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Abstract 

 

Blast injury to the human skeleton: Recognition, identification and differentiation using 

morphological and statistical approaches. 

 

Marie Christine Dussault 

 

Anthropologists are increasingly called upon to assess trauma to the skeleton and 

contextualising the nature of this trauma. Blast injury is a type of trauma which is 

increasingly seen in a variety of contexts, such as terrorism, human rights violations, 

combat and accidents. The purpose of this study was to examine blast injury in the human 

skeleton and apply robust multivariate statistical methods, alongside morphological 

methods, to identify blast trauma based on the distribution of injury in the skeleton. The 

objectives of the study were to identify patterns in a sample of cases from mass graves in 

Bosnia and to determine differences between the blast injury cases and gunshot wound 

cases which can identify indicators of blast injury for future use. This was done using 

Pearson‘s χ2, cluster analysis and multiple correspondence analysis. Secondly, the 

identified indicators were applied to two methods of binary logistic regression model to 

test prediction of the presence or absence of blast injury in the sample, as well as assessing 

the results of the two methods. Lastly, the results of these analyses were subsequently 

compared with clinical literature to identify similarities and differences which can aid 

anthropologists in determining presence of blast injury in large assemblages. This also 

served to address the specific argument that the injuries seen in the Bosnia sample are 

combat related, as claimed in court proceedings in ongoing cases at the International 

Criminal Tribunal for the Former Yugoslavia.  

 

It was found that cluster analysis was not useful for the sample examined in the research, 

however multiple correspondence analysis permitted graphical differentiation between the 

blast injury and gunshot cases, identifying variables which contributed to the variance and 

could be used as indicators of blast injury. Binary logistic regression was employed to test 

the significant contribution of these variables to a model predicting the presence of blast 

injury in a sample. It was found that presence of trauma to the right shoulder girdle, left 

forearm, vertebrae, right pelvis and left femur could indicate the presence of blast injury in 

an assemblage, with correct average classification in 74.86% of cases. The prevalence of 

trauma in the Bosnia sample was compared with examples from terrorist incidents and 
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combat situations to identify similarities and differences between these and found that 

there significant differences in the prevalence of trauma in the Bosnia sample. This 

highlights that this sample does not resemble any combat patterns of injury, answering the 

question posed in ICTY court proceedings.  

 

This work contributes new knowledge to anthropology on the identification and 

differentiation of blast injury in assemblages as well as demonstrating the use of 

multivariate statistical methods for trauma analysis. These results can be applied to 

anthropological investigation of historical contexts as well the modern investigations 

which will require knowledge of blast injury currently and in the future.  
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1. Introduction 

 

The examination of blast injury in the context of forensic and biological anthropology 

serves many important purposes relevant to different aspects of the discipline such as the 

investigation of mass graves, human rights violations, inter-personal violence and 

historical investigation.  Identification of trauma in the examination of post-mortem human 

remains is one of the tasks of the anthropologist and plays an important role in 

contextualising the finds. Accurate identification of peri-mortem trauma requires expertise 

with basic trauma mechanisms affecting the skeleton, such as the biomechanics of 

fracturing. Furthermore, specific injuries sustained from sharp, blunt or ballistic 

mechanisms are an additional area of expertise required from the anthropologist.  

 

Of recent interest is blast injury, not reserved solely for the medical community, but 

increasingly familiar to the anthropologist through work ranging from recovery in 

historical battles  to modern conflict, human rights work and terrorism (Baraybar and 

Gasior 2006; Kimmerle and Baraybar 2008; Wessling and Loe 2011; Appleby et al. 2012; 

Christensen and Smith 2012; Christensen et al. 2012). Despite the increasing number of 

situations in which the anthropologist may encounter blast injury, there is a lack of 

published information regarding this type of trauma in the anthropological literature. More 

recently Christensen et al. (2012) demonstrated patterns of injury in a controlled blast 

environment using porcine analogues.  

 

It is critical to expand the body of knowledge for anthropologists by beginning with a 

review of the history and development of explosives, the chemistry and physics which 

impart specific wounding characteristics and the resulting patterns of injury as describe in 

the studies available, from the clinical literature. By exploring these and relating them to 

the identification of blast injury in post-mortem skeletonised remains, the anthropologist 

can contribute to the contextualisation of cases being investigated. 

The primary aim of this project is to apply robust multivariate statistical methods, 

alongside morphological methods to identify blast trauma from the distribution of injuries 

throughout the skeleton in cases related to the Kravica warehouse in Bosnia and 

Herzegovina. Whilst this objective might be more difficult to achieve in individual cases it 

may be feasible with an acceptable degree of probability in reasonably sized samples. The 

recognition, differentiation and quantification of blast injury versus other trauma, 
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particularly gunshot wound related deaths, is examined. The establishment of guidance for 

the identification of blast injury in skeletal assemblages is a main component of this piece 

of research.  This is accomplished through four primary objectives: 

 

1. An exploration of patterns of injury previously published in clinical 

literature. 

2. The establishment of a statistical methodology to compare observed 

patterns of injury in assemblages for the purpose of identification and 

comparison of blast injury in various contexts. 

3. Application of the statistical methodology to the discrimination of blast 

injury from gunshot wound related deaths with the purpose of providing 

indicators to differentiate the two types of trauma. 

4. Application of the statistical methodology to a large scale assemblage, 

comprised of cases related to the  Kravica warehouse in Bosnia and its 

associated mass graves, to explore the patterns present and compare these to 

the previously published data in the clinical literature to assess if the 

patterns in the assemblage are similar or different to those found in blast-

related combat trauma.  

5.  Formulation of guidance for the identification and differentiation of blast 

injury in skeletonised remains. 

 

 

The five objectives will be met using morphological methods traditionally employed in 

biological anthropology while introducing the application of statistical methodology used 

in other disciplines to explore their potential for anthropology and trauma analysis. The 

first objective is met by examining the prevalence statistics published in clinical literature 

and compiling the data regarding trauma to the skeleton so that it may be applied to 

skeletonised remains. The second objective is met by employing multivariate statistics to 

undertake an exploratory examination of the data using cluster analysis and multiple 

correspondence analysis to identify patterns differentiating blast trauma from gunshot 

trauma. The third objective is met by employing probabilistic modelling, specifically 

binary logistic regression to predict the type of trauma based on the pattern of damage to 

specified body regions. Finally, the results of the analyses are compared with the clinical 

literature prevalence data to compare and contrast the similarities and differences between 
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the patterns of injury in the studied samples and those published previously. This is all 

brought together to achieve the fifth objective and present guidance for the anthropologist 

based on the results of the thesis. 

 

The thesis is divided into eight chapters. The second chapter examines the historical 

development of explosive material with the aim of understanding the course of the creation 

of various explosives, each phase progressing towards the materials familiar today. 

Throughout their development, the chemical and physical characteristics of explosives 

changed, impacting on the trauma seen in the human body. The third chapter addresses 

these chemical and physical characteristics and how these affect the trauma which is seen 

in both soft and hard tissues of the body. The patterns of injury seen in various contexts are 

presented to permit comparison with the data collected. 

 

Chapter four introduces the samples which are analysed in the project. Their origin, 

composition and acquisition are described. Chapter five explains the methodology 

employed in the project whilst framing it in the theoretical tradition of inductive reasoning. 

The selection of statistical analyses is explained along with the procedures undertaken to 

analyse the samples using descriptive, cluster analysis, multiple correspondence analysis 

and binary logistic regression statistics.  

 

Chapter 6 presents the results of the exploratory statistical analyses and probabilistic 

modelling. Comparison with the clinical literature data is made to identify similarities and 

differences within and between the samples. Chapter 7 explains the results from chapter 6 

and frames these within the context of forensic and biological anthropology to permit 

identification of blast injury in large scale assemblages.  

 

Finally the thesis is concluded with a retrospective of the aims and objectives and how 

these have been met. Future areas of research are discussed and the crucial importance of 

this work is discussed.  
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2. Historical background and introduction to the science of 

explosives 

 

Understanding the historical development of explosives is vitally important as the changes 

to explosive materials and development over the years has impacted the resulting injuries 

which are seen in soft and hard tissues. Early explosives were of the incendiary type which 

causes very different injuries to modern explosives, primarily burns. Modern explosives 

injuries affect many biological systems at once; both soft and hard tissues as well as the 

nervous and autonomic systems (see section 3.4). The transition from early explosives to 

those which are familiar today shows an increase in the wounding power of these materials 

and thus makes it critical to gain an understanding of how these mechanisms came about 

alongside examining their chemistry, physics and biomechanical wounding potential. 

 

Tracing the historical development of explosives is complicated and can be attributed to 

various sources. It is widely accepted that the path to the creation of modern day 

explosives began with the discovery and production of black powder, which in the form we 

are familiar with is generally regarded as having been developed by the Chinese in the 12th 

century A.D (Brown 2005). This development led to the creation of the explosive materials 

which are part of this study. 

 

This chapter will explore the history of explosives, the developments in the science of 

explosives spurred on by the military and mining fields, as well as introducing the basic 

forms and uses of explosives. The next chapter will delve further into the science of 

explosives, including the physics, chemistry and biological effects of blast. 

 

 

2.1. History of Explosives 

 

Prior to the development of what we know to be black powder (see 2.3.1), other types of 

early ―explosives‖ were documented in societies pre-dating those in China. These were 

more of the incendiary type rather than the explosive type. These did not produce the 

typical explosive chemical reaction which would make them detonate, as in high 

explosives. Instead these deflagrate or burn. One example of this is the Egyptian use of 

nitre on fires to produce a rapid burning reaction. This was then followed by the discovery 
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that the inclusion of powdered resin or sulphur would in fact accelerate the reaction caused 

by the nitre. Other examples are documented mixtures of compounds which were 

chemically balanced similarly to those in gunpowder, creating a mixture of approximately 

75% potassium nitrate, carbon and sulphur. These mixtures are known to have existed in 

the pre-Christian era (Morgan 1967; Partington 1999). 

 

 

2.1.1. Greek fire 

 

The most widely known precursor to black powder and modern explosives is Greek fire, 

whose origins and composition are disputed in various sources. Some sources attribute to it 

an origin in petroleum products (Morgan 1967; Partington 1999). Whilst others postulate 

that it was indeed a mixture of nitre, resin and pitch. Agreed upon however, was its 

intended use, documented as having been utilised in warfare as early as A.D. 650. Unlike 

conventional explosives, it is believed that Greek fire was merely used as an incendiary 

device to cause fiery destruction to enemy ships rather than an explosion as we would 

know it (Morgan 1967). 

 

 

2.1.2.  China 

 

The Chinese are attributed as employing the first "purpose designed‖ explosives, which 

used black powder. Mention of this is made in a manuscript dating from 1040 A.D. and 

includes the description of items resembling explosive grenades and bomb type materials 

used in association with catapults, presumably for launching these at enemies (Zukas and 

Walters 2003). The development of a bamboo container sealed with clay and containing a 

fuse, permitted the conception of Roman candle type fireworks (Morgan 1967). 

 

 

2.1.3.  Roger Bacon 

 

In Europe, Roger Bacon (1214-1294) is attributed with the introduction of gunpowder, 

publishing the formula in 1242 (Brown 2005). He experimented with various mixtures of 

the components of black powder, seemingly with the original aim to re-create Greek fire, 
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which he did not successfully achieve. This is perhaps due to the fact that Greek fire may 

have been petroleum based rather than potassium nitrate and sulphur based as black 

powder is. Continuing on with his mixtures, he achieved accurate mixing of the correct 

components of black powder as well as the proper sequence of preparation. This mixture 

was also put into containers, effectively creating an explosive container which would be 

the precursor to modern explosives and weapons development and manufacture in Europe 

(Morgan 1967). These developments would begin the creation of all types of weapons 

including guns, cannons and modern bombs. 

 

 

2.1.4.  The 19th Century 

 

It was not until the 1800‘s that the mass development of substances of an explosive nature 

really took off. During this era, black powder was used predominantly as a propellant for 

weapons with a small bore and for cannons. It had numerous disadvantages which included 

the production of lots of smoke. It also deteriorated rapidly when it became damp (Tooley 

1971). Due to these disadvantages, development of different propellants was the priority in 

19th century explosives improvement. As a result of this necessary development, Alfred 

Nobel developed a new propellant, still used in bullets and shells today, named ballistite. 

This composition is achieved by mixing glyceryl trinitrate with mineral jelly and 

guncotton. This mixture comes in various forms, such as slurry for easy pouring and heat 

curing for use in mining applications. 

 

 

2.1.5.  Early explosive ordnance 

 

The early examples of explosive ordnance include the use of basic shells,. Shells were an 

outer metal casing filled with explosion material, the fuse and possibly additional material 

for fragmentation (Zajtchuk 1990). The late 19th century saw the advent of the use of anti-

personnel munitions with the inclusion of lead shot in shells. Early grenades looked like 

pineapples to pre-determine the fragmentation pattern and were made of cast-iron or steel. 

These were thrown by hand (Zajtchuk 1990).   
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2.1.6. Mining 

 

Although most popularly associated with warfare, the development of explosives in the 

19th century was largely driven by industrial applications such as mining and railway 

construction. The use of black powder as an explosive in mining at the time was 

considered to be dangerous and ineffective (Akhavan 2004). A better explosive was 

required and this precipitated the creation of one of the most important explosives, 

nitroglycerine, whose manufacturing process was created and refined by the Nobel family 

(Akhavan 2004). The family encountered many setbacks which include the destruction of 

their factory along with the death of a member of the family as a result of experimentation 

with nitroglycerine. This exemplified the instability and sensitivity of nitroglycerine and its 

difficulty of transport. To counter this, it was mixed with clay and its sensitivity reduced. 

This is now known as ghur dynamite and was patented in 1867 (Akhavan 2004). Another 

type of dynamite was developed in the late 1800‘s, made by mixing the recently  developed 

nitrocellulose with nitroglycerine. This composition led to the creation of blasting 

dynamite, gelatine dynamite and British cordite (Akhavan 2004).  

 

 

2.1.7. Mercury fulminate  

 

Black powder and the compounds subsequently created, such as cordite, are classified as 

low explosives and are generally used as propellants. High explosives, those which 

detonate, have a development history that can be traced back to the early 19th century. One 

of the first primary explosives developed during this time is mercury fulminate, whose 

discovery is attributed to Howard in 1800 (Tooley 1971). It had been previously developed 

in the 17th century and subsequently forgotten until Howard (Akhavan 2004). This 

explosive is a nitrous compound that is manufactured by nitration of nitric acid, mercury 

and ethanol and is used as a detonation charge due to its sensitivity to shock and ignition. 

However, this compound is prone to deterioration in heat and its instability requires it to be 

stored in water, as it is insoluble (Tooley 1971).  
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2.1.8. Nitration 

 

In 1833, Braconnot used starch in the nitration process (See 2.3.3) (Tooley 1971; Akhavan 

2004). Nitric ester was formed during this process and its resulting precipitate was used as 

a commercial explosive, however only on a small scale. Following this type of explosive 

was the development of Mannitol hexanitrate in 1847, which is also manufactured using 

the nitration process. This explosive was first prepared by Demonte and Menart and uses 

the sugar alcohol Mannitol (C6H8(OH)6)combined with nitric acid and precipitated with 

sulphuric acid. Preparation of these chemicals yields an expensive explosive which is 

similar to pentaerythritol tetranitrate (PETN) but is less stable (Tooley 1971). 

 

 

Trinitrotoluene 

 

One of the most important explosives, especially to the history of military explosives use, 

is trinitrotoluene (TNT). It was first prepared by Wilbrand in 1863 but its production was 

mostly done in the mid to late 1890‘s by both the German and British forces (Tooley 1971; 

Akhavan 2004). Prior to the widespread use of TNT, trinitrophenol or picric acid were the 

most commonly used materials for the filling of shells in the military. Also used were 

Melinite (by the French) and Lyddite (by the British). The German army replaced the 

commonly used picric acid at the beginning of the 20th century with the American forces 

following suit shortly after (Akhavan 2004). TNT is widely considered to have been the 

primary explosive used during the First World War (Akhavan 2004) due to its low 

sensitivity and ease of use for filling shells in its liquid format (Tooley 1971). TNT is 

manufactured with toluene, which has to be extracted from coal tar, and during World War 

I, its stocks dwindled. Due to this deficiency of materials, picric acid was used instead and 

was mixed with ammonium nitrate, yielding ammonium picrate. Ammonium nitrate was 

also combined with TNT, to fight high costs and the lack of toluene, producing the 

explosive amatol (Tooley 1971; Akhavan 2004). 
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Ammonium Nitrate 

 

The 19th century also saw the development of ammonium nitrate (Tooley 1971; Akhavan 

2004), a familiar explosive which many of us have heard of due to its use in improvised 

bomb making, such as was used in the Oklahoma City bombing in the mid-1990 (Mallonee 

et al. 1996; Teague 2004; Glenshaw 2009). In the 19th century, Grindel and Robin 

(Akhavan 2004) proposed this substance as the replacement for potassium nitrate in the 

manufacturing of black powder. Subsequently Reise and Millon described the use of 

ammonium nitrate as an explosive, when they discovered that it could be combined with 

charcoal to cause an explosion. Experimentation with the combination of this material and 

substances such as sawdust, nitrobenzene and picric acid led to the use of this compound as 

an explosive. However, many accidental detonations occurred over the years, such as the 

destruction of various ships carrying loads of the chemicals (Akhavan 2004). Despite its 

apparent danger, this chemical composition is frequently used, especially in the mining 

industry, where is has been developed in various forms such as prill (which does not cake 

or become solid during storage), and is now mixed with fuel oils as is needed by the 

industry (Tooley 1971).  

 

 

2.2. Military grade explosives 

 

This section documents the development of explosives related to military use, another 

important driver behind innovation of these materials, along with the mining industry. 

 

 

2.2.1. Late 1800’s to the Great War (1914-1918) 

 

Continuing on with the production of military grade explosives, Tetryl was used as a 

primer in anti-aircraft and high explosive shells. Its first production was in 1879 by 

Michler and Meyer. This type of explosive proved to be expensive and lacking in power 

and thus precipitated the production of a new type of explosive called pentaerythritol 

tetranitrate (PETN) by Tollens in 1891 (Tooley 1971). This high explosive is widely 

known today and its development advanced the creation of various explosives by 

combining PETN with a variety of substances (Akhavan 2004). It is manufactured by 
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nitration, as with most high explosives, and is considered to be stable as well as a very 

powerful explosive. It is however very sensitive to friction and shock and precautions were 

developed for its storage, such as it being housed in a damp state and dried before use. Due 

to its high price it did not have widespread early military use. A common use of PETN is 

in combination with a plasticizer, which reduces the cost due to prolific manufacturing. 

When combined with plastics, PETN is termed plastic explosive (Tooley 1971). 

 

 

2.2.2. World War II (1939-1945) 

 

Following the First World War, during which was used Melinite, Lyddite, Picric Acid and 

finally TNT, more advancements were made in the development of explosives, particularly 

high explosives whose ultimate use was to fill shells during World War II. Discovered in 

1899, Cyclonite is a preparation made from hexamine (hexamethylene tetranitramine) 

which is subjected to nitration with fuming nitric acid to become 

cyclotrimethylenetrinitramine. Cyclonite was patented in 1920 and used in bursting shells in 

World War II. In the United Kingdom, the material is known as RDX (Research 

Department Explosive) due to Woolwich Arsenal‘s research department involvement. 

Cyclonite is similar to PETN in its application for military purposes, but was found to have 

quicker brisance, reaching maximum explosive pressure in less time. This is likely to 

improve its effectiveness for certain tasks. As with other military-use explosives it is very 

sensitive to impact and can be combined with other materials to create new explosives. 

One example of this is Torpex, an explosive used for detonation underwater. This is 

composed of Cyclonite/RDX alongside TNT and aluminium powder. Ammonium nitrate 

can also be mixed with Cyclonite to produce a powerful explosive (Tooley 1971).  

 

 

2.2.3. Post- World War II: HMX (cyclotetramethylene-tetranitramine) 

 

A common, modern explosive is HMX, which is similar in chemical composition to 

Cyclonite. It is also a high explosive which detonates. It is also manufactured by the 

nitration process using hexamine dinitrate and acetic anhydride. The chemical nitration 

yields one of the most powerful high explosives known however, it is quite stable (Tooley 

1971; Akhavan 2004). Despite the use of the common production technique of nitration, it 
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is quite complex to manufacture and is thus produced for specialised applications (Tooley 

1971; Cooper 1996; Cooper and Kurowski 1996; Akhavan 2004).  

 

 

2.3. The manufacturing of explosives 

 

The manufacturing of explosives can be separated into different processes based on the 

type of explosive being produced, classified as low or high explosives. The high explosives 

are those which detonate, whilst low explosives deflagrate and are typically used as 

propellants and are produced in a different fashion. The first method to examine is the 

manufacturing of black powder, the first low explosive created. 

 

 

2.3.1. Black powder 

 

Black powder is composed of three components, some of which vary slightly based upon 

the future use. Manufacturing of black powder has varied over time as well as with the 

intended final product‘s desired effect and is typically composed of 75% nitrate, 12.5% 

sulphur and 12.5% charcoal (Howard 2006). Each of these components has individual 

production methods. Sulphur is an element and obtained by either melting in a cast iron 

cauldron or sublimated. It was also mined later in history. Today, sulphur is a very 

inexpensive and plentiful by-product of the petroleum industry. Historically, the charcoal 

necessary for black powder production has been obtained in the form of carbonised wood. 

The last component is the nitrate, which composes 75% of the mixture in black powder. 

This component acts as the oxidizer. The nitrate used is typically potassium nitrate, 

however in both blasting and military explosives, sodium nitrate and ammonium nitrate are 

used to make black powder (Howard 2006).  

 

Historically, these components were combined using a wheel mill. They were mixed when 

wet and put through the wheel mill where the sulphur would bind with the nitrate and the 

carbon (Cooper and Kurowski 1996). Since 1425, the ingredients are ground and pressed 

into a solid mass, a process called corning, and subsequently is broken into smaller grain. 

The corning process permits the creation of uniformly sized powder grains to control 

burning rate. Bigger grains result in slower burning, however the converse is also true. 
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Very fine, powdery grains also result in slower burning (Howard 2006). Following the 

corning procedure, the black powder is subjected to the glazing process, which involves 

tumbling the black powder in barrels. This results in the rounding of the grains, which 

reduces the physical degradation of the grains during transport and increases the density of 

the black powder. This increased density results in slower burning. If the black powder is 

glazed for an extended period of time, it results in ‗hard glazing‘, which bring the nitrate 

component to the surface and aid in better combustion (Howard 2006). Finally, the black 

powder is dried to remove the water accumulated during production and then it is packed.  

 

 

2.3.2. Propellants 

 

Propellants are similar to explosives, on a chemical level, however they burn (deflagrate) 

as opposed to detonating. There are four categories of propellants: single base, double 

base, triple base and composite. Black powder is a composite propellant (Cooper and 

Kurowski 1996).  

 

 

Single base propellants 

 

Single base propellants are made from cellulose which is subjected to nitration. This 

process introduces nitric and sulphuric acids into the mixture and a chemical reaction 

produces nitrocellulose (Cooper and Kurowski 1996). Nitrocellulose decomposes at high 

temperatures and thusly needs to be combined with stabilisers. These stabilisers react to 

prevent further degradation by forming nitrates and nitrate esters. Commonly used for this 

purpose are diphenyamine, nitrodiphenylamine, mineral jelly and necrolin (Cooper and 

Kurowski 1996). The nitrocellulose is then processed into its various forms by dissolving it 

into acetone and extruding it through dies into pellets or grains. The nitrocellulose can also 

be pressed into various formats, including spheres, pellets, discs or sheets (Cooper and 

Kurowski 1996).  
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Double base propellants 

 

Double base propellants predominantly use nitroglycerine. These are typically produced by 

combining two propellants in liquid form to then combine these with gelatine or plastic 

afterwards. The combination of the second propellant aids by chemically balancing the 

oxygen and producing a varied energy output and reaction temperature. Nitroglycerine is 

commonly used for this process and results in a material that can be processed and 

extruded without having to be dissolved in a solvent such as acetone (Cooper and 

Kurowski 1996).  

 

 

Triple base propellants 

 

Triple base propellants combine nitrocellulose and a reactive plasticizer such as 

nitroglycerine and nitroguanidine. This third component, as with the double base 

propellants, acts as an agent to regulate the energy and temperature output, along with gas 

and speed, of the propellant (Cooper and Kurowski 1996).  

 

 

2.3.3. High explosives 

 

These materials are the ones which are commonly known, such as TNT and PETN. These 

detonate rather than deflagrate. These are manufactured through the process of nitration 

and have resulted in various materials which are commonly used in military applications. 

 

  

Nitration 

 

High explosives are manufactured similarly to some of the propellants, predominantly 

using the chemical process called nitration. This process introduces a nitro group into an 

inorganic chemical compound. Typically, nitric and sulphuric acids are used. There are 

three types of nitration, demonstrated in Figure 2-1: Method of nitration based on the 

combination of the nitro group with either the carbon, oxygen or nitrogen atom (from 
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Akhavan 2004). which outlines nitration based on the combination of the nitro compound 

either a carbon atom, an oxygen atom or another nitrogen compound. These preparations 

yield the commercial and military. 

 

 

 

 

Figure 2-1: Method of nitration based on the combination of the nitro group with either the carbon, oxygen or 
nitrogen atom (from Akhavan 2004).  

 

Typically, the first chemical is dissolved in sulphuric acid, which acts as the ―inhibitor or 

moderator of the nitration‖ (Akhavan 2004). The resulting dissolution is then nitrated with 

the nitric acid. Nitration is performed as a chemical can‘t be explosive if it contains only 

one nitro group, it needs to have two or more for the compound to be an explosive (Tooley 

1971).  

 

 

Aliphatic and Aromatic Explosives 

 

Two types of explosives are manufactured using nitration, aliphatic and aromatic 

explosives. The aromatic explosives contain a benzene ring and it is this benzene which is 

nitrated. One example of the aromatic explosive is Trinitrotoluene (TNT), which contains 
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three nitro groups. This is made by singly substituting the hydrogen atom at the top of the 

benzene ring in trinitrobenzene. This is achieved through the typical process of nitration, 

executed in steps by mixing concentrated nitric acid and sulphuric acid. The hydrogen 

atom can be substituted on the benzene further to created multiply substituted 

trinitrobenzene, examples of which as trinitrocresol, tetranitroanilinine and 

triaminotrinitrobenzene (Cooper 1996; Cooper and Kurowski 1996).  

 

Aliphatic explosives are more commonly known and were the first mass produced 

explosives. These do not contain a benzene ring. These explosives are very sensitive due to 

bubbles in the liquid form, which form produce vapour pressure points (Cooper and 

Kurowski 1996). One of the most common of the aliphatic explosives is nitroglycerine, 

which is manufactured by nitration of glycerine (a polyalcohol). The nitration affects the 

alcohol groups in the molecule. The liquid produced is stabilised with wood meal or 

absorbents, as in dynamite. It is often also combined with nitrocellulose to gelatinise the 

material for storage, preventing the settling of the explosive (Cooper and Kurowski 1996).  

 

 

PETN: Pentaerythritol tetranitrate 

 

PETN is a familiar aliphatic nitrate ester explosive that is used in the military, especially in 

detonating cords and mixed or cast explosives. This is also produced through a nitration 

process, one which requires a two-step process. Firstly, pentaerythritol is produced by 

mixing formaldehyde and calcium hydroxide. This aqueous solution is then subjected to 

nitration using nitric acid. PETN is removed from the liquid by being filtered, washed 

(with water) and neutralised with sodium carbonate. The last step requires it be 

recrystallised with acetone (Akhavan 2004).  

 

 

RDX: Cyclomethylenetrinitramine 

 

RDX is also manufactured using the nitration technique; however this is slightly more 

complicated and involves numerous chemical steps. Hexamethylenetetramine is mixed 

with nitric acid and subsequently warmed. The precipitate is removed and re-crystallised 

with acetone, as in PETN. Chemically, RDX goes through three intermediary compounds 
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during this process, which are further affected by the nitration to finally yield RDX. This is 

the simplest process and others do exist. These are fairly similar in technique but use 

differing chemicals to achieve the same end (Akhavan 2004).  

 

 

2.3.4. Inorganic compounds 

 

Inorganic compounds can also be used as explosives. Their molecules do not have a carbon 

skeleton and are manufactured by the different methods than organic compound 

explosives.  These involve the combination of fuel and oxidizer, typically ammonium 

nitrate. This is used extensively as a fertilizer, in its pure form, as it is difficult to initiate. 

When mixed with fuel, typically fuel oil, it is a very inexpensive and plentiful explosive 

which is used predominantly in the blasting industry (Cooper 1996; Cooper and Kurowski 

1996; Akhavan 2004). Fulminates and azides, such as mercury fulminate and the hydrozoic 

acid salt lead azide, are also examples of inorganic compounds which are used as primary 

and initiating explosives in the blasting industry (Cooper 1996; Cooper and Kurowski 

1996; Akhavan 2004). 

 

 

2.4. Forms of explosives 

 

Explosives are manufactured in various forms. These are often a mix of pure compounds 

with others to ―change or alter the mechanical properties, as well as some of the thermal, 

output, or sensitivity properties‖ (Cooper and Kurowski 1996). Two very common 

examples of these preparations are those of dynamite and blasting gelatine. Dynamite is a 

combination of nitroglyerine, nitroglycerine and nitrocellulose or both in addition to 

ammonium nitrate. In standard dynamite, nitroglycerine in liquid form is mixed with wood 

meal or another absorbent material. This has the result of suppressing the nitroglycerine‘s 

high sensitivity and improving its resistance to initiation by shock or impact.  

 

When producing explosives, these can be manufactured in different forms which serve 

different purposes.  These can be produced in the form of pressings, castings, plastic 

bonding, putties, rubber, extrusions, slurries and emulsions. A pressing requires that the 

explosive, which is in powdered or crystal form, is combined with additive to facilitate its 
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production. This type of material can be made with a constant volume or constant force 

press to create pellets of the explosive. These can also be combined with chemical taggants 

for identification purposes. Casting is used to mix TNT with ―higher melting crystalline 

explosives‖ (Cooper and Kurowski 1996) to alter the negative oxygen balance of TNT. 

This is adjusted by selecting the crystalline explosives to have a positive oxygen balance.  

 

 

2.4.1. Plastic bonding 

 

Explosives may also be plastic bonded. This is accomplished during the explosive‘s 

manufacturing process by combining it with polymer or plastic binders so that it coats the 

explosive during the precipitation phase of production. These then form pressing beads, 

which are created using die or isostatic pressing. These are then subjected to high pressure 

(between ten and twenty thousand pound per square inch) to produce pellets (Cooper 1996; 

Cooper and Kurowski 1996).  

 

 

2.4.2. Plasticised and rubberised compounds 

 

Three types of well known explosives are the American C-4 (Composition C 4), the United 

Kingdom‘s P4, and Semtex, invented in former Czechoslovakia. These types of explosives 

are putties, manufactured by mixing RDX in powdered form with plasticisers. These are 

then formed by hand, usually into bars, and hold their shape following the moulding. 

Semtex is slightly more complicated and involves the mixture of both RDX and PETN as 

its explosive composition. These two explosives are also combined with rubber polymers 

and plasticisers to create rubberized explosives. This mixture is extruded in rubbery 

gasket-like sheets, known by the industry names of Detasheet and Primasheet. These are 

used in detonators. Extrusions can also be manufactured with RDX or PETN by mixing 

with silicone rubber resin, in a ratio of 80% explosive and 20% resin. This is extruded and 

heated to create a rubber like material (Cooper 1996; Cooper and Kurowski 1996). 
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2.4.3. Slurries and Emulsions 

 

Slurries and emulsions are also an important preparation of explosives, used predominantly 

in commercial blasting. The slurry technique was introduced in the late 1950‘s and can be 

produced in large quantities  using a solution of ammonium nitrate which has been 

thickened (Cooper and Kurowski 1996) and aluminium powder as the fuel. These types of 

mixtures are known as ANFO (ammonium nitrate fuel oil) explosives and insensitive to 

initiation. This problem is overcome by incorporating PETN or TNT, in powdered form, to 

the ANFO mixture. The mixture is thickened and can then be packed into cartridges (for 

sensitive slurries that have been gelled) or can be pumped directly into holes at blasting 

site, especially useful in the mining industry. Emulsions are the opposite of slurries. In 

emulsions, it is the oxidizer, ammonium nitrate, which is introduced into the oil matrix. 

Following this glass or plastic microballoons are also introduced to emulsions. These are 

used to adjust the detonation properties and sensitivity of the mixture and reduce the 

potential problems caused by the introduction of water into the compound (Cooper 1996; 

Cooper and Kurowski 1996). 

 

 

2.5. Use of Explosives 

 

Explosives can be found in a variety of situations, some more common and conventional 

than others. These are used in various industries, which are described subsequently, 

demonstrating the prevalence of explosive materials in the daily world. 

 

 

2.5.1. Mining and gunpowder 

 

Their first commercial application was developed for the mining industry (Tooley 1971) in 

the form of gunpowder. Prior to the use of gunpowder in mining, various techniques were 

employed which included fire-setting and lime-breaking. Fire-setting worked on the 

principle of heating up the rock to be broken with fire and then putting cold water on it, 

inducing thermal shock.. This technique was used by Hannibal during his journey through 

the Alps. Up until the 18th century, this technique was still employed (Brown 2005). Lime-

breaking was also employed and functioned on the basis of a chemical reaction. Water was 
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combined with quick-lime in holes bored into the rock. The heat of the chemical reaction 

causes steam and pressure to build up, subsequently breaking the rock apart (Brown 2005).  

 

Gunpowder use in mining began in the 17th century in Hungary, employed by Tyrolean 

mining engineer Caspar Weindl. This method then spread to Germany and entered England 

in 1638 where it was brought to the Ecton copper mines by Central European miners 

(Brown 2005). The history of gunpowder can be examined in three separate phases. Its use 

before 1831 represents a laborious as well as dangerous process due to the methods of 

drilling and the lack of safe ignition methods. In 1831, the safety was introduced into use 

in a Cornwall mine. This consisted of a rope with a gunpowder centre that had a constant 

burning time. Despite a high price, this method was readily adopted and a decrease in the 

number of mining accidents was noted. The late 19th century phase of gunpowder 

witnessed the introduction of a variety of modifications to gunpowder with the purpose of 

improving the efficiency and safety of the methods used in mining industry. This was 

especially prevalent in the coal mining industry, which was notoriously dangerous and the 

single largest consumer of explosives (Tooley 1971; Brown 2005). Gunpowder was mixed 

with cooling agents, such as salts, borax and sodium bicarbonate to attempt to make the 

material safer for use. In 1914, Belgian chemist Lemaire introduced sheathed explosives, 

which surrounded the explosive with an inert cooling agent (sodium bicarbonate). This 

practice reached England in 1934 (Tooley 1971). Equal-to-sheathed explosives were then 

introduced, which mixed the coolant directly into the formulation, quenching the explosive 

flame. Salt and ammonium nitrate are utilised in this process (Tooley 1971).  

 

2.5.2. Civil Engineering and Blasting Techniques 

 

A concurrent and important phase of explosives use was the proliferation of blasting 

techniques for civil engineering. Gunpowder was first used in this context for the 

construction of the Languedoc Canal in France (Canal Du Midi) in 1681. In England 

during the mid-1700, this application was employed for the construction of canals for the 

transport of mined coal. Following these developments in, the civil engineering branch of 

explosives use expanded to the development of the railways which often required tunnels 

and deep cutting (Brown 2005).  
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2.5.3. Propellants, pyrotechnics, blasting caps and detonation cord 

 

Explosives are also used as propellants in a variety of mechanical situations. The 

propellants have found use in creating the mechanical sequence in pistons (as in cars petrol 

and gas engines) and the production of the gases needed for ballistic propulsion in guns. 

These also find use in rocket propulsion as well (Morgan 1967; Tooley 1971; Cooper and 

Kurowski 1996; Brown 2005). Pyrotechnics are also a common use for explosive 

materials. These are used in preparations to create heat, light, smoke, delays, and the 

sounds traditionally used in fireworks (Cooper 1996; Cooper and Kurowski 1996). 

Explosives are also an important component of blasting caps utilised as initiating 

explosives. Mercury fulminate was an important early component of the first generation of 

blasting caps and primer for arms (Cooper and Kurowski 1996). Another related use is the 

deflagration and detonation cord that are used as delays or transfer lines to the main 

charges. A commonly used substance is PETN (Cooper and Kurowski 1996). In jet 

engines, explosives are used in the starter cartridges (Tooley 1971; Cooper and Kurowski 

1996).  

 

 

2.5.4. Commercial Use of Explosives 

 

Commercially, explosives are employed for a variety of uses. The most notable use is 

ammonium nitrate. This, on its own, is used as fertiliser and is found widespread in farms. 

Combined with fuel oil however, it becomes explosive and is used in commercial mining, 

mixed on site from the two separate materials (Tooley 1971).  

 

Interestingly, explosives are also used in the commercial shaping and engraving of metal. 

This is accomplished by placing an explosive charge above a sheet of metal, which is 

subsequently placed above a mould. The use of stencils is also employed in this industry as 

well. Metal cladding can also be fabricated using explosives. Using explosives, a sheet of 

cladding is welded to the surface below. Reinforcing filaments can also be placed into 

metal by sandwiching them between two sheets of metal and sheet explosive, which is 

detonated (Tooley 1971).  

 

Traditionally, explosives are used in demolition work, which most of us are familiar with. 

Along the same lines, they are also used in scrap metal breakdown, used to render 
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especially large pieces to a manageable size for melting down. Both geological surveying 

and fire fighting use explosives in an unconventional way. In geological testing, these are 

used to map features through sound waves. Fire fighting employs the physics and 

chemistry of explosives to put out fires in oil wells. They are used on the principle that 

when detonated, the chemical process of the explosion uses up the oxygen in the 

surrounding area, thereby removing one of the important components of a fire and putting 

it out (Morgan 1967).  

 

 

2.5.5. Military application: Shaped explosive charges 

 

A revolutionary technique in military explosives use is the shaped explosive charge. This is 

based on the Munroe effect, discovered in 1888. The Munroe effect involves the 

manufacturing of the explosive charge with a hole or void, causing a concentration of the 

explosive blast, effectively a jet. This was expanded upon during World War I and World 

War II, resulting in the bazooka and PIAT (Projector Infantry Anti-Tank) weapons, used to 

penetrate armour plating on tanks (Tooley 1971). This type of technology has also seen 

commercial use, used for perforation of oil wells and the tapping of open hearth steel 

furnaces along with underwater telegraph wire cutting (Tooley 1971), demonstrating the 

importance of the discovery and application of the Munroe effect for a variety of purposes.  

 

 

2.5.6. Relevance to the research 

 

The evolution of explosives has affected the types of injuries seen in the body with the 

creation of explosives designed to maim rather than kill instantly. Therefore it is important 

to understand the historical development and how this can affect the types of injuries seen. 

Comparing World War One mortar injuries to those seen in improvised explosive devices 

will necessarily yield a different pattern, due to differences in the construction. 

Additionally, this will change based on the explosive material used. For example 

gunpowder is a much less powerful explosive than PETN, a high explosive material. As 

such the injuring force is different and this affects the biodynamic interaction.  
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Understanding the historical development of explosive materials and the way they are 

made into the different preparations impacts the understanding of the biodynamic 

processes which injure the body. Low explosives and high explosives injure differently, for 

example a high explosive will have more impact on the soft tissues of the body due to the 

blast wave component of these explosions. This also applies to the evolution of weapons 

over time. World War One saw the predominant use of mortar rounds, which injure 

through the shrapnel component which is created by the breaking of the casing. Improvised 

explosive devices are often filled with materials to maim, such as nails or ball bearings. 

Anti-vehicle explosives, such PIAT anti-tank weapons contain a high explosive material 

which affects the interior of the vehicle with the blast wave as well as shrapnel 

components. As such, examining skeletonised remains which have been injured by modern 

weapons will necessitate the knowledge of the effect of the blast wave on the body (such as 

traumatic amputation) and not solely the effect of irregular casing shrapnel.  

 

Much of the information gathered from clinical literature deals with previous conflict with 

which we can access data and can correlate specific types of injuries with the 

characteristics of the explosive material used and its container. Without comprehension of 

the range of historical and modern weapons and their effects, compiling information which 

can be used in anthropological investigation would be difficult. When faced with 

identifying injuries from a specific type of explosive, it is crucial to know how previous 

and current weapons interact with the body, making it possible to evaluate the injuries 

based on their development and their biomechanical interaction with the body. Chapter 3 

examines these interactions, varied based on the type of explosive. 
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3. Project background: chemistry, physics and biomechanical 

response to explosives 

 

It is critical to understand blast mechanics as the combination of physics, chemistry and 

biological response to blast determines the patterns seen in the human body. This chapter 

introduces the necessary concepts to understand the mechanism involved in trauma from 

blast. This includes an exploration of the chemistry and physics of explosions, which can 

dictate the type of trauma seen in the human body. The second section explores the 

patterns of injury which are described in the clinical literature and those applicable to 

specific blast contexts such as terrorist incidents, suicide bombings and combat injury. This 

situates the research within the current knowledge regarding blast injury.  

 

Lastly, this chapter introduces the statistical methods and concepts which have been 

previously used in anthropology, particularly in trauma analysis and explores the 

applications and potential of the specific methods chosen for this thesis. 

 

All terms employed regarding the physics, chemistry, biomechanics and medical 

description related to blast injury are derived from standard conventions and nomenclature 

in clinical literature as well as chemistry and physics. 

 

3.1. Physical versus chemical explosions 

 

Studying the chemical and physical properties of explosives is an important step in 

understanding blast injury. Chemical properties of explosives determine their type 

classification and the effects on the surrounding environment during a detonation or 

deflagration. There are three ways of classifying explosives and the explosions they cause: 

physical, chemical and atomic. 

 

 

3.1.1. Physical explosions  

 

A physical explosion is defined as occurring when a substance undergoes rapid physical 

deformation, which happens during compression as well (Akhavan 2004). The energy 

accompanying the physical explosion becomes kinetic (energy due to motion) and is 
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accompanied by a shockwave in the surrounding space (Akhavan 2004). An example of 

this is the explosion of oxygen tanks used in scuba diving, which can explode due to a 

point of weakness in the outer tank, permitting an explosion release of the gas from the 

inside. This is due to the difference in pressure, with the pressure being higher inside than 

outside the cylinder.  

 

 

3.1.2. Chemical explosions  

 

Chemical explosions vary from physical explosions in the sense that these are the result of 

a change of chemical state in a rapid period (Akhavan 2004). This is also accompanied by 

a large generation of heat and gasses. This is caused by a rapid exothermic reaction, which 

occurs so quickly that the gases do not expand instantaneously but remain in the container, 

taking the place of the explosive charge (Akhavan 2004). In this small space, the pressure 

is so great that when it escapes, this results in a blast wave, capable of causing damage to 

objects at a distance (Akhavan 2004).  

 

For this piece of research, chemical explosions are of main interest and atomic explosions 

are outside the remit of the work. Chemical explosions are the focus of this research due to 

the availability of data for the project. Clinical literature predominantly deals with this type 

of explosion due to the wealth of information contributed by research in war time contexts, 

where most medical research is developed. 

 

 

3.2. Types of explosives: high/low and primary/secondary explosives 

 

Explosives are substances which can undergo a ―rapid chemical reaction evolving a large 

amount of heat and so exerting a high pressure on its surroundings‖ (Agrewal and Hodgson 

2007). These products undergo their chemical reaction without outside involvement, such 

as the external reactant oxygen (Meyer et al. 2007). The chemical reaction is initiated by 

various means which can include mechanical (impact or friction), heat (flame, spark or 

heat) or shock (energy pulse, charge) methods (Agrewal and Hodgson 2007; Meyer et al. 

2007). Explosive materials can be subdivided in two ways, low and high explosives or 

primary and secondary explosives based on various chemical properties, such as their 
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sensitivity and ease of chemical reaction. Patterns of injury are affected by the type of 

explosive material used, with high explosives causing more physical damage due to its 

increased power over low explosives. Low explosives are of the burning type and do not 

cause the same amount of damage, reducing the injuring potential of the materials. 

 

 

3.2.1. High and Low Explosives 

 

Low explosives are classified due to the deflagration (burning) of the chemical, on the 

surface. These are also known as propellants (Agrewal and Hodgson 2007). There are 

exceptions and some of these materials may indeed detonate, but require confinement and 

an explosive shock to commence the reaction (Agrewal and Hodgson 2007). Substances 

classified as low explosives include smokeless powder and gunpowder(Morgan 1967; 

Tooley 1971; Cooper 1996; Cooper and Kurowski 1996; Zukas and Walters 2003; 

Agrewal and Hodgson 2007; Meyer et al. 2007).  

 

High explosives are classified based on their ability to detonate, without confinement. 

These substances are subjected to a self-sustaining reaction, the chemical reaction being 

propagated by a high-pressure shockwave through the material (Agrewal and Hodgson 

2007). High explosives include familiar compounds such as PETN, HMX, RDX and 

nitroglycerine. 

 

 

3.2.2. Primary and secondary explosives 

 

 Primary and secondary explosives are classified based on the sensitivity of the materials to 

mechanical and thermal stimuli (Agrewal and Hodgson 2007). Explosive materials can be 

classified in two categories, primary and secondary. 

 

Primary explosives are used as initiators due to their increased sensitivity to mechanical 

stimulus. These will explode with minimal effort and will also explode when subjected to 

heat (Agrewal and Hodgson 2007). These materials are used as initiators for larger 

explosive charges which require stimuli to undergo detonation. An example of primary 



51 

 

explosives is nitroglycerine. Secondary explosives, such as RDX, are more stable and used 

as the main explosive charge combined with a primary explosive for initiation. 

 

 

3.3.  Physics of explosives 

 

An explosion is defined by its rapid generation and violent escape of gas created by the 

chemical reaction of explosive material (N.F.P.A 2004). This is a gas dynamic reaction 

that includes rapid conversion of a solid or liquid material accompanied by energy release 

along with an over-pressurised shockwave travelling at speeds quicker than the speed of 

sound (Hull et al. 1994; Wightman and Gladish 2001; N.F.P.A 2004; Ciraulo and Frykberg 

2006). The explosion follows two different pathways dependent upon the type of explosive 

material used: deflagrating or detonating explosive (Beveridge 1998). An explosion 

involving a deflagrating explosive material is a self-sustaining reaction due to its heat. This 

heat causes an increase in reaction that perpetuates itself. This heat may also be provided 

by the shockwave. In this type of explosion, reacted materials travel away from unreacted 

explosive material (Beveridge 1998).  

 

Conversely, detonating explosions behave differently. The products of its chemical 

reaction travel towards the undetonated explosive at high speed and with high pressure and 

temperature. Following this is a chemical reaction zone completing the explosion 

(Beveridge 1998). 

 

 

3.3.1. Positive and negative pressure phases 

 

To understand the biodynamics of primary blast injury, a basic understanding of blast 

physics is required. The injuring blast wave is caused by the expansion of gasses generated 

by the explosion. This acts like a wave, propagating out from the centre of the blast 

(Cooper and Kurowski 1996). This is called the shock wave. Three components, all 

important injuring factors in a blast, form the shock wave. The first is the high positive 

pressure phase occurring immediately after the blast, which is the longest portion of a 

shock wave and causes a rise in the ambient air pressure. Following the passing positive 

pressure, a negative pressure phase occurs, which is actually below ambient atmospheric 
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pressure. This can be represented graphically as an idealised Friedlander curve as seen in 

Figure 3-1, where the overpressure which accompanies the blast is seen early on the time 

axis, reaching its peak rapidly. Until the overpressure drops to atmospheric pressure, this is 

referred to as the positive phase. Pressure dropping below atmospheric pressure represents 

the negative pressure phase and with time this pressure phase returns to normal 

atmospheric pressure. This is illustrated in Figure 3-1, which graphically illustrates the 

positive and negative pressure phases in comparison to the stable atmospheric pressure 

(dashed line).  

 

 

Figure 3-1 :  Positive and negative pressure phases (from Horrocks and Brett 2000) 

 

Accompanying the positive and negative pressure phases is the blast wind, a mass 

movement of air caused by the explosion. This is a dynamic pressure that moves more 

slowly than the blast wave (combination of positive and negative phases of the explosion). 

The expansion of gas accelerates molecules of air into a high speed wind (Boffard and 

MacFarlane 1993). This may also be caused by a countermovement of air filling the 

vacuum created by the negative phase. Once blast wind resolves, a return to ambient air 

pressure occurs (Mellor 1992; Boffard and MacFarlane 1993; Mallonee et al. 1996; Covey 

2002). The blast wind is capable of propelling objects and can be as damaging as the 

original explosion itself. 

 

 

3.3.2. Open, Semi-Confined and Enclosed Explosions 

 

Explosions occur in a variety of locations, which can be open space, semi-confined and 

enclosed (such as vehicles). The physics of a blast is affected greatly by the containment of 

Negative  pressure phase  

(below atmospheric pressure) 
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the area in which an explosion occurs. In an open air explosion, overpressure and its 

accompanying negative phase and blast wind quickly dissipate. In a confined space, an 

additive effect occurs due to reflection of blast waves on objects, walls, floor and ceilings 

(Boffard and MacFarlane 1993; DePalma et al. 2005; Ciraulo and Frykberg 2006). A 

reversal of wind back to the centre of the explosion can also occur and will result in lower 

than normal pressure and increased injuries (Depalma et al. 2005) due to the complex 

waves and their sustained duration (Chaloner 2005). This will impact any conclusions 

made during the research as the environment in which a blast takes place must be taken 

into consideration. 

 

 

3.4. Biological response to explosion and clinical patterns of injury 

 

Blast injury can be defined as specific injuries to the human body caused by the blast‘s 

physical properties and penetrating missiles set in motion by the explosion itself. These 

injuries can have as a source either the shock wave associated with the explosion or the 

movement of air (blast winds) by the explosion (Haywood and Skinner 1990; Ciraulo and 

Frykberg 2006). Blast injury represents a variety of complex injuries. Bombings, especially 

suicide bombings, are situations involving high complexity due to the random nature of 

this type of attack, variability in the injury patterns, high concentration of soft tissue 

damage and prevalence of injury affecting multiple organ systems (such as vascular, 

skeletal, neurological), termed multisystem injury (Neuhaus et al. 2006). The complexity 

and intensity of blast injury is affected by various factors as are the physics of the 

explosion itself. The largest part of blast injury is penetrating injury, which represents a 

higher energy transfer on soft and hard tissues. The amount of energy transfer determines 

the degree of damage endured by the tissues. The kinetic energy of fragments creating 

penetrating injuries is dependent on their mass and velocity and will transfer to the tissues 

it impacts upon (Coupland 1994; Hull 1996). The tissues subjected to these missiles will 

impart a degree of retardation based on their area, elasticity and density. Bone will behave 

differently when put under missile stresses due to its mechanical properties including high 

density, permitting an energy transfer with less destruction than soft tissue (Hull 1996). 

However, due to irregularly shaped missiles characteristic of explosive blasts (versus 

bullets), the ballistic instability of such materials means that they will deposit more of their 

kinetic energy much faster and with greater tissue destruction than bullets striking a human 



54 

 

target (Cooper et al. 1983). It is because of these varying biodynamic factors that missiles 

created by an explosion will behave differently than bullets and consequently impart 

differing injury patterns. As demonstrated  various fragments behave differently and are 

impacted by their shape, velocity as well clothing and the tissues it must travel through 

(Bowyer 1996; Bowyer et al. 1996). These factors impact the depth of the fragments 

penetration as well as the size of the temporary cavity left behind. 

 

The position of the body relative to the blast is also an important factor to consider when 

examining blast injury. The severity of the impact and the injuries sustained are much 

higher when standing perpendicular to the blast as opposed to horizontally (Ciraulo and 

Frykberg 2006). Proximity is also the single most important determinant for the severity of 

blast injury and is responsible for the high incidence of death to those standing close to the 

blast(Ad-El et al. 2006; Mayo and Kluger 2006; Neuhaus et al. 2006). Further away from 

the epicentre of the blast, cause of death is more likely to be attributed to the intense 

overpressure created by the blast, as opposed to the detonation or deflagration of the 

explosive material itself (Mayo and Kluger 2006). Also, more penetrating type injuries are 

encountered, from the material being detonated in the bomb (casings) or objects and 

structures being destroyed around victims. Blast loading, which is the force on a structure 

produced by the combination of the weight and standoff distance of a blast charge, is also 

influential in the types and severity of the injuries sustained during an explosion. Mellor 

(1992) demonstrated in a study of Irish servicemen that a higher blast loading was 

associated with an increase in blast lung injury and a smaller blast load correlated with a 

larger number of head injuries. The further a victim is away from the central blast, the less 

likely they are to be injured due to the drop off in blast loading related to stand-off 

distance. Additionally, lateral movement has no impact on blast loading, only distance 

from the epicentre will impact the amount of force the blast wave has as it goes through 

tissues (Lockhart et al. 2011).This illustrates the importance of knowing the context of the 

incident as the types of injuries are dictated by many factors which vary the situation. The 

more information anthropologists can obtain, the better they will be prepared to look for 

patterns of injury that can be identified in the assemblage of skeletons. This gap in 

knowledge is extremely important to address as the number of blast events increases in a 

variety of situations within which anthropologists may be invited to contribute (such as 

terrorism, war and criminal investigations).  
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Blast injury has been historically subdivided into four categories based on the biodynamics 

of the injuries and the blast physics causing the injuries (Zuckerman 1940 in Chaloner, 

2005; Zafar et al. 2005). The spectrum of blast injury is typically divided into primary, 

secondary, tertiary and quaternary blast injury. Each injury pattern includes a predominant 

type of injuries which are associated with specific blast mechanics, such as the blast wave. 

