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Abstract

3D Hand Tracking

The hand is often considered as one of the most natural and intuitive

interaction modalities for human-to-human interaction. In human-computer

interaction (HCI), proper 3D hand tracking is the first step in developing a

more intuitive HCI system which can be used in applications such as ges-

ture recognition, virtual object manipulation and gaming. However, accurate

3D hand tracking, remains a challenging problem due to the hand’s deforma-

tion, appearance similarity, high inter-finger occlusion and complex articu-

lated motion. Further, 3D hand tracking is also interesting from a theoretical

point of view as it deals with three major areas of computer vision- segmen-

tation (of hand), detection (of hand parts), and tracking (of hand). This thesis

proposes a region-based skin color detection technique, a model-based and an

appearance-based 3D hand tracking techniques to bring the human-computer

interaction applications one step closer. All techniques are briefly described

below.

Skin color provides a powerful cue for complex computer vision appli-

cations. Although skin color detection has been an active research area for

decades, the mainstream technology is based on individual pixels. This thesis

presents a new region-based technique for skin color detection which outper-

forms the current state-of-the-art pixel-based skin color detection technique

on the popular Compaq dataset (Jones & Rehg 2002). The proposed tech-

nique achieves 91.17% true positive rate with 13.12% false negative rate on

the Compaq dataset tested over approximately 14,000 web images.

Hand tracking is not a trivial task as it requires tracking of 27 degrees-

of-freedom of hand. Hand deformation, self occlusion, appearance similarity

and irregular motion are major problems that make 3D hand tracking a very

challenging task. This thesis proposes a model-based 3D hand tracking tech-

nique, which is improved by using proposed depth-foreground-background
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feature, palm deformation module and context cue. However, the major prob-

lem of model-based techniques is, they are computationally expensive. This

can be overcome by discriminative techniques as described below.

Discriminative techniques (for example random forest) are good for

hand part detection, however they fail due to sensor noise and high inter-

finger occlusion. Additionally, these techniques have difficulties in modelling

kinematic or temporal constraints. Although model-based descriptive (for

example Markov Random Field) or generative (for example Hidden Markov

Model) techniques utilize kinematic and temporal constraints well, they are

computationally expensive and hardly recover from tracking failure. This

thesis presents a unified framework for 3D hand tracking, using the best of

both methodologies, which out performs the current state-of-the-art 3D hand

tracking techniques.

The proposed 3D hand tracking techniques in this thesis can be used to

extract accurate hand movement features and enable complex human machine

interaction such as gaming and virtual object manipulation.

iii



Contents

Copyright statement . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acronym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Skin is better represented as region . . . . . . . . . 11

1.4.2 Combining discriminative and descriptive techniques 11

1.5 Publications Related with This Thesis . . . . . . . . . . . . 12

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature Review 14

2.1 Hand Tracking . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Vision-Based Tracking Techniques . . . . . . . . . . 15

2.1.2 History of Hand Tracking . . . . . . . . . . . . . . 17

iv



2.1.3 Mechanical and Color Gloves . . . . . . . . . . . . 19

2.1.4 Hand Model . . . . . . . . . . . . . . . . . . . . . 21

2.1.5 Appearance-Based Hand Tracking . . . . . . . . . . 23

2.1.6 Model-Based 3D Hand Tracking . . . . . . . . . . . 25

2.1.7 Joint Evidence Techniques . . . . . . . . . . . . . . 28

2.1.8 Disjoint Evidence Techniques . . . . . . . . . . . . 29

2.2 Human Body Tracking . . . . . . . . . . . . . . . . . . . . 30

2.3 Skin Color . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Relevant Techniques . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Superpixels . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Reservoir Sampling . . . . . . . . . . . . . . . . . . 37

2.4.3 Mean-Shift . . . . . . . . . . . . . . . . . . . . . . 37

2.4.4 Markov Random Fields . . . . . . . . . . . . . . . . 38

2.4.5 Conditional Random Fields . . . . . . . . . . . . . 39

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Skin Cue for Hand Region Segmentation 42

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Region-Based Approach . . . . . . . . . . . . . . . . . . . 44

3.2.1 Basic Skin Color Classifier . . . . . . . . . . . . . . 45

3.2.2 Superpixels . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Superpixel Classification . . . . . . . . . . . . . . . 48

3.2.4 Smoothing with CRF . . . . . . . . . . . . . . . . . 48

3.3 Experiments and results . . . . . . . . . . . . . . . . . . . . 50

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 3D Hand Tracking using Markov Random Field 58

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Observation Model . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Hand Features . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Skin Color . . . . . . . . . . . . . . . . . . . . . . 63

v



4.3.2 Depth . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Depth Foreground-Background . . . . . . . . . . . 65

4.4 Hand Segmentation . . . . . . . . . . . . . . . . . . . . . . 67

4.5 3D Hand Model . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 Geometrical Representation . . . . . . . . . . . . . 72

4.5.2 Hand Part Potential . . . . . . . . . . . . . . . . . . 72

4.5.3 Kinematic Constraint . . . . . . . . . . . . . . . . . 73

4.5.4 Hand Parts Intersection Constraint . . . . . . . . . . 73

4.6 3D Hand Tracking . . . . . . . . . . . . . . . . . . . . . . 74

4.6.1 Global Hand Motion Tracking . . . . . . . . . . . . 76

4.6.2 Local Hand Parts Motion Tracking . . . . . . . . . . 77

4.6.3 Hierarchical Correction . . . . . . . . . . . . . . . . 78

4.7 Tracking with Depth Foreground Background Feature . . . . 78

4.8 Handling Palm Deformation . . . . . . . . . . . . . . . . . 80

4.9 Applying Context Information . . . . . . . . . . . . . . . . 82

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Combining Discriminative and Descriptive Techniques for 3D Hand

Tracking 92

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Artificial Data Generation . . . . . . . . . . . . . . . . . . . 95

5.3 3D Hand Tracking . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Hand Region Segmentation . . . . . . . . . . . . . 97

5.3.2 Hand Pose Estimation . . . . . . . . . . . . . . . . 98

5.3.3 Hand Tracking . . . . . . . . . . . . . . . . . . . . 104

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . 107

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Conclusion and Future Works 116

6.1 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vi



6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 120

References 123

vii



List of Figures

1.1 Sub-figures (a) and (b) show the RGB and depth images of

frame #699. In Panel (b) depth information of little, index

and middle fingers are corrupted. More accurate hand pose

estimation is found in Panel (a) than that in panel (b), which

demonstrates the advantage of hand tracking technique over

hand pose detection technique. . . . . . . . . . . . . . . . . 5

1.2 Overview of the proposed 3D hand tracking system. . . . . . 7

2.1 Figure (a): anatomy of the right hand. Figure (b): equivalent

kinematic model of the right hand. Square box represents 6

DOF of the hand position and orientations. Black circles rep-

resent 2 DOF: abduction/spreading. White circles represent

1 DOF: flexion only. . . . . . . . . . . . . . . . . . . . . . 22

2.2 An example of superpixel segmentation. . . . . . . . . . . . 35

2.3 An example of Markov random model. . . . . . . . . . . . . 39

2.4 An example of first order CRF graph. The top layer is state

sequence and bottom layer shows the output sequence. Out-

put sequence is observable in CRF and is represented by gray

circles. In CRF output nodes are connected with every states

in the sequence. . . . . . . . . . . . . . . . . . . . . . . . . 40

viii



3.1 An example of superpixel segmentation. A five dimensional

vector is used to extract the superpixels: three RGB color

channels and two positional coordinates of the pixel on image. 47

3.2 This example picture has three superpixels (red, blue and gray

regions). White circles represent the Markov random field

(MRF) nodes and white lines represent the connections be-

tween two MRF nodes. Even though there are a few hundreds

pixels, it has only three MRF nodes as the MRF is built upon

the superpixels level. . . . . . . . . . . . . . . . . . . . . . 50

3.3 Comparison between pixel-based Jones & Rehg (2002) and

region-based skin color classification techniques. The left

column shows the original images. The middle-left column

shows the superpixels. The middle-right column shows result

of pixel-based classification technique and the right column

shows the result of region-based classification technique with

CRF. CRF helps by exploiting neighbouring color informa-

tion and boundary sharing between superpixels. . . . . . . . 54

3.4 This example shows the advantages of the region-based ap-

proach even without CRF (see sub-figures c and d). Sub-

figures d and e show the failure case without CRF (ref. red

color ellipse). . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 This example shows the failure of the region-based approach

when border information is applied in CRF smoothing (ref.

red color ellipse). . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Example shoeing the failure of a region-based approach when

only a color difference constraint is used on CRF optimization. 56

ix



4.1 Both images are taken with a Kinect (2013) RGB-camera

(please note that Kinect has a low resolution RGB camera).

Hand model: circles/nodes represent hand parts in the Marko-

vian network, and the lines represent pair-wise connections

between hand parts in sub-figure (a) to enforce kinematic

constraints and (b) shows the positional constraints between

hand parts to prevent hand parts intersection in 3D space.

Each part of the hand has one local tracker i.e. 16 local track-

ers (3 phalanges of 5 fingers and one palm). Please note that

the hand has 27 degrees-of-freedom (DOF). The palm has 3

positional and 3 rotational DOF; metacarpal has 2 rotational

DOF; proximal phalanx has 2 rotational DOF; the intermedi-

ate phalanx has 1 rotational DOF; distal phalanx has 1 rota-

tional DOF. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 An example of hand part samples. The circles above the fin-

ger tips are sample patches for depth-background, depth-b,

features, and the samples drawn as lines are centers of the

hand parts samples for the depth-foreground, depth-f, feature. 66

4.3 a) RGB Kinect image, b) Kinect depth image, c) skin color

likelihood and d) depth segmentation output. . . . . . . . . . 68

4.4 A screen shot of hand region annotation application used by

this thesis. Green color represents a hand region i.e. ground

truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Continue to next page. . . . . . . . . . . . . . . . . . . . . 70

4.5 Examples of hand region segmentation. First column: green

color (semi-transparent) represents the ground truth. Sec-

ond column: blue color (semi-transprent) represents the seg-

mented hand region using proposed technique, and red color

denotes the segmentation error. . . . . . . . . . . . . . . . . 71

x



4.6 a) Shows the point clouds of ICP result: green is the ob-

served point cloud at time tn and the green is point cloud

of the predicted hand model at time tn−1. b) Hand parts sam-

pling. c) Output using edge, skin and depth features for distal

phalanges. d) Output using novel depth-fb feature for distal

phalanges. Depth and skin features are used in all other hand

parts except for the distal phalanges. And t is equal to 82 i.e.

frame 82. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 An example of depth data corruption near the edges. In sub-

figure (b) middle and ring figure’s edges are corrupted. . . . 79

4.8 Examples of palm deformation techniques. . . . . . . . . . . 80

4.9 Comparison between without palm deformation and with pro-

posed palm deformation techniques. The red ellipse of sub-

figure (a) shows the problem of hand pose estimation with-

out the palm deformation module, and the improved result is

marked with the red ellipse of sub-figure (b). . . . . . . . . 81

4.10 Left: clustering of unexplained region. Right: black nodes

are fixed after finger tips ICP, while white node hand parts

are sampled for forward correction. This is used as context

information. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.11 Results comparison between without context cue in first row

and with context cue in second row. Index finger and little

fingers are tracked well with context cue. Also, the context

cue helps to recover the hand pose accurately as shown in

second columns. . . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Continue to next page . . . . . . . . . . . . . . . . . . . . . 86

4.12 Continue to next page . . . . . . . . . . . . . . . . . . . . . 87

4.12 Continue to next page . . . . . . . . . . . . . . . . . . . . . 88

4.12 Continue to next page . . . . . . . . . . . . . . . . . . . . . 89

4.12 Continue to next page . . . . . . . . . . . . . . . . . . . . . 90

xi



4.12 Results of the proposed technique. It used skin, depth, con-

text cue, hierarchical kinematic correction and palm deforma-

tion techniques in the experiment. . . . . . . . . . . . . . . 91

5.1 Marked 21 hand regions and MRF model, where white nodes/joints

are conditioned on black nodes/joints/fixed-nodes. . . . . . . 95

5.2 This example demonstrates the benefit of combining a dis-

criminative and a descriptive model (MRF). . . . . . . . . . 103

5.3 Compares the mean square error (MSE) between proposed

regression forest and classification forest (CF) techniques for

hand pose estimation. Synthetic data has been used for all

training and testing (ref. Section 5.3.2). . . . . . . . . . . . 107

5.4 Shows the mean square error of proposed technique for hand

pose estimation using 150 thousands data for various hand

poses as described in the results and discussions section. Syn-

thetic data has been used for all training and testing (ref. Sec-

tion 5.3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Continue to next page . . . . . . . . . . . . . . . . . . . . . 110

5.5 (a) hand-parts pixels classification precision plot against var-

ious window sizes. The triangle is a precision of the fea-

ture pool technique (use of most frequently used features by

split nodes of classification trees from all windows sizes). (b)

shows MSEs for the range of thresholds. (c) shows MSE for

various training data size. (d) shows MSEs of different tree

depths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Examples of hand pose estimation. The top row is Kinect

depth images and the bottom two rows are artificial data. . . 115

xii



List of Tables

3.1 A comparison of results of pixel-based and our region-based

techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Confusion matrix of proposed technique- superpixel only. . . 53

3.3 Confusion matrix of proposed technique- superpixel and CRF. 53

3.4 Confusion matrix of Jones & Rehg (2002). . . . . . . . . . . 53

4.1 Summary of parameters. . . . . . . . . . . . . . . . . . . . 65

xiii



Acknowledgments

First to many people who helped me and contributed to give the thesis present

shape. I owe them all a debt of gratitude. All listed below deserve special

mention and thanks.

My sincere thanks to Dr. Hammadi Nait-Charif and Prof. Jian J Zhang,

my supervisors, who supervised my work from the very beginning from col-

lection of vague ideas to the completion of this thesis as it stands now; for

their guidance, advice, and criticisms during this work and moreover, their

encouragement when I felt low.

I am sure without my mother Mandhari Poudel and my wife Anita this

would be simply impossible. I owe you both a depth of gratitude. And I

immensely miss my father Late Khim Lal Poudel.

My thanks goes to my colleagues at the University Lab, particularly,

Arun, Chung, Denis, Jason, Jose, Kathryn, Kripesh, Mat, Min, Sola, Richard,

Tauheed, Wenxi, .... and last but not least research administrator Jan Lewis.

My special thanks goes to Bournemouth University for BU Studentship

to support my PhD.

xiv



Declaration

This thesis has been created by myself and has not been submitted in any pre-

vious application for any degree. The work in this thesis has been undertaken

by myself except where otherwise stated. The materials related to region-

based skin color technique have been published in Poudel et al. (2012) and

Poudel et al. (2013b). The work regarding to the combination of discrimina-

tive and descriptive techniques for 3D hand tracking appeared in Poudel et al.

(2013a).

xv



Acronym

2D 2 Dimensions

3D 3 Dimensions

CF Classification Forest

CMC Carpometacarpal

CPU Central Processing Unit

CRF Conditional Random Field

DOF Degrees Of Freedom

EKF Extended Kalman Filter

EM Expectation Maximization

GPGPU General-Purpose computing on Graphics Processing Unit

GPU Graphics Processing Unit

HF Hough Forest

HCI Human Computer Interaction

HMM Hidden Markov Model

HSV Hue Saturation Value

ICP Iterative Closest Point

IP Interphalangeal

IR Infrared

ISM Implicit Shape Model

KD-Tree K-Dimensional Tree

MCP Metacarpophalangeal

MRF Markov Random Field

MSE Mean Square Error

PCA Principal Component Analysis

RGB Red Green and Blue Color

RF Regression Forest

SP Superpixel

xvi



SVD Singular Value Decomposition

TM Tapeziometacarpal

UKF Unscented Kalman Fliter

xvii



Dedicated to:

My Parents

who taught me how to speak, how to learn ...



Chapter 1

Introduction

Human beings use different types of gestures apart from the voice for hu-

man to human interactions, such as hand gestures, body gestures and facial

expressions. Hands are the most natural non-spoken means of communica-

tion among humans and a major medium of communication with deaf people.

Hand gesture is defined as a purposeful movement of the hand (Hassanpour

et al. 2008), which carries a given meaning (Poudel 2009). Even though there

has been extensive of progress in human-computer interaction research in last

two decades, it is still largely dependent upon the mouse and keyboard. Ma-

nipulating objects on the computer screen using the hand gestures, as Tom

Cruise did in a science fiction movie Minority Report, is still a dream yet

to realized. Such a futuristic human-machine interaction technique inspires

human-computer interaction researchers. The major challenge in hand ges-

ture recognition involves four important problems of computer vision and

machine learning- segmentation (eg. hand), detection (eg. hand parts), track-

ing (eg. hand) and learning motion dynamics (eg. gestures). Hence, the

hand gesture recognition problem is one of practical, as well as, theoretical

importance.
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1.1 Motivation

The hand is often considered as one of the most natural and intuitive interac-

tion modalities for human-to-human interaction (Wang et al. 2007). It is also

the most natural interaction interface with the physical world because it is

used to manipulate objects through grasping, pushing and twisting (Caridakis

et al. 2010). However, human-machine interaction is still heavily dependent

upon the mouse, the keyboard, remote controls, and touch panels as has been

the case from the early days of computer technology. Although there has

been substantial progress in human-computer interaction and machine learn-

ing, research in the last two decades, the actual methods of human-machine

interaction remain largely unchanged.

The contribution to society of a hand gesture recognition system is the

main motivation of this thesis. Two example applications where hand gesture

recognition can contribute to society are listed below:

1. Hand gesture recognition technique in mobile devices: suppose if

there was a hand gesture recognition application on a mobile phone,

then a deaf person at one end could communicate with another person

at the other end who does not understand sign language. A gesture

recognition system would translate the signs into the texts, and nowa-

days most of mobile phones from Microsoft, Google and Apple already

have voice to text and text to voice software.

2. Hand gesture recognition technique for operating theaters: during

surgical operation doctors can use the voice and hand gesture con-

trol techniques to control medical devices to prevent contamination

(MediKinect 2013). Similarly, such techniques can be used to handle

the equipment in a Radiology department from a distance to prevent

radiation exposure (Johnson et al. 2011).

In human-computer interaction (HCI), proper 3D hand tracking is the first
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step in developing a more intuitive HCI system which can be used in applica-

tions such as virtual object manipulation and gaming, for example HoloDesk

(Hilliges et al. 2012) and hand movement games (Games 2013) respectively.

In recent years, built-in cameras in most consumer electronic devices and the

low price of depth sensors have opened new venues for hand gesture recogni-

tion research and applications. 3D hand gesture recognition, which is directly

dependent on the accuracy of hand tracking, remains a challenging problem

due to the hand’s deformation, appearance similarity, high inter-finger oc-

clusion and complex articulated motion. Further, 3D hand tracking is also

interesting from a theoretical point of view. This is because it deals with the

following major areas in computer vision: segmentation (of hand); detection

(of hand parts); tracking (of hand); and occlusion handling (of hand parts).

Hence, improvement of 3D hand tracking for human-machine interaction is a

major motivational factor in this thesis.

In summary, the major motivations of 3D hand tracking research can be

name as:

1. 3D hand tracking has huge potential to advance human-machine inter-

action, and has great commercial and social value.

2. Tracking a high dimensional deformable object is still a challenging

problem to resolve.

3. Current advancement on depth sensors is opening the door for new pos-

sibilities.

1.2 Background

Hand gesture recognition research has received massive attention since the

mid nineties, as it will not only revolutionize the human-machine interac-

tion but would also enable communication with deaf people (Rehg & Kanade

3



1993). Lately, the low cost of the depth sensor and advancement in com-

puting capacity are major motivations for a vision-based hand gesture recog-

nition system without any markers or additional devices. Hand gestures are

formed with single pose or multiple hand poses (also know as hand dynam-

ics). Hence, the hand gesture recognition problem may consecutively be di-

vided into two sub-problems namely: i) Hand Pose Estimation, and, ii) Hand

Gesture Recognition. Even though both problems are important, as hand pose

estimation is the first-step/precursor to the hand gesture recognition, this the-

sis consequently focuses on the hand pose estimation and tracking problems.

The availability of depth sensors in recent years has eliminated the dif-

ficulties of setting up multiple cameras to acquire the depth for an example

Kinect (2013). Also, depth information helps to overcome illumination prob-

lems. Hence, in this thesis Kinect (2013) has been used. However, due to

reflection, motion and the Kinect sensor’s noise itself, depth images used

tend to be corrupted (Nguyen et al. 2012), Leading lead to incorrect pose es-

timation (ref. Figure 1.1(b) on the following page). In such cases, we can

improve the accuracy of pose estimation using information from previous

poses. The accuracy of hand pose estimation can further improve using the

hand kinematic information. Hence, this thesis focuses on 3D hand tracking

using hand pose estimation and motion history techniques. In general, the

hand tracking techniques exploit the motion coherence information on top of

the hand pose estimation techniques.

