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ABSTRACT

Even though there is an explosive growth of motion capture data, there is still a lack of efficient and reliable methods
to automatically annotate all the motions in a database. Moreover, because of the popularity of mocap devices in home
entertainment systems, real-time human motion annotation or recognition becomes more and more imperative. This paper
presents a new motion annotation method that achieves both the aforementioned two targets at the same time. It uses a
probabilistic pose feature based on the Gaussian Mixture Model to represent each pose. After training a clustered pose
feature model, a motion clip could be represented as an action string. Then, a dynamic programming-based string matching
method is introduced to compare the differences between action strings. Finally, in order to achieve the real-time target,
we construct a hierarchical action string structure to quickly label each given action string. The experimental results
demonstrate the efficacy and efficiency of our method. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With the increasing popularity of mocap devices, using
pre-captured real human motions to create motion
sequences for virtual characters has become a standard
procedure for animation production. A lot of research has
been undertaken in recent years, such as motion synthe-
sis [1–3], motion editing [4,5], and motion retargeting [6].
These techniques allow animators to specify what actions
should be performed during animation and how it should
be edited to fit the new virtual environment. To find a ‘per-
fect’ candidate from a motion database, a thorough and
reliable annotation of all the stored motions is of great
importance. Even though there is an explosive growth of
freely available motion databases, there is still a lack of
efficient methods that can automate the annotation process
without manual intervention.

Because of the innovation of low-cost and portable
motion capture systems, such as XSens [7] and Kinect [8],
mocap data have been widely used in many games and
home entertainment systems. The system needs to under-
stand what kind of action the user has just performed and
give a reasonable response immediately to the user. This
poses a further challenge to motion annotation techniques

that are required to be fully automatic for new motions and
be able to finish the motion acquisition and recognition in
real time.

In this paper, we present a new method to annotate
motions automatically and efficiently. Figure 1 shows
the framework of our system. First, a probabilistic pose
feature is defined to represent each pose in the database.
Then, each pose feature is indexed and translated into
a ‘character’, each motion clip is turned into an ‘action
string’. In the third step, a dynamic programming-based
string matching method is applied to compare and annotate
those strings. Finally, to meet the real-time requirement, a
hierarchical action string structure is constructed to search
and label action strings.

As the main contribution of this paper, we propose
a novel online annotation procedure to label unknown
motion data in real-time. The key idea is to treat a human
action as a string, which is inspired by the work of
Liu et al. [9]. In our work, a new pose feature is proposed,
and an effective string matching method is introduced to
make it more robust. In addition, the action string structure
is constructed based on a bottom-up hierarchical clustering
algorithm to label a given action string in real-time.
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Figure 1. The flowchart of our motion annotation method. The training process is shown at the top, and the annotation process is
shown at the bottom.

The remainder of this paper is organized as follows.
In Section 2, the related work is discussed. The Gaussian
Mixture Model (GMM) pose feature and action string are
described in Sections 3 and 4. The experimental results are
given in Section 5, and finally, the conclusion and future
work are discussed in Section 6.

2. RELATED WORK

Human action recognition and annotation techniques
have been widely used in many areas such as video
surveillance, motion synthesis, and interactive entertain-
ment. A great deal of research has been carried out in the
past two decades. It can be traced back to a very early
tradition problem, human motion recognition from
monocular videos [10]. Because the recognition precision
is limited by 2D videos, background subtraction remains a
troublesome problem.

With the popularization of depth cameras, recent action
recognition research [11–14] has been focused on depth
maps. Li et al. [11] first used RGB-D sensors for human
action recognition. In their work, a bag of 3D points is
efficiently sampled by action graph, and a human pos-
ture model is constructed for recognition. Ni et al. [12]
proposed a depth-layered multi-channel spatio-temporal
interest points framework where spatio-temporal interest
points are divided into multiple depth-layered channels and
pooled correspondingly to incorporate the spatial informa-
tion. Also, a 3D motion history images scheme is proposed
in the same paper to recognize the human action. Because
the captured depth images contains a lot of noise from both
the clothing of the performer and the background, it is still
very challenging to annotate motion clips directly from the
depth map.