Being familiar with aspects of the situations context can aid in determining what types of 

injuries one can expect, particularly if location information is available for victims. The 

injury patterns identified are a general assessment of what to expect when examining blast 

victims but can nonetheless be useful in correlating injuries and context. Anthropological 

investigation can benefit from this and this piece of research examines the applicability of 

the patterns of injury from the medical literature to an anthropological assemblage to 

determine suitability of the appropriation of these for the biological and forensic 

anthropology.  

 

 

3.4.1. Primary blast injury 

 

Primary blast injury is the result of the shock wave and its accompanying components, 

such as the positive and negative pressure. It is estimated that 86% of fatal blast injuries 

are of this type (Wightman and Gladish 2001). The resulting primary blast injuries are due 

to the effect of the blast wave passing directly through the body. The effect of the blast 

wave is most profound at the air- and fluid- filled interfaces in the body, such as the lung 

(Chaloner 2005; DePalma et al. 2005; Ciraulo and Frykberg 2006). This causes blast lung 

injury, which is a difference in the pressure between the alveoli of the lungs and the liquid-

filled capillaries, caused by the overpressure of the positive pressure phase. This pressure 

disrupts the barrier between the two and causes bleeding into the alveoli (Mellor 1992; 

Boffard and MacFarlane 1993; Langworthy et al. 2004a; Chaloner 2005; Zafar et al. 2005; 

Ciraulo and Frykberg 2006).  

 

The lung is not the only organ to be affected by primary blast injury. The eardrum is also 

particularly susceptible to injury caused by the blast wave (Covey 2002; Chaloner 2005; 

Ciraulo and Frykberg 2006). The presence of eardrum perforation in victims has long been 

stated as an indicator of the presence of blast lung injury and poor prognosis due to the low 

pressure threshold at which this injury occurs (Ciraulo and Frykberg 2006). This notion has 
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been challenged in a large study examining the effects of blast on victims of civilian 

terrorism and demonstrated that there was no correlation between blast lung injury and ear 

drum perforation (Leibovici et al. 1999).  

 

Other injuries are also caused by the blast wave, and categorised as primary blast injury. 

This includes spalling (fragments of soft tissue ejecting from an organ) at the interface of 

two media of different densities, causing turbulence and cavitation. This is accompanied by 

spalled particles of the less dense medium travelling into the denser medium (Stapczynski 

1982; Boffard and MacFarlane 1993). Implosion can also be a consequence of the blast 

wave and occurs when an air bubble rapidly contracts following the extreme drop in 

overpressure accompanied with the negative phase of the blast. The bubble subsequently 

expands rapidly, causing its own explosion in confined spaces and can lead to the passage 

of air into various tissues and vessels. Inertia, which is also a result of the blast wind 

interacting on the human body, causes the movement of the viscera within the body 

cavities and can cause contusions and tears (Boffard and MacFarlane 1993). 

 

Typically the description of primary blast injury examines the soft tissue consequences of 

the blast wave. The current focus in the clinical literature is on the effects and sequelae of 

traumatic brain injury, most often caused by the primary blast and the accompanying wave. 

Despite this, there have been links between skeletal injuries and the blast wave which 

could potentially be utilised in the examination of blast injury in anthropological 

investigation. A further examination of the potential traumatic skeletal injuries from the 

blast wave is made in a subsequent section, addressing the injuries found in the sinuses, the 

possibility of bone fractures from overpressure and the mechanism of traumatic amputation 

(see 3.6). 

 

 

3.4.2. Secondary blast injury 

 

Secondary blast injury is the most common injury mechanism encountered in both 

fatalities and survivors (Ciraulo and Frykberg 2006). It is the leading cause of mortality 

and morbidity in terrorist bombings in the Middle East (Langworthy et al. 2004b; 

Ashkenazi et al. 2005) and around the world (Mayo and Kluger 2006). It is characterised 

by penetrating injury caused by fragment implantation in the tissues. The projectiles, which 
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are often materials that have been added to the explosive devices (Kluger 2003; Ciraulo 

and Frykberg 2006; Mayo and Kluger 2006; Weil et al. 2007) are propelled by the blast 

wave or the negative wave pulling materials back towards the epicentre of the blast 

(Ciraulo and Frykberg 2006) The projectiles can travel with both high and low velocity (up 

to 823m/s) and can create blunt or penetrating ballistic trauma (Boffard and MacFarlane 

1993; Wightman and Gladish 2001; Kluger 2003; DeWitte and Tracy 2005). Injury 

patterns created by penetrating fragments reflect the shape and velocity of the fragments 

and are varied based on their resemblance to ballistic materials (i.e. ball bearings) or 

irregularly shaped projectile (i.e. container pieces) (Kluger 2003). Section 3.7 expands on 

this with an examination of specific types of injury and the differences between ballistics 

wounds (such as gunshot wounds) and those from blast fragments. The patterns of injury 

which differentiate both again indicate the possibility of identification of blast injury from 

the skeleton if the anthropologist is familiar with these.  

 

 

3.4.3. Tertiary blast injury 

 

The third blast injury category, tertiary blast injury, describes the phenomenon of body 

displacement associated with explosive blasts. It involves the deceleration of the body and 

impact upon the ground, walls or objects by the human body or body parts (Mellor 1992; 

Chaloner 2005; DePalma et al. 2005; DeWitte and Tracy 2005; Ciraulo and Frykberg 

2006). This movement is caused by an acceleration of the body by the blast winds and the 

expanding gasses of the violent explosion (Boffard and Macfarlane 1993; Wightman and 

Gladish 2001). Blast injury of this category is the second most common trauma in 

survivors, following secondary blast injury (Ciraulo and Frykberg 2006) and involves 

closed injuries, blunt abdominal and chest trauma, extremity fracture and traumatic 

amputation to exposed limbs impacting surfaces (Boffard and Macfarlane 1993; Chaloner 

2005; Ciraulo and Frykberg 2006; Depalma et al. 2005). The mechanism of traumatic 

amputation has been disputed by various studies. These have concluded, through use 

mathematical modelling and experimentation, that traumatic amputation is associated with 

the blast wave ( primary blast) and is a fracturing of the limb shaft rather than a severing of 

limbs at the joints due to tertiary mechanisms (Hull 1992; Hull et al. 1994; Hull and 

Cooper 1996). This will be addressed further on in Section 3.6. 
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These types of injuries lead to identifiable trauma on the skeleton resembling blunt trauma. 

The issue at hand is the possibility of differentiating other causes of blunt trauma from that 

of blast trauma. Due to the characteristics of blunt trauma there may differences drastic 

enough to permit a differential diagnosis with certainty. Examination of specific cases of 

tertiary blast injury in which the full context is known could permit a study of 

differentiating factors but would be out of the scope of this research project and remains an 

avenue for further work. 

 

 

3.4.4. Quaternary  and quinary blast injury 

 

This category of blast injuries includes miscellaneous injuries that do not fit into the 

previous three categories of injuries. This is where burn injuries are classified. Flash burns 

from the intense but short heat of explosion are considered quaternary blast injuries 

(Mellor 1992; Horrocks 2001; DePalma et al. 2005; Ciraulo and Frykberg 2006; Mayo and 

Kluger 2006) The heat from the explosion can be up to three thousand degrees centigrade 

but does not last long and quickly dissipates with time and increasing distance from the 

source (Mellor 1992; Boffard and MacFarlane 1993). Explosive materials are now used in 

incendiary devices combined with elements such as napalm with powdered aluminium. 

This increases burning time, severity and prevalence of quaternary blast injury (DePalma 

et al. 2005).  

 

The possibility of chemically and radiologically induced injury, such as 

methaemoglobinaemia, is classified as quinary blast injury in the literature (Ciraulo and 

Frykberg 2006). This condition refers to poisoning by dinitrobenzene, a component of 

wartime munitions, causing an oxygen binding and carrying incapability in the blood 

(Horrocks and Brett 2000).  

 

Both quaternary and quinary blast injury are of lesser relevance to biological anthropology 

as soft tissue injury would be the predominant result of the mechanisms at action. As such, 

little focus can be placed on these for the current research project. 
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3.5. Injury patterns in previous research 

 

Examination of the previous research to establish the current state of knowledge on 

patterns of injury is necessary to establish focus and expansion. The study employs the 

clinical literature to build an examination of the patterns which can be of use and 

contribute to knowledge in anthropology, as this type of trauma is not extensively studied 

in the literature.  

 

Many factors influence the patterns of injury in different scenarios, such as the 

composition and delivery method of the explosives, the stand-off distance and any 

intervening protective barriers or environmental hazards (C.D.C 2003). These factors make 

it difficult to anticipate all possible injuries and consequently, the patterns described in the 

various studies undertaken describe general areas of injury. However, this information is 

still valuable and will aid in establishing patterns of skeletal injury which are relevant to 

anthropological investigation through the generalisation of patterns that can potentially be 

further refined through subsequent research.  

 

The results of the clinical studies are examined below. 

 

 

3.5.1. Terrorist incident studies 

 

In terrorist incidents, defined for the purposes of this piece of research as acts of violence 

using explosives which target non-combatants, general conclusions have been drawn 

which are applicable to the large scope of these types of events. They represent 

characteristics applicable to a variety of situations which can inform anthropologists during 

investigation. In the context of terrorist bombings, injuries occur predominantly to the 

head, neck and peripheries and are due to the lack of protective effect of clothing in these 

areas (Hadden et al. 1978; Boffard and MacFarlane 1993). Hayda and colleagues (2004) 

state that 85% of injuries are to the extremities and include traumatic amputation, fractures 

and crush injury. Injuries to the chest and abdomen such as blast lung injury are 

uncommon, but are associated with high mortality due to the severe disruption of air-filled 

biological systems. Primary blast lung injury is not often encountered in survivors of 

terrorist bombings (Hadden et al. 1978) due to the severity of this type of trauma but is 

encountered more frequently in those taking place in confined spaces (Brooks et al. 2011). 
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Those who survive terrorist bombings predominantly have musculoskeletal injuries such as 

fractures, sprains and strains (Frykberg and Tepas 1988; Neuhaus et al. 2006) as well as 

superficial soft tissue injuries such as lacerations. Victims succumbing to injuries caused 

by terrorist attacks are affected by multiple severe trauma involving amputation, head 

injuries, penetrating thoracic and abdominal injuries (DePalma et al. 2005) The distribution 

of these injuries is shown in Figure 3-2, which compiles frequencies from studies on 

terrorist incidents (involving targeting of non-combatants) and combat incidents. 

 

 

Figure 3-2: Prevalence of trauma to different body regions, comparing terrorist incidents and combat trauma 
(Dussault et al. In Press). 

 

Specifically, certain types of skeletal injuries have been found in cases of terrorism. One in 

particular involves spine fractures, which have been found to be present in 2-5% of victims 

(de Ceballos et al. 2005; Gutierrez de Ceballos et al. 2005; Hare et al. 2007). This 
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represents an injury in a very small area of the body. This is more unusual than the typical 

injuries in the extremities and head and neck area, which predominates most terrorism 

series. Vertebral fractures have also been described in combat casualties and victims. In a 

study of thoracolumbar fractures in combat, it was found that 38% of them were of the 

flexion-distraction type (Chance fracture), which in the civilian population occurs at a 

frequency of 1 to 2.5% of spinal fractures (Ragel et al. 2009).  

 

Notably prevalent in terrorist incidents are open fractures (with penetration of the skin by 

the bone) in the long bones. In a study by Eshkol and Katz (2005), 67% of fractures were 

open and located in the long bones (representing 33 of 49 total fractures). Following this, 

the fractures were either in the facial or skull region of the body. This also represents an 

important pattern of injury, as an increase in the occurrence of middle or lower third facial 

trauma is denoted by Dobson and colleagues (1989). According to the authors, this differs 

from combat injuries, where increased trauma in the maxillofacial region is not observed.  

 

Statistical studies of terrorist incident cases confirm these patterns. Hadden et al. (1978) 

examined 1532 victims of terrorist bombing and found that fractures in their cohort were 

multiple, compound and the lower limbs were more affected than the upper limbs. The 

head area was also heavily affected with 49% of males and 37% of females injured in this 

area (Hadden et al. 1978). Analysis of 11 terrorist bombings in Paris, occurring between 

1985 and 1986, revealed the same patterns with 44.4% of injuries being in the lower limb, 

23.5% affecting the upper limb and 19.3% the head and neck area. Of the injuries affecting 

upper and lower limbs, fracture of the lower limb was most common in the distal portion, 

with only one femoral fracture. The upper limb‘s distal portion was also most affected 

(Rignault and Deligny 1989). These findings also correspond to those in many other 

studies (Almogy et al. 2005; Sheffy et al. 2006; Torkki et al. 2006; Hare et al. 2007; Weil 

et al. 2007). Across the scope of these studies, a definite pattern of injury involving a high 

number of limb trauma and skull or facial trauma can be applied when examining an 

assemblage of skeletonised remains. These observations represent incidents that occurred 

in open contexts, which are not confined such as those happening inside a building. Due to 

this, patterns of injury vary to those seen in confined space terrorism.  

 

In confined contexts, injuries to the small body areas can be quite common, as in the case 

with fractures of the eye socket (Thach et al. 2000). In the Oklahoma City Bombing, five 

percent of survivors were affected by orbital wall fractures (Thach et al. 2000; Agir et al. 
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2006), believed to be caused by the change in atmospheric pressure. In Mallonee and 

colleagues‘(1996) analysis of the Oklahoma City bombing, there were 506 victims with 

injuries. Of these, 74% had extremity trauma and 48% had head and neck injury. These 

were the two most common injuries. A study by Arnold and colleagues (2004) of terrorist 

bombing incidents with more than 30 victims shows that there is an increase in fractures in 

cases involving structural collapse, with an increase in prevalence from 20% (open air) to 

45%. Analysis of confined space incidents demonstrates an increase in pulmonary blast 

injury, pneumothorax, blast lung injury and tympanic membrane rupture due to the 

increase overpressure in the space (Arnold et al. 2004).These results are similar to those of 

studies undertaken on the trauma patterns of the victims of the Madrid train bombings 

(Gutierrez de Ceballos et al. 2005; Martí et al. 2006) analysis of the Madrid bombings, 

which also indicated that the most common area of injury involved the head and neck, 

followed by limb injury due to the blast and resulting fragments. Limb injury was also 

more predominant in the lower limb (Martí et al. 2006).  

 

The characteristics of the blast wave in a confined environment means that it is reflected 

multiple times when encountering structures, which can cause a tenfold increase of the 

pressure, leading to a much higher incidence of primary blast injury (Brooks et al. 2011). 

Whilst the high number of extremity and head injuries is similar to those in open-air 

terrorism, a potentially higher number of blunt trauma can be observed due to the increase 

in tertiary blast injury and could be of use to the anthropologist. Penetrating fragment 

injuries can also increase due to the confined nature of the space which places the 

casualties and victims closer to the source of the blast. 

 

 

Many studies of patterns of injury in suicide bombing have been conducted, predominantly 

in the Middle East (Almogy et al. 2004; Ad-El et al. 2006; Aharonson-Daniel et al. 2006; 

Kosashvili et al. 2009; Mekel 2009; Bala et al. 2010).These studies differ from the typical 

terrorist studies as these present a differing pattern of injury and involve the delivery of the 

explosives on a person. These studies have found that the pattern in suicide bombing 

fatalities is characterised by injuries to soft tissues predominantly followed by fractures, 

especially in the long bones (Eshkol and Katz 2005; Zafar et al. 2005; Ad-El et al. 2006). 

The increasing number of soft tissue injuries is due to the change in method of suicide 

bombing with modern explosive materials combined with metal pieces that cause extensive 

soft tissue penetrating injury and can cause some fracturing of bones. This represents a 
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change in the typical suicide bombing pattern, where the severity of soft tissue damage has 

become more predominant than skeletal injury (Aharonson-Daniel et al. 2006) . These 

types of injuries are more reminiscent of ballistic trauma than straightforward blast injury. 

However, it still differs from gunshot wounds which can aid in the identification and 

differential diagnosis of these during investigation.  

 

This is a reflection of injuries to the victims whereas suicide bombers themselves exhibit a 

combination of injuries which differ from the previous and are often used as the basis of 

identification when attempting to locate the perpetrator from the victims of the incident. 

Notably, severe comminution in both the soft and hard tissues in the torso area is observed 

rather than the less severe lacerations exhibited by those standing further from the 

epicentre of the blast. 

 

 

Specific studies conducted on body regions affected in below vehicle terrorist bombings 

concur with these previous data. A study by Zafar and colleagues (2005) of a bus bombing 

incident in Pakistan demonstrated that the most common injuries were multiple lacerations 

of soft tissues and lower limb fractures. The lower limbs showed predominant injury to the 

distal portion of the limb, with involvement of the ankle and foot region in eleven of 

twelve victims (92%) due to the typical placement of explosives on the underside of 

vehicles. The most frequently fractured bone was the calcaneus (in ten victims). This was 

due to the explosive charge being placed in a car below the bus, a common method in the 

Middle East, and is reminiscent of patterns of injury in landmine incidents (Hull 1992; 

Hull et al. 1994; Hull and Cooper 1996; Zafar et al. 2005).  

 

 

3.5.2. Landmine injury patterns 

 

Landmines are explosive munitions that exhibit very distinct injury patterns. Multisystem 

injury is predominant in these cases, as with other situations involving explosives 

(Traverso et al. 1981; Meade and Mirocha 2000; Han Husum et al. 2003). Limb injury is 

the most predominant type of injury involving mines, with the lower limb being the most 

common. Three patterns of injury have been identified and described (Warden 2006).  
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The first pattern occurs when a mine is triggered by standing on it. This causes traumatic 

amputation of the lower limbs accompanied by other injuries; however, these are less 

severe. This can include opposite limb and scrotum injury (Nikolic et al. 2000a; Nikolic et 

al. 2000b). The second pattern is a random pattern of injury. Patients affected have 

multiple fragment wounds which may resemble the effect of grenades, which is 

characterised as secondary blast injury due to penetrating fragments being the major 

injuring mechanism. The mines capable of this damage are often those triggered by a trip 

wire which subsequently jump up and cause damage in various bodily areas. The third 

pattern is seen in those injured while handling a mine and affects predominantly the upper 

body, mostly the hands and face (Coupland and Korver 1991). Injuries often seen with 

mine incidents are soft tissue damage and fractures. 

 

A study by Adams and Schwab (1988) of mine injuries in 15 fatalities at Guantanamo Bay 

demonstrated that the lower extremity injuries would have been fatal in 12 of the 15 

fatalities. All 15 fatalities presented with extremity amputation, caused by either the 

primary blast wave or the severing of soft and hard tissue due to fragments penetrating the 

limb. It can be concluded that the pattern is predominantly lower limb injury (King 1969; 

Jacobs 1991; Meade and Mirocha 2000) and can result in as much as 90% of cases 

including traumatic amputation, with below the knee amputation being most common 

(Traverso et al. 1981). Civilian landmine injuries were analysed by Meade and Mirocha 

(2000) and demonstrated that over 50% of victims had injuries to the lower limb. Of these 

27% were in the distal portion of the limb. This was accompanied by multiple other 

injuries in 60% of victims (Meade and Mirocha 2000). Additional research presented by 

Garner (2007), highlights that stress fractures are caused by the shock wave from the 

landmine and the associated energised gases and products result in detachment of limb, 

related to torsion, bending and dynamic overpressure. The hypothesis presented is that 

traumatic amputation is caused by these actions. Based on previous research undertaken by 

Hull and colleagues (1992; 1994; 1996), it is entirely plausible that these conclusions are 

correct as the mechanism is the same as that found in traumatic amputation related to other 

types of explosives. Here, the sole difference would be in the direction of the blast, with 

the physics of the blast remaining the same. In suspected landmine injury, this type of 

pattern can be useful in correlating injury to incident context. . For this information to be 

useful in the context of anthropological investigation, further study and expansion of 

samples would be necessary, such as experimental work done with cadaveric or proxy 

bone. Examination of the fracture types from different landmine types would elicit more 
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distinguishing features which can be used to explain context, rather than a focus on the soft 

tissue injuries which the clinical and medical management literature centres upon.  

 

A notable characteristic of landmine injury is the common presence of calcaneal fractures. 

Studies have indicated that this is repeatedly the most common fracture encountered in 

landmine injury (King 1969; Jacobs 1991; Nikolic et al. 2000b). This reveals a 

characteristic injury that is useful in the identification of landmine blast injury. This is also 

a common injury in under-vehicle blasts, necessitating the contextualizing of incidents and 

the holistic examination of the pattern of injury to aid in the differentiation of the two types 

of injuries.  

 

 

3.5.3. Combat injury patterns 

 

Patterns of injury in combat remains a central concern in this thesis to achieve the 

objective of differentiation of combat injury and human rights violations based solely on 

the skeletal evidence. To accomplish the recognition of differences between the two 

contexts, a review of previously examined research identifying trends in injuries due to 

combat blast is presented below.  

 

The current body of knowledge regarding blast injury focuses predominantly on the 

medical management of these injuries and the majority are found in the medical literature. 

These studies are often retrospective and focus on pairwise comparison of groups and the 

body regions affected to identify any significant prevalence of injuries. This is an 

epidemiology and management approach which can still provide information for the post-

mortem identification of blast injury in the skeleton but requires the examination of data 

primarily aimed at clinicians to ascertain what can be of use to the anthropologist.  

 

Despite this, the information provided from these studies can indeed provide materials that 

can be used in the differentiation of combat trauma due to blast from the patterns seen in 

civilian blast trauma. Predominantly, the type of injury seen in combat is related to 

secondary trauma, inflicted by fragments (extraneous to the explosive itself or from the 

surrounding environment). A study by Lin et al. (2004) highlights that in a sample of 

soldiers injured during Operation Enduring Freedom (Afghanistan 2001- present), 65% of 
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injuries can be attributed to fragments. This is a reflection of the nature of blast materials 

used in combat situations, which has seen an increase in the use of improvised explosive 

devices (IEDs) whose purpose is to maximise wounding potential through incorporation of 

additional materials to create an increase in the number of fragments. The increase in 

secondary blast trauma type injuries is also related to the use of protective clothing and 

armour by troops, thus reducing the amount of exposed soft tissue and mitigating some of 

the injury potential (Belmont et al.; Blumenfeld 2005; Wolff et al. 2005; Belmont 2010). 

Additionally, the removal of troops from the immediate vicinity of blast, through armoured 

vehicle use, results in less severe injury patterns than those seen in civilian situations. The 

prevalence of trauma in combat contexts is illustrated in Figure 3-2. 

 

Also of interest is the removal of troops from close-range combat, resulting in the 

increased use of materials such as improvised explosive devices and anti-vehicle mines 

rather than guns. Consequently, a rise in the number of casualties affected by blast injury is 

seen over the course of modern warfare and with it an accompanying change in patterns 

and severity of injury (Owens et al. 2008; Lew et al. 2010; Navarro Suay et al. 2012; 

Wallace 2012; Zachar et al. 2013). A study by Navarro Suay et al. (2012) examined 

casualties from Afghanistan, comparing the damaging agent (explosives versus gunshot 

wound) and classified these by body region affected. The authors found that in all regions 

except the head, explosives were the injuring mechanisms. The most affected area was the 

limbs, resulting from their exposure (rather than the protected torso) and their high surface 

area. As with civilian trauma, the lower limbs were greatly affected by trauma; however 

the head was not. This is likely due to the use of head protection by soldiers, which has 

been standard for many years. As indicated by other studies (Peleg et al. 2004), the severity 

of gunshot wounds was higher than blast injury and resulted in much more extensive 

skeletal injury (a higher level of comminution). Conversely, Gofrit et al. (1996) studied 

patterns of injury from Lebanon on the patterns of injuries from firearms and shrapnel 

analysed the incidence of injury with the purpose of evaluating the suitability of body 

armour used during this conflict. The authors concluded that the anatomical location of 

fatal injuries from shrapnel followed a definable pattern. This included a large proportion 

of injuries to the front and middle of the torso, found in 64% of their cases. The head was 

also an area of significant injury, particularly the front area (70%). The facial area was also 

heavily affected with a high density of trauma. With the recent Afghanistan war being one 

fought with the extensive use of body armour by troops, the difference between the two 

patterns of injury can clearly be attributed to this. 
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As with civilian terrorism blast incidents, the context also affects the outcome. Open-air 

and enclosed environments create different patterns of injury, with enclosed vehicles being 

the source of much research for the characterisation of injuries in combat. Notably, the 

Ramasamy et al. (2011) study presents data comparing open versus closed environments in 

combat and shows a predominance of lower limb injuries, in the tibia, fibula and foot, to be 

affected in enclosed situations. Additionally, a significantly higher number of tertiary 

injuries also occur in these situations.  

 

Rather than examining specific situations to analyse, other studies have examined conflicts 

(Iraq and Afghanistan) or particular groups within battalions. Comparison with previous 

conflict patterns of injury is also presented to contrast those from modern combat 

(Gondusky and Reiter 2005). This has yielded a large number of retrospective studies 

providing valuable information to the anthropologist. The following section synthesises 

patterns of injuries from these studies.  

 

Historically, examination of the patterns of injury in previous conflict has yielded 

information which demonstrates a change in the body regions injured. From World War II 

onwards, the extremities and head/neck region were affected greatly. Over the course of 

the following conflicts (Korean War, Vietnam War, Gulf War, Somalia) the amount of 

head and neck injuries decreases, but the prevalence of extremity injuries remains 

relatively stable and subsequently increases drastically during the first Gulf War and 

Somalia. The link with body armour including head protection is obvious, making this 

information useful to anthropologists working in combat casualty recovery (such as those 

working with the U.S. Government in the Middle East). A decrease in eye injury is also 

noted (Gondusky and Reiter 2005), related to the use of eye wear protecting from 

fragments. Particularly of note is the inclusion of data from the Bosnian and Croatian war, 

of which includes a prevalence of 9.8% of eye injury (this could include soft tissue and 

musculoskeletal). 

 

Examining a specific conflict (Operation Iraqi Freedom and Operation Enduring Freedom), 

Owens and colleagues (2008) (Owens et al. 2008)compared body regions affected by three 

different mechanisms; gunshot wounds, explosion and motor vehicle collision. Most 

notable is the very high predominance of head and neck injury in those affected by 

explosion. Comparatively, the gunshot wound casualties had thorax injuries as their 
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highest area of trauma and the head and neck as the lowest. The number of extremity 

injuries was also much higher than both the gunshot and collision victims. In the 

examination of a mechanised battalion in Iraq, head and upper extremity injury is 

described as being most prominent, a factor resulting from the lower body protection 

offered by the vehicles in which these soldiers were seated (Gondusky and Reiter 2005). In 

this study, 97% of the sample‘s injuries were the result of explosions or IED‘s, a negligible 

amount from gunshot and other sources. Particularly important is the low number of chest 

and back injury, again reflecting the protective aspect of body armour employed by 

modern soldiers.  

 

Common in the clinical literature are studies which are aimed at the medical management 

of combat injuries, requiring a more critical analysis to be able to evaluate how useful to 

anthropology the information presented can be. Whilst a large number of these papers may 

not be of use, parts of others can still be useful such as those which are more particularly 

aimed at orthopaedic practitioners. Additional knowledge of orthopaedic terminology is 

required and understanding of the different notation systems used to describe fractures 

important. One such classification is used in a study by Gwinn et al. (2011), the 

orthopaedic trauma association classification which uses a number representing the bone, 

followed by a combination of a letter and up to three numbers representing the types of 

fractures as well a level of comminution (Marsh 2009). Familiarity with this system 

permits the anthropologist to analyse orthopaedic literature which can be useful to 

research. Particularly, the Gwinn et al. (2011) study examines the patterns of lower limb 

fractures from a sample of soldiers with fractures accompanied by arterial involvement. 

The results of this study are confined to below the knee injuries and highlight an 

abundance of metatarsal fractures, comminuted posterior facet and body fractures in the 

calcaneus and neck fractures in the talus. The tibia and fibula were most affected by 

fragmented wedge fractures and complex (comminuted) irregular spiral fractures of the 

diaphysis. Whilst caution should be noted in the interpretation of these results as they 

represent a sample which is selective of those with arterial injuries in the U.S Marine 

Corps, the trends in the patterns of injury in the lower limb of dismounted soldiers can be 

of use. In this study, evidence of comminution is seen in the most common injuries, giving 

an indication of mechanism that can be correlated to secondary type trauma, which 

typically results in a higher level of comminution.  
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A second study on dismounted combat troops was undertaken by Jacobs (1991) 

specifically examining the incidence of traumatic amputations and their orthopaedic 

characteristics. Traumatic amputation, being a particular injury, is very important to both 

medical staff and can be an indicator of certain types of blast injury for the anthropologist 

to identify. The authors classify types of traumatic amputation by level of injury and their 

results demonstrate that the largest proportion of traumatic amputations occur in the 

proximal lower leg or the distal thigh. In cases where both legs are amputated by the blast 

mechanism, 48% of the sample exhibited amputation at the same level as those only 

having a single amputation. An important difference between these two patterns is the 

presence of pelvic fractures solely in the group with bilateral amputations. Notably, the 

authors address limitations extensively and state that the examination of the sample was 

preliminary and further study needs to be undertaken. However, important results that can 

help to classify combat patterns of injury are discovered, particularly the association of 

pelvic ring fractures with bilateral traumatic amputation.  

 

In civilian trauma patterns an important contextual consideration is the difference between 

open air incidents and confined space incidents, which involve different mechanisms of 

injury. These also apply to trauma patterns in a combat situation as well, such as that which 

occurred on the USS Cole Navy destroyer bombed in 2000. In a study of the orthopaedic 

injuries of survivors of the bombing (Lambert et al. 2003) the proportion of victims with 

lower limb injury is 61%, similar to that of studies examining other confined space 

incidents, as previously examined. In the sample, orthopaedic injuries are present in 40% 

of the survivors, following the notion that orthopaedic injuries are highly prevalent in 

combat situations. In the lower limb fractures from this study, most are open fractures 

indicating a severity of injury. The upper limb injuries are a few isolated fractures in the 

shoulder complex and wrist. Most cases involve unilateral injuries, potentially indicating 

directionality of the victim in relation to the blast. None of the cases studied had 

orthopaedic head injuries.  
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Table 3-1: Summary of data from studies on combat related trauma 

Study Context Blast injuries Additional 

Conclusions 

Lin et al. (2004) Afghanistan  65% fragmentation injuries  

Navarro Suay et al. 

(2012) 

Afghanistan Trauma to all regions 

except head, limbs most 

affected 

 

Gofrit et al. (1996) Lebanon 64% front/middle of torso. 

Front of head 70% 

 

Ramasamy et al. (2011) Enclosed combat (ie. 

Tank, armoured vehicle) 

Predominantly lower limb. Tibia, fibula, foot 

affected. High # of 

tertiary trauma 

Owens et al. (2008) Iraq and Afghanistan High predominance of 

head/neck injury in 

explosives casualties. High 

# of extremity injuries. 

Thorax injuries most 

common in gunshot 

Gondusky and Reiter 

(2005) 

Mechanised battalion, Iraq Head and upper extremity 

injury 

Vehicle provides 

protection to rest of 

body 

Jacobs (1991) Dismounted combat 

troops 

Traumatic amputations 

(predominantly proximal 

lower leg/distal thigh) 

Pelvic ring fractures 

noted in bilateral 

traumatic 

amputations 

Lambert et al. (2003) Confined space (USS 

Cole) 

61% lower limb injury, 

40% survivors with 

orthopaedic injuries 

Open fractures 

predominant in lower 

limb 

 

 

Whilst these studies indicate a general pattern on can expect in a variety of combat related 

blast situations, there are a few types of injuries which stand out due to their prevalence 

being notably higher in the combat population rather than civilians. In the examination of 

combat related spine injuries, an increase in certain types of fractures is seen such as 

Chance fractures and lower lumbar burst fractures, which have a very low incidence in the 

general population (Covey et al. 2000; Kang et al. 2011) and in combat are related to anti-

personnel and anti-vehicle mines. Maxillofacial injuries are also predominant in combat 

situations, with injuries involving the maxillofacial sinus areas and the mandible (see 

section 3.6).  
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As shown through various studies, the pattern of injury in combat favours extremity trauma 

(Lakstein and Blumenfeld 2005) and can be attributed to the use of body armour in modern 

combat. Particular types of fractures and patterns are linked to modern combat aspects, 

such as those seen in the spine and their relation to the nature of combat in vehicles. 

Combat blast injuries can be characterised as being caused predominantly by 

fragmentation mechanisms and attributed to secondary blast injury. A decrease in head 

trauma between historical wars and modern warfare is also characteristic to combat. Eye 

injury, present in civilian trauma (Thach et al. 2000; Mehta et al. 2007), occurs much less 

frequently in modern combat. This is again related to the level of protection employed by 

modern battalions. 

 

 

3.6. Potential skeletal indicators of blast injury 

 

Of the four categories of blast injury, primary blast injury research has focused on the 

organs of the torso, such as the lungs and bowels (Mayorga 1997; Ritenour and Baskin 

2008; Wolf et al. 2009), not the musculoskeletal system. However, current research 

demonstrates the prevalence of musculoskeletal injuries caused by the primary blast wave 

(Hayda et al. 2004). This has implications for anthropological investigation of blast injury, 

providing indicators of primary blast injury that can guide anthropological investigation.  

 

 

3.6.1. Maxillofacial trauma 

 

One example of recently studied skeletal blast trauma is the injuries occurring to the 

maxillofacial region of the skull. Two biodynamic processes act on the maxillofacial area 

of the human skeleton; implosion and explosion (Shuker 1995; Shuker 2010). As the shock 

wave passes through the air filled cavities in the sinuses of the maxillofacial area, the air 

implodes under the high pressure effects, causing damage to the skeletal structures. The 

rapid external loading of the pressure onto the sinus structures, compresses the sinus walls 
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and cause them to splinter (Shuker 2008b; Shuker 2010). Once the high pressure has 

abated, the air re-expands, effectively causing a miniature explosion within the structures. 

This causes more damage to the delicate structures of the nasal area. This type of injury 

occurs when the shock wave hits the mid-face area, perpendicularly and straight on. When 

a lateral wave is coupled into the skeletal structures of the skull, the lateral portion of the 

maxillary sinuses are less affected due to the thicker zygomatic buttresses deflecting the 

shock wave more effectively than when the force is applied perpendicularly to the front of 

the face (Shuker 2010). In a study of 17 patients from the Madrid train bombings, Marti et 

al. (2006) identified paranasal sinus fractures in 53% of those with severe injuries, 

corresponding to primary blast injury patterns.  

 

A new type of primary blast injury has been described by Shuker (2008a) following 

extensive blast trauma examination in Middle East conflicts. This injury represents the 

effect of a shock wave travelling transversely through the mandible, causing a shearing 

fragmentation at a point of weakness, the mylohyoid line(Shuker 2008a), illustrated in 

Figure 3.3. At the mylohyoid attachment, the two types of bone (cancellous and cortical 

bone) split transversely due to the differing densities absorbing the shock wave differently 

(Shuker 1995; Shuker 2006, 2008a). 

 

 

 

 

Figure 3-3: Diagram of interior aspect of mandible, illustrating the mylohyoid line (Lewis 1918) 
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These effects present as a transverse fracture line that is located below the apex of the roots 

of teeth, often occurring at the level of the third molar apex and parallel to the angle of the 

mandible. This can be seen as more than one fracture line when one part of the mandibular 

bone shears over the other to create parallel transverse horizontal fractures (Shuker 1995; 

Shuker 2006). 

 

This pattern of injury differs from mandibular fractures caused by trauma unrelated to 

blasts. Typically, the fractures in the mandible seen in these cases are vertical due to one 

specific trauma impact point rather than a shock wave passing through the mandible 

(Shuker 2008a). Various studies of facial fractures have examined the incidence and 

aetiology of mandibular fractures, along with experimentation to determine the points of 

weakness and stress in the mandible (Allan and Daly 1990; Luyk and Ferguson 1991; 

Nomura et al. 2003; King et al. 2004; Torreira and Fernandez 2004).  

 

These findings outline the typical biological response to high impact forces at the various 

points in mandible and the potential for fractures. Based on forces exerted it would be 

possible to assume that shock waves can indeed produces fractures when impacting the 

mandible in the symphysis area. However, the patterns of injury differ from the traditional 

mandibular trauma in that the expected symphyseal, condylar and angle fractures are 

exhibited very differently from the transverse fractures in the body of the mandible (Luyk 

and Ferguson 1991; Torreira and Fernandez 2004). An examined transverse fracture 

pattern in the mandible may be useful in the identification of potential blast injury in the 

human skeleton. A recently published article by Breeze et al. (2010) examined this type of 

injury and studied its incidence in a sample of British soldiers. Their results indicated that 

this was actually not common in battle wounded soldiers and questioned the validity of 

Shuker‘s methods and sample. This should be taken into account when furthering the 

research on indicators of blast injury. Despite disputing Shuker‘s findings, Breeze et al.‘s 

conclusions contribute some interesting possibilities for primary indicators. Their research 

indicates an increased number of pterygoid plate fractures in fatalities (Breeze et al. 2010). 

This study also demonstrates that the distribution of mandibular fractures in the sample 

resembles the distribution of fractures in blunt trauma to the mandible. This could indicate 

that the blast wave mimics blunt force when imparting simple fractures. Comminuted 

fractures are consequently more likely to represent secondary blast injury from fragments 
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to the mandible, causing penetrating injury. Whilst these conclusions are informative and 

helpful, the sample population is one taken strictly from combat related incidents, making 

the conclusions potentially inapplicable to civilian trauma from blast.  

 

Additionally, in the mandibular area, a pattern of injury in the teeth has been described. 

Following blast injury studies, Shuker (1995; 2008a) identified tooth transections located 

below the gingival margin at the cemento-enamel junction. This location is a point of 

weakness for the teeth. The areas of protection provided by the root and alveoli cause some 

of the transverse force to be reflected. The remaining force causes transverse tooth shear 

which is parallel to the transverse mandible fractures, at the cemento-enamel junction of 

the teeth resulting in loss of the upper portion of the teeth (Shuker 2008; Shuker 1995). 

 

 

3.6.2. Traumatic amputation  

 

Primary blast injury is not confined to cranial trauma and can be observed in the 

extremities in the form of traumatic amputations. It has been a long standing conclusion 

that traumatic amputation is actually caused by the blast wind element of an explosion, in a 

pattern mimicking that of pilot ejection injury patterns (Horrocks 2001; Hull 1992; Hull 

and Cooper 1996). It was believed that limb flailing, where it is displaced wildly due to the 

blast wind, occurs before the traumatic amputation, causing the extremity joints to be the 

common site of amputation. This type of injury is seen in ejecting pilots, with the jet wind 

causing similar dynamic forces causing flailing of the loose limbs. However, this is a 

differing mechanism of injury to what is seen in previous traumatic amputation research 

(Hull 1992). In the numerous Hull and colleagues studies, the sample is taken from a 

variety of sources and combines methods to examine the phenomena of traumatic 

amputation using case studies, mathematical modelling and experiments, making the 

argument more persuasive that the mechanism of injury is in fact different to the previous 

thesis (Hull 1992; Hull et al. 1994; Hull and Cooper 1996).  

 

The previously held notion was that flailing of the limb occurred relative to the torso, 

causing a fracture or dislocation followed by avulsion at the joint of the extremity. This 

causes failure of the limb at the limit of movement in the joint (Hull 1992). However, 

studies conducted by Hull et al. (1994), Hull (1992) and Hull and Cooper (1996) contradict 
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this notion. These studies demonstrate that the most common site of amputation was not at 

the joint but at different positions along the long bones, according to the context of the 

explosive event. The sites of amputation observed were most frequently the lower third of 

the femur and the upper third of the tibia (Hull and Cooper 1996) at the level of the tibial 

tuberosity (Hull 1992). In the upper limb, the distal portion was predominantly amputated 

(Hull 1992). Traumatic amputations were also linked with a high incidence of mortality, a 

view commonly reflected in the literature (Hull 1992; Leibovici et al. 1996; Chaloner 

2005; Garner 2007). The authors found a high number of transverse and oblique fractures 

of the long bones at the site of traumatic amputation (Hull et al. 1994). This could be 

interpreted as a reflection of the characteristics of the shock wave, which travels from the 

epicentre of the blast, expanding outwards. This may potentially help to indicate 

directionality of the blast or indicate the positioning of victims relative to the blast and 

requires further investigation. 

 

What causes traumatic amputations, if the commonly held hypothesis of avulsion at the 

joint due to blast wind, is not valid? Through finite element modelling, Hull and Cooper 

(Hull and Cooper 1996) were able to test the hypothesis that a coupling of shock waves 

causes the traumatic amputation through the long bones rather than flailing followed by 

avulsion through the joint. The mathematical modelling of the lower limb resulted in 

evidence that the shock wave causes a stretching and bending in the mid-diaphysis region 

of a long bone (Hull and Cooper 1996)(Hull and Cooper 1996). Measurements showed that 

a minimal pressure of 133 megapascal (MPa) causes stress waves within the bone, which is 

sufficient to cause fracturing of the bone. This occurs less than 200 milliseconds after an 

explosion. Further whole body modelling demonstrated that flailing of the limbs occurs 

after 200 ms, which is subsequent to the shock wave stressing the mid-shaft area of a long 

bone. With this modelling, Hull and Cooper (1996)demonstrated that the fracturing of a 

long bone, due to stretching and bending at the mid-diaphysis, occurs before the flailing.  

 

To verify the mathematical models created, blast trials were conducted using goat bones 

(Hull and Cooper 1996). Previously observed patterns were replicated. Femora fractured in 

the upper and mid third and tibia sustained damage at the mid-diaphyseal level, showing 

simple oblique fractures. The knees also lacked any ligament damage or disruption, 

demonstrating that the shock wave was not acting on the joint to cause amputations. These 

observations are consistent with the modelling of the femoral and tibial fractures. Hull and 

Cooper (1996) concluded that the comminuted femoral fractures were likely due to high 
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axial forces combined with extension of the bone, whilst the tibial fractures were likely to 

be subjected to less force. The observed simple fractures demonstrate a lower force acting 

on the tibial bone. Blast trials using legs wearing boots were subjected to land mines were 

also conducted by Wolff and colleagues (2005). They concluded that at 0.02 seconds 

following the blast, movement of the leg occurs and is then followed by the amputation. 

None of their trials concluded that damage occurred at the joint.  

 

These replicable studies demonstrate a mechanism that involves damage to the skeletal 

system useful in the investigation of post-mortem trauma from suspected blast injury. 

These show promise as a way of identifying this type of trauma by the biological 

anthropologist. Further studies are required to continue this work and assess the application 

of these in anthropological contexts, an activity currently out of the scope of the present 

research.  

 

 

3.6.3. Inner-ear involvement 

 

Hollinger et al. (2009) investigated the incidence of luxation of the ossicular chain and 

fracturing of the petrous bone. This was done using multislice CT scanning on corpses. 

Part of this research included the incidence of these injuries in gunshot trauma. Despite the 

difference in characteristics of firearms trauma, much of the action of projectiles from 

explosions follows some of the same ballistic properties and this study‘s conclusions could 

possibly indicate another avenue of research in the identification of skeletal trauma from 

blast. Hollinger et al. (2009) found mid-ear lesions, including petrous pyramid fractures 

and ossicular chain disruptions, occurred frequently in mechanical trauma and extreme 

heat cases, both of which can be characteristic of explosions. Gunshot wounds were found 

to have a high incidence of transverse petrous fractures. Longitudinal or combined 

fractures were also noted, but did not have the same frequent incidence. They posited that 

these fractures were the result of direct deformation and the hydrodynamic effect of the 

projectile in the cranium. Both of these effects can be logical expected in the cranium in 

case of explosions as well, likely due to the shock wave and the effect of any penetrating 

projectiles. A high number of ossicular chain luxation was also noted in the gunshot 

trauma group and it was speculated that the projectile can give rise to high amplitude and 

short time vibrations of enough energy to cause the disruption of the ossicular chain within 
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the petrous bone. Vibrations of this nature can also be found in explosions and could 

theoretically cause the same type of injuries in the cranium. The shock wave component of 

the blast could exert a similar mechanism on the middle-ear structures and cause similar 

injuries, necessitating further research. Marti et al.‘s study (2006)of the Madrid bombing 

indicates that petrous fractures are found in blast injury cases. They observed that 18% of 

their patients had petrous fractures.  

 

 

3.7. Comparison with ballistic injury 

 

Basic understanding of ballistic mechanisms in bone is necessary to compare the trauma 

encountered in blast injury to that seen in gunshot wound cases. The following section 

outlines ballistic mechanisms and the resulting injuries in the skeleton that permit the 

identification of gunshot wounds in bone.  

 

 

3.7.1. Gunshot wounds 

 

Anthropologists can begin to identify blast injury in assemblages by observing the overall 

patterns of a sample and specific skeletal injuries. The pattern of injury includes a high 

number of extremity trauma, particularly in the lower limb. The level of comminution 

(producing multiple small bone fragments) in fractures also differs from gunshot wounds. 

Firearms cause skeletal injuries which have been well-documented. Low-velocity 

projectiles from firearms cause drilled whole defects in cancellous bone such as in the 

pelvis, distal femur, proximal humerus and spine. When a ballistic projectile impacts solely 

through cortical bone, tangential bone defects are often observed (butterfly fracture type). 

Spiral and transverse fractures characterize the path of low-velocity projectiles impacting 

dense diaphyseal cortical bone (as in the femur) (Gugala and Lindsey 2003). High-velocity 

gunshot wounds, particularly in long bones, exhibit extensive comminution (Vogel and 

Dootz 2007), whereas shrapnel injuries induced by projectiles from an explosion cause 

significantly less damage. This is due to the irregular shape of shrapnel, which causes it to 

travel at a lower velocity than ballistic projectiles. The velocity of shrapnel drops off 

extensively the further a person is from the epicentre of the blast (Cooper et al. 1983; 

Wiener and Barrett 1986; Boffard and MacFarlane 1993; Covey and Born 2010) .  
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Studies comparing the patterns between firearms injuries in terrorism and minor warfare 

and blast injuries have been conducted by researchers in the Middle East (Peleg et al. 2004; 

Sheffy et al. 2006). These have yielded conclusions which can also aid in the 

differentiation of firearms and blast injuries in assemblages. Commonly found in gunshot 

wounded victims are injuries to the chest, spine and abdomen (including soft tissue injury) 

and are found to typically affect only one or two body regions. Conversely, Peleg et al. 

(2004)found that blast injury affects the pelvis, extremities and large numbers of head and 

brain injuries. The number of fractures was also higher in gunshot wounds. Sheffy et al. 

(2006)compared gunshot wounds to secondary fragment injuries in blasts. Their findings 

are similar to those of Peleg et al. (2004), which noted secondary fragment trauma to be 

prevalent in the upper body region, particularly the head and neck. The damage was less 

extensive than localized gunshot wounds as these were produced by small sized fragments 

with much lower velocity and impacted upon areas which are less protected by clothing or 

other external coverings (Sheffy et al. 2006).  

 

 

3.8. Limitations of the current state of knowledge 

This literature review demonstrates that the main body of research is focused on the 

medical fields, such as triage, management and surgical intervention. These areas of 

research are well-developed and are the main concern of most researchers in these studies. 

This has been the focus since before the Great War, with the care of the large number of 

wounded from battle precipitating the need for development of medical expertise on these 

types of injuries (Fulton 1942; Mellor 1988; Beekley and Watts 2004; Geiger et al. 2008; 

Belmont 2010; Lew et al. 2010). Throughout the years, the techniques developed in 

military medicine trickled down through personnel acquiring knowledge from the military 

on dealing with blast trauma in civilians. This, along with a focus on the military traumatic 

brain injury, is the current focus of research (Okie 2005; Finkel 2006; Warden 2006; 

Bochicchio et al. 2008; Buchanan 2008; Elder and Cristian 2009; Wallace 2009). 

 

Forensic and biological anthropology does not have a significant body of literature on blast 

injury despite the use of their professionals in situations calling for analysis of this trauma. 

A few select case studies and a chapter on the basics of blast injury can be located (Pathak 

et al.; Siciliano et al. 2000; Allaire and Manhein 2008; Kimmerle and Baraybar 2008; 
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Dussault et al. In Press). The forensic sciences concentrate on the chemical identification 

of explosive materials, the use of DNA extraction from remains injured in blasts and 

pathology cases regarding soft tissue injuries (Rajs et al. 1987; Beveridge 1998; Botti et al. 

2003; Kuila et al. 2006). Whilst this provides an important body of knowledge forensic 

anthropology could benefit from consistent descriptions of blast trauma to apply when 

analysing injuries to the skeleton. Consistently, forensic and biological anthropologists are 

called in to participate in cases involving blast trauma, such as the identification of remains 

by the Commonwealth War Graves Commission and the Joint Prisoners of War, Missing in 

Action Central Commend- Central Identification Laboratory of soldiers from previous 

conflicts where use of explosive materials is known.  

 

Another important example of the anthropologist as practitioners is in the analysis and 

identification of remains from Bosnia in the late 1990‘s. The cases from Bosnia which 

have been presented to the International Criminal Tribunal for the Former Yugoslavia, at 

The Hague, have actually brought into question whether trauma inflicted in a case 

involving blast was perpetrated during warfare or was in fact a human rights violation 

against civilians. Defence attorneys in the ICTY cases against Tolimir, Karadžić and 

Mladić (ICTY. 2010a, ICTY 2010b, ICTY2012a, ICTY 2012b)  stipulated that the injuries 

seen could have been from battle rather than rights violations. Differentiating the patterns 

of injury between combat injuries and civilian injuries would be beneficial to indicate if 

there is a distinction between the two, which would be useful in answering these types of 

questions.  

 

There has also been a shift in the medical literature towards the investigation of primary 

blast injury, including maxillofacial trauma and traumatic amputation in the skeleton. 

These developments pose an interesting question as to their applicability as an indicator of 

blast injury in the skeleton, something that has not been previously investigated, and can 

serve to demonstrate primary blast effects, previously believed to not affect bones. Further 

investigation is warranted to determine the investigational applications of this and how 

these can contribute to furthering the field of anthropology. These types of investigations 

are also highlighted by recent developments in the analysis of trauma patterns from a 

forensic point of view (Ramasamy et al. 2010), illustrating the multi-disciplinary approach 

which can be beneficial in this field of research. 
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The literature review on blast trauma demonstrates that there are limitations in the existing 

research when needing to apply this to anthropological case work. The focus on medical 

aspects of blast trauma ignores musculoskeletal information which could be of great use in 

the investigation of blast events from the past and present. The paucity of anthropological 

information regarding these injuries is evident and could benefit positively from 

clarification and expansion of the little existing material to better serve trauma analysis in 

situations encountered by the practitioner such as historical casework, human rights 

violations, and terrorism and individual case studies of skeletonised remains.  

 

 

3.9. Trauma studies and statistical methods in anthropology 

 

To select appropriate methods for this study, a necessary examination of trauma studies in 

anthropology is undertaken to determine the current methodologies employed by 

anthropologists. In anthropology, the current state of knowledge regarding blast injury is 

very small and is comprised of case studies (Al Mulla et al. 2001; Alempijević D 2008; 

Allaire and Manhein 2008), an introduction to blast injury and related case studies 

(Kimmerle and Baraybar 2008) and a pilot study involving blast trials (Christensen et al. 

2012) examining the nature of primary and secondary blast injury in porcine proxies.  

 

Due to the nature of the few articles in the anthropological literature, an examination of 

anthropological studies of large assemblages and the techniques for the analysis of trauma 

within these was undertaken. Particular attention is paid to the method of the analysis, 

specifically those which involve statistical methods, as these can provide quantifiable 

results which can serve the purposes of court bodies, such as the ICTY. With this, potential 

gaps in the methodology can be identified and a new set of tools proposed. This new set of 

tools will then be examined in the anthropological context to identify current work which 

applies these and how these could be used in trauma studies.  

