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7.3Validation of DR LiDAR remote sensing derived model estimates against field data
The various direct and statistical model estimates of forest structure and composition are

compared with fieldwork data within this section. It begins with the direct comparisons which

can be made using DR LIDAR remote sensing data, followed by a summary of the various

statistical model estimates derived from remote sensing. RMSE and NRMSE values are

presented to illustrate the accuracy of each model prediction. NRMSE is a modified RMSE

value to account for the field data population range, and produces a value of 0 to 1. NRMSE

values of 0.5 or greater indicate poor model performance.

7.3.1 Direct comparisons between field measurements and remote sensing metrics
Direct comparisons involved: (i) the number of trees within the plot extent, (ii) average tree

height, (iii) number of canopy layers, (iv) canopy openness, (v) individual stem distances and

(vi) tree crown horizontal diameters.

Table 7.13 summarises the relationships between the automated tree detection techniques and

the actual stem counts within the plot, and those stems identified as overstorey (defined as

trees with a height >15m). Automated individual tree crown (ITC) delineation techniques

were conducted in the two pieces of software, eCognition and TIFFS, each of which were

employed to delineate individual tree crowns using leaf-on DR LiDAR data only. The

eCognition approach was mentioned in chapter 6, where it was utilised to classify tree species

ITC objects, but without a direct comparison with stem count.

Both of the automated approaches underestimate the amount of stems within the plot, with

the one exception of plot 33.This underestimation is especially true of very high tree density

plots, such as plot 23 and 30.If one considers the stem count of overstorey trees only, the

automated approaches more closely resemble the field data; this is also reflected in the lower

RMSE and NRMSE values for overstorey trees.
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Table 7.13 – Comparison of stem counts between field data and automated tree detection
Site no. Field

total
stem no.

Over-
storey
stem no.

TIFFS
ITC
tree no.

eCognitionI
TC
tree no.

22 20 15 11 10
23 71 54 25 33
24 53 30 15 14
25 21 15 12 10
26 17 13 8 10
27 33 13 9 11
28 35 34 13 21
29 30 21 11 12
30 90 80 21 22
31 24 24 27 18
32 20 17 17 19
33 28 27 30 36
34 28 17 16 20
35 33 31 19 23
36 25 22 18 22
37 23 16 12 11
38 36 28 16 16
39 16 15 13 23
40 17 13 13 12
41 24 14 15 18

RMSE AgainstField total stem no.
TIFFS tree no. eCognition tree no.

RMSE 23.48 22.13
NRMSE 0.32 0.30

RMSE Against Over-storey stem no.
TIFFS tree no. eCognition tree no.

RMSE 16.58 15.52
NRMSE 0.25 0.23

Area-based estimates of canopy structure are summarised in Table 7.14.The first of these,

Lorey’s height, is an average estimate of tree heights weighted by basal area. Average height

was estimated by an average of ITC objects generated by the TIFFS software using leaf-on

DR LiDAR. The RMSE and NRMSE values for the TIFFS average height were 3.46m and

0.18 respectively, and indicate a potential maximum ± 3.26m deviation between field and

remote sensing measurements. The total number of canopy layers relates to the height layers

of vegetation within a plot, and typically varied between one and three for the validation field

plots. LiDAR estimates were made using the SPDlib software for leaf-on DR LiDAR data,

which produced an RMSE of 1.18. With two exceptions, the majority of layer estimates were

correct or within ±1 of the field counterpart.

Canopy openness was estimated in the field using aggregated data from hemispherical

photographs. The comparison between field and DR LiDAR estimates are shown in Table

7.15.RMSE values were calculated as 25.59% and 13.29% for leaf-off and leaf-on datasets

respectively.
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Table 7.14 – Comparison of forest structural metrics from DR LiDAR data with field data
Site no. Lorey's

Height
(m)
[Field]

TIFFS
average
height
(m)
[DR]

No.
Canopy
Layers
[Field]

No.
canopy
layers
[DR]

22 12.83 16.91 2 3
23 16.85 11.97 2 2
24 19.17 21.42 2 3
25 22.13 24.12 2 3
26 21.05 20.38 1 3
27 24.79 30.55 3 5
28 23.35 20.36 1 3
29 17.89 22.56 2 4
30 19.38 20.58 2 3
31 28.78 29.10 1 2
32 25.64 21.10 1 3
33 28.36 26.42 1 2
34 22.99 24.20 3 3
35 23.89 26.81 3 3
36 25.12 23.71 2 2
37 17.91 22.48 2 3
38 21.4 17.64 3 3
39 33.12 26.77 3 3
40 24.45 21.82 3 3
41 18.99 21.21 2 3

RMSE 3.46 RMSE 1.18
NRMSE 0.18 NRMSE 0.39
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Table 7.15 – Canopy openness comparisonof DR LiDAR data with field data
Site
no.

Canopy
openness
(%)
[Field]

Canopy
openness
(%) (Leaf
off)
[DR]

Canopy
openness
(%) (Leaf
on)
[DR]

22 20.59 44.20 32.40
23 17.24 40.80 33.90
24 19.59 46.80 38.80
25 21.01 44.80 26.90
26 22.81 39.80 33.90
27 12.97 40.20 18.10
28 26.84 54.00 49.50
29 22.76 36.80 35.00
30 15.68 44.90 20.20
31 14.67 46.60 16.30
32 15.8 41.60 18.80
33 18.89 40.20 34.30
34 15.72 51.20 32.30
35 21.33 47.80 43.60
36 14.75 40.50 6.20
37 23.87 46.00 37.90
38 17.72 41.70 36.60
39 22.8 54.10 36.40
40 16.21 44.50 13.00
41 10.35 26.20 16.60

RMSE 25.59 13.29

7.3.2 Validation of remote sensing derived statistical models against field data
This section contains the results of the regression models derived from DR LIDAR datasets

compared to 2012 field data measurements. RMSEs and NRMSEs were calculated for each

of the remote sensing derived models. An overview of the OLS and AICc models for each

field-level metric is presented in Table 7.16 for overstorey metrics and in Table 7.17 for

understorey metrics. Table 7.16 includes a number of ITC summary values for the number of

trees within an area, NN spacing, average crown and total crown areas.

A number of metrics had poor RMSE and NRMSE values for both regression methods:

percentage very big trees (DBH >80cm), SH index (by basal area), percentage of native

saplings, number of sapling species and the number of bryophyte species. As before, poor

values are defined arbitrarily as NRMSE values above 0.5, and in consideration of the range

of actual field values. There are two examples of one regression method producing NRSME

values above 0.5(for the percentage of native trees, and percentage of bare soil), whilst the

other does not. In relation to the statistically derived estimates for the standard deviation of
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NN spacing, very small ranges were encountered for this metric in the field, where RMSE of

OLS corresponds to less than 1m.

Seventeen out of the remaining thirty-four models showed OLS methods produced better

results than AICc, although some were similar. For example models for estimating total basal

area had RMSE values of0.848m2 and 0.825m2 for OLS and AICc respectively. In reference

to Table 7.16, ITC-summary metrics produced similar RMSE values for all field metric

estimations, apart from those related to stem NN spacing. Average crown and total crown

area ITC estimates produced results similar or slightly better than those derived statistically.

Table 7.16 – The OLS and AICc DR LiDAR regression models. Part 1: overstorey composition.
Field metric ITC

Direct
RMSE*

ITC
Direct

NRMSE*

OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Number of trees per 30x30m 24.077 0.325 18.544 0.251 18.035 0.244
Number of native trees per 30x30m - - 15.464 0.297 15.045 0.289
Percentage of native trees - - 73.622 0.736 28.753 0.288
No. of tree species per 30x30m - - 1.628 0.407 1.500 0.375
Average tree NN spacing (m) 4.234 1.275 1.097 0.330 1.842 0.555
STDev. Of tree NN spacing (m) 0.657 0.790 0.577 0.695 0.958 1.153
Mean DBH (cm) - - 8.357 0.287 11.925 0.409
STDev. of DBH (cm) - - 10.572 0.217 11.922 0.245
Basal area within 30x30m (m2) - - 0.848 0.264 0.825 0.257
(i) Percentage big trees (DBH
40>x<80cm) - - 20.028 0.286 24.762 0.354

(ii) Percentage very big trees (DBH
>80cm) - - 9.845 1.624 7.042 1.162

(iii) Percentage big trees (DBH
>40cm) - - 26.503 0.379 27.052 0.386

Shannon index (by stem count) - - 0.526 0.367 0.625 0.436
Simpson index (by stem count) - - - - 0.306 0.237
Shannon index (by BA) - - - - 0.546 0.711
Simpson index (by BA) - - 0.662 0.229 0.649 0.225
Average height of the first live
branch (m) - - 3.212 0.296 2.679 0.247

STDev. of the height of the first live
branch (m) - - 2.309 0.448 1.660 0.322

Average crown horizontal area (m2) 25.459 0.292 36.700 0.421 23.532 0.270
STDev. crown horizontal area (m2) - - 20.623 0.361 26.788 0.468
Total crown horizontal area (m2) 558.118 0.387 561.549 0.389 641.159 0.444

*Denotes this was not derived statistically and cannot be applied to all metrics
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Table 7.17– The OLS and AICc DR LiDAR regression models. Part 2: understorey composition.
Field metric OLS

RMSE
OLS

NRMSE
AICc

RMSE
AICc

NRMSE

Standing dead wood volume (m3) 1.497 0.181 2.927 0.354
Standing dead wood decay class 0.246 0.369 0.243 0.364
Downed dead wood volume (m3) 2.737 0.301 2.862 0.315
Downed dead wood decay class 0.170 0.362 0.174 0.371
No. saplings per 30x30m 26.039 0.241 24.406 0.226
No. native saplings per 30x30m 10.402 0.274 12.350 0.325
Percentage of native saplings per 30x30m 73.948 0.739 60.853 0.609
No. of sapling species per 30x30m 2.012 0.671 1.993 0.664
No. seedlings per 30x30m 295.244 0.315 337.836 0.361
No. native seedlings per 30x30m 239.082 0.332 243.125 0.338
Percentage of native seedlings per 30x30m 49.305 0.493 44.049 0.440
No. of seedling species per 30x30m 3.162 0.243 3.465 0.267
Seedlings Shannon index for native species 1.073 0.665 0.726 0.450
No. vascular species 2.356 0.393 3.455 0.576
No. bryophyte species 9.296 0.930 7.795 0.780
Percentage of bare soil within 30x30m 50.690 0.534 44.041 0.464
Sum of the DBH differences between
neighbouring trees (cm) 2.712 0.091 2.099 0.070

Index of vertical separation 0.161 0.319 1.029 2.038

7.4 Estimating field-level forest structural and compositional metrics from FW LiDAR
data
A listing of the statistical models applied to the FW LiDAR remote sensing datasets to

estimate field plot-level metrics is presented here. Each of the models presented were

statistically significant (p<0.05).

The two regression approaches, OLS and AICc, were applied to the FW LiDAR data in order

to predict the 39 field metrics. These inputs can be summarised as those statistics derived

from ITC objects and area-based statistical summaries of FW LiDAR data layers. What

follows is a breakdown of the regression models produced by forest structural, compositional,

deadwood, regeneration and understorey metrics, finally, the two additional metrics required

for index construction.
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7.4.1 Forest structure within the plot
There are 14 forest structural metrics estimated through the application of regression models

from FW LiDAR data, these are listed in Table 7.18 which gives their associated R2 values.

Comparing R2 values for OLS and AICc, it is OLS which is consistently higher, for all but

three models, the average tree NN spacing, the standard deviation of height to the first live

branch and the total crown area. However, many of the R2 values were similar, and varied at

most by 0.2.

The difference between first and second ‘best’ AICc weights was low for all but two of the

field metric regression models. The standard deviation of tree spacing evidence ratio showed

that the first model was over five times better than the second model. The evidence ratio of

the standard deviation of height to the first live branch showed the first model was over three

times better.

The FW metric inputs to the regression equations are given in Table 7.19.  These metrics

include ITC-summaries, point-heights, curve-amplitude and curve-width. An array of leaf-on

and leaf-off metrics was used. The most common metrics were point-heights and ITC-

summary metrics. Metrics related to DBH and basal area utilise both amplitude and width

metrics.
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Table 7.18 – Forest structure metrics, R2 and AICc weights for FW LiDAR data (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
Number of trees per 30x30m 0.897 0.672 0.140 0.087 1.609
Average tree NN spacing (m) 0.786 0.906 0.149 0.119 1.252
STDev. of tree NN spacing (m) 0.849 0.682 0.835 0.165 5.061
Mean DBH (cm) 0.933 0.796 0.058 0.057 1.018
STDev. of DBH (cm) 0.823 0.819 0.056 0.041 1.366
Basal area within 30x30m 0.691 0.658 0.474 0.277 1.711
Percentage big trees (DBH
40>x<80cm) 0.913 0.651 0.031 0.031 1.000

Percentage very big trees (DBH
>80cm) 0.642 0.471 0.134 0.116 1.155

Percentage big trees (DBH >40cm) 0.939 0.920 0.092 0.054 1.704
Average height of the first live branch
(m) 0.947 0.876 0.057 0.038 1.500

STDev. of the height of the first live
branch (m) 0.509 0.817 0.187 0.062 3.016

Average crown horizontal area (m2) 0.862 0.629 0.104 0.066 1.576
STDev. crown horizontal area (m2) 0.811 0.633 0.211 0.107 1.972
Total crown horizontal area (m2) 0.521 0.690 0.035 0.028 1.250
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Table 7.19 – FW LiDAR metric inputs for each forest structural metric regression model
(Appendix C.3, C.6-C.8 should be consulted for a description of FW LiDAR metric names)
Metric Name: OLS model input metrics AICc model input metrics

Number of trees
per 30x30m

(1) TIF_m_area (ITC)
(2) ht_p20_2 (points-all) [leaf-on]
(3) kurngamp (amplitude-non-ground)
[leaf-off]
(4) skwnght(points-non-ground) [leaf-off]

(1) kurht_2 (points-all) [leaf-on]
(2) TIF_TreeNo (ITC)

Average tree
spacing (m) (1) TIF_Space (ITC)

(2) amp_p20 (amplitude-all) [leaf-off]

(1) TIF_Space (ITC)
(2) TIF_to_area (ITC)
(3) varht_2 (points-all) [leaf-on]
(4) wd_p35 (width-all) [leaf-off]

STDev. of tree
spacing (m)

(1) TIF_m_area(ITC)
(2) meanht_2 (points-all) [leaf-on]
(3) kurwid(width-all) [leaf-off]

(1) ht_p40 (points-all) [leaf-off]
(2) meanwid (width-all) [leaf-off]

Mean DBH (cm) (1) TIF_m_area (ITC)
(2) varht_2 (points-all) [leaf-on]
(3) ht_p30 (points-all) [leaf-off]
(4) kurngamp(amplitude-non-ground) [leaf-
off]
(5) wd_p15_2 (width-all) [leaf-on]

(1) TIF_m_area (ITC)
(2) varngwid_2 (width-non-ground) [leaf-
on]

STDev. of DBH
(cm)

(1) kurngwid(width-non-ground) [leaf-off]
(2) amp_p15(amplitude-all) [leaf-off]
(3) wd_p25_2 (width-all) [leaf-on]

(1) amp_p65 (amplitude-all) [leaf-off]
(2) TIF_m_area (ITC)
(3) wd_p25_2 (width-all) [leaf-on]

Basal area within
30x30m

(1) kurngamp (amplitude-non-ground)
[leaf-off]
(2) TIF_Space (ITC)
(3) TIF_HT (ITC)
(4) wd_p25 (width-all) [leaf-off]

(1) ht_p60_2 (points-all) [leaf-on]
(2) kurngamp (amplitude-non-ground)
[leaf-off]
(3) TIF_to_area (ITC)
(4) varamp_2 (amplitude-all) [leaf-on]

Percentage big
trees (DBH
40>x<80cm)

(1) varht (points-all) [leaf-off]
(2) TIF_Space (ITC)
(3) ht_p30 (points-all) [leaf-off]

(1) ht_p70 (points-all) [leaf-off]
(2) varnght (points-non-ground) [leaf-off]

Percentage very
big trees (DBH
>80cm)

(1) TIF_m_area (ITC) (1) stdngwid (width-non-ground) [leaf-off]

Percentage big
trees (DBH
>40cm)

(1) varht_2 (points-all) [leaf-on]
(2) TIF_Space (ITC)
(3) kurwid (width-all) [leaf-off]

(1) adevht_2 (points-all) [leaf-on]
(2) TIF_Space (ITC)

Average height of
the first live
branch (m)

(1) loff_max_gap (points-all) [leaf-off]
(2) TIF_Space (ITC)
(3) TIF_totalCV (ITC)
(4) varngamp_2 (amplitude-non-ground)
[leaf-on]

(1) loff_max_gap (points-all) [leaf-off]
(2) TIF_Space (ITC)

STDev. of the
height of the first
live branch (m)

(1) TIF_m_area(ITC)
(2) TIF_meanCV (ITC)

(1) lon_can_depth(points-all) [leaf-on]
(2) maxht(points-all) [leaf-off]
(3) TIF_meanCV (ITC)
(4) TIF_to_area (ITC)

Average crown
horizontal area
(m2)

(1) TIF_m_area (ITC)
(2) kurngamp (amplitude-non-ground)
[leaf-off]
(2) amp_p15 (amplitude-all) [leaf-off]

(1) adevngwid(width-non-ground) [leaf-off]
(2) amp_p50_2 (amplitude-all) [leaf-on]
(3) TIF_meanCV (ITC)

STDev. crown
horizontal area
(m2)

(1) TIF_m_area (ITC)
(1) medamp_2 (amplitude-all) [leaf-on]

(1) kurwid(width-all) [leaf-off]
(2) meanamp (amplitude-all) [leaf-off]

Total crown
horizontal area
(m2)

(1) ht_p30_2 (points-all) [leaf-on]
(2) TIF_Space (ITC)

(1) amp_p35_2 (amplitude-all) [leaf-on]
(2) meanht_2 (points-all) [leaf-on]
(3) TIF_Space (ITC)
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7.4.2 Forest composition within the plot
A listing of the seven forest compositional metrics and their associated R2values are given in

Table 7.20. Again, OLS regression models produce higher R2 values than their AICc

counterparts for all but one metric, the number of native trees. R2values are similar however.

The AICc evidence ratio indicated there was not much difference between the first and

second ‘best’ models.

FW LiDAR metrics used for model inputs (see Table 7.21)are varied, but both curve-

amplitude and curve-width metrics see an increased usage in relation to the identification of

species diversity. Both leaf-on and leaf-off datasets were used.

Table 7.20 – Forest composition metrics, R2and AICc weights for FW LiDAR data (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
Number of native trees per 30x30m 0.460 0.614 0.102 0.057 1.789

Percentage of native trees 0.600 0.480 0.081 0.057 1.421
No. of tree species per 30x30m 0.576 0.320 0.114 0.070 1.629
Shannon index (by stem count) 0.672 0.627 0.072 0.068 1.059
Simpson index (by stem count) 0.546 0.488 0.072 0.060 1.200

Shannon index (by BA) 0.718 0.592 0.062 0.050 1.240
Simpson index (by BA) 0.612 0.570 0.012 0.012 1.000
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Table 7.21 – FW LiDAR metric inputs for each forest compositional metric regression model
(Appendix C.3, C.6-C.8 should be consulted for a description of FW LiDAR metric names)
Metric Name: OLS model input metrics AICc model input metrics
Number of native
trees per 30x30m

(1) wd_p30_2 (width-all) [leaf-on]
(2) ht_p45 (points-all) [leaf-off] (1) kurht_2 (points-all) [leaf-on]

Percentage of
native trees

(1) TIF_TreeNo (ITC)
(2) kurngwid_2 (width-non-ground) [leaf-
on]

(2) TIF_TreeNo (ITC)

No. of tree species
per 30x30m

(1) wd_p30_2 (width-all) [leaf-on]
(2) TIF_to_area (ITC)
(3) skwngamp_2 (amplitude-non-ground)
[leaf-on]

(1) skwngamp_2 (amplitude-non-ground)
[leaf-on]
(2) wd_p20_2 (width-all) [leaf-on]

Shannon index (by
stem count)

(1) kurngamp_2 (amplitude_non-ground)
[leaf-on]
(2) TIF_to_area (ITC)
(3) mednght(points-non-ground) [leaf-off]

(1) skwngamp_2 (amplitude-non-ground)
[leaf-on]
(2) TIF_to_area (ITC)
(3) varht_2 (points-all) [leaf-on]

Simpson index (by
stem count)

(1) kurngamp_2 (amplitude-non-ground)
[leaf-on]
(2) ht_p45_2 (points-all) [leaf-on]
(3) ht_p40 (points-all) [leaf-off]

(1) adevwid(width-all) [leaf-off]
(2) stdht_2 (points-all) [leaf-on]
(3) wd_p45_2 (width-all) [leaf-on]

Shannon index (by
BA)

(1) ht_p15_2 (point-all)
(2) TIF_m_area(ITC)
(3) wd_p15_2 (width-all)
(4) wd_p35 (width-all)

(1) maxgwid(width-ground)
(2) stdnght_2 (points-non-ground)
(3) varamp_2 (amplitude-all)

Simpson index (by
BA)

(1) kurht(points-all)
(2) stdnght_2 (points-non-ground)
(3) skwngamp_2 (amplitude-non-ground)

(1) medamp_2 (amplitude-all)
(2) stdht_2 (points-all)

7.4.3 Deadwood within the plot
There was a total of four deadwood metrics to be predicted through regression models, the R2

values and AICc weights are presented in Table 7.22. Again R2 values for OLS and AICc

models are similar although OLS R2 values are higher for all but one metric, the standing

deadwood decay class. AICc weights and evidence ratios indicate there was not much

difference between the first and second ‘best’ models. The most common attributes used in

the regression models are related to LiDAR amplitude, closely followed by curve-width.

Table 7.23 gives the FW LiDAR input metrics used in the regression models. Both models

for determining standing deadwood volume use the same inputs, albeit in a different order.

Inputs for DDW volume share the same first input. This may explain the similar R2 values.

Again, a mix of leaf-on and leaf-off datasets was used.
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Table 7.22 – Forest deadwood metrics, R2and AICc weights for FW LiDAR data (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
Standing dead wood volume (m3) 0.948 0.919 0.080 0.078 1.026
Standing dead wood decay class 0.470 0.589 0.033 0.032 1.031
Downed dead wood volume (m3) 0.451 0.431 0.047 0.041 1.146
Downed dead wood decay class 0.749 0.569 0.078 0.064 1.219

Table 7.23 – FW LiDAR metric inputs for each forest deadwood metric regression model
(Appendix C.3, C.6-C.8 should be consulted for a description of FW LiDAR metric names)
Metric Name: FW LiDAR OLS model input metrics FW LiDARAICc model input metrics

Standing dead
wood volume (m3)

(1) TIF_STD (ITC)
(2) wd_p25_2 (width-all) [leaf-on]
(3) skwngamp (amplitude-non-ground)
[leaf-on]

(1) skwngamp(amplitude-non-ground)
[leaf-off]
(2) TIF_STD (ITC)
(3) wd_p25_2 (width-all) [leaf-on]

Standing dead
wood decay class (1) maxgwid(width-ground) [leaf-off] (1) amp_p35_2 (amplitude-all) [leaf-on]

(2) ht_p20_2 (points-all) [leaf-on]
Downed dead
wood volume (m3)

(1) skwngamp (amplitude-non-ground)
[leaf-off]
(2) adevht_2 (points-all) [leaf-on]

(1) skwngamp(amplitude-non-ground)
[leaf-off]
(2) wd_p25_2 (width-all) [leaf-on]

Downed dead
wood decay class

(1) varngamp_2 (amplitude-non-ground)
[leaf-on]
(2) lon_can_layer (points-all) [leaf-on]
(3) skwgwid_2 (width-ground) [leaf-on]

(1) meanngamp_2 (amplitude-non-ground)
[leaf-on]
(2) wd_p60_2 (width-all) [leaf-on]

7.4.4 Understorey metrics within the plot
There were 12 forest understorey structural and composition metrics in total, Table 7.24

contains a listing of the regression model R2 values and AICc weights for each of these

metrics. Neither regression method was effective at modelling the seedlings Shannon Index

for native species. OLS could not model the number of saplings or the number of native

saplings. Overall, AICc models had higher R2 values for all but four of the remaining models,

(and for three of these, AICc R2 values were within 0.2 of those of OLS). AICc weights and

evidence ratios indicate there was not much difference between the first and second ‘best’

models.
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Each of the FW LiDAR metrics used as a predictor variable in the OLS and AICc regression

models are reported in Table 7.25. Field metrics related to saplings are correlated with the

FW metrics concerning point-heights, curve-width and amplitude for all points. Seedlings

correlate mainly with ground metrics for curve-amplitude and width. Number of vascular and

bryophyte species correlate with non-ground and all metrics for point-heights and amplitude.

Percentage bare soil is related to point-heights and ITC only. Both leaf-on and leaf-off

metrics were used.

Table 7.24 – Forest understorey metrics, R2and AICc weights for FW LiDAR data (all
models p<0.05). Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
No. saplings per 30x30m - 0.973 0.448 0.442 1.014

No. native saplings per 30x30m - 0.968 0.503 0.497 1.012
Percentage of native saplings per

30x30m 0.803 0.834 0.256 0.193 1.326

No. of sapling species per 30x30m 0.702 0.954 0.567 0.299 1.896
No. seedlings per 30x30m 0.282 0.468 0.055 0.049 1.122

No. native seedlings per 30x30m 0.682 0.535 0.124 0.083 1.494
Percentage of native seedlings per

30x30m 0.683 0.432 0.050 0.045 1.111

No. of seedling species per 30x30m 0.206 0.447 0.113 0.064 1.766
Seedlings Shannon index for native

species - - - - -

No. vascular species 0.194 0.194 0.109 0.077 1.416
No. bryophyte species 0.782 0.457 0.269 0.188 1.431

Percentage of bare soil within
30x30m 0.862 0.749 0.083 0.069 1.203
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Table 7.25 – FW LiDAR metric inputs for each forest understorey metric regression model
(Appendix C.3, C.6-C.8 should be consulted for a description of FW LiDAR metric names)
Metric Name: OLS model input metrics AICc model input metrics

No. saplings per
30x30m -

(1) ht_p35_2 (points-all) [leaf-on]
(2) ht_p50 (points-all) [leaf-off]
(3) wd_p35_2 (width-all) [leaf-on]

No. native saplings per
30x30m -

(1) ht_p35_2 (points-all) [leaf-on]
(2) medht(points-all) [leaf-off]
(3) wd_p35_2(width-all) [leaf-on]

Percentage of native
saplings per 30x30m

(1) skwht (points-all) [leaf-off]
(2) Domht(points-all) [leaf-off]

(1) meanamp (amplitude-all) [leaf-off]
(2) wd_p40 (points-all) [leaf-off]

No. of sapling species
per 30x30m (1) ht_p35_2 (points-all) [leaf-on]

(2) varamp (amplitude-all) [leaf-off]

(1) ht_p40_2 (points-all) [leaf-on]
(2) TIF_TreeNo (ITC)
(3) varamp (amplitude-all) [leaf-off]
(4) wd_p25 (width-all) [leaf-off]

No. seedlings per
30x30m (1) adevamp_2 (amplitude-all) [leaf-on]

(1) medgamp_2 (amplitude-ground)
[leaf-on]
(2) varngamp_2 (amplitude-ground)
[leaf-on]

No. native seedlings
per 30x30m

(1) skwngamp (amplitude-non-ground)
[leaf-off]
(2) vargwid (width-ground) [leaf-off]
(3) skwgwid_2 (width-ground) [leaf-on]

(1) skwngamp (amplitude-non-ground)
[leaf-off]
(2) vargwid (width-ground) [leaf-on]

Percentage of native
seedlings per 30x30m

(1) medgamp_2 (amplitude-ground)
[leaf-on]
(2) ht_p25_2 (points-all) [leaf-on]

(1) skwngamp (amplitude-non-ground)
[leaf-off]
(2) vargwid (width-ground) [leaf-off]

No. of seedling species
per 30x30m (1) skwgamp_2 (amplitude-ground) [leaf-

on]

(1) medgamp (amplitude-ground) [leaf-
off]
(2) stdgwid (width-ground) [leaf-off]

Seedlings Shannon
index for native species - -

No. vascular species (1) varnght_2 (points-non-ground) [leaf-
on]

(1) varnght_2 (points-non-ground) [leaf-
on]

No. bryophyte species (1) kurngamp (amplitude-non-ground)
[leaf-off]
(2) lon_can_layer (points-all) [leaf-on]
(3) TIF_STD (ITC)

(1) skwngamp(amplitude-non-ground)
[leaf-off]

Percentage of bare soil
within 30x30m (1) ht_p20_2 (points-all) [leaf-on]

(2) loff_can_depth (points-all) [leaf-off]
(3) TIF_STD (ITC)

(1) ht_p15_2 (points-all) [leaf-on]
(2) loff_can_depth (points-all) [leaf-off]
(3) meannght_2 (points-non-ground)
[leaf-on]
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7.4.5 Metrics required for condition index construction
The two metrics required for inputs into the condition indices and their associated R2values

are listed in Table 7.26.The sum of the DBH differences has a higher R2 value for OLS,

whereas the opposite is true for estimates of the models for the index of vertical separation.

The AICc evidence ratio indicates only small increases in the first ‘best’ model over the

second.

FW LiDAR regression model inputs are given in Table 7.27. The FW inputs for these models

vary between OLS and AICc. The FW metrics for the sum of the DBH differences for OLS is

based primarily on height-points, whereas curve-width is used more in AICc. The models for

the index of vertical separation both begin with a point-height metric relating to the

distribution of values, but then differ, using amplitude or width metrics. Both leaf-on and

leaf-off metrics were used.

Table 7.26 – Condition index construction metrics, R2and AICc weights (all models p<0.05).
Underlined values indicate highest R2 value.

Metric Name: OLS
R2

AICc
R2

AICc
weight

AICc
of 2nd

best

AICc
evidence

ratio
Sum of the DBH differences
between neighbouring trees (cm) 0.912 0.714 0.264 0.244 1.082

Index of vertical separation 0.467 0.601 0.074 0.056 1.321

Table 7.27 – FW LiDAR metric inputs for each forest condition index metric regression model
(Appendix C.3, C.6-C.8 should be consulted for a description of FW LiDAR metric names)
Metric Name: OLS model input metrics AICc model input metrics

Sum of the DBH
differences
between
neighbouring
trees (cm)

(1) TIF_TreeNo (ITC)
(2) kurht (points-all) [leaf-off]
(3) kurnght_2 (points-non-ground) [leaf-on]
(4) kurngwid_2 (width-non-ground) [leaf-
on]

(1) adevwid (width-all) [leaf-off]
(2) amp_p90 (amplitude-all) [leaf-off]
(3) ht_p20_2 (points-all) [leaf-on]
(4) kurngwid_2 (width-non-ground) [leaf-
on]

Index of vertical
separation

(1) skwnght_2 (points-non-ground) [leaf-
on]
(2) amp_p85 (amplitude-all) [leaf-off]

(1) varht_2 (points-all) [leaf-on]
(2) wd_p30 (width-all) [leaf-off]
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7.5Validation of FW LiDAR remote sensing derived estimates of forest variables against
field data
This results section outlines the various direct and statistical model estimates in comparison

with validation fieldwork measurements. It begins with the direct comparisons which can be

made using FW LIDAR remote sensing data. This is followed by a summary of the various

statistical model estimates derived from remote sensing means, how they are calculated and

their relationships to the validation field measurements. RMSE and NRMSE values are

presented to illustrate the accuracy of each model prediction. NRMSE is a modified RMSE

value to account for the field data population range, and produces a value of 0 to 1. NRMSE

values of 0.5 or greater indicate poor model performance.

7.5.1 Direct comparisons between field measurements and remote sensing metrics
A number of direct comparisons can be made between field measures and remote sensing

measures; these are: (i) average tree height per plot; (ii) number of canopy layers; (iii) and

canopy openness. It should be noted that TIFFS ITC metrics produced for the FW CHM were

poorer to those produced for the DR CHM due to the reduced pulse rate and lower horizontal

sample resolution and were removed.

Area-based estimates of average tree height per plot and the number of canopy layers is

presented in Table 7.28. Dominant height and the number of canopy layers were produced

using the SPDlib software for both leaf-on and leaf-off FW data. Dominant height for leaf-on

data had the best correspondence with Lorey’s mean height field data, producing the lowest

RMSE and NRMSE values of 3.65m and 0.19 respectively. The number of canopy layers

produced similar RMSE and NRMSE values for both leaf-on and leaf-off datasets, but with

the leaf-off RMSE being slightly lower.

Estimates for canopy openness were calculated using the SPDlib software for FW leaf-on and

leaf-off datasets. A comparison between FW and field estimates is presented in Table 7.29.

The lowest RMSE value, at 8.28%, was calculated for the FW leaf-on estimates of canopy

openness.
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Table 7.28 – Comparison of forest structural metrics from FW LiDAR data with field data
Site no. Lorey's

Height
(m)
[Field]

[FW]
Dom.
Height
(m)
[leaf-off]

[FW]
Dom.
Height
(m)
[leaf-on]

No.
Canopy
Layers
[Field]

[FW]
no. of
canopy
layers
[leaf-off]

[FW]
no. of
canopy
layers
[leaf-on]

22 12.83 18.05 18.33 2 2 3
23 16.85 11.95 12.25 2 2 2
24 19.17 21.14 21.38 2 2 3
25 22.13 22.89 23.34 2 3 3
26 21.05 17.44 17.54 1 3 3
27 24.79 29.73 29.44 3 4 5
28 23.35 18.76 19.09 1 3 3
29 17.89 19.34 22.03 2 3 4
30 19.38 19.77 20.74 2 2 3
31 28.78 30.31 31.31 1 2 2
32 25.64 21.72 21.80 1 3 3
33 28.36 11.13 26.76 1 2 2
34 22.99 23.89 24.02 3 3 3
35 23.89 27.22 27.84 3 3 3
36 25.12 22.42 22.17 2 3 2
37 17.91 21.79 22.03 2 2 3
38 21.4 17.86 18.20 3 2 3
39 33.12 26.74 26.98 3 3 3
40 24.45 22.07 22.31 3 3 3
41 18.99 22.56 23.36 2 4 3

RMSE 5.182 3.652 RMSE 1.072 1.180
NRMSE 0.273 0.192 NRMSE 0.357 0.390

Table 7.29 – Canopy Openness comparison
Site
no.

Canopy
Openness
(%)
[Field]

Canopy
openness
(%) (Leaf
off)
[FW]

Canopy
openness
(%) (Leaf
on)
[FW]

22 20.59 32.52 25.29
23 17.24 32.13 26.66
24 19.59 36.68 30.53
25 21.01 33.94 24.30
26 22.81 37.76 32.94
27 12.97 27.93 18.35
28 26.84 40.40 36.71
29 22.76 33.62 27.98
30 15.68 29.25 17.37
31 14.67 29.62 15.59
32 15.8 32.11 19.71
33 18.89 45.94 31.24
34 15.72 34.74 26.28
35 21.33 39.13 36.05
36 14.75 29.31 10.80
37 23.87 37.57 30.03
38 17.72 33.29 30.36
39 22.8 42.51 33.61
40 16.21 25.67 13.98
41 10.35 35.55 16.66

RMSE 16.45 8.28



Chapter 7 – Forest assessment using LiDAR data

249

7.5.2 Validation of remote sensing derived statistical models against field data
In this section the results of the regression models derived from FW LiDAR datasets were

compared with the 2012 field data measurements. RMSEs and NRMSEs were calculated for

each of the remote sensing derived models; see Table 7.30 for overstorey results. As before,

statistical methods performed better than the direct measurements provided by TIFFS for the

number of trees and the NN spacing of stems. The direct measurements of the average crown

horizontal area, and total crown horizontal area performed as well as or better than statistical

estimates. NRMSE values for three field metrics for both OLS and AICc models were above

0.5; these were: mean DBH, percentage very big trees, and SH index (by basal area).The

NRMSE value for the AICc model for the standard deviation of tree NN spacing was above 1

(i.e. greater than 100% of the range of the field values).Of the remaining 17 metrics, 10 AICc

RMSE values were lower than those of their OLS counterparts.

The values reported in Table 7.31 refer to understorey structure and composition. The models

relating to percentage native saplings and the number of bryophyte species had NRMSE

values above 0.5 for both OSL and AICc. The AICc model for estimating the number of

saplings produced an NRMSE value above 6 (i.e. far above the field value range).  Of the 14

remaining models, AICc models had lower RMSE values than OLS models for 9 of the field

metrics.
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Table 7.30 – The OLS and AICc FW LiDAR regression models. Part 1: overstorey composition.
Field metric ITC

RMSE*
ITC
NRMSE*

OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Number of trees per 30x30m 24.077 0.325 15.974 0.216 20.071 0.271
Number of native trees per 30x30m - - 13.927 0.268 13.927 0.268
Percentage of native trees - - 35.058 0.351 29.741 0.297
No. of tree species per 30x30m - - 2.145 0.357 1.658 0.276
Average tree NN spacing (m) 4.234 1.275 1.321 0.398 2.059 0.620
STDev. of tree NN spacing (m) 0.657 0.790 0.394 0.474 0.953 1.147
Mean DBH (cm) - - 17.125 0.588 15.406 0.529
STDev. of DBH (cm) - - 11.455 0.235 9.100 0.187
Basal area within 30x30m (m2) - - 0.906 0.283 1.155 0.360
(i) Percentage big trees(DBH
40>x<80cm) - - 26.629 0.380 31.256 0.447

(ii) Percentage very big trees (DBH
>80cm) - - 10.306 1.701 17.322 2.858

(iii) Percentage big trees (DBH
>40cm) - - 21.888 0.313 25.667 0.367

Shannon index (by stem count) - - 0.577 0.403 0.623 0.435
Simpson index (by stem count) - - 0.289 0.224 0.285 0.221
Shannon index (by BA) - - 0.604 0.786 0.499 0.649
Simpson index (by BA) - - 0.846 0.293 0.795 0.275
Average height of the first live
branch (m) - - 2.592 0.239 2.657 0.245

STDev. of the height of the first live
branch (m) - - 2.221 0.431 2.317 0.449

Average crown horizontal area (m2) 25.459 0.292 24.387 0.280 34.520 0.396
STDev. crown horizontal area (m2) - - 27.897 0.488 17.594 0.308
Total crown horizontal area (m2) 558.118 0.387 645.640 0.447 671.700 0.465
*Denotes this was not derived statistically and cannot be applied to all metrics



Chapter 7 – Forest assessment using LiDAR data

251

Table 7.31 – The OLS and AICc FW LiDAR regression models. Part 2: understorey
composition.

Field metric OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Standing dead wood volume (m3) 1.360 0.165 1.360 0.165
Standing dead wood decay class 0.203 0.304 0.193 0.290
Downed dead wood volume (m3) 2.490 0.274 2.903 0.319
Downed dead wood decay class 0.221 0.471 0.203 0.432
No. saplings per 30x30m - - 26.461 0.245
No. native saplings per 30x30m - - 11.465 0.302
Percentage of native saplings per 30x30m 75.162 0.752 63.774 0.638
No. of sapling species per 30x30m 1.424 0.475 20.877 6.959
No. seedlings per 30x30m 331.964 0.355 337.426 0.360
No. native seedlings per 30x30m 245.151 0.340 269.858 0.375
Percentage of native seedlings per 30x30m 39.719 0.397 43.260 0.433
No. of seedling species per 30x30m 3.534 0.272 3.098 0.238
Seedlings Shannon index for native species - - - -
No. vascular species 1.698 0.283 1.844 0.307
No. bryophyte species 9.161 0.916 8.365 0.837
Percentage of bare soil within 30x30m 39.822 0.419 39.955 0.421
Sum of the DBH differences between
neighbouring trees (cm) 0.130 0.257 0.287 0.568

Index of vertical separation 5.486 0.184 2.762 0.092
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7.6 Estimating or calculating metrics required for input into the complex stand diversity
index (CSDI)
A number of additional metrics were required for the construction of the complex stand

diversity index (CSDI). The CSDI is composed of four component indices relating to

different forest stand attributes. The first of these indicates the species diversity within a

specific plot (see chapter 6.3.1). The second index is an indication of how much tree

diameters (i.e. DBH) differs within the plot, which was estimated through statistical

regression. The third of these component indices relates to the distribution of tree stems

within a plot, for the three smallest and three largest distances between NN trees in metres.

The TIFFS software and a custom R script was utilised to extract these distance metrics from

ITC centroid locations using LiDAR data. Table 7.32 summarises the three minimum LiDAR

derived TIFFS ITC and corrected LiDAR TIFFS ITC derived NN distances against the field

measured NN distances. Table 7.33 summarises the three maximum NN distances.

Comparing field NN distances with TIFFS ITC centroid distances produced estimates with

RMSE values of approximately ±4m for minimum distances and between ±4 and ±6m for

maximum distances. RMSE values for corrected TIFFS ITC centroid distances are

significantly lower ranging from ±1.66-1.90m for minimum NN distances, and ±2.15-3.35m

for maximum distances. Note that corrected LiDAR TIFFS ITC derived NN distances were

calculated by subtracting twice the standard deviation of tree NN spacing from the TIFFS

distances. The value of the standard deviation of tree NN spacing was derived statistically,

the model producing the smallest RMSE/NRMSE overall was chosen to provide this

estimate, see Chapter 8.4.

The fourth component of the CSDI index requires a calculation using the two smallest and

two largest tree crown horizontal diameters, height to the first live branch (or crown base)

and the number of trees within the plot. The first input, relating to crown diameters, could be

approximated using data from DR LiDAR derived ITC objects. A comparison of field

measured crown diameters and ITC object attributes is summarised in Table 7.34. RMSEs for

minimum crown diameters range from ± 1.77-2.07m and for maximum crown diameters from

±2.07-4.01m. The second input required for the fourth component index was an estimate of

the lowest crown base height (i.e. the smallest distance from the ground to the first live

branch). This value was approximated through the use of the statistically derived estimates of

the average height of the first live branch and subtracting the standard deviation of the height

of the first live branch (see Chapter 8.4). This calculation was applied to both DR and FW

LiDAR, and the results are presented in Table 7.35. The lowest RMSE value (2.40m) is



Chapter 7 – Forest assessment using LiDAR data

253

recorded for the models produced by combining DR LiDAR derived models. The FW derived

models produced the highest RMSE value (3.50m).

Table 7.32 – A summary of three minimum recorded NN distances for field measurements,
LiDAR derived TIFFS ITC and corrected TIFFS ITC measurements.
Site
no.

Min. NN
distance
#1 (m)
[Field]

Min. NN
distance
#1 (m)
[TIFFS
ITC]

Min. NN
distance
#1 (m)
[Corr.
ITC]

Min. NN
distance
#2 (m)
[Field]

Min. NN
distance
#2 (m)
[TIFFS
ITC]

Min. NN
distance
#2 (m)
[Corr.
ITC]

Min. NN
distance
#3 (m)
[Field]

Min. NN
distance
#3 (m)
[TIFFS
ITC]

Min. NN
distance
#3 (m)
[Corr.
ITC]

23 0.60 4.45 1.47 0.60 4.45 1.47 0.73 4.54 1.56
24 0.50 4.91 2.81 0.50 4.91 2.80 0.53 5.43 3.32
25 0.15 5.45 2.72 0.15 5.45 2.72 0.30 5.56 2.84
26 0.40 6.86 2.71 0.40 6.86 2.71 0.85 7.10 2.95
27 0.32 6.82 4.25 0.49 6.82 4.25 0.59 7.10 4.53
28 1.28 4.40 0.84 2.08 4.40 0.84 2.20 6.32 2.76
29 0.22 5.00 1.96 0.40 5.00 1.96 0.40 6.93 3.89
30 0.52 4.03 2.14 0.52 4.03 2.14 0.58 4.48 2.58
31 2.59 3.16 2.19 2.59 3.16 2.19 2.98 3.22 2.24
32 2.12 4.69 1.36 2.67 4.69 1.36 2.87 5.81 2.49
33 2.00 3.99 2.90 2.50 3.99 2.90 2.60 4.26 3.18
34 0.95 5.75 2.95 0.95 5.75 2.95 1.40 5.89 3.10
35 1.69 4.39 2.79 1.69 4.39 2.79 1.83 5.42 3.81
36 2.38 6.54 3.92 2.53 6.54 3.92 2.54 7.12 4.51
37 1.87 5.89 2.91 1.87 5.89 2.91 2.12 6.79 3.82
38 2.05 4.52 1.84 2.05 4.52 1.84 2.06 4.84 2.16
39 3.42 5.31 2.45 3.42 5.31 2.45 3.66 6.15 3.29
40 1.40 5.63 2.82 1.48 5.63 2.82 3.45 6.12 3.31
41 0.97 5.08 1.73 0.97 5.08 1.73 1.11 6.05 2.70

- RMSE 4.04 1.67 RMSE 3.95 1.66 RMSE 4.32 1.90
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Table 7.33 – A summary of three maximum recorded NN measurements for field
measurements, LiDAR derived TIFFS ITC and corrected TIFFS ITC measurements.
Site
no.

Max.
NN
distance
#1 (m)
[Field]

Max.
NN
distance
#1 (m)
[TIFFS
ITC]

Max.
NN
distance
#1 (m)
[Corr.
ITC]

Max.
NN
distance
#2 (m)
[Field]

Max.
NN
distance
#2 (m)
[TIFFS
ITC]

Max.
NN
distance
#2 (m)
[Corr.
ITC]

Max.
NN
distance
#3 (m)
[Field]

Max.
NN
distance
#3 (m)
[TIFFS
ITC]

Max.
NN
distance
#3 (m)
[Corr.
ITC]

23 4.06 7.33 4.35 4.43 7.32 4.34 8.28 7.32 4.34
24 5.28 10.59 8.48 6.80 10.32 8.21 7.02 10.32 8.21
25 3.95 12.36 9.64 5.20 9.67 6.95 5.60 9.67 6.95
26 4.18 11.62 7.47 4.20 10.18 6.02 4.60 10.18 6.02
27 3.34 12.08 9.50 3.54 11.68 9.11 3.57 11.68 9.11
28 4.54 11.93 8.36 4.54 11.93 8.36 5.44 11.93 8.36
29 4.17 11.80 8.76 4.74 11.05 8.02 4.95 11.05 8.02
30 3.20 8.78 6.89 3.21 8.59 6.69 4.20 8.59 6.69
31 5.79 6.98 6.00 6.45 6.80 5.82 7.84 6.80 5.82
32 5.63 12.85 9.52 6.62 9.74 6.41 7.27 9.74 6.41
33 5.60 6.60 5.52 5.90 6.55 5.47 5.90 6.55 5.47
34 5.81 12.19 9.40 5.85 9.98 7.18 5.98 9.98 7.18
35 5.86 10.45 8.84 7.00 7.92 6.32 7.35 7.92 6.32
36 5.74 8.91 6.30 5.80 8.32 5.71 6.06 8.32 5.71
37 5.51 10.99 8.02 6.45 10.84 7.87 6.50 10.84 7.87
38 4.60 11.23 8.55 5.07 8.98 6.29 6.75 8.98 6.29
39 6.10 11.49 8.63 8.05 11.02 8.16 9.20 11.02 8.16
40 6.08 10.95 8.14 6.10 10.95 8.14 6.25 10.95 8.14
41 4.74 9.22 5.87 4.75 8.95 5.60 5.14 8.95 5.60

- RMSE 5.89 3.34 RMSE 4.50 2.15 RMSE 4.08 2.18

Table 7.34 – A summary of the two minimum and two maximum tree crown horizontal
diameters for field measurement and TIFFS ITC measurements.
Site
no.

Min.
Crown
diameter
#1 (m)
[Field]

Min.
Crown
diameter
#1 (m)
[TIFFS
ITC]

Min.
Crown
diameter
#2 (m)
[Field]

Min.
Crown
diameter
#2 (m)
[TIFFS
ITC]

Max.
Crown
diameter
#1 (m)
[Field]

Max.
Crown
diameter
#1 (m)
[TIFFS
ITC]

Max.
Crown
diameter
#2 (m)
[Field]

Max.
Crown
diameter
#2 (m)
[TIFFS
ITC]

22 6.21 3.39 6.40 3.74 17.45 17.81 21.35 16.43
23 1.03 3.19 1.18 3.57 6.48 9.51 7.19 8.44
24 1.40 3.74 1.51 3.74 9.43 14.71 11.65 12.51
25 5.13 2.76 5.29 4.22 16.05 16.62 18.55 14.63
26 2.99 4.22 3.94 6.58 11.77 16.27 13.18 14.00
27 2.49 2.99 2.94 3.74 11.57 24.33 13.59 13.11
28 3.47 4.92 3.88 5.17 9.65 13.87 9.86 13.40
29 2.69 4.65 2.77 7.05 12.31 17.08 16.02 12.82
31 3.50 1.95 5.18 1.95 9.62 9.64 9.66 8.06
32 4.99 4.92 6.22 4.92 13.23 16.23 14.74 11.83
33 1.00 2.52 2.73 3.57 7.56 8.59 8.18 8.52
34 3.38 5.41 4.54 5.41 10.21 11.17 13.50 11.06
35 3.11 3.91 3.53 4.65 10.53 11.23 12.68 10.52
36 4.58 5.29 4.69 5.64 8.13 10.09 8.26 9.84
37 4.69 2.76 4.96 6.08 12.60 14.41 13.69 12.05
38 4.01 3.19 4.03 4.07 12.23 16.04 12.36 11.17
39 5.07 2.26 5.30 4.65 10.20 13.21 13.35 12.36
40 5.81 4.22 7.55 4.22 12.98 16.55 20.12 12.87
41 3.65 3.39 4.20 3.74 13.78 13.26 13.80 12.67

- RMSE 1.77 RMSE 2.07 RMSE 2.77 RMSE 4.01
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Table 7.35 – A summary of approximated lowest crown base height value
Site
no.

Min. height of crown
base (m) [Field]

Min. height of crown
base (m) [DR]

Min. height of crown
base (m) [FW]

22 1.25 5.26 4.87
23 2.00 2.78 3.99
24 1.75 3.53 1.69
25 2.00 4.40 3.75
26 2.00 2.85 0.48
27 0.75 0.83 0.36
28 5.05 3.44 4.47
29 1.50 2.37 2.61
30 - - -
31 3.98 4.20 4.74
32 2.00 3.35 3.76
33 1.50 8.76 13.06
34 1.00 1.94 4.98
35 3.20 4.83 4.91
36 2.50 5.12 6.93
37 2.00 4.44 5.08
38 1.70 1.95 2.19
39 4.40 3.80 5.84
40 2.20 4.38 5.14
41 1.00 2.91 4.51

- RMSE 2.40 3.50

7.7 Summary of findings
The comparisons of elevations from DTMs produced from DR and FW LiDAR with field-

based GPS and total station measurements produced very similar results overall. However,

slightly better accuracy was achieved using leaf-off and FW data.

In a comparison of DR and FW point cloud datasets, FW provides a significantly higher

proportion of points through the fitting of Gaussian peaks to each of the laser waveforms. A

143% increase in points relative to initial pulses was found for FW, whereas for DR this was

only 30%, which indicates that the majority of the DR pulses only supplied a single return.

FW data produced a greater number of pulses at all levels within the mid-canopy relative to

DR data. Due to the nature of the sampling of the LiDAR datasets DR data provided a higher

density and more evenly distributed 3D points whereas FW data provided more points

vertically per pulse, but were subject to greater spacing horizontally through all vertical

levels.

For DR LiDAR automated ITC detection underestimated the total tree stem number against

counts in validation field plots; however they did more closely resemble over-storey tree stem

counts. Average tree crown height resembled field Lorey’s average height to within
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±3.46m(RMSE).The total number of canopy layers derived from LiDAR data could be up to

one layer away from the field measured value. Estimates for canopy openness were best for

leaf-on data, and could be out by up to 13.3% (RMSE).

DR derived regression models could be produced for all thirty-nine indicator metrics. The

OLS regression approach could not produce a model for predicting two indices of species

diversity, namely the SI (by stem count) and the SH (by basal area). RMSE and NRMSE

values were computed for the OLS and AICc models for predicting field-level metrics. When

comparing model predictions against field collected data six of the thirty-nine models

produced NRSME above 0.5. A total of 30 metrics had NRMSE values below 0.4, and 19 of

the metrics had NRMSE values below 0.3. Several of the metrics with higher NRMSE (>0.4)

were related to understorey composition, including the number of tree sapling species.

Average crown area and total crown area were better predicted from ITC information. For

DR OLS and AICc there is no definitive better method.

For FW LiDAR automated ITC detection was identical to that produced through DR LiDAR.

Field-plot derived Lorey’s average height corresponded best with dominant tree crown height

when using leaf-on data and was within ±3.65m (RMSE). Again, the number of canopy

layers could be within ±1 of the field-measured value. Canopy openness of field data

corresponded best with leaf-on FW LiDAR, within ± 8% (RMSE).

FW derived regression models could be completed for all but one of the thirty-nine indicator

metrics. The metric Seedlings Shannon Index for native species could not be modelled.OLS

regression approaches could not model the number of saplings or the number of native

saplings. RMSE and NRMSE values were computed for the OLS and AICc regression

models for predicting field-level metrics. When comparing model predictions against field

collected data, six of the thirty-nine models produced NRSME above 0.5. A total of 27

metrics had NRMSE values below 0.4, and 18 of the metrics had NRMSE values below 0.3.

Again, many higher NRMSE values (>0.4) were found when considering understorey

composition. Estimates of average crown area and total crown area from ITC data were better

than statistically derived metrics. As with DR, for FW OLS and AICc there is no definitive

optimal method.
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When considering the entirety of the models produced by DR and FW LiDAR metrics a total

of four field metrics could not be predicted, where the NRMSE value was higher than 0.5.

Generally, NRMSE values were very close between model estimates from DR and FW

models. DR predicative models produced the lowest NRMSE values for 17 of the 35 metrics,

whereas FW models produced the lowest NRMSE values for 18 of the 35 metrics. This

pattern is repeated when the best model (with NRMSE <0.3) is removed, i.e. out of a total of

22 field-level metrics 10 are best estimated by DR and 12 are best estimated by FW.

A total of 27 metrics could be predicted with an R2 value above 0.5, and NRMSE value lower

than 0.35. In 14 of these models DR LiDAR produced lower NRMSE values, whereas for

FW this was 13.

Two component inputs into the CSDI, condition assessments were extracted from the TIFFS

ITC dataset in addition to other statistically derived attributes. The relevant ITC metrics

involving the nearest neighbour (NN) distances of tree stems produced estimates with RMSE

for the smallest distances within ±1.66-1.90m and within ±2.15-3.35m for the largest

distances when a correction was applied. Estimates of tree crown diameter produced RMSE

values for minimum diameters of ±1.77-2.07m and ±2.07-4.01m for the largest diameters.

Estimates of the lowest crown base height were made by subtracting the standard deviation of

the height of the first live branch from the average height to the first live branch using metrics

statistically derived from DR and FW metrics. DR LiDAR produced the estimates with the

smallest RMSE value (2.40m) and thus was used in the CSDI calculation.
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Chapter 8 – Forest assessmentusing a fusion between hyperspectral
andLiDAR datasets

The combination of hyperspectral and LiDAR remote sensing metrics to estimate field plot-

level information is explored in this chapter. The chapter begins with an overview of the

statistical models generated by combining hyperspectral and LiDAR data, and each model’s

validation against field data. Section 8.1 describes the models derived by combining

hyperspectral data with DR LiDAR, and then with FW LiDAR. Section 8.2 compares the

performance of the models with the field validation data from 2012. Section 8.3 reviews and

summaries all the regression models derived for the remote sensing datasets. Section 8.4

reviews and summaries the predictive capacity of the models and identifies the “best” models

for each field metric. Section 8.5 provides an overall summary of the chapter.

