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RBF-based Reparameterization Method for
Constrained Texture Mapping

Hongchuan Yu, Tong-Yee Lee, Senior Member, IEEE, I-Cheng Yeh, Xiaosong Yang, Wenxi Li, and
Jian J. Zhang

Abstract—Texture mapping has long been used in computer graphics to enhance the realism of virtual scenes. However, to
match the 3D model feature points with the corresponding pixels in a texture image, surface parameterization must satisfy
specific positional constraints. However, despite numerous research efforts, the construction of a mathematically robust,

foldover-free parameterization that is subject to positional constraints continues to be a challenge. In the present paper, this

foldover problem is addressed by developing radial basis function (RBF)-based reparameterization. Given initial 2D embedding
of a 3D surface, the proposed method can reparameterize 2D embedding into a foldover-free 2D mesh, satisfying a set of user-
specified constraint points. In addition, this approach is mesh-free. Therefore, generating smooth texture mapping results is

possible without extra smoothing optimization.

Index Terms — Foldover, constrained texture mapping, reparameterization

1 INTRODUCTION

exture mapping is an effective technique to enhance
Tvisual realism in computer graphics. Existing re-

search has largely concentrated on producing planar

parameterization [1-7] to embed a 3D mesh into a 2D
texture space. This embedding is computed to minimize
distortion between the 3D mesh and the 2D mapping in
order to obtain visually pleasing results. However, add-
ing user-specified positional constraints into such em-
bedding is a more challenging task. For example, to create
a texture mapping of a human face and reduce texture
distortion, the animator has to ensure that the important
feature points and lines (i.e., the eyes, nose, eyebrows,
and lips) on the 3D model match those on the texture im-
age. Usually, the image content is greatly distorted when
the 3D mesh becomes compressed or stretched during 2D
mapping.

The current production in practice is nearly completely
manual. Once a texture map is generated by the anima-
tion software, the animator has to painstakingly tweak the
unwrapped mesh (the 2D mesh obtained from parameter-
izing the input 3D model) on the texture plane to align its
corresponding features to the 3D model. The animator
manually moves multiple vertices around each feature to
reduce texture distortion and to avoid mesh foldovers.
This is a time-consuming task.

Several attempts have been made to formulate this
problem as a constrained optimization problem [3-5, 7],
where a feature in the texture image is matched to its
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counterpart on the 3D surface. Despite varying degrees of
success, no robust solution has been found to avoid mesh
foldovers during parameterization with positional con-
straints. In other words, one-to-one mapping between the
2D and 3D domains during the unwrapping process is
necessary.

Without consideration of any internal constraints, a 3D
surface can be embedded into a 2D parameterization do-
main using existing approaches, such as harmonic map-
ping [16]. The internal constraints can then be added into
the 2D parameterization domain. The current paper fo-
cuses on the reparameterization of a 2D mesh to satisfy a
set of user-defined internal constraints. Specifically, a fol-
dover-free reparameterization method using radial basis
functions (RBF) is developed. The major contributions of
the current paper are as follows:

@ To the best of our knowledge, the proposed method is
the first RBF-based approach that ensures user-
specified constraints are satisfied and that foldovers
are avoided. An explicit mathematical condition guar-
antees that no mesh foldover is generated during the
RBF reparameterization. This is called the foldover-free
condition.

The RBF-based method is a mesh-free approach. Thus,
generating smooth texture mapping is possible with-
out an extra computationally expensive smoothing op-
timization, as required in [3] and [8].

To the best of our knowledge, the proposed method
presents the first implementation of satisfying posi-
tional constraints without predefined fixed boundaries.
Furthermore, the proposed method can handle models
with interior boundaries (Fig. 6) without additional
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treatment, such as cutting the model into several piec-
es, as required in [8].

The rest of the current paper is organized as follows.
Section 2 describes the most relevant related work. Sec-
tion 3 presents an overview of the foldover-free RBEF-
based reparameterization method. Section 4 describes the
numerical foldover-free condition in detail. In Section 5,
the strategy of triangle subdivision is explained and sev-
eral extreme scenarios for an accurate alignment are pro-
vided. Experimental results and discussions are given in
Section 6. Conclusions and future work are presented in
Section 7.

