
ORIGINAL ARTICLE

Finding and resolving security misusability with misusability cases

Shamal Faily • Ivan Fléchais

Received: 5 March 2014 / Accepted: 25 November 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Although widely used for both security and

usability concerns, scenarios used in security design may

not necessarily inform the design of usability, and vice-

versa. One way of using scenarios to bridge security and

usability involves explicitly describing how design deci-

sions can lead to users inadvertently exploiting vulnera-

bilities to carry out their production tasks. This paper

describes how misusability cases, scenarios that describe

how design decisions may lead to usability problems sub-

sequently leading to system misuse, address this problem.

We describe the related work upon which misusability

cases are based before presenting the approach, and illus-

trating its application using a case study example. Finally,

we describe some findings from this approach that further

inform the design of usable and secure systems.

Keywords Goals � Personas � Scenarios � Use cases �
Security

1 Introduction

In 1994, Nielsen claimed that cost was the principle reason

why usability engineering techniques are not used in

practice [47]. While the financial costs of applying many

usability techniques have been reduced by technology

advances, other tangible and intangible costs have arisen to

take their place. Many of these costs arise because of the

expectations we increasingly place on these systems; we

expect systems to be secure, but we also expect them to be

usable. Techniques from secure software engineering and

usability engineering help reason about how effective

design decisions might be at mitigating risks or improving

the effectiveness of a user’s tasks, respectively. Yet,

developers may believe that their knowledge about user

goals and expectations negate the need for interaction

design, or their understanding of the system’s risks and

mitigating controls negates the need for any security ana-

lysis. In such cases, developers may feel security and

usability engineering approaches are useful, but they do not

believe that the pay-off justifies their cost.

Scenarios are widely used by both security and usability

professionals, but for different reasons. To usability pro-

fessionals, they describe how people use a system to carry

out activities that achieve their personal or occupational

goals. To security professionals, scenarios describe how a

system might be misused towards an attacker’s own ends.

Although scenarios are flexible enough to be used in both

contexts, an artefact from one context is not necessarily

useful in another. A scenario describing how a student

returns a borrowed book to a library may provide no more

insight into the security of a library’s loan management

system than a scenario describing how a professional

hacker might carry out a denial of service attack on the

library’s web-server provides insight into the usability of

the same system.

One way of engaging developers might be to encourage

them to consider the negative impact that their design

decisions could have on the systems they are building. A

system could go wrong in many different ways; it could be

exploited by an insider or external attacker, or it could be

sufficiently unusable that key stakeholders lose confidence

in its capabilities. By focusing on the different unintended

S. Faily (&)

Bournemouth University, Poole, UK

e-mail: sfaily@bournemouth.ac.uk

I. Fléchais

University of Oxford, Oxford, UK

123

Requirements Eng

DOI 10.1007/s00766-014-0217-8



consequences of a system, developers may be encouraged

to track problems back to their root causes. There is,

however, a need to see how security and usability con-

tribute to each other during system design activities.

This paper describes misusability cases: scenarios which

describe how design decisions may lead to usability

problems subsequently leading to system misuse. Section 2

describes the related work upon which our technique is

built. We present misusability cases in Sect. 3 together

with a validating example in Sect. 4. We conclude in

Sect. 5 by discussing how the findings from this work

further inform design approaches for usable and secure

systems.

2 Related work

2.1 Designing usable security

In their seminal paper on information security, Saltzer and

Schroeder [50] espouse several design principles for pro-

tection mechanisms. One of these is the principle of psy-

chological acceptability, which states: The interface to the

protection mechanism should be designed for ease of use,

so users routinely and automatically apply the mechanism

correctly. In recent years, there has been an enormous

amount of research in the area of HCI security; seminal

work in this area has looked at the usability of password

policies [1] and security controls [59]. The HCI security

community has considered the challenge of designing

usable security from two different standpoints: design

principles and user-centred security.

2.1.1 Design principles

The first standpoint is characterised by the application of

usable security design principles. Examples of these

include Yee’s design guidelines and strategies for secure

interaction [60]. These guidelines are written as principles

a designer should consider when making decisions about

secure interface design; examples include: Match the most

comfortable way to do tasks with the least granting of

authority, and Indicate clearly the consequences of deci-

sions that the user is expected to make. More recently,

attempts have been made to synthesise the many principles

that exist towards general guidelines for usable cyberse-

curity [48].

While the contributions of Yee and others are sensible

and well meaning, they are not the final word in designing

usability security as many of these principles and idioms

are also truisms. For example, [48] claims that Cyberse-

curity usability should be considered early on—it is hard to

imagine anyone advocating a contrary view. The need for

considering usability in security early on is not contested,

what is not so obvious is how security usability should be

considered and incorporated into a design or broader

intervention early and in such a way that it does not

interfere with productivity. Siponen [52] observes that the

main value of such ‘‘common sense principles’’ is to

change the conventional attitude that security is a human

rather than technical problem, rather than providing rig-

orous guidelines with empirical evidence to support their

suitability.

2.1.2 User-centred security and AEGIS

The second standpoint is characterised by Zurko and

Simon’s work on user-centred security [61]. User-centred

security refers to ‘‘security models, mechanisms, systems,

and software that have usability as a primary motivation

or goal’’. Zurko and Simon claim that secure systems

have, traditionally, been indifferent to the needs of

users—irrespective of whether these are end-users,

developers, or administrators. Like Yee [60], Zurko and

Simon argue for security models conducive to the mental

models of different types of users, but they also propose

synthesising security design techniques with established

design techniques from HCI. This work inspired, and

continues to inspire, much of the current research in

usable security. Surprisingly, the bulk of work in this

community focuses on studying the usability of security

controls rather than activities associated with designing

systems that are usable and secure. For example, a survey

by Birge [6] found that many HCI security papers are

divided into studies about usability testing on security

controls, mitigating security controls, conceptual investi-

gations about terms such as ‘‘trust’’ and ‘‘privacy’’,

experience studies about user attitudes, and models and

guidelines demonstrating trusted interactions and trusted

user interfaces. Birge also notes that much of this research

focuses on the needs of the end-user rather than the needs

of the designer, and few studies have attempted to tackle

the question about how designers should approach secu-

rity concerns.

Attempts to synthesise HCI and security techniques

continue to raise issues for researchers. To understand why,

we should consider one example of follow-on work: the

Appropriate and Effective Guidance for Information

Security (AEGIS) design method [30]. AEGIS assumes

that secure systems are not merely software systems, but

socio-technical systems: systems of technology used within

a system of activity. To this end, AEGIS was designed as a

lightweight process which augments existing software

development methods that provide guidance to developers

for designing secure systems. This process is applied

within a focus group setting, where stakeholders gather,

Requirements Eng

123



identify, and model the system’s assets in different con-

texts. These assets are evaluated according to values held

by the participants about them. Vulnerabilities, threats, and

risks affecting these assets are elicited, before possible

security controls mitigating these risks are selected. The

costs and benefits of situating these countermeasures for

each of the affected contexts is considered and, if unmiti-

gated risks remain, this process is repeated.

At a superficial level, AEGIS appeals to Zurko and

Simon’s canons for user-centred security. A more critical

analysis of AEGIS does, however, raise issues; these affect

not only AEGIS but the paradigm of user-centred security

in general.

First, AEGIS assumes that usability will follow by

taking a participative approach to design. However, work

by Irestig et al. [36] found that while participative practices

are effective for eliciting usage culture values that might

have otherwise remained tacit, resulting systems tend to be

comparatively chaotic, small-scale, and imbued with the

power relationships of the organisation.

