
Page 1 of 166

SCHOOL OF DESIGN, ENGINEERING

& COMPUTING

MSc Enterprise Information Systems

September 2013

Computing in Education: A study of computing in education

and ways to enhance students’ perceptions and understanding

of computing

by

Paul Albinson BSc (Hons), FdSc, MBCS

Page 2 of 166

Abstract

There is a huge demand for computing skills in industry due to computing becoming

ubiquitous and essential for modern life. Yet despite this, industry struggles to find employees

with suitable computing skills and similarly Further and Higher Education institutions have

observed a lack of interest in their computing courses in recent years.

This study looks at possible reasons for this lack of interest in computing, how computing is

taught in education and ways to improve students’ perceptions and understanding of

computing. It focuses around a case study of a university outreach event for secondary

schools which investigated how interactive teaching methods can be used to enhance

students’ perceptions and understanding of computing and to increase their computing

knowledge. It includes the use of physical computing and was designed to make computing

fun, motivational and relevant, and to provide examples of real-world applications. Surveys

were used before and after the event to understand what students’ impressions and knowledge

of computing is and to see if the event improved these. Observations were also used to see

how well the students handled the event’s content and whether they appeared to enjoy and

understand it.

Results from the case study indicate that interactive teaching methods enhance computing

education, and physical computing with electronics can enhance lessons and show the

relevance of computing with examples of real-world applications, and can be fun and

motivational. The case study provides teachers with example tasks and challenges they can

use with their students and/or ideas around other interactive teaching methods including

practical computing.

Page 3 of 166

Acknowledgements

The author would like to thank Dr Sheridan Jeary for the guidance, supervision and

encouragement she provided during this project. The author is also grateful for St Edward’s

School hosting the pilot event/case study and especially to Alastair Barker for his advice and

dedication to the event as well as advice on the dissertation and insights into school

computing teaching. The author also wishes to thank the students and staff involved in the

event for their valuable contribution. Thanks also goes to Kane Lean for his advice on

creating an outreach school event and details on school computing teaching. The author also

thanks Stuart Wray for participating in the initial discussion which provided many ideas for

the dissertation including the idea for the pilot event. Thanks also go to Jules Thompson for

providing details on school computing teaching.

Page 4 of 166

Contents

Abstract .. 1

Acknowledgements .. 3

Figures .. 9

Tables ... 11

Glossary ... 13

1. Introduction .. 15

2. Background to the project .. 16

2.1. English university enrolments ... 16

2.2. Computing in schools .. 19

2.3. The new National Curriculum ... 20

2.4. Implementing the new National Curriculum ... 21

2.5. Teaching programming ... 22

2.6. Teaching computer concepts ... 23

3. Comparing programming languages/tools/environments .. 24

3.1. Visual programming languages/tools/environments ... 25

3.2. Text-based programming languages ... 25

3.2.1. Python .. 25

3.2.2. Logo ... 26

3.2.3. C# and Visual C# ... 26

3.2.4. Visual Basic .NET .. 27

3.2.5. Microsoft Small Basic .. 27

3.2.6. Java ... 28

3.3. Summary ... 29

4. Microcomputers and Microcontrollers ... 31

5. Methodology .. 33

5.1. Summary of earlier sections .. 33

5.2. Introduction ... 33

5.3. Research Question ... 34

5.4. Aims and objectives .. 34

5.5. Research involving children .. 34

5.6. Research methods and methodologies .. 36

5.7. This research ... 39

Page 5 of 166

5.7.1. Participants ... 39

5.7.2. Teams ... 39

5.7.3. Content ... 40

5.7.4. Tasks .. 40

5.7.5. Further details... 40

5.8. Data collection .. 41

5.8.1. Surveys ... 41

5.8.2. Observations ... 41

5.9. Ethics for surveys, observations, interviews and discussions ... 41

6. Case study .. 43

6.1. Introduction ... 43

6.2. Analysis of the event ... 43

6.2.1. Content ... 43

6.2.2. Students .. 44

6.2.3. Surveys ... 45

6.2.4. Discussion .. 45

7. Findings .. 47

7.1. Studying computing .. 47

7.2. Career ambitions ... 52

7.3. Computing skills ... 55

7.4. Rating skills ... 66

7.5. Summary ... 69

7.6. Limitations .. 71

7.7. Future improvements .. 72

7.8 Summary .. 73

8. Conclusions .. 74

9. Recommendations and further work .. 76

10. References .. 78

11. Appendices ... 80

Appendix 1 – Literature review ... 80

I. INTRODUCTION ... 80

II. THE ENROLMENT CRISIS .. 81

III. POSSIBLE REASONS FOR LACK OF INTEREST IN CS .. 82

A. Outsourcing .. 82

Page 6 of 166

B. CS isn’t cool ... 82

C. Other reasons ... 83

IV. CS RATHER THAN ICT .. 83

V. GOVERNMENT AND INDUSTRY SUPPORT .. 84

VI. POSSIBLE SOLUTIONS ... 84

A. Tailored courses ... 84

B. Improving and modernizing courses .. 85

C. Focusing courses around a current trend .. 85

D. Make programming more accessible ... 85

E. Different teaching approaches and learning techniques ... 86

F. Outreach projects ... 87

VII. CONCLUSION .. 87

Appendix 2 – Communications with local schools .. 90

Initial email .. 90

Replies received and subsequent conversations ... 90

References .. 97

Appendix 3 – Surveying teachers via an informal discussion ... 98

Initial post .. 98

Replies received ... 98

Appendix 4 – Acquiring knowledge to teach the new National Curriculum 101

References .. 101

Appendix 5 – The new National Curriculum ... 102

References .. 102

Appendix 6 – Programming languages/tools/environments for education 103

Visual programming languages/tools/environments .. 103

Text-based programming languages .. 113

References .. 123

Appendix 7 – Case Study: Tasks – Further details .. 124

Part 1 .. 124

Part 2 .. 124

References .. 125

Appendix 8 – Case Study: Event timetable .. 126

Appendix 9 – Case Study: Tasks Worksheets/Hand-outs .. 127

Scratch introduction ... 127

Page 7 of 166

Part 1 .. 129

Part 2 – Fun with the Raspberry Pi .. 134

Appendix 10 – Case Study: Challenges Worksheets/Hand-outs.. 143

Part 1 challenges .. 143

Part 2 challenges .. 144

Appendix 11 – Case Study: Advice for event staff (people who will help run the event) 145

Part 1 .. 145

Part 2 .. 148

Appendix 12 – Case Study: Guidance for the event organiser... 150

Setting up the Raspberry Pi computers .. 150

Introductions to each part ... 150

Task and challenge worksheets .. 151

Resources ... 151

Appendix 13 – Case Study: Survey ... 152

Introduction for the surveys ... 152

Before event survey.. 152

After event survey .. 154

Appendix 14 – Case Study: Observations .. 155

Appendix 15 - Research Information Sheet ... 156

Introduction to the research .. 156

Aims and objectives ... 156

How results/data will be collected ... 157

How the results/data will be used ... 157

Your rights ... 157

Contact ... 157

Appendix 16 – Suitability of the Raspberry Pi .. 158

References .. 158

Appendix 17 – Additional survey results ... 160

Future ambitions: Studying at Bournemouth University ... 160

Other... 162

Discussion .. 163

Appendix 18 – Learning resources and links ... 164

Professional bodies, working groups and government organisations .. 164

Computing clubs .. 164

Page 8 of 166

Online learning ... 164

Teaching resources ... 165

Robots to teaching computing .. 166

Other... 166

Page 9 of 166

Figures

Figure 1: Students accepting a place on a computing course 2004 - 2012 18

Figure 2: Students accepting a place on a computing course 2004 – 2012 - by gender 18

Figure 3: Students choosing specific computing topics 2004 - 2011 18

Figure 4: Male students choosing specific computing topics 2004 - 2011 19

Figure 5: Female students choosing specific computing topics 2004 - 2011 19

Figure 6: How likely students will choose ICT or Computing as a GCSE option or an

equivalent .. 47

Figure 7: How likely students will choose ICT or Computing as a GCSE option or an

equivalent - Differences between surveys .. 47

Figure 8: Box plot for the “How likely students will choose ICT or Computing as a GCSE

option or an equivalent” question ... 48

Figure 9: How likely students will study AS/A level Computing or a college computing

course .. 49

Figure 10: How likely students will study AS/A level Computing or a college computing

course - Differences between surveys .. 49

Figure 11: Box plot for the “How likely are you to study AS/A level Computing or a college

computing course” question .. 50

Figure 12: How likely students will choose to study a computing course at university 51

Figure 13: How likely students will choose to study a computing course at university –

Differences between surveys .. 51

Figure 14: Box plot for the “How likely students will choose to study a computing course at

university” question .. 51

Figure 15: How likely students think they will get a job in the computing industry................ 52

Figure 16: How likely students think they will get a job in the computing industry –

Differences between surveys .. 52

Figure 17: Box plot for the “How likely do you think you will get a job in the computing

industry” question ... 53

Figure 18: Students who have considered working in the computing industry after leaving

education – Before event .. 54

Figure 19: Students who have considered working in the computing industry after leaving

education – After event ... 54

Figure 20: Sectors of the computing industry students are most interested in 54

Figure 21: Students motivation/reasons for wanting to work in the computing industry 55

Figure 22: Students confidence around describing an ‘if’ statement .. 56

Figure 23: Students confidence around describing an ‘if’ statement – Differences between

surveys .. 56

Figure 24: Box plot for the “If I asked you to describe an ‘if’ statement how confident would

you be with your reply” question .. 57

Figure 25: Students confidence around describing a loop .. 58

Figure 26: Students confidence around describing a loop – Differences between surveys 58

Page 10 of 166

Figure 27: Box plot for the “If I asked you to describe what a loop is how confident would

you be with your reply” question .. 59

Figure 28: Students confidence around describing variables ... 59

Figure 29: Students confidence around describing variables – Differences between surveys . 59

Figure 30: Box plot for “If I asked you to describe what a variable is how confident would

you be with your reply” question .. 60

Figure 31: Students confidence around programming with Scratch ... 61

Figure 32: Students confidence around programming with Scratch – Differences between

surveys .. 61

Figure 33: Box plot for the “How confident do you feel about using Scratch to program”

question ... 62

Figure 34: Students confidence learning new programming languages 63

Figure 35: Students confidence learning new programming languages – Differences between

surveys .. 63

Figure 36: Box plot for the “How confident do you feel about learning new programming

languages” question .. 64

Figure 37: Students confidence using any programming language .. 64

Figure 38: Students confidence using any programming language – Differences between

surveys .. 64

Figure 39: Box plot for the “How confident do you feel about using any programming

language” question .. 65

Figure 40: Students rating of their computing skills... 66

Figure 41: Students rating of their computing skills – Differences between surveys 66

Figure 42: Box plot for the “How would you rate your computing skills” question 67

Figure 43: Students rating of their programming skills .. 67

Figure 44: Students rating of their programming skills – Differences between surveys 67

Figure 45: Box plot for the “How would you rate your programming skills” question 68

Page 11 of 166

Tables

Table 1: Weighted scores for all programming languages/tools/environments considered 29

Table 2: Statistics for programming languages/tools considered in regards to teaching 30

Table 3: Quartiles for the “How likely students will choose ICT or Computing as a GCSE

option or an equivalent” question ... 48

Table 4: Averages for the “How likely students will choose ICT or Computing as a GCSE

option or an equivalent” question ... 48

Table 5: Quartiles for the “How likely are you to study AS/A level Computing or a college

computing course” question .. 50

Table 6: Averages for the “How likely are you to study AS/A level Computing or a college

computing course” question .. 50

Table 7: Quartiles for the “How likely students will choose to study a computing course at

university” question .. 51

Table 8: Averages for the “How likely students will choose to study a computing course at

university” question .. 51

Table 9: Quartiles for the “How likely do you think you will get a job in the computing

industry” question ... 53

Table 10: Averages for the “How likely do you think you will get a job in the computing

industry” question ... 53

Table 11: Quartiles for the “If I asked you to describe an ‘if’ statement how confident would

you be with your reply" question .. 57

Table 12: Averages for the “If I asked you to describe an ‘if’ statement how confident would

you be with your reply” question .. 57

Table 13: Quartiles for the “If I asked you to describe what a loop is how confident would you

be with your reply” question ... 58

Table 14: Averages for the “If I asked you to describe what a loop is how confident would

you be with your reply” question .. 58

Table 15: Quartiles for the “If I asked you to describe what a variable is how confident would

you be with your reply” question .. 60

Table 16: Averages for the “If I asked you to describe what a variable is how confident would

you be with your reply” question .. 60

Table 17: Quartiles for the “How confident do you feel about using Scratch to program”

question ... 62

Table 18: Averages for the “How confident do you feel about using Scratch to program”

question ... 62

Table 19: Quartiles for the “How confident do you feel about learning new programming

languages” question .. 64

Table 20: Averages for the “How confident do you feel about learning new programming

languages” question .. 64

Table 21: Quartiles for the “How confident do you feel about using any programming

language” question .. 65

Page 12 of 166

Table 22: Averages for the “How confident do you feel about using any programming

language” question .. 65

Table 23: Quartiles for the “How would you rate your computing skills” question 67

Table 24: Averages for the “How would you rate your computing skills” question 67

Table 25: Quartiles for the “How would you rate your programming skills” question 68

Table 26: Averages for the “How would you rate your programming skills” question 68

Page 13 of 166

Glossary

BCS = BCS, The Chartered Institute for IT - http://bcs.org

BU = Bournemouth University – http://bournemouth.ac.uk

CAS = Computing at Schools Working Group - http://computingatschool.org.uk

CPD = Continuous Professional Development

CPU = Central Processing Unit

CRA = The Computing Research Association - http://cra.org

CS = Computer Science

DfE = Department for Education (UK) - http://www.gov.uk/dfe

EdD = Doctorate in Education

FAQ = Frequently Asked Questions

GPIO = General Purpose Input/Output

HESA = Higher Education Statistics Agency - http://www.hesa.ac.uk/

ICT = Information and Communications Technology

IDE = Integrated Development Environment

KS = Key Stage

KS1 = Key Stage 1 (5 to 7 year olds - years 1 and 2)

KS2 = Key Stage 2 (7 to 11 year olds - years 3 to 6)

KS3 = Key Stage 3 (11 to 14 year olds - years 7 to 9)

KS4 = Key Stage 4 (14 to 16 year olds - years 10 and 11)

KVM = Keyboard, Video and Mouse

MIT = Massachusetts Institute of Technology

NC = National Curriculum

NCB = National Children's Bureau - http://www.ncb.org.uk

OOP = Object-Oriented Programming

PhD = Doctorate in Philosophy

RAM = Random Access Memory

UCAS = Universities and Colleges Admissions Service - http://ucas.com

Year 1 = 5 to 6 year olds (KS1)

Year 2 = 6 to 7 year olds (KS1)

Year 3 = 7 to 8 year olds (KS2)

Year 4 = 8 to 9 year olds (KS2)

Year 5 = 9 to 10 year olds (KS2)

http://bcs.org/
http://bournemouth.ac.uk/
http://computingatschool.org.uk/
http://cra.org/
http://www.gov.uk/dfe
http://www.hesa.ac.uk/
http://www.ncb.org.uk/
http://ucas.com/

Page 14 of 166

Year 6 = 10 to 11 year olds (KS2)

Year 7 = 11 to 12 year olds (KS3)

Year 8 = 12 to 13 year olds (KS3)

Year 9 = 13 to 14 year olds (KS3)

Year 10 = 14 to 15 year olds (KS4)

Year 11 = 15 to 16 year olds (KS4)

Page 15 of 166

1. Introduction

Computing has evolved at a remarkable pace in recent years and is becoming ubiquitous and

essential for modern life; however computing education hasn’t evolved as quickly. This has

created a skills gap with Further and Higher Education institutions having difficulty finding

suitable students and likewise industry has problems finding suitable employees.

Studies have shown that interest in studying and pursuing computing careers is low despite an

ever increasing demand for computing skills (Cooper et al. 2010; Morelli et al. 2010; Purewal

Jr. 2010). This applies to all businesses (not just the computing industry) due to the

prevalence of computing in modern society. In addition computing skills are highly valued as

they demonstrate other skills such as problem solving, design, creativity and logic skills.

Possible reasons for this lack of interest have been identified as: misconceptions of what

computing education and careers involve, the way computing is taught with failures to show

the relevance of computing, outdated content, lack of computer science content, and so forth

(Albinson 2013).

This dissertation will look at the reasons behind this observed lack of interest in computing

and ways to make computing more appealing. It will focus around a case study of a university

outreach computing event for secondary schools designed to enhance students’ perceptions

and understanding of computing. It will also provide teachers with a Continuing Professional

Development (CPD) opportunity to learn more about computing and provide ideas on

interactive teaching methods. It will include the use of physical computing such as showing

the hardware which makes computers work and using electronics with computers as inputs

and outputs of a program. It is designed to make programming more fun and engaging by

showing the effects of programming over a physical object such as turning on a light and how

inputs such as switches can be used.

The next section details the background to the project along with related literature. Section 3

compares programming languages/tools/environments used in education. Section 4 reviews

microcomputers and microcontrollers which can be used to introduce physical computing into

education. Section 5 contains the research methodology, followed by section 6 describing the

case study. Section 7 covers the findings from the research. The dissertation then finishes with

conclusions, recommendations and further work sections.

Page 16 of 166

2. Background to the project

In preparation for this dissertation the researcher conducted a literature review (Albinson

2013) which reviews the factors affecting the decline in undergraduate university Computer

Science (CS) course enrolments and approaches for solving this problem (see appendix 1).

This showed that students’ impressions of computing courses in Further and Higher

Education and computing careers is low despite its importance in modern society. There is an

observed reduction in university CS course enrolments from around 2000 with a slight

increase in recent years as various approaches are used to try and reverse the trend
1
. There are

a variety of reasons for this unpopularity such as: misconceptions of what computing

education and careers involve and that outsourcing has reduced job availability, poor quality

computing education in schools, outdated university courses and so forth.

As a response, strategies are being employed to improve students’ perceptions and

understanding of computing and increase their computing knowledge including: improving

school curriculums and guidelines to make computing more prominent and to cover more

computing content, improving and modernising computing courses, tailoring introductory

courses to particular interests and careers, focussing courses around a current trend, making

programming more accessible, using different teaching approaches and learning techniques,

outreach projects and so forth. Evidence shows that these approaches improve students’

perceptions and understanding of computing and consequently university enrolments increase

(Albinson 2013).

2.1. English university enrolments

Unlike the USA which has the Taulbee Survey (CRA 2013) the UK does not have a definitive

set of figures on university computing course enrolments and retention. However UCAS

(2013a) publishes figures on university applications including offers made and their

acceptance (UCAS 2013b)
2
. These figures include courses chosen by subject/topic and

subject groupings
3
 and there are different versions for the whole UK and its individual

countries. Prior to 2012 there was no subject group specifically for computing and computing

subjects were primarily in the Mathematical & Computer Sciences group. Computing subjects

were Computer Science, Information Systems, Software Engineering and Artificial

1
 The data used in the literature review was from the USA due to greater availability of papers and statistics on

computing education and university computing course enrolments than the UK.
2
 More useful data can be found on the UCAS website (UCAS 2013c)

3
 They use the Joint Academic Coding System for this.

Page 17 of 166

Intelligence
4
. From 2012 they use an updated subject list (HESA 2013) which includes a

Computer Science group for all computing courses. Therefore using the groups and subjects

identified as computing we can get a reasonably accurate idea of computing enrolments
5
. The

change in grouping subjects is likely to make the results for 2012 different to previous years

due to a larger amount of subjects specified as computing but it should more accurately

identify computing courses.

Acceptance rates
6
 for computing courses in England

7
 (Figure 1) show reductions from 2004

to 2007 and significant increases to 2009 before smaller increases. Despite the extra courses

being identified as computing in 2012 there is only a moderate increase
8
. These results are

similar to American universities which also saw decreases until around 2007 before steady

increases (Albinson 2013).

Splitting the acceptance rate by gender (Figure 2) the results for males (who are in the

majority) are similar to the overall results (Figure 1), whereas the acceptance rate for females

is much smaller with very small variations per year. This also applies to individual topics
9

(Figure 3); there are similar patterns for Computer Science and Information Systems while

Software Engineering is steadily increasing and Artificial Intelligence has consistently low

figures
10

.

4
 However some computing courses were probably within the “Mathematical & Computer Sciences: any area” or

the “Others in Mathematical & Computer Sciences” subjects but it is not possible to differentiate which are

computing courses within these subjects so they cannot be included in computing course totals.
5
 However there may be courses in other groups/subjects which have computing content as part of their course

such as Business and IT which wouldn’t specifically be considered as a computing course. Also it is not an ideal

or particularly accurate set of statistics but in the absence of a dedicated survey of UK University computing

courses it appears to be the best available data.
6
 The acceptance figures are categorized according to the subject of courses which students accepted and thus we

can assume they enrolled on these courses/subjects.
7
 England is used instead of the whole of the UK as a) the case study focuses on English schools and b) there are

different funding policies within the countries in the UK which are likely to affect application figures.
8
 Thus it appears the new Computer Science group contains a similar amount of courses than were identified as

computing in the previous years. However there is only 1 year of statistics using this new group and it will

require more years of statistics to fully analyse the new grouping’s effect.
9
 2012 results are excluded as they use different groupings and subjects and as there is only 1 year of results

using these it is difficult to compare them to the 2004-2011 results.
10

 This could be due to little interest in the subject or limited course availability.

Page 18 of 166

Figure 1: Students accepting a place on a

computing course 2004 - 2012

Figure 2: Students accepting a place on a

computing course 2004 – 2012 - by gender

Figure 3: Students choosing specific computing topics 2004 - 2011

Students accepting a place on a computing

course 2004 - 2012

10500

11000

11500

12000

12500

13000

13500

14000

14500
To

ta
l S

tu
d

e
n

ts

Year

Students accepting a place on a computing

course 2004 - 2012

0

2000

4000

6000

8000

10000

12000

14000

To
ta

l S
tu

d
e

n
ts

Year

Male Students Female Students

Students choosing specific computing topics 2004 - 2011

0

2000

4000

6000

8000

10000

12000

2004 2005 2006 2007 2008 2009 2010 2011

To
ta

l S
tu

d
e

n
ts

Year
Computer Science Information Systems
Software Engineering Artificial Intelligence

Page 19 of 166

Splitting topic choices by gender (Figure 4 and Figure 5) shows that females have similar

results to males but Information Systems is more popular.

Figure 4: Male students choosing specific

computing topics 2004 - 2011

Figure 5: Female students choosing specific

computing topics 2004 - 2011

2.2. Computing in schools

Albinson (2013) shows that the computing experiences, especially teaching, that school

students’ receive influences their opinions of computing and considerations towards future

computing study and careers. Therefore an informal investigation was carried out to examine

the computing teaching offered in English schools and if teachers are prepared for the

reformed/new National Curriculum (NC) with its enhanced computing content (see 2.3.) and

whether assistance with it would be useful. This was done via discussions with a sample of

secondary schools in the local area (see appendix 2) and via an informal discussion (see

appendix 3). The replies showed that some schools have teachers with CS degrees and are

able to easily adjust to using the new NC. However many schools have non-CS staff and the

new NC introduces plenty of new content which the average computing teacher will not have

covered before and will need training to understand it (either self-taught or formal education).

Teachers are understandably concerned about how to teach the new content especially as there

is little government advice on how to interpret and teach the new NC; see appendix 4 for

more information. This situation shows a need for resources and advice to be made available

to not only assist in the transition to the new NC but to enhance the quality of computing

teaching.

Male students choosing specific computing

topics 2004 - 2011

0

2000

4000

6000

8000

10000

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

To
ta

l S
tu

d
e

n
ts

Year

Computer Science Information Systems

Software Engineering Artificial Intelligence

Female students choosing specific

computing topics 2004 - 2011

0

200

400

600

800

1000

1200

1400

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

To
ta

l S
tu

d
e

n
ts

Year

Computer Science Information Systems

Software Engineering Artificial Intelligence

Page 20 of 166

2.3. The new National Curriculum

This need to improve computing education in schools has been recognised by the UK

government and a new Computing subject to replace ICT has been included in the proposed

new National Curriculum for England (due to come into effect September 2014). Current

computing education (ICT) commonly only covers Digital Literacy (how to use basic

applications such as word processors and the internet) because:

a) ICT in the NC is flexible and low level/simple content can be chosen to allow non-

specialists to teach it,

b) many teachers only have digital literacy skills,

c) a lack of professional development among computing teachers,

d) school infrastructures can restrict teaching more advanced computing content

(The Royal Society 2012). The proposed Computing subject covers a much larger/complete

range of content and defines Computing as Computer Science, Digital Literacy and IT (DfE

2013a). See appendix 5 for further details on the new NC.

Informal discussions show that there is some confusion among teachers on how to interpret

and teach the new NC. For example the requirement for Key Stage 1 students to be able to

write and test simple programs could be difficult with children of this age as they may not

have fully developed reading skills and as such reading code would be especially difficult.

Visual programming tools designed for teaching, such as Scratch, reduce complexity but as it

uses blocks instead of text-based code it may not meet the requirements for writing code.

Even these tools could be too complex for young children and in response to this a simplified

junior version of Scratch (ScratchJr) is being developed for 3-8 year olds (ScratchJr 2013).

There is also confusion on what content should be covered to meet the aims of the curriculum;

teachers need to know what is vital to cover and what can be removed to ensure they can fit

the most relevant content into the available lesson time. The curriculum is intentionally short

with summarised content as aims/objectives to allow for flexibility when delivering the

content. While this is useful to allow teachers to adapt content to meet students’ needs, school

requirements, facilities etc. many teachers would benefit from more in-depth guidelines

especially those with limited computing skills (for example see the views in appendices 2 and

3).

Page 21 of 166

2.4. Implementing the new National Curriculum

With the new Computing subject in the new NC set to come into effect in 2014 planning is

required to enable a smooth transition and implementation. There are two trains of thought on

this; a) ignore the new content for now and wait until planning for 2014-15 begins or b) start

planning now and introduce some new content for a phased implementation. Whereas it may

appear a little early to start using the new NC’s content
11

, implementing it into planning as

soon as possible allows for a more phased implementation and evaluation before it becomes a

requirement in 2014.

Coincidentally phased implementation of the new NC was considered but it was decided,

given the importance of providing the benefits it offers, it was best not to delay it and to

introduce it all in September 2014 (DfE 2013b, p.15).

Teachers most popular implementation is a phased approach, choosing to include some new

computing content from September 2013 (as seen in the views in appendices 2 and 3),

realising it is impractical to introduce the entire new computing NC straight away. Existing

students will not have prior knowledge of the Computing subject in the new NC and therefore

meeting its requirements could be difficult. Introducing as much new computing content as

feasible from September 2013 while retaining some existing ICT content will prepare students

for the new NC from September 2014 while not being too complex or daunting. However

even with this approach it may take many years for students’ computing skills to increase to

the required levels to fully embrace the new NC’s content; compare the skills and advantages

students learning the computing content of the new NC from the start of school will have by

the time they reach secondary school to those in secondary school now who were not taught

the new Computing subject/curriculum
12

. Additionally the range of skills of the students

could vary dramatically, for example each feeder school to a secondary school may teach

computing differently; some may cover a lot of content, some very little, and students’ skills

vary accordingly.

11

 Especially as it isn’t fully approved (correct at time of writing)
12

 These students would have been taught ICT which could have just contained basic content such as how to use

certain programs like office applications and may not have covered content such as programming, logic etc.

Page 22 of 166

Until the effect of the improved curriculum is felt, when all students entering secondary

school should have the same understanding of computing, schools should make their content

flexible. This flexibility would still be useful when the new NC is fully implemented
13

 as

some students may have difficulty with it and have poor skills due to lack of interest, learning

difficulties etc.

2.5. Teaching programming

Programming is useful for introducing computing principles/fundamentals. As syntax and

concepts are similar between programming languages then if programming concepts are

properly introduced students should be able to easily transition to using other languages.

Converting to Computer Science (2013) discusses whether teachers (and the same could be

said for students) should learn programming by learning programming concepts rather than a

specific programming language. This approach will fully introduce programming concepts,

principles/fundamentals, etc., and enable easy transition between programming languages.

However it may be a too difficult introduction for teachers/students with limited computing

skills and perhaps learning only one language would be a more suitable introduction.

Early year students may have poor typing skills so would struggle with text-based languages

and therefore arguments are made for using visual non-text based programming

languages/tools to make programming easy to understand.

Informal discussions recommend using graphical outputs to provide visual feedback as more

motivating results from programming. There are also suggestions to progress onto text-based

languages for added complexity and to introduce debugging skills, more relevance to

languages used in industry such as Java etc. The new NC specifies that from Key Stage 3

students must use two or more programming languages of which one must be text-based (DfE

2013a). It is also advisable to teach debugging skills such as producing basic rules/tips for

identifying a problem before asking the teacher for help
14

; another approach is purposely

providing students with faulty code for them to try and debug.

13

 When students should have all covered the same content and within theory have the same skills/level of

understanding.
14

 For example PythonCode.co.uk (2013) contains debug rules; it is based around Python but in general can

apply to most languages.

Page 23 of 166

Varying programming languages used throughout education helps students understand

programming concepts and see their relevance and reduces the chance of them getting bored

“we used Scratch last year and the year before that”. Also it helps build up complexity and as

many languages have similar syntax the students will hopefully see the similarities and have

more confidence to try other programming languages.

2.6. Teaching computer concepts

While teaching programming is valuable and can be used to introduce computing

principles/fundamentals, debugging skills etc. it is vital to ensure other areas are not

neglected. The new NC specifies a range of topics in the areas of IT, Digital Literacy and

Computer Science. Teachers must cover a broad range of content including the fundamental

principles of Computer Science, computational thinking, how systems work (both hardware

and software including communication such as the use of networks), logic, problem solving

and algorithmic thinking (DfE 2013a). Many of these skills can be introduced via

programming but content should ideally be taught via multiple approaches. Grover (2013)

discusses how learning to code is not enough and CS concepts/fundamentals (including

programming fundamentals) and computational thinking skills should be taught as they are

essential skills.

Students who learn programming without knowing these skills struggle to fully understand

the purpose of key concepts such as Booleans, conditions, loops etc. within programs.

Additionally programming teaching tools like Scratch, App Inventor and Alice and some

introductory programming courses can fail to teach programming fundamentals. Their focus

on quickly and easily creating programs, while very motivational, can leave students unable

to read/understand unfamiliar code (especially text-based programming) and debug

problems
15

. Similarly Wing (2006) explains how computational thinking should be a core

skill for students in addition to reading, writing and arithmetic.

15

 They may have just copied code, or blocks representing programming components/code, to complete a task

without considering what the code does. The simplicity of these tools while a major strength is also a weakness

as it makes it too easy to just recreate a tutorial example without considering the code and concepts behind it.

Page 24 of 166

3. Comparing programming languages/tools/environments

There are various programming languages/tools/environments used in education with varying

differences, resources, tutorials and other reasons for choosing them. Some are visual

programming tools/environments and are primarily designed for making programming simple

and easy to learn so offer an excellent introduction to programming. Others are more

traditional text-based languages/tools/environments which are either: used in industry, or are

similar to languages used in industry and aim to be simpler to understand and learn

programing with but may be more difficult than visual programming

languages/tools/environments.

A feature analysis (Pfleeger 2001, p.509) will be conducted for comparing each

language/tool/environment considered. Various attributes have been chosen to consider the

value of the language/tool/environment with scores out of 5 on how satisfactorily it meets

these key criteria, where 1 is completely unsatisfactory and 5 is completely satisfactory. Each

attribute also has a weight/level of importance which is also out of 5. The weights are

personal reasoning and are based on importance for teaching with key areas identified as:

relevance to education and how it can assist with teaching/learning, usability, and ability to

inspire and motivate students to program. However other people may have different views on

the importance of these attributes and would give them different values. This would therefore

affect the scores and perhaps even show different languages are more useful than the ones

identified in this study. The attributes that have been selected and their weights are:

 Usability of the programming tool/environment – How intuitive and easy to use is:

the environment, its features etc.? Weight: 4

 Ease of use and intuitiveness of the programming language – How complex is

creating a program? Weight: 4

 Programming concepts covered – Does it cover a full range of programming

concepts including advanced programming concepts such as Object-Oriented

Programming (OOP)? Weight: 3

 Relevance to industry – Is it used in industry or has a similar approach to an industry

tool? Weight: 2

 Ability to create real-world and relevant applications – Are the applications

created relatable to the real-world? Weight: 3

 Interactive features – How interactive is it? Weight: 2

Page 25 of 166

 Motivational potential – Will it motivate students? Weight: 3

 Quality of documentation and amount of teaching resources available. Weight: 4

 Longevity and update frequency – Is the tool/environment frequently updated to

remove any problems, enhance the system etc. Is there support for keeping it

available?
16

 Weight: 2

Potential total: 45

Potential weighted total: 135

Various popular programming languages/tools/environments for education are briefly

introduced below and are explained in more detail in appendix 6 along with full details of the

feature analysis.

3.1. Visual programming languages/tools/environments

Visual programming languages/tools/environments (e.g. App Inventor, Scratch and Alice) are

designed to make programming easier by removing the need to understand specific syntax.

Instead they work by having components for programming elements (loops, variables etc.)

which can be dragged into the tool/environment to build up the program and only fit together

if semantically correct. This approach allows students to focus on understanding

programming concepts rather than having to use complex and potentially confusing syntax.

3.2. Text-based programming languages

Although text-based programming languages are more complicated than visual programming

languages/tools they are more common in industry and can teach more advanced skills

including debugging skills.

