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ABSTRACT
Animation of models often introduces distortions to their parame-
terisation, as the parameterisation has been optimised for a single
frame. When mapping textures or displacements on a deforming
surface with such a constant parameterisation, distortions mani-
fest visually as texture-mapped features appearing uniformly elas-
tic, and such behaviour is not always desired. In this paper we
introduce a real-time technique that reduces such parameterisation
distortions in areas specified in a provided distortion control (rigid-
ity) map. The parameter space is warped in an axis-aligned way to
minimise a non-linear distortion metric using a hybrid CPU-GPU
solver. We also extend the technique to compute arbitrary warps for
handling more complex use cases. The result is real-time dynamic
content-aware texturing that reduces distortions in a controlled way.
The technique can be applied to reduce distortions in a variety of
scenarios where highly detailed rigid features are represented on
a map, abstracted from the underlying low-complexity deforming
geometry they are mapped on. Such scenarios include reusing a
low geometric complexity animated sequence with a multitude of
detail maps, dynamic procedurally defined features mapped on de-
formable geometry and animation authoring previews on texture-
mapped models.

1. INTRODUCTION
Texture mapping is the process of mapping detail to a surface using
a parameterisation of the surface, the most common case being a
2D parameterisation of a 3D surface [7]. Some surface representa-
tions have natural parameterisations (e.g. NURBS), while others,
such as polygonal meshes, require non-trivial methods to obtain
such parameterisations. In the latter group, parameterisations are
represented in the same way as vertices are: as piecewise-linear
approximations to continuous functions. Naturally, dense discreti-
sations of these functions provide higher-quality approximations.
A metric for the quality of a parameterisation is the distortion in-
troduced by the mapping [14]. Another source of distortion is the
error introduced by the piecewise-linear approximation. Both of
these sources of distortion depend on the parameterisation algo-
rithm used, as well as the 3D surface discretisation.

An additional common source of distortion in the parameterisation
is caused by animating the mesh (figure 2). As the mesh under-
goes a non-Euclidean transform, the parameterisation ceases to be
optimal. This manifests visually as mapped features on the de-
forming primitives appearing elastic. That can be desired in some
cases (skin, rubber, etc) but not all: if such mapped features need
to appear rigid, this elastic behaviour causes suspension of disbe-
lief. To reduce this type of distortion, either the parameterisation
needs to be regenerated, or the mesh needs to be manually edited,
as explained in section 2.

We introduce a novel method to reduce distortions caused by the
deformation of an already parameterised surface in real-time, as the
surface deforms. The distortions are reduced over a user-specified
rectangle in texture space ensuring optimisation is locally contained
in areas of interest. The deformation of the surface does not need to
be known a priori. The distortion minimisation algorithm is guided
by a user-supplied distortion control map of the specified region of
interest (ROI). The distortion control map and region are supplied
as a single preprocessing step. Such user interaction is simple to do
and provides more flexibility in deformations compared to adding
more vertices. For a given animation frame, we use non-linear
optimisation to calculate a piecewise-linear warp that, when ap-
plied to the ROI’s parameterisation, reduces distortions introduced
by the current frame’s surface deformation. We provide two vari-
ants of the algorithm that trade off between performance and qual-
ity: an axis-aligned warp, in the sense that it deforms a rectilinear
grid mapped on the ROI to another rectilinear grid by calculating
new horizontal and vertical grid line offsets, and a non-axis-aligned
warp, where the grid is arbitrarily deformed to another grid with the
same connectivity.

Our method abstracts the distortion correction from the geometric
representation of the surface, providing flexibility over mesh-based
approaches as it does not require editing of the surface. The use of
a dynamic spatially varying distortion control provides additional
flexibility over the distribution of distortions after the reparame-
terisation, allowing preservation of particular features on a map at
any given time. The user interaction is kept low, as it consists of
selecting the ROIs and providing distortion control maps as a pre-
process. The storage cost of the reparameterisation is very low, as
it only requires a sparse set of lines (axis-aligned) or points (non-
axis-aligned). The runtime cost depends on the dimensions of the
grid, and can be very low if the results have been precalculated.