Second, although conceptually simple, UML class dia-

grams (which are used in AEGIS to model assets) cannot

model alone the many elements which also impact secure

systems, such as goals, tasks carried out by users, and other

potentially relevant relationships, such as dependencies

between different users. Moreover, as analysis progresses,

models are likely to grow and become unwieldy without

dedicated tool-support.

Finally, although treating environments as first-class

modelling objects is an important step towards contextu-

alising risk analysis, workshops alone may not be enough

to elicit information about threats and vulnerabilities within

different environments. Although Zurko and Simon have

proposed applying techniques such as contextual inquiry

[35] to elicit such data, we are unaware of any peer-

reviewed literature which has attempted to do this in a

security context.

2.1.3 Evaluating the design of usable security

Some researchers in the security and HCI communities

have explored how evaluating the design of security might

lead to more usable security controls. For example, Jøsang

et al. [37] devised a selection of security usability vulner-

abilities associated with security tasks, and the assessment

of a systems security state. Such vulnerabilities can then be

compared with security solutions, and possibly combined

with relevant threat sources, to see where security might

fail. [37] also consider strategies for improving the security

and usability of security technologies. They accept that

interface changes alone may not be enough and entirely

new designs may be necessary to implement a usable

security design.

Jøsang and his colleagues suggest that re-designing a

security control with poor usability can be helped with

suitable usability metrics. Subsequent work by Braz et al.

[9] presented an approach where different steps of a task

scenario are associated with supplemental security prob-

lems, usability criteria, and a collection of usability factors

and metrics. This approach can be used by usability spe-

cialists and security designers to rate the impact of security

and usability issues associated with different aspects of a

particular task. This approach relies primarily on the

expertise of security and usability experts, so does not

require access to design models or systems stakeholders.

However, while this approach is useful for evaluating dif-

ferent aspects of a design, it remains primarily an evalua-

tion approach, with no guidance provided for a revising a

systems requirements based on the evaluation.

2.2 Addressing usable security with user-centred

design and requirements engineering

One proposal suggested by Zurko and Simon involves

synthesising security engineering practices with user-cen-

tred design. User-centred design is concerned with an early

focus on user goals and tasks, empirical measurement of

users, and iterative design [33]. Several user-centred design

techniques have also been usefully appropriated by

requirements engineering practitioners. Two of the most

prominent of these are personas and scenarios.

Personas are narrative descriptions of archetypical users

that embody their goals and needs [15]. Because they are

comparatively easy to develop and use, they are becoming

popular for summarising user research about prospective

system stakeholders [12]. Personas have also been proven

useful when engaging stakeholders in security [24]. The

activities necessary to create personas are also conducive to

a security analysis because in addition identifying affor-

dances for use, affordances for misuse and possible vul-

nerabilities can be identified at the same time [26].

Scenarios are stories about people carrying out an

activity [49]. Their allusory power has not been lost on the

requirements engineering community. They can be used to

impart knowledge about human activities at any level of

abstraction, provided the activities can be rendered in a

narrative structure. Consequently, scenarios are a universal

language in requirements engineering and can be used to

support the elicitation, specification, and validation of

requirements [3]. Sindre and Opdahl [51] have also pro-

posed using scenarios to describe unwanted behaviour in a

system. Such behaviour can be encapsulated in a misuse

case: a sequence of actions, including variants, that a

system or other entity can perform, interacting with mis-

users of the entity, and causing harm to some stakeholder/s

if the sequence is allowed to complete.

Requirements Eng

123



While popular, user-centred approaches are not without

their flaws. From a security design perspective, it is

important to understand these weaknesses; these may lead

to the unintentional introduction of vulnerabilities into a

requirements specification.

First, user-centred approaches assume that usability

design should precede general system design. Cockton [14]

argues that invention will precede innovation, and while

concurrent design may be possible, an iterative design

process beginning with human factors work is an unreal-

istic aspiration.

Second, user-centred approaches may be implicitly

biased against software engineers. For example, Cooper

[15] argues that developers will, given the opportunity,

design any given software product for themselves, and that

many examples of bad usability can be attributed to soft-

ware developer indifference to usability. In particular,

Cooper’s argument is founded on the failure of a particular

Microsoft project described in [45], where a culture of

usability allegedly clashed with a culture of engineering.

However, an alternative reading of [45] also suggests that

poor requirements engineering practices on the part of the

usability designers and a failure to consistently respond to

developer requests for a working requirements specifica-

tion may have been as much to blame. Consequently, it is

equally possible that [45] strengthens, rather than rebuts,

Cockton’s more recent observations. A similar anti-engi-

neer bias has been observed by Thimbleby [55], who

claims that many usability professionals believe that

technologists are the origin of usability problems, and that

these problems can be solved by extolling the virtues of

user-centricity and acting as user proxies.

Third, user-centred approaches may, in some cases, be

methodologically weak. For example, Chapman and Mil-

ham [11] report little peer-reviewed discussion of the

Personas technique validity and, as a result, it may be

impossible to verify their accuracy. Moreover, because

personas are fictional representations, there is no easy way

to falsify them. Consequently, if a persona is developed

using questionable methods, or less than accurate empirical

data, it is difficult to disprove a persona’s validity.

Finally, knowing about usability problems is different

from being willing and able to fix them. Knowing that there

are usability problems is, however, important, but while

user-centred approaches are necessary and useful, they are

not in themselves sufficient. This is because user-centred

design techniques appear to focus solely on the world

external to the user interface without considering the use-

fulness of formal specifications for modelling complexity

and ambiguity; such specifications can, potentially, high-

light the causes of poor user interface design [56].

Sutcliffe [54] has compared and contrasted the traditions

in both HCI and software engineering concerning design

and its theoretical underpinnings. Sutcliffe concluded that

scenarios are indeed boundary objects between these dis-

ciplines, but that both occasionally carry out research

within each other’s bailiwick. In one sense, this might be

seen as competition, but it could also be viewed as con-

vergence between disciplines. Both disciplines do appear to

converge when dealing with interaction concerns, although

the viewpoints of each differ in both cases.

These different viewpoints suggest that care needs to be

taken when using scenarios to address concerns that cross-

cut these disciplinary perspectives, particularly when

security is involved. To see why, we should consider

Alexander’s proposed use of misuse cases for examining

usability issues [2]. Alexander presents an example where

confusion about the use of an interface causes a novice user

to become a negative agent. A corollary of this approach is

that the user is typecast as an attacker; this is analogous to

treating the user as the cause of poor interface design.

However, Brostoff and Sasse argue that this position is

tantamount to blaming users for a security design they

might compromise, and analogous to blaming the cause of

safety-critical system failures on human error rather than

bad design [10].

2.3 Aligning user-centred design with requirements

and security engineering using IRIS

Sutcliffe [54] claims that synthesis between different dis-

ciplinary design perspectives may be possible if instead of

focusing on heavyweight methods, a spectrum of comple-

mentary approaches is adopted. To explore this claim, our

research has examined how complementary user-centred

design practices can be integrated with both requirements

and security engineering. This work has led to the devel-

opment of the Integrating Requirements and Information

Security (IRIS) meta-model: a conceptual model for usable

secure requirements engineering [22]. The IRIS meta-

model extends existing work in user-centred design, secu-

rity and requirements engineering by including concepts

which allow the usability of tasks, and the usability of

impact of security design decisions to be modelled. The

IRIS meta-model extended related meta-models in security

requirements engineering, such as [29, 43, 44] to ensure re-

use of existing concepts, but was as parsimonious as pos-

sible when declaring model concepts, and model relation-

ships were simplified to make conceptual associations as

clear as possible. The meta-model itself sub-divided into

five views: task, goal, risk, responsibility, and environment.