2 RELATED WORKS

Many surface parameterization methods for embedding a
3D surface onto a 2D parametric domain have been pro-
posed [2, 6, 9-13]. Floater and Hormann summarized a
detailed survey of surface parameterization [18]. Refer-
ences [2] and [6] targeted the validity of the resulting pa-
rameterization (e.g., bijective mapping). Attempts have
also been made to minimize distortion according to dif-
ferent metrics [6, 9-13]. In general, previous methods can
be roughly classified into two categories: the first seeks to
embed a 3D mesh onto a 2D region with a specified con-
vex boundary [2, 6, 9, 13], whereas the second attempts
embeddings without fixed boundary constraints [11, 12,
14] to reduce parameterization distortion. Our proposed
RBF-based method does not require fixed boundaries
during the iterative reparameterization procedures.

A more challenging problem is computing texture co-
ordinates to satisfy user-specified correspondence be-
tween the 3D model and texture image. However, this has
not been given much consideration in literature. Few stu-
dies have been conducted on meeting soft constraints [13,
15] (i.e., to satisfy the positional constraints approxi-
mately). Levy [5] and Desbrun et al. [12] proposed a least-
squares system and Lagrange multipliers as solutions,
respectively. However, these two methods fail to guaran-
tee a bijective embedding. Zhang et al. [30] focused on a
special case (i.e, deforming a patch by stretching its
boundary). Occurrence of foldovers when internal posi-
tional constraints are added in the original patch, and
whether these can converge to expected positions, were
not clearly stated.

In contrast, hard constraints were studied in [3], [4],
and [8] because a perfect texture alignment is essential at
certain delicate areas of a mesh. Eckstein et al. [4] pro-
posed a constrained simplification to align constraints,
adding Steiner vertices to avoid foldovers. Theoretically,
although the above method can handle large sets of con-
straints, it is extremely complicated and not very robust
[3]. In addition, only simple examples were shown in [4].

Thus, whether the above method can handle more com-
plicated constraints is not clear. Kraevoy et al. [3] and Lee
[8] performed embedding by adding a fixed rectangular
virtual boundary, after which the Delaunay method was
applied to triangulate the region between true and virtual
boundaries. After aligning user-specified hard constraints,
the embedding is usually highly distorted. Therefore, a
post-smoothing procedure is required to reduce the dis-
tortion, adding to computation costs. In contrast, our
proposed method can avoid such expensive post-
smoothing steps based on the continuity of RBF function.
Kraevoy et al. [3] failed to completely remove foldovers
because the consistent neighboring ordering was not con-
sidered in finding matching triangulations. Fujimura et al.
[24] presented an image-warping method. To satisfy posi-
tional constraints, the Delaunay triangulation and edge
swaps were repeatedly used in their work to avoid fold-
overs. However, edge swaps can damage the geometric
surface when used to texture map a 3D mesh, as dis-
cussed in [4].

Similar to the current paper, Tang et al. [17] and Lee et
al. [25] proposed an RBF-based parameterization method.
However, neither method guarantees a foldover-free pa-
rameterization, unlike the method presented in the cur-
rent paper. Tiddeman et al. [27] applied the condition of
positive Jacobian determinant [see Eq. (2) in Section 4] to
remove foldovers in their image warping application.
This condition is well known in differential geometry to
ensure one-to-one mapping [28]. The method starts from
an initial dense mapping that is likely to contain fold-
overs. Foldovers are then removed by iteratively scaling
the given mapping. However, dense mapping is difficult
to establish beforehand. Moreover, the primary deficiency
of this method is that the convergence cannot be guaran-
teed. In a given discrete setting, scaling a given dense
mapping usually results in iterative steplength towards
zero quickly, as admitted by the authors. In a few extreme
cases, the method cannot satisfy the specified positional
constraints.