 

In the review of anthropological studies, statistical tests commonly employed were those 

using pair-wise comparisons. The most encountered test was the χ2 test, used to compare 

prevalence of certain types of trauma within groups, between groups, temporally and 

between locations. Similar to this are the Fisher‘s Exact test and Pearson‘ r, which are also 

used in a pairwise methodology to compare two groups, sub-groups or variables.  
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Trauma studies from the 1990's and the 2000's focus on prevalence of injuries and 

characterising the frequency of these in comparison to another sample. Even when 

addressing "patterns" of injury, it is mostly a description of the samples and the prevalence 

of different types of injuries or characteristics of one type. Basic statistics are employed, 

not venturing much further than essentially descriptive statistics, counts and prevalence 

percentages. Using these methods in the analysis of trauma, various authors achieve 

information on between group comparisons, such as those between sex groups (Erdal 

2012) alongside comparisons of different types of trauma (Scott and Buckley 2010). The 

most predominant approach is a calculation of frequencies, or counts, of injuries (usually 

fractures) (Judd 2002). This is used for comparison by employing the Pearson‘s χ2 statistic 

(and its associated tests such as Fisher‘s and Pearson‘s r) such as the work seen in the 

analysis of cranial trauma presence (Owens 2007).  

 

 

3.9.1. Cluster analysis and pattern detection in anthropology 

 

Current statistical analyses being undertaken to examine injuries in the human skeleton in 

paleopathology and bioanthropology utilise frequencies, prevalence percentages and 

simple Chi-Squared or Fisher's exact test to identify significant differences between 

frequencies of observed injuries or groups of injuries. Whilst these tests will elucidate 

important information regarding the statistical significance of differences between 

observed frequencies, it cannot help to classify objects into groups, whether these be 

individual injuries or complexes of injuries. 

 

The purpose of this research is to identify patterns within the data which help to 

differentiate between blast injury and other types of trauma, specifically gunshot wounds. 

Also, the differentiation between combat contexts and others is an objective which will be 

achieved by employing statistical methods to achieve robust quantifications of the 

probability that the trauma identified is indeed blast injury and can be attributed to a 

certain context.  

 

Pattern detection methods such as cluster analysis are not commonly used in trauma 

analysis but can be found in archaeology, such as ceramic classification (Karasik and 
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Smilansky 2011), and in some anthropological sub disciplines, such as biogeography 

(Yongyi et al. 1991). One example is the use of hierarchical cluster analysis in to examine 

patterns of resource utilisation by analysing coprolites and identifying patterns of food 

combinations giving an insight into diet (Sutton and Reinhard 1995). In archaeology, this 

statistical approach has been employed in the analysis of architectural features. In the 

research by Pugh (2003), cluster analysis is employed as an exploratory method to identify 

patterns which can be used as types in further spatial analysis. This type of application of 

cluster analysis as an exploration of patterns would be ideal in the examination of the 

samples in this piece of research due to the fact that it has not been previously approached. 

Karasik and Smilansky (2011) also point out that this type of pattern detection is ―a 

convenient research tool which provides a systematic basis for further analysis‖.  

 

Combining cluster analysis with other statistical testing to explore the groups formed is the 

subsequent step taken by many researchers. This involves the often involves techniques to 

identify important variables that can indicate groupings and employ multivariate 

techniques which would be suitable to this piece of research. 

 

 

3.9.2. Multivariate methods in anthropology 

 

Multivariate methods are complex and there are many which have been applied in 

archaeology and anthropology. One of the predominant uses of multivariate analysis is in 

the examination of ancient DNA. Principal components analysis is often used with aDNA 

analysis. This is used to examine similarities or differences between populations on two-

dimensional plots, with the dimensions reduced to the variables which contribute most 

variance (Kaestle and Horsburgh 2002). Variations on these types of techniques are 

employed as well, based on the nature of the data, such as multidimensional scaling and 

correspondence analysis.  

 

Population structure studies also employ various multivariate methods, both with models 

and without. Relethford and Lees examined the statistical methods in population studies 

and highlighted the use of many different techniques to highlight the degree of and factors 

affecting variation between groups such as discriminant analysis (Relethford and Lees 

1982). This type of analysis could be useful when comparing two groups of trauma 
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patterns to determine where these differences/similarities lie and which variables 

contribute to this. 

 

These methods are also employed when examining physical traits in populations, such as 

craniometrics (Key and Jantz 1981) and morphological characteristics (Masters and 

Lubinsky 1988; Bruner et al. 2013; Kurki 2013) 

 

 

3.9.3. Logistic regression 

 

Logistic regression, in the form of binary logistic regression or a mix of continuous and 

categorical variables has been employed in anthropology for many research purposes. 

Typically used to predict association with a specified group or examining odds ratios, 

different anthropological sub disciplines have employed this statistical technique. For 

example, longevity and its relationship with stature was examined, predicting that the odds  

of survival beyond 40 years of age increase with stature (Kemkes-Grottenthaler 2005).  

 

Differentiation between the biological sexes using logistic regression has also been 

undertaken, using morphology and metrics (Konigsberg and Hens 1998; Júnior et al. 2007) 

to determine predictors of sex based on cranial characteristics. Non-metric traits, such as 

Carabelli‘s cusps, have also been examined for indicators of relationship. Presence and size 

of the hypocone along with accessory cusps were found to covary with Carabelli‘s cusp 

and increase the likelihood of its presence (Moormann et al. 2013).  

 

The use of logistic regression in the prediction of the source of violent trauma has not been 

undertaken. Subsistence and physical activity prediction has been undertaken. 

Campanacho and colleagues showed no greater degeneration in the pubic symphysis in 

skeletons with an indication of greater physical activity in life (2012). (Baker and Pearson 

2006) Baker and Pearson found sex differences in the risk of shoulder osteoarthritis in 

prehistoric populations.  
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3.9.4. Application to trauma analysis 

 

These statistical methods have not been previously applied to the analysis of trauma in 

anthropology. It is demonstrated here that this methodology can be useful in the 

identification of patterns in the samples and analysis of relationships and prediction 

potential for body region patterns in the studied groups. The suitability of these methods is 

examined in greater detail in chapter 5. 

 

 

3.10. Summary 

 

The practice of examining studies for injuries from blast injury requires the researcher to 

address the generalisations in the resulting information. Predominantly, the data that can be 

collected from the clinical literature typically do not separate soft from hard tissue injury, 

unless otherwise specifically indicated. However, value still resides in this information, 

permitting a holistic approach to establishing potential patterns of injury. It is apparent that 

areas affected by blast injury in the soft tissues could also be affected at the skeletal level, 

depending on the context of the situation. Using this information can be beneficial and 

indicate which areas of the body are susceptible to injury which could potentially include 

skeletal trauma. 

 

The literature has shown distinct patterns of injury in bomb blast situations, both civilian 

and combat related. Techniques which will be explored for the identification and 

prediction of blast trauma using statistical analysis were found in many disciplines found 

in clinical medicine, anthropology and archaeology. Expansion on this will continue in the 

methods chapter and be explored in the context of samples collected from sources 

presented in the following chapter, Materials. 
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4. Materials 

 

 

4.1.  Introduction  

 

This chapter outlines the materials that were used in the research project which includes 

data from mass graves in Bosnia and cases of killed in action Canadian soldiers from 

World War One. The materials are described, their historical background and acquisition 

explained. This includes highlighting the relevant permissions for the research and the 

scope with which these materials can be used for the purposes of the research. Issues 

regarding confidentiality are addressed for the Bosnia sample, explaining the implications 

of using the materials provided by the International Commission on Missing Persons and 

the guidelines imposed for the use of the data provided. 

 

The nature of the data is explained, including how the data is presented in the raw 

materials and how it is presented for the purposes of this research. This will lead into the 

methodology, which explains why the data was used and how it was used in the specific 

format that was adapted for the analysis.   

 

 

4.2. Bosnia  

 

The majority of the anthropological and pathological materials used for analysis in this 

research were sourced from the International Commission on Missing Persons and are 

comprised of pathology and excavation reports from Bosnia dating from the period 

following the war from 1st March 1992 and 14th December 1995. The area of study is 

shown in the map in Figure Figure 4-1: Map of  Western Bosnia with area of research 

identified (Srebrenica and Lazete) 

 



86 

 

 

Figure 4-1: Map of  Western Bosnia with area of research identified (Srebrenica and Lazete) (Google Maps 2014) 

 

4.2.1. War in Bosnia 

 

War began in Bosnia in 1992 due to external pressure from both Serbia and Croatia. Both 

were acting under the motivation of "nationalism", both presenting a territorial claim to the 

area of Bosnia for their own ends. Slobodan Milosevic, president of Serbia, professed a 

desire to protect the Serb Bosnians from Islamicism and the government of Croatia wanted 

to regain territory they believed to belong to Croatia. According to Croatia, the Bosnian 

Muslims were in fact Croatian. This goes against the Western belief that the fighting 

within Bosnia was the product of centuries of turmoil between its Muslim and Christian 

populations when in fact these had been co-habiting comfortably in recent times (Malcolm 

2002). The national disputes only reached violence as a result of outside pressures due to 

the long-standing nationalism push from Serbia and Croatia for Bosnians to identify 

themselves as either Serbs or Croats. During the period which Bosnia was a part of 
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Yugoslavia, Bosnians typically associated themselves with one of the two ethnic 

"fatherlands". This mix of the two was so deeply ingrained in the population, along with a 

third identity without a "fatherland", that it would take appalling and drastic act ion to 

separate them and regain the land (Malcolm 2002). 

 

A large part of the war centred on the propaganda that Muslims were going to begin a 

Jihad and that there were lists of people whose names were put down for death and rape. 

As such, using Radio Television Belgrade, local Serbs were convinced that they needed to 

protect themselves against this Jihad and the Croat Ustaša, the Revolutionary Movement 

(Malcolm 2002).  

 

In his desire to claim Bosnia's land as territory for the Serbs, Milosevic ordered the 

destruction of many of the Bosnian towns, which were being protected by Muslim militias. 

Often, the Serb army would attack a town over the course of several nights, followed by 

the removal of Muslim men under the guise of displacing them to another location. In 

1992, just days before the European Commission recognised the independence of Bosnia; 

Serbian troops invaded northern Bosnian towns, which were strategically placed to permit 

the entrance of goods from Serbia. This served also to drive out Bosnian Muslims and to 

recruit Bosnian Serbs to join the paramilitary units such as Arkan's Tigers, who were 

involved in the excursions into Bosnian towns. Over the course of five or six weeks, the 

Serbian military and paramilitaries overtook more than 60% of Bosnian territory. This was 

due to its highly coordinated and planned attacks using their superior resources (Malcolm 

2002). During this year of fighting, the Bosnian forces did not keep up with the Serbians, 

in terms of armament and manpower. This was the result of sanctions on the former 

Yugoslavia which were being upheld for Bosnia, preventing the forces to properly acquire 

the equipment necessary to protect their country against the large-scale capacities of the 

Serbian troops (Malcolm 2002).  

 

The first half of 1994 was marked by many attempts at making plans for the division of 

Bosnia. It resulted in an agreement between Croatia and Bosnia, which allowed a division 

into cantons and for these cantons to hold political power as well as sharing with a 

centralised government. This plan also included the possibility of having Serb cantons at a 

later stage but still advocated a division of Bosnia along ethnic lines. A second agreement 

was proposed, in which half of the Bosnian territory would go to the Serbs and the other to 

the Federation of Croats and Muslims. The second half of 1994 was marked by the 
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Bosnian forces making military inroads to fight back against the Serbs, now with the help 

of the Croats.  

 

The beginning of 1995 was marked by NATO conducting strikes against Serbian military 

targets. The Serbians retaliated by taking hostage numerous UN soldiers and military 

observers and placing them hostage at key armament points for the Serbian army, typically 

chained to the buildings. This resulted in the UN essentially calling off NATO airstrikes. In 

June, Bosnian forces attempted to break Serbian lines around the town of Sarajevo, in an 

effort to end the siege which had been going on for many months. This failed and in July, 

Serbian forces surrounding Srebrenica moved in to seize the town. This was precipitated 

by the impending arrival of a British and French force to support UN troops and a UN 

mandate which demonstrated a lack of will to protect safe areas. By 11 July 1995, 

Srebrenica had fallen to the Serbian troops and the UN peacekeepers could only look on 

(Malcolm 2002). 

 

Serbian forces began a program of displacement of Muslim men, women and children. It is 

during the displacement of the Muslim inhabitants of Srebrenica that suspected mass 

graves were located. Observers from the UN and associated groups were able to discover 

numerous grave sites, including mass graves identified in aerial and spy photography. 

These often appeared over the course of a few days. Actually examining these and 

excavating the graves to find forensic evidence of genocide and war crimes was fraught 

with problems from lack of infrastructure to threat from Serbian forces (Stover 1998). 

 

This area was heavily contested between the Muslim and Serbian troops. It would become 

the site of countless atrocities which included the mass displacement of women and 

children. Muslim men were exterminated brutally in what the Serbians would term "ethnic 

cleansing" to try and avoid being labelled as perpetrators of genocide (Stover 1998; 

Malcolm 2002).  

 

 

4.2.2. Execution points and Mass Graves 

 

The following sites are associated with the mass graves from which the data has been 

sourced. Below is the historical background of the mass graves and the forensic evidence 
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linking these to the execution points. The sites of the mass graves studied and the 

execution points associated with Kravica warehouse are shown in Figure 4-2 and Figure 

4-3. 

 

 

Figure 4-2: Point of execution at Kravica Warehouse and mass graves at Glogova, Zeleni Jadar and Ravnice (Google 

Maps 2014) 

Kravica Warehouse 
Glogova 1 and 2 

Zeleni Jadar 5 and 6 

Ravnice 



90 

 

 

Figure 4-3: Point of execution at Orahovac and mass graves Lazete 1 and 2b (Google Maps 2014) 

 

Kravica Warehouse:  Glogova 1 and 2 and Zeleni Jadar 5 and 6 

 

The case presented is an ongoing human rights and genocide case involving crimes 

committed during the Bosnian conflict in 1995. The case involves remains from the 

massacre at the Kravica Warehouse located in Kravica, Bratunac County. It was alleged 

that on 13 July 1995, between 1000 and 1500 men were taken to the Kravica Warehouse, 

placed in two rooms and killed using machine guns, automatic rifles, grenades and other 

forms of explosives fired through doorways from the front of the building (2000). 

According to two witnesses having survived the attack, heavy equipment was used to break 

down the walls and doors of the warehouse. Remains were carried away and dumped into 

Lazete 1 and 2b 
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graves approximately one kilometre from the warehouse (Anon. 2000). This site is named 

Glogova and includes two areas, Glogova 1 and Glogova 2. This site was excavated during 

1999, 2000 and 2001. This gravesite is a primary grave (Manning 2003), a site where the 

remains were interred following the incident and never moved. A second grave at this 

location was also linked to the Kravica Warehouse, Glogova 2. 

 

The Glogova grave sites did not remain undisturbed and it has been established that 

remains from Glogova were subsequently reburied at the Zeleni Jadar grave sites. Zeleni 

Jadar 5 and Zeleni Jadar 6 have been linked to the Glogova graves through matching 

artefacts, soil and pollen samples as well as shell casings (Manning 2003). Artefacts, such 

as pieces of steel reinforced masonry, steel and concrete doorframes, motor vehicle parts 

(the warehouse was used to store these), grenade levers along with shrapnel, were located 

in these primary graves at Glogova and subsequent analysis demonstrated the link between 

both Glogova 1 and Glogova 2 and the warehouse in Kravica (Manning 2003). Forensic 

investigation of samples from the burnt areas of the warehouse demonstrated the presence 

of TNT (2000) and the East, South and West walls of the warehouse showed visual 

evidence of explosives damage (Manning 2000). This included impact sites with blood and 

tissue spatter, areas of explosive detonation creating impact defects in the wall material and 

areas marked with suspected explosive residue (Manning 2000). 

 

 

Ravnice 

 

This complex of two graves, designated RV01 and RV02 and treated as one mass grave, 

was located near the Glogova graves and the Kravica Warehouse (Manning 2007). This 

mass grave differs by being a surface deposit with 175 bodies and 324 body parts scattered 

on a slope which leads to a stream. The surface deposits were found over a large area 

(Clark 2001). Evidence recovered included building materials such as plaster and concrete 

which when analysed were found to be indistinguishable from those in the Glogova 1 and 

2 graves as well as the Zeleni Jadar 5 and 6 graves. These pieces of evidence were 

demonstrably linked to Kravica Warehouse, which is deemed as an execution points for 

these three sets of mass graves (Manning 2007).  
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According to the 2007 report by Manning, a total of 187 DNA identifications have been 

made from the skeletonised remains found at the Ravnice 1 and 2 surface deposits (2007). 

Anthropological and pathological analysis yielded the following demographic results. 170 

bodies were identified as being male along with 5 remaining undetermined. The age range 

was between 8 to 90 years, with 36 being less than 25 years old and 14 individuals aged 17 

or younger. 161 individuals died from gunshot wounds and 14 from an undetermined cause 

of death. The specific demographics of the cases included in the analysis will be discussed 

subsequently in this chapter. 

 

 

Lazete 1 and Lazete 2B 

 

The graves designated as Lazete and Lazete 2B are located in the Orahovac area. These 

sites have been found to be both execution and primary burial sites, albeit disturbed in 

places (Manning 2000). The sites were located through aerial imagery, indicating that the 

graves had been dug between 5 July 1005 and 19 July 1995. Lazete 1 was excavated over 

the course of the summer in 2000. Lazete 2 is located along railroad tracks and a dirt road 

which leads to the Lazete 1 grave. Evidence has linked these graves to the ones found at 

Hodzici Road (3, 4 and 5). This was done through the identification of piping which had 

been in the field through Lazete 1. During the creation of the grave, the pipe had been cut 

and a portion of it found in the secondary Hodzici Road grave (Manning 2000).  

 

The Lazete 1 grave was found contain 130 individuals, 129 of whom were male (with one 

of undetermined sex). Blindfolds were found with 92 individuals, as well as associated in 8 

more cases. These resembled those found at Lazete 2 and the associated Hodzici Road 

secondary mass graves (Manning 2000). The ages range from 12 to 25+ and 125 

individuals have a cause of death listed as gunshot wound. Additionally, ligatures were 

found on 3 individuals (Manning 2000).  

 

Examination of blindfolds found at the nearby Grbavci School identified these as matching 

the blindfolds found in the Lazete 2 and Hodzici Road graves. This also corroborates a 

witness account who stated that he was blindfolded and detained at this location during the 

Krstic trial (Manning 2000). Shell casings from Lazete 2 were also forensically associated 

with those collected at the secondary Hodzici Road Sites.  
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Specifically, the Lazete mass graves used in this research are Lazete 1 and Lazete 2B. The 

Lazete 2 grave is comprised of Lazete 2 A, B and C. The Lazete 2B grave was excavated 

in 1996 by Physicians for Human Rights with the ICTY (Manning 2000) and the results of 

the pathology and anthropology analysis are used in this research. The Lazete mass graves 

were included in the analysis to serve as comparators to those associated with the Kravica 

Warehouse primary execution point and its primary and secondary mass graves. To 

adequately assess any differences in the patterns of trauma, comparison with mass graves 

known to contain remains of those having been killed by gunshot at a different location is 

employed.  

 

 

4.2.3.  Background of data used  

 

The Bosnia materials are composed of extensive records curated by the International 

Commission on Missing Persons and include excavation reports and photographs, autopsy 

reports and photographs as well as materials which are given to the International Criminal 

Tribunal for the Former Yugoslavia. Additional materials were directly provided by the 

ICTY to the ICMP and shared with the researcher. 

 

 

Acquisition 

 

The materials were acquired during a period of five weeks in summer 2012 when the 

researcher had an internship at the International Commission on Missing Persons in 

Sarajevo, Bosnia and Herzegovina. During this period, the materials were examined and 

organised by case to facilitate the future analysis by the researcher and to provide these 

back to the ICMP. The materials were digitised and permitted the easy organisation for 

future analysis.  
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Permissions 

 

The researcher was permitted by the ICMP to possess the materials during the period of the 

project and is required to relinquish possession once this is complete. The data remains the 

possession of the ICMP and anything published in the thesis can only be comprised of raw 

data (as coded anonymously for analysis by the researcher). Photographs may only be 

included if these have been previously used in reports that have been entered into the 

courtroom procedures of the ICTY. This is because of ongoing court cases and 

confidentiality issues tied with this. No materials are used without the permission of the 

Deputy Director of forensic science, anthropology and archaeology at the ICMP, Mr. Ian 

Hanson. 

 

 

4.2.4. Samples 

 

Data from five mass graves in Bosnia are used. The five sites are Glogova 1 and 2, Zeleni 

Jadar 5 and 6, Ravnice, Lazete and Lazete2B. 

 

Lazete and Lazete 2B are treated separately, having been excavated during different years 

and by different organisations, Physicians for Human Rights and subsequently the ICMP. 

  

 

Demographics 

 

The samples are composed entirely of male remains.  Ages have been determined by 

previous anthropological examination detailed in the pathology reports, along with 

biological sex. Both age and biological sex were determined by the anthropologists under 

the direction Jose Pablo Baraybar. Table 4-1 outlines the age ranges for each of the 

individual mass graves, including those excavated by Physicians for Human Rights and the 

International Commission on Missing Persons. 
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Table 4-1: Age ranges of remains in individual grave samples. 

Grave Age range 

Glogova 1  12 to 75 

Glogova 2 12 to 71 

Zeleni Jadar 5  13 to 25+ 

Zeleni Jadar 6 8 to 65 

Ravnice 8 to 25+ 

Lazete 15 to 25+ 

Lazete 2B 13 to 70 

 

 

Glogova 1 and 2 

 

The materials used from the Glogova mass graves are composed of 276 cases, all of which 

are male. Within these, the cause of death is listed as one of 4 options in the pathology 

reports (gunshot wound, blast injury, gunshot wound and blast injury and undetermined). 

Table 4-2 represents the distribution of cause of death. 

 

 

Table 4-2: Distribution of the cause of death in the Glogova 1 and 2 graves, including blast injury, gunshot wound, the 
combination of blast injury and gunshot wound and unascertained causes of death. 

 

 

 

 

 

 

 

Additionally, the cases selected were composed of those which had a complete body or 

body parts with identified trauma. 80.8% of cases selected were those with a complete 

body, as determined by the pathologist and checked by the researcher. Additionally, the 

presence of physical evidence was also used to corroborate the cause of death 

determination from the pathologist and anthropologist, presented in 

 

 Frequency Percent 

Cumulative 

Percent 

Cause of 

Death 

Blast injury 45 16.3 16.3 

Gunshot wound 162 58.7 75.0 

Blast injury and 

gunshot wound 

16 5.8 80.8 

Unascertained 53 19.2 100.0 

Total 276 100.0   
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Table 4-3: Glogova- Presence of physical evidence associated with the remains. Physical 

evidence is remains of explosive materials such as grenade casings or bullets, found within 

and associated with the remains.. 

 

 

Table 4-3: Glogova- Presence of physical evidence associated with the remains. Physical evidence is remains of 
explosive materials such as grenade casings or bullets, found within and associated with the remains. 

 

 

Zeleni Jadar 5 and 6 

 

The cases from Zeleni Jadar 5 and Zeleni Jadar 6 number a total of 12 cases which were 

selected as their cause of death were listed as blast injury. These were the only cases 

selected as the number of blast injury cases overall in these graves was small whilst those 

with gunshot wound or unascertained causes of death were much more frequent. 

Additionally, as these were a secondary grave from Glogova and the condition of the 

remains (fragmented and commingled) made trauma assessment more complex it was 

deemed best to use these cases only to augment the blast injury assemblage. Of the 12 

cases with cause of death listed as blast injury, 58.3% were without a complete body 

(Table 4-5), composed of limbs or small groups of bones. However, in combination with 

the information in the pathology reports, anthropology reports and photographs, 91.7% (11 

cases) were associated with physical evidence corroborating the diagnosis for cause of 

death (Table 4-4). These cases were concluded as having blast injury and being included in 

the sample because of the corroborating evidence. 

  

 

 

 

 

 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Physical Evidence Absent 82 29.7 31.7 31.7 

Present 177 64.1 68.3 100.0 

Total 259 93.8 100.0   

No information System 17 6.2     

Total 276 100.0     
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Table 4-4: Presence of associated physical evidence. Physical evidence is remains of explosive materials such as 
grenade casings or bullets, found within and associated with the remains. 

 

 

 

 

 

 

Table 4-5: Zeleni Jadar- Presence of a complete body, rather than individual body parts such as a sole limb. 

 

 

 

 

 

 

 

Ravnice 

 

The cases from the Ravnice 1 and Ravnice 2 are treated as one data set and combined 

together, as these were excavated at the same time and by the same group, the ICMP. Also, 

these remains were from the same case, killed at the same time and disposed of in two sites 

near each other. The case number differentiates the two by beginning either with RV01 or 

RV02. From these mass graves, 162 cases were selected, all with the cause of death listed 

as gunshot wound or unascertained in the pathology reports. The frequency of each of the 

causes of death is presented in Table 4-6: Ravnice- Causes of death in Ravnice 1 and 2 

graves, including gunshot wounds (GSW) and unascertained cause of death. 

 

 

Table 4-6: Ravnice- Causes of death in Ravnice 1 and 2 graves, including gunshot wounds (GSW) and unascertained 
cause of death. 

 

 

 

 
 

 

 

  
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid Absent 1 8.3 8.3 8.3 

Present 11 91.7 91.7 100.0 

Total 12 100.0 100.0   

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid Absent 7 58.3 58.3 58.3 

Present 5 41.7 41.7 100.0 

Total 12 100.0 100.0   

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid GSW 146 90.1 90.1 90.1 

Unascertained 16 9.9 9.9 100.0 

Total 162 100.0 100.0   
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As with the previous two mass graves, some of the remains were incomplete bodies. This 

was due to the scattering of the remains on the surface, both from being dumped down a 

slope (causing further movement when skeletonised) or potential animal activity. Despite 

this, 68.5% of the cases used in the analysis were composed of complete bodies (see Table 

4-7). 

 

 

Table 4-7: Ravnice- Presence of a complete body 

 

 

 

 

 

Presence of associated physical evidence corroborating the cause of death determined by 

the pathologist was also noted for the remains from Ravnice 1 and 2. This mass grave had 

a higher number of cases that had no associated physical evidence (48.1%), possibly due to 

the nature of the remains being spread on a surface and down a slope. 84 cases did have 

associated physical evidence (see Table 4-8: Ravnice- Presence of associated physical 

evidence). 

 

 

Table 4-8: Ravnice- Presence of associated physical evidence. Physical evidence is remains of explosive materials such 
as grenade casings or bullets, found within and associated with the remains.  

 

 

 

 

 

 

Lazete 

 

The Lazete graves are treated as two different graves due to the excavations being 

undertaken at two different times and by two different organisations, rather than a 

geographic separation. As such, the data has been collected and compiled separately for 

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid Absent 51 31.5 31.5 31.5 

Present 111 68.5 68.5 100.0 

Total 162 100.0 100.0   

 Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid Absent 78 48.1 48.1 48.1 

Present 84 51.9 51.9 100.0 

Total 162 100.0 100.0   
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each grave. Remains from Lazete 2B were excavated and analysed by Physicians for 

Human Rights in 1996. Demographics for these are presented in the following section. 

 

The data from Lazete 1 is composed of 97 cases. The cause of death for all cases is listed 

as gunshot wounds in the pathological reports. The researcher found no reason whilst 

examining the reports and the autopsy photographs to disagree with these findings as clear 

morphological characteristics of gunshot wounds were seen on the remains. As with the 

other sites, the presence or absence of a complete body was noted and found to be present 

in 91 cases (see Table 4-9). This was used to determine the inclusion of cases in the 

sample. 

 

 

Table 4-9: Lazete 1- Presence of a complete body. 

 

 

 

 

 

 

Physical evidence was also noted to confirm the cause of death listed in the pathology 

reports. Of the 97 cases included in the analysis, 80.4% (78) had associated physical 

evidence, such as casings in the remains and associated, and 19.6% (19 cases) did not. This 

continues the trend in all the mass graves selected for study, with exception of Ravnice 1 

and 2. 

 

 

Lazete 2B 

 

The second Lazete mass grave included in the sample is Lazete 2B. This is indentified 

distinctly from Lazete 1 due to the temporal separation of the excavation, conducted by a 

different organisation (Physicians for Human Rights). The data from the Lazete 2B is 

collected from the pathology reports and autopsy photographs from the Physicians for 

Human Rights who conducted the investigation in 1996. Lazete 2B is composed of 37 

cases, all of whom have the cause of death listed as gunshot wounds in the pathology 

Complete Body 
Frequency Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid Absent 6 6.2 6.2 6.2 

Present 91 93.8 93.8 100.0 

Total 97 100.0 100.0   
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reports. The researcher found no reason whilst examining the reports and the autopsy 

photographs to disagree with these findings. Presence of a complete body was also noted 

and was found to differ from the Lazete 1 grave. In Lazete 2B 54.1% (20 cases) had a 

complete body while the remainder were fragmentary (45.9%, 17 cases), however these 

could still be employed as part of the sample. Associated physical evidence was also 

examined from the Lazete 2B cases and was present in 43.2% of cases (n=16) and absent 

in 56.8% of cases (21 cases).  

 

 

4.3. Canadian World War I circumstances of death records 

 

One of the aims of the study was to compare the patterns of trauma from the Bosnia cases 

with various other sources to aid in the identification and recognition of injury patterns in 

blast related cases. Specifically, examining the question of a difference between combat 

and non-combat trauma patterns would require comparison with contexts that can be 

deemed similar to those found in the Bosnian sample. Basic comparison with published 

data from previous conflicts comes with issues such as a difference in the weaponry used 

as well as protective methods. In the modern conflicts, body armour is commonly used by 

soldiers. Whilst comparing the patterns of trauma from these situations is still necessary 

and adds to anthropological knowledge, a source of data from a conflict which did not use 

body armour would be necessary. As such, the researcher found information publicly 

available regarding the injuries in the war dead from the Canadian Forces during World 

War One, stored in electronic archives (www.collectionscanada.gc.ca). These soldiers did 

not employ body armour and as such the clothing would be more similar to that worn by 

those from the Bosnia sample. Papers written focusing on blast injury were rare for World 

War One and it was chosen to use the data directly from the records so that it may be 

processed in a way that would lend itself easy analysis by the researcher. 

 

 

4.3.1. Background to the sample 

 

The samples include soldiers who were killed in action in Ypres, Vimy, Passchendaele and 

other locations in the Somme. The following outlines briefly the background to these 

battles. 
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Second Battle of Ypres 

 

The 1st Canadian Division arrived in Europe in October 1914. Composed of mostly militia 

reserve men, they numbered 25,000. Between February and March 1915, 18 000 men from 

the 1st division went to Fleurbaix. In mid-April they moved to the Northeastern sector of 

the Ypres Salient. 

 

Ypres is located in the Salient region and was considered to be one of the most important 

and contested areas of the Western front. Half of the Allies‘ casualties were at the Western 

front. This was a difficult area to defend, as the German troops were located on three sides. 

The Canadians were entrenched a mere few hundred yards from the German trenches 

(Freeman and Nielsen 1999).  

 

By the 25th of April, many lives were lost in the renewed efforts to maintain positions and 

not give up any territory to the Germans. They were forced to give up the town of St-Julien 

and half of Gravenstafel ridge had fallen to the Germans. This forced the Canadian 

withdrawal and the need for relief in the form of British and Indian troops. The Canadians 

remained in the Salient whilst their relief attempted to regain the losses. They were at a 

disadvantage and were not able to regain. The Germans attempted to take Frezenburg 

Ridge but failed on May 8th. The Canadians held their ground and continued to protect the 

British flank. 1500 Canadians died around St- Julien (Freeman and Nielsen 1999). 

 

By the official end of the Second Battle of Ypres on May 25th, 6000 Canadian troops had 

lost their lives.  

 

 

The Somme 

 

In the summer of 1916; the Canadians were ordered down from Flanders to relieve the 

British in the Somme, who had experienced the highest number of casualties in a single 

day. The Canadian troops headed towards Courcelette and made unprecedented gains 

during this time. Battle strategy then involved the increasing use of shells but was proved 

to be ineffective and the casualty number kept growing. Finally, at the end of October, the 

Canadian troops took the Regina trench and its German soldiers. This marked the end of 
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involvement in the Somme with the ultimate result being a gain of only a few thousand 

yards of land.  

 

At the Somme, the Canadians lost 24,029 soldiers. 

 

 

Vimy Ridge 

 

The most important battle of World War One for the Canadian troops was the battle of 

Vimy Ridge, where for the first time all four Divisions fought as one. The Germans had a 

two year head start at Vimy Ridge and had been tunnelling during this time, building 

fortifications. They occupied the top of the Ridge and its Western slopes, which the Allies 

wishes to regain (Freeman and Nielsen 1999).  

 

Over the course of the battle, the 4th Division was tasked with taking two important 

targets, Hill 145 and the Pimple. These were the highest point on the Ridge and had strong 

fortifications. On April 12th, 1917 the Pimple was taken and made the advance the deepest 

British advance in two and a half years. The Canadians lost 3,598 men (Freeman and 

Nielsen 1999; Christie 2002). 

 

 

Passchendaele 

 

Passchendaele that was the next large scale advance. This was located in the Northern part 

of the Ypres Salient and would become known as the Third Battle of Ypres (Freeman and 

Nielsen 1999). A second attack was undertaken a few days later following an artillery 

barrage (Freeman and Nielsen 1999).  

 

The Canadians took Passchendaele village and cleared the ridge by November 10th, but 

had lost 15, 654 men during the battle.  

 

The Canadians continued to figure prominently in the Allies advance, taking Amiens, 

Arras and Cambrai. They ended the war by taking Mons in Belgium, liberating it from the 
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Germans on November 11th, Armistice Day. Over the course of World War One, 

Canadians troops lost nearly 65,000 soldiers and officers.  

 

 

4.3.2. Nature of the sample 

 

The records of deaths from the First and Second World War are held by Library and 

Archives Canada. These are kept in one series (Accession RG 150, 1992-93/314) 

composed of 302 volumes. Volumes 145 to 238 contain the Circumstances of Death 

binders (also known as the "Brown Binders") for World War One. These can be accessed 

electronically at http://www.collectionscanada.gc.ca/microform-digitization/006003-

110.02-e.php?&q2=28&interval=50&sk=0&PHPSESSID=esvtc19976e0v4bc46h9rnmuf0 

 

Each member of the Canadian Expeditionary Force member is given a two page document 

to note the following information: 

 

 

* Service number 

* Rank 

* Name (Surname and Christian Names) 

* Unit or Ship 

* Date of Casualty 

* Headquarter File Number 

* Religion 

* Circumstances of casualty 

* Name, Relationship and Address of Next of Kin 

* Location of Unit at Time of casualty 

* Cemetery 

* Location of Cemetery 

* Grave Location and Information 

 

During the war, these records were compiled by the Records Office of the Overseas 

Ministry. The burial information was shared with the Militia and Defence Headquarters. 

This information is now kept by the Commonwealth War Graves Commission. Historical 

http://www.collectionscanada.gc.ca/microform-digitization/006003-110.02-e.php?&q2=28&interval=50&sk=0&PHPSESSID=esvtc19976e0v4bc46h9rnmuf0
http://www.collectionscanada.gc.ca/microform-digitization/006003-110.02-e.php?&q2=28&interval=50&sk=0&PHPSESSID=esvtc19976e0v4bc46h9rnmuf0
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military service records were transferred over to what became Library and Archives 

Canada in 1971. These records are now available in .jpg and .pdf format from Library and 

Archives Canada (www.collectionscanada.gc.ca). 

 

For the purposes of this thesis, the microforms available online were examined to collect 

data. These are arranged in 94 online volumes, which each contain a different number of 

pages but are arranged in alphabetical order. 

 

Each record was examined for evidence of blast trauma such as that received from a mortar 

shell. In the case of mortar shells, shrapnel trauma is considered blast trauma as well for 

this study as this is a prominent injury from blast, representing secondary blast trauma. 

Each case file is noted according to the service number of each soldier. Area of trauma is 

noted as present or absent, as well as which side on the body. The sample from the World 

War One files is composed of cases which are listed as having died from either blast injury 

or gunshot wounds. This enables comparison with the various sources, such as the results 

of the Bosnia analysis as well as the clinical data which presents patterns of gunshot 

wounds and blast injury from various modern conflicts and terrorism related activities.  

 

The sample is composed of a total of 230 cases. Of these, 89 have gunshot wounds and 141 

have blast injuries. The patterns of trauma in this sample are discussed in 6.1.2, along with 

the results of all analyses. 

  

http://www.collectionscanada.gc.ca/
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5. Methods 

 

To determine if there are patterns of injury that can indicate blast injury in the human 

skeleton, statistical analysis of the data is undertaken. The methods were selected to reflect 

inductive reasoning, to examine patterns and indicators which determine the nature of the 

trauma seen in the assemblage. Descriptive statistics were undertaken along with binary 

cluster analysis, multiple correspondence analysis and finally moving to probabilistic 

modelling using binary logistic regression analysis. 

 

5.1. Rationale 

 

This research aims to provide information about blast injury in anthropological contexts 

through the examination of assemblages from the Kravica warehouse related cases from 

Bosnia and Herzegovina. The identification and differentiation of blast injury has 

previously solely been examined in the clinical context. This is problematic for 

anthropology, a discipline where the possibility of encountering this type of trauma in a 

variety of emerging contexts has increased recently, from criminal investigations, to 

human rights work and terrorism related incidents. 

 

The lack of knowledge regarding these types of injuries in anthropology makes it 

important to begin the exploration of the patterns of injury that can be expected when 

dealing with these types of injuries in skeletonised remains. An example of this can be seen 

in the court proceedings of, where defence attorneys argued that the injuries seen in the 

human remains from the Kravica warehouse were combat-related. No assertion could be 

made that this was or was not the case beyond personal experience of the pathologist, 

highlighting an area where further research needed to be undertaken to answer this 

question.  

 

With these goals it was decided to approach the problem of identification and 

differentiation of blast injury by comparing the known cases of blast injury from the 

Bosnian data sample to those of a more documented type, gunshot wounds. Direct 

comparison of the patterns within the sample was undertaken to assess the similarities or 

differences using statistical methods, to permit quantification and reproducibility of the 

results. Additional comparison was undertaken to address the issues which have been 
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highlighted in the court cases, by comparing the identified patterns in the Kravica sample 

with those from other combat contexts. Finally, direction on the identification of blast 

injury is addressed and its potential for court proceedings and future anthropological 

investigation is explored as the lack of guidance on this has been identified in 

anthropology.  

 

5.2. Epistemological and methodological framework  

 

The methods selected for the study can be classified theoretically as part of inductive 

reasoning. This methodology can be applied to scientific problems and is central to 

categorization. In this study, categorization of the samples and their subgroups is an 

important exercise to determine characteristics of blast injury which could serve as 

indicators for future identification of trauma in assemblages. 

 

Induction comprises of identifying perceptual similarity, taxonomic relations and premise 

monotonicity. Perceptual similarity occurs when the base ―object‖ (in this study, 

individuals) overlaps with the target, resulting in the inference that these have the same 

properties. This can be used at the sample or individual level to group variables or cases 

together to identify patterns of injury. Taxonomic relations indicates that members of 

closely related categories will share properties and that premise monotonicity will infer 

that the more categories (or individuals) sharing properties will also share these with the 

larger group (or population).  

 

Using induction, one can draw relations between the characteristics and the individuals of 

the samples to infer properties of the general group from which they have been sampled. 

Specifically this is termed category-based induction and ―may be guided by and reflect 

categorical relationships‖ (Heit and Feeney 2007). 

 

The chosen epistemology is appropriate as it takes into account that this project aims to 

develop guidance on the identification and differentiation of blast injury. By employing 

inductive reasoning, methods selected are those which can help to identify the 

characteristics associated with blast injury, from a sample of known trauma. This reflects 

the bottom up approach associated with inductive reasoning, where the researcher starts 
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with a sample (the individuals from the Kravica warehouse sample) and seeks to infer 

properties of a group (skeletonised remains with suspected blast injury) (Heit 2007). 

 

Employing an inductive epistemology has implications for research design. Beginning with 

the individual sample permits the formulation of hypotheses regarding the nature of blast 

injury, followed by the differentiating patterns between the blast injury and gunshot wound 

samples and subsequently leading to probabilistic modelling which tests the predictive 

characteristics of a sample. 

 

 According to Harman and colleagues (2007), inductive methods are used to find rules for 

classification, which is one of the main objectives of this study. Using this framework the 

researcher can apply statistical methods to extrapolate group characteristics to an unlabeled 

case. This requires the combination of the inferential methods with other methods to build 

a hypothesis fitting the data which can subsequently be tested. Inductive theory in statistics 

includes methods such as nearest neighbour induction, whose principle is applied in cluster 

analysis, one of the techniques being employed for classifying cases within and between 

samples (Harman et al. 2007). Under this principle, cases are classified into groups based 

on theory that the nearest neighbour (with similar characteristics and properties) belongs to 

the same group.  

 

To further assess the validity of the conclusions made from the cluster analysis, multiple 

correspondence analysis is employed, a second exploratory method which seeks to classify 

cases and variables to generate conclusions and hypotheses regarding the data collected. 

This method is again one of induction and is well suited to the grounded theory framework 

(Strauss and Corbin 1998; 2004; Anon. 2008), which stipulates that theories must be built 

from the examination of the data and their relationships. Employing multiple 

correspondence analysis satisfies this condition, whilst also scaling the variables examined 

to note the relationship between these and with the cases and samples examined. This is 

also a mixed methods approach, combining the qualitative data from the reports with 

quantitative outputs that examine the strength of these associations and graphically 

illustrates the relationships on principle axes that are easy to visualise for the purposes of 

theory building.  

 

Finally, testing of the hypothesis can be undertaken through statistical analysis to build a 

model using binary logistic regression. This model quantifies the relationships between 
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variables and their strength as well as generating a formula that can be used to ascribe 

group to a specific combination of outcomes for the variables. This approach uses a 

probability model which corresponds to one of the basic tenets of induction, using 

probabilities to determine the credibility of conclusions. Also, by employing a probability 

test such as the binary logistic regression selected, the body regions which differentiate 

between the two causes of death are tested for their accuracy in predicting cause of death. 

This can lead to further refinement of the interpretation and application for future 

guidance. 

 

Using an inductive model of epistemology, this research achieves the development of 

characteristics to aid in the identification and differentiation of a previously under-

represented type of trauma in anthropological contexts. 

 

5.3. Data preparation  

 

During the data acquisition phase, it was important to assess the presentation of the data 

and what could potentially be done undertaken. The original format of the data was textual 

along with photographic evidence. As this type of examination of such data has not been 

previously undertaken, different approaches were explored. Initially, a simple system of 

body regions was developed, based on the Rule of Nines employed in medicine for the 

assessment of burns to the skin (Lund and Browder 1944). The body regions described for 

statistical analysis were the skull, vertebrae, upper limb, torso, pelvis and lower limb. This 

coding system was employed during the first phase of the project, which included the 

original data as provided by the former Chief Pathologist of the ICTY, Dr. John Clark. 

This methodology is also employed with the data collected from the World War One files. 

 

Each of the body regions was then assessed for presence or absence of trauma, which for 

the purposes of statistical analysis were denoted as the number 1 (absence) and 2 

(presence). This system had to be altered at a later date to accommodate the need for 

certain statistical tests to be undertaken with a binary coding system based on 0 as the 

indicator of absence and 1 for presence. 
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5.3.1. Bosnia 

 

Subsequently, additional data were provided through an agreement with the ICMP, which 

permitted clarifying of the body region variables to include more information, refining the 

patterns identified in the samples. The detail included in the pathological reports includes 

identification of the anatomical regions injured, whether this included bone (in the 

skeletonised cases) as well as soft tissue injury. Only the data regarding skeletal injuries 

was employed in the study.  Table 5-1-: Body Region Variables gives an overview of the 

body regions which were created for the analysis. These regions were chosen to permit 

breaking down the areas of the body into the sections which were used to describe the 

trauma to the body regions in the pathology reports received from the ICMP. 
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 Table 5-1-: Body Region Variables with the associated affected bones described and siding variables explained. 

Body Region (Variable) Bones affected 

Neurocranium Frontal, Parietal, Temporal, 

Occipital 

Maxillofacial Maxillae, Palatines, Vomer, Inferior 

nasal conchae, Ethmoid, Lacrimals, 
Nasals, Zygomatics, Sphenoid 

Mandible Mandible 

Vertebrae Hyoid, Cervical, Thoracic, Lumbar, 

Sacral vertebrae and coccyx 

Left Shoulder Girdle Left clavicle, Left Scapula 

Right Shoulder Girdle Right clavicle, Right Scapula 

Left Upper Arm Left Humerus 

Right Upper Arm Right Humerus 

Left Forearm Left Radius, Left Ulna 

Right Forearm Right Radius, Right Ulna 

Left Hand Left carpals, Left metacarpals, Left 

hand phalanges 

Right Hand Right carpals, Right metacarpals, 

Right hand phalanges 

Left Ribs Left ribs and left half of sternum 

Right Ribs Right ribs and right half of sternum 

Left Pelvis Left Pelvis 

Right Pelvis Right Pelvis 

Left Femur Left Femur 

Right Femur Right Femur 

Left Tibia and Fibula Left Tibia and Fibula 

Right Tibia and Fibula Right Tibia and Fibula 

Left Foot Left tarsals, Left metatarsals and 

left foot phalanges 

Right Foot Right tarsals, Right metatarsals and 

Right foot phalanges 

Left Bones of the left side 

Right Bones of the right side 

Bilateral Bones affected on both sides 

No Side Bones which cannot be sided (i.e. 

skull, vertebral column) 

 

 

A case number variable was also created; using the case numbers assigned during 

excavation and used in the pathology reports. No names were used. The format of the case 

number assigned was a two letter designation indicating burial location, followed by two 

numbers indicating the grave number. To designate the specific case number, three 

numbers are used as assigned by the field team when excavating the remains. This is 
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followed either by the designation B (complete body) or BP (body part). The coding 

system for each case number is shown in Figure 5-1: Designation of case numbers. 

 

 

 

   

 

 

Figure 5-1: Designation of case numbers 

 

 

Data Coding- Bosnia 

 

The data are coded using the outcome of absence (1) or presence (2) for each variable. 

Additional variables have also been used to describe the data. This includes a site code, a 

cause of death variable, an absence or presence of associated physical evidence variable 

and an absence or presence of a complete body variable. The associated coding for these 

variables is seen in Table 5-2- Variable coding for non-body region variables. 

  

GL01-186B

•Glogova 
grave

GL01-186B

• Grave 01

GL01-186B

•Body 186

RV02-161BP

•Ravnice 
grave

RV02-161BP

•Grave 02

RV02-161BP

•Body part 
161
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Table 5-2- Variable coding for non-body region variables, including the grave site, cause of death, presence or 
absence of associated physical evidence and presence or absence of a complete body/skeleton. 

Variable Outcome coding 

Site 1= Glogova 

2= Zeleni Jadar 

3= Ravnice 
4= Lazete 

5= Lazete 2B 

Cause of Death (COD) 1= Blast Injury (BI) 

2= Gunshot Wound (GSW) 
 

Physical Evidence (PhysEvid) 1= Absent 

2= Present 

Body 1= Absent 
2= Present 

 

 

To code each case entry in the database, the pathological report is examined alongside the 

autopsy photographs for every case included. Trauma described by the pathologist is 

identified and confirmed by examining the autopsy photographs. Trauma is only included 

when there is consensus between the report and the photographs as determined by the 

current researcher. This is done by confirming the presence of perimortem skeletal trauma, 

using the criteria outlined in Sauer (1998). If there is any ambiguity as to the nature of the 

trauma, the case is not included in the research. Only skeletal trauma is included.  

 

Each case is represented by one row in the data editor. An example of the layout of the 

data file is found in Table 5-3. For the purposes of analysis, specific cases were selected; 

those which had the causes of death listed as blast injury or gunshot wounds in the 

pathological reports. No cases of unascertained death or combination of blast injury and 

gunshot wounds were employed as the purpose of the analysis was to differentiate between 

these two types of trauma.  
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Table 5-3: Example of the layout of coded data. Each column represents one variable. Each row represents one case.  
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5.3.2. World War One 

 

The data in the Canadian soldier casualty files is not as detailed as the Bosnia pathology 

reports in terms of trauma assessment. Initially, the intent was to compare directly the 

patterns in the casualties from World War One to those from Bosnia. Due to the format of 

the information and the differences in detail between two samples, the Bosnia sample was 

aggregated for comparison. An examination of the two samples using prevalence dated 

coded with a smaller number of variables was accomplished. 

 

 

Coding- World War One 

 

The data is coded in the same manner as the Bosnia data, using a dichotomous outcome 

(presence/absence) over a smaller number of variables. This coding corresponds to the 

body regions presented in the clinical literature. 

 

The layout of the data is similar to the Bosnia data‘s layout in SPSS (see Table 5-3) 

however, with fewer variables. The variables employed for this data set are outlined in 

Table 5-4-World War One data body region variables. These were selected as they reflect 

the typical body regions which were recorded in the documentation as well as in the 

clinical literature. 

 

 

Table 5-4-World War One data body region variables 

Variable Body region and associated bones 

Body region 1 Skull (bones of vault and mandible) 

Body region 2 Vertebrae (if specifically identified in the 

report) 

Body region 3 Upper limb (humerus, radius, ulna and hand) 

Body region 4 Torso (shoulder girdle, ribs, manubrium, 
sternum and clavicle) 

Body region 5 Pelvis (pelvis, sacrum and coccyx)  

Body region 6 Lower limb (femur, tibia, fibula, foot) 
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5.4. Methods selection 

 

The following section outlines the methods selected and the reasoning behind their 

application in the context of the aims of the research.  

5.4.1. Statistical versus experimental methodology 

 

For this research, statistical methods were chosen to conduct the analysis of the data. Initial 

experimental work was explored but complexities involving legal and practical issues 

would be difficult to overcome. Although collaborations were agreed with a Ministry of 

Defence munitions disposal team which involved the use of deer proxies, these did not 

work out. 

 

Due to this a differing source of data was sought and the collaboration with the 

International Commission on Missing Persons was established, permitting access to the 

sole archaeological source of skeletonised remains of cases with known blast injury. While 

keeping in mind one of the problems with the identification of blast injury in skeletonised 

remains, such as was presented in the ICTY court proceedings, a statistical approach was 

evaluated. This methodology quantifies differences and similarities in a manner that can 

presented based on a probability and can give a standard error or deviation for the results 

which are robust and better accepted in court proceedings. This is important to ensure the 

scientific presentation of evidence in court, which has been discussed at length in previous 

research (Grivas and Komar 2008; Christensen and Crowder 2009). A second 

consideration was that no previous work had been done on the identification and 

differentiation of blast injury and describing this type of trauma in an anthropological 

context, with a unique case study, was determined to be an appropriate first step.  

 

 

5.4.2. Describing the data 

 

The data collected represents nominal data, which is non-numerical data. The variables 

examined are categorical with an outcome indicating presence or absence of trauma in the 

particular region of the body. Methods for analysis must be selected from those capable of 

handling such categorical data and remain limited. To begin, descriptive statistics are 
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undertaken to count frequencies associated with each variable. These can be transformed to 

percentages, lending them to easy comparison with the data previously published in the 

medical literature and with the data from the World War One sample.  

 

 

5.4.3. Exploring the data- patterns and relationships 

 

 As this research project aims to develop potential methodologies for the analysis of 

specific trauma, exploratory methods are used to analyse the data to determine if any 

relationships exist between the cases and the variables which can subsequently be 

examined with more detail. Graphical and multivariate methods permit the reader to 

observe the relationships between cases and variables in a more directly observable way 

rather than with numbers found in contingency tables. These methods include those 

employed for exploration of the current data, cluster analysis and multivariate 

correspondence analysis.  

 

 

Multivariate statistics 

 

When using categorical nominal data with a dichotomous outcome, methods for analysis 

can be limited. Most anthropological studies currently approach this type of data in trauma 

studies using simple pairwise χ2 tests. Representing relationships between two cases, 

variables or data points using these methods does not fully explore the relationships 

underlying the outcome. More than one variable may be interacting with another to yield 

the observed outcome and as such pairwise testing would not represent this adequately. 

Thus, this piece of research employs multivariate statistics to fully represent any 

associations between variables and cases.  

 

 

Graphical representation of categorical data 

 

These techniques are a starting point for further examination of patterns. Using these 

begins data analysis of useful variables and patterns in the data which can then be 
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investigated more closely. For example, if the statistical analysis yields interesting 

associations between certain variables, such as body regions, these approaches can yield 

information that can help identify patterns and determine further directions for study, such 

as indicators of blast injury for use in probabilistic modelling.  

 

The chosen analyses (cluster analysis and multiple correspondence analysis) belong to the 

group termed geometric data analysis. These are multivariate techniques which represent 

clouds of points in dimensional space and use binary outcome variables. Using cluster 

analysis, the researcher can identify subgroups within and between samples to aid in the 

building of patterns of injury to describe the trauma sustained by the human skeleton 

following blast. Multiple correspondence analysis can be used to determine the principal 

components of the data that will reflect the best summary (Guinot et al. 2001). This allows 

showing associations between the cases as well as between the variables in a graphic 

summary (typically on two or three axes). The variables selected for each of these axes, or 

dimensions, are those which account for the most variance in the samples (Le Roux and 

Rouanet 2010). 