2. RELATED WORK
Parameterisation distortions are typically minimised using mesh
parameterisation algorithms [8, 20, 5]. The majority of such algo-



Figure 1: Spikes on an animated face. The spikes are modelled as a displacement map (left) mapped on the rest pose (middle-left). Deforming
the face introduces distortion to the parameterisation (top-right), causing the skin and spikes to stretch (middle). Our algorithm automatically
corrects the parameterisation in real-time, so that only the spikes remain rigid (middle-right). The parameterisation is corrected in regions of
interest given distortion control maps, which specify features that need to remain undistorted, and overlaying and warping rectilinear grids
(bottom-right).

rithms minimise distortion metrics over the whole domain, without
taking into account the nature of the data that are mapped using the
parameterisation.

Sander et al. [18] minimise a signal-stretch metric that allows re-
duction of distortions of any vector-valued function (the signal) de-
fined over the domain. The metric is non-linear and the process
requires a few minutes per model. While the technique is content-
aware, it does not take into account temporal coherence of the pa-
rameterisation.

Sheffer and De Sturler [19] overlay a 2D uniform Cartesian grid
on the texture parameterisation domain (as a 2D triangle mesh) and
warp the grid so that the warped parameterisation minimises edge
length distortions. While this technique is similar in ours in the
fact that it uses an overlayed grid to warp the parameterisation, it
is not content-aware, as it does not take into account either rigidity
or sliding of features. Also, our technique is about three orders of
magnitude faster, allowing the parameterisation warping to run in
real-time.

Ptex [4], by Burley and Lacewell, eliminates the need for explicit
parameterisation by using the natural parameterisation of subdivi-
sion surface quad faces and providing anisotropic filtering between
faces. While this eliminates many of the explicit parameterisation
issues, such as distortions and seams, animated meshes still pose
a problem, as the individual quads still deform and distortions are
reintroduced.

If the parameterisation needs to remain constant, mesh deforma-
tion techniques can be employed to calculate a further constrained
deformation, so that parameterisation distortions remain low. Such
techniques [3, 21, 22] focus on editing complex meshes in a phys-
ically plausible and aesthetically pleasing way, while preserving
geometric details. Barycentric coordinates are also used for mesh
deformation, by deforming complex meshes using simple control
cages [11, 10, 13, 2, 9]. While these techniques are generally effi-
cient in calculating a new plausible mesh pose given a few control
transformations, they do not address the case where the deformed
coarse mesh is entirely known, but the deformed fine-scale details
are not.

Popa et al. [17] approach content-aware deformation by introduc-
ing local bending and shearing stiffnesses as factors in how a mesh
deforms. Given such material information, and transformations for
a number of anchor triangles, they calculate the deformation of the
mesh as a weighted sum or blend of the anchor transformations.
The material information is user- or data-driven, providing addi-
tional control on how parts of the mesh deform when editing it. As
the anchor transformations are required to be a combination of ro-
tations and uniform scales, the space of supported deformations is
restricted.

Kraevoy et al. [12] focus on protecting vulnerable parts of a com-
plex model under global non-uniform scaling. They define a vul-
nerability map on a volumetric grid that encloses the object, and
transform the grid while respecting this map. While they estimate
vulnerability based on slippage and normal curvature, the map can
be user-driven. The technique focuses only on a very special defor-
mation case (non-uniform scaling transform), so it’s not applicable
to more complex deformations.

Yang et al. [23] simulate skin sliding by remeshing the surface
based on resampling of the its parameter space. They use the Force
Density Method (FDM) to construct embeddings of original and
deformed patches into their parameter domains. As the technique
deforms the actual geometry and force densities are specified on
edges, so the deformed patch needs to be highly tessellated and the
result is dependent on the triangulation, which reduces the flexibil-
ity and applicability of the method.