8.1Estimating field-level forest structural and compositional metrics from combined
hyperspectral and LiDAR data
The two regression approaches (OLS and AICc) were applied to the two composite

hyperspectral and LiDAR datasets, for each of the 39 field metrics. Each of the models

presented was statistically significant at p<0.05. The inputs can be summarised as those

statistics derived from ITC objects and area-based statistical summaries of hyperspectral and

LiDAR data layers. What follows is a breakdown of the regression models produced by forest

structural, compositional, deadwood, and regeneration and understorey metrics, and finally

the two additional metrics required for index construction which are described later (Chapter

9).

8.1.1 Forest structure within the plot
A listing of the 14 forest structural metrics and their associated R2 values is given in Table

8.1. The first of the combinations, hyperspectral and DR LiDAR, produced OLS and AICc

models with high R2 values. The majority of these values are above 0.7. For only three of

these models did OLS methods produce higher R2 values in comparison with AICc. The

second combination concerned hyperspectral and FW LiDAR, which again produced a high

proportion of R2 values above 0.7. In this case, OLS produced five models with a higher R2

value than the AICc counterpart.
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In comparing the R2 values between the two sets of composite models, eight of the total

fourteen models for hyperspectral and DR had higher R2 values than hyperspectral combined

with FW metrics, but the values were very similar.

The inputs to the regression models for the combination of hyperspectral and DR LiDAR are

listed in Table 8.2. Table 8.3 documents the inputs for the regression models for a

combination of hyperspectral and FW LiDAR. Some models use LiDAR or hyperspectral

data, rather than a combination of both. For the hyperspectral and DR composite dataset, 7 of

14 models use only LiDAR metrics for OLS and 4 for AIC, while only 1 uses hyperspectral

only for OLS and 2 for AIC. For the hyperspectral and FW composite, 7 of 14 models use

only LiDAR metrics for OLS, and 5 for AIC, whereas hyperspectral is always used in a

combination. The majority of models also utilise both leaf-on and leaf-off data.

Table 8.1 – Forest structural metrics R2 for hyperspectral and LiDAR combinations (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name: DR and
Hyper.
OLS
R2

DR and
Hyper.
AICc
R2

FW and
Hyper.
OLS
R2

FW and
Hyper.
AICc
R2

Number of trees per 30x30m 0.804 0.912 0.699 0.771
Average tree NN spacing (m) 0.785 0.854 0.785 0.819
STDev. Of tree NN spacing (m) 0.771 0.771 0.835 0.664
Mean DBH (cm) 0.664 0.755 0.796 0.796
STDev. of DBH (cm) 0.779 0.867 0.692 0.819
Basal area within 30x30m 0.761 0.537 0.573 0.822
Percentage big trees (DBH
40>x<80cm) 0.850 0.925 0.809 0.915

Percentage very big trees (DBH
>80cm) 0.654 0.799 0.592 0.744

Percentage big trees (DBH
>40cm) 0.924 0.942 0.915 0.908

Average height of the first live
branch (m) 0.820 0.876 0.876 0.805

STDev. of the height of the first
live branch (m) 0.808 0.629 0.743 0.805

Average crown horizontal area
(m2) 0.852 0.859 0.860 0.828

STDev. Crown horizontal area
(m2) 0.818 0.727 0.892 0.796

Total Crown horizontal area
(m2) 0.601 0.662 0.605 0.761
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Table 8.2 – Hyperspectral and DR LiDAR metric inputs for each forest structural metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names.)

Metric Name: DR and Hyper. OLSmodel input
metrics

DR and Hyper. AICc model input
metrics

Number of trees per 30x30m
TIF_m_area (LiDAR) [ITC]
p020_2 (LiDAR) [leaf-on]

cri1_Sum (Hyper.) [leaf-off]
SHA_Kur_2 (LiDAR) [leaf-on]
SHA_Var_2 (LiDAR) [leaf-on]
TIF_m_area (LiDAR)

Average tree spacing (m) TIF_Space (LiDAR) [ITC]
sri2_STD (Hyper.) [leaf-on]
ari2_Sum (Hyper.) [leaf-on]

rgri2_Range (Hyper.) [leaf-on]
SHA_MAD_2 (LiDAR) [leaf-on]
TIF_Space (LiDAR) [ITC]
TIF_to_area (LiDAR) [ITC]

STDev. Of tree spacing (m) TIF_m_area (LiDAR) [ITC]
p060 (LiDAR) [leaf-off]

no_tree (Hyper.) [ITC]
pri2_STD (Hyper.) [leaf-on]
sri2_Range (Hyper.) [leaf-on]

Mean DBH (cm) TIF_m_area (LiDAR) [ITC] rendvi1_STD (Hyper.) [leaf-off]
TIF_Space (LiDAR) [ITC]

STDev. of DBH (cm) mresri1_STD (Hyper.) [leaf-off]
SHN_Ske (LiDAR) [leaf-off]

rendvi1_STD (Hyper.) [leaf-off]
SHN_Ske (LiDAR) [leaf-off]
TIF_TreeNo (LiDAR) [leaf-off]

Basal area within 30x30m SI (Hyper.) [ITC]
mresri1_STD (Hyper.) [leaf-off]
sri1_STD (Hyper.) [leaf-off]
TIF_Space (LiDAR) [ITC]

arvi1_Range (Hyper.) [leaf-off]
SI (Hyper.) [ITC]

Percentage big trees (DBH
40>x<80cm) SHA_MAD_2 (LiDAR) [leaf-on]

TIF_Space (LiDAR) [ITC]

rgri2_Max (Hyper.) [leaf-on]
SHA_Var_2 (LiDAR) [leaf-on]
TIF_Space (LiDAR) [ITC]

Percentage very big trees (DBH
>80cm) vrei1_STD (Hyper.) [leaf-off]

p095i (LiDAR) [leaf-off]
no_tree (Hyper.) [ITC]
sri2_STD (Hyper.) [leaf-on]

Percentage big trees (DBH
>40cm) SHA_STD_2 (LiDAR) [leaf-on]

TIF_Space (LiDAR) [ITC]

SHA_STD_2 (LiDAR) [leaf-on]
TIF_Space (LiDAR) [ITC]
TIF_TreeNo (LiDAR) [ITC]

Average height of the first live
branch (m)

loff_can_depth (LiDAR) [leaf-off]
SHN_Mean (LiDAR) [leaf-off]

loff_max_gap (LiDAR) [leaf-off]
TIF_Space (LiDAR) [ITC]

STDev. of the height of the first
live branch (m)

TIF_m_area (LiDAR) [ITC]
TIF_meanCV (LiDAR) [ITC]
sri2_Max (LiDAR) [leaf-on]
SI (Hyper.) [ITC]

lon_max_gap (LiDAR) [leaf-on]
TIF_to_area (LiDAR) [ITC]

Average crown horizontal area
(m2)

TIF_m_area (LiDAR) [ITC]
mresri2_Max (Hyper.) [leaf-on]
TIF_meanCV (LiDAR) [ITC]

mresri2_Max (Hyper.) [leaf-on]
SIN_Kur (LiDAR) [leaf-off]
TIF_m_area (LiDAR) [ITC]

STDev. Crown horizontal area
(m2) TIF_m_area (LiDAR) [ITC]

SIA_Med (LiDAR) [leaf-off]

SIN_Med (LiDAR) [leaf-off]
sri2_STD (Hyper.) [leaf-on]
TIF_m_area (LiDAR) [ITC]

Total Crown horizontal area (m2) ari2_Sum (Hyper.) [leaf-on]
SIA_Var_2 (LiDAR) [leaf-on]

SHA_Mean_2 (LiDAR) [leaf-on]
SHA_STD_2 (LiDAR) [leaf-on]
SIA_Var_2 (LiDAR) [leaf-on]
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Table 8.3 – Hyperspectral and FW LiDAR metric inputs for each forest structural metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names.)

Metric Name: FW and Hyper. OLSmodel input
metrics

FW and Hyper. AICc model input
metrics

Number of trees per 30x30m TIF_m_area (LiDAR) [ITC]
ht_p20_2 (LiDAR) [leaf-on]

kurht_2 (LiDAR) [leaf-on]
sri2_Min (Hyper.) [leaf-on]
TIF_m_area (LiDAR) [ITC]

Average tree spacing (m) TIF_Space (LiDAR) [ITC]
sri2_STD (Hyper.) [leaf-on]
ari2_Sum (Hyper.) [leaf-on]

pri2_STD (Hyper.) [leaf-on]
TIF_Space (LiDAR) [ITC]
varht_2 (LiDAR) [leaf-on]

STDev. of tree spacing (m) TIF_m_area (LiDAR)[ITC]
ht_p40 (LiDAR) [leaf-off]
kurngwid (LiDAR) [leaf-off]

sri2_Range (Hyper.) [leaf-on]
TIF_m_area (LiDAR) [ITC]

Mean DBH (cm) TIF_m_area (LiDAR) [ITC]
varngwid_2 (LiDAR) [leaf-on]

TIF_m_area (LiDAR) [ITC]
varngwid_2 (LiDAR) [leaf-on]

STDev. of DBH (cm) TIF_m_area (LiDAR) [ITC]
amp_p65 (LiDAR) [leaf-off]

amp_p65 (LiDAR) [leaf-off]
TIF_m_area (LiDAR) [ITC]
wd_p25_2 (LiDAR) [leaf-on]

Basal area within 30x30m SI (Hyper.) [ITC]
kurngamp (LiDAR) [leaf-on]

meanht (LiDAR) [leaf-off]
rendvi1_Max (Hyper.) [leaf-off]
TIF_Space (LiDAR) [ITC]

Percentage big trees (DBH
40>x<80cm)

mednght (LiDAR) [leaf-off]
sri2_Min (Hyper.) [leaf-on]
TIF_Space (LiDAR) [ITC]

kurgamp_2 (LiDAR) [leaf-on]
mednght (LiDAR) [leaf-off]
TIF_Space (LiDAR) [ITC]

Percentage very big trees (DBH
>80cm)

kurwid (LiDAR) [leaf-off]
lon_can_layer (LiDAR) [leaf-on]
sri2_STD (Hyper.) [leaf-on]

mrendvi1_STD (Hyper.) [leaf-off]
no_tree (Hyper.) [ITC]

Percentage big trees (DBH
>40cm) stdht_2 (LiDAR) [leaf-on]

TIF_Space (LiDAR) [ITC]

adevht_2 (LiDAR) [leaf-on]
rgri2_Range (Hyper.) [leaf-on]
TIF_m_area (LiDAR) [ITC]

Average height of the first live
branch (m)

loff_max_gap (LiDAR) [leaf-off]
TIF_Space (LiDAR) [ITC]

lon_max_gap (LiDAR) [leaf-on]
stdngwid (LiDAR) [leaf-off]

STDev. of the height of the first
live branch (m)

loff_max_gap (LiDAR) [leaf-off]
sri2_Max (Hyper.) [leaf-on]
TIF_Space (LiDAR) [ITC]
TIF_meanCV (LiDAR) [ITC]

Domht (LiDAR) [leaf-off]
TIF_Space (LiDAR) [ITC]
TIF_to_area (LiDAR) [ITC]

Average crown horizontal area
(m2)

TIF_m_area (LiDAR) [ITC]
mresri2_Max (Hyper.) [leaf-on]
kurgwid (LiDAR) [leaf-off]

sipi1_Sum (Hyper.) [leaf-off]
TIF_meanCV (LiDAR) [ITC]
TIF_to_area (LiDAR) [ITC]

STDev. crown horizontal area
(m2)

TIF_m_area (LiDAR) [ITC]
ari2_Min (Hyper.) [leaf-on]
skwgwid (LiDAR) [leaf-off]
mingamp_2 (LiDAR) [leaf-on]

ari2_Min (Hyper.) [leaf-on]
TIF_m_area (LiDAR) [ITC]

Total crown horizontal area (m2) skwht_2 (LiDAR) [leaf-on]
kurngwid_2 (LiDAR) [leaf-on]

kurwid_2 (LiDAR) [leaf-on]
pri2_Max (Hyper.) [leaf-on]



Chapter 8 – Forest assessment using fused datasets

262

8.1.2 Forest composition within the plot
The associated R2 values for the seven forest compositional metrics are given in Table 8.4 for

both of the composite datasets. The first of the combinations was hyperspectral and DR

LiDAR. For only two of these models did OLS methods produce higher R2 values than AICc.

For the second combination of hyperspectral and FW LiDAR, OLS produced three models

with a higher R2 value than the AICc counterpart.

Considering both modelling approaches, six of the total seven models for hyperspectral and

DR had higher R2 values than the combination of hyperspectral and FW (although the values

were very similar for all but two field metrics).

The inputs to the regression models for a combination of hyperspectral and DR LiDAR are

listed in Table 8.5. Table 8.6 documents the inputs for regression models for a combination of

hyperspectral and FW LiDAR. A number of models use LiDAR or hyperspectral data, rather

than a combination of both. For the first composite, hyperspectral and DR, 5 out of 7 models

for OLS and 2 for AICc utilise DR LiDAR inputs only. Only one AICc model uses solely

hyperspectral inputs. For the second composite, hyperspectral and FW, both OLS and AICc

models include 4 which utilise solely FW LiDAR inputs. Only two AICc derived models

utilise hyperspectral inputs only.

Table 8.4 – Forest composition metrics R2 for hyperspectral and LiDAR combinations (all
models p<0.05). Underlined values indicate highest R2 value.

Metric Name:

DR and
Hyper.
OLS
R2

DR and
Hyper.
AICc
R2

FW
and
Hyper.
OLS
R2

FW
and
Hyper.
AICc
R2

Number of native trees per
30x30m 0.425 0.642 0.531 0.525

Percentage of native trees 0.826 0.779 0.599 0.729
No. of tree species per 30x30m 0.775 0.531 0.373 0.429
Shannon index (by stem count) 0.416 0.662 0.541 0.509
Simpson index (by stem count) 0.527 0.587 0.371 0.371

Shannon index (by BA) 0.419 0.784 0.757 0.592
Simpson index (by BA) 0.370 0.473 0.556 0.570
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Table 8.5 – Hyperspectral and DR LiDAR metric inputs for each forest compositional metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names.)

Metric Name: DR and Hyper. OLSmodel input
metrics

DR and Hyper. AICc model input
metrics

Number of native trees per
30x30m

SHA_Kur_2 (LiDAR) [Leaf-on]
p080 (LiDAR) [Leaf-off]

sri2_Min (Hyper.) [Leaf-on]
vrei2_STD (Hyper.) [Leaf-on]

Percentage of native trees
TIF_TreeNo (LiDAR) [ITC]
ari2_Min (Hyper.) [Leaf-on]
SHA_Ske (LiDAR) [Leaf-off]
arvi1_Min (Hyper.) [Leaf-off]

arvi1_Min (Hyper.) [Leaf-off]
p060i_2 (LiDAR) [Leaf-on]
sri1_Sum (Hyper.) [Leaf-off]

No. of tree species per 30x30m
SHN_Ske (LiDAR) [Leaf-off]
SIN_Var (LiDAR) [Leaf-off]
SIN_Ske_2 (LiDAR) [Leaf-on]
sipi1_Min (Hyper.) [Leaf-off]

p050 (LiDAR) [Leaf-off]
SIA_Var (LiDAR) [Leaf-off]

Shannon index (by stem count)
SIN_Kur_2 (LiDAR) [Leaf-on]
TIF_Space (LiDAR) [ITC]
p050 (LiDAR) [Leaf-off]

rgri1_Min (Hyper.) [Leaf-off]
rgri2_Min (Hyper.) [Leaf-on]
SHN_Ske (LiDAR) [Leaf-off]
SIA_Ske (LiDAR) [Leaf-off]

Simpson index (by stem count) DEM_Slope (LiDAR) [Leaf-off]
SHN_STD_2 (LiDAR) [Leaf-on]

rgri2_Min (Hyper.) [Leaf-on]
SHA_med_2 (LiDAR) [Leaf-on]
SIA_Kur_2 (LiDAR) [Leaf-on]

Shannon index (by BA)
DEM_Rough_2 (LiDAR) [Leaf-on]
TIF_m_area (LiDAR) [ITC]
DEM_Slope_2 (LiDAR) [Leaf-on]

ndvi2_STD (Hyper.) [Leaf-on]
no_nat_t (Hyper.) [ITC]
SHA_Ske_2 (LiDAR) [Leaf-on]
SIA_Med (LiDAR) [Leaf-off]
sri2_Min (Hyper.) [Leaf-on]

Simpson index (by BA) p075 (LiDAR) [Leaf-off]
SIN_Ske_2 (LiDAR) [Leaf-on]

p070_2 (LiDAR) [Leaf-on]
SIN_Ske_2 (LiDAR) [Leaf-on]

Table 8.6 – Hyperspectral and FW LiDAR metric inputs for each forest compositional metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names)

Metric Name: FW and Hyper. OLSmodel input
metrics

FW and Hyper. AICc model input
metrics

Number of native trees per
30x30m

wd_p40 (LiDAR) [Leaf-off]
sri2_Min (Hyper.) [Leaf-on]

sri2_Min (Hyper.) [Leaf-on]
wd_p45 (LiDAR) [Leaf-on]

Percentage of native trees TIF_TreeNo (LiDAR) [ITC]
ari2_Min (Hyper.) [Leaf-on]

arvi1_Min (Hyper.) [Leaf-off]
sri1_Sum (Hyper.) [Leaf-off]
wbi2_STD (Hyper.) [Leaf-on]

No. of tree species per 30x30m wd_p30_2 (LiDAR) [Leaf-on]
stdgwid_2 (LiDAR) [Leaf-on]

rendvi1_Max (Hyper.) [Leaf-off]
rendvi1_STD (Hyper.) [Leaf-off]
sipi1_Range (Hyper.) [Leaf-off]

Shannon index (by stem count)
skwngamp_2 (LiDAR) [Leaf-on]
sri2_Max (Hyper.) [Leaf-on]
vrei2_Min (Hyper.) [Leaf-on]

skwngamp_2 (LiDAR) [Leaf-on]
TIF_to_area (LiDAR) [ITC]

Simpson index (by stem count) kurngamp_2 (LiDAR) [Leaf-on]
varht_2 (LiDAR) [Leaf-on]

kurngamp_2 (LiDAR) [Leaf-on]
varht_2 (LiDAR) [Leaf-on]

Shannon index (by BA)
vargwid_2 (LiDAR) [Leaf-on]
TIF_m_area (LiDAR) [ITC]
ht_p15_2 (LiDAR) [Leaf-on]
wd_p15_2 (LiDAR) [Leaf-on]

maxgwid (LiDAR) [Leaf-off]
stdnght_2 (LiDAR) [Leaf-on]
varamp_2 (LiDAR) [Leaf-on]

Simpson index (by BA) ht_p80 (LiDAR) [Leaf-off]
medngamp_2 (LiDAR) [Leaf-on]

medamp_2 (LiDAR) [Leaf-on]
stdht_2 (LiDAR) [Leaf-on]
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8.1.3 Deadwood within the plot
The R2 values contained within Table 8.7 relate to the four deadwood metrics regression

models produced from both composite remote sensing datasets. The first of the combinations

was hyperspectral and DR LiDAR. For only two of four models OLS methods produced

higher R2 values. The highest R2 values ranged from 0.598 to 0.902 for the deadwood

metrics. For the second combination of hyperspectral and FW LiDAR, OLS produced three

out of four models with a higher R2 value than the AICc counterpart. The highest R2 values

ranged from 0.639 to 0.955 for the deadwood metrics.

In comparing the R2 values between the two composite models, all four of the best models for

hyperspectral and FW had higher R2 values than the hyperspectral and DR LiDAR

composite.

The inputs to the regression models for the combination of hyperspectral and DR LiDAR and

the combination of hyperspectral and FW LiDAR are listed in Table 8.8 and Table 8.9

respectively. Measures of overstorey species diversity are used to predict standing deadwood

decay class for 3 of 4 regression models. Hyperspectral VI information is used in the majority

of models. A number of models did not use in a combination of LiDAR and hyperspectral

metrics. For both composites, one OLS model uses only LiDAR metrics as input, whereas

two AICc models utilise solely hyperspectral inputs.

Table 8.7 – Forest deadwood metrics R2 for hyperspectral and LiDAR combinations (all models
p<0.05). Underlined values indicate highest R2 value.

Metric Name:

DR and
Hyper.
OLS
R2

DR and
Hyper.
AICc
R2

FW
and
Hyper.
OLS
R2

FW
and
Hyper.
AICc
R2

Standing deadwood volume (m3) 0.748 0.881 0.919 0.833
Standing deadwood decay class 0.476 0.902 0.955 0.955
Downed deadwood volume (m3) 0.598 0.485 0.639 0.485
Downed deadwood decay class 0.681 0.580 0.750 0.717
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Table 8.8 – Hyperspectral and DR LiDAR metric inputs for each forest deadwood metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names.)

Metric Name: DR and Hyper. OLSmodel input
metrics

DR and Hyper. AICc model input
metrics

Standing deadwood volume (m3) SIN_Ske (LiDAR) [Leaf-off]
ari2_Max (Hyper.) [Leaf-off]

p080i (LiDAR) [Leaf-off]
mrendvi1_STD (Hyper.) [Leaf-off]
rgri2_STD (Hyper.) [Leaf-off]

Standing deadwood decay class
vrei1_Range (Hyper.) [Leaf-off]

mresri1_Mean (Hyper.) [Leaf-off]
SI (Hyper.) [ITC]
sri2_Max (Hyper.) [Leaf-on]

Downed deadwood volume (m3) mresri1_Max (Hyper.) [Leaf-off]
ari2_Max (Hyper.) [Leaf-on]
SHN_Med (LiDAR) [Leaf-off]

ari2_Max (Hyper.) [Leaf-on]
mresri1_Max (Hyper.) [Leaf-off]

Downed deadwood decay class SIN_Med_2 (LiDAR) [Leaf-on]
DEM_Slope_2 (LiDAR) [Leaf-on]

mrendvi2_STD (Hyper.) [Leaf-on]
SIN_mean_2 (LiDAR) [Leaf-on]

Table 8.9 – Hyperspectral and FW LiDAR metric inputs for each forest deadwood metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names.)

Metric Name: FW and Hyper. OLSmodel input
metrics

FW and Hyper. AICc model input
metrics

Standing deadwood volume (m3) TIF_STD (LiDAR) [ITC]
wd_p25_2 (LiDAR) [Leaf-on]
skwngamp (LiDAR) [Leaf-off]

rgri2_STD (Hyper.) [Leaf-on]
vrei1_STD (Hyper.) [Leaf-off]

Standing deadwood decay class sri1_Sum (Hyper.) [Leaf-off]
sri2_Max (Hyper.) [Leaf-off]
SH (Hyper.) [ITC]
skwgwid (LiDAR) [Leaf-off]

SH (Hyper.) [ITC]
skwgwid (LiDAR) [Leaf-off]
sri1_Sum (Hyper.) [Leaf-off]
sri2_Max (Hyper.) [Leaf-on]

Downed deadwood volume (m3) rendvi1_Max (Hyper.) [Leaf-off]
medht (LiDAR) [Leaf-off]
ari2_Range (Hyper.) [Leaf-on]

ari2_Max (Hyper.) [Leaf-on]
mresri1_Max (Hyper.) [Leaf-off]

Downed deadwood decay class varngamp_2 (LiDAR) [Leaf-on]
skwgwid_2 (LiDAR) [Leaf-on]
wd_p15_2 (LiDAR) [Leaf-on]
medngamp_2 (LiDAR) [Leaf-on]

mrendvi2_STD (Hyper.) [Leaf-on]
skwwid_2 (LiDAR) [Leaf-on]
varngamp_2 (LiDAR) [Leaf-on]

8.1.4 Understorey metrics within the plot
There were 12 forest understorey metrics which are summarised in Table 8.10 along with the

associated R2 values for the regression models applied to the two composite datasets. The

first of the combinations was hyperspectral and DR LiDAR. For only five of twelve models

OLS methods produced higher R2 values. The highest R2 values ranged from 0.538 to 0.951

for the understorey metrics. For the second combination of hyperspectral and FW LiDAR, the

number of vascular species could not be estimated using the AICc method.OLS produced

three out of twelve models with a higher R2 value than the AICc counterpart. The highest R2

values ranged from 0.404 to 0.973 for the deadwood metrics.
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In comparing the R2 values between the two composite models, three of the total twelve

models for hyperspectral and FW had higher R2 values compared with hyperspectral and DR

LiDAR.

The inputs to the regression models for the combination of hyperspectral and DR LiDAR are

listed in Table 8.11. Table 8.12 documents the inputs for the regression models for the

combination of hyperspectral and FW LiDAR. Many of the regression model inputs utilise a

combination of hyperspectral and LiDAR inputs, for both composite datasets. The first

composite, DR and hyperspectral, had four OLS models and six AICc models which utilized

DR metric only, the remainder were all combinations of hyperspectral and DR LiDAR. The

second composite dataset, FW and hyperspectral, had two OLS and 5 AICc models which

utilised only FW LiDAR inputs, in addition to 4 OLS and 1 AICc models which used only

hyperspectral metrics as input.

Table 8.10 – Forest understorey metrics R2 for hyperspectral and LiDAR combinations (all
models p<0.05). Underlined values indicate highest R2 value.

Metric Name:

DR
and
Hyper.
OLS
R2

DR
and
Hyper.
AICc
R2

FW
and
Hyper.
OLS
R2

FW
and
Hyper.
AICc
R2

No. saplings per 30x30m 0.642 0.922 0.535 0.973
No. native saplings per 30x30m 0.591 0.896 0.613 0.968

Percentage of native saplings per
30x30m 0.692 0.951 0.692 0.894

No. of sapling species per 30x30m 0.494 0.922 0.848 0.895
No. seedlings per 30x30m 0.609 0.527 0.498 0.568

No. native seedlings per 30x30m 0.430 0.538 0.779 0.779
Percentage of native seedlings per

30x30m 0.763 0.577 0.605 0.865

No. of seedling species per 30x30m 0.740 0.553 0.860 0.532
Seedlings Shannon Index for native

species 0.674 0.789 0.792 0.746

No. vascular species 0.674 0.547 0.404 -
No. bryophyte species 0.737 0.625 0.687 0.687

Percentage of bare soil within
30x30m 0.761 0.793 0.840 0.749



Chapter 8 – Forest assessment using fused datasets

267

Table 8.11 – Hyperspectral and DR LiDAR metric inputs for each forest understorey metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names.)

Metric Name: DR and Hyper. OLS model input
metrics

DR and Hyper. AICc model input
metrics

No. saplings per 30x30m mresri2_Max (Hyper.) [Leaf-on]
SIG_Ske (LiDAR) [Leaf-off]

p060i_2 (LiDAR) [Leaf-on]
p060_2 (LiDAR) [Leaf-on]
SIA_Mean (LiDAR) [Leaf-on]

No. native saplings per 30x30m mresri2_Max (Hyper.)[Leaf-on]
SIG_Ske (LiDAR) [Leaf-off]

p060i_2 (LiDAR) [Leaf-on]
SHN_Med_2 (LiDAR) [Leaf-on]
SIA_Mean (LiDAR) [Leaf-off]

Percentage of native saplings per
30x30m mresri2_STD (Hyper.) [Leaf-on]

SHN_Ske_2 (LiDAR) [Leaf-on]
SIN_Mean_2 (LiDAR) [Leaf-on]
SIN_Var (LiDAR) [Leaf-off]

No. of sapling species per 30x30m sri2_Max (Hyper.) [Leaf-on]
SIA_Ske (LiDAR) [Leaf-off]

pri1_Max (Hyper.) [Leaf-off]
SHA_mean_2 (LiDAR) [Leaf-on]

No. seedlings per 30x30m SIG_Kur (LiDAR) [Leaf-off]
p060i_2 (LiDAR) [Leaf-on]
TIF_meanCV (LiDAR) [ITC]

SIG_MAD (LiDAR) [Leaf-off]
SIG_Mean_2 (LiDAR) [Leaf-on]

No. native seedlings per 30x30m ari2_Range (Hyper.) [Leaf-on]
SIG_Var (LiDAR) [Leaf-off]

spec_no (Hyper.) [ITC]
TIF_meanCV (LiDAR) [ITC]

Percentage of native seedlings per
30x30m

p065i_2 (LiDAR) [Leaf-on]
SIA_Med_2 (LiDAR) [Leaf-on]
ari2_Sum (Hyper.) [Leaf-on]

ari2_Min (Hyper.) [Leaf-on]
mresri2_Max (Hyper.) [Leaf-on]
SIA_Mean_2 (LiDAR) [Leaf-on]

No. of seedling species per
30x30m

mresri2_Max (Hyper.) [Leaf-on]
rgri1_Min (Hyper.) [Leaf-off]
DEM_Slope (LiDAR) [Leaf-off]

p060i_2 (LiDAR) [Leaf-on]
SIA_Ske_2 (LiDAR) [Leaf-on]

Seedlings Shannon index for
native species PAIP_2 (LiDAR) [Leaf-on]

p045_2 (LiDAR) [Leaf-on]
rgri1_Min (Hyper.) [Leaf-off]
SHN_Med_2 (LiDAR) [Leaf-on]
spec_no (Hyper.) [ITC]

No. vascular species sri2_Range (Hyper.) [Leaf-on]
sri2_STD (Hyper.) [Leaf-on]
p030i_2 (LiDAR) [Leaf-on]

p025i_2 (LiDAR) [Leaf-on]
SHN_MAD_2 (LiDAR) [Leaf-on]
sri2_Min (Hyper.) [Leaf-on]

No. bryophyte species p085i (LiDAR) [Leaf-off]
SHN_Med (LiDAR) [Leaf-off]
lon_can_layers (LiDAR) [Leaf-on]

p010_2 (LiDAR) [Leaf-on]
rgri2_Range (Hyper.) [Leaf-on]
SIN_Kur (LiDAR) [Leaf-off]

Percentage of bare soil within
30x30m p020i_2 (LiDAR) [Leaf-on] p010i_2 (LiDAR) [Leaf-on]

p025i_2 (LiDAR) [Leaf-on]
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Table 8.12 – Hyperspectral and FW LiDAR metric inputs for each forest understorey metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names.)

Metric Name: FW and Hyper. OLS model input
metrics

FW and Hyper. AICc model input
metrics

No. saplings per 30x30m mresri2_Max (Hyper.) [Leaf-on]
vrei2_Range (Hyper.) [Leaf-on]

ht_p35_2 (LiDAR) [Leaf-on]
medht (LiDAR) [Leaf-off]
wd_p35_2 (LiDAR) [Leaf-on]

No. native saplings per 30x30m mresri2_Range (Hyper.) [Leaf-on]
vrei2_Range (Hyper.) [Leaf-on]
wd_p35_2 (LiDAR) [Leaf-on]

ht_p35_2 (LiDAR) [Leaf-on]
medht (LiDAR) [Leaf-off]
wd_p35_2 (LiDAR) [Leaf-on]

Percentage of native saplings per
30x30m mresri2_STD (Hyper.) [Leaf-on] ari2_Min (Hyper.) [Leaf-on]

wd_p45 (LiDAR) [Leaf-on]
No. of sapling species per 30x30m ht_p35_2 (LiDAR) [Leaf-on]

varamp (LiDAR) [Leaf-off]
mresri2_Max (Hyper.) [Leaf-on]

ari2_Min (Hyper.) [Leaf-on]
ndvi2_Min (Hyper.) [Leaf-on]
no_nat_t (Hyper.) [ITC]

No. seedlings per 30x30m varnght (LiDAR) [Leaf-off]
spec_no (Hyper.)  [ITC]

medht (LiDAR) [Leaf-off]
mednght (LiDAR) [Leaf-off]
nat_spec (Hyper.) [ITC]

No. native seedlings per 30x30m kurngamp (LiDAR) [Leaf-off]
spec_no (Hyper.) [ITC]
vargwid(LiDAR) [Leaf-off]
TIF_meanCV (LiDAR) [ITC]

kurngamp (LiDAR) [Leaf-off]
spec_no (Hyper.) [ITC]
TIF_meanCV (LiDAR) [ITC]
vargwid(LiDAR) [Leaf-off]

Percentage of native seedlings per
30x30m medgamp_2 (LiDAR) [Leaf-on] medgamp_2 (LiDAR) [Leaf-on]

No. of seedling species per
30x30m

mresri2_Max (Hyper.) [Leaf-on]
rgri1_Min (Hyper.) [Leaf-off]
spec_no (Hyper.) [ITC]
vrei2_STD (Hyper.) [Leaf-on]

sri2_Max (Hyper.) [Leaf-on]
stdgwid (LiDAR) [Leaf-off]

Seedlings Shannon index for
native species

pri2_Range (Hyper.)[Leaf-on]
skwnght (LiDAR) [Leaf-off]
skwgwid_2 (LiDAR) [Leaf-on]
rgri1_Min (Hyper.) [Leaf-off]

adevht_2 (LiDAR) [Leaf-on]
spec_no (Hyper.) [ITC]

No. vascular species mresri2_Max (Hyper.) [Leaf-on]
mresri1_STD (Hyper.) [Leaf-off] -

No. bryophyte species skwngamp (LiDAR) [Leaf-off]
lon_can_layer (LiDAR) [Leaf-on]

lon_can_layer (LiDAR) [Leaf-on]
skwngamp (LiDAR) [Leaf-off]

Percentage of bare soil within
30x30m

kurgamp_2 (LiDAR) [Leaf-on]
no_tree (Hyper.) [ITC]
spec_no (Hyper.) [ITC]

ht_p15_2 (LiDAR) [Leaf-on]
loff_can_depth (LiDAR) [Leaf-off]
meannght_2 (LiDAR) [Leaf-on]
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8.1.5 Metrics required for condition index construction
OLS regression analysis using either remote sensing data combination could not be

completed for these two remaining metrics, the models failing to achieve significance. The

two forest structural metrics and its associated R2 values for AICc models are listed in Table

8.13. The first of the combinations was hyperspectral and DR LiDAR, where both models

returned high R2 values, i.e. above 0.7. Likewise the combination of hyperspectral and FW

LiDAR returned high R2 values, i.e. above 0.7.

In comparing the R2 values between the two composite models, similar R2 values were

recorded, i.e. within 0.09 for both models.

Table 8.14 documents the input metrics to the regression models for both the combination of

hyperspectral and DR LiDAR and the combination of hyperspectral and FW LiDAR. All

model inputs are composed of both hyperspectral and LiDAR data, except for one, the DR

and hyperspectral composite for estimating the index of vertical separation.

Table 8.13 – Condition index construction metrics R2 for hyperspectral and LiDAR
combinations (all models p<0.05). Underlined values indicate highest R2 value.

Metric Name:

DR and
Hyper.
AICc
R2

FW
and
Hyper.
AICc
R2

Sum of the DBH differences
between neighbouring trees (cm)

0.950 0.864

Index of vertical separation 0.730 0.736

Table 8.14 – Combined remote sensing metric inputs for each forest condition index metric
regression model (Appendix B and C should be consulted for a description of remote sensing
metric names)

Metric Name: DR and Hyper. AICc model input
metrics

FW and Hyper. AICc model input
metrics

Sum of the DBH differences
between neighbouring trees (cm)

cri1_Sum (Hyper.)[Leaf-off]
SHA_Kur_2 (LiDAR)[Leaf-on]
sri2_Min (Hyper.)[Leaf-on]
TIF_m_area (LiDAR) [ITC]
TIF_meanCV (LiDAR) [ITC]

kurht_2 (LiDAR)[Leaf-on]
no_tree (Hyper.) [ITC]

Index of vertical separation
CC (LiDAR) [Leaf-off]
p075 (LiDAR)[Leaf-off]
TIF_to_area (LiDAR) [ITC]

amp_p15 (LiDAR)[Leaf-off]
rendvi2_Min (Hyper.)[Leaf-on]
stdht (LiDAR)[Leaf-off]
TIF_to_area (LiDAR) [ITC]



Chapter 8 – Forest assessment using fused datasets

270

8.2 Validation of remote sensing derived field-level metrics via comparison with field
measurements
This results section outlines a summary of the various statistical model estimates derived

from remote sensing and their relation to validation field measurements.

8.2.1 Hyperspectral and DR LiDAR derived statistical models
The results of the regression models from the combined hyperspectral and DR LiDAR

datasets were compared with the 2012 field data measurements (see Table 8.15).RMSE and

NRMSE were calculated for each of the remote sensing derived models. Five out of twenty-

one of the model pairs for overstorey composition recorded NRMSE values above 0.5.The

field-level metrics which could not be modelled accurately were: the average tree NN

spacing, the standard deviation of tree NN spacing, the mean DBH, the percentage of very

big trees (DBH>80cm), and the SH index (by basal area). The OLS model for predicting

basal area and the standard deviation of the height of the first live branch also had a high

NRMSE value. RMSE values for OLS models were lower for thirteen out of twenty-one

models, although often the values are very similar.

Table 8.16 reports the RMSE and NRMSE values for understorey field-level metrics. Four of

the field-level metrics produced values of NRMSE above 0.5 for both OLS and AICc models

or could not be modelled. The field-level metrics which could not be modelled were: the

percentage of native saplings, the number of sapling species, the number of bryophyte species

and the index of vertical separation. NRMSE values for AICc models of standing deadwood

volume and the percentage bare soil were above 0.5, as were OLS models for DDW volume.
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Table 8.15 – The OLS and AICc hyperspectral and DR LiDAR regression models. Part 1:
overstorey composition. Underlined values denote the lowest RMSE value for each field metric.

Field metric OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Number of trees per 30x30m 20.211 0.273 20.001 0.270
Number of native trees per 30x30m 15.141 0.291 15.676 0.301
Percentage of native trees 37.264 0.373 33.812 0.338
No. of tree species per 30x30m 1.503 0.250 1.542 0.257
Average tree NN spacing (m) 1.802 0.542 1.919 0.578
STDev. of tree NN spacing (m) 0.960 1.155 1.101 1.325
Mean DBH (cm) 15.151 0.520 15.406 0.529
STDev. of DBH (cm) 16.455 0.337 14.976 0.307
Basal area within 30x30m (m2) 1.786 0.557 1.454 0.453
(i) Percentage big trees(DBH 40>x<80cm) 22.992 0.328 25.048 0.358
(ii) Percentage very big trees (DBH >80cm) 10.294 1.698 12.618 2.082
(iii) Percentage big trees (DBH >40cm) 26.218 0.375 27.052 0.386
Shannon index (by stem count) 0.442 0.308 0.654 0.456
Simpson index (by stem count) 0.399 0.309 0.321 0.249
Shannon index (by BA) 0.577 0.751 0.671 0.873
Simpson index (by BA) 0.626 0.217 0.649 0.225
Average height of the first live branch (m) 2.879 0.266 2.658 0.245
STDev. of the height of the first live branch
(m) 2.790 0.541 2.232 0.433

Average crown horizontal area (m2) 35.022 0.402 28.514 0.327
STDev. crown horizontal area (m2) 26.788 0.468 17.766 0.311
Total crown horizontal area (m2) 510.517 0.354 641.159 0.444
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Table 8.16 – The OLS and AICc for hyperspectral and DR LiDAR regression models. Part 2:
understorey composition. Underlined values denote the lowest RMSE value for each field
metric.

Field metric OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Standing deadwood volume (m3) 2.218 0.268 4.508 0.545
Standing deadwood decay class 0.237 0.355 0.217 0.325
Downed deadwood volume (m3) 5.111 0.562 4.382 0.482
Downed deadwood decay class 0.216 0.460 0.193 0.412
No. saplings per 30x30m 24.791 0.230 24.406 0.226
No. native saplings per 30x30m 5.731 0.151 12.350 0.325
Percentage of native saplings per 30x30m 78.581 0.786 60.853 0.609
No. of sapling species per 30x30m 1.658 0.553 1.533 0.511
No. seedlings per 30x30m 450.132 0.481 450.051 0.481
No. native seedlings per 30x30m 256.432 0.356 234.340 0.325
Percentage of native seedlings per 30x30m 42.172 0.422 44.803 0.448
No. of seedling species per 30x30m 4.099 0.315 3.391 0.261
Seedlings Shannon index for native species 0.766 0.475 0.780 0.483
No. vascular species 2.793 0.465 1.987 0.331
No. bryophyte species 7.812 0.781 7.040 0.704
Percentage of bare soil within 30x30m 46.340 0.488 48.202 0.507
Sum of the DBH differences between
neighbouring trees (cm) - - 1.693 0.057

Index of vertical separation - - 0.327 0.649

8.2.2 Hyperspectral and FW LiDAR derived statistical models
The results of the regression models from the combined hyperspectral and FW LiDAR

datasets for deriving forest overstorey metrics were compared with the 2012 field data

measurements (see Table 8.17).RMSE and NRMSE were calculated for each of the remote

sensing derived models. Four model pairs recorded NRMSE values above 0.5, these were: the

average tree NN spacing, the standard deviation of tree NN spacing, the percentage of very

big trees (DBH>80cm) and the SH index (by basal area). OLS estimates for mean DBH also

had NRMSE values above 0.5.AICc estimates of total basal area and the standard deviation

of crown horizontal area also had NRSME values above 0.5.OLS models had lower RMSE

values for a total of six out of the remaining thirteen metrics. For all but one of these, RMSE

values were similar.
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Table 8.18 reports the RMSE and NRMSE values for the forest understorey metrics. Two out

of a total of eighteen model pairs reported NRMSE values of greater than 0.5, these were the

percentage of native saplings and the number of bryophyte species. AICc estimates for

standing deadwood reported NRSME values higher than 0.5,whereas four OSL model

estimates reported NRMSE values above 0.5, DDW volume, DDW class, seedlings SH index

and the percentage of bare soil.

Table 8.17 – The OLS and AICchyperspectral and FW LiDAR regression models. Part
1: overstorey composition. Underlined values denote the lowest RMSE value for each
field metric.

Field metric OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Number of trees per 30x30m 19.138 0.259 20.786 0.281
Number of native trees per 30x30m 13.800 0.265 12.637 0.243
Percentage of native trees 31.820 0.318 36.500 0.365
No. of tree species per 30x30m 2.145 0.357 2.387 0.398
Average tree NN spacing (m) 1.802 0.542 1.825 0.549
STDev. of tree NN spacing (m) 0.431 0.518 0.880 1.058
Mean DBH (cm) 15.406 0.529 12.627 0.433
STDev. of DBH (cm) 9.458 0.194 9.100 0.187
Basal area within 30x30m (m2) 1.150 0.359 1.734 0.541
(i) Percentage big trees(DBH 40>x<80cm) 25.530 0.365 19.930 0.285
(ii) Percentage very big trees (DBH >80cm) 11.868 1.958 10.330 1.704
(iii) Percentage big trees (DBH >40cm) 26.410 0.377 31.555 0.451
Shannon index (by stem count) 0.523 0.365 0.578 0.404
Simpson index (by stem count) 0.287 0.222 0.287 0.222
Shannon index (by BA) 0.575 0.748 0.499 0.649
Simpson index (by BA) 0.856 0.296 0.795 0.275
Average height of the first live branch (m) 2.657 0.245 4.896 0.452
STDev. of the height of the first live branch
(m) 2.206 0.428 1.871 0.363

Average crown horizontal area (m2) 32.776 0.376 31.829 0.366
STDev. crown horizontal area (m2) 27.172 0.475 29.093 0.509
Total crown horizontal area (m2) 682.213 0.473 581.459 0.403
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Table 8.18 – The OLS and AICc for hyperspectral and FW LiDAR regression models. Part 2:
understorey composition. Underlined values denote the lowest RMSE value for each field
metric.

Field metric OLS
RMSE

OLS
NRMSE

AICc
RMSE

AICc
NRMSE

Standing deadwood volume (m3) 1.360 0.165 4.296 0.520
Standing deadwood decay class 0.224 0.336 0.224 0.336
Downed deadwood volume (m3) 5.431 0.597 4.395 0.483
Downed deadwood decay class 0.250 0.532 0.227 0.483
No. saplings per 30x30m 25.189 0.233 26.502 0.245
No. native saplings per 30x30m 9.168 0.241 11.465 0.302
Percentage of native saplings per 30x30m 78.581 0.786 71.081 0.711
No. of sapling species per 30x30m 1.072 0.357 1.025 0.342
No. seedlings per 30x30m 260.460 0.278 309.812 0.331
No. native seedlings per 30x30m 264.820 0.368 264.820 0.368
Percentage of native seedlings per 30x30m 40.700 0.407 40.700 0.407
No. of seedling species per 30x30m 4.658 0.358 3.090 0.238
Seedlings Shannon index for native species 0.912 0.565 0.703 0.436
No. vascular species 2.890 0.482 - -
No. bryophyte species 11.088 1.109 11.088 1.109
Percentage of bare soil within 30x30m 49.276 0.519 39.955 0.421
Sum of the DBH differences between
neighbouring trees (cm) - - 2.806 0.094

Index of vertical separation - - 0.201 0.397
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8.3A review of all regression models created from the five remote sensing datasets
This section consists of a listing of the statistical models applied to the five remote sensing

datasets in order to estimate field plot-level metrics. These were: (i) hyperspectral, (ii) DR

LiDAR, (iii) FW LiDAR, (iv) combined hyperspectral and DR LiDAR, and (v) combined

hyperspectral and FW LiDAR. The following overviews the results presented in sections 6.3,

7.3, 7.4 and 8.1to highlight the comparative results. The R2 value is used to describe how

well a regression line fits a set of data, in this case the initial field data collected in 2010.Each

of the models presented were statistically significant (p<0.05).

Each of the 39 field metrics had a total of ten statistical models calculated in order to predict

the variable from the five different combinations of remote sensing metrics using the two

regression approaches (OLS and AICc).The model results will be presented by field metric

type: (i) forest structure within plot; (ii) forest composition within plot; (iii) deadwood within

plot; and (iv) regeneration and understorey structure and composition.

8.3.1 Forest structure within plot
A listing of all 14 forest structural metrics and their associated R2 values are listed in Table

8.19. When considering the statistical methods, OLS and AICc, very similar R2 values are

often produced with a typical variation of ± 0.12 and a range of variation of 0.31. On average,

AICc models produce higher R2 values in comparison with OLS models. The largest

differences are encountered for the prediction of plot basal area for all RS inputs, except

hyperspectral combined with FW LiDAR. In addition, there was a difference in R2 between

DR LiDAR OLS and AICc values for the percentage of very big trees (DBH >80cm).

The predictive power of different remote sensing inputs for structural metrics does vary, most

notably between hyperspectral and LiDAR datasets. A number of models derived from

hyperspectral data are comparable with the LiDAR and composite equivalents, such as the

number of trees per 30x30m plot and the percentage of very big trees (DBH > 80cm). A

comparison of DR and FW LiDAR model values against composite model values generally

yields little difference. Composite datasets models relating to the plot metrics of basal area

and percentage of very big trees (DBH >80cm) had higher R2 values than for the

hyperspectral, DR or FW equivalents.
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In review of the total 14 forest structural metrics, five were modelled with the highest R2

values using the hyperspectral and DR LiDAR composite using the AICc approach, three

using the FW LiDAR data only using the OLS approach, and the remaining six are modelled

with high R2 values used different remote sensing dataset combinations and modelling

approaches. Only the DR LiDAR data with an AICc modelling approach and hyperspectral

and DR LiDAR composite with an OLS modelling approach did not generate a best fit

model.

Table 8.19 – Forest structural metric R2values for all datasets (all models p<0.05). Blue indicates
the highest R2 value for each row.
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Number of trees per
30x30m 0.749 0.808 0.862 0.894 0.897 0.672 0.804 0.912 0.699 0.771

Average tree spacing
(m) 0.482 0.609 0.799 0.794 0.786 0.906 0.785 0.854 0.785 0.819

STDev. Of tree spacing
(m) 0.571 0.812 0.753 0.752 0.849 0.682 0.771 0.771 0.835 0.664

Mean DBH (cm) 0.549 0.691 0.663 0.877 0.933 0.796 0.664 0.755 0.796 0.796
STDev. of DBH (cm) 0.768 0.796 0.625 0.739 0.823 0.819 0.779 0.867 0.692 0.819
Basal area within
30x30m 0.753 0.484 0.580 0.462 0.691 0.658 0.761 0.537 0.573 0.822

Percentage big
trees(DBH
40>x<80cm)

0.505 0.554 0.628 0.901 0.913 0.651 0.850 0.925 0.809 0.915

Percentage very big
trees (DBH >80cm) 0.771 0.744 0.628 0.391 0.642 0.471 0.654 0.799 0.592 0.744

Percentage big trees
(DBH >40cm) 0.735 0.581 0.839 0.942 0.939 0.920 0.924 0.942 0.915 0.908

Average height of the
first live branch (m) 0.692 0.672 0.896 0.849 0.947 0.876 0.820 0.876 0.876 0.805

STDev. of the height of
the first live branch (m) 0.464 0.588 0.824 0.712 0.509 0.817 0.808 0.629 0.743 0.805

Average crown
horizontal area (m2) 0.564 0.880 0.748 0.864 0.862 0.629 0.852 0.859 0.86 0.828

STDev. Crown
horizontal area (m2) 0.520 0.727 0.857 0.818 0.811 0.633 0.818 0.727 0.892 0.796

Total Crown horizontal
area (m2) 0.820 0.716 0.748 0.731 0.521 0.690 0.601 0.662 0.605 0.761

Cells highlighted in blue denote the highest R2 value for each field metric.
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8.3.2 Forest composition within plot
The two regression approaches were applied to the seven forest compositional metrics and

the R2 values for each of the derived models are given in Table 8.20. A number of significant

models could not be obtained for compositional metrics when using hyperspectral and DR

LiDAR datasets; FW LiDAR and composite models did not have this issue. Hyperspectral

models failed to predict the Simpson index (weighted by basal area) with both methods, and

OLS methods failed to predict the number of tree species per plot extent and the Shannon

index (weighted by stem counts). DR LiDAR OLS models failed to predict the Simpson

(weighted by stem counts) and Shannon (weighted by basal area) indices of diversity.

When considering the statistical methods, generally AICc methods deliver higher R2values.

However the average difference is small at ±0.11, as illustrated in Table 8.20, with a range of

variation of 0.43.The largest differences in R2values are found when considering the Simpson

and Shannon diversity indices. For hyperspectral data, the Shannon index (weighted by basal

area) has the largest difference between models (±0.4).The other largest variations are

encountered within the models derived from composite datasets, primarily hyperspectral

combined with DR LiDAR. Of these larger variations, two OLS models have the smallestR2

values; these are the number of native trees per plot (modelled by hyperspectral and DR) and

Shannon Index (weighted by basal area) (modelled by hyperspectral). For the number of tree

species per plot (modelled by hyperspectral and DR), the OLS model R2 values are higher.

The predictive power of different remote sensing inputs for compositional metrics is very

similar for each metric, apart from two, (i) Simpson Index (weighted by stem count) and (ii)

Simpson Index (weighted by BA). For the former, there is a disparity between model values,

where hyperspectral and composite hyperspectral and FW datasets have lower values. For the

latter, DR and composite hyperspectral and DR models have lower values than FW and

composite hyperspectral and FW models.

In review of the seven compositional metrics two were modelled with the highest R2 value

using DR LiDAR data employing the OLS approach, and two using the hyperspectral and DR

LiDAR composite using the OLS modelling approach. The three remaining metrics received

high R2 values used different remote sensing dataset combinations and modelling approaches.

Hyperspectral data using an AICc approach, DR LiDAR using an OLS approach, FW LiDAR

using an AICc approach, and both modelling approaches applied to the hyperspectral and FW

LiDAR composite did not produce the highest R2 values.
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Table 8.20 – Forest stand composition metricsR2values for all datasets (all models p<0.05). Blue
indicates the highest R2 value for each row.
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Number of native
trees per 30x30m 0.641 0.623 0.428 0.552 0.460 0.614 0.425 0.642 0.531 0.525

Percentage of
native
trees

0.752 0.719 0.435 0.528 0.600 0.480 0.826 0.779 0.599 0.729

No. of tree species
per 30x30m - 0.555 0.673 0.426 0.576 0.320 0.775 0.531 0.373 0.429

Shannon Index (by
stem count) - 0.647 0.571 0.696 0.672 0.627 0.416 0.662 0.541 0.509

Simpson Index (by
stem count) 0.408 0.345 - 0.589 0.546 0.488 0.527 0.587 0.371 0.371

Shannon Index
(by BA) 0.188 0.620 - 0.773 0.718 0.592 0.419 0.784 0.757 0.592

Simpson Index
(by BA) - - 0.448 0.473 0.612 0.570 0.370 0.473 0.556 0.570

Cells highlighted in blue denote the highest R2 value for each field metric.

8.3.3 Deadwood within plot
The R2 values for all the models produced for the prediction of the four deadwood metrics are

presented in Table 8.21. Two metrics could not be modelled using OLS methods using

hyperspectral and DR datasets as inputs, namely standing dead decay class and DDW

volume. When considering the different statistical methods, the average difference is ±0.135,

with a range of variation of 0.43; those AICc methods which have a lower R2 than the OLS

counterparts are illustrated in Table 8.21. The largest difference between methods (±0.43) is

found in predicting the standing deadwood decay class using composite hyperspectral and

DR data. For the same metric, DR only data has a difference of ±0.34.

The predictive power of the different input datasets, in terms of R2 values, is very similar for

the estimation of both deadwood volume metrics; however differences are present with

deadwood decay class. For standing deadwood decay class, AICc models have higher values

than the equivalent models for OLS, for example DR R2 for OLS is 0.54 whereas AICc is

0.88. This pattern is repeated for all datasets apart from the combination of hyperspectral and

FW LiDAR where both OLS and AICc models have R2 values of 0.95. For DDW decay class

both hyperspectral OLS and AICc model R2 values are lower than those derived from the

other datasets. The hyperspectral model R2 values range from 0.33-0.42, whereas the others

range from 0.47-0.79.
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In a review of the four deadwood metrics, two were modelled with the highest R2 value using

the hyperspectral and FW LiDAR data and OLS modelling method. The two remaining

metrics received high R2 values used different remote sensing dataset combinations and

modelling approaches.

Table 8.21 – Deadwood within plot metricsR2values for all datasets (all models p<0.05). Blue
indicates the highest R2 value for each row.
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Standing deadwood
volume (m3) 0.967 0.889 0.920 0.906 0.948 0.919 0.748 0.881 0.919 0.833

Standing deadwood
decay class - 0.903 0.541 0.883 0.47 0.589 0.476 0.902 0.955 0.955

Downed deadwood
volume (m3) 0.392 0.548 - 0.420 0.451 0.431 0.598 0.485 0.639 0.485

Downed deadwood
decay class 0.335 0.418 0.786 0.472 0.749 0.569 0.681 0.580 0.750 0.717

Cells highlighted in blue denote the highest R2 value for each field metric.

8.3.4Regeneration and understorey metrics within the plot
The R2 values given in Table 8.22 relate to the regression models produced for the estimation

of the 12 forest understorey metrics for all five datasets. The list includes both structural and

compositional understorey metrics. A number of models failed to predict some of the field

metrics, three of which utilised the FW dataset using the OLS method. The DR models using

the OLS method failed with two metrics. When considering the two statistical approaches,

the average model variation was ±0.17 whereas the range of variation was 0.438; AICc

models which have lower R2 values than their OLS counterparts are illustrated in Table 8.22.