 

This type of graphical summary makes it simpler to visualise relationships between cases 

and variables. Patterns of similar cases are represented by clouds of closely related points 

to illustrate the strength of the relationship. However, these methods are not without 

certain drawbacks. One important caveat to note is the subjectivity of this method. The 

patterns observed rely on the researcher‘s interpretation of these. To further ensure the 

suitability of the techniques in anthropological research these should be combined with 

other statistical methods such as those capable of measuring the strength of associations 

numerically. Combining both multivariate graphical statistics with the more commonly 

employed methods contributes a new approach to trauma studies in anthropology. 

 

 

5.4.4. Predicting probability of cause of death- Binary logistic regression 

 

To further the application of the relationships found in the graphical representations of the 

data, binary logistic regression is employed to develop a model which uses statistical 

probabilities to determine which group a case belongs to, in this case classifying injury 

patterns as being from gunshot trauma or blast injury. 
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This statistical methodology is related to linear and multiple regression, employing 

algebraic equations to predict category a specific case belongs to. In the case of binary 

logistic regression, the dependent and predictor variables are categorical with binary 

outcomes, necessitating a method which is based on transforming the data logarithmically 

to overcome the assumption of a linear relationship in basic regression (Field 2009). It 

permits the calculation of the probability of belonging to one outcome group or the other. 

This probability lays between 0 and 1, with 0 representing that the outcome is very 

unlikely to have occurred, and 1 the converse (Field 2009). Using binary logistic 

regression enables a statistical model to be developed which assesses the variables 

contributing to the prediction of the probability of the outcome. With this tool, it is 

possible to predict inclusion in a particular group of an unknown case (Hosmer and Stanley 

2000; Peng et al. 2002; Peng and So 2002).  

 

 

5.5. Methods 

 

This section outlines the procedures followed when using SPSS 19.0 to analyse the data. 

This includes the exploratory phase, composed of basic frequencies, cluster analysis and 

multiple correspondence analysis, and followed by probability model building, using 

binary logistic regression.  

 

 

5.5.1. Descriptives and Holm-Bonferroni corrected 2  

 

The first step in the analysis is the calculation of frequencies. This was done in multiple 

phases to examine the data by cause of death (for the Bosnia sample) and by sample source 

(both the Bosnia and World War One samples). This was undertaken to permit calculation 

of prevalence in the samples to compare the Bosnia and World War One samples and the 

clinical literature. 
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Pearson’s 2 

 

Trauma analysis in anthropology frequently makes use of the χ2 statistic to compare 

groups, specific characteristics between groups and within groups or variables. This is 

usually done simply, by comparing two variables using their frequencies (for example how 

many times a specific injury is found in one assemblage versus another) (Torres-Rouff and 

Costa Junqueira 2006; Owens 2007; Steyn et al. 2010; Erdal 2012). By using the Pearson‘s 

Chi-squared statistic, the researcher is testing the observed frequency of a variable against 

the expected frequency. This means that we measure the probability of seeing the same 

outcome in a variable by chance versus the one observed (such as in an assemblage or data 

set) (Field 2009). 

 

The tests were carried out to look at multiple comparisons in the Bosnia data. Specifically, 

the researcher examined relationships between body region variables comparing the blast 

injury and gunshot wound cases.  

 

 

Test statistics employed  

 

Pearson‘s χ2 was used unless certain assumptions were violated in the pairwise test. If the 

expected values were below five or were zero, a different test statistic was employed. In 

the case of expected value less than five, the Fisher‘s exact statistic is recommended. In 

cases of zero observations in a pairwise comparison, the Yates‘ continuity correction is 

recommended (Field 2009). All tests were done using Pearson‘s χ2 unless otherwise stated.  

 

 

Assumptions of the χ2 test 

 

For Pearson‘s Chi-Square test, there are two main assumptions. The first assumption is that 

the data must be independent. As such, a case cannot be represented twice in a contingency 

table. For the purposes of this research, there are no such cases. Secondly, expected 

frequencies should be larger than 5. This occurs in the sample but has been corrected for 

by employing the Fisher‘s Exact Test statistic in cases where this occurs.  
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Holm-Bonferroni correction  

 

When performing multiple pairwise Chi-Square tests the possibility of a Type I error is 

increased. This causes the rejection of the null hypothesis (in this case, the null hypothesis 

is that there is no difference in the prevalence of trauma to the body region between blast 

injury and gunshot wound causes of death). As such, to accurately assess significance, a 

correction should be employed. This correction changes the typically used α-level (.05). 

 

For the purposes of this research, the sequentially rejective version of the Bonferroni test is 

employed (Holm 1979), now commonly known as the Holm-Bonferroni correction. This 

methodology reduces the possibility of making a Type I error more than the Bonferroni 

method does, as it is less conservative than the traditional Bonferroni test (Holm 1979) 

 

To accomplish this correction, the significance values of each pairwise test are compared 

from smallest to largest. This was accomplished by listing these in an excel table. 

Following this, the desired α is divided by the total number of pairwise tests. If the test 

statistic is found to be significant (at the adjusted α level), the null hypothesis is thus 

rejected. The significant value is then removed and the procedure is conducted once again, 

this time with the desired α level divided by the number of remaining pairwise tests. This is 

conducted sequentially (dividing α level by the number of pairwise tests) until the null 

hypothesis can no longer be rejected (Holm 1979).  

 

This method of correction is used when pairwise Chi-Square tests are performed. It is 

applied to the significance level which corresponds to the selected test (i.e. Pearson Chi-

Square,  Fisher‘s Exact Test or Yates‘ Continuity Correction) based on the criteria 

explained in section 5.5.1.  

 

 

5.5.2. Cluster Analysis 

 

Cluster analysis is a classifying method of exploring data. It uses algebraic mathematical 

equations to compute distances between objects in multidimensional space (Burns and 

Burns 2013). In this research, each case and its corresponding outcome (absence or 
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presence) for each of the variables (body regions affected/not affected by trauma) are 

analysed.  

 

Cluster analysis is employed to reduce the data and create subgroups comprised of 

observed data, with the subgroups referred to as clusters (Řezanková and Everitt 2009; 

Burns and Burns 2013). The purpose of this method is to explore relationships between 

variables and cases to identify exemplars (for example patterns related to cause of death) as 

well as partitioning the sample in to homogeneous groups. These groups can form an 

―operational classification‖. This method is advantageous when exploring a data set for 

which no prior theories have been formulated; such is the case in exploring a data set 

which has not been subjected to a breadth of statistical examination which goes beyond 

basic description. This methodology is the beginning of the process of identifying patterns 

within the data which can guide subsequent testing. 

 

 

Conducting cluster analysis 

 

The first step to conducting the cluster analysis is selecting the method which will be 

employed. Two typical methods are hierarchical or k-means cluster. In hierarchical 

clustering, the number of clusters needed is not known and is an exploratory method, 

whereas k-means clustering requires prior knowledge of the number of clusters (previously 

established groups in the data). The technique of hierarchical clustering was selected as 

this first step in the data analysis is exploratory and the current researcher wishes to 

identify any patterns in the data sets which can aid in the identification of combinations of 

trauma that indicate blast injury in the sample. 

 

Hierarchical clustering begins with each case (or variable if the analysis is looking at 

relationships between variables) and employs an agglomerative process which combines 

cases (or variables) which are similar together to form a new cluster. This is the method 

employed for this research. Additionally, a specific measure is used to measure the 

similarity between cases/variables. The selected method was the binary squared Euclidean 

distance, a standard measure which relies on binary outcome variables, such as presence 

and absence. The binary squared Euclidean distance measure quantifies dissimilarity by 

measuring the distance between case in a cloud of points, representing similar objects as 
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being close together in a group and those which are not as further apart. In calculating the 

distances between cases, it is the cases which are conflicting (such as absence of trauma in 

one cases compared to presence of trauma in another) which help the computer algorithm 

to determine that these cases are far apart in the Euclidean space. Therefore, cases with a 

disagreement are more important mathematically as these represent the maximum 

difference between the clusters. This clustering algorithm was chosen to examine where 

the differences in the patterns could be identified. Other methods were rejected as they are 

based on specific relationships between cases such as a probability that a characteristic 

present in one case predicts its presence in the compared case (IBM 2010). SPSS requires a 

method calculating distances between cases to be specified. The standard average linkage 

between groups was employed and measures the distance between each object in a 

proximity matrix. This is calculated as an extension of the Pythagorean Theorem which 

calculates the distances between objects in a multi-dimensional space. The average 

distance between members of a cluster is calculated and compared to those in another 

cluster rather than using single cases, such as the nearest or further case (as in single 

linkage or complete linkage methods).  

 

The data were not standardized as the measurement level is the same for all the cases and 

variables (binary outcome). To assess the presence of patterns in the data, the blast injury 

and gunshot wound causes of death were employed in the first instance. The cluster 

analysis was employed to determine if there are any patterns that can be identified, such as 

clusters with particular types of injuries yielding a classification of trauma patterns in these 

assemblages. To ensure appropriate comparison of the two causes of death, it was 

necessary to subsample the gunshot wound group as this group was much larger than the 

blast injury group. This is accomplished using an automatic sampling syntax written 

specifically for this research. The syntax can be seen in Figure 5-2. 

 

The first analysis looked at any patterns in the combined data set of the cases with blast 

injury and gunshot wound as the cause of death (with a subsample of the gunshot wound 

cases). Additionally, the blast injury and gunshot wound cases were examined individually. 

Again, the purpose of the cluster analysis here is to determine if there are any patterns and 

exemplars which can be used as indicators of a specific type of trauma, context or cause of 

death. Lastly, the variables were examined to determine if there was a pattern within the 

variables and if the variables differentiate between the cases in a sample encompassing all 

the graves. The results of these investigations will be used to formulate hypotheses and 
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examine relationships between cases, causes of death, body region variables and within the 

individual graves which could lead to identification of indicators of blast injury assemblage 

patterns. 

 

 

Binary cluster analysis syntax 

 

To facilitate the examination of certain subsets of the data, such as the comparison of the 

blast trauma cases and the gunshot wound cases, it was necessary to create syntax to permit 

random subsampling from the cases with the cause of death listed as gunshot wound to 

create a better balanced sample of approximately 100 cases (this varied based on the 

automatic sampling of 11% of the gunshot wound cases), with 48 of those being from the 

smaller sample, the blast injury cases.  

 

The following is an example of the code written, with the help of Dr. John Beavis of 

Bournemouth University. It was originally written to run an automatic subsampling routine 

for use in binary logistic regression and was adapted to perform cluster analysis. Figure 

5-2:  Cluster analysis syntax with random sampling represents the syntax for the cluster 

analysis performed to examine patterns in a combined data set with all the cases with blast 

injury and the randomly sampled gunshot wound cases. This was performed multiple times 

to determine the appropriate solution (with corresponding cluster numbers).  
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*GET FILE='\\bournemouth.ac.uk\data\Staff\Home\mcdussault\SPSS Data Analysis\cluster analysis\ 

Combined data set TEST.sav'. 

SET RNG=MT MTINDEX=RANDOM.   

DATASET NAME DataSet1 WINDOW=FRONT.  

DATASET COPY  BI.  

DATASET ACTIVATE  BI.  

FILTER OFF.  

USE ALL.   

SELECT IF (COD=1).  

EXECUTE.  

DATASET ACTIVATE  DataSet1.  

DATASET COPY  GSW.  

DATASET ACTIVATE  GSW.  

FILTER OFF.  

USE ALL.  

SELECT IF (COD=2).  

EXECUTE.  

DATASET ACTIVATE  DataSet1.  

DATASET ACTIVATE GSW.  

FILTER OFF.  

USE ALL.  

SAMPLE  .11.  

EXECUTE.  

DATASET ACTIVATE BI.  

ADD FILES /FILE=*  

  /FILE='GSW'.  

EXECUTE.  

CLUSTER NEUROCRANIUM to RFOOT   

/MEASURE=BSEUCLID  

/METHOD= DEFAULT  

 /ID=Case#  

  /PRINT SCHEDULE  

  /PLOT DENDROGRAM  

  /SAVE CLUSTER(6,7). 

DATASET CLOSE GSW.  

DATASET CLOSE BI. 

DATASET ACTIVATE DataSet1. 

 

Figure 5-2:  Cluster analysis syntax with random sampling 

Mersenne Twister random 

number generator for sub 

sampling command 

Select data set for blast injury 

cases 

Use all cases with C.O.D. = Blast 

injury 

Select cases with C.O.D. = Gunshot Wound 

Sample 11% of total, randomly using Mersenne 

Twister Random Number Generator 

Add subsample to blast injury cases 

Cluster selected variables 

Binary Squared Euclidean Distance 

Standard average linkage between groups 

Label by Case# in output 

Output tables and graphs 
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The syntax also includes sections at the bottom which produces the agglomeration 

schedule (/print command), the dendrogram and saves cluster membership for each 

included case into a table (/save command). A proximity matrix is also produced, which 

enables the exact distance between cases to be noted. This can demonstrate distances 

between specific cases within groups and between groups, aiding to mathematically 

represent the similarity and differences between the clusters.  

 

Cluster membership for each case is listed in a table which identifies what cluster the case 

is part of, based on a range of solutions or a specific number of clusters pre-selected and 

input into the syntax. The agglomeration schedule aids in the determination of the optimal 

number of clusters in a solution (Table 5-5).  

 

Table 5-5: Example agglomeration schedule. 

Average Linkage (Between Groups) 

     
       Agglomeration Schedule 

Stage 

Cluster Combined 

Coefficients 

Stage Cluster 

First Appears 

Next 

Stage Cluster 1 

Cluster 

2 

Cluster 

1 

Cluster 

2 

1 16 87 .000 0 0 13 

2 36 86 .000 0 0 38 

3 59 62 .000 0 0 4 

4 53 59 .000 0 3 13 

5 33 41 .000 0 0 14 

6 2 9 .000 0 0 12 

7 8 81 1.000 0 0 42 

8 4 78 1.000 0 0 17 

9 51 74 1.000 0 0 29 

10 13 66 1.000 0 0 31 

11 50 57 1.000 0 0 16 

12 2 56 1.000 6 0 15 

13 16 53 1.000 1 4 29 

14 3 33 1.000 0 5 30 

15 2 47 1.333 12 0 18 

16 11 50 1.500 0 11 19 

17 4 22 1.500 8 0 32 

18 2 5 1.500 15 0 48 

19 11 15 1.667 16 0 33 

20 84 88 2.000 0 0 22 

21 54 85 2.000 0 0 49 

22 49 84 2.000 0 20 50 

23 65 70 2.000 0 0 40 

24 61 69 2.000 0 0 37 

25 35 46 2.000 0 0 42 
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26 38 44 2.000 0 0 61 

27 19 27 2.000 0 0 49 

28 25 26 2.000 0 0 43 

29 16 51 2.100 13 9 39 

30 3 67 2.333 14 0 39 

31 13 40 2.500 10 0 52 

32 4 42 2.667 17 0 50 

33 11 55 2.750 19 0 53 

34 52 79 3.000 0 0 67 

35 10 77 3.000 0 0 41 

36 1 68 3.000 0 0 40 

37 58 61 3.000 0 24 48 

38 31 36 3.000 0 2 65 

39 3 16 3.250 30 29 64 

40 1 65 3.500 36 23 58 

41 10 45 3.500 35 0 57 

42 8 35 3.500 7 25 56 

43 25 83 4.000 28 0 57 

44 72 76 4.000 0 0 77 

45 32 64 4.000 0 0 65 

46 39 63 4.000 0 0 72 

47 34 60 4.000 0 0 54 

48 2 58 4.000 18 37 54 

49 19 54 4.000 27 21 55 

50 4 49 4.000 32 22 61 

51 30 48 4.000 0 0 70 

52 13 23 4.000 31 0 55 

53 11 17 4.000 33 0 56 

54 2 34 4.375 48 47 64 

55 13 19 4.500 52 49 73 

56 8 11 4.500 42 53 59 

57 10 25 4.556 41 43 68 

58 1 71 4.750 40 0 59 

59 1 8 4.900 58 56 66 

60 18 43 5.000 0 0 69 

61 4 38 5.000 50 26 67 

62 21 28 5.000 0 0 84 

63 7 24 5.000 0 0 81 

64 2 3 5.182 54 39 75 

65 31 32 5.333 38 45 69 

66 1 37 5.467 59 0 74 

67 4 52 5.611 61 34 74 

68 10 75 5.833 57 0 78 

69 18 31 5.900 60 65 80 

70 30 82 6.000 51 0 71 

71 30 80 6.000 70 0 79 

72 14 39 6.000 0 46 78 

73 13 29 6.000 55 0 75 

74 1 4 6.000 66 67 76 

75 2 13 6.418 64 73 80 

76 1 73 6.926 74 0 79 

77 20 72 7.000 0 44 85 

78 10 14 7.143 68 72 82 

79 1 30 7.196 76 71 82 

80 2 18 7.214 75 69 83 

81 7 12 7.500 63 0 84 

82 1 10 7.600 79 78 83 

83 1 2 8.253 82 80 85 

84 7 21 8.833 81 62 86 

85 1 20 8.835 83 77 86 

86 1 7 9.702 85 84 87 
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The agglomeration schedule is read from the bottom when using hierarchical 

agglomerative cluster analysis. The last line of the table represents a cluster solution with 1 

cluster, all cases together. The most important line is the coefficient, representing the 

distance between the clusters (column in bold). A smaller coefficient in this type of 

analysis represents clusters which are close together or homogeneous. To determine where 

the optimal cut-off point to determine the number of clusters, the distance between the 

coefficients must be calculated. Where there is a large jump between the coefficients, this 

indicates a larger distance between the clusters and is a natural cut off point. The number 

of clusters is the number of the row with the lowest coefficient (not the stage number). As 

the table is read from the bottom up, the bottom row is a 1 cluster solution, the second to 

last row is a 2 cluster solution, and so forth (Nargundkar 2003).  

 

The optimal solution determined by the coefficients between clusters can also be 

confirmed visually, using the dendrogram produced by SPSS.

87 1 6 10.655 86 0 0 
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Figure 5-3: Dendrogram example 
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The dendrogram represents the associations between the cases (or variables if these are 

chosen). The diagram is read from left to right and the distance between two sequential 

vertical lines represents the re-scaled distances between the clusters. When there is a large 

distance between the two (with the ratio being the same as that of the coefficient 

differences from the agglomeration table), this indicates the mathematical break (based on 

coefficients) in the formation of clusters (Nargundkar 2003). Clusters to left of this point 

represent the clusters formed in the solution and the case numbers are listed to the left. To 

ease interpretation, a dendrogram in which patterns are identified and found to be useful in 

the interpretation of trauma patterns will have the break point illustrated and the clusters 

identified graphically.  

 

 

5.5.3. Multiple Correspondence Analysis 

 

The third step of the analysis is to perform a multiple correspondence analysis, to continue 

the exploration of the data. This examines the relationship between the two data sets and 

the contribution the variables make to the patterns in the data. By using this approach, 

variables which contribute to the patterns seen in the data can be identified and used in the 

subsequent binary logistic regression, as predictors of the cause of death variable. In the 

philosophy of inductive reasoning, this process permits geometric modelling techniques to 

lead to probabilistic models (Greenacre 1984). 

 

 

Theory of multiple correspondence analysis 

 

Multiple correspondence analysis belongs to the field of geometric data analysis, along 

with correspondence and principal components analysis. This type of analysis is based on 

linear algebra theory and is a geometric form of optimal scaling (Greenacre 1984; Le Roux 

and Rouanet 2010). It‘s popularity is most attributed to Jean-Paul Benzécri (Greenacre 

1984). This technique looks at associations between elements of two sets and therefore can 

be used to explore the data from the blast injury cases and those with gunshot wounds. 

Two main types of correspondence analysis exist: using a cloud of categories or a cloud of 

individuals (Le Roux and Rouanet 2010). Multiple correspondence analysis is an extension 
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of correspondence analysis. Rather than using 2 x 2 contingency tables (as in 

correspondence analysis), multiple correspondence analysis uses larger contingency tables 

and is applied with categorical variables (Le Roux and Rouanet 2010).  

 

Multiple correspondence analysis with binary variables is considered a special case of this 

technique. It is closely related to principal components analysis of a matrix built from 

responses or outcomes. These are all standardized to have the same unit (if needed). Each 

discrete variable is represented by just one of its categories (i.e. Yes or no, present or 

absent) (Greenacre 1984). Like principal components analysis, multiple correspondence 

aids in the identification of the variables which contribute the most to the variance of the 

data. By identifying the variables, these can subsequently employed in further statistical 

analyses such as binary logistic regression (Le Roux and Rouanet 2010).  

 

 

Multiple correspondence analysis methodology 

 

The technique is based upon vector geometry, whereby each case is a vector (along a row 

of variables) and these can be represented in space (cloud of points or cloud of variables) 

(Greenacre 1984). The number of dimensions is represented by the number of variables 

minus one. Correspondence analysis helps to reduce the number of dimensions to represent 

the data graphically. Typically, this is done by using Euclidean space (Greenacre 1984). 

There are a variety of methods to represent the space, using formulas based on the 

Pythagorean Theorem. For this research, the Binary Squared Euclidean method is 

employed, typically an analysis method used for binary data. This will be explained further 

in this chapter. 

 

The application of multiple correspondence analysis with SPSS is used to display the 

division of objects using categories (in this case the cause of death variable), thus 

representing graphically the relationships between the variables (Meulman et al. 2010). In 

multiple correspondence analysis, three assumptions need to be satisfied. The data must be 

at the multiple nominal scale and must contain at least 3 cases. The data used in this 

research satisfy both these conditions. The third is that the data must be coded as positive 

integers, again a condition with is met by the research, by coding the absent and present 
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variables as 1 and 2. This methodology uses string variables which have been coded into 

positive integers.  

 

For the purposes of this research, the analysis is conducted using the cases with blast injury 

or gunshot wound as the primary cause of death. This will permit exploration of the body 

region variables to discover which contribute most to the variance in the patterns between 

these two data sets. This will help to identify differences in the presentation of trauma in 

these two causes of death. Subsequently, these results can be applied to confirm the logistic 

regression model created in the following section of this chapter. 

 

To counter the disparity in the size of both samples, the gunshot wound data is 

subsampled. This was repeated to assess which variables were found to consistently 

represent the largest variance in the samples on three dimensions (representing the data on 

three dimensions simplifies the visualisation to permit identification of the variables). 

Typically, most variance is accounted for on the first three dimensions (Le Roux and 

Rouanet 2010). 

 

Multiple correspondence analysis using SPSS 19 requires the selection of a normalization 

method, which either optimises to look at associations between variables, individuals or 

symmetrically assess both. For the purposes of this research, the goal was to identify which 

body region variables differentiate between the two causes of death and as such the 

variable principal method was employed (Meulman et al. 2010). This will demonstrate the 

correlations between the variable and cause of death as well as how these contribute to the 

variance within and between the samples, identifying predictors of the dependent variable 

to use in probabilistic modelling (see 5.5.4 Binary logistic regression). 

 

To determine which variables were important discriminating measures between the two 

samples, the discrimination measures were examined both visually and numerically across 

the dimensions selected. In the visual plot of the discrimination measures, those which are 

represented by points furthest from the origin are considered to discriminate most. Both the 

steepness and length of the line are observed to make this determination from the plot. 

Additionally, these are also noted numerically in the discrimination measures table in the 

SPSS output, noting the loading of each variable on the dimensions. The discrimination 

measures which were visually furthest from the origin on any dimension were selected as 

those which contribute the most variance to the samples. 
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To automate the process of random subsampling and apply the same procedures each time 

a subsample was created, syntax was written in the same manner as was written for the 

cluster analysis procedure; however, with different commands for the multiple 

correspondence analysis, following the subsampling. The following section shows the 

syntax for the complete procedure. 

 

 

Multiple correspondence analysis syntax 

 

The following is the syntax employed to automate the subsampling and application of the 

multiple correspondence analysis. The /print and /plot commands will be explained below 

the figure.  
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*GET FILE='C:\Users\Owner\Desktop\Combined data set.sav'.  

 SET RNG=MT MTINDEX=RANDOM.  

DATASET NAME DataSet1 WINDOW=FRONT.  

DATASET COPY  BI.  

DATASET ACTIVATE  BI.  

FILTER OFF.  

USE ALL.  

SELECT IF (COD=1).  

EXECUTE.  

DATASET ACTIVATE  DataSet1.  

DATASET COPY  GSW.  

DATASET ACTIVATE  GSW.  

FILTER OFF.  

USE ALL.  

SELECT IF (COD=2).  

EXECUTE.  

DATASET ACTIVATE  DataSet1.  

DATASET ACTIVATE GSW.  

FILTER OFF.  

USE ALL.  

SAMPLE  .11.  

EXECUTE.  

DATASET ACTIVATE BI.  

ADD FILES /FILE=*  

  /FILE='GSW'.  

EXECUTE.  

MULTIPLE CORRESPONDENCE /VARIABLES= COD NEUROCRANIUM TO LHAND 

LRIBS TO LFOOT 

/ANALYSIS=NEUROCRANIUM TO LHAND LRIBS TO LFOOT 

/DIMENSION=2 

/NORMALIZATION=VPRINCIPAL 

/PRINT=DESCRIP(NEUROCRANIUM TO LHAND LRIBS TO LFOOT) DISCRIM 

QUANT(NEUROCRANIUM TO LHAND LRIBS TO LFOOT) CORR  

 

/PLOT= DISCRIM JOINTCAT OBJECT(COD NEUROCRANIUM TO LHAND LRIBS TO 

LFOOT) . 

DATASET CLOSE GSW.  

DATASET CLOSE BI. 

DATASET ACTIVATE DataSet1.  

Mersenne Twister random 

number generator for sub 

sampling command 

Figure 5-4- Multiple Correspondence Analysis Syntax 

Select data set for blast injury 

cases 

Use all cases with C.O.D. = Blast 

injury 
Select cases with C.O.D. = Gunshot 

Wound 

Sample 11% of total, randomly using 

Mersenne Twister Random Number 
Generator 

Add subsample to blast injury cases 

Variables for analysis 

Optimize variable associations 

Statistics to print in output 

Plots to print in output 
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The /Print subcommand in the syntax is used to specify additional output desired alongside 

the Model Summary Statistics and the history statistics for the last iteration. The syntax 

line ―DESCRIP(NEUROCRANIUM TO LHAND LRIBS TO LFOOT)‖ requests 

descriptives (frequency, missing values and mode) for the variables in the parentheses.  

 

The syntax ―DISCRIM‖ requests ―Discrimination measures per variable and per 

dimension‖ (IBM 2010,p.1300). Following this,  ―QUANT(NEUROCRANIUM TO 

LHAND LRIBS TO LFOOT)‖ requests ―Category quantifications (centroid coordinates), 

mass, inertia of the 

categories, contribution of the categories to the inertia of the dimensions, and contribution 

of the dimensions to the inertia of the categories‖ (IBM 2010):1300. This aids in the 

discrimination of which variables contribute the most to the dimensions and to the variance 

of the samples. Each of these statistics indicates algebraic values used to calculate the 

position of the variables within the cloud of variables and thus assess the distance between 

the variables in a graphical manner. ―Corr‖ requests correlation tables for the transformed 

variables.  

 

The /Plot subcommand requests the display of specific plots. In the syntax for the multiple 

correspondence analysis above, three types of plots are requested. The first is the 

―DISCRIM‖ plot, which produces a plot of the discrimination measures. This produces the 

graphical representation of the variables along two dimensions, enabling the identification 

of which carry the most of the variance in the data. ―JOINTCAT‖ produces a joint plot of 

category points over the two dimensions. This represents the category points for both the 

absent and present outcomes of each body region variable. ―OBJECT‖ produces a plot of 

the object points over the two dimensions using the variables specified in the parentheses 

(IBM 2010).  

 

This syntax was run multiple times to create subsampling that would be random and 

approximate the population from which it came, that is the larger gunshot wound data 

sample. Additionally, applying this method permitted the verification that the variables 

which contributed most to the variance were the ones which consistently were represented 

in the graphical output. These body region variables were then used in the subsequent 

analysis described in 5.5.4 which explains the binary logistic regression procedure used to 

build a predictive model.  
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5.5.4. Binary logistic regression 

 

The final phase of the data analysis was performing binary logistic regression; a special 

case of regression which involves a log transformation of categorical data and uses binary 

outcome variables. 

 

Logistic regression theory 

 

Logistic regression permits group membership prediction (Tabachnick and Fidell 2007). 

The technique permits to evaluate the probability of group membership based on a 

combination of variables, called predictor variables. It is often used in medicine for the 

prediction of the presence or absence of disease (Tabachnick and Fidell 2007).  

 

The advantage of using logistic regression is its lack of assumptions unlike many other 

techniques such as discriminant or multiway frequency analyses. The predictors need not 

be ―normally distributed, linearly related, or of equal variance within each group‖ 

(Tabachnick and Fidell 2007). The emphasis of this technique is on the probability of the 

outcome based on the predictors and can help determine, in this piece of research, the 

probability of a cause of death being blast injury versus gunshot wound for a case with an 

unknown or ambiguous cause of death. Whilst this is an exploration of the potential to 

predict the cause of death or at least identify blast injury versus gunshot wounds in the 

assemblage, applying this technique to other assemblages could be explored further in 

future.   

 

The binary logistic regression statistical test is used to develop a model predicting the 

probability of a case belonging to the gunshot wound or blast injury group, based on the 

presence or absence of trauma in certain body regions. The model is built through an 

iterative process which begins with a fully saturated model including all variables (body 

regions) and continues with the removal of variables which have no impact on the fit of the 

model. The backwards removal of predictors is preferable to minimise suppressor effects. 

This occurs when a variable has an effect only when another is kept constant in the 

analysis (Field 2009).  The regression model uses the two outcome states, presence or 

absence, to evaluate the probability of a case belonging to a certain group based on the 

outcome of the cases response for each variable. Predictor variables can also be selected 
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prior to analysis as opposed to letting SPSS pick these (IBM 2010). This is usually applied 

in combination with other statistical analyses or previously formulated hypotheses. In this 

project, variables identified in the multiple correspondence phase of the work are used as 

indicators.  

 

To assess the goodness-of-fit of the model for each iteration, many statistic values are 

examined. Specifically this includes the log-likelihood, which examines the observed 

versus predicted model. A large log-likelihood statistic indicates a poorly fitting model. 

Additionally, examination of statistics related to each variable (body region) included in 

the model is made. This includes assessing a commonly used statistic, the R statistic. In 

binary logistic regression, the R statistic represents partial correlation between the 

dependent variable and the predictors. The ideal statistic to use in this case would be the 

Hosmer and Lemeshow‘s R2
L (Hosmer and Stanley 2000) which assesses how the fit of a 

model improves with the inclusion of a specific variable. This is represented by a value 

between 0 and 1, making analysis straightforward. As R2
L approaches 1 the model predicts 

outcome perfectly.  

 

One of the most important statistics to examine is the odds ratio, represented by Exp(B). 

This indicates the ratio of change in odds (of the outcome) when the predictor level is 

changed (Field 2009). In binary cases, this means changing the predictor from 0 (the 

baseline or control state) to 1. This can be interpreted by looking at its value which when it 

is bigger than one indicates that as the predictor increases, the odds of the outcome 

occurring increases as well. When the value of the Exp(B) statistic is below one this means 

the odds of the outcome occurring are decreasing with the increase in predictor and as such 

the predictor is not suited to be used in the model (Field 2009).  

 

According to Dr. D.J. Beavis, accuracy for the model built is better when using groups of 

approximately 50 cases each (personal communication, 4 April 2012). As such, SPSS was 

employed to randomly select 50 cases each from those in the data. These cases were 

imported in a new file to compile the final SPSS generated model. This was accomplished 

using a syntax file which permitted random sampling and automation of the process to 

ensure efficiency and repeatability for each of the iterations. 
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Binary logistic regression syntax 

 

The following is an example of the syntax used to create the binary logistic regression 

model. Multiple iterations were performed, removing variables to obtain a more 

statistically accurate model whilst testing if the variables identified during the multiple 

correspondence analysis phases build the most accurate model.  
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*GET FILE='\\bournemouth.ac.uk\data\staff\home\mcdussault\Profile\Desktop\SPSS Data Analysis\binary 

logistic regression\Repeating BLR\Combined data set.sav'.   

SET RNG=MT MTINDEX=RANDOM. 

DATASET NAME DataSet1 WINDOW=FRONT.  
DATASET COPY  BI.  

DATASET ACTIVATE  BI.  

FILTER OFF.  

USE ALL.  

SELECT IF (COD=1).  

EXECUTE.  

DATASET ACTIVATE  DataSet1.  

DATASET COPY  GSW.  

DATASET ACTIVATE  GSW.  

FILTER OFF.  

USE ALL.  

SELECT IF (COD=2).  

EXECUTE.  

DATASET ACTIVATE  DataSet1.  

DATASET ACTIVATE GSW.  

FILTER OFF.  

USE ALL.  

SAMPLE  .11.  

EXECUTE.  

DATASET ACTIVATE BI.  

ADD FILES /FILE=*  

  /FILE='GSW'.   

EXECUTE.  
LOGISTIC REGRESSION VARIABLES COD   

  /METHOD=ENTER Neurocranium Mandible LShoulder RShoulder LUpArm LRibs RRibs LPelvis 

RPelvis RFemur LFemur Maxillofacial Vertebrae 

  /CONTRAST (Neurocranium)=Indicator  

  /CONTRAST (Maxillofacial)=Indicator  

  /CONTRAST (Mandible)=Indicator  

  /CONTRAST (Vertebrae)=Indicator  

  /CONTRAST (LShoulder)=Indicator  

  /CONTRAST (RShoulder)=Indicator  

  /CONTRAST (LUpArm)=Indicator  

  /CONTRAST (RUpArm)=Indicator  

  /CONTRAST (LForearm)=Indicator  

  /CONTRAST (RForearm)=Indicator  

  /CONTRAST (LHand)=Indicator  

  /CONTRAST (RHand)=Indicator  

  /CONTRAST (LRibs)=Indicator  

  /CONTRAST (RRibs)=Indicator  

  /CONTRAST (LPelvis)=Indicator  

  /CONTRAST (RPelvis)=Indicator  

  /CONTRAST (LFemur)=Indicator  

  /CONTRAST (RFemur)=Indicator  

  /CONTRAST (LTibFib)=Indicator  

  /CONTRAST (RTibFib)=Indicator  
  /CONTRAST (LFoot)=Indicator  

  /CONTRAST (RFoot)=Indicator  

  /CASEWISE OUTLIER(2)  

  /PRINT=GOODFIT CI(95) ITER 

  /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).  

DATASET CLOSE GSW.  

DATASET CLOSE BI. 

DATASET ACTIVATE DataSet1. 

Mersenne Twister random number 

generator for sub sampling 

command 

Select data set for blast injury cases 

Use all cases with C.O.D. = Blast injury 

Select cases with C.O.D. = Gunshot Wound 

Sample 11% of total, randomly using Mersenne 

Twister Random Number Generator 

Add subsample to blast injury cases 

Independent variable 

Dependent variables input into model 

Dependent variables  

List of outliers (more than 2 SRESID)  

Goodness-of-fit statistic, confidence interval, 
intermediate estimates at each iteration  

Default statistical criteria  

Figure 5-5- Binary Logistic Regression Syntax 
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Specifically, following the random sampling method (as in the cluster analysis and the 

multiple correspondence analysis) the dependent variable is defined, here the cause of 

death. The independent (indicator/predictor) variables are listed subsequently.  

 

Statistical tests are listed next. The outliers which do not fit into the model are listed, 

identified when these lie more than twice outside the value of the standard residual. The 

Hosmer and Lemeshow Goodness-of-Fit statistic is also printed in the output along with 

the 95% confidence interval for the Exp(B) statistic. The intermediate parameter estimates 

are printed for each iteration of the model.  

 

The final line specifying how to run the test is the /criteria line which indicates which 

criteria to use for inclusion or exclusion of a predictor variable in the model. Each of these 

is included using their defaults as the criteria and was used as this model is being built 

without any preconceived notions regarding the statistics and is being built as an initial 

exploration into the possibility of prediction of cause of death. PIN(0.05) is the probability 

of a score statistic and the larger the probability, the more likely the inclusion in the model 

(IBM 2010). The POUT(0.1) command is the probability of the Likelihood Ratio cut off 

point for inclusion in the model. Again, the larger the number, the more it is likely to be 

included in the model (IBM 2010). 

 

The ITERATE(20) specifies a maximum of 20 iterations to build the model. Again this is a 

default which is specified by SPSS 19 to maximise model building whilst keeping 

resources to a minimum. Finally the CUT(0.5) command is used to determine when a case 

is included in a specific group ―when the predicted event probability is greater than or 

equal to the cutoff value‖ (IBM 2010).  

 

 

Multicollinearity 

 

A strong correlation between two or more predictors in a regression is considered 

multicollinearity and can affect the accuracy of the regression estimates (Field 2009). It 

can also affect the R statistic, limiting its size as well masking the importance of individual 

predictors (Field 2009). To assess multicollinearity, tolerance and variance inflation factors 

(VIF) are calculated using linear regression and the collinearity diagnostics in SPSS. 
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Tolerance of less than 0.2 and VIF of five or ten and more indicates a multicollinearity 

issue. 

 

 

Block enter versus backwards binary logistic regression  

 

To test which methodology is best to employ for the creation of model, the classification 

percentage and goodness-of-fit statistic were compared between the two methods 

employed. This was accomplished using an independent t test.  

 

 

5.5.5. World War One sample and Clinical literature comparison  

 

To assess where similarities or differences were between the Bosnia sample and the 

clinical literature and World War One samples, pairwise χ 2 was undertaken. The 

prevalence data from the literature and World War One sample were tested against 

prevalence of aggregated body regions in the Bosnia sample. Results are presented in 

Sections 6.6 and 6.7. 

 

 

5.6. Summary  

 

This chapter has introduced the methods employed for this research and includes a review 

of the epistemological and methodological framework, the data employed and the 

methodology used to analyse the data. 

 

Inductive reasoning is highlighted as the framework for the analysis of two sources of data. 

The data is taken from pathological reports, autopsy photographs and excavation 

information from five graves in Bosnia, related to various events which occurred during 

the war in the Balkans. Data from World War One Canadian records of death is also 

described as a comparator to the results from the statistical analyses of the Bosnia data. 

 

Preparation and coding of the data was undertaken, permitting a variety of statistical 

techniques to be employed. The methodology employed used an approach which began 
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with the basic descriptive statistics commonly employed in anthropology and also the 

comparison of variables using Pearson‘s Chi-Square. Subsequently, multivariate methods 

were described, to explore geometric data analysis and its use in formulating hypotheses 

regarding the associations in the data, particularly looking at patterns which can help to 

identify cause of death in the large scale assemblages in Bosnia. Cluster analysis and 

multiple correspondence analysis were used in the first instance as these permit the 

exploration of the data and can contribute conclusions which can then, in the philosophy of 

inductive reasoning, move towards probabilistic modelling. To undertake the probabilistic 

modelling phase of the research, binary logistic regression was employed. All these 

techniques required the writing of syntax to specifically address subsampling of the data to 

permit the most accurate use of the statistical methodologies presented. 

 

The following chapter describes the results of each of these analyses. 
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6. Results 

 

This chapter presents the results of statistical analyses explained in the methods chapter. 

First, descriptives regarding the data sets are presented, presenting the frequencies related 

to the body region variables and the causes of death in both the Bosnia samples and the 

World War One sample.  

 

Subsequently, Pearson‘s χ2   tests with Holm-Bonferroni correction are presented to 

examine any relationships between the cause of death and the body region affected by 

trauma using pairwise comparisons. Additionally, the prevalence of trauma to the different 

body regions was compared between the five sites to determine if there was a difference in 

the prevalence of trauma to the body regions depending on the burial site. These results 

will be used to assess if the later multivariate methods employed detect relationships which 

are not seen in χ2 testing as this is completed using pairwise contingency tables.  

 

The results of the cluster analysis follows and highlights graphically any relationships 

within the samples. Clustering of individuals (by burial sites, cause of death, etc.) and by 

variable is presented. Multiple correspondence analysis completes the geometric 

representations of the data. Binary logistic regression is the last test presented in this 

chapter and outlines the probabilistic model built using an iterative process and the results 

of the multiple correspondence analysis.  

 

 

6.1. Descriptives 

 

This section presents the frequencies for each variable, cause of death and burial sites.  

 

 

6.1.1. Bosnia 

 

This section presents the frequency data for the Bosnia sample. It is divided according to burial 

sites, cause of death or has been combined to give an overall view of the sample.  
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Trauma divided by gravesites 

 

Figure 6-1 and Table 6-1 present the frequencies of trauma to each body region, divided by 

each grave site.  
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Figure 6-1: Trauma frequency by site. Each variable is represented with a stacked bar divided by the five sites. 
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Table 6-1: Frequency of trauma for each body region divided by site 

Variable/Site Glogova  Zeleni Jadar  Ravnice  Lazete  Lazete2b  

Physical Evidence 177 11 84 78 16 

Body 223 5 111 91 20 

Neurocranium 105 1 73 51 28 

Maxillofacial 79 1 52 30 13 

Mandible 55 0 28 22 7 

Vertebrae 102 6 75 37 8 

Left Shoulder Girdle 48 2 35 10 0 

Right Shoulder Girdle 37 0 34 17 1 

Left Upper Arm 27 1 20 15 1 

Right Upper Arm 17 0 15 19 2 

Left Forearm 27 1 11 7 2 

Right Forearm 19 0 13 8 2 

Left Hand 7 0 0 4 0 

Right Hand 3 1 0 1 0 

Left Ribs 83 1 51 29 9 

Right Ribs 79 2 48 34 10 

Left Pelvis 30 4 46 24 3 

Right Pelvis 38 5 44 16 4 

Left Femur 32 2 29 28 2 

Right Femur 24 1 31 25 6 

Left Tib/Fib 33 1 20 17 6 

Right Tib/Fib 36 1 29 18 5 

Left Foot 5 1 10 0 0 

Right Foot 5 0 9 0 0 

Left 61 3 36 15 4 

Right 47 2 21 15 9 

Bilateral 119 5 87 63 13 

No Side 49 2 21 4 11 
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Trauma in gunshot wound and blast injury cases 

 

Figure 6-2 and Table 6-2 shows the frequency of gunshot wounds and blast injury divided 

by body regions. 

 

 

Figure 6-2: Presence of trauma to each body region for gunshot wound and blast injury cases. 

 

  

0

50

100

150

200

250

300

350

400

GSWPresent

Blast InjuryPresent



147 

 

Table 6-2: Frequency of trauma to each body region divided by cause of death 

Variable/COD GSW Blast Injury 

Physical 

Evidence 280 36 

Body 367 47 

Neurocranium 223 23 

Maxillofacial 150 14 

Mandible 95 9 

Vertebrae 196 17 

Left Shoulder 

Girdle 77 11 

Right Shoulder 

Girdle 73 13 

Left Upper Arm 45 10 

Right Upper 

Arm 44 8 

Left Forearm 27 17 

Right Forearm 33 4 

Left Hand 5 4 

Right Hand 2 0 

Left Ribs 144 18 

Right Ribs 143 22 

Left Pelvis 83 12 

Right Pelvis 75 15 

Left Femur 67 19 

Right Femur 71 9 

Left Tib/Fib 48 10 

Right Tib/Fib 62 9 

Left Foot 9 1 

Right Foot 10 0 

Left 78 6 

Right 63 4 

Bilateral 227 37 

No Side 78 1 



148 

 

6.1.2. World War One 

 

The following are the frequencies for the World War One sample. 

 

 

Trauma divided by cause of death 

 

In Figure 6-3 and Table 6-4, the presence of trauma is divided by the cause of death for 

each body region, either blast injury (BI) or gunshot wounds (GSW).  

 

 

Figure 6-3: Frequency of the presence of trauma to each body region divided by cause of death. 
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Table 6-3: Frequency of trauma to each body region divided by cause of death 

Variable/Cause of 

Death BI GSW 

Skull 58 32 

Vertebrae 20 10 

Upper Limb 32 13 

Torso 45 31 

Pelvis 11 5 

Lower Limb 45 18 

Left 25 21 

Right 15 9 

Bilateral 29 6 

No Side 72 54 

 

 

 

6.2.  Pearson’s χ2 – Comparing presence of trauma between blast injury and gunshot 

wound cause of death 

 

Pearson‘s χ2 tests were performed to answer specific questions within the Bosnia data. As 

the differentiation of blast trauma from other trauma is an objective of this research, 

Pearson‘s χ2 were undertaken to compare the prevalence of injury to each body region 

between the blast injury and gunshot wound causes of death.  
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Neurocranium 

 

Table 6-4 demonstrates expected and actual counts of trauma in the neurocranium for each 

cause of death. Although there were more cases of gunshot wounds deaths with 

neurocranium trauma, there was no significant association between neurocranium trauma  

and the cause of death in the sample p=0.764.  

 

Table 6-4: Contingency table for neurocranium variable comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Neurocranium 

Absent 

Count 25 220 245 

Expected Count 24.0 221.0 245.0 

% within Variable 10.2% 89.8% 100.0% 

% within COD 52.1% 49.7% 49.9% 

% of Total 5.1% 44.8% 49.9% 

Std. Residual .2 -.1   

Neurocranium 

Present 

Count 23 223 246 

Expected Count 24.0 222.0 246.0 

% within Variable 9.3% 90.7% 100.0% 

% within COD 47.9% 50.3% 50.1% 

% of Total 4.7% 45.4% 50.1% 

Std. Residual -.2 .1   

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Maxillofacial trauma  

 

Table 6-5 shows count and expected count of presence and absence of trauma to the 

maxillofacial body region. No significant association was found between maxillofacial 

trauma and cause of death, despite a higher proportion of gunshot wound cases having 

maxillofacial trauma p=0.527.  

 

Table 6-5: Contingency table for maxillofacial trauma variable comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Maxillofacial 

Absent 

Count 34 293 327 

Expected Count 32.0 295.0 327.0 

% within Variable 10.4% 89.6% 100.0% 

% within COD 70.8% 66.1% 66.6% 

% of Total 6.9% 59.7% 66.6% 

Std. Residual .4 -.1   

Maxillofacial 

Present 

Count 14 150 164 

Expected Count 16.0 148.0 164.0 

% within Variable 8.5% 91.5% 100.0% 

% within COD 29.2% 33.9% 33.4% 

% of Total 2.9% 30.5% 33.4% 

Std. Residual -.5 .2   

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Mandibular trauma  

 

Table 6-6 show the observed and expected counts of trauma to the mandible body region. 

Mandibular trauma was compared between blast injury and gunshot wound causes of death 

and no significant association was found p=0.716. Mandibular 

trauma was more prevalent in gunshot wound deaths than blast injury deaths, but not 

significantly.  

 

Table 6-6: Contingency table for mandibular trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Mandible 

Absent 

Count 39 348 387 

Expected Count 37.8 349.2 387.0 

% within Variable 10.1% 89.9% 100.0% 

% within COD 81.3% 78.6% 78.8% 

% of Total 7.9% 70.9% 78.8% 

Std. Residual .2 -.1   

Mandible 

Present 

Count 9 95 104 

Expected Count 10.2 93.8 104.0 

% within Variable 8.7% 91.3% 100.0% 

% within COD 18.8% 21.4% 21.2% 

% of Total 1.8% 19.3% 21.2% 

Std. Residual -.4 .1   

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Vertebral trauma 

 

Table 6-7 shows the observed and expected counts of trauma to the vertebral body region. 

Vertebral trauma was 8.8% more prevalent in gunshot wound deaths than in blast injury 

deaths, however this difference was not significant p=0.284. 

 

Table 6-7: Contingency table for vertebral trauma variable comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Vertebrae 

Absent 

Count 31 247 278 

Expected Count 27.2 250.8 278.0 

% within Variable 11.2% 88.8% 100.0% 

% within COD 64.6% 55.8% 56.6% 

% of Total 6.3% 50.3% 56.6% 

Std. Residual .7 -.2   

Vertebrae 

Present 

Count 17 196 213 

Expected Count 20.8 192.2 213.0 

% within Variable 8.0% 92.0% 100.0% 

% within COD 35.4% 44.2% 43.4% 

% of Total 3.5% 39.9% 43.4% 

Std. Residual -.8 .3   

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left shoulder girdle trauma 

 

Table 6-8 shows the observed and expected counts for trauma to the left shoulder girdle. 

Left shoulder girdle trauma was 5.5% more prevalent in the blast injury cases than in those 

with gunshot wounds as a cause of death. The difference was not significant 

p= 0.427.  

 

Table 6-8: Contingency table for left shoulder girdle trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Left 

Shoulder 

Girdle 

Absent 

Count 37 366 403 

Expected 
Count 

39.4 363.6 403.0 

% within 
Variable 

9.2% 90.8% 100.0% 

% within 
COD 

77.1% 82.6% 82.1% 

% of Total 7.5% 74.5% 82.1% 

Left 

Shoulder 
Girdle 

Present 

Count 11 77 88 

Expected 

Count 

8.6 79.4 88.0 

% within 

Variable 

12.5% 87.5% 100.0% 

% within 

COD 

22.9% 17.4% 17.9% 

% of Total 2.2% 15.7% 17.9% 

Total Count 48 443 491 

Expected 

Count 

48.0 443.0 491.0 

% within 

Variable 

9.8% 90.2% 100.0% 

% within 

COD 

100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Right shoulder girdle trauma  

 

Table 6-9 shows the observed and expected counts for trauma to the right shoulder girdle 

variable. Right shoulder girdle trauma was found more in the blast injury cases than in the 

gunshot wound cases. The difference in prevalence was 10.6%. Despite the large 

difference in prevalence, it was not significant, however close p= 

0.073.  

 

Table 6-9: Contingency table for right shoulder girdle trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Right Shoulder 

Girdle Absent 

Count 35 370 405 

Expected Count 39.6 365.4 405.0 

% within Variable 8.6% 91.4% 100.0% 

% within COD 72.9% 83.5% 82.5% 

% of Total 7.1% 75.4% 82.5% 

Right Shoulder 

Girdle Present 

Count 13 73 86 

Expected Count 8.4 77.6 86.0 

% within Variable 15.1% 84.9% 100.0% 

% within COD 27.1% 16.5% 17.5% 

% of Total 2.6% 14.9% 17.5% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left upper arm trauma 

 

Table 6-10shows the observed and expected counts for left upper arm trauma. Left upper 

arm trauma was compared in the blast injury and gunshot wound cases and was found to be 

10.6% more prevalent in the blast injury cases. The Pearson‘s Chi-Square test was found to 

be significant p= 0.032. Applying the appropriate correction for 

multiple pairwise tests, the Holm-Bonferroni correction, reveals that this test is no longer 

significant as the test statistic p-value is larger than the corrected α-level.  

 

Table 6-10: Contingency table for left upper arm trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Left Upper 

Arm Absent 

Count 38 398 436 

Expected Count 42.6 393.4 436.0 

% within Variable 8.7% 91.3% 100.0% 

% within COD 79.2% 89.8% 88.8% 

% of Total 7.7% 81.1% 88.8% 

Left Upper 

Arm Present 

Count 10 45 55 

Expected Count 5.4 49.6 55.0 

% within Variable 18.2% 81.8% 100.0% 

% within COD 20.8% 10.2% 11.2% 

% of Total 2.0% 9.2% 11.2% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 

 

 

  



157 

 

Right upper arm trauma  

 

Table 6-11 shows the observed and expected counts of trauma for the right upper arm. 

Association between right upper arm trauma and cause of death was examined. Prevalence 

of right upper arm trauma in blast injury cases was 16.7% and 9.9% in gunshot wound 

deaths. This is a difference of 6.8%. Despite this difference in prevalence, it was found that 

right upper arm trauma was not significantly different between the two causes of death 

p= 0.212.  

 

Table 6-11: Contingency table for right upper arm trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Right Upper 

Arm Absent 

Count 40 399 439 

Expected Count 42.9 396.1 439.0 

% within Variable 9.1% 90.9% 100.0% 

% within COD 83.3% 90.1% 89.4% 

% of Total 8.1% 81.3% 89.4% 

Right Upper 

Arm Present 

Count 8 44 52 

Expected Count 5.1 46.9 52.0 

% within Variable 15.4% 84.6% 100.0% 

% within COD 16.7% 9.9% 10.6% 

% of Total 1.6% 9.0% 10.6% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left forearm trauma  

 

Table 6-12 shows the observed and expected counts of trauma to the left forearm. Left 

forearm trauma prevalence between the blast injury cause of death and gunshot wound 

cause of death was quite different. 35.4% of the blast injury cases had left forearm trauma, 

compared with only 6.1% of cases in the gunshot wound death cohort. This large 

difference was found to be significant between the two, using Fisher‘s Exact test (due to an 

expected count lower than 5), p = 0.000. Cramer‘s V was 0.305, 

indicating a medium effect size.  