Together, these views make it possible for security designs

to be assessed in different contexts of use.

The IRIS meta-model formed the basis of the IRIS

process framework, which guides technique selection when

specifying usable and secure systems [26]. The process

Requirements Eng

123



framework is also complemented by the open-source

Computer Aided Integration of Requirements and Infor-

mation Security (CAIRIS) requirements management tool,

which demonstrates how model elements from security,

requirements, and usability engineering can be managed

and analysed [21].

Goals are a central feature of IRIS, and form the basis of

a specification that a particular system needs to satisfy. As

such, IRIS’ definition of goal, which is based on the defi-

nition used by the KAOS approach [39], is analogous to a

system goal. These goals are progressively refined, and leaf

goals become the responsibility of stakeholder roles; these

are responsible for ensuring the goal is satisfied. Goals can

be operationalised as tasks; these are scenarios exploring

the relationship between the specified system and the

intended users. These intended users are modelled as per-

sonas, which use the functionality specified by the system

goals to carry out activities of importance to them.

The same system goals facilitating these tasks can be

threatened using KAOS obstacles: conditions representing

undesired behaviour that prevent an associated goal from

being achieved [40]. Subsequent refinement of obstacles

may lead to the elicitation of vulnerabilities or possible

threats. When attackers carry out threats exploiting these

vulnerabilities, risks can be defined. Misuse cases act as a

validation of this risk analysis exercise. If a risk is valid,

then a believable misuse case should be written; this

describes how the attack associated with the risk exploits

the risk’s vulnerability to harm the endangered or exploited

assets.

Although user goals are not an explicit concept in IRIS,

subsequent work [20] has shown how the characteristics of

personas and the activities they engage in align with the i*

based goal-oriented requirements language (GRL) [4]. This

alignment makes it possible to generate GRL models based

on personas and use cases. With appropriate tool-support,

this may facilitate complementary analysis of trade-offs

arising from a reconfiguration of persona activities, goals,

and the dependencies between them [19]. Further explo-

ration of this alignment between IRIS and GRL is outside

the scope of this paper.

Although quantitative data analysis based on this meta-

model allows the impact of security decisions on the

usability of tasks to personas to be modelled, the only way

misusability can be explored is by treating personas as

attackers, or eliciting obstacles giving rise to secure mis-

usability. If we consider obstacles as exceptional behav-

iour, then use cases might form the basis of eliciting such

obstacles. Use cases are sequences of actions a system

performs yielding an observable result of value to a par-

ticular actor, i.e. someone or something outside the system

that interacts with the system [38]. These are synonymous

with scenarios and are a commonly used requirements

elicitation technique. Although they often describe the

normal course of an actor’s usage of a system, extensions

for exceptional behaviour can be associated with individual

steps [13]. Using this approach, accidental misuse of a

system can be elicited without typecasting a persona as an

attacker, but only if the requirements giving rise to the

misuse are known. It may be case that all we have are clues

to what this misuse might be. These might include possible

ambiguity in a specification, or some assumptions about a

persona’s behaviour that, in some cases, might cause cer-

tain types of behaviour.

2.4 Designing for the negative

To discover the contributing factors to inadvertent misuse

or abuse of a system, we must look beyond the classic view

of systems used precisely as their designers intended. An

example of such thinking is Dunne and Raby’s work on

Design Noir [18], which argues that our emotions and

needs are played out in technology across a much broader

spectrum of use originally envisaged by its designers.

Although previous work has considered the abuse and

misuse of social agents [8], Nathan et al.’s work on Value

Scenarios [46] is one of the few examples of work where

scenarios are used to describe both the positive and nega-

tive systematic effects of technology without considering

users as malevolent. Value scenarios are vignettes which

describe the systematic effects of a system to both direct

and indirect users over an extended period of time. These

scenarios describe the negative impact of forgetting about

certain values, such as prejudice and inequality.

Not all software systems are as divisive, pervasive, or

long-running as those typically described by value sce-

narios. Nevertheless, it may be possible to stimulate similar

narratives with more supplemental information about the

system, its users, and its contexts of use. This information

may not be available during the early stages of design

where it is envisaged that value scenarios should be

employed, but it might be available from the data collected

during later stages.

2.5 Bridging techniques with assumptions

The IRIS meta-model supports the KAOS concept of

domain properties to capture assumptions expected to hold

by the system, but it does not consider assumptions that

underpin the meta-model concepts themselves. Without a

specific means of associating these assumptions with

design, identifying the associations between misuse and the

system design decisions that contribute towards them

remains an ad hoc affair. Subsequent work [25] has,

however, examined how structured assumptions can be

used to better ground the construction of assumption

Requirements Eng

123



personas. Building on Toulmin’s work on developing

practical arguments [57], we have illustrated how

assumptions can be structured and aligned with persona

characteristics. This work suggests that a characteristic is

analogous to a claim being made as part of an argument,

and a proposition reflecting an assumption about this

characteristic may act as evidence grounds, or a warrant: a

rule of inference describing how the grounds contribute to

the claim. The origin of a warrant’s assumption is the

backing knowledge for believing the claim, and assump-

tions may also be used as rebuttals, which challenge the

validity of the claim. Finally, a modal qualifier indicates

the degree of certainty about the claim. Our use of Toul-

min’s model of argumentation is inline with growing

security requirements engineering best practice for visual-

ising design rationale, e.g. [32, 34].

In a case study where personas were used to help elicit

secure system requirements [24], it was observed that the

contextual data used to elicit personas also inform the

elicitation of vulnerabilities. Based on the effectiveness of

the Toulmin model for grounding the characteristics of

personas, it may be possible to structure contextual data

suggesting possible system or user ambiguity in a similar

manner. Such characteristics may form the basis of estab-

lishing contexts where security misusability can occur.

3 Approach

Misusability cases, which were first proposed by [27], are

scenarios where a persona achieves a personal or work

objective, but inadvertently exploits one or more vulnera-

bilities in order to do so. Misusability cases have two

objectives. First, to identify cases of insecure misuse within

the context of use where activities are carried out using a

designed system. Second, to elicit the root causes of this

misuse, together with the system goals which mitigate

them.

As Fig. 1 illustrates, misusability cases do not exist in

isolation and are tightly integrated into the IRIS meta-

model. Before applying the technique, we assume system

goals have been elicited; these correspond to the require-

ments the systems needs to satisfy. We also assume that

one or more personas have also been elicited to reflect

different roles the system needs to be designed for. As the

figure also illustrates, some of these goals in this goal

model are operationalised as use cases. A misusability case

realises a use case describing a particular episode of system

behaviour carried out by an actor. Each actor associated

with the use case is realised by a persona.

Misusability cases are modelled using the IRIS concept

of task. The factors leading to this exploitation are myriad;

a user might accidentally circumvent application error

checking, misread software instructions, or carry out

behaviour that conflicts with organisational security poli-

cies. However, in all cases, these factors arise because of

vulnerabilities in the context of use within which the task

takes place.