In production, in order to reduce texture space distortions in sen-
sitive regions of an animated mesh, artists need to manually add
vertices, tightly bounding the rigid area and making sure that it
does not distort under deformation. For example, for rigged mod-
els, the regions around joints are the most prone to distortions, so
additional vertices need to be placed there. When the deformation
is known, additional vertices need to be placed appropriately so
that deformation is spread to areas that do not contain any salient
rigid features. The problem remains when the deformation is un-
known or varying so much that adding vertices becomes imprac-
tical. Procedurally generated detail, static or animated, provides
an even greater challenge as the location of the additional vertices
cannot be easily determined.



Figure 2: Texture space distortion in animation. The rest pose is
shown on the left. Another animation frame is shown in the mid-
dle, where deformation of texture space relatively to the chosen
rest pose is marked with blue (u axis), red (v axis) and purple (both
axes). On the right the zoomed-in area under the nose for the orig-
inal (top-right) and the deformed (bottom-right) frames are shown,
along with a highlighted vertex neighbourhood. Note that such dis-
tortion can be desired if the mapped material needs to behave in an
elastic way (skin, rubber, etc).

2.1 Contributions
We present an algorithm that, guided by a distortion control map,
dynamically modifies the parameterisation of a deformable mesh so
it reduces distortions caused by the deformation only in areas spec-
ified in the map. The distortion control map as well as the deformed
frame of the mesh do not need to be known a priori, as our algo-
rithm works with fully dynamic data but is optimised for known,
constant distortion control maps. We decribe two versions of the
algorithm: both warp a rectilinear grid overlayed on the parameter-
isation, one in an axis-aligned way (real-time, low storage) and one
using arbitrary warping (offline/interactive, better quality). To our
knowledge, we are the first to present such a real-time, automated
reparameterisation method guided by distortion control data.

3. OVERVIEW
This article proposes a reparameterisation method applicable to
all parameterised, deformable surfaces, which takes into account
salient, rigid features of a given static or animated detail map. We
borrow ideas from image retargetting [6, 16] as we calculate a
content-aware warp of the 2D parameterisation domain to mini-
mize a specified distortion energy functional. The reparameterisa-
tion process (figure 3) can be briefly described as a series of steps
as follows:

1. User input. A rectangular region is initially selected from
the 2D parameterisation domain; this is the region that the
algorithm will process. We map this region to the unit square.
The rigidities associated with the ROI can also be provided
at this stage.

2. Preprocessing. We partition the ROI domain to a rectilin-
ear grid. If rigidities are provided here, the grid is created
by clustering similar distortion control weights to grid cells
(section 4).

3. Per-frame processing. The rigidities and the grid line co-
ordinates are used as an input to the optimiser, which min-
imises texture-space deformation energy by adjusting the line
coordinates while keeping the domain boundary constant (sec-
tion 5).

4. Per-frame rendering. After the deformed grid is calculated,
we can render the surface using the adjusted parameterisation
(section 6).

3.1 Notation
The ROI is expressed in 3D object space as O(s, t) (rest pose) and
D(s, t) (deformed pose), where (s, t) are parametric coordinates on
the unit square. The corresponding region in the 2D parameterisa-
tion is expressed as T (s, t). The distortion control map is expressed
as R(s, t), containing values between 0 (non-rigid) and 1 (rigid).
Partial derivatives for any function X(s, t) are written as X ′s(s, t)
and X ′t (s, t). The dimensions of the distortion control map that we
use are W ×H and the dimensions of the rectilinear grid are M×N
(horizontal and vertical lines). Unless noted otherwise explicitly,
we will be using zero-based indexing. The 2D unit domain axes
are specified as ŝ (horizontal) and t̂ (vertical). The 1D solutions for
each axis are represented as s and t, and have lengths of M and N
respectively, while for the 2D variant, both solutions have dimen-
sions of M×N each. As the formulas for the calculation of both
axes are in many cases similar, we will present formulas for a single
axis and note the similarity.

4. RECTILINEAR GRID PARTITIONING
As we remap the parameter space of the ROI, the shape of the re-
gion can be any shape that can be bijectively mapped to a rectangle.
In our examples, we use scaled and rotated rectangles for their sim-
plicity of converting between texture coordinates and (s, t) para-
metric coordinates (figure 4).