With the popularity of mocap devices in home
entertainment systems, many research works and even
commercial products have been developed to extract the
human skeletons from a depth map. This results in a
new research direction for motion annotation to recog-
nize motions from mocap data. In this category, there
are two crucial problems: how to predict human skeleton
(or get motion data) from a depth map and how to

recognize human action from skeleton movement in
real-time. In recent years, many research works [15–17]
have been aiming to the first problem, and the predicted
skeleton becomes more and more robust. For example,
Shotton et al. [17] proposed a novel depth image feature
to represent each pixel, and randomized decision forests
is used for training a model from a large database. After
the classification of every pixel within the human body, a
skeleton could be recovered from the labeled body parts.
Because the extracted skeleton movement becomes more
and more reliable and clean, in this paper, we will focus
on the second problem, real-time human action recognition
based on mocap data, assuming that the human skeleton
could be well generated in real-time from a depth map.

Compared with monocular video and depth maps,
mocap data are more structured and less noisy. This
ensures that mocap-based motion annotation produces
more accurate result. Forbes and Fiume [18] employed
weighted principal component analysis (PCA) to distin-
guish the different importance of different skeleton nodes
and presented a search algorithm to find similar motions.
Meng et al. [19] introduced the frequently occurring tem-
poral motion patterns (motion motifs). In their work, the
motif discovery problem is translated into finding continu-
ous paths in a matching trellis, and a tree-growing method
is introduced to search for the continuous paths. How-
ever, these methods [9,18–20] can only recognize human
actions from a pure motion clip (i.e., with only one type
of motion) rather than an unsegmented or cross-category
motion. Muller and Roder proposed a concept of motion
template (MT) [21], by which a class of logically related
motions can be represented by an explicit interpretable
matrix using a set of Boolean geometric feature. Then an
annotation procedure [22] based on MT is presented to seg-
ment and annotate motion data by comparing it with the
available MTs. The training process of MT could tolerate
temporal variance by using dynamic time warping (DTW),
but if the training data in the same motion class have differ-
ent cycles, MT will not be well trained. Moreover, both the
training and comparing process of MT is time-consuming.
Liu et al. [9] proposed a method to translate a given motion
into a string. In their work, PCA is applied directly to all
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motion poses in the database to reduce the dimensions,
and a piecewise-linear model is generated via a divisive
clustering method. Action recognition is then converted
into a string matching problem. However, because there
is no pose feature extracted, the clustering model could
only answer the yes-or-no question, not giving a proba-
bility. To improve the distinction capability, we propose a
GMM-based probabilistic pose feature before the ‘action
string’ is generated.

3. GAUSSIAN MIXTURE MODEL
POSE FEATURE

3.1. Feature Model Training

Motion data consist of the 3D positions of the joints of the
subject frame by frame. A motion clip s with m frames can
be represented as the set of its poses s D ff1, f2, : : : , fmg,
where each frame fi contains the x, y, z coordinates of all
skeleton nodes. Intuitively, a motion could be described by
some representative poses, which we call the key-poses.
We refer to the method in [23], the key-poses are extracted
from each motion class, after the key-frame selection.
However, it is too complicated for our real-time applica-
tion. So, based on their method, we proposed a compact
approach to extract key-poses from all the poses in a
motion database directly. From Figure 2, we can see that
the key-poses extracted from the same motion class are
very similar.

To use these key-poses, we need to build a suitable
model based on the distribution probability of all poses in
database. We assume that there are N poses in database and
J key-poses extracted from them. Each key-pose could be

described by a single Gaussian distribution N .�j,†j/, j D
1, 2, : : : , J. The GMM is adopted, and the initial prior of
each Gaussian distribution is set to be the same, P.qjj‚/ D

1=J, where qj represents each Gaussian model and ‚ is
the parameter set. Then the probability of each data point
xn.n D 1, 2, : : : , N/ belongs to qj, P.qjjxn,‚/, can be
calculated as follows:

P.qjjxn,‚/ D
P.qjj‚/ � p.xnjqj,‚/

p.xnj‚/

D
P.qjj‚/ � p.xnj�j,†j/P
j P.qjj‚/ � p.xnj�j,†j/

(1)

To maximize the likelihood function ‚� D

argmax‚L.Xj‚/, the expectation–maximization algo-
rithm is adopted to solve the optimization problem, and
the parameters (mean values �j, variances †j and weights
P.qjj‚/) are updated as follows:

�
.new/
j D

PN
nD1 xnP.qjjxn,‚/PN

nD1 P.qjjxn,‚/
(2)

Let N�j D
�

xn � �
.new/
j

�
,

†
.new/
j D

PN
nD1 P.qjjxn,‚/ � N�j � N�

T
jPN

nD1 P.qjjxn,‚/
(3)

P
�

q.new/
j

ˇ̌̌
‚.new/

�
D

1

N

NX
nD1

P.qjjxn,‚/ (4)

Equation 1–4 are repeated until convergence, and the
key-pose model is completely trained.