To facilitate misusability cases within IRIS, two modest

changes were made to the task view of the IRIS meta-

model published in [22]; this revised model is presented in

Fig. 2.

The first change involved repurposing the changes made

to the IRIS meta-model in [25] for assumption personas to

also support misusability cases. These concepts are shown

on the left-hand side of Fig. 2. Characteristic was intro-

duced to describe a motivated characteristic of a persona.

These are, as indicated in Fig. 1, grounded in assumptions.

Fig. 1 Misusability case with other design concepts

Fig. 2 IRIS task meta-model updates for misusability cases

Requirements Eng

123



These assumptions are modelled as references (be these

grounds, warrants, or rebuttals), which were backed up

either by some externally documented artefact or by some

pre-existing security, usability, or requirements concept

within an IRIS model.

The second change involves introducing the concept of

use case to the meta-model, and the re-purposing of the

existing concept of role to encompass use case actors. Use

cases were not incorporated into the initial version of the

IRIS meta-model because, given the presence of the task

concept, use cases appeared to be superfluous when the

IRIS meta-model was validated in two initial industry case

studies (described in [22, 26]) where requirements were

elicited and specified. In these studies, however, the IRIS

process framework was used exclusively, i.e. there were no

constraints for the IRIS model to be interoperable with any

existing or planned design models. Given the ubiquity of

use cases for specifying, managing, and validating

requirements, not including this concept affects the sca-

leability of the IRIS meta-model. Moreover, pre-existing

use cases which are incomplete or ambiguously defined

may provide a useful source of misusability data. These

may be specified at an early stage of design, but not

updated as a design evolves, even though they may be used

as an authority when considering user needs.

In the following sections, we describe how misusability

cases are elicited and applied.

3.1 Eliciting misusability cases

The first step involves identifying implicit assumptions

being made about the design related to a use case. A variety

of techniques can be used to discover these assumptions.

When analysing documentation, such as architectural

design documents or user manuals, techniques proposed by

Dewar’s assumption-based planning methodology [17] are

particularly useful. These techniques include using jour-

nalist questions (Who? What? When? Where? Why?, and

How?) about items of data, and looking for instances of

text where the words will and must are used.

Using the conceptual model described by Fig. 2, refer-

ences are created for each assumption. Each reference

contains a statement summarising the assumption, a link to

the source material, together with an excerpt from the

source material justifying the assumption. References may

also be elicited from design artefacts, such as personas.

Once a collection of references have been elicited, the

characteristics of a convincing misusability case are

developed. The process for developing misusability case

characteristics are analogous to those used for developing

persona characteristics. A claim is made about some

characteristic of the system which might be liable for

misuse. The references are used to act as grounds or a

warrant to this claim or, if necessary, a rebuttal. Finally, a

modal qualifier is associated with the characteristic based

on the analyst’s confidence in the claim.

The final stage involves writing a supporting task sat-

isfying these characteristics while, simultaneously, carry-

ing out the steps within the use case. Enacting the task is

the persona fulfilling the use case actor’s role. The

behaviour exhibited by the persona should be commensu-

rate with the characteristics built into the task; if the

characteristics of the misusability case as such that they

conflict with the persona’s objectives then this should be

reflected in the task narrative.

3.2 Applying misusability cases

The next stage involves identifying the obstacles directly

contributing to the different aspects of misusability in the

misusability case. Based on these obstacles, the higher-

level obstacles these lower-level obstacles help satisfy are

elicited. This step continues until system goals are identi-

fied, or new goals are elicited, which are obstructed by

these obstacles. Although this step could be construed as an

exercise in bottom-up analysis, fitting the misusability case

and its contributing obstacles into the larger goal model

necessitates both top-down and bottom-up analysis.

Once the misusability case has been reconciled with

the system goal model then one of two actions may be

possible. Eliciting both the misusability case and con-

tributing obstacles may have provided insights suggesting

new goals to resolve the obstacles identified. If this is the

case then these are added to the goal model. Alterna-

tively, it may not be possible to mitigate the elicited

obstacles because further investigation into the problem

domain is needed, or the controls needed to mitigate the

obstacles are out of scope. In such cases, the obstacles are

assigned to a particular role. This role is responsible for

further analysis leading to eventual mitigation of the

obstacle. Explicitly assigning the obstacle to a role miti-

gates the possibility of diffusion of responsibility, where

unresolved problems are ignored because no single agent

is responsible for them [16].

4 Misusability cases in practice

We now provide an example of how misusability cases

were used in a project to develop a portal for sharing

medical study data [42]. The portal was primarily designed

to serve two particular user communities: academic

researchers and data managers. Academic researchers use

the portal and its resources to find re-usable data sources,

and contribute to the portal’s documentation server and

portal. Data managers work within particular study units

Requirements Eng

123



and are responsible for curating study data, its meta-data,

and making authorised study data available on the portal.

To support portal development, we elicited additional

security requirements for the portal’s meta-data repository

(MDR): a database allowing researchers to discover meta-

data about different studies. Ideally, both security and

usability should be designed into a system at a very early

stage. Our involvement with the project commenced not at

its initial inception, but once the main architecture and

component sub-systems had been outlined. Moreover,

despite the fact that contact and engagement from repre-

sentative stakeholders could have made an invaluable

contribution to our work, the project scope was such that

data could not be collected from prospective researchers or

data managers. It was, therefore, necessary to use the portal

development team, who had spent considerable time

working with the different user communities, as proxy

users. We also attempted to make best use of the available

project documentation. This documentation included

requirements specification that was developed for the

portal at the very early stages of the project. These

requirements were elicited by a team of analysts with

access to representative data managers. The analysts elic-

ited a collection of ten scenarios illustrating how

researchers and data managers might use the portal and, on

the basis of these, 70 functional and non-functional

requirements were derived. These non-functional require-

ments included 11 security requirements which, with two

exceptions, were exclusively concerned with access control

of the MDR data. This bias for access control and confi-

dentiality is understandable; the nature of the project was

such that certain aspects of meta-data were sensitive and

likely to be harmful to study participants if disclosed.

4.1 Methods

The process for eliciting the additional security require-

ments for the MDR, which the creation and application of

misusability cases was part of, is illustrated in Fig. 3 and

detailed in the sub-sections below.

4.1.1 Persona development and scoping

While the project team’s responsibility formed a natural

scope of analysis around the MDR, there was concern

that security issues might cross-cut organisational

boundaries; such issues may be the responsibility of one

team, but the adverse impact could affect others. It was

also necessary to understand the different expectations

held about the prospective MDR user-community. To

deal with both of these issues, it was decided to identify

implicit assumptions in the available documentation, and

use these to form the basis of assumption personas. In

doing so, the expectations about end-users are made

explicit, and subsequent discussion around these confirm

a useful boundary for the analysis to be carried out in

later stages.

For each role relevant to the scope of analysis, the

available documentation was reviewed to elicit references

for each role. These are used to establish persona charac-

teristics and, based on these, assumption personas. The

process for eliciting these assumption personas is described

in more detail in [25].

Once the assumption personas were developed, these

were presented to the project team for review. Issues raised

by the team were used to revise the assumption personas or

correct any misinterpretations held about the MDR.

4.1.2 Design sessions

By carrying out this intervention in parallel with on-going

project activity, using participative design sessions alone

was infeasible. Conversely, however, limited documenta-

tion artefacts meant that group-based design sessions

would be required to elicit the data contributing to the

requisite IRIS concepts.