3.2.1. Python

Python is probably the most common text-based language used in schools based on informal

discussions. It could be argued given its dominance that it should be the only text-based

language used at KS3 to introduce consistency, provide transferrable skills, and to focus on

one language not many.

16

 For example if it isn’t updated often it may show there is little interest in its longevity and development could

stop at any point and it may even become unavailable.

Page 26 of 166

3.2.2. Logo

Logo (Logic Oriented & Graphic Oriented programming language) is a very basic language

designed for teaching programming to young children
17

. Its most popular feature is drawing

with either a physical turtle robot (similar to Roamer (2013)) or a turtle on a computer screen.

It also includes support for other programming concepts such as loops/repeat, functions, lists

and arrays. There is no specific official Logo tool or language and there are many

implementations and dialects but they all share the same philosophy and similar syntax.

Logo’s simple commands and philosophy make it ideal for young children; for example

drawing a square is as easy as:

This is easy to interpret as it is simply directions, distances and angles.

To simplify this further a repeat can be introduced and the code becomes:

This can also be easily interpreted; repeat the contents of the brackets 4 times (forward 150

and rotate 90 degrees left).

3.2.3. C# and Visual C#

C# is an Object-Oriented Programming (OOP) language based on C and is type-safe and

designed to be simple and modern (Microsoft 2012a). It can create either command

line/console applications (native C#) or Windows applications with a Graphical User

Interface (GUI) (via Visual C#). The use of Visual C# allows for Rapid Application

Development (RAD) as GUI elements can be easily created by dragging or drawing them

onto the IDEs form/window designer. Code can then be added to them e.g. call a function

after clicking a button. Although it is designed to be easy, there is extra code to understand

compared to some languages due to the use of OOP. It has many predefined libraries to

handle complex functions and is useful for teaching/learning all programming concepts in an

OOP way. Also due to its popularity there are many teaching/learning resources available for

it.

17

 Although it could be used to provide a basic introduction to programming for any age

FORWARD 150
LEFT 90
FORWARD 150
LEFT 90
FORWARD 150
LEFT 90
FORWARD 150
LEFT 90

REPEAT 4 [FORWARD 150 LEFT 90]

Page 27 of 166

3.2.4. Visual Basic .NET

Visual Basic (VB) .NET is similar to C#/Visual C# as they both use the Visual Studio IDE,

are object-oriented and run on the .NET framework. VB .NET is a complete programming

language whereas Visual C# integrates the C# language into the Visual Studio IDE and adds

the ability to create GUIs. VB .NET is primarily focused on creating GUI Windows

applications but can also create console applications. Both VB .NET and C#/Visual C# are

popular and reasonably easy to use and have similar amounts of learning resources available

for them; however with C#/Visual C# being based on the well-established C programming

language (and therefore sharing similar syntax with other languages) and being designed to be

simple and modern it is probably a better choice.

3.2.5. Microsoft Small Basic

Microsoft Small Basic (Microsoft 2013a) is based on Basic, from which VB and VB .NET

originate, and is simplified with a much smaller syntax containing only 14 keywords
18

. It is

designed for 10 to 16 year olds but is useful as a first language for any age. Despite its

simplicity it has a rich programming environment and set of libraries to allow beginners to

easily create significant programs (Microsoft 2013b). The simple syntax makes commands

easy to understand and it is also similar to standard programming languages like C#. An

intellisense list is shown as the user types to assist them with the code they wish to write and

descriptions are shown for each word typed/chosen (functions, properties etc.). Although it is

basic it covers almost all programming concepts and allows the user to easily and quickly

create substantial programs (either command line/console or GUI applications). There is a

long introductory document (Microsoft 2012c) which covers all its features via many

interesting and well explained examples. There is also: documentation explaining the

language, a curriculum (Microsoft 2013d), eBooks (Microsoft 2013e), a user community for

sharing projects, and a forum.

18

 The keywords are listed and explained on (Microsoft 2012b)

Page 28 of 166

3.2.6. Java

Java (2013) is an extremely popular OOP language which is used to create applications to run

on almost any device. Its use of the Java Virtual Machine (JVM) enables programmers to only

need to write code once and it will work on any JVM-enabled device
19

. It is very popular in

industry and with university teaching and to a lesser extent School and Further Education. It is

derived from C and C++
20

 and has similar syntax but due to its OOP nature and extensive

functionality it can be difficult for novices to understand; plus it wasn’t designed as a

teaching/beginners language. There is extensive documentation, tutorials and examples on the

Java website and due to its popularity there are many other resources available. There are

tools designed for providing introductions to Java such as Alice (2013), BlueJ (2013) and

Greenfoot (2013) which are commonly used to assist with teaching.

19

 The process is known as “Write once, run anywhere” (WORA).
20

 Another C derivative

Page 29 of 166

3.3. Summary

Table 1 contains the weighted attribute scores for all programming languages/tools/environments considered.

Table 1: Weighted scores for all programming languages/tools/environments considered

Language/Tool/Environment

Attribute

A
p

p

In
v
en

to
r

S
cr

a
tc

h

A
li

ce

P
y
th

o
n

L
o
g
o

C
#
 /

V
is

u
a
l

C
#

V
is

u
a
l

B
a
si

c

.N
E

T

M
ic

ro
so

ft

S
m

a
ll

B
a
si

c

J
a
v
a

Usability of the programming tool/environment 14 16 12 10 18 19 19 16
Not

applicable

Ease of use and intuitiveness of the programming language 16 18 10 14 18 17 16 18 12

Programming concepts covered 10.5 9 13.5 12 7.5 13.5 13.5 12 14.25

Relevance to industry 7 4 8 9 2 9 7.5 4 9.5

Ability to create real-world and relevant applications 12 6 6 13.5 3 13.5 13.5 3 14.25

Interactive features 9 7 4 8 4 9 8 2 9.5

Motivational potential 13.5 9 9 12 7.5 13.5 13.5 9 7.5

Quality of documentation and amount of teaching

resources available
16 18 12 16 12 18 18 16 18

Longevity and update frequency 9 9 9 8 5 9 9 4 10

Total (Out of 135) 107 96 83.5 102.5 77 121.5 118 84 95
21

21

 Note: For Java the potential weighted total is 115 not the usual 135 due to the usability attribute not being applicable.

Page 30 of 166

Table 2 contains the statistics for the programming languages/tools considered.

Table 2: Statistics for programming languages/tools considered in regards to teaching
22

Name Type Weighted total Weighted average

App Inventor Visual 107 (79.26%) 3.96

Scratch Visual 96 (71.11%) 3.56

Alice Visual 83.5 (61.85%) 3.09

Python Text-based 102.5 (75.93%) 3.80

Logo Text-based 77 (57.04%) 2.85

C#/Visual C# Text-based 121.5 (90%) 4.5

Visual Basic .NET Text-based 118 (87.41%) 4.37

Microsoft Small Basic Text-based 84 (62.22%) 3.11

Java Text-based 95 (82.61%) 4.13

Table 2 appears to show that C#/Visual C#, Visual Basic .NET and Java are the most suitable

languages/tools/environments for teaching programming in education (with weighted

averages of 4.5, 4.37 and 4.13 respectively) and that visual languages/tools/environments are

less useful than text-based languages/tools/environments. However it should be noted that the

attributes, reasoning, scores and weights consider education in general, such as concepts they

cover, and do not consider specific age groups or different levels or types of course. Therefore

this table gives an indication of the overall usefulness of languages and helps establish which

is most suitable to use, but the decision should be influenced by the course requirements and

content (introductory or advanced content), students’ age range and so forth.

22

 Note: For Java the potential weighted total is 115 not the usual 135 due to the usability attribute not being

applicable. Therefore considering languages should be done via percentages and averages.

Page 31 of 166

4. Microcomputers and Microcontrollers

Microcomputers such as the Raspberry Pi (2013) and the BeagleBone (BeagleBoard 2013)

and microcontrollers such as the Arduino (2013) can be used with programming to control

electronic components (for example a LED or a switch) as inputs and outputs of a program.

This can be used to show the hardware which makes computers work and how programming

can control electronics. It can also help make programming more fun and engaging by

showing the effects of code over physical objects.

Despite having similar components (processors, memory, GPIO
23

 pins etc.) the devices are

significantly different. The main difference being microcontrollers do not have an operating

system and are only able to run code that is added onto it via a computer. Whereas

microcomputers have an operating system and are a full computer capable of running much

more significant processes, for example graphics processing, multitasking, programming

(including creating programs to run on it) and so forth. Microcontrollers typically have

significantly slower processors and less memory but due to their simplicity (they just execute

one piece of code) they do not require large resources. They can also be smaller and due to

their simplicity have significantly lower power consumption. They are both capable of

controlling electronics and the device used typically depends on user requirements (power

usage versus functionality for example).

The Arduino is probably the most popular microcontroller and has a variety of versions to

meet different needs (prices start around £19) and many easy to use electronic components are

available for it. There is also a large user community to offer advice, tutorials and so forth.

The Raspberry Pi is probably the most well-known microcomputer and also has a large user

community. It has a considerably faster processor and larger memory compared to the

Arduino
24

 and has excellent capabilities such as superb graphics capable of a full HD output.

At approximately £30 it is very affordable and can be used as a computer as well as an

electronics controller which is perfect for education and keeping costs low
25

.

23

 General Purpose Input/Output
24

 The Raspberry Pi has a 700MHz processor and up to 512MB RAM whereas the Arduino only has a 16MHz

processor and 2KB of RAM. However the simplicity of the Arduino reduces the need for fast processors and

large amounts of memory.
25

 For example programs can be written on the Raspberry Pi and run on it to control electronic components via

its GPIO ports. Of course programs can also be written on another computer and then transferred onto the

Raspberry Pi to run there.

Page 32 of 166

The BeagleBone is similar to the Raspberry Pi with comparable specifications but is more

expensive and has less graphics power and outputs. However it has more GPIO pins and

support for electronic components. A larger and more powerful version (the BeagleBoard) is

available which would allow for BeagleBone projects to be scaled up (Maker Media 2013).

The device chosen depends on requirements, projects it will be used with, whether computing

features are required, the connections required and so forth
26

.

26

 The devices are compared in more detail at (Maker Media 2013). Note: This is a little out of date and shows

the Raspberry Pi having 256MB of RAM which has since been improved to 512MB.

Page 33 of 166

5. Methodology

5.1. Summary of earlier sections

Previous sections have explained the current state of computing in general and how there is a

lack of interest in computing careers and Further and Higher Education courses. Section 2

showed the current state of computing education including how computing is taught now and

problems with it such as the need for improvement, lack of computing skills among teachers,

and planned future improvements. Programming languages/tools/resources, microcontrollers

and microcomputers have been evaluated (Sections 3 and 4) as well as discussing a variety of

ways to improve computing education (Section 2). This knowledge will now be used as a

basis of a project to investigate if computing is improved to be more fun, motivational, and

relevant via interactive teaching methods can it enhance perceptions and understanding of

computing in secondary schools?

5.2. Introduction

It is evident from the literature that there are numerous issues involving the teaching of

computing. A good starting point for any research would be to find out from local school staff

and students their attitudes towards computing.

Due to the identified need to improve students’ perceptions of computing an outreach event

will be created. It will be designed to make computing fun, motivational, relevant and have

real-world applications. Staff also expressed interest in increasing physical computing in

schools such as showing the hardware which makes computers work and using electronics

with computers as inputs and outputs of a program as a result of coding such as controlling

lights, sensors, motors and so forth. The event will be designed to make programming more

fun and engaging by showing the effects of programming over a physical object such as

turning on a light and how inputs such as switches can be used.

A university outreach project for secondary schools provides a perfect opportunity to

investigate whether interactive programming tasks with physical outputs can improve

motivation to learn programming and consequently computing.

Page 34 of 166

5.3. Research Question

Can interactive teaching methods enhance students’ perceptions and understanding of

computing and increase their computing knowledge?

5.4. Aims and objectives

The project will be designed to meet the following aims and objectives, and to answer the

research question.

Aims:

 To enhance students’ perceptions and understanding of computing via an outreach

computing event

 To provide teachers with a Continuing Professional Development (CPD) opportunity

to learn more about computing and provide ideas on interactive teaching methods

Objectives:

 To provide fun and motivational programming examples which demonstrate

fundamental programming concepts, physical computing and programming with

electronics

 To show the relevance of computing via hands-on examples ideally with as many real-

world and relevant examples as possible

 To provide teachers and students with a CPD opportunity to learn more about

computing and to provide teachers with ideas for activities they can run with their

students (perhaps continuing on from the events activities or repeating them with new

students)

 To observe measured improvement in students’ perceptions and understanding of

computing

5.5. Research involving children

It is important that we first consider which research methods are feasible for using with the

children involved. Care needs to be taken when planning research involving children as due to

their age they may not have the maturity and cognitive skills to understand certain research

methods and/or what is being asked. Depending on their age certain questioning techniques

and research methods can be understood.

Page 35 of 166

De Leeuw (2011) explains, and The National Children’s Bureau “NCB” (2011, p.17) agrees

(however with slightly different ages ranges), how children from the ages of 7 can be

surveyed as this is a major developmental milestone
27

 and they should have the required

cognitive skills and maturity to understand surveys and complete self-reports
28

. As children

between the ages of 7-18 are still developing their thinking, logic, reasoning, memory,

language and social skills the complexity of research needs to be adjusted dependent on age
29

.

Children’s understanding of surveys and the reliability of their answers also increase as a

result of developing these skills.

7-12 year olds have sufficient language skills for individual semi-structured interviews with

structured interviews being feasible from around age 9. However as reading skills are still

developing simple language should be used
30

 along with checks to ensure the group

understand words used. Question complexity and the number of response categories require

consideration as their memory capacity, memory speed and cognitive abilities are still

developing. Also they may not have emotional or social skills to give reliable answers; they

are easily influenced, give insincere answers or answers they think are desired or popular.

12-16 year olds
31

 have well developed cognitive skills and understand logical operators and

negations. Therefore questions designed for adults can be used as long as they are carefully

worded to avoid ambiguity. Their memory speed is not fully developed (although their

memory capacity is) so will still require a reasonable amount of time to complete the

questions. Peer pressure can be a problem with reliability of results as children in this age

group are commonly influenced by their peers
32

.

Children 16-18 can be regarded as adults as they have fully developed cognitive and

information processing skills however they do not have fully developed social or

organisational skills which may influence results; also peer pressure is still an issue.

27

 This age (7) is based on research from the United States of America and Western Europe which have

privileged circumstances and in less privileged countries/areas the age of this major developmental milestone

may be higher. Also not all children develop at the same pace so this could also affect this age.
28

 They consider children below this age as incapable of being questioned as they do not have these skills.

However NCB (2011, p.17) say even children under 5 can be involved in basic research if the methodology is

adjusted for their age group to take into account things like their limited attention spans.
29

 Some students may develop slower than others so ages are just a guide and research must consider less

developed students.
30

 For example they probably won’t understand negations (such as not) or logical operators (like ‘and’, ‘or’ etc.)
31

 The age group the students of the pilot case study are in.
32

 They may provide answers that are popular with the group rather than their own opinion out of a desire to be

popular or fear that their opinion will be unpopular. Providing privacy while conducting surveys, interviews etc.

can help students feel able to resist peer pressure and provide their own opinion.

Page 36 of 166

The National Children's Bureau “NCB” (2011, p.17) agrees with these views and believe

most research methods can be used with secondary school students if they are adapted to meet

their abilities (literacy levels, cognitive skills and understanding of abstract concepts).

Punch (2002) discusses how research with children can be different to research with adults

and many approaches can be taken because of this. Children may be viewed the same as

adults or completely differently; if it is the former the same methods are used with adults and

children and no special treatment or consideration should occur with children
33

 whereas with

the latter adjustments should be made. Such adjustments are made based on observations of

the children and the skills of their age group. However adults may struggle to create

appropriate research involving children as adults find it difficult to think like a child. Punch

also suggests a “best of both” approach that considers children as being similar to adults but

uses research methods specifically designed around children and their skills
34

. They discuss

similar areas to aforementioned research
35

 around how children are different from adults and

issues conducting research which need to be addressed. This includes: it is important to be

impartial, children are easily influenced, answers may not be valid or reliable as children are

more likely to lie (due to peer pressure, to avoid difficult subjects, to provide a perceived

popular or correct answer and so forth), use appropriate research methods, and language needs

to be adjusted to be clear/understandable.

5.6. Research methods and methodologies

As this research is based around secondary school students, with the pilot case study being

trialled with year 8 (12 to 13 year olds), most research methods can be used; however

consideration will need to be made to ensure it is understandable to the students and validity

of responses is considered.

To provide data to assess whether the aims and objectives have been met will require a mixed

method approach of both qualitative and quantitative research. The majority of data around

students’ perceptions and understanding of computing will be quantitative and could be

gathered via survey research with questionnaires or interviews. Other data such as student and

teachers opinions will be qualitative and can be gathered via smaller interviews, observations

or perhaps non-numeric attitudinal responses in a survey. Some data collected will be more

in-depth, such as enquiring about computing influences, reasons for interests in computing

33

 Children should be considered as mature, capable and knowledgeable so require no special treatment.
34

 This is similar to the aforementioned research by De Leeuw (2011) and the National Children's Bureau (2011)
35

 De Leeuw (2011) and the National Children's Bureau (2011)

Page 37 of 166

careers and observations of students while they work through the events tasks, so require

qualitative methods. The triangulation of both qualitative and quantitative research methods

will allow for the weaknesses of each method to be cancelled out (Dawson 2007, p.22).

There are a number of approaches to the research that could be considered. Dawson (2007)

highlights action research, ethnography and grounded theory specifically. The aim of the

research is to see if interactive teaching methods can improve students’ perceptions and

understanding of computing.

The research could be considered as action research as it involves close collaboration with

schools to conduct research and to help improve students’ perceptions and understanding of

computing. However the researcher is not directly working with the students who are the

main respondents and there is no close collaboration with the students. The research is not

ethnography as it is not looking at a group’s behaviour/cultural phenomena via observations

over time.

Grounded theory involves researching an area and finding out about perceptions and thoughts,

often from deep interviews and analysing the resultant data, before looking at the literature.

The literature has already been examined in this work so grounded theory will not be

appropriate.

There are many research methods that can be considered such as experiments, case studies,

surveys and interviews. An experiment was considered but these require the researcher to

have control over all the behaviours/variables (Yin 2003, p.8) so that the only

behaviour/variable that can change is the one that is being tested. Therefore as this research

has many possible areas being investigated this is not suitable especially as there are areas

which are not easily defined such as the definition of fun which requires multiple aspects to

be investigated to try and interpret the effectiveness of the event.

Case studies do not require control over all the behaviours/variables as they are designed to

allow observations of multiple results so are more suitable for this research. Case studies are

ideal for this research as they investigate contemporary phenomenon in a real-life context

(Yin 2003, p.13) which in the case of this research is computing in schools. They can also

handle multiple data points, from potentially multiple sources of evidence from different data

collection methods, contributing to one result which this research will create, as for example

Page 38 of 166

many questions will be required to test if the aims have been met. Also as the research is a

defined repeatable event, the case study can be repeated many times with adjustments made if

required. The repeated case studies can become part of a larger multiple-case study to offer

more detailed results and room for analysis
36

 with a larger or more varied results set as

required
37

. Case studies also allow for various data collection methods to be used such as

surveys, observations and interviews so will allow the research to collect the required

qualitative and quantitative data.

Data can be collected in various ways such as surveys, observations, focus groups and

interviews and the type chosen depends on the data to be collected and the audience. As

explained in section 5.5 care must be taken when choosing the research methods used with

children. Surveys are suitable for the age group involved as long as the questions are carefully

written and are unambiguous. Surveys can allow for both quantitative and qualitative data to

be easily collected from multiple people in a short time. Therefore it is ideal for this research

which involves collecting a wide variety of data from a group of respondents. Also there is

likely to be limited time to conduct the data collection and it must be simple for students to

understand.

Observations are suitable if they are unobtrusive and do not cause any distress. Observations

are ideal when participants are involved in activities as they allow data to be collected about

how effective the activities are and the participants’ abilities in completing them.

Interviews may be feasible if they are carefully constructed and questions used are clear;

however this is not feasible with all the students due to time restrictions but it could be

considered as either a separate study or with just a few students if there is spare time and the

school feels it is appropriate.

36

 It can be argued that it is difficult to generalise results from single case studies, the same problem also occurs

with single experiments, (Yin 2003, p.10) and using multiple case studies solves this problem.
37

 For example the same case study repeated without any changes can be used for validation to see whether

noticed observations/results repeat and thus are reliable or were purely coincidental. Alternatively changing

variables between case studies allows for testing to see if it changes results; it is recommended to do multiple

cases of each variable change and the original unchanged version to validate results.

Page 39 of 166

A focus/discussion group could be used to obtain opinions from the group in a shorter time

than multiple individual interviews but this is unlikely to produce as reliable or in-depth

responses. This is because children are easily influenced by peers and wish to give popular

answers so will only say what they think others want to hear
38

.

Although interviews are not likely to be feasible with students they can be used with school

staff to get their opinions on the event and students’ abilities, or alternatively this can be

achieved via a discussion.

5.7. This research

5.7.1. Participants

Due to the time constraints of limited time to conduct the pilot event/case study and school

summer holidays it was decided for the pilot event that year 8 students from St Edward’s

school and Poole High school would be invited. It was possible to run a half day version of

the event at St Edward’s school for year 8 students. Therefore this opportunity will be used to

create a pilot event with a selection of tasks and challenges to fit into half a day.

5.7.2. Teams

The students will be put into teams of varied skills and include students from different

schools
39

. This will help with inclusiveness and differentiation as teams will have a variety of

skills and therefore everyone can learn from each other. Mixing teams up between schools

and skill levels will also provide more equal skills amongst teams and no teams should have

an unfair advantage. The use of teams also reduces the amount of resources required. One

thing to consider with teams is how to ensure all team members are involved as some of the

team may be more confident and do the majority of the work; consequently some students

may feel they are not as skilled as others in the team and feel they should let them take over

the work or perhaps they are unmotivated or lazy and do not wish to work.

Teams will probably work best for the more advanced tasks and the challenges where the

students can work together to work out what needs to be done and different ideas are used to

solve problems. However basic tasks should probably be done by individuals or pairs as there

may not be enough work for a team to divide between themselves
40

.

38

 One of the general disadvantages of focus groups is participants may feel uncomfortable speaking in a group

(Dawson 2007, p.31); this is especially a problem when working with children.
39

 However the event could be run with just 1 school as was the case with the pilot event/case study.
40

 Resource limitations may however make this unfeasible.

Page 40 of 166

5.7.3. Content

Microcontrollers and microcomputers were considered to integrate physical computing into

some of the tasks, see section 4. Raspberry Pi computers were chosen due to their: popularity

in schools
41

, low cost, specifications
42

, and because they have General Purpose Input/Output

(GPIO) pins which can be used by a variety of programming languages to control electronic

components.

Programming languages/tools/environments were considered with their suitability for

interacting with external devices and GPIO pins via a Raspberry Pi computer, see section 3.

Scratch was chosen because: the students attending the event will already have some

experience in using it, it is simple and doesn’t use complex syntax, it is motivational and has

graphical outputs, it can be used to quickly and easily demonstrate programming concepts,

and it can be used to control GPIO pins on a Raspberry Pi.

5.7.4. Tasks

Part 1: Basic programming tasks with Scratch covering fundamental programming concepts

with examples that can be expanded on in part 2.

Part 2: Further Scratch tasks which use a modified version of Scratch to interact with the

GPIO pins of a Raspberry Pi for creating inputs and outputs of the program.

Students work through as many tasks and challenges within each part as they can which

increase in complexity and make use of skills and concepts learned. This will allow

students/teams to progress at their own pace and those with more advanced skills will have

extra more challenging tasks to progress on to and keep them motivated. The more advanced

tasks have less detail to be a problem solving challenge. More details are in appendix 7.

5.7.5. Further details

For further details on the event see:

 Appendix 8 - The event’s timetable

 Appendix 9 - Tasks Worksheets/Hand-outs

 Appendix 10 – Challenges Worksheets/Hand-outs

 Appendix 11 – Advice for event staff

 Appendix 12 – Guidance for the event organiser

41

 The Raspberry Pi was primarily designed for education and many schools including St Edward’s are investing

in some for their classrooms. Therefore their Raspberry Pi computers can be used for the pilot event/case study.
42

 It has the fastest CPU, most memory, best graphics and so forth of the microcontrollers and microcomputers

considered and many other useful features such as a wide variety of connections.

Page 41 of 166

5.8. Data collection

5.8.1. Surveys

Surveys will be conducted before and after the event to see if the event enhanced students’

perceptions and understanding of computing and met the aims and objectives. See appendix

13 for more details.

Prior to the event the students will be asked to complete a survey asking about their current

perceptions and understanding of computing and their computing influences. After the event,

in addition to repeating the previous survey questions which relate to students’ perceptions

and understanding of computing to see if they were improved, additional questions will be

asked on their impression of the event. Teachers will also be asked after the event for their

views on the events effectiveness.

Most questions will have 1 - 5 point answers in a likert scale. For these questions radio

buttons for each value will be used if completed online or tick/check boxes if paper-based.

Some questions will use text boxes for more flexible answers. Some other questions will have

options to choose from as their answers and use radio buttons or tick/check boxes
43

 depending

on if multiple options are applicable. The majority of the questions will be closed-ended as

they offer set answers to choose from but some such as “write 3 words that describe your

opinion of computing” will be open-ended allowing any words to be written.

5.8.2. Observations

In addition to the formal surveys the observers (those helping run the event) will be asked to

provide feedback on the effectiveness of the day. See appendix 14 for more details.

5.9. Ethics for surveys, observations, interviews and discussions

To meet the Bournemouth University (BU) Research Ethics Code of Practice (BU 2009) and

taking advice from the Guidelines for Research with Children and Young People (NCB 2011)

the following practices will be followed.

All content used with students will be in plain/simple language which they will be able to

understand.

Results will be presented in an accessible format for young people to understand should they

wish to read the findings.

43

 Boxes to tick will be used if paper-based survey is used.

Page 42 of 166

The purpose of the research will be explained to students and school staff involved prior to

research beginning and the author’s email address will be provided should they have any

further questions. It will be made clear why their input is valuable and that they are not

obligated to take part in any of the research and can opt-out of any part of it. All data

collected from the students will be anonymous and kept secure.

The research will be agreed with the relevant staff at the schools “the gatekeepers” who will

be asked to ensure their students are comfortable with taking part in the research and that they

understand they can opt-out of any part of it
44

. A research information sheet (appendix 15)

will be provided to assist with this process. Staff will also be informed of the importance that

they remain neutral to avoid affecting the results. The gatekeepers’ permission will be the

primary permission for the research to proceed with the students able to opt-out if they wish.

Participation in the surveys will assume consent to publish data anonymously and this will be

explained at the start of each survey. Gatekeepers will also be present throughout the research

to ensure the students are happy to continue with it.

Gatekeepers will also be asked to seek permission from parents/guardians if they feel it is

necessary.

Permission will also be gathered to publish any data/information from discussions with school

staff and this will not contain any personal data or data which can identify students.

As the research is based around tasks which are similar to lesson content that students are

familiar with it should not distress them. Also the student surveys will be simple and easy to

understand/answer and their responses will be anonymous. Additionally, observations of the

students during the event will be unobtrusive and their purpose will be explained which

should also remove any potential distress.

44

 The importance of voluntary consent by the students will also be explained to the gatekeepers for when they

explain the research to them.

Page 43 of 166

6. Case study

6.1. Introduction

The pilot event/case study was a half day version of the outreach event, hosted at St Edward’s

School, with a group of 14 year 8 students. Due to the students’ previous experience using

Scratch, their teacher (Alastair Barker) thought they would not need the introductory tasks so

part 1 was removed and thus the event fitted into half a day
45

. Alastair and a few of his

colleagues attended the event and assisted the students.

6.2. Analysis of the event

6.2.1. Content

Alastair explained how he thought there was too much text on the worksheets which most

students wouldn’t read and it is probably too complex for many of the students. He

recommended going through the tasks with the students instead. As there was limited time it

was decided to take this advice and show the students how to do complex parts of the tasks as

well as providing worksheets for guidance and to allow the students to do as much as they can

themselves. This proved to be a useful strategy as it became clear that the researcher had

overestimated the students’ abilities and they required more assistance than anticipated. The

text on the worksheets was indeed too detailed for some students so should be simplified if

the event is repeated.

The introductions presentation had too much content which was of little interest to the

students but is useful for giving a background to the research and the tasks. Therefore the

presenter should assess which content is applicable for the group such as are they interested in

learning more about the research and content associated with the tasks, such as a background

to electronics, and if not then reduce this content.

45

 The survey was adjusted accordingly such as removing the question asking about opinions of part 1.

Page 44 of 166

The first 2 tasks (see appendix 9) went well although many students required assistance and

tasks were explained by the researcher rather than the students only following the worksheet.

Some had more confidence and abilities and were able to follow the worksheets and they

quickly completed the tasks which provided them time to experiment with the code and

electronics in order to discover what else they could do with it. When the electronics got more

complex in task 3 with the use of multiple GPIO pins and wires it was too confusing for many

students and their attention/motivation was lost. Alastair therefore recommended ending the

event as the students had lost interest. This was unfortunate as it meant only 2 of the 3 tasks

had been completed and none of the challenges were attempted. The difficulties encountered

and reduced content covered meant many of the concepts that the researcher aimed to cover

were not fully explained and there was less opportunities for learning. As the event didn’t run

smoothly and some students had difficulty understanding some of the content it probably

reduced the chances of improving opinions of computing and increasing knowledge. It would

be advisable, if repeated, to split the tasks up into smaller stages and simplify the electronics.

As there were enough Raspberry Pi computers for one per person this was used to ensure all

students were involved. Teams are more useful for when students are working unassisted and

for students to learn together so this was used for the more complex tasks
46

47

.

6.2.2. Students

There was a broad mix of students with a variety of different skills and interests and some

with learning difficulties. Whereas some were able to work on their own or with others, most

needed help and the researcher and the school staff had to help students with most of the

tasks.

The students had chosen to attend a computing event
48

 so had previous interest in computing

rather than using a random mix of students, they were also all male; therefore results could be

slightly biased towards computing being popular.

46

 This is also useful to overcome an oversight of there not being enough jumper wires/leads purchased for the

tasks which required 6 jumper wires so students worked in teams of 2 or 3 for these; however most tasks only

required 2 wires and there were enough wires for them to work individually on these tasks.
47

 Teams would have also been used for completing some of the challenges if it had been possible to include

them
48

 They originally registered for a minecraft event which was unfeasible and this event was added as a backup

Page 45 of 166

6.2.3. Surveys

The before and after event surveys were prepared to be completed online but as the computers

the students would be working on (the Raspberry Pis) didn’t have internet access it was

decided it would be better to use a paper-based survey
49

. Unfortunately a paper-based survey

hadn’t been prepared
50

 but the list of questions was available which was photocopied and the

students were asked to write on the sheet. Unfortunately this meant it was possible to ignore

questions whereas the online survey would have enforced completeness. For the after event

survey the students used the same survey/form and were asked to add new scores for the

relevant questions
51

 to see if their opinions and understanding had improved. It had originally

been planned to run the before event survey at least a week before the event so there was a

gap between surveys but this wasn’t feasible so it was conducted at the beginning of the

event. The short time between surveys and the use of the same form may have affected results

as there was little time for the students to consider the effect the event had on their views and

made duplicating results from the before survey easy
52

.

Also due to the lack of interest by the end of the event it was decided not to add the additional

after session questions about their views of the event.

6.2.4. Discussion

As some students struggled with the tasks and needed assistance they would probably benefit

from simpler tasks. However some students had no problems and were easily able to work

independently through the worksheets showing that the content is suitable for them. Therefore

it is advisable to make the content flexible with more basic content to use as an introduction

and progressing onto more advanced content thus allowing students to progress at their own

pace. Coincidentally this was planned for the full event but the researcher was advised that the

introductory content was not required for the half day pilot event. Perhaps more flexibility

should be included to allow for tasks to easily be chosen from a range of tasks during the

event in order to cater for the needs and skills of the students.

49

 There were other computers in the room with internet access but Alastair recommended not using them as it

would be too time consuming and disjointed to require students to switch computers to do the surveys.
50

 For future sessions this should be created as a backup solution.
51

 Some questions only needed asking once (for example asking about family members who work with

computers) as their answers will not have changed as a result of the event.
52

 For future events there will be gaps between surveys and the use of different forms (ideally online to enforce

mandatory questions).

Page 46 of 166

One sign that the event increased interest in computing including physical computing was that

many students were interested in buying Raspberry Pi computers for further experimentation

and learning.

Due to the complexity and difficulties found with using electronic components with the

Raspberry Pi its suitability could be questioned; this is discussed in more detail in appendix

16.

Page 47 of 166

7. Findings

The survey results are summarised below; see appendix 17 for full details.

7.1. Studying computing

The students were asked in a 1 to 5 scale (where 1 = very unlikely and 5 = definitely)

questions about the likelihood of them studying computing.

First the students were asked how likely they would choose ICT or Computing as a GCSE

option or an equivalent
53

; results from the before and after event surveys are shown in Figure

6 and the differences between surveys are highlighted in Figure 7.

Figure 6: How likely students will choose

ICT or Computing as a GCSE option or an

equivalent

Figure 7: How likely students will choose

ICT or Computing as a GCSE option or an

equivalent - Differences between surveys

53

 The reference to ICT could be removed in future due to its removal from the National Curriculum in 2014. It

can however still exist in schools that don’t have to use the NC or in colleges; however given the negative

perceptions of ICT it is probably best to remove it from the question.

How likely are you to choose ICT or

Computing as a GCSE option

or an equivalent?