4



(a) An example RGB frame #699 of a hand tracking technique
proposed in Chapter 5. The hand pose is estimated using a
detection technique and temporal coherence information.

(b) An example depth frame #699 of the hand pose estimation
technique proposed in Chapter 5. The hand pose is estimated
using a detection technique only.

Figure 1.1: Sub-figures (a) and (b) show the RGB and depth images of frame
#699. In Panel (b) depth information of little, index and middle fingers are
corrupted. More accurate hand pose estimation is found in Panel (a) than that
in panel (b), which demonstrates the advantage of hand tracking technique
over hand pose detection technique.
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Hand pose estimation techniques can be divided into two major cat-

egories: appearance-based and model-based techniques (Erol et al. 2007).

Appearance-based techniques (Rosales et al. 2001; Athitsos & Sclaroff 2003;

Wu et al. 2005; Shotton et al. 2011; Keskin et al. 2011) extract features from

an image then map it into a predefined hand pose configuration; hence the

quality of the hand pose estimation depends mainly on the robustness of the

features. Model-based techniques (Rehg & Kanade 1995; Stenger et al. 2001;

Sudderth et al. 2004a; Martin et al. 2008; Hamer et al. 2009; Oikonomidis

et al. 2011a) first sample the 3D model of the hand and evaluate it against

the observed data. Model-based techniques extract the hand configuration

more accurately than appearance-based techniques; however, model-based

techniques are computationally expensive. Moreover, based on how individ-

ual hand parts are used to estimate the hand pose, hand tracking techniques

can be divided into two categories, joint evidence techniques where the whole

hand is sampled and evaluated as one object, and disjoint evidence techniques

where all hand parts are sampled and evaluated separately (Oikonomidis et al.

2011a). Joint evidence techniques (Rosales et al. 2001; Stenger et al. 2001;

Athitsos & Sclaroff 2003; Martin et al. 2008; Oikonomidis et al. 2011a) ef-

ficiently handle the occlusion, but they are computationally very expensive

because of the large search space as the hand has 27 degrees-of-freedom.

However, disjoint evidence techniques (Rehg & Kanade 1995; Sudderth et al.

2004a; Hamer et al. 2009; Shotton et al. 2011; Keskin et al. 2011) are compu-

tationally efficient because they reduce the search space but need additional

mechanisms to handle the occlusions and collisions. The unified framework

presented in this thesis falls under the appearance-based and disjoint evidence

techniques but does not require additional occlusion or collision handling

mechanisms unlike other disjoint evidence techniques (Sudderth et al. 2004a;

Keskin et al. 2011).

Our proposed framework consist of three modules: i) hand region seg-

mentation: which segments the hand region using skin and depth cues; ii)
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hand pose estimation: which uses a regression forest to estimate the positions

of the hand joints; iii) hand tracking: this uses pose estimation, kinematic

prior, and temporal information, to track the hand in 3D. Figure 1.2 shows

the overview of the proposed 3D hand tracking system in this thesis.

Figure 1.2: Overview of the proposed 3D hand tracking system.

Hand Region Segmentation

This thesis uses skin and depth cues for hand region segmentation. Depth

helps to overcome the illumination problem and color helps to overcome the

depth ambiguity in regard to background objects. Depth cue is provided by

the depth sensor, while region-based skin color detection technique has been

proposed for the skin cue.
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Most of the skin color detection techniques are pixel-based, which treat

each skin or non-skin pixel individually without considering its neighbours.

However, it is natural to treat skin or non-skin as regions instead of individual

pixels. Surprisingly, there are only a few region-based skin detection tech-

niques: Yang & Ahuja (1998), Kruppa et al. (2002), Jedynak et al. (2003) and

Sebe et al. (2004). Kruppa et al. (2002) and Yang & Ahuja (1998) searched

for elliptical skin color shape to find the face. Sebe et al. (2004) used fixed 3x3

pixel patches to train a Bayesian network for skin color detection and Jedynak

et al. (2003) smoothed the pixel-based skin color detection results using a hid-

den Markov model. This thesis proposes a new technique exclusively based

on the concept of regions, irrespective of the underlying geometrical shape

of the target object or predefined rigid shape; for example 3x3 pixel patches.

As such, this technique can be easily integrated into any skin detection based

system.

The proposed technique uses a segmentation technique called super-

pixel (Moore et al. 2008; Ren & Malik 2003), to group similar color pix-

els together. This thesis uses ”The Superpixel extraction library” Vedaldi &

Fulkerson (2008) for superpixel segmentation. Each superpixel is then clas-

sified as skin or non-skin by aggregating pixel-based evidence obtained using

a histogram-based Bayesian classifier similar to Jones & Rehg (2002). The

result is further improved with Conditional Random Field (CRF) (Lafferty

et al. 2001), which operates over superpixels instead of pixels. Although

the segmentation cost is an additional overhead, that is not involved in the

pixel-based approach, it greatly reduces the processing cost further down the

line, such as smoothing with CRF. Aggregation of pixels into regions helps

to reduce local redundancy and the probability of merging unrelated pixels

(Soatto 2009). As superpixels preserve the boundary of the objects, it helps

to achieve accurate object segmentations (Fulkerson et al. 2009).
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Hand Pose Estimation

The proposed hand pose estimation module uses a discriminative random for-

est (Breiman 2001) to classify the hand-parts and learn joints offsets. Since

the voted joint offsets are multimodal in nature, a mean-shift (Comaniciu &

Meer 2002) voting aggregation technique is used. Unlike Girshick et al.

(2011) who selected human body joint proposals independently, this thesis

optimizes joint proposals with kinematic prior and temporal constraints glob-

ally with a Markov random Field (MRF) (Yedidia et al. 2005). We added

temporal information on the same semantic level and modelled as MRF.

Hand Tracking

Hand tracking by pose estimation would have been an ideal solution as track-

ing by detection can overcome the drifting problem. Keskin et al. (2011)

have recently explored in this direction. However, due to depth sensor noise

(Nguyen et al. 2012), some parts of the data are corrupted, further adding to

the hand pose estimation error shown in Figure 1.1(b) on page 5. The use

of kinematic prior and motion history information can overcome these prob-

lems, shown in Figure 1.1 on page 5. Hence, this thesis proposes a novel

way of combining hand pose estimation, kinematic prior and motion history

information (ref. Chapter 5).

1.3 Research Scope

This section describes the scope of the proposed hand tracking techniques.

The aim of this thesis is to track a single hand in an unconstrainted environ-

ment. The proposed 3D hand tracking techniques use a Kinect (2013) sensor.

However, any depth sensor which produces RGB and depth images can be
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used instead. The right hand has been chosen to demonstrate the hand track-

ing but the proposed techniques are equally applicable for left hand tracking

too. Moreover, this thesis does not consider hand manipulating objects, as in

Hamer et al. (2009) and Ballan et al. (2012), nor the recent interest of two

hand tracking (e.g. Oikonomidis et al. (2012)).

1.4 Contributions

The major contributions of this thesis are:

1. A region-based skin color detection technique, which outperforms the

current state-of-the-art pixel-based technique (Poudel et al. 2012).

2. A unified framework for 3D hand tracking which combines discrimina-

tive (for example random forest) and descriptive (for example Markov

random field) techniques.

Other contributions are:

1. The use of unexplained observation (segmented hand region minus re-

gion covered by predicted hand model) to increase the accuracy of hand

joints predictions.

2. Palm deformation module- a module to handle the variations in shape

and size of the hand while changing from open to closed shape and

vice-versa.

3. Comparison of the classification forest and regression forest techniques

for 3D hand tracking.

4. Comparative study of model-based and appearance-based techniques.

The details of the major contributions are explained below.
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1.4.1 Skin is better represented as region

Skin color provides a powerful cue for complex computer vision applications.

Although skin color detection has been an active research area for decades,

the mainstream technology is based on individual pixels. This thesis presents

a new region-based technique for skin color detection which outperforms the

current state-of-the-art pixel-based skin color detection technique on the pop-

ular Compaq dataset (Jones & Rehg 2002). A color and spatial distance based

clustering technique is used to extract the regions from the images, known as

superpixels. In the first step, the proposed technique uses the state-of-the-art

non-parametric pixel-based skin color classifier (Jones & Rehg 2002), which

we call basic skin color classifier. The pixel-based skin color evidence is

then aggregated to classify the superpixels i.e. regions. Finally, a Conditional

Random Field (CRF) is applied to further improve the classification result.

As CRF operates over superpixels, the computational overhead is minimal.

However, any good pixel-based or region-based skin color method can be

used as a basic skin color classifier.

1.4.2 Combining discriminative and descriptive techniques

Discriminative techniques are good for hand part detection but they fail due to

noisy data (Nguyen et al. 2012) and high inter-finger occlusion. In addition,

these techniques do not incorporate any kinematic or temporal constraints.

Even though model-based descriptive (for example Markov Random Field)

or generative (for example Hidden Markov Model) techniques use kinematic

and temporal constraints well, they are computationally expensive, and hardly

recover where tracking failures occur. This thesis presents a unified frame-

work for 3D hand tracking, using the best of both methodologies. Hand joints

are detected using a regression forest, which uses an efficient voting tech-

nique for joint location prediction. The voting distributions are multi-modal
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in nature. Hence, rather than using the highest scoring mode of the voting

distribution for each joint separately, we fit the five highest scoring modes

of each joint on a tree-structure Markovian model along with kinematic prior

and temporal information. Experimentally, it has been observed that trust-

ing the discriminative technique (i.e. joints detection), more than descriptive

or generative techniques (i.e. history information), produces better results.

Therefore, the proposed technique efficiently incorporates this observation

by fixing/freezing the 50% high scoring joint positions and searching for the

remaining 50% low scoring joint positions, using history and hand kinematic

information. This strategy reduces the computational cost and produces good

results for 3D hand tracking on RGB-D data.

1.5 Publications Related with This Thesis

The publications related with this thesis are listed below,

1. Poudel R. P. K., Nait-Charif H., Zhang J. J. and Liu D., 2013. Skin

Color Detection Using Region-Based Approach. In: International Jour-

nal of Image Processing, vol. (7), issue (4), pp. 385-394.

2. Poudel R. P. K., Fonseca J. A., Zhang J. J. and Nait-Charif H., 2013. A

unified framework for 3D hand tracking. In: 9th International Sympo-

sium on Visual Computing, Crete, Greece, pp 129-139.

3. Poudel R. P. K., Nait-Charif H., Zhang J. J. and Liu D., 2012. Region-

based skin color detection. In: 8th International Conference on Com-

puter Vision Theory and Applications, Rome, Italy, pp. 301-306.

1.6 Thesis Outline

The outlines of the remaining chapters of this thesis are listed below,
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Chapter 2 presents a literature overview of hand tracking. 2D and 3D hand

tracking research are described separately. The similarities and differences

between hand and whole body tracking are also explained. The literature

related to skin-color detection techniques is reviewed and the other major

algorithms related with this thesis are also explained briefly in this chapter.

Chapter 3 argues that skin is better represented as regions rather than pixels

and proposes a region-based skin color detection technique. A comparison

of the proposed region-based technique with a state-of-the-art pixel-based

technique is also presented.

Chapter 4 presents a model-based 3D hand tracking technique using Markov

random fields. It also proposes a palm deformation module since the shape

of the palm deforms significantly. In addition, to improve the accuracy of

the hand tracking, multiple cues have been applied, such as depth difference

between segmented hand region and predicted hand model.

Chapter 5 presents an appearance-based 3D hand tracking technique which

efficiently combines the discriminative technique (random forest (Breiman

2001)) and descriptive technique (Markov Random Field). Regression forest

has been used to predict the hand joint positions. The prediction of the hand

joint positions are further improved using temporal motion coherence and the

kinematic information of the hand.

Chapter 6 summaries the major contributions of this thesis and directions for

future research.
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Chapter 2

Literature Review

Hand tracking related research reviews have been published in Pavlovic et al.

(1997), Wu & Huang (1999) and Erol et al. (2007). As hand tracking is an

important part of the hand gesture recognition system, hand tracking research

reviews can also be found in hand gesture recognition literature (Konstanti-

nos G. 2004; Hassanpour et al. 2008). The research related to object tracking

is relevant to the 3D hand tracking research in general, so the next section

will overview the visual tracking techniques in general, the hand model used

in 3D hand tracking and different types of hand tracking techniques sepa-

rately. Section 2.2 discusses the similarities and differences between whole

human body and the hand tracking techniques. Skin color is an important

cue for hand region segmentation and is used in all proposed techniques of

this thesis. An overview of the skin color detection techniques is provided in

Section 2.3. Section 2.4 describes the techniques specific to this thesis. The

final Section 2.5 summaries the whole chapter.
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2.1 Hand Tracking

Hand tracking techniques share the common literature with the tracking tech-

niques in general. As the thesis focuses on the vision based hand tracking,

this chapter will look at the history of the visual tracking and hand tracking

before moving on the vision based hand tracking techniques.

2.1.1 Vision-Based Tracking Techniques

Visual tracking is about localization of a particular object in successive frames

of a video sequence. Unlike object localization in each image independently,

tracking exploits object dynamics for efficiency and effectiveness using the

information from previous frames. Normally, tracking is an online process

and therefore the emphasis is on real-time algorithms (Blake 2006). Recent

progress in computing and especially fast development of general-purpose

graphics processing unit (GPGPU) (CUDA 2013; AMD-GPU 2013; OpenCL

2013) have enabled complex algorithms to run in real-time.

Tracker initialization is the first step in object tracking. In this step,

object position and tracking parameters are initialized. The initialization can

be automatic or manual. At the arrival of each successive frame, tracking then

follows the following steps,

1. Based on the object position and dynamics at time t − 1, estimate the

object position and dynamics at time t.

2. Search for the target object locally (Blake 2006).

If the initialization or parameter estimation in the first step is not good

enough, tracking is likely to perform poorly and in the long run it can cause

tracking failure known as the drifting problem in the tracking literature. Au-

tomatic recovery of tracking is a difficult task: normally some sort of reinitial-

ization is required. Tracking by detection or pose-estimation (Shotton et al.
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2011; Keskin et al. 2011) is a favoured technique to overcome the drifting

phenomenon.

Tracking techniques involve iterative target matching, also know as

template matching (Lucas & Kanade 1981). Blob tracking has also received

attention in early 2000 due to the computational advantage over template

matching technique. Mean shift tracking (Comaniciu et al. 2000) is one of

the most influential blob based tracking technique. Mean shift algorithm is

efficient in processing, but it gives local maxima rather than global maxima

(Comaniciu et al. 2000). Parametrized curve matching techniques called ac-

tive contours are other popular techniques for tracking objects. The active

contour model called snake (Kass et al. 1987) is a popular technique in this

category. However, contour is influenced by illumination, so the quality of

tracking by active contour is as well (Blake 2006).

Another category of tracking techniques is filtering techniques for ex-

ample Kalman filter (Julier & Uhlmann 1997, 2005) and particle filter (Isard

& Blake 1998a,b,c). Particle filter is robust but computationally expensive as

it needed many samples to track a target object accurately. Extended Kalman

Fliter (EKF) (Julier & Uhlmann 1997) could model non-linear systems more

efficiently than particle filter but the inter-state transition is assumed to be

linear.Unscented Kalman Filter (UKF) (Julier & Uhlmann 2005) improves

the shortcomings of EKF by propagating the mean and covariance using a

Monte Carlo sampling technique. UKF uses few sampling points (for exam-

ple 15 to 30) for approximation, weighted covariances are added on half of

the samples and subtracted from the remaining half of the samples from the

projected sample point i.e. the predicted center of the target object. The ap-

proximation obtained from UKF is accurate to the 2nd order of non-Gaussian

and 3rd order of Gaussian inputs only.

Features (for example optical flow (Barron et al. 1994), scale invariant

feature transform (SIFT) (Lowe 1991), corner detector (Harris & Stephens
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1988), self-similarity (Shechtman & Irani 2007) and histograms of oriented

gradient (HOG) (Dalal & Triggs 2005)) play an important role in tracking.

Lucas & Kanade (1981) proposed one of the early tracking technique: using

optical flow feature, they matched optical flow features locally for correspon-

dence finding in pairs of images. Lucas & Kanade (1981) used spatial inten-

sity gradient of images and iteratively matched within neighbourhood only for

image registration. Zhou et al. (2009) used SIFT features to match the region

of interest across consecutive frames and further improved using mean-shift

via color histograms. Local image features provide useful information about

the temporal information in an image. Laptev (2005) added the local features

in space-time to detect walking people. Lai et al. (2010) improved the results

further by combining the work of Efros et al. (2003) and Lai et al. (2010).

Lai et al. (2010) proposed a displacement feature based on the SIFT. Usu-

ally, SIFT features are calculated on all interest points of the images, which

hits the performance hard. The speeded up robust feature (SURF) (Bay et al.

2006) feature provides an alternative to SIFT. Ta et al. (2009) used the SURF

feature for tracking and continuous object recognition.

2.1.2 History of Hand Tracking

In the early days, mechanical gloves (Zimmerman et al. 1987; Fels & Hinton

1997) were the only effective tools for capturing hand motions (Sturman &

Zeltzer 1994). The gloves are worn on the hand to measure the hand joints

positions and movements in real-time. Dorner (1994) and Wang & Popovi

(2009) used multi-color marker gloves to track the hand. The major drawback

of the glove based technique is the need to wear the glove, which is cumber-

some. To overcome the limitation of the glove based hand tracking tech-

niques, researchers have been working on markerless computer vision tech-

niques (Rehg & Kanade 1994; Cipolla & Hollinghurst 1996; Stenger et al.

2001; Wu et al. 2005; Hamer et al. 2009; Keskin et al. 2011; Oikonomidis
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et al. 2010; Poudel et al. 2013a) for hand tracking.

The angle of view affects the shape of the object. To overcome this

problem, Starner et al. (1997) and Starner et al. (1998) mounted the cam-

era on the head so that the distance of the hand from camera and angle of

view remains more or less constant. They built a wearable cap with a camera

mounted on it which pointed towards the ground. Such a technique is also

know as wearable device/computing. Starner et al. (1998) experimented us-

ing a 40 word lexicon. They reported the 92% word accuracy with the camera

mounted on a desk and 98% word accuracy with the camera mounted on the

cap of the user.

Stenger et al. (2001) used an unscented Kalman filter (Julier & Uhlmann

1997) to track a 3D hand. The experiment shows that the unscented Kalman

filter is robust in modelling Gaussian based motion but cannot model the non-

Gaussian motion i.e. change of random direction frequently. Stenger et al.

(2006) reformulated the 3D hand tracking using hierarchical template match-

ing from a database. The problem with this type of technique is that it needs

to store all possible templates, which can be expensive. Oikonomidis et al.

(2011a) also used a template matching technique but generated the templates

online and optimized with a particle swarm (Eberhart & Kennedy 1995;

Kennedy et al. 2001) technique. Template matching techniques recover the

hand configuration well and effortlessly handle the occlusion. However, tem-

plate matching techniques are computationally expensive as the hand has 27

degrees-of-freedom (DOF) (ref. Section 2.1.4). To narrow down the search

space, Sudderth et al. (2004b) matched each hand-part template separately

and used non-parametric belief propagation (Sudderth et al. 2003) for the

global hand configuration optimization. Sudderth et al. (2004a) later added

an occlusion handling technique. This kind of technique reduces the search

spaces but adds the complexity of occlusion handling. The common problem

of template matching is computational cost as they need to test many samples.
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On the other hand, detection based techniques (Keskin et al. 2011) infer the

hand-model from feature matchings. Hence, the quality of detection based

techniques is based on the quality of extracted features, which varies based

on the sensor noise and environmental factors.

Based on the taxonomy of Erol et al. (2007), hand tracking techniques

can be divided into two broad categories: appearance-based and model-based

techniques. Moreover, based on how individual hand parts are used to esti-

mate the hand pose, hand tracking techniques can be divided into two cate-

gories, joint evidence techniques and disjoint evidence techniques (Oikono-

midis et al. 2011a). These are discussed separately in detail in Section 2.1.7

and Section 2.1.8.

2.1.3 Mechanical and Color Gloves

Keyboard, mouse and joystick are the major medium of inputs to the com-

puter applications. The naturalness of how the hand manipulates objects

in real life cannot be replicated using such devices. To bring the natural-

ness in human-computer interaction the Put-that-there (Bolt 1980) project

started at Massachusetts Institute of Technology (MIT) in early 1980’s. Bolt

(1980) used the commercial polhemus sensor Zimmerman et al. (1987) to

track the position and orientation of the hand. The Polhemus sensor can pro-

vide the six degrees-of-freedom by radiating a pulsed magnetic field from a

fixed source. Bolt (1980) used hand position and orientation information to

select the graphical elements from the screen.

One of the early data glove developed by Zimmerman et al. (1987)

was able to capture 10 finger joints and six degrees-of-freedom of the hand

position and orientation. One of the major advantage of the data glove over

camera based systems is that the accuracy of the data glove technique is not

affected by the line-of-sight. The data glove technique can capture the rapid
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motion of the hand and run in real-time, which was the major attraction in the

late eighties (Zimmerman et al. 1987).

