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Abstract 

We discuss the relation between the q-number approach to quantum mechanics 

suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By 

associating the q-numbers with the elements of an algebra and regarding the 

primitive idempotents as "generalized points" we suggest an approach that may 

make it possible to dispense with an a priori given space manifold. In this 

approach the algebra itself would carry the symmetries of translation, rotation, etc. 

Our suggestion is illustrated in a preliminary way by using a particular generalized 

Clifford algebra proposed originally by Weyl, which approaches the ordinary 

Heisenberg algebra a suitable limit. We thus obtain a certain insight into how 

quantum mechanics may be regarded as a purely algebraic theory, provided that 

we further introduce a new set of "neighbourhood operators", which remove an 

important kind of arbitrariness that has thus far been present in the attempt to treat 

quantum mechanics solely in terms of a Heisenberg algebra. 

1. Introduction 

Quantum field theories are generally constructed by assuming a basic a priori 
given space-time structure where the coordinates x are treated as parameters 
belonging to a preHilbert space. The successes of this formalism, particularly for the 
electromagnetic and weak forces suggest that a similar method should be carried through 
for the quantization of gravity where the metric tensor now becomes the subject of 
quantization. Unfortunately, renormalisation presents serious difficulties to such a 
programme and one of the more recent suggestions is that the root of the problem may lie 
in the intimate relation between gravity and the space-time structure itself. There is now a 
growing realisation that perhaps the use of a differential manifold will have to be called 
into question and other possibilities explored (see, for example, Taylor, 1979, t'Hooft, 
1978 and Wheeler, 1980). 

Indeed, a decade ago Finkelstein (1972) had already expressed dissatisfaction with 

quantum field theory by pointing out that present theories are essentially hybrids in which 

classical space-time (c) is combined with quantum matter (q). What is required, he 



suggests, is not a cq-theory but a purely q-theory where no reference is made to an a 

priori given spacetime. In such an approach, space and time would emerge from some 

deeper theory. Since the deeper theory can no longer use the properties of a differential 

manifold in a basic way we should follow Wheeler (1980) and regard such a theory as 

‘pregeometric'. But this immediately raises the question as to the nature of the elements of 

such a theory. The purpose of this paper is to examine this question in the context of the 

present quantum formalism, which we will analyse in a manner that is basically different 

from the usual one. We will show that our approach leads to a possibility of realising such 

a theory although at this stage we will make no attempt to connect our structure with 

gravity. 

Our ideas start by noting that a 'pregeometric' theory is already to some extent 

implicit in the original Heisenberg matrix approach to quantum theory when what is 

regarded as 'position' becomes part of a matrix algebra. Here the 'position' was 

represented as a matrix q(n,m) which, in the way it was developed, appeared to be more 

like a transition or 'two-point' object than a means of labelling the points of a continuum. 

It was only through the Schrödinger representation that |x〉 became associated with a way 

of labelling points of an underlying differential manifold. The operator X 
ˆ 

is taken as a 

description of the way we locate objects at some position in space using a suitable 

measuring instrument. The fact that the two approaches (Heisenberg and Schrödinger) 

have generally been regarded as equivalent has led to the main emphasis being placed on 

the Schrödinger representation which, as is well known, has what appears to be a 

particularly simple interpretation through the wave function. The success of the 

formalism has strongly reinforced the idea that the underlying differential manifold must 

play a fundamental role in the theory. 

When we consider the case of a system with an infinite number of degrees of 

freedom we find that the above equivalence breaks down. Dirac (1963) has illustrated this 

point by means of a simple example in which he shows that Heisenberg's approach yields 

results that cannot be derived from a wave function even though the energies are well 

defined. He also points out that some of the infinities of the conventional theories are no 

longer present in the q-number approach. 

As a result of this work, Dirac suggests that perhaps the q-number approach 

should be taken more seriously, but one of the main problems in developing such a theory 

lies in the apparent lack of any compelling physical interpretation of the q-numbers. 

Recently, Bohm (1973) has developed some very general ideas involving what is called 

the implicate order. This approach, we believe, begins to provide a more general 

framework in which to view a q-number formalism, and although we will occasionally be 

guided by general considerations appearing in the implicate order, much of our work 

stems directly from the mathematical structures used in this paper. 

We will not discuss the case of a system with an infinite number of degrees of 

freedom here. Rather our aim will be to motivate an exploration of purely q-number 

theories and to do this we will consider the finite case only
1
. Furthermore, we will restrict 

ourselves at this stage to a discussion of the non-relativistic theory in order to make clear 

the concepts used in these initial investigations. 