0

1

2

3

4

5

6

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

How likely are you to choose ICT or

Computing as a GCSE option or an

equivalent? – Differences between surveys

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

Page 48 of 166

The results show the subject is popular with 64.29% positive responses, 21.43% neutral

responses and 14.29% negative responses
54

. After the event the positive responses increase to

71.43%, neutral reduces to 14.29% and negative remains the same. However you could

consider ‘possibly’ as a positive response
55

 and thus can combine the positive and neutral

totals which in this case makes 85.72% for both surveys despite slight decreases and increases

in responses
56

.

The quartiles and averages (Table 3 and Table 4, and Figure 8) also show the increase in

positivity after the event with a higher first quartile, however the mode average decreases by

1. The differences between surveys are not statistically significant at the 5% level
57

 (U= 95.5,

Z=-0.0919, P= 0.92828).

Table 3: Quartiles for the “How likely

students will choose ICT or Computing as

a GCSE option or an equivalent” question

Table 4: Averages for the “How likely

students will choose ICT or Computing as

a GCSE option or an equivalent” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 3 3.25

Median (Q2) 4 4

Quartile 3 5 5

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 3.79 3.79 0.00

Median 4 4 0.00

Mode 5 4 -1

Figure 8: Box plot for the “How likely students will choose ICT or

Computing as a GCSE option or an equivalent” question

54

 Positive responses are ‘very likely’ and ‘definitely’. Possibly is neutral as it is neither positive nor negative

and ‘unlikely’ and ‘very unlikely’ are negative responses.
55

 It could be considered positive as they may choose the option.
56

 There is an additional ‘very unlikely’ response and one less ‘unlikely’ but also one less ‘possibly’ and one

more ‘very likely’.
57

 Statistical significance throughout this dissertation uses the Mann-Whitney-Wilcoxon/Mann-Whitney U test at

the 5% level. They are two-tailed tests unless otherwise stated. There were 14 responses in each sample (before

and after event surveys) unless otherwise stated; some questions were ignored by some students so have less

responses which are explained with their results including the reduced totals.

How likely are you to choose ICT or Computing
as a GCSE option or an equivalent?

0 1 2 3 4 5 6

Before Event

After Event

Page 49 of 166

When we look at the likelihood of students studying AS/A level Computing or a college

computing course
58

 (see Figure 9 and Figure 10) responses are varied with mostly positive

options chosen (42.86% positive, 28.57% neutral, 28.57% negative) with a clear improvement

as a result of the event (57.14% positive, 14.29% neutral, 28.57% negative)
59

. However the

averages are lower than for the GCSE question. This reduced certainty could be because

AS/A levels are further into the future and students haven’t thought about such decisions

yet
60

.

Figure 9: How likely students will study

AS/A level Computing or a college

computing course

Figure 10: How likely students will study

AS/A level Computing or a college

computing course - Differences between

surveys

58

 “How likely are you to study AS/A level Computing or a college computing course?”
59

 There are increases for the more positive options (‘very likely’ and ‘definitely’) with less choosing the

‘possibly’ option showing increased opinions. However the ‘very unlikely’ and ‘unlikely’ options remain

unchanged which is encouraging for showing no decline but equally these figures didn’t decrease.
60

 The students in the pilot case study were in year 8 (12-13 years old) who won’t have to decide on AS/A Level

options until year 11 (15-16 year olds) so will have many more years to decide on subject choices.

How likely are you to study AS/A level
Computing or a college computing course?

0

1

2

3

4

5

6

7

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

How likely are you to study AS/A level
Computing or a college computing course? –

Differences between surveys

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

Page 50 of 166

The quartiles and averages (Table 5 and Table 6, and Figure 11) shows the results between

surveys are similar but there are increases for the mean and median averages. The differences

between surveys are not statistically significant (U= 86, Z= -0.5284, P= 0.59612).

Table 5: Quartiles for the “How likely are

you to study AS/A level Computing or a

college computing course” question

Table 6: Averages for the “How likely are

you to study AS/A level Computing or a

college computing course” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2.25 2.25

Median (Q2) 3 4

Quartile 3 4 4

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 3.07 3.29 0.21

Median 3 4 1.00

Mode 4 4 0

Figure 11: Box plot for the “How likely are you to study AS/A level

Computing or a college computing course” question

Looking further into the students’ future they were asked about their likelihood of studying a

computing course at university. Results (Figure 12 and Figure 13) show a reasonable amount

of interest in computing at university with the majority of students providing a positive

response (57.14% positive, 21.43% neutral and 21.43% negative)
61

. Popularity decreases

slightly as a result of the event
62

 making responses 50% positive, 28.57% neutral and 21.43%

negative.

61

 Interestingly positive responses are higher than those considering a AS/A level Computing or a college

computing course but slightly less than for the responses about considering a computing GCSE or similar.

However this isn’t surprising as they will have to consider GCSE options far sooner than university subject

choices.
62

 There was one less response for ‘very likely’ and one more for ‘possibly’ resulting in a slight decrease for

positive results and a slight increase for neutral.

How likely are you to study AS/A level Computing

or a college computing course?

0 1 2 3 4 5 6

Before Event

After Event

Page 51 of 166

Figure 12: How likely students will choose to

study a computing course at university
Figure 13: How likely students will choose to

study a computing course at university –

Differences between surveys

The averages and quartiles for the surveys (Table 7 and Table 8, and Figure 14) highlights the

positive attitudes to university and the slight decrease in positivity after the event. The

differences between surveys are not statistically significant (U= 94, Z= 0.1608, P= 0.87288).

Table 7: Quartiles for the “How likely

students will choose to study a computing

course at university” question

Table 8: Averages for the “How likely

students will choose to study a computing

course at university” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 3 3

Median (Q2) 4 3.5

Quartile 3 4 4

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 3.43 3.36 -0.07

Median 4 3.5 -0.50

Mode 4 3 -1

Figure 14: Box plot for the “How likely students will choose to study a

computing course at university” question

How likely are you to choose to study a

computing course at university?

0

1

2

3

4

5

6
To

ta
l s

tu
d

e
n

ts
 w

h
o

ch

o
se

 t
h

e
 o

p
ti

o
n

Response

Before Event After Event

How likely are you to choose to study a

computing course at university? –

Differences between surveys

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

How likely are you to choose to study a computing course at university?

0 1 2 3 4 5 6

Before Event

After Event

Page 52 of 166

7.2. Career ambitions

Various questions were asked about students career ambitions. First they were asked how

likely they would get a job in the computing industry and the results are shown in Figure 15

and Figure 16.

Figure 15: How likely students think they

will get a job in the computing industry

Figure 16: How likely students think they

will get a job in the computing industry –

Differences between surveys

This shows that before the event opinions were slightly negative overall (28.57% positive,

14.29% neutral, and 57.14% negative) and opinions improved after the event with positive

responses increasing to 42.86% and neutral and negative results decreasing to 7.14% and 50%

respectively
63

.

63

 An encouraging sign was that the ‘very likely’ responses doubled and the ‘definitely’ responses remained the

same (thus the increase in ‘very likely’ wasn’t at the expense of lost ‘definitely’ responses). However there was 1

extra ‘very unlikely’ response indicating a student is less certain working in the computing industry is right for

them which is disappointing considering one of the event’s objectives was to increase interest in computing

careers.

How likely do you think you will get a job

in the computing industry?

0

1

2

3

4

5

6

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

How likely do you think you will get a job

in the computing industry? – Differences

between surveys

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

D
if

fe
re

n
ce

Response

Page 53 of 166

The averages and quartiles for the surveys (Table 9 and Table 10, and Figure 17) highlights

the increased positivity (although the mode average decreased by 1 and first quartile

decreased by 0.25) along with a wider range of quartiles. The differences between surveys are

not statistically significant (U= 95, Z=-0.1149, P= 0.9124).

Table 9: Quartiles for the “How likely do

you think you will get a job in the

computing industry” question

Table 10: Averages for the “How likely do

you think you will get a job in the

computing industry” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 1.25 1

Median (Q2) 2 2.5

Quartile 3 3.75 4

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 2.57 2.71 0.14

Median 2 2.5 0.50

Mode 2 1 -1

Figure 17: Box plot for the “How likely do you think you will get a job in

the computing industry” question

Students were also asked whether they have considered working in the computing industry
64

.

Unfortunately some students ignored the question
65

. The results (Figure 18 and Figure 19)

remained the same between both surveys
66

. Of the 71.43% of students who answered the

question 70% have considered working in the computing industry.

64

 This is similar to the previous question so could perhaps merge the questions for future uses of the survey,

however it does work well to establish if the questions about their interest in the computing industry should be

asked/answered (in the online version of the survey it only shows these additional questions if they answer yes).
65

 This was perhaps due to the use of the paper survey being confusing whereas if the online survey was used

they would not be able to avoid questions.
66

 This is disappointing given one of the objectives of the event was to encourage more students to consider

computing careers; however it didn’t decrease its appeal either. It could be that the students were not interested

in the after event survey and just repeated their answers from the before event survey.

How likely do you think you will get a job in the computing industry?

0 1 2 3 4 5 6

Before Event

After Event

Page 54 of 166

Before Event After Event

Figure 18: Students who have considered

working in the computing industry after

leaving education – Before event

Figure 19: Students who have considered

working in the computing industry after

leaving education – After event

The students who answered yes to this question were asked 2 additional questions about their

interest in the computing industry. They were asked which sector they would like to work in

(results are shown in Figure 20) and all respondents
67

 chose Game Development and results

didn’t change between surveys. Perhaps this choice is indicative of the age group surveyed

who frequently play games and may wish to be able to create them. Also they may not know

much about the other sectors or they do not see them as “cool”
68

.

Figure 20: Sectors of the computing industry students are most interested in

67

 One student didn’t answer this question.
68

 Children of this age group are easily influenced by what is popular at the time and may not be considering

sectors in relation to jobs they could do and instead selected what they like now.

Have you considered working in

the computing industry after

leaving education?

7

3

4 Yes

No

No Answer

Have you considered working in

the computing industry after

leaving education?

7

3

4 Yes

No

No Answer

What part of the computing industry are you most interested in working in?

0 2 4 6 8

Software or Web Development

Game Development

Media Production

Hardware or Networking

Teaching Computing

Not sure

Other

No answer

Total students who chose the option

R
e

sp
o

n
se

After Event

Before Event

Page 55 of 166

They were also asked about their motivation/reason for wanting to work in the computing

industry (results are shown in Figure 21). The popular reasons chosen were working with

computers would be cool and possible job prospects; also chosen was that the computing

industry appears to be interesting and rewarding. Money was not a consideration. 2 students
69

didn’t answer the question and also results were unchanged between surveys.

Figure 21: Students motivation/reasons for wanting to work in the computing industry

7.3. Computing skills

Some questions were used to assess the students’ confidence in using and explaining

programming languages, concepts and tools (these use a 1 to 5 scale where 1 = very

unconfident and 5 = very confident). First they were asked about their confidence of

explaining an ‘if’ statement; results are shown in Figure 22 and Figure 23.

69

 This is 28.57% of the total students who were eligible for answering the question (those who answered yes to

whether they have considered a career in computing).

What is your main motivation/reason for wanting to work in the computing industry?

0 1 2 3

I think the computing industry would be
interesting and rewarding

I think I am likely to get a good job

I think I would earn a lot of money

I think working with computers is cool

Other

No answer

Total students who chose the option

R
e

sp
o

n
se

After Event

Before Event

Page 56 of 166

Figure 22: Students confidence around

describing an ‘if’ statement

Figure 23: Students confidence around

describing an ‘if’ statement – Differences

between surveys

There is a reasonable amount of confidence explaining an ‘if’ statement with the majority of

responses being positive (35.71%) or slightly negative (28.57%); negative responses was

35.71%
70

. After the event there was a slight increase in positive responses and a decrease in

negative responses (42.86% positive, 28.57% slightly negative and 28.57% negative)
71

.

The averages and quartiles for the surveys (Table 11 and Table 12, and Figure 24) highlights

the slight overall improvement in confidence as a result of the event (the mode and mean

averages increased slightly). The differences between surveys are not statistically significant

(U= 93, Z= -0.2068, P= 0.83366).

70

 ‘Unconfident’ and ‘very unconfident’ are classed as negative responses, and ‘confident’ and ‘very confident’

are positive responses. ‘Slightly unconfident/anxious’ is considered slightly negative as it isn’t a positive

response but isn’t a completely negative response either. However as it is in the middle of the scale it could be

considered as neutral like we did with possibly on the previous scale.
71

 There was one additional ‘confident’ response and 2 less ‘unconfident’ responses, however there was one

additional ‘very unconfident’ response. Perhaps this was one of the reductions from the ‘unconfident’ responses,

i.e. a student who previously said ‘unconfident’, now feels very unconfident describing ‘if’ statements, maybe

the event confused them.

If I asked you to describe an ‘if’

statement how confident would

you be with your reply?

0

1

2

3

4

5

6

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

If I asked you to describe an ‘if’ statement

how confident would you be with your

reply? – Differences between surveys

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

Page 57 of 166

Table 11: Quartiles for the “If I asked you

to describe an ‘if’ statement how confident

would you be with your reply" question

Table 12: Averages for the “If I asked you

to describe an ‘if’ statement how confident

would you be with your reply” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2 2.25

Median (Q2) 3 3

Quartile 3 4 4

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 2.93 3.00 0.07

Median 3 3 0.00

Mode 3 4 1

Figure 24: Box plot for the “If I asked you to describe an ‘if’

statement how confident would you be with your reply” question

The students were also asked about their confidence in explaining a loop; results are shown in

Figure 25 and Figure 26. There was a reasonable amount of confident responses prior to the

event but overall confidence was low (35.71% positive responses, 21.43% slightly negative,

42.86% negative) with various changes in responses in the after event survey
72

 with less

negative responses and more slightly negative responses
73

 (35.71% positive, 28.57% slightly

negative, 35.71% negative)
74

; overall confidence reduced.

72

 There was an increase in ‘very unconfident’ responses but less ‘unconfident’ responses and one more ‘slightly

unconfident/anxious’ response.
73

 Although this appears to be a little more positive there was a large increase in ‘very unconfident’ responses

which is a very negative change.
74

 Interestingly the positive and negative responses are now equal.

If I asked you to describe an ‘if’ statement how

confident would you be with your reply?

0 1 2 3 4 5 6

Before Event

After Event

Page 58 of 166

Figure 25: Students confidence around

describing a loop

Figure 26: Students confidence around

describing a loop – Differences between

surveys

The averages and quartiles for the surveys (Table 13 and Table 14, and Figure 27) are very

similar despite the differences in responses. However the after event survey has a lower first

quartile and slightly lower mean average. The differences between surveys are not statistically

significant (U= 95.5, Z= 0.0919, P= 0.92828).

Table 13: Quartiles for the “If I asked you

to describe what a loop is how confident

would you be with your reply” question

Table 14: Averages for the “If I asked you

to describe what a loop is how confident

would you be with your reply” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2 1.25

Median (Q2) 3 3

Quartile 3 4 4

Maximum 4 4

 Before

Event

After

Event

Difference

Mean 2.79 2.71 -0.07

Median 3 3 0.00

Mode 4 4 0

If I asked you to describe what a

loop is how confident would you

be with your reply?

0

1

2

3

4

5

6

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

If I asked you to describe what a loop is

how confident would you be with your

reply? - Difference between surveys

-4

-3

-2

-1

0

1

2

3

D
if

fe
re

n
ce

Response

Page 59 of 166

Figure 27: Box plot for the “If I asked you to describe what a loop is how

confident would you be with your reply” question

The final programming concepts question looks at students’ confidence in explaining

variables, results are shown in Figure 28 and Figure 29.

Figure 28: Students confidence around

describing variables

Figure 29: Students confidence around

describing variables – Differences between

surveys

If I asked you to describe what a loop is how

confident would you be with your reply?

0 1 2 3 4 5

Before Event

After Event

If I asked you to describe what a

variable is how confident would

you be with your reply?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

If I asked you to describe what a variable

is how confident would you be with your

reply? - Differences between surveys

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

Page 60 of 166

Results
75

 are almost identical between surveys with a slight increase in confidence after the

event with a 1 response change from ‘slightly unconfident/anxious’ to ‘confident’
76

. This

boosts positive results to 50%
77

 but this is still a low amount.

The averages and quartiles for the surveys (Table 15 and Table 16, and Figure 30) also show

responses are similar with slight increases for the after event survey. The differences between

surveys are not statistically significant (U= 69, Z= -0.1443, P= 0.88866).

Table 15: Quartiles for the “If I asked you

to describe what a variable is how confident

would you be with your reply” question

Table 16: Averages for the “If I asked you

to describe what a variable is how confident

would you be with your reply” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2 2

Median (Q2) 3 3.5

Quartile 3 4 4

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 3.08 3.17 0.08

Median 3 3.5 0.50

Mode 3 4 1

Figure 30: Box plot for “If I asked you to describe what a variable is

how confident would you be with your reply” question

75

 2 students didn’t answer this question thus there is only 12 responses instead of 14.
76

 It is highly likely this is just one person changing their response between these 2 options but it could be that

multiple changes happened and the totals just happened to change overall in these 2 categories.
77

 Before the event the results were 41.67% positive, 25% slightly negative and 33.33% negative, and after the

event it changed to 50% positive, 16.67% slightly negative and 33.33% negative.

If I asked you to describe what a variable is how

confident would you be with your reply?

0 1 2 3 4 5 6

Before Event

After Event

Page 61 of 166

Next they were asked about their confidence using Scratch to program; results are shown in

Figure 31 and Figure 32.

Figure 31: Students confidence around

programming with Scratch

Figure 32: Students confidence around

programming with Scratch – Differences

between surveys

These graphs show that the event reduced some students’ confidence to program using

Scratch with a change of some responses to ‘very unconfident’
78

; however there was an extra

‘confident’ response
79

. Overall confidence is reasonably high with positive responses of

57.14% before the event rising to 64.29% after the event
80

.

Despite the differences in responses the averages and quartiles for the surveys (Table 17 and

Table 18, and Figure 33) are the same for both surveys with the exception of the mean

average decreasing by 0.07 and the mode average decreasing by 1. The differences between

surveys are not statistically significant (U= 97, Z= 0.023, P= 0.98404).

78

 These extra ‘very unconfident’ responses could have previously been ‘unconfident’ as these responses have

reduced.
79

 There was also one less ‘slightly unconfident/anxious’ response so it could be that a student’s confidence

increased from this to confident.
80

 Responses were 57.14% positive, 14.29% slightly negative and 28.57% negative before the event and 64.29%

positive, 7.14% slightly negative and 28.57% negative after the event.

How confident do you feel about

using Scratch to program?

0

1

2

3

4

5

6

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

How confident do you feel about using

Scratch to program? – Differences

between surveys

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

D
if

fe
re

n
ce

Response

Page 62 of 166

Table 17: Quartiles for the “How confident

do you feel about using Scratch to

program” question

Table 18: Averages for the “How confident

do you feel about using Scratch to

program” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2.25 2.25

Median (Q2) 4 4

Quartile 3 4.75 4.75

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 3.50 3.43 -0.07

Median 4 4 0.00

Mode 5 4 -1

Figure 33: Box plot for the “How confident do you feel about using

Scratch to program” question

They were also asked about their confidence learning new programming languages in order to

establish if they feel confident enough with their programming skills and see similarities

between languages that they feel able to learn new languages. The results are shown in Figure

34 and Figure 35.

How confident do you feel you about using Scratch to program?

0 1 2 3 4 5 6

Before Event

After Event

Page 63 of 166

Figure 34: Students confidence learning new

programming languages

Figure 35: Students confidence learning new

programming languages – Differences

between surveys

These show a reasonably high confidence in learning new programming languages and there

are many changes as an effect of the event with every category changing with overall less

negative results chosen
81

. Responses were 50% positive, 7.14% slightly negative and 42.86%

negative before the event and 50% positive, 14.29% slightly negative and 35.71% negative

after the event.

Despite the differences in responses the averages and quartiles for the surveys (Table 19 and

Table 20, and Figure 36) are the same with the exception of the mean average increasing by

0.07 and the mode average increasing by 2. The differences between surveys are not

statistically significant (U= 94.5, Z= -0.1378, P= 0.88866).

81

 50% of students said ‘confident’ or ‘very confident’ with an increase in ‘very confident’ responses after the

event; there is also a reduction in ‘unconfident’ responses from 5 responses to 3.

How confident do you feel about learning

new programming languages?

0

1

2

3

4

5

6
To

ta
l s

tu
d

e
n

ts
 w

h
o

ch

o
se

 t
h

e
 o

p
ti

o
n

Response

Before Event After Event

How confident do you feel about learning

new programming languages? –

Differences between surveys

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

Page 64 of 166

Table 19: Quartiles for the “How confident

do you feel about learning new

programming languages” question

Table 20: Averages for the “How confident

do you feel about learning new

programming languages” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2 2

Median (Q2) 3.5 3.5

Quartile 3 4 4

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 3.14 3.21 0.07

Median 3.5 3.5 0.00

Mode 2 4 2

Figure 36: Box plot for the “How confident do you feel about learning new

programming languages” question

On a similar theme students were also asked how confident they are using any programming

language. Results are shown in Figure 37 and Figure 38.

Figure 37: Students confidence using any

programming language

Figure 38: Students confidence using any

programming language – Differences

between surveys

How confident do you feel about learning new programming languages?

0 1 2 3 4 5 6

Before Event

After Event

How confident do you feel about using any

programming language?

0

1

2

3

4

5

6

7

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

How confident do you feel about using any

programming language? – Differences

between surveys

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

Page 65 of 166

In both surveys the majority of results are ‘confident’ or ‘slightly unconfident/anxious’. The

event improved confidence slightly with an ‘unconfident’ response becoming ‘slightly

unconfident/anxious’
82

. The responses were 42.86% positive, 21.43% slightly negative and

35.71% negative before the event and 42.86% positive, 28.57% slightly negative and 28.57%

negative after the event.

Despite the differences in responses the averages and quartiles for the surveys (Table 21 and

Table 22, and Figure 39) are the same with the exception of a 0.25 increase between the first

quartiles and a 0.07 increase between the mean averages. The differences between surveys are

not statistically significant (U= 95.5, Z= -0.0919, P= 0.92828).

Table 21: Quartiles for the “How confident

do you feel about using any programming

language” question

Table 22: Averages for the “How confident

do you feel about using any programming

language” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2 2.25

Median (Q2) 3 3

Quartile 3 4 4

Maximum 4 4

 Before

Event

After

Event

Difference

Mean 2.86 2.93 0.07

Median 3 3 0.00

Mode 4 4 0

Figure 39: Box plot for the “How confident do you feel about using any

programming language” question

These results suggest students are more confident learning new programming languages

rather than using any programming language, which is surprising as it requires similar skills.

This could suggest that students do not see how skills can be transferred between

programming languages, how programming concepts are the same and many languages have

similar syntax. Alternatively it could mean they find programming lessons easy so learning

82

 Although it is highly likely this is one person changing their response this cannot be identified due to

anonymous results. It could be that multiple people changed results and the totals show just the one change.

How confident do you feel about using any programming language?

0 1 2 3 4 5

Before Event

After Event

Page 66 of 166

new languages is considered easy but using languages without any instruction would be

difficult so they don’t feel confident just using any language.

7.4. Rating skills

Students were also asked to rate their computing skills
83

 (this uses a 1 to 5 scale where 1 =

poor and 5 = excellent) and the results are in Figure 40 and Figure 41.

Figure 40: Students rating of their computing

skills

Figure 41: Students rating of their computing

skills – Differences between surveys

The majority of students rated their skills as average or above average and the event increased

the ‘above average’ responses; however there is a small increase in students considering their

skills as poor. Responses
84

 were 45.45% positive, 36.36% neutral and 18.18% negative for the

before event survey and 63.63% positive, 18.18% neutral and 18.18% negative.

The averages and quartiles for the surveys (Table 23 and Table 24, and Figure 42) shows the

results between surveys are similar with the exception of the median average increasing by 1

and the mean average increasing by 0.09 confirming an overall increase in students’ ratings of

their computing skills. The differences between surveys are not statistically significant (U=

52.5, Z= -0.4925, P= 0.62414).

83

 3 students did not answer this question so there are 11 total responses rather than the usual 14.
84

 Above average and excellent are considered as positive responses, average is a neutral response and below

average and poor are negative responses.

How would you rate your

computing skills?

0

1

2

3

4

5

6

7

8

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

How would you rate your computing

skills? – Differences between surveys

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

D
if

fe
re

n
ce

Response

Page 67 of 166

Table 23: Quartiles for the “How would

you rate your computing skills” question

Table 24: Averages for the “How would

you rate your computing skills” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 3 3

Median (Q2) 3 4

Quartile 3 4 4

Maximum 4 4

 Before

Event

After

Event

Difference

Mean 3.18 3.27 0.09

Median 3 4 1.00

Mode 4 4 0

Figure 42: Box plot for the “How would you rate your computing

skills” question

Similarly the students were asked to rate their programming skills
85

 and the results are shown

in Figure 43 and Figure 44.

Figure 43: Students rating of their

programming skills

Figure 44: Students rating of their

programming skills – Differences between

surveys

85

 3 students did not answer this question so there are 11 total responses rather than the usual 14.

How would you rate your computing skills?

0 1 2 3 4 5

Before Event

After Event

How would you rate your

programming skills?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

How would you rate your programming

skills? – Differences between surveys

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

Page 68 of 166

The majority of students rated their programming skills as average or above and the event

increased the ‘above average’ responses and reduced the ‘below average’ responses. However

there is a slight increase in students considering their skills as poor. Responses were 27.27%

positive, 36.36% neutral and 36.36% negative before the event and 36.36% positive, 36.36%

neutral and 27.27% negative after the event.

The averages and quartiles for the surveys (Table 25 and Table 26, and Figure 45) also show

the improved student ratings with increases for quartiles 1 and 3 and the mean average. The

differences between surveys are not statistically significant (U= 56, Z= -0.2627, P= 0.79486).

Table 25: Quartiles for the “How would

you rate your programming skills” question

Table 26: Averages for the “How would

you rate your programming skills” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2 2.5

Median (Q2) 3 3

Quartile 3 3.5 4

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 2.91 3.00 0.09

Median 3 3 0.00

Mode 3 3 0

Figure 45: Box plot for the “How would you rate your programming

skills” question

How would you rate your programming skills?

0 1 2 3 4 5 6

Before Event

After Event

Page 69 of 166

7.5. Summary

There are various observations that can be found from these results which can provide an

insight into students’ perceptions and understanding of computing and whether the case

study’s aims and objectives were met.

Studying computing

 The majority of responses were positive (64.29%
86

) about considering studying ICT or

Computing as a GCSE subject or an equivalent and the event slightly improved these

opinions.

 The majority of responses were positive (42.86%) or neutral (28.57%) for considering

AS/A level Computing or a college computing course and the event improved these

opinions.

 Similarly most students’ considerations of computing at university were positive

(57.14%), although this slightly decreased after the event
87

.

Career ambitions

 Before the event responses were slightly negative overall for considering getting a

computing job and the event improved opinions to an equal split between positive and

negative responses.

 70% of respondents have considered working in the computing industry. This result

conflicts with the previous question which showed only 50% of students considered

getting a computing job
88

.

 The most popular sector to work in is game development which echoes the finding by

Carter (2006).

 Students’ main motivations for working in the computing industry are because it is

seen as cool and has good job prospects.

86

 As explained above if you consider possibly as positive this becomes 85.72%.
87

 This may indicate that some students have reconsidered university as a suitable choice for them as a result of

the event. Perhaps the event was too complex so they are less certain they have the skills for university or

perhaps the event was too confusing or they didn’t enjoy it and it made them re-evaluate the value of university.
88

 Perhaps the 2 questions although similar confused the students or they do not see having a computing job as

the same as working in the computing industry.

Page 70 of 166

Computing Skills

 There is a reasonable amount of confidence for explaining ‘if’ statements which

increases slightly as a result of the event.

 There was a reasonable amount of confident responses for explaining a loop prior to

the event but overall confidence was low and after the event overall confidence

reduced
89

.

 There were 41.67% positive responses for confidence explaining variables before the

event which increased to 50% as a result of the event
90

.

 Confidence using Scratch is reasonably high with positive responses of 57.14% before

the event rising to 64.29% after the event.

 Confidence in learning new programming languages was reasonably high with 50%

answering with confident or very confident. However there was a large percentage of

unconfident responses but after the event this reduced as overall confidence increased.

 There was a reasonable amount of confidence in using any programming language

which increased slightly as a result of the event.

Rating skills

 The majority of students rated their computing skills as average or above average and

the event increased the ‘above average’ responses.

 The majority of students rated their programming skills as average or above and the

event increased the ‘above average’ responses and reduced the ‘below average’

responses.

89

 This is surprising considering loops were covered in the tasks/examples as well as specifically being explained

by the researcher.
90

 This is quite a small change and in general variable knowledge appears to be low. Unfortunately there wasn’t

enough time to cover variables in the session so this increase is unlikely to be as a result of the event.

Page 71 of 166

7.6. Limitations

Although many valuable results were acquired as a result of this event there were certain

limitations which restricted the usefulness of the results and ability to draw strong

conclusions.

It isn’t possible to consider improvement in students views about working in the computing

industry as the students didn’t revisit these questions in the after event survey
91

.

Some students’ responses appear to show little thought by responding with the same number

for entire groups of questions or all the surveys questions
92

 especially in the after event

survey. It may be that they have equal views for these questions but it could also mean they

are not paying much attention to their responses
93

94

.

2 students
95

 ignored the variable question which could suggest they don’t know what a

variable is.

There is not much variation in the results for many questions and differences between surveys

aren’t significant enough to draw strong conclusions. This is probably because the pilot study

was too small with only 14 students
96

 and a larger survey would offer more opportunity for

analysis.

Due to the need for event staff to provide the students with lots of help there was no time to

make formal observations. However the researcher did discuss the event with the staff after

the event and this feedback has been discussed previously in this dissertation. The researcher

was also promised additional feedback would be provided which unfortunately was not

received by the time this dissertation was published.

91

 This is probably because the same survey form was used for both surveys (for simplicity and to save time) and

they didn’t see the need to revisit these questions or perhaps their opinions didn’t change.
92

 For example for one group all responses may be all 4, another all 3. One student just said 1 for all questions in

the survey either indicating they were really confused about computing or (more likely) they were not interested

in considering their responses or doing the survey.
93

 For example a common technique for quickly responding without much thought would be to choose the

middle value (3).
94

 This lack of interest and attention could also be the reason for more negative responses as the students may not

be giving any thought to their responses and just adding any number. They could even be adding more negative

answers as they are annoyed to have to do another survey especially as it has almost all the same questions as the

previous survey.
95

 14.29% of the total students
96

 Some students ignored some questions further reducing the responses for those questions.

Page 72 of 166

On analysing the responses it became clear that the ranges used could be improved to produce

more useful results. Firstly there should be an equal amount of positive and negative results

(or similar groupings) and no middle answer thus making it easy to define which answers

belong to each group; this also helps remove the temptation for respondents to pick the

middle answer rather than thinking about their responses. Secondly in the confidence range

‘slightly unconfident/anxious’ was not a suitable option as it can’t be properly defined as

either a positive, negative or neutral response as it is slightly negative but not as clearly

defined as the other negative responses; also if it was considered as negative it would create

more negative responses than positive thus creating a negative bias.

7.7. Future improvements

The pilot event showed the need for the following improvements if the event were to be

repeated:

 Simplified content

 Survey response ranges with equal amounts of clearly defined positive and negative

responses and no middle value

 Perhaps using additional modules for simplifying electronics or replacing the

Raspberry Pi with another device (see appendix 16)

 A larger gap between surveys

 Perhaps make the event for older students such as year 10
97

 Use of separate survey forms ideally online to enforce mandatory questions with a

properly formatted paper-based survey as a backup/alternative

The attributes for comparing programming languages/tools/environments didn’t take into

account level of course (such as introductory or advanced courses) or student’s ages or key

stages. Therefore a future improvement could be to re-evaluate the

languages/tools/environments to address this.

97

 These are 14-15 year olds who should have more computing knowledge and maturity and may be able to

understand the tasks better. However an advantage of making the event for year 8 students was there limited

experience so there is more opportunity to improve their opinions and skills.

Page 73 of 166

7.8 Summary

Research shows there is a lack of interest in computing careers and Further and Higher

Education courses. There are various possible reasons for this which highlighted the need to

improve computing education in schools. A case study was created to help solve this by

creating an event to improve students’ perceptions and understanding of computing which

also worked as a CPD opportunity for teachers. It was designed to show teachers how they

can make fun, motivational, practical computing activities and demonstrate physical

computing and electronics with programming.

Overall the students had positive perceptions and understanding of computing prior to the

event and the event improved on these. However there were reductions in some areas such as

the likelihood of studying computing at university and understanding of loops which suggests

the event confused some students and they reconsidered their future study options. The

students appeared to enjoy the event and found it fun and motivational which is supported by

the increases in the survey results. It provided an excellent opportunity for students and

teachers to improve their computing knowledge, opinions and confidence. The examples

were practical and showed computing and programming’s link with electronics and some had

real-world relevance
98

. It provided teachers with ideas on interactive teaching methods and

teaching practical computing. Although there were some slight decreases in some opinions

and confidence the event has met its aims and objectives.

98

 For example the traffic light example showed the logic behind traffic lights. However it wasn’t possible to

cover all the planned examples.

Page 74 of 166

8. Conclusions

This study investigated how computing is taught in education and ways to enhance students’

perceptions and understanding of computing. It aimed to answer the research question: Can

interactive teaching methods enhance students’ perceptions and understanding of computing

and increase their computing knowledge?