OLS methods generally have higher R2 values for metrics related to seedling numbers and

species.

The predictive power of different input datasets is varied throughout the regeneration and

understorey subset. The most noticeable differences are found for models derived from the

FW dataset, where R2 values are lower than those of the equivalent models for five of the

twelve metrics relating to the structure and composition of seedlings and vascular vegetation

species, in addition to failing to predict Seedlings Shannon Index for native species. DR

derived models also functioned poorly when estimating the Seedlings Shannon index for
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native species. Hyperspectral derived models also performed poorly when predicting the

number of bryophyte species and the percentage of bare soil within 30x30m.

In a review of the 12 understorey metrics, three were modelled with the highest R2 value

using the FW LiDAR data modelled by an AICc approach, three used the hyperspectral and

FW LiDAR data composite using OLS methods and three more using AICc methods. Two

metrics were modelled with the highest R2 using hyperspectral dataset and OLS methods, two

more metrics with high R2 values were produced by DR LiDAR using an OLS approach. The

two remaining metrics received high R2 values used different remote sensing dataset

combinations and modelling approaches. Only the hyperspectral data with an AICc modelling

approach and hyperspectral and DR LiDAR composite with an OLS modelling approach did

not generate a best fit model.

Table 8.22 – Regeneration and understorey metricsR2values for all datasets (all models
p<0.05). Blue indicates the highest R2 value for each row.

Metric name

H
yp

er
.

O
LS

 (R
2 )

H
yp

er
.

A
IC

c 
(R

2 )

D
R

 O
LS

(R
2 )

D
R

 A
IC

c
(R

2 )

FW
 O

LS
(R

2 )

FW
 A

IC
c

(R
2 )

H
+D

R
O

LS
 (R

2 )

H
+D

R
A

IC
c

(R
2 )

H
+F

W
O

LS
 (R

2 )

H
+F

W
A

IC
c 

(R
2 )

No. saplings per
30x30m 0.597 0.727 0.965 0.922 - 0.973 0.642 0.922 0.535 0.973

No. native saplings per
30x30m 0.646 0.678 0.890 0.896 - 0.968 0.591 0.896 0.613 0.968

Percentage of native
saplings per 30x30m 0.692 0.911 0.879 0.951 0.803 0.834 0.692 0.951 0.692 0.894

No. of sapling species
per 30x30m 0.663 0.798 0.905 0.938 0.702 0.954 0.494 0.922 0.848 0.895

No. seedlings per
30x30m 0.809 - 0.821 0.527 0.282 0.468 0.609 0.527 0.498 0.568

No. native seedlings
per 30x30m 0.642 0.310 - 0.631 0.682 0.535 0.43 0.538 0.779 0.779

Percentage of native
seedlings per 30x30m 0.816 0.856 0.920 0.585 0.683 0.432 0.763 0.577 0.605 0.865

No. of seedling species
per 30x30m 0.860 0.423 0.739 0.594 0.206 0.447 0.74 0.553 0.860 0.532

Seedlings Shannon
Index for native species 0.415 0.735 0.212 0.212 - - 0.674 0.789 0.792 0.746

No. Vascular Species 0.855 0.437 - 0.746 0.194 0.194 - 0.547 0.404 -
No. Bryophyte Species 0.439 0.439 0.835 0.858 0.782 0.457 0.737 0.625 0.687 0.687
Percentage of bare soil
within 30x30m 0.518 0.518 0.761 0.737 0.862 0.749 0.761 0.793 0.840 0.749

Cells highlighted in blue denote the highest R2 value for each field metric.
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8.3.5 Metrics required for condition index construction
The two metrics integral to index construction and their associated R2 values are given in

Table 8.23. Given the structural nature of these metrics and time restraints, only LiDAR and

composite datasets were used in the regression analyses, and only AICc for composite

models. Of the two analyses which used OLS and AICc, R2 values were again similar, with

AICc values being lower than those of OLS in 1 out of 8 models. Sum of DBH differences

received high R2 values overall, whereas the index of vertical separation was more variable.

The index of vertical separation was higher for AICc methods, and was highest for DR

LiDAR and both composite (i.e. hyperspectral & DR and hyperspectral & FW) derived

models.

Table 8.23 – Index Inputs metrics R2 values for all datasets (all models p<0.05). Blue indicates
the highest R2 value for each row.
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Sum of the DBH differences
between neighbouring trees (cm) 0.873 0.924 0.912 0.714 - 0.950 - 0.864

Index of Vertical Separation 0.526 0.743 0.467 0.601 - 0.730 - 0.736
Cells highlighted in blue denote the highest R2 value for each field metric.



Chapter 8 – Forest assessment using fused datasets

282

8.4A review and summary of model prediction accuracy of all remote sensing datasets
This section contains the results of the regression models derived through remote sensing

means as compared with the 2012 field data measurements. RMSE and NRMSE were

calculated for each of the remote sensing derived models to identify which of the ten models

was the ‘best’the predictor of the field data. Regression derived models were chosen with the

highest R2values (p<0.05) and the lowest RMSE and NRMSE values. An overview of which

of the ten models was the best predictor for each field metric is presented in Table 8.24for

overstorey metrics and in Table 8.25for the understorey, for the groupings of: (i) DR LiDAR,

hyperspectral, and the composite DR and hyperspectral dataset metrics, and (ii) FW LiDAR,

hyperspectral and composite FW and hyperspectral dataset metrics. Two field-level metrics

could not be adequately modelled; these were the percentage of native saplings within the

plot and the number of bryophyte species.

Tables 8.26 and 8.27,show that the RMSE and NRMSE values are similar for the majority of

cases between the two main groups: (i) DR LiDAR and hyperspectral metrics and (ii) FW

LiDAR and hyperspectral metrics. In comparison, NRMSE values typically vary by ±0.04 of

one another for each metric. The majority of the NRMSE values are below 0.4.Five metrics

have higher values for both model sets, these are:

(1) Percentage very big trees (DBH >80cm);

(2) Shannon Index (by basal area);

(3) Percentage of native seedlings per 30x30m;

(4) Seedlings Shannon Index for native species;

(5) Percentage of bare soil within 30x30m; and

The percentage very big trees (DBH >80cm) estimate produced an NRMSE above 1

however, i.e. beyond the range of the field data. The Shannon Index (by basal area) estimates

produced NRMSE values of greater than 0.5. For both these metrics the error was considered

too high to be used. It should also be noted that the Simpson index (by stem count) was best

predicted by applying the index calculation directly to the hyperspectral data.
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The choices of best statistical models for groups (i) DR LiDAR, hyperspectral, and composite

DR and hyperspectral dataset metrics, and (ii) all FW LiDAR, hyperspectral, and composite

FW and hyperspectral dataset metrics, in addition to how many of each were identified as the

best model overall, are presented in Table 8.26. Overall, LiDAR and composite datasets

provided the most predicative ability. Out of the remaining 35 metrics this is best summarised

as:

 9 DR LiDAR only;

 15 FW LiDAR only;

 2 hyperspectral only;

 4 combined DR LiDAR and hyperspectral;

 5 combined FW LiDAR and hyperspectral.

In particular, FW LiDAR provided the most input to predicating 20 (15 LiDAR and

5composite) (57%) of the field-level metrics, in comparison to 13 for DR (9 LiDAR and 4

composite) (37%), and 2 for hyperspectral models (6%).

A summary of which field-level metrics were best predicted by which dataset and regression

model is available in Table 8.27. The model equations and coefficients are given in Table

8.28. Both LiDAR datasets predict many of the forest structural variables. There are also five

overstorey and understorey compositional metrics best described without any input from

hyperspectral data, for example the number of tree species and number of vascular species.

Hyperspectral data on their own best estimates two measures of species diversity and an

understorey metric, downed deadwood decay class. The combination of DR or FW LiDAR

with hyperspectral datasets are best predictors of some overstorey and understorey

compositional metrics, for example sapling and seedling species numbers.
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Table 8.24 – The best regression models identified through interrogation of RMSE and NRMSE
values. Part 1: overstorey composition. [DR = DR LiDAR; FW = FW LiDAR; Hyp =
Hyperspectral dataset metrics]
Field metric (1)DR,

(2)Hyp,
and

(3)DR&
Hyp

Model

(1)DR,
(2)Hyp,

and
(3)DR&

Hyp
RMSE

(1)DR,
(2)Hyp,

and
(3)DR&

Hyp
NRMSE

(1)FW,
(2)Hyp,

and
(3)FW&

Hyp
Model

(1)FW,
(2)Hyp,

and
(3)FW&

Hyp
RMSE

(1)FW,
(2)Hyp,

and
(3)FW&

Hyp
NRMSE

Best
model
overall

Number of trees per
30x30m

DR AICc 18.90 0.256 FW OLS 15.974 0.216 FW OLS

Number of native trees per
30x30m

DR AICc 15.04 0.289 FW and
Hyper.
AICc

12.64 0.243 FW and
Hyper.
AICc

Percentage of native trees DR AICc 28.75 0.288 FW AICc 29.74 0.297 DR AICc

No. of tree species per
30x30m

DR AICc 1.50 0.250 FW AICc 1.66 0.276 DR AICc

Average tree spacing (m) DR OLS 1.71 0.330 FW OLS 1.32 0.398 DR OLS
STDev. of tree spacing (m) DR OLS 0.58 0.695 FW OLS 0.39 0.475 FW OLS
Mean DBH (cm) DR OLS 8.38 0.287 FW and

Hyper.
AICc

12.63 0.433 DR OLS

STDev. of DBH (cm) DR OLS 10.80 0.217 FW AICc 9.10 0.187 FW AICc

Basal area within 30x30m DR AICc 0.83 0.257 FW OLS 0.91 0.283 DR AICc

Percentage big trees(DBH
40>x<80cm)

DR and
Hyper.
OLS

20.03 0.286 FW OLS 19.93 0.285 FW OLS

Percentage very big trees
(DBH >80cm)

DR AICc 7.04 1.162 FW OLS 10.31 1.701 DR AICc

Percentage big trees (DBH
>40cm)

DR and
Hyper.
OLS

26.22 0.375 FW AICc 21.89 0.313 FW AICc

Shannon index (by stem
count)

DR and
Hyper.
OLS

0.44 0.308 FW and
Hyper
OLS

0.52 0.365 DR and
Hyper.
OLS

Simpson index (by stem
count)

Hyper.
(Direct)

0.28 0.217 FW AICc 0.29 0.221 Hyper
(Direct)

Shannon index (by BA) Hyper.
OLS

0.45 0.589 Hyper.
OLS

0.45 0.589 Hyper.
OLS

Simpson index (by BA) DR and
Hyper.
OLS

0.62 0.217 FW AICc 0.79 0.275 DR and
Hyper.
OLS

Average height of the first
live branch (m)

DR and
Hyper.
AICc

2.66 0.245 FW OLS 2.59 0.239 FW OLS

STDev. of the height of the
first live branch (m)

DR AICc 1.66 0.322 FW and
Hyper.
AICc

1.87 0.363 DR AICc

Average crown horizontal
area (m2)

DR AICc 23.53 0.270 FW OLS 24.39 0.280 DR AICc

STDev. crown horizontal
area (m2)

DR and
Hyper.
AICc

17.77 0.311 FW AICc 17.59 0.308 FW AICc

Total crown horizontal
area (m2)

DR and
Hyper.
OLS

510.52 0.354 Hyper.
AICc

538.76 0.373 DR and
Hyper.
OLS
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Table 8.25 – The best regression models identified through interrogation of RMSE and NRMSE
values.Part 2: understorey composition.[DR = DR LiDAR; FW = FW LiDAR; Hyp =
Hyperspectral dataset metrics]
Field metric (1)DR,

(2)Hyp,
and

(3)DR&
Hyp

Model

(1)DR,
(2)Hyp,

and
(3)DR&
HypRM

SE

(1)DR,
(2)Hyp,

and
(3)DR&
HypNR

MSE

(1)FW,
(2)Hyp,

and
(3)FW&

Hyp
Model

(1)FW,
(2)Hyp,

and
(3)FW&
HypRM

SE

(1)FW,
(2)Hyp,

and
(3)FW&
HypNR

MSE

Best
model
overall

Standing deadwood
volume (m3)

DR OLS 1.50 0.181 FW AICc 1.36 0.165 FW AICc

Standing deadwood decay
class

DR and
Hyper.
AICc

0.22 0.325 FW AICc 0.19 0.290 FW AICc

Downed deadwood volume
(m3)

DR OLS 2.74 0.300 FW OLS 2.49 0.270 FW OLS

Downed deadwood decay
class

Hyper.
OLS

0.16 0.339 Hyper.
OLS

0.16 0.339 Hyper.
OLS

No. saplings per 30x30m DR AICc 24.41 0.230 FW and
Hyper.
OLS

24.42 0.230 DR AICc

No. native saplings per
30x30m

DR and
Hyper.
OLS

5.73 0.151 FW and
Hyper.
OLS

9.17 0.24 DR and
Hyper.
OLS

Percentage of native
saplings per 30x30m

- - - - - - -

No. of sapling species per
30x30m

Hyper.
OLS

1.12 0.373 FW and
Hyper.
OLS

1.02 0.342 FW and
Hyper.
OLS

No. seedlings per 30x30m DR OLS 295.24 0.315 FW and
Hyper.
OLS

260.46 0.278 FW and
Hyper.
OLS

No. native seedlings per
30x30m

DR OLS 239.08 0.332 FW OLS 247.84 0.340 DR OLS

Percentage of native
seedlings per 30x30m

DR and
Hyper.
OLS

42.17 0.422 FW OLS 39.72 0.397 FW OLS

No. of seedling species per
30x30m

DR OLS 3.16 0.243 FW and
Hyper.
AICc

3.09 0.238 FW and
Hyper.
AICc

Seedlings Shannon index
for native species

DR AICc 0.73 0.450 FW and
Hyper.
AICc

0.70 0.436 FW and
Hyper.
AICc

No. vascular species DR and
Hyper.
AICc

1.99 0.331 FW OLS 1.70 0.283 FW OLS

No. bryophyte species - - - - - - -

Percentage of bare soil
within 30x30m

DR AICc 44.04 0.464 FW OLS 39.82 0.419 FW OLS

Sum of the DBH
differences between
neighbouring trees (cm)

Hyper.
AICc

23.54 0.569 FW AICc 19.54 0.389 FW AICc

Index of vertical
separation

DR OLS 0.16 0.323 FW OLS 0.13 0.262 FW OLS
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Table 8.26 – Summary of best statistical model choices [DR = DR LiDAR; FW = FW LiDAR;
Hyp = Hyperspectral dataset metrics]

Dataset (1)DR, (2)Hyp,
and
(3)DR&Hypmo
dels count

(1)FW, (2)Hyp,
and
(3)FW&Hypmo
dels count

Best model
overall count

DR OLS 11 - 3
DR AICc 13 - 6
FW OLS - 14 9
FW AICc - 11 6
Hyperspectral OLS 4 3 1
HyperspectralAICc 1 2 0
DR and Hyper. OLS 5 - 4
DR and Hyper. AICc 3 - 0
FW and Hyper. OLS - 2 2
FW and Hyper. AICc - 4 3
Hyperspectral Direct 1 1 1

Table 8.27– A breakdown of the regression models which best predicted each field-level metric
Dataset Best model

overall count
Field-level metrics names

DR OLS 3 Average tree spacing;Mean DBH (cm); No. native seedlings per
30x30m;

DR AICc 6 Percentage of native trees per 30x30m; No. of tree species per
30x30m; Basal are within 30x30m (m2); STDev of the height of the
first live branch (m); Average crown horizontal area (m2); No.
saplings per 30x30m;

FW OLS 9 Number of trees per 30x30m; STDev. of tree spacing; Percentage big
trees  (DBH 40>x<80cm); Average height if the first live branch (m);
Downed deadwood volume (m3); Percentage of native seedlings per
30x30m; No. of vascular species; Percentage of bare soil; Index of
vertical separation.

FW AICc 6 STDev. DBH (cm); Percentage of big trees (DBH>40cm); STDev. of
crown horizontal area (m2); Standing deadwood volume (m3);
Standing deadwood decay class; Sum of the DBH differences between
neighbouring trees (cm);

Hyper. OLS 1 Downed deadwood class;

Hyper. AICc 0 -

DR and Hyper. OLS 4 Shannon index (by stem count); Simpson index (by BA); Total crown
horizontal area (m2); No. native saplings per 30x30m;

DR and Hyper. AICc 0 -

FW and Hyper. OLS 2 No. sapling species per 30x30m No. seedling per 30x30m;

FW and Hyper. AICc 3 Number of native trees per 30x30m;No. seedling species per 30x30m;
Seedling Shannon index for native species;

Hyperspectral Direct 1 Simpson index (by stem count);
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Table 8.28 – Regression model list for a combination of the ‘best’ FW, DR, hyperspectral or
composite models. The table displays the regression equation coefficients (B0, B1…Bn) and
predictor metrics (X1, X2…Xn) for each derived model. The two red lines indicates models which
could not be adequately modelled.
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8.5 Summary of findings
In summary, this chapter began by presenting the results of the hyperspectral combined with

DR LiDAR, and hyperspectral combined with FW LiDAR field metric predictive models. For

the former, models could be produced for all 39 indicator metrics using both OLS and AICc

methods, apart from two using the OLS method (the sum of diameter differences and the

index of vertical separation metrics). Thus, OLS performed better for 12 out of 37 models in

terms of R2 value. Eight out a total of 37 indicators had NRMSE values above 0.5 for both

models, these were: average tree NN spacing; standard deviation of tree NN spacing; mean

DBH; Percentage very big trees; Shannon Index (by basal area); Percentage of native

saplings; No. bryophyte Species; and Index of vertical separation. For OLS, the standard

deviation of the height of the first live branch and DDW volume had NRSME values above

0.5.For AICc the standing deadwood volume had an NRMSE value above 0.5.Overall OLS

performed better for 12 indicators out of the remaining 31 metrics.

Models for hyperspectral combined with FW LiDAR could be produced for 37 indicator

metrics for OLS and 39 for AICc methods. OLS methods could not estimate the sum of

diameter differences and the index of vertical separation metrics, and AICc methods could

not estimate the number of vascular species. OLS performed better for 14 out of 37 models in

terms of R2. Five out a total of 39 indicators had NRMSE values above 0.5 for both models,

these were: average tree NN spacing; standard deviation tree NN spacing; Percentage very

big trees; Shannon Index (by BA); and Percentage of native saplings. For OLS mean DBH,

DDW volume, and DDW decay class NRMSE values were above 0.5, whilst for AICc basal

area, standard deviation of crown horizontal area and standing deadwood volume NRMSE

values were above 0.5.Overall OLS performed better for 13 out of the remaining 34 metrics.

Comparison of the models derived from all the remote sensing datasets for each of the

indicators showed that the predictive power of different remote sensing inputs for structural

metrics varied, and most notably between hyperspectral and LiDAR datasets in terms of R2

value. Comparisons between predicted metrics and validation field plot data indicated

automated ITC detection performed very similarly between TIFFS and eCongition solutions.

The best estimates of mean canopy height came from DR LiDAR average TIFFS ITC data,

with FW leaf-on LiDAR dominant height giving very similar results. Canopy layer estimates

were also very similar between DR and FW LiDAR datasets. Canopy openness was best

estimated by FW leaf-on LiDAR data.
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The best regression models for the field indicator metrics in relation to RMSE and NRMSE

were presented for all relevant combinations of hyperspectral and DR, and hyperspectral and

FW LiDAR inputs. The best models from the two main groups were often very similar. The

percentage of very big trees (DBH>80cm), Shannon index (by basal area), percentage of

native saplings and the number of bryophyte species could not be adequately modelled. The

subset of the best models, out of a total of 35, contained (i) 20 models from the FW and FW

combined with hyperspectral datasets; (ii) 13 models from the DR LiDAR and DR combined

with hyperspectral datasets; and (iii) 2 models from hyperspectral datasets only. These

models will subsequently be used to estimate forest condition over the whole study site.
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Chapter 9 – Mapping forest metrics and condition indices

This chapter presents maps of the 37 forest structure and compositional metrics derived at a

30x30m resolution from the best regression model results identified in Chapter 8. This also

includes the two metrics which received poor NRMSE values (i.e. >0.4), the percentage very

big trees (DBH >80cm) and the Shannon index (by basal area). Condition indices were

calculated from these remote sensing derived 30x30m field-level metrics and were

subsequently validated with field-measurement indices. These various indices incorporate

both structural and compositional metrics in various numbers and combinations, relating to

horizontal and vertical distributions within the fieldwork plots. As with the estimates of field

metrics, the condition indices derived through remote sensing data were mapped across the

whole study site.

9.1 Mapping of forest metrics
As stated in section 4.7, the regression models could be applied for the entirety of the study

site, provided there was coincident airborne remote sensing data coverage to provide input

metrics. The following section documents the mapping outputs for the best models for all 37

field metrics derived from the remote sensing datasets (i) hyperspectral, (ii) DR LiDAR, (iii)

FW LiDAR, (iv) composite hyperspectral and DR LiDAR, or (v) composite hyperspectral

and FW LiDAR, as identified in chapter 8.4, for a subset of the total study area in order to

illustrate features at the plot and stand scales centred upon the Frame Wood area, with

elements of Tantany Woods, Frame-Heath and Hawkhill inclosures visible. This area

contains a mixture of semi-natural ancient woodland, such as those located in Frame and

Tantany Woods, and managed plantation woodland, such as that in the Frame-Heath and

Hawkhill inclosures. Figure 9.1 illustrates the subset area comprising a 1x1m resolution

CHM, and the primary species as identified by FC inventory data. Table 9.1 reports the map

name, figure number and description of each of the 37 predicted metrics.
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Figure 9.1 – The subset area for presenting predicted field-level metrics over wide areas. Frame
Wood and Tantany Wood in addition to Frame-Heath and Hawkhill inclosures intersect this
area. Ordnance survey mapping, 1x1m raster nCHM, and FC inventory primary species
classification are presented for reference. Base Map layer (top) is © Crown Copyright/database
right 2010. An Ordnance Survey/EDINA supplied service.
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area. Ordnance survey mapping, 1x1m raster nCHM, and FC inventory primary species
classification are presented for reference. Base Map layer (top) is © Crown Copyright/database
right 2010. An Ordnance Survey/EDINA supplied service.

Chapter 9 – Mapping forest metrics and
condition indices

291

Figure 9.1 – The subset area for presenting predicted field-level metrics over wide areas. Frame
Wood and Tantany Wood in addition to Frame-Heath and Hawkhill inclosures intersect this
area. Ordnance survey mapping, 1x1m raster nCHM, and FC inventory primary species
classification are presented for reference. Base Map layer (top) is © Crown Copyright/database
right 2010. An Ordnance Survey/EDINA supplied service.



Chapter 9 – Mapping forest metrics and
condition indices

292

It should be noted that there was an obvious error present in each of the maps produced for

this section which could not be rectified. This error lies to the east of the subset area and runs

north to south. This error was caused by errors in mosaicing the extracted FW LiDAR metrics

together caused by duplicate grid cells in the shapefiles. Given more time this issue could be

rectified, however this minor error does not detract from the overall assessment of the

mapping approaches.

A comparison of 10 sample metrics estimated from (i) DR, hyperspectral or DR and

hyperspectral composite; or (ii) FW, hyperspectral or FW and hyperspectral composite

models is available in Appendix F section F.1.

Table 9.1 – Summary of mapping results
Metric name Description

Number of trees per 30x30m
(Figure 9.2)

The map indicates higher stem densities within the plantation inclosures. A
relatively even tree stem density can be observed through much of the semi-
ancient Frame woodland. Variability occurs within Tantany wood where there
are pockets of birch in amongst the beech and oak dominated areas.

Number of native trees per
30x30m (Figure 9.3)

The pattern of higher numbers is preserved within the semi-ancient woodland
areas, the differences are evident however in plantation woodlands, due to the
higher proportions of non-native tree species.

Percentage of native trees per
30x30m (Figure 9.4)

Estimates of the total percentage of trees of a native species per 30x30m area
broadly identify areas of coniferous plantation and deciduous semi-ancient
woodland.

No. of tree species per 30x30m
(Figure 9.5)

A maximum of seven tree species were identified within the 30x30m gridded
area. Semi-ancient woodlands exhibit relatively few species. Plantation areas
can exhibit only one, or a maximum of seven, but these areas are noticeably
stratified by compartment boundaries.

Average tree NN spacing (m)
(Figure 9.6)

Average tree spacing between nearest neighbours is variable across the semi-
ancient woodlands. The coniferous plantation areas are noticeably stratified by
compartment boundaries, where different compartments may exhibit different
average spacing, but are generally uniform within.

STDev. of tree NN spacing (m)
(Figure 9.7)

Within semi-ancient deciduous woodland the standard deviation of nearest
neighbour tree spacing is variable, even between the two semi-ancient
woodlands, Tantany and Frame. The plantation woodland areas do not exhibit
a lot of variability

Mean DBH (cm) (Figure 9.8) Generally higher, but more variable mean DBH values are found in the semi-
ancient deciduous woodland. DBH variation is limited in the coniferous
woodlands and is noticeably confined by compartment boundaries.

STDev. of DBH (cm) (Figure
9.9)

Generally higher and more variable standard deviation DBH values are found
in the semi-ancient deciduous woodland. DBH variation is limited in the
coniferous woodlands and is noticeably confined by compartment boundaries.

Basal area within 30x30m
(Figure 9.10)

Basal area is significantly higher in coniferous plantation woodland, and is
typically uniform within each compartment area. Lower and more variable
basal area values are present within semi-ancient woodlands.
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Table 9.1 (continued)
Metric name Description

Percentage big trees  (DBH
40>x<80cm) (Figure 9.11)

The percentage of big trees is values are typically higher in certain plantation
areas and parts of the semi-ancient woodlands. Many plantation compartments
contain very low values (~0%).

Percentage very big trees (DBH
>80cm) (Figure 9.12)

Much higher values are detected in deciduous woodland and none or very low
values are detected in coniferous woodlands.  Note RMSE value for this
model high.

Percentage big trees (DBH
>40cm) (Figure 9.13)

The percentage of big trees is typically higher in certain plantation areas and
parts of the semi-ancient woodlands. Many plantation compartments contain
very low values (~0%).

Shannon index (by stem count)
(Figure 9.14)

The highest SH values are found in Tantany Wood, with more variable values
found in Frame Wood. Some coniferous dominated compartments have high
values, but the majority have low SH values.

Simpson index (by stem count)
(Figure 9.15)

The highest SI values are found in the deciduous woodland. Some coniferous
dominated compartments have high values, but the majority have low SI
values.

Shannon index (by BA) (Figure
9.16)

Higher values are located within plantation woodlands, i.e. due to higher basal
area values.

Simpson index (by BA) (Figure
9.17)

Higher values are located within plantation compartments and certain
deciduous woodlands, i.e. due to higher basal area values. Although there are
a number of coniferous compartments with very low values.

Average height of the first live
branch (m) (Figure 9.18)

The average height is consistently higher in coniferous areas, and lower in
deciduous areas.

STDev. of the height of the first
live branch (m) (Figure 9.19)

The standard deviation of the height of the first live branch is highly variable
across the whole site; however larger values are encountered in coniferous
compartment areas.

Average crown horizontal area
(m2) (Figure 9.20)

Semi-ancient deciduous woodlands contain much larger mean crown areas
and variation in values. Conifer areas contain lower and less variable values.

STDev. crown horizontal area
(m2) (Figure 9.21)

Semi-ancient deciduous woodlands contain much larger standard deviation of
crown area and variation in values. Conifer areas contain lower and less
variable values.

Total crown horizontal area
(m2) (Figure 9.22)

The total crown horizontal area shows a different pattern to average and
standard deviation of crown area. Larger values are generally found in
deciduous woodland areas, Frame Wood however has lower values,
potentially related to the larger canopy gaps evident in the CHM.

Standing deadwood volume
(m3) (Figure 9.23)

Standing deadwood volume is higher in deciduous woodlands, and also
exhibits more variability between cells. Low deadwood volume is located
within the coniferous plantation areas.

Standing deadwood decay class
(Figure 9.24)

Deadwood decay class is highly variable across the woodlands, but obvious
differences between woodland compartments are evident. Generally decay
class is higher in many deciduous areas, apart from Tantany Wood, and lower
in coniferous compartments.

Downed deadwood volume (m3)
(Figure 9.25)

Downed deadwood volume follows a similar pattern to standing deadwood
volume, where deciduous areas have higher values. Although TantanyWood
exhibits a change from east to west, from high to low. Deadwood volume in
coniferous areas is generally low, but varies between compartments.



Chapter 9 – Mapping forest metrics and
condition indices

294

Table 9.1 (continued)
Metric name Description

Downed deadwood decay class
(Figure 9.26)

Overall deadwood decay class is highest in deciduous areas, which is
significantly higher than coniferous areas. The various coniferous
compartments generally differ in terms of decay class.

No. saplings per 30x30m
(Figure 9.27)

Sapling number is generally low in field work, which is repeated in the
estimation from remote sensing data.  Larger counts are located in specific
compartments of both coniferous and deciduous woodlands.

No. native saplings per 30x30m
(Figure 9.28)

This map follows a similar pattern to the total number of saplings with larger
values and greater variability in deciduous woodlands. Coniferous
compartments are generally more uniform, and can also vary in count value.

No. of sapling species per
30x30m (Figure 9.29)

Semi-ancient woodlands exhibit relatively few sapling species. Plantation
areas can exhibit general lower numbers, but these areas are noticeably
stratified by compartment boundaries.

No. seedlings per 30x30m
(Figure 9.30)

Seedlings count is variable across the whole site but is generally stratified by
woodland compartment.

No. native seedlings per
30x30m (Figure 9.31)

Native seedlings count is variable across the whole site but is generally
stratified by woodland compartment.

No. of seedling species per
30x30m (Figure 9.32)

Generally larger values are found within deciduous areas. In addition conifer
areas are generally stratified by woodland compartment.

Seedlings Shannon index for
native species (Figure 9.33)

SH index values are generally higher in coniferous areas and very low in
deciduous areas.

No. vascular species (Figure
9.34)

The number of vascular plants is generally higher in deciduous areas.
Coniferous areas can be variable from low to high.

Percentage of bare soil within
30x30m (Figure 9.35)

Higher amounts of bare ground/soil are found in deciduous areas, however a
number of conifer compartments have high values also.

Sum of the DBH differences
between neighbouring trees
(cm) (Figure 9.36)

The differences in DBH value are higher in the plantation woodlands, and a
limited number of deciduous areas. Deciduous areas are generally less
different.

Index of vertical separation
(Figure 9.37)

This metric is related to the variance of the largest and smallest DBH values
within the 30x30m cell. This is found to be highest generally in deciduous
areas, especially Frame Wood, where oak and birch woodlands intermingle.
Coniferous woodland index values are typically low.
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Figure 9.2 – The predicted number of tree stems per 30x30m

Figure 9.3 – The predicted number of tree stems of native species per 30x30m
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Figure 9.4 – The predicted percentage of tree stems of native species per 30x30m

Figure 9.5 – The predicted number of tree species per 30x30m
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Figure 9.6 – The predicted average of tree stem nearest neighbour spacing (m) per 30x30m

Figure 9.7 – The predicted standard deviation of tree stem nearest neighbour spacing (m) per
30x30m
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Figure 9.8 – The predicted average DBH (cm) of tree stems per 30x30m

Figure 9.9 – The predicted standard deviation of DBH (cm)of tree stems per 30x30m
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Figure 9.10 – The predicted total basal area (m2) of tree stems per 30x30m

Figure 9.11 – The predicted percentage of large trees (i.e. DBH 40>x<80cm) per 30x30m
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Figure 9.12 – The predicted percentage of very large trees (i.e. DBH >80cm) per 30x30m

Figure 9.13 – The predicted percentage of large trees (i.e. DBH >40cm) per 30x30m
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Figure 9.14 – The predicted SH index value (for species counts per stem) per 30x30m

Figure 9.15 – The predicted SI index value (for species counts per stem) per 30x30m
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Figure 9.16 – The predicted SH index value (for species proportion defined by basal area) per
30x30m

Figure 9.17 – The predicted SI index value (for species proportion defined by basal
area) per 30x30m
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Figure 9.18 – The predicted average height of the first live branch (m) per 30x30m

Figure 9.19 – The predicted standard deviation of height of the first live branch (m) per 30x30m
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Figure 9.20 – The predicted average horizontal crown area (m2) per 30x30m

Figure 9.21 – The predicted standard deviation of horizontal crown area (m2) per 30x30m
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Figure 9.22 – The predicted total horizontal crown area (m2) per 30x30m

Figure 9.23 – The predicted total of standing deadwood volume (m3) per 30x30m
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Figure 9.24 – The predicted decay class of standing deadwood per 30x30m

Figure 9.25 – The predicted total of downed deadwood volume (m3) per 30x30m
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Figure 9.26 – The predicted decay class of standing deadwood per 30x30m

Figure 9.27 – The predicted number of saplings per 30x30m
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Figure 9.28 – The predicted number of saplings of native species per 30x30m

Figure 9.29 – The predicted number of saplings species per 30x30m
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Figure 9.30 – The predicted number of seedlings per 30x30m

Figure 9.31 – The predicted number of seedlings of native species per 30x30m
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Figure 9.32 – The predicted of seedlings species per 30x30m

Figure 9.33 – The predicted of SH index for native seedlings species per 30x30m
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Figure 9.34 – The predicted number of vascular species per 30x30m

Figure 9.35 – The predicted percentage of bare earth/soil per 30x30m
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Figure 9.36 – The predicted difference of the sum of DBH (cm) differences per 30x30m

Figure 9.37 – The predicted Index of vertical separation per 30x30m
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9.2 Condition index mapping
Six condition indices were calculated from the various remote sensing derived products

relating to summarised ITC and statistically derived field plot-level metrics. The first two

condition index calculations reported in this section utilise ITC metrics only however. The

statistically derived metrics reported here conform to the best models, or more specifically

those models with the smallest RMSE/NRMSE from the following dataset metrics: (i)

hyperspectral; (ii) DR LiDAR, (iii) FW LiDAR; (iv) combined hyperspectral and DR

LiDAR; and (v) combined hyperspectral and FW LiDAR, as identified in Chapter 8.4.

Figure 9.38 illustrates the sample area for all the illustrations of condition indices that are

mapped across the study site. This image contains the FC compartment boundaries with the

primary species class, as identified by the FC, overlaid upon a 1x1m CHM as a general

indication of forest structure and composition at that position. The area centres upon the

semi-ancient Frame Wood, with Frame-Heath and Denny-Lodge inclosures to the north,

Tantany Wood to the north-east and Hawkh illinclosure to the south.

A comparison of the condition indices calculated from the derived field-level metrics from (i) DR

LiDAR, hyperspectral or DR and hyperspectral composite; or (ii) FW LiDAR, hyperspectral or FW

and hyperspectral composite models is available in Appendix F section F.2.  It should be noted that

Figures 9.39-9.44 may contain two image artefacts due to calculation errors which could not

be corrected in the available time. These mapping artefacts appear as two lines of grid-cells

from north to south in the east of the map images. These errors were caused by problems in

mosaicing FW LiDAR metrics where shapefile grid cells were duplicated.
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Figure 9.38 – FC compartment boundaries and primary species class overlaid upon a
1x1m CHM
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9.2.1 Vertical evenness (VE) index
The VE index relates to the relative distribution of tree crown horizontal cover at different

heights within the fieldwork plot. To reiterate the outputs from DR LiDAR ITC analysis

using data generated from the TIFFS software was used as input for calculating the VE index.

Table 9.2 summarises the VE calculated from field and DR LiDAR data. Due to the high

density and/or high crown closure of tree stems in plots 24, 30 and 38 the field VE index

could not be estimated. The overall RMSE for the LiDAR-derived VE was 0.292. Eight of

the remaining seventeen VE estimates were below the field estimates, where the index values

were less than half of the corresponding field derived value. A number of values were

returned as 0. This occurred where ITC measurements for the extracted field-plot extent

recorded very similar heights. Underestimation occurred for both coniferous and deciduous

dominated plots; however deciduous plots were most effected.

Table 9.2 – Comparison of field vs. remote sensing derived VE index
Site
no.

Class Field calc. VE
index

DR LiDAR VE
index

22 Deciduous 0.318 0.314
23 Coniferous 0.380 0.372
25 Deciduous 0.479 0.111
26 Deciduous 0.436 0.312
27 Deciduous 0.685 0.179
28 Coniferous 0.369 0.325
29 Deciduous 0.539 0.000
31 Coniferous 0.288 0.228
32 Mixed 0.396 0.289
33 Coniferous 0.386 0.054
34 Mixed 0.562 0.375
35 Coniferous 0.478 0.236
36 Coniferous 0.329 0.155
37 Deciduous 0.505 0.095
39 Coniferous 0.517 0.372
40 Deciduous 0.503 0.000
41 Mixed 0.578 0.336

- RMSE 0.292
- NRMSE 0.292
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Figure 9.39 illustrates the results of the calculations for producing the VE index over the

selected sample area. A number of patterns can be observed within the individual

compartments. Higher index values are typically present in semi-ancient deciduous

woodland. Higher values and greater variability is evident in Frame Wood, whereas more

consistent lower values are evident in Tantany Wood, which is an area of higher canopy

closure. Plantation and coniferous woodland have typically lower and less variable VE index

values than deciduous areas.

Figure 9.39 – The VE condition index as calculated from ITC information for 30x30m areas.
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9.2.2 The Clark-Evans aggregation index
The aggregation index is a measure of the variability in distances between NN tree stems

within the field plot extent. As with the VE index above, this index was calculated from the

outputs of DR LiDAR ITC analysis data generated from the TIFFS software. Table 9.3 shows

the results of the aggregation index calculated for field data and LiDAR derived data. Plots

21 and 31 contained measurement errors and were removed. All of the index results are very

close to a value of 1, indicating trees are distributed randomly within the stand (Clark and

Evans, 1954; Vorčák et al., 2006). The overall RMSE of the estimated index is 0.236, while

NRMSE is 0.254, indicating the predicted values are within 25.4% of the field data

equivalent. The largest variation from the field data equivalents are found for plots 24, 25, 26,

27 and 29, which are all deciduous plots, in each of these cases the remote sensing derived

index is larger than the field derived index values.

Table 9.3 – Comparison of field vs. remote sensing derived aggregation index
Site
no.

Class Field calc.
Aggregation
index

DR LiDAR
Aggregation
index

23 Coniferous 1.338 1.192
24 Deciduous 0.975 1.215
25 Deciduous 0.700 1.168
26 Deciduous 0.516 1.026
27 Deciduous 0.717 1.205
28 Coniferous 1.224 1.237
29 Deciduous 0.828 1.181
30 Coniferous 1.166 1.193
32 Mixed 1.342 1.284
33 Coniferous 1.407 1.279
34 Mixed 1.239 1.328
35 Coniferous 1.166 1.277
36 Coniferous 1.416 1.427
37 Deciduous 1.139 1.277
38 Mixed 1.199 1.199
39 Coniferous 1.377 1.301
40 Deciduous 1.211 1.198
41 Mixed 1.086 1.228

- - RMSE 0.236
- - NRMSE 0.254

Figure 9.40 illustrates the results of calculating the Clark-Evans aggregation index, as applied

to ITC positional information for the 30x30m cells. The index can range from 0 to 2.79

within the map. The values are linked to the horizontal spatial arrangements of tree stems

within the 30x30 m cell, where low values indicate a clustered distribution, values around one

indicate a random distribution, and higher values indicate a regular distribution. In reference
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to Figure 9.38, different forest types exhibit different variability of these index values. Semi-

ancient deciduous woodland varies between low and high values, the majority of which fall

in the 1.17-1.46 range, indicating a random to regular distribution. Areas in the plantation

coniferous woodland are less variable and typically have higher index values in the range of

1.66-1.88, indicative of a more regular distribution. This difference is most obvious when

comparing the variability of deciduous areas in Frame Wood to the coniferous area in

Hawkhill inclosure to the south.

Figure 9.40 – The Clark-Evans aggregation index as calculated from ITC positional information
for 30x30m areas.
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9.2.3 The tree diameter differentiation index
The tree diameter differentiation index is a measure of the degree of variability in tree stem

size within the plot. The inputs for the equation are the number of stems within the plot and

an estimate of the sum of the differences between NN tree DBH values, both of which were

estimated statistically. The resultant estimation of the index calculations are presented in

Table 9.4.

The best remote sensing derived estimate of the index produced an RMSE value of 0.19 and a

NRMSE of 0.23. The majority of index estimations are close to the field index value. Plot 14

underestimated the field value, while plot 13 overestimated the field value. Plot 14 was a

coniferous plot and dominated by scots pine. There were a very high proportion of tall birch

saplings within the plot, which were not taken account of in the index calculation. Plot 13

was a deciduous plot and dominated by oak. This plot contained a number of large standing

dead trees which were not taken into account in the field calculated index. The estimate in

Plot 12 returned a value of 0; however the field derived index was also very low, indicating

the trees within that area were very similar.

The tree diameter differentiation index was calculated for the whole study site, from the

statistically derived inputs from the FW LiDAR dataset. The FW dataset proved to best

estimate the two components required to calculate this index, see Chapter 8.4. Figure 9.41

illustrates the subset area with the index calculated. The index values range from zero to one,

where low values indicate little difference in DBH, whereas values approaching one indicate

a large difference in DBH values for the 30x30m plot. There are differences between the

values encapsulated within the FC compartments. Those grid-cells within semi-ancient

deciduous woodland have a great deal of variation in index values. Larger variation also seem

to be present in areas with a more open canopy, such as in Frame Wood. Coniferous

woodland generally has very similar values within each compartment, suggesting an even age

within compartments, but overall compartments can vary between very low and very high

index values.
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Table 9.4 – Comparison of the field derived and remote sensing derived tree diameter
differentiation index

Site
no.

Field calc.
index

Best models
index

1 0.230 0.315
2 0.192 0.218
3 0.221 0.412
4 0.518 0.560
5 0.264 0.212
6 0.248 0.290
7 0.349 0.339
8 0.362 0.484
9 0.325 0.342

10 0.409 0.216
11 0.454 0.453
12 0.186 0.000
13 0.385 0.752
14 1.000 0.358
15 0.338 0.395
16 0.264 0.329
17 0.232 0.174
18 0.200 0.400
19 0.342 0.308
20 0.401 0.414

- RMSE 0.189
- NRMSE 0.232
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Figure 9.41 – The Diameter Differentiation index as calculated from statistically derived
information from FW and hyperspectral datasets for 30x30m areas.
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9.2.4 The complexity index (HC)
The Complexity Index (HC) combines four measures of stand description: (i) number of tree

species; (ii) stem number per hectare; (iii) dominant height; and (iv) the total basal area per

hectare. Each of these inputs was estimated statistically through regression models, as

described in the previous step. Table 9.5 summarises the results of the index calculated for

the field and remote sensing derived data. There is a great deal of variability in the values for

all index calculations, between field and remote sensing derived index values. The remote

sensing derived estimate of the HC index produced an RMSE of 113.84 and an NRMSE

value of 0.21. The combination of four estimated metrics, each with their own error, could

compound this variability; this is also evident in Appendix F section F.2.2. Plot 30 again

caused issues and was greatly underestimated, increasing overall model RMSE. The

remainder were much better predicted and were within ± 50 of the field index value, i.e.

within accuracy 20%.

Table 9.5 – Comparison of field vs. remote sensing derived complexity index
Site
no.

Class Field calc.
HC index

‘Best’ models
HC index

22 Deciduous 45.927 29.764
23 Coniferous 67.462 60.028
24 Deciduous 88.474 83.493
25 Deciduous 59.631 108.126
26 Deciduous 64.692 22.132
27 Deciduous 109.911 106.815
28 Coniferous 109.478 42.652
29 Deciduous 38.563 93.241

30* Coniferous 567.434 111.770
32 Mixed 100.279 45.996
33 Coniferous 137.894 75.419
34 Mixed 106.467 74.156
35 Coniferous 194.753 85.815
36 Coniferous 92.196 78.217
37 Deciduous 45.529 100.459
38 Mixed 120.836 81.291
39 Coniferous 14.841 37.516
40 Deciduous 31.780 71.521
41 Mixed 78.519 75.311

- - RMSE 113.842
- - NRMSE 0.206

The HC index was calculated for the whole study site, using four statistically derived inputs

from the remote sensing datasets. The index is mapped across the subset region in Figure

9.42. The semi-ancient deciduous woodland of Frame Wood received low HC index values.

Tantany Wood received similar, albeit more variable values. The highest index values were
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found within the plantation coniferous compartment areas, for example within the Frame-

Heath inclosure.

The index values range from 0 to 198. A low value of the index would suggest a plot site

deficient in many or all of the four inputs, whereas a high value would suggest a plot site with

high values for many or all of the four inputs (i.e. species number, stem density, average tree

height, or basal area). An example of a low index value would be plot 39, which has one tree

species and a relatively low stem density, whereas average tree height and basal area values

were high. In contrast an example of a high index value, such as that of plot 35, has higher

values for all four inputs.

Figure 9.42 – The HC index as calculated from statistically derived information for 30x30m
areas.
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9.2.5 The complex stand diversity index (CSDI)
The complex stand diversity index (CSDI) also requires a combination of inputs from both

direct measurements from remote sensing outputs and statistically derived outputs from

regressions. CSDI is composed of four indices relating to species composition, stem size,

stem spacing, and crown dimensions. Table 9.6 summarises the results of indices calculated

for the field and remote sensing derived data. Plots 21 and 30 contained measurement errors

in the field data and were removed as part of the comparison. The remote sensing derived

CSDI values produced an RMSE value of 3.59 and an NRMSE value of 0.42

Where there are small field index values (< 8) however, there are overestimations from the

remote sensing datasets. For example, field plot 39 has an index value of 5.76, while remote

sensing estimates are nearly double (11.30). Conversely, higher field index values are better

predicted, such as in plot 34, where the field index value is 12.39 and the remote sensing

index value is 11.23. There is variation between remote sensing predictions at higher values;

typically this is within ±3 of the field value.

Table 9.6 – Comparison of field vs. remote sensing derived CSDI index
Site
no.

Class Field calc.
CSDI index

Best models
CSDI index

22 Deciduous - -
23 Coniferous 11.499 10.609
24 Deciduous 12.778 10.127
25 Deciduous 9.920 13.168
26 Deciduous 10.223 10.730
27 Deciduous 11.465 14.045
28 Coniferous 6.882 11.080
29 Deciduous 10.461 11.110
30 Coniferous - -
31 Coniferous 4.273 13.077
32 Mixed 9.220 9.680
33 Coniferous 9.505 6.916
34 Mixed 12.390 11.237
35 Coniferous 10.146 8.633
36 Coniferous 7.417 10.259
37 Deciduous 8.376 12.376
38 Mixed 8.779 12.592
39 Coniferous 5.762 11.304
40 Deciduous 8.108 12.078
41 Mixed 10.640 14.620

- - RMSE 3.593
- - NRMSE 0.422
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The CSDI was calculated for the whole study site, using statistically derived and ITC inputs

from the remote sensing dataset, and is presented in Figure 9.43. Index values ranged from 0

to 38.58, where higher index values indicate higher heterogeneity in both forest composition

and structure within the 30x30 m cell. The areas of semi-ancient deciduous woodlands

typically have high values, but also include a lot of variability between high and low values.

The highest index values appear to be where there are mixed coniferous and deciduous

species in close proximity, or young conifer species. The majority of coniferous plantation

areas do not show a great deal of index value variability.

Figure 9.43 – The CSDI as calculated from statistically derived and ITC information from the
remote sensing datasets for 30x30m areas.
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Given the nature of this combined index, the four component inputs can be broken down and

analysed separately. Table 9.7 summarises the differences between the remote sensing and

field derived index for the first CSDI component which relates to tree species composition.

RMSE and NRMSE values were high, 0.8 and 0.70 respectively, and poorly represented the

index value. The index incorporates estimates of tree number, species number and the relative

proportions of the most and least abundant species within each 30x30m grid cell, the latter

being derived from the number of classified ITC objects (see section 6.4.1). This again

highlights the underestimation of tree number from the ITC delineation methods and the

statistically derived number of trees.

The construction of the second index element, the index of vertical structure, was derived

statistically and reported in section 8.4. The construction of the third index (CSDI-3), the

index of spatial distribution, relates to the comparison of the three largest and three smallest

NN stem distances, which was reported in section 7.6, Table 9.8 reports the comparison

between field and remote sensing derived values of CSDI-3. The inputs determined as the

‘best’ estimates produce RMSE and NRMSE values of 0.07 and 0.45 respectively.

The final index input for the CSDI concerns crown differentiation, the construction of which

was assessed in section 7.6 (for ITC derived inputs) and section 7.7 (for estimates of the

lowest canopy base height). Table 9.9 reports the relationship between the index values for

field and remote sensing derived measures. RMSE and NRMSE values were 1.98 and 0.35

respectively. Overall, remote sensing index values underestimate the field based equivalents

by small amounts only.
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Table 9.7 – CSDI component “index of tree species composition” – comparison between field
and remote sensing derived indices

Site
no.

Class Field calc.
CSDI-1 index

Best models
CSDI-1 index

22 Deciduous 0.804 0.957
23 Coniferous 0.363 1.239
24 Deciduous 0.318 0.880
25 Deciduous 0.534 1.451
26 Deciduous 0.678 1.218
27 Deciduous 0.513 1.300
28 Coniferous 0.416 1.356
29 Deciduous 0.291 1.386
30 Coniferous - -
31 Coniferous 0.000 1.390
32 Mixed 0.783 0.964
33 Coniferous 0.452 0.468
34 Mixed 1.248 1.507
35 Coniferous 0.593 0.843
36 Coniferous 0.494 1.425
37 Deciduous 0.425 1.655
38 Mixed 0.490 1.419
39 Coniferous 0.000 1.191
40 Deciduous 0.463 1.458
41 Mixed 0.660 1.968

- - RMSE 0.870
- - NRMSE 0.697

Table 9.8 – CSDI component “index spatial distribution” – comparison between field and
remote sensing derived indices

Site
no.

Class Field calc.
CSDI-3 index

Best models
CSDI-3 index

22 Deciduous - -
23 Coniferous 0.142 0.112
24 Deciduous 0.134 0.057
25 Deciduous 0.191 0.061
26 Deciduous 0.217 0.062
27 Deciduous 0.219 0.039
28 Coniferous 0.092 0.084
29 Deciduous 0.187 0.063
30 Coniferous - -
31 Coniferous 0.063 0.077
32 Mixed 0.067 0.083
33 Coniferous 0.072 0.054
34 Mixed 0.116 0.057
35 Coniferous 0.088 0.055
36 Coniferous 0.069 0.030
37 Deciduous 0.084 0.053
38 Mixed 0.083 0.080
39 Coniferous 0.049 0.061
40 Deciduous 0.080 0.057
41 Mixed 0.134 0.083

- - RMSE 0.077
- - NRMSE 0.453
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Table 9.9 – CSDI component “index of crown differentiation” – comparisons between field and
remote sensing derived indices

Site
no.

Class Field calc.
CSDI-4 index

Best models
CSDI-4 index

22 Deciduous - -
23 Coniferous 7.498 3.344
24 Deciduous 8.628 4.438
25 Deciduous 5.049 5.106
26 Deciduous 4.902 3.573
27 Deciduous 6.363 6.573
28 Coniferous 3.555 3.346
29 Deciduous 6.615 3.319
30 Coniferous - -
31 Coniferous 2.894 5.195
32 Mixed 3.922 3.527
33 Coniferous 5.650 3.237
34 Mixed 4.900 2.756
35 Coniferous 5.102 3.118
36 Coniferous 3.194 2.361
37 Deciduous 4.327 3.575
38 Mixed 4.431 4.552
39 Coniferous 3.583 4.270
40 Deciduous 3.849 4.059
41 Mixed 5.416 4.271

- - RMSE 1.978
- - NRMSE 0.345

9.2.6 The target and accumulative scoring technique
The scoring method put forward by Cantarello and Newton (2006) requires the assessment of

seventeen compositional and structural metrics against an ‘ideal’ target value. Site metrics

were defined through statistical means, the results of which were presented in section 8.4.

Table 9.10 summarizes the remote sensing derived index values for all 20 validation sites

against the field based equivalents. The index is composed of 17 individual metrics.

The index estimates produced from remote sensing derived metrics produced results with

RMSE of 2.5 and NRMSE of 0.25.

Smaller field index values (<7) are overestimated in the case of plot numbers 23, 24 and 38,

whereas plot 35 is underestimated. The majority of sites’ field index values were similar to

remote sensing derived indices (i.e. within ±3).
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In order to test the individual components of the index it is necessary to view a breakdown of

each of the three datasets into the individual scoring, illustrated in Tables 9.11. Plot 24 has

the lowest correspondence where only 10 of 17 indicators were correct. Plots 23, 28, 30, 32

and 40 had 11 correspondences. Plots 22, 26, 33 and 38 performed the best with 15-16 out of

17 correct scores. The average correct score was 12.6. In terms of indicators rather than plots,

indicator numbers 7, 9, 14, 15 and 17 were 95-100% correct. Indicator numbers 2, 13, and 16

were only 50% correct.

The score index was calculated for the whole study site, using statistically derived inputs

from the ‘best’ remote sensing dataset (i.e. those with the lowest RMSE/NRMSE), and is

presented in Figure 9.44. For the site-wide calculated index the range was 0 to 15. Semi-

ancient deciduous woodland for the whole site received higher index values than coniferous

woodlands. Values for Frame-Heath and Tantany Woods varied from 7 to 15. Deciduous

woodlands in the Frame-Heath inclosure contain the most consistently high index values.

Coniferous plantation woodlands generally contain much less variability, typically 6 to 9.

Table 9.10 – Comparison between the field and remote sensing derived score based index
Site
no.

Class Field calc.
score index

Best models
score index

22 Deciduous 9 9
23 Coniferous 3 7
24 Deciduous 5 10
25 Deciduous 10 9
26 Deciduous 9 10
27 Deciduous 13 13
28 Coniferous 6 8
29 Deciduous 8 9
30 Coniferous 8 6
31 Coniferous 6 7
32 Mixed 11 7
33 Coniferous 7 5
34 Mixed 10 9
35 Coniferous 10 5
36 Coniferous 8 9
37 Deciduous 7 11
38 Mixed 5 7
39 Coniferous 9 7
40 Deciduous 8 7
41 Mixed 10 11

- - RMSE 2.510
- - NRMSE 0.251
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Table 9.11 – Decomposition of the combined ‘best’ dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table 9.11 – Decomposition of the combined ‘best’ dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table 9.11 – Decomposition of the combined ‘best’ dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Figure 9.44 – The score index as calculated from statistically derived information from FW and
hyperspectral datasets for 30x30m areas.

9.2.7 Condition index overview
Both the VE and aggregation index were derived from ITC metrics, but contained a number

of flaws due to the underestimation of stem number and the non-detection of suppressed

trees. Until these flaws in the individual tree delineation process can be rectified the approach

to derive these indices may be in error.
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The diameter differentiation index utilises the fewest inputs in comparison to the other three

indices and overall patterns can be discerned visually. Much of the map is however very

similar in cell value, whereas there is a great deal of variability in semi-ancient deciduous

woodland areas.  While this is entirely feasible, the distinction between different forest types

is often problematic.

The HC index utilises the second fewest inputs in comparison to the other indices here, and

shows clearer distinctions between compartments and forest structural types. It does only

seem to distinguish between low and high values however. In addition it has been

demonstrated that high field index values are underestimated by the remote sensing index

values.