As the grid optimisation performance greatly depends on the grid
resolution, we need to use as few lines as possible. If a distor-
tion control map is provided at this stage, grid lines can be chosen
so that the resulting cells enclose as-similar-as-possible distortion
control weights and rigid areas are enclosed in cells as tightly as
possible. For relatively simple cases the grid line offsets can be
automatically calculated with algorithm 1, otherwise it can be pro-
vided by a user.

This can be performed once as a preprocessing step, if the mapped
detail (and thus the distortion control map) remains constant through-
out deformation.

5. GRID OPTIMISATION
In this section we show how we formulate the distortion energy and
constraints to a non-linear problem.

5.1 Energy formulation
The distortion metric that we use is how close does the deformed
remapped surface match the original in terms of stretch, along the
ŝ and t̂ directions. We define the total per-axis distortion energy as
the sum of the individual per-cell, per-axis distortion energies. The
horizontal energy is:



Figure 3: The process flow. The starting grid is generated as a pre-process, given the distortion control map. The distortion control map
is specified so that the bumps on the plane are preserved. When deforming, the original surface, deformed surface, distortion control map
and starting grid are all used by the non-linear optimiser to calculate a new grid that minimizes a weighted distortion energy functional.
The starting and warped grids are then used to warp the parameterisation function, which is used to sample the mapped surface detail when
rendering.

Data: R, W , H, e
Result: s,t
// Maximum per-column distortion control

weight
for each column j = 0→ (W −1) do

r j = maxi∈[0,H−1] R(i, j);
end
// Calculate s lines
s0← 0;
idx← 1;
for each column j = 0→ (W −1) do

if ‖r j− r j+1‖> e then
if r j > r j+1 then

sidx← j
W−1 ;

else
sidx← j+1

W−1 ;
end
idx← idx+1;

end
end
sidx← 1;
// ...Similarly for t lines
Algorithm 1: Generating the non-uniform grid from a distortion
control map R of size W ×H with values in [0,1] given a threshold
e .

Es =
N−1

∑
i=0

M−1

∑
j=0

Esi j (1)

where the per-cell energy is defined as:

Esi j =
∫ ti+1

t=ti

∫ si+1

s=si

R(s, t)Fs(s, t)dsdt (2)

where Fs(s, t) calculates stretch at a point (s, t) as the squared weighted
difference of the lengths of the original and deformed/remapped ge-
ometric partial derivative along the ŝ direction at that point:

Fs(s, t) = (| f ′(s)|
∥∥D′s( f (s),g(t))

∥∥
2−
∥∥O′s(s, t)

∥∥
2)

2 (3)

where f , g are the linear functions that remap s and t for the given
cell. Similarly for the vertical energy:

Ft(s, t) = (|g′(t)|
∥∥D′t( f (s),g(t))

∥∥
2−
∥∥O′t(s, t)

∥∥
2)

2 (4)

It can be seen that movement of vertical lines does not result in any
horizontal energy change and vice versa. Derivation of the energy
can be found in appendix A.

5.2 Constraints



Figure 4: Four ROIs and starting grids in object space (left) and
texture space (right) enclosing rigid points (shown in white) using
the mesh of figure 1.

We want to calculate axis-aligned grid lines that minimise the above
distortion energy and satisfy the following requirements: a) no line
foldovers b) smooth line changes from frame to frame c) prefer
local minima and d) allow “seamless” solutions for looping anima-
tions. The constraints can be formed as boundary constraints, as
they are compatible with local solutions and allow for faster opti-
misation. Below, we show constraints for the ŝ axis only, and refer
to previous (known) and current (unknown) solutions as sk and sk+1

respectively.

Foldover constraints prevent discontinuities in the remapping and
are easily enforced by bounding a line between the midpoints of
the segments between the line and its adjacent neighbours:

sk
i−1 + sk

i
2

< sk+1
i <

sk
i+1 + sk

i
2

(5)

Smooth line changes can simply be enforced by restricting the move-
ment of a line in a solution to a maximum offset o:

sk
i −o < sk+1

i < sk
i +o (6)

The above constraints result in local solutions, so the local minima
requirement is satisfied. For a looping animation consisting of K
frames we add the following constraint for the j-th frame:

d =
K− |2( j+1)−K +1|−1

2
s0

i −do < sk+1
i < s0

i +do

where s0 is the solution for the first (or last) frame. This constraint
effectively shifts the bounds so that the first and last solutions are
matching, and solutions in between vary smoothly.