The study found there are clearly many problems contributing to overall poor perceptions and

understanding of computing especially when students consider Further and Higher Education

options and careers. One of the main problems is how computing is taught with poor quality

computing education in schools, outdated university courses and so forth. In addition there are

many misconceptions of what computing education and careers involve. Research showed

how this contributed to low enrolment figures for computing courses at university and

recruitment problems in industry in both the UK and USA.

A case study of a university outreach event for secondary school students was created to see

whether interactive teaching methods can enhance students’ perceptions and understanding of

computing. This focussed around physical computing and was designed to make computing

fun, motivational and relevant, and to provide examples of real-world applications. Suitable

microcontrollers and microcomputers were evaluated which can show how computers work

and how electronics and robotics can be used with computers as inputs of a program and for

outputs as a result of coding, such as controlling lights, sensors, motors and so forth. Also

programming languages/tools/environments that are commonly used in education were

evaluated. A Raspberry Pi microcomputer was chosen to make use of its GPIO pins to control

electronics and Scratch was chosen as the programming language/tool/environment due to its

ability to simplify programming, and to interact with the GPIO pins on a Raspberry Pi.

The pilot event/case study appears to have improved the students’ perceptions and

understanding of computing but the sample size was small and there was little variation in

responses, so it is not possible to create definitive conclusions without conducting a larger

study. However it does indicate that interactive teaching methods enhance computing

education and physical computing with electronics can enhance lessons. It shows the

relevance of computing with examples of real-world applications and that it can be fun and

motivational. With a few minor adjustments it can provide an excellent basis for a larger

Page 75 of 166

study and if results remain positive can provide teachers with a proven way of enhancing

computing lessons via interactive teaching methods.

These findings are similar to those found by the studies discussed in the literature review and

they complement each other as useful ways to enhance students’ interest in computing and

their computing skills. The recurring theme across the research is that computing has a poor

reputation and computing education requires rethinking, modernising and made more relevant

to today’s world. The strategies in these research projects have proven to help reduce these

problems and other institutions would benefit from using them.

Page 76 of 166

9. Recommendations and further work

To develop this work further it would be advisable to repeat the case study with a few

improvements as discussed in section 7.7.

By repeating the event with more students either as a large group or multiple small groups

(recommended
99

) would offer more opportunity for analysis and to validate if the findings

from the pilot event/case study are accurate.

The case study showed that despite explaining programming concepts to students some

students’ confidence and understanding of them reduces; for example there was an overall

reduction in students confidence in explaining loops and other questions where confidence

reduced from ‘unconfident’ to ‘very unconfident’. Therefore research could be conducted on

why and how students’ confidence in understanding a concept can reduce after it has been

explained to them.

This work could form the basis for a much larger study such as a PhD
100

 or EdD
101

investigating one or more of the following:

 Evaluating the case study against other methods for enhancing computing education.

 Investigate how computing is taught in feeder schools to secondary schools and look

for areas to improve it so that all schools teach computing to the same level. If some

schools teach little computing content and some a considerable amount then it creates

an imbalance in secondary school classes. Recommendations could also be made for

all feeder schools to teach the same content and thus secondary schools know they

don’t have to repeat this content; for example if all schools taught programming with

Scratch then secondary schools will not need to start with introductory Scratch

lessons.

 Develop a course for teachers to enhance their computing knowledge and computing

teaching.

99

 It would be more difficult to run the event with a larger group and therefore it is recommended and much more

simple and manageable to run the event for multiple small groups instead.
100

 Doctorate in Philosophy
101

 Doctorate in Education

Page 77 of 166

 Investigate how computing is taught in other countries and evaluate teaching methods,

curriculums and so forth to make recommendations on ways to improve global

computing education.

Another possible area to cover would be to review learning resources and useful websites

available to teachers; appendix 18 contains a list of learning resources and links as a basis for

this.

Page 78 of 166

10. References

Alice, 2013. Alice. Carnegie Mellon University. Available from: http://www.alice.org [Accessed 13 June 2013].

Albinson, P., 2013. A review into the factors affecting declines in undergraduate Computer Science enrolments

and approaches for solving this problem. In: Davies, P., ed. Proceedings of the Inspire DEC Student Conference

2013, 31st May 2013 Poole. Poole: Bournemouth University.

Arduino, 2013. Arduino. Arduino. Available from: http://www.arduino.cc/ [Accessed 3 July 2013].

BCS, 2013a. BCS, The Chartered Institute for IT in association with the Computing At School group

Consultation Response to: Reform of the National Curriculum in England. Swindon: BCS. Available from:

http://academy.bcs.org/sites/academy.bcs.org/files/BCS%20National%20Curriculum%20Response%20-

%20April%202013.pdf [Accessed 4 July 2013].

BCS, 2013b. Teaching scholarships | BCS Academy of Computing. Swindon: BCS. Available from:

http://academy.bcs.org/scholarships [Accessed 12 August 2013].

BeagleBoard, 2013. BeagleBone. The BeagleBoard.org Foundation. Available from:

http://beagleboard.org/Products/BeagleBone [Accessed 3 July 2013].

BlueJ, 2013. BlueJ. BlueJ. Available from: http://www.bluej.org [Accessed 13 June 2013].

BU, 2009. Research Ethics Code of Practice. Poole: Bournemouth University. Available from:

http://portal.bournemouth.ac.uk/sites/Policies%20Procedures%20and%20Regulations/Shared%20Documents/Re

search%20Ethics%20Code%20of%20Practice%20Sept%202009.pdf [Accessed 09 July 2013].

Carter, L. 2006. Why Students with an Apparent Aptitude for Computer Science Don’t Choose to Major in

Computer Science. In: Proceedings of the 37th SIGCSE technical symposium on Computer Science education,

SIGCSE '06, 1-5 March 2006, Houston, Texas, New York: ACM, 27-31. Available from:

http://dl.acm.org/citation.cfm?id=1121352 [Accessed 17 May 2013].

Converting to Computer Science, 2013. How should teachers be taught to program? Converting to Computer

Science. Available from: http://www.convertingtocomputing.co.uk/teaching/how-should-teachers-be-taught-to-

program/ [Accessed 21 June 2013].

Cooper, S., Dann, W. and Harrison, J., 2010. A K-12 College Partnership. In: Proceedings of the 41st ACM

technical symposium on Computer science education, SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York:

ACM, 320 – 324. Available from: http://dl.acm.org/citation.cfm?id=1734371 [Accessed 17 May 2013].

CRA, 2013. CRA Taulbee Survey. The Computing Research Association. Available from:

http://www.cra.org/resources/taulbee/ [Accessed 9 August 2013].

Cymplecy, 2013. Scratch GPIO Version 2 – Introduction for Beginners. Cymplecy. Available from:

http://cymplecy.wordpress.com/2013/04/22/scratch-gpio-version-2-introduction-for-beginners [Accessed 16

August 2013].

Dawson, C., 2007. Practical Guide to Research Methods: A User-Friendly Manual for Mastering Research

Techniques and Projects. 3rd Ed. Oxford: How to Books.

De Leeuw, E.D., 2011. Improving Data Quality when Surveying Children and Adolescents: Cognitive and

Social Development and its Role in Questionnaire Construction and Pretesting. In: Proceedings of Annual

Meeting of the Academy of Finland: Research Programs Public Health Challenges and Health and Welfare of

Children and Young People, 10-12 May 2011 Naantali, Finland, Helsinki: Academy of Finland. Available from:

http://www.aka.fi/Tiedostot/Tiedostot/LAPSET/Presentations%20of%20the%20annual%20seminar%2010-

12%20May%202011/Surveying%20Children%20and%20adolescents_de%20Leeuw.pdf [Accessed 16 July

2013].

DfE, 2013a. Computing: Programmes of study for Key Stages 1-4. Department for Education. Available from:

http://computingatschool.org.uk/data/uploads/computing-04-02-13_001.pdf [Accessed 06 June 2013].

DfE, 2013b. Reform of the National Curriculum in England. Department for Education. Available from:

http://media.education.gov.uk/assets/files/pdf/n/national%20curriculum%20consultation%20document%200702

13.pdf [Accessed 20 June 2013].

DfE, 2013c. Computer science to be included in the EBacc. Department for Education. Available from:

https://www.gov.uk/government/news/computer-science-to-be-included-in-the-ebacc [Accessed 07 June 2013].

Greenfoot, 2013. Greenfoot. Greenfoot. Available from: http://www.greenfoot.org [Accessed 13 June 2013].

Grover, S., 2013. OPINION: Learning to Code Isn't Enough. edSurge. Available from:

https://www.edsurge.com/n/2013-05-28-opinion-learning-to-code-isn-t-enough [Accessed 21 June 2013].

HESA, 2013. Joint Academic Coding System (JACS) Version 3.0. Cheltenham: Higher Education Statistics

Agency. Available from: http://www.hesa.ac.uk/content/view/1776/649/ [Accessed 15 August 2013].

Java, 2013. Java. Oracle. Available at http://www.java.com [Accessed 13 June 2013].

Maker Media, 2013. Arduino Uno vs BeagleBone vs Raspberry Pi. Maker Media. Available from:

http://makezine.com/2013/04/15/arduino-uno-vs-beaglebone-vs-raspberry-pi [Accessed 3 July 2013]

Page 79 of 166

Microsoft, 2012a. C# Language Specification 5.0. Microsoft Corporation. Available from:

http://www.microsoft.com/en-us/download/details.aspx?id=7029 [Accessed 13 June 2013].

Microsoft, 2012b. What are the 14 Keywords of Small Basic? Microsoft Corporation. Available from:
http://blogs.msdn.com/b/smallbasic/archive/2012/10/08/what-are-the-14-keywords-of-small-basic.aspx

[Accessed 13 June 2013].

Microsoft, 2013a. Microsoft Small Basic. Microsoft Corporation. Available from: http://smallbasic.com/

[Accessed 13 June 2013].

Microsoft, 2013b. FAQ. Microsoft Corporation. Available from: http://smallbasic.com/faq.aspx [Accessed 13

June 2013].

Microsoft, 2013c. Microsoft Small Basic: An introduction to Programming. Microsoft Corporation. Available

from: http://download.microsoft.com/download/9/0/6/90616372-C4BF-4628-BC82-

BD709635220D/Introducing%20Small%20Basic.pdf [Accessed 13 June 2013].

Microsoft, 2013d. Small Basic Curriculum. Microsoft Corporation. Available from:

http://social.technet.microsoft.com/wiki/contents/articles/16299.small-basic-curriculum.aspx [Accessed 13 June

2013].

Microsoft, 2013e. Small Basic E-Books. Microsoft Corporation. Available from:

http://social.technet.microsoft.com/wiki/contents/articles/16386.small-basic-e-books.aspx [Accessed 15 August

2013].

Morelli, R., de Lanerolle, T., Lake, P., Limardo, N. Tamotsu, E., and Uche, C., 2010. Can Android App Inventor

Bring Computational Thinking to K-12? The Humanitarian FOSS Project. Available from:

http://hfoss.org/uploads/docs/appinventor_manuscript.pdf [Accessed 21 February 2013].

National Children's Bureau, 2011. Guidelines for Research with Children and Young People. National Children's

Bureau. Available from: http://www.ncb.org.uk/media/434791/guidelines_for_research_with_cyp.pdf [Accessed

9 July 2013].

Pfleeger, S.L., 2001. Software Engineering: Theory and Practice. 2nd ed. Upper Saddle River: Prentice Hall.

Purewal Jr., T.S., 2010. Social Networking: The New Computer Fluency? In: Proceedings of the 41st ACM

technical symposium on Computer science education, SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York:

ACM, 112-116. Available from: http://dl.acm.org/citation.cfm?id=1734301 [Accessed 17 May 2013].

Punch, S, 2002. Research with Children: The Same or Different from Research with Adults? SAGE Publications.

Available from: http://chd.sagepub.com/content/9/3/321 [Accessed 16 July 2013].

PythonCode.co.uk, 2013. Debug. PythonCode.co.uk. Available from: http://www.pythoncode.co.uk/debug

[Accessed 15 August 2013].

Raspberry Pi, 2013. Raspberry Pi. Cambridge: Raspberry Pi. Available from: http://www.raspberrypi.org/

[Accessed 3 July 2013].

Roamer, 2013. Roamer. Roamer. Available from: http://www.roamer-robot.com/public/ [Accessed 15 August

2013].

ScratchJr, 2013. ScratchJr. ScratchJr. Available from: http://ase.tufts.edu/DevTech/ScratchJr/ScratchJrHome.asp

[Accessed 12 August 2013].

The Royal Society, 2012. Shut down or restart? The way forward for computing in UK schools. London: The

Royal Society. Available from: http://royalsociety.org/education/policy/computing-in-schools/report/ [Accessed

6 June 2013].

UCAS, 2013a. UCAS. Cheltenham: UCAS. Available from: http://ucas.com/ [Accessed 1 August 2013].

UCAS, 2013b. Annual data files. Cheltenham: UCAS. Available from: http://ucas.com/sites/default/files/annual-

data.zip [Accessed 1 August 2013].

UCAS, 2013c. Data resources. Cheltenham: UCAS. Available from: http://ucas.com/data-analysis/data-

resources [Accessed 1 August 2013].

Wing, J. M., 2006. Computational Thinking. Communications of the ACM, 49 (3), 33-35. Available from:

http://dl.acm.org/citation.cfm?id=1118215 [Accessed 21 June 2013].

Yin, R.K., 2003. Case Study Research: Design and Methods. 3rd Ed. Thousand Oaks, California: Sage.

Page 80 of 166

11. Appendices

Appendix 1 – Literature review

A review into the factors affecting declines in undergraduate

Computer Science enrolments and approaches for solving this problem

Paul Albinson BSc (Hons), FdSc, MBCS

Design, Engineering and Computing

Bournemouth University

Poole, England

research@paulalbinson.info

Abstract— There has been a noticeable drop in

enrolments in Computer Science (CS) courses and

interest in CS careers in recent years while

demand for CS skills is increasing dramatically.

Not only are such skills useful for CS jobs but for

all forms of business and to some extent personal

lives as Information Technology (IT) is becoming

ubiquitous and essential for most aspects of

modern life. Therefore it is essential to address this

lack of interest and skills to not only fill the

demand for CS employees but to provide students

with the CS skills they need for modern life

especially for improving their employability and

skills for further study.

This report looks at possible reasons for the lack of

interest in CS and different approaches used to

enhance CS education and improve the appeal of

CS.

Index Terms - Improving Computer Science

Education; CS; CS0; CS1; ICT to Computer

Science; Decreasing Computer Science

Enrolments; Pedagogy; Motivation; Engagement.

I. INTRODUCTION

There has been a noticeable drop in enrolments in
Computer Science (CS) courses and interest in CS
careers in recent years (approximately since 2000)
while demand for CS skills is increasing dramatically.
Not only are such skills useful for CS jobs but for all
forms of business and to some extent personal lives, as
Information Technology (IT) is becoming ubiquitous
and essential for most aspects of modern life. Learning
CS can also assist with learning other subjects as, for
example, programming can teach: design skills (from
ideas to finished products), problem solving and
perseverance (identifying and fixing faulty code) and
team work/collaboration skills. In addition having a
solid understanding of CS will assist with the use of
applications and processes in work and education such
as secretarial skills, accounting skills, operating
manufacturing design and production tools etc.
Therefore it is essential to address this lack of interest
and skills to not only fill the demand for CS

employees but to provide students with the CS skills
they need for modern life, especially for improving
their employability and skills for further study both
formal and self-study.

One of the main theories for the unpopularity of
CS is due to the way computing is introduced in
schools, leading to a poor perception and
understanding of what CS is. Computing education in
schools typically focuses around Information
Communications Technology (ICT) which is how to
use computers and typically ignores CS, which is how
and why computers work to provide a fuller
understanding of computing and its value and
potential.

The need to improve computing education has
been recognised by governments, industry,
professional bodies and education providers and has
led to curriculums and guidelines being improved to
provide a higher quality of computing education.

There are many tools and courses being created or
improved to make CS easier to understand, improve
engagement and motivation and to show the relevance
of CS. There are signs that these approaches are
effective and enrolment numbers are slowly
increasing. However more work will be required to
maintain this growth and interest such as ensuring the
content remains relevant.

In addition to improving CS courses there have
also been many initiatives to introduce what CS
involves and ideally motivate students to consider a
CS course and/or career. In the USA
college/university

102
 students choose a subject to

specialise in, known as a major, and they can also
study elective subjects in other areas which are known
as non-majors. These non-major courses may be
studied prior to major courses as an introduction to a
subject as either a prerequisite to the major course
(either as a course or university requirement) or simply
to help students decide if the subject is of significant
interest to study as a major. Most papers reviewed are
from the USA and focus on making CS more
interesting via either a non-major course, with the aim

102 In the United States of America the term college is used to refer

to part of a university (similar to a school in the UK university

system) or as a stand-alone higher education institution. High
Schools are the USA equivalent to the UK college system.

Page 81 of 166

of encouraging students to consider a CS major, or
assist those progressing onto a CS major, or by
improving major courses to enhance interest in CS and
improve retention rates and students grades.

Other ways of encouraging students to consider a
CS course and career as well as improving their CS
skills are summer schools, introductory courses,
bridging courses, and school visits/outreach projects.

The remainder of this report looks at these topics
in more detail to discover the reasons for the lack of
interest in CS and different approaches used to
enhance CS education and improve the appeal of CS.

II. THE ENROLMENT CRISIS

Many papers refer to decreasing enrolments in CS
courses which started around 2000. Most papers refer
to the findings of the current editions of the Computer
Research Association’s Taulbee survey

103
. Morelli et

al. (2010), Cooper et al. (2010) and Purewal Jr. (2010)
consider the results from the 2007-2008 Taulbee
survey (Zweben 2009) which shows that from 1995 –
2000 there were significant increases in new CS/CE

104

undergraduate majors
105

. There were significant
decreases from 2000 to 2007 with a slight increase in
2008 (see figure 1). The survey also shows that the
amount of bachelor’s degrees produced follows a
similar but slightly smoother pattern, with increases
until a dip in 2003, followed by decreases from 2004
and a projected increase in 2009 (see figure 2).

However as mentioned in the survey report and by
Cooper et al. (2010) the slight increase in enrolments
in 2008 is probably influenced by a change in the way
data was collected to include a broader range of
CS/CE courses.

Figure 1 – Taulbee Survey: Newly Declared CS/CE

Undergraduate Majors (Zweben 2009)

Figure 2 – Taulbee Survey: CS & CE Bachelor’s
degree production (Zweben 2009)

103 http://www.cra.org/resources/taulbee/
104 Computing Engineering
105 There was however a slight decrease in 1998.

Uludag et al. (2011) and Wolber (2011) consider
the 2008-2009 Taulbee survey results (Zweben 2010)
which shows a small continued increase in CS majors
(see figure 3) yet it is still nearly 50% lower than in
2000. However as Uludag et al. (2011) reports in the
2009 survey, the degree production figures continue to
decrease; perhaps the increased enrolments aren’t
affecting this as the new students aren’t ready to
graduate. In addition the survey shows that the
prediction of increased degree production in 2009 was
incorrect as the figure decreased, they however predict
an increase in 2010 (see figure 4).

These results along with other data prompted many
institutions to work on improving the appeal of CS.
When we look at the latest Taulbee survey (Zweben
2013) we see a small decrease and stagnation in
undergraduate enrolments between 2009 and 2011 and
a massive increase in 2012 (see figure 5); in addition
since 2009 there has been a steady increase in bachelor
degree production (see figure 6) suggesting these
initiatives are effective.

Figure 3 – Taulbee Survey: Newly Declared CS/CE

Undergraduate Majors (Zweben 2010)

Figure 4 – Taulbee Survey: CS & CE Bachelor’s
degree production (Zweben 2010)

Page 82 of 166

Figure 5 – Taulbee Survey: Newly Declared CS/CE
Undergraduate Majors (Zweben 2013)

Figure 6 – Taulbee Survey: CS & CE Bachelor’s
degree production (Zweben 2013)

Other papers also discuss other data around

enrolments which show similar results. Malan (2010)
explains the enrolments for Harvard’s CS50 CS course
which has similar levels to the national figures shown
in the Taulbee survey with enrolments rising from
1993, peaking in 1996 before reducing in subsequent
years with sudden massive drops in 2001 and 2002;
these rises and falls correspond to the start and end of
the dot-com boom/bubble when a lot of money was
made and subsequently lost with internet start-ups,
hence interest in CS was sparked and lost accordingly.
Their enrolment rates slowly increased until 2006
when they improved the course content to being more
relevant and appealing resulting in subsequent sharp
enrolment increases (see figure 7). Sahami et al.
(2010) also reports similar drops in enrolments at
Stanford between 2001 and 2006.

Figure 7 – Enrolments in Harvard’s CS50 course
(Malan 2010)

The lack of interest in CS is a potential crisis as

there is an ever increasing demand for CS skills not
only for CS jobs but for use in most jobs, due to IT
being essential for the running of modern businesses.
Egan (2010) discusses the problem and how U.S.
Department of Labor (2007) surveys suggest that jobs
in the computing industry will increase dramatically
by 489,000 jobs between 2006 and 2016 while CS
graduate rates remain low.

III. POSSIBLE REASONS FOR LACK OF INTEREST IN CS

A. Outsourcing

Sahami (2007) and Sahami et al. (2010) speculate
that the health of the technology economy and
increases in outsourcing jobs may discourage students
from considering a CS career. However they note that
a more detailed analysis of such factors by Aspray et
al. (2006) shows how outsourcing hasn’t resulted in a
net loss due to an overall increase in IT jobs.
Therefore any reduced enrolments would be due to a
perception of reduced jobs rather than actual job
reductions.

B. CS isn’t cool

Various papers discuss how CS is often poorly
perceived and understood and how courses should be
modernised and portray the value, relevance and
appeal of CS, ideally with real-world examples. Malan
(2010) hypothesised that the problem with enrolment
decreases in Harvard’s CS50 introductory CS course
for both majors and non-majors was due to the courses
design and the students’ perception of it. The design of
the course was seen as a problem as the content may
be seen as dated, especially with students being more
aware of technology and having modern technology
such as smartphones, laptops etc. They also assumed
that the workload and perceived difficulty of the
course is a reason for its unpopularity. They concluded
that the course needs to be redesigned to include more
modern content and make it more accessible,
motivating and appealing to students. They ideally
wanted to recreate the large increase in CS enrolments
that external factors like the dot-com boom/bubble
created, but with internal factors such as improved
course content which will hopefully maintain interest
longer. They reorganised the course structure,

Page 83 of 166

modernised the content and where possible linked it to
real-world problems/scenarios. For example starting
with a simple “hello world” programming example

106

is not a very exciting/motivating first lesson for a
modern course; when computing power was limited
and less graphical this was fine but in the modern
world it seems very dull. The new course has the same
level of complexity and workload but is more
accessible and friendly to make it less daunting/scary
to encourage more students to realise that the course is
suitable for them. This approach is vital when teaching
non-majors as well as majors, as students will have
varying pre-existing CS skills and experience, so
content needs to be approachable yet significantly
complex to accommodate varied skill levels. They
found the improvements increased interest in CS and
made the course more appealing and increased
enrolments as well as enrolments of subsequent
courses.

Kurkovsky (2007) also refers to there being many
misconceptions about CS as their study showed
students do not understand what CS is, feel it is more
difficult than other subjects and often consider it as
“nerdy” and “not cool”. It is particularly difficult to
change these opinions of non-CS majors (students
studying CS as a non-major course and are probably
only studying an introduction to CS course as a
requirement of their major course) as they probably
have little interest in the subject. They explain how CS
courses for non-majors are typically either computer
literacy (how to use computers such as using office
applications) which doesn’t include programming or a
“CS 0” course (how computers work) which includes
a comprehensive overview of CS and usually
introduces programming. They also discuss the value
of teaching programming to non-CS majors including
research for and against the point. One approach
mentioned is to highly tailor programming content
around specific industries as proposed by Forte and
Guzdial (2005) who also evaluate the value of
programming for non-CS majors.

C. Other reasons

Carter (2006) considers the reasons for why
enrolments for CS majors are reducing across the USA
and why students with an apparent aptitude for CS,
such as high-school calculus and pre-calculus students,
avoid CS as a major and whether reasons vary by
gender. As with other studies they observed massive
drops in CS major enrolments and considered similar
hypotheses to explain this (outsourcing, the dot-com
bust, negative perceptions of CS, lack of or incorrect
information on what CS is, gender differences etc.).
They also assume that high schools are not introducing
CS to their students and they have little understanding
of what CS is; from examining course catalogues they
found there was little or no CS content. They surveyed
high school calculus and pre-calculus students as
maths success is typically a predictor of CS success, to
establish possible reasons for why these ideal students
aren’t enrolling and whether the reasons vary by

106 Traditionally programming tutorials begin with how to create a
program to write “Hello World” to the screen.

gender. The results confirmed that high-school
students lack computing experience and do not fully
understand what CS involves. The main reasons for
avoiding a CS major were the same for both genders
and were the misconception that CS involves working
with a computer all day, or they had already chosen to
study a different course. The main reasons for
studying CS varied by gender; men state computer
games as their main influence/interest whereas women
saw CS skills as being useful for other fields. Potential
earnings were not a consideration.

IV. CS RATHER THAN ICT

One of the theories for why CS is misunderstood
and unpopular is the way computing is introduced in
schools. Traditionally Information and
Communication Technology (ICT) is taught, which is
how to use computers

107
, rather than CS which is “the

study of the foundational principles and practices of
computation and computational thinking, and their
application in the design and development of
computer systems” (Naace, ITTE, and the Computing
at School Working Group 2012, p.1)

108
. This neglect

of CS in computing introductions fails to explain the
fundamental principles of computing and show the
relevance of CS. It creates a poor impression of CS
and can fail to motivate students to pursue further CS
study and careers. This problem has been recognised
by the UK government who are scrapping the ICT
GCSE and are proposing a new computing curriculum
and GCSE (Department for Education 2013). The
curriculum is for key stages 1 – 4

109
 and provides a

more complete computing education and aims to
provide a solid understanding of CS and ICT required
for industry and further study. It includes
fundamentals of CS, computational thinking and
evaluating and using ICT.

A similar approach is being taken in the USA
where a National Research Council review into IT
literacy as requested by the National Science
Foundation (Lin 2000) concluded that computer
literacy (a.k.a. ICT) should be replaced by IT fluency
(a.k.a. CS). They explain how as modern computing
changes regularly, computer literacy skills (how to use
current applications) soon become obsolete. However
as IT fluency teaches computing fundamentals and
principles it provides more flexible skills to expand
knowledge and adapt to changes; for example a user
may not completely understand a program but has the
skills to learn it themselves.

Scott Hilberg and Meiselwitz (2008) explain how,
due to the importance and prevalence of IT in modern
life, it is essential for students to have IT/ICT fluency
skills. However, despite growing up with modern IT
there are concerns that students lack these skills; they
reference previous research supporting this. They also

107 Students are typically only taught how to use the Microsoft

Office suite of office applications and similar basic computer uses

such as web browsing.
108 Naace, ITTE, and the Computing at School Working Group

(2012) provide a more in-depth comparison of ICT and Computer

Science.
109 This is the entire UK school system from ages 5-16.

Page 84 of 166

say how students’ consider their ICT fluency skills as
good (faculty and administrators commonly make
similar assumptions) yet actual ICT results are
typically lower. They investigated perceived
knowledge via a survey and actual knowledge using
an Educational Testing Service’s ICT Literacy
Assessment. Results show the mean score was 158.20
which is just over half the possible marks (53.79%)
and shows that most students have poor ICT fluency
skills. The majority of the students (73%) were overly
confident of their ICT skills and achieved lower scores
than their perceptions. Also those who overestimated
their skills were more than double those who
underestimated their skills (26%). The low ICT
fluency skills observed are despite more than three
quarters (79.8%) of undergraduates having had past
ICT training which indicates current ICT training is
not sufficient for teaching the required ICT fluency
skills. They conclude that the ICT curriculum needs
evaluating to ensure students have the required ICT
fluency skills.

Dougherty (2003) also explains the need for
students to be fluent with IT due to its importance and
prominence in the modern world and because it is
always changing. There have been previous attempts
to teach the required IT skills for the workforce which
initially started by concentrating on IT literacy.
However literacy is not scalable enough to take into
account the constantly changing nature of IT and
training changed to focus on IT fluency. They then
discuss and define IT fluency and reference related
reports. They also explain how many colleges and
universities have been creating computing courses for
non-majors (with references to examples) and how the
ACM/IEEE Computing Curricula 2001 (ACM/IEEE
CS Joint Task Force on Computing Curricula 2001)
identifies the need for IT fluency in CS courses. They
then discuss the IT Fluency (ITF) Framework
(Dougherty et al. 2002) which is “a case study
template that can be used to design and implement a
set of laboratory exercises in a field outside of
computing with non-trivial usage of IT” along with
how they used it within their “The World of
Computing” course at Haverford College

110
. This was

implemented as 1 day of IT fluency lessons based
around an economics case study. They explain the
day’s assessments and a survey conducted to assess its
effectiveness. They conclude that the day’s lessons
went well but they felt it would be more effective if
they could expand it to at least 2 days to allow the
addition of some brief examples and more time to
absorb the content and clarify queries. Unfortunately
only 10% of students managed to repeat the
demonstration on their own and many of these needed
significant help to achieve this. Student feedback was
positive but students were confused by some of the
survey questions so they couldn’t draw solid
conclusions from it. They feel it is worth repeating the
use of the ITF framework but will make some minor

110 It was seen as impractical to base an entire course on the ITF
framework.

changes such as adding a second case study on
psychology.

V. GOVERNMENT AND INDUSTRY SUPPORT

The value of CS has been recognised by
governments and industry; in addition to the
aforementioned new computing curriculum and focus
on CS rather than purely ICT there are many
initiatives to improve CS teaching (including ICT
content). These initiatives are supported by many
schools, universities, governments and industry
including BCS, Google, Microsoft, Facebook and
many more. The Computing at School working
group/initiative (CAS) brings together educators and
industry to work on improving CS and share
knowledge. CAS has worked with the BCS Academy
to create the Network of Teaching Excellence in
Computer Science. The network helps educate
teachers to increase the level of CS teaching. It
includes such initiatives as universities training school
teachers so they can provide their students with the
skills required for college and university CS courses.
There are similar initiatives around the world such as
the focus on IT fluency in the USA. Other examples
are computer clubs and programs/applications to
introduce children to CS (this is typically via
programming) such as Code Club

111
, Code.org

112
,

Google Computer Science for High School
113

 and
Google Summer of Code

114
. In addition there are

plenty of other resources such as online courses like
Coursera

115
 and Khan Academy

116
 designed to make

learning accessible to all.

VI. POSSIBLE SOLUTIONS

With a clear need to enhance students’ perception
of CS and create appealing CS courses, many
different approaches/solutions have been investigated.

A. Tailored courses

Forte and Guzdial (2005) explain how like many
institutions Georgia Institute of Technology (Georgia
Tech) requires majors and non-majors to study an
introductory CS course and such courses have
difficulty engaging non-CS students. As a possible
solution they introduced two tailored introductory CS
courses for non-majors (students interested in or
majoring in certain non-CS areas) as an alternative to
their traditional course “Introduction to Computing”.
The tailored courses are “Introduction to Computing
for Engineers” (tailored for engineers) and
“Introduction to Media Computation” (tailored for
non-CS and non-engineering students). They hope by
showing students how CS is relevant for their chosen
industry they will see the value of CS and find it more
understandable and interesting. Also the tailored
approach creates a more balanced class of peers with
similar skills, backgrounds and interests which helps

111 http://www.codeclub.org.uk/
112 http://www.code.org/
113 http://www.cs4hs.com/
114 https://developers.google.com/open-source/soc/
115 https://www.coursera.org/
116 https://www.khanacademy.org/

Page 85 of 166

with students’ comfort and confidence. They ensured
the content and especially the chosen programming
language was relevant to the audience and is useful in
their chosen careers; for example Java is typically
used by engineers. Also learning objectives and
assessments need to be considered to take into
account the new content and the audience. They
found these new courses were much more effective
than the traditional course with more students
completing and passing the courses and they received
more positive (and less negative) feedback with many
students wishing to study another tailored course.

B. Improving and modernizing courses

Sahami et al. (2010) explain how despite
significant evolution of computing in the last 30 years
the CS curricula hasn’t adapted accordingly. With this
in mind and a noticed reduction in CS enrolments,
Stanford University redesigned its CS curriculum to
modernise it. Their goals were: to add flexibility to
adapt content to keep it relevant, include modern
content and highlight future developments, emphasise
the breadth of potential CS areas, provide options for
exploring areas in depth, and show the diversity and
multi-disciplinary nature of CS. The restructured
curriculum contains:

 Core units provide a solid foundation for the
course and cover CS fundamentals and
principles along with topics to explain modern
concepts which could form the basis for future
computing developments.

 Depth concentration in a track area – Students
can choose units in the area they wish to
concentrate on/specialise in as well as related
multi-disciplinary content.

 Elective units provide students with a choice
of units designed to provide more depth and
breadth and take advantage of multi-
disciplinary ties.

 Senior project – The students finish the course
with a development or research project.

This format provides flexibility and offers students
multiple options/tracks and makes it easier to adapt the
course content to remain relevant as IT changes. The
flexibility also allows for links with other disciplines
to be created, and in some cases working/linking with
other departments to achieve this, to show the impact
CS has in other areas/disciplines; coverage of the
multi-disciplinary nature of CS is rare in other courses.
They hope this broader scope will enable students to
see more relevance to CS and how it can be used in
many areas of industry. The new curriculum had
already proved popular after just one year of
availability and helped with the noticed 40% increase
in major applications. Student feedback was generally
positive but they felt that there was a lack of
programming which will be addressed in future. The
course has also had positive feedback from industry
and other universities.