Some preliminary work has already been done by Frescura and Hiley (1980a). They 

indicate in detail some general lines along which one can make an essentially algebraic 

approach to quantum mechanics. What they do is to represent all physical features by the 

elements (q-numbers) of some suitable algebra, the nature of which is determined by the 

physical context. In such an approach there is no need for the disjoint features of the 

present mathematical formalism, namely, the operators on the one hand and the state 

space vectors on the other. Rather, one uses only a single type of object, the algebraic 

element (qnumber). What is now taken to be the state vector is simply a distinguished 

element in the algebra, namely, the minimal ideal. 

This idea is most easily illustrated in the case of the Pauli and the Dirac-Clifford 

algebras and, indeed, such a possibility was already anticipated by Riesz (1946). The 

polynomial Heisenberg algebra studied by Born and Jordan (l925) appeared to have no 

minimal ideals (except the trivial ones) so that the generalization of Reisz’s work to 

quantum mechanics seemed impossible. However, a new element can be introduced into 

the polynomial algebra from which the minimal ideals corresponding to the state vectors 

can be generated. This new element plays a role similar to the standard ket in Dirac's 

(1947) braket notation (Frescura and Hiley, 1980b). It was this additional feature that 

allows for, the possibility of a completely q-number approach. In this paper we will try to 

bring out more clearly how the q-number, theory is related to the usual bra-ket notation 

and, as a consequence we will show that the q-number theory is potentially richer even in 

the case of a finite number of degrees of freedom. Furthermore, we will bring out how the 

q-number approach does not require an a. priori given space manifold. In this sense it can 

be regarded as 'pregeometric'. 

In Section 2 we will show how such a ‘pregeometric' structure can be given an 

algebraic meaning in terms of primitive idempotents and their corresponding minimal left 

and right ideals. These features provide some of the necessary concepts that are needed to 

understand the q-number approach in which space is not taken as an a priori given 

structure. In Section 3, we discuss how these concepts can be illustrated through a 

particular algebraic structure, namely, the collection of algebras known as generalized 

Clifford algebras (Morris, 1967). These algebras have been studied in some detail by 

Ramakrishnan, Santhanam, and their co-workers (see Santhanam, 1977, for an extensive 

list of references). 
n 

We will discuss a particular generalized Clifford algebra C2 which can be used to 

set up quantum mechanics in a discrete one-dimensional space. In the limit as n → 

approaches the Heisenberg algebra as was pointed out many years ago by Weyl (1932). 

Santhanam and Tekumella (1975) have already used this structure to suggest a discrete 

quantum mechanics using the vector space approach. We analyse this structure from the 

qnumber point of view and show in Section 4 that contrary to the conclusions of 

Santhanam and Tekumella (1975) the discrete space does possess an uncertainty 

principle. 

In the final section we discuss how the geometric order emerges from the 

pregeometric algebraic structure. In particular, we find that the physical meaning of the 

Heisenberg algebra can be determined only by introducing a new set of neighbourhood 

operators, which are parts of this algebra. In this way, we remove a certain arbitrariness 



that is inherent in the very concept of a Heisenberg representation, and determine which 

algebraic elements are the ones that represent the actual physical space. 

2. The role of the primitive idempotent 

In order to motivate our approach, let us briefly recall some of the ideas that 

prompted Wheeler to suggest some form of pregeometric theory
2
.  In the classical 

approach space-time is assumed to be a continuum. In order to give meaning to matter 

and gravity in this context, Sakharov (1967) has suggested the possibility of regarding the 

continuum as some form of 'elastic' medium out of which matter is formed. The 

concentrations of matter then leave something analogous to a stress in the medium.  The 

average properties of these stresses can then be described by the curvature tensor which in 

turn can be associated with the average distribution of matter so that gravitation becomes 

the 'metric elasticity' of space. 