Kramer & Leifer (1988) developed a thin fabric glove called Cyber-

Glove. The small electronics boxes attached to the glove are capable of re-

coding the positions and sending the digital streams to the computers via

standard serial port. They used such digital signals to translate American sign

language into spoken English language. They are more stable than the data

glove of Zimmerman et al. (1987). Later, many companies commercially pro-

duced the CyberGlove, which were capable of handling the complex gestural

work.

Recently, wearable devices have once again become popular in com-

mercial industry such as google glass (Google 2013) and Digits (Kim et al.

2012). The work of Kim et al. (2012), called Digits, is one of the latest and

impressive examples of wearable devices research. Digits is a wrist-worn sen-

sor, which can fully recover the 3D pose of the user’s hand without wearing

any gloves. Digits can recover the hand pose while users are moving/walking.

Kim et al. (2012) used infrared (IR) camera to get the information of the hand

shape. They used samples of finger tips and lower regions of the finger and

fed into a kinematic model of the hand. The kinematic model applied bio-

mechanical constraints of the hand to recover the accurate 3D pose of the

user’s hand. Kim et al. (2012) demonstrated the human-computer interaction

using a mobile phone and Digits.

Instead of using electro-magnetic devices or infrared camera, Wang &

Popovi (2009) used a multi-colored glove to recover the pose of the hand from

a single RGB image. The multi-colored glove was built by using simple ordi-

nary cloth. Each hand part is marked with a different color. Wang & Popovi

(2009) used the nearest-neighbour approach to track the hand in real-time.

Further, to improve the hand pose accuracy they used inverse kinematics and

temporal information. Wang & Popovi (2009) demonstrated sign language

20



alphabet transcription task, virtual object manipulation task and simple char-

acter animation systems to prove the importance of their proposed technique.

Mechanical/electronics gloves are reliable and accurate devices for 3D

hand tracking. The computer vision based hand tracking technique using a

color glove is even more attractive as the color glove is simple and easy to

configure. However, these techniques add an extra burden to the user as the

glove is needed to be worn. So, making gestures with gloves feels clumsy

and does not feel as natural as the naked hand. There are also many situations

where wearing a glove is impractical; for example, by doctors in an operat-

ing theater to interact with magnetic resonance imaging (MRI) or computed

tomography (CT) systems. Due to the above mentioned problems, computer

vision based 3D hand pose estimation and tracking of the naked/markerless

hand is an important research problem.

2.1.4 Hand Model

This section provides an overview of the hand kinematic model. The kine-

matic model represent the motion of the hand skeleton and it is used for 3D

hand tracking. Figure 2.1(a) on the following page shows an X-ray of a right

hand. The human hand consists of 27 bones. Eights bones are located on

the wrist, called carpals. Carpal bones join the fingers with the wrist and

are ignored by 3D hand tracking techniques (Wu & Huang 2001; Sudderth

et al. 2004b; Hamer et al. 2010). The length of the bone is varied from per-

son to person and degrees-of-freedom depends upon the joint. The names

of the joints are based on the connecting bones. The type of joints and their

degrees-of-freedom are described below.

• Carpometacarpal Joints (CMC): CMC connects the metacarpals of

the fingers with wrist. The CMC of index and middle fingers are static.

The ring and pinky/little fingers CMC have limited movement and are
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(a) Hand anatomy. The picture is taken
from Erol et al. (2007)

(b) Kinematic hand model

Figure 2.1: Figure (a): anatomy of the right hand. Figure (b): equiva-
lent kinematic model of the right hand. Square box represents 6 DOF of
the hand position and orientations. Black circles represent 2 DOF: abduc-
tion/spreading. White circles represent 1 DOF: flexion only.

not considered in the hand tracking problem.

• Trapeziometacarpal Joints (TM): CMC of thumb finger is know as

TM. It is difficult to model as it has two non-orthogonal and non-

intersecting rotation axes (Hollister et al. 1992; Erol et al. 2007). How-

ever, in practice TM is modelled as two degrees-of-freedom.

• Metacarpophalangeal Joints (MCP): MCP connects finger with palm.

It has two DOF, one for abduction/spreading-finger and one for flexion.

• Interphalangeal Joints (IP): IP connects finger phalanges/bones. It

has one DOF for flexion.

The hand anatomy and equivalent kinematic hand model is shown in

Figure 2.1. In model-based hand tracking, 27 DOF are considered: 6 for the

hand position and rotation, 2 for a trapeziometacarpal, 10 for five metacar-

pophalangeal and 9 for nine interphalangeal (ref. Figure 2.1). Such a kine-
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matic model has been used in this thesis.

2.1.5 Appearance-Based Hand Tracking

Appearance-based techniques model a gesture as a sequence of views, and are

known as view-based techniques. Appearance-based techniques extract fea-

tures from images then classify them to predefined hand postures (Darrell &

Pentland 1993; Cui & Weng 1996; Black & Jepson 1998; Rosales et al. 2001;

Gupta et al. 2002; Athitsos & Sclaroff 2003; Wu & Huang 2000; Wu et al.

2005; Zahedi et al. 2005; Yuan et al. 2005; Romero et al. 2009; Keskin et al.

2011; Poudel et al. 2013a). Hence, the quality of the hand tracking mainly

depends on the robustness of the features. Appearance based techniques use

2D models and do not extract the exact configuration of the hand. This makes

appearance-based techniques more suitable for simple user interfaces, where

accurate hand configuration is not necessary. For example, selecting the menu

items, sliding the presentation and selecting, playing, and stopping music.

Appearance-based techniques extract a large number of features from

the image. Hence, principal component analysis (PCA) is the common ap-

proach to reduce the features dimension. Black & Jepson (1998) presented

a view-based representation for rigid and articulated objects tracking using

eigenspace and parametrized optical flow estimation. They used an Eigen-

Pyramid representation and a coarse-to-fine matching technique for large

affine transformations between the eigenspace and the image. They were also

able to handle occlusion to some extent. They demonstrated hand gestures

recognition in video sequences as an example of the proposed technique. The

major drawback of the optical flow based technique is that apart from ob-

jects of interest, other objects and background are assumed to be more or less

static.

MacCormick & Isard (2000) used the partitioned sampling (MacCormick
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& Blake 2000) technique to track the hand articulation. It is similar to a hier-

archical search and avoids the high cost of particle filters when tracking more

than one object. MacCormick & Isard (2000) also introduced the survival

rate module for particle filters (Isard & Blake 1998c) to increase the effi-

ciency of partitioned sampling. MacCormick & Isard (2000) track six DOF

of the hand in real-time and had a self-initializing module. They modelled

the hand using B-spline, used skin color and contour features for hand track-

ing. The shortcoming of this technique is that contour and skin color are not

reliable features in variable illumination and unconstrainted environments.

Wu & Huang (2000) introduced the discriminant expectation maximiza-

tion (D-EM) algorithm for view independent hand pose recognition. They

learned hand poses using supervised and unsupervised learning techniques.

As collecting supervised data is difficult, they used the adaptive self-organizing

color segmentation technique (Wu et al. 2000) to collect large amounts of un-

labelled data and manually labelled some hand gesture data. Wu & Huang

(2000) used color and edge information after background subtraction to gen-

erate Gabor wavelet filters and 10 coefficients from the Fourier descriptor

were used to represent the hand shape. Further Wu & Huang (2000) stud-

ied hand pose recognition using D-EM algorithm and compared it with other

techniques. Their technique relies on the color and contour features and those

features are not robust to the illumination variation.

Zahedi et al. (2005) proposed a hand gesture recognition technique

without tracking 3D hand tracking. They used skin color and various vari-

ants of derivative between successive frames to generate the hand shape/pose

features. They used hidden Markov model (HMM) (Rabiner 1990) for ges-

ture learning and experimented with 10 gestures and only had a 7% error

rate. The common problem of this type of techniques is that they assume the

background is static, which is hardly true is real scenarios.

Wang & Wang (2008) also used a feature based hand pose detection
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technique for human robot interaction. Wang & Wang (2008) argued that

scale-invariant features transform (SIFT) (Lowe 1999) features are well suited

to represent hand poses in different orientations and learned the hand poses

using boosting (Freund 1990; Freund & Schapire 1995) technique. However,

their technique could not handle the occlusion.

Appearance-based techniques map the hand features to pre-defined hand

poses. As these techniques only involve 2D image processing, they are com-

putationally fast and mostly run in real-time. However, these techniques are

not robust on hand configuration estimation because they generally cannot

deal with occlusion. These techniques are less sensitive to the spatial location

of the hand, which is another major drawback of these techniques. Hence,

these techniques cannot be used effectively in virtual object manipulation but

are more suitable on hand posture recognition.

The following section describes the more complex 3D hand tracking

techniques, which can extract the 3D configuration of the hand and can be

used for complex tasks such as the virtual object manipulation.

2.1.6 Model-Based 3D Hand Tracking

A 3D hand model mimics the human hand skeleton, which is used to estimate

the kinematic parameters of the hand (ref. Figure 2.1 on page 22). Most

researchers modelled the 3D hand shape with 27 degrees-of-freedom (DOF).

However, some authors modelled the 3D hand with less DOF by imposing

further constraints based on the bionic view. DOF can be further restricted

based on the relevance of the required gestures for the targeted application.

The model-based techniques (Rehg & Kanade 1995; Sudderth et al. 2004a;

Martin et al. 2008; Hamer et al. 2009; Oikonomidis et al. 2011b, 2012) first

samples the 3D model of the hand and evaluates it against the observed data.

This is an inverse matching problem. Hence, searching the optimal values
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of the hand configuration is computationally expensive and a difficult task.

Generally, 3D hand parameters are estimated by edges or depth matching on

each frame.

Lowe (1991) proposed the earliest parameterized three-dimensional mod-

els. The technique of Lowe (1991) was able to handle objects with arbitrary

curved surfaces and any number of internal parameters representing articula-

tions, variable dimensions or surface deformations. Searching the projection

of parameterized three-dimensional hand model had been first introduced by

Rehg & Kanade (1993). Rehg & Kanade (1993) proposed the earliest model-

based 3D hand tracking technique called DigitEyes. They used edge and

point features to match the projection of the 3D hand model with gray scale

video image. DigitEyes used two cameras and tracked the 27-DOF of hand.

Further, Rehg & Kanade (1993) demonstrated a simple 3D mouse interaction

application using a single camera.

Another early model was proposed by Heap & Hogg (1996): they cre-

ated a 3D hand using the point distribution model (Cootes et al. 1995). They

learned the hand deformation and movement using simplex mesh (Delingette

1994) and used finger tips as control points to iteratively fit a deformed mesh

model in successive frames. Heap & Hogg (1996) achieved real-time tracking

for 6 DOF only. Their technique could not handle finger occlusion.

Stenger et al. (2001) presented a more accurate hand modelling tech-

nique using ellipsoids, cones and cylinders. Their technique could also deal

with occlusion. They matched the edge of the projected 3D hand sample with

input video images to infer the hand parameters and used unscented Kalman

filter to model the motion dynamics. They were able to achieve 3 frames per

second with a single camera on a Celeron 433MHz computer to track the 7

DOF of hand (6 DOF of global hand position and orientation and 1 DOF of

thumb). They demonstrated examples of their techniques for multiple cam-

eras.
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Template based 3D hand tracking techniques can extract the hand pa-

rameters accurately. However, tracking 27 DOF of hand is a computation-

ally expensive task. To increase the efficiency Stenger et al. (2006) proposed

the hierarchical template matching technique. They saved all hand templates

with known configurations in a database and hierarchically looked up in run-

time. Even though the hierarchical template matching technique introduced

by Stenger et al. (2006) increased the efficiency, their technique needed large

storage capacity and changes in the hand size of the signer causes the reini-

tialization of the database.

Most of the model-based hand tracking techniques estimate the global

hand motion using foreground segmentation or hand movement estimation

from the previous frames. They then do an exhaustive search for the local

hand parts configurations. Such a strategy requires large number of samples

as the hand has 27 DOF. Hence, the computational cost is too high. However,

foreground segmentation is not an easy task and hand movement estimation is

also difficult as the hand changes the direction too often. To tackle this prob-

lem, Wu et al. (2005) applied a divide-and-conquer strategy. They learned

the hand motion prior for global hand motion estimation and tackled finger

articulation using a sequential Monte Carlo tracking algorithm. The sequen-

tial Monte Carlo tracking algorithm produced good results but it was still

computationally expensive.

Martin et al. (2008) proposed a model based approach to 3D hand track-

ing using some new features such as example shadow and texture. They es-

timated the 3D hand configuration from a monocular video. Martin et al.

(2008) dynamically estimated the hand texture and the illumination and mini-

mized objective function using a quasi-Newton technique. They exploited the

texture’s temporal continuity and shadow information to improve the hand

parameter estimation. They also introduced gradient terms to improve the

self-occlusion of the fingers. However, their technique is computationally ex-
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pensive similar to those of full hand sampling at once (ref. Section 2.1.7) and

template matching.

Instead of sampling and evaluating the whole hand at once, Sudderth

et al. (2004b) samples and evaluates each hand-part separately. Even though

the sum-of DOF of each hand parts is much higher than a hand as a whole,

it reduces the search space (Hamer et al. 2009). Sudderth et al. (2004b) used

nonparametric belief propagation (Isard 2003; Sudderth et al. 2003) to en-

force the kinematic constraints of the hand, which they improved later for

the occlusion handling technique in Sudderth et al. (2004a). Later Hamer

et al. (2009) proposed a hand tracking technique while manipulating an ob-

ject inspired by the Sudderth et al. (2004b). Hamer et al. (2009) was im-

proved later in Hamer et al. (2010) by including an object-dependent hand

pose prior. They learned object-dependent hand pose prior using sparse train-

ing data. However, Hamer et al. (2009) used generalized belief propagation

(Yedidia et al. 2005) instead of nonparametric belief propagation. Basically,

the two approaches are very similar: nonparametric belief propagation uses

particle filters for sampling with belief propagation while in belief propaga-

tion the sampling method is independent of the message passing algorithm.

Both methods used local trackers for 16 hand parts: 3 parts of each of the 5

fingers and one to palm.

In summary, model-based techniques extract the hand configuration

more accurately than appearance-based techniques. However, model-based

techniques are computationally expensive.

2.1.7 Joint Evidence Techniques

Joint evidence techniques (Wu & Huang 2001; Stenger et al. 2006; Martin

et al. 2008; Oikonomidis et al. 2011a) considered the whole hand as a sin-

gle object. Treating the whole hand as one single object/hypothesis avoids
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the problem of explicit occlusion handling. Kinematic constraints are in-

built in the joint evidence techniques. Wu & Huang (2001) presented a card-

board model and sampled the whole hand at once. Even though hand has 27

degrees-of-freedom, only certain hand configurations are natural and possible

due to kinematic constraints. As such, Wu & Huang (2001) learnt the natural

hand articulation to reduce the search space. Also, to deal with the high di-

mensionality problem, Stenger et al. (2006) stored hand shapes in a database

and hierarchically searched at runtime. Storing all possible hand samples in

the database increased the cost of storage space.

The recent work of Oikonomidis et al. (2011a) might be the most no-

table work in this category. However, unlike Stenger et al. (2006) they created

the samples at runtime to test the hypothesis and used the power of graphical

processing unit (GPU) to deal with added computational complexity. Oikono-

midis et al. (2011a) used a simple depth discrepancy feature and particle

swarm (Eberhart & Kennedy 1995; Kennedy et al. 2001) technique to match

the proposed hypothesis with observed depth from Kinect.

Search space for the hand configuration is made with 27 DOF. There is

a need for four hand samples even to sample two different rotational angles

for two phalanges. Hence, joint evidence techniques are computationally ex-

pensive than disjoint evidence techniques. However, they deal with occlusion

effortlessly. As all the hand parts are drawn together, there is no need for a

module to confirm the kinematic constraints.

2.1.8 Disjoint Evidence Techniques

Disjoint evidence techniques (Sudderth et al. 2004b; Hamer et al. 2009; Ke-

skin et al. 2011; Poudel et al. 2013a) consider each hand part separately. Fif-

teen parts of the five fingers and one palm are sampled and evaluated sepa-

rately. Each hand part is represented using 6 DOF, 3 DOF for position and
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3 DOF for rotation. The number of all DOFs is 96 for disjoint evidence

techniques. Even though the number of DOF increased to 96 DOF, tracking

hand parts independently decomposes the search space and reduces the search

space greatly (Sudderth et al. 2004b).

Sudderth et al. (2004b) introduced the first disjoint evidence technique

for 3D hand tracking. Previously, Deutscher et al. (2001) also reported a sim-

ilar technique for articulated body motion capture. Sudderth et al. (2004b)

sampled and evaluated each hand part independently. They used nonpara-

metric belief propagation (Isard 2003; Sudderth et al. 2003) for global opti-

mization of the hand configurations.

Recently, the work of Keskin et al. (2011) might be the most impressive

work in this category. They used Kinect (2013) depth sensor for hand pose

estimation. Also, the work of Keskin et al. (2011) falls in the appearance

based approach. Keskin et al. (2011) used random forest (Breiman 2001) to

classify each hand part and means-shift (Comaniciu & Meer 2002) to find the

center of the probability mass function i.e. hand joints. They used neural

networks to predict the occluded joints.

Disjoint evidence techniques are computationally efficient because they

reduce the search space. However, these techniques need additional mecha-

nisms to handle the occlusion and hand parts collision.

2.2 Human Body Tracking

Full human body tracking and hand skeleton tracking shares some common

problems such as a tree-like connectivity, shape deformation and size variabil-

ity. Human body tracking research has a long history as early as O’Rourke

& Badler (1980) and Hogg (1983). Aggarwal & Cai (1997), Moeslund et al.

(2006) and Poppe (2010) reviewed previous work of the human body track-
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ing. This section summarizes the human body tracking works relevant to the

hand tracking problems.

In the last decade, most of the computer vision based human motion

capture or body tracking techniques treat each limb, head and torso inde-

pendently (Felzenszwalb & Huttenlocher 2000); such a strategy reduces the

search-space and allows softening of the constraints on the joints. Such a

model is also known as a loose-limbed model (Sigal et al. 2003). Sapp et al.

(2011) proposed an ensemble of stretchable models for upper body tracking

and they represented each hand using a separate stretchable model. The main

contribution of Sapp et al. (2011) is joint representation as unary potential,

which makes their model adaptive for various lengths of limbs.

Leibe et al. (2008) proposed an object detection technique called im-

plicit shape model (ISM). They learned visual words to predict the center of

the 2D objects. Later, Muller & Arens (2010) applied ISM to body tracking.

They learned offsets from the visual words to predict the center of each body

part. Gall & Lempitsky (2009) also applied the ISM to body tracking but they

replaced visual words learning with a random forest (Breiman 2001). They

learned the voting offsets in the leaf nodes of the random forest for each body

part center. The main advantage of using random forest instead of learning

visual words is that even the pixels far from the object/body-part can vote for

their center.

Availability of the consumer depth sensor (Asus 2013; Kinect 2013;

Primesense 2013) encourages the appearance-based body skeleton tracking

research. Ganapathi et al. (2010) used a Swissranger SR4000 time-of-flight

(Lange & Seitz 2001) camera and tracked the markerless full body. Shotton

et al. (2011) proposed the appearance-based body skeleton tracking system

using Kinect depth sensor (Kinect 2013). Shotton et al. (2011) used random

forest (Breiman 2001) for body parts classification and mean-shift (Comani-

ciu & Meer 2002) to collect the body part classification evidence for body
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joints predictions. The work of Shotton et al. (2011) was very impressive as

they tracked bodies with different shapes and sizes in unconstrained environ-

ment in real-time. Girshick et al. (2011) improved further using regression

forest and efficiently predicted all joints including occluded ones. Sun et al.

(2012) went a step further by clustering similar poses together before regress-

ing the joints.

The motion of the human body is more predictable and slow, while the

hand follows much random path and the motion of the fingers only take a

fraction of a second (Tomasi et al. 2003). The shape variation of the hu-

man body has greater effect than that of the hand. However, color and tex-

ture of clothings provide reliable features for full-body tracking (Ramanan &

Forsyth 2003). Hand parts appearances are very similar to each other while

the head and torso provides unique cues for the body localization. In most

cases, the body is upright but the hand makes random orientation. The num-

ber of meaningful hand configurations are much higher than of the body and

self-occlusion of the fingers is severe (Keskin et al. 2011). In addition, the

size of the fingers are very small compared to the body, which makes fingers

less distinctive than body parts.

2.3 Skin Color

Most of computer vision based hand tracking techniques use skin cue to local-

ize the hand region as well as to extract the hand model (Stenger et al. 2006;

Sudderth et al. 2004a; Hamer et al. 2010). This thesis has used skin color for

hand localization and hand model extraction. Skin detection is a difficult task

due to the illumination variation, camera characteristic, ethnicity variation,

individual characteristic and other factors.