As previously mentioned, hypothesised problems
with perception and design of the CS50 course at
Harvard (Malan 2010) led to the conclusion that the
course needed improving and modernising. The

improved course has seen significant increases in
enrolments and the majority of the increase has been
female students. The course previously contained a lot
less female students than male students, so this
increase is very encouraging for a more balanced
class. It has even increased enrolments in subsequent
CS courses, one increased 33% and another increased
122%!

C. Focusing courses around a current trend

Some institutions have tried to increase course
popularity by focusing them around a current trend.
Purewal Jr. (2010) explains how there are signs of CS
enrolments increasing but this could be short-lived if
it is because of a current trend (e.g. social
networking). They explain how CS courses could be
based around trends and as new computing trends
emerge and others lose appeal (for example social
networks are replaced by a new trend) they should be
refocused accordingly. They believe this approach
can maintain and increase CS enrolments and student
diversity. The paper focuses around improving the
“Communications Technologies and the Internet”
introductory CS (CS0) course at the College of
Charleston with a focus on social networks due to
their current popularity and use of the latest
technologies and concepts. They explain the common
objectives of CS0 courses and how they believe an
additional objective should be added covering “the
current ethical, social and legal implications of the
growing ubiquity of and increased reliance on
technology”. They then explain their course and how
it meets these objectives. They reflect on the success
of the course and conclude that overall it has been
successful. A particular highlight that proves the
course’s relevance was, as the course was being
taught, many articles were being published in related
areas. This allowed the course to have up to date
content to discuss and as technology frequently
changes this was very valuable for making the course
relevant and current. Student feedback showed there
was significant enthusiasm for the course and its
contents.

Similarly Kurkovsky (2007) explains the
“Introduction to Internet Programming and
Applications” course at Central Connecticut State
University which introduces the fundamentals of
computer programming focussing around the internet
and its impact on society. They hope by basing it
around a well-known area (the Internet) it will be
relevant and motivating for all and make CS more
understandable for non-CS majors. Many CS
concepts such as network architecture, algorithms,
programming etc. can be made more understandable
by relating them to the Internet. They found the
course was useful for helping increase understanding
of CS and motivation to study it.

D. Make programming more accessible

Programming can be difficult for undergraduates
to understand especially for non-CS majors and/or
those with limited prior experience. Traditional text-
based programming languages like Java and C++ can
be very confusing as the syntax used isn’t easy to

Page 86 of 166

interpret and almost looks like a foreign language.
This means students not only have to understand
programming concepts but they need to interpret
programming syntax. To make introducing
programming easier, many visual programming
tools/environments were created such as Scratch

117
,

App Inventor
118

 and Alice
119

. These allow programs
to be created by dragging components into the tool
instead of writing specific syntax. These components
are programming elements such as loops, variables
etc. and only fit together in a semantically correct
way. This enables students to see how programming
concepts such as loops work, without needing to
worry about specific syntax and can easily see their
mistakes; for example if a component doesn’t fit in
the chosen location it will alert the user. These tools
are intuitive, make programming fun/motivating and
are used in CS courses to increase interest in
programming, CS courses and careers and to improve
course retention and success rates.

Wolber (2011) discusses some initial tutorial
examples for Java, Scratch and App Inventor. As Java
is text-based and object-oriented it means even the
most basic example (displaying “Hello World!” on the
screen) involves introducing many complex
terms/concepts which are hard to explain to new
programming students; they probably won’t
understand it fully until much later in the course. The
initial tutorial examples for Scratch and App Inventor
are a lot easier to understand due to the drag-and-drop
system. Scratch and App Inventor are very similar and
both use blocks (components) that fit together to create
the required functionality (e.g. looping through code)
and have puzzle style connections that only allow
blocks to fit together in a semantically correct way.
The main difference between Scratch and App
Inventor is that Scratch is contained within the
programming tool/environment (although applications
can be shared on the Scratch website) whereas App
Inventor creates Android applications and can be run
on Android mobile devices as well as within its
emulator. Due to these reasons as well as for its ability
to perform mobile tasks like sending text messages to
give applications a real-world purpose, Wolber chose
App Inventor for their introductory CS course. It
helped the students easily understand programming
concepts, quickly create applications with real-world
uses and motivated them to tackle more complex
programming problems.

Morelli et al. (2010) explains a project to
investigate whether App Inventor could be used to
teach K-12 students Computational Thinking. It
focussed on ideas and lesson plans around App
Inventor and created applications that should appeal to
the K-12 demographic. The project started with
students using App Inventor and then teaching it to
some teachers. They conclude that while it is too early
to make strong conclusions, it has been a success and
App Inventor has proved to be accessible and
powerful, can provide an Object-Oriented

117 http://scratch.mit.edu
118 http://appinventor.mit.edu
119 http://www.alice.org

Programming model, can be used for problem-driven
learning, has motivational potential, is relevant and
can support learning.

Uludag et al. (2011) explains a CS0 course that
uses Scratch, App Inventor and Lego Mindstorms.
They explain the value to App Inventor such as its
ease of use, the popularity of Android smartphones
and its support for the Lego Mindstorm robotics
interface. The course includes interesting practical
laboratory style lessons which aim to relate to real-
world experiences, be inspirational, motivational and
“cool”. Due to Scratch being slightly more basic than
App Inventor while very similar, they use it to
introduce programming prior to the use of App
Inventor. They use App Inventor to control Lego
Mindstorm robots to make the course more engaging
and provide more satisfactory feedback as a result of
using programming. They hadn’t assessed the courses
effectiveness at the time.

Alice is another popular visual programming
tool/environment for teaching Object-Oriented
Programming (OOP). It is based around 3D
animations that demonstrate programming concepts
using a simple drag-and-drop system. Many
institutions (Mullins et al. 2009; Cooper et al. 2010;)
use it is a first programming tool to introduce
programming before moving onto other more complex
text-based programming languages such as Java and
find it is ideal due to its use of OOP. However Adams
(2010) considers Alice to be quite complex for initial
programming lessons and recommends Scratch is used
to introduce programming basics before using Alice.
Whereas Malan and Leitner (2007) consider Scratch
alone as a suitable basis prior to learning Java. In a
similar way to the work by Uludag et al. (2011) Alice
can also be used to control robots to make a CS course
more engaging (Wellman et al. 2009). Alice has also
proven to be useful for transitioning into programming
with C++ (Johnsgard and McDonald 2008).

Lewis (2010) evaluates the opinions and learning
outcomes of students learning programming using a
text-based language (Logo), versus a visual
programming tool/language (Scratch). They predicted
that because Scratch is visual that students would have
a more positive attitude towards it, and consequently
programming in general, and have a greater
understanding of loops and conditional statements.
However they found that Scratch only provided a
greater understanding of conditional statements. Also
Logo provided students with greater confidence in
programming versus Scratch which is opposite to their
hypothesis. Students gave both Logo and Scratch a
similar difficulty rating and they are similarly
motivated to continue programming after using either
of them.

E. Different teaching approaches and learning

techniques

Many different approaches and learning styles
have been tried to improve student engagement,
success rates and interest in CS courses. Many courses
have found success by relating their content to real-
world examples to help provide context and

Page 87 of 166

understanding of the value of IT. Uludag et al. (2011)
discuss how they believe by basing their course
around the constructionist learning theory (learning by
doing/making) and active learning with the use of
creating Lego Mindstorms robots makes programming
more engaging as students can see the effects of it over
a physical object. Wolber (2011) however, replaced
the Mindstorms element of their course with App
Inventor, as mobile applications can provide more
relevance to students lives than robots do. Harvard’s
CS50 course (Malan 2010) uses many learning
techniques (lectures, seminars, videos, anonymous
bulletin boards etc.) to allow for different learning
styles and improve self-learning, problem solving,
student engagement, confidence etc. McFarland
(2004) identifies three main approaches for teaching
CS; breadth-first (covers a wide range of topics to
provide a broad introduction to CS), depth-first
(focuses on topics in more depth such as a
programming focused course) and a blended/balanced
approach. Their research led Western New Mexico
University to use a balanced approach by starting with
breadth-first topics to properly introduce CS and then
take a depth-first approach to teach programming
concepts. Goldman (2004) introduces a concepts-first
approach where their introductory CS course uses JPie
(a visual programming tool/environment for creating
Java applications) to introduce key CS concepts and
software development. Anewalt (2008) uses a non-
traditional approach for a CS0 course by using
kinaesthetic learning activities including the use of
physical props, hands-on labs, competitions and
games. The activities (including unusual activities like
using playdough to teach classes and objects) are used
to help students understand key CS concepts.

F. Outreach projects

Colleges and Universities promote CS and
consequently their courses via various outreach
projects; these are typically via introduction/taster
courses for high school/secondary school students or
by helping their teachers introduce or improve CS
teaching.

Adams (2010) explains a summer school outreach
program for introducing programming concepts to
middle school students. This has been run over
multiple years and has proved to be popular and
increases awareness of CS, and many students wish to
continue learning programming and consider further
CS courses and careers.

Cooper et al. (2010) explains a partnership
between colleges/universities and middle and high
schools as professional development to improve the
quality of CS teaching. The pilot project resulted in an
improved CS curriculum which was seen as a success
and has improved CS lessons and increased CS
enrolments.

Egan (2010) explains a one day event/program
described as a non-programmer’s programming
contest designed to show the value of CS to high
school students (targeting those with good
mathematics and problem solving skills) and their
teachers. It focused around group tasks/challenges
based around programming skills to provide a fun

introduction to programming. It received very positive
feedback from students and teachers and it showed the
event had improved perceptions of CS.

Morreale et al. (2010) describes a one day
workshop run by a university to help high school
teachers teach CS. It was aimed at enhancing CS
teaching and improving college/university CS success
rates as well as making CS more appealing to students.
They also hope that teachers will recommend CS as a
further study option and career and ideally recommend
study at their university. The workshop was a success
as it met these goals.

VII. CONCLUSION

Although CS enrolments and interest remains low
we can see signs of a more positive future with CS
enrolments and degree production beginning to rise.
There is a lot of work being done on improving
perception and understanding of CS via enhanced
education, outreach projects, new visual tools for
learning programming, online learning etc. Students
are more engaged and motivated by these new
approaches and there has been improved retention and
grades as students see the value and relevance of CS.
However it is vital to keep the content modern and
relevant to reflect changes in the computing field,
including following the latest trends. If a course is
based on a popular trend to engage interest and that
trend loses popularity in favour of something new,
then the course should refocus to cover the new area of
interest. The computing environment is constantly
changing with regular new innovations which can be a
huge attraction for students pursuing CS education.
Therefore, course content should adapt to cover the
latest computing concepts, technology, trends etc. to
remain relevant and retain students’ interest.

As governments, industry, professional bodies and
educational institutions are realising the need to
refocus computing education to being CS focused as
well as incorporating ICT, then educators will need to
adjust course content accordingly. This is currently
very relevant in the UK school system as the new
computing curriculum is being introduced replacing
the existing ICT curriculum. As previous computing
teaching was ICT focused (this typically covered
usage of applications like the Microsoft Office suite)
teachers may only have learned ICT skills and have no
or little CS skills. Teachers will probably need support
as they design lessons based on the new computing
curriculum and therefore there is a lot of current
research around looking at ways to support this
process. This could be for example designing course
content, finding appropriate tools for teaching specific
subjects like programming, assessment methods and
so forth.

ACKNOWLEDGMENT

The author would like to thank Dr Philip Davies
for his guidance on writing literature review papers
and Dr Sheridan Jeary for her advice on finding a
suitable research topic.

Page 88 of 166

REFERENCES

ACM/IEEE CS Joint Task Force on Computing Curricula, 2001.
ACM/IEEE Computing Curricula 2001, Computer Science
(CC2001). New York: ACM. Available from:
http://www.acm.org/education/curric_vols/cc2001.pdf [Accessed
09 May 2013].

Adams, J.C., 2010. Scratching Middle Schoolersʼ Creative Itch. In:
Proceedings of the 41st ACM technical symposium on Computer
science education, SIGCSE ‘10, 10-13 March 2010 Milwaukee.
New York: ACM, 356-360. Available from:
http://dl.acm.org/citation.cfm?id=1734385 [Accessed 17 May
2013].

Aspray, W., Mayadas, F., and Vardi, M. Y., 2006. Globalization
and Offshoring of Software: A Report of the ACM Job Migration
Task Force. New York: ACM. Available from:
http://www.acm.org/globalizationreport/ [Accessed 03 May 2013].

Anewalt, K., 2008. Making CS0 fun: an active learning approach
using toys, games and Alice. Journal of Computing Sciences in
Colleges, 23 (3), 98-105.Available from:
http://dl.acm.org/citation.cfm?id=1295133 [Accessed 17 May
2013].

Carter, L. 2006. Why Students with an Apparent Aptitude for
Computer Science Don’t Choose to Major in Computer Science. In:
Proceedings of the 37th SIGCSE technical symposium on Computer
Science education, SIGCSE '06, 1-5 March 2006, Houston, Texas,
New York: ACM, 27-31. Available from:
http://dl.acm.org/citation.cfm?id=1121352 [Accessed 17 May
2013].

Cooper, S., Dann, W. and Harrison, J., 2010. A K-12 College
Partnership. In: Proceedings of the 41st ACM technical symposium
on Computer Science education, SIGCSE ‘10, 10-13 March 2010
Milwaukee. New York: ACM, 320 – 324. Available from:
http://dl.acm.org/citation.cfm?id=1734371 [Accessed 17 May
2013].

Department for Education, 2013. Computing: Programmes of study
for Key Stages 1-4. Department for Education. Available from:
http://computingatschool.org.uk/data/uploads/computing-04-02-
13_001.pdf [Accessed 21 February 2013].

Dougherty, J.P., Kock, N.F., Sandas, C., and Aiken, R.M. (2002)
Teaching the Use of Complex IT in Specific Domains: Developing,
Assessing and Refining a Curriculum Development Framework.
Education and Information Technologies, 7 (2), 137-154. Available
from:
http://link.springer.com/article/10.1023%2FA%3A1020305827078
[Accessed 17 May 2013].

Dougherty, J.P., 2003. Information technology fluency at a liberal
arts college: experience with implementation and assessment.
Journal of Computing Sciences in Colleges, 18 (3), 166-174.
Available from: http://dl.acm.org/citation.cfm?id=771734
[Accessed 17 May 2013].

Egan, M.A.L., 2010. Recruitment of CS majors through a non-
programmer's programming contest. Journal of Computing
Sciences in Colleges, 25 (6), 198-204. Available from:
http://dl.acm.org/citation.cfm?id=1791165 [Accessed 17 May
2013].

Forte, A. and Guzdial, M., 2005. Motivation and Nonmajors in
Computer Science: Identifying Discrete Audiences for Introductory
Courses. IEEE Transactions on Education, 48 (2), 248 – 253.
Available from:
http://ieeexplore.ieee.org//xpl/articleDetails.jsp?tp=&arnumber=14
27874 [Accessed 17 May 2013].

Goldman, K.J., 2004. A Concepts-First Introduction to Computer
Science. In: Proceedings of the 35th SIGCSE technical symposium
on Computer science education, SIGCSE ’04, 3-7 March 2004
Norfolk, Virginia. New York: ACM, 432-436. Available from:
http://dl.acm.org/citation.cfm?id=971446 [Accessed 17 May 2013].

Johnsgard, K. and McDonald, J., 2008. Using Alice in Overview
Courses to Improve Success Rates in Programming I. In: IEEE 21st
Conference on Software Engineering Education and Training,
CSEET ’08, 14-17 April 2008 Charleston, SC, New York: IEEE,
129-136. Available from:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnum
ber=4556958 [Accessed 17 May 2013]

Kurkovsky, S., 2007. Making computing attractive for non-majors:
a course design. Journal of Computing Sciences in Colleges, 22 (3),
90-97. Available from: http://dl.acm.org/citation.cfm?id=1181873
[Accessed 17 May 2013].

Lewis, C.M., 2010. How Programming Environment Shapes
Perception, Learning and Goals: Logo vs. Scratch. In: Proceedings
of the 41st ACM technical symposium on Computer science
education, SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York:
ACM, 346 – 350. Available from:
http://dl.acm.org/citation.cfm?id=1734383 [Accessed 17 May
2013].

Lin, H., 2000. Fluency with information technology. Government
Information Quarterly, 17 (1), 69-76. Available from:
http://www.sciencedirect.com/science/article/pii/S0740624X99000
246 [Accessed 17 May 2013].

Malan, D.J. and Leitner, H. H., 2007. Scratch for budding computer
scientists. In: Proceedings of the 38th SIGCSE technical
symposium on Computer science education, SIGCSE ’07, 7-10
March 2007 Covington, Kentucky. New York: ACM, 223-227.
Available from: http://dl.acm.org/citation.cfm?id=1227388
[Accessed 17 May 2013].

Malan, D. J., 2010. Reinventing CS50. In: Proceedings of the 41st
ACM technical symposium on Computer science education,
SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York: ACM,
152–156. Available from:
http://dl.acm.org/citation.cfm?id=1734316 [Accessed 17 May
2013].

McFarland, R.D, 2004. Development of a CS0 course at Western
New Mexico University. Journal of Computing Sciences in
Colleges, 20 (1), 308-313. Available from:
http://dl.acm.org/citation.cfm?id=1040271 [Accessed 17 May
2013].

Morreale, P., Joiner, D. and Chang, G., 2010. Connecting
undergraduate programs to high school students: teacher workshops
on computational thinking and computer science. Journal of
Computing Sciences in Colleges, 25 (6), 191-197. Available from:
http://dl.acm.org/citation.cfm?id=1791164 [Accessed 17 May
2013].

Morelli, R., de Lanerolle, T., Lake, P., Limardo, N. Tamotsu, E.,
and Uche, C., 2010. Can Android App Inventor Bring
Computational Thinking to K-12? The Humanitarian FOSS Project.
Available from:
http://hfoss.org/uploads/docs/appinventor_manuscript.pdf
[Accessed 21 February 2013].

Mullins, P., Whitfield, D. and Conlon, M., 2009. Using Alice 2.0 as
a first language. Journal of Computing Sciences in Colleges, 24 (3),
136-143. Available from:
http://dl.acm.org/citation.cfm?id=1409900 [Accessed 17 May
2013].

Naace, ITTE, and the Computing at School Working Group, 2012.
ICT and Computer Science in UK schools. Computing at school.
Available from:
http://www.computingatschool.org.uk/data/uploads/ICT%20and%2
0CS%20joint%20statement.pdf [Accessed 21 February 2013].

Purewal Jr., T.S., 2010. Social Networking: The New Computer
Fluency? In: Proceedings of the 41st ACM technical symposium on
Computer science education, SIGCSE ‘10, 10-13 March 2010
Milwaukee. New York: ACM, 112-116. Available from:
http://dl.acm.org/citation.cfm?id=1734301 [Accessed 17 May 2013].

Sahami, M., 2007. Welcome to the Google Education Summit.
Mountain View: Google. Available from:
http://research.google.com/university/relations/eduSummit2007/Me
hranSahami.pdf [Accessed 03 May 2013].

Sahami, M., Aiken, A. and Zelenski, J., 2010. Expanding the
Frontiers of Computer Science: Designing a Curriculum to Reflect a
Diverse Field. In: Proceedings of the 41st ACM technical
symposium on Computer science education, SIGCSE ‘10, 10-13
March 2010 Milwaukee. New York: ACM, 47-51. Available from:
http://dl.acm.org/citation.cfm?id=1734279 [Accessed 17 May 2013].

Scott Hilberg, J. and Meiselwitz, G., 2008. Undergraduate Fluency
with Information and Communication Technology: Perceptions and
Reality. In: Proceedings of the 9th ACM SIGITE conference on
Information technology education, SIGITE '08, 16-18 October 2009

Page 89 of 166

Cincinnati, Ohio, New York: ACM, 5-10. Available from:
http://dl.acm.org/citation.cfm?id=1414562 [Accessed 17 May 2013].

Uludag, S., Karakus, M. and Turner, S.W., 2011. Implementing
IT0/CS0 with scratch, app inventor for android, and lego
mindstorms. In: Proceedings of the 2011 conference on Information
technology education, Sigite 11, 20 - 22 October 2011 New York.
New York: ACM, 183-190. Available from:
http://dl.acm.org/citation.cfm?id=2047645 [Accessed 17 May 2013].

United States Department of Labor, Bureau of Labor Statistics,
2007. Employment Projections: 2006-16. Washington: United States
Department of Labor, Bureau of Labor Statistics. Available from:
http://www.bls.gov/news.release/archives/ecopro_12042007.pdf
[Accessed 03 May 2013].

Wellman, B. L., Davies, J. and Anderson M, 2009. Alice and
Robotics in Introductory CS Course. In: Proceedings of The Fifth
Richard Tapia Celebration of Diversity in Computing Conference:
Intellect, Initiatives, Insight, and Innovations, Tapia ‘09, 1–4 April
2009, Portland, Oregon. New York: ACM, 98-102. Available from:
http://dl.acm.org/citation.cfm?id=1565822 [Accessed 17 May 2013].

Wolber, D., 2011. App inventor and real-world motivation. In:
Proceedings of the 42nd ACM technical symposium on Computer
science education, SIGCSE '11, 9-12 March 2011 Dallas. New
York: ACM, 601 - 606. Available from:
http://dl.acm.org/citation.cfm?id=1953329 [Accessed 17 May 2013].

Zweben, S., 2009. 2007-2008 Taulbee Survey. Computing Research
News, 21 (3), 8-23. Available from:
http://cra.org/uploads/documents/resources/crndocs/issues/0905.pdf
[Accessed 17 May 2013].

Zweben, S., 2010. 2008-2009 Taulbee Survey. Computing Research
News, 22 (3), 7-24. Available from:
http://cra.org/uploads/documents/resources/crndocs/issues/0510.pdf
[Accessed 17 May 2013].

Zweben, S., 2013. 2012 Taulbee Survey. Computing Research
News, 25 (5), 11-60. Available from:
http://cra.org/uploads/documents/resources/crndocs/issues/0513.pdf
[Accessed 17 May 2013].

Page 90 of 166

Appendix 2 – Communications with local schools

Initial email

Below is a sample of the content of emails sent to schools to initiate conversations regarding

computing at their school (the contents were personalised slightly for each school).

“I am currently working on my dissertation project as part of a master’s degree in

Enterprise Information Systems at Bournemouth University and wonder if you can help

me. The project is based around assisting teachers with the teaching of computing in

secondary schools which I assume will be especially useful at the moment given the

proposed changes to the computing curriculum to focus on computing rather than just

ICT. I have been researching various options for improving and modernising the teaching

of computing to enhance the perception and understanding of computing to show its

value, relevance and appeal. The next stage will be to assess areas teachers would

appreciate some assistance with when teaching computing. Then from this feedback I will

research solutions to any problems and create artefacts that will benefit schools such as

course content, lesson plans, guidelines, applications and so forth. Therefore I would

appreciate it if I could talk to you and perhaps some of your colleagues about how I could

assist [school name] and other secondary schools with the teaching of computing.”

Replies received and subsequent conversations

Below are contents of replies received from the initial emails and subsequent conversations.

Note: Conversation details are not word for word transcripts and email content is not entire

emails to leave only relevant content (for example details like arranging meetings are

removed).

St Edward’s School

St Edward’s School (http://www.st-edwards.poole.sch.uk) is a joint Roman Catholic - Church

of England voluntary aided secondary school in Poole, Dorset. Their subject leader for

Computing and ICT, Alastair Barker, replied to the initial email with the following

information.

“I have to say that computing has been my focus since arriving in 2007 and has been

steadily embedded into the curriculum until now we only teach ICT to a single option

group at GCSE. Computing is taught throughout years 8 and 9 (and soon to be 7) and we

offer GCSE Computing as well as an established A-level. You can read about us in the

latest CAS SwitchedOn magazine (page 4) (Barker 2013).

It would be very interesting to talk to you about your thoughts and research. We would

certainly like to access to any experiences you at the University could provide. It is

difficult giving the students actual context and examples of the real application of

computer science. BU has an impressive international reputation in the world of

technology and to be able to visit and see what is going on would be the first thing that I

would like to request.”

http://www.st-edwards.poole.sch.uk/

Page 91 of 166

Alastair had previously met with Stuart Wray, Senior Lecturer at the Royal School of Signals

in Blandford, to discuss how to make computing more appealing to students and considered

the possibility of a computer club to assist with this. The author met with them on their

second meeting to continue these discussions. Topics discussed included:

 How do you make students want to learn computing? What is their motivation – why

should I learn computing?

o Because it’s useful?

o Peers, parents etc. having and using computing skills?

 Does adults having and using computing skills make it cool or have the

opposite effect?

o Job prospects

o More opportunities

o Industry demand

 How can we help teachers to teach computing without being patronising?

 How to make computing fun, motivating and appealing.

The main idea that came out of this meeting is to create a schools outreach event run by St

Edward’s school with assistance from Bournemouth University for local schools’ students

(probably Key Stage 2 students) and their teachers. The event will be designed to make

programming more fun and engaging for students by showing the effects of programming

over a physical object for example turning on a light, interacting with sensors etc. and how

inputs such as switches can be used. For example by creating a home scenario where

programming (probably in Scratch) is used to control lights, heating etc. or perhaps a car

scenario controlling traffic lights and perhaps expanding it to consider a pedestrian crossing.

Each device would be connected to a controller (Arduino, Raspberry Pi, network etc.) and the

students would need to write some code (either from scratch or by modifying or completing

existing code) to control the devices.

Page 92 of 166

In a later email discussing his outreach plans Alastair summarises the areas he wishes to work

on/improve.

“I therefore have x2 main areas I want to build on next academic year:

 bring context and real world application of computing to inspire and engage all

students eg.

o increasing physical computing into the curriculum (Arduino/RPi/robotics

etc.)

o increasing profile of computing around school

o guest speakers

o trips to institutions and companies that use computing

o increasing links with companies for apprenticeships/employment

 increasing coding skills amongst staff and students primarily in our x22 feeder

schools, but also to all schools in the Poole/Bournemouth area

o various CPD and school based initiatives including setting up a mock home

automation (see below)

I am particularly excited about an event that Paul, Stuart and I developed yesterday. The

event will be based around a mock-up of a home (I'm thinking along the lines of putting

lamps, radio, TV, curtains/blinds around the Computing block but open to

suggestions). Each device will be connected to a controller (eg. Arduino/RPi/network)

and using Scratch, students can program these devices to do something - turn on/off most

likely. The more able students may be able to do more sophisticated things - this event is

certainly a work in progress but meets my need for both CPD and engagement.”

The author then asked for clarification about outcomes he expected from the outreach event,

how he thought it might work and so forth; Alastair replied with:

“I've looked at a number of options and have chosen, to start with, traffic lights. In

groups of x4, students will create their own set of traffic lights using

Arduino/RaspberryPi and Scratch as the coding language. Tasks will range from simply

creating a working sequence, adding a pedestrian crossing, adding different sequences for

different times of the day through to putting all the traffic light systems together to form a

small towns road network.

I am currently talking with Siemens to add the icing on the cake as their traffic light

division have a schools outreach program and go into schools with a traffic light system

for students to program. The grammar school already use this service if you need to get

some empirical evidence.

If this is a success then I will work on the home automation idea. The main reason for not

going ahead with this idea is that working with electricity is dangerous and needs

expensive equipment to make safe and also there is less scope for feedback loops.

My success criteria would be that students are more confident to code and want to learn

more, and that staff understand the principles of coding and are more familiar/confident

with Scratch coding. So I guess you will have to question both staff and students at the

start and end of session to see if they are more/less confident and willing to learn more

about coding.”

Page 93 of 166

Poole High School

Poole High School (http://poolehigh.poole.sch.uk/) is secondary school in Poole, Dorset.

Kane Lean, one of their computing teachers, replied to the initial email with the following

information.

“In September we are to launch the GCSE Computing course (AQA exam board) with

our first classes so your email has actually come through at an ideal time. I do feel we

have quite a good handle on our Computer Science teaching methods, however as a

department we are very open to new ideas and trying new approaches. As a brief

overview, we currently deliver computing through Scratch and Small Basic with years 8

& 9, moving towards Visual Basic and Google App Inventor (MIT) with Key Stage 4. At

A-Level we stick with Visual Basic but we do teach basic PHP as part of a web

development unit.

It does indeed sound like your dissertation has the potential to be very interesting. It

would be ideal to get an outline of the steps you intend to take and any resources you may

need from us (i.e. meetings with timings etc.).”

The author then replied with more detail on the project/dissertation and related literature

review as requested. Kane then replied with:

“I had a read through your literature review and there are a couple of additional issues

which you may wish to consider that I've often found to be a problem in CompSci

teaching in schools. Primarily they relate to hardware and network support. Some school

systems are understandably locked down which can make executable / binary generation

an issue. Network filtering and port blocking can also be problematic (particularly in

regards to app inventor, but also other online resources). Fortunately we're lucky to have

a good IT support team, but I do know that most schools in the UK are not in the same

position as us.

A couple of the points you mentioned which I believe we can relate to are the "Making

computing cool" and "make learning about how computers work fun". We do

occasionally struggle with these two points in particular at Key Stage 3. I should also

mention that we have a full compliment of Raspberry Pi's but we've been unable to find a

suitable way to deploy them thus far.”

The author then met with Kane and discussed the idea of creating an event to improve

opinions and understanding of computing. The event is similar to the event idea discussed

with St Edward’s but it was felt that given the limited time available before students are away

for the summer holidays it would be more feasible to focus the event around year 8 students.

The reasoning being secondary schools have dedicated computing staff (this is rare in middle

schools) so it is easier to contact staff who would be interested in the event and could arrange

that their students attend.

http://poolehigh.poole.sch.uk/

Page 94 of 166

Kane would like a way of helping students appreciate how computers work rather than just

how to use them such as understanding the hardware inside a computer, how to program and

so forth. In addition it would be ideal if the event helped students see the relevance of

computing with real-world applications and examples. They have a set of Raspberry Pi

computers and would like to see how they could use them and the event could be based

around these.

Goals, tasks and ideas for the event were also discussed such as:

 It must happen before 22
nd

 July as this is when the school term ends and they

will need a minimum of 2 weeks’ notice to allow them to make arrangements for

the students to attend.

 Student differentiation needs to be considered - The event should be inclusive

and challenge all students with activities at an appropriate level for varied skill

levels within the group.

 Teams would help with inclusiveness and differentiation as teams can have a

variety of skills and therefore everyone can learn from each other and the

difference between skill levels would be less of a problem.

 Mixing teams up between schools would provide more equal skills within the

teams and therefore there are no teams with greater knowledge than others

(some schools may cover more computing content than others).

 Teams could present their findings, what they learned, something they made and

so forth.

 Perhaps the event should have multiple activities to provide variety rather than

one long activity that covers the entire event.

 Perhaps have one Raspberry Pi per team

 It should be a basic introduction to computing to allow for those with little or no

prior computing skills.

 Perhaps Bournemouth University outreach and advertising/marketing will be

willing to help, maybe even sponsoring prizes.

 Tasks

o Locate a venue - We can use Poole High School as a venue but it is felt

that Bournemouth University is a more suitable venue.

Page 95 of 166

o Decide on a year group to take part in the event. Years 8 and 9 from

Poole High School are available until 22
nd

 July and Year 8 is probably

ideal due to their limited computing experience.

o Plan the event.

o Invite schools.

o Work out the ideal number of students per event (12-15 students is a

preferred size of group for Poole High School to bring to the event).

o Think about what will be achieved, what are the events aims and how

will they be achieved?

o Find people who will help run the event and decide what they will need

to do at the event.

o Work out how to measure success and if it is via observations work out

what is to be observed and who will do the observations.

o Work out how teachers would be involved? Some may not understand

some technology especially modern technology like a Raspberry Pi or an

Arduino so content will need to be basic.

o Decide how long it will run for, all day may be too long, perhaps make it

4 hours.

o Decide on how to conclude the event, perhaps have presentations with

prizes.

 If providing prizes who will pay for them?

The author also asked Kane the following questions:

Q: How have you interpreted the new National Curriculum? For example are you

making major changes or just adjusting your ICT subject’s content? I assume this is

covered by the new GCSE but are you making any other changes?

A: We have implemented a new GCSE computing subject, modified the computing A-

Level (mainly to deal with the removal of January exams) and added programming for

every year.

Q: Do you feel you have enough information about the new National Curriculum and

what is expected of you?

A: Yes

Page 96 of 166

Q: Are you anxious about the changes being made and do you feel confident in your

ability to deliver the required content?

 Do you know all the subjects in the new National Curriculum?

 Does the new content worry you?

A: No, we are happy with it.

Q: Are you ready for this September? Will you be changing content from September

2013 or will you wait until 2014 when it is compulsory?

A: Yes, we are phasing in new computing content over 3 years which will be complete

by September 2014.

Q: Do you feel you will have everything ready for September 2014 or do you need

more assistance to meet this deadline?

A: Everything will be up and running by September 2014 due to the phased

implementation of computing content which started in 2012 so everything will be fully

switched over by 2014.

Q: Are you aware of the resources available to help you teach the new computing

curriculum?

A: Yes via CAS, TES etc.

Q: Would you appreciate guidance on how to meet the aims of the new National

Curriculum and resources available to you?

A: Yes as long as it was just guidance; it is always good to read about different

opinions, see other approaches etc.

Q: What content do you cover?

A: All content specified in the GCSE Computing qualification requirements and the A-

level Computing qualifications requirements. Details can be found on the AQA website.

Q: How popular is the computing GCSE option? What percentage of students chose to

study it?