3 ALGORITHM OVERVIEW

3.1 Basic Idea and Motivation

The overview of the proposed algorithm is as follows. An
input 3D surface is first embedded into a 2D convex do-
main with harmonic mapping [16]. A mathematical fold-
over-free condition (see Section 4) is derived, and incor-
porated into an RBF-based reparameterization algorithm.
The algorithm then iteratively aligns user-specified posi-
tional constraints. The main idea is to first estimate the
iterative step length (i.e., displacement) subject to the fol-
dover-free condition, and then to successively approxi-
mate the desired positions through RBF-based deforma-
tion. In short, RBF is used to iteratively deform the 2D
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mesh to align user-specified constraints. With the fold-
over-free condition at each iterative step, the deformation
is prevented from being over-aggressive (i.e., to induce
foldovers).

3.2 Iterative RBF-based Reparameterization Procedure

For a given 2D mesh embedding S of R?, a transforma-
tion T is a one-to-one mapping of points XeS onto an-
other 2D parametric domain Ue(Q2 of R, with arbitrary m

constraint point pairs (X [ ou ) :

T X=xy) eS—)U(X) u(X),v(X))' eQ
subjectto U(X/)=U,,i=1,...m

The reparameterization algorlthm is developed based
on the RBF scheme. RBF ensures a smooth final parame-
terization due to its numerous excellent properties, such
as being mesh-free and C? continuity. Moreover, the most
important advantage is the suitability of RBF for imple-
mentation in a successive approximation. This can
smoothly deform S to align user-specified constraints, as
demonstrated later.The RBF-based method is reinforced
with the proposed foldover-free condition to appropri-
ately control the displacement of XS at each iteration.
The displacement of each point coordinate is computed
with the RBF scheme to implement successive approxima-
tion:

AU =PX)+ 22 4(1X ~C)]) M
where the coefficient A, (llj ,/lv') is a vector,
C = (CL,C; )T denotes  the  constraint  points,

AU :(AU,AV)T , and P(X) is an affine transformation

a a
P(X)= X +| *|. Although various radial basis
b, b b, 8

functions exist, thin plate spline (i.e, ¢(r)=r’Inr) is
adopted for its simplicity. The deformed U is obtained by
updating U(X) = X + AU. For the next iteration, let X «
U(Xx).

The following pseudocode gives an overview of the
reparameterization algorithm. The algorithm is executed
iteratively; the superscript j stands for the iteration index.
Let the initial 2D mesh embedding be S, a set of user-
specified constraint point pairs be (Ci(o),Ci‘*)),i =1,...,m
on S and U. C; denotes the final constraint points whe-

reas C!V is the updated point per iteration.

Loop:

(1) Estimate the displacement bound 6 by Eq.(6)
(see Section 4) based on the configuration of
the current m constraint points C!”;

(2) Compute the current m constraint point dis-

c -c?

W , such

placements by AC'" =6

that C'"" =CJ) +AC™;
(B) If O <Oyt » apply triangle subdivision
(see Section 5) then go to Step (1); otherwise,

(4) Compute the displacements of the points on
s by Eq.(4) (see Section 4) based on all m
updated C'"" and updating S — SU*;

Repeat until C'” =C; .

In this procedure, C, denotes the desired positions.
Initially, if C; is applied to directly deform S in Equation

1, the result is usually too aggressive and foldovers may
occur. Therefore, in Step (1), a conservative displacement
bound 6 needs to be computed and used to ensure that
CU*™ is not over-aggressive. Note that the iterative RBF-

based reparameterization procedure can definitely
change mesh S to a foldover-free state. However, the final
positions may not align exactly with the constraints C, in

some extreme scenarios. This implies that the method is
only able to handle soft constraints. To alleviate this prob-
lem (i.e., to approximate hard constraints as much as pos-
sible), the mesh in Step (3) is subdivided by adding extra
Steiner vertices. For more details, see Section 5.