 

To appropriately evaluate the Chi-Square tests‘ significance, the α-level was corrected 

using the Holm-Bonferroni method and in this case the difference of left forearm trauma 

between blast injury and gunshot wound causes of death was found to be significant (α≤ 

0.00227). 

 

Table 6-12: Contingency table for left forearm trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Left Forearm 

Absent 

Count 31 416 447 

Expected Count 43.7 403.3 447.0 

% within Variable 6.9% 93.1% 100.0% 

% within COD 64.6% 93.9% 91.0% 

% of Total 6.3% 84.7% 91.0% 

Left Forearm 

Present 

Count 17 27 44 

Expected Count 4.3 39.7 44.0 

% within Variable 38.6% 61.4% 100.0% 

% within COD 35.4% 6.1% 9.0% 

% of Total 3.5% 5.5% 9.0% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Right forearm trauma  

 

Table 6-13 shows the observed and expected counts of trauma for the right forearm 

variable. Right forearm trauma was slightly more prevalent in the blast injury group than in 

the gunshot wound group but the difference between the two was not significant, using 

Fisher‘s Exact Test (for a smaller than 5 expected count) p = 0.774. 

 

Table 6-13: Contingency table for right forearm trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Right Forearm 

Absent 

Count 44 410 454 

Expected Count 44.4 409.6 454.0 

% within Variable 9.7% 90.3% 100.0% 

% within COD 91.7% 92.6% 92.5% 

% of Total 9.0% 83.5% 92.5% 

Right Forearm 

Present 

Count 4 33 37 

Expected Count 3.6 33.4 37.0 

% within Variable 10.8% 89.2% 100.0% 

% within COD 8.3% 7.4% 7.5% 

% of Total .8% 6.7% 7.5% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left hand trauma 

 

Table 6-14 shows the observed and expected counts for trauma to the left hand. Left hand 

trauma was found to be more prevalent in blast injury cases than in gunshot wound deaths, 

with a 7.2% difference between the two. This was found to be a significant difference 

between the two, using Fisher‘s Exact Test (with 1 cell having an expected count of 0.88), 

p = 0.007. Cramer‘s V value was 0.160 indicating a small effect size. 

Correcting for multiple pairwise tests using the Holm-Bonferroni method adjusted the α-

level and this variable was shown to no longer be significant when comparing blast injury 

and gunshot wound-related causes of death. 

 

Table 6-14: Contingency table for left hand trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Left Hand 

Absent 

Count 44 438 482 

Expected Count 47.1 434.9 482.0 

% within Variable 9.1% 90.9% 100.0% 

% within COD 91.7% 98.9% 98.2% 

% of Total 9.0% 89.2% 98.2% 

Left Hand 

Present 

Count 4 5 9 

Expected Count .9 8.1 9.0 

% within Variable 44.4% 55.6% 100.0% 

% within COD 8.3% 1.1% 1.8% 

% of Total .8% 1.0% 1.8% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Right hand trauma  

 

Table 6-15 represents the observed and expected counts for trauma to the right hand. Right 

hand trauma was not identified in any of the cases of blast injury and in only two of the 

gunshot wound related deaths. Fisher‘s Exact Test was employed due to 2 cells having 

expected counts lower than 5. Right hand trauma was not significant between the causes of 

death p = 1.000.  

 

Table 6-15: Contingency table for right hand trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Right Hand 

Absent 

Count 48 441 489 

Expected Count 47.8 441.2 489.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 99.5% 99.6% 

% of Total 9.8% 89.8% 99.6% 

Right Hand 

Present 

Count 0 2 2 

Expected Count .2 1.8 2.0 

% within Variable .0% 100.0% 100.0% 

% within COD .0% .5% .4% 

% of Total .0% .4% .4% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left rib trauma  

 

Table 6-16 represents the observed and expected count of trauma to the left ribs. Left rib 

trauma was found in 18 cases in the blast injury cohort and 144 cases in the gunshot wound 

death cohort. There was a small difference of 5% between the two causes of death but this 

was not found to be significant p = 0.519.  

 

Table 6-16: Contingency table for left rib trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Left Ribs 

Absent 

Count 30 299 329 

Expected Count 32.2 296.8 329.0 

% within Variable 9.1% 90.9% 100.0% 

% within COD 62.5% 67.5% 67.0% 

% of Total 6.1% 60.9% 67.0% 

Left Ribs 

Present 

Count 18 144 162 

Expected Count 15.8 146.2 162.0 

% within Variable 11.1% 88.9% 100.0% 

% within COD 37.5% 32.5% 33.0% 

% of Total 3.7% 29.3% 33.0% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Right rib trauma  

 

Table 6-17 represents the observed and expected count of right rib trauma. Right rib 

trauma was found to be not significantly different between the two cohorts 

p = 0.076 despite a rather large difference in the prevalence of this 

type of trauma (13.5%). Blast injury related deaths were affected by more right rib trauma 

than those killed by gunshot wounds.  

 

Table 6-17: Contingency table for right rib trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Right Ribs 

Absent 

Count 26 300 326 

Expected Count 31.9 294.1 326.0 

% within Variable 8.0% 92.0% 100.0% 

% within COD 54.2% 67.7% 66.4% 

% of Total 5.3% 61.1% 66.4% 

Right Ribs 

Present 

Count 22 143 165 

Expected Count 16.1 148.9 165.0 

% within Variable 13.3% 86.7% 100.0% 

% within COD 45.8% 32.3% 33.6% 

% of Total 4.5% 29.1% 33.6% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left pelvis trauma  

 

Table 6-18 presents the observed and expected counts of trauma to the left pelvis again, a 

large difference in prevalence was found between the blast injury and gunshot wound 

causes of death, with a difference of 6.3%. However, using Pearson‘s Chi-Square no 

significant difference was found for this type of trauma and cause of death 

p = 0.335.  

 

Table 6-18: Contingency table for left pelvis trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Left Pelvis 

Absent 

Count 36 360 396 

Expected Count 38.7 357.3 396.0 

% within 

Variable 

9.1% 90.9% 100.0% 

% within COD 75.0% 81.3% 80.7% 

% of Total 7.3% 73.3% 80.7% 

Left Pelvis 

Present 

Count 12 83 95 

Expected Count 9.3 85.7 95.0 

% within 

Variable 

12.6% 87.4% 100.0% 

% within COD 25.0% 18.7% 19.3% 

% of Total 2.4% 16.9% 19.3% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within 
Variable 

9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Right pelvis trauma 

 

Table 6-19 represents the observed and expected counts of trauma to the right pelvis. 

Conversely to the left pelvis, the presence of trauma to the right pelvis was found to be 

significantly different depending on the cause of death p = .019. 

This is further seen when comparing the prevalence of right pelvic trauma in blast injury 

cases (31.3%) to that seen in gunshot wound cases (16.9%). This is a difference of 14.4%. 

The effect size is however small, as seen by the Cramer‘s V of 0.110. Applying the Holm-

Bonferroni correction for multiple pairwise tests adjusted the cut-off significance value and 

it was found that at this new α-level, the presence of trauma to the right pelvis was no 

longer significant. 

 

Table 6-19: Contingency table for right pelvis trauma comparing blast injury cases and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable RPelvis Absent Count 33 368 401 

Expected Count 39.2 361.8 401.0 

% within Variable 8.2% 91.8% 100.0% 

% within COD 68.8% 83.1% 81.7% 

% of Total 6.7% 74.9% 81.7% 

RPelvis Present Count 15 75 90 

Expected Count 8.8 81.2 90.0 

% within Variable 16.7% 83.3% 100.0% 

% within COD 31.3% 16.9% 18.3% 

% of Total 3.1% 15.3% 18.3% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left femur trauma 

 

Table 6-20 represents the observed and expected counts of trauma to the left femur. Left 

femur trauma was found in 19 cases of blast injury deaths (39.6%) and in only 15.1% (N= 

67) of the gunshot wound deaths, an evidently large difference of 24.5%. This represents a 

significant finding p = 0.000. Using the Holm-Bonferroni 

correction for multiple pairwise tests, left femur trauma was still significant with p ≤ 

0.00238. The effect is considered small though, with the Cramer‘s V value being 0.191.  

 

Table 6-20: Contingency table for left femur trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Left Femur 

Absent 

Count 29 376 405 

Expected Count 39.6 365.4 405.0 

% within Variable 7.2% 92.8% 100.0% 

% within COD 60.4% 84.9% 82.5% 

% of Total 5.9% 76.6% 82.5% 

Left Femur 

Present 

Count 19 67 86 

Expected Count 8.4 77.6 86.0 

% within Variable 22.1% 77.9% 100.0% 

% within COD 39.6% 15.1% 17.5% 

% of Total 3.9% 13.6% 17.5% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Right femur trauma 

 

Table 6-21 represents the observed and expected counts of trauma to the right femur. Right 

femoral trauma was noted on 9 cases in the blast injury group and 71 in the gunshot trauma 

group. This represents a small difference in the prevalence percentage between the two; 

with blast injury have 2.2% more cases of right femoral trauma. This was not a significant 

difference between the two causes of death p = 0.680.  

 

Table 6-21: Contingency table for right femur trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable RFemur Absent Count 39 372 411 

Expected Count 40.2 370.8 411.0 

% within Variable 9.5% 90.5% 100.0% 

% within COD 81.3% 84.0% 83.7% 

% of Total 7.9% 75.8% 83.7% 

RFemur Present Count 9 71 80 

Expected Count 7.8 72.2 80.0 

% within Variable 11.3% 88.8% 100.0% 

% within COD 18.8% 16.0% 16.3% 

% of Total 1.8% 14.5% 16.3% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left tibia and fibula trauma 

 

Table 6-22 represents the observed and expected number of trauma to the left tibia and 

fibula. The trauma to the left tibia and fibula was markedly higher in the blast injury group, 

which had a prevalence of 20.8% (N= 10). The gunshot wound cases were found to have 

10.8% of cases with left tibia and fibula trauma (N=48). Despite this difference of 10% in 

prevalence between the two, it was not significant, although very close to being 

p = 0.057. 

 

Table 6-22: Contingency table for left tibia and fibula trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable LTib/Fib 

Absent 

Count 38 395 433 

Expected Count 42.3 390.7 433.0 

% within Variable 8.8% 91.2% 100.0% 

% within COD 79.2% 89.2% 88.2% 

% of Total 7.7% 80.4% 88.2% 

LTib/Fib 

Present 

Count 10 48 58 

Expected Count 5.7 52.3 58.0 

% within Variable 17.2% 82.8% 100.0% 

% within COD 20.8% 10.8% 11.8% 

% of Total 2.0% 9.8% 11.8% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Right tibia and fibula trauma 

 

Table 6-23 represents the observed and expected number of trauma to the right tibia and 

fibula. The right tibia and fibula did not exhibit a large difference in prevalence. Blast 

injury cases had this type of trauma in 18.8% (N= 9) of cases and gunshot wound in 14.0% 

(N= 62) of cases. This does not represent a significant difference between the two causes 

of death p = 0.387. 

 

Table 6-23: Contingency table for right tibia and fibula trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable RTib/Fib 

Absent 

Count 39 381 420 

Expected Count 41.1 378.9 420.0 

% within Variable 9.3% 90.7% 100.0% 

% within COD 81.3% 86.0% 85.5% 

% of Total 7.9% 77.6% 85.5% 

RTib/Fib 

Present 

Count 9 62 71 

Expected Count 6.9 64.1 71.0 

% within Variable 12.7% 87.3% 100.0% 

% within COD 18.8% 14.0% 14.5% 

% of Total 1.8% 12.6% 14.5% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Left foot trauma 

 

Table 6-24 represents the observed and expected number of trauma to the left foot. Left 

foot trauma was rare in both the cohorts studied, with one case in the blast injury group and 

nine in the gunshot wound group, with a 2.1% and 2% prevalence respectively. The 

comparison was not significant between the causes of death p = 1.000 

(using Fisher‘s Exact Test due to an expected count below 5).  

 

Table 6-24: Contingency table for left foot trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable LFoot Absent Count 47 434 481 

Expected Count 47.0 434.0 481.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 97.9% 98.0% 98.0% 

% of Total 9.6% 88.4% 98.0% 

LFoot Present Count 1 9 10 

Expected Count 1.0 9.0 10.0 

% within Variable 10.0% 90.0% 100.0% 

% within COD 2.1% 2.0% 2.0% 

% of Total .2% 1.8% 2.0% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Right foot trauma  

 

Table 6-25 represents the observed and expected counts of trauma to the right foot. Right 

foot trauma was different from left foot trauma. The right foot was found in no cases in the 

blast injury cohort and in 78 cases in the gunshot wound cohort. Due to a count of 0 in the 

blast injury cohort, the Yates‘ Continuity Correction was used as the Chi-Square test, 

which found a significant difference between the two causes of death for right foot trauma 

p = 0.003. The effect size is small, with Cramer‘s V being 0.143. 

 

Holm-Bonferroni correction for multiple pairwise tests was employed and at this point, it 

was determined that right foot trauma was not significantly different between the causes of 

death as the cut-off point was p≤ 0.00238.  

 

Table 6-25: Contingency table for right foot trauma comparing blast injury and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable RFoot Absent Count 48 365 413 

Expected Count 40.4 372.6 413.0 

% within Variable 11.6% 88.4% 100.0% 

% within COD 100.0% 82.4% 84.1% 

% of Total 9.8% 74.3% 84.1% 

RFoot Present Count 0 78 78 

Expected Count 7.6 70.4 78.0 

% within Variable .0% 100.0% 100.0% 

% within COD .0% 17.6% 15.9% 

% of Total .0% 15.9% 15.9% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Trauma to the left side of the body 

 

Table 6-26 represents the observed and expected counts of trauma to the left side of the 

body. Cases with trauma located solely to the left side of the body were compared between 

the blast injury and gunshot wound causes of death. In the former, 6 cases had trauma only 

to the left side and the latter had 78 cases. This represents a prevalence of 12.5% and 

17.6% respectively. The difference is 5.1%, with gunshot wound cases having a higher 

prevalence. This difference was not found to be significant p = 

0.427.   

 

Table 6-26: Contingency table for trauma to the left side of the body comparing blast injury and gunshot wound 

cases. 

 

COD 

Total BI GSW 

Variable Left Absent Count 42 365 407 

Expected Count 39.8 367.2 407.0 

% within Variable 10.3% 89.7% 100.0% 

% within COD 87.5% 82.4% 82.9% 

% of Total 8.6% 74.3% 82.9% 

Left Present Count 6 78 84 

Expected Count 8.2 75.8 84.0 

% within Variable 7.1% 92.9% 100.0% 

% within COD 12.5% 17.6% 17.1% 

% of Total 1.2% 15.9% 17.1% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 

 

 

 

  



173 

 

Trauma to the right side of the body 

 

Table 6-27 represents the observed and expected counts of trauma to the right side of the 

body. The right side of the body showed trauma in four cases in the blast injury group and 

63 cases in the gunshot wound group. These numbers represent a prevalence of 8.3% and 

14.2%, with a difference of 5.9%. Again, the right side variable was not significant 

between the two causes of death p = 0.284 

 

Table 6-27: Contingency table for trauma to the right side of the body comparing blast injury and gunshot wound 

cases. 

 

COD 

Total BI GSW 

Variable Right Absent Count 44 380 424 

Expected Count 41.5 382.5 424.0 

% within Variable 10.4% 89.6% 100.0% 

% within COD 91.7% 85.8% 86.4% 

% of Total 9.0% 77.4% 86.4% 

Right Present Count 4 63 67 

Expected Count 6.5 60.5 67.0 

% within Variable 6.0% 94.0% 100.0% 

% within COD 8.3% 14.2% 13.6% 

% of Total .8% 12.8% 13.6% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Bilateral trauma to the body 

 

Table 6-28 represents the observed and expected counts of trauma bilaterally. Bilateral 

trauma to the body indicated injury that could be found on both sides of the body at the 

same time. In the blast injury group, 37 cases were affected on both sides and 227 in the 

gunshot wound group. This was a prevalence of 77.1% for the blast injury group and 

51.2% for the gunshot wound group, a difference of 25.9% between the two. This 

represents a significant differences for the causes of death p = 

0.001. Following Holm-Bonferroni correction, the difference between the causes of death 

remained significant. The size of the effect is small, indicated by the value of Cramer‘s V 

(0.154).  

 

Table 6-28: Contingency table for bilateral trauma variable comparing blast injury cases and gunshot wound cases. 

 

COD 

Total BI GSW 

Variable Bilateral 

Absent 

Count 11 216 227 

Expected Count 22.2 204.8 227.0 

% within Variable 4.8% 95.2% 100.0% 

% within COD 22.9% 48.8% 46.2% 

% of Total 2.2% 44.0% 46.2% 

Bilateral 

Present 

Count 37 227 264 

Expected Count 25.8 238.2 264.0 

% within Variable 14.0% 86.0% 100.0% 

% within COD 77.1% 51.2% 53.8% 

% of Total 7.5% 46.2% 53.8% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 
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Unsided trauma to the body 

 

Table 6-29 represents the observed and expected counts of trauma to the unsided regions of 

the body (such as vertebrae). Cases with trauma in unsided areas were found in both 

groups. In the blast injury group, there was one case with trauma to an unsided area only 

(which is either the spine or the head area solely). In the gunshot wound cases, there were 

78 cases with unsided trauma. There was much more trauma in the gunshot wound cases, 

with 17.6% of the sample having this type of trauma versus 2.1% in the blast injury group 

(a difference of 15.5%). This difference was significant p = 0.006. 

Using the Holm-Bonferroni correction for multiple pairwise tests, this variable remained 

significantly different between blast injury and gunshot wound cases. The effect size was 

small, Cramer‘s V value = 0.125.  

 

Table 6-29: Contingency table for unsided trauma to the body comparing blast injury gunshot wound cases. 

 

COD 

Total BI GSW 

Variable NoSide Absent Count 47 365 412 

Expected Count 40.3 371.7 412.0 

% within Variable 11.4% 88.6% 100.0% 

% within COD 97.9% 82.4% 83.9% 

% of Total 9.6% 74.3% 83.9% 

NoSide 

Present 

Count 1 78 79 

Expected Count 7.7 71.3 79.0 

% within Variable 1.3% 98.7% 100.0% 

% within COD 2.1% 17.6% 16.1% 

% of Total .2% 15.9% 16.1% 

Total Count 48 443 491 

Expected Count 48.0 443.0 491.0 

% within Variable 9.8% 90.2% 100.0% 

% within COD 100.0% 100.0% 100.0% 

% of Total 9.8% 90.2% 100.0% 

 

 

 

Body regions significantly different between blast injury and gunshot wound 

cases 

 

Using the χ2 test of significance has found that for the body region variables, once 

corrected using the Holm-Bonferroni correction, left forearm and left femur trauma were 

the only two which were significantly different between the blast injury cause of death and 
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the gunshot wound cause of death, seen in Figure 6-4: Body regions of significant different 

between blast injury and gunshot wound cases in the Bosnia sample. In the side variables, 

both the bilateral and unsided trauma variables were significant, after Holm-Bonferroni 

correction. In the case of left forearm, left femur and bilateral trauma, the prevalence was 

significantly higher in the blast injury cases. In the gunshot wound cases, the presence of 

unsided trauma was significantly different to that in blast injury. 

 

 

 

Figure 6-4: Body regions of significant different between blast injury and gunshot wound cases in the Bosnia sample 

 

 

6.3.  Cluster analysis 

 

This section presents the results of the cluster analysis performed on the samples from 

Bosnia. This was performed using SPSS 19 and was repeated to examine various 

associations and patterns within the data. The clustering was performed within the causes 

of death individually, between the blast injury and gunshot wound causes of death and 

finally between the variables. The results of these analyses are presented below.  
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6.3.1. Clustering within causes of death 

 

Blast injury 

 

Clustering was performed on all cases with the cause of death listed as being blast injury in 

the pathology reports. A final 48 cases were selected for analysis. The analysis was 

performed using the binary squared Euclidean distance measure. The agglomeration 

schedule determined that the largest difference between coefficients was seen between the 

1-cluster and 2-cluster solutions, a difference of 0.961. The subsequent clustering in the 

agglomeration schedule revealed no larger difference between steps, indicating that the 

ideal solution is a 2 cluster solution.  

 

The dendrogram below illustrates visually the cluster analysis solution. Visually, one very 

large cluster and a small cluster of two cases can be seen for a two cluster solution. The 

natural breakpoint is seen in the very large distance between the left start point at case 

GL01/375B and the next consecutive vertical line, which is the largest distance between 

consecutive vertical lines. This separation is shown by the dashed line on the dendrogram 

in Figure 6-5. Using the cluster membership output, it is confirmed that for a two cluster 

solution, cases GL01/375B and GL01/541B belong to cluster number two, with all other 

cases being assigned to cluster 1.  
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Figure 6-5: Cluster analysis of blast injury cases with 2 cluster solution demonstrated at the dashed line. 

Cluster #1 

Cluster #2 
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Gunshot wound 

 

The gunshot wound group is composed of 443 cases whose cause of death is listed as being 

gunshot wound by the pathologist.  The group was analysed next using binary squared 

Euclidean distance and complete linkage method. Examining the agglomeration schedule, 

the largest difference between two coefficients was calculated as being between the three 

and four cluster solutions (Appendix A). The coefficient for a three cluster solution is 

10.200 and the four cluster solution is 9.000, a difference of 1.200. Therefore, the 4 cluster 

solution is chosen, based on the distance between the 3 and 4 cluster solutions being the 

largest, indicating a mathematical difference between the clusters .  

 

Visually, the distinction between the four groups is difficult to ascertain, as seen in Figure 

6-6. Throughout the agglomeration schedule, the differences between the steps in the 

cluster process are very small. Relying solely on a visual examination of the patterns in the 

dendrogram, 4 groups can be identified, however this is challenging due to the size of the 

dendrogram and the amount of cases.  

 

The cluster membership output produced by SPSS identifies the cases which belong to 

each cluster, simplifying the task. Table 6-30 indicates cluster membership, for clusters 2, 

3, and 4. Cluster 1 was composed of the remaining cases.  

 

 

Table 6-30: Cluster membership in cluster analysis of gunshot wound cases. All other cases were clustered in the first 
cluster. All cases had gunshot wounds as the cause of death. 

Case # Cluster 

RV02/126B       2 

RV02/356B 2 

RV02/532B   2 

RV02/204B       3 

RV02/237B 3 

RV02/314B  3 

RV02/573B 3 

LZ2/17B 3 

GL01/179B 4 

 

Cases in cluster 2 were all from the Ravnice Grave. Cluster three was cases from Ravnice 

and Lazete 02 and cluster 4 was a sole case from Glogova 01. All cases had gunshot 

wounds as cause of death. 
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Cluster #2 

Cluster  #3 
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Figure 6-6: Cluster analysis for gunshot wound cause of death group 

 

 

6.3.2. Clustering cases of blast injury and gunshot wound deaths 

 

To attempt to differentiate between the blast injury and the gunshot wound causes of death, 

cluster analysis was employed as a potential tool to do this. This section will present the 

results and the discussion chapter will address how this method can be used, its accuracy 

and potential in the analysis of blast trauma. All cluster analyses were performed using the 

binary squared Euclidean distance measure and the average linkage between groups 

method, as described in the Methods chapter.  

 

The syntax used was as described in the methods chapter (Section 5.5.2). Initially, the 

cluster analysis was performed 5 times with random sampling and the output was produced 

for a larger number of solutions (from a 2 cluster solution to a 10 cluster solution, shown in 

Table 6-31) to identify the appropriate solution for this sample.  

 

Using the agglomeration schedules to determine the appropriate number of clusters, the 

following was the resulting pattern. 

 

 

Table 6-31: Optimal number of clusters based on random sampling of blast injury and gunshot wound cases over five 

trials. Coefficients based on agglomeration schedule. Numbers in parenthesis in coefficient column represent number 

of clusters corresponding to that solution. 

Analysis # Coefficients Difference # of clusters 

1 10.658(1), 9.431(2) 1.227 2 

2 9.816(3), 9.000(4) 0.816 4 

3 10.474(1), 9.586(2) 1.161 2 

4 12.362(1), 9.244(2) 3.118 2 

5 10.733(1), 9.128(2) 1.605 2 
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As seen in these consecutively run cluster analyses, 2 clusters appears to be the optimal 

solution. Subsequently, the analysis was performed another 6 times to identify further 2 

cluster solutions and determined if predominantly this was the solution which was present 

most often.  

 

 

Table 6-32: Optimal number of clusters based on random sampling of blast injury and gunshot wound cases over six 

trials. Coefficients based on agglomeration schedule. Numbers in parenthesis in coefficient column represent number 

of clusters corresponding to that solution. 

Analysis # Coefficients Difference # of clusters 

6 9.139(4), 8.116(5) 1.023 5 

7 9.696(3), 8.193(4) 1.503 4 

8 11.000(1), 9.845(2) 1.155 2 

9 9.685(1), 8.490(2) 1.195 2 

10 9.160(3), 7.917(4) 1.243 4 

11 10.810(1), 9.000(2) 1.810 2 

 

 

In the second series of cluster analyses, half of the solutions indicated 2 clusters and the 

other three, either 3, 4 or 5 clusters, shown in Table 6-32. 

 

To be able to determine if the cluster analyses can differentiate between blast injury and 

gunshot wound deaths in a manner which can permit identification of trauma seen in an 

assemblage, the clusters were examined to determine what cases were present in the 2 

cluster solutions.  

 

 

Analysis #1 

 

A total of 97 cases formed the first subsample, with all 48 cases of blast injury and 49 

cases of gunshot wound trauma. The majority of cases were assigned to cluster one. There 

were two cases that were assigned to cluster #2, GL01/375B and GL01/541B. Both of 

these cases list cause of death as blast injury. No other cases of blast injury were found in a 

separate cluster to the gunshot wound cases. 
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Analysis #2 

 

A total of 108 cases were subsampled for the analysis. The blast injury cases (N= 48) and 

the gunshot wound cases (N= 60) were analysed. The agglomeration schedule indicates a 

four cluster solution for this subsample.  

Cluster 2: GL01/375B 

Cluster 3:GL01/541B, RV02/314B, RV02/573B 

Cluster 4: GL01/470B 

 

The rest of the cases were assigned to cluster #1. Cluster 2 is a case with blast injury as the 

cause of death, as is cluster 4. Cluster three is composed of one case of blast injury and two 

of gunshot wound causes of death.  

 

 

Analysis #3 

 

This analysis was a subsample of 99 cases, with 48 of these being blast injury causes of 

death and 51 with gunshot wounds as the cause of death. As in the previous two analyses, 

the majority of the sample was clustered within the first cluster. The cases found in cluster 

two were GL01/375B and GL01/541B. Both of these have blast injury as cause of death 

and have also been previously singled out from the rest of the sample, as in Analysis #1. 

 

 

Analysis #4 

 

This analysis was comprised of 95 cases; of these 47 were the cases with gunshot wounds 

as the cause of death with the remainder being blast injury causes of death. The 

agglomeration schedule indicates a two cluster solution, with cluster membership assigning 

all cases but one to the first cluster. The second cluster is made of RV02/356B, a case with 

gunshot wounds listed as the cause of death. There was no differentiation of the blast 

injury cases from the gunshot wound cases.  
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Analysis #5 

 

88 cases were analysed at this stage, 48 of these were classified as having blast injury as 

cause of death, with the remainder being gunshot wound cases. The agglomeration 

schedule indicates a two cluster solution, with cluster membership assigning all cases but 

two to the first cluster. The second cluster was composed of GL01/375B and GL01/541B, 

as in the first and third analyses. Both of these cases were listed as having blast injury as 

the sole cause of death. No other cases of blast injury were differentiated from the gunshot 

wound cause of death. 

 

 

Analysis #6 

 

According to the agglomeration schedule for this sample of 90 cases (42 gunshot wound 

cases, 48 blast injury), a five cluster solution is optimal. The first cluster is composed of 

the majority of cases and can be seen in the dendrogram. The following cases belong to the 

next four clusters: 
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Table 6-33: Analysis #6 showing the cases and causes of death for cases not belonging to cluster #1. 

Case # Cluster Cause of death 

RV02/532B 2 GSW 

LZ2-50 2 GSW 

RV02/566BP 2 GSW 

GL01/470B 3 BI 

GL01/484B 4 BI 

GL01/607B 4 BI 

GL01/619B 4 BI 

ZJ06/616B 4 Unascertained 

GL01/413B 4 BI 

GL01/507B 4 BI 

GL01/541B 5 BI 

 

 

Analysis #7 

 

This cluster analysis of the subsample included 98 cases, 48 of blast injury and 50 of 

gunshot wound causes of death. The agglomeration schedule indicates an optimal solution 

of four clusters, with the difference in coefficients being 1.503.  

 

 

Table 6-34: Analysis #7 showing the cases and causes of death not belonging to cluster #1. 

Case # Cluster Cause of death 

GL01/470B 2 BI 

GL01/507B 3 BI 

RV02/126B 3 GSW 

GL01/541B 3 BI 

GL01/484B 4 BI 

GL01/607B 4 BI 
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Analysis #8 

 

For this analysis, 105 cases were randomly selected by SPSS using the syntax. There were 

57 cases of gunshot wound deaths and 48 blast injury related deaths. The agglomeration 

schedule indicates an optimal solution of two clusters based on the difference in the 

coefficients between a one cluster solution and a two cluster solution. The difference is 

1.155. The sole case which has been classified separately from the others is GL01/541B, a 

case of blast injury. All others were classified with no distinction by agglomeration.  

 

 

Analysis #9 

 

The random sampling produced a subsample of 105 cases, with 57 cases of gunshot wound 

deaths. The agglomeration schedule indicated a two cluster solution, with the difference 

between the coefficients 1.195. The following cases were clustered in the second cluster. 

 

 

Table 6-35: Analysis #9 showing the cases and causes of death not belonging to cluster #1. 

Case # Cluster Cause of death 

GL01/413B 2 BI 

GL01/541B 2 BI 

GL01/484B 2 BI 

GL01/507B 2 BI 

GL01/607B 2 BI 

GL01/619B 2 BI 

ZJ06/616B 2 BI 

LZ2-24 2 GSW 

LZ2-45 2 GSW 

 

 

Analysis #10 

 

The cluster analysis was performed with a subsample of 99 cases (N= 51 gunshot wound 

cases). The agglomeration schedule produced an ideal clustering solution of 4 clusters. The 

difference between the coefficients was 1.243.  
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Table 6-36: Analysis #10 showing the cases and causes of death not belonging to cluster #1. 

Case # Cluster Cause of Death 

GL01/619B 2 BI 

ZJ06/616B 2 Unascertained 

GL01/413B 2 BI 

GL01/507B 2 BI 

GL01/484B 2 BI 

GL01/607B 2 BI 

GL01/331B 2 BI 

GL01/470B 3 BI 

GL01/541B 4 BI 

 

 

Analysis #11 

 

The analysis was conducted with a sample of 89 cases, 41 with a cause of death listed as 

gunshot wound. The agglomeration schedule indicates a solution of two clusters, with the 

difference in the coefficients being 1.810. Only two cases were isolated into the second 

cluster, GL01/375B and GL01/541B. The pathology reports for both these cases list blast 

injury as the cause of death.  

 

 

6.3.3. Clustering body region variables- blast injury and gunshot wound deaths 

 

To continue the analysis into the differentiation between blast injury and gunshot wound 

causes of death, investigation into the patterns with the variables was necessary. The first 

analysis was performed on the complete sample including all blast injury and gunshot 

wound cases, along with the unascertained causes of death and those having both blast 

injury and gunshot wounds combined as the cause of death. Subsequently, a second set of 

analyses were performed using the same subsampling routine as in 6.3.2. In all these 

analyses however, the variables as opposed to the cases were analysed.  

 

 

Analysis #1 

 

This analysis was performed on the entire sample set of blast injury and gunshot wound 

cases (N= 584). The binary squared Euclidean distance measure was employed and the 
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average linkage between groups was the method. The agglomeration schedule produced in 

the output indicates a two cluster solution for the body region variables in this analysis. 

The coefficient difference between the one cluster solution (236.364) and the two cluster 

solution (211.053) is 25.311. The next largest difference in the agglomeration schedule is 

between a 22 and 23 cluster stage, with a difference between the coefficients of 26.167. By 

employing the coefficients to determine the ideal number of clusters, this analysis yields no 

patterns in the body region variables when examining the entire sample of 584 cases.  

 

 

Analysis #2 

 

This analysis was performed using the subsampling syntax as in section 6.3.2. The distance 

measure employed was binary squared Euclidean and the method was average distance 

between groups.  

 

A total of 93 cases were clustered (N= 45 gunshot wound cases, N = 48 blast injury cases). 

The agglomeration schedule produced indicates a two cluster solution, with the difference 

between the single cluster and two cluster solution coefficients being 5.501.  

 

Cluster #1 included the following body region variables: neurocranium, maxillofacial, 

mandible, left shoulder girdle, right shoulder girdle, left upper arm, right upper arm, left 

forearm, right forearm, left hand, right hand, left pelvis, right pelvis, left femur, right 

femur, left tibia and fibula, right tibia and fibula, left foot, right foot, right side, left side, no 

side.  

 

Cluster #2 included the following body region variables: vertebrae, left ribs, right ribs, and 

bilateral siding.  

 

 

Analysis #3 

 

The third analysis computed 90 cases to be clustered (N= 42 gunshot wound cases, N = 48 

blast injury cases). The agglomeration schedule produced indicates a two cluster solution, 
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with the difference between the single cluster and two cluster solution coefficients being 

3.814.  

 

Cluster #1 included the following body region variables: neurocranium, maxillofacial, 

mandible, left shoulder girdle, right shoulder girdle, left upper arm, right upper arm, left 

forearm, right forearm, left hand, right hand, left ribs, right ribs, left pelvis, right pelvis, 

left femur, right femur, left tibia and fibula, right tibia and fibula, left foot, right foot, right 

side, left side, no side. 

 

Cluster #2 included the following body region variables: bilateral siding.  

 

Analysis #4 

 

The fourth analysis computed 99 cases to be clustered (N= 51 gunshot wound cases, N = 

48 blast injury cases). The agglomeration schedule produced indicates a two cluster 

solution, with the difference between the single cluster and two cluster solution 

coefficients being 9.308.  

 

Cluster #1 included the following body region variables: neurocranium, maxillofacial, 

mandible, vertebrae, left shoulder girdle, right shoulder girdle, left upper arm, right upper 

arm, left forearm, right forearm, left hand, right hand, left ribs, right ribs, left pelvis, right 

pelvis, left femur, right femur, left tibia and fibula, right tibia and fibula, left foot, right 

foot, right side, left side, no side. 

 

Cluster #2 included the following body region variables: bilateral siding.  

 

 

Analysis #5 

 

The fifth analysis computed 86 cases to be clustered (N= 38 gunshot wound cases, N = 48 

blast injury cases). The agglomeration schedule produced indicates a two cluster solution, 

with the difference between the single cluster and two cluster solution coefficients being 

11.248.  
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Cluster #1 included the following body region variables: neurocranium, maxillofacial, 

mandible, vertebrae, left shoulder girdle, right shoulder girdle, left upper arm, right upper 

arm, left forearm, right forearm, left hand, right hand, left ribs, right ribs, left pelvis, right 

pelvis, left femur, right femur, left tibia and fibula, right tibia and fibula, left foot, right 

foot, right side, left side, no side. 

 

Cluster #2 included the following body region variables: bilateral siding. 

 

 

Analysis #6 

 

The sixth analysis computed 98 cases to be clustered (N= 50 gunshot wound cases, N = 48 

blast injury cases). The agglomeration schedule produced indicates a three cluster solution, 

with the difference between the two cluster and three cluster solution coefficients being 

7.900.  

 

Cluster #1: neurocranium, maxillofacial. 

 

Cluster #2: mandible, left shoulder girdle, right shoulder girdle, left forearm, right forearm, 

left hand, right hand, vertebrae, left pelvis, right pelvis, left femur, right femur, left tibia 

and fibula, right tibia and fibula, left foot, right foot, left, right, no side. 

 

Cluster #3: left ribs, right ribs, bilateral siding. 

 

 

Analysis #7 

 

The seventh analysis computed 88 cases to be clustered (N= 40 gunshot wound cases, N = 

48 blast injury cases). The agglomeration schedule produced indicates a three cluster 

solution, with the difference between the two cluster and three cluster solution coefficients 

being 7.218.  

 

Cluster #1: Neurocranium, maxillofacial, mandible, left shoulder girdle, right shoulder 

girdle, left forearm, right forearm, left hand, right hand, left pelvis, right pelvis, left femur, 
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right femur, left tibia and fibula, right tibia and fibula, left foot, right foot, left, right, no 

side.  

 

Cluster #2: Vertebrae, left ribs, right ribs, bilateral siding. 

 

 

Analysis #8 

 

The eighth analysis computed 96 cases to be clustered (N= 48 gunshot wound cases, N = 

48 blast injury cases). The agglomeration schedule produced indicates a five cluster 

solution, with the difference between the four cluster and five cluster solution coefficients 

being 7.158.  

 

Cluster #1: Neurocranium, maxillofacial. 

 

Cluster #2: Mandible, left shoulder girdle, right shoulder girdle, left upper arm, right upper 

arm, left forearm, right forearm, left hand, right hand, left pelvis, right pelvis, right femur, 

left tibia and fibula, right tibia and fibula, left foot, right foot, left side, right side, no side.  

 

Cluster #3:Left ribs, right ribs. 

 

Cluster #4: left femur. 

 

 

Analysis #9 

 

Contrary to the previous 8 analyses, the siding variables were not included in this part of 

the analysis. This will permit to ascertain if there are any patterns strictly concerning the 

body region variables. This was also performed using the subsampling syntax (as in section 

6.3.2). This analysis used a subsample of 92 cases (N= 44 gunshot wound cases). The 

agglomeration schedule indicates a two cluster solution, with a coefficient difference of 

7.845.  
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In this solution, all variables were clustered in the second cluster except for two variables, 

the neurocranium and maxillofacial variables which were clustered into the first cluster.  

 

 

Analysis #10 

 

The tenth analysis computed 99 cases to be clustered (N= 51 gunshot wound cases, N = 48 

blast injury cases). The agglomeration schedule produced indicates a three cluster solution, 

with the difference between the two cluster and three cluster solution coefficients being 

6.229. The body region variables are detailed for each cluster, below. 

 

Cluster #1: Neurocranium, maxillofacial, mandible. 

 

Cluster #2: Vertebrae, left ribs, right ribs. 

 

Cluster #3: Left shoulder girdle, right shoulder girdle, left upper arm, right upper arm, left 

forearm, right forearm, left hand, right hand, left pelvis, right pelvis, right femur, left tibia 

and fibula, right tibia and fibula, left foot, right foot. 

 

 

Analysis #11 

 

The eleventh analysis computed 90 cases to be clustered (N= 42 gunshot wound cases, N = 

48 blast injury cases). The agglomeration schedule produced indicates a three cluster 

solution, with the difference between the two cluster and three cluster solution coefficients 

being 4.73. The body region variables are detailed for each cluster, below. 

 

Cluster #1: Neurocranium, maxillofacial, mandible. 

 

Cluster #2: Vertebrae, left ribs, right ribs.  

Cluster #3: Left shoulder girdle, right shoulder girdle, left upper arm, right upper arm, left 

forearm, right forearm, left hand, right hand, left pelvis, right pelvis, right femur, left tibia 

and fibula, right tibia and fibula, left foot, right foot. 
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6.4. Multiple correspondence analysis 

 

This analysis aims to identify associations in the variables between the blast injury and 

gunshot wound deaths. It is used to highlight the associations which can aid the recognition 

and differentiation between the two. The variables which this analysis identifies will serve 

as variables in a binary logistic regression whose aim is the prediction of cause of death 

membership, to differentiate blast injury from other causes of death in large-scale 

assemblages.  

 

As outlined in the methods chapter (see section 5.5.3), the multiple correspondence 

analyses was performed using a syntax file which automates the process of randomly 

sampling from the gunshot wound cases to create a sample of even size between the blast 

injury cases and the gunshot wound cases. It is identical for each analysis. The analysis 

was undertaken 6 times, until the sampling and analysis yielded reproducible results in 

which the researcher could be confident.  

 

The following reports the results of the multiple correspondence analyses. 

 

 

6.4.1. Analysis #1 

 

The first analysis was undertaken with 90 cases randomly subsampled (N= 42 gunshot 

wound cases). Changes were made to the syntax to produce plots which were not in a 

matrix format instead producing separate discrimination measure plots for dimensions 1 

and 2 and then dimension 1 and 3 to enable clearer interpretation of the graphs. 

 

Model summary 

 

SPSS produced the following output summarising the analysis, Table 6-37: Multiple 

correspondence analysis model summary for Analysis #1.and Figure 6-7 and Figure 6-8. 
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Table 6-37: Multiple correspondence analysis model summary for Analysis #1. 

Model Summary 

Dimension 
Cronbach's 
Alpha 

Variance Accounted For 

Total 
(Eigenvalue) Inertia 

% of 
Variance 

1 .686 2.886 .137 13.742 

2 .600 2.333 .111 11.111 

3 .533 2.030 .097 9.668 

Total   7.249 .345   

Mean .615a 2.416 .115 11.507 

a. Mean Cronbach's Alpha is based on the mean Eigenvalue. 

 

 

The total variance accounted for across three dimensions is 34.521%.  
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Object scores labelled by cause of death 

 

 

Figure 6-7: Object points labelled by cause of death, for dimensions 1 and 2. Dimension 1 shows a differentiation 
between the gunshot wound cases and the blast injury cases, with cases separated between the positive and 
negative sides of the axis. 
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Figure 6-8: Object points labelled by cause of death for dimensions 1 and 3. Dimension 1 shows a differentiation 
along the axis, with separation of the blast injury on the positive side and gunshot wound cases on the negative side. 

 

 

In both figure Figure 6-7: Object points labelled by cause of death, for dimensions 1 and 2 

and Figure 6-8: Object points labelled by cause of death for dimensions 1 and 3, blast 

injury cases and gunshot wound cases can be seen on either side of the origin. Dimensions 

1 and 2 appear to differentiate between the two causes of death better than dimensions 1 

and 3. The majority of cases of gunshot wound deaths are clustered on the left side of the 

graph whilst the blast injury cases are on the right side. However, this is not a distinct 

separation of the two as cases from either cause of death can be found clustered in with the 

other on both sides of the origin.  
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Discrimination measures 

 

 

Figure 6-9: Discriminations measures for body region variables on dimensions 1 and 2. The discriminating variables 
on Dimension 1 which discriminate between gunshot and blast injury cases are the neurocranium, right ribs and right 
pelvis (circled).  

 

The graphical representation of the body region variables in the discrimination measures 

plots , Figure 6-9 and Figure 6-10, demonstrate visually the variables which have the most 

discrimination power between the categories. In the previous figure, the body regions 

which discriminate and contribute most variance to dimension 1 are the neurocranium, 

right ribs, right femur, left pelvis and right pelvis. These have been circled for 

identification.  
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Figure 6-10: Discrimination measures for body region variables on dimensions 1 and 3. The discriminating variables 

on Dimension 1 which discriminate between gunshot and blast injury cases are the right ribs and the left and right 

pelvis (circled). 

 

The figure for dimensions 1 and 3 showed similar variables as to those seen in the 

discrimination plot for dimensions 1 and 2. Dimension 1 was found to have the 

discriminating variables of right ribs, right pelvis, and left pelvis. Table 6-38: 

Discrimination measures for analysis #1. Variables which discriminate most between 

categories are highlighted. The variables which discriminate between the blast injury and 

gunshot cases are identified in bold. identifies the discrimination measures numerically 

with their contribution to the variance. 
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Table 6-38: Discrimination measures for analysis #1. Variables which discriminate most between categories are 

highlighted. The variables which discriminate between the blast injury and gunshot cases are identified in bold. 

Discrimination Measures 

  
Dimension 

Mean 1 2 3 

Cause of death .210 .010 .004 .075 

Neurocranium .318 .041 .330 .230 

Maxillofacial .175 .196 .247 .206 

Mandible .136 .314 .060 .170 

Vertebrae .056 .290 .046 .131 

Left Shoulder Girdle .005 .188 .004 .066 

Right Shoulder Girdle .024 .268 .021 .104 

Left Upper Arm .119 .117 .138 .125 

Right Upper Arm .032 .000 .079 .037 

Left forearm .089 .000 .010 .033 

Right Forearm .039 .034 .089 .054 

Left Hand .054 .015 .167 .079 

Left Ribs .154 .373 .025 .184 

Right Ribs .454 .146 .017 .206 

Left Pelvis .243 .002 .066 .104 

Right Pelvis .336 .000 .048 .128 

Left femur .104 .047 .112 .088 

Right femur .225 .020 .216 .154 

Left tib/fib .043 .130 .016 .063 

Right tib/fib .072 .044 .299 .138 

Left foot .000 .095 .036 .044 

Active Total 2.886 2.333 2.030 2.416 

% of Variance 13.742 11.111 9.668 11.507 

 

 

6.4.2. Analysis #2 

 

The second multiple correspondence analysis was performed with a random subsample of 

100 cases (N = 52 gunshot wound cases).  
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Model summary 

 

 

Table 6-39: Multiple correspondence analysis model summary for Analysis #2. 

Model Summary 

Dimension 

Cronbach's 

Alpha 

Variance Accounted For 

Total (Eigenvalue) Inertia 

% of 

Variance 

1 .710 3.090 .147 14.712 

2 .617 2.426 .116 11.554 

3 .512 1.952 .093 9.294 

Total   7.468 .356   

Mean .628a 2.489 .119 11.853 

a. Mean Cronbach's Alpha is based on the mean Eigenvalue. 

 

 

The three dimensions of the model account for 35.56% of the variance in the samples 

shown in Table 6-39: Multiple correspondence analysis model summary for Analysis #2. 
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Object scores labelled by cause of death 

 

 

 

Figure 6-11: Object points labelled by cause of death for dimensions 1 and 2. No distinct differentiation between 
blast injury and gunshot wound cases is seen on either Dimension 1 or 2. 
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Figure 6-12: Object points labelled by cause of death for dimensions 1 and 3. Differentiation is more distinct on 

Dimension 3, with gunshot wound cases clustering at the positive end of the axis and blast injury at the negative end. 
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The plots of object points show some differentiation on dimensions 1 and 3, shown in 

Figure 6-12: Object points labelled by cause of death for dimensions 1 and 3. 

Differentiation is more distinct on Dimension 3, with gunshot wound cases clustering at 

the positive end of the axis and blast injury at the negative end. . In dimensions 1 and 3, a 

concentration of gunshot wound cases can be seen on the right side of the graph, along 

with a cluster of blast injury cases towards the bottom of the graph. Dimension 3 

differentiates blast injury from gunshot wound cases, with gunshot cases at the top and 

blast injury at the bottom.  
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Discrimination measures 

 

 

Figure 6-13: Discrimination measures for analysis #2 between dimensions 1 and 2. Important variables on Dimension 

1 are the neurocranium and the right ribs. 

 

On these two dimensions, only a few body region variables indicate that they contribute 

most of the variance as all others are closer to the origin and are not far apart from each 

other, seen in 
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Figure 6-13: Discrimination measures for analysis #2 between dimensions 1 and 2. 

Important variables on Dimension 1 are the neurocranium and the right ribs.. On 

dimension 1, neurocranium and right ribs exhibit the largest contribution to variance. On 

dimension two, left shoulder girdle and left ribs contribute most. 
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Figure 6-14: Discrimination measures for analysis #2 on dimensions 1 and 3. In this case, the right ribs contribute 

most variance to Dimension 1. Additionally, the maxillofacial neurocranium and left forearm variables contribute 

variance on Dimension 3 while contributing as well to Dimension 1. 

 

In Figure 6-14: Discrimination measures for analysis #2 on dimensions 1 and 3, right ribs 

exhibits the largest contribution to variance on dimension 1. For dimension 3, right 

maxillofacial, left forearm and neurocranium variables are those which discriminate most. 

This is also shown in Table 6-40, with the measures highlighted for each dimension.  
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Table 6-40: Discrimination measures for analysis #2. Variables which discriminate between blast injury and gunshot 

wound cases are shown in bold for Dimensions 1 and 3. 

Discrimination Measures 

  
Dimension 

Mean 1 2 3 

Cause of death .107 .010 .164 .094 

Neurocranium .315 .031 .257 .201 

Maxillofacial .168 .119 .277 .188 

Mandible .161 .214 .078 .151 

Vertebrae .141 .222 .010 .124 

Left Shoulder Girdle .068 .279 .042 .130 

Right Shoulder Girdle .028 .172 .205 .135 

Left Upper Arm .218 .139 .100 .152 

Right Upper Arm .001 .007 .082 .030 

Left forearm .161 .012 .261 .145 

Right Forearm .012 .013 .001 .009 

Left Hand .018 .027 .181 .075 

Left Ribs .256 .268 .035 .186 

Right Ribs .475 .142 .031 .216 

Left Pelvis .157 .014 .008 .060 

Right Pelvis .215 .009 .000 .075 

Left femur .176 .120 .114 .137 

right femur .268 .173 .065 .169 

Left tib/fib .071 .165 .000 .079 

Right tib/fib .074 .185 .022 .094 

Left foot .000 .106 .018 .041 

Active Total 3.090 2.426 1.952 2.489 

% of Variance 14.712 11.554 9.294 11.853 
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6.4.3. Analysis #3 

 

The third analysis was undertaken with 81 cases (N = 33 gunshot wound cases).  

 

Model summary 

 

Model Summary 

Dimension 

Cronbach's 

Alpha 

Variance Accounted For 

Total (Eigenvalue) Inertia 

% of 

Variance 

1 .663 2.714 .129 12.922 

2 .615 2.415 .115 11.500 

3 .560 2.143 .102 10.206 

Total   7.272 .346   

Mean .617a 2.424 .115 11.543 

a. Mean Cronbach's Alpha is based on the mean Eigenvalue. 

 

Table 6-41: Multiple correspondence analysis model summary for Analysis #3 

 

 

The model in analysis #3 accounts for a total of 34.628% of the variance in the samples, 

shown in Table 6-41 
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Object scores labelled by cause of death 

 

 

Figure 6-15: Object points labelled by cause of death for dimensions 1 and 2. 
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Figure 6-16: Object points labelled by cause of death for dimensions 1 and 3. Dimensions 1 shows differentiation with 
gunshot wound cases on the negative side of the axis and blast injury on the positive.  

 

 

Examining the object score plots in for analysis #3, Figure 6-15 and Figure 6-16, no 

pattern differentiating between the two causes of death can been seen in the comparison 

between dimensions 1 and 2. Dimensions 1 and 3 differentiate between the two causes of 

death on the first dimension. Additionally two clusters of blast injury cases are found on 

the negative side of the dimension 3 axis. 

 

 

Discrimination measures 

 

The following discrimination measure plots were produced for analysis #3. 
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Figure 6-17: Discrimination measures for analysis #3 between dimensions 1 and 2. The largest amount of variance in 

Dimension 1 is accounted for by the left upper arm and left and right rib variables. 

 

 

In this analysis, multiple body region variables were found to discriminate on both 

dimension 1 and 2, shown in Figure 6-17. On dimension 1, left upper arm, left ribs and 

right ribs were the variables which contribute most to the variance. On dimension two, 

mandible, maxillofacial and neurocranium variables exhibit the largest contribution to the 

variance in the sample, however this dimension was not found to differentiate between 

gunshot wound and blast injury cases.  
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 Figure 6-18: Discrimination measures for analysis #3 between dimensions 1 and 3. Dimension 1 variance is attributed 
to three highly contributing variables, the left upper arm and left and right ribs. 

 

 

Shown in Figure 6-18, as in the previous figure, left upper arm, right ribs and left ribs 

differentiate between categories on dimension 1. For dimension three, maxillofacial and 

neurocranium body region variables are most important in the contribution to the variance 

of this dimension. Inertia values are presented in Table 6-42.  
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Table 6-42: Discrimination measures for analysis #3. Important variables on Dimension 1 are shown in bold. 

Discrimination Measures 

  
Dimension 

Mean 1 2 3 

Cause of death .059 .082 .215 .119 

Neurocranium .012 .249 .245 .169 

Maxillofacial .006 .283 .270 .187 

Mandible .001 .386 .025 .137 

Vertebrae .175 .087 .038 .100 

Left Shoulder Girdle .291 .101 .117 .170 

Right Shoulder Girdle .136 .188 .119 .148 

Left Upper Arm .363 .001 .034 .133 

Right Upper Arm .000 .010 .185 .065 

Left forearm .096 .026 .096 .073 

Right Forearm .004 .003 .076 .027 

Left Hand .047 .002 .154 .068 

Left Ribs .439 .039 .005 .161 

Right Ribs .521 .003 .086 .203 

Left Pelvis .087 .069 .046 .067 

Right Pelvis .255 .066 .054 .125 

Left femur .022 .191 .014 .076 

right femur .181 .232 .045 .153 

Left tib/fib .000 .163 .052 .072 

Right tib/fib .002 .157 .168 .109 

Left foot .015 .077 .099 .064 

Active Total 2.714 2.415 2.143 2.424 

% of Variance 12.922 11.500 10.206 11.543 

 

 

6.4.4. Analysis #4 

 

This analysis was undertaken with 102 cases (N = 54 gunshot wound cases).  
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Model Summary 

 

The following table represents the model summary for analysis #4, quantifying the 

variance accounted for on each of three dimensions, in Table 6-43. 