A: 50 year 9 students (2 classes, we would like to increase it to 3 but have a recruitment

problem) are to go into year 10 GCSE Computing in September out of 330 students

(15.15%).

Page 97 of 166

Q: I assume GCSE ICT is/was offered, is/was it popular? What percentage of students

chose to study it?

A: No, we offer a BTEC ICT course which will be retained alongside the GCSE

Computing course.

Q: How popular is the AS/A2 course? What percentage of students chose to study it?

A: 25 (1 class, would like to increase it to 2) out of 140 students (17.86%).

Q: How many hours a week do students learn computing? Will it change with the new

National Curriculum?

A: 5 hours a fortnight for GCSE, 9 per fortnight for A-Level. It won’t increase.

Q: Do you have an outreach program with the schools that feed into your school i.e.

year 6?

A: No

Q: What level of prior computing knowledge do students have when they join the

school? Is it self-taught or via school?

A: Very little, they may have used Scratch but in general their knowledge is poor. It is

mostly self-taught knowledge; most will come with some skills but of a very low level.

Q: If I were to create a resource such as a workshop, course content etc. would it be

possible to test it with the students (probably in mid-July or early August) or will they

be on holiday and won’t be interested in coming into the school then?

A: Yes until 22
nd

 July

Q: And most importantly: Can I have permission to publish our conversations in my

dissertation?

A: Yes as long as it doesn’t include any personally identifiable details/data about the

students.

References

Barker, A., 2013. Introducing Computing: A Success Story from Dorset. Switched On, Summer 2013 (1),

4. Computing at School Working Group. Available from:

http://www.computingatschool.org.uk/data/uploads/newsletter-summer-2013.pdf [Accessed 3 June 2013].

Page 98 of 166

Appendix 3 – Surveying teachers via an informal discussion

The author created an informal discussion on an online forum to obtain details on how

prepared teachers are for the computing changes in the National Curriculum and whether

more help would be useful.

Initial post

The author’s initial post contained:

“I am currently working on my dissertation project as part of a master’s degree in

Enterprise Information Systems at Bournemouth University and wonder if you can help

me. The project is based around assisting teachers with teaching computing and for this I

need to establish how prepared teachers are for the new computing curriculum and if they

would appreciate any help. This will allow me to focus my research onto areas that will

assist teachers and hopefully create useful guidelines, resources etc. Therefore can you

please tell me more about your views on the new curriculum and areas that you would

appreciate some help in. For example:

1. How have you interpreted the new curriculum? For example are you making major

changes or just adjusting your ICT subject’s content?

2. Do you feel you have enough information about the new curriculum and what is

expected of you?

3. Are you anxious about the changes being made and do you feel confident in your

ability to deliver the required content?

o Do you know all the subjects in the new curriculum?

o Does the new content worry you?

4. Are you ready for this September? Will you be changing content from September

2013 or will you wait until 2014 when it is compulsory?

5. Do you feel you will have everything ready for September 2014 or do you need

more assistance to meet this deadline?

6. Are you aware of the resources available to help you teach the new computing

curriculum?

7. Would you appreciate guidance on how to meet the aims of the new curriculum and

resources available to you?

Please provide details of your current and future teaching. Even if you feel you have

everything covered please still explain it as it will be beneficial to my research and will

probably help other on here too.”

Replies received

The following replies were received.

Response from Jules Thompson, Head of ICT, St Thomas More RC School, Buxton, Derbyshire

“Just to put my views into context. I am Head of ICT at a small school in Derbyshire, I

am the only teacher of ICT in the school. I have been teaching ICT for 11 years (HoD for

7). I came to ICT via. English, which is my degree and PGCE subject. ICT has always

been a very popular and successful subject at our school; in the top rankings for residuals,

progress, uptake etc.

1. I have planned a major shake-up of our KS3 curriculum. I’ve trimmed all the fat and

repetition from the old ICT curriculum and created six ‘threads’ which will span the three

years of KS3. The threads are: _Communication, Data Handling, Programming,

Computer Systems, Computers & Society and E-safety_. This incorporates the best and

Page 99 of 166

most valuable aspects of the dis-applied ICT curriculum and starts to phase in the new

draft Computing curriculum at a pace we can cope with in our own setting.

2. I would like more information on what’s expected from the new curriculum, for

example my school still insists on me using NC levels (even though they are meaningless

at the present moment in time) so I would like to have a hint of level descriptors to see

rate of progress etc. I would also like some official confirmation that we’re not being

expected to deliver the entire draft curriculum to ALL pupils from Sept 2014 and some

understanding that it needs to be a more gradual process.

3. I have been extremely anxious about the new curriculum, to the point of seriously

considering my alternatives to teaching (and I LOVE my job). Initially it was

overwhelming and I used the analogy that I was like a PE teacher suddenly being asked to

teach Mandarin to GCSE level, with no training or support. Glad to say I’ve gained a bit

of perspective since then, but I still think it’s a massive shift and one that’s not been well

thought out. I’m not very confident in my ability to deliver all of the content immediately;

but I am now at least a bit more confident that I have a strategy in place to address this

(thanks in no small part to advice I’ve had on CAS online).

4. I will be introducing lots of new content from September 13; HTML in Year 8, Python

in Year 9 along with lots of hardware, software, networks, and emerging technologies

across all three year groups. I’m not worried about the new content as such, it’s more an

issue of time to get myself up to speed and get schemes of work in place etc. And for

those who think I can’t do it all I’d say is that we didn’t do much in the way of relational

databases in my English degree but I’ve been confidently and successfully teaching them

for the last decade. Fortunately I have quite a supportive head who is giving me one

lesson a week for training next year.

5. We won’t be covering everything by September 14, it’s just not realistic. I have no one

to delegate anything to, I need to retrain myself and it simply can’t be done in that time

scale. I also have a work/life balance to consider (not to mention a toddler at home.) More

assistance would always be welcomed, but at least I’m now confident in the position we

have taken and feel I could justify it if necessary.

6. Accessing resources has been my biggest concern, I hate to say that the LA have been

very poor on this score. Fortunately I have sourced loads of stuff from CAS and they

have pointed me in the direction of Udacity to help me gain some knowledge and

confidence in Computer Science.

7. Any guidance always gratefully received.

I would also be happy to email you the new KS3 scheme I’ve put together, although it’s

still a work in progress.”

The author then asked some additional questions and responses are below:

“1. Do you have or had in the past an ICT GCSE option?

Yes, we offered GCSE ICT as an option up until 2009 when we switched to OCR

Nationals. As this is only a small school, we only offer the one option course.

If so:

Is/was it popular?

It was very popular.

What percentage of students chose to study it?

Page 100 of 166

On average around 70% of each cohort and a pretty even balance of males and females

too. (The uptake for Nationals remained around the same, apart from a dip in the current

Year 10, which has become known as the 'Ebac effect', the option groups for that year are

completely different from the usual pattern with a massive increase in the uptake of

languages and humanities and a fall in ICT, catering, Graphic Products and the art

subjects. Now Ebac has all but disappeared we've reverted back to the usual distribution.)

Is it still running?

We have reverted back to GCSE ICT for this September as I was very concerned about

the longevity and credibility of the Cambridge Nationals.

2. Do you have or plan to have a computing GCSE option?

In the short-term no, although hopefully in the next 3-5 years as we become better

equipped (mostly through CPD) to deliver it.

If so:

How popular is the computing GCSE?

What percentage of students chose to study it?

Will it replace the ICT GCSE or remain as an additional option?

3. Do you have a computing AS/A2 course?

No, we are 11-16 only

If so:

How popular is the AS/A2 course?

What percentage of students chose to study it?

4. How many hours a week do students learn computing? Will it change with the

new curriculum?

They have one lesson of 50 minutes each week at key stage 3 (years 7-9)

If they choose ICT as an option they have 3 x 50 mins per week

Plus ALL pupils in Year 10 & 11 do some ICT as part of a 'carousel', approx. 20 lessons

in Year 10 and 8 in Year 11.

I am not aware of any planned changes to the allocation for ICT/Computing in the

timetable, certainly there is no change from above for 2013_2014.

5. Do you have an outreach program with the schools that feed into your school i.e.

year 6?

We are supposed to, but it has kind of faltered over the last few years. Every year around

this time I think, I really must do something about this, but it's difficult with all the

changes going on currently and it's not high on the priority list.

6. What level of prior computing knowledge do students have when they join the

school? Is it self-taught or via school?

Depends which feeder primary they come from! Most have basic transferable skills in

MS Office, mostly focusing on formatting and working with images. Some have used

Flowol at primary so have a basic understanding of control, but that's about it. I think it's

as much home as it is school, but again it depends on the background of the individual

child; some are arriving having already created and published their own websites, but

these are in the minority!

7. And most importantly: Can I have permission to publish our conversations in my

dissertation?

Yes that's fine.”

Page 101 of 166

Appendix 4 – Acquiring knowledge to teach the new National Curriculum

As discovered in the investigation into computing in schools (see appendices 2 and 3) some

computing teachers may not have computing qualifications and are concerned about teaching

the new content
120

. There may also not be enough awareness in schools of the changes and

colleagues may not understand the scale of the transition to the new Computing subject.

Equally there may not be support by executives
121

 to assist computing teachers with

training/re-training such as funding courses or providing time to learn. In both situations this

can be improved by greater communication to explain the changes to computing education in

schools; also awareness in general is improving as more details emerge on the new NC
122

.

There is also a lot of support for training new computing teachers such as generous

scholarships such as the BCS scholarship (BCS 2013).

References

BCS, 2013. Teaching scholarships | BCS Academy of Computing. Swindon: BCS. Available from:

http://academy.bcs.org/scholarships [Accessed 12 August 2013].

120

 For example see the comments from Jules Thompson in appendix 3 who was so concerned and anxious about

the extra content to learn that she considered changing careers.
121

 Such as head teachers, heads of departments and year groups, governors, managers, local and national

government and so forth.
122

 The new NC covers changes for multiple subjects so it is well known within schools but the exact changes to

subjects such as the change from ICT to Computing may not be as well understood.

Page 102 of 166

Appendix 5 – The new National Curriculum

The new Computing subject in the new National Curriculum was influenced by

reports/proposals/arguments such as:

 The ‘Next Gen.’ report (Livingstone and Hope 2011)

 The ‘Shut down or restart? The way forward for computing in UK schools’ report by

The Royal Society (2012)

 The ‘ICT and Computer Science in UK schools’ report by the Naace, ITTE, and the

Computing at School Working Group (2012)

 A proposal to include CS in the English Baccalaureate by an expert panel led by BCS,

The Chartered Institute for IT (BCS 2012)

BCS (2013) responded to the new NC proposals regarding the Computing subject on behalf of

BCS and CAS and their respective members. Overall they supported the changes and

welcomed the renaming of ICT to Computing to emphasise the change in direction and

improvements. However they did make some further suggestions such as including teaching

eSafety citing the concerns raised by CAS members.

The DfE (2013) have made GCSE Computer Science a separate science option (bringing the

total science options to 4) and included it in the English Baccalaureate (EBacc) performance

measures
123

.

References

BCS, 2012. The case for Computer Science as an option in the English Baccalaureate. Swindon: BCS. Available

from:

http://academy.bcs.org/sites/academy.bcs.org/files/Case%20for%20Computer%20Science%20as%20an%20EBa

cc%20option.pdf [Accessed 6 June 2013].

BCS, 2013. BCS, The Chartered Institute for IT in association with the Computing At School group Consultation

Response to: Reform of the National Curriculum in England. Swindon: BCS. Available from:

http://academy.bcs.org/sites/academy.bcs.org/files/BCS%20National%20Curriculum%20Response%20-

%20April%202013.pdf [Accessed 4 July 2013].

DfE, 2013. Computer science to be included in the EBacc. Department for Education. Available from:

https://www.gov.uk/government/news/computer-science-to-be-included-in-the-ebacc [Accessed 07 June 2013].

Livingstone, I. and Hope, A., 2011. Next Gen: Transforming the UK into the world’s leading talent hub for the

video games and visual effects industries. Next Gen Skills. Available from:

http://www.nesta.org.uk/library/documents/NextGenv32.pdf [Accessed 6 June 2013].

The Royal Society, 2012. Shut down or restart? The way forward for computing in UK schools. London: The

Royal Society. Available from: http://royalsociety.org/education/policy/computing-in-schools/report/ [Accessed

6 June 2013].

Naace, ITTE, and the Computing at School Working Group, 2012. ICT and Computer Science in UK schools.

Computing At School. Available from:

http://www.computingatschool.org.uk/data/uploads/ICT%20and%20CS%20joint%20statement.pdf [Accessed 6

June 2013].

123

 These GCSEs are approved by BCS, the Chartered Institute for IT and the Royal Academy of Engineering

(RAEng) to ensure they are of the required high quality (DfE 2013).

Page 103 of 166

Appendix 6 – Programming languages/tools/environments for education

Visual programming languages/tools/environments

App Inventor

App Inventor allows easy creation of applications for Android devices which provides huge

motivational potential and ability to create real-world and relevant applications. It has a

superb website which includes in-depth and well written documentation and tutorials to help

understand the tool and easily create applications.

The first tutorial “HelloPurr” shows how to add a button with an image on it and add a sound

which is played when the button is pressed. It provides a full introduction to how App

Inventor works and creating an application as well as the basics of application development.

Further basic tutorials continue from this by introducing other programming concepts such as

variables, random choices, loops etc. There is an area for teachers containing lessons which

advance in difficulty and create a small course. The first lesson
124

 “Magic 8 ball” introduces

random choices after a button click
125

 to output a random prediction just like shaking a magic

8 ball. It also introduces the use of the accelerometer sensor to allow the user to shake the

phone to get a prediction which replaces the button click. The author also found it easy to

create a function
126

 containing the prediction code to allow it to be used with a button click

and the accelerometer sensor. They suggest possible additions to try such as responding to

text messages with a prediction. The author found it is simple to work out how to do this and

it allows for the introduction of ‘if statements’ so that it only responds when the text message

sent to it starts with the keyword ‘magic’. It can also be used to introduce text formatting

functions
127

 and comparison functions
128

. Adding a button to close the application was also

simple. The author also found it was easy to create another example of displaying times tables

of a number chosen from a drop down list which introduces the use of ‘for’ loops.

124

 However it would be sensible to start with the “HelloPurr” tutorial prior to this to help students understand

how App Inventor works.
125

 Which has a picture of an 8 ball on it
126

 App Inventor calls functions procedures
127

 For example to remove the need for case sensitive text messages when identifying the keyword
128

 For example to check for the keyword in the text message received

Page 104 of 166

It is easy to create and store programs in App Inventor due to it being web-based (although it

does require installing the App Inventor program and also the blocks editor requires the

downloading and use of a Java web start file) with applications stored online for easy access.

The use of puzzle piece blocks/components makes identifying suitable connecting

components easy. However the author found that some components which

shapes/connections appear to suggest fit together prompted an error; for example a component

that only allows numerical inputs will show an error if a text input is added which while it

teaches the student about data types it could be confusing and frustrating. Another useful

feature is live development/testing which allows an Android device that is connected to the

computer or is on the same network to be used to test the program being worked on in App

Inventor. Changes made in the code during development immediately affect the development

version of the program on the device so it is ready to be tested; this provides immediate

feedback and encourages and simplifies testing. Figure 1 shows the interface designer and

figure 2 shows the blocks editor.

Figure 1: App Inventor - Interface Designer Screen

Components to use which

are in groups (that they

call palettes) by type

Components

in use

The

programs

design

The selected

components

properties

Media for the

program to use

Page 105 of 166

Figure 2: App Inventor – Blocks Editor

Usability of the programming tool/environment: 3.5

The drag-and-drop interface for both the screen designer and the blocks editor combined with

the puzzle piece connections makes designing applications and adding functionality

straightforward. The layout is clear and its ability to set positioning and attributes of elements

without needing to use coding simplifies designing interfaces. The ability to connect an

Android device for live development/testing during development adds more realism and

simplifies the testing process. The requirement to download a file to open a program in blocks

editor slightly increases complexity and more help/tips within the environment would be

useful.

Ease of use and intuitiveness of the programming language: 4

The use of puzzle piece blocks vastly simplifies programming by removing the need to write

code. However more detail on choosing the right component would be useful along with a bit

more detail on how they work.

Programming concepts covered: 3.5

Most concepts are included in a simple way; however advanced concepts like OOP are not

covered.

Blocks used in

the program

Blocks to use

grouped by type

(clicking a type,

e.g. Definition,

shows its blocks)

Page 106 of 166

Relevance to industry: 3.5

While it probably isn’t used extensively in industry due to its simplicity it may be used for

prototyping or creating basic Android applications. Also creation of Android applications is

common in industry.

Ability to create real-world and relevant applications: 4

Despite its simplicity it is able to create real-world and relevant Android applications;

however it doesn’t cover every Android feature.

Interactive features: 4.5

There are components for using most features of Android devices such as texting, speech

recognition, barcode scanners, sensors and so forth. It also has the ability to connect to Lego

Mindstorms kits to control physical electronic components such as sensors, robots and so

forth.

Motivational potential: 4.5

Its ease of use, ability to create real-world and relevant applications, use of Android devices

and their functions and other interactive features make it very motivational and appealing.

Quality of documentation and amount of teaching resources available: 4

There are many excellent and easy to understand tutorials and resources available but more

help/tips within the environment would be useful.

Longevity and update frequency: 4.5

It is developed and maintained by the Lifelong Kindergarten Group (2013) at MIT’s Media

Lab (MIT Media Lab 2013a) and is regularly updated and has support to keep the project

running.

Total: 36 (80%) Average: 4 Weighted Total: 107 (79.26%) Weighted Average: 3.96

Page 107 of 166

Scratch

Scratch works in a similar way to App Inventor and shares the same puzzle piece style blocks

system. Scratch is primarily designed for a younger age range (8-16 year olds) but can be

used to teach programming to almost any age perhaps as an introduction to programming

concepts prior to using other languages and tools such as Alice, Java etc. Sharing projects and

ideas is done via the Scratch website rather than mobile devices. Scratch 2.0 has recently been

released with many improvements such as the ability to define blocks (creating your own

functions) and making it cloud-based to allow programs to be created and stored online
129

.

Users can also look at the code of shared projects to learn how they work and to modify/remix

them to create their own version of the project. It also allows for more interactivity with the

ability to track movement via a webcam and they plan to add integration with external devices

including ScratchBoard
130

 and Lego WeDo. An interactive getting started tutorial is available

to introduce how Scratch works and create a basic project. It is easy to use and makes Scratch

easy to understand, however some steps aren’t mentioned such as which category the required

block is in but it does show it in an image and the blocks are colour coded. There are lots of

other tips and information on how to use Scratch in a tips tab in the editor so it is easy to find

help while creating a project
131

. There is a vast amount of information, sample projects and

resources available for teaching including a dedicated education website (ScratchEd 2013)

with resources for all ages. Figure 3 shows Scratch in editing/code viewing mode.

129

 However a downloadable version of Scratch 2.0 is being developed for use where internet connectivity is

limited or unavailable. The downloadable edition of the previous version (1.4) is still available to use until this is

ready.
130

 This is now called PicoBoard – See (MIT Media Lab 2013b) and (The Playful Invention Company 2010)
131

 This tips tab is also where the getting started tutorial is located but in some steps it gets minimised and it isn’t

immediately obvious how to restore it.

Page 108 of 166

Figure 3: Scratch in editing/code viewing mode

Usability of the programming tool/environment: 4

Usability is similar to App Inventor being focused around puzzle piece blocks yet is simpler

by being completely web-based and blocks usage and design being on one screen/window
132

.

The design is also more basic/simple and there is a tips/help screen to explain the

components.

Ease of use and intuitiveness of the programming language: 4.5

Again the usage is similar to App Inventor due to the use of blocks but they are named and

explained in a clearer and simpler way and more help/tips on their usage are provided.

Programming concepts covered: 3

Most concepts are included in a simple way; however advanced concepts like OOP are not

featured.

132

 In App Inventor designing the interface is on one screen/window and adding code via blocks is on another

screen/window (the blocks editor).

The programs

output (where you

adjust the design

and see it running)

Scripts, costumes

and sounds tabs

(scripts is selected

in this example)

The stage (the overall

program and background)

Sprites in

the program

Blocks to choose

from (the motion

group has been

selected in this

example)

Blocks used in the

program

Buttons to choose

type/group of

blocks you want

to use

Start and

Stop

Buttons

Page 109 of 166

Relevance to industry: 2

Due to its simplicity and the programs created being basic and limited to the Scratch website

it is unlikely to be used in industry. However it is still useful for learning programming

concepts which are useful in industry.

Ability to create real-world and relevant applications: 2

As it is a basic teaching tool and as the outputs (programs) are basic and only exist on the

Scratch website they are unlikely to be of use in the real-world or be hugely relevant.

However it does offer the ability to quickly and easily demonstrate concepts.

Interactive features: 3.5

Scratch is primarily used to create basic games and animations but there are some more

advanced interactive features such as motion detection via a webcam and plans to add

integration with external devices.

Motivational potential: 3

Its ease of use and interactive features make it appealing, especially to younger age groups,

but its problems with lack of relevance could reduce motivation to continue using it.

Quality of documentation and amount of teaching resources available: 4.5

There are many excellent and easy to understand tutorials and resources available as well as

help/tips within the environment.

Longevity and update frequency: 4.5

It is developed and maintained by MIT (2013) and is regularly updated and has support to

keep the project running.

Total: 31 (68.89%) Average: 3.44 Weighted Total: 96 (71.11%) Weighted Average: 3.56

Page 110 of 166

Alice

Although Alice is a block-based visual tool like Scratch and App Inventor it is very different.

The major difference being it aims to teach OOP; objects used (e.g. a person, a rock etc.) are

instances of classes and can use procedures and functions from its parent class. For example

an instance of an AdultPerson class can use its ‘say’ procedure to speak the specified text
133

.

The use of OOP, while useful for understanding OOP concepts for moving onto more formal

text-based OOP languages like Java, makes it more difficult to understand. Alice uses a 3D

environment and is based around storytelling and each program is run as a sort of

movie/animation. Objects are added to the scene editor and can be configured such as

adjusting hair colour. Code/blocks can be added to interact with the object via the code editor

e.g. make a person say “Hi” and a cat respond with “Meow”. Even the most basic example

uses a class for the scene, initialisation of event listeners and triggering of the myFirstMethod

method/function to start the program. Although most of this can be skipped until later in a

course
134

 and just tell students to put the code they wish to execute in the myFirstMethod

method/function it can still make starting using Alice daunting. Additionally although Alice

uses similar drag-and-drop functionality to other visual tools like Scratch and App Inventor

and shows which functions are applicable for each class and available options/values it isn’t

as obvious or as easy to use. The additional level of complexity while useful for teaching

OOP may confuse and frustrate first-time programmers and therefore as recommended by

Adams (2010) it is advisable to use a simpler system like Scratch to introduce programming

concepts prior to the use of Alice. The Alice website contains many tutorials and resources for

teaching Alice and they even provide a set of instructional materials including 4 units of

multiple lessons which teachers can use to teach the basics of programming with Alice. The

Alice environment is shown in figure 4.

133

 This is displayed as a speech bubble.
134

 You can leave explaining how the myFirstMethod method/function is executed when the application starts

until the students have a greater understanding of Alice and OOP concepts.

Page 111 of 166

Figure 4: The Alice programming environment/tool

Usability of the programming tool/environment: 3

The drag-and-drop system makes objects easy to create and add interactions and functionality;

this and the setting of objects properties can be done without the need to write code. The

interface is reasonably simple to use and see how components interact and values/options that

apply to them but is more complex in comparison to Scratch and App Inventor.

Ease of use and intuitiveness of the programming language: 2.5

Due to the use of OOP it is quite complex; it is also not very intuitive how components are

related, which options/values are applicable to functions, and so forth. Also it is hard to

establish how to add things like control statements; the environment focuses on animating

characters more than underlying programming concepts.

Programming concepts covered: 4.5

Alice uses OOP and covers almost all programming concepts.

Relevance to industry: 4

Although industry probably doesn’t use Alice it is based around learning Java and OOP which

is used extensively in industry.

Page 112 of 166

Ability to create real-world and relevant applications: 2

As it is based around storytelling and animation the applications created offer little value

other than for teaching purposes.

Interactive features: 2

It can make interactive stories, animations and games but it is difficult to connect to external

devices, webcams and so forth and usually requires the creation of custom interfaces for them.

Motivational potential: 3

The interactive features and relevance to industry via the links with Java make it potentially

motivating but the lack of real-world and relevant applications reduce its appeal.

Quality of documentation and amount of teaching resources available: 3

There is a reasonable amount of documentation and teaching resources available for Alice but

these are not as extensive as some other languages/tools.

Longevity and update frequency: 4.5

It is developed and maintained by the Carnegie Mellon University with contribution and

support from other universities and industry. It is regularly updated and has support to keep

the project running.

Total: 28.5 (63.33%) Average: 3.17 Weighted Total: 83.5 (61.85%) Weighted Average: 3.09

Page 113 of 166

Text-based programming languages

Python

Python is commonly used in industry and is used in many application domains (Python

2013a). It is a high-level general purpose dynamic programming language and is designed to

have simple syntax that is easy to learn and shorter than many languages while being a

powerful and effective approach to Object-Oriented Programming (Python 2013b). The

simplicity and compactness is achieved via features such as:

 “high-level data types allow you to express complex operations in a single statement;

 statement grouping is done by indentation instead of beginning and ending brackets;

 no variable or argument declarations are necessary” (Python 2013c)

This approach is ideal for education as it can introduce text-based programming covering all

programming concepts in a simple and intuitive way while enabling significant programs to

be created. Another useful feature is extensions and modules can be created with other

languages such as C or Java.

It is primarily used to create command line/console programs but there are toolkits such as Tk

to create Graphical User Interfaces (GUIs).

There is plenty of documentation on the Python website including a getting started tutorial. In

addition there are learning environments to help with code writing with features such as tips

and code auto-completion and there is even an extension to integrate it into Visual Studio

(CodePlex 2013). There is also support via a large user community and specialist groups

including an education specialist group (Python 2013d) which provides information and links

to resources to help educators teach Python.

Figure 5 shows the Python command line and Python’s IDLE Graphical User Interface/IDE.

Page 114 of 166

Figure 5a: Python Command Line

Figure 5b: Python’s IDLE Graphical User Interface/IDE

Usability of the programming tool/environment: 2.5

The default tools are very basic, the Graphical User Interface/IDE (IDLE) has basic auto-

completion when in interactive mode but in general its features are limited. However there are

other editors available with more features and the extension for using Python in Visual Studio

is highly recommended.

Ease of use and intuitiveness of the programming language: 3.5

The language is designed to have a shorter simpler syntax than other languages and to be easy

to understand and learn.

Programming concepts covered: 4

It includes all programming concepts in a simple and intuitive way.

Page 115 of 166

Relevance to industry: 4.5

It is commonly used within industry.

Ability to create real-world and relevant applications: 4.5

It is used in many application domains with real-world and relevant uses.

Interactive features: 4

It can be used in many interactive ways: it can connect to electronics to for example create a

robot, interact with networks via a socket interface, be used to create games, and so forth.

Motivational potential: 4

With its many potential uses and interactive features it has many motivational and appealing

uses/examples.

Quality of documentation and amount of teaching resources available: 4

There is a wide variety of well written documentation and easy to follow examples available.

Longevity and update frequency: 4

It is open source and there is a large community dedicated to its development, maintenance

and continued availability.

Total: 35 (77.78%) Average: 3.89 Weighted Total: 102.5 (75.93%) Weighted Average: 3.8

Logo

Usability of the programming tool/environment: 4.5

It is very basic with simple commands entered into the tool/environment which are executed

with output shown on the screen or via an external device such as a turtle robot.

Ease of use and intuitiveness of the programming language: 4.5

It is designed to be very simple and commands are logical and easy to understand.

Programming concepts covered: 2.5

It covers the main basic programming concepts so is an excellent simple introduction to

programming.

Relevance to industry: 1

It is not used in industry and has little resemblance to code used in industry.

Page 116 of 166

Ability to create real-world and relevant applications: 1

Its programs are mainly for teaching and have little relevance or value to the real-world.

Interactive features: 2

The commands are shown on the screen or via a turtle robot.

Motivational potential: 2.5

It is an easy, fun and motivational way of introducing programming especially for young

children but it is limited so it is advised to quickly move onto other more complex languages.

Quality of documentation and amount of teaching resources available: 3

There are many versions of Logo so finding documentation for a specific version may be

difficult but syntax is similar between versions. There is an online version for learning Logo

at (Turtle Academy 2013) which is shown in figure 6.

Longevity and update frequency: 2.5

Due to the age of Logo support is limited but due to its popularity and as there are many

versions it should be supported for many years.

Total: 23.5 (52.22%) Average: 2.61 Weighted Total: 77 (57.04%) Weighted Average: 2.85

Figure 6: The Turtle Academy version of Logo

Page 117 of 166

C# and Visual C#

Usability of the programming tool/environment: 4.75

The Visual Studio IDE (shown in figure 7) is very popular and has many features to assist

programming such as highlighting of errors, auto-completion, an intellisense list that appears

as the user types to assist them with the code they wish to write
135

 and so forth.

Ease of use and intuitiveness of the programming language: 4.25

Although it is a full OOP text-based language it has been designed to be easy to understand

and learn.

Programming concepts covered: 4.5

It includes all programming concepts in a reasonably simple and intuitive way.

Relevance to industry: 4.5

Many C based languages are used in industry and C# is frequently used especially when used

with ASP .NET.

Ability to create real-world and relevant applications: 4.5

Due to its range of uses and ability to use all programming concepts with both command-

line/console and GUI Windows applications, many relevant applications can be created.

Interactive features: 4.5

Like many C based languages it can be used with multiple devices including electronics to

create interactive applications.

Motivational potential: 4.5

Due to its ease of use and Rapid Application Development approach, it can quickly and easily

be used to create motivational examples.

Quality of documentation and amount of teaching resources available: 4.5

There is a lot of help within Visual Studio to explain components (functions, parameters etc.)

and many in-depth tutorials, examples, books and other resources available.

135

 The list shows possible words (functions, properties etc.) which the user can choose from rather than

completing manually typing it (ideal when you aren’t sure how to spell something or can’t remember what it’s

called) along with a description of what they are/do.

Page 118 of 166

Longevity and update frequency: 4.5

It is developed and maintained by Microsoft who invest in its future and regularly update it.

Total: 40.5 (90%) Average: 4.5 Weighted Total: 121.5 (90%) Weighted Average: 4.5

Figure 7: Visual Studio

Visual Basic .NET

Usability of the programming tool/environment: 4.75

Visual Basic .NET, like C#/Visual C#, also uses Visual Studio so has its advantages.

Ease of use and intuitiveness of the programming language: 4

Although it is a full object-oriented text-based language it isn’t as complex as other OOP

languages such as Java.

Programming concepts covered: 4.5

It includes all programming concepts in a reasonably simple and intuitive way.

Relevance to industry: 3.75

Although it is unlikely to be used to create commercial applications it is popular for creating

quick prototypes due to its Rapid Application Development approach.

Ability to create real-world and relevant applications: 4.5

Due to its range of uses and ability to use all programming concepts with both command-

line/console and GUI applications many relevant applications can be created.

Page 119 of 166

Interactive features: 4

In a similar way to C# it can be used in interactive ways but this is less common.

Motivational potential: 4.5

Due to its ease of use and Rapid Application Development approach it can quickly and easily

be used to create motivational examples.

Quality of documentation and amount of teaching resources available: 4.5

There is a lot of help within Visual Studio to explain components (functions, parameters etc.)

and many in-depth tutorials, examples, books and other resources available.

Longevity and update frequency: 4.5

It is developed and maintained by Microsoft who invest in its future and regularly update it.

Total: 39 (86.67%) Average: 4.33 Weighted Total: 118 (87.41%) Weighted Average: 4.37

Microsoft Small Basic

Usability of the programming tool/environment: 4

The environment is very basic to appeal to new programmers and helps the user to code with

documentation and an intellisense list.

Ease of use and intuitiveness of the programming language: 4.5

Its minimal 14 keyword syntax makes it easy and intuitive.

Programming concepts covered: 4

Although the syntax is basic it covers almost all programming concepts.

Relevance to industry: 2

As it is an introductory programming language it isn’t used in industry but it is useful as an

introduction prior to using C# or Visual Basic .NET which are used in industry. There is also

a feature to convert a Small Basic program into a Visual Basic .NET program.

Ability to create real-world and relevant applications: 1

Its programs are usually creating for teaching/learning purposes and have little relevance or

value to the real-world.

Page 120 of 166

Interactive features: 1

There are no specific interactive features but interactive programs like games can easily be

created
136

.

Motivational potential: 3

The ability to quickly create programs should motivate students and show the appeal of

programming.

Quality of documentation and amount of teaching resources available: 4

There is a reasonable amount of quality documentation, resources and a user community

available as well as external sites producing additional resources.

Longevity and update frequency: 2

Its longevity could be queried as the FAQ on the Small Basic website (Microsoft 2013) says

their continued investment into it depends on its popularity; considering it hasn’t been

updated since 2011 suggests investment in it has ceased.

Total: 25.5 (56.67%) Average: 2.83 Weighted Total: 84 (62.22%) Weighted Average: 3.11

Figure 8 shows Small Basic and its main features.

136

 For example the getting started guide shows how easily a pong style game can be made.

Page 121 of 166

Figure 8: Small Basic

Java

Usability of the programming tool/environment: Not applicable

There is no default/official tool/environment for writing Java code; however there are many

unofficial tools/environments available with varying features.

Ease of use and intuitiveness of the programming language: 3

As a C derivative it should be similar to users of similar languages but in general it is difficult

to understand especially for novices.