4 FOLDOVER-FREE CONDITION

4.1 Foldover-free Condition

From a mathematical perspective, a “foldover-free” pa-
rameterization yields a “one-to-one” mapping between
corresponding surfaces (or meshes) and parametric do-
mains. In the present work, the initial 2D embedding of a
3D surface is given in advance. Focus is given on deform-
ing this initial embedding with a set of internal constraint
point pairs. This requires that the mapping T is globally
univalent or “globally one-to-one” (i.e., the topology or
the relationship between any pair of vertices in the mesh
should remain unchanged before and after parameteriza-
tion). Mathematically, this means the determinant of the
Jacobian matrix must always be positive [28]:

det(VU)>0. ()
According to the Gerschgorin circle theorem [26], a suffi-
cient condition of satisfying Eq. 2 can be described as fol-
lows:

ou |ou
R > —_—
ox |oy
o _|ov]
oy |ox

>
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The geometric meaning of Eq. 3 is simply that the two
vectors ou/d(X,Y),ov/d(X,y) are linearly independent of

each other; thus, their included angle is less than 7. The
former is easy to understand. The latter implies that the
right-hand rule in vector calculus is satisfied over the en-
tire domain. Holding det(VU) < 0 at any point would re-
sult in left-handedness instead of right-handedness. This
change would cause mesh foldover.

4.2 Iterative Step-length Estimation

Our reparameterization algorithm employs an iterative
framework and step length (i.e., displacement) size is es-
timated considering the condition of Eq. (3). Equation 1
must be rewritten to implement the procedure, such that
the displacements of some points linearly depend on the
constrained points. This implies that deformation the
mesh is achieved by adjusting the displacements of the
constrained points in an iterative manner. A further ex-
pectation is that foldovers will be avoided by controlling
the displacement of the constrained points in each itera-
tion.

The RBF coefficients (A,,A,,a,b) of Eq. (1) are first
computed. For a given set of constrained points and their
displacements, this can be achieved by solving the follow-
ing linear system:

KEM) ) [AXCJ nd K(xvj ) [Aycj '
a 0 b 0

¢ P
where K = (PT OJ , ¢|j = ¢(“Ci —CJ.

the constrained points coordinates (i.e., 1,¢,,C, ) and the

), and P contains

vectors Ax_,Ay, hold the displacements of the constraint
points as Ax_ = (ACl,...,ACf‘ )T Ay, = (ACi,...,ACE‘ )T . This
can be expressed as follows:
(lu lvj _K [Axc Aycj.

a b 0 0
(For a detailed RBF computation, refer to [31].)

Substituting (A,,%,,a,b) into Eq.(1), the new expres-

sion is as follows:

(s
Au=M(X)K

0

AV=M(X)K" [AgcJ L@

M(X) = (4(|X =C\ )| X = Cp D%, 1)
Note that Equation 4 describes a linear system of the dis-
placement of any X (i.e. Au,Av) and of the constraint
points (i.e. Ax Ay, ). Whether or not the resulting mesh
satisfies the condition of Eq. (3) should depend on the
configuration of the current constraint points [i.e., M(X)
and K™'], rather than their displacements, Ax,Ay, .

Moreover, during iterations, M(X) and K™' are unfixed

and depend on the configuration of the current constraint
points. Hence, M(X) and K™' are given focus. The deriva-
tives of d(u,v)/d(X, y) are computed as follows:

A
MmN
OX 0
N _ o[ A
oy y 0

A
Nt e
OX 0

A
XMk Y
oy ’ 0

where M, (or M) denotes the partial derivatives of M(X).
Substituting the above derivatives into Eq. (3) yields

P & [ Ax,
1+ M, K > MyK
0 0

A A
1M K| e s vk Y
0 0

The regions defined by the above inequalities can be fur-
ther described as follows:
M K [8“}
y 0

-1 6u
M, K
0
=1 6v -1 6\/
M, K M, K
0 0

where (a,f) denotes a point in €, vector 8,(,0,) consists

)= )]

and m denotes the constraint points number. Figure 2 il-
lustrates the regions Q(0,),Q(9,) . The ¢,,6, are not con-

stants, and depend on the displacements of the constraint
points. Thus, the dashed line is used to highlight these
undetermined boundaries.