 

 

Table 6-43: Multiple correspondence analysis model summary for Analysis #4. 

Model Summary 

Dimension 

Cronbach's 

Alpha 

Variance Accounted For 

Total (Eigenvalue) Inertia 

% of 

Variance 

1 .686 2.888 .138 13.754 

2 .625 2.469 .118 11.759 

3 .488 1.870 .089 8.905 

Total   7.228 .344   

Mean .614a 2.409 .115 11.473 

a. Mean Cronbach's Alpha is based on the mean Eigenvalue. 

 

 

The total variance accounted for by model #4 is 34.418%, consistent with the previous four 

models.  
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Object scores labelled by cause of death 

 

Figure 6-19: Object points labelled by cause of death for dimensions 1 and 2. No distinct differentiation can be seen 
in the cloud of points. 

 

 

Dimension 1 and dimension 2 do not distinctly differentiate between the two causes of 

death, with a mix of both causes of death in the cloud points, shown in 
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Figure 6-19. There is a tendency for the cases of gunshot wound deaths to cluster towards 

the left side of dimension 1, but show no pattern on dimension 2. 
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Figure 6-20: Object points labelled by cause of death for dimensions 1 and 3 

 

In Figure 6-20, there is a differentiation between the causes of death on dimension 1, with 

the blast injury cases clustering on the positive side of the axis and the gunshot cases on 

the negative side. There appears to be no differentiation on dimension 3. 

 

 

Discrimination measures 

 

The following figures demonstrate the body region variables which discriminate on each of 

three dimensions.  
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Figure 6-21: Discrimination measures for analysis #4 between Dimensions 1 and 2  
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On dimension 1 in 

Figure 6-21, the only variables which account for most variance are the maxillofacial and 

right ribs variable. These however do not differentiate greatly on this dimension and 

contribute to dimension 2 as well. On dimension 2, the right shoulder girdle and the left 

ribs contribute most to the variance of the dimension however these do not differentiate 

between the causes of death. 
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Figure 6-22: Discrimination measures for analysis #4 between dimensions 1 and 3. The maxillofacial, right ribs and 

left pelvis variables account for most variance on Dimension 1. 

 

As in Figure 6-21: Discrimination measures for analysis #4 between Dimensions 1 and 2 , 

the maxillofacial, right ribs and left pelvis body region variables contribute most to 

dimension 1. On dimension 3, the variables of left upper arm, left hand, right tibia and 

fibula and left forearm differentiate from those on dimension 1. Dimension 1 was 

identified as differentiating between the two causes of death. 

 

The values for each of the body region variables in the discrimination measures output is 

presented below in Table 6-44. 
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Table 6-44: Discrimination measures for analysis #4. Variables in bold account for the most variance on Dimension 1, 
which differentiate between causes of death. 

Discrimination Measures 

  
Dimension 

Mean 1 2 3 

Cause of death .145 .001 .077 .074 

Neurocranium .235 .118 .172 .175 

Maxillofacial .271 .231 .103 .201 

Mandible .186 .159 .079 .141 

Vertebrae .079 .196 .053 .109 

Left Shoulder Girdle .059 .265 .086 .137 

Right Shoulder Girdle .030 .346 .049 .142 

Left Upper Arm .178 .070 .253 .167 

Right Upper Arm .086 .007 .003 .032 

Left forearm .095 .001 .186 .094 

Right Forearm .139 .008 .050 .066 

Left Hand .044 .009 .225 .093 

Left Ribs .140 .388 .005 .178 

Right Ribs .344 .261 .068 .225 

Left Pelvis .263 .029 .002 .098 

Right Pelvis .198 .010 .016 .075 

Left femur .137 .070 .074 .094 

right femur .188 .055 .099 .114 

Left tib/fib .030 .024 .046 .033 

Right tib/fib .023 .169 .210 .134 

Left foot .016 .052 .016 .028 

Active Total 2.888 2.469 1.870 2.409 

% of Variance 13.754 11.759 8.905 11.473 

 

 

6.4.5. Analysis #5 

 

In the fifth analysis undertaken, the random sampling syntax produced a combined sample 

of 79 cases (N= 31 gunshot wound cases).  
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Model summary 

 

The model summary presented in represents the three dimensions along with the 

percentage of variance which can be explained in the sample by these.  

 

 

Table 6-45: Model summary for analysis #5. 

Model Summary 

Dimension 

Cronbach's 

Alpha 

Variance Accounted For 

Total (Eigenvalue) Inertia 

% of 

Variance 

1 .691 2.927 .139 13.939 

2 .618 2.429 .116 11.565 

3 .487 1.867 .089 8.888 

Total   7.222 .344   

Mean .614a 2.407 .115 11.464 

a. Mean Cronbach's Alpha is based on the mean Eigenvalue. 

 

 

The total variance for the three dimensions in the model account for 34.393% of the 

variance, shown in Table 6-45, which is consistent with the previous 4 analyses.  

 

Object scores labelled by cause of death 

 

The following figures present the objects plotted against the three dimensions and 

identified by their cause of death. 
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Figure 6-23: Object points labelled by cause of death for dimensions 1 and 2 for analysis #5. No pattern 

differentiating between the two causes of death is seen on both Dimension 1 and 2. 

 

Across both dimensions 1 and 2, seen in Figure 6-23: Object points labelled by cause of 

death for dimensions 1 and 2 for analysis #5. No pattern differentiating between the two 

causes of death is seen on both Dimension 1 and 2.there is no evident pattern or 

differentiation between the two causes of death.  
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Figure 6-24: Object points labelled by cause of death for dimensions 1 and 3 for analysis #5. 
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In dimensions 1 and 3, shown in 

Figure 6-24: Object points labelled by cause of death for dimensions 1 and 3 for analysis 

#5. differentiation between the causes of death can be seen on dimension 1 with the 

opposite of previous subsamples happening, with gunshot wound cases on the positive side 

of the axis and blast injury on the negative side. There is overlap between the two in the 

middle, but for some cases there is differentiation and clusters of cases belonging to the 

same cause of death. 

 

Discrimination measures 

 

The following figures and table illustrate the discrimination measures on three dimensions 

for the sample. 
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Figure 6-25: Discrimination measures for analysis #5 between dimensions 1 and 2 

 

For dimensions 1 and 2, variables which contribute most to the variance are identified on 

both axes in Figure 6-25. For dimension 1, the right femur differentiates best on this 

dimension. For dimension 2, those whose differentiate best (placed furthest from the origin 

on dimension 2) are the left and right ribs, vertebrae and left and right shoulder girdles. 

However it was shown that these two dimensions do not differentiate well.  
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Figure 6-26: Discrimination measures for analysis #5 between dimensions 1 and 3. 
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Figure 6-26, there are variables which are distinct from the others on both axes. However, 

many of these are not specifically discriminating on one particular axis but have high 

inertia scores for both dimensions. These are circled on the graph above and highlighted in 

the following table. For dimension 1, the mandible, right ribs, left pelvis and right femur 

are identified. For dimension 3, the left hand, neurocranium, maxillofacial and left upper 

arm are identified as the variables which contribute most variance to dimension three 

(along with some of dimension 1).  

 

Table 6-46 shows the variance contribution for the discrimination measures across the 

dimensions. 
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Table 6-46: Discrimination measures for analysis #5. Variables with the largest inertia on Dimension 1 are highlighted 
in bold. 

Discrimination Measures 

  
Dimension 

Mean 1 2 3 

Cause of death .132 .011 .001 .048 

Neurocranium .254 .032 .328 .205 

Maxillofacial .241 .080 .265 .195 

Mandible .257 .119 .058 .145 

Vertebrae .064 .283 .000 .116 

Left Shoulder Girdle .000 .233 .004 .079 

Right Shoulder Girdle .015 .359 .050 .141 

Left Upper Arm .181 .067 .219 .156 

Right Upper Arm .049 .006 .043 .033 

Left forearm .130 .000 .019 .050 

Right Forearm .020 .065 .001 .029 

Left Hand .055 .010 .232 .099 

Left Ribs .081 .520 .010 .204 

Right Ribs .304 .349 .058 .237 

Left Pelvis .270 .026 .017 .104 

Right Pelvis .224 .013 .109 .115 

Left femur .166 .111 .051 .109 

Right femur .382 .002 .190 .191 

Left tib/fib .000 .069 .058 .042 

Right tib/fib .101 .019 .148 .089 

Left foot .001 .056 .006 .021 

Active Total 2.927 2.429 1.867 2.407 

% of Variance 13.939 11.565 8.888 11.464 

 

 

6.4.6. Analysis #6 

 

The final multiple correspondence analysis was performed using 100 cases (N = 52 

gunshot wound cases).  

 

Model summary 

 

Table 6-47presents the model summary for analysis #6 detailing the amount of variance 

accounted for on three dimensions.  
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Table 6-47: Model summary for analysis #6. 

Model Summary 

Dimension 
Cronbach's 
Alpha 

Variance Accounted For 

Total 
(Eigenvalue) Inertia 

% of 
Variance 

1 .697 2.973 .142 14.157 

2 .601 2.340 .111 11.141 

3 .509 1.942 .092 9.248 

Total   7.255 .345   

Mean .616a 2.418 .115 11.516 

a. Mean Cronbach's Alpha is based on the mean Eigenvalue. 

 

 

The total variance accounted for with the three dimensions is 34.547%, consistent with the 

previous analyses using the random subsampling.  

 

 

Object scores labelled by cause of death 

 

The following figures show the objects labelled by cause of death, plotted on the first and 

second dimensions and the first and third dimensions.  
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Figure 6-27: Object points labelled by cause of death for dimensions 1 and 2 for analysis #6. Differentiation is shown 
on Dimension 1 with blast injury cases on the negative side of the axis. 

 

 

Objects plotted on dimensions 1 and 2 in Figure 6-27show a pattern with the dimension 1 

separating the majority of blast injury cases from the gunshot wound death cases, with the 

blast injury cases on the negative side of the axis. Dimension 2 does not show an apparent 

graphical differentiation between the two causes of death.  
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Figure 6-28: Object points labelled by cause of death for dimensions 1 and 3. Dimension 3 discriminates between the 
two causes of death with blast injury clustering on the positive side of the axis. 
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Figure 6-28 representing the objects on dimensions 1 and 3, a pattern can be seen. Over 

dimension 3, the gunshot wound cases cluster on the negative side of the axis, with the 

blast injury cases clustered in the positive portion of the axis. Additionally, dimension 1 

separates a portion of the gunshot wound cases from the blast injury cases, with gunshot 

wound cases predominantly on the positive side of the axis.  

 

 

Discrimination measures 

 

The following results demonstrate the body region variables which contribute most 

variance to the three dimensions.  
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Figure 6-29: Discrimination measures for analysis #6 between dimensions 1 and 2. Variables discriminating on 
Dimension 1 are neurocranium, maxillofacial and right pelvis. Additionally the right ribs discriminate on Dimension 1 
as well as having a large contribution of inertia to Dimension 3. 

 

 

Dimensions 1 and 2 feature discriminating body region variables on both dimensions, 

shown in 
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Figure 6-29. For dimension 1, the body region variables maxillofacial, right pelvis and 

neurocranium discriminate to a high degree between categories. Additionally, the right ribs 

discriminate on dimension 1 but also contribute to dimension 2. On the second dimension, 

the right shoulder, vertebrae and left ribs discriminate, however these do not differentiate 

between the two causes of death on Dimension 2. 
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Figure 6-30: Discrimination measures for analysis #6 between dimensions 1 and 3. Variables differentiating on 
Dimension 1 are the right pelvis and right ribs. On Dimension 3, the left upper arm contributes most to the variance 
between the groups. The mandible, maxillofacial and neurocranium variables contribute in combination to both 
Dimensions 1 and 3. 

 

For dimensions 1 and 3, discriminating variables can be identified, illustrated in Figure 

6-30. On dimension 1, the right pelvis and right ribs discriminate highly between 

categories. Additionally, three variables discriminate well between categories on a 

combination of the first and third dimensions. These are the mandible, maxillofacial and 

neurocranium body region variables. On the third dimension, the variables do not 

discriminate as well, but the left upper arm discriminates with a high inertia value on the 

second dimension and a small one on the first dimension.  

 

The discriminating measures and their variance contributions to the three dimensions are 

shown in Table 6-48. 
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Table 6-48: Discrimination measures for analysis #6. Discriminating variables for Dimensions 1 and 3 are highlighted 
in bold. 

Discrimination Measures 

  
Dimension 

Mean 1 2 3 

Cause of death .189 .003 .177 .123 

Neurocranium .386 .000 .267 .218 

Maxillofacial .308 .030 .288 .209 

Mandible .211 .099 .236 .182 

Vertebrae .077 .332 .028 .145 

Left Shoulder Girdle .015 .191 .038 .081 

Right Shoulder Girdle .037 .387 .011 .145 

Left Upper Arm .059 .009 .211 .093 

Right Upper Arm .055 .031 .140 .075 

Left forearm .092 .010 .157 .086 

Right Forearm .047 .047 .078 .057 

Left Hand .022 .001 .133 .052 

Left Ribs .203 .370 .000 .191 

Right Ribs .380 .253 .002 .212 

Left Pelvis .153 .094 .006 .084 

Right Pelvis .315 .006 .009 .110 

Left femur .132 .109 .031 .091 

right femur .176 .142 .105 .141 

Left tib/fib .047 .036 .017 .033 

Right tib/fib .068 .097 .000 .055 

Left foot .001 .094 .010 .035 

Active Total 2.973 2.340 1.942 2.418 

% of Variance 14.157 11.141 9.248 11.516 

 

 

 

6.4.7. Summary of multiple correspondence analysis 

 

Using multiple correspondence analysis, body region variables which discriminate well 

have been identified. The following variables were: 
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Table 6-49: Summary of body region variables identified in multiple correspondence analysis. Number in parentheses 
represent the times which each variable is identified as an important discrimination measure in the analysis. 

Dimension 1 Dimension 2 Dimension 3 

Neurocranium  (3) Mandible  (2) Neurocranium (5) 

Right ribs (6) Vertebrae (3) Maxillofacial (5) 

Left pelvis (3) Left shoulder girdle (3) Right femur (1) 

Right pelvis (2) Right shoulder girdle (4) Right tibia and fibula (2) 

Right femur Left ribs (5) Left forearm (2) 

Left upper arm (1) Maxillofacial (1) Left upper arm (3) 

Left ribs (1) Neurocranium (1) Left hand (2) 

Maxillofacial (2) Right ribs (1) Mandible (1) 

Mandible (2)   

 

 

Certain variables are consistently identified in the analysis as differentiating between the 

categories and will be tested subsequently as predictor variables of the cause of death in 

the binary logistic regression in the next section. These variables are those which appear 

most frequently for dimension 1 and dimension 2 and which account for the most variance 

in the model. The variables selected were: neurocranium, mandible, left and right shoulder 

girdles, left upper arm, left ribs, left pelvis, right pelvis, right femur, left femur, 

maxillofacial and vertebrae. 
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Figure 6-31: Body regions represented by the dimensions in the multiple correspondence analysis of the Bosnia 

samples, differentiating blast injury from gunshot wounds. 

 

The three dimensions accounting for the most variance between the samples represent a 

pattern showing the differences between the trauma in blast injury and gunshot wounds. 

The variables differentiating on dimensions 1 and 2 represent the trunk region of the body, 

such as ribs, vertebrae, pelvic area and shoulder girdles. Dimension 3 predominantly 

represents the cranial area with the neurocranium and maxillofacial variables being of 

importance in differentiating between the two causes of death. The dimensions which 

differentiate most between the two causes of death are dimension 1 and 3, representing the 

torso area and the cranial area. The dimensions are represented in Figure 6-31: Body 

regions represented by the dimensions in the multiple correspondence analysis of the 

Bosnia samples, differentiating blast injury from gunshot wounds. 
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6.5.  Binary logistic regression 

 

The following section presents the results of the binary logistic regression phase of the 

analysis. The first part presents the results of a backwards logistic regression which is run 

automatically by SPSS that selects variables with the criteria cut-offs specified in the 

syntax (section 5.5.4). This is also compared to a block enter method (where all variables 

are pre-selected and entered at once) using the variables identified in the multiple 

correspondence analysis in Section 6.4: Multiple correspondence analysis.  

 

6.5.1.  Backwards binary logistic regression 

 

The first binary logistic regression undertaken employed the backwards stepwise logistic 

regression based on a likelihood ratio criteria for inclusion/exclusion of the variables. The 

analysis was undertaken multiple times, with a subsampling command in the syntax file to 

ascertain the selection of a similar number of cases from each cause of death. The number 

of cases per cause of death will be noted with the results.  

 

 

Analysis #1  

 

This was undertaken with a total of 87 cases (48 cases of blast injury and 39 cases of 

gunshot wound cause of death).  

 

Table 6-50: Hosmer and Lemeshow’s goodness-of-fit statistic for analysis #1. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

17 .421 2 .810 

 

 

Through 17 steps, the significance of the Hosmer and Lemeshow‘s test varies. By step 17,  

shown in Table 6-50 , the significance is 0.810 which indicates a good fit of the model (the 

closer the significance is to the value 1, the better the fit of the model with p≤ 0.05 being a 

poorly fitting model). 
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Table 6-51: Statistics for variables included in the model using backward stepwise method. 

Variables in the Equation 

  

B S.E. Wald df Sig. 

Exp(

B) 

95% C.I.for 

EXP(B) 

Low

er 

Uppe

r 

Step 17a LForear

m(1) 

2.055 .690 8.88

3 

1 .003 7.81

0 

2.02

1 

30.1

77 

LFemur(

1) 

1.153 .523 4.85

1 

1 .028 3.16

7 

1.13

5 

8.83

4 

Constant -2.679 .782 11.7

27 

1 .001 .069 
    

a. Variable(s) entered on step 1: Neurocranium, Maxillofacial, Mandible, Vertebrae, LShoulder, RShoulder, 

LUpArm, RUpArm, LForearm, RForearm, LRibs, RRibs, LPelvis, RPelvis, LFemur, RFemur, LTibFib, 

RTibFib. 

 

 

The variables selected by SPSS using the backward stepwise method indicate that the left 

forearm and femurs are best predictors, summarised in Table 6-51.  

 

 

Table 6-52: Classification table using left forearm and left femur as indicators. 

Classification Tablea 

  

Observed 

Predicted 

  
Cause of 

death 

Percentage 

Correct 
  

BI GSW 

Step 17 Cause of 

death 

BI 31 17 64.6 

GSW 11 28 71.8 

Overall Percentage     67.8 

 

 

Using the left forearm and femur predictors, 67.8% of cases are predicted accurately, 

shown in Table 6-52. This is an increase of 12.6% from the basic model including the 

constant only.  
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Analysis #2 

 

The second iteration of the analysis was undertaken with 94 cases (N= 46 gunshot wound 

deaths).  

 

 

Table 6-53: Hosmer and Lemeshow’s goodness-of-fit statistic for analysis #2. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

13 5.118 6 .529 

 

 

The Hosmer and Lemeshow‘s test indicates a model fit which is adequate, shown in Table 

6-53. 

 

 

Table 6-54: Statistics for variables included in the model using backward stepwise method. 

Variables in the Equation 

  

B S.E. Wald df Sig. 

Exp(

B) 

95% C.I.for 

EXP(B) 

Lowe

r Upper 

Step 13a Vertebrae(1

) 

-1.194 .608 3.854 1 .050 .303 .092 .998 

RShoulder(
1) 

2.021 .789 6.558 1 .010 7.542 1.607 35.40
6 

RUpArm(1) 2.602 1.650 2.487 1 .115 13.49

2 

.532 342.3

33 

LForearm(1

) 

3.949 1.205 10.73

6 

1 .001 51.88

6 

4.888 550.7

49 

RForearm(1

) 

-2.301 1.379 2.783 1 .095 .100 .007 1.495 

LFemur(1) 1.210 .567 4.550 1 .033 3.354 1.103 10.19

9 

Constant -5.595 1.740 10.34

4 

1 .001 .004 
    

a. Variable(s) entered on step 1: Neurocranium, Maxillofacial, Mandible, Vertebrae, LShoulder, RShoulder, 

LUpArm, RUpArm, LForearm, RForearm, LRibs, RRibs, LPelvis, RPelvis, LFemur, RFemur, LTibFib, 

RTibFib. 

 

 

The variables selected by the backward stepwise method are the vertebrae, right shoulder, 

right upper arm, left upper arm, right forearm and left femur, shown in Table 6-54.   
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Table 6-55: Classification table using vertebrae, right shoulder girdle, right upper arm, left forearm, right forearm and 
left femur. 

Classification Tablea 

  

Observed 

Predicted 

  
Cause of 
death 

Percentage 

Correct 
  

BI GSW 

Step 13 Cause of 

death 

BI 38 10 79.2 

GSW 9 37 80.4 

Overall Percentage     79.8 

a. The cut value is .500 

 

 

Using the variables selected the percentage of classification is 79.8%, an increase of 28.7% 

in correct predictions, shown in Table 6-55.  

 

 

Table 6-56: Outliers identified in analysis #2. 

Casewise Listb 

Case Case ID 

Selected 

Statusa 

Observed 

Predicted 

Predicted 

Group 

Temporary 

Variable 

Cause of 

death Resid ZResid 

17 GL01/460 S B** .868 G -.868 -2.568 

58 GL01/620 S G** .037 B .963 5.096 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 

 

 

Two cases were identified as outliers (see Table 6-56: Outliers identified in analysis #2.), 

having been predicted as belonging to the wrong group and having high standardized 

residuals. 

 

 

Analysis #3 

 

The follow analysis was undertaken with 95 cases (N= 47 gunshot wound deaths).  
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Table 6-57: Hosmer and Lemeshow’s goodness-of-fit statistic for analysis #3. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

16 .555 3 .907 

 

 

16 steps were performed by SPSS to identify the indicator variables. The Hosmer and 

Lemeshow‘s statistic in Table 6-57 indicates a very good fit of the model. 

 

 

Table 6-58: Statistics for variables included in the model using backward stepwise method. 

Variables in the Equation 

  

B S.E. Wald df Sig. 

Exp(

B) 

95% C.I.for 

EXP(B) 

Low

er 

Upp

er 

Step 16a RShould

er(1) 

1.277 .581 4.83

6 

1 .028 3.58

7 

1.14

9 

11.1

99 

LForear

m(1) 

2.265 .667 11.5

21 

1 .001 9.63

5 

2.60

5 

35.6

41 

LFemur(

1) 

2.495 .663 14.1

43 

1 .000 12.1

18 

3.30

2 

44.4

69 

Constant -4.746 1.099 18.6

57 

1 .000 .009 
    

a. Variable(s) entered on step 1: Neurocranium, Maxillofacial, Mandible, Vertebrae, LShoulder, RShoulder, 

LUpArm, RUpArm, LForearm, RForearm, LRibs, RRibs, LPelvis, RPelvis, LFemur, RFemur, LTibFib, 

RTibFib. 

 

 

The model produced shows in Table 6-58 that the following variables to predict the 

outcome of the cause of death variable: right shoulder girdle, left forearm, and left femur.  
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Table 6-59: Classification table using right shoulder girdle, left forearm and left femur variables. 

Classification Tablea 

  

Observed 

Predicted 

  
Cause of 

death 

Percentage 

Correct 
  

BI GSW 

Step 16 Cause of 

death 

BI 31 17 64.6 

GSW 8 39 83.0 

Overall Percentage     73.7 

a. The cut value is .500 

 

 

The classification of cases using the predictor variables increases the percentage correct 

from 50.5% to 73.7%, an increase of 23.2%, shown in Table 6-59.  

 

 

Table 6-60: Outliers identified in analysis #3. 

Casewise Listb 

Case Case ID 

Selected 

Statusa 

Observed 

Predicted 

Predicted 

Group 

Temporary 

Variable 

Cause of 

death Resid ZResid 

63 RV02/014 S G** .095 B .905 3.082 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 

 

 

The analysis identified one outlier case, seen in Table 6-60, which was misclassified in the 

blast injury group and a studentized residual of 3.082. 

 

 

Analysis #4 

 

The fourth analysis was undertaken using a subsample of 84 cases (N= 36 gunshot wound 

cause of death cases).  
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Table 6-61: Hosmer and Lemeshow’s goodness-of-fit statistic for analysis #4. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

17 .153 5 1.000 

 

 

At step 17, the statistic shows a significance of 1.000 in Table 6-61, indicating a model 

which perfectly predicts outcome of the cause of death dependent variable.  

 

 

Table 6-62: Statistics for variables included in the model using backward stepwise method for analysis #4. 

Variables in the Equation 

  

B S.E. 

Wal

d df Sig. 

Exp

(B) 

95% C.I.for 

EXP(B) 

Low

er 

Upp

er 

Step 17b Vertebra

e(1) 

-1.537 .633 5.90

1 

1 .015 .215 .062 .743 

RShould

er(1) 

1.752 .722 5.89

0 

1 .015 5.76

8 

1.40

1 

23.7

49 

LForear

m(1) 

3.013 .903 11.1

31 

1 .001 20.3

44 

3.46

6 

119.

426 

LFemur(

1) 

1.118 .571 3.82

9 

1 .050 3.05

8 

.998 9.37

0 

Constant -4.018 1.149 12.2

25 

1 .000 .018 
    

a. Variable(s) entered on step 1: Neurocranium, Maxillofacial, Mandible, Vertebrae, LShoulder, RShoulder, 

LUpArm, RUpArm, LForearm, RForearm, LRibs, RRibs, LPelvis, RPelvis, LFemur, RFemur, LTibFib, 

RTibFib. 

b. Variable(s) entered on step 17: LFemur. 

 

Table 6-62 indicates that the variables selected for the model are: vertebrae, right shoulder 

girdle, left forearm and left femur.  
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Table 6-63: Classification table using the predictor variables vertebrae, right shoulder girdle, left forearm and left 

femur for analysis #4. 

Classification Tablea 

  

Observed 

Predicted 

  
Cause of 
death 

Percentage 

Correct 
  

BI GSW 

Step 17 Cause of 

death 

BI 32 16 66.7 

GSW 8 28 77.8 

Overall Percentage     71.4 

 

Using the predictor variables vertebrae, right shoulder girdle, left forearm and left femur, 

the classification percentage is 71.4%, an increase of 14.3%, shown in Table 6-63.  

 

 

Table 6-64: outliers identified in analysis #4. 

Casewise Listb 

Case Case ID Selected Statusa 

Observed 

Predicted 

Predicted 

Group 

Temporary 

Variable 

Cause of 

death Resid ZResid 

17 GL01/460 S B** .866 G -.866 -2.542 

66 RV02/204 S G** .094 B .906 3.104 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 

 

 

The analysis identified two outlier cases, seen in Table 6-64, which were incorrectly 

attributed to the wrong groups. One case of blast injury was classified as gunshot wound, 

with a studentized residual of -2.542. The second case was classified as blast injury rather 

than gunshot wound cause of death, with a studentized residual of 3.104.  
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Analysis #5 

 

The final analysis using the backward stepwise method of binary logistic regression was 

undertaken with 103 cases in the random subsample (N=55 gunshot wound cases).  

 

 

Table 6-65: Hosmer and Lemeshow’s goodness-of-fit statistic for analysis #5. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

13 4.889 6 .558 

 

 

At the end of the analysis after 13 steps, the Hosmer and Lemeshow‘s statistic has a 

significance of 0.558, which indicates a good model fit (p≥0.05). This is shown in Table 

6-65. 

 

 

Table 6-66: Statistics for variables included in the model using backward stepwise method for analysis #5. 

Variables in the Equation 

  

B S.E. 

Wal

d df Sig. 

Exp

(B) 

95% C.I.for 

EXP(B) 

Low

er 

Upp

er 

Step 13a RUpArm

(1) 

3.113 1.387 5.03

9 

1 .025 22.4

84 

1.48

4 

340.

558 

LForear

m(1) 

4.111 1.176 12.2

15 

1 .000 60.9

85 

6.08

3 

611.

438 

RForear

m(1) 

-1.879 1.046 3.22

8 

1 .072 .153 .020 1.18

6 

LFemur(

1) 

2.414 .687 12.3

34 

1 .000 11.1

82 

2.90

6 

43.0

22 

RFemur(

1) 

-1.565 .760 4.24

4 

1 .039 .209 .047 .927 

LTibFib(

1) 

1.570 .912 2.96

4 

1 .085 4.80

9 

.805 28.7

38 

Constant -6.689 1.963 11.6

09 

1 .001 .001 
    

a. Variable(s) entered on step 1: Neurocranium, Maxillofacial, Mandible, Vertebrae, LShoulder, RShoulder, 

LUpArm, RUpArm, LForearm, RForearm, LRibs, RRibs, LPelvis, RPelvis, LFemur, RFemur, LTibFib, 

RTibFib. 

 

 

The indicator variables selected for the optimal model shown in Table 6-66: right upper 

arm, left forearm, right forearm, left femur, right femur and left tibia and fibula.  
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Table 6-67: Classification table using predictor variables right upper arm, left forearm, right forearm, left femur, right 
femur and left tibia and fibula for analysis #5. 

Classification Tablea 

  

Observed 

Predicted 

  
Cause of 

death 

Percentage 

Correct 
  

BI GSW 

Step 13 Cause of 

death 

BI 34 14 70.8 

GSW 5 50 90.9 

Overall Percentage     81.6 

a. The cut value is .500 

 

 

Using the predictor variables selected in step 13 of the model, the overall prediction 

percentage was 81.6%. This is an increase of 28.2% in the prediction accuracy of the 

model using the selected predictor variables. This is shown in Table 6-67. 

 

 

Table 6-68: outliers identified in analysis #5. 

Casewise Listb 

Case Case ID 

Selected 

Statusa 

Observed 

Predicted 

Predicted 

Group 

Temporary 

Variable 

Cause of 

death Resid ZResid 

81 RV02/301 S G** .115 B .885 2.770 

92 LZ2-74   S G** .046 B .954 4.562 

a. S = Selected, U = Unselected cases, and ** = Misclassified cases. 

b. Cases with studentized residuals greater than 2.000 are listed. 

 

 

The analysis identified two outlier cases which were misclassified, shown in Table 6-68. 

The two cases were identified as having a cause of death being gunshot wound. The model 

classified them as blast injury cause of death, with studentized residuals of 2.770 and 

4.562.  
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6.5.2. Block enter binary logistic regression 

 

The second portion of the binary logistic regression was undertaken using the body region 

variables identified in the multiple correspondence analysis previously accomplished. The 

results from these will be outlined for 5 analyses undertaken with the subsample created by 

the syntax. Testing of the assumptions of the final models produced will also be 

undertaken to assess the suitability of the model. 

 

 

Analysis #1 

 

The analysis was undertaken using 88 cases (N=40 gunshot wound cases). The following 

results include the Hosmer and Lemeshow‘s goodness-of-fit statistic, the individual 

statistics for the body region variables in the model, the classification table and the 

multicollinearity assessment. 

 

 

Table 6-69: Hosmer and Lemeshow’s Goodness-of-Fit for analysis #1. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 6.032 8 .644 

 

 

The Hosmer and Lemeshow‘s statistic had a significance of 0.644, presented in Table 6-69, 

which surpasses the criteria required to indicate a good model fit (p≥ 0.05).  
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Table 6-70: Statistics for variables included in the model using the block enter method for analysis #1. 

Variables in the Equation 

  

B S.E. Wald df Sig. 

Exp(B

) 

95% C.I.for 

EXP(B) 

Low

er 

Upp

er 

Step 1a Neurocrani

um(1) 

.060 .616 .010 1 .922 1.062 .317 3.55

3 

Mandible(1

) 

-1.005 .829 1.470 1 .225 .366 .072 1.85

9 

LShoulder(

1) 

-.430 .753 .325 1 .568 .651 .149 2.84

8 

RShoulder(

1) 

.479 .608 .619 1 .431 1.614 .490 5.31

7 

LUpArm(1) -1.078 .825 1.708 1 .191 .340 .068 1.71

4 

LRibs(1) .464 .693 .448 1 .504 1.590 .409 6.18

4 

RRibs(1) -.804 .726 1.225 1 .268 .448 .108 1.85

8 

LPelvis(1) .108 .685 .025 1 .875 1.114 .291 4.26

8 

RPelvis(1) -1.393 .689 4.086 1 .043 .248 .064 .958 

RFemur(1) 1.475 .745 3.923 1 .048 4.370 1.015 18.8

08 

LFemur(1) -2.068 .715 8.364 1 .004 .126 .031 .513 

Maxillofaci

al(1) 

.471 .684 .476 1 .490 1.602 .420 6.11

7 

Vertebrae(1

) 

.548 .593 .855 1 .355 1.730 .541 5.52

8 

Constant 2.859 1.280 4.987 1 .026 17.44

9 
    

a. Variable(s) entered on step 1: Neurocranium, Mandible, LShoulder, RShoulder, LUpArm, LRibs, RRibs, 

LPelvis, RPelvis, RFemur, LFemur, Maxillofacial, Vertebrae. 

 

Table 6-70 outlines the test statistic for each of the body region variables included in the 

model. This includes the Exp(B) statistic which can be used to interpret the change in the 

odds of the event when increasing from one unit to the other in the predictor. These will be 

interpreted in the discussion. 

  



252 

 

Table 6-71: Classification table using predictor variables Neurocranium, Mandible, left shoulder, right shoulder, left 
upper arm, left ribs, right ribs, left pelvis, right pelvis, right femur, left femur, Maxillofacial, and Vertebrae for 
analysis #1. 

Classification Tablea 

  

Observed 

Predicted 

  Cause of death 

Percentage 

Correct 
  

GSW BI 

Step 1 Cause of death GSW 28 12 70.0 

BI 13 35 72.9 

Overall Percentage     71.6 

a. The cut value is .500 

 

Table 6-71 shows the percentage of classification which were correct for this model. The 

achieved percentage is 71.6% 

 

 

Analysis #2  

 

The second run of the binary logistic regression was undertaken with 96 cases (N= 48 

gunshot wound cases).  

 

 

Table 6-72: Hosmer and Lemeshow’s Goodness-of-Fit for analysis #2. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 13.529 8 .095 

 

 

Analysing this sample produces a low Hosmer and Lemeshow‘s significance of 0.095, 

which is still above the p≤ 0.05 cut-off point, indicating a suitable fit of the model. This 

result is shown in Table 6-72 
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Table 6-73: Statistics for variables included in the model using the block enter method for analysis #2. 

Variables in the Equation 

  

B S.E. Wald df Sig. 

Exp(B

) 

95% C.I.for 

EXP(B) 

Low

er 

Upp

er 

Step 1a Neurocrani

um(1) 

-1.299 .733 3.137 1 .077 .273 .065 1.14

9 

Mandible(1

) 

-.170 .756 .050 1 .823 .844 .192 3.71

6 

LShoulder(

1) 

-.043 .613 .005 1 .943 .957 .288 3.18

4 

RShoulder(

1) 

-.700 .674 1.078 1 .299 .497 .132 1.86

2 

LUpArm(1) -.529 .746 .502 1 .479 .589 .137 2.54

5 

LRibs(1) .130 .689 .035 1 .851 1.138 .295 4.39

6 

RRibs(1) -.828 .620 1.785 1 .182 .437 .130 1.47

2 

LPelvis(1) -.132 .603 .048 1 .827 .877 .269 2.85

9 

RPelvis(1) -.702 .605 1.345 1 .246 .496 .151 1.62

3 

RFemur(1) .962 .692 1.933 1 .164 2.617 .674 10.1

59 

LFemur(1) -1.709 .584 8.545 1 .003 .181 .058 .570 

Maxillofaci

al(1) 

1.138 .750 2.301 1 .129 3.120 .717 13.5

68 

Vertebrae(1

) 

.260 .571 .207 1 .649 1.296 .423 3.97

2 

Constant 2.496 1.162 4.615 1 .032 12.13

2 
    

a. Variable(s) entered on step 1: Neurocranium, Mandible, LShoulder, RShoulder, LUpArm, LRibs, RRibs, 

LPelvis, RPelvis, RFemur, LFemur, Maxillofacial, Vertebrae. 

 

 

Table 6-73 outlines the test statistic for each of the body region variables included in the 

model. This includes the Exp(B) statistic which can be used to interpret the change in the 

odds of the event when increasing from one unit to the other in the predictor. These will be 

interpreted in the discussion. 
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Table 6-74: Classification table for body region variables neurocranium, mandible, left and right shoulder girdles, left 
upper arm, left and right ribs, left and right femur, left and right pelvis, maxillofacial and vertebrae for analysis #2. 

Classification Tablea 

  

Observed 

Predicted 

  Cause of death 

Percentage 

Correct 
  

GSW BI 

Step 1 Cause of death GSW 36 12 75.0 

BI 12 36 75.0 

Overall Percentage     75.0 

a. The cut value is .500 

 

 

Using the body region variables identified in the multiple correspondence analysis results 

in a 75% correct identification rate overall, an increase of 25% from the model with only 

the constant. This is seen in Table 6-74. 

 

The main assumption of binary logistic regression models is multicollinearity of the 

variables used in the model. To test this, linear regression is employed in SPSS, creating a 

collinearity table which can be interpreted easily.  
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Table 6-75: Collinearity assessment for analysis #2. 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 Neurocranium .412 2.429 

Maxillofacial .456 2.194 

Mandible .642 1.558 

Vertebrae .751 1.332 

Left Shoulder Girdle .847 1.181 

Right Shoulder Girdle .750 1.334 

Left Upper Arm .763 1.310 

Left Ribs .505 1.979 

Right Ribs .562 1.779 

Left Pelvis .828 1.208 

Right Pelvis .765 1.307 

Left femur .861 1.162 

right femur .781 1.280 

a. Dependent Variable: Cause of death 

  

 

 

To assess if any of the variable are collinear, the tolerance and VIF statistics are observed 

using the data in Table 6-75. Tolerance statistics are acceptable if the value is over 0.1 and 

the VIF is acceptable if its value is not over 10 (Field 2009). In this case, the lower 

tolerance is 0.434 and the largest VIF is 2.303 indicating no multicollinearity in the model.  

 

 

 Analysis #3 

 

The third run of the binary logistic regression was undertaken with 100 cases subsampled 

(N= 52 gunshot wound cases).  
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Table 6-76: Hosmer and Lemeshow’s Goodness-of-Fit for analysis #3. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 6.192 8 .626 

 

 

The Hosmer and Lemeshow‘s statistic to evaluate the goodness-of-fit for the model had a 

significance of 0.626 for the third analysis, indicating a good model fit for the data. This is 

shown in Table 6-76. 

 

 

Table 6-77: Statistics for variables included in the model using the block enter method for analysis #3. 

Variables in the Equation 

  

B S.E. Wald df Sig. 

Exp(B

) 

95% C.I.for 

EXP(B) 

Low

er 

Upp

er 

Step 1a Neurocrani

um(1) 

-.832 .644 1.671 1 .196 .435 .123 1.53

6 

Mandible(1

) 

.162 .705 .053 1 .818 1.176 .295 4.68

3 

LShoulder(

1) 

-.834 .742 1.263 1 .261 .434 .101 1.86

0 

RShoulder(

1) 

-1.031 .648 2.532 1 .112 .357 .100 1.27

0 

LUpArm(1) -.389 .742 .274 1 .600 .678 .158 2.90

5 

LRibs(1) .371 .694 .286 1 .593 1.449 .372 5.64

7 

RRibs(1) -.547 .725 .569 1 .450 .579 .140 2.39

6 

LPelvis(1) .052 .666 .006 1 .937 1.054 .286 3.88

7 

RPelvis(1) -.835 .655 1.628 1 .202 .434 .120 1.56

5 

RFemur(1) .555 .740 .562 1 .453 1.742 .408 7.43

7 

LFemur(1) -1.681 .582 8.330 1 .004 .186 .059 .583 

Maxillofaci

al(1) 

.252 .666 .143 1 .705 1.287 .349 4.75

0 

Vertebrae(1

) 

.942 .544 3.002 1 .083 2.565 .884 7.44

6 

Constant 2.824 1.194 5.592 1 .018 16.84

6 
    

a. Variable(s) entered on step 1: Neurocranium, Mandible, LShoulder, RShoulder, LUpArm, LRibs, RRibs, 

LPelvis, RPelvis, RFemur, LFemur, Maxillofacial, Vertebrae. 
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Table 6-77 shows the statistics for each body region variable including the coefficients for 

each, the Wald statistic and its significance and the Exp(B) value which will be used to 

interpret the odds for each variable associated with cause of death.  

 

 

Table 6-78: Classification table for analysis #3. 

Classification Tablea 

  

Observed 

Predicted 

  Cause of death 

Percentage 

Correct 
  

GSW BI 

Step 1 Cause of death GSW 42 10 80.8 

BI 20 28 58.3 

Overall Percentage     70.0 

a. The cut value is .500 

 

 

The third analysis classification percentage was 70.0%, shown in Table 6-78, which was an 

increase of 48% from the constant only model, indicating an increase in the classification 

power of the model with the included body region variables.  
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Table 6-79: Multicollinearity assessment for analysis #3. 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 Neurocranium .494 2.024 

Maxillofacial .559 1.788 

Mandible .680 1.471 

Vertebrae .783 1.276 

Left Shoulder Girdle .703 1.423 

Right Shoulder Girdle .724 1.382 

Left Upper Arm .695 1.439 

Left Ribs .498 2.009 

Right Ribs .441 2.269 

Left Pelvis .730 1.370 

Right Pelvis .698 1.433 

Left femur .863 1.159 

right femur .653 1.532 

a. Dependent Variable: Cause of death 

 

 

For the third analysis, no multicollinearity issues were identified when calculating the 

collinearity statistics, shown in Table 6-79. The smallest tolerance value is 0.441, which is 

well over the 0.100 threshold for multicollinearity. The largest VIF value is 2.269, which is 

below the 10.000 value which would again indicate a multicollinearity problem in the 

model. 

 

 

Analysis #4 

 

The fourth run of the binary logistic analysis was undertaken using a subsample of 94 

cases identified using the syntax (N= 46 gunshot wound cases). The following tables 

represent the result of this analysis.  
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Table 6-80: Hosmer and Lemeshow’s statistic for analysis #4. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 2.047 8 .980 

 

 

Analysis #4, shown in Table 6-80, had a Hosmer and Lemeshow‘s goodness-of-fit statistic 

with a significance of 0.980, which indicated a very good fit for the model. 

 

 

Table 6-81: Statistics for variables included in the model using the block enter method for analysis #4. 

Variables in the Equation 

  

B S.E. Wald df Sig. 

Exp(B

) 

95% C.I.for 

EXP(B) 

Lowe

r 

Upp

er 

Step 1a Neurocrani

um(1) 

-.161 .627 .066 1 .797 .851 .249 2.90

6 

Mandible(1

) 

-.676 .781 .748 1 .387 .509 .110 2.35

3 

LShoulder(

1) 

.034 .653 .003 1 .958 1.035 .288 3.72

0 

RShoulder(

1) 

-1.991 .802 6.163 1 .013 .136 .028 .658 

LUpArm(1

) 

-.446 .767 .338 1 .561 .640 .142 2.87

9 

LRibs(1) -.076 .605 .016 1 .900 .927 .283 3.03

4 

RRibs(1) -.193 .639 .091 1 .763 .825 .236 2.88

6 

LPelvis(1) -.012 .675 .000 1 .986 .988 .263 3.70

9 

RPelvis(1) -1.418 .686 4.276 1 .039 .242 .063 .929 

RFemur(1) .368 .762 .234 1 .629 1.446 .325 6.43

7 

LFemur(1) -1.772 .616 8.266 1 .004 .170 .051 .569 

Maxillofaci

al(1) 

.138 .673 .042 1 .837 1.148 .307 4.29

3 

Vertebrae(

1) 

.706 .594 1.414 1 .234 2.026 .633 6.49

2 

Constant 4.482 1.528 8.607 1 .003 88.452     

a. Variable(s) entered on step 1: Neurocranium, Mandible, LShoulder, RShoulder, LUpArm, LRibs, RRibs, 

LPelvis, RPelvis, RFemur, LFemur, Maxillofacial, Vertebrae. 

 

 

Table 6-81 shows the statistics for each body region variable including the coefficients for 

each, the Wald statistic and its significance and the Exp(B) value which will be used to 

interpret the odds for each variable associated with cause of death.  
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Table 6-82: Classification table for analysis #4. 

Classification Tablea 

  

Observed 

Predicted 

  Cause of death 

Percentage 

Correct 
  

GSW BI 

Step 1 Cause of death GSW 34 12 73.9 

BI 16 32 66.7 

Overall Percentage     70.2 

 

 

The classification table, shown in Table 6-82, demonstrates an increase in the classification 

percentage of the model from 51.1% to 70.2% correct, a difference of 19.1%. 

 

 

Table 6-83: Multicollinearity assessment for analysis #4. 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 Neurocranium .581 1.720 

Maxillofacial .628 1.592 

Mandible .703 1.423 

Vertebrae .746 1.340 

Left Shoulder Girdle .779 1.284 

Right Shoulder Girdle .748 1.337 

Left Upper Arm .722 1.385 

Left Ribs .673 1.485 

Right Ribs .552 1.811 

Left Pelvis .759 1.317 

Right Pelvis .851 1.176 

Left femur .825 1.213 

right femur .640 1.563 

a. Dependent Variable: Cause of death 
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The multicollinearity test for analysis #4, in Table 6-83, indicates no issues in the 

collinearity of the body region variables, with the smallest tolerance value being 0.552 and 

the largest VIF value of 1.881. 

 

 

Analysis #5 

 

The fifth and final analysis to test the model was undertaken with 101 cases subsampled 

using the syntax (N= 53 cases of gunshot wound deaths).  

 

 

Table 6-84: Hosmer and Lemeshow’s goodness-of-fit statistic for analysis #5. 

Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 5.526 8 .700 

 

 

The fifth analysis produced a goodness-of-fit statistic with a significance of 0.700, which 

indicated a model with fits the data well. This result is shown in Table 6-84 

  



262 

 

Table 6-85: Statistics for variables included in the model using the block enter method for analysis #5. 

Variables in the Equation 

  

B S.E. Wald df Sig. Exp(B) 

95% C.I.for 

EXP(B) 

Lower Upper 

Step 1a Neurocranium(1) -.327 .665 .241 1 .623 .721 .196 2.657 

Mandible(1) -.463 .782 .351 1 .554 .629 .136 2.914 

LShoulder(1) -1.216 .756 2.591 1 .107 .296 .067 1.303 

RShoulder(1) -1.193 .732 2.659 1 .103 .303 .072 1.273 

LUpArm(1) -.382 .728 .275 1 .600 .682 .164 2.845 

LRibs(1) 1.024 .685 2.233 1 .135 2.785 .727 10.668 

RRibs(1) -1.108 .670 2.734 1 .098 .330 .089 1.228 

LPelvis(1) .619 .708 .766 1 .381 1.858 .464 7.435 

RPelvis(1) -.522 .656 .633 1 .426 .593 .164 2.147 

RFemur(1) -.078 .732 .011 1 .915 .925 .220 3.885 

LFemur(1) -1.600 .592 7.309 1 .007 .202 .063 .644 

Maxillofacial(1) .410 .663 .383 1 .536 1.507 .411 5.525 

Vertebrae(1) 1.148 .526 4.766 1 .029 3.152 1.125 8.834 

Constant 3.012 1.247 5.836 1 .016 20.329     

a. Variable(s) entered on step 1: Neurocranium, Mandible, LShoulder, RShoulder, LUpArm, LRibs, RRibs, 

LPelvis, RPelvis, RFemur, LFemur, Maxillofacial, Vertebrae. 

 

 

Table 6-85 shows the statistics for each body region variable including the coefficients for 

each, the Wald statistic and its significance and the Exp(B) value which will be used to 

interpret the odds for each variable associated with cause of death. 

 

 

Table 6-86: Classification for analysis #5. 

Classification Tablea 

  

Observed 

Predicted 

  Cause of death 

Percentage 

Correct 
  

GSW BI 

Step 1 Cause of death GSW 42 11 79.2 

BI 18 30 62.5 

Overall Percentage     71.3 

a. The cut value is .500 
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The classification table for analysis #5, in Table 6-86,  indicated an increase in the percent 

of correct classification for the model from 52.5% for the constant only model to 71.3% for 

the model, which was an increase of 18.8%.  

 

 

Table 6-87: Multicollinearity assessment for analysis #5. 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 Neurocranium .526 1.901 

Maxillofacial .593 1.686 

Mandible .684 1.461 

Vertebrae .895 1.117 

Left Shoulder Girdle .754 1.327 

Right Shoulder Girdle .743 1.346 

Left Upper Arm .792 1.263 

Left Ribs .511 1.956 

Right Ribs .514 1.945 

Left Pelvis .679 1.473 

Right Pelvis .645 1.550 

a. Dependent Variable: Cause of death 

 

 

The multicollinearity assessment for analysis #5 indicated there were no collinearity issues 

for the body region variables included in the analysis, shown in Table 6-87. The lowest 

tolerance value was 0.511 and the highest VIF value was 1.956, well within the limits as 

outlined in (Field 2009).  

 

 

6.5.3. Summary of binary logistic regression 

 

Backward binary logistic regression 

 

The following table summarises the relevant statistics to evaluate each of the models. 
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Table 6-88: Summary of statistics for backward binary logistic regression over five analyses. 

Analysis # Hosmer and Lemeshow‘s statistic Classification Percentage 

1 0.81 67.8 

2 0.529 79.8 

3 0.907 73.7 

4 1 71.4 

5 0.558 81.6 

Average 0.7608 74.86 

Max 1 81.6 

Min 0.529 67.8 

 

 

Table 6-88 summarises the Hosmer and Lemeshow‘s goodness-of-fit statistics and the 

classification percentage for the five analyses. Using the backward binary logistic 

regression technique the average Hosmer and Lemeshow‘s significance is 0.760, indicating 

good fit of the models produced. The classification percentage average is 74.86% 

indicating a positive increase in the classification power of the models.  

 

 

Block enter binary logistic regression 

 

The following table summarises the relevant statistics to evaluate the model for each of the 

five analyses. 

 

 

Table 6-89: Summary of statistics for block enter binary logistic regression over five analyses. 

Analysis # Hosmer and Lemeshow‘s statistic Classification Percentage 

1 0.644 71.6 

2 0.095 75 

3 0.626 70 

4 0.98 70.2 

5 0.7 71.3 

Average 0.609 71.62 

Max 0.98 75 

Min 0.095 70 

 

Table 6-89 summarises the Hosmer and Lemeshow‘s goodness-of-fit statistics and the 

classification percentage for the five analyses. Using the block enter binary logistic 

regression technique the average Hosmer and Lemeshow‘s significance is 0.609, indicating 
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good fit of the models produced. The classification percentage average is 71.62% 

indicating a positive increase in the classification power of the models.  

 

 

Comparison of the two methodologies of binary logistic regression 

 

To compare the two methods of binary logistic regression for the gunshot wound and blast 

injury data, the Hosmer and Lemeshow‘s statistic and the classification percentage were 

compared using independent samples t-test.  

 

 

Table 6-90: t-Test comparing backward binary logistic regression and block enter binary logistic regression results . 

Independent Samples Test 

  

Levene's 

Test for 

Equality 

of 

Variances t-test for Equality of Means 

F 

Sig

. t df 

Sig. 

(2-

taile

d) 

Mean 

Differenc

e 

Std. Error 

Differenc

e 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Classificat

ion 

Equal 

varianc

es 

assume

d 

7.13

8 

.02

8 

1.18

6 

8 .269 3.240000

000 

2.730933

906 

-

3.0575448

81 

9.5375448

81 

Equal 

varianc

es not 

assume

d 

    

1.18

6 

4.95

8 

.289 3.240000

000 

2.730933

906 

-

3.7978389

19 

10.277838

919 

HLStat Equal 

varianc

es 

assume

d 

.090 .77

2 

.886 8 .402 .1518000

00 

.1713917

73 

-

.24343013

8 

.54703013

8 

Equal 

varianc

es not 

assume

d 

    

.886 6.89

0 

.406 .1518000

00 

.1713917

73 

-

.25478769

2 

.55838769

2 

 

The t-Test shows no significant difference between the two methods, shown in Table 6-90. 

For the classification results the statistics are t (8) = 1.186, p= 0.289. For the Hosmer and 

Lemeshow‘s statistic, there was also no significant difference t (8) = 0.886, p= 0.402.  
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6.6. Comparison of Bosnia sample with World War One blast injury cases 

 

The World War One sample was identified from the Canadian circumstances of death 

records and represents a sample which has trauma from mortars. It was selected to 

compare with the Bosnia sample based on the lack of protective armour in the troops. This 

made the sample comparable with the Bosnia sample, which is composed of what is 

believed to be civilians who therefore had no access to protective armour which could 

influence the pattern of injury, as is found in modern conflict (examined in the next 

section). During World War One, the Canadian army typically wore the same uniforms as 

the British, which did not include personal protective pieces (Chartrand and Embleton 

2007). 