Figure 2. Examples of key-poses in three motion clips, where the first two are jumping and the last one is walking. It is evident
that for the same kind of motions, almost all the corresponding key-poses are similar, but for different motion classes, only limited

key-poses (two pairs of the circled) are similar.
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3.2. Feature Calculation

As the key-pose model is well trained, the mean values,
�j.j D 1, : : : , J/ of each Gaussian distribution are the
key-poses extracted from the motion database. The train-
ing process is unsupervised. Given an unknown pose, the
GMM-based key-pose model could tell the probabilities of
each key-pose it may belong to. So the pose feature t could
be represented by the probabilities pj that is calculated by
each N .�j,†j/, j D 1, 2, : : : , J:

t D Œp1, p2, : : : , pJ � (5)

4. ACTION STRING

4.1. Action String Generation

As explained before, the main idea of this paper is to use
the ‘action string’, where a pose is treated as a ‘charac-
ter’ in a ‘string’ of the human action. As our pose feature
is high dimensional, a top-down hierarchical clustering
method [24] is introduced to index it as a ‘character’.

The clusters are considered as the leaf nodes in the
hierarchical clustering tree. Given a user-specified error
tolerance �, the l1 distance between any two data points
within a cluster must be less than �. If not, the cluster
is split into two clusters using k-means clustering algo-
rithm, and the centroid position of the original cluster is
saved to construct the decision tree for searching. After the
aforementioned process, the decision tree can serve as the
indexing model of the pose feature. Assuming that there
are K clusters generated and the centroid of each cluster
is Ck, k D 1, 2, : : : , K, a pose could be represented by the
ID of the cluster it belongs to. Each ID can be treated as a
‘character’, and they make up our ‘action string’ vocabu-
lary V D f1, 2, : : : , Kg. In addition, the action strings can
be down-sampled at a fixed rate, so the string length will
be changed into a suitable value.

4.2. String Matching

As human actions have been translated into action strings,
a string matching algorithm is imperative to calculate the
distance or similarity between two actions. Considering
the special requirement from motion annotation, the string
matching method should meet three targets.

(1) If one is a sub-string of the other, they must
be matched. For example, the distance between
‘12345’ and ‘345’ is 0 or tend to be 0. In our anno-
tation strategy, a sliding window scheme is applied
for online recognition. The action string of motion
data in a sliding window may not describe a com-
plete action, but it will probably be a sub-string of a
certain action.

(2) If the speed of two motions is a little different, their
action strings should still be matched. For example,

the distance between ‘112233’ and ‘111223’ is 0 or
at least less than or equal to 2. As we know, the
time warping problem is a crucial point in motion
data recognition, because the speed of motions in
the same class is never exactly the same. However, a
bit difference of speed or sampling rate may cause a
large variance in action string matching. Therefore,
this is a very difficult point.

(3) The algorithm should tolerant small noise and
missing data. For example, the distance between
‘12345’ and ‘1345’ or ‘15345’ should not be greater
than 1. Up to now, the motion capture devices and
skeleton recovery algorithms are not robust enough,
so that the generated motion data may contain small
random noise or lack of data points.

We have surveyed many state-of-the art string matching
algorithms [25], only a few algorithms based on dynamic
programming could satisfy the three basic requirements
mentioned earlier simultaneously. In addition, considering
that the practical meaning of each ‘character’ is the ID
of feature cluster, we hope that the distance between two
nearby clusters is less than two faraway clusters. So we
add a weight matrix as the distance function in the string
matching algorithm.

Given the centroid of each feature clusters Ck, k D
1, 2, : : : , K and the vocabulary of ‘character’s V D

f1, 2, : : : , Kg, a symmetric weight matrix W of size K � K
is calculated by the l1 distance of every pair of feature clus-
ter centers. Then, for the two given strings A1 and A2, we
first exchange them if A1 > A2. Assuming the lengths of
A1 and A2 are n and m, a dynamic programming matrix D
of size .nC 1/� .mC 1/ is constructed. We initialize it by

�
Di,0 DWA1.i/,A2.1/, i D 1, 2, : : : , n
0, elsewhere

(6)

Next, the algorithm processes the action string character by
character. At each new character Pj, its column vector is
updated by

Di,j D min.Di�1,j�1, Di�1,j, Di,j�1/CWA1.i/,A2.j/ (7)

for every j D 1, 2, : : : , m. At last, the bottom-right ele-
ment Dn,m of the dynamic programming matrix D is the
distance between string A1 and A2. The time complexity of
this algorithm is O.mn/.