The design sessions stage entailed holding small focus

groups with project team members. Each session focused

on the use of activity scenarios, KAOS, or AEGIS. An

activity scenario session involved modelling scenarios

carried out by the elicited assumption personas in their

respective contexts. A KAOS session involved eliciting

goals needing to be satisfied to enable the elicited scenarios

to be realised. In both session types, assumption personas

were used as an authority for user expectations; these were

modified if aspects of the analysis challenge their charac-

teristics. AEGIS sessions involved carrying out asset

modelling for the different environments, and discussing

possible attackers, threats and vulnerabilities that might

arise due to environmental factors; based on these, several

risks were identified.Fig. 3 Instantiated process for the MDR specification

Requirements Eng

123



Each design session was recorded and, following each

session, the transcripts were analysed to elicit additional

information about the scenarios, goals, and asset models

elicited.

After the final session, each goal was examined and

assigned a responsible role. Following this, a specification

document was generated and sent to the project team

members for review.

4.1.3 Misusability analysis

In order to help make assumptions more transparent and,

simultaneously, help inform system usability and security

using the work of the project team, a misusability analysis

phase was appended to this process.

Using both previously analysed and new documentation

produced by the project team, assumptions were identified

leading to the elicitation of misusability cases. These

artefacts were used to elicit contributing obstacles, together

with the goals these obstacles obstruct. This activity

stimulated innovative thinking about new goals for

resolving these obstacles.

Elicited goals were refined to requirements and assigned

a responsible role. Following this, a revised specification

document was generated and sent to the project team

members for review. Once the team was given sufficient

time to review the analysis, a final wrap-up session was

held where the final results were presented.

4.2 Results

The available project documentation was analysed to

identify assumptions and, based on these, assumption

personas for a researcher (Alex) and a data manager

(Brian) were elicited.

Four in-situ design sessions were held with project team

members; each session lasted between 40 min and 1 h.

During each session, 1–2 developers worked with the pri-

mary author to elicit the use cases and tasks carried out by

the personas, together with the goals that the portal would

need to satisfy to support them. These sessions were sup-

ported by CAIRIS, which was used to manage the design

data and evolve the system goal model as the sessions

progressed. After the final design session, a requirement

specification was generated by CAIRIS, and sent to the

project team members for review.

Once it had been established that there were no issues

with the analysis carried out to date, the goal model and

related design artefacts, together with the project docu-

mentation were used as data sources for misusability case

elicitation and mitigation. CAIRIS was also used to store

elicited references, characteristics, misusability cases, and

the obstacles and goals elicited on the basis of this addi-

tional analysis.

After the misusability cases had been elicited, and the

final wrap-up session was held, a total of 42 requirements

and 21 obstacles had been elicited. Of these 21 obstacles,

15 were elicited using misusability cases. Of the 42

requirements elicited, twice as many security requirements

(22) were elicited using this process than were specified in

the original portal requirements specification.

In the following sections, we describe an example of

how one of these misusability cases was elicited and used

during this study.

4.3 Developing the misusability case

To identify the functionality associated with importing

study meta-data into the MDR, the following use case,

batch import meta-data, was specified.

The data manager completes the fields of a mapping file

and, from his web-browser, enters a URI to the meta-data

upload page. When the upload page is displayed, the data

manager enters the location of the mapping file and clicks

on the Upload button. The system uploads the meta-data to

the MDR based on the data in the mapping file and, after

several minutes, acknowledges the successful import of the

meta-data to the data manager.

The mapping file describes properties of the meta-data,

such as the file names, locations, and security policies

associated with the meta-data. Associated with this use

case was a pre-condition that the meta-data itself has been

prepared and ready for import.

While the use case suggests little to form the basis of

security misuse, a number of clues were found in related

artefacts. The MDR implementation guide suggested that

utilities to support data managers in preparing their meta-

data may be made available via a central repository on the

portal. This central repository also hosted forums and best

practice documentation about how to make best use of the

portal. Other clues were found in the related persona

description. Brian was found to irregularly use the portal

and, because of his unfamiliarity with the mechanics of

sharing data outside of his study unit, is unfamiliar with the

process of importing data to the MDR. Consequently, a

lack of documentation and best practice was likely to be a

cause of frustration. We also know that Brian was adept at

scripting, and was likely to script the process of satisfying

the use case preconditions.

These assumptions were recorded as references and,

using the argumentation structure described in Sect. 3.1,

characteristics were elicited that unpinned a misusability

case undermining the use case; this argumentation structure

generated by CAIRIS is illustrated in Fig. 4. Using these

Requirements Eng

123



characteristics as guidance, the batch import sensitive

meta-data misusability case was written:

Brian had spent most of the morning preparing data-sets

ready for export to various sources. Some of the meta-data

was for deep [sensitive] meta-data for local databases,

while others were shallow [summarised] meta-data tar-

geted for the MDR. He hoped to use standards and

guidelines on the gateway, but he was disappointed by the

lack of anything useful that would help him. Nevertheless,

Brian managed to organise his meta-data into the layout he

inferred from some XSLT scripts he was able download.

After finally finishing the preparation of his data-sets and

meta-data, Brian created the mapping files needed for the

data import process. Fortunately, most of them were very

similar so most of the files he used were based on an initial

template he created for one of his data-sets. Brian entered

a URI he had been provided for uploading meta-data to the

MDR, and logged in using his Data Manager credentials.

Brian then specified the mapping file corresponding to the

meta-data he wanted to upload and hit the Upload button.

Several minutes after clicking the Upload button, Brian

received a message from the portal indicating that the

meta-data had been uploaded.

Although not written into the misusability case itself,

Brian has inadvertently uploaded a mapping file for public

meta-data, which points to sensitive and private meta-data.

As a result, unauthorised meta-data had been made publicly

available on the portal.

4.4 Mitigating the misusability case

Figure 5 presents an excerpt from the goal model generated

by CAIRIS that is associated with the aforementioned

misusability case; this misusability case is represented by

the dark blue ellipse at the bottom of the figure. The colour

of this figure is based on how usable Brian finds the

activities described in this task; the darker the shade of

blue, the less usable the task is. Further explanation of how

the usability of tasks are calculated is outside the scope of

this paper, but is detailed in [23].

As the figure illustrates, we identified three contributing

obstacles which cause the misusability case to be realised.

In this figure, obstacles are modelled as yellow rhomboids.

The first of these obstacles is the lack of documentation

about the import layout. If we consider possible root

obstacles, then we discover that satisfying this obstacle

contributes to an obstacle of the MDR documentation

being unavailable. One reason that this documentation is

unavailable is because no one is explicitly responsible for

publishing anything. We can, therefore, mitigate this first

obstacle by specifying a goal (layout documentation) stat-

ing that the expected data layout shall be published when

an import tool is made available to data managers.

The second obstacle points to a lack of contributed best

practice documentation. The frustration caused by this, like

the first obstacle, lengthened the time taken to complete the

activity; this possibly increased the likelihood of the slip

occurring during the misusability case; this slip was

reflected by the inadvertent specification of the mapping

file data policy as public. Although the management of

portal documentation was largely de-scoped from this

analysis, the impact of the obstacle affects the MDR. For

this reason, the obstacle was assigned to the portal

administrators to ensure it is addressed by the portal design

team.