 

The samples were compared using the Pearson‘ to test for any significant difference 

over multiple variables, employing a Holm- Bonferroni correction. Comparing these two 

samples, it is found that there were significant differences between the two samples. The 

vertebrae, the upper limb, the pelvis and the lower limb were found to be significantly 

different; however the head and the torso were not. The results are presented subsequently. 
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Vertebrae 

 

 

Table 6-91: Contingency table presenting the prevalence counts for vertebral trauma in the Bosnia and World War 
One samples. 

BodyRegion * Context Crosstabulation 

  
Context 

Total Bosnia WW1 

BodyRegion Vertebrae Count 17 20 37 

Expected Count 9.4 27.6 37.0 

% within BodyRegion 45.9% 54.1% 100.0% 

% within Context 35.4% 14.2% 19.6% 

% of Total 9.0% 10.6% 19.6% 

Vertebrae No 

Trauma 

Count 31 121 152 

Expected Count 38.6 113.4 152.0 

% within BodyRegion 20.4% 79.6% 100.0% 

% within Context 64.6% 85.8% 80.4% 

% of Total 16.4% 64.0% 80.4% 

Total Count 48 141 189 

Expected Count 48.0 141.0 189.0 

% within BodyRegion 25.4% 74.6% 100.0% 

% within Context 100.0% 100.0% 100.0% 

% of Total 25.4% 74.6% 100.0% 

 

 

There was a significant difference between the two samples when examining the presence 

and absence of trauma to vertebrae χ2 (1, N= 189), p= .002, shown in Table 6-91. This was 

significant after Holm-Bonferroni correction. Vertebral trauma was much more prevalent 

in the Bosnia sample than in the World War One sample, more than double the latter‘s 

14.2% prevalence.  
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Upper limb 

 

 

Table 6-92: Contingency table presenting the prevalence counts for upper limb trauma in the Bosnia and World War 
One samples. 

BodyRegion * Context Crosstabulation 

  
Context 

Total Bosnia WW1 

BodyRegion Upper Limb Count 33 32 65 

Expected Count 16.5 48.5 65.0 

% within 

BodyRegion 

50.8% 49.2% 100.0% 

% within Context 68.8% 22.7% 34.4% 

% of Total 17.5% 16.9% 34.4% 

Upper Limb 

No Trauma 

Count 15 109 124 

Expected Count 31.5 92.5 124.0 

% within 

BodyRegion 

12.1% 87.9% 100.0% 

% within Context 31.3% 77.3% 65.6% 

% of Total 7.9% 57.7% 65.6% 

Total Count 48 141 189 

Expected Count 48.0 141.0 189.0 

% within 

BodyRegion 

25.4% 74.6% 100.0% 

% within Context 100.0% 100.0% 100.0% 

% of Total 25.4% 74.6% 100.0% 

 

 

A significant difference between the trauma in the upper limb in the Bosnia and World 

War One samples was found χ2 (1, N= 189), p= 0.000, with Holm-Bonferroni correction, 

shown in Table 6-92. Prevalence was very high in the Bosnia sample comparatively to the 

World War One sample (68.8% versus 22.7%). 
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Pelvis 

 

 

Table 6-93: Contingency table presenting the prevalence counts for pelvis trauma in the Bosnia and World War One 
samples. 

BodyRegion * Context Crosstabulation 

  
Context 

Total Bosnia WW1 

BodyRegion Pelvis Count 22 11 33 

Expected Count 8.4 24.6 33.0 

% within 

BodyRegion 

66.7% 33.3% 100.0% 

% within 

Context 

45.8% 7.8% 17.5% 

% of Total 11.6% 5.8% 17.5% 

Pelvis No 

Trauma 

Count 26 130 156 

Expected Count 39.6 116.4 156.0 

% within 

BodyRegion 

16.7% 83.3% 100.0% 

% within 

Context 

54.2% 92.2% 82.5% 

% of Total 13.8% 68.8% 82.5% 

Total Count 48 141 189 

Expected Count 48.0 141.0 189.0 

% within 

BodyRegion 

25.4% 74.6% 100.0% 

% within 

Context 

100.0% 100.0% 100.0% 

% of Total 25.4% 74.6% 100.0% 

 

 

Trauma in the pelvis area was found nearly six times more often in the Bosnia sample than 

in the World War One sample, shown in Table 6-93. This difference was found to be 

significant χ2 (1, N= 189), p= 0.000.  
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Lower limb 

 

Table 6-94: Contingency table presenting the prevalence counts for lower limb trauma in the Bosnia and World War 
One samples. 

BodyRegion * Context Crosstabulation 

  
Context 

Total Bosnia WW1 

BodyRegion Lower 

Limb 

Count 29 45 74 

Expected Count 18.8 55.2 74.0 

% within 

BodyRegion 

39.2% 60.8% 100.0% 

% within Context 60.4% 31.9% 39.2% 

% of Total 15.3% 23.8% 39.2% 

Lower 

Limb No 

Trauma 

Count 19 96 115 

Expected Count 29.2 85.8 115.0 

% within 

BodyRegion 

16.5% 83.5% 100.0% 

% within Context 39.6% 68.1% 60.8% 

% of Total 10.1% 50.8% 60.8% 

Total Count 48 141 189 

Expected Count 48.0 141.0 189.0 

% within 

BodyRegion 

25.4% 74.6% 100.0% 

% within Context 100.0% 100.0% 100.0% 

% of Total 25.4% 74.6% 100.0% 

 

 

In the lower limb, twice the amount of trauma was found in the Bosnia sample than in the 

World War One sample, shown in Table 6-94. This was found to be a significant 

difference χ2 (1, N= 189), p= 0.001.  

 

Summary 

 

The regions found to be significantly different were the vertebrae, upper limb, pelvis and 

lower limb. This is shown in Figure 6-32: Areas of significant difference between the 

World War One sample and the Bosnia sample. 
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Figure 6-32: Areas of significant difference between the World War One sample and the Bosnia sample. 

 

6.7. Comparisons of Bosnia sample and clinical literature data  

 

To examine the patterns of injury in the clinical literature and compare them to the ones 

from the Bosnia sample, the literature was consulted to locate prevalence figures in various 

situations and compare these statistically using the Pearson‘s χ2 test. Three situations were 

identified which could provide data that could be used. The prevalence figure was 

collected along with sample sizes to calculate the number of cases with trauma to the body 

region variables so that these may be compared between the samples. Figures with 

significant differences are reported below, after correcting for multiple pairwise tests using 

the Holm-Bonferroni correction. 
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6.7.1. Combat 

 

Articles detailing prevalence of blast trauma to various body regions were identified and 

were previously discussed in the literature review. This includes cases of improvised 

explosive devices, roadside bombs and under vehicle explosions. Additionally, journal 

articles identifying the prevalence of trauma in previous conflicts were included along with 

modern conflict.  

 

 

Vietnam 

 

The first examination made was with data from the Ramasamy (2009) paper which 

provides information for various historical conflicts. Within this data, all body regions used 

for comparison were found to be significant.  

 

For the head, neck and face region, the results were χ2 (1, N=36788), p= 0.000. In the 

Bosnia sample, 50% of cases had trauma in this region, compared to 20.6% in the Vietnam 

data. The following variable was the thorax and back. This was also significant χ2 (1, N= 

36788), p= 0.00. For this variable, 47.9% of the Bosnia cases were identified as having 

trauma and only 8.8% in the Vietnam cases.  

 

The presence of upper limb trauma was compared and a significant difference was found χ2 

(1, N= 36788), p= 0.000. In this comparison, the Bosnia cases were found to have trauma 

to the upper limb in 68.8% of cases versus 27.2% of the Vietnam cases. The difference 

between lower limb prevalence in the Vietnam and Bosnia samples was significant χ2 (1, 

N= 36788), p= 0.008. Again, the difference in prevalence between Bosnia and Vietnam for 

lower limb trauma was quite large, 60.4% and 40.9% respectively. This is summarised in 

Figure 6-33. 

 



273 

 

 

Figure 6-33: Comparison of prevalence of trauma in a sample from Bosnia and a sample from Vietnam (Ramasamy 

2009). Areas significantly different were the head, neck and face, the thorax and back, as well as the upper and lower 

limbs. Prevalence of trauma was also higher in the Bosnia sample, for all body regions.  

 

Northern Ireland 

 

Comparison of the results from the Ramasamy (2009) article with data on the conflict in 

Northern Ireland was also undertaken. Three variables were compared. They were a 

combined head, neck and face variable, a thorax and back variable and the upper limbs.  
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Table 6-95shows the results of the χ2 (1, N= 717) which had a significant difference 

between the two samples.  

 

 

Table 6-95: Northern Ireland- Variables and associated significance level for χ2 (1, N= 717), with the Holm-Bonferroni 
corrected α-level to assess significance. 

Variable p-value  α level (Holm-Bonferroni 

corrected) 

Head, Neck and face 0 0.0167 

Thorax and back 0 0.025 

Upper limbs 0.362 0.05 

 

 

In this comparison, two variables were found to be significant. These were the head, neck 

and face variable as well as the thorax and back variable. In the Bosnia sample, the 

prevalence of head neck and face was 50% of the sample (N=24), compared to 13.2% in 

the Northern Ireland sample (N= 88). For the thorax and back, the Bosnia sample had 

trauma in 47.9% of cases (N=23) and in Northern Ireland, this trauma was seen in 16.6% 

of cases (N=111). The results are shown in Figure 6-34. 
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Figure 6-34: Prevalence of trauma in the Bosnia sample compared to a sample from Northern Ireland (Ramasamy 

2009). Prevalence higher in the Bosnia sample and was significantly different in the head, neck and face as well as the 

thorax and back region.  

  

 

A second study on Northern Ireland was also examined (Mellor 1992). This study only 

examined the presence of trauma in the upper or lower limb. In both these body regions, 

there was a significant difference between the two samples. For the upper limb the Bosnia 

sample had a prevalence of 68.8% (N= 48) with 29.9% of cases with upper limb trauma in 

Northern Ireland (N=298), χ2 (1, N=346), p= 0.000. The lower limb prevalence was 60.4% 

in Bosnia (N=48) and 35.6% in the Northern Ireland sample (N=298). This was 

significantly different χ2 (1, N= 346), p= 0.001. This is shown in Figure 6-35, below.  
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Figure 6-35: Prevalence of trauma in the Bosnia sample compared to a sample from Northern Ireland (Mellor 1992). 

Prevalence higher in the Bosnia sample and was significantly different in the upper limb as well as the lower limb 

region.  
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Iraq and Iran War 

 

Sadda (2003) examined maxillofacial injuries from the Iraq and Iran War during the time 

period between 1980 and 1988. This was a sample of 300 cases an examined trauma to the 

lower third of the face and the mandible. The lower third of the face was not significantly 

different between the two samples χ2 (1, N= 348), p = 0.591. For the mandible, this was 

found to be significantly different between the two samples χ2 (1, N= 348), p= 0.006. In the 

Bosnia sample, 18.8% of cases had mandibular trauma (N=48). For the sample from the 

Iraq and Iran war 40.3% of cases had mandibular trauma (N=300).  

 

 

Lebanon 

 

Gofrit and colleagues (1996) analysed the trauma patterns from the Lebanon war, with a 

sample of wounded from 1982. Four variables were examined and compared to the Bosnia 

sample. All four were found to be significant χ2 (1, N= 212), p= 0.000. Prevalence figures 

are listed in Table 6-96. 

 

 

Table 6-96: Prevalence of trauma for each body region comparing the Bosnia and Gofrit et al.’s sample from the 
Lebanon war in 1982. 

Sample/Variable Face Head and neck Torso Extremities 

Bosnia (N=48) 70.8%  50% 47.9% 91.7% 

Gofrit et al. 1996 

(N= 164) 

34.8% 11.6% 84.1% 40.2% 

 

The results are shown in Figure 6-36, examining the body regions compared. 
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Figure 6-36: Comparison of prevalence of blast trauma in the Bosnia sample and a sample from Lebanon in 1982 

(Gofrit et al. 1996). All areas were found to be significantly different.  

 

Gulf War (1990) 

 

Ramasamy and colleagues (2009) reported figures for the first Gulf War. Five variables 

were compared with the Bosnia sample and the reported significance values are presented 

in Table 6-97 for χ2 (1, N = 203). 
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Table 6-97: p-values for variables compared between Gulf War trauma prevalence and Bosnia prevalence. 

Variable p- value  α level (Holm-Bonferroni 

corrected) 

Thorax and back 0 0.001 

Upper limbs 0 0.0125 

Pelvis 0 0.0167 

Head, neck and face 0.001 0.025 

Lower limbs 0.007 0.05 

 

 

Table 6-98shows the prevalence for each body region in each sample.  

 

 

Table 6-98: Prevalence of trauma for each body region comparing the Bosnia and Ramasamy et al.’s sample from the 
first Gulf War in 1990. 

Variable/Sample  Bosnia  (N= 48) Ramasamy et al. (N= 155) 

Thorax and back 5.8% 47.9% 

Upper limbs 68.8% 30.3% 

Pelvis 45.8% 0.6% 

Head, neck and face 50.0% 76.1% 

Lower limbs 60.4% 37.4% 

 

All variables were found to be significantly different between the two samples. The results 

are shown in Figure 6-37, showing the areas which were significantly different and 

highlighting the prevalence of trauma in each. 
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Figure 6-37: Areas of significant difference between the Bosnia sample and a sample from the Gulf War in 1990 

(Ramasamy et al.). For the Gulf War, trauma was significantly more prevalent in the head and torso regions. 

Conversely, trauma was more prevalent to the upper limb, pelvis and lower limb in the Bosnia sample, significantly 

so. 
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Operation Iraqi Freedom 

 

One study was identified which presented trauma patterns from the modern conflict 

starting in 2003 and currently ongoing. This study by Belmont (2010) examined trauma 

prevalence in the head and neck region and found that there was no significant difference 

between the two samples χ2 (1, N=438), p= 0.082. Head and neck trauma was found 50% 

of the Bosnia sample (N=48) and in 36.2% of the Belmont study (N= 390).  

 

A second study examined the trauma patterns associated with improvised explosive 

devices in Iraq during 2006. Five variables were identified in the (Ramasamy et al. 2009) 

paper. These are presented in Table 6-99 along with their respective p- values and the 

Holm-Bonferroni corrected α level.  

 

 

Table 6-99: p-values for variables compared between (Ramasamy et al. 2009) trauma prevalence and Bosnia 
prevalence. 

Variable p- value  α level (Holm-Bonferroni 

corrected) 

Chest and back 0.001 0.01 

Lower limb 0.004 0.0125 

Upper limb 0.041 0.017 

Head and neck 0.136 0.025 

face 1 0.05 

 

 

Table 6-100: Prevalence figures for five body regions comparing Bosnia and Operation Iraqi Freedom trauma. 

Variable/Sample  Bosnia  (N= 48) Ramasamy et al. (N= 42) 

Upper Limb 68.8% 88.1% 

Lower limb 60.4% 88.1% 

Face 29.2% 31.0% 

Head and neck 50% 66.7% 

Chest and back 47.9% 14.3% 

 

 

It was found that the chest and back variable was significantly different, along with the 

lower limb variable. The prevalence figures for each body region is shown in Table 6-100. 
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Afghanistan 

 

Ramasamy et al. (2010) examined blast-related fracture patterns and published data 

regarding patters in an enclosed context, examining trauma to the extremities. Five parts of 

the extremities were examined: feet, femur, tibia and fibula, humerus and hand. Following 

Holm-Bonferroni correction, two body regions were found to be significantly different 

between the two samples. Prevalence of trauma to the feet was significantly different χ2 (1, 

N= 76), p= 0.000. In the Bosnia sample, prevalence was 2.1% (N = 48). Conversely, in the 

Afghanistan sample (N = 28) the prevalence was 35.7%.  

 

Additionally, significant difference was found in the prevalence of trauma in femur trauma 

χ2 (1, N= 76). Prevalence in the Afghanistan sample was found to be 10.7% (N = 28) and 

39.6% in the Bosnia sample (N = 48).  The results are shown in Figure 6-38. 

 

 

Figure 6-38: Prevalence of trauma to the femur and feet in Afghanistan and Bosnia.  
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6.7.2. Terrorist incidents 

 

Comparison of terrorist incidents described in the literature was undertaken to examine 

similarities and differences in between the Bosnia sample and those from various locations 

and contexts.  

 

 

U.S.S. Cole 

 

Lambert and colleagues (2003) described the orthopaedic injuries in the survivors of the 

terrorist attack on the U.S.S. Cole in 2000. The lower limb trauma prevalence was 

compared and no significant difference between the Bosnia sample and the U.S.S. Cole 

sample χ2 (1, N= 87), p= 1.000. Prevalence of orthopaedic trauma to the lower limb was 

noted as 60.4% in the Bosnia sample (N= 48) and 61.5% in the U.S.S. Cole (N = 39).  

 

 

Oklahoma City 

 

On April 19, 1995 the Alfred P. Murrah Federal building was bombed using ammonium 

nitrate. Mallonee and colleagues (Mallonee et al. 1996) described the patterns of injury in 

the fatalities and survivors. This data was compared and significant differences were found 

for two variables. Table 6-101shows the p-values for the body region comparisons as well 

as the Holm-Bonferroni corrected α- level.  

 

 

Table 6-101: p-values for variables compared between (Mallonee et al. 1996) trauma prevalence and Bosnia 
prevalence to the upper limbs, torso, lower limbs, head and neck. Holm- Bonferroni corrected α level is included. 

Variable p- value α level (Holm-Bonferroni 

corrected) 

Upper limb 0.002 0.0125 

Torso 0.016 0.0167 

Lower limb 0.052 0.025 

Head and neck 0.177 0.05 

  



284 

 

The upper limbs and torso comparisons were significantly different. For the upper limb, 

prevalence of trauma was 68.8% in Bosnia (N = 48) and 38.3% in the Oklahoma City 

bombing (N = 60), χ2 (1, N = 108), p= 0.002. Torso trauma was found in 47.9% of cases in 

Bosnia (N = 48) and 25.0% of cases from the Oklahoma sample (N =60). This was a 

significant difference χ2 (1, N= 108), p= 0.016. The differences in prevalence are shown in 

Figure 6-39. 

 

 

Figure 6-39: Regions of significant difference in prevalence of trauma comparing the Oklahoma bombing and the 

Kravica warehouse sample. The upper limb was significantly different with a higher prevalence in Bosnia (χ 2 (1, N = 

108), p= 0.002). The higher prevalence of trauma to the torso in the Bosnia sample was also significant (χ2 (1, N= 108), 

p= 0.016).  

 

Birmingham pub bombings 

 

Waterworth and Carr‘s (1975) paper about the pub bombings analysed 21 victims post-

mortem. The data was compared to the Bosnia data and is summarised in the following, 

Figure 6-40 and Table 6-102. 
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Figure 6-40: Number of victims with trauma comparing the Birmingham pub bombings (Waterworth and Carr 1975) 

and the Kravica warehouse case. 

 

 

Table 6-102: p-values for variables compared between the Birmingham pub bombings (Waterworth and Carr 1975) 
trauma prevalence and Bosnia prevalence to the upper limbs, torso, lower limbs, head and neck. Holm- Bonferroni 
corrected α level is included. 

Variable p- value α level (Holm-Bonferroni 

corrected) 

Lower limb 0.002 0.0125 

Extremities 0.027 0.0167 

Torso 0.6 0.025 

Head and neck 1 0.05 

 

 

The only variable found to be significantly different was the difference in prevalence of 

trauma to the lower limb. In Bosnia, 60.4% of cases had trauma (N= 48) to the lower limb. 

In the pub bombings, 19.0% were found to have lower limb trauma (N= 21).  

 

 

Israel 

 

Weil and colleagues (Weil et al. 2011) studied a total of 1245 casualties with blast and 

gunshot trauma from terrorist activities. The data about regarding the blast injury cases was 

collected and compared to the data from Bosnia, seen in Figure 6-41: Prevalence of trauma 
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in the Kravica warehouse sample and the Israeli sample and Table 6-103: Prevalence of 

each variable in the Bosnia and Israel samples. 

 

 

 

Figure 6-41: Prevalence of trauma in the Kravica warehouse sample and the Israeli sample. 

 

 

Table 6-103: Prevalence of each variable in the Bosnia and Israel samples. 

Variable/Sample  Bosnia  (N= 48) Weil et al. 2011 (N= 694) 

Vertebrae 35.4% 7.1% 

Pelvis 45.8% 3.0% 

Extremity 91.7% 41.1% 

Torso 47.9% 69.0% 

Headneck 50% 69.0% 

 

 

Table 6-104: p-values for variables compared between (Weil et al. 2011) trauma prevalence and Bosnia prevalence to 
the upper limbs, torso, lower limbs, head and neck. Holm- Bonferroni corrected α level is included. 
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All variables examined were found to be significantly different. Prevalence was much 

higher in the vertebrae, pelvis and extremities in Bosnia and opposite in Israel for the torso 

and neck.  

 

Northern Ireland 

 

Hadden and colleagues (1978) examined data on civilian terrorism injuries in Northern 

Ireland. They examined injury to extremity areas. Comparing this data to the prevalence 

figures in Bosnia yielded significant differences in the hand and foot. This is shown in 

Table 6-105. Differences in trauma prevalence in the pectoral girdle, femur and humerus 

were not significant. 

 

 

Table 6-105: p-values for variables compared between Hadden et al. 1978 trauma prevalence and Bosnia prevalence 
to the hand, foot, forearm and tibia and fibula. Holm- Bonferroni corrected α level is included. 

Variable p- value α level (Holm-Bonferroni 

corrected) 

Hand 0 0.007 

Foot 0 0.0083 

Forearm 0.093 0.01 

Tibia and Fibula 0.128 0.0125 

 

 

For the hand variable, prevalence in the Bosnia sample was 8.3% (N= 48) and 55.6% in the 

(Hadden et al. 1978) sample (N= 18). The foot was found to have trauma in 2.1% if cases 

(N= 48) and 31.3% of Northern Ireland cases (N= 32). The forearm was injured in 35.4% 

of Bosnia cases (N= 48) and 61.1% of Northern Ireland cases (N= 18). The tibia and fibula 

were also examined between the two samples. In the Bosnia sample, 20.8% of cases had 

trauma to the lower legs (N=48). In the Hadden and colleagues‘ (1978) sample, 37.5% of 

cases had trauma (N= 32).  

 

Further data in the same paper examined 62 cases of trauma in the head and neck region. 

Comparing this to the Bosnia sample, a significant difference in skull trauma was found χ2 

(1, N= 110), p= 0.001. In the Bosnia sample, 47.9% of cases (N= 48) had trauma to this 

region. The terrorism sample was found to have skull trauma in 17.7% of cases (N= 62).  
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Paris 

 

Rignault and Deligny (1989) studied 11 terrorist bombings that occurred in Paris between 

December 1985 and September 1986. The data from these bombings was compared to the 

data from Bosnia. Four body regions were examined, with three found to be significantly 

different, shown in Table 6-106. 

 

 

Table 6-106: p-values for variables compared between the Rignault and Deligny (1989) trauma prevalence and Bosnia 
prevalence to the hand, foot, forearm and tibia and fibula. Holm- Bonferroni corrected α level is included. 

Variable p- value α level (Holm-Bonferroni 

corrected) 

Thorax  0 0.0125 

Upper limb 0.001 0.0167 

Head and neck 0.002 0.025 

Lower limb 0.079 0.05 

 

 

Aside from the lower limb, the variables were significant χ2 (1, N= 102). Prevalence 

figures are presented below in Table 6-107: Prevalence of trauma in the Bosnia and Paris 

samples. and Figure 6-42: Prevalence of trauma to the thorax, upper limb and head and 

neck in the Kravica warehouse sample and the 11 cases studied in the Rignault and 

Deligny study of bombings in Paris. 
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Table 6-107: Prevalence of trauma in the Bosnia and Paris samples. 

Variable/Sample  Bosnia  (N= 48) (Rignault and Deligny 1989) (N= 

54) 

Thorax  47.9% 3.7% 

Upper limb 68.8% 33.3% 

Head and neck 50% 20.4% 

 

 

 

Figure 6-42: Prevalence of trauma to the thorax, upper limb and head and neck in the Kravica warehouse sample and 

the 11 cases studied in the Rignault and Deligny study of bombings in Paris. Prevalence in these three variables was 

always higher in the Bosnia sample. 

 

 

6.8. Summary of the results chapter 

 

In this chapter, the results of the analyses performed on the data collected from the ICMP 

files were presented. Descriptive statistics were used to quantify the groups within the 

samples. These are found in section 6.1.  
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Pearson’s χ2 – Comparing presence of trauma between blast injury and gunshot 

wound cause of death 

 

The first analysis undertaken was examining associations between body region variables 

and cause of death (blast injury and gunshot wounds). This was accomplished using 

Pearson‘s χ2 and applying the Holm-Bonferroni method of correction for multiple 

comparisons. These tests showed that there were significant differences in some of the 

body region variables between the blast injury and gunshot wound causes of death. The 

variables which were significantly different between the two were: left forearm (medium 

effect size), left femur (small effect size), bilateral side trauma (small effect size), and 

unsided trauma (small effect size). In the case of left forearm, left femur and bilateral 

trauma, the prevalence was significantly higher in the blast injury cases. In the gunshot 

wound cases, the presence of unsided trauma was significantly different to that in blast 

injury. 

 

 

Cluster analysis 

 

When clustering the samples according to cause of death, the blast injury sample 

demonstrated a two-cluster solution, with only two cases in the second cluster (GL01/375B 

and GL01/541B). For the gunshot wound cases, a four cluster solution was found. The 

second, third and fourth clusters were also very small, with individual cases.  

 

Secondly, cluster of the gunshot wound cases (using a subsampling syntax) were analysed 

with the blast injury cases. Using this methodology, binary cluster analysis was undertaken 

a total of 11 times. The results indicated that the optimal number of clusters was 2, 4 or 5. 

The two cluster solution was most common, being the result of the analysis in 7 of the 11 

times it was undertaken. For each of these analyses, the majority of the cases clustered into 

one large group along with a small number of cases being assigned to subsequent clusters, 

sometimes just singular cases. These cases are identified for each analysis in 6.3.2 

Clustering cases of blast injury and gunshot wound deaths. 
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The final cluster analysis procedure undertaken was to examine clustering of the body 

region variables. The first analysis examined the clustering of the full data set, including 

the unascertained cases and those with both gunshot wounds and blast injury listed as 

cause of death. For the first analysis, with the entire data set, no discernible pattern was 

found. 

 

Subsequent analyses were performed using the subsampling syntax. The clustering 

analyses found that many of the variables clustered consistently with each other. These 

included the vertebrae, left ribs, right ribs and the bilateral siding variables. Additionally, 

the neurocranium, maxillofacial and mandible variables frequently clustered together. 

These are shown in Figure 6-43. 
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Figure 6-43: Clustering of variables in analysis of blast injury and gunshot wound injury in a sample from Bosnia. The 

torso variables and head variables clustered together in the analysis. 

 

Multiple correspondence analysis 

 

The multiple correspondence analysis identified variables which contributed most to the 

variance in the samples, across many runs of the analysis using a subsampling syntax. The 

variables identified were: neurocranium, mandible, left and right shoulder girdles, left 

upper arm, left ribs, left pelvis, right pelvis, right femur, left femur, maxillofacial and 

vertebrae. These were the variables which contributed most to the variance of the first, 
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second and third dimensions. The first and second dimensions represent the variables 

which are the trunk of the body. The third dimension represents the cranial variables. This 

is demonstrated visually in Figure 6-44: Summary of multiple correspondence analysis 

using the blast injury and gunshot wound sample from Bosnia. The first and second 

dimension represent the torso area and the third dimension represents the head area. These 

were then subsequently applied to binary logistic regression to examine the predictor 

power of these for use in identifying and differentiating blast injury from gunshot wound 

cases.  

 

 

 

Figure 6-44: Summary of multiple correspondence analysis using the blast injury and gunshot wound sample from 

Bosnia. The first and second dimension represent the torso area and the third dimension represents the head area.  
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Binary logistic regression 

 

Two methods of binary logistic regression were employed; the backward and the block 

enter methods. In the first, SPSS calculates which variables to remove from the model and 

produces an optimal model based on the variable statistics. In the block enter, the variables 

are decided by the researcher as to which to include in the model and is a process of 

elimination and addition through many iterations and can use variables predetermined 

based on hypothesis or other analyses. For the backwards method, the average Hosmer and 

Lemeshow‘s significance is 0.760, indicating good fit of the models produced. The 

classification percentage average is 74.86% indicating a positive increase in the 

classification power of the models.  

 

In the case of the block enter method, the average Hosmer and Lemeshow‘s significance is 

0.609, indicating good fit of the models produced. The classification percentage average is 

71.62% indicating a positive increase in the classification power of the models. 

 

It was found that there was no significant difference between the two methods; however 

these were produced with different body region variables. In the backward binary logist ic 

regression, limb variables were always selected for the model, with the exception of the 

vertebrae in one analysis. For the block method, the researcher employed the variables 

identified in the multiple correspondence analysis: neurocranium, maxillofacial, mandible, 

left shoulder girdle, right shoulder girdle, left upper arm, left ribs, right ribs, left pelvis, 

right pelvis, right femur and left femur.  

 

The interpretation of the results will be examined in the discussion chapter, relating the 

results to those in the clinical literature and within the context of forensic and biological 

anthropology. 
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7. Discussion 

 

The discussion chapter is separated into sections to address the aims and objectives of the 

project. The first part examines the relationships and associations within the sample from 

the Bosnian mass graves. Section two examines the clinical literature and compares the 

results from the Bosnian sample analysis to these. The third section explores the 

methodological considerations of the research and results, addressing the strengths and 

weaknesses of the approaches taken and the results achieved. Section four contextualises 

the results within biological and forensic anthropology to address the gap in the knowledge 

identified in the introduction chapter.  

 

Using a large sample of cases from the mid-nineties in Bosnia has yielded interesting 

results regarding the identification and differentiation of blast injury from other types of 

injury within the five mass graves studied. The cases from the graves were compared using 

various statistical methods to evaluate whether there were indicators capable of 

differentiating blast injury from gunshot wounds at the level of assemblages. Certain body 

regions were identified as being able to predict which group a case belongs to. Body 

regions such as the skull area, the limbs and vertebral areas differentiate between the two 

groups and have potential for future differentiation of trauma in large scale assemblages 

with suspected blast injury or gunshot trauma.  

 

 

7.1. Examination of the Bosnia samples  

 

The following section examines the similarities and differences within the samples from 

Bosnia, with a particular emphasis on comparing the blast injury cases and the gunshot 

wound cases to examine the differentiation between the two causes of death. 
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7.1.1. Comparing the body regions between blast injury and gunshot wound cases using 

Pearson’s 2 

 

When examining the body regions between the causes of death, certain patterns have 

emerged. The first method of analysis was using Pearson‘s χ2 to examine statistically 

significant differences between prevalence of trauma to the body regions. 

 

In the head region of the body, including the neurocranium, maxillofacial and mandibular 

regions, differences were seen in the prevalence of trauma with a higher prevalence seen in 

the gunshot wound cases. Despite the higher prevalence, these were not statistically 

significant differences. 

 

Based on the knowledge that blast injury produces a diffuse pattern of injury (Hadden et al. 

1978; Boffard and MacFarlane 1993; DePalma et al. 2005), it was expected to see a high 

proportion of trauma to this region, also particularly due to the use of rocket-propelled 

grenades in the sample from the Glogova graves (Wiedeman 1994; Woebkenberg et al. 

2007). This type of weapon incorporates the use of an anti-tank grenade which functions 

similar to the hand grenade, made to fragment and cause maximum injury, which one 

would expect to produce a diffuse pattern of injury in the body which would consequently 

include the head. 

 

For the gunshot wounds, it was expected to see a large number of cases with head trauma. 

The head is an area which is frequently targeted in shootings as it is a region which inflicts 

maximum damage (Pikus and Ball 1995; Boström and Nilsson 1999; Hsee and Civil 2008). 

In the context of war, expecting a high number of head wounds would be logical. 

Particularly in the Bosnia war context, court documentation demonstrates that many men 

were shot in the head (along with other possibly targeted regions such as the legs), which 

can be assumed to have the purpose of either disabling or killing instantly (Anon. 2000, 

2010a, 2010b, 2012a, 2012b).   

 

Additionally, a second body region, trauma to the vertebrae was found to have a high 

prevalence in the gunshot wound cases. This was not significantly different between the 

two causes of death but the difference between the two could likely again be attributed to 

the use of targeted shots to disable a victim. Additionally this can be an indication that this 

was not combat trauma as combat is undertaken predominantly in a forward facing 
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position rather than with the combatants turned around. This is more likely to indicate 

either a gunshot directed specifically to the back or with the victim turned around, 

potentially fleeing. In the case of the blast injuries, it is also possible that the victims were 

turning around to protect vital organs situated at the front of the body such as the heart, 

stomach, intestines and others which when hit can cause catastrophic injuries with 

implications to life. Another consideration, which includes the head area, is protecting the 

head area by curling into a foetal position, likely with the back facing towards the assault, 

and the head tucked in for protection. Again this position is likely to incur a larger number 

of injuries to the back and is often found in cases of gunshot wounds with a higher 

prevalence of gunshots to non life threatening regions, such as the limbs (Aderounmu et al. 

2003; Cowey et al. 2004; Dougherty et al. 2009; Akhator 2010).  

 

Left forearm trauma was identified as being significantly different in its prevalence 

between the blast injury cases and the gunshot wound cases. In this case, 35.4% of the 

blast injury cases were found to have left forearm trauma, with 6.1% in the gunshot wound 

sample. For this body region, the trauma was present 5.8 times more often in the blast 

injury group. This is linked to the diffuse way in which explosives injure by aiming to 

cause as much trauma as possible over a large area. This is also a difference in the specific 

aim of hitting vital areas, with gunshot use being targeted to certain areas rather than in 

blast injury where the spread of explosive materials is not controlled by the perpetrator and 

leads to a diffuse pattern of injury (Hadden et al. 1978; Boffard and MacFarlane 1993; 

DePalma et al. 2005).  

 

For the inferior portion of the skeleton, presence of trauma to the left femur was 

significantly different between the causes of death. In this case, the blast injury causes of 

death had more cases of left femur trauma, consistent with the literature indicating a high 

prevalence of trauma to lower limbs in cases of blast injury in the majority of contexts, as 

opposed to gunshot cases. The number of left femur trauma in the gunshot cases is 

surprisingly low with only 67 in a sample of 443. This is likely to be explained by the 

choice of body region made to inflict most damage and lethality rather than injury, whereas 

blast produces a diffuse pattern of damage because of shrapnel ballistics and is more likely 

to affect soft tissues.  

 

The left tibia and fibula did not exhibit a difference between the two causes of death, 

which is interesting due to the close proximity of this body region to that of the left femur, 
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which is significantly different in blast injury cases. This may be related to the 

biomechanics of these bones, with testing having shown that the tibia is more resistant to 

forces than the femur (Evans and Bang 1967). Based on shrapnel ballistics it can be 

assumed that the left tibia and fibula would be likely to be affected by blast injury; 

however this is not the case. In the sample from the Kravica warehouse, the choice of 

rocket propelled grenade indicates that the launching of this weapon was likely to result in 

a targeting towards the general position of the upper body, as demonstrated by the entry 

points through windows and doors and the impact points waist-level and up that were 

found on the back wall of the warehouse found with human tissue embedded (Headley 

2001).  

 

In both the blast injury and gunshot wound groups, foot trauma on both the left and right 

was rare. This is not an unexpected finding as the prevalence of foot trauma is rare in 

shootings and found predominantly in landmine injuries (Jacobs 1991; McGrath 2000; 

Meade and Mirocha 2000; Khan et al. 2002; Bilukha 2006; Bilukha 2007, 2008; Soroush et 

al. 2008), albeit can be encountered when looking to disable the victim. Additionally, in 

blast injury cases, foot trauma is predominantly associated with land mine incidents in 

civilians or in under-vehicle IED explosions in combat contexts (Bir et al. 2008; McKay 

and Bir 2009; Ramasamy et al. 2011; Ramasamy et al. Ca.2009).  

 

Conversely, body regions which were not significantly different between the causes of 

death were also observed. With patterns of injury in blast scenarios having a high 

prevalence of extremity injury it was expected to see a difference here in comparison to the 

gunshot wound cases. However, this was not the case (apart from the left femur). It is 

believed that the high prevalence of trauma to the femur is a reflection of the use of rocket-

propelled grenades in the Bosnia cases of blast injury. Particularly the weapon was aimed 

at a torso height, which could have caused damage to associated areas such as the upper 

portion of the lower limb.  

 

Significant differences in the prevalence of neurocranium trauma were expected. With a 

large number of victims with gunshot wounds as the cause of death, a significant 

difference between the blast injury and gunshot causes of death was expected, potentially 

due to specific targeting of this body area in the case of the latter. This was not seen. A 

potential explanation for this difference could be the lack of specific targeting of the 

cranial area with a goal of rather disabling the person by shooting them in the back, 
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however this is speculation. Trauma to the vertebrae was present in 192 cases, confirming 

this however without significant difference between the two (with only a small prevalence 

difference of 8.8%).  

 

No difference was found in the torso area, the left and right ribs, as was expected, 

particularly associated with the vertebral trauma in the gunshot cases. The difference 

between the two causes of death was quite small on both the left and right sides, with only 

5% and 6.3% prevalence difference, respectively. Interestingly, despite the larger 

prevalence of trauma to the vertebrae in the gunshot wound cases, trauma to the rib body 

regions were more common in the blast injury cases. This is a reflection of the diffuse 

nature of the fragmentation of a grenade, aiming for maximum spread of the grenade 

contents.  

 

In the comparison of the two causes of death, the siding variables were examined to note 

any differences in the pattern and prevalence of the injuries. No difference was found 

between the left and right, but bilateral trauma was significantly more common in the blast 

injury cases from those with gunshot wounds. This fits with the clinical literature results 

which indicate no side preference in blast injury, due to the nature of ballistics of 

explosives which are not targeted but aimed at reaching maximum coverage of the body at 

once. Trauma to the unsided regions of the body was significantly more prevalent in 

gunshot wound cases. This is due to higher prevalence of vertebral, neurocranium, 

maxillofacial and mandible trauma in the gunshot cause of death group.  

 

 

7.1.2. Clustering within causes of death 

 

Clustering of the blast injury and gunshot wound samples was performed to examine any 

patterns within each of the cause of death samples. 

 

7.1.3. Blast injury 

 

The blast injury cases were analysed using binary clustering and yields a two cluster 

solution according to the agglomeration schedule. With this solution, all cases were 

grouped into one large cluster and two cases were clustered in the second.  
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The cases which clustered separately from the large cluster were examined to interpret why 

these cases were different. The first case (GL01/375B) was a case from the Glogova 1 

mass grave. This was a complete body with trauma to the neurocranium, maxillofacial, 

mandible, left shoulder girdle, left upper arm, left forearm, left hand and left ribs. The 

second case (GL01/541B), also from the Glogova 1 grave and a complete body, had 

trauma on the neurocranium, maxillofacial region, vertebrae, left shoulder, left upper arm, 

left forearm, left pelvis, left femur and right tibia and fibula.  

 

Comparing these two cases to the others in the data set used for clustering, it is noticeable 

that these have trauma in areas which are not commonly seen in the other cases. For the 

first cluster, maxillofacial and mandibular trauma is only seen in 26.1% and 17.4% of the 

cases, respectively. Additionally, in the case of GL01/541B, vertebral trauma was also 

noted, again something found to be infrequent in the first cluster. In the previous analysis 

using Pearson‘s χ2 this variable was significantly associated with gunshot wound causes of 

death rather than blast. In case GL01/541B, the left pelvis and right tibia and fibula had 

trauma, variables which had a low prevalence with the blast injury (23.9% and 21.7%, 

respectively). These cases are also seen as grouping together in further analyses when 

subsampled and examined with the gunshot wound cases, indicating possible outliers.  

 

For the first cluster, no apparent patterns were discerned when grouping the cases 

according to the agglomeration schedule. Without using the agglomeration schedule to 

quantify mathematically the difference between the clusters results in more clustering 

within the first group. Six clusters appear visually with a seventh including the two cases 

previously identified. Returning to re-examine the agglomeration schedule, there is a larger 

gap between a six and seven cluster solution than most, except the two cluster solution. 

This highlights that this method may not be ideal if using the agglomeration schedule as 

the sole criterion for determining the number of clusters in the solution. Matters are 

confused further when examining where the cluster separations are according to the cluster 

membership table, which calculates this mathematically. In this case, the separations were 

not at the visually identified points and it was deemed it best to examine the frequencies of 

the variables for each cluster as it was assigned mathematically for patterning rather than 

visually in an effort to maintain statistical accuracy. Cluster 3 and 5 had trauma to the 

neurocranium, maxillofacial region, mandible, vertebrae, left shoulder girdle, left upper 

arm, left forearm and left hand. Additional variables were split between the two groups but 
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the left side of the body clustered together, pointing at a body positioning difference when 

the explosives impacted the victims.  

 

Cluster one has a high prevalence of torso trauma, with trauma to the vertebrae, right 

shoulder girdle and left ribs present in many cases. Lower limb trauma was not seen in 

prevalence higher than 20% of the cluster (left tibia and fibula). This corresponds to the 

dead having been struck by the grenade blasts in the torso area, possibly the lower torso 

due to some involvement of the pelvic area. For cluster two, the prevalence of trauma to 

the skull area is high, with the neurocranium being affected 58.3% of the time, a figure 

more associated with the gunshot wound pattern of injury. This could reflect a different 

positioning within the Kravica warehouse during the attack, for example being closer to the 

front of the warehouse where the RPGs were entering, before their velocity dropped and 

gravity would bring them down. The fourth cluster had a high prevalence of trauma to the 

left ribs, pelvis, and both femurs. This small group of four cases exhibits a more typically 

diffuse and bilateral pattern of trauma, along with the high prevalence of lower limb injury. 

However, this lower limb injury is highly prevalent (50% or more) in both femurs, 

however not in the tibia or fibula. This demonstrates that for cluster 4, the point of impact 

for the explosive munitions was towards the middle of the body, diffuse and bilateral. This 

group‘s pattern is typical of most patterns of injury in civilian bomb blast and different 

than that found in the gunshot wound group and in the literature on gunshot deaths. Cluster 

6 was a sole case whose trauma occurred on the right side of the body making this case 

unique when comparing to the others. Cluster 7 are the two cases previously identified 

(GL01/541B and GL01/375B), once again standing out from all other cases and having 

lower limb trauma which includes the tibia and fibula, on both sides, which is contrary to 

the other clusters, an indication of differing position at death from some of the other 

groups, potentially further away from the original point of entry. This however may not be 

the case as points of impact on the back wall of the warehouse were clearly found in the 

forensic investigations and were located at torso and head height (Headley 2001).  

 

 

7.1.4. Gunshot wound cases 

 

The large size of this sample clearly exemplifies the difficulty in assessing a dendrogram 

of this size, particularly where the difference between the groupings can be very small, 
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when the distances are scaled by SPSS. The distance between the consecutive vertical bars 

can be difficult to interpret when there are a very large number of cases and in this case 

visual confirmation of the solution was near impossible. Relying on the agglomeration 

schedule becomes the only option in a sample of this size, leading the current researcher to 

conclude that cluster analysis is best suited to smaller samples. Based on cluster 

membership output, the cases which stand out as being different from cluster 1 are from 

the Ravnice grave, one from Lazete and a sole case from Glogova 1. For the second 

cluster, trauma to the neurocranium, maxillofacial, mandible and vertebrae are prevalent. 

Right femur and left tibia and fibula were also found in 2 of the 3 cases.  

 

The third cluster had a high prevalence of trauma to the neurocranium and all cases had 

vertebral trauma. Right shoulder and left upper arm trauma was also prevalent as well as 

the right ribs and pelvis. For these cases, trauma in the left and right femurs was noted in 

all five cases, as well as commonly in both side tibiae and fibulae. The fourth cluster was a 

single case with trauma to the neurocranium, maxillofacial, left shoulder, right forearm, 

left and right hands, right ribs, left and right pelvis, left femur. For all four of the clusters, 

trauma was bilateral.  

 

Examining the clusters and their cases does not yield a pattern which is different from 

those in cluster 1. There is however, a predominant prevalence of trauma to the skull area 

could potentially indicate specific targeting to this area, as previously discussed in 7.1.1.  

 

 

7.1.5. Using cluster analysis to differentiate between blast injury and gunshot wound 

causes of death 

 

The purpose of this part of the analysis was to determine if this statistical method finds a 

difference between the groups and accurately places the cases into separate clusters. The 

optimal cluster solution number varied between 2 and 5 clusters, with the 2 cluster solution 

being the most common. Examining these clusters does not show differentiation between 

the two samples. In the analyses which have more than 2 clusters in the solution, the 

groupings identified cases which were different from the others. As previously seen in the 

blast injury cluster analysis, the cases GL01/375B and GL01/541B have appeared in 

distinct clusters either together or with other cases. 
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For the analyses yielding solutions with more than two clusters, none of the solutions 

indicate proper differentiation. Most of the clusters include both causes of death and are 

usually comprised of only a small number of cases. The cluster including the majority of 

cases includes both. It is concluded that this technique does not differentiate well between 

the gunshot wound and blast injury causes of death. Using this technique to recognise and 

separate cases between the causes of death is unlikely to yield good results as demonstrated 

over multiple analyses which did not point to a distinct pattern between the two. This could 

point to a similarity between the two groups, however this is not likely as there is 

demonstrated statistical differences between the two when applying other statistical 

methods. It is concluded that the choice of method was inappropriate to differentiate any 

differences in the patterns between the two causes of death. 

 

 

7.1.6. Clustering body region variables- blast injury and gunshot wound deaths  

 

Moving beyond comparison of cases, cluster analysis can be used to compare variables to 

examine patterning within these. The analysis using subsampling syntax was performed ten 

times to determine if there was a patterning within the variables.  

 

The variables of vertebrae, left ribs, right ribs and bilateral siding clustered together during 

the analysis. This is likely related to their close proximity in the body and likelihood that 

when trauma is present in one region there is associated trauma in a nearby body region. 

This is particularly likely with the blast injury cases as the pattern in these situations tends 

toward a diffuse spread of trauma and is likely to indicate associated body region variables 

would have trauma present. Three other variables also clustered together frequently, the 

neurocranium, maxillofacial and mandible body regions. Again, this is due to close 

proximity in the body and occurring in the small areas associated closely together. 

Additionally, the gunshot wound cases which exhibit trauma to this region also have more 

than one area of injury at once. This is seen in cases which demonstrate entrance wounds 

to the back of the head and associated maxillofacial trauma or mandibular trauma due to 

the exit wound. As such, it is not unexpected that for this body region, the three variables 

cluster closely. When performing the analysis including the siding variables, the bilateral 

siding variable was the only one which seemed to differ from the others. Additionally, this 

variable clustered predominantly with the vertebrae, left ribs and right ribs variables. This 
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is to be expected with the blast injury cases and their more diffuse pattern. Examining the 

prevalence of the left and right ribs, these were more associated with blast injury cases and 

as such more likely to show a bilateral siding pattern for the trauma due to typical diffuse 

patterning in these cases. Conversely, vertebrae trauma was found in a higher number of 

cases of gunshot wound deaths (N= 192). As such bilateral siding seems to be associated 

with the three variables and both with the gunshot and blast injury causes of death. 

 

Overall, using cluster analysis did not yield differentiation between the two causes of 

death. It has however shown that there are variables which associate closely together which 

could potentially be employed in further statistical testing (which will be explored with 

multiple correspondence analysis and binary logistic regression).  

 

 

7.1.7. Multiple correspondence analysis of blast injury and gunshot wound cases 

 

Multiple corresonpondence analysis was used to identify variables which contributed to the 

variance of the samples and which differentiated between the two causes of death in 

graphical examination of clouds of cases. These variables serve as potential indicators 

which can differentiate between the two types of trauma examined in these samples. This 

part of the analysis was undertaken using syntax to randomly subsample from the blast 

injury and gunshot wound cases. Interpretation of the results is based on the object points 

labelled by cause of death and by examining the discrimination measures across three 

dimensions to see which account for most variance in the dimensions, and the patterns in 

the data. Across three dimensions, between 34% and 36% of the variance is explained.  

 

The results of the analyses varied slightly over the course of six repeated analyses. This is 

likely due to the subsampling that was undertaken to ensure that the samples for each of 

the two causes of death were of approximately the same size. This can have impacted on 

the results, potentially yielding results which were different if the composition of the 

samples was vastly different. Performing the analysis multiple times was used to counter 

this effect and to ensure accuracy of the results. 

 

To assess which variables would discriminate between the causes of death, the object 

points labelled by cause of death were examined. Identifying which dimensions had the 
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best discrimination potential, the associated body region variables were identified. Over 

the six analyses, the dimensions which consistently showed best discrimination between 

the causes of death were the first and third dimensions, indicated by a visual separation of 

the cases across the axes of these dimensions. Although differentiation between the causes 

of death weren‘t always distinct, there were emerging patterns on the extremes of each of 

the dimensions with some overlap in the middle of the clouds. This is likely due to the 

percentage of variance within the dimensions explained, which ranged from 34% to 36%, 

which is not a large number but still accounts for some of the differences within the sample 

and inferences can be made which can contribute to subsequent analysis phases.  

 

The variables which are noted as having contributed most to the variance of dimension 1 

are noted in Table 6-49. Dimension 1 represents the trunk area, with the rib, pelvic, 

vertebral and shoulder girdle variable being important in the differentiation of the causes of 

death in the analysis. In the case of the left ribs and left upper arm, it was found that these 

differentiate on dimension 1 in but was associated with this dimension in samples which 

did not show great differentiation between the two causes of death. As such, this weakly 

associated with the causes of death. Right ribs contributed as well to variance on 

dimension 1 in many of the analyses, but also contribute to dimension two simultaneously. 

As such, the discriminating effect of this variable is weakened because of this and may not 

be as accurate at separating the two causes of death. The left and right pelvis discriminated 

very well on dimension one, with no concurrent contribution to the other two dimensions. 

Examining the prevalence for these variables, it is seen that this is higher in the blast injury 

cases which could indicate that these variables can discriminate between the two causes of 

death. This result follows previous clinical conclusions related to the diffuse nature and 

characteristic of blast trauma which contrasts with the gunshot wound cases in the Bosnia 

sample which had higher prevalence of injury to body areas with more vital organs such as 

the head region.  

 

 

The skull region variables were strongly associated with the first dimension and in these 

cases had little contribution to the second dimension. Additionally, these were found as 

contributing highly to the variance in comparisons of dimensions 1 and 3, where both the 

dimensions separate the causes of death adequately. Referring back to the previous 

analyses using Pearson‘s χ2 these variables were seen in high prevalence in the gunshot 

wound cases, although not significantly once the Holm-Bonferroni correction was applied. 
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Examining the cluster analysis of the body region variables, these clustered together. This 

can be explained by the close bodily proximity and association of gunshots specifically 

aimed at the head region with possible intention to inflict maximum damage. This 

demonstrates that solely using multiple pairwise χ2 would have no identified these 

significant differences and using a multivariate statistical approach was better suited to 

identifying important associations between the variables. 

 

Examining body region variables which associate with dimension 3, the skull region 

variables demonstrate good discrimination and association with each other. The left arm 

variables were also found to discriminate on dimension 3, particularly the left upper arm. 

Examining the prevalence of this variable it is associated with frequency in the blast injury 

cases. Using the Pearson‘s χ2 this variable was significant before Holm-Bonferroni 

correction. The frequency in the blast cases is double that of the gunshot wound cases and 

is a good discrimination measure in the multiple correspondence analysis, indicating a 

potential indicator to differentiate between the two causes of death. This will be further 

applied in the next section. Additionally, in both the first and third dimensions, many of the 

variables found were related to the extremities (Hadden et al. 1978; Rignault and Deligny 

1989; Boffard and MacFarlane 1993; Hayda et al. 2004; Martí et al. 2006). This is in 

keeping with the literature which indicates prevalence of extremity trauma associated with 

blast injury contexts.  These were also identified in the cluster analysis, but the multiple 

correspondence can aid in visually assessing the discrimination power and association of 

the variables by also examining the object points and the associated clouds which 

demonstrates how much overlap there is in the causes of death and give an indication of 

how much the associated variables differentiate the two groups. In this analysis, the 

dimensions which differentiate between the two causes of death were dimensions 1 and 3. 

Dimension 1 represents the torso area and dimension 3 the cranial area. These variable 

groups discriminate well between the two causes of death and serve as an indicator of the 

areas where the patterns of injury between the blast injury and gunshot wound cases differ.  