For example, given the vocabulary V D f1, 2, 3, 4, 5g,
the weight matrix W, and the two strings A1 D

f3, 3, 4, 5, 5g and A2 D f1, 1, 2, 2, 3, 3, 4, 4, 5, 5g, the calcu-
lation result is shown in Figure 3. The dynamic program-
ming matrix D is calculated by the algorithm described
earlier, and the path to the final result is shown as the
bold entries.
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Figure 3. An example of the string matching algorithm.

4.3. Hierarchical Action String Structure

Based on the string matching method, we can retrieve
the motion clips by calculating their similarities. Then,
the K nearest neighbor algorithm is used to classify the
input motion. However, if the database is very large,
calculating the similarity with each motion in database
is time-consuming, which is inappropriate for real-time
annotation applications. So, in this paper, a bottom-up
hierarchical action string structure is used to search and
label an unknown action string in real-time.

An agglomerative strategy is applied to build the hierar-
chical structure of action string clusters, which iteratively
merge the nearest two clusters into a combined one until
the distance between all cluster centers falls out of a thresh-
old � . In detail, the process of building the hierarchy is
shown in the following text.

(1) Initialization: for all the N motion clips in database,
each corresponding action string Ai, i D 1, 2, : : : N,
starts in one cluster LAi , which contains only Ai

itself. And its centroid position TAi is set to be Ai.
(2) Calculate the distance matrix M, where Mi,j D

stringMatch
�
TAi , TAj

�
.

(3) Find the minimal distance in M and the correspond-
ing two strings Ak1 and Ak2.

(4) If Mk1,k2 > � , return all clusters and their
centroid positions. The algorithm terminates.
Otherwise, merge the two clusters LAk1 and LAk2

into a new cluster L0.
(5) Choose the new centroid position T 0 of the

new cluster L0. 8Ai 2 L0, calculate Di D

max.stringMatch.Ai, Aj//,8Aj 2 L0, and i0 D
argminiDi, then T 0 D Ai0 .

(6) Update the distance matrix M as procedure 2. The
distance within the same cluster is set to be C1.

(7) Repeat procedures 3–6, until end condition.

Based on the hierarchical action string structure, the
motions in database can be represented by a number of
selected action strings. Given an input action string, only
the selected strings will be compared with it. Hence, the
time spent on string matching will be negligible. Moreover,
for denoising, the clusters containing only one action string
will be discarded.

5. EXPERIMENTAL RESULT

Our method was implemented in MATLAB, and all experi-
ments were executed on a computer with an Intel Core i5
2400 3.1 GHz and 4 GB of RAM.

5.1. Motion Data Recognition

In this part of the experiment, we use well-labeled motion
data from HDM05 [26], a commonly used public mocap
database, to prove the efficacy of our method in motion
recognition. The original well-segmented motion cuts con-
tain 130 motion classes, but many of them are very
close (e.g., ‘walk2StepsLstart’ and ‘walk2StepsRstart’).
We manually combined those classes into 25 basic motion
classes as the dataset in our experiment. A half of the
total 2345 motion clips are served as training data, and the
others are used as testing data.

In our experiments, we have adopted the empirical val-
ues for the parameters J D 40, � D 1 and � D 6. We
first compare the recognition accuracy with and without
(only use PCA to reduce the dimensionality) our GMM
pose feature. Because the DTW algorithm is one of the
most frequently used method in motion data matching, we
also compare the DTW algorithm with ours, as shown in
Figure 4. It is clear that the combination of GMM pose
feature and string matching gives the best performance
compared with other combinations.