The CSDI index is the most computationally complex of the condition indices, and

incorporated a number of individual tree based metrics. The standardised map shows a mix of

distinct groupings, typically in coniferous woodlands, and variability, especially in deciduous

areas. There are additional concerns over the use of a number of ITC based metrics, in

particular those required for calculating the relative species proportions.

The score-based index utilises the most input metrics, 17 in total. Similarly to the complexity

index, there are more distinct and even groupings throughout the study site. Overall remote

sensing derived estimates correspond well with field data calculated values, producing an

RMSE of 2.5. The mapped index values corresponded well to the different FC compartment

boundaries and structural types.  Its use of area-based metrics instead of direct ITC metrics

reduced a number of uncertainties. Bearing in mind sources of error and its ability to

discriminate between the different forest structural types when considering map products.

9.3 A cross-comparison of condition index results
The following sections contain the results of a standardisation method applied to all

calculated condition indices and a comparison of the resultant maps. Five categories were

assigned to the mapped data, which corresponded to 1 through 5 for low to high index values

(6 categories including zero). The index values and range of values are different for each

index, thus each of the following sections includes a key identifying which values conform to

which category for each condition index value. It should be noted that equal intervals over the
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range of the index were used for each of the categories. For each of the following steps, the

operations were carried out using both the R and ArcMap software.

9.3.1 Index categorisation
For the sample area shown in Figures 9.45-9.50, the percentage in each of the five categories

of condition index values is given in Table 9.12. It should be noted that there were two

obvious errors present in each of the maps produced for this section which could not be

rectified. Both of these errors lie to the east of the subset area and run north to south, and

were caused by errors in extracting and mosaicing FW LiDAR metrics. For the two condition

indices derived through ITC-metrics, the VE and aggregation indices, the majority of grid-

cell values occupy categories 1 and 2, with very few exceed category 3. In interrogating the

VE index map (see Figure 9.45) spatial patterns can be observed, which conform to

compartment boundaries; however the map of the aggregation index (see Figure 9.46) does

not show any spatial pattern. The diameter differentiation index map has the majority (84%)

of grid-cell values occupying the 5thcategory; again the mapped values (see Figure 9.47) do

not show any spatial pattern.

The remaining three categorised condition indices (see Table 9.12) have a spread of values

across many of the five categories, and definite spatial patterns, within compartment

boundaries, can be observed in the mapped data. The HC index (see Figure 9.48) has a range

of values present in both semi-ancient and plantation woodland compartment types. For

example Frame Wood contains many category 1 grid-cell values whereas Tantany Wood

contains many category 4 and 5 values, in addition to a number of category 1 values.

Hawkhill inclosure likewise contains variation between the different coniferous

compartments featuring the full range of values; however grid-cell values are typically

consistent within compartments. The CSDI (see Figure 9.49) has a great deal of variability in

index categories present in the semi-ancient deciduous woodland which also conform to

compartment boundaries. CSDI category grid-cell values located within plantation inclosures

contain much less variability. The score-based index map (see Figure 9.50) shows more

consistent category values, even for semi-ancient deciduous woodlands. The score-based

index typically has higher values for semi-ancient deciduous woodlands than for coniferous

woodland.
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Table 9.12 – The percentage of each of the categories for the six condition indices
Index
category

VE
index
(%)

Agg.
Index (%)

Diam.
Diff.
index
(%)

HC
index
(%)

CSDI
(%)

Score-
based
index
(%)

No value 25.97 5.43 12.09 12.34 18.52 12.00
1 17.08 20.61 0.08 17.16 0.44 003
2 45.83 64.82 0.21 29.10 1163 9.37
3 1107 7.97 0.46 19.71 34.20 48.22
4 0.04 1.15 2.68 10.56 23.80 30.35
5 0.00 0.02 84.47 11.14 11.40 0.02

Figure 9.45 – A subset of the study site depicting the categorised VE index results.
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Figure 9.46 – A subset of the study site depicting the categorised Clark-Evans
aggregation index results.
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Figure 9.47 – A subset of the study site depicting the categorised diameter
differentiation index results.
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Figure 9.48 – A subset of the study site depicting the categorised complexity index
(HC) results.
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Figure 9.49 – A subset of the study site depicting the categorised CSDI results.
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Figure 9.50 – A subset of the study site depicting the categorised score-based index
results.

9.3.2 Assessment of index mapping results
The overall patterns of index values were preserved through the categorisation. As

highlighted in the previous section, the VE index may not provide trustworthy results in areas

of closed canopy, for example in many of the semi-ancient deciduous woodlands. The Clark-

Evans aggregation index produced many similar values, only providing a general distinction

between coniferous and deciduous woodlands. The categorising of the results by equal

intervals over the range of the index illustrated that the distinction between woodland types

was very small. The range of values for the diameter difference index was also shown to be

very small; so much so that no features could be discerned when categorisation was
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implemented. Due to the issues encountered with the VE, Clark-Evans aggregation, and

diameter difference, these indices were removed from the subsequent steps.

The conditional maps for the HC, CSDI and the score-based indices show distinct patterns,

and include variability of index values within semi-ancient and plantation woodlands. In

order to compare the mapped distributions of standardised index values two calculations were

applied combining all three index map layers, providing the mean and the standard deviation

of index values for each grid-cell. The ultimate aim of this assessment was to test if high

values in one mapped index layer were consistent with the others and judge if the indices

were showing similar or differing information.

The mean of each of the three categorised indices was computed for each 30x30m grid cell,

the result of which is illustrated in Figure 9.51. For the majority of deciduous woodlands,

high values are present in their intersecting grid-cells. Frame Wood possesses lower values

however, as in the HC index. Coniferous area mean values are typically lower than for

deciduous areas, a typical pattern exhibited for all three indices. In addition coniferous areas

typically show less variable values within each compartment extent than for deciduous areas.

A total of six sample areas are annotated in Figure 9.52, labelled 1-6, for three areas where

high mean values and three areas where low mean values are encountered.

1. The first of the annotated areas is located within Tantany Wood, where all three

index results are high values. This sample area is an oak and beech dominated

semi-ancient woodland (planting date ~1800). There is also a great deal of

variability in values encountered within Tantany Wood, which range from low (0)

to high (5). The four HC index components of stem density, basal area, canopy

height and species number are all high. The four components of the CSDI are all

high for the variability of DBH, stem NN space, and crown size and species

proportions. The score-based index utilises some of the tree size and variability

metrics covered in the previous two indices and indicates sufficiently high (i.e.

beyond the metric target thresholds) for 10-11 metrics (including deadwood

volume and decay class), whereas understorey metrics (e. g. seedling number)

were too low to meet the threshold.
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2. The second annotated area of high mean values is located within the west of the

Frame-Heath inclosure. This woodland is dominated by beech and oak woodland

of different planting dates, 1938 and 1852 respectively. Of the four HC index

components species number and height are high, whereas the stem density and

basal area metrics range from moderate to high. The CSDI index components for

species and crown size diversity are high, whereas DBH and NN space variability

is medium to high. For the score-based index, as with the previous subset in

Tantany Wood, 11 targets are achieved relating to tree size, variability and

composition, whereas understorey metrics are typically below their respective

targets.

3. The third annotated area containing high mean values is located within the Frame-

Heath inclosure. This compartment is a mix of scots pine, norway spruce and

birch species planted between 1940 and 1960. It should be noted that the mean

values within this compartment were slightly lower than for the deciduous subset

areas. The HC index components of species number and stem density were all

high, whereas canopy height and basal area was moderate. For the CSDI, species

diversity was high, crown diversity was moderate, DBH differentiation was low to

moderate, and tree NN spacing was low. For the score-based index the majority of

targets were achieved relating to tree size, variability and composition. Standing

deadwood volume and many metrics related to understorey, failed to achieve the

scoring targets.

4. The fourth annotated area has low mean values. The area is located in Denny-

Lodge inclosure. The compartment is dominated by corsican pine trees which

were planted in1968. The HC index components are typically low to moderate

values. The species number is very low, either 1 or two species. Stem density,

basal area and canopy height are moderate values. The three CSDI components

for species diversity, DBH and NN spacing differentiation are low, and the final

component, crown differentiation is only moderate. Of the 17 inputs to the score-

based index, only 6-7 metric targets are achieved. Where stem density, basal area,

average DBH and the standard deviation of DBH vary in-between neighbouring

cells of being just above or below the target thresholds. The percentage big tree,

standing decay and downed deadwood decay class metrics are consistently scored

highly.
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5. The fifth annotated area which has low mean index values is located in the Frame-

Heath inclosure. This compartment was dominated by scots pine and corsican pine

coniferous species which were planted in 1944. The HC index values are low for

this compartment, where each of the four input components was low to moderate.

Likewise the input components for the CSDI were low to moderate, producing

low index values overall.  Many of the 17 inputs for the score-based index which

related to stem density and tree size were very close to the target values, however

species composition, deadwood volume, understorey proportion and composition

metrics were very low or non-existent within each 30x30m cell and thus were

scored 0. This culminated in a low index value.

6. The sixth annotated areas which had a low mean index value was located in

Frame-Heath inclosure. The two compartments were dominated by scots pine,

with small proportions of corsican pine which was planted in 1944. The HC index

was low, where the components were low to moderate in value. The CSDI also

produced low values. The CSDI components were all low, indicating little

diversity. The score-based index was also low. Where again some of the input

metrics relating to stem density and tree size were very close to the target values,

however species composition was again low, as were deadwood volume and

understorey metrics.

There is a high level of correspondence between the three condition index assessment

techniques in terms of areas with high and low values. The highest index values are almost

exclusively found in deciduous dominated areas, with only a limited number of coniferous

dominated compartments exhibiting high values. Older deciduous woodland dominated by

beech and oak species, even when mixed with newer planted deciduous trees produced the

highest results consistently. The presence of large trees (i.e. DBH values) with variable sizes,

with higher number of species and the presence of deadwood, define these areas. These areas

may also contain understorey components lacking in coniferous areas. The highest values in

coniferous areas were for compartments with a mix of species types. These areas were also

defined by the presence of large trees with variable sizes, higher numbers of species and the

presence of deadwood. Table 9.13 lists each of the compartments for which the majority of

the grid-cells intersecting it had mean values of greater than four (for the subset area in

Figure 9.52), species type, percentage cover and planting year from the FC compartment

database are also given. A total of 10 compartments fulfilled this criterion, the majority of
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which were a combination of oak and beech tree species with long continuity, where planting

dates begin in 1800. There was only one small coniferous compartment which fulfilled this

criterion, which consisted of a mix of two conifer species (scots pine and norway spruce) and

one deciduous species (birch).

The majority of coniferous areas exhibited relatively small tree sizes, often with little

variation in their respective sizes, few species with little or no deadwood or understorey.

Table 9.14 lists each of the compartments for which the majority of the grid-cells intersecting

it had mean values of less than two (for the subset area in Figure 9.52); again species type,

percentage cover and planting year from the FC compartment database are given. For the ten

identified compartments, the majority of these compartments contained a high proportion of

corsican pine species from recent planting dates. Each of the compartments indicated with no

detail of percentage cover or planting year in the FC database were felled shortly after the

acquisition of the airborne data.

Table 9.13 – Compartment composition for high mean values (> 4) within forest subset (see
Figure 9.51)

Species Percentage cover (%) Planting year
1 oak/beech/scots pine 45/29/27 1861/1861/1928
2 oak/beech 50/50 1829/1956
3 Mixed broadleaved 100 1861
4 beech/oak 51/49 1938/1852
5 beech/oak 53/49 1938/1852
6 oak/beech/birch 57/33/10 1852/1940/1940
7 scots pine/norway spruce/birch 35/30/21 1940/1960/1960
8 oak 100 1852
9 oak/sweet chestnut 90/10 1809/1809
10 Mixed broadleaved 100 1961
11 oak/beech 55/45 1800/1800
12 beech/oak 61/39 1800/1800

Table 9.14 – Compartment composition for low mean values (≤ 2) within forest subset (see
Figure 9.51) ("?" = not stored within the FC database)

Species Percentage cover Planting year
1 corsican pine 100 1968
2 corsican pine 100 1968
3 corsican pine 100 1968
4 corsican pine/scots pine ?/? (∑ = 100) ?/?
5 Mixed broadleaved/mixed

conifers
80/20 2001

6 corsican pine 100 1971
7 scots pine/corsican pine ?/? (∑ = 100) ?/?
8 scots pine/corsican pine ?/? (∑ = 100) ?/?
9 scots pine/corsican pine 71/29 1948/1948
10 corsican pine/stika spruce 56/24 1982/1986
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The primary driving factors it would seem are related to the average size of the trees (i.e.

DBH) and the variability of the sizes over the plot which is especially present in oak and

beech woodland with long continuity, for example with planning dates approaching 1800.

Given the correct conditions much younger coniferous compartments can reach similar

values. The presence and volume of deadwood seems to follow these patterns. Understory

metrics such as vascular species number, the number and composition of seedlings and

saplings does not seem to follow however. Due to the limited levels of understorey

encountered within the New Forest study site, finding a link may not be possible.

The second calculated map depicts the standard deviation of each of the grid-cells, see Figure

9.53. This map highlights the inconsistencies between the three derived index maps. The

standard deviations range from 0 to 2.5, where the majority of standard deviations exist

between the range of 0.5 and 1.5. The largest deviations are present within the semi-ancient

woodlands and the deciduous areas within the plantation inclosures, with the largest areas

existing within Tantany Wood and Frame-Heath inclosure. High standard deviation values

exist for coniferous woodland compartments as well, an example of which is located in the

New-Copse inclosure.

Five example areas with high standard deviation values are annotated in Figure 9.54. The

areas are labelled 1-5, the initial four of which are deciduous woodland areas and the

remaining one is a coniferous area.

1. The first of the annotated areas is located within Tantany Wood. This sample area is

an oak and beech dominated semi-ancient woodland (planting date ~1800). The HC

and CSDI index both exhibit variability within this region of both high and low

values, whereas the score-based index values are consistently high. The CSDI is

sensitive to areas where large canopy gaps occur or low canopy heights, which

correspond to smaller index values. Likewise there are areas of low HC values which

follow a similar pattern. While score-based index values are higher, it does exhibit

lower values in the same areas, which indicates the score-based index is dependent on

other attributes.
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2. The second deciduous area is located within Frame Wood. The inclosure is dominated

by oak, with a small proportion of beech, with plantation dates between 1750 and

1800. Here the HC index is consistently low, which is uncommon for deciduous

woodland. The CSDI and score-based indices however have higher, albeit variable,

index values for this woodland type. The HC index is based primarily upon forest

parameters of size, stem density, canopy height and basal area, in addition to number

of tree species. Stem density and basal area are relatively low in comparison to other

areas, such as Tantany Wood. The CSDI is based upon the diversity of structural

parameters; these are DBH size, differences in stem spacing, and crown size

difference. Each of the CSDI components are relatively high in this region. The score

based index value is higher due to the high presence of deadwood and occasionally

sufficient numbers of saplings to go above the target value.

3. The third deciduous area is located within the north of the Denny-Lodge inclosure.

The compartment is dominated by oak, with approximately 26% beech, planted in

1870. As with the second sample area the HC index is consistently low, and the CSDI

and score-based indices are higher. The HC index components for stem density were

very low, which would account the low index value. CSDI inputs for structural

diversity (DBH, stem spacing and crown size) were high. The score-based index

inputs exceeded the target values for many of its 17 inputs, which included high levels

of deadwood and intermittent high concentrations of saplings.

4. The fourth deciduous area is located within the Denny-Lodge inclosure and is a mix

of broadleaved tree species surrounded by coniferous plantations. Plantation dates

vary from 1852 to 1928, even within the same compartment. As before there is an

obvious difference between the three index values, the HC and score-based values are

high, whereas the CSDI value is lower. For example the HC components based on

size parameter (tree density, height and basal area) were all high, whereas the CSDI

inputs for structural diversity (DBH, stem spacing and crown size) varied between

low, moderate and high. The areas of largest variation are coincident with large

canopy gaps.
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5. The fifth area is located in the New-Copse inclosure which is a coniferous dominated

compartment. The compartment contains western hemlock primarily, various conifers

and a number of sweat chestnut species, the planting date was 1965. Both the CSDI

and score-based index produced moderate values for this compartment, whereas the

HC index produced high values. The HC index inputs all range from moderate to high

values resulting in a high index value. The CSDI inputs are typically low for this

compartment extent. While the score-based index shares some of the same inputs as

the HC index, their significance within the index calculation is not as high, and as

such these inputs and 13 others, result in only a moderate index value.

There is a great deal of similarity between the three indices; it is interesting to note that

deciduous woodlands typically receive higher values than coniferous woodlands. It should be

noted that few grid-cells have a very high (5) index value for the score-based index, which is

responsible for the many of the small differences present in the standard deviation map. It is

clear, even though the differences are small, that the three condition indices (HC, CSDI and

score-based) reflect different elements of the composition and structure of the woodlands in

question, especially when applied to deciduous woodland with long continuity (i.e. planting

dates of ~1800). The HC index is more sensitive to tree size parameters, where it tends

towards an almost binary output depicting coniferous areas and deciduous woodland types, as

low and high respectively. The CSDI on the other hand relates more to structural diversity

which can transcend either the broad types of deciduous or coniferous woodland, but tends to

higher and more variable values in deciduous areas. A major concern is that the CSDI

overestimates or underestimates the index value when large canopy gaps (i.e. where areas of

ground are visible in the CHM) are encountered within grid-cells and may be a result of using

ITC metrics directly. This issue was present in small areas however. The score-based index

combined both tree size and diversity metrics at a relatively basic level in addition to many

other factors. The score-based index also did not directly use ITC-metrics and thus should be

less influenced by its associated error.
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Figure 9.51 – Map of the mean of all three standardised condition indices (HC, CSDI and the
score-based index).
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Figure 9.52 – Map of the mean of all three standardised condition indices (HC, CSDI and
the score-based index). Annotations illustrate the areas with high mean values.

1 = Tantany Wood (Deciduous)
2 = Frame-Heath (Deciduous)
3 = Frame-Heath (Coniferous)
4 = Denny-Lodge (Coniferous)
5 = Frame-Heath (Coniferous)
6 = Frame-Heath (Coniferous)
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Figure 9.53 – Map of the standard deviation of all three standardised condition indices (HC,
CSDI and the score-based index).



Chapter 9 – Mapping forest metrics and
condition indices

350

Figure 9.54 – Map of the standard deviation of all three standardised condition indices
(HC, CSDI and the score-based index). Annotations illustrate the areas with high standard

deviations.
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1 = Tantany Wood (Deciduous)
2 = Frame Wood (Deciduous)
3 = Denny-Lodge (Deciduous)
4 = Denny-Lodge (Deciduous)
5 = New-Copse (Coniferous)
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9.4 Summary of findings
All of the 35 successfully predicted field plot-level metrics (identified in section 8.4) were

mapped across the study site. The maps presented illustrate the differences in the field plot-

level metrics across space and woodland types.

Once the metrics were calculated, the condition index calculations could be applied, for both

validation field plots and across the whole study site. Within this chapter, the results of a total

of six conventional forest condition assessment indices were presented. Remote sensing

derived inputs varied for the indices, employing both metrics extracted directly from the data

and derived from statistical modelling approaches. The first of these indices was the VE

index, which attempts to describe the horizontal cover within the forest at four vertical levels.

A RMSE value of 0.29 (NRMSE 0.29) was returned, and for the majority of cases the remote

sensing estimate was similar to that calculated from field data. A number of plot sites’ index

values were underestimated by the remote sensing calculation; these were in areas of high

stem density, where ITC methods had problems in terms of stem counts.

The Clark-Evans aggregation index was calculated using remote sensing derived ITC data.

The NN distance was extracted and corrected for each of the tree pairs within the plot extent.

A RMSE value of 0.236 was recorded (NRMSE: 0.254). Many of the field calculated indices

tended towards the value of one, which was reflected in all but five of the remote sensing

calculated indices. Of the remaining five, remote sensing predictions overestimated the field

index value. Upon mapping the remote sensing derived index values across the study site it

was clear that the majority of the index values occupied the range between 1.29 and 2.15.

This very similar range of index values could only broadly distinguish between coniferous

and deciduous compartments.

The tree diameter differentiation index was computed using two statistically derived inputs;

the first was the estimate of the number of tree stems and the second was the estimate of the

sum of the difference in DBH values between stem pairs within the plot. The remote sensing

derived index produced a RMSE of 0.189 (NRMSE: 0.232). There was one example where

no index value was produced. One plot, number 14, suffered large underestimation from the

remote sensing derived index. When the remote sensing derived index values were mapped

across the study site the majority of the grid-cell values occupied the range between 0.8-1.0.
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Again, this very similar range of index values could only broadly distinguish between

coniferous and deciduous compartments.

The complexity index (HC) was calculated using four statistically derived inputs: (i) number

of tree species; (ii) the number of tree stems; (iii) the average canopy height; and (iv) the total

basal area within the plot. There was a great deal of variation between sites and index

predictions from the remote sensing derived inputs. The remote sensing estimates produced a

RMSE value of 113.84 (NRMSE: 0.21). The index value for plot 30 was drastically

underestimated; this particular plot was a very young, mixed species plot with a high stem

density. The map of the HC across the study site for the derived remote sensing index values

exhibited spatial patterns which conformed to the different FC compartments.

The CSDI is composed of four indices related to the relative populations of tree species, stem

spacing, DBH differentiation and differences in crown size. The remote sensing predictions

of index values produced a RMSE of 3.59 (NRMSE: 0.44). Higher field calculated index

values were well predicted, generally within ±1 for the best prediction. Lower field index

values were overestimated by the remote sensing prediction by up to 5. The remote sensing

map of the derived CSDI value exhibited spatial patterns which conformed to different FC

compartments. While there was a great deal of variability in values within semi-ancient

woodland, coniferous compartments showed much less variability within their extents.

The four individual index components which make up the CSDI were reviewed. CSDI-1 was

based upon the number of tree stems and the relative proportions of the most and least

abundant species within a plot. RMSE for this index was high, 0.87 (NRMSE: 0.70) for the

remote sensing derived index. CSDI-2 was derived statistically (see Chapter 8.4), the best

estimate produced a RMSE of 0.13 (NRMSE: 0.26). CSDI-3 contrasted the three smallest and

three largest NN stem distances. The RMSE values for small distances were 1.66-1.90m and

2.15-3.34m for large distances. For the index itself, the subset of best models produced a

RMSE of 0.08 (NRMSE: 0.45). The final component, CSDI-4, was constructed by comparing

tree crown horizontal extent data and the lowest crown base height. The index calculated

from derived remote sensing metrics produced a RMSE of 1.98 (NRMSE: 0.35).

The final index reported was the target and accumulative scoring (or score-based) index,

which was constructed through the use of 17 indicator metrics. If the indicator values for the
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plot extent exceed the target value, it is scored as one; otherwise it is scored as zero. The sum

of these scores is the index value. The index calculated from derived remote sensing metrics

produced a RMSE of 2.51 (NRMSE: 0.25). When the remote sensing derived score-based

index values were mapped across the study site spatial patterns were observed which

corresponded with the FC compartments. The grid-cells which intersected with semi-ancient

deciduous woodland exhibited larger index values than those in coniferous compartments.

Again grid-cells within coniferous compartments showed much less variability in index value

within their extents.

A simple comparison of the mapped index values was carried out by categorising the index-

value range, and comparing spatially the products of mean and standard deviation of all index

values within each grid-cell. The VE, Clark-Evans aggregation and diameter differentiation

indices were removed from this consideration due to uncertainties. Only the HC, CSDI and

score-based indices were thus considered. Each of the three indices behaved very similarly

within the New Forest study site extent. Each index gave higher values to deciduous

woodlands due to the presence of larger trees and trees of more variable size, and lower

values to coniferous species dominated compartments. The presence of deadwood seemed to

correspond with high values for both tree size and their variability, the presence of

understorey, however, was not as closely linked to the aforementioned parameters.

It is obvious that the three condition indices (HC, CSDI and score-based) reflect different

elements of the composition and structure of the woodlands in question, especially when

applied to deciduous woodland.  While there is some overlap between the three, the HC index

tends to skew towards high or low values for deciduous or coniferous woodlands

respectively, the CSDI responds to differences in structural components irrespective of

woodland type, but has issues when canopy gaps are encountered. The score-based index

combines elements from the other two in addition to many others, and avoids some of the

issues inherent in using ITC metrics directly, which overall provides the most representative

condition assessment method.
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Chapter 10 – Discussion

The following chapter concerns the examination of the literature search findings and results

of this research project.  The discussion will be made in relation to the aims and objectives

stated in Chapter 1, in particular objectives 3 to 6.  The sections in this chapter will discuss

the following:

1. a review of hyperspectral derived condition outputs

2. a review of DR LiDAR derived condition outputs

3. a review of FW LiDAR derived condition outputs

4. a review of the best combined hyperspectral and LiDAR derived condition outputs

5. a review of remote sensing derived condition indicators and indices

6. implications and future work

Forest inventories, estimation of structural attributes, biomass and species composition have

all been difficult to achieve for large areas through plot based fieldwork measurements alone,

because of logistical constraints (Lucas et al., 2008b).  High spatial resolution airborne

sensors allow imaging of a broad range of features in human related scales.  But the

advantages of high spatial resolution data, where sample sizes are significantly smaller than

the average sizes of the objects of interest, often comes at the expense of an overload in

spatial details (Campbell and Wynne, 2011).The following documents the potential of such

systems to provide meaningful information.

10.1 A review of hyperspectral derived outputs
The assessment of biodiversity at the local (field-plot) and regional scales often relies on

fieldwork-based data collection. Species assessment in relatively large areas has always been

a challenging task, mainly because of the difficulty of judging the completeness of the

resulting species lists and in quantifying the sampling effort (Palmer, 1995). Inventory of

species over large areas is complicated by the fact that every individual within a region

cannot be inspected, in addition to species compositional changes over time (Palmer et al.,

2006). The following sections discuss the implementation of tree species classification

methods and the statistical estimation of forest compositional and structural components from

hyperspectral remote sensing techniques to provide answers to the questions set in the project

objectives 3, 5 and 6.
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10.1.1 Species classification using hyperspectral data
Both the leaf-on and leaf-off hyperspectral datasets required a large amount of processing and

experimentation in order to determine the best hyperspectral layers to use in terms of

applying dimensionality reduction algorithms and in species classification methods. Within

this research project both pixel-based and object-based individual tree crown (ITC) tree

species classification approaches were attempted. The pixel-based classification approach

was abandoned due to many incorrect and/or missing classes because of dissimilarities in

illumination within the individual tree crowns.

It would appear that conventional ‘hard’ per-pixel classification techniques are not

sophisticated enough to handle the complexities of vegetation communities in complex

forested environments (Levick and Rogers, 2006).  Although not part of this thesis, the use of

a pixel-based supervised nearest neighbour classification was unable to separate different

surface reflectance from canopy and sub-canopy vegetation.  Additionally, misclassification

of shadowed crown areas was detected. Thus, the object-based classification approach was

implemented due to these poor results.

The leaf-on DR LiDAR derived CHM was used to delineate the ITC objects for species

classification. These ITC objects were classified using minimum noise fraction (MNF)

hyperspectral data which employed a hierarchical classification with user defined

membership functions. A more in-depth discussion of the ITC delineation method is

presented in section 10.2.1.However it should be noted that the number of ITC objects was

smaller than the number of trees found during fieldwork operations for the plot areas and

there were a number of over- and under-segmented objects which caused issues with the

overall classification.

The classified ITC mapping accuracy (MA) was calculated in comparison to the Forestry

Commission (FC) compartment information. The FC compartment information contained up

to three tree species classes and their relative proportions as a percentage for the compartment

area. The horizontal cover of each of the classified ITC objects was summed by species type

and an estimate of map accuracy was calculated. An overall accuracy of 51% was achieved.

It should be noted however that fieldwork results could identify more than three species,

indicating the basic, and inaccurate, nature of the FC compartment information.
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Estimates of MA were calculated for the object-based classification of areas intersecting with

field plot extents in two ways. The first concerned a comparison of counts of ITC objects of

particular classes and the equivalent for overstorey tree stems. The MA estimated was 49%

for the 26 classes. Commission error was an average of 14%, and omission error was

49%.The second method concerned a comparison of the total relative horizontal area of ITC

objects of a certain class against the relative area of the field measured horizontal crown area

of each species class within the field plot extent. The overall MA calculated for the

classification was 62%. Commission error was 27% and omission error was 26%. The latter

method was considered the most appropriate.

The levels of classification MA for the relative area assessment approach is comparable in

accuracy to the research conducted by Heinzel and Koch (2013) who reported an overall

accuracy of 64% for classified ITC objects using hyperspectral data for four tree species

classes for a plantation forest in Germany. Lucas et al. (2008b) classified dominant tree

species only (eight classes) using classified ITC objects with an accuracy of approximately

80%, in Queensland, Australia. Given the issues inherent in ITC delineation for both

coniferous and deciduous forest, and the larger number of species classes present within this

study (14 mature and 14 immature tree species), the classification MA is considered

comparable.

Owing to the physical shape of tree crowns, different areas of the crown can be more

illuminated and other parts can be in shadow, or can be partially covered or shadowed by

other trees (Leckie et al., 2005). The attributes of the created image objects through

segmentation are based upon the raster cells which make up that object, and the introduction

of additional contextual elements such as elevation has definite advantages in aiding

classification accuracy. If an optimal segmentation is produced, misclassification of

shadowed areas is also no longer a problem. Additionally the classification rules within

eCognition allowed the portrayal of gradual boundaries in terms of providing a more realistic

interpretation of geographical phenomena (Popescu and Wynne, 2004). The segmentation of

canopy areas also has the advantage of focusing the analysis onto features of interest, namely

the tree canopy, other objects not fitting the researcher’s criteria can be eliminated easily.

Some basic improvements could be implemented into the current workflow to address some

the issues present. For example, the selection of the 1.3m height threshold for identifying tree
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vegetation could lead to the misclassification of non-tree species, such as gorse (Ulex) which

can exceed this height threshold. Additional rules and classes within the hierarchy could be

implemented to potentially detect and mitigate this issue.

Omission errors were the biggest concern, both in terms of underestimating abundance and

the numbers of species, an unfortunate consequence of the automated ITC delineation

method, where both individual trees and clusters of trees may be detected. Clusters of trees

may mix the input hyperspectral ‘signal’ for multiple trees and cause a misclassification,

especially where canopies merge and overlap(Campbell and Wynne, 2011). Similarly over-

segmentation within a single tree crown may lead to a misclassification due to the effects of

differing illumination of the tree crown (Gougeon and Leckie, 2003; Leckie et al., 2005). An

alteration of the automated ITC delineation method is discussed further in section 10.2.1.

There is variability in the spectral signatures between trees of the same species, and because

of the effects of tree health and of shadowing within the canopy (Leckie et al., 2005), which

further complicate classification of species type. Objects were classified using dimensionally

reduced hyperspectral products, namely leaf-on and leaf-off minimum noise fraction (MNF)

layers. Layer mean and maximum pixel values within ITC objects were used as part of the

membership rules for species classification. A number of studies have extracted spectral

values from the individual pixels encapsulated within each ITC object for the purposes of

classification, or more specifically, values from the sunlit area for each tree crown rather than

all pixels within the object (Bunting and Lucas, 2006; Gougeon and Leckie, 2003; Leckie et

al., 2005). Lucas et al. (2008b) utilise a method to identify over-segmented objects based

upon the relative position of the maximum pixel value in relation to the object boundary.

The classification within eCognition may also be improved through the use of object

attributes related to shape, size or the attributes of neighbouring objects in the identification

of over- or under-segmented objects (Trimble Navigation LTD, 2012). If a sufficiently fine

spatial resolution LiDAR dataset is available, other DEM products such as the slope and

aspect (slope facing) could be used in order to determine area of the tree crown in which to

extract the spectra, or alternatively, the selection of specific spectral bands (Leckie et al.,

2005). This could also potentially aid in producing a method of removal of over-segmented

objects.
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For each validation field plot the dominant species type could be identified in all 20 cases.

The total number of tree species for each plot could be estimated with an RMSE of 1.8

(NRMSE: 0.31). The relative proportion (percentage) of native tree species detected within

each validation plot produced an RMSE of 22.5% (NRMSE: 0.22). The total number of

species and proportion of native species provided acceptable levels of accuracy. Conventional

methods of estimating species richness within an area, in the form of SH and SI indices could

be calculated directly from the ITC objects with an RMSE of 0.56 and 0.28 (NRMSE: 0.39

and 0.22) respectively. Given the diversity indices small range the RMSE values indicate

high levels of potential error. Both of the index calculations are based upon the number of

ITC objects corresponding to the different species present in each 30x30m area. Given the

ITC underestimation and segmentation issues encountered poor estimates were expected.

Remote sensing derived estimates of species richness using object-orientated methods have

not seen much use in the surrounding literature (Rocchini et al., 2010a). To date, it has not

been possible to find any relevant examples in the literature for the estimation of species

richness through the use of metrics equivalent to the SH or SI index which report any

measure of accuracy. For example Oldeland et al. (2010) report statistical model results, but

no validation or estimates of error were reported.

10.1.2 Extraction of forest metrics relating to condition using hyperspectral data
The combination of all six classified ITC summary metrics (e.g. number of ITC objects,

number of native species ITC objects, etc.) and metrics related to the distribution of values

within 25 vegetation indices (VI) (e.g. mean, standard deviation, etc.) were used as potential

predictors in two regression approaches to model each of the 39 field plot-level metrics.

Two regression approaches were attempted in order to define the best model, ordinary least

squares and Akaike information criterion (with a correction for small sample sizes) (AICc).

However, RMSE values were very similar between all of the field metric estimates. It was

concluded that there is no clear best regression approach for finding a model for estimating

the field plot-level metrics.

Many studies have attempted to estimate forest stand attributes by combining airborne

spectral and LiDAR datasets, however very few have utilised solely airborne hyperspectral

for this purpose. An example of a study which explores the estimation of forest stand
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attributes relating to canopy height parameters and estimation of biomass is given in Hyde et

al. (2006) to assess the habitat suitability of areas in California, USA, through estimating

canopy height and total biomass levels. Estimating soil attributes has also been explored,

such as composition and moisture content (Baulies and Pons, 1995). Much of this research

focuses on the application of vegetation indices utilising satellite data, a review of which is

available in Lutz et al. (2008).

The links between forest structure and composition to VIs are well known, where

relationships have been established for green biomass, canopy light use, vegetative stress,

water content, etc. A review of this is available in Treitz and Howarth (1999).

Nineteen of a total of 39 field-level metrics, or ~49%, had NRMSE values below a value of

0.4, whereas only three estimates (~7%) had NRMSE values below 0.3. This included both

metrics extracted from the ITC summaries and metrics which were statistically derived using

both leaf-on and leaf-off hyperspectral data. Unsurprisingly many of the metrics which were

related to structural metrics, such as basal area, or volume of deadwood were estimated

poorly. Of the 19 models with NRMSE values below 0.4, the number of trees, percentage of

native trees, total number of tree species, the SH index and the SI index were best estimated

using ITC summary metrics. The remainder of the 19 estimated metrics utilised regression

model relationships between one or more ITC summary or VI metrics. Many of the

regression models utilised a combination of overstorey composition metrics derived from the

ITC summary and VIs with relationships with overstorey architecture, vegetation density and

light penetration through the canopy. This is in agreement with findings in the literature,

examples of which follow.

The species classification only contributed a relatively small amount of area-based summary

metrics; however these ITC-metrics are used in many of the regression models, for example

the SI index of species diversity. Some of these metrics, such as ITC count, were not related

to species information. Including more metrics relating to the particular species types or

proportions present may provide additional useful metrics.

10.1.2.1Overstorey
In terms of extracting metrics related to the species and size (i.e. DBH) of the trees within the

plot, predictive models typically employed indices related to the amount of greenness, or
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chlorophyll, in the canopy, which is linked to both species type and canopy architecture. For

example, the two broad species groups of coniferous and deciduous have different index

value ranges due to different levels of chlorophyll (Richardson and Berlyn, 2002). According

to Gspaltl et al. (2013), light use-efficiency increases with increasing tree crown sizes. Trees

of native species are more likely to be of the deciduous type, these typically occur in a lower

stem density than coniferous woodlands, thus allowing a larger tree size (i.e. DBH).

Models could be produced to estimate the height to the first live branch. The regression

models for these metric used the ITC-summary metrics SI and leaf-on calculated VIs. The SI

estimate of species richness may provide an indication of the variability of the height of the

first live branch as this will typically vary between species types within an area. The VI from

leaf-on data has correlations to the forest woodland canopy architecture and the penetration

of radiation into the canopy (Chen, 1996). Therefore the VI could indicate the differences

encountered between the broad coniferous and deciduous groups, and even within species

groups.

Crown area estimates could be made through the use of VIs for the assessment of stress

related leaf-pigments and photochemical reflectance. For the former, anthocyanins are

typically present in higher concentrations of vegetation (Gitelson et al., 2001), supporting the

assumption that crown areas are smaller in areas of higher stem density. The second VI is

related to the estimation of light use-efficiency, and therefore the crown size, because of the

area available for photosynthesis (Gspaltl et al., 2013).

10.1.2.2 Understorey
Jennings et al. (1999) state that forest canopy attributes, such as light penetration, are related

to conditions favouring the survival and growth of plants within the understorey. The

narrowband greenness index is related to canopy leaf-area and architecture (Sims and

Gamon, 2002), thus it is reasonable to assume overstorey conditions are linked with the

understorey. The number of regenerating tree species in the understorey can be estimated

through VIs related to the assessment of stress related leaf-pigments, because as mentioned

above, anthocyanins are present in higher concentrations of vegetation (Gitelson et al., 2001),

and according to Gspaltl et al. (2013) light use-efficiency increases with increasing tree
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crown sizes. Thus stem density and light penetration are important factors for the

understorey.

10.1.2.3 Deadwood
Research by Pu et al. (2008) using multispectral data suggests that vegetation greenness is

linked to mortality levels. Poulos (2009) utilised Landsat ETM+ satellite data combined with

a 30x30m DEM to map forest fuels across the Chihuahuan Desert, Mexico. Four classes of

fuels were mapped, incorporating alive and dead biomass. A large component of the fuel

classes included fallen and standing deadwood volume. In this context deadwood is linked to

elevation, cumulative potential relative radiation, Landsat EMT+ bands 1, 2, 3, 4 and

brightness, greenness and wetness spectral indices. This study concluded that spectral

characteristics were one of the major influences in detecting forest fuels. Alternatively,

deadwood volume was generally higher in deciduous areas, which have different index

values and ranges in comparison to coniferous areas.

10.2 A review of DR LiDAR derived outputs
The results of this research project reveal the feasibility of using small-footprint discrete-

return (DR) LiDAR data to characterise forest attributes required for condition assessment.

Many other research studies exist which attempt to extract forest structural metrics and the

identification of tree species. What follows is a review of the methods employed here and a

comparison to relevant work in the literature. The discussion here relates to project objectives

3, 5 and 6.

10.2.1 Automated individual tree crown extraction
Automated ITC delineation approaches were employed within two different pieces of

software, the first was constructed within eCognition using an approach developed by the

researcher, and the second used the proprietary software TIFFS. Both of these approaches

utilise a similar method to automated ITC delineation, where in summary the ITC objects

were grown around ‘seed’ points, defined as the highest raster cell value located within that

region of the CHM (Chen, 2006). In comparison the two implementations behaved similarly

when validated against field measured overstorey stem number, where the methods produced

an RMSE of 16.58and 15.52 (or 75% and 77%), for TIFFS and eCognition methods

respectively. The ITC underestimation of stem counts occurred more frequently when field

measured stem densities were higher, and were owing to the lack of differences in height
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values within the input raster CHM or too large a search window size to define points of

maximum height, both eventualities resulting in clusters of trees being delineated as one

object. Trees with large, closely spaced interlocking crowns, or those with heterogeneous

crowns, such as old growth deciduous (Leckie et al., 2003a; 2003b), were poorly represented.

The segmentation performed best in the well-spaced, predominantly conifer plantation

regions within the tree-canopy, a conclusion supported by Tiede et al (2006).

Chen et al. (2006) employed the same ITC delineation technique by locating individual trees

in savannah woodland using DR LiDAR, and indicating that the absolute accuracy of the

approach was 64.1%. Koukoulas and Blackburn (2005a) outline a different automated ITC

detection approach utilising a number of GIS overlay and morphological techniques, such as

generating contours, to extract the locations of individual trees, for a New Forest study site in

the UK, which intersected with that of the current research project. The authors report a tree-

top extraction accuracy of ~80% for trees located in semi-ancient woodland and less than

~50% for trees within plantation woodlands. Lucas et al. (2008b) delineated forest ITC

objects using CASI-2 multispectral data. However the ITC delineation utilised follows the

same approach as in this study, but with the delineation algorithm using ‘bright’ or high pixel

values instead of height data. The ITC delineation process provided accuracies of

approximately 70% for individuals and clusters of trees of the same species.

The accuracies of detecting overstorey trees in this project are comparable with those in

similar studies. This is an issue explored in Kaartinen et al. (2012), where many methods

attempt to define ITC objects from a raster CHM. Image-based methods have a number of

challenges relating to how well the vertical profile can be represented and whether relative

amounts of over- and understorey can be quantified accurately (Lee et al., 2004).

10.2.2 Extraction of forest metrics relating to condition using DR LiDAR for direct
measurements
A number of metrics could be extracted directly from the DR LiDAR dataset which related to

field measurements, whilst others were estimated using regression analysis. These are

discussed in the following sections.

The directly extracted metrics relate to estimating average tree height, the number of canopy

layers and canopy openness from DR LiDAR. The first of these produced an RMSE within
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3.46m for all validation field plots. Coniferous sites are generally underestimated and

deciduous sites overestimated. These results are similar to those presented in Gaveau and Hill

(2003) where estimations of tree canopy height differed by an average of ±2.12m with a

standard deviation of 1.24m. It should be noted that other studies have achieved lower error

values when estimating canopy height by using statistical methods, such as in Naesset (2002)

and Anderson et al. (2005).

The method of measuring tree heights within the field has a number of potential sources of

error, this occurs partly because of the difficulty with ground-based measures with sighting

the tops of tree crowns that are expansive, or occur where canopy is dense. Coniferous trees

typically have crown shapes which taper to a point which often results in underestimation of

height by LiDAR measurement, unless a very high LiDAR sampling rate is used or variation

in the collection parameters are accounted for (Lefsky et al., 2002). The calculation of

Lorey’s average tree height for field data is weighted by basal area, thus the larger the basal

area the more influence it has upon the average tree height value. Larger amounts of trees in

the lower storey of the forest plot may lower the average height resulting in overestimations

of deciduous canopy from DR LiDAR.

DR LiDAR estimates of the number of canopy layers produced an RMSE value of 1.18

layers. Unfortunately the researcher could not find any alternative research sources in which

to draw a comparison for accuracy assessment. It should be noted however that the number of

canopy layers was estimated visually within the field campaigns.

DR LiDAR estimates of canopy openness (%) produced a RMSE of 13.29%. Canopy

openness was best estimated using leaf-on data. This accuracy of canopy openness

corresponds well with the following two research projects reported in the literature. Morsdorf

et al. (2006) calculated canopy cover, again through a regression approach, for a study site

located in the Ofenpass Valley, Switzerland, where canopy cover estimates produced a

RMSE of 0.18 (or 18%). By contrast Lee and Lucas (2007) estimated canopy closure (the

inverse of canopy openness) for a forest in Queensland, Australia, derived through the use of

a regression model with a RMSE of 8.6%.
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Crown area is often considered a difficult metric to extract, only a limited number of studies

have used it in the estimation of forest structural parameters, for example Hyyppä et al.

(2001), Popescu et al. (2004) and Maltamo et al. (2004). The method outlined in this thes is

produced accuracies of within 1.77m and 2.07m for detecting the smallest crown diameters,

and within 2.77 and 4.01m for the maximum crown diameters within a plot. The results

produced here are comparable to those employed by other researchers, for example Gill et al.

(2000) developed models of tree crown radius for several coniferous species in California,

USA, and obtained RMSE values from 0.61 to 1.48m. Popescu et al. (2003) produced ITC-

based estimates of crown diameter for both coniferous and deciduous trees in Virginia, USA,

producing RMSE values from 1.36 and 1.41m for dominant trees.

10.2.3Extraction of forest metrics relating to condition using DR LiDAR for area-based
(30x30m) metrics
As in section 10.1.2, two regression approaches, OLS and AICc, were attempted in order to

define the best model. However RMSE values calculated from each of the two methods were

very similar for all of the field metric estimates. There was no clear best regression approach

for modelling estimates of the field plot-level metrics.

There is a large amount of surrounding research literature concerning the prediction of forest

metrics for operations such as inventory, however many only predict a relatively limited

number of metrics (Kaartinen et al., 2012; Lim et al., 2003a; Naesset et al., 2004; Richardson

and Moskal, 2011; Hudaket al., 2009; Hyyppä et al., 2008). What follows is a brief

description of the prediction models produced through the course of this research project and

a comparison with similar results found in the literature.

A total of 39 field plot-level metrics were estimated through statistical regression using DR

LiDAR input metrics. Of these models a number produced high RMSE/NRMSE values; six

were above a NRMSE value of 0.5 and thus were considered poor estimates. These models

were for the estimation of the standard deviation of tree spacing, the percentage of very big

trees (DBH >80cm), SH index (by basal area), the percentage of native saplings, the number

of sapling species and the number of bryophyte species.
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A total of 30 metric estimation models produced NRMSE values below 0.4; in addition,16 of

these had NRMSE values below 0.3. Two metrics derived from ITC measurements were

comparable or better than statistical estimates of mean crown horizontal area and total crown

horizontal area. Many of the regression models utilised a combination of area-based point

statistics, intensity distribution values and ITC-summary metrics, for both structural and

compositional metrics.

ITC summary metrics are used in 17 of the regression models. The estimates of tree number

were typically underestimated by ITC counts per 30x30m area. As a result estimates of tree

NN spacing were overestimated because of the lower density of ITC objects. The ITC

summary value for the number of ITC objects was only used once for estimating the

percentage of native trees per 30x30m metric.

The estimates of average and total crown horizontal area and average tree height, however,

closely resembled field measurements. As indicated in Chapter 5.2, crown horizontal area

was statistically related with tree size (i.e. DBH) and crown dimensional characteristics. A

number of other studies have utilised estimates of crown area or diameter in addition to point

height distribution metrics in order to predict forest structural attributes, in particular stand-

level estimates of DBH and biomass (Hyyppä et al., 2001; Maltamo et al., 2004; Person et al.,

2002; Popescu et al., 2004).

10.2.3.1 Structural metric comparison
Many of the metrics related to forest structure have been used in research in the application of

forest inventory, especially in Nordic countries, for large area surveys. As a consequence of

this wide-scale interest there are a large number of researchers who have published results

concerning the estimation of stem density, stem diameter (i.e. DBH), basal area, canopy base

height or height to the first live branch, and tree crown area metrics.

The first of these, the estimate of stem density, produced in this research a RMSE of 18 (per

30x30m) (NRMSE 0.24). Lee and Lucas (2007) presented estimates of stem counts with a

RMSE of 113 stems per hectare, which translates to approximately 12 stems per 30x30m,

using an automated ITC segmentation algorithm and linear regression approach with LiDAR

metrics for a study site in central Queensland, Australia. Similarly, Naesset (2002) produced

estimates of stem number for 200x200m plots for a forest in Våler, Norway, with an error of
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between 28 and 35% using a linear regression approach. This approach did not use any ITC

metrics.

The research presented in Naesset (2002) also predicted the metrics of DBH and basal area

for three types of forest, these being: young, poor condition mature and good condition

mature types. Estimates were derived through regression analysis using only LiDAR derived

height metrics (e.g. height percentiles). DBH was predicted with a RMSE of 12% accuracy,

whereas basal area was estimated with values from 14 to 21%. A similar study by Naesset

(2004) produced estimates of DBH with a RMSE of between 13.5 and 20%, and predictions

of basal area between 14.8 and 22.5%. Chen et al. (2007a) however produced estimates of

basal area utilising both area-based LiDAR point statistics and ITC metrics (crown area)

which had a RMSE value of 20.7%. The results of this research project produced similar

RMSE values for the 30x30m areas. For average DBH this was 8.4cm (NRMSE 0.29), and

for total plot basal area was 0.83m2 (NRMSE 0.26).

The height to the first live branch was estimated in this project with a RMSE of 2.7m

(NRMSE 0.25) for deciduous, coniferous and mixed woodland types, which was comparable

to estimates produced by other researchers. Anderson et al. (2005) produced a linear

regression model to estimate crown base height at the 30x30m level which produced RMSE

values between 3.9m and 4.1m using LiDAR point height statistics. The objective of that

particular study was to map estimated forest canopy fuel parameters for a forest site in

Washington State, USA. Naesset and Økland (2002) also produced estimates of the height to

the first live branch in the tree crown for 200m2 areas in Østmarka Nature Reserve, Norway.

Estimates of the height to the first live branch produced RMSE values of between 25 and

37%. Holmgren and Person (2004) utilised a linear discriminant function to estimate crown

base height for a coniferous dominated forest area in Remningstorp, Sweden, producing a

RMSE value of 2.82m.

To date metrics related to the average spacing of individual tree stems from one another

within an area have not seen a great deal of attention, instead other studies have focused on

estimating stem density, position, and height values. Here, the DR LiDAR metric used in the

regression model was the variance of all leaf-on point heights within the 30x30m extent. The

variance is a measure of how spread-out the 3D points are relative to the mean. Therefore it
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follows that there is potentially a relationship between the change in the distribution of points

within the 30x30m plot and the distribution of forest elements.

The estimation of average crown area was well predicted using ITC-summaries, however

slight improvements were made when including one LiDAR intensity metric, the kurtosis of

all values. The kurtosis is a measure of the variability of intensity values. The distributions of

intensity return statistics, such as the average and standard deviation are related not only

related to the reflective properties of vegetation, but also to the larger scale properties of the

forest such as canopy openness, spacing and the type of foliage components within individual

tree crowns (Moffiet et al., 2005). This supports the supposition that coniferous and

deciduous species can be inferred within the model. ITC-summary metrics for total crown

area however were superior to those predicted by regression.

A number of field metrics associated with standard deviations were calculated for tree NN

space, DBH, height to the first live branch and crown horizontal area. Regression models

were calculated for each of these. Unfortunately there are no comparisons which can be made

with the literature.

10.2.3.2Compositional metric comparison
Compositional metrics, such as the proportions of native tree species and the total number of

tree species produced relatively low model RMSE values. For the former, metrics relating to

the distribution of points (skewness) from both leaf-on and leaf-off data, in addition to the

average ITC area, were employed. Deciduous trees within the study site are typically native

species where leaf-off conditions cause drastically different point height and intensity value

distributions than under leaf-on conditions. They also generally have different tree crown

area sizes in comparison to their non-native coniferous counterparts. Also, as Moffiet et al.

(2005) states, different tree species may allow more or less returns from within the canopy,

which allows species discrimination.

The estimate of the number of tree species utilised the number of returns from the 50th

percentile and a measure of the distribution of laser return intensity values. Larger numbers

of tree species within an area are more likely to have different vertical profiles – in terms of

LiDAR returns – due to the generally different structures within the tree canopy. The

distribution of intensity values from the laser pulses interacting with vegetation, in
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combination with the presence or absence of foliage and its arrangement within the crown is

linked to difference in species, as in Kim et al. (2009a).

The Shannon and Simpson indices of diversity (by stem number) produced relatively low

RMSE and NRMSE values, and similarly employ both elevation and intensity value

distribution metrics. However, given the small range of the index values, small errors in its

prediction could lead to inaccurate results.

10.2.3.3Deadwood
All of the metrics related to the detection of deadwood utilised intensity metrics from both

leaf-on and leaf-off data for ground and non-ground classified points. The results presented in

Kim et al. (2009b) are similar to those presented in this project where dead biomass in a

forest context can exhibit different LiDAR intensity values when compared with living

biomass. Thus with more deadwood within the plot, area-based estimates of intensity metrics

will change. Kim et al. (2009b) produced an overall accuracy of prediction of total dead

biomass volume of 56.3% using a combination of area-based point height and intensity

statistics, for a study site in proximity to the Grand Canyon, USA. Likewise Pesonen et al.

(2008) produced estimates for the volume of standing and fallen deadwood for a site in the

Koli National Park, Finland, with RMSE values (modified to be comparable to 30x30m area)

of 1.6 m3 and 1.3 m3, respectively. The accuracy levels in these examples from the

surrounding literature are lower than the 82% (RMSE 1.36m3) for standing deadwood

volume and 70% (RMSE 2.49m3) for fallen deadwood volume presented in this study(see

Chapter 7.3.2).

There are unfortunately no comparisons which can be made for the decay class metrics

however. Both decay class metrics utilised intensity distribution metrics from close to

ground-level and/or all non-ground classified points, which may indicate a relationship

between canopy structure and deadwood decay.

10.2.3.4Understorey
To date the detection of understorey characteristics from DR LiDAR only has been limited to

estimating either its presence or absence, amount of biomass, or number of suppressed trees

or trees with low heights (Estornell et al., 2011; Martinuzzi et al., 2009; Hill and Broughton,

2009; Richardson and Moskal, 2011).Again, each of these metrics were estimated through
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some form of statistical regression, apart from in Hill and Broughton (2009), who outlined an

approach for detecting understorey presence/absence by applying overstorey tree species

specific height thresholds to LiDAR data, for a woodland in Cambridgeshire, UK. The

regression approach employed in Martinuzzi et al. (2009) for detecting the presence of

understorey utilised LiDAR metrics from low levels in the vertical stratum, i.e. from 0-2.5m,

and ground slope information for a forest in Idaho, USA. The approach in Estornell et al.

(2011) for estimating shrub biomass utilised LiDAR metrics relating to the mean, maximum

and 80-95th percentiles for a forest site in Valencia, Spain.

The LiDAR metrics utilised in the context of this research project for the field-based metrics

concerned with vascular species in addition to the prediction of saplings and seedlings, and

their species composition, typically employed both LiDAR height and intensity distribution

metrics from throughout the vertical profile. A number of these also employed metrics

relating to the slope and surface roughness of the ground DEM.

Other researchers have estimated the densities of small standing trees, which will be

compared with the number of saplings detected over the course of this project. Richardson et

al. (2011) outlines a method of detecting the density of trees between 5-10m in height for a

forest in Washington State, USA, by establishing a regression relationship with DR LiDAR

metrics which produced RMSE values between 2.60 and 4.58 stems per 0.04hectares

(400m2). These plot extents in Richardson et al. (2011) are approximately 44% of the plot

extents covered in this project, which produced RMSE values of 24 stems per 30x30m

(900m2), or adjusting for the different areas, approximately 10 stems per 0.04ha. Sapling

number was low or non-existent across many of the initial field plots (recorded in 2010)

which may have caused issues in producing a valid regression model.

10.3 A review of FW LiDAR derived outputs
This section explores the viability of utilising the outputs from small-footprint full-waveform

(FW) LiDAR for predicting forest structural and compositional metrics necessary for the

assessment of condition. A limited but growing collection of research publications exists for

the employment of FW LiDAR data for the assessment of forest characteristics, and there are

more which list the potential benefits of such data. Within the following discussion a number

of comparisons are made with DR LiDAR in terms of the initial datasets and derived model
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estimations in addition to its context within the surrounding research. The project objectives

3, 5 and 6 are be addressed here.