However, in the case or ordinary matter, elasticity has its origins in the atoms and 

the forces between them; atoms are not built from elasticity. Could not the metric 

geometry be hiding a deeper 'atomic' structure that is revealed in some way by the 

appearance of particleanti-particle pairs which arise from fluctuations of the vacuum. By 

associating charge with small-scale topological features of space-time, Wheeler argues 

that the quantum fluctuations with their implications for a continual change in topology 

suggest something more like a foam (Hawking 1976), or perhaps like some form of 

disordered lattice structure continually undergoing restructuring (Hiley 1980). For such 

structures the continuum with its well defined and fixed neighbourhood relations may not 

be an appropriate starting point. Rather we should begin with a set of basic elements, 

which, for convenience, we can call 'generalized points', and the relationships between 

them. This will give rise to a generalized structure in which neither a fixed 

neighbourhood relation nor a fixed dimensionality have any direct relevance in the small 

scale. Our conventional space-time is then an abstraction that emerges from this structure 

through some form of macroscopic averaging. 

Wheeler's specific suggestion was to build the pregeometry from a set of Boolean 

elements giving a dichotomic choice such as yes or no, true or false, on or off, etc. 

Although his original hope was to use some of the notions of formal logic to lay the 

foundations of pregeometry, he has since concluded that, in fact, formal logic leads in 

another direction away from quantum theory rather than towards it. However, his 

conclusion should not be taken to imply that a simple dichotomic element cannot be used 

as the basic descriptive form in pregeometry. What we will do here is to draw attention to 

the fact that such elements play an important role in the analysis of algebras in general 

and, furthermore, the dichotomy of yes/no arises in an essentially quantum mechanical 

way, namely, through the eigenvalues of the set basic elements. Here we are referring to 

the primitive idempotents. 

This idea has already been discussed briefly in Frescura and Hiley (1980a). They 

argued that the link between the usual geometric entities, vectors, bivectors, etc., 

appeared as elements taken from ordered products of minimal left and right ideals. But 

these minimal ideals are generated from a set of primitive idempotents i which satisfy the 

relations  



= 

2 
 =   (1) 

 i j   j i =  0 

and for an algebra with a unity, 

Σi i  = 1 

These idempotents have eigenvalues 1 and 0 so that they become the algebraic 

equivalents to the yes-no logic. 

It is clear that idempotents can be constructed in quantum mechanics where they 

are, of course, called projection operators. These projection operators are used to form the 

basis of the propositional calculus first introduced by Birkoff and von Neumann (1936) 

and which has since been developed into a formal structure called quantum logic (see for 

example Jauch (1968). We do not want to follow this particular approach for reasons 

similar to those given by Wheeler (1980) and, more importantly, because here we want to 

open up new possibilities, the relevance of which cannot be seen if the idempotents are 

treated as propositions. Indeed, there is no notion of projection in our algebraic structure. 

Instead we will follow Eddington (1946) who argued that within a purely 

algebraic approach, which he regarded as providing a structural description of physics, 

there are elements of existence defined, not in terms of some hazy metaphysical concept 

of existence, but in the sense that existence is represented by a symbol that contains only 

two possibilities: existence or non-existence. Thus we will assume that the structural 

concept of existence is represented by an idempotent of some appropriate algebra. But 

recalling that any idempotent can always be decomposed into primitive idempotents 

satisfying the relations (1), we will take the primitive idempotents as our basic descriptive 

forms. They will be considered as the generalized points of our structure. 
It should be noted that these primitive idempotents, although being used as basic 

elements of the description, should not be considered as some form of absolute element of 
reality. The symbols do not have any direct meaning in isolation. They are not ding-an-
sich but take their meaning from within the overall context of the given algebra, which, in 
turn, is determined from a particular physical context. In this way, we incorporate Bohr's 
notion of 'wholeness' and d'Espagnat's view of 'non separability' in a very basic way. In 
this sense our generalized points could appropriately be called 'holons'. 

The set of primitive idempotents satisfying the relations (1) have been indexed by 
using a single symbol and thus we can represent the idempotent by a set of points labelled 
by a set of integers i, j ... But we also require a way of relating generalized points, i.e. how 

do we relate i  → j, etc.? To meet this requirement we will introduce a set of elements ij 
to denote the relation between i and j. If we impose the well-known multiplication rule 

 ij kl jk il  (2) 

then the elements iiwill satisfy the relations 

 ii ii 
= 

ii (3) 

i    i 

=   



 ij ij = 0 if i ≠ j 

We will label our primitive idempotents with a double index. These elements are then our 

basic q-numbers. 
The discussion so far has been quite general and although we have been using the 

idea of 'generalized point' there is nothing yet in the structure to indicate that these 'points' 
can be related to the points of space. In fact, the primitive idempotents are not even 
unique since it is generally possible to find another set by using some inner automorphism 
of the algebra. In order to illustrate how the connection with space is made, it is necessary 
to turn to consider a particular algebraic structure and analyse it in the way we have 
suggested in this section. 