Programming concepts covered: 4.75

It covers all programming concepts and has extensive functionality.

The editor – Where

programs are written
The toolbar with useful

commands such as save and run.

Intellisense (This shows

possible commands and

their purpose). This is

shown as the user types.

Definition of word

(function, property etc.)

currently selected and

functions, properties etc.

to use with it.

Page 122 of 166

Relevance to industry: 4.75

It is extremely popular in industry and is used for many different purposes on many different

devices.

Ability to create real-world and relevant applications: 4.75

It is used for creating many real-world and relevant applications.

Interactive features: 4.75

Due to its wide range of features it can be used in many interactive ways.

Motivational potential: 2.5

While it is powerful and can create many motivational and appealing programs its complexity

may reduce its appeal especially with beginners.

Quality of documentation and amount of teaching resources available: 4.5

There is extensive documentation and teaching resources available.

Longevity and update frequency: 5

It is developed and supported by Oracle and due to its popularity and extensive use it is

frequently updated and its longevity is supported.

Total
137

: 34 (85%) Average: 4.25 Weighted Total
138

: 95 (82.61%) Weighted Average: 4.13

137

 This is out of 40 due to usability attribute being not applicable.
138

 This is out of 115 due to usability attribute being not applicable.

Page 123 of 166

References

Adams, J.C., 2010. Scratching Middle Schoolersʼ Creative Itch. In: Proceedings of the 41st ACM technical

symposium on Computer science education, SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York: ACM,

356-360. Available from: http://dl.acm.org/citation.cfm?id=1734385 [Accessed 17 May 2013].

CodePlex, 2013. Python Tools for Visual Studio. Microsoft. Available from: http://pytools.codeplex.com

[Accessed 17 August 2013].

Lifelong Kindergarten Group, 2013. Lifelong Kindergarten. Lifelong Kindergarten Group. Available from:

http://llk.media.mit.edu [Accessed 16 August 2013].

Microsoft, 2013. FAQ. Microsoft Corporation. Available from: http://smallbasic.com/faq.aspx [Accessed 13

June 2013].

MIT, 2013. Massachusetts Institute of Technology. Massachusetts Institute of Technology. Available from:

http://web.mit.edu [Accessed 16 August 2013].

MIT Media Lab, 2013a. MIT Media Lab. MIT Media Lab. Available from: http://www.media.mit.edu [Accessed

16 August 2013].

MIT Media Lab, 2013b. Sensor Boards. MIT Media Lab. Available from:

http://info.scratch.mit.edu/Sensor_Boards [Accessed 16 August 2013].

The Playful Invention Company, 2010. PicoBoard. The Playful Invention Company. Available from:

http://www.picocricket.com/picoboard.html [Accessed 16 August 2013].

Python, 2013a. Applications for Python. Python. Available from: http://www.python.org/about/apps/ [Accessed

13 June 2013].

Python, 2013b. The Python Tutorial. Python. Available from: http://docs.python.org/3/tutorial/ [Accessed 13

June 2013].

Python, 2013c. Whetting Your Appetite. Python. Available from: http://docs.python.org/3/tutorial/appetite.html

[Accessed 13 June 2013].

Python, 2013d. EDU-SIG: Python in Education. Python. Available from:

http://www.python.org/community/sigs/current/edu-sig [Accessed 13 June 2013].

ScratchEd 2013. ScratchEd. MIT Media Lab. Available from: http://scratched.media.mit.edu [Accessed 16

August 2013].

Turtle Academy, 2013. Turtle Academy. Turtle Academy. Available from: http://turtleacademy.com [Accessed

17 August 2013].

Page 124 of 166

Appendix 7 – Case Study: Tasks – Further details

Part 1

Tasks

1. Animating a character including the usage of a loop to repeat the characters

animations

2. Traffic light example:

o Loop through a traffic lights sequence

o Add delays to have set times for each part of the sequence

Challenges for advanced students/teams

1. Based on task 2 add a second set of traffic lights and link their sequences together e.g.

when one is green the other is red.

2. Adjust task 1 (perhaps saving it as a different file) and make the cat meow (i.e. play its

meow sound) when it is clicked on.

3. Based on task 2 with one set of traffic lights add a pedestrian crossing to make the

traffic lights go to red and delay the sequence (give the pedestrian time to cross).

4. Have 2 traffic lights with their sequences linked like in the earlier challenge and have

pedestrian crossings on both. Bear in mind that stopping one traffic light delays its

sequence from restarting and this will make the traffic lights’ sequences out of sync.

Therefore it would be difficult to get them back to normal but essential if both of them

being green would cause a crash.

Part 2

Tasks
139

1. Using a Jelly Baby as a switch to trigger the playing of a sound “Make the Jelly Baby

sing”.

2. Making a LED flash on and off.

3. Adjusting the traffic light example from part 1 task 2 to make LEDs turn on and off to

match the different lights in the sequence as they are shown on the screen.

139

 The first 2 tasks are Scratch equivalents to the Python examples from (OCR 2013)

Page 125 of 166

Challenges for advanced students/teams:

1. Add a pedestrian crossing to 1 set of traffic lights like in part 1 challenge 3 and add a

paper clip switch like in part 2 task 1 to trigger the pedestrian crossing. It could

perhaps use a Jelly Baby as the switch “The Jelly Baby arrives at the crossing”.

2. Put a LED into or on the head of a Jelly Baby and then create an animation so that

when the Jelly Baby has a thought it is shown in a thought bubble on the screen and

the LED turns on and then when the thought has ended the light goes off.

References

OCR, 2013. Raspberry Pi. Cambridge: OCR. Available from: http://www.ocr.org.uk/qualifications/by-

subject/computing/raspberry-pi [Accessed 17 August 2013].

Page 126 of 166

Appendix 8 – Case Study: Event timetable

See table 1 for an envisaged events timetable for the full day version of the event:

Table 1: Event timetable

Time Item

9:00am Arrivals and introduction

9:20am Part 1

11:00am Break

11:15am Introduction to the electronics used in part 2

11:25am Part 2

12:25pm Lunch break

1:10pm Continue with part 2

2:10pm Survey

2:45pm Conclusion

3:00pm Depart

All timings are approximate. Some schools may wish to have a slightly shorter day to allow

for time to travel from the school to the location and return within the hours of the school

day
140

. Equally a school may prefer a half day event; the variety of tasks and challenges

allows for the days content to be reduced if required. Additionally the skills of the students

attending can be assessed prior to the event and it may be feasible to skip some of the basic

tasks
141

 and thus reducing time required to complete the events content. In this case it may be

necessary to provide completed programs for the basic tasks that were skipped, as the later

tasks are based on some of these (ordinarily when running the full event the students would

have created these). Also the survey questions relating to the event may need to be adjusted to

take into account the reduced content
142

.

140

 The school can request that the event is run at their school to simplify administration tasks such as getting

permission for students to go on a trip out of the school. In this situation travel time can be taken out of the

timetabling considerations.
141

 Students may already have enough basic Scratch knowledge that they do not need to do these tasks.
142

 For example if you skip part 1 you can’t ask the question asking about it.

Page 127 of 166

Appendix 9 – Case Study: Tasks Worksheets/Hand-outs

Scratch introduction

If you are unfamiliar with Scratch or want reminding of the basics here is a simple

introduction; if you are happy with using Scratch you can go straight onto the tasks in part 1.

When you open Scratch you will see a sprite (character/object you can

interact with) of a cat (there are also others you can choose from).

This cat sprite has 2 costumes (see the costume tab) which are different

images of the character, for this sprite these show 2 different walking

positions. Sprites can also have sounds attached to them (see the sounds

tab) and the cat has one sound “meow”. Sprites also have a scripts tab which is where you can

add blocks/code to interact with it. Therefore we have a character we can interact with that

has different appearances/looks and set sounds it can make; you can add more costumes and

sounds if you wish.

There are blocks/puzzle pieces for various programming components to allow you to add

functionality to your program (animate your sprite, play sounds, perform calculations etc.);

these are the equivalent of writing code in more complex programming languages. The blocks

are colour coded by type and can be chosen by clicking the type buttons in the top left. Blocks

lock together like puzzle pieces and only snap together with components/blocks that work

together so there is no need to worry about getting things wrong.

Blocks can either be added in a sprites script tab for blocks/code relating to the sprite or to the

stage which is for the background and overall program.

The window in the top right shows the program’s output, you can adjust the design such as

modifying the sprites position, size and so forth. This is also where the program is run; it is

started by clicking the green flag and stopped by clicking the red stop sign, although

alternatives can be set in the code/blocks such as start when space bar is clicked.

Page 128 of 166

Figure 1 shows the Scratch program/tool and the features mentioned. If you need more

assistance on getting started with Scratch they provide an excellent getting started guide at

http://scratched.media.mit.edu/sites/default/files/GettingStartedGuidev14.pdf.

Figure 1: The Scratch program/tool and its main features.

Sprites in

the program

The stage (the

overall program

and background)

Start and

Stop

Buttons

The programs

output (where

you adjust the

design and see

it running)

The object

selected

(sprite or

stage)

Scripts, costumes

and sounds tabs

(scripts is selected

in this example)

Blocks used in

the program

Buttons to

choose

type/group of

blocks you

want to use

Blocks to

choose from

(the motion

group has been

selected in this

example)

http://scratched.media.mit.edu/sites/default/files/GettingStartedGuidev14.pdf

Page 129 of 166

Note: Solutions to problems you may come across in a task are below its instructions. If you

need any other help please ask.

Part 1

Task 1 of 2: Animating a character

In this task you will learn how to animate a character so it walks across the screen.

Step Details Related Images

1 Start a new Scratch program/file (starting Scratch

will do this automatically).

We will be animating the cat sprite/character

which you will see on the screen (it is the default

sprite/character for every new program).

The cat should already be selected, if not select

the cat (Sprite1) by clicking on its icon in the

sprites area (bottom right).

2 Add the ‘when green flag clicked’ control block

(it is in the control group) which performs actions

when the green flag is pressed.

3 By connecting a block/s to another block they

happen after that blocks actions are completed i.e.

in sequence (the order specified). For example by

connecting block A to block B you are saying do

A then B.

Therefore a block added to the ‘when green flag

clicked’ block will happen after the green flag is

clicked. Connect a ‘move 10 steps’ block which

moves the sprite forward a set number of steps (10

in this example).

Tip: You can click on the 10 and change it for any

number to modify the amount of steps moved.

Try it out/test it: Let’s test it - Click the green flag and see the cat move.

Page 130 of 166

4 The cat’s walking isn’t very realistic as we don’t

see the steps, however if we introduce a delay

between each step it will look more real.

First disconnect the ‘move 10 steps’ block.

Connect a ‘repeat 10’ control block to the ‘when

green flag clicked’ block. The ‘repeat 10’ block is

a loop which has been set to repeat its contents

(the block inside it) 10 times. You can change the

10 to any number to adjust the number of times it

repeats.

Note: The ‘move 10 steps’ block

has been disconnected but still

remains as we will need it later.

5 Next change the steps in the ‘move 10 steps’

block to 1 and put it in ‘repeat 10’ loop. Now 1

step is repeated 10 times; this may seem

unnecessary when we can just say move 10 steps

but it allows us to add a delay between each step

for more realistic walking.

6 To add a delay between each step add a ‘wait 1

secs’ control block below the ‘move 1 steps’

block. The ‘wait 1 secs’ block adds a 1 second

delay thus creating a gap between each step.

Try it out/test it: Now run the program (click the green flag) and see the improved walking.

7 The walking seems a bit slow so if we reduce the

time in the wait block ‘wait 1 secs’ (the delay) the

walking will be quicker (0.5 seconds seems more

realistic). Click on the 1 and change it to 0.5

8 After running the program a few times the cat will

walk past the edge of the screen and we will lose

it. To solve this problem add a ‘if on edge,

bounce’ motion block which turns the sprite

around when it hits the edge of the screen. A good

place to add this is at the bottom of the repeat 10

loop.

Unfortunately the bounce turns the cat upside

down and solving this problem is a more

advanced challenge which you can try if you have

time later.

Try it out/test it: Run the program and see the faster walking, if you run it many times the

cat will hit the edge of the screen and then turn around and start walking the other way.

Page 131 of 166

9 Superb, we now have a walking cat. It would

however be better if its legs moved as it walked.

Fortunately the cat has another costume of a

different walking position so if we keep switching

the costumes with each step it will look like the

cat is walking.

To alternate between the cats costumes we will

use an ‘if else’ control block/statement. This says

if a condition is true do these blocks, if not do

some other blocks.

The default costume is numbered 1 and the other

costume is numbered 2. Therefore we can say if

costume number is 1 change costume to costume

2 else (i.e. it is already 2) change it to costume 1.

First we will add the ‘if else’ block inside the

repeat loop at the bottom.

10 Now we need to set the condition for the ‘if else’

block to check. We will take the ‘equals

comparison’ operator block which looks like this

and has boxes for adding items to

compare i.e. if the left part is the same as the right

part then it is true, if not it is false.

We need to compare the costume number to see if

it is costume 1. To do this drag the ‘costume #’

looks block into the left box of the ‘equals

comparison’ block and add a 1 in the right box

(you can click in the box and type in 1) to

compare it against. See image on the right.

Note: # means number.

The ‘costume #’ block is a bit like a variable and

it stores the number of the costume the sprite is

currently using. Therefore we can use this to work

out which costume to switch/change to.

Page 132 of 166

11 Now if the costume is numbered 1 it will run/use

the block(s) connected to the ‘if’ part, if not it will

run/use the block(s) connected to the ‘else’ part.

We will use the ‘switch to costume’ looks block

and set the costume accordingly using the block’s

drop down list/menu (if costume 1 change to

costume 2 and vice versa).

That is all you need, we have an animated walking

cat. The completed blocks you should now have

are shown on the right. It may be basic but has

introduced many fundamental programming

concepts.

Remember to save it.

Try it out/test it: Run it and see the completed program.

Troubleshooting problems

My cat sprite only has 1 costume

If your cat sprite only has 1 costume rather than the 2 required you will need to add the other

costume. To do this go into the costumes tab and

click on the import button which is one of the new

costume buttons. Then find the missing costume in

the animals costume folder, click on it and then

press the ok button.

Page 133 of 166

Task 2 of 2: Traffic Lights

In this task you will learn how to animate a traffic light.

Step Details Related Images

1 Start a new project (choose new from the file

menu).

Delete the cat sprite by right clicking on it and

choosing delete.

Next in the new sprite buttons click the ‘choose

new sprite from file’ button and find the traffic

lights sprite in the transportation folder (if you

can’t see this folder you may not be in the

costumes folder so click on the costumes button

on the left).

This sprite has 4 costumes for the 4 states of a

traffic light sequence (red, red and orange, green

and orange).

2 Just like before start by adding the ‘when green

flag clicked’ control block.

3 Next we will add a ‘forever’ loop (the ‘forever’

control block) which is similar to the repeat block

we used earlier but without the specified amount

of times it will run; it will run forever unless it is

stopped via blocks/code or the stop button is used.

4 As we saw in task 1 we can wait/pause for a set

amount of seconds and we can also change/switch

the costume of a sprite.

Therefore you can add waits/delays and switch

costumes into the forever loop to change the

costumes of the traffic light sprite to show a traffic

light sequence (each costume is a phase of the

sequence i.e. different lights are on and off) and

delays to separate them; set the wait times to

whatever you feel is appropriate for the traffic

light sequence.

The completed sequence is on the right.

Don’t forget to save it

End You should now have a working traffic light which goes through the sequence of

lights and loops/repeats until it is stopped.

Try it out/test it: Run it and see the completed program.

Page 134 of 166

Some challenges

If you want to do more tasks there are some fun challenges you can try, please ask for the part

1 challenges worksheet.

Part 2 – Fun with the Raspberry Pi

In this part we will be using the GPIO (General Purpose Input/Output) ports on the Raspberry

Pi to use some electronics as inputs and outputs of our programs.

Task 1 of 3 – Making a Jelly Baby Sing

In this task we will use a Jelly Baby as a switch to trigger the playing of a sound and

displaying of a message to make the Jelly Baby ‘sing’.

You will need:

 2x Jumper Wires (female to female)

 2x Paper Clips (small, thin and non-

plastic-coated)

 1x Jelly Baby

 A Raspberry Pi

 Raspberry Pi accessories (keyboard,

mouse, screen etc.) – Not photographed

 1x Headphones or Speakers - Not

photographed

Step Details Related Images

1 Connect a jumper wire into pin 3 (an

input/output pin which we will be using as an

input) and another to pin 6 (ground).

Tip: Pin 1 is marked on the Raspberry Pi as

P1 and pins along that row are odd numbers

and the other row is even numbers.

2 Unbend 2 paper clips until they are straight

and place 1 in the other/empty end of each

jumper wire.

If the 2 paper clips touch together they form a

circuit and can be used as a very basic

button/switch.

Page 135 of 166

3 Open ScratchGPIO2 (not the regular Scratch),

you will find a shortcut for it on the desktop.

This runs a program to handle the GPIO

communications within Scratch, loads Scratch

and enables Scratch’s Remote Sensor

Connections (RSC). This allows us to make

use of the GPIO pins.

Important: Do a save as to save the current

file as a different name (e.g. Jelly Baby) to

stop the default template being

overwritten. Do not do file new as this

doesn’t keep the remote sensor connections

enabled.

First delete the cat sprite by right clicking on

it and choosing delete. Next in the new sprite

buttons area click the ‘choose new sprite from

file’ button and locate the Jelly Baby in the

things folder (if you can’t see this folder you

may not be in the costumes folder so click on

the costumes button on the left). I apologise

for its poor quality, my design skills aren’t

great.

4 Just like before start by adding the ‘when

green flag clicked’ control block.

5 Next we will add a ‘forever’ loop (a ‘forever’

control block) which will run forever unless it

is stopped via code/blocks or the stop button

is used. This is important so we can

constantly check if any inputs happen (use of

the paper clip button/switch).

6 Now add an ‘if’ block inside the forever

block, we will use this to check for an input

(the paper clips are touching and a circuit is

made/completed).

Note: The ‘if’ block is like an ‘if else’ block

only without the else part.

7 To get/detect an input (the paper clips are

making a connection like a switch) we use the

‘sensor value’ sensing block and set the drop

down menu/list to pin3 as this is the pin we

are using.

We will be using:

Page 136 of 166

8 We will now set the condition for the ‘if’

block. We will use the ‘equals comparison’

operator block and compare the pin 3 sensor

value (the input). When there is no input it is

1 (i.e. the paper clips aren’t touching) and 0

when there is a connection (i.e. the paper clips

are touching and a circuit is formed).

Therefore in our ‘if’ comparison if we check

that the sensor value of pin 3 equals 0 we are

checking if the circuit is complete. We can

then add code/blocks into the ‘if’ block that

will happen when the input occurs (the circuit

is complete/the paper clips are connected).

Note: The behaviour of the pins is unusual

compared to usual programming logic which

has 1 as true and 0 as false; the pins values are

opposite to this (also known as negative

logic).

9 Now we will make the Jelly Baby sing. In the

‘if’ add a ‘say Hello! for 2 secs’ looks block

which displays a speech bubble with the

message specified (Hello!) for the time

specified (2 seconds). Next change the values

so it is ‘say La for 1 secs’ (you can adjust the

time and message to something else if you

wish).

Next we will add the playing of a sound. The

sounds a sprite can play are those set in its

sounds tab. There are no sounds for the Jelly

Baby sprite so go into its sounds tab, click

import and choose Singer1 (this is in the

vocals folder) or similar and then click ok.

Next return to the scripts tab and below the

say block add a ‘play sound until done’ sound

block; you can use the drop down menu/list to

choose the sound played from the sounds your

sprite has (e.g. Singer1).

10 It is a good idea to put a small delay in

between checks for inputs so it can finish the

last check before starting the next and slightly

improving accuracy. Simply add a ‘wait 1

secs’ control block inside the forever loop

below the ‘if’ block.

Page 137 of 166

Try it out/test it: Run the program and then put the paper clips together completing the

circuit and you will see the message and hear the sound.

11 Now we know our paper clip button/switch

works push the paper clips into the Jelly Baby

so they are close to each other but not

connected/touching. Then when you squeeze

the Jelly Baby the connection will be made

and the message will appear and the sound

file will play (the Jelly Baby “sings” when

squeezed). It may take a few attempts to get

the paper clips positioned correctly. You need

to put them close but ensure they are not

touching. Then squeezing the Jelly Baby will

temporarily connect the paper clips and then

when you release the pressure the paper clips

spring back to open/not connected/not

touching.

Tip: You may find it useful to output the

sensor value so you can see what the value

currently is; this can be done by having a

‘sensor value’ sensing block replacing

“hello!” in a ‘say Hello! for 2 secs’ looks

block or replacing the “Hmm…” in a ‘think

Hmm… for 2 secs’ looks block (I would

recommend changing them to 1 secs to match

the wait time), the block should be added at

the bottom or top of the forever loop.

End That’s our first adventure into the world of GPIO completed. We have seen how to

create a little switch from wires, paper clips and a Jelly Baby!

Try it out/test it: Run it and see the completed program.

Troubleshooting problems

The pin isn’t listed in the ‘sensor value’ block’s drop down menu/list

If pins are not listed in the ‘sensor value’ block’s drop down menu/list this probably means

the Remote Sensor Connections are not enabled or didn’t initialise properly. To solve this

right click on a ‘sensor value’ block and choose “enable remote sensor connections”; if

however it is already enabled then try disabling it and re-enabling it.

Page 138 of 166

Task 2 of 3: Making an LED flash on and off

We have seen how inputs work so we will now look at

outputs. First we will make an LED flash on and off.

You will need:

 2x Jumper Wires (female to female)

 1x 220 ohm resistor

 1x LED

 A Raspberry Pi

 Raspberry Pi accessories (keyboard, mouse, screen etc.) – Not pictured

Step Details Related Images

1 Connect a jumper wire to pin 3 (an input/output pin which we

will be using as an output) and another to pin 6 (ground).

Whereas pin 3 was previously used for an input as part of the

switch we are now using it for an output. This is possible

because GPIO pins are general purpose and can be used as

either an input or an output.

2 Next take an LED and a 220 ohm resistor and wrap one end of

the resistor around the shortest leg of the LED so that they are

connected.

3 Connect the other end of the resistor (the end that isn’t

connected to the LED) into the jumper wire that goes to pin 6

(ground). Then connect the jumper wire that goes to pin 3 to

the other leg of the LED.

4 In ScratchGPIO2 open a new file (select new from the file

menu).

Page 139 of 166

5 To turn on the LED we turn on the input/output pin it is

connected to (we give the pin power), likewise turning the pin

off removes the power and therefore turns off the LED.

We do this with a broadcast message which is sent via a

broadcast block and tells the pin what to do (turn on or off).

Therefore:

 Add a broadcast block (part of the control group)

 You can choose messages you have used before from

the blocks drop down menu/list. However as we

haven’t used any messages before we need to add one.

To add a new message click on the ‘new…’ option in

broadcast block’s drop down menu/list. Then add the

message pin3on and press ok.

Now when the block is used it turns on pin 3 and therefore

turns on the LED.

Now add another broadcast block and add a new message of

pin3off. This block turns off pin 3 and therefore turns off the

LED.

Turn pin 3 on:

Turn pin 3 off:

6 Now we can turn the light on and off but we will need to put

delays between the on and off otherwise it will be too quick

for us to see it. Therefore add a ‘wait 1 secs’ control block

after the ‘broadcast pin3on’ block and then connect the

‘broadcast pin3off’ block onto it. Then add on another ‘wait 1

secs’ control block onto the end/bottom (you can change the

times if you wish). Then to complete the program connect the

blocks onto a ‘when green flag clicked’ block so we can start

the program/sequence.

7 To keep it flashing on and off you can add a ‘forever’ loop.

End That is our first output example completed.

Try it out/test it: Run it and see the completed program.

Note: GPIO outputs usually use high for on and low for off (referring to power levels) but

ScratchGPIO2 has made it simpler for us by allowing us to use on/off (however you can use

high or low if you wish).

Page 140 of 166

Task 3 of 3: Traffic Lights

Now we will take our traffic light from part 1 task 2 and make LEDs turn on and off to match

the different lights in the sequence as it is

shown on the screen.

You will need:

 6x Jumper Wires (female to female)

 3x 220 ohm resistors

 1x Red LED

 1x Orange or Yellow LED

 1x Green LED

 A Raspberry Pi

 Raspberry Pi accessories (keyboard,

mouse, screen etc.) – Not pictured

Step Details Related Images

1 Connect jumper wires to pins 3, 5, 7 (input/output

pins which we will be using as outputs) and 6, 14

and 20 (ground pins).

2 Next take an LED and a 220 ohm resistor and wrap

one end of the resistor around the shortest leg of the

red LED so that they are connected. Repeat the

process with the orange/yellow and green LEDs.

3 Connect the red LED by connecting the

other/unused end of the resistor it uses (the end that

isn’t connected to the LED) into the jumper wire

that is connected to pin 3 and connect the

other/unused leg of the LED into the jumper wire

connected to pin 6. Then connect the orange/yellow

LED with the other/unused end of its resistor into

pin 5 and the other/unused leg of the LED into pin

14 (again via jumper wires). Finally connect the

green LED with the other/unused end of its resistor

into pin 7 and the other/unused leg of the LED into

pin 20 (again via jumper wires).

4 Now open the traffic light program from part 1 task

2 and use ‘save as’ to save it as a different file name

(copy it to a new file).

Page 141 of 166

5 Below the ‘switch costume to green’ block we will

add broadcasts to turn off the red and orange/yellow

LEDs and turn on the green LED.

Just like we did in task 2 we add a broadcast block,

select ‘new…’ from its drop down menu/list and

add the message pin3off and press ok. This turns off

the pin the red LED is using.

Then repeat the process with another block for

turning pin 5 off (the orange/yellow LED) with the

message pin5off.

Finally turn on the green LED by turning pin 7 on

with another block with the message pin7on.

6 Next create more broadcast blocks below the

‘switch to costume Orange’ block to deal with the

orange light and thus turn the green LED off

‘pin7off’ and turn the orange/yellow LED on

‘pin5on’.

7 Next we will handle the change to the red light thus

placing broadcast blocks under the ‘switch to

costume Red’ block with messages for pin5off (turn

orange/yellow LED off) and pin3on (turn the red

LED on).

8 And finally we deal with the change to RedOrange

(where red and orange are shown prior to the lights

going green). As we already have red on and still

need it to be on, all we have to do is add a block

below the ‘switch to costume RedOrange’ block of

a broadcast for turning pin 5 on to turn on the

orange/yellow LED.

Page 142 of 166

End That is our second output example completed. Run

it and you will see the LEDs turn on and off to

match the animations on the screen. You could

make it a little more realistic by creating a traffic

light model out of cardboard, Lego, wood etc. to

hold the LEDs in place. Here are what the

completed blocks look like:

Try it out/test it: Run it and see the completed program.

Some challenges

If you want to do more tasks there are some fun challenges you can try, please ask for the part

2 challenges worksheet.

Page 143 of 166

Appendix 10 – Case Study: Challenges Worksheets/Hand-outs

These challenges can be handed out to the students once they have completed the tasks for the

related part. The reasoning for keeping them separate is that although these challenges are

optional having them on the tasks worksheet may overwhelm and disengage the students due

to the amount of content.

Part 1 challenges

Here are some challenges for you to try if you have spare time in this part of the event. You

may find for some challenges that you can save time by basing the challenge on previous

tasks which will help reduce the need to repeat work. You can do a save as (to avoid losing

the previous work) or export and import sprites.

See if you can:

1. Based on task 2 add a second set of traffic lights and link their sequences together e.g.

when one is green the other is red.

2. Adjust task 1 (perhaps saving it as a different file) and make the cat meow (i.e. play its

meow sound) when it is clicked on. Don’t worry if you can’t work out how to do this now,

we will cover sounds later so you can come back to this task after that and finish it off.

Tip: There is a ‘play sound until done’ sound block and a control block for detecting when

a sprite has been clicked on.

And an extra difficult challenge:

3. Based on task 2 with one set of traffic lights add a pedestrian crossing to make the traffic

lights go to red and delay the sequence (give the pedestrian time to cross). You could

activate the blocks for the pedestrian crossing when you click on the traffic light (there is

a control block for detecting when a sprite has been clicked on) or perhaps show a

character such as the cat from task 1 arriving at the traffic light which activates the

pedestrian crossing blocks (Tip: You could export the sprite from task 1 and import it into

this project/challenge to avoid the need to re-add the blocks to animate the character). One

thing to consider to add extra realism is the traffic light would wait until it is on red before

delaying the sequence for the pedestrian to go across (they shouldn’t cross when the

traffic light is green). Tip: Investigate variables; I know we haven’t covered these but see

what you can work out and ask for help if required.

Also pedestrian crossing lights would be good.

And for those who want an even more difficult challenge:

4. Have 2 traffic lights with their sequences linked like in challenge 1 and have pedestrian

crossings on both. Bear in mind that stopping one traffic light delays its sequence from

restarting and this will make the traffic lights’ sequences out of sync. Therefore it would

be difficult to get them back to normal but essential if both of them being green would

cause a crash. Tip: Again variables are useful here and perhaps some ‘if’ or ‘if else’

blocks.

Page 144 of 166

Part 2 challenges

Here are some challenges for you to try if you have spare time in this part of the event. You

may find for some challenges that you can save time by basing the challenge on previous

tasks which will help reduce the need to repeat work. You can do a save as (to avoid losing

the previous work) or export and import sprites.

See if you can:

1. Add a pedestrian crossing to 1 set of traffic lights like in part 1 challenge 3 (copy it if you

wish) and add a paper clip switch like in part 2 task 1 to trigger the pedestrian crossing. It

could perhaps use a Jelly Baby as the switch “The Jelly Baby arrives at the crossing”.

2. Put a LED into or on the head of a Jelly Baby and then create an animation (delete the Cat

sprite and add a Jelly Baby sprite) so that when the Jelly Baby has a thought it is shown in

a thought bubble on the screen and the LED turns on and then when the thought has ended

the light goes off (Tip: There is a think block that shows a thought in a thought bubble).

You may ask for another Jelly Baby if required.

Troubleshooting problems

The pin isn’t listed in the ‘sensor value’ block’s drop down menu/list

If pins are not listed in the ‘sensor value’ block’s drop down menu/list this probably means

the Remote Sensor Connections are not enabled or didn’t initialise properly. To solve this

right click on a ‘sensor value’ block and choose “enable remote sensor connections”; if

however it is already enabled then try disabling it and re-enabling it.

Page 145 of 166

Appendix 11 – Case Study: Advice for event staff (people who will help run the

event)

There will be an explanation before each part to provide introductions to the part and cover

areas the students may struggle with or may not have previous experience with; for example

the basics of using Scratch and the basics of using electronics with Scratch. There are

challenges for each part for students who finish within the time allocated to move on to. They

are designed to be a challenge and allow students to demonstrate what they have learned and

to be flexible to allow for multiple approaches to be taken and for students to demonstrate

creativity and intuitiveness. Although it is designed to be a challenge, the students may still

need some assistance, possible solutions to the challenges are below. There is also some

information for troubleshooting possible problems.

Part 1

Challenge 1

Based on task 2 add a second set of traffic lights and link their sequences together e.g. when

one is green the other is red.

This should be reasonably easy for the students; all they need to do is duplicate the traffic

light sprite and adjust the sequence. The blocks required are:

Traffic Light Sprite 1 Traffic Lights Sprite 2

Blocks are the same as part 1 task 2 This starts the sequence from green so it

complements the other traffic light’s

sequence (when one is red the other is green

and vice versa).

Challenge 2

Adjust task 1 (perhaps saving it as a different file) and make the cat meow (i.e. play its meow

sound) when it is clicked on.

This one is really simple; all they need to do is add these

blocks to the cat sprite’s scripts tab:

Page 146 of 166

Challenge 3

Details Blocks

Based on task 2 with one set of traffic lights add a

pedestrian crossing to make the traffic lights go to red

and delay the sequence (give the pedestrian time to

cross).

The key to solving this problem is the use of a variable to

store whether the pedestrian is crossing (pedxing). When

the program is started the pedxing variable (pedestrian is

crossing) is set to 0 for false. Then when the traffic light

sprite is clicked on set the pedxing variable to 1 for true.

Then to provide time for the pedestrian to cross we check

if pedxing is 1, using an ‘if’ statement/block, when the

sequence gets to the red light. If it is 1 we add a wait for

10 seconds (the delay to let the pedestrian cross) and then

set the pedxing variable to 0 as the pedestrian crossing

has finished.

Note: The delay time can be adjusted if you wish. You

could also have other ways of triggering the pedestrian

crossing such as using a different sprite (having a button

sprite to click, having an animation of a sprite like the cat

activating the pedestrian crossing, and so forth).

Challenge 4

Have 2 traffic lights with their sequences linked like in challenge 1 and have pedestrian

crossings on both. Bear in mind that stopping one traffic light delays its sequence from

restarting and this will make the traffic lights’ sequences out of sync. Therefore it would be

difficult to get them back to normal but essential if both of them being green would cause a

crash.

This task is especially difficult so teams may be unable to complete it and also they probably

won’t have enough time to attempt it. However any attempts made should still be useful by

getting students thinking about how it could be done.

One possible approach is to first add pedestrian crossings like in challenge 3 but have

different variables for each pedestrian crossing status (pedXing1 and pedXing2) to allow the

pedestrian crossings to be independent. Next add variables to record each sprites current

costume which is updated each time it changes (trafficLight1Costume and

trafficLight2Costume). Then to get everything back to the right sequence in the ‘if’ statement

which detects a pedestrian requesting to cross add a ‘wait until’ block below the ‘wait 10

secs’ block and check for the costume of the other light to be green then it will only continue

when the lights are back in sequence (when one is red the other is green).