There are a relatively large number of studies in the surrounding literature documenting the

effectiveness of different methods for extracting 3D point information from FW LiDAR data,

however there are comparatively fewer studies regarding the operational use of FW LiDAR

within a forest context; these will be compared where appropriate with this project.

10.3.1 A comparison between DR and FW LIDAR datasets
The results presented in Chapter 7.1.2 illustrate the differences between the DR and FW

datasets. The initial number of laser pulses emitted for the FW data acquisition was

equivalent to approximately 40% of the pulses emitted for the DR acquisition. Through the

detection of multiple returns approximately 30% additional returns were generated for DR

data relative to the initial number of pulses, whereas for FW LiDAR an average increase of

143% was recorded in the number of points relative to the initial number of pulses. The

Gaussian decomposition method applied to the FW LiDAR data produced similar numbers of

total points to that of the DR LiDAR data overall. Similar distributions of points were present

within the forest canopy for both types of data, but the FW datasets generally produced a

higher number of returns within the mid-canopy.

The different pulse rates between the DR and FW LiDAR datasets influences the 3D spatial

sampling and point density beneath the forest canopy. DR LiDAR had a higher density of

spatial sampling overall, whereas the FW LiDAR had more points vertically; however there

was a larger horizontal spacing at all vertical levels. This will influence the metrics extracted

between datasets, however to what degree is unknown.

There was a difference in the sampling resolution for the LiDAR waveforms acquired under

2010 leaf-off and leaf-on conditions, the former using 2ns and the latter using 1ns. The

difference in sampling could potentially cause differing sensitivities to features recorded in

the returned waveform. It is unknown how the change in sampling may have affected the

metrics extracted between leaf-off and leaf-on datasets.

It should be noted that the initial FW LiDAR dataset was larger, by approximately 10 times,

in terms of data file size when compared to that of DR, in addition to requiring approximately
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double the total pre-processing time required for the DR data. Also, the FW LiDAR

processing software, SPDLib, is still under development and may provide additional

capabilities in the future.

10.3.2 Extraction of forest metrics relating to condition using FW LiDAR for direct
measurements
Similarly to DR LiDAR, a number of metrics could be extracted from the FW LiDAR dataset

which could be related directly to field measurements, whilst others were estimated using

regression analysis; these are discussed in the following sections.

Metrics related to estimates of dominant tree height per plot, the number of canopy layers and

canopy openness could be made directly from the processed FW dataset. All of these metrics

were calculated based on the distribution of height measurements, and as such are

comparable with those made with DR LiDAR.

The estimates of dominant tree height produced RMSE values of 3.7m, which was similar to

DR estimates (RMSE 3.46m) overall (see section 10.2.2). This is again comparable to

measurements presented in other studies. For example, in Gaveau and Hill (2003) estimations

of tree canopy height differed by an average of 2.12m with a standard deviation of 1.24m.

Again, coniferous sites are generally underestimated and deciduous sites overestimated. The

difference between the two datasets may be attributable to the difference in sample densities

from DR and FW, as the latter had a much smaller overall pulse density, canopy height

differences may have been missed between acquisitions.

Prediction of the number of canopy layers using FW LiDAR produced RMSE values of 1.07,

while similar to DR estimates (RMSE 1.18), they were slightly lower and more closely

resembled the visual field assessment. Likewise FW prediction of canopy openness produced

RMSE values of 8.28% for leaf-on data, which again is a slight improvement in comparison

to the DR leaf-on estimate (RMSE 13.29%). As mentioned previously, Lee and Lucas (2007)

estimated canopy closure (the inverse of canopy openness) through the use of a regression

model with an RMSE of 8.6%.

When comparing DR and FW outputs, it is possible these decreased error values is because of

the increased number of points resolved within the mid-canopy, through FW waveform
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decomposition, which is an observation supported by Reitberger et al. (2008). Given the

overall similarity of the DR and FW datasets, however, the differences in extracted statistics

were very small.

10.3.3 Extraction of forest metrics relating to condition using FW LiDAR for direct
measurements area-based (30x30m) metrics
The estimation of field-level area-based metrics from FW LiDAR data inputs was performed

using statistical regression approaches. OLS and AICc methods were used in order to predict

the metrics; there was no definitive best approach, with both often performing similarly. Out

of a total of 39 metrics, five produced high RMSE and NRMSE values (i.e. NRMSE ≥0.5).

These five metrics were: the mean DBH, the percentage of very big trees (i.e. DBH>80cm),

the SH index (by basal area) the percentage of native saplings, the seedlings SH index for

native species and the number of bryophyte species. DR LiDAR estimates of these values,

apart from model estimates of mean DBH and the seedlings SH index for native species,

could also not produce satisfactory predictions.

A total of 26 metric predictions had values of NRMSE below 0.4; of those a total of 18 had

NRMSE values below 0.3. As with the DR LiDAR, FW LiDAR ITC-summary estimates of

mean crown horizontal area and total crown horizontal area were comparable to the statistical

estimates, the latter of which exhibited a slightly lower error value for the ITC derived

metric. Many of the regression models produced used combinations of ITC-summary, height,

amplitude and width metric. It should be noted that the amplitude and width metrics were

utilised to a much higher degree than that to which intensity was used in the DR derived

models.

A total of 17 FW LiDAR derived models employed at least one of the ITC-summary metrics

in its construction. This is in common with DR LiDAR derived models, where estimates of

crown diameter in particular were important in many of the predictive models, this is

supported by existing research (Hyyppä et al., 2001; Maltamo et al., 2004; Person et al.,

2002; Popescu et al., 2004).

The decomposition of the individual waveforms allows the extraction of additional metrics

per point compared with DR LiDAR. In particular, the metrics related to peak-width can be

extracted for each derived 3D point, i.e. the width of each peak fitted to each of the surface
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interactions (i.e. returns) in the digitised return waveform. According to Lin and Mills (2010)

the width metric is related to the slope and surface roughness of the material the laser pulse

interacts with and exhibits relatively stable behaviour when amplitude, range distance or scan

angle vary substantially. Wagner et al. (2006) however state those echo-width estimates at

high amplitudes are relatively stable, but show significant scattering effects at lower

amplitudes. It should be noted that in Figure 4.15 anomalies in echo-width values were

detected when the FW LiDAR flightlines were merged, with higher values present on these

overlapping areas which were furthest from nadir, which contradicts the above statement.

This is why metrics recorded furthest from nadir were removed, reducing this problem.

FW LiDAR metrics related to amplitude only characterise the peak power of the returned

echo (Wagner et al., 2008). This metric is comparable to DR intensity. According to

Alexander et al. (2010) amplitudes of echoes from targets available from airborne FW data

have been found to be useful in the identification of different forest cover types. Amplitude is

however dependent on various factors such as range and incidence angle.

10.3.3.1 Structural metrics
FW LiDAR estimates of forest structural metrics produced similar results in terms of RMSE

and NRMSE values to the DR LiDAR derived estimates for the commonly extracted forest

metrics of: stem density, stem diameter (i.e. DBH), basal area, canopy base height or height

to the first live branch, and tree crown area metrics. These models typically employ both leaf-

on and leaf-off datasets.

The first of these is stem density, which in the context of this project had an RMSE of 16 (per

30x30m) (NRMSE 0.22) which slightly lower than the DR predicted equivalent (RMSE 18,

NRMSE 0.24). The results were still in line with the accuracies provided by other sources, for

example Lee and Lucas (2007) with an RMSE of approximately 12 stems per 30x30m.

Likewise estimates of stem spacing were very similar between FW and DR data, where

RMSE was 1.3m and 1.1m, respectively.

FW LiDAR estimates of plot mean DBH value were above NRMSE 0.5 and were inferior to

the DR LiDAR equivalent. FW LiDAR model predictions for total plot basal area produced

RMSE values of 0.9m2 (NRMSE 0.28), which were very similar to DR LiDAR estimates

(RMSE 0.83m, NRMSE 0.26). The values produced for this project have a slightly higher
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error than those presented in Naesset (2002, 2004) where RMSE values range from 14 to

22.5%.

FW LiDAR regression model estimates for height to the first live branch (or canopy base

height) produced an RMSE value of 2.6m (NRMSE 0.24), again which was similar to those

produced for DR LiDAR (RMSE 2.7, NRMSE 0.25). As mentioned previously this compares

favourably to the estimates of height to the first live branch presented in other studies, for

example that which is presented in Holmgren and Person (2004) with an RMSE value of

2.82m.

ITC crown area metrics were incorporated in the FW regression model for the prediction of

average crown horizontal area, which also included metrics relating to the above ground

amplitude value distributions. FW model estimates produced a RMSE value of 24.4m2, which

is very similar to the estimate developed for DR LiDAR where the RMSE value was 23.5m2.

The total crown area was best predicted by the ITC metric; in this regard the FW and DR

estimates were identical.

A number of field metrics associated with standard deviations were calculated for tree NN

space, DBH, height to the first live branch and crown horizontal area. Regression models

were calculated for each of these. Unfortunately there are no comparisons which can be made

with the literature. The first of these, the standard deviation of NN space for DR LiDAR

produced a RMSE of 0.57m, whereas FW estimates produced a lower RMSE value of 0.39m.

The standard deviation of DBH produced an RMSE of 10.57cm from DR LiDAR. The FW

estimate produced a smaller value of RMSE, at 9.1cm.The standard deviation of height to the

first live branch gave an RMSE of 1.66m from DR LiDAR while that produced using FW

LiDAR was higher, at 2.22m. The standard deviation of crown horizontal area gave an

RMSE of 20.62m from DR LiDAR. The FW LiDAR estimate gave a lower RMSE value of

17.59m.

10.3.3.2 Compositional metrics
The initial compositional metrics relating to the proportion of native trees and the number of

tree species within the plot produced relatively low RMSE values using FW LiDAR

regression models. In the comparison of FW and DR metrics, RMSE values were often
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similar; the former better estimated the number of native trees and the total number of tree

species, but the percentage of native trees was best modelled with DR LiDAR.

Even the Shannon and Simpson indices of diversity (by stem number) produced relatively

low RMSE and NRMSE values, and similarly employ both height, amplitude and width value

distribution metrics. However, given the small range of the index values, thus errors in its

prediction could cause drastically different values to those derived from field data.

Each of the compositional metrics was modelled using combinations of height, amplitude and

echo-width attributes, apart from the model to estimate the percentage of native trees. Metrics

relating to heights are indicative of vertical structure (Reitberger et al., 2008). Amplitude can

be considered an indication of the material the laser pulse interacts with, although variability

is introduced with range and scanning angle (Wagner et al., 2006). The echo-width metric, of

the returned ‘echoes’, has been found to be an indication of surface roughness and slope

angle of the material the laser pulse interacts with (Lin and Mills, 2010). It can be assumed

that variation in these metrics is indicative of changes in vegetation composition, for example

the associated structural differences between species.

This assumption is supported by the research presented in Reitberger et al. (2008) where a

method is outlined for classifying ITC objects using a combination of leaf-on and leaf-off

acquired FW LiDAR data. The authors reported that amplitude does not distinguish well

between coniferous and deciduous trees under leaf-on conditions, but it is better, however, in

distinguishing between bark and coniferous-needles in leaf-off situations. They also state that

combining geometric, amplitude and width metrics improved accuracies of species

classification, and noted in particular the usefulness of the echo-width metrics. Likewise,

Heinzel and Koch (2011) were able to classify six tree species types by combining amplitude,

echo-width and point density metrics with accuracies of 78% for coniferous and 91% for

deciduous species for a site in south-west Germany.

10.3.3.3 Deadwood
At the time of writing this thesis there were very few examples in the surrounding literature

of estimating forest deadwood volume using FW LiDAR data. One such example is the work

presented by Mücke et al. (2012) which focuses on the detection and mapping of large fallen

deadwood items. The estimation of standing deadwood using FW LiDAR data produced
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RMSE values of 1.36m3 (NRMSE 0.17). This estimate was again similar to that derived

through the DR LiDAR, where the RMSE value was 1.50m3. Metrics related to the variation

in ITC object spacing, the leaf-on echo-width at lower height levels within the plot and the

distribution of leaf-on non-ground amplitude were used as model predictors. Estimates of

downed deadwood volume using FW LiDAR data produced a RMSE value of 2.5m3. In

comparison, DR LiDAR estimates produced a RMSE of 2.7m3. The metrics employed in the

model included an indication of the distribution of the non-ground intensity and the variation

in the leaf-on heights within the plot. With the exclusion of the echo-width metric, this is very

similar to the input metrics with DR LiDAR, where intensity (i.e. amplitude) is linked to total

biomass volume (Kim et al., 2009b; Martinuzzi et al., 2009).

Standing and downed deadwood decay class estimated from FW LiDAR produced RMSE

values of 0.19 and 0.20, respectively, for estimates on a scale of 0-1. In comparison, DR

LiDAR estimates were similar, producing RMSE values of 0.24 and 0.17, respectively. Both

decay class metrics utilised amplitude distribution metrics from non-ground classified leaf-off

points. Standing deadwood decay class utilised height percentiles whereas downed deadwood

decay utilised echo-width percentile metrics. As with the DR models, this may indicate a

relationship between upper canopy structure and deadwood decay class. This is supported by

the correlations between the plot-level deadwood metrics and crown horizontal area and

height to the first live branch metrics found in the bivariate correlation analysis in Chapter

5.2.1.

10.3.3.4 Understorey
As with studies into the detection of forest understorey structures and individual plants for

DR LiDAR, there is only a small amount of literature concerning this for FW LiDAR. Of the

limited number of studies found, they focus upon the detection of understorey trees through

3D point cloud segmentation (Reitberger et al., 2009).

There are a number of directly comparable metrics to studies which utilise DR LiDAR, for

example the estimation of the densities of small standing trees, with those trees classified as

regenerating in this current project (i.e. saplings). Richardson et al. (2011) produced RMSE

values between 2.60 and 4.58 stems per 0.04 hectare (400m2) areas. These plots are

approximately 44% of the plot areas covered in this project, which produced RMSE values of

26 stems per 30x30m (900m2), or adjusting for the different areas, approximately 11 stems
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per 0.04ha. In comparison to DR LiDAR within this project, estimates of saplings produced

RMSE values of 24, which was very similar to the FW estimate. Sapling numbers were low

or non-existent across many of the initial 2010 field plots which may have caused issues in

producing a valid regression model.

The composition and structure of the forest understorey metrics estimated through FW

LiDAR produced similar overall results to those by DR LiDAR. Regression models derived

from both datasets could not estimate the percentage of native saplings or the number of

bryophyte species.

The number of saplings and number of native saplings have very similar FW LiDAR metric

model inputs involving low to medium height metrics for leaf-on and leaf-off metrics and

echo-width metrics for low heights from leaf-on data. Saplings recorded during fieldwork

generally were of small stature, and thus it makes sense that the required metrics would come

from this part of the height stratum.

The number of sapling species was only modelled successfully when derived by FW LiDAR,

giving an RMSE of 1.02species per 30x30m. It should be noted however that the number of

saplings across the entire study site was very low which may have caused issues in the

predictive regression models. In contrast, only DR LiDAR could predict the Shannon index

for native seedlings species, the RMSE value was high (0.72). The small and defined range of

the index value is also a concern.

The estimation of the number of seedlings per plot for DR LiDAR produced slightly lower

RMSE values than for FW, 295 and 332 respectively. For FW LiDAR, the regression model

utilised one input relating to the variation in leaf-on amplitude for all points, however the DR

model used four inputs relating to ground slope, and measures of intensity variation in ground

and non-ground points.

The number of native seedlings per plot for FW LIDAR model estimates produced a RMSE

of 245, and 239 for DR LiDAR. FW metrics again included measures of the leaf-off

amplitude variability in addition to both leaf-on and leaf-off measures of ground echo-width.

DR LiDAR uses solely ITC-metrics of the variability in ITC space and average canopy

volume. Variation in ITC values is typically related to coniferous or deciduous species, where
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the latter generally has more native species present and generally larger tree crown horizontal

areas. Variation in amplitude and echo-width however has links to different materials and

surface slope and roughness attributes recorded within the laser pulse footprint, which in this

case would appear to indicate the estimation of seedling properties from direct measurements

from ground-level.

The number of seedling species encountered within each plot was estimated by DR LiDAR

with a RMSE value of 3.2 stems, whereas for FW LIDAR RMSE was 3.1. DR metric inputs

to the predictive model utilised leaf-on values of intensity and height for the 60th percentile,

and values of leaf-off canopy relief. This potentially highlights links to the cover and general

species types in the mid-canopy. FW metric inputs to the predictive model on the other hand,

utilised both amplitude and echo-width values from the ground classified points for leaf-off

data only, which appears more sensible as seedlings will occur at ground-level only.

The estimation of the vascular plant species number for DR LiDAR regression model

produced a RMSE value of 3.4 species, whereas FW LIDAR model produced lower RMSE

value of 1.7. The FW predicative model only required one input, the variation in heights of

non-ground leaf-on points. The DR model however required four inputs utilising metrics

relating to topographic roughness, low-canopy strata intensity, the distribution of height

points and average canopy height. The derived FW model was not as complex and provided a

similar accuracy level to the DR equivalent, which indicates a better model.

10.3.4 LiDAR sampling disparity
In the context of this research project FW models could replace DR models with very minor

changes in prediction accuracy. As mentioned previously, the DR and FW LiDAR were

collected with substantially different initial laser pulse repetition rates, resulting in fewer FW

pulses being emitted. Even with the fitting of a greater number of points through Gaussian

fitting for the FW LiDAR data, providing a great deal of information along the vector of the

laser pulse, the distribution of points and total sampled forest elements will be different to DR

LiDAR data. According to the studies of Treitz et al. (2012) and Strunk et al. (2012) the

precision of statistical estimates of vegetation structure estimations showed little change

when the point density of DR LiDAR data was varied from 3 pulses m-2 to 0.5 pulses m-2.

Their structural metrics were basal area, timber volume, biomass, stem density and canopy

height, thus some of the other metrics mentioned here may hypothetically behave differently.
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It should also be noted that these tests were performed using height metrics only, intensity,

FW amplitude or echo-width metrics were not addressed. It is therefore unknown whether

these other attributes will change with point density.

10.3.5 Concluding thoughts
Overall, it would seem that the models produced using FW LiDAR data were comparable to

DR LiDAR, and overall RMSE values are similar. The initial dataset for FW LIDAR equated

to 40% of the DR LiDAR. FW LiDAR model predictions presented here compare favourably

with those published in the surrounding literature, for both FW and DR LiDAR. Upon

exploration of the model inputs, it is clear that the FW derived models make extensive use of

echo-width related metrics, an observation also made in Reitberger et al. (2008). It is also

evident that the regression models derived through using FW LiDAR often utilised fewer

and/or more appropriate input metrics than the DR derived models, especially so for the

prediction of understorey composition metrics. In addition, as with DR LiDAR, ITC

estimates of crown area metrics were utilised a great deal in model construction.

10.4 Exploration of the fusion of the airborne remote sensing datasets for assessing
condition
This discussion section will focus upon reviewing the combination of remote sensing datasets

for the goal of estimating fieldplot-level metrics critical to the assessment of woodland

condition. Within the course of this project predictive regression models were derived from

combinations of hyperspectral and DR LiDAR data and then for hyperspectral and FW

LiDAR data in order to test if better metric estimations could be made by the addition of

supplementary datasets.

As in the above, two regression approaches were attempted in order to define the best model,

these were OLS and AICc. However, RMSE values calculated from each of the two methods

were very similar between all of the field metric estimates. There is no clear best regression

approach for finding a model for estimating the field plot-level metric.

What follows is a review of the best predictive models (i.e. the lowest RMSE) developed for

all of the remote sensing datasets, and relevant explanations of model inputs and comparisons

to existing research. The project objectives, in particular 5 and 6, will be addressed here.
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The best estimates of the field plot-level metrics from airborne remote sensing datasets came

from a mix of hyperspectral, DR and FW LiDAR. In addition, a number of models combined

metrics from both hyperspectral and LiDAR. What follows is a review of the predictive

models tested which produced the smallest RMSE value overall for that field metric. It

should be noted that RMSE values between the two different input dataset groupings were

often very similar. Table 10.1 describes each model and explains the metrics utilised in its

construction in relation to the surrounding literature. It should be noted that two metrics

related to index construction, the sum of diameter differences and the index of vertical

separation were not reported in this table.

The individual metric prediction accuracies have been compared to those in the surrounding

literature in the previous sections, other than those metrics derived from combining

hyperspectral and LiDAR metrics in one model. A full review of all the regression model

results produced by the composite datasets is not necessary as many of the model estimations

did not show much improvement, i.e. by reducing RMSE. In relation to the best predictive

models for all potential datasets however, a total of nine of the composite dataset models, (i)

four for hyperspectral combined with DR metrics, and (ii) five for hyperspectral combined

with FW metrics, provided better estimates (i.e. lower RMSE values) than for each of the

other datasets in isolation. For hyperspectral combined with DR LiDAR these were the SH

index (by stem count), the SI index (by basal area), the total crown horizontal area and the

number of native saplings. For hyperspectral combined with FW LiDAR these were the

number of native trees, number of sapling species, number of seedlings per plot, number of

seedling species and the seedling SH index for native species.

There are few examples in the surrounding literature of combining remote sensing datasets

relevant to those presented within this thesis. In terms of species classifications, a number of

authors have mixed spectral and LiDAR raster layers for land cover classifications. Hill and

Thompson (2005) were able to develop a method to combine dimensionally reduced

hyperspectral and LiDAR data using unsupervised Isodata classification. Ten classes for

canopy and shrub characteristics were produced. Mutluet al. (2008) also utilised fused

dimensionally reduced satellite multispectral and airborne LiDAR data to classify land cover

in relation to fire fuel risk.
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Lucas et al. (2008b) on the other hand utilised a method to predict total above ground

biomass. The method combines ITC algorithms for the mapping of overstorey and suppressed

tree stems, which utilise inputs from multispectral and LiDAR data, species classification and

the application of species specific allometric equations per stem for estimating biomass.

Each of these fusion applications identified in the surrounding literature focuses ultimately on

the identification of a single attribute such as the identification of species types. Many of the

studies encountered in the surrounding literature, for estimating forest metrics from a single

remote sensing dataset for example, are also somewhat limited in the number of attributes

they attempt to estimate. This research project in particular has estimated many more

compositional and structural metrics within a reasonable level of accuracy (i.e. NRMSE <0.4)

across a wide area.

Over the course of this thesis project a fusion of the two datasets types was applied multiple

times, for example the species classification of ITC objects delineated by an algorithm acting

upon LiDAR data, in addition to the combination of metrics for regression modelling. In

order to produce the best overall method of estimating forest structural and composition

metrics it was necessary to derive models utilising inputs from each of the three input

datasets.

Only two relatively minor metrics could not be estimated, these were the percentage of native

saplings and the number of bryophyte species. The percentage of native trees, saplings and

seedlings metrics were introduced only as an alternative value should the estimate of stem

count not function correctly. The number of bryophyte species could have been useful as it is

a required metric for some alternative condition assessment methods (Van Den Meersschaut

and Vandekerkhove, 1998). However it was not utilised in any assessment indices within this

project.

For the 37 metrics which could be modelled, some metrics could only be extracted from

either hyperspectral, LiDAR or a combination. Some datasets alone could not produce

estimates at all. The wealth of information the cumulative datasets provided does account for

the shortcomings of the individual datasets. However, two metrics produced poor estimates,

these were the percentage of very big trees (DBH >80cm) and the Shannon index (by basal

area).
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The statistical approaches of OLS and AICc regression often produced very similar RMSE

values when applied to the same dataset. This often resulted in an approximate 50/50% split

of predicted models which used OLS and AICc for all five datasets tested. There is

unfortunately no clear best regression type which can be discerned from either of these

methods.

In particular, FW LiDAR provided the most input to predicting 20 (15 LiDAR and 5

composite) (57%) of the field-level metrics, in comparison to 13 for DR (9 LiDAR and 4

composite) (37%), and 2 for hyperspectral models (6%). In many cases, the RMSE value for

models derived from the five datasets were very similar, in particular this was evident

between DR and FW LiDAR.

FW LiDAR provides a benefit in predicting a significant proportion of forest structural and

compositional metrics, and has proven to be as good as DR estimates, if not better given the

initial disparity between sample densities. This is owed in part to the additional metrics, in

particular echo-width, which FW LiDAR provides. It is also interesting to note that both DR

and FW LiDAR datasets often provide components of models which estimate forest

compositional metrics, such as the number of tree species, which is typically the realm of

spectral data alone. This is supported by Hill and Thompson (2005) and Multu et al. (2008)

where combinations of hyperspectral and LiDAR data were used to provide forest cover

classifications.

A small number of relatively poor estimates were observed when comparing predicted results

against those measured in the field. This was typically for very dense mixed stands, such as

for plot number 30. None of the initial training field plot sites were similar to this validation

plot due to the very high density of young or small trees. This highlights the need for more

and appropriate fieldwork for training the production of statistical predictive models. As in

Strunk et al. (2012) the number of training samples has a dramatic effect on the validity of

inferences which can be made from remote sensing predictive models, as expected from

sampling theory. For example, the sapling population was generally low across all field plots;

this low overall population may have caused issues in estimating its number.

As mentioned before, the SH and SI indices of diversity (by stem number) produced

relatively low RMSE and NRMSE values. However, given the small range of the index
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values, caution should be applied when using the results, as even small errors in its prediction

could result in different results when compared with field data. Likewise metrics such as the

percentage of non-vegetated or bare earth cover were assessed visually and may be subject to

surveyor bias and inaccuracy. The number of seedlings was enumerated using a 10x10m sub-

plot which was assumed to be representative; this may add additional error to the estimations.

As noted previously, metrics such as saplings were low across the entire study site. It is likely

the model produced would perform poorly in areas where sapling numbers were high. Issues

such as this in the underlying data could lead the researcher to question how realistic some

model estimates are.

Finally, each of the statistical regression approaches utilised in the course of this thesis

involved hundreds of remote sensing metrics (>300), many of which exhibited signs of

multicollinearity. Although efforts were implemented to mitigate this problem, there were

many metrics portraying the same or similar information for both hyperspectral and LiDAR

datasets. There are potentially many more possible combinations of remote sensing metrics

which could be used to estimate field metrics. In terms of the issue of causality and

correlation, some of the models produced may not be directly related to the remote sensing

inputs, for example deadwood decay class was modelled using hyperspectral data, which may

be related more to VI values linked to being located in deciduous woodland, which

universally had high deadwood volume and decay class, rather than a link between VI value

and understorey attributes.

There were a number of 30x30m grid cells within the shapefile map which contained large

canopy gaps, or very low stem densities. These typically existed on the perimeter of the study

site, and in a limited number of locations within the forest which were cleared prior to the

data acquisition in 2010. Unfortunately a small number of examples of large metric

overestimation were caused by this as all regression training data were acquired from within

the forest itself. These gird cell values could be ignored, and in the future, a correction could

be applied to remove these cells.
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Table 10.1 – The predictive regression models with the smallest RMSE
Field metric Dataset Remote sensing metrics description

Number of trees FW
LiDAR

This model used the metric inputs of ITC derived average crown area, a
percentile from low in the height stratum for leaf-on data, the distribution of
amplitude values and the distribution of height values, both from leaf-off data.

Other studies have reported the benefits of using estimates of crown area and
height distribution metrics in the prediction of other forest structural
characteristics (Hyyppä et al., 2001; Person et al., 2002; Popescu et al., 2004;
Maltamo et al., 2004). There is also a strong correlation found between average
crown area and the number of trees found in the bivariate correlation (section
5.2.1). Smaller crown sizes are generally indicative of higher populations,
especially so in plantation woodland. Reitberger et al. (2008) indicates that
amplitude metrics can distinguish between tree bark and coniferous-needles for
use in species classifications, thus the distribution of amplitude values per plot
could be an additional distinction between broad species type. Moffiet et al.
(2005) and Kim et al. (2009a) indicate intensity/amplitude summary metrics are
also related to attributes such as canopy openness, which is dependent on stem
density and species types.

Number of native
trees

Hyper.
and FW
LiDAR

The predictive model utilises two inputs, the first is the leaf-on simple ratio
vegetation index (SRI) and the second is a measure of leaf-off echo-width (FW)
from within intermediate canopy height.

The SRI is a measure of broadband greenness, which has been linked to canopy
leaf-area and architecture (Sims and Gamon, 2002). Native tree species are
typically deciduous, whereas non-native species are coniferous, which typically
have a very different structural form. We can assume the SRI is distinguishing
between the two broad species types. The FW metric regarding echo-width is
related to surface roughness and slope. Echo-width is useful in discriminating
between vegetation cover types (Reitberger et al., 2008; Heinzel and Koch,
2011)

No. of tree
species

DR
LiDAR

This model utilised two DR LiDAR measures of return intensity, the first was
the leaf-off 50th percentile, and the second was the leaf-on variance of non-
ground intensity.

As in Brandtberg et al. (2003), this model implies that different tree species can
be separated by LiDAR intensity metrics. The intensity distribution within the
mid canopy may be indicative of the presence of different numbers of tree
species within the plot extent, as different tree species can exhibit different
canopy architecture and intersect with this level, as in Kim et al. (2009a). The
variance of intensity values could also be indicative of differing species numbers
where the presence of many disparate species, and thus intensity values would
result in a differing distribution of intensity values.

It is interesting to note that this DR model achieved higher accuracies than the
hyperspectral classification direct measure.
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Table 10.1 (continued)
Field metric Dataset Remote sensing metrics description

Average tree
nearest
neighbour(NN)
spacing

FW
LiDAR

The model employed two input metrics; the first was the spacing of the ITC
objects and the second was the leaf-off amplitude from the 20th percentile.

The ITC space metric was calculated as average shortest distances between
object centroids per plot. These ITC objects better corresponded with the larger
trees within the plot, and thus underestimated actual tree NN spacing. The field
metric correlated with average crown area (section 5.2.1). Average ITC area and
ITC space are linked, where an increase in one is reflected directly in the other.
As mentioned before estimates of crown area can be linked to internal forest
structure (Hyyppä et al., 2001).

The second model input, amplitude from a relatively low part of the forest strata
is likely related to tree species (Alexander et al., 2010; Kim et al., 2009a). Given
the leaf-off conditions the amplitude value could discriminate between bark and
pine-needles, as in Reitberger et al. (2008).

Standard
deviation of tree
NN spacing

FW
LiDAR

This predictive model utilises three inputs: (i) ITC average crown area; (ii) leaf-
on mean height; and (iii) leaf-off echo-width kurtosis.

This metric has relationships with crown area, as identified in section 5.2.2. As
with other studies, crown area combined with height distribution metrics are a
powerful explanatory metric to use (Hyyppä et al., 2001; Person et al., 2002;
Popescu et al., 2004; Maltamo et al., 2004).

The echo-width metric is related to the surface roughness and slope (Lin and
Mills, 2010), and thus may be related to the spatial arrangements of vegetation
components within the vertical stratum.

Mean DBH DR
LiDAR

This model uses two ITC inputs, the average ITC space and mean canopy
volume.

As identified in section 5.2.2, mean DBH has a relationship with average crown
area and crown base height. The ITC space and canopy volume have close
relationships with these metrics; this is supported by other studies (Hyyppä et
al., 2001; Person et al., 2002; Popescu et al., 2004; Maltamo et al., 2004).

Standard
deviation of DBH

FW
LiDAR

The model uses three inputs, the leaf-off amplitude from the 65th percentile, ITC
mean crown area and the leaf-on echo-width from the 25th percentile.

The metric relating to mid-canopy amplitude may perhaps be an indication of
broad species types as in Reitberger et al. (2008), in particular the
presence/absence and spatial arrangements within this part of the vertical
stratum (Kim et al., 2009a). As identified in section 5.2.2, the standard deviation
of DBH is linked to average tree crown area. Whereas low-canopy echo-width
may be related to the surface roughness and slope (Lin and Mills, 2010), and
thus may be related to the spatial arrangements of vegetation components.

Basal area within
30x30m

DR
LiDAR

This model utilised two inputs, these were the leaf on intensity from the 50th

percentile, and the spacing of ITC objects.

As in Brandtberg et al. (2003), different tree species can be separated by LiDAR
intensity metrics, which at this level in the plot’s vertical stratum may indicate
some of the larger components (Moffiet et al, 2005; Kim et al., 2009a) which in
turn will influence basal area.

ITC NN space increase proportionally with average crown size, which in turn
increased with total crown area, which is identified in a correlation in section
5.2.1.
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Table 10.1 (continued)
Field metric Dataset Remote sensing metrics description

Percentage big
trees  (DBH
40>x<80cm)

FW
LiDAR

This model utilises three inputs, these were the leaf-on kurtosis of ground
amplitude, the leaf-off median non-ground height and ITC space.

This particular metric had a number of correlations to understorey cover
components, as seen in section 5.2.1, which could explain the initial ground
metric. As with other studies crown area combined with height distribution
metrics are a powerful explanatory metric, and have been used to predict DBH
(Hyyppä et al., 2001; Person et al., 2002; Popescu et al., 2004; Maltamo et al.,
2004).

Percentage very
big trees (DBH
>80cm)

DR
LiDAR

This model produced high RMSE values. It does however require one predictive
input, the number of ITC objects.

Larger trees (DBH>80cm) were present generally in lower stem densities, which
is reflected in the ITC count. Even though the ITC count best corresponded with
overstorey trees only, the larger trees are the ones which would make it to this
level.

Percentage big
trees  (DBH
>40cm)

FW
LiDAR

This model used two inputs: the leaf-on deviation of point height and ITC NN
space.

As with other studies crown area combined with height distribution metrics are a
powerful explanatory metric, and have been used to predict DBH (Hyyppä et al.,
2001; Person et al., 2002; Popescu et al., 2004; Maltamo et al., 2004).

Shannon index
(by stem count)

Hyper.
& DR
LiDAR

This model for species diversity utilised four inputs, these were the red green
ratio index (RGRI) for leaf-on and leaf-off hyperspectral data, the leaf-off
skewness of LiDAR heights and the skewness of intensity values.

The RGRI is related to light-use efficiency within the canopy (Gspaltl et al.,
2013). The difference between leaf-on and leaf-off data may provide an
indication of differences between species spectrally. With the addition of height
and intensity LiDAR metrics, we can assume differences in physical structure
between species may be picked up (Kim et al., 2009a; Moffiet et al., 2005).

Simpson index
(by stem count)

Hyper. Calculated directly from ITC objects.

Average height to
the first live
branch

FW
LiDAR

This model had four inputs, these were: the leaf-off maximum gap within the
canopy metric, average ITC NN spacing, ITC average crown volume, and leaf-
on variance of non-ground amplitude.

The first of these metrics is directly relevant, and relates to the results of a
vertical profile, identifying the average largest ‘empty’ height. This is relevant
due to woodland structure, i.e. overstorey, then a gap and then understorey. As
identified in sections 2.2.1 and 2.2.2 there are relationships between crown area
with average height to the first live branch, it is therefore reasonable to assume
the remote sensing metrics are linked to ITC crown area and volume.  The non-
ground amplitude metric is potentially an inherent link between the differences
of broad species types and their variation in canopy architecture (Andersen et al.,
2006).

Standard
deviation of
height to the first
live branch

DR
LiDAR

This model utilised three inputs, these were: the maximum LiDAR derived
height, the standard deviation in tree spacing and the total tree crown area.

As a function of height, the larger the maximum height within a plot the greater
the probability of disparity in stem heights per area (Matthews and Mackie,
2006). As indicated in section 2.2.2 there is a relationship between the standard
deviation of the height to the first live branch and the horizontal crown area.
Average ITC spacing increases proportionally with ITC area, and so it is
reasonable to assume the standard deviation of crown area does the same.
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Table 10.1 (continued)
Field metric Dataset Remote sensing metrics description

Average crown
horizontal area

DR
LiDAR

This model utilised three inputs, these were: the leaf-off LiDAR non-ground
intensity value distribution, the standard deviation in tree spacing and the total
tree crown area.

The distribution of intensity values may be indicative of broad species type
(Brandtberg et al., 2003; Moffiet et al., 2005).  The average ITC spacing
increases proportionally with ITC area, and it is reasonable to assume the
standard deviation of crown area does the same. The values of the total ITC
horizontal area metric are generally proportional to average tree area, but this
accounts for a small part of the model. Both of the latter metrics corresponded
well with the field measurements in their own right.

Standard
deviation of
crown horizontal
area

FW
LiDAR

This predictive model utilised one input the leaf-off amplitude of the 85th

percentile.

The relationship could be related to broad species type, as in Reitberger et al.,
(2008) for leaf-off data, referring to the difference between the amplitude values
associated with interacting with bark and pine-needle surfaces. Kim et al.
(2009a) states that intensity/amplitude values were related not only to the
reflective properties of the vegetation but also the arrangement of foliage within
crowns.

Total Crown
horizontal area

Hyper.
& DR
LiDAR

This combined model utilised two inputs, these were: the leaf-on Anthocyanin
reflectance index (ARI) and the leaf-on LiDAR intensity variance.

The ARI is commonly used for the assessment of stress related leaf-pigments.
Stress-related pigments include carotenoids and anthocyanins. Anthocyanins are
present in higher concentrations of vegetation (Gitelson et al., 2001), supporting
the assumption that crown areas are smaller in areas of higher stem density. The
variance of the leaf-on LiDAR intensity may be indicative of broad species type,
as in Andersen et al. (2006).

Standing
deadwood volume

FW
LiDAR

This model utilised three FW inputs, these were: the leaf-off skewness of non-
ground amplitude, the standard deviation of ITC space, and the leaf-on echo-
width at the 25th percentile.

As with DR LiDAR, intensity or amplitude is linked to total deadwood biomass
(Kim et al., 2009b; Martinuzzi et al., 2009). According to section 5.2.1 standing
deadwood volume is correlated with the standard deviation of tree crown area.
The average ITC spacing increases proportionally with ITC area, it is reasonable
to assume the standard deviation of crown area does the same. For the final
metric, Mücke et al. (2012) states that the FW return echo-width relates to small
height variations of scattering elements within the footprint of the laser beam,
and was considered a means of inferring surface roughness. Forest ground-level
and downed stems were assumed to have smooth surfaces, whereas other
vegetated elements, such as shrub vegetation, were considered to be rougher.
Standing deadwood is not on the forest floor, but the principle should still apply.

Standing
deadwood decay
class

FW
LiDAR

The estimation of the standing deadwood decay class was best predicted using
two inputs, these were: the leaf-on amplitude from the 35th percentile and the
leaf-on number of returns from the 20th percentile.

As with DR LiDAR, intensity or amplitude is linked to total deadwood biomass
(Kim et al., 2009b;Martinuzzi et al., 2009), and it appears deadwood state. The
35th and 20th percentiles which on average relate to approximately 4-7m are
where the surveyor would expect to find the deadwood items.
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Table 10.1 (continued)
Field metric Dataset Remote sensing metrics description

Downed
deadwood volume

FW
LiDAR

This model utilises two inputs, these are: the leaf-off skewness of non-ground
amplitude and the leaf-on deviation in heights.

As with DR LiDAR, intensity or amplitude is linked to total deadwood biomass
(Pesonen et al,. 2008), although these measurements are not from the ground-
level, there would seem to be a link to overstorey structure, especially when
considering the second metric included within this model’s construction.

Downed dead
wood decay class

Hyper. Only one input to the regression model is included, this is the simple ratio index
(SRI) derived from leaf-on data.

The SRI is a broadband greenness VI. As mentioned in Pu et al. (2008) there is a
possible link between vegetative greenness and mortality. Alternatively,
deadwood volume was generally higher in deciduous areas, which have different
index values and ranges in comparison to coniferous areas.

No. saplings DR
LiDAR

The regression model employed three inputs; these were the leaf-on 60th

percentile for intensity values, 60th percentile for number of returns, and the
mean intensity value of all points.

The number of saplings appears to be related to tree spacing, crown area and
overstorey species number, according to sections 5.2.1 and 5.2.2. Here the
assumption is made that LiDAR measures here are related to both species and
vertical structure (Brandtberg et al., 2003; Moffiet et al., 2005).

No. native
saplings

Hyper.
and DR
LiDAR

This particular model employs two inputs, these are: the modified red edge
simple ratio index (MRESRI) derived from leaf-on hyperspectral data and the
skewness of the leaf-off LiDAR intensity values from the ground-level.

The MRESRI is a narrowband greenness VI and has relationships with the
amount of photosynthetic material and canopy architecture (ENVI-online-help,
2005). Leaf-on data would also highlight the difference between coniferous and
deciduous species types. Ground-level intensity distribution metrics may be
related to different species types (Brandtberg et al., 2003).

No. of sapling
species

Hyper. This predictive model utilises three inputs, these are: the leaf-on Anthocyanin
reflectance index (ARI), the normalised differenced vegetation index (NDVI)
and the number of classified ITC objects of a native tree species.

The ARI is commonly used for the assessment of stress related leaf-pigments.
Anthocyanins are present in higher concentrations of vegetation (Gitelson et al.,
2001). As identified in Sims and Gamon (2002) greenness indices are related to
canopy leaf-area and architecture. The final input, the number of ITCs of a
native species accounts for a small amount in the model. Thus, overstorey
composition and structure are determinants to sapling composition.

No. seedlings Hyper.
and FW
LiDAR

This predictive model utilises two metrics, the first is a measure of the variance
in the distribution of leaf-off heights, and the other is an estimate of overstorey
species number from classified ITC objects.

According to section 5.2.2 there are partial relationships between the number of
seedlings and standing deadwood decay level, which in turn is correlated with
crown area. We must assume that the LiDAR metric is related to vertical
structure. The relevance of the estimate of overstorey tree species number here
must be related to the weak proportional relationship where a rise in one sees a
rise in the other.
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Table 10.1 (continued)
Field metric Dataset Remote sensing metrics description

No. native
seedlings

DR This particular model utilises two inputs, these are the standard deviation of ITC
spacing and the ITC crown volume.

According to sections 5.2.1 and 5.2.2 the number of native seedlings is related to
the standard deviation of plot DBH. Thus, by extension the ITC attributes which
can be used to estimate DBH can be used to estimate the number of seedlings of
native species (Hyyppä et al., 2001; Person et al., 2002; Popescu et al., 2004;
Maltamo et al., 2004).

No. of seedling
species

Hyper
and FW
LiDAR

This regression model requires the following inputs, the simple ratio index (SRI)
as calculated from leaf-on hyperspectral data and the standard deviation echo-
width values from the ground classified FW LiDAR.

The SRI is a broadband greenness VI related to the forest woodland canopy
architecture and the penetration of radiation into the canopy according to Chen,
(1996). Mücke et al. (2012) states that the FW return echo-width relates to small
height variations of scattering elements within the footprint of the laser beam,
and was considered a means of inferring surface roughness. Forest ground-level
and downed stems were assumed to have smooth surfaces, whereas other
vegetated elements, such as shrub vegetation, were considered to be rougher.

Seedlings
Shannon Index
for native species

Hyper
and FW
LiDAR

The predictive model required two inputs, the first was a leaf-on LiDAR metric
showing the absolute deviation of height points, and the second was the
classified ITC species count. The error for this metric was relatively high
concerning the index range (RMSE 0.70).

According to sections 5.2.1 and 5.2.2 the seedling Shannon index has
relationships with the number of tree species within the plot. The assumption is
that of the FWs absolute deviation of height values is related to these forest
structural metrics, whilst the ITC derived species count is a reasonable
approximation of actual tree species number.

No. Vascular
Species

FW
LiDAR

This model is predicted by one FW LiDAR metric input, the leaf-on variance of
non-ground height values.

The assumption is that the FW variance of non-ground height values is related to
forest structural metrics, and thus the diversity of vascular species.

The percentage of
non-vegetated
cover or bare soil

FW This predictive model required inputs from three metrics, these were: the
number of leaf-on returns from the 20th percentile, the estimate of canopy depth
from leaf-off data and the standard deviation of ITC spacing.

The 20th percentile corresponds to approximately 4-6m, dependent on canopy
height. One must make the assumption that more returns at this vertical level are
indicative of a more developed understorey. Likewise, the estimates of canopy
depth may indicate greater or less vegetation cover, for example in considering
the amount of light penetration (Jensen et al., 2008). The field-level metric of the
percentage of non-vegetated cover is correlated with the standard deviation of
DBH and basal area within the plot as in section 5.2.1. As seen with other
predictions ITC space is related to crown area and this is related to DBH as in
Hyyppä et al. (2001). It should be noted that this metric was estimated visually
within the field.
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Table 10.1 (continued)
Field metric Dataset Remote sensing metrics description

Sum of diameter
(DBH)
differences (cm)

FW There were four inputs to the predictive model; these were (i) the leaf-off
absolute deviation of the mean echo-width, (ii) the leaf-off amplitude recorded at
the 90th percentile, (iii) the leaf-on number of points from the 20th percentile, and
(iv) the leaf-on kurtosis of echo-width from non-ground points.

Echo-width may be related to the surface roughness and slope (Lin and Mills,
2010), and thus may be related to the spatial arrangements of vegetation
components. The combination of height, amplitude and echo-width metrics may
be an indication of broad species type and woodland structure (Reitberger et al.,
2008; Heinzel and Koch, 2011).

Index of vertical
separation
(CSDI#2)

FW This model utilised two inputs, these were the leaf-on skewness of non-ground
height values and the leaf-off amplitude at the 85th percentile.

This index is based upon the difference between the three largest and three
smallest DBH values in the plot. The first metric is likely to be related to vertical
structure, whereas the leaf-off amplitude relates to the difference between pine
needles and bark (Andersen et al., 2006; Reitberger et al., 2008).

10.5 A review of remote sensing derived condition indices
There are very few examples within the surrounding literature of estimating forest condition

status from remote sensing data. As previously mentioned, Simonson et al. (2013) outlines an

approach to combine LiDAR and multispectral data, in addition to spatial pattern metrics to

classify various habitat and land cover classes and ultimately a gradient of condition status.

Other authors, such as Borreet al. (2011), summarise the needs of the Natura 2000 monitoring

approach and the potential benefits of applying remote sensing data and analysis techniques.

Once the regression models were completed and validated it was possible to map the field

metrics, and to apply conventional condition index assessment methods to the dataset. The

concept of the condition index is simply to generate a summary value which incorporates the

condition considerations of both forest structural diversity and the composition of the biotic

and abiotic components of the ecosystem. Within the course of this study six established

condition index calculations were applied to the metrics extracted from the remote sensing

datasets. Of the six condition indices, two were calculated directly from DR LiDAR derived

ITC information, three utilised only area-based metrics as derived through statistical

approaches, and one combined inputs from both ITC and area-based metrics. The results of

this will be discussed in the following sections. Comparable forest condition assessment

approaches as identified in the surrounding literature are also discussed and contrasted and

the best condition assessment method identified.
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10.5.1 Condition assessment methods tested
The vertical evenness index was computed through the use of ITC inputs in order to gauge

the distribution of canopy cover vertically through the forest plot. The method produced

results which corresponded well to field data in areas where canopy openness was high – i.e.

each of the layers within the plot stratum could be observed. However as canopy openness

decreased, and tree crowns merged into one another, the accuracies of the index fell. This was

especially prevalent in deciduous woodlands, this again highlights the limitations of the ITC

method employed within this research project, where total tree counts were underestimated

and the presence of suppressed trees were missed. In order to solve this issue a different

approach to identifying forest horizontal cover at different vertical levels, rather than from the

CHM alone, could potentially use height metrics extracted from the point cloud, such as in

Lesak et al. (2011), or by utilising statistical approaches.

The Clark-Evans aggregation index was computed using the distance metrics calculated in-

between ITC centroid points per plot. The ITC derived value always produced index values

above 1 (which indicates a random horizontal stem distribution), while this was often similar

to many of the field plots; it did not reflect those with index values below 1. Upon mapping

this index value it was clear that only a limited difference in structure could be inferred, and

was generally a poor indication of true forest structure. Again, this highlights the limitations

of the ITC delineation approach employed in this project for the detection of tree numbers

and locations. RMSE estimates of tree NN spacing calculated from ITC data was 4.2m,

indicating a substantial source of error. As with the above, a method able to delineate the

position of suppressed trees and cope better with the crowns of deciduous trees with more

non-regular forms, (Leckie et al., 2003a; 2003b), would potentially provide a better means of

calculating this index.

The diameter differentiation index was calculated using two area-based metrics as predicted

statistically from remote sensing metrics. These metrics were an estimate of tree density and

the sum of the diameter differences within the plot. The latter was predicted through a

regression model, with an FW LiDAR model producing a RMSE of 19.5cm. The estimated

index values performed well in comparison to those recorded in the field for all but three of

the 20 validation plots. The index value ranged from 0-1, the overall RMSE was calculated to

be 0.19. The mapping produced using this index showed a correspondence of values to the

different FC compartment boundaries, and therefore forest structural types. The deciduous
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semi-ancient woodland contained the largest amount of variation in index value. The majority

of the predicted map grid-cells occupied the range of 0.8 to 1.0, and overall did not show

much difference between values within deciduous and coniferous woodland or between

compartments. Thus this method was considered poor.

The complexity index (HC) was calculated using four area-based metrics which were

statistically derived from the remote sensing datasets. This particular index typically requires

a target value in order for assessments to be made, whereas here a larger value was

considered to indicate a better condition. Index results for this approach proved to be highly

variable. Plot 30 again caused issues and was greatly underestimated, increasing overall

model RMSE. The remainder were much better predicted and were within ± 50 of the field

index value i.e. within 20% accuracy. The resulting map again corresponds well with FC

compartment boundaries and structural types. The HC index is more indicative of tree size

parameters. There are also obvious differences in deciduous and coniferous area values;

however the index tended to skew towards high or low values for each of the woodland types

respectively.

The complex stand diversity index (CSDI) is composed of four component indices many of

which require the explicit measurement of individual tree metrics. Approximately 20 input

metrics are required for this computationally complex index, which incorporated metrics

related to species proportion, and the differentiation of tree stem spacing, DBH and crown

dimensions. The field index range of values was 4 to 13. Overall index values from the field

corresponded well with those derived through remote sensing, producing a RMSE of 3.5.

When the index values were mapped across the study site, again the values corresponded well

with compartment areas and structural types. The deciduous area exhibited the most

variability. The CSDI relates more to structural diversity which can transcend both the broad

types of deciduous or coniferous woodland, however higher values were typically located in

deciduous areas.

The CSDI utilised various inputs from ITC information, for example, the index relating to the

estimation of species proportions, which resulted in the poorest accuracy of the four input

component indices. Again this is because of the ITC underestimation of tree numbers and the

missing of suppressed trees. There were also concerns about the accuracy of spacing

estimates made from ITC positions.
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ITC estimates of the three smallest and three largest crown diameters produced relatively

high correspondence to field data values, as did the three largest and three smallest stem NN

distance measurements once appropriate corrections had been made. The component index

for characterising the differences between the three largest and three smallest DBH values

was estimated statistically using regression, resulting in a RMSE of 0.13, as derived by FW

LiDAR.

The score-based index employed 17 input metrics covering compositional and structural

metrics for both overstorey and understorey components. Each of the inputs scored a value of

one if they exceeded a target value, whereas they scored a zero if they did not. A‘perfect’ site

would therefore receive a value of 17. Overall remote sensing derived estimates corresponded

well with field data calculated values, producing a RMSE of 2.5. The mapped index values

corresponded well to the different FC compartment boundaries and structural types. It should

be noted however that the targets which the indicators had to reach were defined from

deciduous ancient and semi-ancient forest examples within the literature in Cantarello and

Newton (2008). This may have the consequence of biasing the index to deciduous areas. It

should be noted that some of these targets, especially for understorey metrics, were high and

thus were not achieved within the New Forest study site, for example the number of

seedlings.

The VE index, Clark-Evans aggregation and the diameter difference indices proved to be

insufficient for mapping condition due to the involved error. Whilst each of the remaining

three condition indices had merit, it was concluded that the score-based index provided the

most comprehensive indication of woodland condition, bearing in mind sources of error and

its ability to discriminate between the different forest structural types when considering map

products. Its use of area-based metrics only reduced a number of uncertainties about ITC

related measurements.

Initially there were concerns that adding different remote sensing estimated metrics together

in the course of calculating different condition indices would increase error overall and lead

to poor index estimates. This error is apparent from the results presented in Appendix F

section F.2, especially when combining model results developed from different remote
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sensing datasets. It should be noted however than in all cases the additional uncertainties

were small. The results presented here indicate that, while there is error present, it is possible

to produce estimates of forest condition via conventional index methods to a reasonable level

of accuracy.

10.5.2 A comparison of the forest condition index methods
Each of the six condition indices were mapped across the entire study site, and the individual

30x30m grid-cell values were categorised from 1-5 in order to make them directly

comparable with one another. The VE, Clark-Evans aggregation and diameter difference

indices were removed from the comparison owing to problems related to ITC metric

underestimation of stems or index values which were too similar. In the maps created from

the remaining condition indices, HC, CSDI and score-based, a number of spatial patterns

could be observed which corresponded with known FC forest compartment boundaries. A

mean and standard deviation of the three categorised index values was computed for each

mapped grid-cell in order to assess the similarities or dissimilarities of the three remaining

indices.

There was a high degree of correspondence between the output maps from the HC, CSDI and

score-based indices. High index values for all three were almost exclusively found in

deciduous dominated woodland, with only a limited number of high index values located

within coniferous dominated woodland. Consistently higher scoring deciduous woodland is

typically dominated by beech and oak species from areas initially planted around 1800.Even

when combined with trees planted more recently, high index values were still achieved.

These areas are defined by the presence of large trees (i.e. DBH values) with variable sizes,

with higher numbers of species and the presence of deadwood. These areas may also contain

understorey components which are lacking in coniferous areas. The highest values in

coniferous areas were for compartments with a mix of species types. These areas were also

defined by the presence of large trees with variable sizes, higher numbers of species and the

presence of deadwood. The majority of coniferous areas however exhibited relatively small

tree sizes (often with little variation in their respective sizes) few species with little or no

deadwood or understorey.
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There are a number of examples where there were dissimilarities between the three indices;

this was encountered primarily within deciduous woodland with long continuity (i.e. planting

dates of ~1800). The HC index tends towards an almost binary output depicting coniferous or

deciduous woodland types. The HC inputs are weighted more towards tree size which is most

typical of deciduous woodland. The CSDI on the other hand, is more related to species and

structural diversity, which can be present in both deciduous and coniferous woodland,

although the presence of the latter is limited to few areas. There were a number of examples

where the CSDI overestimated the index value in grid-cells where large canopy gaps occur,

or failed in other areas due to ITC metric issues. The score-based index combined both tree-

size and diversity metrics at a relatively basic level in addition to many other factors, such as

deadwood volume and understorey populations. The score-based index also did not directly

use ITC-metrics and thus should be less influenced by its associated error.

The primary driving factors of woodland condition would seem to be related to the average

size of the trees (i.e. DBH) and the variability of the sizes over the plot which is especially a

feature of oak and beech woodland with long continuity, for example with planning dates

approaching 1800. Given the correct conditions, the much younger coniferous compartments

can reach similar high index values, but this is rarely the case. The presence and volume of

deadwood seems to follow these patterns. However, understory metrics such as vascular

species number, and the number and composition of seedlings and saplings seem not to.

Owing to the limited levels of understorey encountered within the New Forest study site,

finding a link may not be possible.

Thus, the score-based index combines elements from the HC and CSDI indices and important

features such as understorey and deadwood, which may not be linked to tree size and

diversity due to factors such as forest management. In addition, it avoids some of the issues

inherent in using ITC metrics directly and, overall provides the most representative condition

assessment method.