Skin color detection has two important parts: one is color space se-

lection and another is color modelling. RGB (red, green and blue channels)
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(Crowley & Berard 1997; Bergasa et al. 2000; Brown et al. 2001; Jones &

Rehg 2002; Sebe et al. 2004), HSV (hue, saturation and value channels)

(Huynh-Thu et al. 2002; Wang & Yuan 2001; Zhu et al. 2004), CIE-Lab (in-

ternational commission on illumination, lightness and a and b color-opponent

dimensions) (Cai & Goshtasby 1999; Kawato & Ohya 2002), YCbCr (luma,

blue difference and red difference) (Hsu et al. 2002; Wong et al. 2003), and

normalized RGB (Brown et al. 2001) are popular color spaces, with RGB and

HSV being the most frequently used. CIE-Lab uniformly represents the color

based on how two colors differ to the human observer. Modelling brightness

also know as light intensity is easier with HSV than RGB. However, most

systems choose RGB color space because the illumination variation can be

eliminated by increasing the sample size (Jones & Rehg 2002). Due to this

advantage, the RGB color space is chosen in most of the hand tracking re-

search.

Skin color modelling falls into three categories: explicitly defined skin

region (Peer et al. 2003), non-parametric and parametric methods. The his-

togram based Bayes classifier is a popular non-parametric modelling approach.

Jones & Rehg (2002) used RGB color space and histograms based Bayes

classifier and obtained 90% true positive rate with 14.5% false positive rate

on unconstrained web images, a dataset made up of approximately 14,000

images. On the parametric skin modelling technique, a mixture of Gaussian

has shown the best result (Yang & Ahuja 1999; Terrillon et al. 2000). How-

ever, Jones & Rehg (2002) showed that, given enough samples, the histogram

based Bayes classifier technique is slightly better than a mixture of Gaussians.

Neural Network (Phung et al. 2002), self organizing map (Brown et al. 2001),

Bayesian network (Sebe et al. 2004) and a few other methods have been used

for skin color modelling.

It is not surprising that skin color detection is a well researched topic.

However, most of the work treats skin at pixel level. Skin region is normally
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made of many pixels together. Hence, viewing skin as region rather than

pixel certainly has many advantages. The work of Yang & Ahuja (1998);

Kruppa et al. (2002); Jedynak et al. (2003); Sebe et al. (2004) treat skin as

group of pixels. Yang & Ahuja (1998) used multi-scale segmentations to

find the elliptical region for face detection. Hence, their model is biased

toward elliptical shapes. Kruppa et al. (2002) also used a similar concept

to find elliptical regions using color and shape information for the purpose

of face detection. Sebe et al. (2004) used fixed 3x3 pixel patches to train

Bayesian network classifiers using semi-supervised learning, which cannot

deform based on the size and shape of the region as the size of the patch is

fixed to 3x3 pixels.

Even skin color of a same person can vary in some extent due to the

illumination and background reflections. To tackle with such a problem var-

ious adaptive techniques have been proposed. The basic idea of all adaptive

technique is changing the pre-learnt color model frequently during the time of

tracking. Wu et al. (2000) used an adaptive self-organizing color segmenta-

tion algorithm to localize the hand. Stern & Efros (2002) adaptively switched

between color spaces to track the face. Zhu et al. (2004) refined a Gaussian

mixture model using expectation-maximization during the skin color tracking

in videos.

Skin color is an important cue for hand detection and segmentation.

However, lighting conditions and skin color variations make the problem

harder. Hand tracking techniques which use the skin color cue assume that

the user is not using any kind of hand glove and with full sleeve clothing.

2.4 Relevant Techniques

This section describes some of the algorithms and techniques used in this

thesis and the rest of the algorithms and techniques are described in the re-
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spective chapter’s sections only. Superpixels and conditional random fields

algorithms are use in Chapter 3. Reservoir sampling, mean-shift, and Markov

random fields algorithms are use in Chapter 5.

2.4.1 Superpixels

(a) Original image (b) After segmentation

(c) Segmentation visualization

Figure 2.2: An example of superpixel segmentation.

The smallest physical unit/point in a digital display device is know as

a pixel (short form of picture element). Generally, pixels are equidistant in

the display devices. However, the number of pixels in each row and column

depends upon the display device. The pixels are arranged in a grid structure.

During the pixelation process of a scene, the boundary of an object might not

be well represented. A region or a collection of pixels is called a superpixel,

even though there is no hard rule about how to group the pixels together i.e.

segment the region. In practice, a five dimensional vector is used to extract the

superpixels: three RGB color channels and two positional coordinates of the

pixel. The quick shift (Vedaldi & Soatto 2008) image segmentation algorithm
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is one of the popular techniques for superpixel segmentation. Superpixels

generated from this approach vary in size and shape, hence the number of

superpixels in each image is highly dependent upon the complexity of the

image. An image with low color variation will have a smaller number of

superpixels than an image with high color variation, as there is no penalty

for boundary violation. Generally, the concept of boundary is not used when

extracting the superpixels, however different objects have different texture or

color which will implicitly act as boundaries. Figure 2.2 on the preceding

page shows examples of superpixels of an image. ”The Superpixel extraction

library” Vedaldi & Fulkerson (2008) has been used throughout this thesis for

superpixel segmentation/extraction.

Recently, Achanta et al. (2012) proposed a simple superpixel segmen-

tation technique. Only one parameter can control the number of superpixels

in their technique. The major contributions of Achanta et al. (2012) are speed

and memory efficiency for superpixel extraction. Interestingly, their tech-

nique can extract approximately same size of superpixels and still preserve

the object boundaries. Their technique adopted k-means clustering approach

to extract the superpixels. However, there are many other superpixel seg-

mentation techniques exist for examples entropy rate superpixel (Liu et al.

2011), superpixels via pseudo-Boolean optimization (Zhang et al. 2011) and

unsupervised segmentation via lossy data compression (Yang et al. 2008).

The popularity of the superpixels is increasing among the computer vi-

sion community (Achanta et al. 2012) as it can group similar pixels together

and reduce local redundancy. Grouping similar pixels together increases the

efficiency for higher level vision tasks such as hand tracking and face de-

tection as the other techniques can operate over superpixels rather than pixel

(Poudel et al. 2012).
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2.4.2 Reservoir Sampling

Sampling from a stream of data is not a straightforward task when the size of

the data is unknown at the beginning, but also sampling from a large stream

with known size is a difficult task when all data cannot fit into the computer

memory. Even though data may fit in the computer memory, storing the data

in the memory and sampling with replacement requires two passes of the data.

The problem can be better solved using reservoir sampling (Vitter 1985).

Reservoir sampling keeps all incoming data stream until the number of the

incoming data stream is equal to the sample size. For all incoming stream

data, it then replaces the old-sample with probability of sampling size to the

current stream data size i.e. probability equal to sample-size/current-stream-

data-size.

In most computer vision tasks the size of data is unknown. For example,

number of pixels in hand/human-body-part region as number of pixels in body

part depends upon the body size, the distance of the body part from the camera

and other factors. Girshick et al. (2011) used reservoir sampling to sample

the point cloud for Hough voting as their technique needed massive memory

space and computing power. This thesis also uses reservoir sampling for

efficiency reasons. Reservoir sampling is used to collect the votes for joint

locations in Chapter 5.

2.4.3 Mean-Shift

Mean-shift is a nonparametric technique for feature space analysis and local

mode finding. Originally mean-shift was proposed by Fukunaga & Hostetler

(1975) and later popularized by Comaniciu & Meer (2002). Mean-shift is a

simple iterative procedure: in each iteration this technique move a mode of

the data point toward its optimum point. The procedure terminates when data

points stops moving further or other termination criteria are satisfied. Dif-
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ferent types of kernels can be used with mean shift procedure, which makes

some K-mean clustering algorithms a special case of mean-shift (Cheng 1995).

The detailed overview of mean-shift can be found in Fukunaga & Hostetler

(1975), Cheng (1995), and Comaniciu & Meer (2002).

Mean-shift is a popular technique for multi-model feature space anal-

ysis and clustering. Shotton et al. (2011) used mean-shift to find the body

joints after calculating the probabilities for each body joint in the whole seg-

mented foreground region. Similarly, Girshick et al. (2011) used mean-shift

to cluster and find the center of the Hough voting for body joint detection.

Keskin et al. (2011) applied a similar technique for hand joints detection.

Cheng (1995) showed that mean-shift is similar to the gradient descent

techniques but it adopts the right gradient step size more effectively. Hence,

mean-shift can be viewed as a clustering algorithm along with local mode

finding. Mean-shift is one of the efficient mode seeking techniques but it is

always stuck in local mode (Comaniciu & Meer 2002). Hence, to find the

global mode, a good initialization is necessary, which can be seen as a major

shortcoming of the mean-shift technique.

2.4.4 Markov Random Fields

Markov random field (MRF) is a class of graphical model. It is also known as

Markov network or undirected graphical model (Kindermann & Snell 1980).

Unlike the directed graphical model, the MRF node connections do not have

a directional arrow i.e. links between nodes do not carry arrows. Figure 2.3

on the next page shows an example of MRF and details of MRFs can be found

in the Chapter 8 of Bishop (2006).

In the graphical model, the fully connected subset of nodes are called

clique and denoted byC. The joint distribution over maximum clique is given

by (Yedidia et al. 2005):
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Figure 2.3: An example of Markov random model.

P (X) =
1

Z

∏
cεC

ψc(Xc) (2.1)

where ψc(Xc) is a potential function and the quantity Z also known as

partition function is a normalization constant over C is given by:

Z =
∑
X

∏
cεC

ψc(Xc) (2.2)

Also, ψc(Xc) ≥ 0 is necessary condition to have P (X) ≥ 0. Any

message passing techniques can be used to make the inferences in MRF. This

thesis uses generalized belief propagation technique by Yedidia et al. (2005).

2.4.5 Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et al. 2001) are a discrimina-

tive model, which can optimize the arbitrary graphical model known as undi-

rected graphical model. CRF offers several advantages over Markovian mod-

els and HMM as CRF removes the strong dependence assumptions made by

Markov models and HMM. Maximum entropy Markov models (MEMMs) and

HMMs are biased toward few successor states, while CRF removes such bias
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(Lafferty et al. 2001).

This thesis uses CRF for the skin and non-skin region labelling prob-

lem. The advantage of CRF in labelling tasks is that CRF optimizes labels

globally rather than locally like most of the other techniques such as condi-

tional Markov model (CMM) (Ratnaparkhi 1996). Therefore state history is

not needed in CRF. Lafferty et al. (2001) showed that CRF significantly out-

performed Markov random fields. Hence, in this thesis CRF is used for skin

and non-skin labelling tasks in Chapter 3.

CRF has similar structure to that of the conditional Markov model (Rat-

naparkhi 1996). It directly models the conditional distribution P (S|O), where

S is the state and O is the observed output. CRF allows arbitrary connections

and overlapping among nodes unlike HMM and CMM. An example of CRF

graph is shown in Figure 2.4. CRF is an undirected graphical model with

two layers. One layer describes the state sequence S and the second layer

describes the observed output O. In CRF, each output node is connected with

every states in state layer. An example of CRF is shown on Figure 2.4.

Figure 2.4: An example of first order CRF graph. The top layer is state
sequence and bottom layer shows the output sequence. Output sequence is
observable in CRF and is represented by gray circles. In CRF output nodes
are connected with every states in the sequence.

The fully connected subset of nodes is called clique. The clique poten-

tial ψ(.) maps the label for a given clique with highest positive value among

all random variables. It is given by (Lafferty et al. 2001):
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P (S|O) =
1

Z(O)

∏
cεC

ψc(Sc, O) (2.3)

where, Z(O) is global normalization function and given by:

Z(O) =
∑
S

∏
cεC

ψc(Sc, O) (2.4)

CRF graph can be optimized using any graph optimization techniques.

This thesis uses a multi-label graph library called graph cuts (Boykov et al.

2001; Boykov & Kolmogorov 2004; Kolmogorov & Zabih 2004) for the in-

ference in CRF graph.

2.5 Summary

This chapter described the research related to 3D hand tracking. Appearance-

based techniques are fast but cannot handle the occlusion. Model-based tech-

niques can extract more accurate 3D hand skeleton but are computationally

more expensive than appearance-based techniques. Tracking by detection,

i.e. hand-pose estimation, is a good strategy to avoid the tracking failure

called drifting phenomenon. However, due to the sensor noise recovering a

full hand skeleton using a single frame is a difficult task.

Before detection of the hand parts, hand region segmentation is nec-

essary. For the hand region segmentation skin cue is not enough because

there are many objects which look similar to the skin color. Hence, skin cue

together with depth cue would be more suitable for accurate hand region seg-

mentation. The following Chapter 3 presents the skin color detection and

hand region segmentation techniques.
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Chapter 3

Skin Cue for Hand Region

Segmentation

3.1 Background

Skin color provides a powerful cue in complex computer vision applications

such as hand tracking, face detection, and pornography detection. Skin color

detection is computationally efficient yet invariant to rotation and scaling.

The main challenges of skin color detection are illumination, ethnicity back-

ground, make-up, hairstyle, eyeglasses, background color, shadows and mo-

tion (Kakumanu et al. 2007). Many of the skin color detection problems can

be solved by using infrared (Socolinsky et al. 2003) and spectral imaging

(Pan et al. 2003). However, such systems are expensive as well as cumber-

some to implement. Moreover, there are many situations where such systems

cannot be used such as image retrieval from the internet.

Most of the skin color detection techniques are pixel-based and treat

each skin, or non-skin pixel, individually without considering its neighbours.

However, it is natural to treat skin or non-skin as regions instead of individual

pixels. Hence, this chapter focuses on the region-based skin color detection
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technique for hand region segmentation. Surprisingly, there are only a few

region-based skin detection techniques (Yang & Ahuja 1998; Kruppa et al.

2002; Jedynak et al. 2003; Sebe et al. 2004). Kruppa et al. (2002), and Yang

& Ahuja (1998) searched for elliptical skin color shape to find the face. Sebe

et al. (2004) used fixed 3x3 pixel patches to train a Bayesian network, and

Jedynak et al. (2003) smoothed the results using a hidden Markov model.

This chapter proposes a new technique purely based on the concept of regions,

irrespective of the underlying geometrical shape. Hence, this technique can

be easily integrated into any skin detection based system.

The proposed technique uses a segmentation technique called super-

pixel (Moore et al. 2008; Ren & Malik 2003) to group similar color pixels

together. Each superpixel is then classified as skin or non-skin by aggre-

gating pixel-based evidence obtained by using a histogram based Bayesian

classifier, similar to Jones & Rehg (2002). This technique is also known as a

non-parametric technique. However, any suitable pixel-based or superpixel-

based skin color classification technique can be used. The result is further

improved with Conditional Random Field (CRF), which operates over super-

pixels instead of pixels. Even though the segmentation cost is an overhead

in comparison to the pixel-based approach, it effectively reduces the process-

ing cost further down the line such as smoothing with CRF. Aggregation of

pixels into regions also helps to reduce local redundancy and the probabil-

ity of merging unrelated pixels (Soatto 2009). Since superpixels preserve the

boundary of the objects (Fulkerson et al. 2009), it helps to achieve accurate

object segmentations.

In addition, this chapter presents a region-based skin color detection

technique. The work of Yang & Ahuja (1998), Kruppa et al. (2002), Jedynak

et al. (2003) and Sebe et al. (2004) are relevant to the proposed technique.

However, Yang & Ahuja (1998) used multi-scale segmentations to find ellip-

tical regions for face detection which made their model biased toward skin
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color elliptical objects. Likewise, Kruppa et al. (2002) also used a similar

concept to find elliptical regions using color and shape information for face

detection. Whereas, Sebe et al. (2004) used 3x3 fixed size pixel patches for

skin detection. The presented technique in this chapter uses patches of vary-

ing sizes, which is purely based on image evidence, i.e. skin color in this

case. Jedynak et al. (2003) also used a hidden Markov model at pixel level,

while this chapter uses conditional random fields and operates on superpixel,

as described in Section 3.2.4.

The presented technique not only outperforms the current state-of-the-

art pixel-based skin color detection techniques but also extracts larger skin

regions and provides semantically more meaningful results while still keeping

the false-positive rate low (see Table 3.1 and Figure 3.3 on page 54). This

could benefit higher-level vision tasks apart from hand segmentation, such as

face and human body detection.

Section 3.2 presents the proposed region-based skin color detection

technique; experiments and results are discussed in Section 3.3. Finally, Sec-

tion 3.4 summarizes the chapter.

3.2 Region-Based Approach

This chapter argues that skin is better presented as regions rather than individ-

ual pixels. The proposed region-based approach has four major components:

a basic skin classifier (Section 3.2.1), extraction of regions called superpixels

(Section 3.2.2), superpixels classification (Section 3.2.3), and a smoothing

procedure with conditional random fields (CRF) (Section 3.2.4). All compo-

nents are described in detail in the following sub sections.
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3.2.1 Basic Skin Color Classifier

Any good skin color classification method can be used as a basic skin color

classifier. This chapter uses the histogram based Bayesian classifier similar to

that of Jones & Rehg (2002), a state-of-the-art skin color detection technique.

Learning skin and non-skin histograms: densities of skin and non-

skin color histograms are learned from the Compaq dataset (Jones & Rehg

2002). The Compaq skin color dataset has approximately 4,700 skin images

and 9,000 non-skin images collected from free web crawling. 50% skin and

50% non-skin images are chosen randomly for training and the remaining

50% skin and 50% non-skin images are used for testing. The data-set has

images from all ethnic groups with uncontrolled illumination and background

conditions and the number of manually labelled pixels is nearly 1 billion.

Skin and non-skin histograms are obtained in RGB color space with 32 bins

for each color channel, similar to the settings in Jones & Rehg (2002).

Skin color classifier: The conditional probability of a color c being a

skin s is given by:

P (s|c) =
P (c|s)P (s)

P (c)
(3.1)

where, P (c|s) is the likelihood of a given color c being skin, P (s) is skin color

prior and P (c) is marginal likelihood of the color c. Similarly, the probability

of a color being non-skin s̄ given a color, c, is given by:

P (s̄|c) =
P (c|s̄)P (s̄)

P (c)
(3.2)

where, P (c|s̄) is the likelihood of a given color c being non-skin and P (s̄) is

prior for non-skin. Further P (c) could be calculated as:

P (c) = P (c|s)P (s) + P (c|s̄)P (s̄) (3.3)
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P (c|s) and P (c|s̄) are directly calculated from skin and non-skin histograms.

Prior probabilities P (s) and P (s̄) can be estimated from the total number of

skin and non-skin samples in the training dataset. However, for skin and non-

skin classification, comparison of P (s|c) to P (s̄|c) is simply enough. Using

Equations (3.1) and (3.2), the ratio of P (s|c) to P (s̄|c) can be simplified to:

P (s|c)
P (s̄|c)

=
P (c|s)P (s)

P (c|s̄)P (s̄)
(3.4)

The ratio can be thresholded to produce a skin and non-skin classifica-

tion rule (3.5). Further, P (s) and P (s̄) are also constants and if we assume

equal priors, inequality (3.5) can be simplified as (3.6):

P (c|s)P (s)

P (c|s̄)P (s̄)
> Θ (3.5)

Therefore:

P (c|s)
P (c|s̄)

> Θ (3.6)

where Θ is a constant threshold value for skin and non-skin classifica-

tion rule.

In the experiments, the values of P (c|s) and P (c|s̄) are directly looked-

up from normalized skin and non-skin histograms respectively.