The third obstacle relates to the upload of the inappro-

priate meta-data to the MDR due to mis-specification of the

mapping file template. The obstacle states the sensitive

meta-data was specified as publicly accessible. This

obstacle is too granular to immediately suggest a mitigating

Fig. 4 Characteristics and argumentation structure underpinning a misusability case

Requirements Eng

123



goal, thereby requiring further thought about root obstacles

this might be satisfying. Because the obstacles are based on

system rather than user errors, it would be inappropriate to

define the immediate parent obstacle as a slip on the part of

Brian. However, the consequences of the slip suggest that

some form of validation safeguarding against such slips

might have failed. A root obstacle that might be satisfied by

the contributing obstacles states that the batch import

process failed to spot the validation error. Yet, this obstacle

raises the question: What such a validation error might

entail? One means of providing this validation involves

stating a priori expectations about the data manager’s

study unit’s policy for exporting different classes of data

and meta-data. By consulting these expectations, discrep-

ancies between unit data and the unit data policies can be

highlighted during a pre-import validation check. To

realise these requirements, two goals were added to the

goal model. The first of these stipulates that a mapping file

validation check shall be carried out in order to satisfy the

goal of batch importing meta-data into the MDR. The

second goal resolves the meta-data policy mis-specified

obstacle; this involves stating that study policy expectation

check shall be carried out as part of the validation process.

5 Discussion

5.1 Pairing for engagement

One of the benefits of the misusability case technique was

its ability to increase developer engagement towards

understanding how poor usability can both hinder take-up

Fig. 5 Misusability case contribution to goal model

Requirements Eng

123



of the system they were trying to build, and compromise

security. This engagement led developers to consider

security issues they might have otherwise considered out-

of-scope, and the responsibility of another team.

The misusability case below, which is similar to that

described in Sect. 4.3, was developed to explore the impact

of corrupt meta-data causing the import process to misin-

terpret the quality of study data.

Brian has been preparing data-sets ready for ingestion

into the MDR. He hoped to use standards and guidelines on

the portal, but he was disappointed by the lack of anything

useful that would help him. Sill, Brian managed to organise

his meta-data into the layout he inferred from some the

XSLT scripts he downloaded.

Unfortunately, in some cases, some of the meta-data

came from MS Office files and a few invisible character

codes managed to find their way into the prepared meta-

data files. Fortunately, Brian thinks he managed to catch

most of them before he finally collated a meta-data file

ready for upload.

Brian entered a URI he had been provided for uploading

his meta-data and, after logging in using the Data Man-

ager credentials, Brian enters an online form describing

some of the characteristics of the meta-data, together with

the location on his PC where meta-data can be found.

Several minutes after Brian clicked on the Upload button,

Brian received a message from the gateway saying the

meta-data had been uploaded.

Consequently, although draft data was imported into the

MDR, this was interpreted as real study data. When this

misusability case was presented to developers, together

with goals which would mitigate this problem, the devel-

opers were adamant that the obstacle should not be miti-

gated. Doing so, they argued, might disengage data

managers; the developers did not want to pre-empt what

data managers should or should not wish to import into the

MDR.

Following this discussion, a second, consequential,

misusability case (below) was presented to the developers.

Alex is currently sat in his office, in front of Safari. Alex

is currently trying to add substance to an unfinished paper

about the time parents spend with their sons in South

Africa.

Alex has come across a paper in PubMed, which points

to a particular data-set. This dataset is referenced in the

paper as a URI. Alex clicks on the URI, which takes him

into the portal The publicly available data about the

dataset is loaded into the browser. This data includes a

thumbnails of the questions being asked, and some statis-

tics on who the question was asked to, i.e. the number of

responses, together with the mean or variance. Unfortu-

nately, the metadata about the data quality meta-data has

been corrupt, which means that he fails to spot the lack of

quality information for the data set. There are, however,

links about the study which produced the data-set, and

links to a PDF version of the question it came from.

This data-set isn’t precisely what Alex is looking for, but

it is similar. As a result, Alex decides to look at the study in

more detail. He clicks on the details of the study to find out

more about the characteristics of the population and who

the study is funded by. After looking at these details, Alex

bookmarks the study URI for future reference.

Later, Alex will obtain this dataset and notice enough

similarities in his research that elements of the data will be

applicable to his study.

This misusability case was a corollary of the first and

described the impact of the corrupt data from Alex’s per-

spective. In this misusability case, the invisible control

characters in the imported meta-data caused the portal to

leave the quality indicator field blank when information

about a study is viewed by an end-user. As a result, Alex

obtained the data and used it in his own research without

realising that it wasn’t real.

After this second misusability cases were presented, the

developers acknowledged the seriousness of the MRD

contributing to the publication of research grounded in

invalid scientific data. The developers did not have an

immediate solution to this problem, but they did identify

additional usability concerns that Brian might have, and

they acknowledged that Brian would only use the portal if

it was seamlessly integrated into their work processes.

Although the system documentation does not specifically

allude to draft data being uploaded to the MDR, encour-

aging data managers to use the portal would require further

thought about how synthetic data could be imported, and

distinguished from actual study data.

5.2 Scope and responsibility

The misusability case example illustrated how security

issues can lead to a scope of analysis review. During earlier

design sessions, documentation related goals and assets

were deemed to be out of scope for the MDR. As such, they

were removed from the analysis data altogether. However,

in hindsight, it was necessary for such goals to be present;

this included making explicit who was responsible for

ensuring their satisfaction, and how these goals could

impact goals and obstacles which were within scope.

The example also highlighted the importance of ensur-

ing that unresolved obstacles were also assigned to

responsible agents. Previous work in Responsibility Mod-

elling has considered roles held by responsible agents

towards securing systems, and modelling responsibility

relationships between these agents, e.g. [5, 7]. Despite a

comparatively recent resurgence of interest in the role of

responsibility modelling to elicit requirements during the

Requirements Eng

123



early stages of design [19, 53], vulnerabilities are still

considered a consequence of responsibility failure, rather

than something which can be brought to account. Although

risk management approaches deal with the idea of trans-

ferring unmitigated responses to one or more agents, we

believe that assigning ownership of obstacles during the

early stages of design will ensure that vulnerabilities giving

rise to security and usability problems are promptly

addressed. This entails making the assigned stakeholders

liable for addressing the obstacle. Flechais and Sasse [31]

argue that this motivates the assigned stakeholders. This is

because failure to act responsibly damages both the pro-

ject’s assets and its reputation; this reputation loss may lead

to loss of trust in the whole system.

5.3 Misusability as an innovation tool

Another benefit of explicitly introducing the concept of

misusability into design are the opportunities afforded for

innovation. Ensuring sensitive data was not offered to an

external interface was raised as a concern in the MDR

requirements specification, but much of the focus on

security within the design itself was focused on providing

identity assurance. The misusability case example in

Sect. 4 led to the un-envisaged leverage of different types

of access control policies to help safeguard against the

disclosure of sensitive data.

Scenarios have already been proposed as a vehicle for

stimulating innovation [41]; by viewing technology from the

perspective of marginal communities, a fresh perspective

can be obtained which lead to innovative ideas. In misus-

ability cases, rather than looking at marginal communities,

we instead consider how marginalised personas are affected

by design ambiguity. Like the transfer scenarios described

by [41], misusability case narratives are grounded in data,

but are also supplemented with goal-oriented techniques

from requirements engineering to show how a system design

contributes to misusability. Rather than treating misusability

ephemerally, perhaps we should use also misusability cases

as a grounded innovation technique?

5.4 Limitations of approach

Although we have validated Misusability Cases using a

real case study example, two limitations of this approach

are worth highlighting.