3. Definition and structure of the finite Weyl algebra of order n
2
 

 n 
2
 

We begin by defining the finite Weyl algebra C2 of order n as the polynomial 

 1 0 
3
 

algebra 

generated over the complex field by the set of generating elements {e0 ,e1 } subject to the 

relations:[4] 

n n 

 e10) = 
e

n0 =1 (5) 

 e0 e1 = e1 e0 (6) 

where   = exp[2 i/n] 

 n 
a
 

These relations define the C2 algebra completely. Then the element eb takes the form:  

 eb
a = e0

a
eb

0 = ab
eb

0
e0

a 
a, b,  = 0, 1, …..n−1. 

We may obtain the general rule of combination: 

 ebaedc = −bceb+da+c (7) 

(e01) = e0n =1 (4) 

1 0  0 1 

( 



= 

with this single rule we may accomplish all the manipulations of the algebra. 

It is easy to demonstrate that the n
2
 elements eb

a
a form a basis for the C2

n
algebra. Thus 

every element of the algebra may be written as 

n−1 

 A = ∑Aabeba (8) 

a,b=0 

In terms of this basis, it is possible to obtain a complete set of pairwise orthogonal 

primitive idempotents ii, one such set that we will use has the form: 

 −ik 0 

 ii k  ek (9) 

and satisfies 

 ∑i ii =1 (9a) 

It is quite easy to see by direct algebraic multiplication, and the use of rule (7), that the 

iisatisfy relations (2) and (3). 

One possible set of ijassociated with the primitive idempotents given by (9) can 

be written as 

 = 1 − jr 

 ij n ∑r er j−1 (10) 

Direct multiplication shows that this expression satisfies the multiplication rule (2) viz: 

  ij kl jk il (2) 

Each of the n idempotents defines an n-dimensional subspace in the n
2
 dimensional space 

n associated with the C2 algebra. To illustrate the method let us arbitrarily choose right 

and left ideals associated with the idempotent given by the index i = 0 

 kek
0 

(11) 

By employing standard algebraic techniques we can find the right and left ideals IR
(0)

 and 

IL
(0) 

associated with this fundamental idempotent. These ideals form n-dimensional vector 

subspaces with basis vectors given by 

−1 



 ILkek (12) 

 IR k ike−ki (13) 

It is now straightforward to show that 

 IL(0) (i)IR(0) (j) = ij (14) 

and 

 IR(0) (i)IL(0) (j) = ij 00 (15) 

Comparison of (12) and (13) with (10) shows us that 

 IL(0) (i) = i0  and IR(0) (j) = 0 j 

so that (14) and (15) are consequences of (2). 

We may now introduce an operator which, for reasons that will become apparent 

later, we denote byX 
ˆ 

. This operator will label the generalized points if we define it as 

 X ˆ jk j − jkeki = j jj (16) 

Then immediately we see 

 X ˆ jj = j jj (17) 

and 

 X ˆ jm = j jm (18) 

In this way we see that the decomposition of the identity in terms of the idempotents 

given by equation (9) provides an order for the set of primitive idempotents and hence an 

order for the generalized points. But, of course, it is always possible to obtain a new set of 

primitive idempotents under the inner automorphism 

 ′ jj = S jjS−1 (19) 

n where S is any element of C2 . The new primitive 

idempotents will also provide an order for the generalized points but, in general, this 

order will not be simply related to the original order of the generalized points given by the 



first set of primitive idempotents. Closer examination of the effects of equation (19) 

suggests a kind of 'exploding' transformation in which each generalized point of the old 

set is spread out into some or all of the points of the new set. Yet the implications of the 

notation used in equations (17) and (18) are that X 
ˆ 

will be a position operator that can be 

used to locate or label a particular generalized point through an eigenvalue j that reflects 

the position of the point. However, this order seems to be arbitrary. In Section 6 we shall 

enquire into how one can obtain an invariant meaning to the order rather than just 

imposing it from the outside. 

n 

4. The geometric interpretation of the algebra C2 . 

In the usual Cartesian view, we can order a discrete set of equally spaced points 

on the real line by choosing an origin and defining a unit displacement. Successive 

applications of this unit displacement will take us through the series of points in the right 

order. Similarly, in terms of our generalized points, we can choose a basic primitive 

idempotent 00 to serve as an origin and select an element T of the algebra to define a unit 

displacement through the relation 

 j+1 j+1 = T jjT−1   (20) 

 −
1 1

 

For the primitive idempotent defined in (11), T has a very simple form, namely, T = e0 

Using this to define the canonical order, we find 

= − 

 jj e0 j00e0 j (21) 

Since the jj are the generalized points of our structure which are labelled through the 

eigenvalue equation (17), we can interpret T
1 = e0

−1
as a translation operator on our 

discrete space.  Indeed it was this fact that led us to the particular form of basic 

idempotent defined in equation (11). 