The Eq.(3) condition implies that vectors
ou/d(x,y),ov/d(x,y) should be linearly independent of

each other. Figure 2 intuitively illustrates this concept by
the four tangent lines: I,l,,1,,l,. For example, a and

Q(§u):{(1+a,ﬂ):a§ Bl <

,1+a>ﬁ} 5)

s

Q(&v)—{(a,Hﬁ):as

Bl<

,1+,6>a}

m .
of the same value as J, = m_ax(|AC'X
1

should be outside the regions of sweeping |, tol, and
I, tol, . For simplicity, let 8, =0,=0 . The regions
Q(9,),€(5,) would then have the same size in terms of

Eq.(5). This will lead to the overlap of straight lines
l,and 1, (I, andl, ) and form two new dividing lines,
which are a + §=0and a - §=01in Fig. 2. Linea + =0
guarantees the included angle is less than 7, and line o -
B = 0 guarantees the linear independence. Consequently,
the condition of Eq. (3) can be re-expressed as

] e ]

Notice that the possible values of du/a(x,y)(or ov/d(X,Y))

are assumed to be evenly distributed around the center of



AUTHOR ET AL.: TITLE

(1, 0) and (0, 1). This is because of various possible con-
figurations of the constraint points (e.g. M,,M,,K™ ).

Hence, circles are employed to estimate the domains of
ou/a(x,y) and ov/o(X,Y) .
To satisfy the above inequality, let

-1 0 -1 0 1
M, K M, K
0 0

<—.
V2
Therefore, 0,,d, are bounded by
5=r>r(1i£15(X), (6)
1

V2|(M, +M, K [(1}

S, and 1 denotes a mx1 vector filled with ones as entries.
Equation (6) is called the foldover-free condition. Note that
the bound 0 of Eq. (6) only depends on the current con-

+

where 6(X) = for all vertices X of

straint points configuration (i.e, M,,M, K™). This im-

plies that bound 0 is independent of displacements of the
constraint points. For any constraint point C,, its dis-

Aciy‘ < ¢ . However, the dis-

placement must satisfy ‘Acix

il

placements of the initial given constraint point pairs
AC, =C; —C!” always exceed the bound 6 in practice.
Thus, the method has to be implemented in an iterative
manner to reach the desired positions of the constraint
points C; without mesh foldover. A trajectory for each
constraint point may be defined to enable each point to
reach its individual desired position (ie.,
C®,.,C"=C,i=1,..,m). The displacements of the

successive C'V and CU*", (‘AciX Ac; ), can further be

>

viewed as an iterative step length.

The iterative scheme for constrained texture mapping
has been outlined. The iterative step length is adaptively
estimated by the current constraint point configuration.

Before proceeding further, the iterative step length 0 of Eq.

(6) is taken as an estimate of the lower bound for our
purpose of foldover-free reparameterization. The condi-
tion of Eq. (6) is a sufficient condition [i.e., there may be
an iterative step length 6 beyond the estimate of Eq. (6) to
yield a foldover-free solution]. Note that the presented
foldover-free condition in Eq. (6) only eliminates all prob-
able foldover cases in order to guarantee that the mesh
topology is continually preserved. The goal of Eq. (6) is to
guarantee that the domain is completely foldover-free.
Thus, Eq. (6) only provides an estimate of the lower
bound.
Remark

A number of existing approaches [3, 8] have also been
used to achieve a foldover-free solution by adding Steiner
vertices and using edge-swap operations [8]. These are
unlike our proposed method, which utilizes successive

approximation. Compared to the previous approaches,
our proposed method can generate a smooth solution
without the need for postprocessing. In addition, because
of the continuity of the RBF function, it leads to smaller
distortion during reparameterization. These advantages
over other methods are further illustarted in the experi-
ment section.

5 TRIANGLE SUBDIVISION

In general, the proposed RBF-based reparameterization
can effectively generate a continuous deformation to
match positional constraints exactly. However, for ex-
treme scenarios with large deformation, Eq. (1), together
with the foldover-free condition [Eq. (6) in Section 4], may
not always converge the mesh to the most ideal position.
Looking at Fig. 3 for example, two constraint points are to
be swapped while the other two points are fixed. Without
triangle subdivision, although the scheme of Egs. (1) and
(6) ensure that the mesh will converge to a foldover-free
state (see Fig. 3b), the position is not ideal. This is a defi-
ciency of our proposed scheme in Egs. (1) and (6).