10.5.3 Assessing condition in the New Forest study site
To reiterate, the condition index calculation method was developed by Cantarello and

Newton (2008). A remote sensing derived condition indicator map was produced covering an

area of approximately 19km2. Each of the 30x30m cells were assessed against the desired
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condition level set in the aforementioned study. The produced condition indicators were then

assessed for forest management purposes.

When interrogating the condition index map there are obvious differences between

coniferous and deciduous woodland areas, or, more specifically, between woodland

compartments, i.e. indicative of different compositional and structural attributes. Figure 10.1

gives an overview of the produced condition index map for the whole study site. A number of

woodland compartments also exhibit condition gradients within their own boundaries. The

index is an indicator to guide assessment of the condition of the area in question, as some

sites may be sufficient in some aspects of condition and deficient in others. The maximum

index value recorded was 14, so none of the sites met all the targets set for the condition

assessment.

Seven example woodland areas will be assessed here, these are: Frame, Tantany and Denny

Woods for semi-ancient unenclosed woodland, Hawkhill, Frame-Heath, Stockley and Denny-

Lodge inclosures for managed and enclosed plantation woodlands.

The first of these is Tantany Wood which is semi-ancient deciduous woodland in the east of

the study site. In the west of Tantany Wood there are consistently higher values. These areas

contain the largest and oldest deciduous trees, which were initially planted in 1800. There are

lower and more variable index values to the east in more recently planted areas (1930),

dominated by birch, and the areas which boarder the heathlands to the north. This general

pattern is reflected in many of the 17 input metrics. The older planted woodland to the west

has variable low to high stem densities, typically a high SH index value and high and variable

average DBH values. Total basal area level is moderate, but is higher in the recently planted

areas. More recently planted areas are more varied in species number. Standing deadwood

volume is higher to the west but generally has a lower decay class. Downed deadwood

volume is again higher to the west, but also has a higher decay class than to the east. The

same is true for seedling number and the number of vascular species. This area of Tantany

Wood contains some of the highest numbers of seedlings within the study site. Sapling

number is more consistent apart from smaller values in recently planted areas. This is likely

consistent with the high number of holly trees existing in the understorey here.
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Figure 10.1 – The score-based index applied across the whole study site.Base Map layer is ©
Crown Copyright/database right 2010. An Ordnance Survey/EDINA supplied service.
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Frame Wood borders Tantanty Wood to the east, where there is an obvious decline in index

value. Again the planting date was 1800. The decomposed index attributes correspond to a

generally low stem density, but with a relatively high SH index. Mean DBH is high, and

varies within each plot. Total basal area is low. Standing deadwood volume exists in

moderate to high levels, as does decay class. Downed deadwood volume exists in high level;

however the decay class varies from moderate in the east and high in the west. The number of

saplings and seedlings overall is low, likewise the number of vascular species is low overall

per grid cell.

Denny Wood is located to the north-west of the study site and exhibits slightly lower index

values for deciduous woodlands. The total number of trees is low, giving way to relatively

open areas throughout. High index values are recorded for clusters of larger trees which exist

in this extent. Mean DBH value is highly variable, as is total basal area. Standing deadwood

volume is variable, whereas decay class is high. Downed deadwood volume is moderate

across the woodland, with higher values to the east. Sapling number is low; however there are

pockets of higher numbers. Seedling number increased from low to moderate from east to

west. The number of vascular species is low, with very high numbers occurring within some

clearings.

The enclosed plantation woodlands typically contain 10 or more compartments, which can

contain coniferous, deciduous and mixed woodland types. The deciduous, and mixed

woodland to a limited extent, follow the same pattern as the above, however coniferous

woodlands, all of which were planted from 1940-1980, have consistently lower condition

index values.

Hawkhill inclosure lies to the south of the study site. Within the coniferous woodlands there

are differences in index values between compartments, this is typically because of variation

in average height and/or stem density. Stockely inclosure has a relatively small extent, and

shares a border with Hawkhill to the east. The inclousre contains many small compartments

in close proximity which contain many different species. This resulted in a mix of index

values, however deciduous clusters scored higher. The Frame-Heath inclosure lies at the

centre of the study site and again contains a large mix of woodland types. There are

differences between deciduous compartments in the west. The largest values are for plots

with two planting dates, 1852 and 1958, resulting in higher stem density and basal area
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values. There are lower values in proximity to the farm located in the south-west. The

proximity to the rail line does not seem to have an effect on the vegetation metrics. The

Denny-Lodge inclosure is located to the west of the centre of the study site. Again there is an

obvious distinction between deciduous and coniferous dominated woodlands. Different

values are present in mixed conifer and deciduous woodland.

Conifer compartments typically have little to no understorey, but there are some exceptions to

this, such as areas in Denny-Lodge where there was a strong understorey component, which

was confirmed through fieldwork. There was little or no deadwood, relatively low DBH

values, with negligible differences in DBH value and low species diversity (SH index)within

a plot. This means that the grid-cells which intersect with these areas do not score very highly

for anything except stem density and basal area. Plantation forests such as these are managed

for productivity at the expense of other objectives. Deadwood for example is periodically

cleared and left in scattered piles throughout the compartments, which was observed during

fieldwork. This results in a homogeneous composition and structure within a compartment.

Index value, especially in deciduous woodland is higher the further away from public access

points, car-parks and caravan sites. This is probably because of the fact that these access

points are on the boundary between the forested area and heathland or grassland, rather than

disturbance, although this is still possible.

Overall, a number of trends are evident which are of importance to forest managers. The

amount of regenerating trees, i.e. saplings and seedlings, is low across the study site,

especially for coniferous woodlands, thus the target value for the score index is not met for

much of the study site, a trend recognised by Mountford et al. (1999); this is because of

grazing of a high number of large ungulate species, such as deer, which are present

throughout the forest. When a compartment has been cleared and replanting operations have

begun, the area is fenced off to stop ungulate browsing and allow the trees to grow.

The number of vascular plant species is also typically low apart from within a small number

of coniferous compartments within Frame-Heath and Denny-Lodge, which corresponds with

relatively high canopy openness. The occurrence of both standing and downed deadwood

seems somewhat limited to deciduous woodland types, although Japanese and hybrid larch

compartments also exhibit high downed deadwood volume amounts. The movement of



Chapter 10 – Discussion

400

deadwood will influence nutrient cycling and affect the availability of resources for both flora

and fauna. In terms of forest structure and composition, it is obvious that many of the

compartments have very similar structure internally which is related to the age structure

caused by distinct planting dates (Putman, 2010).

It is clear that the current forest management has had a great deal of impact on the structural

and compositional components of the forest, causing similar attributes within each

compartment owing to distinct planting dates, understorey regeneration and diversity being

negated by no ungulate control, and deadwood resources are removed in plantation areas.

Each of these elements has an impact on overall condition, thus the above analysis highlights

some of the shortcomings of current management approaches.

10.6 Implications and future work
The methods developed in this research can be used to support both forestry and conservation

assessments at scales from the field-plot (30x30m) to the landscape scale, although further

refinement is required for the successful retrieval of relevant metrics in some very dense

forest structural types. However this study has provided a solution, while partially

incomplete, to the consistent retrieval of 35 metrics which can be used to assess forest

condition. Four metrics could either not be modelled or provided poor estimates (i.e. NRMSE

> 0.4). The method presented here has set a baseline against which the success of future work

can be assessed and has provided an insight into some of the limitations of such an approach

and the obstacles that need to be overcome.

This section discusses the relevance of the current research in relation to the wider context of

application of airborne remote sensing analysis for forest management activities for both

forestry and conservation activities. A description of a number of potential improvements and

future work follow this.

10.6.1 Usefulness in the wider field
The methods and analysis presented within this study demonstrate the processing and use of

data from the relatively new FW LiDAR technology. The application of FW LiDAR in an

operational sense is limited in the surrounding literature. The processing techniques are still

in development, and may potentially offer additional useful techniques and benefits to

analysis in the future.
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The methods outlined in this thesis have potential applications in the areas of forest

management inventory and conservation. The approaches reported here demonstrate the

comparative merits of hyperspectral, DR and FW LiDAR data for the prediction of various

conventional and unconventional metrics within a forest context. The ability for a large

amount of ‘real world’ forest metrics to be estimated from remote sensing datasets in

isolation and in combination was demonstrated.

10.6.1.1Ecologyand habitat quality assessment
The assessment of habitat quality is an important issue globally. Many European countries

are required to assess the quality of habitats within their borders, rather than simply identify a

given vegetation patch as a habitat. An example assessment initiative is Natura 2000.

Forest conservation and management are important and complex processes, which have

significant implications both environmentally and economically. An efficient ecological

assessment approach requires detailed knowledge of species composition, distributions and

structure. The conventional approach is to record these characteristics manually through field

survey and extrapolate the results over large areas. Various forest condition assessment

criteria were found, and the estimation of many of these metrics was tested through the

course of this research project, including the typical means of depicting a site’s overall

condition. The six indices tested here utilised various estimations of field metrics relating to

vertical canopy cover diversity, tree DBH diversity, tree crown size diversity, species

diversity and spatial separation; many of which could be estimated with relatively low error

values. The best assessment method utilised a total of 17 overstorey and understorey,

structural and composition metrics which are required in conservation status assessment, as

presented in Cantarello and Newton (2008). Its implementation here produced estimates

which closely corresponded with field data, and which allowed condition to be assessed

continuously throughout a large study site region.
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10.6.1.2 Habitat suitability modelling
The approach defined here could also have applications in predicting habitat types indirectly

through proxies derived from remote sensing measurement. Spatially explicit data about the

3D structure of forests is required for the assessment of biodiversity and wildlife habitat, and

are important factors explaining (i) the presence of many wildlife species, (ii) the functional

use of habitat (e.g. nesting), and (iii) the overall diversity of wildlife species in forests

(MacArthur and MacArthur, 1961). A number of authors have utilised the 3D information

from LiDAR data to estimate bird habitat (Lesak et al., 2011; Martinuzzi et al., 2009). In

particular the presence of deadwood and understorey vegetation was directly related to the

presence of a number of avian species in the study put forward by Martinuzzi et al (2009).

Likewise McDermid et al. (2009) assessed the likelihood of the presence of grizzly bears by

assessing forest elements such as canopy closure, dominant vegetation species, and

vegetative moisture content.

The mapping of the presence of forest attributes necessary for the presence of certain flora

and faunal species is possible utilising the techniques described within this study. Forest

compositional and structural components can be mapped spatially across wide areas, as

demonstrated in Chapter 9.1. Relevant calculations could then be applied to predict the

habitat probability of certain species presence in a similar manner to a forest condition index.

10.6.1.3 Forestry
One of the areas where the approach demonstrated in this study has potential is that of

precision forestry. As outlined in Matthews and Mackie (2006) there is a requirement for

knowledge of how many trees exist, what species they are and their relative sizes for a

defined area, in order to make accurate predictions of timber volume yield and ultimately the

commercial value of the timber therein. These requirements can be fulfilled using the

approach demonstrated here, where estimates of tree number, species type, average DBH

size, variation in DBH size, and basal area can be predicted within a reasonable accuracy

level (NRMSE <0.4). While timber volume was not estimated within the scope of this thesis,

it has been estimated successfully in a number of other studies which utilise similar

regression-based predictive approaches, such as Naesset (2002) and Perssonet al. (2002). It is

also worth noting that similar approaches have already seen operational deployment in

Nordic countries for forest resources inventory (Naesset et al., 2004). The approach defined

here has been successfully applied to a range of different forest types. With minor
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modifications this approach here would also allow carbon stock assessment. The national

reporting of carbon sources and sinks is required to fulfil national obligations related to

climate change (Rosenqvist et al., 2003).

10.6.1.4Further uses with minor modifications
If appropriate time series data are acquired, there is the possibility of comparison of changes

over time for large areas, are at a much finer resolution than possible through fieldwork

alone. For example, Falkowskiet al. (2009a) demonstrated that it was possible to characterise

forest succession through statistical methods when applied to LiDAR data. Whereas Yu et al.

(2006) could estimate tree growth increments between different LiDAR data acquisitions five

years apart. For each data acquisition, similar methods to those applied here could be

implemented and metrics estimated. The metrics for each date could then be compared to

determine differences and similarities used to forecast potential future differences. Adding a

temporal dimension to this kind of analysis would add the benefits of being able to assess

changes over time, such as growth, productivity and damage more accurately and completely

than through field assessment alone. This would also add the benefit of being able to assess

the impacts of various management activities though time.

10.6.2 Potential improvements and future work
The methods developed in this research can be used to support forest condition assessment at

the field plot-scale over wide areas. A number of refinements can potentially be made to

mitigate against some of the limitations identified or provide improvements and alternative

outputs.

10.6.2.1 ITC underestimation
The underestimation of tree stems by automated ITC delineation procedures requires future

attention. Alternative ITC delineation techniques, which do not utilise a rasterised CHM in

order to locate tree crowns, could be employed. A number of alternative ITC delineation

approaches exist which operate on the point cloud rather than derived raster height models,

one such approach utilises the 3D distribution of LiDAR points expressed as volumetric

pixels, or voxels. Wang et al. (2008) presents an experimental method to define individual

tree crowns by identifying cluster features within the voxels using airborne LiDAR data from

a spruce dominated site in southern Germany. The basic concept of single tree extraction is to

trace the outlines on the projection images from top to bottom using projection images at
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different height levels.  Using a hierarchical morphological opening and closing process, the

structural elements of the tree crowns can be identified at each layer. Reitberger et al. (2009)

outlines a voxel based approach utilising small-footprint FW LiDAR data to detect trees in

the forest canopy through a normalised-cut 3D segmentation approach, and which functions

even in the lower forest layers. The study site was in South-East Germany, and produced

detection accuracies of 86% for upper-canopy trees and a total accuracy of 58% for all trees

within the plot.

10.6.2.2 ITC suppressed trees
The lack of capability for detection of suppressed-trees and trees within the understorey

through automated ITC delineation methods is a known issue with such techniques, as stated

by Karrtinen et al. (2012), who indicated that further processing of the point cloud would be

required.

The ITC counts derived in this research project do not adequately represent the total tree stem

number recorded within the field plots, as in Hyyppä et al. (2001). One must assume the

presence of suppressed trees or those located within the lower strata of the forest canopy

cause this discrepancy. The research of Kaartinen et al. (2012) into employing different

automated ITC delineation algorithms also highlighted the need for further processing to

detect suppressed tree data at the point level. Lee and Lucas (2007) utilised a method using

LiDAR data to derive a height-scaled crown openness index (HSCOI) raster layer in order to

identify stems in both the overstorey and sub-canopy for a forest in Queensland, Australia.

The HSCOI functions by representing the density of forest canopy components by

quantifying the penetration of the LiDAR returns. The local minima in the raster layer

correspond with the upper canopy, such as above the central tree stem and larger proportions

of major branches. An automated image analysis approach was implemented to locate and

map the tree stems from this layer. Height and DBH estimates could be made for these

suppressed trees using an empirical relationship between tree height and the minimum

HSCOI value (Lucas et al., 2006a; Lucas et al., 2008b).

An alternative approach was explored in Maltamo et al. (2005) where the existence and

number of suppressed trees was examined through the use of the height distributions of the

returned laser pulses. A histogram thresholding method was applied to the recorded height
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distributions in order to separate different tree stories.  Finally, the number and sizes of the

suppressed trees were predicted using regression models. The results showed that multi-

layered stand structures can be recognised and quantified using quantiles of return height

distribution data. However, the accuracy of the results is dependent upon the density of the

dominant tree layer.

It is also worth experimenting whether empirical relationships exist between the number of

overstorey trees and suppressed trees, for example, based on height and crown extent

relationships. Another alternative would be the use of a LiDAR system which acquired data

at a higher sampling rate or utilised a smaller footprint size to allow greater penetration into

the canopy, or employ FW LiDAR which, as demonstrated here, can resolve a higher number

of points within the canopy.

10.6.2.3 Overstorey species classification
The delineation of ITC objects is of direct relevance to the classification of trees within the

overstorey, as better defined tree crowns would improve classification accuracy overall.

Additional spectral datasets were available for this study from the Specim Hawk dataset,

which recorded shortwave infrared wavelengths. Although at a different spatial scale Lucas et

al. (2006a) increased classification accuracy using shortwave infrared data. The species of a

tree is only one of several factors that affect the realised shape and spectral response of an

individual tree crown. Other factors such as terrain, environment, competition and genetic

variation have influences upon the spectral response of the tree as well. Hill et al. (2009a)

also demonstrates the potential benefits of using time-series data to better classify overstorey

tree species.

The addition of LiDAR attributes may also enhance species classification (Dalponte et al.,

2008; Hill and Thompson, 2005; Moffiet et al., 2005; Simonson et al., 2013). Metrics related

to canopy height, texture and difference in penetration of laser pulses into the canopy of

different species could be of benefit here. As stated in Vaughn et al. (2012), trees can be

classified without using spectral data, using segmented 3D information from LiDAR

combined with the FW LiDAR metric related to the distance between peaks in each

waveform.
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10.6.2.4 Understorey species classification
The detection of suppressed trees or trees in the understorey would add the issue of

identification of its species. There would be the potential to utilise structural information

from the LiDAR data, as in Moffiet et al. (2005), as well as known community association

for different environments, for example for different soils and topography.  When utilising

hyperspectral data it may be possible to spectrally un-mix the information for tree crown

objects (Tits et al., 2012).

10.6.2.5 Hyperspectral derived metrics
A large number of vegetation indices (VI) were calculated from the Eagle hyperspectral data

for this project and were important for estimating a number of forest condition indicator

metrics. Some of these spectral indices describe similar information; however it is unknown

which may provide the superior products for estimating forest metrics relating to condition.

For example there are broadband greenness and narrowband greenness indices, the latter of

which make greater use of reflectance measurements in the red and near-infrared regions of

the spectrum which allows much greater penetration depth through the canopy than red

measurements employed in broadband indices (ENVI-online-help, 2005). Thus, narrowband

measurements in the red edge allow these indices to be more sensitive to smaller changes in

vegetation health than the broadband greenness VIs, particularly in conditions of dense

vegetation where the broadband measures can saturate. Further experimentation with the VI

outputs is required in order to determine the best ones.

A number of additional VIs can be computed if measurements from the shortwave infrared

range are utilised, for example with the inclusion of the Hawk dataset. These VIs could be

used for the quantification of biophysical values for canopy nitrogen content and dry or

senescent carbon for example (Treitz and Howarth, 1999). There are also numerous other

features which can be extracted from hyperspectral datasets. Additional metrics can be

extracted directly from the hyperspectral data without the need to calculate VIs or

dimensionality reduction, where information from individual bands (each representing a

discrete range of the electromagnetic spectrum), which are linked to vegetation

characteristics, can be extracted (e.g. Lucas et al. 2008a). Incorporating data from individual

spectral or dimensionally reduced bands (e.g. MNF, PCA) (Hill and Thomson, 2005), or

image texture features (Heinzel and Koch, 2013) may also provide useful metrics for

predicting forest information. Area-based summaries of hyperspectral derived imagery such



Chapter 10 – Discussion

407

as spectral bands or dimensionally reduced data (e.g. mean, max, min, etc.) could be

incorporated as with the VIs in this project.

10.6.2.6 Additional LiDAR metrics
The number of LiDAR metrics describing the statistical distribution of height and intensity

values was initially determined by the RSC LAS tools software. Thus in comparison to other

studies a number of more complicated metrics could not be computed, for example canopy

profile metrics (e.g. number of vegetation returns > 1m and <=2.5m in height), voxel metrics,

and metrics which indicate clustering of returns, or the stratification of points by return

number. Some of these metrics can be computed in other pieces of software, such as

LASTools, but unfortunately the processing of data through RSC LAS tools alters the LAS

file structure often making it unreadable to other software which caused further

complications.

The SPDlib software was employed relatively late through the course of this project and as

such could not be used for both FW and DR LiDAR datasets. The SPDlib software provided

overall more potential LiDAR metric outputs and user control for calculating additional non-

standard metrics, including the capability to compute HSCOI. The software also has the

ability to process both DR and FW LiDAR data.  It should be noted that SPDlib was still in

development at the time of writing this thesis and may be able to produce more outputs in the

future. Other authors have identified additional metrics to extract from the waveform data

such as the backscatter cross-section and coefficient. The backscatter cross-section of the

laser pulse can be used to understand the characteristics of the return signal (Alexander et al.,

2010).  A target's backscatter cross-section depends on its size, reflectivity of its surface, and

the directionality of scattering of the pulse reflection caused by the target's geometric shape.

The backscatter coefficient is a normalised measure of the backscatter cross-section

irrespective of area and footprint (Wagner et al., 2008; Woodhouse, 2006).

There exists metrics which have been derived from either airborne or spaceborne large-

footprint or profiling waveform LiDAR systems, such as LVIS, which could potentially be

modified for experimental use with small-footprint FW LiDAR such as that utilised in this

project. An example of such a metric is the height of median energy (HOME) (Anderson et

al., 2008; Goetz et al., 2007). This statistics is calculated by locating the median of the entire
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waveform, including both canopy and ground return energies, and computing the distance

between this location and the ground return.

Given the use of relatively simple LiDAR metrics within this project, future work should

involve the testing of more advanced LiDAR derived metrics in order to test if there is a

relationship between them and forest structural and composition attributes. Some examples

follow.

LiDAR derived point density metrics were not employed within this project due to differing

point densities between areas of flight-line overlap. For example a canopy density metric is

calculated using the proportion of returns whose height is 2 metres or greater divided by the

total number LiDAR returns (Evans et al., 2009).Estimates of the ratio of penetration of

LiDAR returns into the canopy can be calculated within a defined height bin, stratified by

defined height ranges (Evans et al., 2009). This can be calculated as: [ni/n] × 100 (where: ni

= number of returns in height range i and n = total number of returns).

Canopy permeability is calculated as the proportion of laser pulses for which there are

multiple returns, which is similar to the techniques used in Moffiet et al. (2005) to distinguish

between poplar box and cypress pine tree species in South-East Queensland, Australia.

The foliage height diversity ratio metric is calculated as the proportion of returns in specified

height strata. For example, Lesak et al. (2011) produced a number of metrics calculated from

the proportions of LiDAR returns within 10 vertical height bins which related to bird species

richness and forest structural types. One such example expanding upon these derived metrics

is to calculate the index for return height diversity (H’) by using the proportion of returns in

each of the 10 equally spaced proportional density bins(pi) (with volume defined by canopy

height) by use of a modification to the SH diversity index, this can be expressed as:

= log [10.1]

A relatively recent approach to the quantification of forest structure using LiDAR has been

the ‘binning’ of the normalised 3D point cloud to reduce the data volume to a single

measurement (Chasmer et al., 2004; Lee et al., 2004; Popescu and Zhao, 2008; Wang et al.,
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2008). This method classifies height ranges within the canopy as a set of 3D volumetric

pixels, or voxels. Such an approach has been applied to identify individual trees in 3D space

(Lee et al., 2004), rather than plot or stand-level metrics. Attributes related to those individual

trees such as crown dimensions and species (Vaughn et al., 2012) can be assessed through

voxel cluster characteristics relating to their spatial arrangement and the LiDAR attributes of

the points intersecting each voxel, such as the number of returns, in addition to amplitude and

echo-width metrics should FW LiDAR data be available.

There are a number of additional metrics relating to topography and proximity to features

which could potentially provide a benefit to the estimation of forest condition metrics. A

number of examples are given in the research put forward by Martinuzzi et al. (2009)where

15 topographic metrics related to slope, aspect, spatial location, relief ratio, distance to water

courses and a number of topographic indices were calculated and entered into the predictive

modelling with 19 other LiDAR derived canopy metrics. The purpose of the approach was to

detect and map deadwood and understorey. Likewise Simonson et al. (2013) incorporated

spatial aggregation calculations using metrics calculated by FRAGSTATS for tree species

richness and canopy height.

10.6.2.7 FW LiDAR pre-processing
It should be noted that some of the processing techniques applied to the FW LiDAR dataset

were in development during the time of conducting this research project. One such feature

which needs to be addressed is the consideration of base-line fitting in the individual

waveforms recorded as part of this dataset. The base-line fitting was necessary for the

reduction of spurious or false returns, or Gaussian peaks, from the waveforms. While the

changes were often small, the base-line value for each waveform may have been different.

Thus there is the small potential of over-fitting and under-fitting with the current pre-

processing methodology.

Alternative methods exist for extracting 3D points from the FW LiDAR dataset other than

using Gaussian functions. Mallet et al. (2009) and Chauve et al. (2007) argue that Gaussian

functions are too general an approach which does not take into account the physical

characteristics of the LiDAR waveforms and would not be suitable for complex forested

landscapes.  Mallet et al. (2009) review a number of other alternative stochastic functions

based on marked point processes which showed promise.
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As noted in section 10.3.3 (and figure 4.15) the FW LiDAR data exhibited anomalies further

from nadir, typically in the overlap between flightlines. This problem was not explored

during the course of this project, but needs to be in the future to understand the issues related

to using FW data.

10.6.2.8 DR vs. FW LiDAR sampling disparity
A comparison of the relative merits of DR and FW LiDAR for the estimation of forest

compositional and structural attributes was made as part of this thesis. In further analysis a

comparison could be made if both acquisition parameters for DR and FW LiDAR were

identical, either through new data acquisitions or modification of the existing datasets in

order to create a somewhat fairer test. In addition, a quantification of the differences that the

resolution of samples for the digitized return-waveforms for the FW LiDAR had on the

ability to resolve metrics would be of great benefit for this project and the analysis of FW

data in general.

10.6.2.9 Alternative statistical methods
The two regression approaches utilised within this thesis performed similarly in terms of

producing predictive models and their accuracies, neither of which demonstrated a superior

performance.OLS regression and AICc regression approaches are but two examples of

statistically predicting attributes; there are many other regression approaches, such as least

absolute shrinkage and selection operator, and alternatively methods such as neural networks,

fuzzy logic models and regression trees. A linear relationship was also assumed between the

field and remote sensing data. If for example additional sample points were collected and the

relationships were determined to be non-linear a generalised additive model could be used to

fit a spline to the relationship (Hastie, 2013).

There are also alternative methods to produce a subset or reduced number of input metrics for

the predictive model, one such example is the use of Principle Component Analysis (PCA)

transformation which is a technique for finding patterns in data of high dimensionality (Field,

2013). Other alternatives include shrinkage approaches, such as lasso regression (Friedman et

al., 2013), to incorporate predictor subset selection.
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A number of studies in the surrounding literature utilised alternative statistical methods to

regression, one of the most prominent is that of the ‘random forest’ (RF) algorithm (Breiman,

2001). The RF algorithm is a nearest neighbour imputation, a form of non-parametric

regression. The RF approach was not considered appropriate during the course of this thesis

project due to an insufficient number of field plot measurements required for model training

data, where approximately 80 plots would be required. Hudak et al. (2008) utilised such an

approach with LiDAR data to estimate the forest structural attributes of stem density and

basal area for 30x30m areas in Idaho, USA. Whereas Martinuzzi et al. (2009) utilised an RF

approach with LiDAR data to estimate and map understorey presence/absence and the

amount of standing deadwood again in Idaho, USA.

Another alternative approach, although dependent on accurate individual tree detection,

would be the determination and application of allometric relationships to the extracted remote

sensing metrics for each individual tree object. This approach is demonstrated in Lucas et al.

(2008b) where individual trees were delineated and classified by species group. LiDAR

derived heights and estimates of point densities were extracted. The application of species-

specific allometric equations was then applied to estimate DBH and the above ground

components of biomass.

All forest compositional and structural types were included in the statistical predictive

modelling approach employed within this project. There are obvious differences in forest

structure between coniferous and deciduous woodland types which may be better quantified

by producing predictive models for each broad structural type rather than in general. A

system could potentially be implemented in the future where broad species type would be

identified, for example with hyperspectral data, and different sets of predictive equations

applied.

10.6.2.10Field data enhancement
As identified by Strunk et al. (2012) small numbers of training field plot data will have a

deleterious effects upon model estimate precision and validity made from remote sensing

data. A number of validation plots recorded as part of this research had poor correspondence

with remote sensing model estimations because of dissimilarity to forest conditions

enumerated in the initial training fieldwork. Thus, in order to reduce the likelihood of the
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above, additional fieldwork would be advisable in future work for training data to improve

the predictive statistical models overall.

The number of training field plots was small due to the time restraints and the requirements

for detailed fieldwork. A pilot study could perhaps have been instituted to experiment with

field metrics to be recorded and different plot sizes in order to make the process more

streamlined. Future work should implement such an approach as the field data requirement

was high.

10.6.2.11 Alternative condition assessment methods
Only a few examples of condition assessment techniques were tested in this study. There are

a number of alternative assessment approaches considering individual trees and area-based

calculations. One such approach was put forward by Van DemMeersschaut and

Vandekerkhove (1998), where a score based index was calculated. This scoring index was

calculated using a gradient of scores dependent on the similarity of field measurements to a

number of desired forest compositional and structural conditions based upon Flemish forest

inventory. A number of forest condition indices are based upon some manner of calculations

involving field measurements, as summarised in McElhinny et al. (2005), Pommerening

(2002, 2006), and Neumann and Starlinger (2001). One example is the stand variance index

(STVI) (Staudhammer and LeMay, 2001) which is a combination of spatial diversity

(arrangement) and tree attribute diversity, based on the covariance of tree height and DBH.

Given the findings in this project as regard to the conventional condition assessment indices,

future work may produce a new condition assessment method which capitalises on the

strengths of the current techniques while also minimising some of the problems encountered.

The best method identified was the score-based technique which utilised 17 inputs to be

assessed against target values. A number of improvements or modifications to this approach

could be applied, two examples of which follow. Regenerating seedlings in an area may be

below the set target for example, but this is not the same as an area having none at all, thus

the target values could be changed in order incorporate a gradient of values, as in Van Dem

Meersschaut and Vandekerkhove (1998). Tree size and tree size variation were important

aspects of these condition indices, which in turn was linked to deadwood volume, within the

context of this study. Potentially it should be possible to remove measures of deadwood in

order to simplify the condition assessment.
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10.6.2.12Transferability
This particular study has demonstrated the potential for the estimation and mapping of forest

compositional and structural parameters across a wide area within the New Forest. The

application of this methodology to another woodland area in the future would provide a test

ultimately of the transferability of this approach to other forest species and structural

arrangements.

Many of the methods applied in pre-processing of the hyperspectral dataset, the classification

approach, the calculation of the VIs and the extraction of LiDAR metrics could be applied to

other areas given a similar dataset and assuming similar vegetation leaf-on and leaf-off

conditions. Depending upon the similarity of the datasets and the environmental conditions,

the statistical modelling of forest metrics may need to be re-implemented. The pre-processing

techniques and VI calculation would be identical; however there are a number of issues

relating to the application of the hyperspectral object-based classification method utilised in

this project with regards to transferability.

The species classification approach employed an MNF transform upon the hyperspectral data

to reduce the total number of image bands and reduce the amount of noise and extraneous

data contained within each extent (Boardman and Kruse, 1994; Green et al., 1988). MNF

imagery is an abstraction from the actual spectral measurements contained within the

hyperspectral imagery, the digital number values produced do not relate to any scale. By its

nature the resulting MNF imagery will be heavily influenced by the data acquisition scene,

where different acquisitions will result in MNF imagery corresponding with different surface

types, in other words two MNF datasets are not comparable.

Owing to the differences in MNF image data calculated between potential study sites the

hierarchical classification with user defined membership rules developed for the New Forest

study site will not be applicable to other areas. A new set of membership functions would

have to be defined to account for these effects. In addition there are numerous potential

methods of automatically detecting ITC objects from remote sensing data, although this is

typically with LiDAR data (Kaartinen et al., 2012), which may better correspond with

individual overstorey tree locations.
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The transferability of the use of hyperspectral data for classification of trees would need to be

considered or removed, as with the inclusion of LiDAR the significance of the classification

map diminishes in terms of its importance in the predictive models constructed as part of this

project.

Likewise the predictive regression models for all datasets may also need to be redefined

where environmental conditions encountered were significantly different, or more

specifically where these situations were not covered in the initial training field campaign and

thus not represented in the statistical model.

10.7 Overview
This project sought to explore the possibilities of three airborne remote sensing techniques

for the prediction of forest structural and composition attributes critical to the assessment of

forest condition. Hyperspectral, DR LiDAR and FW LiDAR were tested independently and

in combination (producing five datasets in total) for their ability to accurately estimate forest

metrics using two regression techniques, OLS and AICc. These statistical models were

derived by regressing the extracted remote sensing metrics against field measured values,

(recorded in 2010). While there was no clear ‘best’ regression modelling approach, each of

the datasets could predict many of the 39 field-level metrics when validated against field data

recorded in 2012.

A total of 35 metrics out of a total of 39 could be estimated with NRMSE values below 0.4.

The remaining four metrics could not be estimated either because of the regression approach

failing to determine a relationship or the predictive model producing NRMSE values above

0.4. Many of the prediction accuracies were comparable with those published in the

surrounding literature. Unfortunately not all the metrics could be found in the parallel remote

sensing literature. Overall, out of the predictive models derived from each of the five remote

sensing datasets, the regression models utilising FW LiDAR inputs produced the most

accurate estimates of field metrics. The best models which used FW LiDAR inputs accounted

for over half of the total 35 metric estimates.

Each of these predicted metrics could be mapped across the study site at the field plot-level,

in this case 30x30m, utilising the validated models. Six conventional condition index

assessment techniques were applied using the predicted metrics. The VE, Clark-Evans
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aggregation and the diameter difference indices provided poor results due to issues related to

underestimations of stem number from the automated ITC approaches or an insufficiently

small range of index values. However, the HC, CSDI and score-based indices produced

similar results, and were able to identify differences between forest types within the New

Forest FC defined compartments. The score-based index combines elements from the HC and

the CSDI indices in addition to many others, and avoids some of the challenges inherent in

using ITC metrics directly. Overall this provides the most representative condition

assessment method.

This thesis has provided a solution to the consistent retrieval of 35 metrics related to

assessing forest condition. The methods developed in this research can be used to support

both forestry and conservation assessments at scales from the field-plot (30x30m) to the

landscape scale, in addition to demonstrating the operational use of FW LiDAR for forest

research. The techniques described here have potential applications for satisfying ecological

assessment criteria which require detailed knowledge of species composition, distributions

and structure. The approach identified also has applications for predicting habitat types or

suitability for both flora and faunal species. Many of the metrics extracted from the remote

sensing data have immediate applications for precision forestry; for example tree number,

species type, average DBH, variation in DBH size, and basal area can be predicted within a

reasonable accuracy level (i.e. NRMSE < 0.4). If time series information were available the

assessment of the impacts of various management activities though time could also be

achieved.

There are a number of potential improvements which could be made in future work. For

example, in terms of the addition of datasets which were unused, improvements which could

be made to the ITC algorithms, the derivation of new remote sensing metrics, and the use of

alternative statistical approaches.
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Chapter 11 – Conclusions

11.1 Estimating forest metrics
This project has provided an evaluation of the integration of hyperspectral and LiDAR data

sources in addition to the datasets in isolation, for estimating the numerous elements

necessary for the assessment of forest condition for a study site in the New Forest, UK. In

total there were three airborne remote sensing datasets, (i) hyperspectral, (ii) DR LiDAR and

(iii) FW LiDAR, in addition to two combined datasets (iv) hyperspectral and DR LiDAR, and

(v) hyperspectral and FW LiDAR. It is impossible to measure and enumerate every potential

feature within the environment, thus a choice of condition indicators were selected through a

review of the surrounding literature, which identified a number of forest structural and

compositional metrics existing within both the overstorey and understorey. These metrics

were recorded using fieldwork.

The remote sensing datasets were processed and area-based metrics extracted. The

hyperspectral data included estimates of the number of overstorey tree species derived from

ITC data and numerous area-based vegetation indices calculated from the spectral data,

which related to the volume of green vegetation, light-use efficiency, stress-related pigments

and water content within the forest canopy. The DR LiDAR data had numerous area-based

metrics generated relating to the distribution of heights and return intensity values, in addition

to summarised ITC-metrics. The FW LiDAR data required additional processing steps. This

included the fitting of Gaussian peaks to each of the returned waveforms and extracting 3D

point information. Once completed, FW LiDAR had numerous metrics extracted relating to

the distribution of heights, echo-amplitude and echo-width values, in addition to summary

ITC-metrics.

Species classification of delineated ITC objects was performed using an object-based

hierarchical classification method with used defined membership class functions. This

approach produced mapping accuracy of 62%for 26 classes. This accuracy level compares

well with other similar approaches (Heinzel and Koch, 2013; Lucas et al., 2008b). A number

of issues with over- and under-segmentation were observed because of the ITC delineation

method which will influence mapping accuracy level.
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Statistical regression models were applied to establish relationships between field measured

structural and compositional features for each of the three remote sensing datasets and two

combinations (hyperspectral combined with DR LiDAR, and hyperspectral combined with

FW LiDAR). The regression model prediction results were then assessed by comparing them

with field recorded values. This study attempted to estimate a total of 39 field plot-level

metrics, whereas many studies identified in the surrounding literature focus on extracting

relatively few.

The predictive models derived from hyperspectral data could predict 19 out of a total of 39

field plot-level metrics with a reasonable accuracy (NRMSE < 0.4), whereas only three

estimates had NRMSE below a value of 0.3. Unsurprisingly many of the metrics which were

related to structural metrics, such as basal area, or volume of deadwood were estimated

poorly. The majority of these models utilised VI input metrics.

ITC analysis was conducted using LiDAR data and was utilised both in the tree species

classification and for estimation of stem density and tree crown attributes. Object-based tree

species classification was conducted using the ITC objects and a dimensionally reduced

hyperspectral dataset. It was found that the ITC method deployed within this thesis typically

underestimated the total number of tree stems and overstorey tree stems within an area,

especially so in field plot areas with a high stem density. However estimates of crown

dimensions corresponded well with field data estimates, for example crown diameter varied

from 1.8-4.0m RMSE.

A number of metrics could be estimated directly from DR LiDAR, such as average canopy

height, the number of canopy layers and canopy openness, in addition to those derived by

regression models. The model estimations derived from DR LiDAR produced 30 metric

estimates with NRMSE values below 0.4, and 16 below 0.3. Values with a higher RMSE

were typically related to species composition, in particular that of the understorey. Many of

the regression models produced utilised inputs from ITC data, in particular the ITC-metrics

relating to the average and total crown dimensions per plot, in addition to other secondary

metrics from point cloud statistics. This model behaviour is consistent with Hyyppäet al.

(2001), Person et al. (2002), Popescu et al. (2004) and Maltamo et al. (2004).
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The results of the model estimates for forest structure related metrics corresponded well with

those recorded in the surrounding literature. These components were the stem density,

average DBH, total basal area, height to the living crown, the average crown horizontal area

and the total crown area within the plot. Many of these metrics are required for operational

forest inventory, and produced similar RMSE values to these approaches (Hudak et al., 2009;

Hyyppä et al., 2008; Kaartinen et al., 2012; Lim et al., 2003a; Naesset et al., 2004;

Richardson and Moskal, 2011). Estimates of the variability of these metrics were also

calculated. Estimation of the basic metrics of overstorey composition produced relatively

small RMSE values using DR LiDAR only. These predictive models employed a

combination of DR LiDAR height and intensity value distributions. Error values for estimates

relating to Shannon and Simpson indices were high relative to the index ranges however.

Estimates of understorey structure and composition derived from DR LiDAR generally

produced models with relatively low RMSE values. Standing and fallen deadwood volume

and the decay level had NRMSE values below 0.37. Estimates of regenerating species

number and species generally had NRMSE values below 0.34, apart from the number of

sapling species and the Shannon index for native seedlings species which had large RMSE

values or could not be modelled. The estimates for the number of vascular species and the

percentage cover of ground vegetation had NRMSE values below 0.46. All of these metrics

utilised a combination of vertical and intensity metrics.

FW LiDAR was acquired at the same time as the DR, utilising the same scanning system.

The initial sampling parameters for FW LiDAR were approximately 40% of the total pulses

acquired for DR LiDAR. Through Gaussian fitting applied to the returned laser waveform

information, a larger number of additional 3D points could be derived. Through this

procedure the FW LiDAR generated an additional 143% 3D points from the multiple returns

in relation to the initial pulses. DR LiDAR only generated an additional 30% of points from

the initial pulses. The Gaussian decomposition method applied to the FW LiDAR data

produced similar numbers of total points to that of the DR LiDAR data overall. Similar

distributions of points were also present within the forest canopy, however FW datasets

generally produced a higher number of returns within the mid-canopy.

As with DR LiDAR, relevant FW metrics for assessing woodland condition could be

estimated directly, such as average canopy height, canopy openness and the number of
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canopy layers. The estimates of average canopy height derived from DR and FW LiDAR

were very similar, with RMSE values of 3.5 and 3.7m respectively. The estimates for canopy

openness for DR gave an RMSE value of 13.29%, whereas the FW value was 8.28%. The

estimates for the number of canopy layers for DR gave an RMSE of 1.2 layers, whereas the

FW value produced a value of 1.1 layers.

The regression model estimates of the condition indicator field plot-level metrics derived

from FW LiDAR produced a total of 26 metric predictions with NRMSE below 0.4 and 18

below 0.3. Again, many FW LiDAR models utilised predictive inputs from ITC crown

dimension metrics. The additional FW-based metrics relating to echo-width also saw a wide

usage for many structural and compositional components, an observation also made in

Reitberger et al. (2008).

In comparison many of the RMSE values for the field-level metrics estimated were similar

between DR and FW LiDAR overall. The FW model estimates for forest structural

components, such as average DBH and height to the living crown, compared favourably to a

number of studies available in the surrounding literature for DR LiDAR. Estimates of the

variability of these metrics were also calculated. The estimates of overstorey composition

produced similar RMSE values for both DR and FW LiDAR. FW produced slightly lower

error for estimates of the number of native trees and the number of tree species. The number

of tree species utilised both amplitude and echo-width metrics from a vertical level within the

canopy, which supports Reitberger et al. (2008) who stated that combining geometric,

amplitude and width metrics improves accuracies of species classification.

The majority of regression model estimates of understorey structure and composition derived

from FW LiDAR had low RMSE values, with a few exceptions. The standing and fallen

deadwood volume estimates produced RMSE values of 0.17m3 and 0.27m3, respectively.

These values were both slightly smaller than the equivalent estimates made using DR

LiDAR. The estimate of decay level for standing deadwood was better for FW (RMSE 0.19)

than DR LiDAR (RMSE 0.24), whereas the decay level estimate for downed deadwood was

slightly better for DR (RMSE 0.17) in comparison to FW LiDAR (RMSE 0.20). FW LiDAR

derived estimates of understorey regenerating tree density and species types were very similar

to DR, including an estimate of the number of sapling species. FW LiDAR could not produce

a model estimation for the Shannon index for native seedling species.
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The benefits of fusion of (i) hyperspectral and DR LiDAR, or (ii) hyperspectral and FW

LiDAR metrics for modelling field plot-level metrics was assessed in relation to the best

models, i.e. the estimations with the smallest overall RMSE, produced from either

hyperspectral, DR LiDAR or FW LiDAR in isolation from one another. A total of nine

models from both composite datasets were found to better estimate field-plot values. Apart

from the estimates of total crown horizontal area, each of the others was related to the

estimation of overstorey and understorey compositional attributes.

Over the course of this project a fusion of the two dataset types was applied multiple times,

for example the object-based classification of tree species and the area-based metric

estimation. In order to produce the most complete list and best estimated of the total 39 field

plot-level metrics it was necessary to apply the regression analysis to all five datasets. Two

relatively minor metrics could not be modelled at all; these were the percentage of native

saplings and the number of bryophyte species. However two model estimations produced

very poor estimates, these were the percentage of very big trees (DBH >80cm) and the

Shannon index (by basal area). For the 35 remaining metrics, some metrics could only be

extracted from either hyperspectral or LiDAR data, or a combination. Some datasets alone

could not produce estimates at all. The wealth of information the cumulative datasets

provides accounts for the shortcomings of the individual datasets. In particular, FW LiDAR

provided the most input to predicating 20 (15 LiDAR and 5 composite) (57%) of the field-

level metrics, in comparison to 13 for DR (9 LiDAR and 4 composite) (37%), and 2 for

hyperspectral models (6%).Nonetheless overall RMSE values were similar between both DR

and FW LiDAR, and in some cases hyperspectral estimates as well. The metrics that the FW

LiDAR best predicts account for over half the total 35 models. This again confirms the

benefits of the additional metrics the FW datasets provides, in particular the echo-width

metrics.

FW LiDAR data provides a benefit to predicting a significant proportion of the forest

condition field plot-level metrics addressed over the course of this research, and which has

proven to be at least as good as DR LiDAR based estimates, especially when considering the

initial disparity between the FW and DR LiDAR datasets in terms of spatial sampling. The

FW models utilise metrics related to echo-width distribution extensively, an observation also

made by Reitberger et al. (2008), which may indicate the explanatory power the additional

metrics derived from waveforms may provide. Additionally, the predicative power of ITC



Chapter 11 – Conclusions

421

crown average, standard deviation and total horizontal area was very important for estimating

many structural metrics, which is supported by other studies (Hyyppä et al., 2001; Person et

al., 2002; Popescu et al., 2004; Maltamo et al., 2004).

11.2 Methods of assessingcondition
A total of six condition indices were identified in the surrounding research literature, these

were: (i) the Clark-Evans aggregation index (Clark and Evans, 1954); (ii) the tree diameter

differentiation index (Füldner, 1995, cited in Vorčák et al., 2006); (iii) the vertical evenness

index (VE) (Neumann and Starlinger, 2001); (iv) the complexity index (HC) (Holdridge,

1967); (v) the complex stand diversity index (CSDI) (Jaehne and Dohrenbusch, 1997, cited in

Newmann and Starlinger, 2001;Vorčáket al., 2006); and (vi) the scoring method as defined

by Cantarello and Newton (2008). Each of these indices was calculated using remote sensing

derived estimates of their required inputs for areas corresponding with the validation field

plots and for the whole study site for mapping purposes.

The VE and aggregation indices were computed from ITC delineated data and were validated

against field data calculated indices. Owing to the stem number underestimation encountered

with the ITC delineation both of these indices provided poor results. In the future it may be

possible to derive proxies for these indices using the LiDAR point cloud data itself, such as in

Lesak et al. (2011). The remaining four indices utilise area-based metrics derived statistically,

apart from the CSDI which utilises both statistically derived and ITC-metrics in its

construction.

The diameter differentiation index was calculated from two statistically derived area-based

metrics; stem density and the sum of the DBH differences per plot. The predicted index

values performed well with the field data, however in the mapping product there was little

difference between values across the plot and so this proved to be a poor estimate of

condition.

The HC index was calculated using four area-based inputs; the stem density, number of tree

species, average canopy height and total basal area. The predicted index value corresponded

reasonably with that measured in the field (i.e. within 20%), however field plots with high

stem density suffered underestimations. The HC index is more indicative of tree size
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parameters; the mapping product also tends towards an almost binary output depicting

coniferous or deciduous woodland types.

The CSDI was the most computationally complex method for assessing site condition. The

index was computed from the additive sum of four component indices each assessing a

different element of forest structure or composition; these were (i) species diversity; (ii) DBH

diversity; (iii) stem spacing diversity; and (iv) tree crown diversity. A combination of ITC

and area-based metrics were used as input. While there were limitations with some of the

ITC-metrics, the index value corresponded well with the field data calculated index. The

CSDI mapping product conformed well to known structural divisions within the study site

extent. The CSDI relates more to structural diversity which can transcend either the broad

types of deciduous or coniferous woodland, however problems occurred in grid-cells

containing large canopy gaps which are of concern.

The final condition assessment method utilised an approach of additive scoring based on

whether 17 field metrics reached a desired target value. An ideal site would receive a

maximum score of 17. Overall the remote sensing metrics combined within this index

corresponded well to those derived from field data. Again the score-based index mapping

product conformed well to known structural divisions within the study site extent. The score-

based index combines both size and diversity metrics at a relatively basic level in addition to

many other factors. This method was considered the most informative and contained fewer

uncertainties because of not including ITC-metrics directly.

The calculation of condition assessment indices involved error from each of the input

estimated metrics. While this is present, the additional uncertainties proved to be small. The

results presented indicate that it is possible to produce estimates of forest condition from

remote sensing products utilising conventional methods of assessment.

The six condition indices were assessed against each other by initially categorising the index

scales to make them consistent with one another and re-mapping the resultant values per

30x30m grid-cell, as in Chapter 9.3. The categorisation highlighted an issue with the diameter

differentiation index, where the range of predicted values was too small to make meaningful

assessments. The VE and Clark-Evans aggregation indices were also poor; this was due to

problems with ITC underestimation of trees within a plot, which was more severe in
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deciduous areas with a dense and closed canopy. The remaining three indices however (HC,

CSDI and score-based) showed distinct spatial patterns which corresponded well to known

structural types and FC compartment boundaries within the New Forest study site. In order to

compare the HC, CSDI and score-based indices a mean and standard deviation were

calculated for each of the mapped grid-cells.

When comparing the HC, CSDI and score-based indices mean and categorised maps, a great

deal of similarity between the three techniques was observed. Each of the indices gave high

values to deciduous areas, which were dominated primarily by oak and beech trees, and were

commonly over 70-100 years old. Only very few coniferous areas exhibited consistently high

index values. The areas with high index values were defined by the presence of large trees

(i.e. DBH values) with variable sizes, in addition to generally higher numbers of tree species.

Often these features were accompanied by larger volumes of both standing and fallen

deadwood. Areas such as these may also contain understorey components; however this was

variable in areas of high index values for the HC index and CSDI. Understorey components

across much of the site were low however. The majority of coniferous dominated

compartments exhibited low values from all indices.

When interrogating the standard deviation of the three index values across the study site map

it is clear the HC and CSDI reflect different elements of the composition and structure of

woodland, especially when applied to deciduous woodlands, such as Frame Wood in

particular. The HC index is more sensitive to large tree sizes and tends towards an almost

binary output for depicting coniferous (low) or deciduous (high) areas. The CSDI on the

other hand related to species and structural diversity, which produced generally higher index

values in deciduous areas which can also be more variable, including low to high values. The

CSDI has an issue when estimating values in grid-cells which contain large canopy gaps. The

score-based index combined both tree size and diversity metrics at a relatively basic level in

addition to many other factors, such as deadwood and understorey. The score-based index

also did not directly use ITC-metrics and thus should be less influenced by its associated

error.

A provisional assessment of the woodland condition within the New Forest was carried out

using the score-based index method, as defined in Cantarello and Newton (2008). The index

value was utilised as a guide to identify spatial patterns within the mapping data with areas of
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good or poor condition status. The maximum index value recorded was 14, so none of the

sites can be considered to be ‘perfect’. The highest values occurred in semi-ancient deciduous

woodlands while many coniferous compartments exhibited low values, because of

deficiencies in species number, deadwood amount and understorey.

In terms of forest management it is was clear that current management operations have a high

impact on the structural and composition components within the New Forest site, causing

similar attributes within each compartment caused by distinct planting dates, understorey

regeneration is low or non-existent because of little ungulate control, and deadwood

resources are removed in plantation areas by FC workers. Each of these elements has an

impact on overall condition, thus the above analysis highlights some of the shortcomings of

current management approaches.

11.3 Key findings
Throughout the course of this project the analysis of the three airborne remote sensing

datasets has provided a means of extracting a wealth of information about forested

environments. The hyperspectral, DR LiDAR and FW LiDAR were analysed in isolation of

one another and could produce estimates of various forest compositional and structural

components at the field plot-level.

For the analysis of hyperspectral datasets an object-based species classification was

performed to estimate species number, species variety and relative abundance. The accuracy

levels were comparable with those published in other studies, but did contain a number of

errors due to the ITC delineation procedure implemented. In terms of the hyperspectral data

inputs into the statistical models for estimating the area-based plot-level forest metrics the

importance of the object-based species classification was relatively low in comparison to the

input metrics relating to vegetation indices (VI).

There were two LiDAR datasets analysed in the course of this study, DR and FW. The initial

sampling of the two datasets was higher for DR LiDAR, however the further processing of

the FW LiDAR through Gaussian fitting provided as many total returns as DR LiDAR.

Overall the DR and FW LiDAR statistical model predictions produced similar accuracies,

which were in line with those published in the surrounding literature. In comparison the

statistical model inputs for FW LiDAR often utilised fewer or more appropriate inputs for the
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prediction of understorey field plot-level metrics. Many of the FW LiDAR predictive models

also utilised metrics relating to the echo-width of the returns. While there are still a number

of uncertainties about the properties of these new FW LiDAR metrics (Mills, 2010; Wagner

et al., 2006), their influence on the results offers promise for future work. Nonetheless this

project demonstrates the use of FW LiDAR which offers comparable if not better results to

those of DR LiDAR.

The best models (i.e. with the lowest RMSE) estimated overall for all of the required forest

compositional and structural metrics came from a variety of the three datasets individually

and in combination. A total of 35 of 39 field plot-level (30x30m) forest metrics could be

estimated, many of which when validated produced NRMSE values below 0.4, and 23

models produce NRMSE values below 0.3. Over half of these models involved the use of FW

LiDAR data on its own or FW combined with hyperspectral data. These models could be

applied across the whole study site producing a map for each of the 35 field metrics.

The focus of this project was to utilise airborne remote sensing to assess forest condition. To

this end, six conventional condition assessment indices were tested with the derived remote

sensing metrics. Three of which proved to be poor, the remaining three however

corresponded well with field derived index values and when mapped across the study site

extent corresponded well with known structural and compartment boundaries. Deciduous

areas received higher index values, and coniferous areas typically received low values. From

comparing these index results, tree size and differentiation are inherent with high index

values, and where these higher index values are present a higher proportion of both standing

and downed deadwood are found. Understorey regenerating tree and vascular plant species

population and number are typically not linked to tree size or differentiation within a plot,

indicating that in the context of this research the score-based method is the most

representative method of assessment. The score-based forest condition assessment method

was applied to the New Forest study site and confirmed known issues with current

management objectives, such as there being little or no regeneration of tree species

throughout the site, in addition to coniferous compartments exhibiting structural and

compositional homogeneity, and very low levels of deadwood.

The approach demonstrated in this project shows that conventional methods of assessing

forest condition can be applied with remote sensing derived inputs for woodland assessment
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purposes. This procedure was applied to a large spatial extent and provided a detailed

assessment, which at this scale would be impractical with field data alone. The approach is

quantifiable, with known levels of accuracy, and is less subjective than some current field-

based methods of assessing condition, such as the researcher answering a questionnaire while

following a structured walk.