Next, we compare our method with two other algorithms
(Liu et al. [9] and MT [21]). As shown in Figure 5, our
method outperforms the other two in terms of the accu-
racy of motion recognition. In the work of Liu et al. [9],
the cluster transition trajectory of each motion is used
for indexing and searching the motion database. However,
there is no pose feature extracted from the original motion
data. This is why its recognition accuracy is lower than
ours. When it comes to MT, we think it is abnormal for that
terrible result. By analyzing the training process of MT, we
found that if the training data in the same class has different
cycles (e.g., ‘walk2StepsLstart’ and ‘walk4StepsLstart’),
the MT could not be well trained. For a fair compari-
son, we recut the original 130 motion classes into a new
80 classes, where the same action with different cycles
is separated and the experiment is redone on the new
dataset. At this time, MT outperforms ours by about 15%
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Figure 4. The comparison among our method (pose feature + string matching algorithm), our method without GMM pose feature,
and our pose feature with another string matching algorithm dynamic time warping.
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Figure 5. The comparison of our method, Liu05, and MT.
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Figure 6. The comparison is redone on a new dataset, which is favorable for MT. The different performance shows the big limitation
of MT on training data.

in recognition accuracy (shown in Figure 6). However,
because of this special requirement on the training set,
it significantly limits the applications of the MT method
in practice.

Finally, the time consumed in each step of our method
is shown in Table I. In the testing phase, the total time
for a motion clip is about 150 ms. If the sliding window
scheme is applied, it is therefore fast enough for real-time
interactive systems. The time consumed in training models
is also reasonable, making our method work well for the
automatic annotation of large motion data repository.

5.2. Real-time Human Action Annotation

For real-time annotation, a sliding window scheme is intro-
duced with a window size of 2 s and a step length of
0.5 s. The database we used for training is the same
as before, consisting of 25 motion classes from HDM05
database. Some cross-category motion clips by new actors
are recorded with Kinect as the unlabelled and unseg-
mented input motions. Given such a motion, the sliding
window scheme is applied to cut it into short pieces in
real-time, and then for each piece, our method is used to
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Table I. Time consumed for each step of our method.

Training (s) Testing stage (ms)

Gaussian Mixture Model pose feature model construction 1217 —
Feature calculation 27.45 (total) 26.4 (per clip)
Feature indexing model construction 33.86 —
Action string calculation 0.53 (total) 0.52 (per clip)
Action string structure construction 341.3 —
Action string recognition — 123.2 (per clip)
Total 1620 150.1 (per clip)

Figure 7. The online human action annotation results of two different motion clips.

Figure 8. The confusion matrix of our method for specific motions including eight different classes.

return a label. In Figure 7, our annotation result is shown
at the top and the ground truth at the bottom. It can be
seen that our method is very robust in action recogni-
tion and segmentation. More details will be given in our
demo videos.

5.3. Human Action Recognition for Other
Type of Motions

The experiments earlier are based on an open database,
which prove the efficacy and real-time performance of our
method. To demonstrate the feasibility of our method for
practical applications, we further challenge our method
with a very complicated motion set from real life. The
new data set consists of eight different motion classes from
the Chinese 8th Broadcast Exercises (a motion including
eight different periods) by six actors, which is recorded
by Kinect (the detailed motions are shown in demo). Half
of the motions are served as training data, and the others

are testing data. The experimental result (in Figure 8)
shows the confusion matrix of recognition precision rate.
The precision rate is over 90% for the first five periods. It is
relatively low (still over 75%) in No. 6–8 periods because
our input mocap data are not very stable from fast motions.
Besides, many poses in No. 8 period is very similar to No.
7 period, so they are comparatively hard to recognize. In
general, our method maintains a high recognition precision
rate for this practical problem. For other types of human
motions, as long as there is a complete training database,
our method will perform well.

6. CONCLUSION

In this paper, we have presented a novel motion anno-
tation method that can automatically recognize motion
classes in real-time. We first calculate a GMM-based pose
feature to represent each pose. Each motion clip is then
translated into an action string by clustering the pose
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features. By introducing a string matching method, we
are able to calculate the distance between action strings.
As the final step, we construct a hierarchical action string
structure to search and label action strings in real-time.
The experiments have demonstrated that our method is
robust and immune to time warping problems. Apart from
motion annotation, our method can also be used to evalu-
ate and score human motions by comparing the captured
motion with the ‘perfect motion’ in training set. It can
be used for sports training, patient rehabitation, and many
other applications.

In our current system, the dimensionality of the GMM
model (the number of key-poses) J is a crucial vari-
able that influences the performance of annotation. In the
future work, we will try to optimize the pose feature to
enhance the stability of our method. For recognition, the
string matching algorithm can also be improved to compare
combined action strings.
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