3.2.2 Superpixels

A region or collection of pixels is called a superpixel. A five dimensional

vector (three RGB color channels and two positional coordinates of the pixel)

is used to extract the superpixels, using the quick shift (Vedaldi & Soatto

2008) image segmentation algorithm. Superpixels generated from this ap-
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(a) Original image (b) After segmentation

(c) Segmentation visualization

Figure 3.1: An example of superpixel segmentation. A five dimensional vec-
tor is used to extract the superpixels: three RGB color channels and two
positional coordinates of the pixel on image.

proach vary in size and shape, hence the number of superpixels in each im-

age is highly dependent upon the complexity of the given image. An image

with low color variation will have a smaller number of superpixels than an

image with high color variation, as there is no penalty for object boundary

violation. Generally, the concept of boundary is not used when extracting

superpixels, however different objects have different textures or colors which

will implicitly act as boundaries. Figure 3.1 shows an example of superpixels

of an image. This chapter uses ”The Superpixel extraction library” Vedaldi &

Fulkerson (2008) for superpixel segmentation. The details of the superpixel

technique have been described in Section 2.4.1 of Chapter 2.
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3.2.3 Superpixel Classification

First, the pixel based skin color classifier defined in Section 3.2.1 is used to

classify the pixels; then the probability of being skin for a given superpixel

sp with N number of color pixels ci is defined as follows:

P (s|sp) =
1

N

N∑
i=1

P (s|ci) (3.7)

Similarly, the probability of being non-skin for a given superpixel sp

with N color pixels ci is defined as follows:

P (s̄|sp) =
1

N

N∑
i=1

P (s̄|ci) (3.8)

3.2.4 Smoothing with CRF

Skin regions have varying size and shape, depending upon the camera angle,

and distance between the camera and the human body. Hence, to obtain skin

regions, and preserve the skin and non-skin boundaries at the same time, it is

necessary to introduce some constraints. Conditional Random Field (CRF)

provides a natural way of combining pairwise constraints. Color difference

and boundary length between adjacent superpixels are used as pairwise con-

straints similar to Fulkerson et al. (2009). Skin and non-skin labelling L of all

superpixels SP of an image is defined as:

− log(P (L|SP ;ω)) = −
∑

spi∈SP

Ψ(li|spi) + ω
∑

(spi,spj)∈E

Φ(ci, cj|spi, spj)

(3.9)

where ω is the weight of pairwise constraint, E is the set of edges of the

superpixel, and i and j are node indices of the CRF graph. Each superpixel is

represented by a hidden node in CRF graph.
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Color potential (Ψ(li|spi)): the color potential Ψ captures the skin and

non-skin probability of a superpixel spi. We have used skin and non-skin

probability for superpixel directly from superpixel classification defined in

Section 3.2.3 for color potential Ψ, as follows:

Ψ(li|spi) = log(P (li|spi)) (3.10)

Edge and boundary potential (Φ(ci, cj|spi, spj))): pairwise edge and

boundary potential Φ similar to Fulkerson et al. (2009) is defined as follows:

Φ(ci, cj|spi, spj) =

(
B(spi, spj)

1 + ||spi − spj||

)
, [ci 6= cj] (3.11)

whereB(spi, spj) is the shared boundary length measured in pixel, and ||spi−

spj|| is the Euclidean norm of the color difference between spi and spj super-

pixels.

Only one pairwise potential is used to make the system as simple as

possible to show that treating skin color as regions is more effective than

pixels. To improve the effectiveness of our skin color detection method, we

can add more pairwise potentials similar to those in Shotton et al. (2006). This

implementation has only one weighting factor ω, which is optimized using

cross validation. We used max-flow/min-cut graph optimization algorithm

(Boykov & Kolmogorov 2004) for the inference of skin and non-skin regions.

The CRF graph is built on the superpixel level, hence CRF optimization is fast

(ref. Figure 3.2 on the following page). The details of CRF technique have

been described in Section 2.4.5 of Chapter 2.
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Figure 3.2: This example picture has three superpixels (red, blue and gray
regions). White circles represent the Markov random field (MRF) nodes and
white lines represent the connections between two MRF nodes. Even though
there are a few hundreds pixels, it has only three MRF nodes as the MRF is
built upon the superpixels level.

3.3 Experiments and results

This thesis uses the Compaq dataset for skin color related techniques. The

Compaq dataset has approximately 4,700 skin and 9,000 non-skin images,

freely collected from the web. All skin and non-skin images from the Com-

paq dataset (Jones & Rehg 2002) are divided into two equal numbers of sets,

one for training and one for testing. The basic pixel-based skin color clas-

sifier mentioned in Section 3.2.1, detects 90% skin color with a 14.2% false

positive rate, similar as results found by Jones & Rehg (2002). The bin size

of the histogram is equal to 32X3 (32 for each RGB channel), and threshold

constant Θ equal to 1 is used for Equation (3.6).

Superpixel extractions using quick shift are controlled by three param-

eters: (i) λ controls the trade-off between spatial and color consistency, (ii) σ

controls the deviation of the density estimator, and (iii) τ controls the maxi-

mum distance in the quick shift tree, which also controls the size of the super-

pixel. The bigger value of τ produces the bigger superpixels and vice versa.

We have used σ = 2, τ = 6, and λ = 0.9 for our experiment. These are cho-
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sen using a grid search, σ between 0.1 to 5, τ between 1 to 10, and λ between

0 to 1, as there is no explicit mechanism to preserve the skin boundaries. The

grid search procedure for an optimum parameter value is briefly described as

follows:

1. Initialize search interval- starting value a and ending value b.

2. Initialize number of iteration iter = 0 and max iteration max iter =

25.

3. Initialize number of sampling points n = 20, n was constant in our

experiments.

4. Initialize error Et=0 = 100 and change in error ∆E = 100. Error is

measured/converted to percentage %.

5. Repeat the following steps until ∆E > 0.001 or number of iteration

iter < max iter.

(a) Et−1 = Et.

(b) Uniformly sample n points from interval [a, b] inclusive i.e. in-

terval step step equal to (b− a)/(n− 1).

(c) Evaluate the error E for all n sampling points/parameter-values.

(d) Select the lowest error value asEt and the sample point/parameter-

value yielding lowest error as xt.

(e) Change a = xt − (2 ∗ step) and b = xt + (2 ∗ step).

(f) Calculate ∆E = Et−1 − Et.

(g) Increase iter by 1 i.e. iter = iter + 1.

(h) Go to step 4.

6. Return xt as a best parameter value.

With the above selected parameters it is observed that 97.43% of skin pixels
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are correctly grouped into superpixels; i.e. skin pixels which belong to the

superpixel and whose number of skin pixels are more than non-skin pixels,

with a 0.35% false positive rate. The average size of the superpixels are

controlled with the value of τ and σ. Lower values of λ give more importance

to the spatial factor while higher values give importance to the color value.

Skin color detection depends upon the values of the color channels, hence

greater importance is given to the color consistency in superpixel extraction

by assigning higher value to the λ = 0.9. We observed that the skin boundary

is not well preserved with higher spatial importance. The average size of a

superpixel is 65 pixels in our experiments with huge variation; i.e. size of the

superpixel varies from 4 to 400 pixels. However, the size of superpixels is not

fixed and fully depends on the complexity of the image.

Method True Positive False Positive
Jones and Rehg (2002) 90.00% 14.20%
Proposed technique- superpixel only 91.44% 13.73%
Proposed technique- superpixel and CRF 91.17% 13.12%

Table 3.1: A comparison of results of pixel-based and our region-based tech-
niques.

Table 3.1 demonstrates the results comparison between the presented

region-based technique and the current state-of-the-art pixel-based skin color

detection (Jones & Rehg 2002) on unconstrained illumination and background.

The region based technique without CRF has 91.44% true positive rate with

13.73% false positive rate, and with CRF whcih has a 91.17% of true posi-

tive rate and a 13.12% false positive rate. Simply grouping the pixel-based

evidence onto superpixels increased the true positive rate by 1.44% and de-

creased the false positive rate by 0.48% (ref. Table 3.1). This implies that

treating skin as a region yields better results than as pixels. Confusion matri-

ces of our techniques are given on Tables 3.2 and 3.3. Also, confusion matrix

of Jones & Rehg (2002) is given on Table 3.4.

The results on Figure 3.3 on page 54 show the effectiveness of the
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Predicted Labels
Skin Non-skin

Actual Class Skin 033470449 003134234
Non-skin 051829388 325721862

Table 3.2: Confusion matrix of proposed technique- superpixel only.

Predicted Labels
Skin Non-skin

Actual Class Skin 033373402 003231281
Non-skin 049530993 328020257

Table 3.3: Confusion matrix of proposed technique- superpixel and CRF.

region-based technique with CRF over the pixel-based method. The region-

based technique first groups the skin and non-skin evidence from each pixel

into superpixels level using the basic skin color classifier, which helps to re-

move noise. This is the main reason why only grouping the pixel-based evi-

dence into superpixels increases the true positive rate by 1.44%, and reduces

the false positive rate by 0.5% (see Table 3.1). Importantly, CRF further helps

to extract larger smooth skin regions by exploiting neighbouring color infor-

mation and boundary sharing between superpixels.

However, in some cases the region-based technique performs poorly

than the pixel-based technique when we apply the CRF. Figure 3.5 on page 55

and Figure 3.4 on page 55 highlight such inaccuracies. Skin-like pixels and

high boundary sharing between skin and non-skin regions are the main reason

of this failure. Experiment results showed that color difference constraints

only perform better when skin regions are very small and narrow. Although,

overall CRF with both neighbour color difference and length of boundary

sharing constraints performed better. Figure 3.6 on page 56 shows an example

Predicted Labels
Skin Non-skin

Actual Class Skin 032944215 003660468
Non-skin 053612278 323938971

Table 3.4: Confusion matrix of Jones & Rehg (2002).
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Figure 3.3: Comparison between pixel-based Jones & Rehg (2002) and
region-based skin color classification techniques. The left column shows the
original images. The middle-left column shows the superpixels. The middle-
right column shows result of pixel-based classification technique and the right
column shows the result of region-based classification technique with CRF.
CRF helps by exploiting neighbouring color information and boundary shar-
ing between superpixels.

where CRF with both neighbours color difference and length of boundary

sharing performs better, than only with neighbours color difference.

Skin regions do not have the same color values, since even the closest

skin color pixels within superpixels have different color values, and also other

skin-like objects exist. Thus results can be further improved using texture

information, which is left for future work.
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(a) Original im-
age

(b) Superpixels (c) Pixel-based (d) Region-based
without CRF

(e) Region-based
with CRF

Figure 3.4: This example shows the advantages of the region-based approach
even without CRF (see sub-figures c and d). Sub-figures d and e show the
failure case without CRF (ref. red color ellipse).

(a) Original image (b) Superpixels (c) Pixel-based (d) Region-based
with CRF

Figure 3.5: This example shows the failure of the region-based approach
when border information is applied in CRF smoothing (ref. red color ellipse).

3.4 Summary

This chapter presented a region-based skin color detection technique, which

outperforms the current state-of-the-art pixel-based skin color detection tech-

nique Jones & Rehg (2002). The color and spatial distance based clustering

technique is used to extract the regions from the images, known as super-

pixels. In the first step, the proposed technique uses the state-of-the-art non-

parametric pixel-based skin color classifier (Jones & Rehg 2002) which is

called the basic skin color classifier. The pixel-based skin color evidence is

then aggregated to classify the superpixels. Finally, the Conditional Random

Field (CRF) is applied to further improve the results. As CRF operates over

superpixels, the computational overhead is minimal. However, the proposed
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(a) Original im-
age

(b) Superpixels (c) Pixel-based (d) Region-based
CRF with color
information only

(e) Region-based
CRF with color
and border infor-
mation

(f) Original im-
age

(g) Superpixels (h) Pixel-based (i) Region-based
CRF with color
information only

(j) Region-based
CRF with color
and border infor-
mation

Figure 3.6: Example shoeing the failure of a region-based approach when
only a color difference constraint is used on CRF optimization.

region-based technique needed 40-45 milliseconds on a 3.33 GHz Intel pro-

cessor for a 320x240 image size, whereas the pixel-based technique Jones &

Rehg (2002) needed only around 5 milliseconds. However, 80% of added

time is required for the superpixel extraction, which could be reduced by

GPGPU.

The proposed region-based technique achieved 91.44% true positive

rate with a 13.73% false positive rate without CRF optimization, and a 91.17%

true positive rate and a 13.12% false positive rate with CRF optimization.

Grouping the pixel-based evidence into superpixels increased the true posi-

tive rate by 1.44% and reduced the false positive rate by 0.48%. Moreover,

the region-based approach produced smoother results than the pixel-based

methods.

These results suggest that it is better to use region-based skin color

detection technique rather than a pixel-based. By adding more constraints on

the CRF similar to Shotton et al. (2006), the detection rate can be improved.
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Moreover, any better skin color classification method can be used as a basic

skin color classification module, and be easily combined with the proposed

region-based skin color detection framework defined in Section 3.2 to further

improve the results.

The region based skin detection technique is used in the remaining

chapters of this thesis for the hand segmentation.
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Chapter 4

3D Hand Tracking using Markov

Random Field

3D hand tracking is required to enable complex human-computer interaction

but it presents several challenges such as similarity of appearance, high occlu-

sion and complex articulated motion of hand parts. This chapter will focus on

a 3D hand tracking solution using multiple cues including skin color, depth,

proposed depth-foreground-background (depth-fb) feature and context infor-

mation. The depth-fb feature measures the discrepancy of the foreground

depth and confidence about foreground and background separation; context

information utilizes the neighbouring/local information. Further, this chapter

presents a palm deformation handling technique and biologically plausible

efficient hand parts intersection constraints handling techniques. To the best

of our knowledge, the proposed technique is the first that applies context in-

formation to improve 3D hand tracking.
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4.1 Background

The hand is often considered as one of the most natural and intuitive interac-

tion modalities for human-human interaction (Wang et al. 2007). It is also the

most natural interaction interface with the physical world as it is used to ma-

nipulate objects by grasping, pushing and twisting (Caridakis et al. 2010). In

human-computer interaction (HCI), proper 3D hand tracking is the first step

in developing a more intuitive HCI system which can be used in applications

such as virtual object manipulation and gaming. Inbuilt cameras in most con-

sumer electronics devices, and the low price of the depth sensors have opened

new venues in hand gesture recognition research. However, hand gesture

recognition is not a simple task as it requires tracking 27 degrees-of-freedom

of hand (ref. Figure 4.1 on page 62) followed by classification of hand pos-

tures and movements into meaningful gestures. In effect, the quality of hand

gesture recognition is directly dependent on the accuracy of hand tracking.

Hand deformation, self-occlusion, appearance similarity and irregular mo-

tion are also major problems that make 3D hand tracking a very challenging

task. In this chapter, 3D hand tracking is achieved by using multiple cues.

Sixteen local trackers have been used, one for each hand part (the palm and

15 phalanges of five fingers; ref. Figure 4.1 on page 62).

This chapter proposes a model-based 3D hand tracking technique. All

16 parts of the hand (a palm and 15 phalanges of five fingers) are sampled

and evaluated separately, with 16 local trackers. According to the taxonomy

of Oikonomidis et al. (2011a), the proposed technique falls under disjoint

evidence techniques. The hand is segmented before the evaluation of 3D

samples and each hand part sample is evaluated using depth discrepancy fea-

tures. A new depth-fb feature is also proposed in this chapter. It measures the

discrepancy between the foreground depth and confidence about foreground

and background separation. The unexplained regions, segmented hand re-

gion/pixels which have not been covered by predicted 3D hand model, are
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used to improve the accuracy of hand skeleton prediction. Since the shape of

the palm is highly deformable, a palm deformation module has been proposed

to cope with it.

The work of Wu et al. (2005), Stenger et al. (2001), Sudderth et al.

(2004b), Stenger et al. (2006), Hamer et al. (2009) and Oikonomidis et al.

(2011a) are comparable to the work conducted in this chapter with the follow-

ing differences. Wu et al. (2005), Stenger et al. (2001), Stenger et al. (2006)

and Oikonomidis et al. (2011a) used full hand template matching techniques,

while we matched each hand part separately i.e. this chapter we used 16 local

trackers (ref. Figure 4.1 on page 62). Treating the hand model in this way,

reduces the search space (Sudderth et al. 2004b). Stenger et al. (2001, 2006)

also used multiple cameras and Unscented Kalman filter (Julier & Uhlmann

1997) for global hand motion estimation, while this chapter uses iterative

closest point (ICP) (Besl & McKay 1992) for global hand motion tracking.

Sudderth et al. (2004b) tracked the hand using a single RGB camera and used

edge and color features, whereas this chapter uses a depth sensor. Compar-

atively, the work of Hamer et al. (2009) is more relevant than others to the

proposed work in this chapter. However, Hamer et al. (2009) did not track

the palm, which is more deformable than other parts of the hand. Also, the

depth sensor used by Hamer et al. (2009) had only 2 millimetres depth error,

while the Kinect (2013) sensor used in this thesis has from a few millime-

tres to about 4 cm depth error (Khoshelham 2011). More importantly, Hamer

et al. (2009) did not consider hand-part intersection constraints for the reason

that while the hand manipulates an object, fingers do not collide with each

other. However, the problem becomes harder when fingers directly collide

with each other. The proposed deformation and kinematic correction mod-

ules in this chapter deal efficiently with such situations.

The proposed new feature depth-fb is robust when finger tips are mostly

visible as in Hamer et al. (2009). The major contribution of the proposed tech-
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nique is the use of context cue in the hand tracking problem. Context cue is

used to locate the finger tips, and then ICP is used to correct the position of

each distal phalanx by keeping the position of other hand parts fixed, which is

called forward correction. In the next step, all finger tips/distal-phalanges are

kept fixed and other hand parts are searched using the 3D hand tracking tech-

nique and it is optimized using the Markov random field (MRF). This step

is called backward correction. Both steps together are named as forward-

backward correction in this chapter. Hamze & de Freitas (2004) proposed

a fixed structure MRF optimization technique, where half of the nodes were

kept fixed and the remaining nodes were optimized. The proposed MRF op-

timization technique for forward-backward strategy is different from Hamze

& de Freitas (2004) because Hamze & de Freitas (2004) enabled or disabled

nodes in a predefined pattern, whereas the proposed technique in described

this chapter uses context knowledge to enable or disable the nodes in the MRF

framework. The context information based technique is more suitable where

complex finger movements are required.

The major contributions of this chapter are: i) a depth discrepancy mea-

surement feature called depth-fb, which utilizes edge, foreground and back-

ground information (ref. Section 4.3.3); ii) a context cue integration tech-

nique for 3D hand tracking (ref. Section 4.9); iii) a palm deformation han-

dling technique (ref. Section 4.8); iv) a hand parts intersection constraints

technique (ref. Section 4.5.4); v) The use of a belief propagation algorithm

in a forward-backward correction scheme (ref. Section 4.9). The remaining

sections of this chapter are organized as follows: Section 4.5 describes the 3D

hand model; features are detailed in Section 4.3; the hand segmentation tech-

nique is detailed in Section 4.4; the 3D hand tracking technique is in Section

4.6 and the results and summary are described in Section 4.10.
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(a) MRF model (b) Positional con-
straints of MRF
model

Figure 4.1: Both images are taken with a Kinect (2013) RGB-camera (please
note that Kinect has a low resolution RGB camera). Hand model: cir-
cles/nodes represent hand parts in the Markovian network, and the lines rep-
resent pair-wise connections between hand parts in sub-figure (a) to enforce
kinematic constraints and (b) shows the positional constraints between hand
parts to prevent hand parts intersection in 3D space. Each part of the hand
has one local tracker i.e. 16 local trackers (3 phalanges of 5 fingers and
one palm). Please note that the hand has 27 degrees-of-freedom (DOF). The
palm has 3 positional and 3 rotational DOF; metacarpal has 2 rotational
DOF; proximal phalanx has 2 rotational DOF; the intermediate phalanx has
1 rotational DOF; distal phalanx has 1 rotational DOF.

4.2 Observation Model

A Kinect (2013) depth sensor has been used to capture the data. Kinect (2013)

has a RGB/color camera, an infrared (IR) projector, and an IR camera. The

depth data is computed using the IR projector and the IR camera. The IR

projector casts the dot-pattern IR into the scene and the IR camera captures

the reflected IR pattern. The IR patterns are invisible to both the human eye

and RGB camera. Kinect (2013) is therefore a family of structured light

depth sensor. The depth is estimated using the camera calibration technique

and relationship between projected and received IR dot-patterns. The details

of structured light depth sensor can be found in Geng (2011). OpenNI (2012)

data capturing library is used to capture the Kinect data, which gives 640x480
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pixels RGB and depth frames. The depth and RGB images are synchronized

using a camera calibration technique, which is built-in in the OpenNI (2012)

library.

4.3 Hand Features

The proposed technique uses skin color, depth and context cues. All the im-

plemented features are described below, and Table 4.1 on page 65 summaries

all used parameters and their selected values.

4.3.1 Skin Color

The proposed technique uses a histogram-based Bayesian classifier from Jones

& Rehg (2002) for skin color detection. Densities of skin and non-skin color

histograms are learned from the Compaq dataset (Jones & Rehg 2002). The

details of the Compaq dataset have been described in Section 3.2.1 of Chap-

ter 3. Skin and non-skin histograms are obtained in RGB color space with 32

bins for each color channel. As the Compaq dataset has skin images from all

ethnic groups and unconstrained backgrounds, the proposed technique can be

equally applicable to people from any ethnic background, and lighting and

background conditions.

Following, Section 3.2.1 of Chapter 3 the confidence of being a skin

color for a pixel õi of a sample patch Õ is defined as:

R(si|õi) =
P (c|s)
P (c|s̄)

(4.1)

and the confidence of being skin for the whole sample patch Õ is defined as

R(Ś|Õ) = 1
N

∑
õi∈Õ 6=0

R(si|õi), where Ś is the confidence of being skin for a

patch Õ and N is the total number of pixels whose depth value is not zero on

63



the given sample patch Õ. Then, the final confidence of being skin S for the

sample patch Õ is obtained using the following equation:

L(S|Õ) =
1

1 + e−R(Ś|Õ)
(4.2)

Equation 4.2 bounds the confidence values between 0.5 to 1. We can also use

sum of log of likelihood ratios instead of sum of likelihood ratios to compute

R(Ś|Õ) and map the confidence values between 0 to 1 in the Equation 4.2.