Page 147 of 166

Here are the blocks used:

Traffic Light Sprite 1 Traffic Lights Sprite 2

The reason for storing values of the sprites costumes in variables is because it appears each

sprite is unaware of other sprites. Therefore sprites cannot discover values about other sprites

such as what is the other sprites current costume. However variables can be set to be available

to all sprites (this is the default option) so work like global variables.

Page 148 of 166

Part 2

Note these tasks must be done using Scratch GPIO version 2 (ScratchGPIO2) not the regular

Scratch, you will find a shortcut to ScratchGPIO2 on the desktop. This runs a program to

handle the GPIO communications within Scratch, loads Scratch and enables Scratch’s Remote

Sensor Connections (RSC). This allows us to make use of the GPIO pins of a Raspberry Pi.

When you load ScratchGPIO2 it opens a template file which is just a new file with RSCs

enabled. However as it isn’t the original new template it can easily be overwritten so it is

important to do a save as when saving new projects for the first time otherwise it saves onto

the default template for ScratchGPIO2.

Task 1

If pins are not listed in the ‘sensor value’ block’s drop down menu/list this probably means

the Remote Sensor Connections are not enabled or didn’t initialise properly. To solve this

right click on a ‘sensor value’ block and choose “enable remote sensor connections”; if

however it is already enabled then try disabling it and re-enabling it.

Challenge 1

Details Blocks

Add a pedestrian crossing to 1 set of traffic lights like in

part 1 challenge 3 (copy it if you wish) and add a paper

clip switch like in part 2 task 1 to trigger the pedestrian

crossing. It could perhaps use a Jelly Baby as the switch

“The Jelly Baby arrives at the crossing”.

Connect jumper wires with paper clips in the end of

them to pins 3 and 6 like in part 2 task 1.

Next take the blocks from part 1 challenge 3 (you can

copy its file to save time) and then add the checking of

the pin 3 sensor value like in part 2 task 1 and when it is

0 (true) set pedxing to 1 to initiate the pedestrian

crossing delay when the light is red.

Page 149 of 166

Challenge 2

Put a LED into or on the head of a Jelly Baby and then create an animation so that when the

Jelly Baby has a thought it is shown in a thought bubble on the screen and the LED turns on

and then when the thought has ended the light goes off.

1. Delete the cat sprite.

2. Add a Jelly Baby sprite - in the new sprite buttons click

the ‘choose new sprite from file’ button and locate the

Jelly Baby sprite in the things folder (if you can’t see

this folder you may not be in the costumes folder so

click on the costumes button on the left).

3. Connect up a LED using pins 3 and 6 as shown in the

instructions for part 2 task 2.

4. Add a ‘when green flag clicked’ block.

5. Add a broadcast to turn pin 3 off in case it has been left

on.

6. Add a 1 second delay (this seems to solve a problem where the sequence becomes out

of sync for a moment when it starts).

7. Add a forever loop with contents of: a broadcast to turn pin3on (turn the LED on), a

think block (display a thought), a broadcast to turn pin3off (turn the LED off) and a

wait for 2 secs (wait before stating again).

Times and messages can be adjusted if you wish.

Page 150 of 166

Appendix 12 – Case Study: Guidance for the event organiser

Setting up the Raspberry Pi computers

Adding sprites

There are 2 sprites that were created for this tutorial which need adding to sub folders of

Scratch’s costumes folder. The costumes folder is usually located at:

/usr/share/scratch/Media/Costumes

 The Jelly Baby sprite needs to go in the things folder

 The Traffic Light sprite needs to go in the transportation folder

Note: You may find you do not have rights to add to this folder and to solve this you need

root privileges. You can either select “Open Current Folder as Root” from the tools menu

when viewing the folder in the file manager which opens up a window of the folder with root

privileges or you can copy the file with sudo from within the terminal/command line.

Scratch GPIO version 2

Part 2 requires Scratch GPIO version 2 to be installed (ScratchGPIO2) on the Raspberry Pi

computers – see http://cymplecy.wordpress.com/2013/04/22/scratch-gpio-version-2-

introduction-for-beginners for more details on it and how to install it.

Python

As Scratch GPIO version 2 uses Python with the Raspberry Pi GPIO libraries behind the

scenes these must be installed. They are installed by default on Raspbian Linux for Raspberry

Pi and should also be installed on other Linux distributions for Raspberry Pi; if however they

are not installed you will need to install them.

Introductions to each part

It would probably be beneficial to provide introductions before each part begins and cover

areas the students may struggle with or may not have previous experience with. Content

covered depends on the skills of students in the group; typical areas to cover would be general

introductions to the activities including:

Part 1

 Introduction to the Scratch interface

 Introduction to blocks

 Introduction to loops, conditional statements and setting conditions such as use of the

equals operator, and perhaps variables

 Exporting and importing sprites

Part 2

 A basic electronics introduction – Ohms, circuits, purpose of a resistor (to reduce

current), importance of wiring an LED correctly (it will light the wrong way round but

won’t use the diode which stops current from going the wrong way and thus protects

the LED), etc.

 Introductions to using GPIO ports and connecting jumper wires, LEDs with resistors

and so forth, perhaps with drawings on a board.

 Perhaps explain how in ScratchGPIO2 you must use save as when you first save a

project so that you don’t overwrite the default template. This is explained in the

worksheets so could possibly skip this instruction if you feel the students will

understand it from the worksheets.

http://cymplecy.wordpress.com/2013/04/22/scratch-gpio-version-2-introduction-for-beginners
http://cymplecy.wordpress.com/2013/04/22/scratch-gpio-version-2-introduction-for-beginners

Page 151 of 166

 Explain circuits they will be creating, perhaps drawing them on a board.

Task and challenge worksheets

When printing out the worksheets it is advisable to use the Arial font in size 12 or higher to

make the content clear for students to read which is especially useful for students with

learning difficulties such as dyslexia.

Keep the challenge worksheets separate with challenges per part on separate sheets. Then

provide the students with challenges for the related part once they have finished the tasks for

that part.

Resources

You will require sets of the following items per team or per person depending on whether

students will be working as teams or individuals:

 A Raspberry Pi

 Accessories for the Raspberry Pi – Keyboard, Mouse, Monitor, Power Supply, SD

Card with an operating system on it (Raspbian is recommended)

 An adapter to connect the Rasberry Pi to a monitor

 Speakers or Headphones

 3x LEDs (1x Red, 1x Orange or Yellow, 1x Green)

 3x 220 ohm Resistors

 6x Jumper Wires (female to female)

 2x Paper Clips (small, thin and non-plastic-coated)

 1x Jelly Baby (students may require more if they attempt the challenges which use

Jelly Babies).

Having spare electronics and Jelly Babies is recommended.

Students will also require:

 Worksheets for the tasks

 Getting started with Scratch guides (optional dependant on their pre-existing Scratch

skills)

 Challenges worksheets (provided once they have completed the tasks for the current

part)

Event staff (those helping with the event) will require:

 Worksheets for the tasks

 Challenges worksheets

 Possibly getting started with Scratch guides if they haven’t used it much before

 Advice for event staff document which includes task troubleshooting and solutions to

challenges

 Details on what they should observe

 Event timetable

 Location details (directions, where to park, how to find rooms the event will be in or a

meeting point, and so forth).

It is advised to distribute these prior to the event so the event staff are fully aware of what the

event contains and what they will be required to do.

Page 152 of 166

Appendix 13 – Case Study: Survey

A survey will be conducted before and after the event to see if the event enhanced students’

perceptions and understanding of computing and met the aims and objectives. Most questions

will have 1 - 5 point answers in a likert scale. For these questions radio buttons for each value

will be used if completed online or tick boxes if paper-based. Some questions will use text

boxes for more flexible answers. Some other questions will have options to choose from as

their answers and use radio buttons or check boxes
143

 depending on if multiple options are

applicable.

Introduction for the surveys

The following will be added at the beginning of each survey.

This survey is to obtain details of secondary school students’ opinions and understanding of

computing as part of a dissertation project by Paul Albinson.

If you have any queries or wish to find out more about the research you can contact Paul by

emailing palbinson@bournemouth.ac.uk. If a teacher is around while you are completing the

survey they may be able to answer basic questions about completing the survey.

All questions require an answer unless they say optional beside them
144

.

Any information used will be published anonymously (it will be kept secret) and will not

contain any information which could be used to identify you. By completing this survey you

accept that the anonymous data you provide can be published. Participation in the survey is

optional.

Before event survey

Students

 What school do you go to/attend? (optional)

 Write 3 words that describe your opinion of computing
145

.

Out of 5 where 1 is very unlikely and 5 is definitely (1 = very unlikely, 2 = unlikely, 3 =

possibly, 4 = very likely, 5 = definitely)

 How likely are you to choose ICT or Computing as a GCSE option or an equivalent?

143

 Boxes to tick will be used if paper-based survey is used.
144

 This may need updating on the different surveys as for example the online survey uses asterisks to show

which questions are mandatory.
145

 This will be a text box for the students to write anything in.

Page 153 of 166

 How likely are you to study AS/A level Computing or a college computing course?

 How likely are you to choose to study a computing course at university?

 How likely are you to apply for a course at Bournemouth University?

 How likely do you think you will get a job in the computing industry?

Out of 5 where 1 is very unconfident and 5 is very confident (1= very unconfident, 2 =

unconfident, 3 = slightly unconfident/anxious, 4 = confident, 5 = very confident)

 If I asked you to describe an ‘if’ statement how confident would you be with your

reply?

 If I asked you to describe what a loop is how confident would you be with your reply?

 If I asked you to describe what a variable is how confident would you be with your

reply?

 How confident do you feel about using Scratch to program?

 How confident do you feel about learning new programming languages?

 How confident do you feel about using any programming language?

In comparison to other students in your age group, out of 5 where 1 is poor and 5 is

excellent (1 = poor, 2 = below average, 3 = average, 4 = above average, 5 = excellent)

 How would you rate your computing skills?

 How would you rate your programming skills?

Other questions

 Does any member of your family work with computers? Yes/No

If so, please select from the following sectors: Clerical/Administration/Secretary,

Software or Web Development, Game Development, Media Production, Hardware or

Networking, Military, Teaching Computing, Not sure/prefer not to say, other (please

specify)

 Have you considered working in the computing industry after leaving education?

Yes/No

If so:

o What part of the computing industry are you most interested in working in:

Software or Web Development, Game Development, Media Production,

Hardware or Networking, Teaching Computing, not sure, other (please

specify)

o What is your main motivation/reason for wanting to work in the computing

industry? I think the computing industry would be interesting and rewarding, I

Page 154 of 166

think I am likely to get a good job, I think I would earn a lot of money, I think

working with computers is cool, other (please specify).

 Have you heard of anyone famous who works with computers?

 If so, do they (please select): inspire you, mean nothing to you, bore you?

After event survey

In addition to repeating the previous survey questions which relate to students’ perceptions

and understanding of computing to see if they were improved by the event the following

questions will also be asked.

Teachers and students

Out of 5 where 1 is poor and 5 is excellent (1 = poor, 2 = below average, 3 = average, 4 =

above average, 5 = excellent)

 How would you rate the event overall?

 How would you rate the tasks?

Students

Out of 5 where 1 is extremely boring and uninteresting and 5 is very interesting and

very enjoyable (1 = extremely boring and uninteresting, 2 = boring and uninteresting, 3

= tolerable/okay, 4= interesting and enjoyable, 5 = very interesting and very enjoyable).

 How enjoyable and interesting was the day overall?

 How enjoyable and interesting was doing the basic tasks and animations in Scratch

(part 1)?

 How enjoyable and interesting was using electronics (lights and switches) with

Scratch (part 2)?

Teachers

Teachers will also be asked to provide feedback on the event and specifically to cover the

following points:

 Has the event been useful to you?

 Has the event increased your computing knowledge?

 Has the event provided you with ideas on interactive teaching methods?

 Has the event improved your understanding of physical computing and how it can be

used with teaching computing?

 Has the event provided you with ideas for events you could run with the students

(perhaps continuing on from the events activities or repeating them with new

students)?

Page 155 of 166

Appendix 14 – Case Study: Observations

In addition to the formal surveys the observers (those helping run the event) will be asked to

provide feedback on the effectiveness of the day with the following questions:

 In general did the students understand the tasks? Did any particularly struggle with

the tasks?

 In general did the students seem motivated and keen to complete tasks to move onto

the later more complex tasks and challenges?

 Did any students complete the tasks and have time to move on to the challenges?

If so:

o Did they enjoy the challenges?

o Did they struggle with the challenges?

 Were there differences between the skills of the groups/teams?

 Did any students show initiative and try other features and components that weren’t

specifically mentioned to enhance a task or try something different?

These questions will not have set answers to choose from and the observers will be asked to

take notes during the day to help answer these questions. Observations shall be unobtrusive to

provide unbiased results and to avoid distressing the students.

Page 156 of 166

Appendix 15 - Research Information Sheet

Introduction to the research

This research is part of a Master’s Degree dissertation project by Paul Albinson. The

dissertation is an investigation into the reasons behind a noticed lack of interest in computing

and ways to make computing more appealing. This is especially relevant at the moment due to

the changes being proposed for the National Curriculum that make computing more

prominent and increase the computing content covered.

The research you will be involved in is a case study of a university outreach computing event

for secondary schools designed to enhance students’ perceptions and understanding of

computing and to provide teachers with a Continuing Professional Development (CPD)

opportunity to learn more about computing and provide ideas on interactive teaching

methods. It will include the use of physical computing such as showing the hardware which

makes computers work and using electronics with computers as inputs of a program and for

outputs as a result of coding such as controlling lights, sensors, motors and so forth. It is

designed to make programming more fun and engaging by showing the effects of

programming over a physical object for example turning on a light, interacting with sensors

etc. and how inputs such as switches can be used.

Students will be provided with worksheets of tasks to do using Scratch and a Raspberry Pi

computer. The students will work in teams or individually to complete as many tasks as

possible within the allocated time. The tasks increase in complexity and make use of skills

and concepts learned. There will also be problem solving challenges which have less detail

and allow for flexibility and experimentation when developing the solutions.

Aims and objectives
The project is designed to meet the following aims and objectives.

Aims:

 To enhance students’ perceptions and understanding of computing via an outreach

computing event

 To provide teachers with a Continuing Professional Development (CPD) opportunity

to learn more about computing and provide ideas on interactive teaching methods

Objectives:

 To provide fun and motivational programming examples which demonstrate

fundamental programming concepts, physical computing and programming with

electronics

 To show the relevance of computing via hands-on examples ideally with as many real-

world and relevant examples as possible

 To provide teachers and students with a CPD opportunity to learn more about

computing and to provide teachers with ideas for activities they can run with their

students (perhaps continuing on from the events activities or repeating them with new

students)

 To observe measured improvement in students perceptions and understanding of

computing

Page 157 of 166

How results/data will be collected
Students will be asked to complete a survey before the event on their opinions of computing

and their current computing skills.

During the event observations of the students taking part will be carried out by the observers

(those helping run the event). They will observe the success of the event and how students

respond to it such as did students enjoy the event, were the tasks too difficult and so forth.

After the event students will be asked to complete surveys with similar questions to the

surveys conducted before the event. This is to see if the event improved perceptions and

understanding of computing and in particular programming. They will also be asked for their

opinions of the event.

Surveys will be either online surveys or paper-based and observations will be written notes on

paper or word processed.

After the event school staff who attended the event will be asked for their opinion of its

effectiveness.

How the results/data will be used
The results will be analysed to see what insights they provide into students’ perceptions and

understanding of computing and whether the event met its aims and objectives. The results

and analysis will be included in the dissertation project. If you wish to obtain a copy of the

results or to be notified of how you can get a copy of the completed research please contact

the researcher by emailing palbinson@bournemouth.ac.uk.

Your rights
The researcher appreciates your involvement in this research and it is very useful for their

dissertation project. However there is no requirement to take part in any of the research and

you can choose to opt-out from any part of it.

All data collected from or about students will be kept anonymous (it is kept secret) and secure

and any published data will not be usable for identifying students.

Permission will be gathered to publish relevant information from discussions with school staff

and this will not contain any personal data or data which can identify students.

Under the Freedom of Information Act you have the right to access any information held or

produced by public authorities. Therefore the dissertation will be publically available once

completed. If you wish to be provided with any data collected or to be notified of how you

can get a copy of the completed research please contact the researcher by emailing

palbinson@bournemouth.ac.uk.

To comply with the Data Protection Act any data collected will be kept secure while it is in

use and only agreed data will be published. Also data will be destroyed as soon as it is no

longer relevant or required.

Contact
If you have any queries, wish to find out more about the research, or if you have a compliant

you can contact the researcher (Paul Albinson) by emailing palbinson@bournemouth.ac.uk.

Page 158 of 166

Appendix 16 – Suitability of the Raspberry Pi

Due to the complexity and difficulties found with using the electronic components on the

Raspberry Pi its suitability could be questioned. This was discussed with Alastair who had

previously considered creating a lot of content around using the Raspberry Pi but the

problems encountered at the event have prompted him to reassess this. Also the practicalities

of using a Raspberry Pi such as time to set it up each lesson
146

 are another consideration.

Although the Raspberry Pi is cheap it can get expensive when buying accessories for it

(power supply, case, cables, keyboard, mouse etc.) and if the organisation wishes to set up the

equipment permanently alongside computers to share desk space and monitors, keyboards and

mice a KVM
147

 switch is required further increasing costs and set up complexity. The

usefulness of a Raspberry Pi computer needs to be assessed against the organisation’s needs.

Whereas it is good for physical computing due to its GPIO ports it may not justify the cost

and complexity along with other limitations such as its small amount of memory and CPU

speed. The use of GPIO ports for programming can be used directly with a computer via a

USB to GPIO adapter or breakout board
148

. The use of electronics can be simplified further by

using equipment such as a PicoBoard (The Playful Invention Company 2010) which is a

board with sensors and controls which can interact with Scratch without needing to do any

electronics. However if you wish to use the Raspberry Pi, which will allow for more complex

custom electronics, you can simplify electronics and expand its capabilities (such as adding

more inputs/outputs) by using an expansion board such as a PiFace (Element14 2013a) or a

Gertboard
149

. Alternatively a breadboard, such as (Amazon, 2013), can be used to simplify

connecting electronics and are very cheap (from around £3).

References

Amazon, 2013. BB400 Solderless Plug-in BreadBoard, 400 tie-points, 4 power rails, 3.3 x 2.2 x 0.3in (84 x 55 x

9mm). Amazon. Available from: http://www.amazon.co.uk/BB400-Solderless-Plug--BreadBoard-tie-

points/dp/B0040Z1ERO [Accessed 17 August 2013].

Diolan, 2013. USB-GPIO Interface Adapters Comparison. Diolan. Available from:

http://www.diolan.com/io/digital_in.html [Accessed 17 August 2013].

Element14, 2013a. PiFace Digital for Raspberry Pi. Element14. Available from:

http://www.element14.com/community/docs/DOC-52857 [Accessed 17 August 2013].

Element14, 2013b. Assembled Gertboard for Raspberry Pi. Element14. Available from:

http://www.element14.com/community/docs/DOC-51726 [Accessed 17 August 2013].

Numato Lab, 2013. 8 Channel USB GPIO Module with Analog Inputs. Numato Lab. Available from:

http://numato.com/8-channel-usb-gpio-module [Accessed 17 August 2013].

Proto-PIC.co.uk, 2013. Breakout Board for CP2103 USB to Serial w/ GPIOs. Fife: RelChron Limited. Available

from: http://proto-pic.co.uk/breakout-board-for-cp2103-usb-to-serial-w-gpios [Accessed 17 August 2013].

146

 Many institutions may not have the ability to permanently keep the Raspberry Pi computers set up due to for

example the need to use the room with regular computers as well.
147

 Keyboard, Video and Mouse.
148

 See (Diolan 2013; Numato Lab 2013; Proto-PIC.co.uk, 2013) for a few examples and more information.
149

 See (Element14 2013; Raspberry Pi 2013) for more information.

Page 159 of 166

Raspberry Pi, 2013. Gertboard is here! Cambridge: Raspberry Pi. Available from:

http://www.raspberrypi.org/archives/1734 [Accessed 17 August 2013].

The Playful Invention Company, 2010. PicoBoard. The Playful Invention Company. Available from:

http://www.picocricket.com/picoboard.html [Accessed 16 August 2013].

Page 160 of 166

Appendix 17 – Additional survey results

Here are results for the remaining survey questions which provide additional background to

students’ perceptions and understanding of computing.

Future ambitions: Studying at Bournemouth University

An additional future ambitions questions was asked to see if the students plan to study at

Bournemouth University “BU” (their local university
150

) and if the event improved their

opinion of the university
151

. The surveys’ results are in figures 1 and 2.

Figure 1: How likely students will apply

for a course at Bournemouth University

Figure 2: How likely students will apply

for a course at Bournemouth University -

Differences between surveys

The surveys’ results show the majority of students may ‘possibly’ (42.86%) apply for a

course at BU; responses were 28.57% positive, 42.86% neutral and 28.57% negative which

remains the same for both surveys despite some changes in responses. There was a slight

reduction in interest after the event with one less ‘definitely’ response and one more ‘very

likely’ response
152

 and one more ‘very unlikely’ response and one less ‘unlikely’ response
153

.

150

 This is also the university supporting this research.
151

 It was hoped that the event would be enjoyable and as it was organised via BU it would be effective

promotion for the university.
152

 This could be that the one less ‘definitely’ response became ‘very likely’ suggesting one student became a

little less certain Bournemouth University is suitable for them.
153

 This could be that the one less ‘unlikely’ response became ‘very unlikely’ suggesting one student became a

little less certain Bournemouth University is suitable for them.

How likely are you to apply for a course at

Bournemouth University?

0

1

2

3

4

5

6

7

To
ta

l s
tu

d
e

n
ts

 w
h

o

ch
o

se
 t

h
e

 o
p

ti
o

n

Response

Before Event After Event

How likely are you to apply for a course at

Bournemouth University? – Differences

between surveys

-1.5

-1

-0.5

0

0.5

1

1.5

D
if

fe
re

n
ce

Response

Page 161 of 166

Results are significantly less positive than those considering studying computing at university

thus indicating these students are not sure if BU is the right university for them (it is a

possibility not a certainty).

The averages and quartiles for the surveys (Tables 1 and 2, and Figure 3) show on average

opinions of BU slightly reduced as a result of the event. The first quartile reduced by 0.75

resulting in a wider range of results and difference between low and high results. The mean

average reduced by 0.14. The differences between surveys are not statistically significant (U=

94, Z= 0.1608, P= 0.87288)
154

.

Table 1: Quartiles for the “How

likely are you to apply for a course at

Bournemouth University” question

Table 2: Averages for the “How

likely are you to apply for a course at

Bournemouth University” question

 Before

Event

After

Event

Minimum 1 1

Quartile 1 2.25 1.5

Median (Q2) 3 3

Quartile 3 3.75 3.75

Maximum 5 5

 Before

Event

After

Event

Difference

Mean 2.93 2.79 -0.14

Median 3 3 0

Mode 3 3 0

Figure 3: Box plot for the “How likely are you to apply

for a course at Bournemouth University” question

154

 Coincidentally this is the same statistical significance scores as the “How likely students will choose to study

a computing course at university” question. There probably isn’t a correlation between the results but it could be

that the same amount of differences in responses happened with the before and after surveys for both questions.

How likely are you to apply for a course at Bournemouth University?

0 1 2 3 4 5 6

Before Event

After Event

Page 162 of 166

Other

The students were also asked to write at least 3 words that describe their opinion of

computing; only 1 student answered this question and said “interesting, fun, relaxing”.

The students were also asked whether they had heard of anyone famous who worked with

computers and what their impressions of them were
155

. Unfortunately only 28.57% answered

these questions. Results for these questions are in figures 4 and 5 which show only 50% of

respondents had heard of any famous computing people with responses evenly split between

positive and negative impressions of them.

Figure 4: Students who have heard

of any famous computing people

Figure 5: Students impressions

of famous computing people

Students were also asked if any of their

family members work with computers and

if so what sector they work in
156

; responses

are shown in figures 6 and 7. These

questions were asked to see if decisions

were influenced by computing careers being

popular within their families. Out of the

78.57% of students who replied only

27.27% said family members work with

computers. These family members’ jobs are

155

 These questions were only asked in the before the event survey as the event wouldn’t change the results as it

doesn’t discuss famous computing people.
156

 These questions were only asked in the before event survey as the students only need to answer these

questions once (the event won’t change these facts).

Figure 6: Students who have family

members who work with computers

Have you heard of anyone famous

who works with computers?

2

2

10

Yes

No

No Answer

Impressions of famous computing people

0 1 2

Inspire you

Mean nothing to you

Bore you

Total students who chose the option

R
e

sp
o

n
se

Does any member of your family

work with computers?

3

8

3 Yes

No

No Answer

Page 163 of 166

a business on eBay and repair
157

. These responses show low amounts of family connections to

the computing industry which may influence decisions.

Figure 7: Computing jobs of family members

Discussion

Studying at Bournemouth University

The majority of students said studying at Bournemouth University was a possibility (42.86%)

or ‘very likely’ or ‘definitely’, the positive responses, (28.57%) but there were some

reductions in positivity after the event.

Other

 50% of respondents had heard about famous computing people with responses evenly

split between positive and negative impressions of them.

 27.27% of respondents have family members who work with computers with jobs

listed as a business on eBay and repairs.

157

 One student chose “Not sure/prefer not to say”

Computing jobs of family members

0 0.5 1 1.5

Clerical/Administration/Secretary

Software or Web Development

Game Development

Media Production

Hardware or Networking

Military

Teaching Computing

Not sure/prefer not to say

Other (Business on eBay)

Other (Repair)

No answer

Total students who chose the option

R
e

sp
o

n
se

Page 164 of 166

Appendix 18 – Learning resources and links

Here is a list of learning resources and links you may find useful.

Professional bodies, working groups and government organisations

 BCS, The Chartered Institute for IT (http://bcs.org) – The professional body for IT

 The BCS Academy of Computing (http://academy.bcs.org/) – A BCS academy to

promote, support and enhance computing education

 Computing At School Working Group “CAS” (http://computingatschool.org.uk/) – A

grass roots community organisation which promotes computing at schools and

supports education providers to enhance computing teaching.

 Network of Teaching Excellence in Computer Science

(http://www.computingatschool.org.uk/index.php?id=noe) – A collaboration between

CAS and BCS to provide teachers via CPD opportunities around enhancing computing

education

 Department for Education (http://www.gov.uk/dfe) – The department of the UK

government responsible for education and children’s services

Computing clubs

 Code Club (http://codeclub.org.uk/) – After school computing clubs for 9-11 year olds

 Technocamps (http://www.technocamps.com/) – Free computing workshops for 11-19

year olds

 Coding for kids (http://codingforkids.org) – A community to support teaching

programming and computational thinking to children

 Young Rewired State (https://youngrewiredstate.org/) – A network of designers and

developers aged 18 and under. It is part of rewired state and is designed to encourage

children to code.

Online learning

 Khan Academy (https://www.khanacademy.org/)

 Coursera (https://www.coursera.org/)

 Code Academy (http://www.codecademy.com)

 FutureLearn (http://futurelearn.com/)

 Udacity (https://www.udacity.com/)

 EdX (https://www.edx.org/)

http://bcs.org/
http://academy.bcs.org/
http://computingatschool.org.uk/
http://www.computingatschool.org.uk/index.php?id=noe
http://www.gov.uk/dfe
http://codeclub.org.uk/
http://www.technocamps.com/
http://codingforkids.org/
https://youngrewiredstate.org/
https://www.khanacademy.org/
https://www.coursera.org/
http://www.codecademy.com/
http://futurelearn.com/
https://www.udacity.com/
https://www.edx.org/

Page 165 of 166

 Harvard open courses at Harvard Extension School

(http://www.extension.harvard.edu/open-learning-initiative)

 Cambridge GCSE Computing online (http://www.cambridgegcsecomputing.org/)

Teaching resources

 CS unplugged (http://csunplugged.org/) - Highly recommended free practical learning

activities for teaching computing concepts without the need for computers. The

activities are ideal for any age especially young students.

 Apps for Good (http://www.appsforgood.org/) – Trains educators to support students

with creating applications via an applications course and mentoring

 Computing ITT (https://sites.google.com/site/primaryictitt/) – An extensive list of

teaching resources available for primary schools

 Computer Science For Fun “CS4FN” (http://www.cs4fn.org/) – Fun interactive

computer science resources

 Computer Science teaching resources from The Royal Society of Edinburgh

(http://www.royalsoced.org.uk/1034_ComputingScience.html)

 GCSE Computing for Schools books (http://www.lulu.com/spotlight/susanjrobson)

 Recommendations from CAS members - Note: Membership of CAS is required to

access these resources.

o Resource sets (http://community.computingatschool.org.uk/set) – Resources

added by CAS members and grouped into sets by themes such as qualification,

programming language and so forth

o Recommended books for teaching computing

(http://community.computingatschool.org.uk/forums/63/topics/1021)

o A list of recommended computing books

(http://community.computingatschool.org.uk/resources/199)

o Suggestions for teaching basic logic/algorithms to years 4-6

(http://community.computingatschool.org.uk/forums/3/topics/677)

o Textbook recommendations for A Level Computing

(http://community.computingatschool.org.uk/forums/23/topics/1204)

o OCR GCSE Computing: An Unofficial Teacher's Guide

(http://community.computingatschool.org.uk/resources/378) – A guide for

teaching OCR GCSE Computing

http://www.extension.harvard.edu/open-learning-initiative
http://www.cambridgegcsecomputing.org/
http://csunplugged.org/
http://www.appsforgood.org/
https://sites.google.com/site/primaryictitt/
http://www.cs4fn.org/
http://www.royalsoced.org.uk/1034_ComputingScience.html
http://www.lulu.com/spotlight/susanjrobson
http://community.computingatschool.org.uk/set
http://community.computingatschool.org.uk/forums/63/topics/1021
http://community.computingatschool.org.uk/resources/199
http://community.computingatschool.org.uk/forums/3/topics/677
http://community.computingatschool.org.uk/forums/23/topics/1204
http://community.computingatschool.org.uk/resources/378

Page 166 of 166

o Computational thinking resources

(http://community.computingatschool.org.uk/resources/252)

 CSc resources (http://cscresources.wordpress.com/2013/04/16/links-to-programming-

resources/) - Links to programming resources

 Teach ICT (http://teach-ict.com/) – ICT and Computing teaching resources

 KS2 Skills Progression in Scratch (http://code-it.co.uk/year4/scratchprogression.htm)

 An AppInventor workshop (http://www.hannahdee.eu/appinventor/) – This is a

complete workshop in a box and has everything you need to run it (handouts, slides,

notes and so forth).

 Bubble Sorting Algorithm Demo (http://theingots.org/bubblesort/)

 OCR Raspberry Pi (http://www.ocr.org.uk/qualifications/by-

subject/computing/raspberry-pi/) – Resources for teaching with the Raspberry Pi

 Feynlabs – Using the Raspberry Pi to teach Computer Science

(http://www.opengardensblog.futuretext.com/archives/2013/02/feynlabs-using-the-

raspberry-pi-to-teach-computer-science.html)

 Yousrc (http://www.yousrc.com/) – A free web-based environment for teaching

programming

Robots to teaching computing

 Roamer http://www.roamer-robot.com/public/ & http://www.valiant-

technology.com/uk/pages/corphome.php

 Bee-bot http://www.tts-group.co.uk/shops/tts/Range/Bee-Bot/92b201eb-0c85-4e38-

a297-35932cbc56b6 & http://www.kenttrustweb.org.uk/kentict/kentict_ct_bee.cfm

 Pixie http://www.swallow.co.uk/pixie/pixie1.htm

 Pixie versus Bee-Bot http://www.kenttrustweb.org.uk/kentict/kentict_ct_bee_pix.cfm

Other

 Computing++ (http://www.computingplusplus.org) – A scheme to provide support

from industry to schools

 Code.org (http://www.code.org) – A non-profit foundation which supports computer

programming education

http://community.computingatschool.org.uk/resources/252
http://cscresources.wordpress.com/2013/04/16/links-to-programming-resources/
http://cscresources.wordpress.com/2013/04/16/links-to-programming-resources/
http://teach-ict.com/
http://code-it.co.uk/year4/scratchprogression.htm
http://www.hannahdee.eu/appinventor/
http://theingots.org/bubblesort/
http://www.ocr.org.uk/qualifications/by-subject/computing/raspberry-pi/
http://www.ocr.org.uk/qualifications/by-subject/computing/raspberry-pi/
http://www.opengardensblog.futuretext.com/archives/2013/02/feynlabs-using-the-raspberry-pi-to-teach-computer-science.html
http://www.opengardensblog.futuretext.com/archives/2013/02/feynlabs-using-the-raspberry-pi-to-teach-computer-science.html
http://www.yousrc.com/
http://www.roamer-robot.com/public/
http://www.valiant-technology.com/uk/pages/corphome.php
http://www.valiant-technology.com/uk/pages/corphome.php
http://www.tts-group.co.uk/shops/tts/Range/Bee-Bot/92b201eb-0c85-4e38-a297-35932cbc56b6
http://www.tts-group.co.uk/shops/tts/Range/Bee-Bot/92b201eb-0c85-4e38-a297-35932cbc56b6
http://www.kenttrustweb.org.uk/kentict/kentict_ct_bee.cfm
http://www.swallow.co.uk/pixie/pixie1.htm
http://www.kenttrustweb.org.uk/kentict/kentict_ct_bee_pix.cfm
http://www.computingplusplus.org/
http://www.code.org/