As the intersection of all these ranges might be /0, we need to de-
fine a behaviour that gives precedence to a constraint over another.
Given constraints of descending priority Ch, Cl , a merged constraint
can be calculated as follows:

F(Ch,Cl) =


Ch, if (Cl ∩Ch = /0) or (Cl ⊇Ch)

Cl , if Cl ⊆Ch

Ch \ (Ch∩Cl), otherwise

Now, given the bound constraints for foldovers (CF ), smooth changes
(CS) and looping behaviour (CL) we define the final bounds as
F(CL,F(CF ,CS)) that give priority first to looping, then foldovers
and finally smooth changes (looping is foldover-free).

5.3 Non-linear optimisation
We use the Levenberg-Marquardt algorithm [15], as it can effi-
ciently calculate local minima subject to the previously described
bound constraints. The squared differences that are minimised are
the horizontal and vertical cell distortion energy integrals (eq. 2).
The unknowns vector is the aggregation of all horizontal and ver-
tical lines except the four that lie on the boundary. The starting
point is the calculated solution from the nearest frame, as we want
solutions to be as local as possible.

6. RENDERING
When rendering, given the original and deformed grid lines, there
are two options for applying the adjusted parameterisation: altering
the geometry or altering the texture coordinates. Let Fs(s) = s′ and
Ft(t) = t′ be the piecewise-linear functions that remap the original
to the optimised grid. As both are strictly monotonic, they can be
easily inverted (F−1

s , F−1
t ).

To alter the geometry, we use the texture coordinates T (s, t) with
the remapped deformed geometry D(Fs(s),Ft(t)). Similarly, to al-
ter the texture coordinates, we use the deformed geometry D(s, t)
with the inversely remapped texture coordinates T (F−1

s (s),F−1
t (t)).

Such a remapping is very efficient, but there are trade-offs to using
any of the two methods above. If the geometry is altered, the ROI
needs to be densely discretised (or dynamically tessellated with
newer GPUs) and D(s, t) needs to be known for the entire ROI.
If the texture coordinates are altered, T (s, t) needs to be known for
the entire ROI.

7. HYBRID CPU-GPU OPTIMISATION
We use the ALGLIB library [1] for the bound-constrained Levenberg-
Marquardt optimiser that it provides, while we provide an objective
function that calculates the squared errors and the Jacobian on the
GPU.

The O′s and O′t functions are precalculated and stored in a texture
during the pre-processing stage after the selection of the ROI. At
the start of the optimisation, the D′s and D′t functions are calculated
and stored in a texture as well.

The distortion energy integral in the objective function is calculated
using a DirectCompute shader. (M−1)×(N−1) thread groups are
dispatched (one per cell) and in each group a K×L grid of threads
is executed (max size 32×32). The thread grid for a cell is used to
calculate the integral: the cell is uniformly split to K×L sub-cells
and the two integrals Esi j and Eti j are evaluated using the midpoint
method. The sub-cell results are summed using a GPU reduction
operator [24] and are read back in the CPU. All required calcu-



lations are two texture fetches, adds and multiplies, so the shader
evaluation is very efficient.

The Jacobian is calculated numerically in the same shader using
finite differences. As the warp is piecewise-linear, the energy for
each cell is affected only by the adjacent to the cell grid lines. More
specifically, Esi j is only affected by changes of s j and s j+1 and
similarly Eti j is only affected by changes of ti and ti+1. As a result,
the cost of calculating the Jacobian is only almost four times more
than a single error calculation.

In a cell ([s0,s1], [t0, t1]), given a very small offset h the subcell
error is additionally calculated four more times for four modified
cells: ([s0 +h,s1], [t0, t1]), ([s0,s1−h], [t0, t1]), ([s0,s1], [t0 +h, t1]),
([s0,s1], [t0, t1−h]).