However, we observed that skin color confidence around the finger tips was

very low due to the presence of nails. Hence, to minimize the skin color

confidence variation among the distal phalanges and other hand parts, we

preferred sum of likelihood ratios to compute the R(Ś|Õ). Since we used

skin color cue along with depth, our proposed technique is still reliable.

4.3.2 Depth

The depth feature for a hand part measures the discrepancy D between the

observed/given Kinect depth frame O, and the sample Õ. In another words,

discrepancy measures the dissimilarity between depth frame O and the sam-

ple Õ. Discrepancy is only measured for the sampled position where depth

(z) in the observed frame O is not null. Discrepancy i.e. depth difference d at

a pixel i is defined as di = |zõ− zo|, if the observed depth value zo at a pixel i

is not equal to null otherwise, di =
√

(xs − xo)2 + (ys − yo)2 + (zs − zo)2,

where o is the nearest not null depth pixel from the pixel i at the observed

Kinect frame O. The depth value of the background pixels, after hand-

region/foreground segmentation are set to null. Some of the foreground/hand-

region pixels depth values are also null due to the depth sensor noise. Finally,

the total discrepancy value for a sample Õ is given by D́ = 1
N

∑
i∈õ 6=0

di, where

N is the total number of pixels whose depth value is not null on sample Õ.

The depth likelihood value for a sample Õ is then given by the Gaussian
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Param Description Value Optimization
σd Depth noise 10 Grid search between 1 to 20
K Foreground and background

separation threshold
5
mm

Visual observation for val-
ues between 2 to 8 mm

Θ Skin and non-skin ratio
threshold

0.8 Grid search between 0.1 to 5

δ Hand part motion differen-
tial between two consecutive
frames

25 Observation for values be-
tween 10 to 40. However,
it is dependent upon the ex-
periment videos and we can
incorporate the speed of the
hand part as well

δmax Maximum hand part dis-
tance in previous frame t−1

max
d at
t−1

N/A

δmin Minimum hand part distance
in previous frame t− 1

min
d at
t−1

N/A

Table 4.1: Summary of parameters.

function, which is lower the depth difference D́ higher the probability and

vice versa, i.e.:

P (D|Õ) = e
−( D́

σd
) (4.3)

where σd represents the depth noise. We did a grid search for the value of σd

between 1 to 20 and found that σd = 10 gives the best result.

4.3.3 Depth Foreground-Background

The depth foreground-background (depth-fb) feature measures the discrep-

ancy between the foreground depth and confidence in foreground and back-

ground separation. The foreground part penalizes the depth discrepancy for

foreground (i.e. hand part) and denoted as depth − f . The probability for a

depth− f feature is given by the Equation (4.3):

depth− f = P (Df |Õf ) (4.4)
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Figure 4.2: An example of hand part samples. The circles above the fin-
ger tips are sample patches for depth-background, depth-b, features, and the
samples drawn as lines are centers of the hand parts samples for the depth-
foreground, depth-f, feature.

Even though depth − f and Equation (4.3) follow the same procedure, they

are represented separately to distinguish the fact that depth − f is a part of

the depth− fb feature.

For the foreground and background separation, i.e. background dis-

crepancy, a small patch is sampled near the finger tip pointing towards the

distal phalanx, as shown in Figure 4.2. The patch is about half the length of

the distal phalanx with a similar radius. The background discrepancy d at a

pixel i in a sampled background Õb is given as follows:

di =

 0 if |zõ − zo| > K

K − |zõ − zo| otherwise
(4.5)

i.e. background discrepancy d at a pixel i is zero if di = |zõ − zo| is greater

than K, otherwise di = K − |zõ − zo|, where K is the threshold for min-

imum distance for foreground and background separation. This is set as 5

millimetres in the experiments.

The total background discrepancy D́b for a background patch Õb is
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given as follows:

D́b =
1

N

∑
i∈Õb 6=0

di (4.6)

where N is the total number of pixels whose depth value is not equal to

zero/null in sample Õb. The background likelihood, depth− b, is given by:

P (Db|Õb) = e
−(

D́b
σd

) (4.7)

i.e the lower the depth discrepancy then higher the likelihood and vice versa.

Thus the total likelihood for being a distal phalanx is depth− fb = depth−

f ∗ depth− b i.e.:

P (Dfb|Õ) = P (Df |Õf ) ∗ P (Db|Õb) (4.8)

4.4 Hand Segmentation

Skin and depth cues are used for foreground/hand-region segmentation. This

chapter uses a simple thresholding rule for foreground segmentation. The

thresholding rule for the foreground fg is defined below:

fg =

 1 if R(s) > Θ and ( d > (dmin − δ) and d < (dmax + δ))

0 otherwise
(4.9)

where, R(s) is the skin to non-skin ratio provided by the Equation (4.1), Θ is

the threshold value for being skin, d is the depth value and δ = 25 millime-

tres is the maximum hand parts motion differential between two consecutive

frames and dmin and dmax are respectively the lowest and highest depth values

of hand at last frame. It was found that Θ = 0.8 worked better in experiments
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defined in this chapter. The output of the foreground segmentation is shown

in Figure 4.3.

(a) RGB (b) Depth

(c) Skin likelihood (d) Segmented hand region

Figure 4.3: a) RGB Kinect image, b) Kinect depth image, c) skin color like-
lihood and d) depth segmentation output.

Skin and depth cues help to segment the hand reasonably well. How-

ever, this thesis assumes that users use full sleeves. Jaccard index (Hamers

et al. 1989) has been used to measure the performance of hand region seg-

mentation. It is used to measure similarity between finite sets. The Jaccard

index for two sets is defined as:

J(A,B) =
A ∩B
A ∪B

(4.10)

A is the hand region ground truth, and B is the segmented hand region in

our experiment. An image annotation application (ref. Figure 4.4 on the
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Figure 4.4: A screen shot of hand region annotation application used by this
thesis. Green color represents a hand region i.e. ground truth.

next page) has been developed to annotate the hand region ground truth. An

example screen-shot of the hand region annotation application is shown in

Figure 4.4..

Only one signer’s hand has been used for hand-region segmentation

experiment. 13 RGB frames have been manually annotated using the image

annotation application (ref. Figure 4.4). 13 frames have been selected from

two videos. Examples of hand region segmentations are shown in Figure 4.5

on page 71. The average Jaccard index of similarity measurement between

the ground truth and segmented hand region was 0.80139 with variance equal

to 0.00045 in the experiments. The most of the errors are occurring near

hand-sleeve boundary (ref. Figure 4.5 on page 71).
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Figure 4.5: Continue to next page.
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Figure 4.5: Examples of hand region segmentation. First column: green
color (semi-transparent) represents the ground truth. Second column: blue
color (semi-transprent) represents the segmented hand region using proposed
technique, and red color denotes the segmentation error.
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4.5 3D Hand Model

In this chapter, each hand part is tracked separately then all hand parts are

fitted into a Markov random field (MRF) to enforce the anatomic constraints

between adjacent hand parts. Individual hand parts are defined as unary po-

tential (ref. Section 4.5.2), the kinematic joint between two hand parts is

modelled as pairwise constraints (ref. Section 4.5.3), and the hand parts in-

tersection constraints are also modelled as pairwise constraints (ref. Section

4.5.4) in the MRF framework. The geometrical modelling of the hand parts

for sampling is defined in Section 4.5.1.

4.5.1 Geometrical Representation

Unlike the work of Sudderth et al. (2004b), the proposed technique uses a

mesh model for the palm because there is more than 15 millimetres of depth

variation even in a straight palm surface (ref. Figure 4.3 on page 68). As this

chapter has different trackers for each hand part, individual local trackers can

settle in different local minima. Hence, improving each local tracker is very

important in the proposed technique. Each phalanx is geometrically modelled

as a cone, and two spheres are used to fill the cone at both ends (ref. Figure 4.6

on page 75 c and d).

4.5.2 Hand Part Potential

The likelihood of each hand part sample is represented as a unary potential φ

in the MRF framework. All the unary potentials of an object are represented

as a node in the MRF graph. The unary potential φ of a hand part is defined

as:

φi(ui) = Ls(ui) ∗ Pd(ui) (4.11)
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where Ls and Pd are skin and depth likelihoods as provided by the Equations

(4.2) and (4.3) respectively.

4.5.3 Kinematic Constraint

The structural connection between the hand parts is modelled as kinematic

constraint. It has two sub-constraints- positional constraint and angle con-

straint. Thus, kinematic constraints between two hand parts are defined as:

ψkci,j(ui, uj) = Ppos(ui, uj) ∗ Pang(ui, uj) (4.12)

Positional constraint makes sure that the two connected hand parts stay joined,

and is defined as Ppos = e
−Epos
σpos , where Epos is the degree of positional con-

straint violation i.e. distance/gap between two connected hand parts sample,

and σpos = 3 mm being the noise factor. The angle constraint is made up from

the combination of three sub-constraints- grasping, rotation and spreading as

defined below:

Pang = P (e
−Egrasp
σgrasp ) ∗ P (e

−Erot
σrot ) ∗ P (e

−
Espread
σspread ) (4.13)

similar to the positional constraints, E being degrees of respective angles

violation between two connecting hand parts, and σ are normalization factors.

This chapter uses σgrasp = σrot = σspread = 10 degrees, the value for σ is

searched between 20 to 1 degree using cross validation.

4.5.4 Hand Parts Intersection Constraint

Local hand part trackers do not share any information with each other. There-

fore, there are chances that more than one hand part tracker can converge to

the same position due to the appearance similarity of the phalanges. Such
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situations are prevented by using hand part intersection constraints. Unlike

Sudderth et al. (2004a), intersection constraints used in this chapter do not

employ the volume based intersection technique, which is computationally

expensive. Rather, it uses the Euclidean distance between the closest points

(start, mid or end) on the phalanges. The decision to use the closest points

among the phalanges is based on the biological structure of the hand, which

is shown in the Figure 4.1 on page 62. Intersection constraints penalize the

overlapped region among phalanges and are defined below:

ψici,j(ui, uj) = Pinsec(ui, uj) = e
−Einsec
σinsec (4.14)

where Einsec is the degree of hand part intersection violation i.e. overlap to

each other. If the Euclidean distance between any of the start, mid or end

points of two hand parts i and j were less than the sum of their radius, the

degree of intersection violation is defined as the sum of the radius of i and

j minus Euclidean distance between constraint violated points of i and j in

mm. σinsec = 2 mm is the noise normalization factor.

4.6 3D Hand Tracking

3D hand tracking is tackled in two steps, global hand motion tracking, and lo-

cal hand parts motion tracking. The Kinect depth data is converted into a 3D

point cloud. An iterative closest point (ICP) (Besl & McKay 1992) algorithm

is applied on the point cloud data between the observed foreground segmen-

tation at time tn, and the predicted hand model at time tn−1 (ref. Figure 4.6

on the next page a), to estimate the global hand motion. The ICP algorithm

iteratively minimizes the distance between two point clouds to estimate the

rigid transformation from a source point cloud to a target point cloud. Af-

ter the global motion transformation, each local hand part tracker samples

the parts for local hand part motion/rotation/deformation tracking/estimation.
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(a) ICP result (b) Samples (c) Edge (d) Using proposed
depth-fb

Figure 4.6: a) Shows the point clouds of ICP result: green is the observed
point cloud at time tn and the green is point cloud of the predicted hand model
at time tn−1. b) Hand parts sampling. c) Output using edge, skin and depth
features for distal phalanges. d) Output using novel depth-fb feature for distal
phalanges. Depth and skin features are used in all other hand parts except
for the distal phalanges. And t is equal to 82 i.e. frame 82.

All the needed unary potentials, kinematic constraints and intersection con-

straints are computed from Kinect RGB and depth observation. Finally, all

the calculated likelihoods of samples are fitted into the MRF. The MRF is

optimized using the belief propagation (Yedidia et al. 2005) message passing

technique to calculate the marginal probabilities of the local trackers. Similar

to Hamer et al. (2009), it has been observed that rather than increasing the

number of samples, repeating the local hand parts motion tracking module

multiple times with fewer samples is effective, as well as computationally

efficient. For example a hand pose estimation yields better results when re-

peating with 30 sample each times for 5 times, rather than 200 samples for

once only. The following two sub-sections describe the ICP for the global

hand motion tracking and the message passing technique (Kschischang et al.

2001; Yedidia et al. 2005) for local hand part tracking.
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4.6.1 Global Hand Motion Tracking

The 3D hand tracking problem can be divided into two sub-tracking problems

namely: global hand motion tracking, and hand parts motion tracking. As all

hand parts are connected to each other, they share common global movements

and orientation. Further, hand-parts have their own local motions, especially

orientations. The hand moves fast in all directions and orientations, hence

Gaussian motion tracking algorithms are not suitable. The hand region can

be segmented using skin and depth cues (ref. 4.3). In such cases, the iterative

closest point (Besl & McKay 1992) technique can be used to estimate the

transformation and rotations i.e. six degrees of freedom of the hand in con-

secutive frames. ICP (Besl & McKay 1992) is the simplest point clouds reg-

istration technique. The ICP algorithm converge monotonically to the nearest

local minima. However, given an adequate initial position and orientation,

ICP can estimate the global optimum solution. This chapter uses the simplest

form of ICP and estimates the transformation and orientation using singular

value decomposition (SVD) (De Lathauwer et al. 1994). The steps of ICP

technique cab be briefly described as follows:

1. Target point cloud Pt and source point cloud Pt−1 are assigned from

segmented hand region at time t and predicted 3D hand model at time

t− 1 respectively.

2. Initialize the following parameters: number of maximum iteration (50),

maximum correspondence distance (20 cm), euclidean fitness epsilon

(0.05 cm) and transformation epsilon (0.5 cm).

3. Repeat the following steps until any of the criteria at (2) satisfy.

(a) Select the closest sets of points from Pt and Pt−1 using the nearest

neighbour criteria.

(b) Re-estimate the transformation parameters using the SVD tech-
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nique.

(c) Stop the ICP if termination criteria are satisfied.

This chapter uses PCL (2012) open source library for ICP, which uses a KD-

tree technique (Bentley 1975) for efficiency.

4.6.2 Local Hand Parts Motion Tracking

The iterative closest point estimates the rigid transformation for global hand

motion. Each hand part has different movements, hence separate local track-

ers are used. The proposed technique uses 16 local trackers: one palm and 15

phalanges of five fingers. For the hand tracking, when a new frame arrives,

first ICP estimates the global transformation and that global transformation

is applied to each of the hand parts. In the second stage, all hand parts are

sampled independently. Finally, the hand part potential (ref. Section 4.5.2),

kinematic constraints (ref. Section 4.5.3) and intersection constraints (ref.

Section 4.5.4) likelihoods are calculated for all samples.

The message passing algorithm, belief propagation (Yedidia et al. 2005),

is used to maximize the values defined in Equations 4.11, 4.12 and 4.14 for

all samples i.e. to predict the 3D hand model. The message passing algo-

rithm is briefly mentioned below. The details of the algorithm can be found

in Yedidia et al. (2005). Sample i with N(i) neighbours, sends a message

to the neighbour jεN(i) when it gets messages from all neighbouring nodes

except j. The message from i to j, mi→j(uj), for a sample uj is defined as:

mi→j(uj) =
∑

φi(ui).ψ
kc
i,j(ui, uj).ψ

ic
i,j(ui, uj)

∏
kεN(i)\j

mk→i(ui) (4.15)

Finally, the belief of a joint proposal is defined as:

bi(ui) = φi(ui)
∏
jεN(i)

mj→i(ui) (4.16)
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The Gaussian sampling technique is used to sample the hand part. Posi-

tional pos standard deviation = 5 cm and rotational grasp/rot/spread stan-

dard deviation = 6◦ are used for Gaussian sampling. Sample size has been

60 x 5− to− 8− times for each hand part as mentioned in the beginning of

Section 4.6. The details of the MRF technique have been described in Section

2.4.4 of Chapter 2. This local hand part motion tracker is repeated three times

in our experiments.

4.6.3 Hierarchical Correction

Experiments show that when fingers are overlapped or interlinked together,

hand part trackers drift away from the target and after a few iterations particle

degeneracy phenomenon appears. To overcome these particular problems, the

position of each hand part was brought closer to 3 mm whenever the position

of a hand part was found to be more than 3 mm from its joint position. The

correction has been started by making the palm position fixed and moving

the metacarpal phalanx of the thumb within the 3 mm of its joint position in

the palm if it has been more than 3 mm distant. Then all proximal phalanges

moved within the 3 mm of their respective joint if any of them are more than

3 mm from their respective joint position. Similarly, intermediate then distal

phalanges were moved to within 3 mm of their respective joint position. This

hierarchical correction proved to be useful in the experiments.

4.7 Tracking with Depth Foreground Background

Feature

Kinect (2013) depth data is corrupted near the finger edge. This occur espe-

cially when the fingers are close to each other, or are close to the background.

Figure 4.7 on the following page shows an example of such situations, where
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(a) RGB frame #699 (b) Depth frame #699

Figure 4.7: An example of depth data corruption near the edges. In sub-
figure (b) middle and ring figure’s edges are corrupted.

depth of middle and ring figure’s edges are corrupted. In such a situation

tracking with depth feature causes the distal phalanges to move toward the

intermediate phalanges. However, Kinect (2013) RGB image does not suffer

from the above mentioned problem. Even though both skin and depth infor-

mation are used, most of the time the distal phalanges tend to move toward

the intermediate phalanges. Weak skin probability near the finger tips, due

to the fingernail and illumination variation, is a further reasons for the distal

phalanges drifting phenomena. To improve tracking, edge probability using

the chamfer edge matching technique (Barrow et al. 1977) has been added.

In spite of using both skin and depth information together with chamfer edge

matching, drifting phenomenon were still occurring, as shown in Figure 4.6

on page 75 due to the edge similarity between distal and intermediate pha-

langes. To overcome the above mentioned problem, Section 4.3.3 of this

chapter proposes a novel depth-fb feature, which outperforms the edge and

depth together (ref. Figure 4.6 on page 75). The depth-fb feature’s back-

ground part force distal phalanx closer to near the finger tip. Chamfer edge

matching takes 5 milliseconds on average whereas the proposed depth-fb only

takes 1.4 milliseconds on single CPU, which is 3.6 times faster on average and

is simple to implement.
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(a) min state- close hand pose (b) max state- open hand pose

Figure 4.8: Examples of palm deformation techniques.

4.8 Handling Palm Deformation

The palm is highly deformable and has a varying surface characteristic. Depth

values vary by more than 15 mm due to the non-planarity surface of the palm

(ref. Figure 4.3 on page 68 (d)). Hence, discrepancy measurements with el-

liptical palm model similar to those of Sudderth et al. (2004b), Oikonomidis

et al. (2011a) and Stenger et al. (2006) yield a higher discrepancy value, even

if the sample position and orientation match correctly. The wrist and elliptical

palm model surface look rather similar, which attracts the local tracker of the

palm. This makes the problem more challenging. One possible strategy to

solve this is by modelling the palm using a mesh model rather than an ellip-

soid. However, the palm is highly deformable, as seen through for example

spreading to fist poses. To resolve the palm surface deformation issue, the

depth discrepancy is measured as follows:

di =

 0 if oi 6= 0√
(xs − xo)2 + (ys − yo)2 + (zs − zo)2 otherwise

(4.17)

and rest of the procedure to calculate the P (D|Õ) follow the Equation (4.3).

The Equation (4.17) ensures that the palm resides within the foreground/

segmented-hand-region, with no penalty for surface variation. To tackle the
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(a) Without palm deformation module (b) With palm deformation module

Figure 4.9: Comparison between without palm deformation and with pro-
posed palm deformation techniques. The red ellipse of sub-figure (a) shows
the problem of hand pose estimation without the palm deformation module,
and the improved result is marked with the red ellipse of sub-figure (b).

palm-size deformation, this chapter initialized the hand in two stages: one

with a maximum spreading of fingers called max state, and one with closed

fingers called min state (ref. Figure 4.8 on the preceding page). For each

proximal phalanx, the spreading angle difference between two states is then

equally divided into three intervals namely: min, mid and max deformation

states. There can be more than three states depending upon the given test

experiment/video. However, only three states performed well in this chapter

and we did not experiment with further additional states. Later, these three

intervals were used to classify the deformation state of the proximal phalanx.

Finally, the most frequent state of the proximal phalanges is used to deter-

mine the palm deformation state. The size of the palm and joint positions of

the proximal phalanges are changed according to the palm deformation state.

Mid-deformation state is defined as the average of the min and max defor-

mation states. This particular deformation technique is applied at 5 frame

intervals. Palm size and then proximal phalanges position are assigned to the

mid-state for hand tracking without the palm deformation module as most
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Figure 4.10: Left: clustering of unexplained region. Right: black nodes
are fixed after finger tips ICP, while white node hand parts are sampled for
forward correction. This is used as context information.

fingers are neither fully spread nor fully closed. Figure 4.9 on the previous

page shows the comparison with and without the palm deformation module.

As shown in Figure 4.9 on the preceding page, the palm deformation module

is able to adapt in palm size variation, while hand tracking without the palm

deformation module could not cope with palm deformation, and causes error

on joints estimation for the little finger.