New vertices should be added by subdividing the tri-
angles to circumvent this issue. This step is similar to that
presented in Refs. [3] and [8], in which extra Steiner verti-
ces are added. The basic idea of the subdivision strategy
in the present study is to first determine the potential
folding vertices, and then to identify the edges that the
vertices will most likely cross. Thus, the triangles sharing
these edges can be subdivided by adding new vertices
around the potential folding vertices. The underlying idea
is very simple: to approximate the continuous implicit
function (i.e., RBF) by local upsampling. More sampling
points provide more freedom and the higher the probabil-
ity that foldovers could be avoided. The iterative step
lengths 6(X) is estimated with Eq. (6) for all vertices, to
determine the potential folding vertices when their 6(X)s
are below an empirically selected threshold &g - The

approach is summarized as follows. Assume N selected
folding vertices:

Determining the Most Probable Edges

DOi=1,N,
(1) Extract the 1-ring of the selected vertex v, then

compute the probable location v/ of v, by Eq. (4)
(Section 4) © with 2-3 times the threshold Oy e
(i.e., setting the elements of vectors Ax_ and Ay, with

the same value as 20,

threshold or 3é‘threshold ;

(2) Determine the 1-ring edge of v, that intersects with
line of W This edge is called the most probable
edge for v, ;

(3) Bisect the selected edge. The midpoint is then added
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to the mesh as a new vertex.
END DO

$%3% L

°Equation 4 is another expression of Eq. (1) because Eq. (4) offers a
linear expression about the displacement of the current constraint
points.

6 EXPERIMENTS AND DISCUSSIONS

In this section, the proposed method is applied to a num-
ber of examples to evaluate its validity, efficiency, and
robustness. For simplicity, the 2D meshes are normalized
in [0, 1] x [0, 1] domain, and the texture images are simi-
larly normalized, regardless of the aspect ratio. Based on
this normalization, the threshold used in the algorithm of
Section 3 can be preset without further tuning.

6.1 Foldover

Figure 1 shows the results produced using several estab-
lished methods [3, 17, 18, 23]. As shown in the figure, the
methods are incapable of completely circumventing fold-
overs during the reparameterization process. The first
experiment in the present study is to test the proposed
method on the same head model in shown in Figure la
for comparison purposed. The initial 2D mesh (i.e., em-
bedding or parameterization) obtained by conventional
harmonic mapping is shown in Fig. 4a. Figure 4 shows
the results with different iterations of the RBF-based re-
parameterization. In Fig. 4a, red stars mark the con-
straints that need to move to the points circled in white.
No foldover triangles occur during the iterations; thus,
the internal constraints are satisfied. Note that during the
iterative reparameterization process, the boundary of the
2D parameterized mesh does not have to be fixed on the
initial predefined convex domain. Readers are referred to
the video (at
http://nccastaff.bournemouth.ac.uk/jzhang/projects.htm).

accompanying

This distinct advantage offers more freedom than the oth-
er methods to reduce mesh distortion.

6.2 Comparison of Experimental Results

The techniques proposed in Refs. [3] and {8] represent
state-of-the-art methods in texture mapping subject to
hard constraints. Lee et al. [8] experimentally showed that
their method is able to handle challenging examples and
generate satisfactory results. Therefore, in the current
paper, the proposed algorithm is compared with the work
of Lee et al. [8], tested on the same set of models. A fur-
ther test was performed with a chessboard texture for
smoothness comparison. A visual comparison shows that
the smoothness of using the proposed approach is much
better than that in [8] (Fig. 5, fourth column). In particular,
the areas of the constraint points are smoother with the
proposed method. This is because the previous method [8]
cannot ensure smoothness of deformation in such areas.
As a result, no further postprocessing for smoothing is

necessary in the implementation of the proposed algo-
rithm. In [3] and [8], this required postprocessing time
usually takes much longer than that of the feature match-
ing process, and becomes the bottleneck of the entire al-
gorithm. However, their results are not very satisfactory
without such postprocessing (Fig. 5, second column).