The integral calculation can efficiently handle the additional cell
coordinates, as f and g (and their derivatives), being linear in na-
ture, can be analytically adjusted for the new interval.

8. NON-AXIS-ALIGNED GRID WARPING
The problem can be slightly altered to allow non-axis-aligned grid
warping. Given the per-cell bilinear warping functions Sb(s, t),
Tb(s, t) and defining Hs(s, t) = D(Sb(s, t),Tb(s, t)), equations 3, 4
become:

Fs(s, t) = (
∥∥H ′s(s, t)

∥∥
2−
∥∥O′s(s, t)

∥∥
2)

2 (7)

Ft(s, t) = (
∥∥H ′t (s, t)

∥∥
2−
∥∥O′t(s, t)

∥∥
2)

2 (8)

where

H ′s(s, t) = S′bs
D′s(Sb(s, t),Tb(s, t))+T ′bs

D′t(Sb(s, t),Tb(s, t))

H ′t (s, t) = S′bt
D′s(Sb(s, t),Tb(s, t))+T ′bt

D′t(Sb(s, t),Tb(s, t))

It is straightforward to modify the boundary constraints to take into
account the increased number of neighbours per point (four instead
of two). The efficiency of the error calculations is reduced, as in-
stead of directly sampling the partial derivative lengths (eq. 3, 4)
we need to sample the partial derivative vectors, scale them and
calculate their norms (eq. 7, 8). The Jacobian calculation process is
identical, but in this case each per-axis cell energy is affected by all
four adjacent points. An example of the non-axis-aligned version
can be seen in figure 3.

9. RESULTS
We validated the algorithm on a real dataset (face animation data
from motion capture: 615 (sequence “face90”) and 1373 (sequence
“face49”) frames, 8,820 vertices and 17,216 triangles for data in
figures 1, 2, 4 and 8) as well as procedurally defined geometry. The
procedural examples (figures 3, 5 and 9) used 100 frames, 16,384
vertices and 32,258 triangles. We authored distortion control maps
for all cases. In the face animation data the results are more sub-
tle, as the captured data did not exhibit any extreme but localised
deformation. For all the distortion control map features we used
(bounding) cirles, as the exact shape in these maps does not have
a significant effect in the algorithm results, as it mostly affects the
grid generation process.

The optimisation process is non-linear and the time required for the
calculation of a solution for a given frame depends on the number

Figure 5: The original mesh is shown minimised in the top-middle.
The deformation introduces creases on the mesh (top, middle and
bottom). Normal texture mapping results in significant stretch of
detail on the bump (top). Our axis-aligned solution reduces the
stretch on features on the bump, but introduces other artifacts (mid-
dle). The optimizer converges to a suboptimal solution where some
features are located on the crease. Also, due to the axis-aligned na-
ture of the process, varying deformation across a strip results in
distortions of features in undeformed areas. This can be observed
here as compression of features outside the bump as a side-effect
of stretch reduction of features on the bump. The non-axis-aligned
version of our algorithm correctly preserves the features (bottom).

of unknowns, the complexity of deformation as well as optimisa-
tion parameters. Optimisation and remapping times are be shown
in table 1, and were measured using a 2.66GHz Xeon CPU with 24
GB RAM and an NVIDIA GeForce GTX 580 with 4GB VRAM.
The ALGLIB optimiser settings used are for highest quality: all
tolerances are set to 0 and the maximum iterations are set to 100.

Even though the optimisation algorithm can be used in real-time
on a similar hardware configuration, the results can also be pre-
computed and efficiently stored for use on less powerful hardware.
The storage cost needed for a single ROI is (M+N−4) floats, mul-
tiplied by the number of frames. So, 100 frames of animation for a
moderately partitioned region (e.g. 10×10) would require about 6
KB. Similarly, storage for a non-axis-aligned grid would be 25 KB.
As such, the small storage costs makes the technique ideal for use
in low GPU bandwidth hardware.