4.9 Applying Context Information

As the proposed technique segments reasonably well hand region (ref. Fig-

ure 4.5 on page 71), in this chapter we utilize the segmented hand region not

covered by the predicted hand model (ref. Figure 4.10), which is named as un-

explained observation. To cluster the point clouds of the unexplained region,

predicted hand part centres are used as fixed centroids and the Euclidean dis-

tance as a cost function. The ICP for each distal phalanx is then applied on its

clustered regions/point-clouds and overlapped region, if the number of points
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Figure 4.11: Results comparison between without context cue in first row
and with context cue in second row. Index finger and little fingers are tracked
well with context cue. Also, the context cue helps to recover the hand pose
accurately as shown in second columns.

in cluster regions are greater than 20 as shown in Figure 4.10 on the previous

page. For the next hierarchical tracking using MRF step, distal phalanges are

unchanged and only the other hand parts are sampled (ref. Figure 4.10 on the

preceding page).

To our knowledge, this is the first work which uses the unexplained data

in 3D tracking, as well as modeling the concept of forward-backward loop

correction using the MRF model. Although the work of Hamze & de Freitas

(2004) partially enables and disables the nodes to optimize large MRF net-

work in a loop, they followed a predefined fixed structure but the proposed
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technique in this chapter applies the context cue to decide the fixed nodes.

Figure 4.11 on the previous page shows the effectiveness of adding context

cue. It works better than depth-fb features, however context cue needed ad-

ditional computational time. Figure 4.11 on the preceding page shows the

comparison between hand tracking using and not using context cue. Fig-

ure 4.12 on page 91 shows more results of the proposed 3D hand tracking

using context cue.

4.10 Summary

This chapter presented a 3D hand tracking technique using multiple cues:

skin color with depth-fb, or depth, and context cue features. The novel depth-

fb feature is computationally efficient as it combined the foreground and

background information efficiently. The novel context cue feature utilizes

unexplained observation and improves the 3D hand tracking. It is efficiently

implemented in MRFs network using the forward-backward loop correction

technique. The proposed palm deformation technique effectively handled

the palm surface deformation, as well as size deformation, and improved the

quality of 3D hand tracking. This chapter has presented a biologically plausi-

ble hand part intersection constraint, based on euclidean distance rather than

on volume intersection technique. The results of hand tracking technique are

shown in Figure 4.12 on page 91.

However, the proposed technique has two major drawbacks. Firstly,

similar to the particle filter, it needs very large sample size (around 300 to

500 for each hard part in each frame) to accurately extract the hand skele-

ton, which is computationally expensive. To illustrate that, it took 1.8 sec-

onds per frame in a 3.33 GHz Intel processor. Secondly, it required a hand

initialization module at the beginning of the tracking, and are after tracking

failure known as drifting phenomenon. These two issues are addressed in the
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next chapter using a discriminative technique for an example random forest

(Breiman 2001).
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(a) Frame 26

(b) Frame 55

Figure 4.12: Continue to next page
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(a) Frame 240

(b) Frame 277

Figure 4.12: Continue to next page
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(a) Frame 366

(b) Frame 502

Figure 4.12: Continue to next page
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(a) Frame 571

(b) Frame 630

Figure 4.12: Continue to next page
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(a) Frame 642

(b) Frame 677

Figure 4.12: Continue to next page
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(a) Frame 692

(b) Frame 705

Figure 4.12: Results of the proposed technique. It used skin, depth, context
cue, hierarchical kinematic correction and palm deformation techniques in
the experiment.
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Chapter 5

Combining Discriminative and

Descriptive Techniques for 3D

Hand Tracking

Discriminative techniques (for example random forest) are good for hand part

detection, however in other regard they fail due to sensor noise and high inter-

finger occlusion. Additionally, these techniques have difficulties in modelling

kinematic or temporal constraints. Although model-based descriptive (for

example Markov Random Field) or generative (for example Hidden Markov

Model) techniques utilize kinematic and temporal constraints well, they are

computationally expensive and hardly recover from tracking failure. This

chapter presents a unified framework for 3D hand tracking, using the best

of both methodologies. Hand joints are detected using a regression forest,

which uses an efficient voting technique for joint location prediction. The

voting distributions are multi-modal in nature; hence, rather than using the

highest scoring mode of the voting distribution for each joint separately, the

five highest scoring modes of each joint have been fitted on a tree-structure

Markovian model, along with kinematic prior and temporal information. Ex-

perimentally, it has been observed that relying on a discriminative technique
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(for example joints detection in case of this thesis) produces better results

than a generative technique. Therefore, this observation has been efficiently

incorporated in the proposed framework by conditioning 50% low scoring

joints modes (here modes of the mean-shift in this chapter) with the remain-

ing high scoring joints mode. This strategy reduces the computational cost

and produces good results for 3D hand tracking on RGB-D data.

5.1 Background

The unified framework presented in this chapter falls under appearance-based

and disjoint evidence techniques. However, the technique in this chapter does

not require any additional occlusion or collision handling mechanisms, unlike

other disjoint evidence techniques such as Sudderth et al. (2004a); Keskin

et al. (2011). The proposed framework consists of three modules: i) hand

region segmentation: using skin and depth cues; ii) hand pose estimation:

using a regression forest to estimate the positions of the hand joints ; iii) hand

tracking: using the pose estimation, kinematic prior and temporal information

to track the 3D joints positions.

Inspired by the work of Girshick et al. (2011) which used a regression

forest to efficiently predict occluded human body joints, the joint estimation

module in this chapter uses a discriminative random forest (Breiman 2001) to

classify the hand-parts and learn joint offsets at leaf nodes. Since the voted

joint offsets are multi-modal in nature, a mean-shift (Comaniciu & Meer

2002) voting aggregation technique is used. Unlike Girshick et al. (2011),

which selects human body joint proposals independently, in this chapter joint

proposals with kinematic prior and temporal constraints are optimized glob-

ally with a Markov random field (MRF) (Yedidia et al. 2005). Temporal in-

formation is added on the same semantic level and modelled as MRF (ref.

Figure 5.1 on page 95).
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The proposed 3D hand tracking technique in Chapter 4 has two ma-

jor drawbacks. Firstly, similar to the particle filter, it needs lots of samples

to accurately extract the hand skeleton, which is computationally expensive.

The technique proposed in Chapter 4 needed 1.8 seconds per frame in a 3.33

GHz Intel processor. Secondly, the proposed technique in Chapter 4 needed a

hand initialization module at the beginning of the tracking and after tracking

failure, which is known as drifting phenomenon. The proposed technique has

overcome those two problems.

Keskin et al. (2011) and Hamer et al. (2009) are relevant to the pro-

posed 3D hand tracking technique in this chapter. While Keskin et al. (2011)

used a classification forest to classify hand-parts, an artificial neural network

for occlusion handling and translation vector to push joints from the finger

surface to their inside positions; the proposed technique in this chapter di-

rectly predicts the hand joints without requiring an extra occlusion handling

mechanism. Moreover, Keskin et al. (2011) track the hand by detection (pose

estimation), while the proposed technique incorporates temporal motion and

hand-part length prior. On the other hand, Hamer et al. (2009) used a model

based approach, whereas the proposed technique uses an appearance based

approach. In the MRF model, joints represent MRF nodes, while hand-parts

represent MRF nodes in Hamer et al. (2009). Hence the 3D hand tracking

technique proposed in this chapter is more flexible for different hand sizes as

joint detection is less dependent on the length of the hand parts. Additionally,

half of the nodes in our MRF model are fixed, as explained in Section 5.3.3.

The focus of this chapter is on single hand tracking using a Kinect

(2013) sensor. The contributions of this chapter are as follows: i) a unified

framework for 3D hand tracking which efficiently combines discriminative

and descriptive techniques; ii) a regression forest based technique for hand

pose estimation which performs better than classification forest based tech-

niques; iii) a simple way of selecting better features from a larger feature
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space/pool (ref. feature pool, Section 5.4).

This chapter is organised as follows: Section 5.2 describes how artificial

training data is generated; whilst Section 5.3 presents the proposed 3D hand-

tracking framework. Experiments and results are presented and discussed in

Section 5.4. And, Section 5.5 summarises this chapter.

5.2 Artificial Data Generation

Figure 5.1: Marked
21 hand regions and
MRF model, where
white nodes/joints are
conditioned on black
nodes/joints/fixed-nodes.

This chapter aims to build a markerless 3D hand

tracking system using a RGB-D sensor. The sys-

tem is to be trained to detect the hand joints po-

sition in an RGB-D image stream. Preparing a

real dataset of all possible hand poses with dif-

ferent sizes is almost impossible and time con-

suming. Therefore to overcome such a problem

various computer generated CG hands were used.

The trained system is expected to generalize and

work equally well on real data. To simulate the

Kinect noise, Gaussian noise was added to the CG generated data, which is

defined as:

d′ = d+N(0, σ) (5.1)

where d is a depth value, d′ is a new depth value and N(0, σ) is a normal

distribution with mean 0 and variance σ. Following the technical details of

Kinect published by ROS (2013), the value of σ has been defined as follows:

σ =

 0.001 if d < 0.51

0.001 + ( (0.049/4.5) * (d-0.5)) otherwise
(5.2)
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note: all values are in meters, including depth d. The above equation im-

plements the observation by ROS (2013) that Kinect noise is around +/- 1

millimetre for objects closer than half a meter, and +/- 5 centimetre for ob-

jects at 5 meters (m). Hence, σ = 0.001 m has been used when d is less than

0.51 m, and 0.049 m (which is 0.5 m for object at 5 meters minus 0.001 till

distance 0.5 m) is mapped equally between 0.51 m to 5 m.

The system is trained to detect 15 joints of the hand (palm’s one, thumb’s

two and 12 joints of the remaining four fingers) and 5 finger tips, as depicted

in Figure 5.1 on the preceding page. Similar to the work of Shotton et al.

(2011) and Keskin et al. (2011) the classification forest is trained on 21 re-

gions of the hand; 15 regions are centred around each hand joint and 5 regions

for finger tips and one extra region to cover up the middle part of the palm as

shown in Figure 5.1 on the previous page. Half a million images were used

for the experiments in this chapter, 450,000 images were used for training

and 50,000 for testing. This chapter uses artificial data for training and quan-

titative evaluation of the proposed technique, and the remaining experiments

use the real data.

5.3 3D Hand Tracking

The proposed 3D hand tracking framework has three sub modules: hand re-

gion segmentation, hand pose estimation and hand tracking. The input to the

proposed framework is a stream of RGB-D images. The hand region seg-

mentation module takes both RGB and depth images as input, while the hand

pose estimation module takes only segmented depth image as an input. The

final hand tracking module takes five high scoring modes of each joint. All

the three modules are described in detail below.
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5.3.1 Hand Region Segmentation

Artificial data are used for training and quantitative evaluation purpose only,

whereas the remaining chapter considered the scenario of the basis of real

data for all other experiments. Both skin color and depth cues are used for

the segmentation of the hand.

Skin cue: A histogram based Bayesian classifier (Jones & Rehg 2002) is

used for skin color detection. Densities of skin and non-skin color histograms

are learned from the 14 thousand images of Compaq dataset (Jones & Rehg

2002) which contains images from all ethnic groups with uncontrolled illumi-

nation and background conditions. Training using such a huge dataset makes

the proposed technique equally applicable to unconstrained backgrounds, eth-

nic origins and lighting conditions. The details of skin color detection tech-

nique are described in Section 3.2.1 of the Chapter 3.

Depth cue: At the initialization step the proposed technique assumes that

the hand is the closest object in the scene to the Kinect sensor, and approx-

imately at the centre of the image. Then for a depth frame D at a time t,

it assumes that the hand will be within a cuboid region. The dimensions of

the cuboid region are defined as 10 pixels around the X and Y directions,

and 5 cm around the depth/Z direction from the hand at previous frame, i.e.

hand at time t− 1. The use of a cuboid mask instead of a spherical mask

makes the query of image pixels easier and also the hand is more likely to

move either up/down or left/right faster than in diagonal directions. The use

of depth information D to create a cuboid mask is known as depth cue in the

next sections.

Hand region segmentation: given the skin and the depth cues described

above, the proposed technique extracts the largest region which is later pro-

vided as an input for the hand pose estimation module (ref. Section 5.3.2).
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5.3.2 Hand Pose Estimation

The technique proposed in this chapter uses random forest (Breiman 2001) to

regress the hand joints. Random forest is an ensemble of decision trees. Cri-

minisi et al. (2011) published a detailed tutorial on random forest. Following

Gall & Lempitsky (2009) and Girshick et al. (2011), the proposed technique

uses classification nodes to split a tree, and a Hough voting technique at leaf

nodes of the tree for joint proposals. Since using all votes from the training

pixels is very difficult to deal with, due to limited memory and available pro-

cessing power, reservoir sampling (Vitter 1985) has been used. The details

of reservoir sampling are described in Section 2.4.2 of Chapter 2. The mean-

shift mode finding technique proposed in Comaniciu & Meer (2002) is then

applied on those joint proposals. The highest scoring mode of each joint is

used for pose estimation, and for the hand tracking, five high scoring modes

are used. The details of the mean-shift algorithm is described in Section 2.4.3

of Chapter 2. The feature details, training and testing methodologies are de-

scribed below.

Depth feature

The quality of features has a significant influence on the quality of hand parts

classification. However, because of the computational demand of random

forests, simple features are used to achieve real-time computation. Hence, an

efficient depth comparison feature from Shotton et al. (2011) is used, which

requires only five arithmetic operations. For a pixel d of depth image D,

the depth value at d is denoted by D(d), and the depth difference feature is

denoted by θ = (u, v). Here, d represents the 2D location (x, y) of depth

image D and similarly u and v are 2D pixel offset values. Then the feature
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value F is defined as follows:

Fθ(D, d) = D(d+
u

D(d)
)−D(d+

v

D(d)
) (5.3)

The division by depth value of a given pixel d makes sure the feature is depth

invariant. However, since the feature (ref. Equation 5.3) is not rotationally

invariant, all possible samples of the targeted application are provided. The

maximum length of an adult hand is 23 centimetres (Army 1978), which is

approximately 120 pixels at 1 meter distance in Kinect images. Hence, a

threshold is applied to Fθ such as −25cm ≤ Fθ ≤ +25cm and window size

for u and v is 120 pixels per meter (i.e. 240 pixels at 0.5 meter and 60 pixels at

2 meters). The values of u and v are uniformly sampled for the given window

size.

Classification forest

Each decision tree of the random forest is trained using the depth difference

feature described above to classify the 21 hand regions (ref. Figure 5.1 on

page 95). Each split node of a decision tree is trained with a collection of

depth features and thresholds τ , the aim of thresholds τ is to split all train-

ing pixel examples to left (L) or right (R) child nodes in-order to reduce the

uncertainty of the hand region classes C. The proposed technique uses Shan-

non entropy, S, to measure the uncertainty of 21 hand region classes (ref.

Figure 5.1 on page 95). It is defined as:

S = −
∑
cεC

p(c)log(p(c)) (5.4)

where, p(c) is a normalized discrete probability of a hand region class, cal-

culated using the histogram of all training examples at the given node i.e
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corresponding to the training points in S. Hence, p(c) is obtained as follows:

p(c) =
Number of points belonging to class c at S

Total number of points belonging to S
(5.5)

Hence, the information gain I of the split node is defined as:

I = S −
∑

iε{L,R}

|Si|
|S|

Si (5.6)

Finally, each split node chooses the best combination of a depth feature and

a threshold τ , which maximizes the information gain.

Regression of joints positions at leaf nodes

Unlike a regular classification tree, which stores the discrete probabilities of

all classes (example hand regions in case of this chapter) at the leaf node, the

proposed technique stores 3D offsets for each joint (i.e regression of joint po-

sition). However, the voting joint position from long distance is not reliable,

hence the votes beyond a defined distance threshold are discarded. Different

sets of voting thresholds are used for training and testing and are separately

defined below. The leaf node training and testing techniques are described

below.

Training:
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Algorithm 1: Learning regression of joints positions at leaf nodes

for all pixels d in training images do1

for all joints j do2

Lookup the ground ground truth Pj(x, y, z) for joint j3

Un-project the pixel d to 3D space Pd(x, y, z) using the Kinect4

camera calibration matrix provided by the Kinect software

development kit

Compute the relative/voting offset5

∆lj = Pj(x, y, z)− Pd(x, y, z) for joint j at leaf node l

Discard the voting offset if it’s absolute value is larger than given6

threshold value

Store the voting offset ∆lj for joint j at leaf node l7

for all leaf nodes l and joints j do8

Cluster voting offsets ∆lj using mean shift9

Take top K/2 weighted wlj voting offsets10

The split nodes of a decision tree are learned using the classification forest

technique described above and then the voting offsets for each joint in each

leaf node are learned separately. The ideal scenario is to use all voting offsets

of training pixels for offset learning; however, it is at a practical level difficult

due to the computational complexity. That is why reservoir sampling (Vitter

1985), with size 400, is used for offset vote collection following Girshick

et al. (2011). In the leaf node l the voting offset ∆ for the joint j is defined

by ∆lj = Pj(x, y, z) − Pd(x, y, z), where Pj is the ground truth point in the

3D space for joint j, and Pd is the unprojected point of a given depth pixel in

3D space. The voting offsets are then clustered using a mean-shift algorithm.

Similarly to Girshick et al. (2011), two voting offsets from the largest clusters

are used and the weight wlj is defined using the number of elements in the

cluster; wlj is used to weight the mode/output in the mean-shift procedure for

joint position prediction. The training bandwidth bt and the voting threshold
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λt are learned using a grid search and are the same for all joints.

Joint Inference:

Algorithm 2: Inferences of joints positions

for all pixels d in the test image do1

Un-project the pixel d to 3D space Pd(x, y, z) using Kinect camera2

calibration matrix provided by the Kinect software development kit

for all trees in random forest do3

Follow the decision tree rule to reach the leaf node l4

for all joints j do5

Lookup stored K weighted voting offsets ∆lj6

for all voting offsets K do7

Discard the voting offsets if greater than voting distance8

threshold

Otherwise compute proposal joint location9

zj = Pd(x, y, z) + ∆ljk

Adapt weight from training time Zj = wijk ∗ zj10

// Aggregate weighted votes Zj for each joint11

Sample Zj12

Find joint locations using mean shift for each joint j13

In the testing phase, absolute joint proposal points are collected by compen-

sating learned voting offsets from all depth pixel being tested. The weight

wlj of the proposal points are re-weighted using the depth value of the pixel

as there are fewer pixels for objects further from the sensor. The mean-shift

mode finding algorithm is then applied using the highest N = 500 weighted

joint proposal points which are closer then the test time threshold criteria λj

for each joint j. The bandwidth bj and the threshold λj for each joint are

learned using a grid search.
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(a) Using discriminative technique (b) Proposed Technique

Figure 5.2: This example demonstrates the benefit of combining a discrimi-
native and a descriptive model (MRF).

Learning parameters

The training time voting distance threshold and mean-shift bandwidth, and

test time per-joint voting distance threshold and mean-shift bandwidth param-

eters are optimized independently. Usually, these parameters are optimized

together, but such optimization is computationally expensive. Although this

can be seen as a problem, the experiments show that the proposed technique

produce good results for hand pose estimation. The grid search is done with

cross validation of 2,500 randomly selected hand poses to decide all param-

eters of proposed technique. Training mean-shift bandwidth bt = 0.05 cm

and the voting threshold λt = 15 cm are chosen after grid search with values

between 0 to 25 cm. Test time mean-shift bandwidth varies between 0.33

cm to 1.85 cm. Test-time voting thresholds varied significantly, from as low

as 1.99 cm to as high as 8.75 cm. The used values of test-time bandwidths

and thresholds are as follows (in cm; order: palm joint, thumb metacarpals to

little finger tip):
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Joint locations Bandwidths Thresholds

Palm 0.68 6.31

Palm centre 0.33 8

Thumb Metacarpophalangeal 0.45 3.78

Thumb Distal Interphalangeal 0.87 2.0

Thumb Tip 1.85 2.04

Index Metacarpophalangeal 0.33 8.75

Index Proximal Interphalangeal 0.73 4.77

Index Distal Interphalangeal 0.35 3.8

Index Tip 0.75 2.96

Middle Metacarpophalangeal 0.33 7.31

Middle Proximal Interphalangeal 0.92 3.08

Middle Distal Interphalangeal 0.8 3.18

Middle Tip 0.92 2.84

Index Metacarpophalangeal 0.33 7

Index Proximal Interphalangeal 0.43 3.6

Index Distal Interphalangeal 0.46 2.8

Index Tip 1.2 1.99

Ring Metacarpophalangeal 0.34 5.85

Ring Proximal Interphalangeal 0.33 3.68

Ring Distal Interphalangeal 1.06 2.43

Ring Tip 0.68 2.49

5.3.3 Hand Tracking

3D hand pose estimation (ref. Section 5.3.2) would be an ideal solution for

hand tracking, which can easily overcome the problems of tracking failure

and initialization. Unfortunately, due to depth sensor noise and high inter-

finger occlusion, pose estimation fails. To improve hand pose estimation,

hand-parts kinematics and temporal motion constraints are incorporated. In
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the initialization phase, the proposed technique expects the hand to be approx-

imately in the center of the frame, after the initialization hand part lengths are

estimated/calculated for the next 30 frames. Later, those hand part lengths

are used as hand-parts length prior in consecutive frames. The MRF module

is then applied, which incorporates joint proposals for the pose estimation

module (ref. Section 5.3.2), hand-parts prior and temporal constraints as de-

scribed below,

Temporal Coherence: Two additional joint proposals jt−1 (last posi-

tion) and jt−1 + vj (projected position), where vj is the velocity of the joint j

and estimated using the joint position in two previous frames, with st−1 ∗ Rl

and st−1 ∗Rp scores respectively added for 50% lower mean shift mode scor-

ing joints in joint inferences procedure; Rl = 0.4 and Rp = 0.5 are the

weights of last position and projected position scores respectively. Experi-

mentally it has been found that assigning higher weight to the projected posi-

tion than to the previous position produces better results. Besides, increasing

last and projected position weights provide some stability against noise but

perform poorly under high occlusion and when hand/joint changes direction.