 

Subsequently, these variables are applied in a binary logistic model to test their potential as 

indicators of blast injury, which will be examined in the following section.  
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7.1.8. Binary logistic regression 

 

Binary logistic regression was employed to test the indicators identified in the multivariate 

graphical methods of cluster analysis and multiple correspondence analysis to differentiate 

between blast injury and gunshot wound cases.  

 

Binary logistic regression- backward stepwise method 

 

Using the backward stepwise method of logistic regression in SPSS 19.0, the analysis was 

repeated five times and had differing results for each analysis. The analysis was repeated 

five times to ensure that the subsampling could provide a randomised sample of the 

gunshot wound cases, as the number of cases was much higher than the blast injury ones. 

This is likely due to the composition of the sample, which is randomly chosen and varies 

from analysis to analysis. Employing this method yielded accurate classification ranging 

from 67.8% to 81.6% and the Hosmer and Lemeshow‘s R2 value from 0.529 to 1.000. 

Examining the variables which SPSS chose for each model helped to identify which model 

was likely to be the best by looking at the significance value of the Wald statistic. One 

particular analysis, the fourth had all variables with a significant p value, meaning that 

these predictors contribute significantly to predicting the outcome (cause of death). The 

variables included in the model were the vertebrae, right shoulder girdle, left  forearm and 

left femur.  

 

In this model the Hosmer and Lemeshow‘s R2 is 1.000, indicating that this set of predictor 

variables predict the outcome perfectly. To interpret the model, examination of the Exp(B) 

value gives odds ratios which are very useful. For the vertebrae variable, Exp(B) = 0.215 

which indicates that given the absence of trauma to the vertebrae, the odds that this is a 

case of gunshot wound death decrease. Conversely, presence of trauma in the other three 

variables increases in odds of the outcome being blast injury based on the pattern. To 

predict the probability of the case being a gunshot wound related death, for this model, the 

skeletonised remains examined would exhibit a wound to the vertebrae but none to the 

limb variables which are examined in the model (right shoulder girdle, left forearm, left 

femur).  
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Examining the third analysis yields similar results with the exception of the omission of the 

vertebrae variable. In this case, the classification accuracy is of 73.7% with a Hosmer and 

Lemeshow‘s statistic of 0.907. For this analysis, three variables are included in the model, 

the right shoulder, the left forearm and left femur. This is similar to the previous model. 

For the right shoulder, if no trauma is seen, it is 3.587 times more likely to be a case of 

gunshot wound related death. For the left forearm and the left femur variables, the odds 

ratios are, respectively, 9.635 and 12.118. Trauma seen in these body regions indicates 

blast injury rather than gunshot wound deaths.  

 

Both these binary logistic analyses using the backward stepwise method yield a suitable 

model with correct classification over 71%, indicating that extremity variables are 

significant in predicting the type of trauma. Particularly, presence of trauma to the right 

shoulder, left forearm and left femur variables indicate probability of the presence of blast 

injury related death.  

 

 

Binary logistic regression- block enter method 

 

Comparatively to the backwards step method, indicators can be chosen by the researcher to 

include in the model. The indicators can be chosen based on research questions or previous 

analysis. Using the multiple correspondence analysis previously undertaken, variables 

contributing to the variance in the samples were identified and tested as predictors of blast 

injury in the samples. Five analyses were conducted using these indicators and yielded 

varying results. Despite employing the same indicators every time, it is likely that variation 

in the Hosmer and Lemeshow‘s goodness-of-fit statistic and classification accuracy was 

due to subsampling which produced a sample using different cases for each of the 

analyses. This methodology was compared with the previous binary logistic procedure to 

determine if it is best to choose the indicators in this case using multiple statistical tests or 

to simply employ the statistical software to determine the most accurate indicators (see 0).  

 

Goodness-of-fit was evaluated with the Hosmer and Lemeshow‘s statistic and the best 

model was found to be from analysis #4, which had 70.2% classification accuracy. The 

body region variables which were identified as significantly contributing to the model were 

the right shoulder girdle, the right pelvis and the left femur.  
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When trauma to the right shoulder girdle was present, this indicated an increase in the 

probability of the case being blast injury. The Exp(B) value indicates that the presence of 

trauma to the right shoulder girdle increases the odds of the case being blast injury 7.35 

times. For the right pelvis, presence of trauma indicates an increase of 4.13 times in the 

probability of the trauma being blast injury. The left femur body region variable was 

associated with an Exp(B) value of 0.170, again indicating that when the outcome of the 

variable changes from presence to absence, the odds of the trauma being blast injury 

decreases. In fact, when trauma is present in the left femur, the odds of blast injury 

increase 5.88 times.  

 

The next best model found was the one from analysis #3, which had 70% classification 

accuracy and a Hosmer and Lemeshow‘s R2 value of 0.626. For this analysis, two of the 

entered variables were found to significantly contribute to the model, the left femur and 

vertebrae. For the left femur, the Exp(B) value was 0.186, indicating that when the 

predictor outcome reaches a value of 1 (or absence), there is a decrease in the odds of the 

trauma being blast injury (thusly indicating potential gunshot wound related trauma). This 

indicates a 5.38 times increase in the odds of having blast injury when trauma to the left 

femur was present. For the vertebrae variable, the Exp(B) value is 2.565, indicating that 

absence of trauma to the vertebrae corresponds to an increase in the odds of blast injury 

trauma being identified. This can conclude that presence of vertebral trauma is associated 

with gunshot wound cases.   

 

 

Comparing the backwards stepwise method and block enter method 

 

As both methods of building the predictive model were investigated, the results of these 

were compared to note any differences in the outcome over five analyses. No significant 

differences were found. For this type of statistical application, the difference between the 

two would lie in the previous assumptions of the researcher. In the context of this research, 

the previous assumptions came in the form of exploratory statistical testing using cluster 

analysis and multiple correspondence analysis to examine any patterns in the data. Testing 

the predictor variables identified in the multiple correspondence analysis yielded similar 

results to that accomplished by using a backwards stepwise method built into SPSS 19.0. 
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Classification percentage was found to be higher using the backwards stepwise method but 

not significantly so.  

 

Comparing the variables which were identified in the backwards stepwise method, these 

were similar to those employed in the block enter method, having been previously 

identified in the multiple correspondence. The sole difference was the inclusion of the skull 

region variables in the block enter model however these were not shown to significantly 

influence the model. Only once did a skull region variable influence a block enter model 

and this was in the analysis with the lowest Hosmer and Lemeshow‘s goodness-of-fit 

statistic. Aside from this, the variables which were predominantly selected by SPSS in the 

stepwise method and those which contributed significantly in the block enter model were 

extremity variables. This is in line with the literature regarding blast injury patterns which 

indicates a predominance of extremity injury in blast contexts. This is also converse to the 

pattern found in the gunshot wounds in the Bosnia sample, which had a higher prevalence 

in maxillofacial, mandible and vertebrae body regions.  

 

 

Cross-validation  

 

Cross-validation of the studies could not be undertaken presently as the availability of 

another sample could not be determined during the time of the research. Samples of known 

blast injury in skeletal assemblages are few and far between and the current sample appears 

to be the only one which could be made available for research during this time period. 

 

Verification of the results from the statistical analysis will be a subsequent area of research 

once a suitable sample can be located. Replication of the methodology and predictors of 

blast injury will be undertaken. 
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7.2. Applicability of the statistical methods for differentiation of trauma in large scale 

assemblages 

 

One of the aims of this research is to explore the application of multivariate statist ical 

methods to large scale assemblages, as seen in the Bosnia samples. The purpose of these 

tests was to examine any patterns and the results of these for comparison to previously 

established knowledge which was located in the clinical literature. Additionally, these tests 

were employed together to identify the patterns within the data and discover any 

differences between the location of trauma for the blast injury and gunshot wound causes 

of death. The purpose was to create a full complement of analytical methods which 

examine the assemblages as a whole rather than at the individual level. 

 

The first analysis of the samples involved using Pearson‘s 2 to compare the prevalence of 

trauma to the body regions, comparing between blast injury cases and gunshot wound 

cases. Differences in the prevalence of trauma in various body regions were identified 

however, pairwise testing with this method proved problematic when used consecutively 

due to the need for a correction which affected the amount of tests being significant. This 

can mean that differences in the variables can be missed, particularly if there is an 

interaction of multiple variables which show a difference between the groups. Patterns 

within the data which can contextualise the finds cannot be seen by individual pairwise 

testing.  Trauma analysis in large assemblages may require analysis of interactions to 

uncover patterns leading to identification of trauma.  

 

The cluster analysis demonstrated some patterns within the data but it was found that the 

most useful analysis was undertaking the clustering of the body region variables which 

permitted to demonstrate which of the variables clustered together and could potentially 

serve as a way of differentiating between groups. Particularly, the skull region variables 

were found to cluster together which is likely a reflection of proximity of these within the 

body. This also indicates that the pattern of injury found in these body regions differs from 

those found in the other body regions enough to stand out in the visual assessment and 

could indicate differences which can be used for the identification of trauma. Torso 

variables clustered together as well, a reflection of proximity of these body regions to each 

other. The most striking result from the cluster analysis of the body region variables was 
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the consistent separation of the bilateral siding variable from the others, indicating a large 

difference was found. Examining the prevalence of bilateral trauma in the blast injury 

sample, it was found to consistently be higher than in the gunshot group. This supports the 

literature and the conclusion that bilateral trauma is more likely to indicate blast injury in a 

questioned sample. 

 

Examining the individual causes of death, or the combination of the blast injury and 

gunshot wound, did not yield any distinct patterns within the data. Ideally, a distinction 

between blast and gunshot wound trauma was sought to demonstrate the difference 

between the two. Visually, no immediate distinction was found, not necessarily indicating 

that there are no differences between the cases but potentially indicating that using cluster 

analysis was not suitable to analyse the differences. Representing the cases using vector 

geometry may not take into account the subtle differences existing or may need additional 

processing or combination with other techniques.  

 

The use of multiple correspondence analysis in the context of the Bosnia samples proved to 

contribute valuable conclusions regarding the body region variables with large influence 

on the patterns in the samples. This method of exploratory analysis of samples can be of 

use in the analysis of large scale assemblages of skeletonised remains which need 

contextualising, due to the use of multiple variables at once which can take into account 

interactions between these. Examining individual sets of remains rather than a whole 

assemblage is of particular concern in contexts such as human rights investigations. By 

employing these exploratory methods with the samples from Bosnia, distinctions were 

identified between groups. Trauma to the individual is of value but it is the group which is 

likely to give insight into the nature of the trauma. Finding uniform trauma patterns within 

the graves lends confidence to the conclusions that they were all killed similarly, 

strengthening the argument about the nature of the trauma and potential human rights 

violations. Examining prevalence of trauma within these groups can help explain what 

occurred at the group level, which is often overlooked in favour of examining trauma at the 

individual level. In this research, examining the question of whether or not combat is at the 

source of the injury patterns is important, due to consistent questioning of this in current 

court cases (ICTY 2010a,ICTY 2010b,ICTY 2012a,ICTY 2012b). Conclusions can be 

explored and inferences made using the examination of one set of skeletonised remains 

however, examining the whole of the assemblage will strengthen the conclusions and 
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particularly so when employing statistical methods which can serve to quantify 

associations, patterns, similarities and differences within groups and between groups. 

 

In the examination of the results from the multiple correspondence analysis, quantification 

of the variables which had been identified in the discrimination measures was sought. At 

this point, pairwise Pearson‘s 2 tests had already been performed and highlighted 

statistically significant differences in the variables of interest when re-examining the 

Pearson‘s 2 . Problematically, statistical significance had to be ruled out in many of the 

tests due to the employ of pairwise testing which necessitated the application of Holm-

Bonferroni corrections. The variables which were significant and remained significant 

following correction were the left forearm, left femur, bilateral siding, and unsided 

variables. Referring to Table 6-49, it is seen that many more variables were identified as 

discrimination measures in the analyses. Particularly, those found to contribute most 

variance on Dimensions 1 and 3 include variables which were not found to be significantly 

different when using pairwise Pearson‘s 2.  

 

Pairwise variable testing subsequent to multiple correspondence analysis could be an 

alternative to examine significance between the variables indentified in the discrimination 

measures. Returning to the results of the pairwise Pearson‘s 2 tests, we see that some of 

the variables identified in the discrimination measures portion of the multiple 

correspondence analysis would have significant differences between the two causes of 

death, likely contributing to the dimension variances. Additionally, part of correspondence 

analysis methodology employs the 2 statistic, without having to employ consecutive 

pairwise testing. It is concluded that using the Pearson‘s 2 statistical test in combination 

with multiple correspondence analysis is useful for exploring the strength of the 

associations or differences between the groups once identified in the discrimination 

measures portion of the analysis, rather than employing this technique on its own or before 

other statistical analyses, as demonstrated in this work. 

 

The last statistical technique employed was binary logistic regression. This was utilised to 

explore the possibility of a predictive model to identify trauma within the Bosnia sample 

and which could potentially be applied to future analysis. Using SPSS 19.0 permits the 

researcher a variety of approaches to build the final model, and comparing these two in 

section 6.5.3 yielded similar results for the two final models. The binary logistic regression 



314 

 

models clearly indicated that trauma to the limbs was associated with blast injury and that 

these predict a probability of classification in the blast injury trauma group over the 

gunshot wound trauma group. Again, referring back to the tests made in the Pearson‘s 2 

analysis, the variables significantly contributing to the backwards stepwise model were 

found to be different to those identified as significantly different in the pairwise Pearson‘s 

2. Solely using the variables identified in the Pearson‘s 2 test to attempt to identify blast 

injury in an assemblage would yield inaccurate results and would not be suitable to attempt 

this. It is concluded that employing the pairwise Pearson‘s 2is inappropriate due to the 

need for a correction factor which then prevents significance from being identified due to 

the overly conservative α-level.  

 

These results can serve to further analyse cases from the same conflict, particularly the 

cases with which there may have been some argument as to the final nature of the trauma. 

Strictly assessing the application of this technique for this research, the author believes that 

its results are useful and have potential for further use and with other assemblages for the 

analysis and prediction of group classification.  

 

 

7.3. Comparison of Bosnia sample with previously published literature 

 

An important aim of the current research is to establish whether the patterns of injury in the 

Bosnia sample are the same or differ from those in previously published literature, 

particularly to address any questions regarding the nature of the trauma in the sample. The 

main objective is to identify any similarity or differences in the patterns of the Bosnian 

sample and those found in various blast situations, particularly those related to combat. 

This seeks to address whether or not the injuries seen in the Kravica warehouse victims 

were related to combat. Furthermore, comparisons are made with the patterns of injury 

from differing contexts, seeking to identify similarities and differences which can aid in the 

identification of blast injury in skeletal assemblages in future. 

 

To compare and contrast claims made in published literature with observations derived 

from the current project, it was necessary to re-code the data to ensure the body regions 

corresponded to the same as those found in the literature. It was found that the literature 

contained less specific data, with the prevalence reported for larger body regions. This 
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represents one of the difficulties in using the medical literature, which focuses on soft 

tissue and body systems, such as the nervous system, musculoskeletal system, respiratory 

system and nervous system. This creates issues when wanting to compare the much more 

detailed level of data from the Bosnia sample and that which is published in the clinical 

literature. This is a reflection of the purpose of the clinical literature and its aims of 

medical management dissemination and focus on the likely more life threatening injuries to 

soft tissue which predominate in blast injuries (Bowyer 1996; Rowley 1996; Horrocks 

2001; Almogy et al. 2005; Avidan et al. 2005; Çeliköz et al. 2005; Ad-El et al. 2006; 

Shuker 2006; Ezzedien Rabie 2008). Data which were used to compare to the patterns of 

injury in the Bosnia sample were easily identified, whether this was looking at specific 

skeletal injury or the pattern data which indicated the general areas of injury and noted 

skeletal involvement along with soft tissue trauma (only skeletal trauma was compiled and 

employed). Employing the data which included soft tissue trauma posed its own limitations 

and may affect the interpretation of the results but the author believes that this prevalence 

data still holds value in identifying the patterns and comparing those seen in strictly 

skeletal remains, if the relevant skeletal trauma information can be extracted clearly from 

the work. 

 

 

7.3.1. Combat 

 

A recurring question during the International Criminal Tribunal for the Former Yugoslavia 

is the nature of the trauma in the cases from the Kravica Warehouse. The nature of the 

trauma, blast injury, is not disputed however the way in which this trauma was inflicted 

has been questioned(ICTY. 2010a, ICTY 2010b, ICTY 2012a, ICTY 2012b). Whether the 

injuries were sustained during combat is the main issue which has been raised and one of 

the objectives of this research was to examine any possible similarities between the 

patterns of injury in the Bosnia sample and those found in combat contexts.  

 

Along with examining the questions which have been raised at the International Criminal 

Tribunal for the Former Yugoslavia, comparisons to known patterns of injury from various 

contexts can serve as useful information for analysis of skeletal remains. With the 

increasing involvement of anthropologist in cases of blast, this information can serve to 

inform the contextualising of trauma in individuals or an assemblage.  
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World War One and Vietnam 

 

The rationale behind using data from World War One was to attempt to replicate some of 

the factors which are at play in the Bosnia sample. In the World War One sample, the men 

were not using body armour which is in consistent use in modern combat. By using the 

cases from World War One, this replicates the type of clothing which the skeletons in the 

Bosnia mass graves were found wearing, which did not include any indication of any 

personal protective armour (Chartrand and Embleton 2007). An important difference 

between the Kravica warehouse sample and the World War One cases may be the 

protective effect of trenches in latter. However, this was countered by using cases which 

were both from trenches and open-air casualties. Additionally, similarities in the protective 

effect of the trench may have been replicated by the walls of the warehouse. Despite this, 

differences in the pattern may be attributed to the protective effect of the trench in those 

cases, but this was deemed to be negligible, due to the care taken to have a wide type of 

cases in the sample and its large size. 

 

Five body regions were found to exhibit significant differences between the samples. The 

vertebral region is important, with the Bosnia cases having vertebral trauma in more than 

two times the cases in the World War One sample. It is unlikely that vertebral trauma is an 

indication of combat related blast trauma as combat is usually undertaken in a forward 

facing position, towards the enemy. It can be assumed that turning the back towards is a 

protective mechanism, to ensure safety to the front of the body containing vital organs.  

 

In the World War One sample, cases were predominantly of deaths from the infantry and 

often involved those killed in the trenches by mortars. It was found that in the upper limb 

comparison, the Bosnia cases had 3 times the trauma found in the World War One Sample. 

In the pelvis, there was 5.8 times more trauma in the Bosnia sample and twice the amount 

of trauma in the lower limbs. The likely distinction causing the difference can be the 

protective aspect of trench warfare.  

 

In examining the data from Vietnam, all body regions analysed were significantly different 

to the trauma patterns in the Bosnia cases. Again, as in the World War One sample, this 

data was selected to replicate clothing conditions. Additionally, trauma in Vietnam was 

predominantly of the gunshot wound nature, with the increase in the use of explosives seen 
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in later modern combat, such as the Gulf Wars. This is likely the source of the differences 

in the prevalence of trauma. 

 

 

Northern Ireland, Iraq and Iran, Lebanon 

 

Examining these three conflicts, areas which were significant different between these and 

the Bosnian sample were identified. The head and neck and thorax and back regions were 

examined. Particularly in Northern Ireland, these were areas which would have been 

protected in the troops and consequently much more trauma was seen in the Bosnia sample 

in these regions.  

 

In Lebanon, all examined variables were found to be significantly different with a much 

higher prevalence of trauma in all body regions except for the torso. Interestingly, torso 

trauma was nearly twice as prevalent in Lebanon. The high prevalence to all other body 

regions is a distinct reflection of the nature of blast injury and its diffuse pattern of injury. 

Mandibular trauma was also high in the Iraq and Iran sample, more than twice as much 

trauma than in the Bosnia cases. A likely explanation for this high prevalence in that 

portion of the head would be the use of helmets in the troops, which were not found with 

the Bosnian skeletons. This leaves the mandibular area exposed and vulnerable, 

highlighting an important consideration for head protection in future, although this is 

changing recently (Breeze et al. 2010; Zachar et al. 2013).  

 

 

Modern conflict 

 

Cases from the first Gulf War, Operation Iraqi Freedom (OIF) and Afghanistan were 

examined to compare to the Bosnia data. Comparing the data in Ramasamy et al‘s (2009) 

article on the Gulf War with the data yielded a significant difference between the two for 

all the variables. In the comparison of Operation Iraqi Freedom data, chest and back along 

with the lower limb were significantly different. The Afghanistan comparison yielded 

significant differences in the prevalence of foot and femoral trauma. This shows a 

statistically demonstrated difference in the patterns of injury, which distinctly identifies 

that the Bosnia trauma is not like the trauma found in modern conflict. Particularly in the 
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Gulf war, no similarities were identified. In the OIF data, it is particularly important to note 

that trauma to the chest and back is much higher in the Bosnia data than in the OIF sample, 

clearly indicating that body armour plays a big role in the differentiation of the pattern 

between Bosnia and modern conflict. Conversely, both upper and lower limbs had higher 

prevalence in the OIF sample rather than the Bosnia sample, potentially reflecting the 

nature of explosives used in Iraq which have commonly been of the IED type, similar to 

landmines, which have a high prevalence of lower limb injury (Nelson 2008; Ramasamy 

2008; Kang et al. 2011; Navarro Suay et al. 2012; Wallace 2012).  

 

In Afghanistan, foot and femoral trauma was found to be significantly different. Linked to 

the high use of anti-personnel and anti-vehicle IED‘s in Afghanistan, the prevalence of 

trauma to the feet was 17 times higher in this conflict than in Bosnia. This shows a 

different objective of the intended trauma which in Afghanistan is intended to disable and 

has produced a pattern with resemblance to that found in land mine injury (Jacobs et al.; 

Wallace 2012). Femoral trauma in the Bosnia sample was nearly four times higher, 

marking an interesting distinction that can be explained by the nature of the blast trauma 

related to RPGs in the Kravica Warehouse case. These explosives were shot into the 

building through the broken down door. Evidence of this was found against the wall, at 

waist height, and would consequently be expected to cause a high number of trauma to the 

femoral or pelvic areas (Headley 2001).  

 

 

7.3.2. Terrorist incidents 

 

Examining enclosed context terrorist incidents is important in the comparison of the 

Bosnia results to assess the similarities or differences in the patterns observed. The cases 

which are used in the Bosnia sample are from a partially enclosed context, which is likely 

to have affected the blast ballistics and would have had influence on the pattern of injury. 

 

In this context, having examined the data from three studies (Waterworth and Carr 1975; 

Mallonee et al. 1996; Lambert et al. 2003), significant differences were found in the upper 

limbs, torso and lower limbs. In all cases, trauma to these body regions was found to be 

higher in the Bosnia sample. A likely explanation for this would be the number of 

explosions occurring. In the studies, these were single blasts whereas in the Bosnia 
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samples, multiple RPG‘s were used, causing multiple blast foci which would cause a 

pattern with high prevalence, again particularly in the waist area, targeting the general area 

of the torso and lower limbs immediately around this.  

 

Three other contexts were examined which dealt with bombings occurring in open places 

(Hadden et al. 1978; Rignault and Deligny 1989; Weil et al. 2011). In the Israeli context 

examined by Weil et al.(2011), frequently a suicide bombing, the trauma pattern was found 

to be significantly different across the whole body. Trauma to the extremities and torso 

were common in the Bosnia sample; however, torso and neck trauma was more prevalent 

in the Israeli contexts. This is most likely to reflect that nature of a bombing in an open 

place, with the force of the blast escaping in all directions rather than in the more targeted 

manner of RPGs in the enclosed Kravica Warehouse. In the Paris bombings, all body 

regions except for the lower limb were significantly different, with a very high prevalence 

in the Bosnia sample comparatively. The Paris bombs were small improvised devices with 

only a small amount of explosive material. Bombs of this type produce a diffuse soft tissue 

injury pattern rather than a large bomb which has higher potential to cause skeletal injuries 

(Rignault and Deligny 1989).  

 

 

7.3.3. Summary of the clinical literature comparison 

 

This section demonstrates the similarities and differences between various contexts and the 

trauma prevalence in the Bosnia sample. When comparing the sample to that which is 

found in combat contexts, there are clear differences in both historical and modern conflict 

which indicates that the trauma seen in the Bosnia cases is not combat related.  

 

Additionally, significant differences with various other terrorism contexts have been 

identified which shows that the cases in Bosnia are particular and do not represent the 

typical patterns seen in terrorism. Overall, both the combat and terrorism situations are 

significantly different statistically in many body regions making the Bosnia cases quite 

unique to study and the pattern seen is atypical and unlikely to be combat related.  
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7.4. Guidance for the assessment of blast injury 

 

An important aim of the research was to formulate guidance for the assessment of blast 

injury in anthropological practice, thereby engaging the expansion of trauma analysis in 

the discipline to a type of injury which has seen its prevalence rise. Due to this, in future 

investigations such as combat archaeology, human rights work, terrorism and forensic 

investigations, the anthropologist may be faced with the identification and differentiation 

of this type of trauma. The following outlines guidance for the identification of blast 

trauma in various situations in which an anthropologist may called to participate. 

 

 

7.4.1. Assemblages of suspected blast injury- patterns of injury 

 

Examining an assemblage of suspected blast injury should look at the prevalence of 

injuries to the body regions in the whole assemblage in the first instance. Based on the data 

available in the literature, Figure 7-1: Patterns of injury prevalence in terrorist incidents 

and combat related casualties represents the differences between two types of blast-related 

incidents which can help to identify blast trauma in an assemblage of skeletonised remains.  
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Figure 7-1: Patterns of injury prevalence in terrorist incidents and combat related casualties. Areas of particular 

interest are the torso and the extremities in the terrorist incidents.  

 

Combining this with the results of this piece of research, a clearer picture guiding the 

anthropologist in the identification and differentiation of blast injury is seen. In the case of 

the skeletonised remains from the Kravica warehouse case, both cluster analysis of the 

variables examined and the multiple correspondence analysis reveals a pattern of injury 

which shows that the head variables (neurocranium, maxillofacial and mandible) are 

related, as well those associated with the torso. Whilst this can be related to their close 

proximity in the body, this pattern is also seen in the case of terrorist incidents which have 

a high prevalence of blast injury to the torso and head, both areas which are unprotected. 

 

Based on the results of this research and the analysis of the patterns seen in the Bosnia 

sample, the anthropologist examining assemblages of suspected blast injury can look for a 

diffuse pattern of injury, with fractures to many areas of the skeleton. 
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7.4.2. Differentiation of blast injury and gunshot wounds 

 

The results in this research are particularly useful in differentiating between blast injury 

and gunshot wounds in an assemblage of skeletons. By employing methods which focus on 

the exploration of patterns within an assemblage of known trauma, differentiation between 

the two causes of death was established. Particularly, the multiple correspondence analysis 

helped to identify areas of trauma in the assemblages which demonstrate the differences 

between the two. These were the head and torso related variables. These were associated 

with a high number of gunshot wound cases, particularly due to the targeting of these areas 

as lethal and causing severe trauma to vital organs.  

 

One of the important visual differentiations found between blast injury and gunshot wound 

in examining the cases from the Kravica warehouse was in the level of comminution in the 

trauma. In the gunshot wounds, the severity of the comminution was much higher, with 

smaller and more numerous fragments. This should be considered when the anthropologist 

is seeking to differentiate the trauma seen in the grave. Additionally, further study should 

be undertaken and the researcher is exploring the possibilities for the measurement and 

quantification of the fragments in the Bosnia cases. General guidance for anthropologists, 

based on the observations made during the research, is that blast produces large fragments 

in long bones, which number much less than those seen in gunshot wounds.  

 

 

7.4.3. Differentiation of combat and civilian patterns of injury 

 

A main aim of this research was the differentiation of civilian and combat blast injury, 

particularly for court purposes. By examining multiple contexts of combat-related blast 

trauma, guidance has been established for the identification of combat-related blast injury 

and its differentiation. A summary of the conclusions from clinical literature is presented 

below in Table 7-1. 
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Table 7-1: Summary of injuries in combat-related contexts. 

Study Context Blast injuries Additional 

Conclusions 

Lin et al. (2004) Afghanistan  65% fragmentation injuries  

Navarro Suay et al. 

(2012) 

Afghanistan Trauma to all regions 

except head, limbs most 

affected 

 

Gofrit et al. (1996) Lebanon 64% front/middle of torso. 

Front of head 70% 

 

Ramasamy et al. (2011) Enclosed combat (ie. 

Tank, armoured vehicle) 

Predominantly lower limb. Tibia, fibula, foot 

affected. High # of 

tertiary trauma 

Owens et al. (2008) Iraq and Afghanistan High predominance of 

head/neck injury in 

explosives casualties. High 

# of extremity injuries. 

Thorax injuries most 

common in gunshot 

Gondusky and Reiter 

(2005) 

Mechanised battalion, Iraq Head and upper extremity 

injury 

Vehicle provides 

protection to rest of 

body 

Jacobs (1991) Dismounted combat 

troops 

Traumatic amputations 

(predominantly proximal 

lower leg/distal thigh) 

Pelvic ring fractures 

noted in bilateral 

traumatic 

amputations 

Lambert et al. (2003) Confined space (USS 

Cole) 

61% lower limb injury, 

40% survivors with 

orthopaedic injuries 

Open fractures 

predominant in lower 

limb 

 

 

Combat-related blast trauma is particularly reflected in the head and extremities. This is a 

reflection of the various methods of protection offered by modern body armour. This may 

not be relevant in the anthropological examination of historical combat, such as that seen 

in WWI. By employing this sample, comparison is made with a sample that did not have 

the luxury of extensive body armour and replicates some of the conditions of the Bosnia 

casualties better. The examination of these two samples yields areas of the body to 

examine when attempting to identify blast injury in unprotected civilians. Again, looking 

for trauma in the torso region, particularly the vertebrae and pelvis is important. 
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Extremities also figured as an area of significant difference, with trauma to these being 

very prevalent in the Bosnia sample. 

 

When differentiating combat-related blast injury versus civilian injury the most important 

consideration would be context of the assemblage. The variety of patterns in different types 

of combat means identification of blast injury is contingent on characteristics of this. The 

use of body armour is very influential in the pattern of trauma, protecting to the torso area. 

Whereas modern combat had a high number of upper extremity trauma, the Bosnia sample 

had a lower prevalence. Foot trauma is also frequent in combat-related casualties and 

would be a good indicator of combat-related blast, particularly due to the use of 

improvised explosive mines, for the anthropologist to make note of in an assemblage.  

 

Of particular note is the high prevalence of femoral trauma in the Bosnia sample, linked to 

the use of the rocket-propelled grenade weapon. The knowledge that a weapon of this type 

was used was confirmed by the pattern of high trauma to this area. Trauma to this area 

combined with potential use of this type of weapon should be looked for by the 

anthropologist working on an assemblage of this nature.  

 

 

7.4.4. Direction for the reporting of injuries in clinical settings 

 

Despite the challenges associated with the reporting of blast injuries in the clinical context, 

such as the scale of the number or casualties and the time for reporting during a case, 

certain aspects of the description of injuries could be beneficial to future anthropological 

research. 

 

Particularly relevant would be the description of the fractures themselves, adding a new 

dimension to the analysis of the patterns which goes beyond the identification of body 

regions injured. Observations regarding differences from gunshot wounds found in blast-

related cases leads the researcher to examine the possibility of quantifying the 

fragmentation of blast injuries. As such, describing the dimensions of the fracture, type of 

fracture, and directionality would be beneficial. Direction of impact, be it from the blast 

wave or shrapnel fragments, contributes a wealth of knowledge which would aid in 

contextualising the events greatly.  
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By expanding the recorded data in clinical cases and studies with the above, a clearer 

picture of the patterns could be constructed, particularly looking at differentiating the types 

of fractures induced by blast waves and how these may differ from gunshot wounds. 

 

 

7.5. Evaluation of the results   

 

Critical examination of the research was undertaken to assess different aspects of the 

results such as their significance, strengths and weakness, and overall relation to previous 

conclusions from the literature. 

 

The significance of this work is important to note, particularly in light of the increasing use 

of explosive materials and munitions in numerous contexts. Combat and terrorism figures 

predominantly around the world and we have become increasingly familiar with the use of 

explosive munitions. Due to this, knowledge about the trauma inflicted by these is required 

in a variety of fields and will become necessary in anthropology as well. Currently, in 

anthropology, very little has been published with the exception of a few peer-reviewed 

articles and book chapters (Kimmerle and Baraybar 2008; Christensen and Smith 2012; 

Christensen et al. 2012). Blast trauma analysis will become an increasingly important 

aspect of anthropology with applications in human rights work, combat archaeology, 

terrorism investigation and mass disaster work. With this research, an important gap is 

addressed by beginning the definition of blast injury in anthropological contexts and 

exploring the patterns which contribute to the identification of this unique trauma. This is 

accomplished by examining a statistical methodology which has been used in other 

disciplines, or subsets of anthropology and archaeology, to identify and differentiate 

between blast injury and gunshot wounds and to classify patterns in a blast trauma 

assemblage.  

 

The findings in this research concur with the main source of information regarding blast 

injury, clinical studies. As is seen in the literature, a diffuse pattern of injury is most likely 

to be seen in blast injury assemblages. In the Bosnia sample, it is also the body regions 

which are less vital which has blast trauma, particularly compared to the high prevalence 

of trauma to the head and torso area in the gunshot cases. Conversely, when examining 
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combat trauma samples in the literature, the overall pattern of trauma is statistically 

different in all contexts examined to the injuries in the Bosnia sample. This serves to 

answer the question regarding the nature of the trauma in court cases where the stipulation 

was made that the casualties were combat related. Additionally, the results can be 

generalised to give guidance on the differentiation and identification of blast injury by 

contributing data on yet another complex series of events.  

 

By employing statistical methods, the research produces results which could potentially be 

replicated and cross-validated, even if this cannot be done at the moment due to a lack of 

samples. Employing statistical methods also permits the presentation of the results in court, 

satisfying evidentiary rules. Using multivariate statistics has also minimised error which 

can be introduced in the traditional χ2 comparisons.  

 

 

7.6. Issues/limitations 

 

As with research, issues and limitations require addressing. This piece of work is not 

without limitations and the author recognises these. The majority of these limitations are 

due to the nature of the sample the research is based on. The Bosnia sample has its 

limitations, however these can be addressed. 

 

Issues relating to the validity and reliability of data sources have been examined. In the use 

of statistical scientific methods, the replication of analyses or experimental work is of great 

importance. In this research, reliability of the data was focused on, particularly in the data 

from the Bosnia sample where each case was examined with multiple sources, such as the 

pathology reports and the associated photography to ensure the conclusions in the report 

were valid. The size of the sample was adequate and represents a large sample, particularly 

taking into account the novel nature of the examination and the exploratory methods 

employed to being the examination of blast injury in the context of anthropology. The 

sample also takes into generalisability of the results in this study. It is believed that as an 

exploratory phase of research and a first step in describing and guiding the assessment of 

blast injury  
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The medical management focus of the clinical sources poses problems in the recording and 

reporting of the data associated with blast injury. Frequently, studies present data on either 

fatalities or survivors, focusing on specific groups while ignoring the other from particular 

incidents. This could potentially lead to a bias, particularly in deceased samples, which 

may have more severe injuries and may skew the results to having a differing pattern, 

possibly one which represents a greater number of injuries causing death. Reporting the 

clinical data from survivors may skew the information conversely. Due to this, the data 

taken from clinical sources was taken from both types of studies to minimise the chances 

of bias towards either possibility. 

 

The medical management focus of clinical studies can also impact the type of data 

available in the literature. Data collected is likely to centre around the soft tissues, as show 

by the high number of studies which deal with the consequences of primary blast injury to 

the vital organs. Orthopaedic information revolves around the treatment of skeletal injuries 

rather than the systematic description of the injuries revealing the importance of post-

incident intervention in medical teams. Additionally, the nature of these incidents being 

very complex and requiring a large number of hospital resources is likely to impact the 

type of data and recording being done during these cases. This may affect the reliability 

and completeness of the information being catalogued in medical files, impacting the 

availability of data for clinical studies. If it has not been recorded during the medical 

management, it cannot be utilised in studies subsequently, at least not reliably.  

 

One of the important issues in using a sample that is related to human rights cases or even 

mass disaster is the limitations of data recording (Arnold et al. 2004). Whether affected by 

time limitations or sheer number of cases, this can affect the accuracy or preciseness of 

what is recorded. Whilst the highest level of information was sought by the researcher, 

relying on data from secondary sources, as in the autopsy reports, this can pose issues. To 

overcome this limitation, multiple sources for each case were consulted. Pathology reports 

were combined with autopsy photographs to improve the accuracy of the data derived. All 

cases have autopsy reports but not all of these have associated photographs. This poses a 

problem as all trauma in the reports is re-assessed, by the author, through examination of 

the autopsy photographs to confirm the anthropological assessment of trauma. By not 

using photographs, the introduced bias can increase greatly by relying on information 

which is based on an assessment made by a pathologist who may not be as experience in 

skeletal trauma and the differentiation between perimortem and postmortem changes. 
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Complicating matters however is that rejecting the cases that cannot be confirmed through 

photographs reduces the sample size considerably. This did not pose a problem as the level 

of access to information permitted thorough reconciliation of the data from multiple 

sources. 

 

This highlights the same potential problems in further investigation, whether using a 

military, clinical or anthropological source. The analysis will only be as good as the 

available data and can suffer when key information is missing. However, as even acquiring 

the current data is an important positive step, it is the beginning of structured consideration 

of an important aspect of anthropology previously ignored and serves as the basis for the 

evaluation of potential analytical methods which can be built upon subsequently.   

The issue of using pathological data highlights problems in the identification of ante-

mortem, peri-mortem and post-mortem trauma. The assessment of the timing of trauma 

ultimately belonged to the pathologist (who worked in conjunction with anthropologists) in 

the Bosnia cases. The anthropologists contributed by providing a biological profile, leaving 

the majority of trauma identification to the pathologists. In skeletonised remains, it would 

be possible that the pathologists would overlook indicators that differentiate between the 

ante and post-mortem injuries due to lack of experience with this assessment. Ultimately, 

this was unlikely to affect the final diagnosis of cause of death, which was determined by 

the pathologist. For this piece of research, re-examination of the specific injuries attributed 

to the various mechanisms was necessary to ensure that findings to be included in the data 

were peri-mortem in nature. This was achieved by examination of the large number of 

autopsy photos available in conjunction with the autopsy reports (including 

anthropological information). It is however entirely plausible that some assessment may 

have been inaccurate. If there is a distinct discrepancy between the pathology report and 

autopsy photographs identifying peri-mortem skeletal trauma, the determination rested 

with the author, so long as the evidence can be supported. If a positive determination of the 

trauma cannot be made certainly, this particular injury and case was omitted from the data. 

This can pose problems which introduce observer bias into the data and make the sample 

smaller. However, it was important to achieve the best accuracy possible in the 

identification of blast trauma and as such cases with any doubt as to the nature of the 

trauma were omitted.  

 

Sample size always remains an issue in anthropological research. This is relevant here with 

the relatively small sample size of the cases with blast injury. The total sample size of 48 
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can be viewed as being small for certain disciplines but in anthropology it is not unheard of 

to have much smaller sample sizes (Schweizer and Lang 1989) or individual case studies. 

Despite this, the size of the sample in this research is very good. Materials with blast injury 

are extremely scarce, particularly those which are of an anthropological nature. No other 

materials of this nature have been examined in such a quantity by an anthropologist.  

 

The scarcity of known examples blast injury also poses the problem of testing any 

statistical models built through the research presented in this thesis. Scientific theory 

stipulates that testing of these models should be undertaken, however due to the difficulty 

in having access to even the data which forms the basis of this research, this would be 

impossible at the current time. As such, the models and conclusions proposed need to be 

further investigated at a later time, including the cross-validation of the predictive binary 

logistic regression model. Publication of the research presented is being undertaken in the 

hopes of expanding its reach and testing the conclusions achieved here. An article has been 

accepted by the Journal of Forensic Sciences and is in press (Dussault et al. In Press).  

 

Specific issues regarding individual skeletonised remains are also a concern. Many of the 

cases in the Bosnia were incomplete skeletons. This can cause a certain amount of bias as 

these cases may not represent all body regions which have actually been injured due to the 

lack of preservation and recovery of the remains. This can also be caused by the movement 

of remains from primary to secondary graves. As such, cases which represent body parts 

rather than complete skeletons will cause a bias towards the absence of evidence of blast 

injury due to an absence of body regions being noted as an absent body region/absent of 

blast injury where it cannot be assessed. This can cause problems in the representation of 

the patterns but still remains that due to the lack of current data regarding blast injury in 

anthropology, it is still important to attempt to use the information to contribute in the start 

of establishing methodology to be used in the assessment of trauma in assemblages. In the 

end, only one case was included, GL01/502BP. Concerns regarding commingled remains 

were also addressed. Cases which represent more than one individual included in the 

autopsy forms were not used as these represent more than one person and these cannot be 

separated into individual cases. Each case in the database represents one person only.  

 

Statistical limitations were also acknowledged. In particular, the use of the Holm-

Bonferroni correction reduced the power of finding any significant differences between the 

groups because the α value has become very small with such a large number of variables 
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compared. A solution to this would be to use a multivariate technique to reduce the number 

of pairwise comparisons. Using multiple correspondence analysis has addressed this and 

has shown that this method can identify associations that were not revealed using multiple 

pairwise Pearson‘s χ2.  

 

Cluster analysis also posed issues. Employing the mathematical criteria as laid out in the 

methodology chapter, the solutions indicate a certain number of solutions; however, 

examining the dendrogram visually additional patterns appear within the data. In the case 

of clustering the blast injury cases solely, an alternate solution appears with four or five 

possible clusters with may indicate useful sub groupings. Particularly, the larger the sample 

became, as was the case with the gunshot, the more difficult it was to interpret.  

 

Context of the cases and unknown variables were likely to have played a part in the 

analysis of the Bosnia cases. Particularly, additional information regarding the patterns of 

injury could have been gained from having location information for each of the cases in the 

Bosnia sample, such as where the men were standing at the time of death. However, this 

was impossible given the nature of the sample. Linked to the nature of the sample are post 

depositional issues. Taphonomic changes could have certainly affected the skeletonised 

remains, particularly those involved in the movement of the remains from the primary 

grave to the secondary grave. Particular care was taken in the identification of peri-mortem 

trauma in the pathology reports, autopsy photos and combined with the archaeological data 

available in the site reports. The likelihood that these issues can have affected the sample is 

important, but efforts to negate this were put in place. By the very nature and rarity of this 

sample, ignoring the potential for research because of these issues would have prevented 

an important first step in the development of knowledge for the discipline.  

 

It is also worth noting the complexity of blasts and explosions. Many variables are at play 

which contributes to the patterns of injury. This makes comparison between different blast 

situations difficult. Too many variables may be at play, interfering with the amount of 

specificity that one is capable to achieve. The variables attached to these types of incidents 

range from the type of weapons used, to the specifics of the situations (such as the 

location) and human factors (ranging from clothing, to body type, size, and height). Further 

research is needed to expand the data and build these various factors into analysis. 

Anthropology does not have a body of knowledge on blast injuries currently in the 

literature and despite not achieving very specific results when it comes to injury 
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identification but rather differentiation of patterns, the research is still valid in that it 

address the dearth of information regarding this and highlights the need for continuing 

work on this type of trauma. 
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8. Conclusion 

 

This study was developed to examine blast injury in the human skeleton and apply robust 

multivariate statistical methods, alongside morphological methods, to identify blast trauma 

based on the distribution of injury in the skeleton. Anthropologists are now involved in 

cases dealing with blast trauma from both civilian and combat contexts, such as terrorism 

or war zones like Afghanistan. However, anthropological literature has not addressed the 

recognition and identification of blast trauma, with the exception of limited case studies 

and one experimental study (Kimmerle and Baraybar 2008; Christensen and Smith 2012). 

This has left a gap in the current knowledge regarding blast injury. Currently, research on 

this type of trauma is centred predominantly on clinical literature and medical management 

of this trauma.  

 

Due to the lack of knowledge regarding blast injury in the skeleton, questions have arisen 

regarding the nature of this trauma. This is particularly exemplified in the courtroom 

debate at the International Criminal Tribunal for the Former Yugoslavia which brings into 

question whether blast injury deaths were human rights violations or combat-related. 

Knowledge of this type of trauma, the patterns expected in an assemblage of skeletonised 

remains and indicators of blast injury are of important to both forensic and biological 

anthropology. 

 

To accomplish the aim of this piece of research, four objectives were identified: 

 

1. An exploration of patterns of injury previously published in clinical 

literature. 

2. The establishment of a statistical methodology to compare observed 

patterns of injury in assemblages for the purpose of identification and 

comparison of blast injury in various contexts. 

3. Application of the statistical methodology to the discrimination of blast 

injury from gunshot wound related deaths with the purpose of providing 

indicators to differentiate the two types of trauma. 

4. Application of the statistical methodology to a large scale assemblage to 

explore the patterns present and compare these to the previously published 

data in the clinical literature to assess if the patterns in the assemblage are 

similar or different to those found in blast-related combat trauma.  
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5. Formulation of guidance for the identification and differentiation of blast 

injury in skeletonised remains. 

 

The first objective required a thorough examination of the clinical literature for 

information which was applicable to the identification and differentiation of blast injury in 

the human skeleton. The history, physics and chemistry of blast were explored to 

contextualise the development of explosives and the changes over time which produce the 

injury mechanisms were see in modern explosives. The biomechanics of blast and patterns 

of injury were explored, detailing the biological response of the human body to explosions 

along with the patterns of injury seen in contexts of terrorism and combat. This 

information was collected and compiled to compare prevalence of trauma in these contexts 

with the examined samples. 

 

Statistical methods were examined and tested to formulate a methodology for the 

differentiation and identification of blast injury in large scale assemblages. The traditional 

method used in trauma analysis, Pearson‘s χ2 test was used to examine prevalence 

differences between two samples from mass graves in Bosnia. This compared cases of 

blast injury and gunshot wound related deaths. Significant differences were found in a 

small number of body regions. Graphical methods of pattern identification were employed 

to explore the two samples and identify and differentiation which may be of use to the 

anthropologist when comparing these two causes of death in large samples. Cluster 

analysis was employed but failed to yield distinctions directly between the individual 

cases, potentially due to issues of sample size which rendered interpretation of the analysis 

difficult. The second approach with cluster analysis was to examine the variables rather 

than the cases, and this yielded results that pointed to groupings in the variables, such as 

those of the skull area and the bilateral siding variable. 

 

The third objective sought to use statistical methods to differentiate between the two 

samples from Bosnia, the blast injury and gunshot wound death cases. Multiple 

correspondence was employed to identify variables which contributed significantly to 

variance between the two groups. This analysis yielded a set of variables, larger than those 

identified in the Pearson‘s χ2 and cluster analyses. Multiple variables were found to 

differentiate between the two causes of death, particularly the limb variables, which echoes 

the conclusions of the clinical literature. These variables were employed as indicators in a 

probability model using binary logistic regression to attempt to classify cases as having 
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blast injury or not. Additionally, two methods of binary logistic regression were employed, 

to test whether or not predetermined indicators or a computer generated model yielded the 

best results. No significant difference was found between the two methods. It was found 

that the extremity variables were significant contributors to a predictive model which had a 

74.86% classification success.  

 

The fourth objective required comparison to the clinical literature to identify similarities 

and differences in the Bosnia blast injury cases sample along with a sample of World War 

One cases. This further enabled the identification of differentiation characteristics in blast 

injury. Problematically, direct comparison of identified patterns was not possible as the 

clinical literature did not have the same level of detail as the Bosnia sample compiled by 

the current researcher. Prevalence comparison of simpler variables was undertaken and 

employed Pearson‘s χ2 analysis. It was found that there were significant differences in the 

prevalence of the distribution of trauma between the Bosnia sample, the World War One 

sample and the clinical literature. This demonstrated that the Bosnia case was particularly 

unique and this was likely due to the context, which involved the use of rocket-propelled 

grenades and a partially enclosed building. Both these factors contributed to a distribution 

of injuries were not like those in terrorism. This examination also served to answer the 

important question of whether or not the deaths were combat related, an argument which 

has been raised numerous times in the ICTY court proceedings. It was found that 

statistically there were significant differences between the Bosnia sample and a variety of 

combat contexts. 

 

The fifth objective is met by presenting the results and guidance regarding the 

identification of blast injury and its differentiation from gunshot wounds. The guidance 

also includes direction on the differences between combat and civilian related blast injury 

to aid in the assessment of the patterns of injury in assemblages, particularly in the case of 

human rights abuses. 

 

The conclusions drawn in this thesis contribute to the knowledge of blast injury in the 

forensic and biological anthropology contexts. Through the use of known cause of death 

samples, it was demonstrated that the patterns of injury can be analysed using graphical 

patterns detection methods such as multiple correspondence analysis to identify body 

regions which can predict the presence of blast injury in an assemblage. Particularly, 

trauma to the extremities significantly indicates the presence of blast injury and trauma to 
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the maxillofacial, mandibular and vertebral body regions indicated the presence of gunshot 

trauma. This contributes by identifying regions of trauma to look for when examining a 

large scale assemblage with suspected blast injury.  

 

Additionally, the use of multivariate methods of analysis has shown that significant 

differences in a trauma assemblage can be missed when using pairwise Pearson‘s χ2. This 

is due to the need of a statistical correction to counter the issue of inflated Type I error 

which occurs when undertaking multiple consecutive pairwise comparisons. These 

methods also permit the examination of interactions between variables which can be at 

play in large assemblages. As such, it was deemed that these methods of statistical analysis 

can be useful in trauma analysis and could be used on a variety of samples, from multiple 

time periods and provenances, which could highlight interesting patterns of injury which 

may not have been explored previously. These methods can also be expanded to 

incorporate other anthropological relevant variables, such as demographics, to provide 

larger picture analyses rather than individual examinations which form part of the basis of 

trauma analysis in forensic and biological anthropology.  

 

The implications of these conclusions are multiple for anthropology. The results attained 

can contribute to investigations of terrorism in which anthropologists are increasingly 

requested to contribute. Strategies for recovery may also be impacted, indicating which 

areas of the body may be fragmented and guiding the need for thorough searches focused 

on these. Experimental work can be directed to look at the impact of explosions on the 

body regions which are most likely to be injured and specific examinations of the fracture 

patterns and fragmentation can be approached.  

As was raised in the limitations section, future research lies in the possibility of access to 

samples with blast injury. This is a very difficult point; however certain future research 

directions have been identified. More comparisons of the patterns of injury in blast trauma 

need to be undertaken. This may mean collaboration with clinicians to gather information 

and exploring the experimental route, which has begun with a previously published paper 

using pigs as proxies (Christensen and Smith 2012). Addressing the specificity of the 

trauma to the skeleton is an area where the author would like to undertake work. 

Particularly, comparison of the size of fragments in blast injury and gunshot wound cases 

is being developed with the data used in this thesis.  
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The methodologies approached in this thesis can serve as valuable tools when exploring 

assemblages. This can serve to analyse other types of trauma and explore relationships 

beyond the physical characteristics of the trauma. These methods permit a variety of 

variables to be analysed to form conclusions about assemblages, whether these are burial 

characteristics, biological profile, and disease prevalence along with the analysis of trauma. 

The application of multivariate statistical analysis of  assemblages for the examination of 

patterns of injury is being explored as a further area of research expanding on the work 

undertaken here. Examination of the patterns of injury in assemblages across time as well 

as regions will be undertaken, comparing the prevalence of trauma between groups and 

within groups, as well as the nature of the trauma to note any temporal or geographical 

similarities or differences between groups.  

 

This thesis has shown that the application of robust statistical methodology can be 

employed to identify blast injury in a large skeletal assemblage. This identified areas of the 

body which have different patterns of injury which can serve to differentiate blast injury 

from gunshot injury in skeletonised remains, an aspect of anthropologic which has not 

been explored previously. Additionally, this work has also answered specific questions, 

comparing and contrasting the clinical literature and quantifying significant differences in 

prevalence of trauma between a known sample and those found in various contexts such as 

terrorism and combat. This has served to answer the question of the nature of the trauma in 

the sample, identifying that the Bosnia sample was significantly different from combat 

blast injury context. This thesis has contributed to forensic and biological anthropology by 

reaching objectives which have contributed to specific knowledge of blast injury and its 

patterns, methodology for the examination of blast injury and large scale assemblages, and 

answered questions relevant to anthropologists‘ work in human rights investigation. 
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Abbreviations 

 

 

MPa - MilliPascal (unit of tensile strength) 

Ms - Millisecond 

MHN - Mannitol Hexanitrate 

PETN - Pentaerythritol tetranitrate 

TNT - Trinitrotoluene 

RDX - Cyclomethylenetrinitramine (also known as Cyclonite) 

C-4 - Composition C4 

ANFO - ammonium nitrate fuel oil 

PIAT weapon - projector infantry anti-tank 

ICMP - International Commission on Missing Persons 

ICTY - International Criminal Tribunal for the Former Yugoslavia  

 

 