Moreover, to quantitatively study the distortion of re-
parameterization, the stretch metrics defined in [6] are
used. The L-2 norm is used to measure the overall stretch
of the parameterization, whereas the L-Inf measures the
greatest stretch. Good parameterization is expected to
have very small L-2 and L-Inf. These two metrics are used
to measure distortion of all the examples in Fig. 5 (see
Table 1). The proposed approach performs significantly
better in most cases than that of [8], even with their
smoothing process.

Furthermore, the proposed approach is capable of
handling special models that have more than one border.
Figure 6 shows an example of texture mapping the pho-
tograph of an orangutan onto a 3D human head model
with three boundaries. This figure shows that the pro-
posed method produces a very smooth parameterization
while keeping the two interior boundaries (i.e., the eyes).
Applying previous methods [8] to this example would
usually require extra treatment, such as cutting it into
several pieces to ensure each piece has no interior boun-
daries. The proposed approach is essentially a mesh-free
method and does not need an additional treatment.

6.3 Complexity Analysis

The core advantage of the proposed RBF-based reparame-
terization is that the RBF coefficients are updated at every
iteration. The main computation cost, O(2M 3), is to de-

termine the inverse of a real symmetric matrix, where M
is the number of the constraint points. The time complex-
ity can be estimated as O(2KM *), where K denotes the

number of iterations. Furthermore, considering the trian-
gle subdivision procedure, computing the estimated itera-
tive step lengths using Eq. (6) at every iteration is neces-
sary. This will cost O(N) each time, where N denotes the
number of vertices on the mesh. The time for triangle
subdivision is nearly fixed for each selected folding vertex.
At each iteration, the running time of the triangle subdi-
vision depends on the number of selected folding vertices
m, which is generally much fewer than N. Therefore, the
total time cost is O(K(2M? + N +m)) . The majority of the

time spent is on the computation of matrix inverse when
there are a number of constrained points. The time spent
for triangle subdivision is not an issue.

All the experiments were conducted with MatLab on
an Intel Pentium 4 3.2 GHz PC with 1 Gb of RAM. Table 2
shows the running time of all the examples in Fig. 5 using
the proposed approach, which usually converges around
5-8 iterations. Each example usually takes only several
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seconds to compute with the proposed method because
postprocessing for mesh smoothing is unnecessary. In [8],
the postprocessing takes more than 1 min to obtain the
result.

6.4 Limitations

The proposed method deals with soft constraints. In Sec-
tion 5, a subdivision approach is proposed to increase the
chances of exactly matching the desired positional con-
straints. However, this simple approach has its limitations.
For example in Fig. 3a, two constrained points can move
close to each other, but not reach the desired positions,
even when the triangle subdivision strategy is applied.
The displacement vectors can be rotated to circumvent
this issue. The distance between any two constrained
points is taken, and the displacement vectors of the two
selected constrained points are rotated 90° clockwise.
Figure 3c shows the intermediate result of rotating the
displacement vectors. Figures 3d-3e show the conver-
gence result with triangle subdivision and displacement
rotation, where the desired deformation is achieved with-
out triangle foldover. Thus, the above issue is successfully
addressed. However, rotating the displacement vectors
might fail if too many constrained points crowd together.
Fortunately, such extreme cases are rarely seen in texture
mapping applications. Another limitation is that the con-
vergence of the proposed iterative algorithm has not been
proven. Although this is not an empirical issue, ideally,
mathematical comprehensive proof should still be given.
This will be studied in future work.

Table 2 shows the results of the triangle subdivision of
all the examples in Fig. 5. In Row 5, the number of the
added vertices in the proposed approach is greater than
that in [8]. This implies that the simple subdivision ap-
proach adds multiple redundant vertices. Looking at Fig.
6, the number of added vertices may depend on the level
of smoothness and distortion because additional vertices
are necessary for smoothness and low distortion. Never-
theless, the newly added vertices only increase the vertex
number N on the mesh, rather than the constraint vertex
number M or the selected folding vertex number m.
Therefore, this does not result in a visible increase of total
running time.