Since the algebra is symmetrical in e0
1
and e1

0
we could raise the question as to 

whether the other generator el could be used as a translation operator based on another set 

of generalized points 
′ 

jjwith 

 ′ 00 k −ike0k (22) 

so that 



 ′ jj = ej0 ′ 00e− j0 (23) 

The generalized points defined by ′ jj can then be labelled through 

 X ˆ ′ ′ jj = j ′ jj (24) 

and 

 X ˆ ′ ′ jm = j ′ jm (25) 

with 

 X ˆ ′  jk j − jke0k (26) 

In this discrete space the translation operator is T ′ = e1
0
.  Thus we have distinguished two 

discrete spaces, each comprising a set of points for which the generators define a 

translation operator via (21) and (23). These spaces are related through the transformation 

 −1′ jj (27) 

 ZjjZ = 

where 

 Z = 31n ∑ijk j j(i−k)
e

k j−i (28) 

Thus the symmetry between e0
1
 and e1

0
 establishes a kind of duality between two discrete 

subspaces. Specifically, the points of each space are related via (27) and (28). As we have 

seen, under any inner-automorphism the new primitive idempotents have a far from 

simple relationship to the original idempotents, nevertheless there remains a natural 

complementarity between the two sets of new primitive idempotents and hence between 

the two discrete spaces constructed from these idempotents. 

We are familiar with this kind of natural duality in standard quantum mechanics 

where translations in space are generated by the momentum operator and translations in 

momentum space are generated by the position operator. In fact, the operator 

corresponding to a translation through a distance a is given by 

TX (a) = exp[−iaP 
ˆ 

] 

This suggests that for a discrete space there exists a momentum operator P 
ˆ 

such that 

 e0
1 = exp[2 iP 

ˆ 
n]  (29) 



We introduce the factor 2 /n for later convenience.  Again a standard translation operator 

in quantum mechanics in momentum space is 

TP(a) = exp[iax] 

which again suggests 

 e1
0 = exp[−2 iX 

ˆ 
n] (30) 

Thus the two discrete spaces generated above are the discrete position and momentum 

spaces which imply that in equation (26) we should write X 
ˆ 

′ = P 
ˆ 

. 

  In order to confirm this identification let us investigate the commutation between 

X 
ˆ 

and P 
ˆ 

as we go to the limit of n →∞. To do this let us first form the commutator of 

X 
ˆ 

defined by (16) and P 
ˆ (= X 

ˆ 
′ ) defined by (26). 

 [X ˆ ,P ˆ ] = n1 ∑jkrs(s− j)r r(s− j) − jkek j−s (31) 

Now let us see what happens. To do this, the discrete indices are replaced by continuous 

indices viz: 

1 ∑ → 2i ∫∫∫ ∫ djdkdrds n jkrs 

and 

  → exp{2 i } 

we have from (31) 
 jk j−s 

 ek djdkdrds+ 

    

djdkdrds 

Integrating over dr. 

ek j−sdjdkds 

ˆ  X  , ˆ  P  [ ] = 
1 

2 r exp 2 ir ( s − j ) [ ] ( s − j ) 
− 

∫ ∫

∫

+ 
1 

2 ( ) 
2 i 

d 

d ( s − j ) 
exp 2 ir ( s − j ) [ ] ( s − j ) e k 

j − s 

  
  

  
  ∫ ∫

∫

exp 2 ijk [ ] 



Integrating over ds. 