First, the analyst applying this approach in the case

study example was one of the paper authors. Although this

author has several years of industry experience in software

engineering, which includes the elicitation, specification,

and validation of software requirements, he also possesses

broader usability and security engineering expertise. While

such expertise would not typically be available to a single

practitioner, there is, as Sect. 2.2 highlights, a growing

body of work that aligns both user-centred design and

security with general requirements engineering practice. As

a result, the requisite tools and techniques underpinning

misusability cases are accessible to the practitioner com-

munity. For example, misusability cases were used by the

EU FP 7 webinos project to re-evaluate software require-

ments from a usability security perspective [58]. A team of

ten practitioners and researchers (including the paper

authors) elicited 5 misusability cases. The methodology

described in this paper was broadly followed, but while

design consequences of the misusability cases are pre-

sented, no requirements were explicitly updated as a result.

Second, several goals were elicited for mitigating the

misusability cases in the study described in Sect. 4, the

security impact of these mitigating goals were not con-

sidered. This is because the scope of investigation was to

elicit and specify additional security requirements. It was

then left to the developers to decide whether or not to

realise these requirements. However, if the development

team had decided to realise these requirements, KAOS

could have been used to elicit and specify further goals and

obstacles based on these, which could be complemented by

an architectural risk analysis using CAIRIS. Such an

approach is demonstrated by [28].

6 Conclusion

Scenarios have been used to support both security and

usability engineering. To date, there is little evidence that

scenarios used to support design in one context informs

design activities in another. In this paper, we have descri-

bed misusability cases which, rather than treating misus-

ability as a corollary of bad design, explicitly identifies the

causes of misusability and inform the design of systems to

resolve them. In doing so, we demonstrate how a particular

scenario can support both security and usability design

activities.

Our work makes four specific contributions towards

addressing misusability in secure systems. First, we

describe how existing work in usability and security

engineering can be aligned to form the basis of eliciting

usable security requirements engineering concerns, and

why simply typecasting users as attackers may be less

effective than modelling both the impact of misusability in

users’ activities, and their causes. Second, we illustrate

how assumptions identified using existing user-centred

design and requirements engineering techniques can be

modelled using argumentation models, the elements of

which help identify examples of unintentional misuse.

Third, we present a case for explicitly assigning responsi-

bility for the causes of misusability leading to system

Requirements Eng

123



misuse irrespective of whether or not discharging this

responsibility is within the scope of analysis or not. Finally,

we describe how misusability cases can benefit design

activities by re-sensitising developers with usability con-

cerns, and stimulating innovative thinking towards hitherto

unidentified design requirements fostering both security

and usability.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Adams A, Sasse MA (1999) Users are not the enemy. Commun

ACM 42:41–46

2. Alexander I (2003) Misuse cases: use cases with hostile intent.

IEEE Softw 20(1):58–66

3. Alexander IF, Maiden N (eds) (2004) Scenarios, stories, use cases:

through the systems development life-cycle. Wiley, New York

4. Amyot D, Ghanavati S, Horkoff J, Mussbacher G, Peyton L, Yu E

(2010) Evaluating goal models within the goal-oriented require-

ment language. Int J Intell Syst 25(8):841–877

5. Backhouse J, Dhillon G (1996) Structures of responsibility and

security of information systems. Eur J Inf Syst 5(1):2–9

6. Birge C (2009) Enhancing research into usable privacy and

security. In: Proceedings of the 27th ACM international confer-

ence on design of communication. ACM, pp 221–226

7. Blyth A (1999) Using stakeholders, domain knowledge, and

responsibilities to specify information systems’ requirements.

J Organ Comput Electron Commer 9(4):287–296

8. Brahnam S, de Angeli A (2008) Special issue on the abuse and

misuse of social agents. Interact Comput 20(3):287–291

9. Braz C, Seffah A, M’Raihi D (2007) Designing a trade-off

between usability and security: a metrics based-model. In: Pro-

ceedings of the 11th IFIP TC 13 international conference on

human-computer interaction—volume part II. Springer, New

York, pp 114–126

10. Brostoff S, Sasse MA (2001) Safe and sound: a safety-critical

approach to security. In: Proceedings of the 2001 new security

paradigms workshop. ACM, pp 41–50

11. Chapman CN, Milham RP (2006) The persona’s new clothes:

methodological and practical arguments against a popular method.

In: Proceedings of the human factors and ergonomics society 50th

annual meeting, pp 634–636. http://cnchapman.files.wordpress.

com/2007/03/chapman-milham-personas-hfes2006-0139-0330

12. Cleland-Huang J (2013) Meet Elaine: a persona-driven approach

to exploring architecturally significant requirements. IEEE Softw

30(4):18–21

13. Cockburn A (2001) Writing effective use cases. Addison-Wesley,

Boston

14. Cockton G (2008) Revisiting usability’s three key principles. In:

CHI ’08 extended abstracts on Human factors in computing

systems. ACM, pp 2473–2484

15. Cooper A (1999) The inmates are running the asylum: why high

tech products drive us crazy and how to restore the sanity, 2nd

edn. Pearson Higher Education, Upper Saddle River

16. Darley JM, Latané B (1970) Norms and normative behaviour:

field studies of social interdependence. In: Berkowitz L,

Macaulay J (eds) Altruism and helping behaviour. Academic

Press, San Diego

17. Dewar JA (2002) Assumption-based planning: a tool for reducing

avoidable surprises. Cambridge University Press, Cambridge

18. Dunne A, Raby F (2001) Design Noir: the secret life of electronic

objects. August/Birkhaeuser, Basel

19. Elahi G, Yu E (2009) Trust trade-off analysis for security

requirements engineering. In: Proceedings of the 17th IEEE

international requirements engineering conference. IEEE Com-

puter Society, pp 243–248

20. Faily S (2011) Bridging user-centered design and requirements

engineering with GRL and persona cases. In: Proceedings of the

5th international i* workshop. CEUR Workshop Proceedings,

pp 114–119

21. Faily S (2013) CAIRIS web site. http://github.com/failys/CAIRIS

22. Faily S, Fléchais I (2010) A meta-model for usable secure

requirements engineering. In: Proceedings of the 6th international

workshop on software engineering for secure systems. IEEE

Computer Society, pp 126–135

23. Faily S, Fléchais I (2010) Analysing and visualising security and

usability in IRIS. In: Proceedings of the 5th international con-

ference on availability, reliability and security. IEEE Computer

Society, pp 543–548

24. Faily S, Fléchais I (2010) Barry is not the weakest link: eliciting

secure system requirements with personas. In: Proceedings of the

24th BCS interaction specialist group conference, BCS ’10.