7 CONCLUSION AND FUTURE WORK

An RBF-based reparameterization method for texture
mapping with positional constraints is presented in the
current paper. The proposed method can also avoid mesh
foldovers. A mathematical condition has been formulated,
called the foldover-free condition, that guarantees the
connection relationship of a mesh is maintained during
the RBF-based reparameterization process. Basically, the
meshes are iteratively moved to satisfy positional con-

straints. The foldover-free condition at each iteration pro-
vides the estimate of the iterative step length.

The proposed method does not require predefined re-
strictions in the implementation, such as fixing the boun-
daries of the mesh. This adds greater freedom for reduc-
ing distortion than do other methods [3, 8], and the result-
ing 2D parameterization has smaller distortion. In addi-
tion, the method is a mesh-free approach, allowing direct
treatment of multiborder topology. Complexity analysis
suggests a low computation cost, which depends mainly
on the number of the vertices.

However, the need for triangle subdivision for some
extreme cases is a limitation of the algorithm. This leads
to the addition of redundant vertices. New methods to
reduce the redundant vertices with a minimum loss of
smoothness will be developed in a future work. In addi-
tion, the analysis of the time complexity indicates that
running time could rapidly increase when adding a num-
ber of constraint vertices. The key problem is to compute
the inverse of a huge symmetric matrix. In future, a GPU-
based algorithm will be developed to speed up the com-
putation.
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Figure 1. Illustration of the foldover results using four recent parameterization methods, and considering internal constraints (Note: the mesh
details can be seen more clearly by zooming in on the document): a) 3D mesh; b) least squares meshes [23]; c) RBF-based embedding [17]; d)
harmonic mapping [16, 18]; e) Delauney triangulation-based mapping [3] (the red lines mark the boundaries of the triangle patches within
which there is no foldover; however, foldover triangles can be observed around the red lines.); and f) inset showing the details of distortion

around the red line

Figure 2. Illustration of the condition of Eq. (3). The dashed
lines denote the undetermined boundaries.

a. b. c. d. e.
Figure 3. Illustration of convergence in an extreme case: a) the initial configuration of constraint points; b) the result without triangle
subdivision; c) the intermediate result of rotating displacement vectors; d) the final result using triangle subdivision and displacement
rotation; and e) the zoomed-in image corresponding to the selected region.
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using our proposed approach. The 5 column shows the final texture mapping results using the proposed approach.

Figure 6. Illustration of texture mapping with two interior boundaries

Table 1. Distortion metrics of texture mapping examples in Fig. 5.

Examples Row1 | Row 2 Row 3 Row 4 Row 5 Row 6 Row 7 Row 8
L-2 2.707 830.1 1.317 1.411 1523.1 1.799 2.781 2.206
L-Inf 32901 | 74714.16 4.406 7.079 13083071.1 | 9.785 163.521 38.311
L-2[8] 2.148 4773.1 631.2 631.2 51804.12 1.623 17.413 1.105
L-Inf [8] 193.357 | 65477071.2 | 24732.4 | 24731.4 | 8751806.2 | 22.334 1436.4 4.016
We highlight the cases that the performance of our proposed approach is worse than that of [8] by shading.

Table 2. Statistics of texture mapping examples in Fig. 5.

Examples Row 1 Row2 | Row3 |Row4 |Row5 |Row6 |Row7 | Row38
#Vertices 5184 1770 1808 10017 10736 4149 1772 1657
#Triangles 10354 3526 3602 20008 21404 8284 3450 3300
#Features 83 24 25 54 32 71 21 27
#Added Vertices 0 60 0 0 1556 0 2 0

11
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#Added Vertices [8] | 183/38 77]7 128/10 94/34 127/8 122/25 383/21 69/2

Time (s) 8.94 5.12 3.86 13.71 16.93 7.21 4.08 3.45

Row 6 shows the numbers of the added points before and (/) after mesh optimization [8].
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