11.4 Key conclusions
The following are the key conclusions of this research:

1. The most relevant field plot measurements are tree species, DBH, crown horizontal

area, average tree height, the number of saplings, number of seedlings and vascular

plant diversity. All of the other field metrics can be estimated from these metrics;

2. Individual tree crown (ITC) delineation can only be considered as semi-operational

due to poor segmentation results;

3. Object-based classification of hyperspectral data can provide sufficient accuracy for

the mapping of species type, number and proportions of native species;

4. Metrics from the hyperspectral species classification are less valuable than vegetation

index (VI) data for estimation of forest metrics;

5. Hyperspectral remote sensing data are optimal for tree species composition mapping,

but poor for estimating structure;

6. LiDAR data are critical for estimating forest structural metrics;

7. DR and FW LiDAR models estimate forest structure with similar levels of accuracy,

although generally FW LiDAR models are slightly higher;

8. Applying Gaussian decomposition to FW LiDAR data generates ca. three times the

number of points per pulse than for DR, which mitigates the lower pulse rate of the

FW system;

9. Echo-width metrics from the FW LiDAR are important additional variables for forest

metric predictions unavailable in DR LiDAR models;

10. A combination of hyperspectral and LiDAR data is best for estimating forest

understorey component metrics, such as the number of seedlings;

11. LiDAR derived ITC-metrics relating to crown horizontal area are important inputs in

predictive models of forest structure;

12. Other ITC-metrics however, such as estimates of stem number and spacing, are

currently poor and should not be used for modelling;
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13. Of six condition assessment approaches tested, only three function well (complexity

index, complex stand diversity index, score-based index);

14. The three successful condition assessment methods are driven primarily by tree size

and tree size variation;

15. The presence of standing and downed deadwood is positively linked to increases in

tree size and tree size variation, whereas the presence of understorey is independent

from this;

16. The best technique for assessing woodland condition is the score-based method, this

combines seventeen inputs which relate to tree species composition, tree size and

variability, deadwood, and understory components;

17. All of the above woodland characteristics can be derived from the appropriate

combination of airborne hyperspectral and LiDAR datasets with an accuracy of at

least NRMSE < 0.4;

18. Therefore it has been shown possible to map forest condition over landscape-scale

areas by airborne remote sensing.

11.5 Final thoughts
The approach produced for this project demonstrated that it is possible to estimate a range of

forest metrics from three types of airborne remote sensing datasets for both structural and

compositional metrics across a landscape at a level unachievable through plot-based survey

alone. While estimation of both individual tree and area-based metrics is an involved process

and there is clear potential for improvement, the approach demonstrates advantages with

applying remote sensing data in such a manner to generate continuous estimates of condition

metrics and indices across a wide area with a relatively low error through the combination of

both hyperspectral, DR and FW LiDAR data. Many of the forest metrics estimated are either

directly comparable with that presented in the field, or have not been previously attempted,

many of which were estimated with relatively high accuracy.
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The approaches developed for the characterisation of forest composition and structure of the

selected New Forest site have direct applications for forest condition assessment, habitat

suitability modelling and forestry in other regions of the UK and overseas. The transferability

of the use of hyperspectral data for classification of tree species would need to be considered

or removed, as the significance of the classification map diminishes in terms of its

importance in the predictive models constructed with the inclusion of LiDAR datasets. The

overall approach identified, however, could be potentially applied in many environmental

contexts, as similar approaches exist in the literature for the estimation of forest condition

from airborne remote sensing, especially so for DR LiDAR, for applications across the

planet.

In future work further refinements to the approach could be implemented and tested.

Refinements could be made to the ITC delineation method, which, for example, would

improve/augment estimates of stem density, stem spacing, and object-based species

classifications. Similarly the detection and mapping of suppressed trees would be beneficial.

Both hyperspectral and LiDAR metrics could be incorporated to a higher degree for tree

species classifications. There are also many more potential LiDAR point cloud statistics

which may be of use to future analysis, for example point densities in particular vertical

strata. Metrics generated from FW LiDAR datasets offer a great deal of explanatory power,

future work may be able to produce more metrics such as the backscatter cross-section or

coefficient. In addition supplementary data such as the area’s proximity to watercourses or

footpaths could be incorporated, for example as a proxy for levels of disturbance.

There are also a number of alternative approaches for the estimation of field plot-level

metrics, for example the random forest algorithm. In accordance with sampling design more

fieldwork samples would potentially improve the precision and validity of estimates. There

are also a number of alternative conventional forest condition indices in existence which

could be explored, adapted and applied, dependent upon the future projects objectives (e.g.

McElhinny et al., 2005; Neumann and Starlinger, 2001; Pommerening, 2002; 2006).

This project demonstrates that a large number of metrics from a combination of remote

sensing datasets can be extracted for the assessment of forest condition. A wealth of

information is available for the composition and structure of the forest, including deadwood,

understorey composition and regenerating tree species. The approach demonstrated here
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could potentially be applied to estimate other forest attributes, for example estimating total

above-ground biomass. Each of these forest attributes can be mapped across large areas.

These remote sensing derived metrics can be input into conventional techniques for assessing

forest condition, the output of which can be mapped. While the requirement for fieldwork

remains, the approach as demonstrated in this project provides a far more detailed and/or

comprehensive indication of condition than is possible through field work assessment alone

in terms of spatial extent, and on a scale appropriate to observe spatial patterns of features

within the stand-level.
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Appendix A – Calculations applied to data collected in the field

A.1 Tree Populations and Regeneration

Total number of stems per hectare was estimated from the number recorded in the field
plot, the plot area represented 9% of 1 hectare.  Thus, it was possible to extrapolate up to this
scale assuming similar conditions. This was also done for the number of native and total
saplings and seedlings. Saplings were totalled and extrapolated to their occurrence at 1
hectare as with the trees.  Seedlings were measured in the 10x10m sub-plot and thus represent
1% of 1 hectare.

A.2 Physical tree variables

Calculation of DBH from girth or circumference measurements was accomplished
through the use of the formula for a circle:

( ) = ℎ ( )
Average DBH was calculated in addition to the standard deviation for each field plot.  The
percentage of big trees (DBH>0.4m) and very big trees (DBH>0.8m) relative to the tree
population within the plot was calculated.

Similarly Basal Area (BA) for each tree was estimated with the formula for finding the area
of a circle:

( ) = × ( )2
Field plot level BA (m2) is merely the sum of all of the individual trees.  Plot estimates of BA
correspond to 9% of the BA for 1 hectare.

A.3 Estimatingtree height

Tree heights were derived through the use of trigonometry.  Where assuming the tree
went straight upward, its height was determined from the sum of two trigonometric equations,
the 1st from the base of the tree to an angle of 0° (i.e. horizontal to the observer), and the 2nd

from 0° to the top of the tree, both angular measurements were made at a set distance from
the tree base, as illustrated in Figure A1. An example of the formulae is:ℎ = × ( ) + × ( )
Where the horizontal distance between theobserver and the tree base is ‘A’, the angle below
the horizontal (0°) to the base of the tree is ‘b’, the angle from horizontal to the tree top is ‘d’.

Lorey’s mean height is the mean height weighted by BA.  This can be summarised as:

ℎ ( ) = ∑ ( × ℎ )
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Figure A.1 – Estimation of tree height through the use of trigonometry.
Where distance between observer and the tree base is ‘A’, the angle
below the horizontal (0°) to the base of the tree is ‘b’, and the derived
height to horizontal is ‘C’.  The angle from horizontal to the tree top is
‘d’ and the derived height is ‘E’. Thus the sum of C and E represent the
total tree height.

A.4 Tree crown variables

The height (m) of the crown base is calculated in the same manner as the total height of
the tree in Figure A.1. The angle measured from the observer position to that of the first live
branch is substituted for the angle to the tree top, in the previous equation.

Crown area was then estimated using the formula for an ellipse:

( ) = × ( )2 × ( )2
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A.5 Deadwood volume and variability

As in Cantarello and Newton (2008) the volume of downed deadwood (DDW) (both logs
and branches) was determined using the equation for a frustum of a cone (i.e. a truncated
cone), based on the individual measurements of log length and maximum and minimum
diameters, illustrated in Figure A.2. The formula to find the volume of a frustum cone is:

= × ℎ3 × ( + × + )
When logs were circular in cross-section, medium diameter was measured and the equation
for a cylinder was used instead.  To reiterate, DDW measurements were limited to the
10x10m sub-plot.  Volumes were then summed at the sub-plot level and transformed to m3ha-

1.  DDW decay class was then averaged across the sub-plot.

Figure A.2 – Frustum cone

Volume of snags was determined using the equation of either the frustum cone, or
cylinder, dependent on trees’ cross-section.  Height/length were derived from clinometer and
tape measurements. The volume was then summed at the plot level, and transformed to
m3ha-1.  Snag decay class was also averaged for the whole plot.
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A.6.Stem diameter differentiation index between neighbouring trees
Tree diameter differentiation has been identified as another potentially important

parameter of structural diversity, for which an index was created by Füldner (TM) (1995).

= 1 1 −
Where N is the number of trees on the sample plot, and dij is the relation between thinner and
thicker DBH in the analysed neighbour tree pair.  The index values range from 0 to 1.

However we are concerned with the sum of DBH differences between neighbouring trees.
This can be expressed as:

. . = 1 −
A.7 Index of vertical structure

Jaehne and Dohrenbusch (1997, in Newmann and Starlinger, 2001, Vorcak et al., 2006)
proposed the Stand Diversity Index (B), the index of vertical structure.  One of this index’s
component parts is the index of vertical structure.= 1 − ∑∑
Where N is the number of measured trees (3 thickest and 3 thinnest trees); DBHmin is the
DBH of the thinnest trees (in cm); and DBHmax is the DBH of the thickest trees (in cm).
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Appendix B– Hyperspectral data
B.1 – Spectral indices
Index: Description:

Broadband Greenness – High pixel values indicate high proportions of green biomass

Normalized Difference
Vegetation Index
(NDVI)

The NDVI is one of the most frequently used vegetation indices.  The index is
robust over a wide range of conditions due to the used of the highest absorption and
reflectance regions of Chlorophyll are used.  It can however saturate in dense
vegetation conditions, as LAI increases).  The NDVI can be defined as:= −+
Where near infrared (NIR) and red bands (red) are used.  Values can range between
-1 and 1.  The common range for green vegetation is 0.2 to 0.8.

(Rouse et al., 1973; Tucker, 1979; Jackson et al., 1983; Sellers, 1985)

Simple Ratio Index
(SRI)

The SR is the ratio of the highest reflectance.  The use of the absorption
wavelengths of chlorophyll makes it effective over many conditions.  The SR can
saturate in dense vegetation, i.e. when LAI becomes high.  SR can be defined as:=
The value of this index ranges from 0 to more than 30. The common range for green
vegetation is 2 to 8.

(Rouse et al.,1973; Tucker, 1979; Sellers, 1985)

Atmospherically
Resistant Vegetation
Index (ARVI)

The ARVI is an enhancement of the NDV that is relatively resistant to atmospheric
factors (e.g. aerosol). It uses reflectance in the blue wavelengths to correct the red
reflectance for atmospheric scattering. The ARVI is defined as:= − (2 − )+ (2 − )
The value of this index ranges from -1 to 1. The common range for green vegetation
is 0.2 to 0.8.

Narrowband Greenness – High pixel values indicate high proportions of green biomass

Red Edge Normalized
Difference Vegetation
Index (RENDVI)

Is a modification of the standard broadband NDVI.  This index differs by using
bands along the red edge, instead of the main absorption and reflectance peaks.  So
the index will be sensitive to small changes in canopy foliage content, gap fraction
and senescence. The inputs have been modified to sample features using bands
centred on 705nm and 750nm. The index can be expressed as:= −+
The value of this index ranges from -1 to 1. The common range for green vegetation
is 0.2 to 0.9.

(Gitelson and Merzlyak, 1994; Sims and Gamon, 2002)
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B.1 – Spectral indices (continued)
Modified Red Edge
Simple Ratio Index
(MRESRI)

The MRESRI is a modification of the broadband SR index. It uses bands in the red
edge and incorporates a correction for leaf specular reflection. Applications include
precision agriculture, forest monitoring, and vegetation stress detection. The index is
defined by the following equation: = −−
The value of this index ranges from 0 to 30. The common range for green vegetation
is 2 to 8.

(Sims and Gamon, 2002; Datt, 1999)

Modified Red Edge
Normalized Difference
Vegetation Index
(MRENDVI)

The MRENDVI is a modification of the Red Edge NDVI. It incorporates a
correction for leaf specular reflection. The index capitalizes on the sensitivity of the
vegetation red edge to small changes in canopy foliage content, gap fraction, and
senescence. Applications include precision agriculture, forest monitoring, and
vegetation stress detection. The index is defined by the following equation:= −+ − 2
The value of this index ranges from -1 to 1. The common range for green vegetation
is 0.2 to 0.7.

(Datt, 1999; Sims and Gamon, 2002)

Vogelmann Red Edge
Index 1 (VOG1)

(Narrowband) The VOG1 is sensitive to the effects of foliage chlorophyll
concentration, canopy leaf area, and water content.  The index is defined by the
equation: 1 =
The value of this index ranges from 0 to 20. The common range for green vegetation
is 4 to 8.

(Vogelmann, et al., 1993)

Light Use Efficiency – Will measure of the efficiency with which vegetation is able to use incident light for
photosynthesis.

Photochemical
Reflectance Index (PRI)

The PRI is a measure of the reflectance which is sensitive to changes in carotenoid
pigments (mainly xanthophylls) in live foliage.  Cartenoid pigments are related to
the efficiency of photosynthetic light use, or the uptake rate of carbon per unit of
energy absorbed.  It can e used to study vegetation productivity and stress.  PRI is
defined as: = −+
The value of this index ranges from -1 to 1. The common range for green vegetation
is -0.2 to 0.2.

(Gamon et al., 1992;1997)
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B.1 – Spectral indices (continued)
Structure Insensitive
Pigment Index (SIPI)

The SIPI is designed to maximize the sensitivity of the index to the ratio of bulk
carotenoids to chlorophyll while decreasing sensitivity to variation in canopy
structure (for example, leaf area index). Increases in SIPI are thought to indicate
increased canopy stress (carotenoid pigment).  SIPI is defined as:= −+
The value of this index ranges from 0 to 2. The common range for green vegetation
is 0.8 to 1.8.

(Penuelas et al., 1995)

Red Green Ratio Index
(RGR)

The RGR indicates the relative expression of leaf redness caused by anthocyanin to
that of chlorophyll. The RG Ratio has been used to estimate the course of foliage
development in canopies. The RG Ratio index is an indicator of leaf production and
stress, and may also indicate flowering in some canopies.

The value of this index ranges from 0.1 to more than 8. The common range for
green vegetation is 0.7 to 3.

(Gamon and Surfus, 1999)

Leaf Pigments – are designed to provide a measure of stress-related pigments present in vegetation.

Carotenoid Reflectance
Index 1 (CRI1)

The CRI1 is sensitive to carotenoid pigments in plant foliage. Higher CRI1 values
mean greater caratenoid concentration relative to chlorophyll. CRI1 is defined by
the following equation: 1 = 1 − 1
The value of this index ranges from 0 to more than 15. The common range for green
vegetation is 1 to 12.

(Gitelson et al., 2002)

Anthocyanin
Reflectance Index 1
(ARI1)

ARI1 is sensitive to anthocynanins in plant foliage. Increases in ARI1 indicate
canopy changes in foliage via new growth or death. ARI1 is defined by the
following equation: 1 = 1 − 1
The value of this index ranges from 0 to more than 0.2. The common range for
green vegetation is 0.001 to 0.1.

(Gitelson et al., 2001)

Canopy Water Content – applications include canopy stress analysis, productivity prediction and modelling, fire
hazard condition analysis, cropland management, and studies of ecosystem physiology

Water Band Index
(WBI)

The WBI is sensitive to changes in canopy water status. As the water content of
vegetation canopies increases, the strength of the absorption around 970 nm
increases relative to that of 900 nm. WBI is defined by the following equation:=
The common range for green vegetation is 0.8 to 1.2.

(Penuelas et al., 1995; Champagne et al., 2001)
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B.2 Hyperspectral metric list– A full listing of all extracted hyperspectral area-based
metrics from the eCogntion derived species classification map and ENIV derived spectral
indices input into statistical modelling. (See appendix C.2 for index descriptions.)
Metric Name: Description: Statistics included:

“no_tree”
Number of tree crown polygons per
30x30m area.

[n=1] No. tree crown polygons

“no_nat_t”
Number of tree crown polygons per
30x30m area of native species.

[n=1] No. native species tree crown
polygons

“spec_no”
Number of tree species detected per
30x30m area.

[n=1] No. detected tree species

“nat_spec”
Number of tree species detected per
30x30m area of native species

[n=1] No. native detected tree species

“SH”
Shannon Index calculated from tree
crown polygons per 30x30m area.

[n=1] Shannon index value

“SI”
Simpson Index calculated from tree
crown polygons per 30x30m area.

[n=1] Simpson index value

“ndvi1_...” NDVI index summarised to the
30x30m area. Leaf-off (1) and leaf-on
(2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“sri1_...” SRI index summarised to the 30x30m
area. Leaf-off (1) and leaf-on (2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“arvi1_...” ARVI index summarised to the
30x30m area. Leaf-off (1) and leaf-on
(2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“rendvi1…” RENDVI index summarised to the
30x30m area. Leaf-off (1) and leaf-on
(2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“mresri1…” MRESRI index summarised to the
30x30m area. Leaf-off (1) and leaf-on
(2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“mrendvi1…” MRENDVI index summarised to the
30x30m area. Leaf-off (1) and leaf-on
(2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“vrei1…” VREI index summarised to the
30x30m area. Leaf-off (1) and leaf-on
(2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“sipi1…” SIPI index summarised to the 30x30m
area. Leaf-off (1) and leaf-on (2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“rgri1…” RGRI index summarised to the
30x30m area. Leaf-off (1) and leaf-on
(2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“pri1…” PRI index summarised to the 30x30m
area. Leaf-off (1) and leaf-on (2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“ari1…” ARI index summarised to the 30x30m
area. Leaf-off (1) and leaf-on (2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“cri1…” CRI index summarised to the 30x30m
area. Leaf-off (1) ONLY.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.

“wbi1…” WBI index summarised to the 30x30m
area. Leaf-off (1) and leaf-on (2) data.

[n=6] Minimum, maximum, range,
mean, standard deviation and sum.
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B.3 eCognition classification summary R script – R code developed to extract/calculate
hyperspectral area-based metrics from eCogntion derived species classification map.
Overview: Custom R code was developed to estimate area based metrics relating to overstorey tree
species for each grid cell (30x30m area) iteratively.  Firstly, each of the ITC objects within a grid cell
(Cell ID) subset was counted.  Using subset functions, counts of native species only was extracted.
Number of species encountered for each Cell ID, and native species was counted.  Finally, estimates
of Shannon, Simpson and Evenness indices were applied to the input species list.  For each Cell ID an
estimate of tree count, native tree count, species count, native species count, maximum number of
individuals (from one species group), minimum number of individuals (from one species group)
Shannon, Simpson and Evenness indices were computed.

####Library foreign####
library(foreign)#needed for reading and writing to dbf format
####Library Vegan####
library(Vegan)#needed for Shannon and Simpson index calculation
#Load data
tree.data<- read.dbf("Classificaton_Output.dbf")
#
#create results table#
results<- array(NA,c(0,7))
#
###select by polygon ID###
#Enter minimum ID no.
ID<-3033
#loop until max. ID no.
while (ID <= 44030) {
print(ID)
#subset from dataset the rows with the current polygon ID no.
tree.subset<-tree.data[which(tree.data$CELLID==ID),]
#
###ITC object count###
class<-tree.subset$Class_name
class<-as.data.frame(table(class))
no.tree<-sum(class$Freq)
#
###Count the no. native ITC objects(species list: Oak, Beech, Silver Birch, Scots Pine,
Common Adler)###
c_OK<-class[which(class=='Oak'),]
c_BE<-class[which(class=='Beech'),]
c_SB<-class[which(class=='Silver Birch'),]
c_SP<-class[which(class=='Scots Pine'),]
c_CA<-class[which(class=='Common_Adler'),]
no_n_tree<-sum(c_OK$Freq, c_BE$Freq, c_SB$Freq, c_SP$Freq, c_CA$Freq)
#
###ITC species count###
species<-tree.subset$Class_name
species<-as.data.frame(table(unique(species)))
spec_no<-sum(species$Freq)
#
###Count the number of native species (species list: Oak, Beech, Silver Birch, Scots Pine,
Common Adler)###
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#species
s_OK<-species[which(class=='Oak'),]
s_BE<-species[which(class=='Beech'),]
s_SB<-species[which(class=='Silver Birch'),]
s_SP<-species[which(class=='Scots Pine'),]
s_CA<-species[which(class=='Common Adler'),]
no_n_spec<-sum(s_OK$Freq, s_BE$Freq, s_SB$Freq, s_SP$Freq, s_CA$Freq)
#
###Calculate Shannon Index###
Shannon <- diversity(class$Freq, "shannon")
Simpson <- diversity(class$Freq, "simpson")
#
#CalculateEvenness index#
Evenness<-Shannon/log2(spec_no)
#
###CSDI-part 1 inputs: max/min pop###
#count of each class within polygon
class_a<- class$Freq
#removes spec.freq with 0 values
class_a<-class_a[which(class_a!=0)]
#
#check if pop has more than two tree spec.
if (spec_no>1) {
max_pop<- max(class_a) #maximum species count value returned
min_pop<- min(class_a) #minimum species count value returned
}
else
{
max_pop<- 0
min_pop<- 0
}
###output row###
IMS<-c(ID,no.tree, no_n_tree, spec_no, no_n_spec, Shannon, Simpson, Evenness, Max_no,
Min_no)
IMS<-as.data.frame(t(IMS))
ID<-ID+1                                    #ID vaule plus 1
#
###write to output table###
#
results<-merge(IMS,results,all=TRUE)
#
rm(tree.subset,class,no.tree,no_n_tree,species,spec_no,no_n_spec,Shannon,Simpson,Evennes
s , IMS,max_pop, min_pop)
#
}
colnames(results)<-c("ID", "no_tree", "no_nat_t","spec_no","nat_spec","SH","SI","Even",
"max_pop", "min_pop")
write.csv(results,file="Class_metrics.csv", row.names=T)
write.dbf(results, file="Class_metrics2.dbf")
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Appendix C –LiDAR data
C.1 Extracted metrics from DR LiDAR for 30x30 grid cells
Metric: Metric description: Software:
SHA_mean Mean height of all returns RSC Las tools
SHA_Var Variance of height for all returns RSC Las tools
SHA_skw Skewness of height for all returns. RSC Las tools
SHA_kur Kurtosis of height for all returns. RSC Las tools
SHA_max Maximum height recorded RSC Las tools
SHA_med Median height for all returns RSC Las tools
SHA_STD Standard deviation of heights for all returns RSC Las tools
SHA_MAD Mean Absolute Deviation of heights for all returns RSC Las tools
SHA_Range Range of height values for all returns RSC Las tools
SHN_mean Mean height of all non-ground returns RSC Las tools
SHN_Var Variance of height for non-ground returns RSC Las tools
SHN_skw Skewness of height for non-ground returns RSC Las tools
SHN_kur Kurtosis of height for non-ground returns RSC Las tools
SHN_max Maximum height recorded for non-ground RSC Las tools
SHN_med Median height for non-ground returns RSC Las tools
SHN_STD Standard deviation of heights for non-ground returns RSC Las tools
SHN_MAD Mean Absolute Deviation of heights for non-ground returns RSC Las tools
SHN_Range Range of height values for non-ground returns RSC Las tools
DTM_slope The topographic slope estimated from a DEM generated from the ground

classified points (Burrough and McDonell, 1998). This metric is commonly
expressed as a raster.
slope_degrees = ATAN (rise_run) * 57.29578
where:
rise_run = √ ( [dz/dx]2 + [dz/dy]2 ]
The values of the centre cell and its eight neighbours determine the horizontal
and vertical deltas. The neighbours are identified as letters from 'a' to 'i', with
'e' representing the cell for which the aspect is being calculated.

a b c
d e f
g h i

The rate of change in the x direction for cell 'e' is calculated with the
algorithm:

[dz/dx] = ((c + 2f + i) - (a + 2d + g) / (8 * x_cell_size)
The rate of change in the y direction for cell 'e' is calculated with the
following algorithm:

[dz/dy] = ((g + 2h + i) - (a + 2b + c)) / (8 * y_cell_size)

RSC Las tools

DTM_rough The topographic roughness estimated from a DEM generated from the
ground classified points. This is commonly expressed as a raster. The
calculation is based upon the standard deviation of recorded elevation in
relation to its neighbouring points for the centre value in a 3x3 raster cell
grid.

RSC Las tools

CC Canopy cover – as a percentage.  Calculated from the ratio of ground vs. non-
ground returns.  This is defined by the equation:= ℎℎ
Where hng and hall denote the sum total of non-ground returns and the sum of
all returns.

RSC Las tools
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C.1(continued)
Frac_cov Fractional cover – estimating the proportion of an area that is covered by

vegetation above 0.5m.  As defined by Morsdorf et al (2006)  the equation:= ∑ ∑
With = > 0.5
Where Evegetation and Etotal denotes vegetation returns and all (ground and
vegetation) returns respectively.

RSC Las tools

CR_ratio Canopy Relief ratio – As a measure of the relative shape of the canopy from
LiDAR observations the elevation relief ratio, E (Pike and Wilson, 1971),
was utilised.  This is defined as:= ℎ − ℎℎ − ℎ
Where hmean, hmin and hmax are the mean, minimum and maximum canopy
heights, respectively.  This ratio reflects the degree to which outer canopy
surfaces are in the upper (E > 0:5) or in the lower (E < 0:5) portions of the
height range.

RSC Las tools

PAIP (For leaf-on data only) The Plant Area Index Proxy – similar to the LAI,
however this includes all vegetative components (leaves and woody stems)
(Morsdorf et al, 2006).  The equation:= ∑∑ +
EFR, ESR and ELR denote the tree types of returns, the first return, the last
return and the single return (first return = last return), but only for vegetation.
The vegetation points are classified by thresholding the height over the
terrain, as with fractional cover this is 0.5m

RSC Las tools

P005 Percentage counts of LiDAR values located in the 5th percentile of canopy
height

RSC Las tools

P010 Percentage counts of LiDAR values located in the 10th percentile of canopy
height

RSC Las tools

P015 Percentage counts of LiDAR values located in the 15th percentile of canopy
height

RSC Las tools

P020 Percentage counts of LiDAR values located in the 20th percentile of canopy
height

RSC Las tools

P025 Percentage counts of LiDAR values located in the 25th percentile of canopy
height

RSC Las tools

P030 Percentage counts of LiDAR values located in the 30th percentile of canopy
height

RSC Las tools

P035 Percentage counts of LiDAR values located in the 35th percentile of canopy
height

RSC Las tools

P040 Percentage counts of LiDAR values located in the 40th percentile of canopy
height

RSC Las tools

P045 Percentage counts of LiDAR values located in the 45th percentile of canopy
height

RSC Las tools

P050 Percentage counts of LiDAR values located in the 50th percentile of canopy
height

RSC Las tools

P055 Percentage counts of LiDAR values located in the 55th percentile of canopy
height

RSC Las tools

P060 Percentage counts of LiDAR values located in the 60th percentile of canopy
height

RSC Las tools

P065 Percentage counts of LiDAR values located in the 65th percentile of canopy
height

RSC Las tools
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C.1(continued)
P070 Percentage counts of LiDAR values located in the 70th percentile of canopy

height
RSC Las tools

P075 Percentage counts of LiDAR values located in the 75th percentile of canopy
height

RSC Las tools

P080 Percentage counts of LiDAR values located in the 80th percentile of canopy
height

RSC Las tools

P085 Percentage counts of LiDAR values located in the 85th percentile of canopy
height

RSC Las tools

P090 Percentage counts of LiDAR values located in the 90th percentile of canopy
height

RSC Las tools

P095 Percentage counts of LiDAR values located in the 95th percentile of canopy
height

RSC Las tools

can_layer No. Canopy Layers SPDlib
can_depth Canopy Depth SPDlib
max_gap Canopy maximum gap SPDlib
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C.2 Extracted intensity related metrics from DR LiDAR data for 30x30 grid cells(RSC
LASTools)
Metric: Metric description: Software:
SIA_mean Mean intensity of all returns RSC Las tools
SIA_Var Variance of intensity for all returns RSC Las tools
SIA_skw Skewness of intensity for all returns RSC Las tools
SIA_kur Kurtosis of intensity for all returns RSC Las tools
SIA_max Maximum intensity recorded RSC Las tools
SIA_med Median intensity for all returns RSC Las tools
SIA_STD Standard deviation of intensity for all returns RSC Las tools
SIA_MAD Mean Absolute Deviation of intensity for all returns RSC Las tools
SIA_Range Range of intensity values for all returns RSC Las tools
SIG_mean Mean intensity of ground returns RSC Las tools
SIG_Var Variance of intensity for ground returns RSC Las tools
SIG_skw Skewness of intensity for ground returns RSC Las tools
SIG_kur Kurtosis of intensity for ground returns RSC Las tools
SIG_max Maximum intensity recorded for ground returns RSC Las tools
SIG_med Median intensity for ground returns RSC Las tools
SIG_STD Standard deviation of intensity for ground returns RSC Las tools
SIG_MAD Mean Absolute Deviation of intensity for ground returns RSC Las tools
SIG_Range Range of intensity values for ground returns RSC Las tools
SIN_mean Mean intensity of non-ground returns RSC Las tools
SIN_Var Variance of intensity for ground returns RSC Las tools
SIN_skw Skewness of intensity for ground returns RSC Las tools
SIN_kur Kurtosis of intensity for ground returns RSC Las tools
SIN_max Maximum intensity recorded for ground returns RSC Las tools
SIN_med Median intensity for ground returns RSC Las tools
SIN_STD Standard deviation of intensity for ground returns RSC Las tools
SIN_MAD Mean Absolute Deviation of intensity for ground returns RSC Las tools
SIN_Range Range of intensity values for ground returns RSC Las tools
p005i The LiDAR intensity classified as the 5th percentile of canopy height RSC Las tools
p010i The LiDAR intensity classified as the 10th percentile of canopy height RSC Las tools
p015i The LiDAR intensity classified as the 15th percentile of canopy height RSC Las tools
p020i The LiDAR intensity classified as the 20th percentile of canopy height RSC Las tools
p025i The LiDAR intensity classified as the 25th percentile of canopy height RSC Las tools
p030i The LiDAR intensity classified as the 30th percentile of canopy height RSC Las tools
p035i The LiDAR intensity classified as the 35th percentile of canopy height RSC Las tools
p040i The LiDAR intensity classified as the 40th percentile of canopy height RSC Las tools
p045i The LiDAR intensity classified as the 45th percentile of canopy height RSC Las tools
p050i The LiDAR intensity classified as the 50th percentile of canopy height RSC Las tools
p055i The LiDAR intensity classified as the 55th percentile of canopy height RSC Las tools
p060i The LiDAR intensity classified as the 60th percentile of canopy height RSC Las tools
p065i The LiDAR intensity classified as the 65th percentile of canopy height RSC Las tools
p070i The LiDAR intensity classified as the 70th percentile of canopy height RSC Las tools
p075i The LiDAR intensity classified as the 75th percentile of canopy height RSC Las tools
p080i The LiDAR intensity classified as the 80th percentile of canopy height RSC Las tools
p085i The LiDAR intensity classified as the 85th percentile of canopy height RSC Las tools
p090i The LiDAR intensity classified as the 90th percentile of canopy height RSC Las tools
p095i The LiDAR intensity classified as the 95th percentile of canopy height RSC Las tools
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C.3Derived TIFFS outputs for 30x30 grid cells
Metric: Metric description: Caclulation:
TIF_TreeNo A count of all tree crown centres located within a 30x30m grid

area
Calculated externally in R*

TIF_space A mean distance between tree crown centre points Calculated externally in R*
TIF_STD A standard deviation between tree crown centre points Calculated externally in R*
TIF_CR A mean of all canopy radii for each of the tree crown centres

encountered in the 30x30m grid area.
Calculated externally in R*

TIF_m_area Each tree crown point had the crown area calculated using the
crown radius.  The mean of all crown areas was made.

Calculated externally in R*

TIF_to_area Each tree crown point had the crown area calculated using the
crown radius.  The total of all crown areas was made.

Calculated externally in R*

TIF_HT The mean of all tree heights within a 30x30m grid area (m). Calculated externally in R*
TIF_meanCV The mean geometric crown volume within the 30x30m grid

area.
Calculated externally in R*

TIF_totalCV The total geometric crown volume within the 30x30m grid
area.

Calculated externally in R*

*See appendix C.4
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C.4R script for summarising ITC metrics– Annotated R code developed to calculate the
average distance and standard deviation of points within a 30x30m polygon cell.

Overview: the tree list data has gone through a spatial join operation in ArcMap, identifying which
trees tree points intersected with which grid-polygon.  The code iteratively cycles through each
polygon ID and identifies which trees are present within, and then applies distance measurements
from each point to every other point.  An average distance and standard deviation is then calculated
and summary metrics calculated.

library(foreign)#needed for reading and writing to dbf format
#
###load data###
tree.data<- read.dbf("TIFFS_points.dbf")
#create results table#
results<- array(NA,c(0,10))
#
###Distance function###
f<-function(w) apply(xy,1,function(v) sum((v-w)^2))
###select lowest polygon ID no. to begin###
ID<-1
# loop until max ID no.#
while (ID <= 22) {

print(ID)
#subset dataset by polygon ID
tree.subset<-tree.data[which(tree.data$Site_no==ID),]
#error check – metrics cannot be calculated with 1 ITC point
if (nrow(tree.subset)>1) {
#Enter X and Y cords
x<-tree.subset$POINT_X
y<-tree.subset$POINT_Y
#
###compute all distances between distinct points###
xy<-cbind(x,y)
distances2<-apply(xy,1,f)
distances2<-sqrt(distances2)
#Tree/ITC space metrics require minimum distances
minOfColumns=apply(distances2, 2, function(x) min(x[x!=0]) )
TIF_Space<- mean(minOfColumns)
TIF_STD <- sd(minOfColumns)
#
#ITC attributes summaries
TIF_TreeNo<- nrow(tree.subset)#number of points
TIF_HT <- mean(tree.subset$treeHt)#average point height
TIF_CR <- mean(tree.subset$crownRad)#average crown radius
TIF_m_area<- mean(pi*tree.subset$crownRad^2)#average crown horizontal area
TIF_to_area<- sum(pi*tree.subset$crownRad^2)#total crown horizontal area
TIF_meanCV<- mean(tree.subset$canopyVol)#average crown geometric volume
TIF_totalCV<- sum(tree.subset$canopyVol)#total crown geometric volume
#
IMS<-c(ID, TIF_TreeNo, TIF_Space, TIF_STD, TIF_CR, TIF_m_area, TIF_to_area,

TIF_HT, TIF_meanCV, TIF_totalCV) #output row
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IMS<-as.data.frame(t(IMS))
ID<-ID+1 #ID value plus 1
#
###write to output table###
#
results<-merge(IMS,results,all=TRUE)
#
#remove inputs so it doesn’t influence future loops.
rm(x,y,xy,distances2,TIF_TreeNo, TIF_Space, TIF_STD, TIF_CR, TIF_m_area,

TIF_to_area, TIF_HT, TIF_meanCV, TIF_totalCV, IMS)
}
else
{
#####################
###if no points detected skip to next ID###
ID<-ID+1 #ID value plus 1
#
}
######################

}
#end loop#
#rename columns
colnames(results)<-c("ID", "TIF_TreeNo", "TIF_Space", "TIF_STD", "TIF_CR",
"TIF_m_area", "TIF_to_area", "TIF_HT", "TIF_meanCV", "TIF_totalCV")
#output as both csv and dbf format…
write.csv(results,file="TIFFS_metrics_f2012.csv", row.names=T)
write.dbf(results, file="TIFFS_metrics2_f2012.dbf")
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C.5 ITC metric extraction for CSDI– Annotated R code developed to calculate the three
smallest and three largest distances of trees within the 30x30m polygon cell, in addition to the
two smallest and 2 largest horizontal crown diameters.

Overview: the tree list data has gone through a spatial join operation in ArcMap, identifying which
trees tree points intersected with which grid-polygon.  The code iteratively cycles through each
polygon ID and identifies which trees are present within, and then applies distance measurements
from each point to every other point.  The three smallest and three largest distances of trees within the
30x30m polygon cell, in addition to the two smallest and 2 largest horizontal crown diameters are
extracted and output. These metrics are necessary for the Complex stand diversity index (Jaehne and
Dohrenbusch, 1997 in Newmann and Starlinger, 2001).

###Library=foreign###
library(foreign)
#
###load data###
tree.data<- read.dbf("Tiffs_pnts_XY.dbf")#to open .dbf format files
#create results table#
results<- array(NA,c(0,11)) #11 columns for 10 outputs + ID
#
###Distance function###
f<-function(w) apply(xy,1,function(v) sum((v-w)^2))
###select by polygon lowest polygon ID no.
ID<-1
#begin loop until max poly ID no. reached
while (ID <= 21) {

print(ID)
tree.subset<-tree.data[which(tree.data$CELLID==ID),]
if (nrow(tree.subset)>5) { #Requires a minimum of 6 trees to compute

x<-tree.subset$POINT_X
y<-tree.subset$POINT_Y
xy<-cbind(x,y)
#
###compute all distances between distinct points###
distances2<-apply(xy,1,f)
distances2<-sqrt(distances2)
#output minimum distances between ITC points
minOfColumns=apply(distances2, 2, function(x) min(x[x!=0]) )
#
###spatial distribution (3 biggest and 3 smallest)###
###3 minimum distances###
minOfColumns<-sort(minOfColumns)#sort so min. at top
Min.d1<-min(minOfColumns) #1st smallest
Min.d2<-minOfColumns[[2]] #2nd smallest
Min.d3<-minOfColumns[[3]] #3rd smallest
#
###3 maximum distances###
#re-order distances so maximum is at top
minOfColumns<-sort(minOfColumns,decreasing = TRUE)
Max.d1<-max(minOfColumns) #1st biggest
Max.d2<-minOfColumns[[2]] #2nd biggest
Max.d3<-minOfColumns[[2]] #3rd biggest
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#
###crown differentiation (2 biggest and 2 smallest diameters)###
tree.subset2<-tree.subset$crownRad
tree.subset2<-2*tree.subset2 #convert radius to diameter
#
#Min crowns#
tree.subset2<-sort(tree.subset2)#sort so min. at top
Min.cr1<-min(tree.subset2) #1st smallest
Min.cr2<-tree.subset2[[2]] #2nd smallest
#Max crowns#
#re-orders distances so maximum is at top
tree.subset2<-sort(tree.subset2,decreasing = TRUE)
Max.cr1<-max(tree.subset2) #1st biggest
Max.cr2<-tree.subset2[[2]] #2nd biggest
#
#output row#
IMS<-

c(ID,Min.d1,Min.d2,Min.d3,Max.d1,Max.d2,Max.d3,Min.cr1,Min.cr2,Max.cr1,Max.cr2)
IMS<-as.data.frame(t(IMS))
ID<-ID+1 #ID value plus 1
#
###write to output table###
results<-merge(IMS,results,all=TRUE)
#

rm(x,y,xy,distances2,Min.d1,Min.d2,Min.d3,Max.d1,Max.d2,Max.d3,Min.cr1,Min.cr2,
Max.cr1,Max.cr2,IMS)

}
Else #if tree population is ≤1skip to next ID

{
#####################
ID<-ID+1 #ID value plus 1
#
}

######################
}
#end loop#
#Re-name results columns
colnames(results)<-
c("ID","Min.d1","Min.d2","Min.d3","Max.d1","Max.d2","Max.d3","Min.cr1","Min.cr2","Ma
x.cr1","Max.cr2")
#output csv and dbf files
write.csv(results,file="TIFFS_CSDI_part.csv", row.names=T)
write.dbf(results, file="TIFFS_CSDI_part_2.dbf")



Appendix C

469

C.6 Extracted metrics from FWLiDAR data for 30x30 grid cells
Metric: Metric description: Software:
CC Canopy cover – as a percentage.  Calculated from the ratio of ground vs. non-

ground returns.  This is defined by the equation:= ℎℎ
Where hng and hall denote the sum total of non-ground returns and the sum of all
returns.

SPDlib

Meanht Mean height of all returns SPDlib
Meannght Mean height of all non-ground returns SPDlib
Medht Median  height of all returns SPDlib
Mednght Median  height of all non-ground returns SPDlib
Maxht Maximum point height recorded SPDlib
Domht The dominant height – average height of the non-ground first returns in the

highest 20% of returns.
SPDlib

Stdht Standard deviation of all heights SPDlib
stdnght Standard deviation of all non-ground heights SPDlib
Varht Variance of all height values SPDlib
Varnght Variance of non-ground height values SPDlib
Adevht The absolute deviation of all height values SPDlib
Adevnght The absolute deviation of non-ground height values SPDlib
Skwht Skewness of all height values SPDlib
Skwnght Skewness of non-ground height values SPDlib
Kurht Kurtosis of all height values SPDlib
Kurnght Kurtosis of non-ground height values SPDlib
Ht_p05 Percentage counts of LiDAR values located in the 5th percentile of canopy height SPDlib
Ht_p10 Percentage counts of LiDAR values located in the 10th percentile of canopy height SPDlib
Ht_p15 Percentage counts of LiDAR values located in the 15th percentile of canopy height SPDlib
Ht_p20 Percentage counts of LiDAR values located in the 20th percentile of canopy height SPDlib
Ht_p25 Percentage counts of LiDAR values located in the 25th percentile of canopy height SPDlib
Ht_p30 Percentage counts of LiDAR values located in the 30th percentile of canopy height SPDlib
Ht_p35 Percentage counts of LiDAR values located in the 35th percentile of canopy height SPDlib
Ht_p40 Percentage counts of LiDAR values located in the 40th percentile of canopy height SPDlib
Ht_p45 Percentage counts of LiDAR values located in the 45th percentile of canopy height SPDlib
Ht_p50 Percentage counts of LiDAR values located in the 50th percentile of canopy height SPDlib
Ht_p55 Percentage counts of LiDAR values located in the 55th percentile of canopy height SPDlib
Ht_p60 Percentage counts of LiDAR values located in the 60th percentile of canopy height SPDlib
Ht_p65 Percentage counts of LiDAR values located in the 65th percentile of canopy height SPDlib
Ht_p70 Percentage counts of LiDAR values located in the 70th percentile of canopy height SPDlib
Ht_p75 Percentage counts of LiDAR values located in the 75th percentile of canopy height SPDlib
Ht_p80 Percentage counts of LiDAR values located in the 80th percentile of canopy height SPDlib
Ht_p85 Percentage counts of LiDAR values located in the 85th percentile of canopy height SPDlib
Ht_p90 Percentage counts of LiDAR values located in the 90th percentile of canopy height SPDlib
Ht_p95 Percentage counts of LiDAR values located in the 95th percentile of canopy height SPDlib
can_layer No. Canopy Layers SPDlib
can_depth Canopy Depth SPDlib
max_gap Canopy maximum gap SPDlib



Appendix C

470

C.7 – Extracted metrics from FW LiDAR data for 30x30 grid cells (amplitude)
Metric: Metric Description: Software:
Meanamp Mean amplitude value for all returns SPDlib
Meangamp Mean amplitude value for ground returns SPDlib
Meanngamp Mean amplitude value for non-ground returns SPDlib
Medamp Mean amplitude value for all returns SPDlib
Medgamp Mean amplitude value for ground returns SPDlib
Medngamp Mean amplitude value for non-ground returns SPDlib
Minamp Minimum amplitude value for all returns SPDlib
Mingamp Minimum amplitude value for ground returns SPDlib
Minngamp Minimum amplitude value for non-ground returns SPDlib
Maxamp Maximum amplitude value for all returns SPDlib
Maxgamp Maximum amplitude value for ground returns SPDlib
Maxngamp Maximum amplitude value for non-ground returns SPDlib
Stdamp Standard deviation of amplitude value for all returns SPDlib
Stdgamp Standard deviation of amplitude value for ground returns SPDlib
Stdngamp Standard deviation of amplitude value for non-ground returns SPDlib
Varamp Variance of amplitude value for all returns SPDlib
Vargamp Variance of amplitude value for ground returns SPDlib
Varngamp Variance of amplitude value for non-ground returns SPDlib
Adevamp Absolute deviation of amplitude value for all returns SPDlib
Adevgamp Absolute deviation of amplitude value for ground returns SPDlib
Adevngamp Absolute deviation of amplitude value for non-ground returns SPDlib
Skwamp Skewness of amplitude value for all returns SPDlib
Skwgamp Skewness of amplitude value for ground returns SPDlib
Skwngamp Skewness of amplitude value for non-ground returns SPDlib
Kuramp Kurtosis of amplitude value for all returns SPDlib
Kurgamp Kurtosis of amplitude value for ground returns SPDlib
Kurngamp Kurtosis of amplitude value for non-ground returns SPDlib
Amp_p05 The LiDAR intensity classified as the 5th percentile of canopy height SPDlib
Amp_p10 The LiDAR intensity classified as the 10th percentile of canopy height SPDlib
Amp_p15 The LiDAR intensity classified as the 15th percentile of canopy height SPDlib
Amp_p20 The LiDAR intensity classified as the 20th percentile of canopy height SPDlib
Amp_p25 The LiDAR intensity classified as the 25th percentile of canopy height SPDlib
Amp_p30 The LiDAR intensity classified as the 30th percentile of canopy height SPDlib
Amp_p35 The LiDAR intensity classified as the 35th percentile of canopy height SPDlib
Amp_p40 The LiDAR intensity classified as the 40th percentile of canopy height SPDlib
Amp_p45 The LiDAR intensity classified as the 45th percentile of canopy height SPDlib
Amp_p50 The LiDAR intensity classified as the 50th percentile of canopy height SPDlib
Amp_p55 The LiDAR intensity classified as the 55th percentile of canopy height SPDlib
Amp_p60 The LiDAR intensity classified as the 60th percentile of canopy height SPDlib
Amp_p65 The LiDAR intensity classified as the 65th percentile of canopy height SPDlib
Amp_p70 The LiDAR intensity classified as the 70th percentile of canopy height SPDlib
Amp_p75 The LiDAR intensity classified as the 75th percentile of canopy height SPDlib
Amp_p80 The LiDAR intensity classified as the 80th percentile of canopy height SPDlib
Amp_p85 The LiDAR intensity classified as the 85th percentile of canopy height SPDlib
Amp_p90 The LiDAR intensity classified as the 90th percentile of canopy height SPDlib
Amp_p95 The LiDAR intensity classified as the 95th percentile of canopy height SPDlib



Appendix C

471

C.8 – Extracted metrics from FW LiDAR data for 30x30 grid cells (width)
Metric: Metric Description: Software:
Meanwidth Mean width value for all returns SPDlib
Meangwidth Mean width value for ground returns SPDlib
Meanngamp Mean width value for non-ground returns SPDlib
Medwidth Mean width value for all returns SPDlib
Medgwith Mean width value for ground returns SPDlib
Medngwidth Mean width value for non-ground returns SPDlib
Minwidth Minimum width value for all returns SPDlib
Mingwidth Minimum width value for ground returns SPDlib
Minngwidth Minimum width value for non-ground returns SPDlib
Maxwidth Maximum width value for all returns SPDlib
Maxgwidth Maximum width value for ground returns SPDlib
Maxngwidth Maximum width value for non-ground returns SPDlib
Stdwidth Standard deviation of width value for all returns SPDlib
Stdgwidth Standard deviation of width value for ground returns SPDlib
Stdngwidth Standard deviation of width value for non-ground returns SPDlib
Varwidth Variance of width value for all returns SPDlib
Vargwidth Variance of width value for ground returns SPDlib
Varngwidth Variance of width value for non-ground returns SPDlib
Adevwidth Absolute deviation of width value for all returns SPDlib
Adevgwidth Absolute deviation of width value for ground returns SPDlib
Adevngwidth Absolute deviation of width value for non-ground returns SPDlib
Skwidth Skewness of width value for all returns SPDlib
Skwgwidth Skewness of width value for ground returns SPDlib
Skwngwidth Skewness of width value for non-ground returns SPDlib
Kurwidth Kurtosis of width value for all returns SPDlib
Kurgwidth Kurtosis of width value for ground returns SPDlib
Kurngwidth Kurtosis of width value for non-ground returns SPDlib
Wd_p05 The LiDAR width classified as the 5th percentile of canopy height SPDlib
Wd_p10 The LiDAR width classified as the 10th percentile of canopy height SPDlib
Wd_p15 The LiDAR width classified as the 15th percentile of canopy height SPDlib
Wd_p20 The LiDAR width classified as the 20th percentile of canopy height SPDlib
Wd_p25 The LiDAR width classified as the 25th percentile of canopy height SPDlib
Wd_p30 The LiDAR width classified as the 30th percentile of canopy height SPDlib
Wd_p35 The LiDAR width classified as the 35th percentile of canopy height SPDlib
Wd_p40 The LiDAR width classified as the 40th percentile of canopy height SPDlib
Wd_p45 The LiDAR width classified as the 45th percentile of canopy height SPDlib
Wd_p50 The LiDAR width classified as the 50th percentile of canopy height SPDlib
Wd_p55 The LiDAR width classified as the 55th percentile of canopy height SPDlib
Wd_p60 The LiDAR width classified as the 60th percentile of canopy height SPDlib
Wd_p65 The LiDAR width classified as the 65th percentile of canopy height SPDlib
Wd_p70 The LiDAR width classified as the 70th percentile of canopy height SPDlib
Wd_p75 The LiDAR width classified as the 75th percentile of canopy height SPDlib
Wd_p80 The LiDAR width classified as the 80th percentile of canopy height SPDlib
Wd_p85 The LiDAR width classified as the 85th percentile of canopy height SPDlib
Wd_p90 The LiDAR width classified as the 90th percentile of canopy height SPDlib
Wd_p95 The LiDAR width classified as the 95th percentile of canopy height SPDlib
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C.9 – Description of additional FW attributes
Amplitude

The echo amplitude recorded by LiDAR systems is commonly referred to as ‘intensity’
despite the fact that in physical terms it would be more natural to associate the intensity with
the total energy of one echo, whilst the amplitude measurement only characterises the peak
power of the echo (Wagner et al., 2008).Here we define backscatter as the reflection of the
laser pulses back in the direction of the receiver. It is a diffuse reflection due to scattering, as
opposed to specular reflection like a mirror.

According to Alexander et al (2010) the amplitude values for a given object would vary
depending upon flying height or elevation differences from the emitted laser pulse, even
within a single dataset. There would be a requirement for the conversion or correction of
amplitude values from multi-temporal analysis, different airborne LiDAR systems, scan
geometry and atmospheric conditions so comparisons could be made. The additional
information provided by the decomposition the full backscatter waveform is suitable for
calibration, where amplitude and echo width are converted into values proportional to the
surface reflectance of the target object (Hofle and Pfeifer, 2007; Kaasalainen et al., 2009).

It should be noted however that echo amplitude and waveform measurements, such as
those identified above, depend not only on the backscattering properties of the target objects
but also on sensor and flight parameters, such as flying altitude, beam divergence (Alexander
et al., 2010), footprint size (Li, 2008), laser pulse energy, atmospheric conditions, etc.
Wagner et al (2008) states that the amplitude and waveform measurements from different
sensor designs, acquisition campaigns, and flight strips are not directly comparable. It may
not be possible to compare the measurements taken within one flight strip because of
topographic height variations and variable atmospheric conditions along the flight path. It is
therefore necessary to perform some kind of relative correction, or more desirably to convert
the echo amplitude and echo measurements into physical parameters describing the
backscatter properties in a quantitative way (Wagner et al., 2008).
Pulse Width

As mentioned previously backscatter waveforms are popularly modelled by a
mathematical function such as the Gaussian function. The extracted parameter representing
pulse width can be used to evaluate the extent of pulse broadening. The pulse width could
refer to either the Full Width at Half Maximum (FWHM) amplitude, or the standard
deviation, of the echo in the Gaussian decomposition (Alexander et al., 2010). A number of
studies on small-footprint waveform systems can be used to improve range accuracy and
multi-target resolution, especially in complex waveforms (Chauve et al., 2007).In relation to
the ability to extract additional data from the backscatter waveform, it is believed that they
can potentially improve classification of data points. The capability of not only backscatter
cross-section , amplitude, but also pulse width and the number of returns within the
waveforms have been investigated for the classification of land cover objects (Lin and Mills,
2010).

Pulse width has been demonstrated as having an important role in 3D vegetation mapping
(Reitberger et al., 2008).According to Lin and Mills (2010) review a number of studies
related to large-footprint LiDAR systems, where three main factors cause pulse-broadening:
surface roughness, nadir angle, and surface slope.A factorial analysis was then applied,
showing that roughness was the most influential factor affecting pulse response. Slope and
scan angle have little, but similar effects upon the pulse width. They conclude that when
compared with conventional laser intensity values, pulse width can there be considered as a
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universal and relatively stable parameter for small footprint systems to provide information
about surface characteristics. Caution must be applied however in the cases of interpreting
pulse widths from areas to tree canopy and weak pulses (e.g. the forest floor).

The classification of features, such ground points, can be expected using pulse width
information to identify vegetation in open areas. In areas where multiple returns are
encountered, such as over forest canopy, it may be difficult to classify areas based solely on
pulse width (Lin and Mills, 2010).This is due to the micro-scale surface information present
within the small footprint size available, for example 0.2 of 2m.Therefore returns from tree
branches or buildings can exhibit behaviour of smooth surfaces. Also, estimates for pulse
with from weak returns, possibly near the forest floor, can cause erroneous values. Additional
criteria, for example the spatial relationships between points can be incorporated as a measure
to reduce noise.

Conversely, Adams et al. (2012) research indicates that FW parameters relating to
amplitude, peak-width, and exponential decay constant varied substantially across all surface
types, ruling out the potential to determine source characteristics for individual returns for
forest attributes. The exponential decay constant is the return shape between the peak and the
next local minima. However it was observed that pulses on the ground on average had a great
intensity, decay constant and a narrower peak than returns from coniferous foliage.
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C.10Vertical evenness index calculated from ITC R script– R code developed to estimate
the Vertical Evenness index (Neumann and Starlinger, 2001) from TIFFS point data.

Overview:Custom R code was developed to estimate the Vertical Evenness index (Neumann and
Starlinger, 2001) from TIFFS point data. The code goes though each of the necessary calculations
required in construction of the modified Shannon Index for each grid cell (30x30m area) iteratively.
Firstly, each of the trees within the 30x30m area is assigned a height class (1-4) based on its relative
height to the maximum tree height within the plot.  The rows are then subset by the assigned
classification, and the total horizontal areas summed at the subset level.  Index calculations are then
applied, e.g. applying logarithms, and a final index (VE) value is output for each cell ID.