British Computer Society, pp 124–132

25. Faily S, Fléchais I (2010) The secret lives of assumptions:

developing and refining assumption personas for secure system

design. In: Proceedings of the 3rd conference on human-centered

software engineering, vol LNCS 6409. Springer, New York,

pp 111–118

26. Faily S, Fléchais I (2011) Eliciting policy requirements for crit-

ical national infrastructure using the IRIS framework. Int J Secur

Softw Eng 2(4):114–119

27. Faily S, Fléchais I (2011) Eliciting usable security requirements

with misusability cases. In: Proceedings of the 19th IEEE inter-

national requirements engineering conference. IEEE Computer

Society, pp 339–340

28. Faily S, Lyle J, Namiluko C, Atzeni A, Cameroni C (2012)

Model-driven architectural risk analysis using architectural and

contextualised attack patterns. In: Proceedings of the Workshop

on Model-Driven Security. ACM 3:1–3:6

29. Firesmith D (2004) Specifying reusable security requirements.

J Object Technol 3(1):61–75

30. Fléchais I, Mascolo C, Sasse MA (2007) Integrating security and

usability into the requirements and design process. Int J Electron

Secur Digit Forensics 1(1):12–26

31. Fléchais I, Sasse MA (2009) Stakeholder involvement, motiva-

tion, responsibility, communication: how to design usable secu-

rity in e-science. Int J Hum Comput Stud 67(4):281–296

32. Franqueira V, Tun TT, Yu Y, Wieringa R, Nuseibeh B (2011)

Risk and argument: a risk-based argumentation method for

practical security. In: Requirements engineering conference (RE).

2011 19th IEEE international, pp 239–248

33. Gould JD, Lewis C (1985) Designing for usability: key principles

and what designers think. Commun ACM 28(3):300–311

34. Haley CB, Laney R, Moffett JD, Nuseibeh B (2008) Security

requirements engineering: a framework for representation and

analysis. IEEE Trans Softw Eng 34(1):133–153

35. Holtzblatt K, Jones S (1993) Contextual inquiry: a participatory

technique for systems design. In: Schuler D, Namioka A (eds)

Participatory design: principles and practice. Lawrence Erlbaum

Associates, New Jersey, pp 177–210

36. Irestig M, Eriksson H, Timpka T (2004) The impact of partici-

pation in information system design: a comparison of contextual

placements. In: Proceedings of the 8th conference on Participa-

tory design. ACM, pp 102–111

Requirements Eng

123

http://cnchapman.files.wordpress.com/2007/03/chapman-milham-personas-hfes2006-0139-0330
http://cnchapman.files.wordpress.com/2007/03/chapman-milham-personas-hfes2006-0139-0330
http://github.com/failys/CAIRIS


37. Jøsang A, Alfayyadh B, Grandison T, Alzomai M, McNamara J

(2007) Security usability principles for vulnerability analysis and

risk assessment. In: Computer security applications conference,

2007. ACSAC 2007. Twenty-third annual, pp 269–278

38. Kruchten P (2003) The rational unified process: an introduction,

3rd edn. Addison-wesley, Boston

39. van Lamsweerde A (2009) Requirements engineering: from

system goals to UML models to software specifications. Wiley,

New York

40. van Lamsweerde A, Letier E (2000) Handling obstacles in goal-

oriented requirements engineering. IEEE Trans Softw Eng

26(10):978–1005

41. Ljungblad S, Holmquist LE (2007) Transfer scenarios: grounding

innovation with marginal practices. In: Proceedings of the SIG-

CHI conference on Human factors in computing systems, CHI

’07. ACM, pp 737–746

42. Matthews BM, Duncan A, Jones CM, Bicarregui JC (2009) MRC

data support service—data gateway requirements: version 1.0

43. Mayer N (2009) Model-based management of information system

security risk. Ph.D. thesis, University of Namur

44. Mellado D, Fernández-Medina E, Piattini M (2007) A common

criteria based security requirements engineering process for the

development of secure information systems. Comput Stand

Interface 29(2):244–253

45. Moody F (1996) I sing the body electronic: a year with microsoft

on the multimedia frontier. Penguin, New York

46. Nathan LP, Klasnja PV, Friedman B (2007) Value scenarios: a

technique for envisioning systemic effects of new technologies.

In: CHI ’07: extended abstracts on Human factors in computing

systems. ACM, pp 2585–2590

47. Nielsen J (1994) Guerrilla HCI: using discount usability engi-

neering to penetrate the intimidation barrier. In: Bias RG, May-

hew DJ (eds) Cost-justifying usability. Morgan Kaufmann, San

Francisco, pp 242–272

48. Nurse J, Creese S, Goldsmith M, Lamberts K (2011) Guidelines

for usable cybersecurity: past and present. In: 2011 third inter-

national workshop on cyberspace safety and security (CSS),

pp 21–26

49. Rosson MB, Carroll JM (2002) Usability engineering: scenario-

based development of human-computer interaction. Academic

Press, London

50. Saltzer JH, Schroeder MD (1975) The protection of information

in computer systems. Proc IEEE 63(9):1278–1308

51. Sindre G, Opdahl AL (2005) Eliciting security requirements with

misuse cases. Requir Eng 10(1):34–44

52. Siponen M (2002) Designing secure information systems and

software. Ph.D. thesis, University of Oulu

53. Sommerville I, Lock R, Storer T, Dobson J (2009) Deriving

information requirements from responsibility models. In: van Eck

P, Gordijn J, Wieringa R (eds) CAiSE ’09: proceedings of the

21th international conference on advanced information systems

engineering, vol LNCS 5565. Springer, Berlin, pp 515–529

54. Sutcliffe A (2005) Convergence or competition between software

engineering and human computer interaction. In: Seffah A,

Gulliksen J, Desmarais MC (eds) Human-centered software

engineering: integrating usability in the software development

lifecycle. Springer, New York

55. Thimbleby H (2007) User-centered methods are insufficient for

safety critical systems. In: HCI and usability for medicine and

health care, third symposium of the workgroup human-computer

interaction and usability engineering of the Austrian Computer

Society, vol 4799 LNCS. Springer, New York, pp 1–20

56. Thimbleby H, Thimbleby W (2007) Internalist and externalist

HCI. In: Proceedings of the 21st British HCI group annual con-

ference. British Computer Society, pp 111–114

57. Toulmin S (2003) The uses of argument. Cambridge University

Press, Cambridge

58. webinos Consortium (2011) webinos report: user expectations of

security and privacy phase 2. http://webinos.org/2011/11/01/webi

nos-repot-user-expectations-of-security-and-privacy-phase-2/

59. Whitten A, Tygar D (1999) Why Johnny can’t encrypt: a usability

evaluation of PGP 5.0. In: Proceedings of the 8th USENIX

security symposium. USENIX Association, pp 169–184

60. Yee KP (2005) Guidelines and strategies for secure interaction

design. In: Cranor LF, Garfinkel S (eds) Security and usability:

designing secure systems that people can use. O’Reilly Media,

Sebastopol, pp 247–273

61. Zurko ME, Simon RT (1996) User-centered security. In: Pro-

ceedings of the 1996 new security paradigms workshop. ACM,

pp 27–33

Requirements Eng

123

http://webinos.org/2011/11/01/webinos-repot-user-expectations-of-security-and-privacy-phase-2/
http://webinos.org/2011/11/01/webinos-repot-user-expectations-of-security-and-privacy-phase-2/

	Finding and resolving security misusability with misusability cases
	Abstract
	Introduction
	Related work
	Designing usable security
	Design principles
	User-centred security and AEGIS
	Evaluating the design of usable security

	Addressing usable security with user-centred design and requirements engineering
	Aligning user-centred design with requirements and security engineering using IRIS
	Designing for the negative
	Bridging techniques with assumptions

	Approach
	Eliciting misusability cases
	Applying misusability cases

	Misusability cases in practice
	Methods
	Persona development and scoping
	Design sessions
	Misusability analysis

	Results
	Developing the misusability case
	Mitigating the misusability case

	Discussion
	Pairing for engagement
	Scope and responsibility
	Misusability as an innovation tool
	Limitations of approach

	Conclusion
	Open Access
	References