Some parts of the Kinect depth image are corrupted by noise, hence optimiz-

ing the hand-pose estimation only by using joints proposals from pose esti-

mation, does not produce smooth results, whereas addition of the temporal

coherence feature improves the result.

Joint Potential: The joint/unary potential φ is defined as:

φi(ui) =
1

1 + e−x
(5.7)

where x is s
σs

. Further, s is the score of the joint position hypothesis and

σs = 0.015cm is the score noise.

Kinematic Constraints: The structural connection between hand joints

i and j are modelled as kinematic constraints, which are defined as:
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ψi,j(ui, uj) = e
−( diff

σdiff
)

(5.8)

where diff is the difference between hand-part length estimated at hand

initialization step, and current prediction (ref. MRF model Figure 5.1 on

page 95). σdiff = 10cm is the noise of a hand-part length estimation. The

value of σdiff is searched between 0 to 20 cm using grid search.

Message passing algorithm i.e. belief propagation (Yedidia et al. 2005;

Mooij 2010) has been used to maximize the Equations (5.7) and (5.8) to pre-

dict the joint positions. The message passing algorithm is briefly described

below and detailed in Yedidia et al. (2005). A joint i with N(i) neighbours,

sends a message to a neighbour jεN(i) when it gets messages from all nodes

except j. The message from i to j,mi→j(uj), for a joint proposal uj is defined

as:

mi→j(uj) =
∑

φi(ui).ψi,j(ui, uj)
∏

kεN(i)\j

mk→i(ui) (5.9)

Finally, the belief of a joint position is obtained as follows:

bi(ui) = φi(ui)
∏
jεN(i)

mj→i(ui) (5.10)

The proposed technique uses only one maximum scoring joint position

for 50% higher scoring joints (fixed nodes), and the five higher scoring joint

positions (modes of mean-shift) plus two additional positions as explained

in the temporal coherence section for the remaining 50% nodes. This strat-

egy allows the proposed technique to give more weight to the discriminative

technique and recover the best possible hand pose using kinematic constraints

and temporal coherence. Furthermore, the proposed technique does not use

positional constraints for the joints as that would violate the tree-structure of

the MRF model, and also increase the processing time of belief propagation

(Mooij 2010) from 2.5 milliseconds (ms) to 6 ms per frame for our experi-
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(a) MSEs of our vs CF techniques

Figure 5.3: Compares the mean square error (MSE) between proposed re-
gression forest and classification forest (CF) techniques for hand pose esti-
mation. Synthetic data has been used for all training and testing (ref. Section
5.3.2).

ments on a single core 3.33 GHz processor.

5.4 Results and Discussion

The data for all training are artificially generated as mentioned in Section 5.2.

While this can be seen as a drawback, testing in the real world data show that

the proposed framework works reasonably well (ref. demo
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Figure 5.4: Shows the mean square error of proposed technique for hand
pose estimation using 150 thousands data for various hand poses as de-
scribed in the results and discussions section. Synthetic data has been used
for all training and testing (ref. Section 5.3.2).
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http://youtu.be/xqyfWWlAnVI ). In this section, first the regression forest and

then the classification forest techniques (Keskin et al. 2011) are evaluated to

justify the use of the regression forest in the proposed framework. For all

experiments, three trees have been used. Even though the addition of more

trees increases the performance (Criminisi et al. 2011), the decision to use

three trees is based on the computational complexity involved as the training

of one tree took nearly 12 days in a largest cluster of Amazon (2014). Also,

each regression/Hough-voting tree needed 500 megabyte (MB) of computer

memory. Moreover, hand pose estimation system, Keskin et al. (2011), sim-

ilar to ours, has used the three trees. All trees trained with different poses-

spreading, grasping, one finger, two fingers, three fingers, four fingers, point-

ing with index finger, shooting pose with thumb and index finger in wider di-

rections (rotation angles in degree- along x-axis: -30 back to 85 front; along

y-axis: -85 to 85; along z-axis: -85 to 85) in 3D.
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Figure 5.5: (a) hand-parts pixels classification precision plot against various
window sizes. The triangle is a precision of the feature pool technique (use
of most frequently used features by split nodes of classification trees from all
windows sizes). (b) shows MSEs for the range of thresholds. (c) shows MSE
for various training data size. (d) shows MSEs of different tree depths.
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Comparisons with the classification forest based technique: The

proposed hand pose estimation technique is compared with the current state-

of-the-art hand pose estimation technique of Keskin et al. (2011) for straight

hand spreading poses. Three classification trees are trained with tree depth

10 and three thousands synthetic data (ref. Section 5.3.2). As all hand parts

are visible, there is no need for employing an occlusion handling module,

such as an artificial neural network used by Keskin et al. (2011). Transforma-

tion matrices are learned to push joints-prediction from the surface to inside

positions. Classification trees are common for both techniques, hence the

proposed technique inherits the same advantages and disadvantages created

through the above mentioned experimental conditions. The mean square er-

rors (MSEs) are presented in Figure 5.3 on page 107. This chapter did not

compare the proximal joints because proximal joints are in the middle of the

hand-part regions from the back side of the hand, but this is not the same case

from the front. This is a more favourable condition to the proposed technique

as it uses voting offset rather than finding the center of the defined region as

in Keskin et al. (2011). The proposed hand-pose detection technique clearly

outperforms the classification forest based technique in estimating the posi-

tions of joints except for prediction of the little finger’s distal joint. It has

been also noticed that if the marked hand-region for training (ref. Figure 5.1

on page 95) is large and the shape is not regular in all directions the MSE is

higher.

Feature pool: it has been observed that there is a positive correlation

between pixel classification accuracy and the regression of the joint, as the

proposed regression forest shares the same classification split nodes. Hence,

for the feature selection pixels classification accuracy has been used. Firstly,

3200 features are uniformly sampled with different window sizes (i.e. value

of feature u and v as described in the Section 5.3.2) and experimented sepa-

rately; the results are presented in Figure 5.5(a) on page 110. Experimentally,

it has been found that even though larger length features are useful, they are
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more sparse as the number of features is restricted to 3200. Thus the perfor-

mance decreased. The same number of the most frequently used features are

then selected from all experiments with different window size, which gave

better results. Such a pool of features is used for all other experiments in this

chapter.

Unlike other parameters, the number of thresholds τ (ref. classification

forest sub-section of Section 5.3.2) has very less effect upon the accuracy (ref:

Figure 5.5(b) on page 110) of the hand pose estimation. Experiments show

that with higher numbers of training images, thresholds between 30-35 work

better. In contrast, the tree depth has a significant effect on the accuracy. Due

to the computational and memory limitations, the depth of trees is restricted

to 20 levels (ref: Figure 5.5(b) on page 111). It has been noticed that with

tree depths lower than 10, the classification forest technique performs better

than the regression forest based technique. The training dataset size is depen-

dent upon the variation of hand poses as well. The proposed technique works

reasonably well when the dataset contains more than 30 thousand training im-

ages (ref: Figure 5.5(a) on page 111). Due to the limitation of computational

resources, it was not possible to train the proposed framework with more data.

It is believed that the accuracy of the proposed framework can be increased

with more training data (ref. effect of data size Figure 5.5(a) on page 111).

The MSE of the proposed technique is plotted on Figure 5.4 on page 108.

Finger tips are likely to be occluded in certain poses more than other hand-

parts, hence MSEs of finger tips are higher. Figure 5.6 on page 115 shows

a few examples of hand pose regression. These results clearly show how

well the proposed technique was able to capture the 3D pose of the hand.

Figure 5.2(b) on page 103 shows the benefit of the proposed technique over

discriminative techniques. The proposed technique could not recover a good

hand pose if the noise continues for more than 4-6 frames, and there are strong

false positive joints proposals. Also, the proposed technique fails on hand
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poses which were not seen during the training time. In the training time the

forward movement of a single finger was not provided, hence in the demo

( http://youtu.be/xqyfWWlAnVI ) it fails in those situations.

5.5 Summary

This chapter presented a markerless 3D hand tracking framework, which ef-

ficiently combined discriminative and descriptive techniques. Giving more

weight to discriminative technique by fixing high scoring joints/MRF-nodes

takes full advantage of the strength of the discriminative technique. Added

temporal coherence enables recovery of joints position from noise. Modelling

hand joints as unary potential of the MRF model, captures hand-parts length

variation efficiently. This chapter also demonstrated that the regression for-

est based technique outperforms the classification forest based technique for

hand pose estimation. To the best of our knowledge, the proposed technique

is the first disjoint evidence technique that does not require an additional oc-

clusion handling module for hand pose estimation. It has been demonstrated

that the feature pool technique is a simple yet efficient way of generating

features from larger feature spaces.
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Figure 5.6: Examples of hand pose estimation. The top row is Kinect depth
images and the bottom two rows are artificial data.
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Chapter 6

Conclusion and Future Works

This chapter summarises the work presented in this thesis. The limitations

and future works are also discussed.

6.1 Thesis Contribution

This thesis proposed a region-based skin color detection and two markerless

hand tracking techniques for human computer interaction. The proposed 3D

hand tracking techniques infer the hand joint locations more accurately than

existing techniques (Erol et al. 2007; Keskin et al. 2011), which is important

for high accuracy demanding applications such as MediKinect (2013).

3D hand tracking is still a challenging problem due to the high inter-

finger occlusion, fast random movements and appearance similarity of the

hand-parts. The tracking by the detection technique proposed in the Chapter

5 tackles such issues efficiently.

The major contributions of this thesis are: i) a region-based skin color

detection technique (ref. Chapter 3); ii) a model-based 3D hand tracking tech-

nique (ref. Chapter 4); iii) an appearance based 3D hand tracking technique,
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which combines the best of the discrimination and descriptive techniques (ref.

Chapter 5). These contributions are summarized below.

Skin color provides an important cue for many computer vision ap-

plications. Skin color detection is computationally efficient yet invariant to

rotation and scaling. The main challenges of skin color detection are illumina-

tion, ethnicity background, make-up, hairstyle, eyeglasses, background color,

shadows and motion (Kakumanu et al. 2007). Most skin color detection tech-

niques are pixel-based and treat each skin or non-skin pixel individually with-

out considering its neighbours. However, skin color is naturally represented

as regions instead of individual pixels. This thesis proposed a new skin detec-

tion technique based on the concept of regions, irrespective of the underlying

geometrical shape. The proposed technique uses a segmentation technique

called superpixels (Moore et al. 2008; Ren & Malik 2003) to group similar

color pixels together. Each superpixel is then classified as skin or non-skin by

aggregating pixel-based evidence obtained using a histogram based Bayesian

classifier similar to that of Jones & Rehg (2002). However, any suitable skin

color classification technique can be used. The result is further improved

with Conditional Random Field (CRF), which operates over superpixels in-

stead of pixels. Even though the segmentation cost is an overhead over the

pixel-based approach, it effectively reduces the processing cost further down

the line such as smoothing with CRF. Aggregation of pixels into regions also

helps to reduce local redundancy and the probability of merging unrelated

pixels (Soatto 2009). Since superpixel preserves the boundary of the objects

(Fulkerson et al. 2009), it helps to achieve accurate object segmentation. The

presented technique not only outperforms the current state-of-the-art pixel-

based skin color detection techniques but also extracts larger skin regions and

provides semantically more meaningful results while still keeping the false-

positive rate low. This could benefit higher-level vision tasks apart from hand

segmentation, such as face and human body detection.
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Hand tracking is not a trivial task as it requires tracking of 27 degrees-

of-freedom of hand. Hand deformation, self occlusion, appearance similarity

and irregular motion are major problems that make 3D hand tracking a very

challenging task. Chapter 4 proposed a model-based 3D hand tracking tech-

nique. All 16 parts of the hand (one palm and 15 phalanges of five fingers)

are sampled and evaluated separately i.e. there are 16 local trackers; such a

strategy reduces search space. Each of the hand part samples are evaluated

using depth discrepancy features after the hand segmentation. A new depth-

fb feature which measures the discrepancy of the background along with the

foreground is proposed in Chapter 4. The unexplained regions, segmented

hand region/pixels which have not been covered by the predicted 3D hand

model, are used to improve the accuracy of hand skeleton prediction. The

major contribution of this technique is the use of context cue in the hand

tracking. Context cue is used to locate the finger tips and then ICP is used

to correct the position of each distal phalanx by keeping the position of other

hand parts fixed. This step is called forward correction. In the next step, all

finger tips/distal-phalanges are kept fixed and other hand parts are searched

using the 3D hand tracking technique and it is optimized using Markov ran-

dom field (MRF). This step is called backward correction. Both steps to-

gether are named as forward-backward correction. Since the shape of the

palm is highly deformable, to deal with it, a palm deformation module has

been added. The depth-fb feature, context cue and palm deformation mod-

ule together improved the 3D hand tracking technique but are computation-

ally expensive as the technique requires lots of samples for robust 3D hand

tracking. This technique needed 1.8 seconds per frame in a 3.33 GHz Intel

processor. To overcome such a problem, appearance based 3D hand tracking

technique is proposed in Chapter 5.

Discriminative techniques (for example random forest) are good for

hand part detection, however they fail due to sensor noise and high inter-

finger occlusion. Additionally, these techniques have difficulties in modelling
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kinematic or temporal constraints. Although model-based descriptive (for

example Markov Random Field) or generative (for example Hidden Markov

Model) techniques utilize kinematic and temporal constraints well, they are

computationally expensive and hardly recover from tracking failure. Chap-

ter 5 presented a unified framework for 3D hand tracking, utilizing the best

of Discriminative and Descriptive techniques. The proposed framework con-

sist of three modules: i) hand region segmentation: segment the hand region

using skin and depth cues; ii) hand pose estimation: uses a regression for-

est to estimate the positions of the hand joints ; iii) hand tracking: uses the

pose estimation, kinematic prior and temporal information to track the 3D

joints positions. The joint estimation module uses a discriminative random

forest (Breiman 2001) to classify the hand-parts and learn joints offsets at

leaf nodes. Mean-shift (Comaniciu & Meer 2002) is used to aggregate the

joint votes. The voting distributions are multi-modal in nature; hence, rather

than using the highest scoring mode of the voting distribution for each joint

separately as Girshick et al. (2011) did, the five high scoring modes of each

joint have been fitted on a tree-structure Markovian model along with kine-

matic prior and temporal information. MRF is globally optimized using the

approach by Yedidia et al. (2005). Experimentally, it has been observed that

relying on a discriminative technique (for example joints detection in case

of this thesis) produces better results than generative technique. Therefore,

this observation has been efficiently incorporated in the proposed framework

by conditioning 50% low scoring joints modes (here it means modes of the

mean-shift) with the remaining high scoring joints mode. This strategy re-

duces the computational cost and it can cope with sensor noise, and does

not suffer from drifting phenomena. The proposed technique in Chapter 5

does not require additional occlusion or collision handling mechanisms un-

like other disjoint evidence techniques of Sudderth et al. (2004a) and Keskin

et al. (2011). This technique runs 4-6 frames per second in a 3.33 GHz Intel

processor, which can be implemented in multi-core processors or graphical

119



processing units (GUPs) to make it real-time.

The proposed 3D hand tracking techniques in this thesis can be used to

extract accurate hand movement features to enable complex human machine

interaction such as gaming and virtual object manipulation.

6.2 Limitations

The major limitation of this thesis is that the proposed techniques do not run

in real-time in a 3.33 GHz Intel processor. All techniques are implemented in

C++ programming language. 3D hand tracking using Markov random field

needed 1.8 seconds for one frame. The most time consuming part in this tech-

nique is samples rendering and likelihoods calculations of the samples. The

3D hand tracking using random forest and Markov random fields runs in 4

frames per second. The second technique is highly parallelizable. Hence, we

believe that the proposed algorithms can easily run in real-time on a multi-

core or GPU. Further, the proposed techniques cannot track two hands simul-

taneously.

6.3 Future Work

This section discusses a number of potential directions for future work. Through-

out the experiments involved in the development of this thesis, the following

future works have been identified.

Adding texture information for skin color detection: image texture

is about the spatial arrangement of color in a selected region of an image.

Texture plays an important role in object detection, for an example texture

difference between a Giraffe and a Camel. It also plays an important role in

providing the context information; for example sky, grass, water and road tex-
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tures as in Shotton et al. (2006). Moreover, skin regions do not have the same

color values; even the skin color pixels within the same superpixel have dif-

ferent color values. In addition, there are many objects which resemble skin

color but have very different textures, for example a computer desk. Hence,

adding texture information for basic skin color detection or region-based skin

color detection is likely to improve the result. However, the improvement

in skin color detection accuracy will come at the price of additional compu-

tational costs, which in the case of real-time 3D hand tracking might be an

issue.

Two hand tracking: mostly humans use two hands for human-to-

human interaction. Hence, using two hands for human computer interaction

will be a natural choice, in comparison to single hand interaction techniques.

At the time of writing, there has been also growing interest towards two hand

tracking. Oikonomidis et al. (2012) tracked skeletons of two interacting hands

using a template matching technique. It would be interesting to extend the

proposed 3D hand tracking technique in Chapter 5 to two hands, and com-

pare this with the template matching technique proposed by Oikonomidis

et al. (2012). However, tracking two interacting hands using appearance

based and disjoint evidence techniques (for an example as in Chapter 5) might

be more challenging than template matching techniques (for an example see

Oikonomidis et al. (2012)), as this is due to occlusion handling being more

difficult with appearance-based and disjoint evidence techniques, in compar-

ison to template matching and joint evidence techniques (Oikonomidis et al.

2012). Hence, in each frame initializing the template using appearance-based

techniques (for an example, joint detections using random forest as in Chap-

ter 5) then refining the system using the template matching techniques (for an

example Oikonomidis et al. (2012)), would be an interesting future direction

to pursue since using appearance-based technique would help to overcome

particle degeneracy phenomenon that occur with the template matching tech-

nique, and template matching will complement the occlusion handling mod-
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ule for appearance based technique.

GPU implementation: proposed 3D hand tracking techniques can be

implemented in a general-purpose graphics processing unit (GPGPU) to re-

duce the per frame processing time. The joint detection technique, random

forest (Breiman 2001), used in this thesis can speed up this up considerably

(Girshick et al. 2011). Hence, real-time 3D hand tracking using the proposed

technique in Chapter 5 normally could be possible. However, training of the

random forest using a larger amount of data does not give much benefit by

GPGPU (Sharp 2008). Additionally, MRF optimization in GPGPU might be

difficult, hence global hand pose optimization using MRF in Chapter 5 can

be replaced by using the template matching technique, i.e. quick hand pose

initialization with random forest, and refinement with the template matching

technique.

Using multiple depth sensor for hand tracking: one of the major

problems of 3D hand tracking is self-occlusion. Many authors have tried

articulated hand motion tracking by using multiple RGB cameras (Utsumi

& Ohya 1999; Usabiaga et al. 2009; Oikonomidis et al. 2011b) to minimize

the element of self-occlusion by the hand. Besides, self-occlusion can be

minimized using multiple depth sensors and would be computationally more

efficient than multiple RGB cameras (Zhang et al. 2012). Therefore, it would

be interesting to consider the effects of multiple depth sensors for 3D hand

tracking.

Hand gesture recognition and object manipulation: gesture recog-

nition research has a long history, the summaries of gesture recognition re-

search have been published in Pavlovic et al. (1997), Wu & Huang (1999),

Konstantinos G. (2004), Hassanpour et al. (2008), and Garg et al. (2009).

Also, the main aim of 3D hand tracking technique is to detect the hand joint

positions in 3D space for human-computer interaction applications. The ap-

plications vary from hand gesture recognition to virtual object manipulation.
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Hence, in future, it would be worthwhile to experiment with gesture recog-

nition and virtual object manipulation using the 3D hand tracking techniques

proposed in this thesis.
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