####Library foreign####
library(foreign)#so dbf files can be read-in
#
tree.data<- read.dbf("Tiffs_pnts.dbf")#Tiffs derived tree crown centroid locations
#
#create results table#
results<- array(NA,c(0,2))#output of 2 columns
#
###select by polygon ID###
ID<-1
#begin loop#
while (ID <= 21) {
print(ID)
tree.subset<-tree.data[which(tree.data$CELLID==ID),]
if (nrow(tree.subset)>1) {#clause for if there is only 1 tree in the 30x30m cell#
#
###subset by height group: (1)0-19%, (2)20-49%, (3)50-79%, and (4)80-100%###
max<-max(tree.subset$treeHt) #max height
#
req<-cbind(tree.subset$treeHt, tree.subset$crown_area)
#
req_2 <- apply(req,1,function(x) (x[1]/max)*100) #determine percentage of max. Height#
req_3<-cbind(req,req_2)
#
#Classification Function#
a<-function(x) ifelse (req_3[,3]<=19, "1", ifelse (req_3[,3]<=49, "2", ifelse (req_3[,3]<=79,
"3", ifelse (req_3[,3]<=100, "4", "NA"))))
#
req_4<-apply(req_3, 1, a)
req_5<-cbind(req_3,req_4[,1]) #height group set
colnames(req_5)<-c("HT", "Area", "per","HG") #renames column headings
req_5<-as.data.frame(req_5)
#
###Total Area Calc###
AA<-req_5$Area
AA<-as.character(AA)
AA<-as.numeric(AA)
A_TA<-sum(AA)
#
###subset by height groups - calculate relative area###
#1(0-19)
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group.1<-req_5[ which(req_5[,4]=='1'),]
group.1a<-group.1$Area
group.1a<-as.character(group.1a) #numeric error work-around
group.1a<-as.numeric(group.1a)
g1_TA<-sum(group.1a)
#
#2(20-49
group.2<-req_5[ which(req_5[,4]=='2'),]
group.2a<-group.2$Area
group.2a<-as.character(group.2a)
group.2a<-as.numeric(group.2a)
g2_TA<-sum(group.2a)
#
#3 (50-79)
group.3<-req_5[ which(req_5[,4]=='3'),]
group.3a<-group.3$Area
group.3a<-as.character(group.3a)
group.3a<-as.numeric(group.3a)
g3_TA<-sum(group.3a)
#
#4 (>80)
group.4<-req_5[ which(req_5[,4]=='4'),]
group.4a<-group.4$Area
group.4a<-as.character(group.4a)
group.4a<-as.numeric(group.4a)
g4_TA<-sum(group.4a)
#
###VE index calculation###
#Pi
g1_pi<-((g1_TA/A_TA)*100)/100
g2_pi<-((g2_TA/A_TA)*100)/100
g3_pi<-((g3_TA/A_TA)*100)/100
g4_pi<-((g4_TA/A_TA)*100)/100
#
#Ln Pi
g1_lnpi<-log(g1_pi)
ifelse(g1_pi>0,g1_lnpi,g1_lnpi<-0)
g2_lnpi<-log(g2_pi)
ifelse(g2_pi>0,g2_lnpi,g2_lnpi<-0)
g3_lnpi<-log(g3_pi)
ifelse(g3_pi>0,g3_lnpi,g3_lnpi<-0)
g4_lnpi<-log(g4_pi)
ifelse(g4_pi>0,g4_lnpi,g4_lnpi<-0)
#
#"-(Pi * ln Pi)"
g1_plp<- -(g1_pi*g1_lnpi)
g2_plp<- -(g2_pi*g2_lnpi)
g3_plp<- -(g3_pi*g3_lnpi)
g4_plp<- -(g4_pi*g4_lnpi)
#
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#I
Ind<-g1_plp+g2_plp+g3_plp+g4_plp
#
#VE
VE<-Ind/log2(4)
#
###output row###
IMS<-c(ID,VE)
IMS<-as.data.frame(t(IMS))
ID<-ID+1                                    #ID vaule plus 1
#
###write to output table###
#
results<-merge(IMS,results,all=TRUE)
#
rm(tree.subset,max,req,req_2,req_3,req_4,req_5,AA,A_TA,group.1,group.1a,group.2,group.2
a,group.3,group.3a,group.4,group.4a,g1_TA,g2_TA,g3_TA,g4_TA,g1_pi,g2_pi,g3_pi,g4_pi,
g1_lnpi,g2_lnpi,g3_lnpi,g4_lnpi,g1_plp,g2_plp,g3_plp,g4_plp,Ind,VE,IMS)
#
}

else
{
###If there is <1 values for a Cell ID###
VE<-0
###output row###
IMS<-c(ID,VE)
IMS<-as.data.frame(t(IMS))
ID<-ID+1 #ID vaule plus 1
#
###write to output table###
#
results<-merge(IMS,results,all=TRUE)
#
rm(tree.subset,VE,IMS)
#
}

######################
}#end loop
colnames(results)<-c("ID", "VE")
write.csv(results,file="Tiffs_VE_index.csv", row.names=T)
write.dbf(results, file="Tiffs_VE_index2.dbf")
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C.11 Aggregation index calculated from ITCR script– R code developed to estimate the
Clark-Evans Aggregation Index (Clark and Evans, 1954) and test statistics (Vorcak et al.,
2006) from TIFFS point data.

Overview:Custom R code was developed to estimate the Clark-Evans Aggregation Index (R) (Clark
and Evans, 1954) and the associated test statistic (t) (Vorcak et al., 2006).  The following R code
follows the necessary steps of calculating the index based on the spatial arrangement of trees (TIFFs
LiDAR derived Tree crown centroids).  The code describes how the distances were calculated in
between each of the trees encountered in one of the 30x30m grid cells, identified by ID number.  The
distance to its nearest neighbour was then extracted, an average of which was calculated for the cell
area.  Additionally, a total of the trees within the plot were calculated.  The formulae to calculate the
R index and t test statistic were then performed using the aforementioned inputs.  An additional clause
was added to account for grid cells where no trees were located.

###Library foreign###
library (foreign)#Allows the import of .dbf files
###load data###
tree.data<- read.dbf("Tiffs_pnts_XY.dbf") #Tiffs derived tree crown centroid locations
tree.data<-tree.data[c(11:13)]
#create results table#
results<- array(NA,c(0,4))#results table has 4 columns
#
###Distance function###
f<-function(w) apply(xy,1,function(v) sum((v-w)^2))
###select by polygon ID###
ID<-3033
###Approximate expected spacing###
SP<-2 #expected distance between trees (m)
while (ID <= 44030) {#begin to loop through cell ID no.

print(ID)
tree.subset<-tree.data[which(tree.data$CELLID==ID),]
if (nrow(tree.subset)>1) {#clause for if no trees are encountered
#
x<-tree.subset$POINT_X
y<-tree.subset$POINT_Y
#
###compute all distances between distinct points###
#
xy<-cbind(x,y)
distances<-apply(xy,1,f)
distances<-sqrt(distances)
#minimum distancebetween neighbour trees#
minOfColumns=apply(distances, 2, function(x) min(x[x!=0]) )
#
#count trees#
POINT_X<-tree.subset$POINT_X
POINT_X<-as.data.frame(table(POINT_X))
no.tree<-sum(POINT_X$Freq)
#
###Aggregation Index (R)###
R<-((1/no.tree)*sum(minOfColumns))/(0.5*sqrt(((30*30)/no.tree)))



Appendix C

478

#
###Stochastic Test (t)###
t<-((mean(minOfColumns))-SP)/0.26136/sqrt((no.tree*(no.tree/(30*30))))
#
#Return the distance statistics#
IMS<-c(ID,no.tree,R,t) #output row
IMS<-as.data.frame(t(IMS))
ID<-ID+1 #ID value plus 1
#
###write to output table###
#
results<-merge(IMS,results,all=TRUE)
#
rm(x,y,xy,distances,POINT_X,no.tree,r,t,IMS)
}
else#clause for if no trees are encountered

{
#If no trees, zeros input for index values#
R<-0
t<-0
no.tree<-0
###output row###
IMS<-c(ID,no.tree,R,t)   #output row
IMS<-as.data.frame(t(IMS))
ID<-ID+1 #ID value plus 1
#
###write to output table###
#
results<-merge(IMS,results,all=TRUE)
#
rm(x,y,xy,distances,POINT_X,no.tree,r,t,IMS)
#
}
######################

}#end loop
colnames(results)<-c("ID", "no_tree", "R", "t")#updates column names
write.csv(results,file="TIFFS_aggregation.csv", row.names=T)
write.dbf(results, file="TIFFS_aggregation2.dbf")
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Appendix D – R statistics script listing
D.1 Predictor variable reduction R script
Overview: The AICc procedure (using the MuMin package – available from: http://cran.r-
project.org/web/packages/MuMIn/index.html) is used with a subset of 6 random predictor variables in
each of the 200,000 iterations. The results of which were a table of how many times each of the
predictors was considered statistically significant.

#Load library#
library (MuMin) #For stepwise AIC-c#
#
#Input Datset - column 1 is ID measures#
Resp<- read.csv("Feild_data.csv") #Responce variables#
Pred<- read.csv("LiDAR_DR_data.csv") #Predictor variables (LIDAR - ht. and int.)#
n<-names(Pred) #Records column names from 'Pred'#
#
#Set up simulation settings
nsims<- 300000 #No. of loops#
nv<- 196 #No. of total predictor variables DR LiDAR#
nused<- 6 #No. of variables in each sample#
i<-1 #counter is set to 1 (begin)#
results<- array(NA,c(0,nv)) #output results table (Rows:0 & Columns:95; all cells with
value 'NA')#
colnames(results)<-c(n) #assigns same column names as Lidar.CSV file#
results<-as.matrix(results)#convert data frame to matrix
#
a <- subset(Resp, select=c("Feild_var")) #subset Feildwork table (i.e. 1 Metric only)#
#
while (i<= nsims) { #***start of loop 1***(for loop runs out of memery for large#
vector)#
#
b<-sample(Pred, nused) #Random samples (6)#
d<-cbind(a,b) #merges Feild and RS subsets#
#
print(i)#display iteration no.#
###Regression###
fit<-lm(Field_var~., data=d) #initial linear model(update dependent on
field# metirc)#
model<-dredge(fit) #AIC-c#
s<-(get.models(model, 1))[[1]] #extract best model#
sa<-anova(s) #performsanova test on linear model#
sb<-sa[5] #pulls out Pr(>F) values i.e. significance#
x<-as.atrix(t(sb)) #Flips rows and columns, and converts to

matrix
x[is.na(x)]<-999 #recodes NA to 999#
#
#If p values are <0.05 code to 1, else set to 0. (Will generate a warning, yet results are ok)#
for (j in 1:(ncol(x))) {if (x[j]<0.05) {x[j]<-1} else {x[j]<-0}}
#
results<-merge(x,results,all=TRUE) #adds output of loop to results table
#
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rm(b,d,fit,model,s,sa,sb,j,x,iter,final) #Removes data within loop#
i<-i+1 #Add 1 to the counter#
} #End loop 1#
#print(results) #Prints a results table (not nesseccary given size)#
res_counts<-colSums(results, na.rm=TRUE, dims=1) #will produce a total for each
column#
write.csv(res_counts,file="output.csv", row.names=T) #outputs result#
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D.2AICc implementation using reduced dataset R script
Overview:AICc was applied to the reduced number of predictor variables.  This applies the stepwise
AICc procedure, and selects the ‘best model’ (i.e. the highest alpha value), and performs various
diagnostic tests. The three packages required are:

1. MuMin (http://cran.r-project.org/web/packages/MuMIn/index.html);
2. faraway (http://cran.r-project.org/web/packages/faraway/);
3. and perturb (http://cran.r-project.org/web/packages/perturb/).

#Load Library
library (MuMin) #for stepwise AICc
library (faraway) #for calculating VIF
library (perturb) #for condition index
#
#Input Dataset
Resp<- read.csv("Feild_all.csv") #Response variables
Pred<- read.csv("ave_space_dr_data.csv") #Predictor variables (LIDAR - ht. and int.)
#
a <- subset(Resp, select=c("Mean_dbh")) #subset Fieldwork table
b <- subset(Pred, select=c("TIF_m_area", "TIF_TreeNo", "TIF_space", "hb085i_2",
"hb075i_2", "hb090i", "SIN_Kur", "SIN_Ske", "SIN_MAD", "hb070i_2", "p075_2",
"SIN_MAD_2", "p070_2")) #List of sample attributes as identified in part 1
#
d<-cbind(a,b) #merges Field and RS subsets
###Regression###
fit<-lm(Mean_dbh~., data=d) #initial linear model(update dependent onfieldmetric)
model<-dredge(fit, trace="TRUE",m.max=6) #AIC-c with a max of 6 variables in the
#subset(model, delta<4)                                 #displays models of delta value less than 4
s<-(get.models(model, 1))[[1]] #extract ‘best’ model (lowest AICc weight)
#
#Tests#
ss<-summary(s) #summary - R-squ. and t-test
#
sa<-anova(s) #performesanova test (f-test)
#
ss #display summary
sa #display anova
#
layout(matrix(1:4,2,2))
plot(s) #Displays diagnostic graphs
#
vif(s) #computes VIF values (<10 are ok, =<3 better)
#
colldiag(s)#computes condition index (<15 best)
#
#outputs#
#
sc<-coef(s) #extract coefficients of model
#
write.csv(sc,file="Mean_dbh_DR_AICc_coef001.csv") #output intercepts and coefs
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write.csv(sa,file="Mean_dbh_DR_AICc_anova001.csv", row.names=T) #outputs anova
table
capture.output(ss,file="Mean_dbh_DR_AICc_sum001.txt") #outputs values of summary
#
lemon<-subset(model, delta<4) #extracts all models of delta value less than 4
capture.output(lemon,file="Mean_dbh_DR_AICc_weights001.txt") #outputs values of
AICc models
#
#output graphs#
jpeg("D:/R_DR/graphs/Mean_dbh_DR_001.jpg")
layout(matrix(1:4,2,2))
plot(s)
dev.off()
#
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D.3 R script for combining datasets– AICc implementation using reduced dataset R code
for combining Hyperspectral and LiDAR datasets (a modification of code listed in C2).
Overview:AICc was applied to the reduced number of predictor variables for both LiDAR
and Hyperspectral metrics.  This applies the stepwise AICc procedure, and selects the ‘best
model’ (i.e. the highest alpha value).  And performs various diagnostic tests.

#Load Library
library (MuMin) #for stepwise AICc...
library (faraway) #for calculating VIF...
library (perturb) #for condition index...
#
#Input Datset
Resp<- read.csv("Feild_all.csv") #Response variables
Pred.dr<- read.csv("DR_lidar_all_int.csv") #Predictor variables for LiDAR
Pred.h<- read.csv("hyper_met.csv") #Predictor variables for Hyperspectral
#
a <- subset(Resp, select=c("Mean_dbh")) #subset Fieldwork table
#
###13 max each for pred subsets###
b <- subset(Pred.dr, select=c("TIF_m_area", "TIF_TreeNo", "hb085i_2", "hb075i_2",
"hb090i", "SIN_Kur", "SIN_Ske", "SIN_MAD", "hb070i_2", "p075_2"))

#List of sample attributes as identified in part 1
#
c <- subset(Pred.h, select=c("rendvi1_STD", "sri2_STD", "mrendvi1_STD", "no_tree",
"mresri2_STD", "rendvi2_STD", "wbi1_Range", "sipi1_Mean", "cri1_Mean"))

#List of sample attributes as identified in part 1
#
d<-cbind(a,b,c) #merges Field and RS subsets
#
###Regression###
fit<-lm(Mean_dbh~., data=d) #initial linear model(update dependent onfield metric)
model<-dredge(fit, trace="TRUE",m.max=6) #AIC-c with a max of 6 variables in the
#subset(model, delta<4)                                 #displays models of delta value less than 4
s<-(get.models(model, 1))[[1]] #extract ‘best’ model (lowest AICc weight)
#
#Tests#
ss<-summary(s) #summary - R-squ. and t-test
#
sa<-anova(s) #performesanova test (f-test)
#
ss #display summary
sa #display anova
#
layout(matrix(1:4,2,2))
plot(s) #Displays diagnostic graphs
#
vif(s) #computes VIF values (<10 are ok, =<3 better)
#
colldiag(s)#computes condition index (<15 best)
#
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#outputs#
#
sc<-coef(s) #extract coefficients of model
#
write.csv(sc,file="Mean_dbh_HDR_AICc_coef001.csv") #output intercepts and coefs
write.csv(sa,file="Mean_dbh_HDR_AICc_anova001.csv", row.names=T) #outputs anova
table
capture.output(ss,file="Mean_dbh_HDR_AICc_sum001.txt") #outputs values of summary
#
lemon<-subset(model, delta<4) #extracts all models of delta value less than 4
capture.output(lemon,file="Mean_dbh_HDR_AICc_weights001.txt") #outputs values of
AICc models
#
#output graphs#
jpeg("D:/R_DR/graphs/Mean_dbh_HDR_001.jpg")
layout(matrix(1:4,2,2))
plot(s)
dev.off()
#
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Appendix E – Estimation of field plot level metrics and index construction

E.1 – R script example of estimation of field plot level metrics from Remote Sensing
data
Overview: once the relevant remote sensing metrics have been extracted for the spatial extents of the
2012 validation fieldwork polygons the regression model equations can be applied in order to predict
field plot level information. The following demonstrates the calculation of 10 metric using a
combined FW LiDAR and Hyperspectral dataset.  The script uses a loop to calculate the 10 metrics
for each polygon individually for 20 iterations (i.e. 20 plots). This code is part 1 of 4.

##########################################################
#Field level metrics estimations from linear multiple regression (AICc)#
##########################################################
#
###load data###
Input.1 <- read.csv("fw_metrics.csv") #FW LiDAR metrics
Input.2 <- read.csv("H_metrics.csv") #Hyper. Metrics
tree.data<- cbind(Input.1, Input.2)#simple merge as tables already organised
#create results table#
results<- array(NA,c(0,11))
#
###select by field polygon ID###
ID<-22
while (ID <= 41) {

print(ID)
tree.subset<-tree.data[which(tree.data$Site_no==ID),]
#
####Regression models####
#
###[1] no. trees = kurht_2 + sri2_Min + TIF_m_area ###
b_0 <- 42.0392016716989
x_1 <- tree.subset$kurht_2
b_1 <- 5.56287416809215
x_2 <- tree.subset$sri2_Min
b_2 <- 0.933545350587574
x_3 <- tree.subset$TIF_m_area
b_3 <- -0.370085054901359
n_tree<- b_0+b_1*x_1+b_2*x_2+b_3*x_3
rm(b_0, x_1, x_2, b_1, b_2, x_3, b_3)
n_tree<- round(n_tree)
#
###[2] no. Native trees = sri2_Min + wd_p45###
b_0 <- 47.9239254629305
x_1 <- tree.subset$arvi2_Min
b_1 <- 1.450808158186
x_2 <- tree.subset$wd_p45
b_2 <- -1.24794352586117
n_nat_tree<- b_0+b_1*x_1+b_2*x_2
rm(b_0, x_1, x_2, b_1, b_2)
n_nat_tree<- round(n_nat_tree)
if (n_nat_tree>n_tree ) {n_nat_tree<- n_tree }
#
###[3] Perc. Native trees = arvi1_Min + sri1_Sum + wbi2_STD###
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b_0 <- 145.677977047386
x_1 <- tree.subset$arvi1_Min
b_1 <- -231.675235956868
x_2 <- tree.subset$sri1_Sum
b_2 <- -0.0045824390091343
x_3 <- tree.subset$wbi2_ST
b_3 <- -568.864097646821
P_nat_tree<- b_0+b_1*x_1+b_2*x_2+b_3*x_3
rm(b_0, x_1, b_1, x_2, b_2, x_3, b_3)
if (P_nat_tree< 0) {P_nat_tree<- 0}
if (P_nat_tree> 100) {P_nat_tree<-100}
#
###[4] Tree_spec = rendvi1_Max + rendvi1_STD + sipi1_Range ###
b_0 <- 6.04046099373652
x_1 <- tree.subset$rendvi1_Max
b_1 <- -9.43249299222572
x_2 <- tree.subset$rendvi1_STD
b_2 <- 55.420126438021
x_3 <- tree.subset$sipi1_Range
b_3 <- -1.28912967751252
tree_spec<- b_0+b_1*x_1+b_2*x_2+b_3*x_3
rm(b_0, x_1, x_2, b_1, b_2, x_3, b_3)
tree_spec<- round(tree_spec)
#
###[5] Avg_space = pri2_STD + TIF_Space + varht_2###
b_0 <- 2.46610685169097
x_1 <- tree.subset$pri2_STD
b_1 <- -167.042177706407
x_2 <- tree.subset$TIF_Space
b_2 <- 0.462374249625309
x_3 <- tree.subset$varht_2
b_3 <- 0.024540558661383
Avg_space<- b_0+b_1*x_1+b_2*x_2+b_3*x_3
rm(b_0, x_1, x_2, b_1, b_2, x_3,b_3)
#
###[6] STD_space = sri2_Range + TIF_m_area###
b_0 <- 0.553684220907678
x_1 <- tree.subset$sri2_Range
b_1 <- 0.0146595522853885
x_2 <- tree.subset$TIF_m_area
b_2 <- 0.0193965203557637
STD_space<- b_0+b_1*x_1+b_2*x_2
rm(b_0, x_1, x_2, b_1, b_2)
#
###[7] Mean_DBH =TIF_m_area + varngwid_2###
b_0 <- 47.6793961599107
x_1 <- tree.subset$TIF_m_area
b_1 <- 0.339219056953958
x_2 <- tree.subset$varngwid_2
b_2 <- -0.0141330321444415
Mean_DBH<- b_0+b_1*x_1+b_2*x_2
rm(b_0, x_1, x_2, b_1, b_2)
#
###[8] StDev_DBH = amp_p65 + TIF_m_area + wd_p25_2###
b_0 <- 14.1482758025794
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x_1 <- tree.subset$amp_p65
b_1 <- -1.05669943050351
x_2 <- tree.subset$TIF_m_area
b_2 <- 0.194681260577237
x_3 <- tree.subset$wd_p25_2
b_3 <- 0.959834961240511
StDev_DBH<- b_0+b_1*x_1+b_2*x_2+b_3*x_3
rm(b_0, x_1, x_2, x_3, b_1, b_2, b_3)
#
###[9] Total_BA = meanht + rendvi1_Max + TIF_Space ###
b_0 <- 5.96011685133491
x_1 <- tree.subset$meanht
b_1 <- 0.207343475415511
x_2 <- tree.subset$rendvi1_Max
b_2 <- -5.69841431501339
x_3 <- tree.subset$TIF_Space
b_3 <- -0.202867422
Total_BA<- b_0+b_1*x_1+b_2*x_2+b_3*x_3
rm(b_0, x_1, x_2, b_1, b_2, x_3,b_3)
#
###[10] B_tree = kurgamp_2 + mednght + TIF_Space###
b_0 <- -40.7244581979019
x_1 <- tree.subset$kurgamp_2
b_1 <- -6.25287592951413
x_2 <- tree.subset$mednght
b_2 <- 4.03570454646313
x_3 <- tree.subset$TIF_Space
b_3 <- 3.72881553821154
B_tree<- b_0+b_1*x_1+b_2*x_2+b_3*x_3
rm(b_0, x_1, x_2, b_1, b_2, x_3, b_3)
if (B_tree< 0) {B_tree<- 0}
if (B_tree> 100) {B_tree<-100}
#
###create output row for results table###
IMS <- c(ID, n_tree, n_nat_tree, P_nat_tree, tree_spec, Avg_space, STD_space, Mean_DBH,

StDev_DBH, Total_BA, B_tree)
IMS<-as.data.frame(t(IMS))
#merges to results table#
results<-merge(IMS,results,all=TRUE)
#
ID<-ID+1
######################

}
#assigns column names to results table#
colnames(results)<-c("ID", "no_tree", "no_nat_tree", "perc_nat_tree", "tree_spec", "Avg_space",
"STD_space", "Mean_DBH", "StDev_DBH", "Total_BA", "B_tree")
write.csv(results,file="Val_part1_10_f2012.csv", row.names=T)
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E.2 – R script example of estimation of condition indices from derived field plot level
metrics
Overview: Once the metrics have been calculated (and the best estimates selected) the conditional
indices can be calculated. Again the calculations area applied in a loop, where each loop-iteration
extracts metrics for one field site and calculates the four condition indices.  These indices (in order of
appearance) are:  Score index 1; Complexity Index, Diameter Differentiation index and Complex
Stand diversity index.

###load data###
metric.data <- read.csv("Best_DR_FW_H.csv")
#additional metrics#
Input.A <- read.csv("fw_metrics.csv")
Input.B <- read.csv("Fld_lvl_Class_metrics.csv")
Input.C <- read.csv("TIFFS_CSDI_part_F2012.csv")
#
#create results table#
results <- array(NA,c(0,5))
#
###select by polygon ID###
ID<-22
while (ID <= 41) {

print(ID)
metric.subset<-metric.data[which(metric.data$ID==ID),]
#
###Score index 1###
#
###Indicators 1-17###
#[1] No. of trees (ha-1) – convert to count per hectare#
no.trees <- round((metric.subset$no_tree/9)*100)
#[2] Shannon index#
SH_count <- metric.subset$SH_count
#[3] Basal Area (m2 ha-1)#
Total_BA <- (metric.subset$Total_BA/9)*100
#[4] Mean DBH (cm)#
Mean_DBH <- metric.subset$Mean_DBH
#[5] STD of DBH (cm)#
StDev_DBH <- metric.subset$StDev_DBH
#[6] Percentage of big trees (>40cm DBH)#
big_tree <- metric.subset$big_tree
if (big_tree < 0) {big_tree <- 0}
if (big_tree >100) {big_tree <- 100}
#[7] Mean Height#
FW.subset<-Input.A[which(Input.A$Site_no==ID),]
mean_ht <- FW.subset$TIF_HT
#
#[8] No. of total saplings (ha-1)#
No_saplings <- round((round(metric.subset$No_saplings)/9)*100)
#[9] No. of native saplings (ha-1)#
No_Nat_sap <- round((round(metric.subset$No_Nat_sap)/9)*100)
if (No_saplings < No_Nat_sap) {No_Nat_sap <- No_saplings}
#check result of if...#
#
#[10] Vol. downed dead wood (m3 ha-1)#
D_ddwvol <- metric.subset$D_ddwvol*100
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#[11] Downed dead wood decay class#
D_DDW_class <- metric.subset$D_DDW_class
if (D_ddwvol <= 0) {D_DDW_class <- 0}
#
#[12] Volume of snag (m3 ha-1)#
D_snagvol <- (metric.subset$D_snagvol/9)*100
#[13] Snag Decay class#
D_Snag_class <- metric.subset$D_Snag_class
if (D_snagvol <= 0) {D_Snag_class <- 0}
#
#[14] No. of total seedings (ha-1)#
No_seedlings <- round(metric.subset$No_seedlings*100)
#[15] No. of native seedings (ha-1)#
No_nat_seed <- round(metric.subset$No_nat_seed*100)
if (No_saplings < No_Nat_sap) {No_seedlings <- No_nat_seed}
#[16] Shannon index for native seedlings#
Nat_seedlings_SH <- metric.subset$Nat_seedlings_SH
if (Nat_seedlings_SH <0) {Nat_seedlings_SH <-0}
#[17] No. of ground veg. species#
No_vascular <- round(metric.subset$No_vascular)
#
###Index (score no.1) construction###
#[1]
if (no.trees >= 222) {I.1 <- 1} else {I.1 <- 0}
#[2]
if (SH_count >= 0.87) {I.2 <- 1} else {I.2 <- 0}
#[3]
if (Total_BA >= 23) {I.3 <- 1} else {I.3 <- 0}
#[4]
if (Mean_DBH >= 32) {I.4 <- 1} else {I.4 <- 0}
#[5]
if (StDev_DBH >= 14) {I.5 <- 1} else {I.5 <- 0}
#[6]
if (big_tree >= 7) {I.6 <- 1} else {I.6 <- 0}
#[7]
if (mean_ht >= 17) {I.7 <- 1} else {I.7 <- 0}
#[8]
if (No_saplings >= 91) {I.8 <- 1} else {I.8 <- 0}
#[9]
if (No_Nat_sap >= 91) {I.9 <- 1} else {I.9 <- 0}
#[10]
if (D_ddwvol >= 26) {I.10 <- 1} else {I.10 <- 0}
#[11]
if (D_DDW_class >= 0.5) {I.11 <- 1} else {I.11 <- 0}
#[12]
if (D_snagvol >= 16) {I.12 <- 1} else {I.12 <- 0}
#[13]
if (D_Snag_class >= 0.4) {I.13 <- 1} else {I.13 <- 0}
#[14]
if (No_seedlings >= 63219) {I.14 <- 1} else {I.14 <- 0}
#[15]
if (No_nat_seed >= 63219) {I.15 <- 1} else {I.15 <- 0}
#[16]
if (Nat_seedlings_SH >= 0.89) {I.16 <- 1} else {I.16 <- 0}
#[17]
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if (No_vascular >= 0.89) {I.17 <- 1} else {I.17 <- 0}
#Sum index values#
score_index_1 <-

I.1+I.2+I.3+I.4+I.5+I.6+I.7+I.8+I.9+I.10+I.11+I.12+I.13+I.14+I.15+I.16+I.17
###############
#
### Complexity Index (HC) ###
tree_spec <- round(metric.subset$tree_spec)
HC_index <- (mean_ht * Total_BA * no.trees * tree_spec)/10000
###############
#
### Diameter Differentiation index###
DDI_index <- 1-(1/no.trees)*(metric.subset$Sum_Diam_Diff)
#
###############
#
### Complex Stand diversity index ###
#[1] tree species composition
ecog.subset<-Input.B[which(Input.B$ID==ID),]
##
CSDI.1 <- log(tree_spec)*(1.5-

(((ecog.subset$max_pop/no.trees)*100)/100)+(((ecog.subset$min_pop/no.trees)*100)/100))
#[3]Index of spatial distribution – with correction#
STD_space <- metric.subset$STD_space
CSDI.3.fb <- 1/((((CSDI.subset$Min.d1-(2*STD_space)) + (CSDI.subset$Min.d2-

(2*STD_space)) + (CSDI.subset$Min.d3)-(2*STD_space))/3)+(((CSDI.subset$Max.d1-
(2*STD_space)) + (CSDI.subset$Max.d2-(2*STD_space)) + (CSDI.subset$Max.d3)-
(2*STD_space))/3))

#
CSDI.3.vb <- (1-((CSDI.subset$Min.d1-(2*STD_space)) + (CSDI.subset$Min.d2-

(2*STD_space)) + (CSDI.subset$Min.d3-(2*STD_space)))/((CSDI.subset$Max.d1-(2*STD_space))
+ (CSDI.subset$Max.d2-(2*STD_space)) + (CSDI.subset$Max.d3-(2*STD_space))))*CSDI.3.fb

#
#[4]Index of crown differentiation
Avg_base_ht <- metric.subset$Avg_base_ht
StDev_base_ht<- metric.subset$StDev_base_ht
if (Avg_base_ht < 2) {StDev_base_ht <- 0}
if (Avg_base_ht < StDev_base_ht) {StDev_base_ht <- 0}
CSDI.4 <- (1-log(Avg_base_ht-StDev_base_ht)/4)+((CSDI.subset$Max.cr1+

CSDI.subset$Max.cr2)/(CSDI.subset$Min.cr1 + CSDI.subset$Min.cr2))
#[5] Calculate index from components 1-4
p <- 4
q <- 3
CSDI.5c <- p * CSDI.1 + q * metric.subset$IOVS_1 + CSDI.3.vb + CSDI.4
#
IMS <- c(ID, score_index_1, HC_index, DDI_index, CSDI.5c)
IMS<-as.data.frame(t(IMS))
results<-merge(IMS,results,all=TRUE)
#
ID<-ID+1
######################

}
#Add column headings#
colnames(results)<-c("ID", "score_index_1", "HC_index", "DDI_index", "CSDI")
#output results table#
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write.csv(results,file="Val_indexes_f2012.csv", row.names=T)
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Appendix F–Comparison of mapping of forest metrics from different
inputs
F.1 – A comparison of mapped remote sensing modelled forest metrics

As stated in section 4.7, the regression models could be applied for the entirety of the
study site, provided there was coincident airborne remote sensing data coverage to provide
input metrics. A subset of 10 out of the total of 39 field-level metrics are presented here. The
examples of the ten field-level metrics within each 30x30m area illustrated are: (i) the
number of tree stems; (ii) the number of tree species encountered; (iii) SH diversity index;
(iv) the total basal area; (v) the mean DBH; (vi) standing deadwood volume; (vii) standing
deadwood decay class; (viii) the number of saplings; (ix) the number of seedlings; and (x) the
number of seedling species.

The mapping subset will centre upon the Frame Wood area, with elements of Tantany
Woods, Frame-Heath and Hawkhill inclosures visible. This area contains a mixture of semi-
ancient woodland, such as those located in Frame and Tantany Woods, and managed
plantation woodland, such as that in the Frame-Heath and Hawkhill inclosures. Figure F.1
illustrates the subset area comprising a 1x1m resolution CHM, and the primary species as
identified by FC inventory data.

Those Hyperspectral, DR LiDAR or composite DR and hyperspectral regression models
reported in Chapter 8.4were used to calculate the map values. Figure F.2 presents the results
of the model calculations applied over a wide area for the sample metrics i-v. The subset area
for the number of tree stems (Figure F.2a), indicates higher stem densities within the
plantation inclosures. A relatively even tree stem density can be observed through much of
the semi-ancient woodland. The number of tree species (Figure F.2b) varies across plantation
woodland compartments from low to very high. Generally, this corresponds well to the data
provided by the Forestry Commission (see Figure F.1c). The SH index of diversity (see
Figure F.2c) generally indicates higher diversity within the semi-ancient/deciduous
woodlands. Total basal area for plantation, typically coniferous, woodland is almost double
that of the semi-ancient deciduous woodland (see Figure F.2d), however the values presented
are low. Patterns of values for mean DBH (see Figure F.2e) are opposite to that of total basal
area, higher values are located within the semi-ancient and deciduous woodland.

Figure F.3 presents the mapping for results of a number of understorey metrics, i.e. vi-x
as above. Higher standing deadwood volume values are located primarily within the semi-
ancient and deciduous woodlands, whereas lower values, including zero, were found in the
managed plantation areas (see Figure F.3a). This general pattern is again found concerning
the standing deadwood decay class, however some deciduous areas show lower decay values.
(seeFigure F.3b). Higher values for the number of saplings were located within Tantany
Wood and deciduous compartments located within Hawkhill (see Figure F.3c), whilst
plantation coniferous area and elements of Frame Wood had lower values, this was
commonly zero. The number of seedlings typically follows the same pattern (see Figure
F.4d). The final sample metric, the number of seedling species, is generally higher in the
semi-ancient and deciduous woodland, although there are coniferous compartments within
Frame-heath and Hawkhill which exhibit higher values (see Figure F.4e).
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Figure F.1 – The subset area for presenting predicted field-level metrics over wide
areas. Frame and Tantany Woods in addition to Frame-Heath and
Hawkhillinclosures intersect this area. Ordnance survey mapping, 1x1m raster CHM,
and FC inventory primary species classification are presented for reference.
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Figure F.2 – Mapped results for regression models produced by DR and hyperspectral datasets.
These metrics are: (a) the number of tree stems; (b) the number of tree species encountered; (c)
SH diversity index; (d) the total basal area; and (e) the mean DBH.
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Figure F.3 - Mapped results for regression models produced by DR and hyperspectral datasets.
These metrics are: (a) standing deadwood volume; (b) standing deadwood decay class; (c) the
number of saplings; (d) the number of seedlings; and (e) the number of seedling species.
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Figure F.3 - Mapped results for regression models produced by DR and hyperspectral datasets.
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The hyperspectral, FW LiDAR or composite FW and hyperspectral regression models
reported in chapter 8.4 were used to calculate map values. Figure F.4 presents the results of
the model calculations applied over a wide area for the sample field-level metrics i-v. It
should be noted that there is a line of grid cells from north to south on the eastern side of this
subset area. When considering the first metric for the subset area, the number of tree stems
per grid cell (see Figure F.4a), a similar pattern is observed in Figure F.2a, with higher counts
present in plantation and coniferous compartments. However, higher counts are observed
here. The second metric, the number of tree species (see Figure F.4b), indicates a slightly
higher proportion of tree species present in semi-ancient and deciduous areas. There would
seem to be fewer species detected using this dataset than that employed in Figure F.2b. The
SH index of diversity also shows a very similar pattern to than observed before, however
there is a greater distinction between plantation coniferous woodland and other types (see
Figure F.4c). The estimates of total basal area show a very different pattern to the previous
(Figure F.2d) with a different range of values. Figure F.4d has higher values in much of the
semi-ancient deciduous woodland. The mean DBH has a very similar pattern to that in Figure
F.2e, however higher and more variable values are detected in semi-ancient deciduous areas.

Figure F.5 presents the estimated understorey metric values for the composite
hyperspectral and FW dataset. Standing deadwood volume (See Figure F.5a) shows an almost
identical pattern to that depicted in Figure F.3, albeit with smaller values.  The pattern of
standing deadwood decay class, contains much more variability than its counterpart in Figure
F.3.  Conifer area show low decay class values, however deciduous areas contain a great deal
of variability, for example if Tanatany Wood is contrasted with Frame Wood. The overall
number of saplings (see Figure F.5c) detected by the hyperspectral and FW composite model
is lower than those indicated in Figure F.3, where the overall pattern of higher values of
saplings in deciduous areas is higher.  Coniferous areas are however not completely devoid of
values. The number of seedlings in Figure F.5d has lower values than those identified in
Figure F.3d, however the same pattern of higher counts being located in semi-ancient and
deciduous woodland and smaller values in plantation conifer areas. The final metric, the
number of seedling species, is generally higher in the semi-ancient and deciduous woodland
(see Figure F.5e). A different pattern is evident when compared with Figure F.3e, where the
formers seedling species number is lower in Hawkhill deciduous compartments.
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Figure F.4 – Mapped results for regression models produced by FW and hyperspectral datasets.
These metrics were: (a) the number of tree stems; (b) the number of tree species encountered;
(c) SH diversity index; (d) the total basal area; and (e) the mean DBH.

Appendix F

497

Figure F.4 – Mapped results for regression models produced by FW and hyperspectral datasets.
These metrics were: (a) the number of tree stems; (b) the number of tree species encountered;
(c) SH diversity index; (d) the total basal area; and (e) the mean DBH.

Appendix F

497

Figure F.4 – Mapped results for regression models produced by FW and hyperspectral datasets.
These metrics were: (a) the number of tree stems; (b) the number of tree species encountered;
(c) SH diversity index; (d) the total basal area; and (e) the mean DBH.



Appendix F

498

Figure F.5 - Mapped results for regression models produced by DR and hyperspectral datasets.
These metrics were: (a) standing deadwood volume; (b) standing deadwood decay class; (c) the
number of saplings; (d) the number of seedlings; and (e) the number of seedling species.
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Figure F.5 - Mapped results for regression models produced by DR and hyperspectral datasets.
These metrics were: (a) standing deadwood volume; (b) standing deadwood decay class; (c) the
number of saplings; (d) the number of seedlings; and (e) the number of seedling species.
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F.2 – A comparison of remote sensing derived condition indices
The following indices were calculated from the various remote sensing derived products

relating to summarised ITC and statistically derived field plot-level metrics. The summary
ITC metrics are utilised on their own for the first to indices outlined in this section. The
statistically derived metrics reported here conform to three sets of model estimates, typically
those identified with the smallest RMSE/NRMSE from the following: (i) hyperspectral; (ii)
DR LiDAR, (iii) FW LiDAR; (iv) combined hyperspectral and DR LiDAR; and (v) combined
hyperspectral and FW LiDAR dataset metrics, as identified in Chapter 8.4.

The vertical evenness (VE) index and the Clark-Evans aggregation index were both
calculated from DR LiDAR ITC analysis using data generated from the TIFFS software, and
as such are not mentioned in the following as no comparisons can be made.
F.2.1 The tree diameter differentiation index

The tree diameter differentiation index is a measure of the degree of variability in tree
stem size within the plot.  The inputs for the equation are the number of stems within the plot
and an estimate of the sum of the differences between NN tree DBH values, both of which
were estimated statistically.  The resultant estimation of the index calculations are presented
in Table F.1 for both (i) DR, hyperspectral or combined DR and hyperspectral and (ii) FW,
hyperspectral or combined FW and hyperspectral datasets.

The combined DR and hyperspectral estimate of the diameter differentiation index
produced an RMSE of 0.26, and NRMSE of 0.318.  Plots 4 and 20, failed to produce an index
value.  Smaller field index values generally were best predicted.  Plot 14 was underestimated
by a relatively large amount.  The combined FW and hyperspectral estimate of the index
produced an RMSE value of 0.19 and a NRMSE of 0.23.  The majority index estimations are
close to the field index value.  Again, plot 14 underestimated the field value, while plot 13
overestimated the field value.  The estimate in Plot 12 failed.
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Table F.1 – Comparison of the field derived and remote sensing derived tree diameter
differentiation index

Site
no.

Field calc.
index

DR and/or
Hyper.  index

FW and/or
Hyper.  index

1 0.230 0.224 0.315
2 0.192 0.322 0.218
3 0.221 0.296 0.412
4 0.518 0.000 0.560
5 0.264 0.317 0.212
6 0.248 0.634 0.290
7 0.349 0.299 0.339
8 0.362 0.287 0.484
9 0.325 0.371 0.342

10 0.409 0.648 0.216
11 0.454 0.152 0.453
12 0.186 0.468 0.000
13 0.385 0.414 0.752
14 1.000 0.338 0.358
15 0.338 0.575 0.395
16 0.264 0.245 0.329
17 0.232 0.132 0.174
18 0.200 0.155 0.400
19 0.342 0.542 0.308
20 0.401 0.000 0.414

- RMSE 0.259 0.189
- NRMSE 0.318 0.232
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F.2.2 The complexity index (HC)
The Complexity Index (HC) combines four measures of stand description: (i) number of

tree species; (ii) stem number per hectare; (iii) dominant height; and (iv) the total basal area
per hectare.  Each of these inputs was estimated statistically through regression models, as
described in the previous step.  Table F.2 summarises the results of the index calculated for
the field and remote sensing derived data.  There is a great deal of variability in the values for
all index calculations, which is reflected in the large numbers reported in the three estimates
or RMSE.  The metric set with the lowest overall RMSE and NRMSE is FW LiDAR and
Hyperspectral, with values of 95.433 and 0.173 respectively. Strangely the index calculation
computed by the metrics with the lowest RMSE, as defined in Chapter 8.4, produced an
RMSE and NRMSE higher, 113.8 and 0.206 respectively. Overall values for DR LiDAR and
hyperspectral models groups RMSE and NRMSE values are higher, 122.9 and 0.22
respectively.  The differences in RMSE indicate the differences in the error attached to each
input.
Table F.2 – Comparison of field vs. remote sensing derived HC index
Site
no.

Class Field calc.
HC index

DR and/or
Hyper. HC index

FW and/or
Hyper. HC index

‘Best’ models
HC index

22 Deciduous 45.927 19.029 27.967 29.764
23 Coniferous 67.462 54.079 56.309 60.028
24 Deciduous 88.474 71.790 163.379 83.493
25 Deciduous 59.631 58.924 147.677 108.126
26 Deciduous 64.692 11.166 33.456 22.132
27 Deciduous 109.911 38.423 115.222 106.815
28 Coniferous 109.478 29.108 65.606 42.652
29 Deciduous 38.563 43.739 128.338 93.241

30* Coniferous 567.434 81.622 197.055 111.770
32 Mixed 100.279 41.201 71.523 45.996
33 Coniferous 137.894 77.996 166.483 75.419
34 Mixed 106.467 58.603 82.984 74.156
35 Coniferous 194.753 58.902 193.562 85.815
36 Coniferous 92.196 67.139 92.259 78.217
37 Deciduous 45.529 62.086 80.968 100.459
38 Mixed 120.836 51.433 111.531 81.291
39 Coniferous 14.841 27.737 73.994 37.516
40 Deciduous 31.780 66.810 58.148 71.521
41 Mixed 78.519 57.534 20.814 75.311

- - RMSE 122.911 95.433 113.842
- - NRMSE 0.222 0.173 0.206
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F.2.3 The complex stand diversity index (CSDI)
The complex stand diversity index (CSDI) also requires a combination of inputs from a

combination of direct measurements from remote sensing outputs and statistically derived
outputs from regressions.  It is composed of four indices relating to species composition, stem
size, stem spacing, and crown dimensions. Table F.3 summarises the results of indices
calculated for the field and remote sensing derived data.  Plots 21 and 30 contained
measurement errors in the field data and were removed as part of the comparison.  Overall
the RMSE and NRMSE values for all three model group estimates were very similar.  The
lowest RMSE value (3.281) is for DR and/or hyperspectral estimates. The index was
calculated from the statistically derived estimates with the lowest RMSE, see Chapter 8.4,
and has a slightly higher RMSE when the CSDI was calculated.
Table F.3 – Comparison of field vs. remote sensing derived CSDI index
Site
no.

Class Field calc.
CSDI index

DR and Hyper.
CSDI index

FW and Hyper.
CSDI index

Best models
CSDI index

22 Deciduous - 8.894 11.476 11.431
23 Coniferous 11.499 10.322 9.888 10.609
24 Deciduous 12.778 10.200 13.716 10.127
25 Deciduous 9.920 12.503 14.724 13.168
26 Deciduous 10.223 8.996 12.421 10.730
27 Deciduous 11.465 11.460 14.292 14.045
28 Coniferous 6.882 9.773 11.062 11.080
29 Deciduous 10.461 9.941 12.558 11.110
30 Coniferous - - - -
31 Coniferous 4.273 13.531 15.607 13.077
32 Mixed 9.220 9.929 10.686 9.680
33 Coniferous 9.505 6.980 8.719 6.916
34 Mixed 12.390 10.452 9.883 11.237
35 Coniferous 10.146 8.203 12.031 8.633
36 Coniferous 7.417 9.342 9.447 10.259
37 Deciduous 8.376 10.549 11.469 12.376
38 Mixed 8.779 12.381 14.079 12.592
39 Coniferous 5.762 10.582 11.293 11.304
40 Deciduous 8.108 11.821 11.284 12.078
41 Mixed 10.640 13.860 6.737 14.620

- - RMSE 3.281 4.083 3.593
- - NRMSE 0.386 0.480 0.422

Given the nature of this combined index, the four component inputs can be broken down
and analysed separately.  Table F.4 summarises the differences between index inputs for the
first component of the index relating to tree species composition.  RMSE and NRMSE values
were high, and poorly represented the index value.  The index calculated from the ‘best’
estimates, i.e. those with the lowest RMSE/NRMSE identified in Chapter 8.4, performed in
the middle of the other two datasets. The index incorporates estimates of tree number, species
number and the relative proportions of the maximum and minimum species within each
30x30m grid cell, the latter was derived from classified ITC objects (see section 7.6). This
again highlights the underestimation of tree number from the ITC delineation methods and
the statistically derived number of trees.
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The construction of the second index element, the index of vertical structure, was derived
statistically and reported in section 8.4.  The construction of the third index, the index of
spatial distribution, relates to the comparison of the three largest and three smallest NN stem
distances, which was reported in section 7.4.1, Table F.5 reports the comparison between
field and remote sensing derived values of CSDI-3.  The FW and hyperspectral derived index
(which used the same inputs as those determined as the ‘best’ estimates) produces RMSE and
NRMSE values lower than for using DR and hyperspectral inputs, indicating that for the
latter, estimates are within 0.077 of the actual value for RMSE, and 0.453 NRMSE.

The final index input for the CSDI concerns crown differentiation, the construction of
which was assessed in section 7.4.1 (for ITC derived inputs) and section 7.7 (for estimates of
the lowest canopy base height). Table F.6 reports the relationship between the index values
for field and remote sensing derived measures.  RMSE and NRMSE values are similar for all
input datasets.  DR and hyperspectral dataset has the marginally lowest error, with 1.969
RMSE and 0.343 NRMSE, however the index calculated from the ‘best’ estimates, i.e. those
with the lowest RMSE/NRMSE identified in Chapter 8.4, has a slightly higher error of 0.345
NRMSE (or 0.01% higher). Overall remote sensing index values typically only underestimate
the field based equivalent by small amounts.
Table F.4 – Index of tree species composition comparison between field and RS derived
Site
no.

Class Field calc.
CSDI-1 index

DR and Hyper.
CSDI-1  index

FW and Hyper.
CSDI-1  index

Best models
CSDI-1  index

22 Deciduous 0.804 0.315 0.957 0.957
23 Coniferous 0.363 1.108 1.067 1.239
24 Deciduous 0.318 0.854 1.760 0.880
25 Deciduous 0.534 1.287 1.831 1.451
26 Deciduous 0.678 0.789 1.537 1.218
27 Deciduous 0.513 0.682 1.300 1.300
28 Coniferous 0.416 1.023 1.356 1.356
29 Deciduous 0.291 1.088 1.748 1.386
30 Coniferous - - - -
31 Coniferous 0.000 1.430 2.036 1.390
32 Mixed 0.783 0.884 1.217 0.964
33 Coniferous 0.452 0.487 0.936 0.468
34 Mixed 1.248 1.356 1.194 1.507
35 Coniferous 0.593 0.754 1.687 0.843
36 Coniferous 0.494 1.260 1.227 1.425
37 Deciduous 0.425 1.187 1.425 1.655
38 Mixed 0.490 1.286 1.791 1.419
39 Coniferous 0.000 1.027 1.191 1.191
40 Deciduous 0.463 1.390 1.256 1.458
41 Mixed 0.660 1.829 0.000 1.968

- - RMSE 0.721 1.029 0.870
- - NRMSE 0.577 0.825 0.697
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Table F.5 – Index spatial distribution comparison between field and RS derived
Site
no.

Class Field calc.
CSDI-3 index

DR and Hyper.
CSDI-3  index

FW and Hyper.
CSDI-3 index

Best models
CSDI-3  index

22 Deciduous - - - -
23 Coniferous 0.142 0.162 0.112 0.112
24 Deciduous 0.134 0.066 0.057 0.057
25 Deciduous 0.191 0.083 0.061 0.061
26 Deciduous 0.217 0.049 0.062 0.062
27 Deciduous 0.219 0.039 0.039 0.039
28 Coniferous 0.092 0.073 0.084 0.084
29 Deciduous 0.187 0.077 0.063 0.063
30 Coniferous - - - -
31 Coniferous 0.063 0.500 0.077 0.077
32 Mixed 0.067 0.221 0.083 0.083
33 Coniferous 0.072 0.097 0.054 0.054
34 Mixed 0.116 0.061 0.057 0.057
35 Coniferous 0.088 0.053 0.055 0.055
36 Coniferous 0.069 0.046 0.030 0.030
37 Deciduous 0.084 0.066 0.053 0.053
38 Mixed 0.083 0.085 0.080 0.080
39 Coniferous 0.049 0.047 0.061 0.061
40 Deciduous 0.080 0.079 0.057 0.057
41 Mixed 0.134 0.088 0.083 0.083

- - RMSE 0.132 0.077 0.077
- - NRMSE 0.773 0.453 0.453

Table F.6 – Index of crown differentiation comparison between field and RS derived
Site
no.

Class Field calc.
CSDI-4 index

DR and Hyper.
CSDI-4  index

FW and Hyper.
CSDI-4 index

Best models
CSDI-4  index

22 Deciduous - - - -
23 Coniferous 7.498 3.400 3.310 3.344
24 Deciduous 8.628 4.322 4.507 4.438
25 Deciduous 5.049 5.102 5.142 5.106
26 Deciduous 4.902 3.541 3.988 3.573
27 Deciduous 6.363 6.611 6.821 6.573
28 Coniferous 3.555 3.393 3.328 3.346
29 Deciduous 6.615 3.340 3.316 3.319
30 Coniferous - - - -
31 Coniferous 2.894 5.169 5.139 5.195
32 Mixed 3.922 3.551 3.523 3.527
33 Coniferous 5.650 3.267 3.167 3.237
34 Mixed 4.900 2.888 2.652 2.756
35 Coniferous 5.102 3.147 3.143 3.118
36 Coniferous 3.194 2.415 2.339 2.361
37 Deciduous 4.327 3.620 3.586 3.575
38 Mixed 4.431 4.580 4.552 4.552
39 Coniferous 3.583 4.367 4.259 4.270
40 Deciduous 3.849 4.114 4.074 4.059
41 Mixed 5.416 4.370 4.260 4.271

- - RMSE 1.969 1.971 1.978
- - NRMSE 0.343 0.344 0.345
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F.2.4 Thetarget and accumulative scoring technique
The scoring method put forward by Cantarello and Newton (2006) requires the

assessment of seventeen compositional and structural metrics against an ‘ideal’ target value.
Site metrics were defined through statistical means, the results of which were presented in
section 8.4.  Table F.7 summarizes the remote sensing derived index values for all 20
validation sites against the field based equivalent.  A breakdown of the components which
make up the score for the field based index is presented in section 4.1.3.  The three test
datasets produced very similar RMSE and NRMSE values.  Of the three test datasets, the
combined FW and hyperspectral produced the smallest RMSE and NRMSE values, 2.46 and
0.25 respectively, whereas the highest values were found for the DR and hyperspectral
dataset with values of 2.52 and 0.25, again the ‘best’ model subset was in the middle of the
other two.   Smaller field index values (<7) are overestimated in the case of plot numbers 23,
24 and 38, whereas plot 35 is underestimated.  The majority of sites’ field index value
matched or were very close to remote sensing derived indices.

Table F.7 – Comparison between the field and remote sensing derived score based index
Site
no.

Class Field calc.
score index

DR and Hyper.
score  index

FW and Hyper.
score index

Best models
score index

22 Deciduous 9 9 9 9
23 Coniferous 3 6 5 7
24 Deciduous 5 11 8 10
25 Deciduous 10 10 8 9
26 Deciduous 9 10 10 10
27 Deciduous 13 12 12 13
28 Coniferous 6 10 6 8
29 Deciduous 8 10 9 9
30 Coniferous 8 8 6 6
31 Coniferous 6 8 5 7
32 Mixed 11 11 6 7
33 Coniferous 7 5 5 5
34 Mixed 10 11 5 9
35 Coniferous 10 6 6 5
36 Coniferous 8 9 7 9
37 Deciduous 7 10 11 11
38 Mixed 5 9 6 7
39 Coniferous 9 7 7 7
40 Deciduous 8 10 6 7
41 Mixed 10 9 10 11

- - RMSE 2.520 2.460 2.510
- - NRMSE 0.252 0.246 0.251
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In order to test the individual components of the index it is necessary to view a
breakdown of each of the three datasets into the individual scoring, illustrated in Tables F.8
to F.10, where differences between field and RS index components were noted.  Table F.8
decomposes the scores for the combined DR LiDAR and Hyperspectral models.  Plots 24 and
28 performed the worst where 9 of 17 indicators performed sufficiently. Plots 22, 33, and 26
performed the best with 15-16 of 17 correct scores.  The average of correct scores was 12.  In
terms of indicators rather than plots, indicator numbers 3, 6, 7, 9, 15 and 17 were 95-100%
correct.  Indicator numbers 1, 2, 10, 12, 13 and 16 were only 50% correct.

Table F.9 decomposes the scores for the combined FW LiDAR and Hyperspectral
models.  Plots 32 and 34 performed the worst in terms for field and RS correspondence,
where 10 of 17 indicators were correct.  Plots 22, 26, 33 and 38 performed the best with 15-
16 out of 17 correct scores.  The average correct score was 13.  In terms of indicators rather
than plots, indicator numbers 3, 7, 9, 14, 15, and 17 were 95-100% correct.  Whereas
indicator numbers 10, 13 and 16 were only 45-50% correct.

Finally, Table F.10 decomposes the scores for the combined ‘Best’ models.  Plot 24 has
the lowest correspondence where only 10 of 17 indicators were correct.  Plots 23, 28, 30, 32
and 40 had 11 correspondences.  Plots 22, 26, 33 and 38 performed the best with 15-16 out of
17 correct scores.  The average correct score was 12.6.  In terms of indicators rather than
plots, indicator numbers 7, 9, 14, 15 and 17 were 95-100% correct.  Indicator numbers 2, 13,
and 16 were only 50% correct.
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Table F.8 – Decomposition of the combined DR and hyperspectral dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table F.8 – Decomposition of the combined DR and hyperspectral dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table F.8 – Decomposition of the combined DR and hyperspectral dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table F.9 – Decomposition of the combined FW and hyperspectral dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table F.9 – Decomposition of the combined FW and hyperspectral dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table F.9 – Decomposition of the combined FW and hyperspectral dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table F.10 – Decomposition of the combined ‘best’ dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table F.10 – Decomposition of the combined ‘best’ dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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Table F.10 – Decomposition of the combined ‘best’ dataset score index
*Differences between estimated and field recorded are indicated in yellow.
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