 [X 
ˆ 

,P 
ˆ ] = i ∫∫ exp[2 ijk]ek

0
dkdj (32) 

were the latter double integral is the algebraic expression of the unity element 1 since it is 

none other than the completeness relation for the infinite dimensional case. Therefore 

[X 
ˆ 

,P 
ˆ ] =1 

Thus, under the appropriate limiting procedure, the commutator of the X 
ˆ 

and P 
ˆ 

elements assumes the quantum mechanical value, confirming our interpretation of both X 
ˆ 

 and P 
ˆ 

. This result is not new. It was obtained essentially by Weyl (1932) and more 

directly by Santhanam (1977), but the method we have used is new and our whole 

approach throws a different light on quantum mechanics. It is not necessary to assume an 

a priori externally imposed position order together with an independent and externally 

imposed momentum order. The appropriate algebra already carries the order of space 

implicitly, provided the momentum is also part of the same structure. Thus the correlation 

between X 
ˆ 

 and P 
ˆ 

 has little to do with a duality of 'waves' or 'particles' but has to do 

with the description of structure process that does not require the external imposition of 

independent space and momentum orders. 

The commutator (32) leads directly to the uncertainty principle and it is natural to 

assume that the discrete algebra (n ≠ ∞) should also contain some form of uncertainty. 

Santhanam and Tekumalla (1975) state that the discrete case does not have an uncertainty 

principle; however, we believe this conclusion to be incorrect, as we demonstrate in the 

following way. It is well known that provided A 
ˆ 

 and B 
ˆ 

are two hermitian operators 

then 

 ∆A∆B ≥ 12[A 
ˆ 

,B 
ˆ ] 

In our case A 
ˆ 

= X 
ˆ 

andB 
ˆ 

= P 
ˆ 

. It is easy to demonstrate that X 
ˆ 

 and P 
ˆ 

 are both 

hermitian and since they have a non-zero commutator (32) there must exist an uncertainty 

relationship between the two observables. 

5. The connection with the bra-ket notation. 

In order to bring the discussion onto even more familiar ground, let us connect our 

approach with the usual bra-ket notation. As pointed out by Frescura and Hiley (1980a) 

there is a very close correspondence between the ket (bra) and the minimal left (right) 

ideals. Indeed, we can write 



 IL(0) (i) = i; IR(0) (i) = i 

then (14) and (15) become 

 IL(0) (i)IR(0) (j) = ij = i j (33) 

And 

 IR(0) (i)IL(0) (j) = 00 (34) 

Here the label (0) indicates the choice of the basic primitive idempotent.  The usual bra-

ket notation however suppresses the dependence of the ket (bra) on the choice of basic 

primitive idempotent by writing in general 

  IL(m)(i)IR(m)(j) = 

 IR(m)(i)IL(m)(j) =mm (∀m) 

m being an arbitrary choice of basic primitive idempotent. So the bra-ket notation 

does notexploit all the q-number structure, and works with only one ideal. 

Thus we see that when quantum mechanics is viewed from the q-number theory, 

the ket notation hides the fact that each ket represents an object with two labels. 

Suppressing this dependence on two labels means that the eigenvalue equation (18) can 

replace equation (17) so that each point can now be labelled by a ket j .  Then by using 

(21b) we can write 

 j + a = e0
−a

 (35) 

−
a 

which shows that e0  corresponds to a translation operator that 

takes you from the point labelled by  j to the point labelled by j + a . As we know that in 

the limit as n → ∞ this 

n particular discrete structure becomes continuous and C2  approaches  the 

 Heisenberg algebra for an ∞-dimensional continuum in this limit we may write

 j → x j in which case equation (18) becomes 

 X x
ˆ  

j = j x j (36) 

ij 00 = i j 

j 

ij = i j 

ij mm = i j 



In this equation X 
ˆ 

 acts as a position operator on the points representing the individual 

elements of a given minimal left ideal. It is this structure that forms the starting point of 

Santhanam is work (1977). 

To complete the picture we can introduce kets in the momentum space so that 

pj+b = eb0  

Using the primitive idempotent defined in equation (22) it is now easy to construct 

explicitly the kets in momentum space, viz. 

 pj = 1n3 

∑
ik ijek−i (37) 

with the relationship 

  (38) 

which corresponds to the continuum limit 

  x (39) 

Thus (38) represents the finite dimensional version of the Fourier transform which forms 

the starting point of the recent work of Gudder and Naroditsky (1981), though here, we 

see that it arises directly from the q-number structure. The use of equations (25) and (26) 

with X 
ˆ 

′ = P 
ˆ 

 gives 

 P pˆ  j = j pj 

6.  Geometric order as emerging from the algebraic structure. 

Let us now return to the question of how an algebraic or q-number theory may 

determine its own space structure. We have seen how the set of primitive idempotents 

used in Section 3 orders the generalized points and that this order is arbitrary.  We shall 

now discuss the question of how this set of idempotents with its attendant order of 

"points" can be provided with a natural order rather than this order being arbitrarily 

imposed from outside. 