10. DISCUSSION



Example Solver(msec) ObjFunc (msec) Evals (Jac) Unknowns Render(ms)
aa-face90-umouth 9.85 8.49 18(4) 14 1(1.35)
aa-face90-lmouth 10.17 8.93 16(3) 14 1(1.5)

aa-face49-leye 22.26 20.7 23(6) 12 1(1.3)
aa-face49-reye 26.34 24.39 28(8) 12 1(1.3)
aa-face49-all 68.62 62.51 85(21) (14,14,12,12) 1.1(1.8)

aa-saddle 26.97 22.3 25(8) 24 2.8(5)
nonaa-face90-umouth 22.66 13.96 19(6) 48 1(1.35)
nonaa-face90-lmouth 54.84 23.16 20(7) 80 1(1.5)

nonaa-saddle 741.8 108.4 30(13) 288 2.8(5)
aa-worm 8.87 13.41 17(3) 38 3.2(5.2)

nonaa-worm 3078.15 425.170 27(15) 192 3.2(5.2)

Table 1: Per-frame timings for various examples. The example “aa-face49-all” uses combined times for all four ROIs of the face49 animation
sequence. Each distortion control map is associated with a number of unknowns for the non-linear minimizer, which is M +N− 4 for the
axis-aligned version (aa-) and (M− 2)× (N− 2)× 2 for the non-axis-aligned version (nonaa-). The solver times correspond to the times
required for the whole optimisation (CPU-GPU). The ObjFunc times correspond to the times required for all calculations of the objective
function in the GPU, with and without Jacobian calculation, including the transfers to the CPU. The Evals column shows the average number
of objective function evaluations per solved frame, while the number in the parentheses shows the average number or required Jacobian
evaluations per solved frame. The rendering times correspond to close-up views of highly tessellated geometry using the modified and
original parameterisations (numbers inside and outside parentheses respectively). Rendering times for the modified parameterisation include
rendering the parameterisation to a texture and sampling it from the normal shader used for the mesh. It can be seen that even though the
objective function calculation times scale well with the number of the unknowns, the rest of the optimisation does not (especially for the
non-axis-aligned variant) so for larger problem sizes the performance deteriorates quickly. These examples have not been optimised for
performance, as all tolerances are zero.

In this section we discuss various issues and capabilities of the pro-
posed algorithm.

10.1 Grid lines and filtering
To avoid filtering artefacts, when calculating the initial non-uniform
grid, we must ensure that when separating a low-rigidity from a
high-rigidity cell, the separating line must move a few pixels to-
wards the low-rigidity one, as otherwise texture filtering can cause
stretching of rigid detail. An additional consequence is that us-
ing hardware trilinear filtering can also cause artifacts, as sampling
from low resolution mipmaps can result in rigid detail bleeding in
a non-rigid (and potentially highly deforming) neighbouring area.

10.2 Edge discontinuities
Remapping of axis-aligned lines results in seams on the edges of
the selected ROI, as the parameterisation there will be discontinu-
ous. This can easily be avoided by doing the following: a) ensure
the cells of the rectilinear grid that are adjacent to the boundary
contain non-rigid data and b) at the boundary cells, linearly blend
the original and optimised parameterisation so that when approach-
ing a vertical edge the s′ solution blends to s and when approaching
a horizontal edge the t′ solution blends to t.

10.3 ROIs and chart boundaries
If a selected ROI contains a texture space region which is unused,
the resulting distortion control weight and partial derivative length
textures will contain the texture initialisation values, which should
be zero. In this case, the calculated energy values (eq. 3 and 4 ) in
those areas are 0 and do not affect the rest of the process.

10.4 Failure cases
There are cases where the algorithm fails, such as when distortion
on the deformed surface varies signicantly across a horizontal or
vertical strip (figure 6). Additionally, high-frequency deformation

(e.g. by introducing creases on previously smooth areas) will result
in slower convergence or lower quality results, especially for the
axis-aligned version of the algorithm (figure 5).

Figure 6: An example of a distortion control map that cannot be
used successfully with the algorithm.

11. CONCLUSION AND FUTURE WORK
In this paper we presented a technique to reparameterise regions in
texture space, so that important rigid features mapped on these re-
gions are preserved when the surface deforms. The proposed algo-
rithm achieves good results, requires minimal user interaction and
exhibits fast computation and runtime evaluation as well as very
low storage requirements.