This order, which is intended to be the geometric order as we observe and 

experience it, is actually already present in the basic equations of all the relevant 

underlying physical structures (e.g. fields and particles). Such basic equations exploit the 

continuity of the position representation in a fundamental way. Indeed it is the 

requirement of continuity and single valuedness of all physically significant operators 

(including the wave function which in the algebraic approach is replaced by an element of 

p j 

p j = 
1 
n 3 

ij 
x i i ∑ 

p = 
1 
2 exp i ̂   Px  [ ] ∫ 



the left ideal) that is needed to give rise to the correct energy levels and transition 

probabilities. 

Under an inner automorphism, these equations will in general cease to be 

differential with respect to the original variables because, as pointed out in the discussion 

around equation (19), this kind of transformation "explodes" each point into a distribution 

spreading throughout the original space. Thus the basic physically significant operations 

have ceased to be "local" (in the sense of being constituted out of functions such as x and 

/ x , which have zero matrix elements for points that have a finite separation). 

So far, it has been possible to write the requirement of continuity and single-valuedness 

only in the position representation. In other words these conditions are representation 

dependent. Without these requirements, the theory is physically indeterminate. But in the 

qnumber approach, this representation is arbitrary so that the physical content of quantum 

mechanics can not be specified in an arbitrary Heisenberg representation (for example, 

the wave function is not continuous in momentum space). Therefore, without a further 

specification of what the "position representation" is, the physical consequences of the 

theory are not defined. 

This implies that in a certain sense, the Heisenberg and Schrödinger pictures are 

not completely equivalent after an "exploding" transformation, a factor that has not 

generally been properly appreciated. In order to complete the algebraic (or q-number) 

structure additional new concepts are needed so as to allow us to assert the complete 

equivalence of Heisenberg and Schrödinger pictures (i.e., in a way that determines all 

physical properties, independently of the representation). 

In the discrete case, which we are treating in this paper, there are, of course, no 

differential operations. Instead, however, we may introduce neighbourhood operators, 

from which can be obtained operators that approach differential operators, in the limit as 

the density of points becomes infinite. 

In order to carry through the details we first point out that two different but related 

approaches to the notion of a generalized point has been used in previous sections. In 

Sections 3 and 4 we have used the primitive idempotents themselves to represent each 

point whereas in Section 5 we showed that we can also associate each basis element of a 

minimal ideal with an ordered set of points in configuration space. Although this involves 

suppressing some of the information carried by the q-numbers, it does enable us to 

connect directly with the ket formalism where each set of kets x j becomes associated with 

a onedimensional discrete space. It is this approach that enables us to bring out more 

completely the connection in the limit between the neighbourhood operators and 

differential operators. We can bring out what is meant by replacing the differential 

operator of a typical physical equation (e.g. a wave equation) by difference operators, 

involving neighbouring points in a discrete array. Thus consider replacing the continuous 

field functions (x) by a corresponding set of discrete values j = x j j over our array of points 

labelled by the index j.  We then replace / x by j+1 − ψj-1and  
2 

/ x
2
 by  j+1 − 2 j

 
+  j-1.  A 

typical wave equation would take the form 

 2 2   

/ t  =  ( j+1 − 2 j +  j-1) 

where  is a suitable constant. 



j Under an inner automorphism the point represented by x will go over into a linear 

combination 

 = ∑c jk xk 

k 

so that 

j = ∑kc *jk k 

−   goes into ∑k(c *k, j+1 −c *k, j−1) k .  It is clear that The combination   

the difference operator has been replaced by another one that is "non-local", i.e. one that 

connects points from all over the space (as if each point had been "exploded" into the 

whole space). This is an example of how the form of the equation has been radically 

altered by an inner automorphism. 

To discuss the implications of this fact further, we define two neighbourhood 

operators, N+
 
andN

−
, which are determined by the equations 

+ 

N(40) 

N 

Under a general automorphism, , these operators become 
k 

 N+k = ∑i∑jc *jk c j+1,ii (41) 

N−k = ∑i∑jc *jk c j−1,ii 

Hence the neighbourhood operators no longer have the simple intuitive meaning they had 

in equation (40), and in the limit of an infinitely dense array, continuity has lost its simple 

meaning. But as we shall see even though the "space" itself loses its "local" properties 

under such a transformation, the physical content of the theory i.e. as reflected in the 

measurable quantities, is invariant. Indeed we have something analogous to a hologram in 

which the locality relations are carried non-locally throughout the hologram. Non-locality 

is thus implicitly incorporated into quantum mechanics and is a direct result of 

associating position space with a basis not invariant to similarity transformation. Thus, 

within the algebraic and quantum mechanical formalisms, the physical relationships 

j+1 j-1 

j = j + 1 

− 
j = j − 1 

j = c jk k ∑ 



(which are independent of a change of basis) are no longer tied to the position space stage 

upon which those events are acted out. In this way, we have been led to question the need 

for a basic a priori given space-time manifold. Indeed, this approach points to a deeper 

structure underlying the space-time manifold, with its own, more general, invariance 

features. 

Clearly, however, in order to define the geometric content of the present theory 

we need to specify some form of "locality relations". For suppose that a certain structure 

of algebraic equations in a general Heisenberg representation is given, then we have to 

add a 

set of neighbourhood operators and if these reduce to the canonical form (40), a 

set of "positions" will be defined uniquely in their proper order. Furthermore, if the 

physical equations are all "local" in the sense defined above, they will involve only these 

neighbourhood operators. The arbitrariness of what is to be meant by the proper "position 

representation" will thus be removed and the physical significance of the algebraic 

structure will thus remain invariant. 

A closer examination of equation (40) together with the discussions in Section 4 

shows that our neighbourhood operators are simply related to the formal elements e0
1
, and 

 −
1 ˆ 

can be obtained as a suitable 

e0  of the Weyl algebra. In consequence the momentum P  

limit of (N+ − N
−) from, which it follows that the momentum is in essence the usual 

displacement to the next nearest neighbour. From the above, it follows that we have not 

introduced any new content into the theory that was not already contained in the original 

representation dependent theory. We have mainly confined ourselves to emphasising the 

new key role played by the neighbourhood relations. 

Let us now turn to discuss the possibility of adding new content. Consider first the 

analogy of the metric in general relativity. The canonical diagonal metric g can 

be turned by a coordinate transformation,  x 
= (x ) into 

 

theory. However when the curvature is nonzero only local transformations can be found, 

which reduce the matrix to diagonal form, and we have the possibility of new content, 

namely, gravitation. We can apply a similar argument to the neighbourhood matrix. In the 

present theory it is assumed that the matrix can he reduced everywhere by a unitary 

transformation. However it may not be possible to make the neighbourhood matrices all 

diagonal together. Thus we have the possibility of introducing a new content. 
In summary then, what we have done is in effect to treat the algebraic structure as 

a pre-space, whose "points" are related to ordinary "points" by the exploding 
transformation (or equivalently, these "points" may be described as being in an implicate 

∂ ∂ x ∂ ∂ x ∑ = g 

Now as long as a global transformation  x ( )  exists there is no new  content  in  this 



order). We have then shown how a unique geometric (or explicate) order can be 
determined by means of the neighbourhood operators, which are part of the same 
algebraic structure. So our ordinary physical space (i.e., the space which describes basic 
entities such as fields and particles) emerges from the pre-space. 

It must he emphasized that the main purpose of this paper has been to draw 
attention to the new possibilities latent in the algebraic structure, and that what has been 
done is only a beginning of what is needed for a full realization of these possibilities. 
Firstly, we have to go on to the continuous limit, where new physically significant 
features arise. In particular, one will then require the continuity of all physically 
significant features, and this is a further restriction, which has no meaning in a discrete 
array. Then, we will have to bring in time as well as space, and incorporate general as 
well as special relativity. We are currently working on these questions, which we hope to 
treat in further publications. 
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Footnotes 

1. We realise that Dirac's q-numbers are more general than the q-numbers considered in 

this paper. Nevertheless, we hope this limited investigation will help throw some light 

on the more general problem. 

2. Greater detail may be found in Chapter 44 of Misner, Thorn and Wheeler (1973), 

Pattonand Wheeler (1975) and also in Wheeler (1980). In presenting this account we 

are merely tracing the historic evolution of the ideas without commitment to the actual 

concepts used in the development. 

3. The e0
1  

and e1
0
 will be related to the generators of the translation operators in the 

position and momentum space, in the limit as n → ∞ (see section 4). 

4. The symbol = means it is a definition. 