The technique can be applied to reduce elastic distortions on a vari-
ety of scenarios where highly detailed rigid features are represented
on a map, abstracted from the underlying low-complexity deform-
ing geometry they are mapped on. In modeling packages, artists
can preview animations with detail mapped in a content-aware way,
without manually altering the model geometry to achieve that. Real-
time animated rigid detail on deformable objects also becomes a
possibility, whereas previously it would require a significant amount
of work from artists. Precomputed remappings for canned anima-
tions can enhance visual quality by reducing the rigid detail dis-
tortion on deformable surfaces in low-power hardware. In general,



control cages/sparse meshes with static or dynamic detail are ideal
candidates for use with this method, as the geometry remains un-
changed and as a result it can be shared with more detail maps,
requiring only precalculated parameterisation corrections for ROIs
for each detail map.

The piecewise-linear warp is C0-continuous on the grid edges, so
we would like to modify the algorithm so that the remapping is at
least C1-continuous in the domain of the ROI, resulting in a higher-
quality reparameterisation.

Additionally, the requirement for a rectilinear grid is too restric-
tive, so we would like to generalize the non-uniform-grid formu-
lation to handle arbitrary mesh connectivity: in that case, the ROI
can have an arbitrary shape and the warping mesh can be carefully
constructed to minimize optimisation time.

We would also like to extend the algorithm to perform content-
aware warp of the volumetric space (thick shell over the surface), so
that detail of any complexity can be preserved under deformation.
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APPENDIX
A. DERIVATION OF ENERGY FOR AXIS-

ALIGNED DEFORMATION
We want identical lengths for a small segment (s0,s1), where the
geometry function can be considered as piecewise-linear.

∥∥D(s′1)−D(s′0)
∥∥= ‖O(s1)−O(s0)‖

Because s′ = f (s) = cs+d, the above can be further rewritten as:

‖D( f (s1))−D( f (s0))‖= ‖O(s1)−O(s0)‖

The function f (s) can be also written as follows:

f (s) = s′0 +
s− s0

s1− s0
(s′1− s′0)

and its derivative in this case is:

f ′(s) =
s′1− s′0
s1− s0

Divide by s1− s0 to be able to convert it to derivatives:



(a) Rest pose (b) Deformed, using original parame-
terisation

(c) Deformed, reparameterised using
CGAL’s mean value coordinates

(d) Deformed, using content-aware
reparameterisation

Figure 7: Fixed plane deformation with mapped displacements. The constant parameterisation ( 7b) stretches the features. Reparameterising
the mesh using an off-the-shelf method ( 7c) does not preserve the features. Reparameterising the mesh using our method ( 7d)preserves the
features and spreads the error in non-feature regions.

Figure 8: Mapped features near the eyes. The rest pose is shown at the top-left. The features stretch under deformation (top-right). Our
algorithm calculates a reparameterisation that reduces distortions near the features (bottom-right). The remapped ROI rectangle and the
features in the original and remapped parameterisation (red and green respectively) are shown at the bottom-left.



Figure 9: Worm example. Rest pose is shown on top, with the distortion control map. On the left, the deformed pose compresses the features
near the center of the worm. On the right, the parameterisation is warped so that the parameterisation distortion near the features is spread
to non-feature areas. In the middle, the areas of interest in the original and content-aware parameterisation are shown in red and green
respectively.

‖D( f (s1))−D( f (s0))‖
s1− s0

=
‖O(s1)−O(s0)‖

s1− s0

Rewriting H(x) = D( f (x)) leads to:

‖H(s1)−H(s0)‖
s1− s0

=
‖O(s1)−O(s0)‖

s1− s0
⇒∥∥H ′(s)

∥∥= ∥∥O′(s)
∥∥ ⇒

| f ′(x)|
∥∥D′( f (x))

∥∥= ∥∥O′(s)
∥∥

| f ′(x)|
∥∥D′( f (x))

∥∥−∥∥O′(s)
∥∥= 0

and this leads to the equations 3 and 4.


